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Abstract— This article proposes a synchrophasor estimation
(SE) algorithm that leverages the use of a delayed in-quadrature
complex signal to mitigate the self-interference of the fundamen-
tal tone. The estimator, which uses a three-point IpDFT combined
with a three-cycle Hanning window, incorporates a new detec-
tion mechanism to iteratively estimate and remove the effects
caused by interfering tones within the out-of-band interference
(OOBI) range. The main feature of the method is its ability
to detect interfering tones with an amplitude lower than that
adopted by the IEC/IEEE Std. 60255-118, this detection being
notably challenging. Furthermore, it simultaneously satisfies all
the accuracy requirements for the P and M phasor measurement
unit (PMU) performance classes while offering a reduction in
the total computational cost compared with other state-of-the-
art techniques.

Index Terms— Discrete Fourier transform, IEC/IEEE Std.
60255-118-1-2018, interpolated DFT, phasor measurement unit
(PMU), quadrature signal generator, synchrophasor estimation
(SE).

I. INTRODUCTION

S INCE their introduction in the 1980s [1], phasor mea-
surement units (PMUs) have evolved and are currently

present in the power grids of all developed countries [2] and
used successfully in many applications, such as wide-area
monitoring protection and control, model validation, and state
estimation [3]. To ensure the interoperability and compatibility
of PMUs from different manufacturers, an industry standard,
whose latest installment corresponds to the IEC/IEEE Std.
60255-118 [4], has been in continuous development since
1992 [5]. The standard [4] defines a set of tests representative
of the operating conditions of the power system and the
corresponding performance requirements that all PMUs must
satisfy based on their class and reporting rate. Two different
performance classes are defined in [4]: class P, for applications
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requiring a fast response, and class M, for those requiring high
accuracy and rejection of interharmonics or subharmonics.

Over the years many synchrophasor estimation (SE) tech-
niques have been explored in the literature, such as wavelets
[6], Prony [7], Taylor–Fourier [8], [9], [10], [11], [12],
Shanks [13], Kalman filtering [14], [15], [16], subspace-based
methods [17], discrete-time frequency-gain transducers [18],
complex brick-wall bandpass filters [19], and adaptive filters
[20], [21], among others. Most commercial PMUs employ
DFT-based SE algorithms [22], which can produce accurate
estimates by simply processing a few DFT bins [23]. However,
two main limitations compromise the performance of DFT-
based techniques: aliasing and spectral leakage [24]. Although
the first can be easily solved by increasing the sampling
rate or adopting an antialiasing filter, spectral leakage, which
includes long- and short-range interferences, requires more
elaborate solutions [24]. Long-range leakage refers to the
mutual interference caused by all the tones that make up the
signal spectrum, while short-range leakage, also known as
scalloping or picket fence effect, is the error caused by the
displacement of the maximum bin. Long-range leakage can
be mitigated by windowing [25], while interpolation of DFT
bins [26] addresses short-range leakage. Combining both win-
dowing and interpolation, as proposed in [27], represents the
foundation of modern interpolated DFT (IpDFT) techniques.
To satisfy the underlying assumption that the signal parameters
are fixed within the observation window, and to comply with
the time and latency requirements set by [4], intervals of
just a few nominal cycles are generally selected [28], [29],
[30]. In turn, this causes a coarse frequency resolution which,
in the case of a real-valued power system signal whose
main tone nominal values fall close to dc, results in the
proximity between the positive and negative images. Their
mutual interaction, also known as self-interference, constitutes
the main source of error in the estimation process [30].

Different approaches have been explored to deal with neg-
ative frequency infiltration [23], [28], [29], [30], [31], [32],
[33], [34]. Agrež [31] introduced a multipoint weighted IpDFT
that reduces the effects of long-range spectral leakage. Bel-
ega et al. [23] employed a method based on a novel three-point
weighted IpDFT combined with the use of maximum sidelobe
decay (MSD) windows, which showed a great rejection of
interference from the negative image. Belega and Petri [33]
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developed new cosine windows, called maximum image inter-
ference rejection with rapid sidelobe decay rate (MIR-RSD)
windows, which showed a high rejection of self-interference
and long-range leakage from other narrowband disturbances.
Romano and Paolone [28] presented an algorithm (e-IpDFT)
that iteratively approximated and compensated for the effects
of self-interference by taking advantage of the symmetry of
the DFT spectrum with respect to the dc component. The
method was further extended in [29] to further compensate for
an additional generic interfering tone. The resulting method,
the so-called i-IpDFT, was proven to meet the requirements
for the P and M classes. Both e-IpDFT and i-IpDFT were
proved to be computationally efficient and experimentally
deployed and validated on industry-grade field-programmable
gate arrays (FPGAs) [35], [36]. The same idea of estimating
and compensating for the effects of self-interference and long-
range leakage from additional tones presented in [29] is also
used in [34]. While [29] uses an iterative formulation, [34]
derives analytical expressions to achieve faster convergence.
However, [34] does not account for subharmonic or interhar-
monic components.

A different approach to mitigate negative image infiltration
is to generate a complex signal from the real one. HT-IpDFT
[30] employs a Hilbert filter to approximate the analytic signal
and suppress the negative spectrum. Although the method
reduces the computational complexity of the iterative process
compared with [29], it does not meet the combined require-
ments of classes P and M for harmonic distortion (HD) (1%)
and phase step tests in [4]. Another suitable complex signal to
cancel the negative image is the one defined by the signal itself
and its imaginary in-quadrature signal. Many quadrature signal
generation (QSG) techniques exist and have been used in other
applications, such as single-phase phase-locked loops (PLLs)
[37]. In [32], an in-quadrature signal is obtained by applying
the Clarke transform to a three-phase signal generated by
buffering and shifting a noise-filtered version of the measured
single-phase signal. The complex signal is further enhanced
with a weighted least-squares Taylor–Fourier (WLS-TF) filter
to match the magnitudes of both in-quadrature components
and is used with a Blackman window filter.

This article proposes an SE algorithm that takes advantage
of the use of a delayed in-quadrature complex signal generated
in the time domain to mitigate the self-interference of the fun-
damental tone. A delayed in-quadrature formulation is adopted
due to its simplicity, low computational cost, and, as will
be shown, excellent performance. The estimator, named time-
delay IpDFT (TD-IpDFT), uses a three-point IpDFT combined
with a Hanning window and incorporates a new detection
mechanism to iteratively estimate and remove the effects
caused by interfering tones equal to or greater than 4% within
the out-of-band interference (OOBI) range. It simultaneously
satisfies all accuracy requirements for the P and M classes,
while offering a reduction in the total computational cost
compared with the i-IpDFT [29], [36].

Although a single PMU capable of meeting the require-
ments of both classes at once is advantageous, to the best
of our knowledge, very few works in the literature can
achieve this. Belega et al. [11], Duda and Zielinski [18],
Razo-Hernandez et al. [19], and Roscoe et al. [20] present

techniques that can be used to comply with the P or M
classes, but not both simultaneously. Roscoe [21] improves
the work of [20] and proposes a hybrid P- and M-class
PMUs that relies on a tunable trigger threshold used to
detect transients and, accordingly, selects between two parallel
P-class and M-class algorithms. In [10], a transient detec-
tor is also employed to select between two sets of output
obtained, respectively, with two Taylor–Fourier algorithms of
different lengths and window parameters. The resulting PMU
is designed to meet the requirements of both classes at once,
while each individual algorithm is not intended to individually
meet the requirements of the P or M classes. Similarly,
[30] also relies on a transient event detection mechanism to
select between the output of two parallel Hilbert filters of
different orders. In addition to [29], [17] also proposes a
single algorithm to simultaneously meet the requirements of
both classes. The method, named harmonic-mean-estimation
of signal parameters via rotational invariance techniques (HM-
ESPRIT), enhances subspace-based PMU estimation methods,
by considering an HM to dynamically estimate the size of the
signal subspace while reducing the computational burden of
ESPRIT [38]. It manages to comply with all tests, except the
step tests, where its maximum overshoot exceeds the P class
requirements.

In view of the earlier, the main contributions of this article
are as follows.

1) A novel SE IpDFT-based method that simultaneously
satisfies all accuracy requirements for the P and M
classes.

2) The use of a delayed in-quadrature complex signal
generated in the time domain to mitigate the self-
interference of the fundamental tone and reduce the total
computational cost compared with the i-IpDFT.

3) A new detection mechanism to iteratively estimate and
remove the effects caused by interfering tones equal to
or greater than 4% within the OOBI range.

This article is structured as follows. Section II reviews
the fundamentals of IpDFT-based SE techniques. Section III
describes the theoretical basis of how a complex signal con-
sisting of in-quadrature components allows the suppression
of the negative image spectrum. Section IV presents the
structure, formulation, and adjustment of the parameters of
the TD-IpDFT SE algorithm. Section V presents the complete
characterization of the algorithm for P- and M-class PMUs
indicated by [4] drawing a side-by-side comparison with the
i-IpDFT. Section VI presents the experimental setup and tests
used for the validation of the theoretical findings of Section V.
Section VII discusses and compares the performance of the
TD-IpDFT with other state-of-the-art SE methods. Finally,
VIII summarizes the main findings and gives closing remarks.

II. SE IPDFT TECHNIQUES: FUNDAMENTALS

We refer to a formulation that considers a Hanning window
function, which offers a good compromise between sidelobe
decay and mainlobe width [27], and a three-point DFT interpo-
lation scheme, as it reduces the effects of long-range leakage
[31]. This configuration, already adopted in [29] and [30],
is also used for the proposed TD-IpDFT.
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A. Three-Point (3p) IpDFT Based on the Hanning Window

Consider a discrete single-tone steady-state signal x(n)

x(n) = A0 cos (2π f0nTs + ϕ0), n ∈ Z (1)

where Ts represents the sampling period and A0, f0, and ϕ0
are the fundamental amplitude, frequency, and initial phase,
respectively. If a window of N consecutive samples starting
at n = 0 is selected, the DFT spectrum of the signal X (k) is
given by (2), where w(n) is the discrete windowing function
and B =

∑N−1
n=0 w(n) the DFT normalization factor

X (k) =
1
B

N−1∑
n=0

w(n)x(n)e− j2πkn/N , k ∈ [0, N − 1]. (2)

According to the convolution theorem, a conjugate spectrum is
obtained, where each spectral component X (k) is the result of
the combined contributions of a positive and negative image
of the fundamental tone, each being the scaled and rotated
versions of the DFT of the window function W (k) shifted at
± f 0/1 f

1

X (k) = V0W (k − f0/1 f )

Positive Image

+ V ∗

0 W (k + f0/1 f )

Negative Image

(3)

where V0 = A0e jϕ0 . The distance between positive and
negative images depends on the frequency resolution 1 f ,
which is the reciprocal of the length of the selected window
T = N Ts . For the Hanning window, W (k) corresponds to

WH (k) = 0.5WR(k) − 0.25(WR(k − 1) + WR(k + 1)) (4)

where WR(k) is the DFT of the rectangular window, also
known as the Dirichlet kernel

WR(k) = e− jπk(N−1)/N sin (πk)

sin (πk/N )
, k ∈ [0, N − 1]. (5)

Given a set of estimates of the signal parameters ( f̂ , Â, ϕ̂)

and knowing the windowing function adopted, the spectral
contributions of positive and negative images can be estimated
by

X̂ H±(k) = Âe± j ϕ̂WH (k ∓ f̂ /1 f ). (6)

For the general case of incoherent sampling,2 the fundamental
tone of the signal falls between subsequent bins. Thus, the
signal frequency (SF) can be expressed as

f0 = (km + δ)1 f , δ ∈ [−0.5, 0.5) (7)

where km is the index of the highest bin and δ a fractional
correction term that, for the Hanning window (δH ), can be
analytically calculated by interpolating the three highest DFT
bins as [31]

δH = 2ε
|X H (km + ε)| − |X H (km − ε)|

|X H (km − ε)| + 2|X H (km)| + |X H (km + ε)|
(8)

where ε = ±1 if |X H (km + 1)| ≷ |X H (km − 1)|.

1In the case of a real multitone signal, its spectrum will be result of
the combined contributions from the positive and negative images of each
individual tone.

2Incoherent sampling refers to the adoption of a window length (T ) which
does not contain an integer number of fundamental periods (1/ f0), i.e., δ ̸= 0.

With δH determined, the amplitude and phase of the fun-
damental tone are given by

A0H = 2|X H (km)|

∣∣∣∣ πδH

sin (πδH )

∣∣∣∣ |δ2
H − 1| (9a)

ϕ0H = ̸ X H (km) − πδH . (9b)

III. NEGATIVE FUNDAMENTAL IMAGE SUPPRESSION

A. Delayed In-Quadrature Technique

Consider a complex discrete single-tone steady-state signal
ȳ(n), with components y(n) and y(n − dθ ), θ being the
resulting phase shift that delay dθ (dθ ∈ N) introduces at the
corresponding frequency f0

ȳ(n) = A0 cos (ω0nTs)

y(n)

+ j A0 cos (ω0nTs − θ)

y(n−dθ )

, n ∈ N

(10)

where ω0 = 2π f0 is the angular frequency3 and θ = ω0dθ Ts .
If (10) is expressed in terms of complex exponentials and the
positive and negative frequency components are grouped, the
following expression is obtained:

ȳ(n) =
1
2

A0e j (ω0nTs )σ+

Positive Frequency

+
1
2

A0e− j (ω0nTs )σ−

Negative Frequency

, n ∈ N (11)

where σ+ and σ− are the complex positive and negative delay
gains and correspond to

σ+ = 1 + e j (π/2−θ) (12a)

σ− = 1 + e j (π/2+θ). (12b)

The complex signal ȳ(n) can be seen as a “filtered” version
of y(n), where the amplitude and phase of each positive
and negative frequency component are altered, respectively,
by (12a) and (12b) based on the relative angular shift θ . Let
⌊. . .⌉ be the round-to-the-nearest integer function, rounding
the equidistant values away from zero to the integer with a
larger magnitude. Fig. 1 shows the frequency response of a
“filtered” delayed in-quadrature complex signal ȳ(n) generated
considering a frequency f from a signal y(n) with normal-
ized frequency f0[pu] = f0/ f . The magnitude and phase
response for each positive and negative frequency component
are given, respectively, by |σ+|, ̸ σ+ and |σ−|, ̸ σ− with
dθ = ⌊ fs/(4 f )⌉. The frequency response is 4-pu periodic
and is centered on the frequency considered for in-quadrature
generation f (1 pu). If there is no discrepancy between the
SF ( f0) and that used for the generation of the in-quadrature
component, i.e., ( f0 = f → f0[pu] = 1), a perfect in-
quadrature signal is obtained, resulting in cancellation of the
negative image (σ− = 0) and doubling of the positive one
(σ+ = 2). Otherwise, if the SF falls in its vicinity ( f0 ≃ f →

f0[pu] ≃ 1), still a significant mitigation of the negative image
occurs, but the effects can only be quantified by (12) once the
SF has been estimated.

3Although for simplicity the initial angle has been set to 0, the same result
holds if considered.
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Fig. 1. Frequency response of a “filtered” delayed in-quadrature complex
signal ȳ(n) generated considering a frequency f from a signal y(n) with
normalized frequency f0[pu] = f0/ f . Wide view (top) and zoomed-in view
(bottom).

Algorithm 1 TD-QSG Algorithm
Input: [x(n)]

1: d0 =

⌊
fs

4 fn

⌉
2: x̄o(n) = x(n) + j x(n − d0)

3: Xo(k) = DFT[x̄o(n)]

4: XoH (k) = 0.5Xo(k) − 0.25(Xo(k − 1) + Xo(k + 1))

5: { f̂0} = IpDFT[XoH (k)]

6: d f =

⌊
fs

4 f̂0

⌉
7: x̄ f (n) = x(n) + j x(n − d f )

Output: {x̄ f (n)}

B. Adopted Delayed Structure

A delayed in-quadrature complex signal generation tech-
nique is adopted. Conceptually, an in-quadrature component,
given a sampled single-tone steady-state signal (x(n)) as
defined in (1), can be generated by delaying it by ⌊ fs/(4 f0)⌉.
Since f0 is not known in advance, a two-step delayed
in-quadrature complex signal generation method based on the
IpDFT, the so-called time-delay QSG (TD-QSG), is proposed.
The method is described in Algorithm 1, where the functions
DFT and IpDFT refer, respectively, to (2) and (7)–(9).

First, an initial approximation of the in-quadrature complex
signal (x̄o(n)) is generated delaying the sampled signal (x(n))
by d0 samples. These correspond to the rounded delay given
by the nominal frequency fn (lines 1 and 2). The spectrum
of the complex signal is then calculated and windowed in the
frequency domain considering a three-cycle Hanning window4

(lines 3 and 4). A three-point IpDFT is then applied to just
obtain a refined estimate of the SF ( f̂0) (line 5), which is sub-
sequently used to obtain a refined delay d f and in-quadrature
complex signal (x̄ f (n)) (lines 6 and 7).

4This has been found to be the shortest window length required to detect
and remove all tones defined by the OOBI test.

IV. TD-IPDFT TECHNIQUE

This section describes the TD-IpDFT algorithm by pro-
viding: 1) a presentation of its underlying signal model
(Section IV-A); 2) a description of its structure and formulation
(Section IV-B); 3) a novel trigger mechanism for OOBI
identification and removal; 4) a sensitivity analysis to choose
its most suitable parameters (Section IV-C); and 5) an analysis
of its computational complexity (Section IV-D). The proposed
method is an improvement over the i-IpDFT proposed in [29]
and [36] and its aim is to match the performance of the
i-IpDFT while presenting a lower computational cost by using
a delayed in-quadrature complex signal to mitigate the effects
of self-interference.

A. Signal Model

The same static signal model within the analysis window
(n ∈ [0, N − 1]) used in [29] and [36] is considered by
the TD-IpDFT so that x(n) is the result of a fundamental
tone and a potential single interference tone with ampli-
tudes, frequencies and initial phases, respectively, denoted by
A0, Ai , f0, fi , ϕ0 and ϕi

x(n) = A0 cos (ω0nTs + ϕ0)

Fundamental Tone

+ Ai cos (ωi nTs + ϕi )

Interference Tone

(13)

where ω0 = 2π f0 and ωi = 2π fi denote the angular frequen-
cies of the fundamental and interference tones. By operating
with x(n), the TD-IpDFT estimates the fundamental tone’s
parameters { Â0, f̂0, ϕ̂0} as well as those of an additional
interference tone { Âi , f̂i , ϕ̂i } if detected.

B. Structure and Formulation

The TD-IpDFT algorithm incorporating the OOBI compen-
sation routine is summarized using the diagram in Fig. 2 and
the pseudocode in Algorithm 2, where the functions TD-QSG,
TD-SR, TD-APc, and wf refer, respectively, to Algorithms
1, 3, and 4 and (4)–(6), while Fig. 3 shows the spectra at
different steps of the process. First, the delayed in-quadrature
complex signal (x̄ f ) is generated using Algorithm 1 (line 1),
followed by the calculation of its DFT spectrum and the
application of the Hanning window in the frequency domain
(lines 2 and 3). The IpDFT is then applied to obtain a
first estimate of the signal parameters (line 4). Subsequently,
an interference compensation loop is initiated (line 6) after
the initialization of some auxiliary variables (line 5). These
include the initial estimates of the positive (X̂0

i+) and negative
(X̂0

i−) spectrums of a potential interference tone, the previous
normalized energy of the residual spectrum (R0

e ), along with
the residual energy exit (τRe ) and interference (τi ) trigger flags.

Within the loop, provided that the residual energy exit flag
has not been triggered in the previous iteration, the contri-
bution of the fundamental tone is first estimated (X̂q−1

0 ) by
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Fig. 2. Diagram of the TD-IpDFT Algorithm. The process is looped
Q + 1 times instead of Q as in the pseudocode in Algorithm 2 since the
IpDFT function on line 4 is nested within the loop. The correspondence
between the main blocks and the lines in Algorithm 2 is reported side to each
block.

means of Algorithm 35 (line 8). Together with the previously
estimated negative spectrum of the interference tone (X̂q−1

i− ),
X̂q−1

0 is removed from the original spectrum (line 9) and used
to determine whether such narrowband components may be
present. The analysis of such bins, which should correspond
to a positive image of a spurious tone, is performed during the
first iteration (lines 10–15). Among them, only those where
an interference tone is expected are considered, i.e., for a
nominal three-cycle window k ∈ [0 − 2] ∪ [4 − 7].6 Once the
highest magnitude bin kc has been determined (14), its total
energy and that of its two closest neighbors are aggregated into
Ec (15) (line 11). The calculated Ec is then compared with

5Algorithm 3, named time-delay spectral reconstruction (TD-SR), calcu-
lates the spectrum of any tone “α” in a delayed in-quadrature complex signal
(x̄ f ) given estimates of its frequency ( f̂α) and those of the uncorrected
amplitude ( Âα+) and phase (ϕ̂α+) of its positive image. This is done by
calculating the positive (σ+α ) and negative (σ−α ) complex delay gains
(Algorithm 3: lines 1 and 2), which can then be used to obtain the spectral
contributions of both positive and negative images (Algorithm 3: lines 3–6).

6For T = 3/ fn , bins [0–2] ∪ [4–7] correspond to a frequency range
[0–2]1 f ∪[4–7]1 f Hz, where 1 f = 1/T . This is where most of the energy
of a potential OOBI is located.

Algorithm 2 TD-IpDFT Algorithm
Input: [x(n)]

1: {x̄ f (n)} = TD-QSG[x(n)]

2: X f (k) = DFT[x̄ f (n)]

3: X fH (k) = 0.5X f (k) − 0.25(X f (k − 1) + X f (k + 1))

4: { f̂ 0
0 , Â0

0+, ϕ̂0
0+} = IpDFT[X fH (k)]

5: X̂0
i+(k) = 0; X̂0

i−(k) = 0; R0
e = 0; τRe = 1; τi = 0

6: for q = 1 to Q do
7: if τRe = 1 then
8: {X̂q−1

0 (k), σ
q−1
+0 } = TD-SR[ f̂ q−1

0 , Âq−1
0+ , ϕ̂

q−1
0+ ]

9: X̂q
i+(k) = X fH (k) − X̂q−1

0 (k) − X̂q−1
i− (k)

10: if q = 1 then
11: Apply (14)-(15)-(16)
12: if ( Ec

Eo
∈[λl

o, λ
u
o] and Ec

Ei
≥ λi ) or Ec

Eo
>λu

o then
13: τi = 1
14: end if
15: end if
16: if τi = 1 then
17: X̂q

r (k) = X̂q
i+(k) − X̂q−1

i+ (k)

18: Rq
e =

∑
|X̂q

r (k)|2/Eo

19: if |Rq
e − Rq−1

e | < λRe then
20: τRe = 0
21: end if
22: { f̂ q

i , Âq
i+, ϕ̂

q
i+} = IpDFT[X̂q

i+(k)]

23: {X̂q
i (k), -, X̂q

i+(k), X̂q
i−(k)} =

TD-SR[ f̂ q
i , Âq

i+, ϕ̂
q
i+]

24: { f̂ q
0 , Âq

0+, ϕ̂
q
0+} = IpDFT[X fH (k) − X̂q

i (k)]

25: else
26: ϕ̂

q
0 = ϕ̂

q
0+ − ̸ σ

q
+0; Âq

0 =
Âq

0+
|σ

q
+0 |

27: break
28: end if
29: else
30: { Âq

0 , ϕ̂
q
0 } = TD-APc[ f̂ q

0 , Âq
0+, ϕ̂

q
0+]

31: break
32: end if
33: end for
34: if q = Q then
35: { ÂQ

0 , ϕ̂
Q
0 } = TD-APc[ f̂ Q

0 , ÂQ
0+, ϕ̂

Q
0+]

36: end if
Output: { f̂0, Â0, ϕ̂0}

Algorithm 3 TD-SR Algorithm

Input: [ f̂α, Âα+, ϕ̂α+]

1: ϕdα = 2π f̂αd f Ts
2: σ+α = 1 + e j ( π

2 −ϕdα )
; σ−α = 1 + e j ( π

2 +ϕdα )

3: ϕ̂α− = −(ϕ̂α+ − ̸ σ+α ) + ̸ σ−α

4: Âα− = Âα+
|σ−α |

|σ+α |

5: X̂α+(k) = wf[ f̂α, Âα+, ϕ̂α+]; X̂α−(k) =

wf[− f̂α, Âα−, ϕ̂α−]

6: X̂α(k) = X̂α+(k) + X̂α−(k)

Output: {X̂α(k), σ+α , X̂α+(k), X̂α−(k)}

three heuristically defined threshold levels (λl
o, λu

o , and λi ),
which allow for the identification of a potential interference
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Fig. 3. Spectra at different steps of Algorithm 2 for a discrete signal x(n) affected by additive white Gaussian noise with a signal-to-noise ratio (SNR)
equal to 80 dB [x(n) = A0 cos (2π f0nTs ) + Ai cos (2π fi nTs ), n ∈ Z; where A0 = 1, f0 = 45 Hz, Ai = 0.35 and fi = 100 Hz]. (a) and (b) X0H (k) in

line 1 (line 4 of Algorithm 1). (c) and (d) X fH (k) in line 3. (e) X fH (k) − X̂q−1
0 (k) within line 9. (f) X̂q

i (k) in line 23. (g) X fH (k) − X̂q−1
i (k) within

line 24. (h) X̂q−1
0 (k) in line 8 (subsequent iteration). The rectangular window is used to represent all spectra, so the effects of long-range spectral leakage

are noticeable. Similarly, a 35% HD is selected for the same reason.

(lines 12–14) (see Section IV-C). These thresholds measure
the relation of Ec to the total original spectral energy Eo (16a)
(λl

o, λu
o) and to the entire set of interference bins Ei (16b) (λi ),

that is, ∀k ∈ [0, K − 1].

kc = arg max
k

|X̂ i+(k)|; k ∈ [0, 2] ∪ [4, 7] (14)

Ec =

∑
k

|X̂ i+(k)|2;


k ∈ [0, 2], if kc = 0
k ∈ [5, 7], if kc = 7
k ∈ [kc ± 1], otherwise

(15)

For efficient implementation, a routine stop criterion is intro-
duced inspired by the one proposed in [30], where the incre-
mental ratio between consecutive values of Ei/Eo was eval-
uated. Instead, the evolution of the total normalized residual
spectral energy Re is used. This is defined as the total remain-
ing energy after subtracting both the estimated fundamental
and the interfering tones inferred by the previous iteration from
the original spectrum (17) normalized by the total original
spectral energy Eo. If the variation falls below a predefined
threshold level (λRe ), τRe is set to zero to stop the iterative
process (see Section IV-C) (lines 17–21).

Eo =

K−1∑
k=0

|X fH (k)|2 (16a)

Ei =

K−1∑
k=0

|X̂ i+(k)|2 (16b)

Rq
e =

K−1∑
k=0

∣∣X fH (k) − X̂q−1
0 (k) − X̂q−1

i (k)
∣∣2/Eo (17)

The second IpDFT is then applied to estimate the parameters
of the positive image of the interfering component (line 22),
which are used to approximate the complete spectrum of the
interfering tone (X̂q

i (k)) (line 23). Finally, the last IpDFT can
be applied to X fH (k)− X̂q

i (k), obtaining an improved estimate
of the fundamental { f̂ q

0 , Âq
0+, ϕ̂

q
0+} (line 24). The process is

looped Q times or until τRe is triggered. The final results, the
initial estimates, if no interferences are found, or the latest,
once τRe is triggered or the maximum number of iterations
is reached (q = Q), are then corrected to account for the
amplitude and phase alterations due to the use of the delayed
in-quadrature complex signal (x̄ f ). If no interferences are
found, the amplitude and phase corrections can be applied
directly (line 26), since the fundamental positive complex
delay gain (σ q−1

+0
) is already obtained when Algorithm 3

is applied to estimate the fundamental spectrum (line 8).
Otherwise, this is done using Algorithm 47 (lines 30 and 35).
Finally, fundamental frequency estimations at two successive
reporting times (m and m−1) are used to calculate the rate-of-
change-of-frequency (ROCOF) at the reporting time m with a

7Algorithm 4, named time-delay amplitude and phase correction (TD-APc),
corrects the estimated amplitude and phase of the positive image of any tone
“α” in x̄ f given f̂α , Âα+, and ϕ̂α+.
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Algorithm 4 TD-APc Algorithm

Input: [ f̂α, Âα+, ϕ̂α+]

1: ϕdα = 2π f̂αd f Ts; σ+α = 1 + e j ( π
2 −ϕdα )

;

2: ϕ̂α = ϕ̂α+ − ̸ σ+α ; Âα =
Âα+
|σ+α |

Output: { Âα, ϕ̂α}

first-order backward approximation of a first-order derivative

ˆ̇f0(m) =

(
f̂0(m) − f̂0(m − 1)

)
Fr (18)

where Fr denotes the reporting rate.

C. Novel Trigger Mechanism for OOBI Compenstation

A novel trigger mechanism for the OOBI that builds on
and expands the normalized spectral energy method proposed
in [29] is adopted. In [29], an energy threshold capable of
identifying interfering components with distortion equal to or
greater than 10% was adjusted based on a characterization of
the energy content shown by each test condition specified in
[4]. A first refinement is proposed on the basis of an improved
selection of the DFT bins to calculate the spectral energy.
Although all bins in the interference spectrum were considered
in [29], only kc, and its two closest neighbors, are now
selected. The ratio between Ec and Eo is called spectral energy
ratio. As shown in [29], the amplitude and phase steps are
the main limiting signal dynamics when setting an adequate
energy threshold. However, their energy is spread across the
whole spectrum, whereas, in the case of an interfering tone,
it will be concentrated around its frequency. This is leveraged
by introducing an additional metric to enhance the distinction
between interfering tones and other spurious contributions of
different origins. The so-called spectral energy concentration
ratio allows us to measure the spread of spectral energy around
kc by taking the relation between Ec and Ei .

Setting appropriate values for λl
o, λu

o and λi allows for
the identification and correction of OOBIs below the limit of
10% set by [4]. To account for more realistic conditions and
derive more robust thresholds, multidynamic signals, beyond
the scope of [4], have been simulated. Fig. 4 shows the
variability of Ec/Eo and Ec/Ei using a boxplot representation
for each test condition in [4]. All regular tests in [4] have
been combined with an amplitude modulation (AM) (except
for the AM itself and the OOBI) and evaluated for an SNR
equal to 60 and 80 dB. In addition, each test is executed
20 times considering different initial phase angles for the
generation of the reference signal equally distributed between
0 and 2π . This is done to modify the relative positions of the
successive analysis windows throughout the test duration. AMs
were selected because they present the second highest energy
content, just after the steps. For each test, a 10% AM with the
highest modulating frequency within the range [0.1–5] Hz,
so that the resulting estimates are compliant with [4], has
been used.8 All test signals combined with an AM are marked

8The compliance is verified for all tests with 80-dB noise in terms of total
vector error (TVE), frequency error (FE), ROCOF error (RFE), and for the
step tests according to their response times (Rt ).

Fig. 4. Boxplot representation of Ec/Eo (top) and Ec/Ei (bottom). All
operating conditions marked with ∗ present a 10% AM with the highest
modulating frequency within the range of [0.1–5] Hz compliant with [4].
The compliance is verified for all tests with 80-dB noise in terms of TVE,
FE, and RFE, and for the step tests according to their response times (Rt ).

with ∗. Disregarding the amplitude modulated steps (PS* and
AS*), Fig. 4 (top) reveals how a minimum of 4% OOBI can
be distinguished from the other signal types by selecting a
λl

o = 4.9 · 10−4. Lower levels of OOBI fall within the phase
and amplitude modulated range (PM*). Additionally, the 10%
amplitude modulated harmonic distortion (HD 10%*) also
exhibits some outliers that exceed this limit. These correspond
to the second harmonic, which can also be corrected with
the iterative process since [4] also requires taking it into
consideration as part of the frequency range under analysis
within the OOBI test. For the magnitudes considered in [4],
the remaining harmonics do not impact the estimation of the
fundamental due to the sidelobe attenuation offered by the
Hanning window.9 Furthermore, setting λu

o = 2.4·10−3 allows
distinguishing OOBIs with an amplitude greater than or equal
to 9% from amplitude-modulated steps (PS* and AS*).

Regarding the value of λi , only an examination of the
operating conditions that fall within the band defined by both
λu

o and λl
o is necessary. Namely, the amplitude-modulated

steps. Therefore, a value of 0.765 has been chosen, which
allows us to account for the spectral energy concentration
ratio of all OOBI distortion levels from 4% to 9%. Both OOBI
cases are plotted (while the latter represents the most critical
case) since the ratio decreases as the distortion level increases.
A small overlap can still be seen in Fig. 4 (bottom) regarding
the PS* as well as some outliers for the AS*. However, the

9It is important to remark that this attenuation also allows the TD-IpDFT to
maintain the same level of accuracy for those cases where a fundamental tone
is simultaneously corrupted by a single OOBI interference and any combina-
tion of HD, excluding the second harmonic, for the harmonic magnitude levels
considered in [4]. However, the same cannot be guaranteed when there are
multiple simultaneous interferences within the OOBI range given the signal
model adopted (Section IV-A).
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Fig. 5. Boxplot representation of the error in estimating the correction term
δ (8) (top) and the total number of iterations (bottom) for different values of
λRe . The maximum number of iterations Q is set to (a) 200 and (b) 37.

simulation results according to the standard [4] did not show
any impact on their respective tests. All the cases (top and
bottom) reveal that noise levels have no significant impact on
the magnitude of neither Ec/Eo nor Ec/Ei . Only for the latter
in the AM tests can the effects of noise be noticed significantly.

Finally, the adjustment of λRe described in Section IV-B is
analyzed. This is done by simulating 200 consecutive runs of
a 10% distortion OOBI test for 23 different potential threshold
values. These have been selected within the 3 · 10−10 to
3·10−11 range based on a previous coarse estimation. Each run
consists of 97 windows of analysis for each interfering tone
fi ∈ [10–25] ∪ [75–100] Hz and considers three fundamental
frequency f0 values of 47.5, 50, and 52.5 Hz. The analysis
is done by accounting for SNRs equal to 60 and 80 dB
and allowing the iterative process to run, if unstopped, for a
sizeable number of iterations. Additionally, between runs, the
initial phase angle used to generate the reference test signal
has been shifted by 2π/64 to further account for the relative
positions of the analysis windows. Fig. 5 shows the variability
of the error in estimating the correction term δ (8) and in the
total number of iterations executed for a maximum Q equal
to 200 [Fig. 5(a)] and 37 [Fig. 5(b)]. The error estimates of δ

(δE) consider the maximum global error among all simulated
interfering tones

δE = max
fi

(
max

f0
(δE f0 fi )

)
(19)

where δE f0 fi is the error in estimating the correction term δ

(8) given a signal characterized by a fundamental frequency
f0 and a 10% interference signal fi . Despite a noticeable
performance trend in δE for the 80 dB case, a more uniform
behavior is shown for a 60-dB noise. As shown in Fig. 5(a), for
the 60-dB case, although no single run reached the maximum
iteration limit (Q) of 200, all considered threshold values λRe ,
with the exception of λRe = 2.43 · 10−10 and λRe = 3 · 10−10,
presented runs where a large number of executed iterations
were required. Although the adoption of λRe = 2.43 · 10−10

or λRe = 3 ·10−10 would limit computational cost by reducing
the maximum number of required iterations, it would also
compromise accuracy, as both values result in a significantly
higher δE at a lower noise level. Fig. 5(b) examines the impact
of limiting the maximum number of iterations (Q) to 37 on
δE .10 The results show that there are no significant changes
in the error values obtained compared with Fig. 5(a). Thus, a
λRe = 6.9 · 10−11 is selected as a tradeoff between accuracy
and computational performance. This value ensures the lowest
maximum δE (1.678 ·10−4) for the higher noise case (60 dB)
when considering a maximum Q = 36 while almost matching
the same error level as the lowest δE for 80 dB.

D. Computational Complexity

To evaluate the feasibility of the TD-IpDFT to be imple-
mented in an embedded device and compare its performance
with other state-of-the-art techniques, its computational com-
plexity is here analyzed. Table I summarizes the total number
of arithmetic operations required by the TD-IpDFT [both in
the event an interference tone is detected “TD-IpDFT (OOBI)”
or not “TD-IpDFT (no int.)”] as well as those used by its
constituent functions, e.g., IpDFT. As in [29] and [30], the
difference between simple operations (+ − ×), complex
operations (÷ sin ̸ | . . . | ⌊. . .⌉ arg max), and function calls
(such as calls to predefined subroutines or algorithms, e.g.,
IpDFT) is drawn. Likewise, the total cost is expressed in
terms of the total number of DFT bins calculated, K , and
the maximum number of executions of the iterative process Q.
The results show a total of 640 simple operations and 176 com-
plex operations are required if no interference is detected,
and 171 + 1000Q simple and 37 + 307Q complex operations
considering the OOBI iterative compensation for eight DFT
bins. For a maximum of 36 iterations the total number of oper-
ations results in 36 171 simple and 11 089 complex operations.
No explicit method had been specified so far for the calculation
of the DFT bins or for generating the delayed in-quadrature
complex signal (x̄ f (n)). As indicated in [29], if a small number
of DFT bins are needed, recursive computation methods are
generally more efficient. Among them, the mSDFT technique
[39] is guaranteed to be stable without sacrificing accuracy

10A value of Q = 37 has been selected as it corresponds to the maximum
number of iterations required to attain the lowest maximum δE within the
80-dB case in Fig. 5(a).
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TABLE I
TD-IPDFT COMPUTATIONAL COMPLEXITY

Fig. 6. Combined mSDFT and TD-QSG implementation.

and has been used by previous implementations of IpDFT
algorithms in embedded FPGA-based PMU devices [35], [36].
Consequently, Fig. 6 presents the proposed implementation to
obtain the windowed delayed in-quadrature complex signal
spectrum. For efficiency, as suggested in [39], a common
buffer is used for all mSDFT modules. Moreover, the delayed
in-quadrature complex spectrum is obtained by buffering the
windowed DFT bins of the real signal XoH (k). As indicated
in Algorithm 1 the method relies on an IpDFT to refine the
final delay based on an initial nominal quadrature, and thus,
select the appropriate past DFT bins from the buffer D fl . The
size of the DFT buffer D fl depends on the lowest expected
SF, sampling rate, and the required number of DFT bins K .
For a minimum frequency of 45 Hz, 50 kHz sampling rate,
and eight bins, its minimum theoretical size will be roughly
1.5× that of the one required by the mSDFT.

V. PERFORMANCE ASSESSMENT

In this section, a complete evaluation of the TD-IpDFT
algorithm is performed by comparing its performance with
the static and dynamic accuracy limits indicated in [4] for
the performance classes P and M, as well as by means
of a side-by-side comparison with the i-IpDFT [29], [36].
The assessment is carried out in a MATLAB simulation
environment in terms of TVE, FE, RFE, and response (Rt )

and delay times (Dt ) for the step tests. As in [29] and
[30], a nominal frequency of 50 Hz and a reporting rate
of 50 frames per second (fps) were selected to limit the
number of tests. Each test is performed using a three-nominal
cycle window and considering two levels of additive white
Gaussian noise (AWGN). Noise levels with SNRs equal to
60 and 80 dB have been selected, as previously used in [29]
and [30], as they allow to consider the uncertainty of the
measurement and simulate more realistic conditions. All test
signals are synthesized by superimposing on the noise-free
reference signal indicated in [4] an AWGN whose variance
(σ 2

n ) is calculated according to

σ 2
n =

(
A0/

√
2

10SNR/20

)2

(20)

where A0 is the fundamental amplitude of the noise-free refer-
ence signal and SNR is the noise level in dB. All simulations
are carried out according to the parameters given in Table II,
which have been selected to ensure a fair comparison between
both methods. The justification for the selection of Q for the
i-IpDFT is provided in Section VII. All results are presented
by means of stacked graphs that summarize the resulting
performance against the maximum permissible limits set by
[4] (Figs. 7–10). Finally, the maximum values resulting from
each test case are reported together again with the accuracy
limits indicated in [4] in Tables III–V. Both Figs. 7–9 and
Tables III and IV also include the results of the experimental
validation tests for better clarity and ease of comparison (see
Section VI for details of the experimental setup and validation
tests).

A. Static Tests

Three static tests are defined in [4] to evaluate the per-
formance of the algorithm under steady-state conditions: the
SF range test, the HD test, and the OOBI test. For all tests,
a simulation time of 1 s has been considered and consecutive
analysis windows based on the selected PMU reporting rate
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TABLE II
TD-IPDFT AND I-IPDFT PARAMETERS

Fig. 7. Static tests. (a) SF range test. (b) HD test (Ah = 10%A0; single
harmonic) [4].

(Fr ) are evaluated. Each test is repeated a total of 256 times
to modify the relative position of the different observation
windows. This is done using different initial phase angles
equally distributed between 0 and 2π for the generation of the
reference signal. The worst case results among all windows are
then considered. The results of all static tests are presented in
Figs. 7 and 8 and Table III.

The results of the SF range test [Fig. 7(a)] show how the
accuracy of the method does not depend on the fundamental
tone frequency but rather on the total noise level, resulting in
errors of one higher order of magnitude for the lower SNR.
As reported in Table III, maximum TVE values of 0.030%
(60 dB) and 0.003% (80 dB) are obtained, well below the
required 1% limit. Likewise, similar trends also apply for
the FE and RFE maximum errors, where respective values of
1.48 mHz (60 dB) and 0.16 mHz (80 dB) for the frequency and
0.013 Hz/s (80 dB) for the ROCOF are obtained, in accordance
with the limit requirements of 5 mHz and 0.1 Hz/s. For the

Fig. 8. OOBI Results. (a) OOBI test (Aih = 10%A0; single interference)
[4]. (b) Maximum error per OOBI interference level.

Fig. 9. Dynamic tests. (a) AM test (depth 10%). (b) PM test (depth π/18 rad).
(c) FR test [4].

higher noise case, a ROCOF value of 0.128 Hz/s is obtained,
which is above the M class limit. The same trend can be seen
in Fig. 7(a) for the different fundamental frequency values.
This is explained because, as was also the case in [29] and
[30], under the higher noise conditions, spurious RFE values
can marginally exceed the most stringent limit of class M.
Given that only the worst case results are reported and the
substantial amount of analysis windows considered, as a result
of both the duration of each test and the number of tests
conducted, these values simply reflect those captured spurious
violations of the M class limit.

The results of the HD test are shown in Fig. 7(b) for a
total HD (THD) of 10% and in Table III for both THDs of
1% and 10%. Again, no significant performance difference
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TABLE III
MAXIMUM TVE, FE, AND RFE IN STATIC TESTS AND MAXIMUM LIMIT ALLOWED BY [4]

Fig. 10. Step tests. (a) Amplitude step test (+10%). (b) Phase step test
(+π /18) [4].

is detected on the basis of the order of the interference
tone, but rather on the total noise level. The 1% performance
limit is far from the maximum TVE values reported for the
60 dB case of 0.028% (1% THD) and 0.027% (10% THD) in
Table III. Specifically, the maximum values of FE and RFE
were 1.48 mHz (1% THD) and 1.50 mHz (10% THD) for the
frequency and 0.127 Hz/s (1% THD) and 0.116 Hz/s (10%
THD) for the ROCOF. All are within the most demanding
5 mHz and 0.4 Hz/s limit requirements for devices of class P.

Finally, regarding the OOBI test, Fig. 8(a) shows the
maximum value of TVE, FE, and RFE obtained for each
interference tone among the three simulated fundamental
frequency values of 47.5, 50, and 52.5 Hz considering a
total interharmonic distortion of 10% as required by [4]. The

closer the interference is to the fundamental tone, the more
difficult it is to detect and remove it. This trend is evident
in Fig. 8(a) for the lower noise level, as the maximum regis-
tered values increase as they approach the fundamental tone
frequency. These maximum values, together with those for a
4% distortion, disaggregated by each fundamental frequency,
are presented in Table III. For the TD-IpDFT, all values are
well within the performance requirements of class M. It is
important to note that no performance requirement is provided
in [4] for interfering signals with a magnitude other than
10% of the fundamental. Thus, the same reference values
have been considered for the 4% case. As shown, the newly
proposed trigger mechanism for OOBI is capable of correcting
interferences with amplitudes equal to or greater than 4%,
showing a very similar performance to the 10% case. This
represents an improvement over the detection mechanism used
in [29] and [30], which was only able to detect and correct
interferences equal to or greater than 10%. In the presence
of an interfering tone with an amplitude of less than 4%, the
same level of accuracy cannot be guaranteed as the iterative
process is not activated. This is illustrated in Fig. 8(b), where
the performance of the new mechanism is shown by means of
the maximum values of TVE, FE, and RFE registered among
all interfering tones and fundamental frequency values for
different OOBI interference levels.

B. Dynamic Tests

Two dynamic tests are defined in [4] to evaluate the per-
formance of the algorithm under time-varying conditions: the
measurement bandwidth test and the frequency ramp (FR) test.
For all bandwidth tests, a ⌈2/ fm⌉ s simulation time has been
considered, while the FR tests use a 12/|R f | s instead (where
fm and R f denote, respectively, the modulating frequency and
the ramp rate).11 In both cases, consecutive analysis windows
based on the selected Fr are evaluated, with each test repeated
256 times to modify the relative positions of the observation

11All FR tests consider two 1/|R f | s presteady-state and poststeady-state
periods before and after the FR. For the particular case of R f = 0, a simple
12-s steady-state case is analyzed.
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TABLE IV
MAXIMUM TVE, FE, AND RFE IN DYNAMIC TESTS AND MAXIMUM LIMIT ALLOWED BY [4]

TABLE V
MAXIMUM RESPONSE, DELAY TIMES, AND OVERSHOOTS IN STEP TESTS AND LIMITS ALLOWED BY [4]

windows. This is done using different initial phase angles
equally spaced between 0 and 2π for the generation of the
reference signal. Finally, the worst case results among all
evaluated windows are considered. The results of all dynamic
tests are presented in Fig. 9 and Table IV.

The most demanding requirements set by [4] correspond to
class P, with TVE, FE, and RFE values, respectively, of 3%,
60 mHz, and 2.3 Hz/s for both AM and phase modulation
(PM). In the case of FRs, class M sets the most stringent
limits with TVE, FE, and RFE thresholds of 1%, 10 mHz,
and 0.2 Hz/s, respectively. As shown in Fig. 9(a) and (b),
both measurement bandwidth tests show how the algorithm
exhibits similar TVEs. The total error increases with the
modulation frequency and becomes the predominant source of
error, masking the effect of noise for modulating frequencies
above 1 Hz. However, the trends for the FE and RFE differ.
On the one hand, in the PM test [Fig. 9(b)], the TD-IpDFT
method reveals a pattern like the one of the TVE, where higher
modulating frequencies result in higher errors and noise as the
main source of error is overridden. However, in the AM test
[Fig. 9(a)], the algorithm can provide accurate frequency and
ROCOF estimates without being affected by the modulation
frequency. It is worth noting how for the lower noise the TD-
IpDFT outperforms the i-IpDFT in terms of FE and RFE for
the AM test, as shown in Fig. 9(a), where the FE and RFE
of the latter increase with the modulating frequency fm . All
maximum errors fall well within the limits set in [4]. The
worst case results of the FR test are shown in Fig. 9(c) for
ramps with different positive and negative rates. Maximum

values are presented in Table IV. The TD-IpDFT is shown
to provide accurate frequency and ROCOF estimates, in line
with those of the SF test and unaffected by the ramp rate,
and maximum TVEs of 0.048% (60 dB) and 0.040% (80 dB),
which depend on the magnitude of the ramp rate but not on
its sign, fully meeting performance requirements.

C. Step Tests

Instantaneous changes in the amplitude (AS) (±10%) or
phase (PS) (±π/18) of the signal are defined in [4] to evaluate
the performance of the algorithm in a transient event. All
step tests are conducted considering a simulation time of
1 s, with the step occurring at 0.5 s. For a more rigorous
analysis, 400 different initial phase angles for the generation
of the reference signal have been considered to account for
different relative step positions on top of 50 consecutive runs
for each noise level. This analysis is conducted for both
positive and negative tests. The results of both steps are shown
in Fig. 10(a) and (b) for a single-noise run and an initial
signal phase equal to 0, and the worst case response, delay
times, and maximum overshoot values across all initial signal
phases and noise runs evaluated are presented in Table V. All
results correspond to the positive step cases (similar results are
obtained in the case of a negative step) and are only plotted
for the 80-dB case for better clarity. Both Fig. 10(a) and (b)
represents TVE, FE, and RFE as a function of their respective
response times, which means that each time axis is centered
at the moment when the accuracy limit is first exceeded.
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Fig. 11. Overview of the experimental setup used for validation.

Likewise, the estimated phase and amplitude are shown as
functions of their respective delay time, with their time axis
centered at the instant each step occurs. The results show
how the proposed algorithm meets all the requirements, with
all estimates within the limits. It is important to note that
no significant impact is found by the noise level during
the transient, besides the presteady-state and poststeady-state
accuracy already shown by the static tests.

VI. EXPERIMENTAL VALIDATION

A. Experimental Setup

An overview of the experimental setup used for the vali-
dation is shown in Fig. 11. The two key components are the
PMU calibrator and the CompactRIO-9039.

1) PMU Calibrator: The PMU calibrator, fully character-
ized in [40], is here operated in an open-loop configura-
tion. Its PXI-1042Q chassis from National Instruments
(NI), Austin, TX, USA [41], powered by an NI PXI-
8110 controller, has a NI PXI-6682 GPS module and
a NI PXI-6289 board for data acquisition and trans-
mission. As shown in [40], the device is capable of
generating reference synchrophasors characterized by
uncertainties of 0.00x% and 0.0x% on their TVEs,
respectively, for static and dynamic conditions. The
calibrator is used to synthesize user-defined parametric
waveforms, replicating the test conditions imposed by
the IEC/IEEE Std. [4], at a sampling rate of 500 kHz
and with a maximum amplitude of 10 V.

2) CompactRIO-9039: These test signals are then fed into a
commercial CompactRIO-9039 (cRIO-9039) embedded
control and acquisition system from NI [42], where the
TD-IpDFT algorithm is implemented. The cRIO-9039
combines a reconfigurable Xilinx Kintex-7 325T FPGA
with a 1.91-GHz quad-core Intel Atom E3845 real-time

processor. The device is also equipped with two addi-
tional modules, the NI-9467 for time synchronization
and the NI-9215 for data acquisition. The latter is a four-
input channel 16-bit successive approximation register
analog-to-digital converter with a maximum conversion
rate of 100 kHz and support for signal magnitudes up
to 10 V [43].

The deployment of the algorithm is done by allocating the
mSDFT, windowing, and TD-QSG functions within the FPGA
and programmed in fixed-point arithmetic, while the core
functionality is implemented on the real-time processor and
kept in the original double precision used in the simula-
tion benchmark. The same mSDFT implementation proposed
in [35] is adopted here in combination with the TD-QSG,
as shown in Fig. 6. For this, the buffer size D fl has been
increased compared with its theoretical minimum to avoid
overwriting issues between the sampling and TD-QSG pro-
cesses, which operate at different rates. The SE is finalized
in the real-time processor together with the assignation of the
proper time stamp. Data transfers between the FPGA and the
real-time processor are handled by dedicated direct memory
access (DMA). The correlation of the processes implemented
at the FPGA and real-time processor level with Algorithm 2
is indicated in Fig. 11.

The resulting estimates are then written to a TDMS file
and sent to a dedicated computer for post-processing. These
are compared with the corresponding reference parameters
calculated at the same instant indicated by the time stamps
and used to determine the estimation errors. The calculation
of the reference parameters is based on the reconstruction of
the synthesized test signal whose parameterization for each
test is also shared with the host PC. This calculation also
accounts for the magnitude distortion and delay introduced
by both the calibrator and CompactRIO modules. Time syn-
chronization with UTC time for both the PMU calibrator and
the CompactRIO–9039 is achieved by GPS using a stationary
unit with an uncertainty 3σ of ±100 ns through a splitter [44].

B. Validation Tests

A total of 13 tests are performed to validate the theoretical
findings obtained using the simulated benchmark. Each vali-
dation test is carried out considering a duration of just below
10 s and based on the setup of Fig. 11 and according to the
parameterization of Table II. The subsequent testbed has been
considered.

1) Signal Frequency Range Tests: Three tests correspond-
ing to fundamental frequencies, respectively, equal to
50, 45, and 55 Hz are conducted. These represent the
nominal base case, as well as the lower and upper
frequency offset boundaries considered in Section V.

2) Harmonic Distortion Tests: Three cases are evaluated for
a fundamental tone at nominal frequency corrupted by
a single 10% interference corresponding to the second,
third, or fourth harmonic, respectively. These are the
closest harmonics to the fundamental, and thus, those
that can result in the greatest impact.

3) Out-of-Band Interference Tests: Interference levels equal
to 10% and 4% are evaluated for signals characterized
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by a fundamental and an interference frequency equal
to 47.5 and 25 Hz and 52.5 and 75 Hz, respectively.
These pairs were considered since they returned the
highest errors under 60 dB in the analysis presented in
Section V.

4) Bandwidth Modulation Tests: AM and PM are assessed,
respectively, by means of a single-test covering the most
demanding cases shown in Section V, i.e., a modulating
frequency of 5 Hz for amplitudes of 10% (AM) and
π/18 (PM).

5) Frequency Ramp Test: A single test is performed for
a positive ramp rate of 1 Hz/s. Again, the selection
is justified since, as shown in Section V, the ±1 Hz/s
ramps constitute the most challenging cases.

The experimental results are presented for coherence together
with those of the simulated benchmark in Section V. The
worst case results are presented by means of black circles
within Figs. 7–9 and tabulated in Tables III and IV. A very
good agreement is shown with their respective simulated cases
allowing to demonstrate the consistency of the algorithm’s
performance.

VII. COMPARISON WITH SOTA IPDFT

This section is intended to discuss the results obtained
with the TD-IpDFT compared with other IpDFT-based SE
methods in the existing literature, namely, the i-IpDFT [29]
and the HT-IpDFT [30], since all these SE methods have been
designed to meet the accuracy requirements for the P and M
performance classes.

Focusing on the OOBI, which is the most computationally
demanding test, the HT-IpDFT [30] has been shown to offer a
lower computational cost compared with the i-IpDFT [29] due
to the cancellation of negative frequency components offered
by the adoption of the analytic signal. However, the HT-IpDFT
does not meet the combined requirements of classes P and
M for HD (1%) and phase step tests in [4]. The TD-IpDFT
satisfies all the accuracy requirements for the P and M classes
and also offers a reduction in the total computational cost
compared with the i-IpDFT [29], [36]. This is because it miti-
gates the effects of self-interference by using the in-quadrature
complex signal for the estimation, while the i-IpDFT, which
is based on the e-IpDFT [28], must iteratively compensate for
them on each successive iteration.12 Taking into account the
same parameterization for both methods (Table II), that is, the
same type and length of the window and the same number of
DFT bins, the i-IpDFT requires a total of 799+1646Q simple
operations and 230 + 502Q complex operations based on the
updated tuning presented in [36], whereas the TD-IpDFT can
perform the estimation with just 171 + 1000Q and 37 +

307Q operations, respectively. This represents a significant
decrease compared with the i-IpDFT. Moreover, considering

12To draw a meaningful comparison a simplified version of Algorithm 2,
aimed at single-tone signals, can be defined consisting of lines 1–4 and
30. This simplified TD-IpDFT can be shown to be more computationally
efficient than the e-IpDFT. Taking into account the 3p variant of the e-IpDFT
employed in the i-IpDFT and the same parameterization for both methods,
the e-IpDFT requires 34K + 47 simple and 7K + 26 complex operations,
while the simplified TD-IpDFT only requires 12K + 35 and 20 operations,
respectively.

Fig. 12. Performance comparison between TD-IpDFT and i-IpDFT for
noise levels with SNR equal to 60 and 80 dB for 200 different runs. δE
(19) as a function of the iteration number. Shaded areas are given by the
maximum–minimum value pairs, while the solid (80 dB) and dotted-dashed
(60 dB) lines represent their mean values across all runs.

the maximum overall error among the entire OOBI range,
the TD-IpDFT also shows faster convergence, requiring fewer
iterations, for the same maximum error level compared with
the i-IpDFT. This is shown in Fig. 12 where a performance
comparison between TD-IpDFT and i-IpDFT is presented in
terms of δE as a function of the iteration number for noise
levels with SNR equal to 60 and 80 dB for 200 different
runs. Once again, as with the adjustment of λRe , each run
evaluates 97 consecutive windows for each interfering tone,
and, between runs, the initial phase angle used to generate
the reference test signal is shifted by 2π/64. Shaded areas
are given by the maximum–minimum value pairs, while the
solid (80 dB) and dotted-dashed (60 dB) lines represent their
mean values across all runs. It can be seen that the TD-IpDFT
requires fewer iterations to achieve the same maximum error
level compared with i-IpDFT indistinctly from the noise level,
whereas, for the 80-dB noise case, the i-IpDFT can achieve a
better global overall accuracy in exchange for a larger number
of iterations and higher variability. A higher variability due to
noise is observed for the TD-IpDFT under 60 dB as well as
a lower overall mean error.

To achieve an equivalent level of performance for both
methods and since Q = 36 was selected for the TD-IpDFT
under a conservative approach as the maximum required to
ensure the minimum δE for 60 dB (Section IV-D), the same
criteria will be used for the i-IpDFT. Thus, a value of Q = 44
is selected for the i-IpDFT. This represents the intersection
of the upper boundary of the i-IpDFT shaded area with the
maximum value of δE obtained by the TD-IpDFT for Q = 36,
both under 80-dB noise. Given these, a total decrease of over
50% for simple and complex operations is obtained compared
with the i-IpDFT. In return, the TD-IpDFT requires a larger
DFT buffer memory to generate the delayed signal. However,
it is important to put its size in perspective. According to
the values for Fs , K , and T in Table II and considering the
MATLAB double numeric data type, the minimum theoretical
total buffer memory size required by the TD-IpDFT is just
60 kB. Last, the TD-IpDFT, as opposed to the i-IpDFT, also
delivers a complex signal, which allows one to determine
its envelope and angle. These could be used to implement
identification and correction techniques for the amplitude and
phase steps, as done in [45].
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VIII. CONCLUSION

In this article, an SE technique based on the application
of the IpDFT to a delayed in-quadrature complex signal has
been presented. The use of the delayed in-quadrature complex
signal has been found to be a simple and efficient way to
mitigate the detrimental effects caused by the self-interference
of the fundamental tone. This allows for a reduction in the
total computational complexity of over 50% compared with
the i-IpDFT, which relies on an iterative correction based on
the e-IpDFT. This is especially significant when the OOBI
routine is triggered, since a faster convergence, requiring fewer
iterations for the same maximum error level, is obtained.
The method represents an alternative to the i-IpDFT and the
HT-IpDFT. Like the i-IpDFT, it satisfies all the accuracy
requirements defined in the IEC/IEEE Std. 60255-118 while
presenting a lower computational cost and it represents an
easier and faster implementation than the cascaded Hilbert
filter used by the HT-IpDFT. Furthermore, the novel OOBI
trigger improves on the one used by the i-IpDFT and by the
HT-IpDFT, which only allowed correction of distortions equal
to or greater than 10%. The proposed mechanism allows to
estimate and removes the effects of those equal to or greater
than 4% within the OOBI range. However, in the presence of
an interfering tone with an amplitude of less than 4% the same
level of accuracy cannot be guaranteed, as the iterative process
is not activated. The validity of the metrological assessment
conducted using an extensive simulation benchmark has been
verified by means of experimental tests through calibration
equipment.

ACKNOWLEDGMENT

The authors would like to thank Ms. Alexandra Cameron
Karpilow (ORCID: 0000-0002-6959-958X) for her invaluable
support in the setting and tuning of the calibration equipment
used to conduct the experimental tests.

REFERENCES

[1] J. De La Ree, V. Centeno, J. S. Thorp, and A. G. Phadke,
“Synchronized phasor measurement applications in power systems,”
IEEE Trans. Smart Grid, vol. 1, no. 1, pp. 20–27, Jun. 2010, doi:
10.1109/TSG.2010.2044815.

[2] K. Martin, “Synchrophasors point the way: The emergence of a new
technology,” IEEE Electrific. Mag., vol. 9, no. 1, pp. 10–24, Mar. 2021,
doi: 10.1109/MELE.2020.3047163.

[3] U. Annakage et al., “Application of phasor measurement units for
monitoring power system dynamic performance,” CIGRE, Paris, France,
Tech. Rep., TB 702, pp. 1–137, 2017.

[4] IEEE/IEC International Standard—Measuring Relays and Protec-
tion Equipment—Part 118-1: Synchrophasor for Power Systems—
Measurements, IEC/IEEE Standard 60255-118-1:2018, Dec. 2018,
pp. 1–78, doi: 10.1109/IEEESTD.2018.8577045.

[5] A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and
Their Applications (Power Electronics and Power Systems), 2nd ed.
Cham, Switzerland: Springer, 2017, p. XIII and 285, doi: 10.1007/978-
3-319-50584-8.

[6] J. Ren and M. Kezunovic, “Real-time power system frequency
and phasors estimation using recursive wavelet transform,” IEEE
Trans. Power Del., vol. 26, no. 3, pp. 1392–1402, Jul. 2011, doi:
10.1109/TPWRD.2011.2135385.

[7] J. A. de la O Serna, “Synchrophasor estimation using Prony’s
method,” IEEE Trans. Instrum. Meas., vol. 62, 2013, doi:
10.1109/TIM.2013.2265436.

[8] J. A. de la O Serna, “Dynamic phasor estimates for power system
oscillations,” IEEE Trans. Instrum. Meas., vol. 56, no. 5, pp. 1648–1657,
Oct. 2007, doi: 10.1109/TIM.2007.904546.

[9] M. A. P. Platas-Garza and J. A. de la O Serna, “Dynamic phasor
and frequency estimates through maximally flat differentiators,” IEEE
Trans. Instrum. Meas., vol. 59, no. 7, pp. 1803–1811, Jul. 2010, doi:
10.1109/TIM.2009.2030921.

[10] P. Castello, J. Liu, C. Muscas, P. A. Pegoraro, F. Ponci, and A. Monti,
“A fast and accurate PMU algorithm for P+M class measurement of
synchrophasor and frequency,” IEEE Trans. Instrum. Meas., vol. 63,
no. 12, pp. 2837–2845, Dec. 2014, doi: 10.1109/TIM.2014.2323137.

[11] D. Belega, D. Fontanelli, and D. Petri, “Dynamic phasor and frequency
measurements by an improved Taylor weighted least squares algorithm,”
IEEE Trans. Instrum. Meas., vol. 64, no. 8, pp. 2165–2178, Aug. 2015,
doi: 10.1109/TIM.2014.2385171.

[12] M. Bertocco, G. Frigo, C. Narduzzi, C. Muscas, and P. A. Pegoraro,
“Compressive sensing of a Taylor–Fourier multifrequency model for
synchrophasor estimation,” IEEE Trans. Instrum. Meas., vol. 64, no. 12,
pp. 3274–3283, Dec. 2015, doi: 10.1109/TIM.2015.2450295.

[13] A. T. Munoz and J. A. de la O. Serna, “Shanks’ method for dynamic pha-
sor estimation,” IEEE Trans. Instrum. Meas., vol. 57, no. 4, pp. 813–819,
Apr. 2008, doi: 10.1109/tim.2007.913824.

[14] J. A. de la O. Serna and J. Rodríguez-Maldonado, “Instanta-
neous oscillating phasor estimates with Taylork–Kalman filters,” IEEE
Trans. Power Syst., vol. 26, no. 4, pp. 2336–2344, Nov. 2011, doi:
10.1109/TPWRS.2011.2157539.

[15] J. Liu, F. Ni, J. Tang, F. Ponci, and A. Monti, “A modified Taylor–
Kalman filter for instantaneous dynamic phasor estimation,” in Proc.
3rd IEEE PES Innov. Smart Grid Technol. Eur. (ISGT Europe), Berlin,
Germany, 2012, pp. 1–7, doi: 10.1109/ISGTEurope.2012.6465846.

[16] J. A. de la O Serna and J. Rodríguez-Maldonado, “Taylor–Kalman–
Fourier filters for instantaneous oscillating phasor and harmonic esti-
mates,” IEEE Trans. Instrum. Meas., vol. 61, no. 4, pp. 941–951,
Apr. 2012, doi: 10.1109/TIM.2011.2178677.

[17] Z. D. Drummond, K. E. Claytor, D. R. Allee, and D. M. Hull,
“An optimized subspace-based approach to synchrophasor estima-
tion,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–13, 2021, doi:
10.1109/TIM.2020.3017059.

[18] K. Duda and T. P. Zielinski, “P class and M class compli-
ant PMU based on discrete-time frequency-gain transducer,” IEEE
Trans. Power Del., vol. 37, no. 2, pp. 1058–1067, Apr. 2022, doi:
10.1109/TPWRD.2021.3076831.

[19] J. R. Razo-Hernandez, A. Mejia-Barron, D. Granados-Lieberman,
M. Valtierra-Rodriguez, and J. F. Gomez-Aguilar, “A new phasor
estimator for PMU applications: P class and M class,” J. Mod.
Power Syst. Clean Energy, vol. 8, no. 1, pp. 55–66, Jan. 2020, doi:
10.35833/MPCE.2018.000584.

[20] A. J. Roscoe, I. F. Abdulhadi, and G. M. Burt, “P and M class
phasor measurement unit algorithms using adaptive cascaded filters,”
IEEE Trans. Power Del., vol. 28, no. 3, pp. 1447–1459, Jul. 2013, doi:
10.1109/TPWRD.2013.2238256.

[21] A. J. Roscoe, “Exploring the relative performance of frequency-
tracking and fixed-filter phasor measurement unit algorithms under
C37.118 test procedures, the effects of interharmonics, and initial
attempts at merging P-class response with M-class filtering,” IEEE
Trans. Instrum. Meas., vol. 62, no. 8, pp. 2140–2153, Aug. 2013, doi:
10.1109/TIM.2013.2265431.

[22] I. Kamwa, S. R. Samantaray, and G. Joos, “Wide frequency range
adaptive phasor and frequency PMU algorithms,” IEEE Trans. Smart
Grid, vol. 5, no. 2, pp. 569–579, Mar. 2014, doi: 10.1109/TSG.2013.
2264536.

[23] D. Belega, D. Petri, and D. Dallet, “Frequency estimation of a sinusoidal
signal via a three-point interpolated DFT method with high image
component interference rejection capability,” Digit. Signal Process.,
vol. 24, pp. 162–169, Jan. 2014, doi: 10.1016/j.dsp.2013.09.014.

[24] I. S. Reljin, B. D. Reljin, and V. D. Papic, “Extremely flat-top windows
for harmonic analysis,” IEEE Trans. Instrum. Meas., vol. 56, no. 3,
pp. 1025–1041, Jun. 2007, doi: 10.1109/TIM.2007.894889.

[25] F. J. Harris, “On the use of windows for harmonic analysis
with the discrete Fourier transform,” Proc. IEEE, vol. 66, no. 1,
pp. 51–83, Mar. 1978, doi: 10.1109/PROC.1978.10837.

[26] V. K. Jain, W. L. Collins, and D. C. Davis, “High-accuracy analog mea-
surements via interpolated FFT,” IEEE Trans. Instrum. Meas., vol. IM-
28, no. 2, pp. 113–122, Mar. 1979, doi: 10.1109/TIM.1979.4314779.

[27] T. Grandke, “Interpolation algorithms for discrete Fourier transforms
of weighted signals,” IEEE Trans. Instrum. Meas., vol. IM-32, no. 2,
pp. 350–355, Jun. 1983, doi: 10.1109/TIM.1983.4315077.

http://dx.doi.org/10.1109/TSG.2010.2044815
http://dx.doi.org/10.1109/MELE.2020.3047163
http://dx.doi.org/10.1109/IEEESTD.2018.8577045
http://dx.doi.org/10.1007/978-3-319-50584-8
http://dx.doi.org/10.1007/978-3-319-50584-8
http://dx.doi.org/10.1109/TPWRD.2011.2135385
http://dx.doi.org/10.1109/TIM.2013.2265436
http://dx.doi.org/10.1109/TIM.2007.904546
http://dx.doi.org/10.1109/TIM.2009.2030921
http://dx.doi.org/10.1109/TIM.2014.2323137
http://dx.doi.org/10.1109/TIM.2014.2385171
http://dx.doi.org/10.1109/TIM.2015.2450295
http://dx.doi.org/10.1109/tim.2007.913824
http://dx.doi.org/10.1109/TPWRS.2011.2157539
http://dx.doi.org/10.1109/ISGTEurope.2012.6465846
http://dx.doi.org/10.1109/TIM.2011.2178677
http://dx.doi.org/10.1109/TIM.2020.3017059
http://dx.doi.org/10.1109/TPWRD.2021.3076831
http://dx.doi.org/10.35833/MPCE.2018.000584
http://dx.doi.org/10.1109/TPWRD.2013.2238256
http://dx.doi.org/10.1109/TIM.2013.2265431
http://dx.doi.org/10.1109/TSG.2013.2264536
http://dx.doi.org/10.1109/TSG.2013.2264536
http://dx.doi.org/10.1016/j.dsp.2013.09.014
http://dx.doi.org/10.1109/TIM.2007.894889
http://dx.doi.org/10.1109/PROC.1978.10837
http://dx.doi.org/10.1109/TIM.1979.4314779
http://dx.doi.org/10.1109/TIM.1983.4315077


9000516 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

[28] P. Romano and M. Paolone, “Enhanced interpolated-DFT for syn-
chrophasor estimation in FPGAs: Theory, implementation, and valida-
tion of a PMU prototype,” IEEE Trans. Instrum. Meas., vol. 63, no. 12,
pp. 2824–2836, Dec. 2014, doi: 10.1109/TIM.2014.2321463.
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