
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Making Computer Vision Models Robust and Adaptive

Shuqing Teresa YEO

Thèse n° 9215

2023

Présentée le 4 décembre 2023

Prof. A. M. Alahi, président du jury
Prof. A. Roshan Zamir, Prof. P. Dillenbourg, directeurs de thèse
Prof. M. Cord, rapporteur
Prof. P. W. Koh, rapporteur
Dr M. Salzmann, rapporteur

Faculté informatique et communications
Laboratoire d’intelligence et d’apprentissage visuels
Programme doctoral en informatique et communications

Acknowledgements

This thesis is the result of the help and support of my advisors, collaborators, lab
members, friends, and family. To all of whom, I am immensely grateful.

I would first like to thank my advisor Amir Zamir. Amir took a chance on me when I
was a lost and clueless PhD student. He taught me how to do research, how to present
(with very, very long comments on every paper, and slide deck, including comments on
the redundancy of the word very) and created a wonderfully collaborative and supportive
lab environment. Amir would hold us to standards higher than ourselves, and it has
greatly influenced the way I think about research directions and approach problems. I
am also thankful to my co-advisor Pierre Dillenbourg. Pierre offered me a lifeline when I
needed one, was a listening ear all these years, and saw me through many ups and downs.
Both Amir and Pierre saved my PhD and I would not be here without them.

I am honoured to have on my jury, Alexandre Alahi, Mathieu Cord, Pang Wei Koh, and
Mathieu Salzmann. I am grateful for their time, discussions, and feedback.

To the members of VILAB for teaching me invaluable life-long lessons, especially all
things food related like how not to eat dumplings: to Oguzhan, the deputy boss of the
lab, Roman, who has so many cool cameras, Andrei, the best kimchi maker in the world.
To other long-term residents: Ainaz, David, Marius, Jiawei, and the new students: Alvin,
Jason, Kunal, Rishubh, thank you for making the lab lively. To those I had the pleasure
of working with: Zahra, Alex, Ruchira, Harold, Pooya, thank you for making deadlines
more enjoyable. Finally, to Stephanie, for making administrative work seem easy.

I am also grateful to have been adopted by the (then) giant and incredibly social CHILI
family: Alexis, Arzu, Ayberk, Elmira, Hala, Jauwairia, Jenny, Kevin, Louis, Ramtin,
Sina, Stian, Thibault, Łukasz, Utku, Wafa. Special thanks to Kevin and Ramtin, who
kept me going with their wise words and lame jokes respectively. Hala, for the delicious
Lebanese desserts and for being contagiously cheerful. During my stint at LIONS, I was
fortunate to have worked closely with Kamal. Kamal would patiently distill complicated
concepts for me while sharing happy memories from his PhD days. And to Chen, for
company amidst the misery. I am also thankful for the people who were always up for
lunch, dinner, coffee, drinks, bouldering, or on rare occasions, hikes for making my time
here eventful. And very much less grateful that almost everyone graduated and left so
early.

i

Acknowledgements

Finally, to those most affected by my constant stress and lousy schedule. They were an
unwavering source of support when the going gets tough and the most ardent cheerleaders
when the tough gets going. To my parents, who are always worried that I am not eating
enough, and to Federico, for making sure that I am. I could not have done it without
you. This thesis is for you.

Teresa

ii

Abstract

Visual perception is indispensable for many real-world applications. However, perception
models deployed in the real world will encounter numerous and unpredictable distribution
shifts, for example, changes in geographic locations, motion blur, and adverse weather
conditions, among many others. Thus, to be useful in the real world, these models need
to generalize to the complex distribution shifts that can occur. This thesis focuses on
three directions aimed at achieving this goal.

For the first direction, we introduce two robustness mechanisms. They are training-time
mechanisms as inductive biases are incorporated at training-time and at test-time, the
weights of the models are frozen. The first robustness mechanism we introduce ensembles
predictions from a diverse set of cues. As each cue responds differently to a distribution
shift, we adopt a principled way of merging these predictions and show that it can result
in a final robust prediction. The second mechanism is motivated by the rigidity and
biases of existing datasets. Examples of dataset biases include containing mostly scenes
from developed countries, professional photographs, and so on. Here, we aim to control
pre-trained generative models to generate targeted training data to account for these
biases, that we can use to fine-tune our models.

Training-time robustness mechanisms attempt to anticipate the shifts that can occur.
However, distribution shifts can be unpredictable and models may return unreliable
predictions if this shift was not accounted for at training time. Thus, for our second
direction, we propose to incorporate test-time adaptation mechanisms so that models
can adapt to shifts as they occur. To do so we create a closed-loop system that learns to
use feedback signals computed from the environment. We show that this system is able
to adapt efficiently at test time.

For the last direction, we introduce a benchmark for testing models on realistic shifts.
These shifts are attained from a set of image transformations that take the geometry of
the scene into account. Thus, they are more likely to occur in the real world. We show
that they can expose the vulnerabilities of existing models.

Keywords: distribution shifts, robustness, adaptation, benchmarks

iii

Résumé

La perception visuelle est indispensable pour de nombreuses applications du monde réel.
Cependant, les modèles de perception déployés dans le monde réel seront confrontés à
de nombreux changements de répartition imprévisibles, par exemple des changements
de localisation géographique, du flou de mouvement et des conditions météorologiques
défavorables, entre autres. Ainsi, pour être utiles dans le monde réel, ces modèles doivent
être généralisés aux changements de distribution complexes qui peuvent survenir. Cette
thèse se concentre sur trois directions visant à atteindre cet objectif.

Pour la première direction, nous introduisons deux mécanismes de robustesse. Ce sont des
mécanismes de temps de formation car des biais inductifs sont incorporés au moment de la
formation et au moment du test, les poids des modèles sont gelés. Le premier mécanisme
de robustesse consiste à introduire des prédictions d’ensembles à partir d’un ensemble
diversifié d’indices. Ceci est basé sur l’idée que les prédictions faites via différents signaux
réagissent différemment à un changement de distribution, on devrait donc pouvoir les
fusionner en une seule prédiction finale robuste. Le deuxième mécanisme est motivé par
la rigidité et les biais des ensembles de données existants. Des exemples de biais dans
les ensembles de données incluent le fait qu’ils contiennent principalement des scènes
provenant de pays développés, des photographies professionnelles, etc. Ici, nous visons à
contrôler des modèles génératifs pré-entraînés pour générer des données d’entraînement
ciblées pour tenir compte de ces biais, que nous pouvons utiliser pour affiner nos modèles.

Les mécanismes de robustesse du temps de formation tentent d’anticiper les changements
qui peuvent survenir. Cependant, les changements de distribution peuvent être imprévi-
sibles et les modèles peuvent renvoyer des prédictions peu fiables si ce changement n’a
pas été pris en compte au moment de la formation. Ainsi, pour notre deuxième direction,
nous proposons d’incorporer des mécanismes d’adaptation au temps de test afin que
les modèles puissent s’adapter aux changements au fur et à mesure qu’ils se produisent.
Pour ce faire, nous créons un système en boucle fermée qui apprend à utiliser les signaux
de rétroaction calculés à partir de l’environnement. Nous montrons que ce système est
capable de s’adapter efficacement au moment du test.

Pour la dernière direction, nous introduisons un benchmark pour tester des modèles
sur des changements réalistes. Ces décalages sont obtenus à partir d’un ensemble de

v

Résumé

transformations d’image qui prennent en compte la géométrie de la scène. Ils sont donc
plus susceptibles de se produire dans le monde réel. Nous montrons qu’ils peuvent exposer
les vulnérabilités des modèles existants.

Mots-clés : décalages de distribution, robustesse, adaptation, benchmarks

vi

Contents

Acknowledgements i

Abstract (English/Français) iii

Introduction 1
Types of distribution shifts . 1
Reasons for lack of robustness . 2
Making models robust . 3
Making models adaptive . 4

I Robustness Mechanisms 7

1 Ensembling diverse predictions 9
1.1 Introduction . 9
1.2 Related Work . 10
1.3 Method . 12

1.3.1 Estimating Per-Path Predictions and Uncertainty 13
1.3.2 Merging Predictions . 15

1.4 Experiments . 16
1.4.1 Evaluations on Pixel-Wise Prediction Tasks 16
1.4.2 Robustness of Sigmas to Distribution Shifts 22
1.4.3 Evaluation on Classification Tasks 22

1.5 Conclusion and Discussion . 23

2 Controlled Training Data Generation 25
2.1 Introduction . 25
2.2 Related Work . 26
2.3 Method . 27

2.3.1 Preliminaries on diffusion models and textual inversion 28
2.3.2 Optimizing for a S∗ that maximizes loss 28
2.3.3 Constraining the optimization of S∗ 29

2.4 Experiments . 29
2.4.1 Experimental setup . 30

vii

Contents

2.4.2 Fine-tuning on generated data 31
2.5 Discussion on target domain informed vs uninformed generation 32
2.6 Conclusion . 33

II Adaptation Mechanisms 35

3 Fast adaptation using test-time feedback 37
3.1 Introduction . 37
3.2 Related Work . 37
3.3 Method . 40

3.3.1 How to adapt at test-time? . 40
3.3.2 Which test-time adaptation signals to use? 42

3.4 Experiments . 43
3.4.1 Experimental Setup . 43
3.4.2 Adaptation with RNA vs TTO 46
3.4.3 Experiments using Various Target Tasks 48
3.4.4 Ablations and additional results 51

3.5 Discussions of RNA compared to other approaches 52
3.6 Conclusion and Limitations . 55

III Benchmarks 57

4 3D Common Corruptions 59
4.1 Introduction . 59
4.2 Related Work . 60
4.3 Generating 3D Common Corruptions . 63

4.3.1 Corruption Types . 63
4.3.2 Starter 3D Common Corruptions Dataset 65
4.3.3 Applying 3DCC to standard vision datasets 66

4.4 3D Data Augmentation . 66
4.5 Experiments . 66

4.5.1 Preliminaries . 67
4.5.2 3D Common Corruptions Benchmark 68
4.5.3 3D data augmentation to improve robustness 74

4.6 Conclusion and Limitations . 75

Conclusion 77
Limitations and Future Work . 77

A Appendix 81
A.1 Ensembling diverse predictions . 82

viii

Contents

A.1.1 Quantitative Results . 82
A.1.2 Qualitative Results . 86
A.1.3 Further Method Details . 86
A.1.4 Middle domain definitions . 87
A.1.5 Visualizations of Common Corruption on Taskonomy data 88

A.2 Fast adaptation using test-time feedback 100
A.2.1 Monocular Depth . 100
A.2.2 Optical Flow Experiments . 103
A.2.3 Dense 3D Reconstruction . 104
A.2.4 Semantic Segmentation . 104
A.2.5 Image classification . 106

A.3 3D Common Corruptions . 127
A.3.1 Quantitative Results . 127
A.3.2 Qualitative Results . 128
A.3.3 Further method details . 129
A.3.4 Visualizing Corruptions . 130

Bibliography 165

B Curriculum Vitae 167

ix

Introduction

Visual perception models have been adopted in many real-world applications. These
applications range from safety-critical ones like autonomous driving, and diagnosing
diseases, to public policy and hiring decisions. However, when faced with distribution
shifts from its training data, the predictions of these models are unreliable and can
exhibit unintended biases. As the real world consists of rich, complex, and unpredictable
distribution shifts, this is a challenge that needs to be solved before deploying these
models in the real world.

This thesis presents three directions for improving the predictions of models under distri-
bution shifts. The first involves robustness mechanisms. These mechanisms incorporate
inductive biases into the model during training-time, in anticipation of the shifts that can
occur at test time. The second direction studies adaptation mechanisms, which allows
the model to adapt to shifts as they occur. Finally, for the last direction, we introduce a
benchmark that can be used to evaluate models. See Figure 1 for a schematic overview
of these directions.

Types of distribution shifts

One way to categorize distribution shifts is by how the distributions differ at training and
test-time. Let us assume that the input data can be decomposed into a set of attributes.
Thus, distribution shifts arise when the distribution over these attributes is not the same
at training and test-time [1]. This gives rise to several types of shifts that commonly
occur in the real world. 1. Unseen shifts: This occurs when certain attributes of the
data are not seen during training time but appear at test time e.g. noise or blur. 2.
Long-tails: Some examples of this are when data from certain regions or demographics
are under-sampled. 3. Spurious correlations: This occurs when the attributes that are
correlated at training time are not correlated at test time e.g., an object that occurs
with a certain background during training time may appear with a different background
at test time. A model that learns to make predictions based on the background would
perform poorly at test time.

Another way to categorize distribution shifts is by how they are generated. Popular

1

Reasons for lack of robustness

Data augmentation/

generation FeedbackEnsembling

(Open-loop)

(Closed-loop)

Realistic

Corruptions

I. Robustness II. Adaptation III. Benchmark

Figure 1: A schematic overview of the three directions presented in this thesis.
The model of interest in all cases is x → y i.e., the mapping from the RGB image to the
target task e.g., image classification or depth estimation. The blue arrows or symbols
denote the key components of these mechanisms. I. Robustness mechanisms are
training-time mechanisms as they incorporate inductive biases into the model at training
time and at test time the weights of the model are frozen. Ensemble methods combine
the predictions from several models to get a final strong prediction. We propose to
apply transformations to the input x to get a set of cues, x̂is. We then train a model
to predict the target task from each of these cues. As each cue responds differently to
distribution shifts, we adopt a principled way of merging these predictions and show that
it can result in a final robust prediction. In Chapter 4, we introduce a set of realistic
transformations i.e., x → x̂, and show that augmenting the training data with these
transformations improves robustness. However, these augmentations are generated in an
open-loop manner, i.e., without feedback from the model. Thus, in Chapter 2, instead of
applying transformations to the input, we learn to control a generative model to generate
training data for a given model by using its loss as a feedback signal. II. Adaptation
mechanisms are test-time mechanisms as they aim to adapt to distribution shifts as
they occur. To do so, they compute an adaptation signal from the environment, e, at
test time and use it to update the model. Thus, creating a closed-loop system with
the environment. In Chapter 3, we propose an efficient way of performing test-time
adaptation. III. Benchmarks allow us to evaluate our models before deploying them in
the real world. In Chapter 4, we introduce a set of realistic corruptions, informed by the
geometry of the scene. We show that they can be computed efficiently and can expose
the vulnerabilities of existing networks.

examples include low-level shifts like Gaussian blur, speckle noise [2] etc., and viewpoint
changes that can result in occlusions [3, 4]. There can also be changes in geographic
location [5, 6], time [7, 8] and so on. One can also optimize for shifts to fool a given
model, creating an adversarial attack. The adversarial attack can be optimized to
be imperceptible [9, 10, 11], over spatial transformation like rotation and translation
parameters [12], or even over how the training and test data is split [13]. In this thesis,
we focus mostly on unseen shifts, and in particular low-level and optimized ones.

Reasons for lack of robustness

Our training datasets tend to exhibit biases. Some examples include photographer’s bias,
i.e., where photographers tend to take pictures of objects in similar ways, and as a result,
most objects tend to be centered or taken in their frontal view [14, 15, 16]. Another

2

Making models robust

example is location bias, when there is more data from certain parts of the world or
ethnicity [17] compared to others e.g., satellite images from the Americas compared to
that from Africa [18]. Thus, training our models on data with these biases can result in
poor performance at test-time, when it is given a e.g., different viewpoint of an object or
images from different countries. Furthermore, learning with stochastic gradient descent
can return models that prefer certain attributes over others. [19] showed that networks
exhibit simplicity bias, i.e., when there exist several attributes of the input data that
are predictive of the target task, networks prefer to use the “simpler” attributes. These
“simpler” attributes are e.g., background or texture, as opposed to semantic features of
the object. This causes the model to be sensitive to perturbations in the input or style
changes.

There are many other hypotheses for why our models are not robust, from learning from
unnatural static I.I.D. data, typically of a single modality, being disconnected from the
environment i.e., lack of interaction, and so on. A discussion of this can be found in the
conclusion section, under future work. Thus, the above paragraph presents a narrow
view of the possible reasons, as it assumes that we are constrained to training black box
neural networks on I.I.D. inputs.

Making models robust

Robustness mechanisms anticipate the distribution shift that can occur and incorporate
inductive biases into the model to help it generalize. They are training-time mechanisms
as these inductive biases are incorporated at training-time and at test-time the weights
of the models are frozen. There are several ways of making models more robust e.g., data
augmentations, architecture changes, and so on. We will discuss the ones relevant to this
thesis.

Ensemble methods combine the predictions of several models to attain a strong final
prediction. Ensembles rely on the diversity of individual models to de-correlate errors.
Sources of diversity include using different initializations [20], hyperparameters [21] or
network architectures [22] for the ensemble components, or training the ensemble with
additional loss terms [23, 24, 25, 26]. Other works average the weights of several models,
to return one final model [27, 28, 29]. This has the benefit of having no additional cost
at inference time. In Chapter 1, we propose to make our predictions from a diverse
set of cues. This is based on the idea that predictions made via different cues respond
differently to distribution shifts, hence one should be able to merge them into one robust
final prediction. We perform the merging in a straightforward but principled manner
based on the uncertainty associated with each prediction.

Learning with data from generative models. Sampling data from generative models
such as generative adversarial networks (GANs) or diffusion models allows us to vastly
expand the original training data. Recent works have made use of the latter to either

3

Making models adaptive

replace or expand the training data for image recognition tasks [30, 31, 32]. These works
used pre-defined prompts or a language model to augment the pre-defined prompts,
to generate data. Other works learn to generate training data for a given model by
controlling the latent space of GANs [33, 34] or variational autoencoders (VAEs) [35].
We show in Chapter 2 that we can generate data for a given model but in contrast to
these works, we employ diffusion models as the data generator.

Robustness benchmarks allow us to evaluate our models before deploying them in the
real world. The WILDS benchmark [18] is a combination of 10 datasets that represents
shifts that can arise in the real world e.g., shifts across time, location in satellite images,
or hospitals. In contrast, the Common Corruptions benchmark [2] introduced synthetic
corruptions on real images that expose the sensitivities of image recognition models.
These corruptions are cheap to apply, however, they do not take into account the geometry
of the scene, i.e., the corruptions are applied uniformly over the image. In Chapter 4,
we propose 3D Common Corruptions, that modify real images using 3D information to
generate realistic corruptions. Thus, leading to corruptions that are more likely to occur
in the real world.

Data-augmentations. Increasing the diversity of the training data via data augmenta-
tion is a popular way of improving the model’s robustness. Methods such as AugMix [36],
AutoAugment [37], RandAugment [38] combine standard augmentations like color jitter,
rotation, shearing. Methods like CutMix [39], Mixup [40] introduce new augmentations by
replacing a portion of an image with a crop of another image or by linearly combining two
images. Other works train with low-level shifts like noise or blur [41, 42], or adversarial
attacks [11]. In Chapter 4, we introduce a set of realistic corruptions that incorporates
the geometry of the scene into the transformations and show that training with these
realistic corruptions results in more robust predictions.

Domain Generalization assume access to datasets from multiple domains during
training [43, 44]. Some methods involve meta-learning [45], matching the features across
the different domains [46, 47, 48] or enforcing invariance in the gradients [49]. Invariant
risk minimization [50] learns features such that the optimal linear classifier on top of that
representation matches across domains. Group distributionally robust optimization [51]
minimizes the worst-case loss over domains. However, [52] showed that empirical risk
minimization, when well implemented, achieves state-of-the-art performance across
datasets. In this thesis, we assume access to only one domain during training, although
extending this to multiple domains would be interesting for future work.

Making models adaptive

Distribution shifts that can occur in the real world are numerous and unpredictable.
Training-time robustness mechanisms that attempt to take anticipatory measures (e.g.,
data augmentation or architecture changes) have inherent limitations. This is because the

4

Making models adaptive

learned model is frozen at test-time, thus upon encountering an out-of-distribution input,
its predictions may collapse. This is the main motivation behind test-time adaptation
methods, which instead aim to adapt to such shifts as they occur. These methods choose
adaptation over anticipation.

Adaptive methods create a closed loop with the environment and use an adaptation
signal at test time. The adaptation signal is a quantity that can be computed at test
time from the environment. Optimizing a self-supervised signal e.g. entropy [53], mutual
information [54] at test-time is a popular way of performing adaptation. While this can
successfully adapt a network, it is inefficient as it does not make use of the learnable
regularities in the adaptation process, and consequently, is unconducive for real-world
applications. It also results in a rigid framework as the update mechanism is fixed to
be the same as the training process of neural networks, i.e., using stochastic gradient
descent. In Chapter 3, we show that this process can be effectively amortized using
a controller network, which yields orders of magnitude faster results. In addition, it
provides flexibility advantages as the controller is implemented using a neural network
and can be engineered to include arbitrary inductive biases and desired features.

5

Part IRobustness Mechanisms

7

1 Ensembling diverse predictions

1.1 Introduction

We begin the first part on robustness mechanisms by demonstrating a way to use
ensembling techniques to improve predictions. Suppose we want to learn a mapping
from an input domain, e.g. RGB images, to a target domain, e.g. surface normals
(see Fig. 1.1). A common approach is to learn this mapping with a direct path, i.e.
RGB → surface normals. Since this path directly operates on the input domain, it is
prone to being affected by any slight alterations in the RGB image, e.g. brightness changes.
An alternative can be to go through a middle domain1 that is invariant to that change.
For example, the surface normals predicted via the RGB → 2D edges → surface normals
path will be resilient to brightness distortions in the input as the 2D edges domain
abstracts that away. However, one does not know which middle-domain to use ahead of
time as the distortions that a model may encounter are broad and apriori unknown, and
some middle domains can be too lossy for certain downstream predictions. These issues
can be mitigated by employing an ensembling approach where predictions made via a
diverse set of middle domains are merged into one strong prediction on-the-fly.

This paper presents a general approach for the aforementioned process. We first use a set
of K middle domains from which we learn to predict the final domain (Fig. 1.1). Each
of the K paths reacts differently to a particular distribution shift due to its inherent
biases, so its prediction may or may not degrade severely. Thus, we further estimate
the uncertainty of each path’s prediction which allows us to employ a principled way of
combining these predictions into the one final prediction.

Prior knowledge of the relationship between middle domains is not needed as their

1or equivalently “middle task", as most vision tasks can be viewed as mapping an input onto some
other domain.

9

Chapter 1. Ensembling diverse predictions

Figure 1.1: An overview of the proposed method for creating a robust and
diverse ensemble of predictions. A set of K networks predict a target domain (here
surface normals) given an input image that has undergone an unknown distribution shift
(here JPEG compression degradation), via K middle domains (e.g. 2D texture edges,
low-pass filtering, greyscale image, emboss filtering, etc). The predictions from the K
paths are then merged into one final strong prediction using weights that are based on
the uncertainty associated with each prediction. This method is shown to be significantly
robust against adversarial and non-adversarial distribution shifts for several tasks. In the
figure above, solid () and dashed () arrows represent learned and analytical functions,
respectively.

contribution to the final prediction is guided by their predicted uncertainties in a fully
computational manner independent of the definition of the middle domain. In other
words, no manual modification or re-design is needed upon a change in these domains.
Moreover, the middle domains we adopt can all be programmatically extracted. Thus,
this framework does not require any additional supervision/labeling than what a dataset
already comes with. The proposed method would be equally applicable if the middle
domains were also obtained using a learning based approach, e.g. predicting surface
normals from the output of another network such as a depth estimator. We show in
Sec. 4.5 that the method performs well insensitive to the choice of middle domains and it
generalizes to completely novel non-adversarial and adversarial corruptions.

1.2 Related Work

This work has connections to a number of topics, including ensembling, uncertainty
estimation and calibration, inductive bias learning [55], or works in neuroscience that
suggest the brain uses multiple, sometimes partially redundant, cues to perceive [56, 57].
We give an overview of some of them within the constraints of space.

Ensembling allows us to resolve the bias-variance trade-off which states that errors

10

1.2 Related Work

in a models’ prediction can be decomposed into bias, variance, and an irreducible data-
dependent noise term [58, 59]. This is done by combining multiple models with low bias
and high variance, e.g. bagging [60], or with high bias and low variance, e.g. boosting [60],
to have predictions with both low bias and variance.

A primary challenge for ensemble methods is to ensure diversity. Sources of diversity
include using different initializations [20], hyperparameters [21] or network architec-
tures [22] for the ensemble components, or training the ensemble with additional loss
terms [23, 24, 25]. However, under distribution shifts, reduction in performance can
stem from an increase in the bias, rather than the variance term [61]. Our set of middle
domains yields a more diverse ensemble by design and promotes invariance to different
distortions to keep bias low (see Fig. 1.1).

Estimating uncertainty: Uncertainty in a model’s prediction can be decomposed
into two sources [62, 63]. Epistemic uncertainty accounts for uncertainty in the model
parameters, while aleatoric uncertainty stems from the noise inherent in the data. There
are many proposed methods to estimate the former, such as using dropout [64, 65],
stochastic variational inference methods [66, 67, 68, 69, 70, 71], ensembling [20], and
consistency energy [72] where a single uncalibrated uncertainty estimate is extracted
from consistency of different paths. Most of the existing methods in this area solely
estimate uncertainty without using it towards improving the predictions. In contrast,
our formulation estimates a calibrated uncertainty for each path and uses it to produce
a stronger prediction.

Improving calibration with auxiliary datasets: Neural networks tend to produce
outputs that are miscalibrated, i.e. their estimated uncertainty does not reflect the
true likelihood of being correct [73, 74]. In particular, their predictions tend to be
overconfident for unfamiliar examples. This is usually handled by a calibration step.
Similar to [75, 76, 77, 78], we use a separate dataset from the one at test time to train
the model to output high sigmas (uncertainties) for unfamiliar cases. Previous papers
focus on generalizing uncertainties for classification; in Section 1.3.1, we show this can
be extended to dense regression problems.

Enforcing consistency constraints in the context of cross-task predictions involves
ensuring that the output predictions remain the same regardless of the intermediate
domain [72, 79, 80, 81]. Particularly in contrast to [72] which uses (non-probabilistic)
training-time consistency constraints to improve a network’s prediction and does not have
any consolidation mechanism, our goal is to robustify the final prediction by merging the
output of multiple prediction paths at the test time. Our formulation and the training-time
consistency constraints are complimentary.

Robustness via data augmentation: One approach to addressing robustness involves
using data augmentation during training [11, 40, 36, 82, 83]. Such methods usually

11

Chapter 1. Ensembling diverse predictions

involve training with a set of corruptions to generalize to unseen ones [41]. However,
performance gains can be non-uniform, e.g. Gaussian noise augmentation improves
performance on other noise corruptions (e.g. impulse, shot noise) but hurts performance
on fog and contrast [84]. Instead, our main mechanism uses a large set of middle domains
(not corruptions) to be resistant to a wide range of diverse unseen corruptions. We do
not use any corruptions during training, except to calibrate uncertainty.

Adversarial attacks add imperceptible worst case shifts to the input to fool a model [9,
10, 11]. In contrast to [23, 24, 25], which are ensemble based adversarial robustness
methods with an additional loss term to promote diversity, the diversity of our ensembles
is a natural consequence of using different middle domains. While our focus is not limited
to robustness against adversarial attacks, it yields supportive evaluations against them
as well (Sec. 1.4.1).

Sh
ift

 In
te

ns
ity

 2
Sh

ift
 In

te
ns

ity
 5

Deep EnsemblesAfter sigma training
Prediction UncertaintyRGB

Before sigma training
Prediction Uncertainty Prediction Uncertainty

���������������������������

Figure 1.2: Addressing overconfident inaccurate predictions under high distor-
tions. Left: Qualitative prediction results of image (re)shading and their corresponding
uncertainty estimates (i.e. sigma) under two intensities of speckle noise distortion. This
is shown for a single UNet model before and after sigma training (ST) as well as for deep
ensembles (standard deviation of predictions in the ensemble). Darker denotes lower
uncertainty/sigma. ST was done using Gaussian noise and Gaussian blur distortions.
Using other distortions yields similar performance (see appendix). Right: Scatter plot of
ℓ1 error versus average sigma. Each point is computed from an average over 16k test
images for one of the unseen distortions and one of 5 levels of shift intensity. Notice
(qualitatively and quantitatively) that when the models without ST produce poor results,
their uncertainty does not correspondingly increase. Our ST helps the model to have a
stronger correlation between its uncertainty estimates and error when tested on unseen
distortions. This indicates that sigma after ST can be an effective signal for merging
multiple predictions. Note that the predicted mean (“Prediction”) does not change with
ST.

1.3 Method

We explain the technical details of our method below.

Notations: Define X as the RGB domain, Y = {Yj}K
j=1 as the K intermediate domains,

Z as the desired prediction domain. A single datapoint n from these K domains is
denoted as (xn, y1,n, . . . , yj,n, . . . , yK,n, zn). FX Y is the set of functions that maps the

12

1.3 Method

RGB images to their intermediate domains, FX Y = {fj : X → Yj}K
j=1, and FYZ is

the set of functions mapping from the intermediate to the target prediction domain,
FYZ = {gj : Yj → Z}K

j=1. Given K predictions of domain Z, they are merged using the
function m to get a final single prediction, m : {gj(Yj)}K

j=1 → Z.

1.3.1 Estimating Per-Path Predictions and Uncertainty

We learn the mappings gj using a neural network. We model the noise in the predictions
made by gj with a Laplace distribution. Thus, for an input sample yj,n, the network
outputs two sets of parameters [ẑj,n, ŝj,n] = gj(yj,n) where we set ŝj,n = log b̂j,n for
numerical stability and b̂j,n is the scale parameter of the Laplace distribution. We remove
the dependence on j for brevity. This leads to the following negative log-likelihood (NLL)
loss for g:

Lg,NLL = 1
N

N∑
n=1

exp (−ŝn)∥ẑn − zn∥1 + ŝn, (1.1)

where N is the number of samples, and zn is the label for the nth sample. This results in
an ℓ1-norm loss on the errors as opposed to an ℓ2-norm loss with a Gaussian distribution,
which has been shown to improve prediction quality [63, 72]. Finally, the sigma is given
by

√
2 exp(ŝn) and it captures the uncertainty in predictions.

Calibration via Sigma training (ST): Uncertainty estimates under distribution shifts
are poorly calibrated [85], i.e. there is a tendency to output a poor prediction with
high confidence. This can be seen in Fig. 1.2, “Before sigma training” columns. With
a higher noise distortion, the prediction clearly degraded, but the uncertainty estimate
did not increase correspondingly. This issue persists even with methods that estimate
epistemic uncertainty (Fig. 1.2, “Deep Ensembles” columns) which are meant to detect
these shifts.

To mitigate this, we adopt a two-stage training setup where the network trained on
in-distribution data is further trained to output high uncertainty outside the training
distribution. We denote this step as sigma training (ST). Here, ŝn is trained to learn its
maximum likelihood estimator, with the loss denoted as sigma calibration (SC). As the
goal of this step is to maximize the likelihood by correcting the sigma ŝn, and not the
mean ẑn, under a distortion (dist), we add a loss term to ensure that ẑn does not deviate
from its predictions at the start of ST, which we define as ẑ0

n. We denote this loss as
mean grounding (MG). Finally, we include the original NLL from Eq. 1.1 on undistorted
data (undist) to prevent forgetting. This results in the following loss formulation:

Lg,ST = Lundist
g,NLL + α1Ldist

g,MG + α2Ldist
g,SC , (1.2)

where α1, α2 controls the weighting between the loss terms. For a given ẑ0
n, the MG loss

13

Chapter 1. Ensembling diverse predictions

is defined as the ℓ1-norm distance between the current prediction and the one at the
start of sigma training, i.e. Ldist

g,MG = ∥ẑ0
n − ẑn∥1. The SC loss guides the scale parameter

towards its maximum likelihood estimate, i.e. Ldist
g,SC = ∥ exp (ŝn)−arg minŝn

Ldist
gj ,NLL∥1 =

∥ exp (ŝn) − |zn − ẑ0
n|∥1.

Figure 1.3: How does the method work? Each network in each path receives different
cues for making a prediction, due to going through different middle domains. Left:
Given a distorted pixelated query, each path (columns) is affected differently by the
distortion, which is reflected in its prediction, uncertainty, and weights (lighter means
higher weights/uncertainty). The inverse variance merging uses the weights to assemble a
final prediction that is better than each of the individual predictions. (The uncertainties
of surface normals look colorful as surface normals domain includes 3 channels, thus there
are 3 uncertainty channels.) Right: Similarly, for a query with glass blur distortion, the
method successfully disregards the degraded predictions and assembles an accurate final
prediction. Note that the proposed method (inverse var. merging) obtains significantly
better results than learning from the RGB directly (leftmost column of each example)
which is the most common approach. The quality of the final prediction depends on the
following elements: 1. For each pixel, at least one middle domain is robust against the
encountered distortion, and 2. The uncertainty estimates are well correlated with error,
allowing the merger to select regions from the best performing paths. Uniform merging
does not take into account the uncertainties and consequently lead to worse predictions.
The elliptical markers denote sample regions where the merged result is better than all
individual predictions.

Following ST, the network outputs sigmas that are highly correlated with error (Fig. 1.2,
rightmost plot). Given multiple predictions of the same target domain and their sigma
estimates, this allows us to use the latter as a signal for merging to get a single strong
prediction (Sec. 1.3.2).

As the objective of ST is to expose the network to inputs with high distortions as opposed
to updating the final predicted mean, any corruption with high intensity will suffice. The
distortions used for ST are not the same distortions as the ones at test time. Please see
the appendix Section 2.5 for a detailed study. Furthermore, the experiments (Fig. 1.2,
Fig. 1.6, Table 1.1) indicate that sigma clearly generalizes to unseen distortions.

14

1.3 Method

1.3.2 Merging Predictions

After obtaining the set of mappings FX Y and FYZ with the method described above, it
remains to merge the predictions coming from multiple paths using a merging function m.
We employ an analytical approach given by m({gj(yj,n)}K

j=1) = C
∑K

j=1 exp(−2ŝj,n)ẑj,n

where C is a normalizing constant defined as C = (∑K
j=1 exp(−2ŝj,n))−1. This performs

a straightforward weighting of each pixel in each path by the inverse of its variance [86]
which can be done with negligible computational cost. We denoted this as Inverse
variance merging and will show in Section 1.4.1 that it performs better than other
analytical and learning based variants of our method. Algorithm 1 summarizes our
training procedure.

Figure 1.4: Qualitative prediction results under 4 distribution shifts from
Common Corruptions [2] shown on a sample image from the Replica[87] dataset
with shift intensity 3. Each prediction is followed by its corresponding error map. Our
method is resistant to distortions compared to the baselines and provides better accuracy
especially over fine-grained regions and sharpness (see the white markers). Best seen on
screen.

Algorithm 1 Summary of the training procedure of our method
Require: Define fj ∈ FX Y and gj ∈ FYZ ∀j.

1: for j = 1 : K do
2: Train gj using NLL loss in Eq. 1.1.
3: (Optional) Train gj using consistency constraints [72]. (Sec. 1.4.1)
4: Perform sigma training over gj with Eq. 1.2.
5: end for
6: Merge the K predictions from the FYZ networks using Inv. var. merging (Sec. 1.3.2).

A working example. Figure 1.3 illustrates our method with an example. For a given
image, each path’s prediction, uncertainty, and corresponding weights are shown. For
the distorted (pixelated) query in the left, each path reacted differently to the distortion,
and the final prediction is obtained by combining individual predictions based on their
uncertainties. Similar observations can be made for the glass blurred image in the
right, where the method learned weights in a way such that the degraded paths are not

15

Chapter 1. Ensembling diverse predictions

used in the final prediction. We also show the final prediction from a uniform average
of each path. While it is better than simply using the direct path (X → Znormal or
X → Zreshade), using the uncertainty estimates as weights results in a notably more
accurate prediction.

There are two key elements to the effectiveness of our method. I. With a diverse set of
middle domains, it is more likely that one of them will be less affected by distortions and
returns an accurate prediction. II. The error of the prediction correlates well with its
corresponding uncertainty estimates, i.e. the uncertainty is low in the region of the image
where the prediction is accurate. This allows us to use these uncertainty estimates as a
signal to have a final prediction with parts of the image taken from different paths.

1.4 Experiments

We demonstrate that the proposed approach leads to robustness against different dis-
tribution shifts, over different datasets, and different prediction tasks. For pixel-wise
prediction tasks, we train on the Taskonomy dataset [88]. To evaluate the robustness
under corruptions, we report performance under Common Corruptions [2] and adversarial
perturbations [9, 10, 11]. To evaluate against dataset shifts, we report on Replica [87]
and Habitat [89] datasets. For classification, we train on ImageNet [90], CIFAR [91], and
evaluate on ImageNet-C and CIFAR-C [2]. Please see the appendix for more extensive
qualitative results.

1.4.1 Evaluations on Pixel-Wise Prediction Tasks

Training dataset: We use Taskonomy [88] as our training dataset which includes 4
million real images of indoor scenes with multiple annotations for each image. We report
results for surface normals, depth (zbuffer), and reshading prediction, as popular target
domains.

Middle Domains: From the RGB images we extract 2D edges, Laplace edges, greyscale,
embossed, low-pass filtered, sharpened, and wavelet images as the middle domains (detailed
definitions can be found in the appendix). These middle domains are commonly used
for low-level image processing tasks with negligible computation cost [92, 93] and do
not need any supervision. The performance was not sensitive to the choice of middle
domains as the method consistently outperforms baselines and improves with more middle
domains (Sec. 1.4.1, Fig. 1.7).

Evaluation datasets: Our goal is to have test data that has a distribution shift from
the training data to evaluate the robustness of our method. All the results are reported
on the test set of the following datasets:

Taskonomy with Common Corruptions [2]: We apply the Common Corruptions on
the test set of Taskonomy. They include all corruptions except outdoor corruptions

16

1.4 Experiments

Figure 1.5: Qualitative results under distribution shifts for reshading, surface
normals, and depth predictions. Each row shows the predictions from a query image
from the Taskonomy test set under increasing speckle noise. Our method degrades less
than the other baselines, demonstrating the effectiveness of using different cues to obtain
a robust prediction. Notable improvements in the accuracy can be seen especially in
fine-grained regions.

(snow, frost, fog) and the ones that change the geometry of the scene (elastic transform,
motion, and zoom blur). We exclude Gaussian noise and blur from evaluations as they
were used for ST, to keep training and testing fully separate. Visualizations of a subset
of distortions are shown in Figure 1.4 and for all severities in the appendix .

Taskonomy with Adversarial corruptions [9, 10, 11]: We generate adversarial examples
using Iterative-Fast Gradient Sign Method (I-FGSM) [10].

Other datasets: Replica [87] consists of 1227 images from high quality 3D reconstructions
of indoor scenes. Similar to Taskonomy, we also apply common corruptions on these
images. Habitat [89] consists of 1116 images from mesh renderings with a substantial
shift from Taskonomy. We test on both datasets without fine-tuning (see appendix).

Training details: All networks for our method and baselines use the same UNet
backbone architecture [94] and were trained with AMSGrad [95]. We used a learning
rate of 5 × 10−4, weight decay of 2 × 10−6, and batch size of 64. The upsampling blocks
of all networks resize the activation maps using bilinear interpolation.

We also augment the network training with “cross-task consistency constraints" (X-
TC) [72] for generally better results, but this is not a fundamental requirement (ablation
results provided in Sec. 1.4.1). We follow [72] and apply non-probabilistic perceptual
losses on the predicted mean.

Baselines: We evaluate the following baselines. They are trained with NLL loss (Eq. 1.1),
i.e. the models output both mean and sigma.

Baseline UNet: It is a single network that maps from RGB to the target domain
without going through a middle domain (i.e. direct). This is the main baseline.

Multi-domain baseline: It is a network model with RGB image and all middle domains
as inputs. Since this model is not forced to use different middle domains as opposed to

17

Chapter 1. Ensembling diverse predictions

the proposed method, it reveals if learning from middle domains needs to be explicit
and distributed.

Multi-task baseline: It is a single model that maps from RGB to depth, reshading, and
normals. This is to reveal if learning additional tasks improved robustness.

Data augmentation baselines: We consider a baseline UNet adversarially trained
to defend against I-FGSM attacks with ϵ = (0, 16]. This baseline shows how well
adversarial robustness translates to non-adversarial distortions. We also include style
augmentation [96] as another baseline, which has been shown to reduce the texture
bias that are less robust than shape cues.

Blind guess is a single prediction that captures the overall statistics of the domain, i.e.
it returns the best guess of what the prediction should be independent of the input.
Hence, it shows what can be learned from general dataset regularities (further details
are in the appendix).

Deep ensembles [20] creates an ensemble by training the same exact networks with
different initializations. Although there are recent papers proposing new ways to enforce
diversity in ensembles, their improvement in performance against deep ensembles has
not been found significant under non-adversarial shifts [97, 21]. Thus, deep ensembles
remains the most relevant ensemble baseline. We use the same number of paths, i.e.
ensemble components, as in our method. The predictions from each path are weighted
equally to attain the final prediction. This baseline reveals if learning from different
cues yields diverse predictions that results in a stronger final estimator.

Cross-domain ensemble setups evaluated: We evaluate several variants of our
merging method. In all variants, different paths goes through different middle domain
to produce a prediction along with one path being the direct prediction. They are then
merged into the final prediction. We show the proposed analytical merging is superior to
others.

Inverse variance merging: Each path’s prediction is weighted inversely proportional to
its variance, as proposed in Section 1.3.2.

Uniform merging: A simplified merging where each path is weighted equally, i.e.
uncertainty is not used.

Network merging: A neural network is used to merge the predictions. Specifically,
we consider a stacking model [98] that learns the final predictions given the outputs
from each path and models the final output as a mixture of Laplacians. It has the
advantage that the loss is over the entire image, thus, taking into account its spatial
structure (see the appendix for details).

18

1.4 Experiments

0 1 2 3 4 5
Shift Intensity

0.06

0.08

0.10

0.12

1e
rr

or
Normals

inv. var. merging (ours)
net. merging (ours)
uniform merging (ours)
deep ensembles
direct unet
direct unet (adv.t.)
direct unet (style)
multi-domain
multi-task

0 1 2 3 4 5
Shift Intensity

0.02

0.04

0.06

0.08

1e
rr

or

Depth

0 1 2 3 4 5
Shift Intensity

0.10

0.15

0.20

0.25

1e
rr

or

Reshade

Figure 1.6: Quantitative robustness evaluations using Common Corruption
distortions applied on Taskonomy test set: Average ℓ1 errors over 11 unseen
distortions. Our main method inv. var. merging, and frequently its simplified variant
uniform merging and network merging, are more robust against shifts compared to the
baselines. Error bars indicate one ‘standard error’ from the mean (via bootstrapping).
Plots for additional perceptual error metrics and individual distortions are provided in
the appendix.

Normal Reshade Depth
Methodϵ 2 4 8 16 2 4 8 16 2 4 8 16

Baseline UNet 8.23 11.53 13.03 14.37 17.92 22.78 27.26 34.40 5.50 6.76 8.36 9.80
Deep ensembles 7.49 11.13 13.36 15.65 15.66 21.95 27.75 34.98 5.45 6.68 8.27 10.52

Inv. var. merging 7.60 8.89 10.40 12.77 15.56 16.55 18.93 22.01 4.94 4.99 5.93 6.75
Adv. T. (lower bound error) 5.78 5.74 5.45 5.53 9.39 8.98 8.07 8.20 2.23 2.27 2.39 2.74

Table 1.1: Robustness against adversarial corruptions. ℓ1 errors for surface normals,
reshade, and depth under adversarial attacks are reported. (Lower is better. Errors
are multiplied by 100 for readability.) The proposed method significantly improves
robustness against I-FGSM [10] based attacks without adversarial training, compared to
the baselines. The last row shows the error for a model that has undergone adversarial
training [11] with the same attacks as those evaluated at test time, hence it gives a lower
bound on the error (see supplementary for additional details).

Robustness to Common Corruptions

Figures 1.4 and 1.5 show the qualitative results of our method against the baselines.
Performance under various distortions is demonstrated in Figure 1.4 for the surface
normals predictions of a sample image from Replica dataset. The proposed method
consistently outperforms the baselines and provides more accurate predictions especially
in fine-grained regions. This is further supported by quantitative results in Figure 1.6
where the ℓ1 error over these distortions are notably lower for the proposed method
compared to the baselines in all three target domains and shift intensities.

Among the evaluated baselines the data augmentation methods are the most competitive,
e.g. adversarial robustness partially transferred to non-adversarial distortions, though
inverse variance merging performs notably better.

We also observe inverse variance merging does much better than uniform merging and
also better or comparable to network merging (Fig. 1.6) despite being simpler, more
lightweight, and interpretable. Moreover, it does not demand fixing the number of paths

19

Chapter 1. Ensembling diverse predictions

����

1 2 3 4 5 6 7 8
Number of Paths

0.028

0.030

0.032

0.034

0.036

0.038

0.040

1e
rr

or

Depth
deep ensembles
uniform merging
inv. var. merging

1 2 3 4 5 6 7 8
Number of Paths

0.120

0.125

0.130

0.135

0.140

0.145

0.150
1e

rr
or

Reshade

1 2 3 4 5 6 7 8
Number of Paths

0.0775

0.0800

0.0825

0.0850

0.0875

0.0900

1e
rr

or

Normals

Figure 1.7: Effect of sigma and/or consistency training. (Top row) The plots
show the relative change in ℓ1 error compared to deep ensembles (i.e. negative means
outperforming deep ensembles). The proposed method outperforms deep ensembles under
distribution shifts even without ST and X-TC (consistency).
Robustness as a function of number of paths. (Bottom row) The plots show the
average ℓ1 error as we increase the number of paths (or ensemble components in the case
of deep ensembles). The proposed method (inv. var. merging) and its simplified variant
(uniform merging) consistently outperforms deep ensembles which plateaus much faster.

beforehand (unlike network merging), thus the number of paths can be decided by taking
computational considerations into account on the fly.

Robustness to Adversarial Attacks

We demonstrate the effectiveness of the proposed method under adversarial attacks. The
attacks are generated by I-FGSM. Following [10], we use attack strengths ϵ = [2, 4, 8, 16],
with the number of iterations given by N = min(4 + ϵ, 1.25ϵ). The results are shown
in Table 1.1. Neither our method nor the baselines utilize explicit adversarial defense
mechanisms – while deep ensembles perform nearly as poorly as baseline UNet, the
proposed method performs significantly better. This indicates that using middle domains
promotes ensemble diversity in a way that makes it more challenging to create one attack
that fools all paths simultaneously, hence this approach can be a promising remedy for
adversarial attacks as well. Moreover, the proposed method also outperforms Uniform
merging (see the appendix for the results) which does not use uncertainty estimates
during merging. This indicates that the additional uncertainty output did not create an
additional avenue for attack that I-FGSM could exploit.

Note that we do not obfuscate gradients by e.g. intentionally making certain operations
non-differentiable, or using stochastic transforms [99]. The analytical operations to obtain
the middle domains are deterministic and differentiable.

20

1.4 Experiments

shot noise

speckle noise

impulse noise

defocus blur

contrast

brightnesssaturate

jpeg compression

pixelate

spatter

glass blur

0 1 2 3 4 5 6 7 8

2D edges
Wavelet
Direct
Emboss
Greyscale
Low-pass
Laplace edges
Sharpened

Figure 1.8: Importance of each
middle domain for different dis-
tortions. The chart shows the or-
der of the best performing paths for
surface normal prediction for differ-
ent distortions, with 8 denoting the
most important and 1 the least im-
portant path. The plot shows, for
instance, “noise" distortions bene-
fited most from the low-pass middle
domain while “contrast" distortion
benefited most from the sharpened
middle domain.

Additional Ablation Studies

Contribution of ST/X-TC: To quantify the contribution of each stage of training to
the overall robustness of our setup, we study the performance of our proposed method
without sigma training (ST) and/or cross-task consistency constraints (X-TC) in the first
row of Figure 1.7 (and appendix). Our method, with or without ST or X-TC constraints,
still outperformed deep ensembles as almost all bars are below the 0 line.

In Section 2.3 of the appendix, we compare the effect of equipping deep ensembles with ST
and X-TC, and perform uniform and inverse variance merging. Thus, the only difference
with our method is the use of middle domains. Our method still outperforms.

Robustness vs number of employed paths: In Figure 1.7, we investigate performance
as a function of number of paths. Each point shows the average ℓ1 error of all possible
combinations for a given number of paths. Although all methods improve as more
paths are added, our proposed methods has a much steeper downward trend than deep
ensembles and our uniform merging variant, indicating that performance gap increases
with more paths.

Sensitivity to choice of middle domains: Figure 1.7 also shows that the performance
of our method is not sensitive to a particular set of middle domains. For a fixed number
of paths n, our method outperforms deep ensembles for all possible combinations of n

paths on average.

Path importance: We show the importance of each middle domain for the final
prediction under each distortion in Fig. 1.8. For number of paths n = 1, . . . , 8, we
compute the set of best performing paths, i.e. the set of n paths with the lowest ℓ1 error,
denoted by Pn = {p(i)}n

i=1. The nth best performing path is given by Pn\Pn−1. The plot
shows different paths indeed react differently to a given corruption, e.g. noise distortions
substantially benefited from low-pass, while contrast distortion did not – thus the benefit

21

Chapter 1. Ensembling diverse predictions

is not attributed to one or few middle domains under all distortions.

1.4.2 Robustness of Sigmas to Distribution Shifts

We have showed that our method returns predictions that are robust under a wide
range of distribution shifts. Are our predicted uncertainties also able to generalize under
distribution shifts, i.e. do we get high uncertainties when predictions get worse? To
investigate this, we consider epistemic uncertainty which is used to capture the model’s
uncertainty and is an indicator of distribution shifts [63]. The left plot of Figure 1.9
shows a scatter plot of average epistemic uncertainties against error and the right shows
the average error for all epistemic sigma values less than a threshold τ . The predicted
uncertainties from deep ensembles initially increase with error but do not increase past
0.15 sigma despite an increase in error, thus is overconfident, while our method shows an
increasing trend.

0.05 0.10 0.15 0.20 0.25
Average Sigma

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 E
rro

r

deep ensembles
ours

0.05 0.10 0.15 0.20 0.25 0.30
Sigma threshold, (: sigma<)

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

1 E
rro

r

deep ensembles
ours

Figure 1.9: Generaliza-
tion of predicted uncer-
tainties. We compute the
average ℓ1 error and epis-
temic uncertainties for 11 un-
seen distortions and 5 lev-
els of intensities for Reshade.
Each point is an average over
64 images. Our method is
able to return high uncer-
tainty when predictions are
poor.

Performance on undistorted data

In order to demonstrate that the robustness of our method on out-of-distribution data
did not come at the cost of degraded performance on in-distribution data, we provide
quantitative evaluations on the undistorted Taskonomy and Replica datasets in appendix.
The results show the performance of our method, when tested on undistorted data, is
indeed comparable to or better than the methods that are trained to perform well only
on undistorted data.

1.4.3 Evaluation on Classification Tasks

The benefits of the proposed method is not limited to regression or dense pixel-wise
tasks. We performed an experiment on ImageNet-C to evaluate the robustness against
Common Corruptions (Table 1.2). Our method and deep ensembles both use 8 paths
with identical ResNet-50 [100] network architecture. In addition, in this experiment our
method does a simple averaging of the output probabilities from each path, similar to
deep ensembles, and no ST or X-TC training was involved. The superior results show the

22

1.5 Conclusion and Discussion

Table 1.2: Robustness on ImageNet-
C. Error on clean and distorted data (mean
Corruption Error, mCE). Following [2], the
mCE is relative to AlexNet [101]. All meth-
ods are trained on clean ImageNet training
data. Our method performs noticeably bet-
ter under distortions compared to deep en-
sembles and a single model baseline ResNet.
See the appendix for a detailed breakdown
and additional results on CIFAR.

Method Clean error mCE
Baseline ResNet-50 24.37 76.21

Deep ensembles 21.50 70.43
Ours 21.61 67.85

basic value in using a diverse set of middle domains. Similar conclusions were obtained
for CIFAR-10-C and CIFAR-100-C datasets (full results in the appendix).

1.5 Conclusion and Discussion

We presented a general framework for making robust predictions based on creating
a diverse ensemble of various middle domains. Experiments demonstrated that this
approach indeed leads to more robust predictions compared to several baselines.

We also showed that our method is not sensitive to the choice of middle domains
(Sec. 1.4.1) or the corruptions used for ST (supplementary). Furthermore, even after
equipping deep ensembles with ST and consistency training (Sec. 1.4.1, supplementary),
our method still outperforms, confirming the effectiveness of using middle domains.

Below we briefly discuss some of the limitations:

Uncertainty under distribution shift: Our method relies on having reasonable uncertainty
estimates (i.e. sigma) in presence of distribution shifts. While we observed sigma
training to be helpful for this purpose, and also, uniform merging which does not rely
on uncertainty estimates to still outperform the baselines, our method will benefit from
better uncertainty estimation techniques.

Choice of middle domains: We adopted a fixed set of middle domains, and, as discussed
in Sec. 1.4.1, the final performance was not sensitive to the adopted dictionary. How-
ever, learning or computationally selecting such middle domains with the objective of
downstream robustness could be a worthwhile future direction.

Multi-modal distributions: We modeled our individual path outputs with single-modal
distributions for convenience and considered multi-modal distributions only at merging
step. Allowing for multi-modality in each path’s output may further help with ambiguous
data points.

23

Chapter 1. Ensembling diverse predictions

Computational cost: While the computational complexity of our method and deep
ensembles [20] are virtually the same, the methods based on ensembling generally
increase the computational complexity as they involve turning one estimator into
multiple. Investigating if the models in the ensemble can be compressed would be
worthwhile – especially for our method since the diversity in the ensemble is by structure
and owed to adopting different middle-domains, rather than stochasticities that often
assume independence among models.

This chapter is based on the paper: T. Yeo*, O. F. Kar*, A. Zamir, Robustness via
Cross-Domain Ensembles, ICCV 2021. I was the main contributor of this work.

24

2 Controlled Training Data Genera-
tion

2.1 Introduction

In this chapter, we present another robustness mechanism based on generating targeted
training data. Large datasets have been a driving force in the progress of deep learning.
It has also been shown that training on large and diverse datasets tends to improve
robustness [102, 103]. However, many datasets exhibit biases, e.g., they are collected
from certain geographic regions or with images that tend to be unoccluded and front
facing [14, 15, 16]. Neural networks trained on these datasets can return unreliable
predictions when tested on inputs with distribution shifts e.g., different geographic
locations or unusual viewpoints or occlusions. This chapter presents a method to control
generative models to mitigate the bias of training datasets.

An example of generative models is text-to-image models that generate an image con-
ditioned on a given text prompt. These models have displayed remarkable generation
and compositional capabilities [104, 105]. Several works have adopted these models to
generate training data [30, 31, 32]. However, most of these works make use of pre-defined
prompt templates. Thus, they are open-loop systems that generate data without any
feedback and to some extent require anticipating the kinds of shifts that will be seen at
test-time when defining the prompts.

Early works have attempted to control GANs or VAEs to generate targeted training
data [33, 34, 35]. These methods create a closed-loop system by making use of feedback
from the model that it aims to improve. Our work falls into this category, with the
difference that we employ diffusion models for generation. We aim to learn a suitable
prompt to generate images using feedback from the loss of a given pre-trained model. To
do so, we borrow the idea of textual inversion [106] that aims to learn a word embedding,
with placeholder string S∗, that represents a concept e.g., object, individual, style. While

25

Chapter 2. Controlled Training Data Generation

textual inversion learns S∗ from a set of images with that concept, our work aims to
find S∗ that results in generations that maximize the loss of a given pre-trained model f .
See the left of Fig. 2.1 for how our method works and the right for some examples of S∗

found by our method.

Figure 2.1: Controlling generative models to generate targeted training data.
Left: An overview of how we generate training data. g is a generative model e.g.,
ControlNet [105] that takes in text prompts and additional conditioning (e.g. depth,
segmentation, edge maps), to generate an RGB image. The additional conditioning in
this example is depth maps. f is a pre-trained model, in this case, trained to perform
depth estimation. We maximize the loss of f on the generated data with respect to a
word embedding that has the corresponding string S∗. This results in S∗ representing a
style that is distinctly different from the original training data (see examples on the right).
As g takes as input both the text prompt and depth map (as additional conditioning)
and as this conditioning is the same as the target task, as long as the generations remain
faithful to the condition, this results in paired data (RGB image and its corresponding
label) that we can use to finetune f . See Sec. 2.3.2 for more details. Right: We show
the results from optimizing for several S∗. Each S∗ represents a distinct concept, and
results in generations different from the original training data, shown in the first column.
These S∗s can be applied to any image in the training data, even those that it was not
optimized on. S∗

1 seems to represent a festive style, S∗
2 , snow, S∗

3 transforms the scene
into a wooden cabin, and so on. See Sec. 2.4 for more results.

2.2 Related Work

This work focuses on improving model robustness by training on generated data. We
give an overview of the relevant topics.

Closed-loop data generation guides the generation process via the loss of a given
neural network. [33, 35] control the latent space of GANs or VAEs to generate data that
maximizes the loss of the network on the generated data. Similarly, [3] controls a NeRF
to generate unusual viewpoints. [107] uses an SVM to first identify the failure modes
of a given model, then uses this information to generate training data with a diffusion

26

2.3 Method

model. Our method also employs a diffusion model but controls the generation in the
prompt space.

Open-loop data generation uses pre-defined perturbations or prompts to generate
data. Recent works that adopted diffusion models to generate training data use pre-
defined prompt templates [32, 31, 30] or use a language model to generative variations of
a given prompt [31]. These methods, to some extent, require anticipating the kind of
data that will be seen at test-time when defining the prompts. In contrast, our method
learns the prompt to generate data. Thus, it does not anticipate the data that will be
seen at test-time, and the data generation and training can be done end-to-end.

Data augmentation. Data augmentation techniques apply transformations to a given
RGB image to increase the diversity of training datasets to improve generalization
performance. Traditional augmentations apply transformations such as color jitter,
random crop, flipping, and so on to the given image. RandAugment [38], AugMix [36]
are ways of combining these augmentations. Mixup [40] and CutMix [39] are proposed
augmentations that transform a given image using another image in the dataset. Our
method results in images that are more diverse than standard augmentations and more
realistic than mixing multiple images. We can also have closed-loop augmentations, i.e.,
transformations that are guided by the loss of a network. AutoAugment [37] learns the
optimal mix of augmentations while adversarial training [11] learns the perturbations to
be added to the input.

Controlling diffusion models. Methods like ControlNet [105] and T2I-Adapter [108]
adapt a pre-trained diffusion model to allow for additional conditioning e.g., edge,
segmentation, and depth maps. We employ these models for generation as it allows us
to generate paired data for different tasks, given the labels from an existing dataset.
Editing methods aim to modify a given image, either via the prompt [109], masks [110],
instructions [111] or inversion of the latent space [112, 113]. In contrast, personalization
methods aim to adapt models to a given concept e.g., an object, individual, or style.
Popular examples include textual inversion [106] and DreamBooth [114], which aim to
find a token to represent a concept given several images of that concept. The former
freezes the diffusion model, while the latter finetunes it. Extensions of these works learn
to represent multiple concepts [115, 116]. While our goal is not personalized generation,
we borrow the idea of optimizing for a token to represent a concept.

2.3 Method

Notations. Let X be the input image domain, and Y the target domain. x and
y are samples from these domains. We use f : X → Y to denote the pre-trained
model. L(f(x), y) is the training loss and D the training dataset for f . Let g denote
the generative model that takes in text prompt p and optionally, conditioning z, i.e.,
g : P × Z → X .

27

Chapter 2. Controlled Training Data Generation

2.3.1 Preliminaries on diffusion models and textual inversion

Diffusion models [117] learn the data distribution by iteratively denoising a normally
distributed variable. These models either operate on the image [118, 119, 120] or to
reduce computation cost, the latent space [104]. Diffusion models can also perform
generation conditioned on inputs such as text prompts, p, i.e., text-to-image (T2I)
generation. One example of a T2I latent diffusion model is Stable Diffusion [104]. It
consists of an autoencoder that is used to map images into a latent code (z = E(x)), and
back to the original image (x̃ = D(z)) and a diffusion model that is trained to perform
denoising in the latent space. The diffusion model is trained with the following loss:
LLDM := EE(x),ϵ∼N (0,1),t

[
||ϵ − ϵθ(zt, t, p)||22

]
, where zt is the latent noised to time t, ϵ is

the unscaled noised sample, ϵθ is the denoising network.

ControlNet [105] adds additional layers to the Stable Diffusion model to allow for
additional conditioning, in addition to text prompts. This conditioning can be depth,
edge, segmentation maps, etc. We employ ControlNet for generation as it allows us to
condition on the labels of existing datasets e.g., depth or segmentation maps, to generate
RGB images. This results in paired data i.e., RGB images with their corresponding
labels, that can be used for training. See Sec. 2.3.2 for further discussion.

Textual inversion [106] aims to learn a concept e.g. style, object, represented by a
placeholder word S∗, given a set of images. Each word (or sub-word) in the prompt
is converted to a token, after which, an embedding vector, v. More concretely, textual
inversion aims to learn an embedding vector, v∗, by optimizing LLDM while keeping ϵθ

fixed. It learns an embedding v∗ to reconstruct the given set of images. The optimization
objective is given by, v∗ = arg minv EE(x),ϵ∼N (0,1),t

[
||ϵ − ϵθ(zt, t, p)||22

]
.

2.3.2 Optimizing for a S∗ that maximizes loss

Our goal is to generate training data that reflects the failure modes of a given pre-trained
model, f . To do this, we optimize for inputs that maximize the loss of f . There are several
ways of attaining these inputs. We can e.g., optimize for an imperceptible perturbation,
constrained by an ℓp norm, to be added to the input image [9], select pre-defined groups
in the training data [51] or optimize the latent space of generative models [33, 35].
To generate data, we adopt T2I diffusion models [104, 105] as they exhibit powerful
generative capabilities. We then perform this optimization in the space of text prompts
as it can potentially result in more interpretable and realistic generations.

Similar to textual inversion [106], we aim to learn a v∗ that represents a concept. However,
instead of the objective of reconstructing a set of images, we aim to fool a given pre-
trained model, f . As described above, ControlNet is able to take domains such as depth
as conditioning, thus, we can generate data conditioned on the depth labels from the
original training dataset D. More concretely, we use the label y, as conditioning while
optimizing for v∗ to generate an RGB image x. The optimization objective is given by,

28

2.4 Experiments

v∗ = arg maxv Ex∼g(y,p(v))L(f(x), y). g in this case is ControlNet and encapsulates the
autoencoder, D ⊙ E , text encoder, and conditional denoising diffusion model, ϵθ.

Performing the above optimization gives us a v∗, which corresponds to a placeholder
word S∗, which we can then use to generate data with a prompt like “S∗” and condition
y. Furthermore, we observe the following: 1. the resulting generations tend to follow the
conditioning well (see Sec. 2.3.3 for more details), 2. S∗ can be applied on any image in
the dataset, even those that were not optimized over. Thus, generating data with S∗

and labels y allows us to attain paired data i.e., (g(y, p), y) for dense tasks e.g., depth,
semantic segmentation. These generated data are also distinct from the training data and
result in a much higher loss of f (see Fig. 2.3). Thus, they represent the failure modes of
f and we finetune f on this generated data to improve its robustness (see Sec. 2.4.2 for
results).

2.3.3 Constraining the optimization of S∗

The above formulation results in the generation of diverse data that is distinctly different
from the original training data (see Fig. 2.1, left, Fig. 2.3, 5th column). While most
generations are faithful to the conditioning, it is possible that the optimization returns
a degenerate solution i.e., a blank image as that would successfully maximize the loss.
Thus, we also consider several modifications to the above formulation.

Image to image generation [121]. Instead of generating data from randomly sampled
noise, this technique encodes a given image into a latent representation. Denoising is
then done on this latent representation and results in generations that are visually closer
to the given image. While this technique results in generations that maximize the loss
of f and is less likely to return a collapsed generation, it comes at the expense of lower
diversity in the generations (see Fig. 2.2). Thus, the following experiments did not adopt
this technique. Balancing the diversity of the generations with its faithfulness is left to
future work.

Optimizing for tokens [122]. Instead of optimizing for an embedding v∗, we can
optimize for tokens from the existing vocabulary, similar to [122]. This constrains the
possible generations to make use of the limited number of existing tokens, and can
potentially result in generations that are more interpretable. However, optimizing for up
to 128 tokens at the same time did not seem to result in a significant decrease in the
loss.

2.4 Experiments

In this section, we will demonstrate that our proposed method is able to generate training
data that can be used to improve the robustness of a pre-trained model.

29

Chapter 2. Controlled Training Data Generation

Figure 2.2: Optimizing for S∗

with image to image gener-
ations. We show the results
form optimizing for several S∗

with image to image (img2img)
generation. The generations are
now more similar to the origi-
nal image, shown in the first
column, thus, less diverse than
without img2img (see Fig. 2.1).

2.4.1 Experimental setup

We consider the depth prediction task, with the model f trained on the Taskonomy
dataset [88, 72]. As mentioned in Sec. 2.3.2, we optimize for n embeddings, {v∗

i }n
i=1. For

a datapoint, (x, y), in the Taskonomy dataset, we randomly sample an embedding vector,
v∗

i , with the corresponding placeholder word S∗
i , and generate an RGB image with the

prompt “S∗
i ” and the conditioning y. We then finetune f on the generated data, for a

range of dataset sizes, 15k, 30k, and 60k datapoints.

Baselines. We evaluate the following baselines. They all involve fine-tune the same
model f but on different datasets:
Control: This fine-tunes f on the original training data. This baseline is to ensure
that the difference in performance is due to the generated data, rather than e.g., longer
training or a change in optimization hyperparameters.
Prompt “room” : As the Taskonomy dataset consists of indoor images from mostly
residential buildings, we generate data with the prompt “room”.
Prompt “” : Here we do not constrain the generations to look like rooms. Thus, we can
potentially get generations that although still resemble indoor scenes but are not living
spaces e.g., an indoor pool, cafe, etc.
Sampled from N (µemb, σemb): In our proposed method, we optimize for n embedding
vectors. Here, we fit a distribution to the embeddings in the vocabulary and sample
n embeddings to be used in the data generation. Thus, this baseline controls for the
number of embedding vectors used in the data generation and can potentially result in
more diverse data.

For all generations, we use ControlNet version 1.0 with depth conditioning [105]. The
text prompt always includes “photorealistic, highly detailed”. The proposed method and

30

2.4 Experiments

baselines are fine-tuned on the same datapoints i.e., all generations use the same set
of labels, for conditioning and the control baseline uses the same datapoints from the
original dataset.

Figure 2.3: A comparison of generations with different prompts. Left: A
comparison of the generated data for the baselines and our proposed method. Although
the baselines (columns 2-4) result in generations that are different from the original data
(first column), they tend to be similar to each other. Optimizing for word embeddings
results in styles that are clearly distinct from the original data. Furthermore, as we
optimized for several different word embeddings, we were able to generate different styles
for each image, as seen in the different rows. Note that sampling different embeddings
(second last column) does not result in generations that are as diverse. Right: The ℓ1
error of f on the different generated data. Evaluating on data generated from optimized
word embedding results in the highest loss.

2.4.2 Fine-tuning on generated data

Comparing the generated images with different prompts. Figure 2.3 shows the
results of the generations for the baseline and proposed method. The generations from
the baselines (columns 2-4), although they result in styles different from that of the
original training data, tend to have similar styles, while those from our proposed method
(last column) exhibit more distinct and diverse styles. Furthermore, the generations seem
to keep the geometry of the scene. Thus, it allows us to use the generated RGB images
and depth conditioning as training data. The loss of f on the generated data is shown
on the right of Fig. 2.3. The generated data for the baselines results in a higher loss
compared to that on the original training data and optimizing for prompts results in the
highest loss.

Performance on OOD data. We evaluate our method and the baselines i.e., after
finetuning on their respective generated datasets, qualitatively on random query images
(Fig. 2.4, left) and quantitively on the Taskonomy dataset under Common Corruptions
and Replica dataset (Fig. 2.4, right). Our proposed method, shown in the last row,
returns more accurate predictions in general and even on outdoor scenes. Furthermore,
under common corruptions and cross-dataset shifts, when fine-tuned on dataset sizes 30k

31

Chapter 2. Controlled Training Data Generation

Figure 2.4: Results under distribution shifts. Left: Qualitative results of the models
fine-tuned on the different generated data. The input images are query images from the
internet and the following rows show the predictions from the different fine-tuned models.
Our proposed method, shown in the last row, results in more robust predictions, even
on outdoor scenes. Right: ℓ1 error relative to the control baseline (multiplied by 100
for readability), lower is better. The different models fine-tuned on different datasets
and on different dataset sizes, are evaluated on Taskonomy under Common Corruptions
(averaged over all corruptions and severity levels) and the Replica dataset. In both
cases, finetuning on generated data from optimized prompts tends to result in better
performance.

or larger, our method shows clear improvements.

2.5 Discussion on target domain informed vs uninformed
generation

The proposed framework generates data that is uninformed about the target domain i.e.,
the training objective is to generate data that maximizes the loss of f and does not make
use of any knowledge of the target domain e.g., unlabelled data, domain description.
How well would this framework do if we are interested in a certain target domain?

We experimented with the iWildCam dataset [123] from the WILDS benchmark [18].
The dataset consists of camera trap images and the task is multi-species classification. As
the images are taken in the wild, the animals can be highly occluded and have unusual
poses or perspectives. Thus, as it may be challenging to generate animals with unusual
poses, we generate data using an in-painting diffusion model1 [104] to keep the region of
the image with the animal. Thus, we also make use of the bounding boxes of the animals
from [124] for the generation. We run the optimization process described in 2.3.2 to get
several S∗. The generations from these S∗ are shown in Fig. 2.5. We use the ERM model

1https://huggingface.co/runwayml/stable-diffusion-inpainting

32

2.6 Conclusion

from [18] as the pre-trained model, f .

The generations are able to fool the model, however, they are not relevant to the target
domain as the target domain consists of animals in the wild. The distribution shift in the
target domain is due to different camera traps i.e., there can be shifts due to different
illuminations, camera parameters, background, and so on. Thus, while it is possible to
constrain our generation, e.g., by restricting the search space of the optimization to only
natural domains, alternative approaches may be easier. For example, [125] generates
descriptions of a dataset’s domains and uses these descriptions to edit the training images.
Thus, as these images are edited with text prompts to e.g., change the background from
a grassy field to a body of water, they are more likely to look like images taken in the
wild.

Figure 2.5: Optimizing for S∗

on the iWildCam dataset. We
show the results from optimizing
for several S∗ on the iWildCam
dataset for multi-species classifi-
cation. These generations, while
they are able to fool the pre-trained
model, are not relevant to the tar-
get domain.

2.6 Conclusion

We presented a way of controlling diffusion models to generate targeted training data.
This results in generations that are diverse and distinctly different from the original
training data (see Fig. 2.1, 2.3). Fine-tuning on this data results in improved robustness
compared to the baselines.

Below we briefly discuss some of the limitations:

Computational cost: Performing the optimization described in Sec. 2.3.2 is expensive,
compared to e.g., generating adversarial attacks by optimizing for additive perturbations.
The optimization of each S∗ takes about an hour on 3 V100s. This is partly due to the
nature of diffusion models i.e., they require several denoising iterations to generate an
image. Learning to predict an S∗ given the state of the model f is an interesting future
direction.

33

Chapter 2. Controlled Training Data Generation

Fixed conditioning: In this work we assume access to labels, that can be used as
conditioning inputs to ControlNet to generate new RGB images. However, there can
also be shifts in the labels when e.g., going from indoor to outdoor scenes or changes in
viewpoint or field of view. Learning a generative model to predict the labels/conditioning
from e.g. noise or meta-data like camera parameters or proportion of each class in a
scene [126] would allow us to control both the label and RGB input domain.

Curated demonstrations: This framework can potentially address other types of dis-
tribution shifts, e.g., datasets with spurious correlations, and reveal the biases of
different models and training data. Attaining such demonstrations is a worthwhile
future direction.

This chapter is based on a soon-to-be-published work: T. Yeo, A. Atanov, A. Alekseev,
H. Benoit, R. Ray, P. Esmaeil, A. Zamir, Controlled Training Data Generation with
Diffusion Models for Robustness. I was the main contributor of this work.

34

Part IIAdaptation Mechanisms

35

3 Fast adaptation using test-time
feedback

3.1 Introduction

The previous chapters presented training-time mechanisms. These mechanisms attempt
to anticipate the distribution shifts that can occur at test-time. As distribution shifts
that occur in the real world are numerous and unpredictable and the models are frozen
at test-time, training-time mechanisms have inherent limitations. This is the main
motivation behind test-time adaptation methods, which instead aim to adapt to such
shifts as they occur. In other words, these methods choose adaptation over anticipation.
In this chapter, we propose a test-time adaptation framework that aims to perform
efficient adaptation of a main network using a feedback signal.

One can consider performing test-time training for this purpose, similar to previous
works [53, 127, 128]. While this can successfully adapt a network, it is unnecessarily
inefficient as it does not make use of the learnable regularities in the adaptation process,
and consequently, is unconducive for real-world applications. It also results in a rigid
framework as the update mechanism is fixed to be the same as the training process
of neural networks (SGD). We show this process can be effectively amortized using a
learning-based feed-forward controller network, which yields orders of magnitude faster
results (See Fig. 3.1, Sec. 3.4.3). In addition, it provides flexibility advantages as the
controller is implemented using a neural network and can be engineered to include
arbitrary inductive biases and desired features.

3.2 Related Work

Our work focuses on how to adapt a neural network in an efficient way at test-time on a
range tasks and adaptation signals. We give an overview of relevant topics.

37

Chapter 3. Fast adaptation using test-time feedback

Non-adaptive

Adaptive
Predictions

Adaptation signal

PredictionsDistorted Input

Distorted Input

Error Feedback

Figure 3.1: Adaptive vs non-adaptive neural network pipelines. Top: In order to
be robust, non-adaptive methods include training-time interventions that anticipate and
counter the distribution shifts that will occur at test-time (e.g., via data augmentation).
The learned model, fθ, is frozen at test-time, thus upon encountering an out-of-distribution
input, its predictions may collapse. Bottom: Adaptive methods create a closed loop and
use an adaptation signal at test-time. The adaptation signal is a quantity that can be
computed at test-time from the environment. hϕ acts as a “controller" by taking in an
error feedback, computed from the adaptation signal and model predictions, to adapt
fθ accordingly. It can be implemented as a (i) standard optimizer (e.g., using SGD) or
(ii) neural network. The former is equivalent to test-time optimization (TTO), while
the latter aims to amortize the optimization process, by training a controller network
to adapt fθ – thus, it can be more efficient and powerful. In this chapter, we study the
latter approach and show its efficiency and flexibility.

Robustness methods anticipate the distribution shift that can occur and incorporate
inductive biases into the model to help it generalize. Popular methods include data
augmentation [11, 40, 129, 36, 39, 42, 7, 4], self-/pre-training [130, 131, 132, 133, 134,
135, 136], architectural changes [137, 138, 139, 140, 141] or ensembling [20, 85, 142, 26,
143, 144]. We focus on adaptation mechanisms and identifying practical adaptation
signals that can be used at test-time.

Conditioning methods use auxiliary inputs to adapt a model. Some examples include
using HyperNetworks [145, 146] or cross-attention [104, 147]. A popular method that has
been adopted in different problem settings, e.g., style transfer [148, 149, 150], few-shot
learning [151, 152, 153, 154, 155], is performing feature-wise modulation [156, 157]. It

38

3.2 Related Work

involves training a model to use the auxiliary information to predict affine transformation
parameters that will be applied to the features of the target model. Our formulation can
be viewed to be a particular form of conditioning, and we show it results in a framework
that is expressive, efficient, and generalizable.

Amortized optimization methods make use of learning to improve (e.g., speed-up)
the solution of optimization problems, particularly for settings that require repeatedly
solving similar instances of the same underlying problem [158, 159, 160, 161, 162, 163,
164, 165, 166]. Fully amortized optimization methods model the shared structure between
past instances of solved problems to regress the solution to a new problem [145, 167, 168].
As adapting to distribution shifts can be cast as solving an optimization problem at
test-time, our method can be interpreted as an amortized solution.

Test-time adaptation methods for geometric tasks. Many existing frameworks,
especially in geometric tasks such as aligning a 3D object model with an image of it, in
effect instantiate a task-specific case of closed-loop optimization for each image [164, 161,
169]. Common sources of their adaptation quantity include sensor data [170, 171, 172,
173, 174, 175], structure from motion (SFM) [176, 177], motion [178], and photometric
and multi-view consistency constraints (MVC) [179, 180]. Many of the latter methods
often focus on depth prediction and they introduce losses that are task-specific, e.g., [176]
optimize a photometric consistency loss. We differ by aiming to investigate a more general
framework for test-time adaptation that can be applied to several tasks. For MVC,
while we adopt the same losses as [179], we show under collapsed predictions, optimizing
only MVC constraints is not sufficient for recovering predictions; depth predictions
need to be adapted and this can be done efficiently using our proposed framework (see
Sec. 3.4.3).

Test-time adaptation methods for semantic tasks. Most of these works involve
optimizing a self-supervised objective at test-time [181, 53, 182, 128, 183, 127, 184, 54, 185].
They differ in the choice of self-supervised objectives, e.g., prediction entropy [53],
mutual information [54], and parameters optimized [184]. However, as we will discuss
in Sec. 3.3.2, and as shown by [184, 128, 186], existing methods can fail silently, i.e.
successful optimization of the adaptation signal loss does not necessarily result in better
performance on the target task. We aim to have a more general method and also show
that using proper adaptation signals results in improved performance.

Weak supervision for semantic tasks uses imperfect, e.g., sparse and noisy supervi-
sion, for learning. In the case of semantic segmentation, examples include scribbles [187]
and sparse annotations [188, 189, 190, 191, 192]. For classification, coarse labels are
employed in different works [193, 194]. We aim to have a more general method and
adopt these as test-time adaptation signals. Further, we show that self-supervised vision
backbones, e.g., DINO [195], can also be used to generate such signals and are useful for
adaptation (See Sec. 3.3.2).

39

Chapter 3. Fast adaptation using test-time feedback

Multi-modal frameworks are models that can use the information from multiple
sources, e.g., RGB image, text, audio, etc., [196, 197, 198, 199, 200, 201, 133, 202,
203, 204]. Schematically, our method has similarities to multi-modal learning (as many
amortized optimization methods do) since it simultaneously uses an input RGB image
and an adaptation signal. The main distinction is that our method implements a
particular process toward adapting a network to a shift using an adaptation signal from
the environment – as opposed to a generic multi-modal learning.

3.3 Method

In Fig. 3.1, we schematically compared methods that incorporate robustness mechanisms
at training-time (thus anticipating the distribution shift) with those that adapt to shifts
at test-time. Our focus is on the latter. In this section, we first discuss the benefits and
downsides of common adaptation methods (Sec. A.1.3). We then propose an adaptation
method that is fast and can be applied to several tasks (Sec. 3.3.1). To adapt, one also
needs to be able to compute an adaptation signal, or proxy, at the test-time. In the
second part of the section, we implement a number of practical adaptation signals for a
number of tasks (Sec. 3.3.2).

3.3.1 How to adapt at test-time?

An adaptive system is one that can respond to changes in its environment. More
concretely, it is a system that can acquire information to characterize such changes, e.g.,
via an adaptation signal that provides an error feedback, and make modifications that
would result in a reduction of this error (see Fig. 3.1). The methods for performing the
adaptation of the system range from gradient-based updates, e.g., just using SGD to
fine-tune the parameters [181, 53, 128], – to the more efficient semi-amortized [153, 205]
and amortized approaches [206, 151, 152] (see Fig. 6 of [152] for an overview). As
amortization methods train a controller network to substitute the explicit optimization
process, they only require a forward pass at test-time. Thus, they are computationally
efficient. Gradient-based approaches, e.g., TTO, can be powerful adaptation methods
when the test-time signal is robust and well-suited for the task (see Fig. 3.4). However,
they are inefficient and also have the risk of overfitting and the need for carefully tuned
optimization hyperparameters [184]. In this work, we focus on an amortization-based
approach, RNA.

Notation. We use X to denote the input image domain, and Y to denote the target
domain for a given task. We use fθ : X → Y to denote the model to be adapted, where θ

denotes the model parameters. We denote the model before and after adaptation as fθ

and fθ̂ respectively, where the latter is used to get the final predictions after adaptation.
L and D are the original training loss and training dataset of fθ, e.g., for classification, L
will be the cross-entropy loss and D the ImageNet training data. As shown in Fig. 3.1, hϕ

is a controller for fθ. It can be an optimization algorithm, e.g., SGD, or a neural network.

40

3.3 Method

Fi
LM

Su
b-
ne

tw
or
k

Fi
LM

Su
b-
ne

tw
or
k

Figure 3.2: Architecture of RNA. x is
the input image, fθ is the model to be
adapted and fθ(x) the corresponding predic-
tion. To perform adaptation, we freeze the
parameters of fθ and insert several FiLM
layers into fθ. We then train hϕ to take in
z, the adaptation signal, and fθ(x) to pre-
dict the parameters of these FiLM layers.
This results in an adapted model fθ̂ and the
improved predictions, fθ̂(x).

ϕ denotes the optimization hyperparameters or the network’s parameters. The former
case corresponds to TTO, and the latter is the proposed RNA, which will be explained
in the next subsection. Finally, the function g : X M → Z returns the adaptation signal
by mapping a set of images B = {I1, ..., IM } ∈ X M to a vector g(B) = z ∈ Z. This
function g is given, e.g., for depth, g returns the sparse depth measurements computed
via SFM.

Rapid Network Adaptation (RNA)

For adaptation, we choose to use a neural network for hϕ. The adaptation signal and
model predictions are passed as inputs to hϕ and it is trained to regress the parameters
θ̂(ϕ) = hϕ(fθ(B), z). This corresponds to an objective-based amortization of the TTO
process [166]. Using both the adaptation signal z and model prediction fθ(B) informs the
controller network about the potential errors of the model. The training objective for hϕ

is minϕ ED [L(fθ̂(ϕ)(B), y)], where (B, y) ∼ D is a training batch sampled from D. Note
that the original weights of f are frozen and hϕ is a small network, having only 5-20% of
the number of parameters of f , depending on the task. We call this method as rapid
network adaptation (RNA) and experiment with different variants of it in Sec. 3.4.

There exist many options for implementing the amortization process, e.g., hϕ can be
trained to update the input image or the weights of fθ. We choose to modulate the
features of fθ as it has been shown to work well in different domains [156] and gave the
best results. To do this, we insert k Feature-wise Linear Modulation (FiLM) layers [157]
into fθ. Each FiLM layer performs: FiLM(xi; γi, βi) = γi ⊙ xi + βi, where xi is the
activation of layer i. hϕ is a network that takes as input the adaptation signal z and
model predictions and outputs the coefficients {γi, βi} of all k FiLM layers. hϕ is trained
on the same dataset D as fθ, therefore, unlike TTO, it is never exposed to distribution
shifts during training. Moreover, it is able to generalize to unseen shifts (see Sec. 3.4.3).
See the supplementary for the full details as well as the other RNA implementations we
investigated.

41

Chapter 3. Fast adaptation using test-time feedback

3.3.2 Which test-time adaptation signals to use?

Independent of the RNA method and while developing adaptation signals is not the
main focus of this study, we need to choose some for experimentation. Existing test-time
adaptation signals, or proxies, in the literature include prediction entropy [53], spatial au-
toencoding [128] and self-supervised tasks like rotation prediction [181], contrastive [182]
or clustering [184] objectives. The more aligned the adaptation signal is to target task,
the better the performance on the target task [181, 182]. More importantly, a poor
signal can cause the adaptation to fail silently [184, 128]. Figure 3.3 shows how the
original loss on the target task changes as different proxy losses from the literature, i.e.
entropy [53], consistency between different middle domains [142, 72] are minimized. In
all cases, the proxy loss decreases, however, the improvement in the target loss varies.
Thus, successful optimization of existing proxy losses does not necessarily lead to better
performance on the target task. In this chapter, we focus on adopting a few practical
and real-world signals for our study. Furthermore, RNA turns out to be less susceptible
to a poor adaptation signal vs TTO (see sup. mat. Tab. 1). This is because RNA is a
neural network trained to use these signals to improve the target task, as opposed to
being fixed at being SGD as TTO is.

Employed test-time adaptation signals

We develop test-time adaptation signals for several geometric and semantic tasks as
shown in Fig. 3.4. Our focus is not on providing an extensive list of adaptation signals,
but rather on using practical ones for experimenting with RNA as well as demonstrating
the benefits of using signals that are rooted in the known structure of the world and
the task in hand. For example, geometric computer vision tasks naturally follow the
multi-view geometry constraints, thus making that a proper candidate for approximating
the test-time error, and consequently, an informative adaptation signal.

Geometric Tasks. The field of multi-view geometry and its theorems, rooted in the 3D
structure of the world, provide a rich source of adaptation signals. We demonstrate our
results on the following target tasks: monocular depth estimation, optical-flow estimation,
and 3D reconstruction. For all, we first run a standard structure-from-motion (SFM)
pipeline [207]. Then, for depth estimation, we employ the z-coordinates of resulting
sparse 3D keypoints from each image as the adaptation signal. For optical flow, we
perform keypoint matching across images (which returns sparse optical flow). Lastly,
for 3D reconstruction, in addition to the previous two signals, we employ consistency
between depth and optical flow predictions as another signal.

Semantic Tasks. For semantic segmentation, we first experiment with using a low
number of click annotations for each class, similar to the works on active annotation
tools [192, 190, 189]. Likewise, for classification, we use the hierarchical structure of
semantic classes, and use coarse labels generated from the WordNet tree [208], similar
to [209]. Although these signals (click annotations and coarse labels) are significantly

42

3.4 Experiments

Minimize Sparse Depth (SFM) Error

En
tr

op
y

Sp
ar

se
 D

ep
th

 E
rr

or

Minimize Entropy Minimize Self-Supervised Task Error

Se
lf-

Su
pe

rv
is

ed
 T

as
k

Er
ro

r

 e
rro

r
ℓ 1

Number of Iterations Number of Iterations Number of Iterations

Figure 3.3: Adaptation using different signals. Not all improvements in proxy
loss translates into improving the target task’s performance. We show the
results of adapting a pre-trained depth estimation model to a defocus blur corruption
by optimizing different adaptation signals: prediction entropy [53], a self-supervised
task (sobel edge prediction error [142]), and sparse depth obtained from SFM. The
plots show how the ℓ1 target error with respect to ground-truth depth (green, left axis)
changes as the proxy losses (blue, right axis) are optimized (shaded regions represent
the 95% confidence intervals across multiple runs of stochastic gradient descent (SGD)
with different learning rates). Only adaptation with the sparse depth (SFM) proxy leads
to a reduction of the target error. This signifies the importance of employing proper
signals in an adaptation framework. Furthermore, we show that RNA is less susceptible
to poorer adaptation signal, which results in comparable or improved performance while
being significantly faster (see sup. mat. Table 1).

weaker versions of the actual ground truth, thus being cheaper to obtain, it may not be
realistic to assume access to them at test-time for certain applications, e.g., real-time ones.
Thus, we also show how these can be obtained via k-NN retrieval from the training dataset
and patch matching using spatial features obtained from a pre-trained self-supervised
vision backbone [195] (see Fig. 3.4).

3.4 Experiments

We demonstrate that our approach consistently outperforms the baselines for adaptation
to different distribution shifts (2D and 3D Common Corruptions [2, 4], cross-datasets),
over different tasks (monocular depth, image classification, semantic segmentation,
optical flow) and datasets (Taskonomy [88], Replica [87], ImageNet [210], COCO [211],
ScanNet [212], Hypersim [213]).

3.4.1 Experimental Setup

We describe our experimental setup, i.e. the different adaptation signals, adaptation
mechanisms, datasets and baselines, for different tasks. Please see Tab. 3.1 for a
summary.

Baselines. We evaluate the following baselines:

Pre-Adaptation Baseline: The network f that maps from RGB to the target task, e.g.,

43

Chapter 3. Fast adaptation using test-time feedback

Sparse Depth & Flow via SFM

Depth and Optical Flow

Coarse Labelling via -NN Retrievalk

Image Classification

1 1 10 0

Semantic Segmentation

Sparse Annotations via Patch Matching

Test Image

Coarse Labels

Training data

-NN Imagesk

Test Image
-NN Imagesk

Figure 3.4: Examples of employed test-time adaptation signals. We use a range
of adaptation signals in our experiments. These are practical to obtain and yield better
performance compared to other proxies. In the left plot, for depth and optical flow
estimation, we use sparse depth and optical flow via SFM. In the middle, for classification,
for each test image, we perform k-NN retrieval to get k training images. Each of these
retrieved image has a one hot label associated with it, thus, combining them gives us a
coarse label that we use as our adaptation signal. Finally, for semantic segmentation,
after performing k-NN as we did for classification, we get a pseudo-labelled segmentation
mask for each of these images. The features for each patch in the test image and the
retrieved images are matched. The top matches are used as sparse supervision. See
Sec. 3.4.1 for more details.

Task Adaptation signal Adapted model Training data OOD evaluation data Baselines

Depth SFM, masked GT UNet [94], DPT [214] Taskonomy SFM : Replica, Replica-CC, ScanNet,
masked GT : Taskonomy-CC,-3DCC, Hypersim

Pre-adaptation, densification,
TENT, TTO-edges, TTO

Optical flow Keypoint matching RAFT [215] FlyingChairs, FlyingThings [215] Replica-CC Pre-adaptation
3D reconstruction SFM, keypoint matching,consistency Depth, optical flow models Depth, optical flow data Replica-CC Pre-adaptation, TTO
Semantic
segmentation Click annotations, patch matching FCN [216] COCO

(20 classes from Pascal VOC)
Click annotations: COCO-CC,
Patch matching: ImageNet-C

Pre-adaptation,
densification, TENT, TTO

Classification Coarse labels
(WordNet, DINO k-NN) ResNet50 [100], ConvNext [141] ImageNet ImageNet-C, ImageNet-3DCC, ImageNet-V2 Pre-adaptation, DINO k-NN,

densification, TENT, TTO

Table 3.1: Overview of the experiments for different target tasks, adapta-
tion methods, and adaptation signals. For each task, we list the adaptation
signal (Sec. 3.3.2) that we use for adaptation. We also list the models that we adapt,
and the out-of-distribution (OOD) data used for evaluations and the relevant baselines.
When there are different options for adaptation signal, e.g., in the case of depth, the
signal is denoted in italics followed by the corresponding OOD dataset. The weights
for the semantic segmentation, classification and optical flow models were taken from
PyTorch [217].

depth estimation, with no test-time adaptation. We denote this as Baseline for brevity.
Densification: A network that maps from the given adaptation signal for the target
task to the target task, e.g., sparse depth from SFM to dense depth. This is a control
baseline and shows what can be learned from the test-time supervision alone, without
employing input image information or a designed adaptation architecture. See Sec. 3.4.3
for a variant which includes the image.
TTO (episodic): We adapt the Baseline model to each episode by optimizing the proxy
loss (see Tab. 3.1 for the adaptation signal used for each task.) at test-time. Its weights

44

3.4 Experiments

Figure 3.5: RNA can achieve similar performance as TTO in a much shorter
time. We compare how the ℓ1 errors of the adaptation mechanisms decrease over
wall-clock time (s). The errors are averaged over all episodes (and all corruptions for
Replica-CC). RNA only requires a forward pass at test-time, while TTO requires multiple
forward and backward passes. On ScanNet and Replica-CC, RNA takes 0.01s, while
TTO takes 3s to achieve similar performance. Furthermore, RNA is not trained with
test-time shifts unlike TTO, thus, it learned to use the additional supervision to adapt to
unseen shifts.

are reset to the Baseline model’s after optimizing each batch, similar to [53, 127].
TTO (online): We continually adapt to a distribution shift defined by a corruption and
severity. Test data is assumed to arrive in a stream, and each data point has the same
distribution shift, e.g., noise with a fixed standard deviation [53, 181]. The difference
with TTO (episodic) is that the model weights are not reset after each iteration. We
denote this as TTO for brevity.
TTO with Entropy supervision (TENT [53]): We adapt the Baseline model trained with
log-likelihood loss by optimizing the entropy of the predictions. This is to reveal the
effectiveness of entropy as a signal as proposed in [53].
TTO with Sobel Edges supervision (TTO-Edges): We adapt the Baseline model trained
with an additional decoder that predicts a self-supervised task, similar to [181]. We
choose to predict Sobel edges as it has been shown to be robust to certain shifts [142].
We optimize the error of the edges predicted by the model and edges extracted from the
RGB image to reveal the value of edge error as a supervision.

RNA configurations. At test-time, we first get the predictions of the Baseline model
and compute an adaptation signal. The predictions and adaptation signal are then passed
to hϕ which adapts fθ to fθ̂. The test images are then passed to fθ̂ to get the final
predictions. We evaluate following variants of RNA.

RNA (frozen f): Baseline model weights, fθ, are frozen when training hϕ. We call this
variant RNA for brevity.
RNA (jointly trained f): In contrast to frozen f variant, here we train RNA jointly with
the Baseline network. This variant requires longer training.

Adaptation signal. As described in Sec. 3.3.2, we compute a broad range of test-time
signals from the following processes. Each case describes a process applied on query
image(s) in order to extract a test-time quantity.

45

Chapter 3. Fast adaptation using test-time feedback

Structure-from-motion (SFM): Given a batch of query images, we use COLMAP [207]
to run SFM, which returns sparse depth. The percentage of valid pixels, i.e. depth
measurements, is about 0.16% on Replica-CC and 0.18% on Replica. For ScanNet we
use the pre-computed sparse depth from [218], which has about 0.04% valid pixels. As
running SFM on corrupted images results in noisy sparse depth, we train hϕ to be
invariant to noise [174, 218].
Masked ground truth (GT): We apply a random mask to the GT depth of the test image.
We fixed the valid pixels to 0.05% of all pixels, i.e. similar sparsity as SFM (see the
supplementary for other values). This a control proxy as it enables a better evaluation of
the adaptation methods without conflating with the shortcomings of adaptation signals.
It is also a scalable way of simulating sparse depth from real-world sensors, e.g., LiDAR,
as also done in [170, 219, 220].
Click annotations: We generate click annotations over random pixels for each class in a
given image using GT – simulating an active annotation pipeline. The number of pixels
ranges from 3 to 25, i.e. roughly 0.01% of the total pixels, similar to [188, 189, 190, 191,
192].
Patch matching: To not use GT click annotations, for each test image, we first retrieve
its k-NN images from the original clean training dataset using DINO features [195]. We
then get segmentation masks on these k images. If the training dataset has labels for
segmentation we use them directly, otherwise we obtain them from a pretrained network.
For each of the k training images and test image, we extract non-overlapping patches.
The features for each patch that lie inside the segmentation masks of the k training
images are matched to the features of every patch in the test image. These matches are
then filtered and used as sparse segmentation annotations. See Fig. 3.4 for illustration.
Coarse labels (WordNet): We generate 45 coarse labels from the 1000-way ImageNet
labels, i.e. making the labels 22x coarser, using the WordNet tree [208], similar to [194].
See supplementary for more details on the construction and results for other coarse label
sets.
Coarse labels (DINO k-NN): For each test image, we retrieve the k-NN images from the
training dataset using DINO features [195]. Each of these k training images is associated
with an ImageNet class, thus, combining k one-hot labels gives us a coarse label.
Keypoint matching: We perform keypoint matching across images to get sparse optical
flow.

3.4.2 Adaptation with RNA vs TTO

Here we summarize our observations from adapting with RNA vs TTO. As described
earlier, TTO represents the approach of closed-loop adaptation using the adaptation
signal but without benefiting from any amortization (the adaptation process is fixed
to be standard SGD). These observations hold across different tasks (see Sec. 3.4.3 for
results).

46

3.4 Experiments

Shot NoiseDefocus BlurJPEG Compr. Motion Blur

In
pu

t I
m

ag
e

G
ro

un
d

Tr
ut

h
B

as
el

in
e

TE
N

T
D

en
si

fic
at

io
n

TT
O

R
N

A

Motion Blur Shot Noise

COCO-CC ScanNet
Cross-Dataset ABR Compr. Near Focus

Taskonomy-3DCC
Glass Blur Pixelate

Replica-CC

Figure 3.6: Qualitative results of RNA vs the baselines for semantic segmentation
on random query images on COCO-CC (left) and depth on images from ScanNet,
Taskonomy-3DCC and Replica-CC (right). For semantic segmentation, we use 15 pixel
annotations per class. For Taskonomy-3DCC, we use sparse depth with 0.05% valid
pixels (30 pixels per image). See Fig. 3.7 for results on different adaptation signal
levels. For ScanNet and Replica-CC, the adaptation signal is sparse depth measurements
from SFM [207] with similar sparsity ratios to Taskonomy-3DCC. The predictions with
proposed adaptation signals are shown in the last two rows. They are noticeably more
accurate compared to the baselines. Comparing TTO and RNA, RNA’s predictions are
more accurate for segmentation, and sharper than TTO for depth (see the ellipses) while
being significantly faster. See supplementary for more results.

RNA is efficient. Being able to adapt efficiently at test-time is crucial for many
real-world problems. As RNA only requires a forward pass at test-time, it is orders of
magnitude faster than TTO and is able to attain comparable performance to TTO. In
Fig. 3.5, we compare the runtime of adaption with RNA and TTO for depth prediction.
On average, for a given episode, RNA obtains similar performance as TTO in 0.01s,
compared to TTO’s 3-5s. Similarly, for dense 3D reconstruction, RNA is able to adapt
in 0.008s compared to TTO’s 66s (see Fig. 3.9). This suggests a successful amortization
of the adaptation optimization by RNA.

Furthermore, RNA’s training is also efficient as it only requires training a small model,
i.e. 5-20% of the Baseline model’s parameters, depending on the task. Thus, RNA has a
fixed overhead, and small added cost at test-time.

RNA’s predictions are sharper than TTO for dense prediction tasks. From
the last two rows of Fig. 3.6, it can be seen that RNA retains fine-grained details. This
is a noteworthy point and can be attributed to the fact that RNA benefits from a neural
network, thus its inductive biases can be beneficial (and further engineered) for such
advantages. This is a general feature that RNA, and more broadly using a learning-
based function to amortize adaptation optimization, brings – in contrast to limiting the

47

Chapter 3. Fast adaptation using test-time feedback

Adaptation Signal SFM Sparse GT Relative
RuntimeDataset Replica ScanNet Taskonomy Hypersim

Shift CDS CC CDS None CC 3DCC CDS

Pre-adaptation Baseline 1.75 6.08 3.30 2.68 5.74 4.75 33.64 1.00
Densification 2.50 4.19 2.35 1.72 1.72 1.72 17.25 1.00
TENT [53] 2.03 6.09 4.03 5.51 5.51 4.48 35.45 15.85
TTO-Edges [181] 1.73 6.14 3.28 2.70 5.69 4.74 33.69 20.98
RNA (frozen f) 1.72 4.26 1.77 1.12 1.68 1.49 16.17 1.56
RNA (jointly trained f) 1.66 3.41 1.74 1.11 1.50 1.37 17.13 1.56

TTO (Episodic) 1.72 3.31 1.85 1.62 2.99 2.31 17.77 14.85
TTO (Online) 1.82 3.16 1.76 1.13 1.48 1.34 14.17 14.85

Table 3.2: Quantitative adaptation results on depth estimation. ℓ1 errors on
the depth prediction task. (Lower is better. Multiplied by 100 for readability. The
best models within 0.0003 error are shown in bold.) We generate distribution shifts
by applying Common Corruptions (CC), 3D Common Corruptions (3DCC) and from
performing cross-dataset evaluations (CDS). The results from CC and 3DCC are averaged
over all distortions and severity levels on Taskonomy and 3 severity levels on Replica
data. The adaptation signal from Taskonomy is masked GT (fixed at 0.05% valid pixels)
while that from Replica and ScanNet is sparse depth from SFM. RNA and TTO notably
outperform the baselines. RNA successfully matches the performance of TTO
while being around 10 times faster. See supplementary for the losses for different
corruption types, sparsity levels, and the results of applying RNA to other adaptation
signals.

adaptation process to be SGD, as represented by TTO.

RNA generalizes to unseen shifts. RNA performs better than TTO for low severities
(see supplementary for more details). However, as it was not exposed to any corruptions,
the performance gap against TTO narrows at high severities as expected, which is exposed
to corruptions at test-time.

We hypothesize that the generalization property of RNA is due to the following reasons.
1. Even though fθ was trained to convergence, it does not achieve exactly 0 error. Thus,
when hϕ is trained with a frozen fθ with the training data, it can still learn to correct the
errors of fθ, thus, adapting fθ. 2. Adaptation signals, by definition, are expected to be
relatively robust to distribution shifts. Even though the RGB image has been corrupted
or from a new domain, the adaptation signal is more aligned with the target task. Thus,
the input to hϕ does not undergo a significant shift and is able to adapt fθ.

3.4.3 Experiments using Various Target Tasks

In this section, we provide a more comprehensive set of evaluations covering various
target tasks and adaptation signals. In all cases, RNA is a fixed general framework
without being engineered for each task and shows supportive results.

Depth. We demonstrate the results quantitatively in Tab. 3.2 and Fig. 3.5 and qualita-

48

3.4 Experiments

JP
E

G
 C

om
pr

.

B
as

el
in

e

D
en

si
fic

at
io

n
R

N
A

G
ro

un
d

Tr
ut

h 3 pixels 5 pixels 10 pixels 20 pixels

D
ef

oc
us

 B
lu

r

G
ro

un
d

Tr
ut

h
B

as
el

in
e

R
N

A
D

en
si

fic
at

io
n

Figure 3.7: Qualitative adaptation results on semantic segmentation on random
query images on COCO-CC. RNA notably improves the prediction quality using error
feedback from as few as 3 random pixels.

3 6 9 12 15 18 21 24
Number of pixels

10

20

30

40

50

60

M
ea

n
IO

U

Baseline Clean (60.4)
Baseline (34.78)
Densification (29.40)
TENT (35.75)
TTO (41.80)
RNA (51.46)

Figure 3.8: Quantitative adaptation re-
sults on semantic segmentation. Each
point shows the mean IOU over 15 corrup-
tions and 5 severities. RNA significantly
improves over baselines. Black dashed line
shows the mean IOU of baseline model for
clean validation images, and is provided as
a reference. Numbers in the legend denote
averages over all supervision pixel counts.
See supplementary for a breakdown.

tively in Fig. 3.6. In Tab. 3.2, we compare RNA against all baselines, and over several
distribution shifts and different adaptation signals. Our RNA variants outperform the
baselines overall. TTO (online) has a better performance than TTO (episodic) as it
assumes a smoothly changing distribution shift, and it continuously updates the model
weights. RNA (jointly trained f) has a better performance among RNA variants. This is
reasonable as the target model is not frozen, thus, is less restrictive.

As another baseline, we trained a single model that takes as input a concatenation of
the RGB image and sparse supervision, i.e. multi-modal input. However, its average
performance on Taskonomy-CC was 42.5% worse than RNA’s (see sup. mat. Sec. 3.2).
Among the baselines that do not adapt, densification is the strongest under distribution
shift due to corruptions. This is expected as it does not take the RGB image as input,
thus, it is not affected by the underlying distribution shift. However, as seen from the
qualitative results in Figs. 3.6, 3.7, it is unable to predict fine-grained details, unlike
RNA. We also show that the gap between RNA and densification widens with sparser
supervision (see sup. mat. Fig. 1), which confirms that RNA is making use of the error
feedback signal, to adapt f .

Dense 3D Reconstruction. Here, we combine multiple adaptation signals from

49

Chapter 3. Fast adaptation using test-time feedback

Figure 3.9: Adaptation results for 3D
reconstruction. Using appropriate adap-
tation signals from multi-view geometry can
recover accurate 3D reconstructions. We re-
port the average ℓ1 error between ground
truth 3D coordinates and the estimated
ones. The titles above each column refers to
the depth model used to get the reconstruc-
tion. TTO+MVC corresponds to the predic-
tions after multi-view consistency optimiza-
tion. It can be seen that RNA and TTO
improve the reconstructions over the base-
lines with RNA being significantly faster.
See supplementary for more results.

multi-view geometry. First, we adapt the weights of the depth and optical flow models
independently. The results from this adaptation can be found in the previous para-
graph (for depth) and supplementary (for optical flow). Next, the two models are adapted
to make their predictions consistent with each other. This is achieved using the same
process as [179], i.e. multi-view-consistency (MVC). See supplementary for details.

Figure 3.9 shows the point cloud visualizations on Replica with Gaussian Noise corruption.
This results in collapsed depth predictions, thus, reconstructions are unusable (Baseline
column) and performing MVC is not helpful (Baseline+MVC). Adapting the depth
predictions using TTO and MVC improves the reconstruction notably while RNA
achieves a similar performance significantly faster.

Semantic Segmentation. We experiment with click annotations and DINO patch
matching as adaptation signals.

Click annotations: In Fig. 3.8, we show how the IoU changes with the adaptation
signal level on COCO-CC. As the Baseline and TENT do not make use of this signal,
their IoU is a straight line. RNA clearly outperforms the baselines for all levels of
adaptation signal. Figure 3.7 shows the qualitative results with increasing supervision,
and Fig. 3.6 (left) a comparison against all baselines, demonstrating higher quality
predictions with RNA.

DINO patch matching: We perform patch matching on DINO features (described in
Sec. 3.4.1) to get the adaptation signal. As the patch matching process can be computa-
tionally expensive, we demonstrate our results on all cat classes in ImageNet and over

50

3.4 Experiments

Adaptation Signal Dataset Clean IN-C IN-3DCC IN-V2 Rel. Runtime

- Pre-adaptation Baseline 23.85 61.66 54.97 37.15 1.00
Entropy TENT 24.67 46.19 47.13 37.07 5.51

Coarse labels
(wordnet)

Densification 95.50 95.50 95.50 95.50 -
TTO (Online) 24.72 40.62 42.90 36.77 5.72
RNA (frozen f) 16.72 41.21 40.37 25.53 1.39

Coarse labels
(DINO)

DINO (k-NN) 25.56 52.64 48.24 37.39 -
TTO (Online) 24.59 51.59 49.18 36.96 5.72
RNA (frozen f) 24.36 54.86 52.29 36.88 1.39

Table 3.3: Quantitative adaptation results on on ImageNet (IN) classification
task. We evaluate on the clean validation set, ImageNet-{C,3DCC,V2}. We report
average error (%) for 1000-way classification task over all corruptions and severities. For
the coarse labels with WordNet supervision, we use 45-coarse labels. For DINO k-NN,
we set k = 20.

one noise, blur and digital corruption for 3 levels of severity. We used the predictions of
a pre-trained FCN on the clean images as pseudolabels to compute IoU. The mean IoU
averaged over these corruptions and severities is 48.98 for the baseline model, 53.45 for
TTO. RNA obtains a better IOU of 58.04, thus it can make use of the sparse annotations
from DINO patch matching.

Image Classification. We experiment with coarse labels from WordNet and DINO
k-NN as adaptation signals.

Coarse labels (WordNet): Table 3.3 shows the results from using 45-coarse labels on
ImageNet-{C,3DCC,V2}. This corresponds to 22x coarser supervision compared to the
1000 classes that we are evaluating on. TENT seems to have notable improvements in
performance under corruptions for classification, unlike for semantic segmentation and
depth. We show that using coarse supervision results in even better performance, about
a further 5 pp reduction in error. Furthermore, on uncorrupted data, i.e. clean, and
ImageNet-V2 [221], RNA gives roughly 10 pp improvement in performance compared to
TTO. Thus, coarse supervision provides a useful signal for adaptation while requiring
much less effort than full annotation [193]. See supplementary for results on other coarse
sets.

Coarse labels (DINO k-NN): We also show results from using coarse sets generated from
DINO k-NN retrieval. This is shown in the last 3 rows of Tab. 3.3. Both RNA and TTO
use this coarse information to outperform the non-adaptive baselines. However, they do
not always outperform TENT, which could be due to the noise in retrieval.

3.4.4 Ablations and additional results

Adaptation on other architectures. Table 3.4 shows the results of incorporating
RNA to different architectures, namely the dense prediction transformer (DPT) [214]
for depth and ConvNext [141] for image classification. In both cases, RNA is able to
improve on the error and runtime of TTO. Thus, RNA can be applied to a range of

51

Chapter 3. Fast adaptation using test-time feedback

Task (Arch.) Depth (DPT [214]) Classification (ConvNext [141])
Shift Clean CC Rel. Runtime Clean IN-C Rel. Runtime

Pre-adaptation Baseline 2.23 3.76 1.00 18.13 42.95 1.00
TTO (Online) 1.82 2.61 13.85 17.83 41.44 11.04
RNA (frozen f) 1.13 1.56 1.01 14.32 38.04 1.07

Table 3.4: RNA works across different architectures. Quantitative adaptation
results on depth estimation and image classification on Taskonomy and ImageNet datasets,
respectively. (Lower is better. ℓ1 errors for depth estimation are multiplied by 100 for
readability.)

architectures.

Controlling for number of parameters. We ran a control experiment where all
methods have the same architecture, thus, same number of parameters. The results are in
supplementary Table 2. RNA still returns the best performance. Thus, its improvement
over the baselines is not due to a different architecture or number of parameters but due
to its test-time adaptation mechanism.

Different implementations of RNA. We experiment with different controller archi-
tectures e.g., HyperNetworks [145], other FiLM variants, or adapting the input instead
of the model parameters. See supplementary Sec. 2.2 for the details and a conceptual
discussion on the trade-offs of the choices of implementing this closed-loop “control"
system, namely those that make stronger model-based assumptions.

3.5 Discussions of RNA compared to other approaches

There are many methods that aim to handle distribution shifts. Figure 3.10 gives an
overview of how these methods can be characterized. Open-loop systems predict y by
only using their inputs without receiving feedback. Training-time robustness methods,
image modifications, and multi-modal methods fall into this category. These methods
assume the learned model is frozen at test-time. Thus, they aim to incorporate inductive
biases at training time that could be useful against distribution shifts at test-time. The
closed-loop systems, on the other hand, are adaptive as they make use of an error feedback
signal that can be computed at test-time from the model predictions and an adaptation
signal.

The closed-loop systems can be instantiated as model-based or model-free adaptation
methods. The former performs adaptation by estimating the parameters of the distri-
bution shift using the feedback signal. For this purpose, different forms of feedback
can be useful, e.g. an error feedback and the feedback from the input image itself can
lead to successful estimation of the shift parameters. This is a form of inductive bias
that can help the method generalize for similar shifts. Furthermore, explicitly modelling
the distribution shift parameters results in an interpretable system that will not fail

52

3.5 Discussions of RNA compared to other approaches

Open-Loop Closed-Loop
Robustness methods

Image modification

(Denoising)

Multi-modal methods

Model-based adaptation

Model-free adaptation

Figure 3.10: An overview of methods that aim to handle distribution shifts. On
the left we have open-loop systems. They predict y by only using their inputs without
receiving feedback. The first and popular example of open-loop systems is training-time
robustness methods (data augmentation, architectural changes, etc.). The next example
is the methods that modify the input x, e.g. denoising or style changes, independent
of y. Furthermore, there are multi-modal methods that use additional input z. As the
learned model is frozen at test-time, these methods need to anticipate the distribution
shift by incorporating inductive biases at training time (See also Fig. 3.1). In contrast,
closed-loop systems on the right make use of its current output, y, and an adaptation
signal, z, to form an error feedback signal that can be used to update its predictions.
Thus, they adapt to the shifts as they occur. We can then group closed-loop systems into
model-based and model-free methods. The former performs adaptation by estimating
the parameters of the distribution shift, e, while the latter performs adaptation without
explicitly predicting e. Furthermore, this adaptation can be performed via running
an optimization, i.e. test-time optimization (TTO) via SGD, or via amortization, i.e.,
training a side-network to predict TTO updates that minimizes the error feedback. Our
proposed method, RNA, belongs to the model-free adaptation approaches that makes
use of amortization for efficiency.

silently. In [222], to learn a policy for legged robots, they defined defined a model of the
environment e.g., ground friction, center of mass, etc., and showed that it generalized
well. However, our experiments with a model-based approach, where we defined the
parameters of the environment as the possible distribution shifts can occur e.g., intensity
of a noise or blur corruption, did not show promising results. It can because our model
is not an accurate reflection of the real world, and/or that such a model is not needed
for static vision tasks.

In contrast, model-free methods do not estimate these parameters and learn to adapt
based only on the error feedback signal. Our proposed method RNA belongs to model-free
approaches, and as we have shown in this chapter, it generalizes well to a diverse set of
unseen distribution shifts. Note that model-free adaptation methods, including RNA,
has schematic similarities to multi-modal learning approaches as they simultaneously use

53

Chapter 3. Fast adaptation using test-time feedback

an RGB input image and an adaptation signal. The main distinction is that our method
implements a particular process toward adapting a network to a shift using an adaptation
signal from the environment – as opposed to a generic multi-modal learning.

Closed-loop systems aim to minimize an error feedback signal. There are different ways to
implement this. Running an optimization, e.g. SGD, at test-time is a popular choice, as
done in several other works [181, 53, 128, 54]. Since this may be unnecessarily expensive,
another way is to amortize this optimization process [166]. This results in our proposed
method, RNA.

RNA vs Training-time Robustness Methods. As discussed before, training-time
robustness methods, e.g. data augmentation, aim to anticipate distribution shifts by
building invariances at training-time. On the other hand, RNA performs adaptation at
test-time using error feedback. Furthermore, as RNA makes use of an error signal, it
is able to handle cases where there are multiple possible predictions for a given input,
e.g., scale ambiguity for monocular depth estimation, while the robustness methods may
not.

RNA vs Denoising. The denoising methods, and in general the methods performing
modification in the input image, e.g., domain adaptation methods that aims to map an
image in the target domain to the style of the source domain [80], are concerned with
reconstructing plausible images without taking the downstream prediction x → y into
account (shown as gray in Fig. 3.10). Moreover, it has been shown that imperceptible
artifacts in the denoised & modified image could result in degraded predictions [2, 142, 183].
In contrast, RNA performs updates with the goal of reducing the error of the target
task.

RNA vs Model-based Adaptation. As explained before, model-based approaches
require building a well-defined model of the distribution shifts that can be faced at
test-time. While this can effectively work for the modeled shifts, the performance can
quickly deteriorate for the ones that are outside the scope of the model. Thus, the
effectiveness for a more general and practical adaptation setting is limited. In contrast,
RNA adopts a model-free adaptation approach that does not require a tedious modelling
of distribution shifts at the expense of lack of interpretability. As our experiments
on a diverse set of tasks and distribution shifts show, RNA is able to generalize and
outperforms the baselines.

RNA vs TTO. RNA aims to amortize the optimization process of TTO. Thus, it
aims to simulate TTO by learning to reduce errors in the predictions using the error
feedback signal. In Sec. 3.4, we show that RNA is able to adapt orders of magnitude
faster than running test-time optimization (TTO). See Sec. 3.4.2 for detailed discussions
and results.

Using different forms of feedback signal as input to RNA. In the case where

54

3.6 Conclusion and Limitations

only the adaptation signal, z, is passed as input, it is possible that the side-network
is implicitly modelling an error feedback signal. This is because it is trained alongside
the main model (x → y), thus, it sees and learns to correct the main model’s errors
during training. We found that having an error feedback signal as input results in better
performance on average, thus, we adopted this as our main method.

3.6 Conclusion and Limitations

We presented RNA, a method for efficient adaptation of neural networks at test-time
using a closed-loop formulation. It involves training a side network to use a test-time
adaptation signal to adapt a main network. This network acts akin to a “controller”
and adapts the main network based on the adaptation signal. We showed that this
general and flexible framework can generalize to unseen shifts, and as it only requires a
forward pass at test-time, it is orders of magnitude faster than TTO. We evaluated this
approach using a diverse set of adaptation signals and target tasks. We briefly discuss
the limitations and potential future works:

Different implementations of RNA and amortization methods. While we experimented
with several RNA variants (see supplementary for details), further investigations using
other techniques, e.g. cross-attention [147] or building in a more explicit “model" of the
shifts and environment, could be worthwhile. In general, as the role of the controller
network is to amortize the training optimization of the main network, the amortized
optimization literature [166] is an apt resource to consult for this purpose.

Hybrid mechanism for activating TTO in RNA. TTO constantly adapts a model to a
distribution shift, hence, in theory, it can adapt to any shift despite being comparatively
inefficient. To have the best of both worlds, investigating mechanisms for selectively
activating TTO within RNA when needed can be useful.

Finding adaptation signals for a given task. While the focus of this study was not on
developing new adaption signals, we demonstrated useful ones for several core vision
tasks, but there are many more. Finding these signals requires either knowledge of the
target task so a meaningful signal can be accordingly engineered or core theoretical
works on understanding how a proxy and target objectives can be “aligned” for training.

This chapter is based on the paper: T. Yeo, O. F. Kar, Z. Sodagar, A. Zamir, Fast
Adaptation of Neural Networks using Test-Time Feedback, ICCV 2023. I was the main
contributor of this work.

55

Part IIIBenchmarks

57

4 3D Common Corruptions

4.1 Introduction

This chapter presents a set of distribution shifts to test models’ robustness before deploying
these models in the real world. In contrast to previously proposed shifts which perform
uniform 2D modifications over the image, such as Common Corruptions (2DCC) [2], our
shifts incorporate 3D information to generate corruptions that are consistent with the
scene geometry. This leads to shifts that are more likely to occur in the real world (See
Fig. 4.1). The resulting set includes 20 corruptions, each representing a distribution
shift from training data, which we denote as 3D Common Corruptions (3DCC). 3DCC
addresses several aspects of the real world, such as camera motion, weather, occlusions,
depth of field, and lighting. Figure 4.2 provides an overview of all corruptions. As shown
in Fig. 4.1, the corruptions in 3DCC are more diverse and realistic compared to 2D-only
approaches.

We show in Sec. 4.5 that the performance of the methods aiming to improve robustness,
including those with diverse data augmentation, reduce drastically under 3DCC. Fur-
thermore, we observe that the robustness issues exposed by 3DCC well correlate with
corruptions generated via photorealistic synthesis. Thus, 3DCC can serve as a challenging
testbed for real-world corruptions, especially those that depend on scene geometry.

Motivated by this, our framework also introduces new 3D data augmentations. They
take the scene geometry into account, as opposed to 2D augmentations, thus enabling
models to build invariances against more realistic corruptions. We show in Sec. 4.5.3
that they significantly boost model robustness against such corruptions, including the
ones that cannot be addressed by the 2D augmentations.

The proposed corruptions are generated programmatically with exposed parameters,
enabling fine-grained analysis of robustness, e.g. by continuously increasing the 3D

59

Chapter 4. 3D Common Corruptions

Figure 4.1: Using 3D information to generate real-world corruptions. The
top row shows sample 2D corruptions applied uniformly over the image, e.g. as in
Common Corruptions [2], disregarding 3D information. This leads to corruptions that
are unlikely to happen in the real world, e.g. having the same motion blur over the
entire image irrespective of the distance to camera (top left). Middle row shows their
3D counterparts from 3D Common Corruptions (3DCC). The circled regions highlight
the effect of incorporating 3D information. More specifically, in 3DCC, 1. motion blur
has a motion parallax effect where objects further away from the camera seem to move
less, 2. defocus blur has a depth of field effect, akin to a large aperture effect in real
cameras, where certain regions of the image can be selected to be in focus, 3. lighting
takes the scene geometry into account when illuminating the scene and casts shadows on
objects, 4. fog gets denser further away from the camera, 5. occlusions of a target
object, e.g. fridge (blue mask), are created by changing the camera’s viewpoint and
having its view naturally obscured by another object, e.g. the plant (red mask). This is
in contrast to its 2D counterpart that randomly discards patches [223].

motion blur. They are efficient to compute and can be computed on-the-fly during
training as data augmentation with a small increase in computational cost. They are
also extendable, i.e. they can be applied to standard vision datasets, e.g. ImageNet [210],
that do not come with 3D labels.

4.2 Related Work

This chapter presents a data-focused approach [224, 225] to robustness. We give an
overview of some of the related topics within the constraints of space.

Robustness benchmarks based on corruptions: Several studies have proposed
robustness benchmarks to understand the vulnerability of models to corruptions. A
popular benchmark, Common Corruptions (2DCC) [2], generates synthetic corruptions
on real images that expose sensitivities of image recognition models. It led to a series of

60

4.2 Related Work

Figure 4.2: The new corruptions. We propose a diverse set of new corruption
operations ranging from defocusing (near/far focus) to lighting changes and 3D-semantic
ones, e.g. object occlusion. These corruptions are all automatically generated, efficient
to compute, and can be applied to most datasets (Sec. 4.3.3). We show that they
expose vulnerabilities in models (Sec. 4.5.2) and are a good approximation of realistic
corruptions (Sec. 4.5.2). A subset of the corruptions marked in the last column are novel
and commonly faced in the real world, but are not 3D based. We include them in our
benchmark. For occlusion and scale corruptions, the blue and red masks denote the
amodal visible and occluded parts of an object, e.g. the fridge.

works either creating new corruptions or applying similar corruptions on other datasets for
different tasks [226, 227, 228, 229, 230, 231]. In contrast to these works, 3DCC modifies
real images using 3D information to generate realistic corruptions. The resulting images
are both perceptually different and expose different failure modes in model predictions
compared to their 2D counterparts (See Fig. 4.1 and 4.8). Other works create and
capture the corruptions in the real world, e.g. ObjectNet [232]. Although realistic, it
requires significant manual effort and is not extendable. A more scalable approach is to
use computer graphics based 3D simulators to generate corrupted data [233] which can
lead to generalization concerns. 3DCC aims to generate corruptions as close to the real
world as possible while staying scalable.

Robustness analysis works use existing benchmarks to probe the robustness of different
methods, e.g. data augmentation or self-supervised training, under several distribution
shifts. Recent works investigated the relation between synthetic and natural distribution
shifts [102, 7, 103, 234] and effectiveness of architectural advancements [138, 139, 235].
We select several popular methods to show that 3DCC can serve as a challenging
benchmark (Fig. 4.6 and 4.7).

Improving robustness: Numerous methods have been proposed to improve model
robustness such as data augmentation with corrupted data [84, 11, 129, 236], texture

61

Chapter 4. 3D Common Corruptions

Figure 4.3: Left: We show the inputs needed to create each of our corruptions, e.g.
the 3D information such as depth, and RGB image. These corruptions have also been
grouped (in solid colored lines) according to their corruption types. For example, to
create the distortions in the dashed box in the right, one only needs the RGB image and
its corresponding depth. For the ones in the left dashed box, 3D mesh is required. Note
that one can create view changes corruptions also from panoramic images if available,
without a mesh. Right: As an example, we show an overview of generating depth of
field effect efficiently. The scene is first split into multiple layers by discretizing scene
depth. Next, a region is chosen to be kept in focus (here it is the region closest to the
camera). We then compute the corresponding blur levels for each layer according to their
distance from the focus region, using a pinhole camera model. The final refocused image
is obtained by compositing blurred image layers.

changes [96, 7], image compositions [40, 39] and transformations [36, 42]. While these
methods can generalize to some unseen examples, performance gains are non-uniform [41,
84]. Other methods include self-training [131], pre-training [130, 237], architectural
changes [138, 139], and diverse ensembling [23, 24, 25, 142]. Here we instead adopt a
data-focused approach to robustness by i. providing a large set of realistic distribution
shifts and ii. introducing new 3D data augmentation that improves robustness against
real-world corruptions (Sec. 4.5.3).

Photorealistic image synthesis involves techniques to generate realistic images.
Some of these techniques have been recently used to create corruption data. These
techniques are generally specific to a single real-world corruption. Examples include
adverse weather conditions [238, 239, 240, 241, 242], motion blur [243, 244], depth of
field [245, 246, 247, 132, 248], lighting [249, 250], and noise [251, 252]. They may be used
for purely artistic purposes or to create training data. Some of our 3D transformations
are instantiations of these methods, with the downstream goal of testing and improving
model robustness in a unified framework with a wide set of corruptions.

Image restoration aims to undo the corruption in the image using classical signal
processing techniques [253, 254, 255, 256] or learning-based approaches [257, 258, 259,
260, 261, 262, 263]. We differ from these works by generating corrupted data, rather than
removing it, to use them for benchmarking or data augmentation. Thus, in the latter, we
train with these corrupted data to encourage the model to be invariant to corruptions, as
opposed to training the model to remove the corruptions as a pre-processing step.

62

4.3 Generating 3D Common Corruptions

Adversarial corruptions add imperceptible worst-case shifts to the input to fool a
model [9, 10, 11, 264]. Most of the failure cases of models in the real world are not the
result of adversarial corruptions but rather naturally occurring distribution shifts. Thus,
our focus in this paper is to generate corruptions that are likely to occur in the real
world.

4.3 Generating 3D Common Corruptions

4.3.1 Corruption Types

We define different corruption types, namely depth of field, camera motion, lighting, video,
weather, view changes, semantics, and noise, resulting in 20 corruptions in 3DCC. Most of
the corruptions require an RGB image and scene depth, while some needs 3D mesh (See
Fig. 4.3). We use a set of methods leveraging 3D synthesis techniques or image formation
models to generate different corruption types, as explained in more detail below. Further
details are provided in the appendix.

Depth of field corruptions create refocused images. They keep a part of the image in
focus while blurring the rest. We consider a layered approach [132, 248] that splits the
scene into multiple layers. For each layer, the corresponding blur level is computed using
the pinhole camera model. The blurred layers are then composited with alpha blending.
Figure 4.3 (right) shows an overview of the process. We generate near focus and far
focus corruptions by randomly changing the focus region to the near or far part of the
scene.

Camera motion creates blurry images due to camera movement during exposure. To
generate this effect, we first transform the input image into a point cloud using the
depth information. Then, we define a trajectory (camera motion) and render novel views
along this trajectory. As the point cloud was generated from a single RGB image, it has
incomplete information about the scene when the camera moves. Thus, the rendered
views will have disocclusion artifacts. To alleviate this, we apply an inpainting method
from [244]. The generated views are then combined to obtain parallax-consistent motion
blur. We define XY-motion blur and Z-motion blur when the main camera motion is
along the image XY-plane or Z-axis, respectively.

Lighting corruptions change scene illumination by adding new light sources and modi-
fying the original illumination. We use Blender [265] to place these new light sources
and compute the corresponding illumination for a given viewpoint in the 3D mesh. For
the flash corruption, a light source is placed at the camera’s location, while for shadow
corruption, it is placed at random diverse locations outside the camera frustum. Likewise,
for multi-illumination corruption, we compute the illumination from a set of random
light sources with different locations and luminosities.

63

Chapter 4. 3D Common Corruptions

Video corruptions arise during the processing and streaming of videos. Using the
scene 3D, we create a video using multiple frames from a single image by defining a
trajectory, similar to motion blur. Inspired by [229], we generate average bit rate (ABR)
and constant rate factor (CRF) as H.265 codec compression artifacts, and bit error to
capture corruptions induced by imperfect video transmission channel. After applying the
corruptions over the video, we pick a single frame as the final corrupted image.

Weather corruptions degrade visibility by obscuring parts of the scene due to disturbances
in the medium. We define a single corruption and denote it as fog 3D to differentiate it
from the fog corruption in 2DCC. We use the standard optical model for fog [238, 239,
240]:

I(x) = R(x)t(x) + A(1 − t(x)), (4.1)

where I(x) is the resulting foggy image at pixel x, R(x) is the clean image, A is
atmospheric light, and t(x) is the transmission function describing the amount of light
that reaches the camera. When the medium is homogeneous, the transmission depends
on the distance from the camera, t(x) = exp (−βd(x)) where d(x) is the scene depth
and β is the attenuation coefficient controlling the fog thickness.

View changes are due to variations in the camera extrinsics and focal length. Our
framework enables rendering RGB images conditioned on several changes, such as field
of view, camera roll and camera pitch, using Blender. This enables us to analyze the
sensitivity of models to various view changes in a controlled manner. We also generate
images with view jitter that can be used to analyze if models predictions flicker with
slight changes in viewpoint.

Semantics: In addition to view changes, we also render images by selecting an object in
the scene and changing its occlusion level and scale. In occlusion corruption, we generate
views of an object occluded by other objects. This is in contrast to random 2D masking
of pixels to create an unnatural occlusion effect that is irrespective of image content, e.g.
as in [223, 235] (See Fig. 4.1). Occlusion rate can be controlled to probe model robustness
against occlusion changes. Similarly, in scale corruption, we render views of an object
with varying distances from the camera location. Note that the corruptions require a
mesh with semantic annotations, and are generated automatically, similar to [266]. This
is in contrast to [232] which requires tedious manual effort. The objects can be selected
by randomly picking a point in the scene or using the semantic annotations.

Noise corruptions arise from imperfect camera sensors. We introduce new noise cor-
ruptions that do not exist in the previous 2DCC benchmark. For low-light noise, we
decreased the pixel intensities and added Poisson-Gaussian distributed noise to reflect the
low-light imaging setting [251]. ISO noise also follows a Poisson-Gaussian distribution,
with a fixed photon noise (modeled by a Poisson), and varying electronic noise (modeled
by a Gaussian). We also included color quantization as another corruption that reduces
the bit depth of the RGB image. Only this subset of our corruptions is not based on 3D

64

4.3 Generating 3D Common Corruptions

Figure 4.4: Visualizations of 3DCC with increasing shift intensities. Top:
Increasing the shift intensity results in larger blur, less illumination, and denser fog.
Bottom: The object becomes more occluded or shrinks in size using calculated viewpoint
changes. The blue mask denotes the amodal visible parts of the fridge/couch, and the
red mask is the occluded part. The leftmost column shows the clean images. Visuals for
all corruptions for all shift intensities are shown in the appendix.

information.

4.3.2 Starter 3D Common Corruptions Dataset

We release the full open source code of our pipeline, which enables using the implemented
corruptions on any dataset. As a starter dataset, we applied the corruptions on 16k
Taskonomy [88] test images. For all the corruptions except the ones in view changes
and semantics which change the scene, we follow the protocol in 2DCC and define 5
shift intensities, resulting in approximately 1 million corrupted images (16k×14 × 5).
Directly applying the methods to generate corruptions results in uncalibrated shift
intensities with respect to 2DCC. Thus, to enable aligned comparison with 2DCC on a
more uniform intensity change, we perform a calibration step. For the corruptions with
a direct counterpart in 2DCC, e.g. motion blur, we set the corruption level in 3DCC
such that for each shift intensity in 2DCC, the average SSIM [267] values over all images
is the same in both benchmarks. For the corruptions that do not have a counterpart
in 2DCC, we adjust the distortion parameters to increase shift intensity while staying
in a similar SSIM range as the others. For view changes and semantics, we render 32k
images with smoothly changing parameters, e.g. roll angle, using the Replica [87] dataset.

65

Chapter 4. 3D Common Corruptions

Figure 4.4 shows example corruptions with different shift intensities.

4.3.3 Applying 3DCC to standard vision datasets

While we employed datasets with full scene geometry information such as Taskonomy [88],
3DCC can also be applied to standard datasets without 3D information. We exemplify
this on ImageNet [210] and COCO [211] validation sets by leveraging depth predictions
from the MiDaS [268] model, a state-of-the-art depth estimator. Figure 4.5 shows
example images with near focus, far focus, and fog 3D corruptions. Generated images
are physically plausible, demonstrating that 3DCC can be used for other datasets by the
community to generate a diverse set of image corruptions. In Sec. 4.5.2, we quantitatively
demonstrate the effectiveness of using predicted depth to generate 3DCC.

4.4 3D Data Augmentation

While benchmarking uses corrupted images as test data, one can also use them as
augmentations of training data to build invariances towards these corruptions. This is
the case for us since, unlike 2DCC, 3DCC is designed to capture corruptions that are
more likely to appear in the real world, hence it has a sensible augmentation value as
well. Thus, in addition to benchmarking robustness using 3DCC, our framework can
also be viewed as new data augmentation strategies that take the 3D scene geometry
into account. We augment with the following corruption types in our experiments: depth
of field, camera motion, and lighting. The augmentations can be efficiently generated
on-the-fly during training using parallel implementations. For example, the depth of
field augmentations take 0.87 seconds (wall clock time) on a single V100 GPU for a
batch size of 128 images with 224 × 224 resolution. For comparison, applying 2D defocus
blur requires 0.54 seconds, on average. It is also possible to precompute certain selected
parts of the augmentation process, e.g. the illuminations for lighting augmentations,
to increase efficiency. We incorporated these mechanisms in our implementation. We
show in Sec. 4.5.3 that these augmentations can significantly improve robustness against
real-world distortions.

4.5 Experiments

We perform evaluations to demonstrate that 3DCC can expose vulnerabilities in mod-
els (Sec. 4.5.2) that are not captured by 2DCC (Sec. 4.5.2). The generated corrup-
tions are similar to expensive realistic synthetic ones (Sec. 4.5.2) and are applicable
to datasets without 3D information (Sec. 4.5.2) and for semantic tasks (Sec. 4.5.2).
Finally, the proposed 3D data augmentation improves robustness qualitatively and
quantitatively (Sec. 4.5.3).

66

4.5 Experiments

Figure 4.5: 3DCC can be applied to most datasets, even those that do not come
with 3D information. Several query images from the ImageNet [210] and COCO [211]
dataset are shown with near focus, far focus and fog 3D corruptions applied. Notice how
the objects in the circled regions go from sharp to blurry depending on the focus region
and scene geometry. To get the depth information needed to create these corruptions,
predictions from MiDaS [268] model is used. This gives a good enough approximation to
generate realistic corruptions (as we will quantify in Sec. 4.5.2).

4.5.1 Preliminaries

Evaluation Tasks: 3DCC can be applied to any dataset, irrespective of the target task,
e.g. dense regression or low-dimensional classification. Here we mainly experiment with
surface normals and depth estimation as target tasks widely employed by the community.
We note that the robustness of models solving such tasks is underexplored compared
to classification tasks (See Sec. 4.5.2 for results on panoptic segmentation and object
recognition). To evaluate robustness, we compute the ℓ1 error between predicted and
ground truth images.

Training Details: We train UNet [94] and DPT [214] models on Taskonomy [88] using
learning rate 5 × 10−4 and weight decay 2 × 10−6. We optimize the likelihood loss with
Laplacian prior using AMSGrad [95], following [142]. Unless specified, all the models use
the same UNet backbone (e.g. Fig. 4.6). We also experiment with DPT models trained
on Omnidata [132] that mixes a diverse set of training datasets. Following [132], we train
with learning rate 1 × 10−5, weight decay 2 × 10−6 with angular & ℓ1 losses.

Robustness mechanisms evaluated: We evaluate several popular data augmentation
strategies: DeepAugment [7], style augmentation [96], and adversarial training [10]. We
also include Cross-Domain Ensembles (X-DE) [142] that has been recently shown to
improve robustness to corruptions by creating diverse ensemble components via input
transformations. We refer to the appendix for training details. Finally, we train a model
with augmentation with corruptions from 2DCC [2] (2DCC augmentation), and another
model with 3D data augmentation on top of that (2DCC + 3D augmentation).

67

Chapter 4. 3D Common Corruptions

Figure 4.6: Existing robustness mechanisms are found to be insufficient for
addressing real-world corruptions approximated by 3DCC. Performance of
models with different robustness mechanisms under 3DCC for surface normals (left) and
depth (right) estimation tasks are shown. All models here are UNets and are trained with
Taskonomy data. Each bar shows the ℓ1 error averaged over all 3DCC corruptions (lower
is better). The black error bars show the error at the lowest and highest shift intensity.
The red line denotes the performance of the baseline model on clean (uncorrupted)
data. This denotes that existing robustness mechanisms, including those with diverse
augmentations, perform poorly under 3DCC.

4.5.2 3D Common Corruptions Benchmark

3DCC can expose vulnerabilities

We perform a benchmarking of the existing models against 3DCC to understand their
vulnerabilities. However, we note that our main contribution is not the performed
analyses but the benchmark itself. The state-of-the-art models may change over time
and 3DCC aims to identify the robustness trends, similar to other benchmarks.

Effect of robustness mechanisms: Figure 4.6 shows the average performance of
different robustness mechanisms on 3DCC for surface normals and depth estimation tasks.
These mechanisms improved the performance over the baseline but are still far from
the performance on clean data. This suggests that 3DCC exposes robustness issues and
can serve as a challenging testbed for models. The 2DCC augmentation model returns
slightly lower ℓ1 error, indicating that diverse 2D data augmentation only partially helps
against 3D corruptions.

Effect of dataset and architecture: We provide a detailed breakdown of performance
against 3DCC in Fig. 4.7. We first observe that baseline UNet and DPT models trained
on Taskonomy have similar performance, especially on the view change corruptions. By
training with larger and more diverse data with Omnidata, the DPT performance improves.
Similar observations were made on vision transformers for classification [269, 138]. This
improvement is notable with view change corruptions, while for the other corruptions,
there is a decrease in error from 0.069 to 0.061. This suggests that combining architectural
advancements with diverse and large training data can play an important role in robustness
against 3DCC. Furthermore, when combined with 3D augmentations, they improve

68

4.5 Experiments

robustness to real-world corruptions (Sec. 4.5.3).

Figure 4.7: Detailed breakdown of performance on 3DCC. The benchmark can
expose trends and models’ sensitivity to a wide range of corruptions. We show this
by training models on either Taskonomy [88] or Omnidata [132] and with either a
UNet [94] or DPT [214] architecture. The average ℓ1 error over all shift intensities for
each corruption is shown (lower is better). Top: We observe that Taskonomy models
are more susceptible to changes in field of view, camera roll, and pitch compared to
Omnidata trained model, which is consistent with their methods. Bottom: The numbers
in the legend are the average performance over all the corruptions. We can see that
all the models are sensitive to 3D corruptions, e.g. z-motion blur and shadow. Overall,
training with large diverse data, e.g. Omnidata, and using DPT is observed to notably
improve performance.

Redundancy of corruptions in 3DCC and 2DCC

In Fig. 4.1, a qualitative comparison was made between 3DCC and 2DCC. The former
generates more realistic corruptions while the latter does not take scene 3D into account
and applies uniform modifications over the image. In Fig. 4.8, we aim to quantify the
similarity between 3DCC and 2DCC. On the left of Fig. 4.8, we compute the correlations
of ℓ1 errors between clean and corrupted predictions made by the baseline model for a
subset of corruptions (full set is in the appendix). 3DCC incurs less correlations both
intra-benchmark as well as against 2DCC (Mean correlations are 0.32 for 2DCC-2DCC,
0.28 for 3DCC-3DCC, and 0.30 for 2DCC-3DCC). Similar conclusions are obtained for
depth estimation (in the appendix). In the right, we provide the same analysis on the

69

Chapter 4. 3D Common Corruptions

2D
C

C
3D

C
C

Figure 4.8: Redundancy among corruptions. We quantified the pairwise similarity
of a subset of corruptions from 2DCC and 3DCC by computing their correlations in
the ℓ1 errors of the surface normals predictions (left) and RGB images (right). 3DCC
incurs less correlations both intra-benchmark as well as against 2DCC. Thus, 3DCC has
a diverse set of corruptions and these corruptions do not have a significant overlap with
2DCC. Using depth as target task yields similar conclusions (full affinity matrices are
provided in the appendix).

RGB domain by computing the ℓ1 error between clean and corrupted images, again
suggesting that 3DCC yields lower correlations.

Figure 4.9: Visual comparisons of 3DCC
and expensive After Effects (AE) gen-
erated depth of field effect on query im-
ages from Hypersim. 3DCC generated cor-
ruptions are visually similar to those from
AE.

Soundness: 3DCC vs Expensive Synthesis

3DCC aims to expose a model’s vulnerabilities to certain real-world corruptions. This
requires the corruptions generated by 3DCC to be similar to real corrupted data. As
generating such labeled data is expensive and scarcely available, as a proxy evaluation,
we instead compare the realism of 3DCC to synthesis made by Adobe After Effects (AE)
which is a commercial product to generate high-quality photorealistic data and often
relies on expensive and manual processes. To achieve this, we use the Hypersim [213]
dataset that comes with high-resolution z-depth labels. We then generated 200 images
that are near- and far-focused using 3DCC and AE. Figure 4.9 shows sample generated
images from both approaches that are perceptually similar. Next, we computed the
prediction errors of a baseline normal model when the input is from 3DCC or AE. The
scatter plot of ℓ1 errors are given in Fig. 4.10 and demonstrates a strong correlation, 0.80,
between the two approaches. For calibration and control, we also provide the scatter

70

4.5 Experiments

plots for some corruptions from 2DCC to show the significance of correlations. They
have significantly lower correlations with AE, indicating the depth of field effect created
via 3DCC matches AE generated data reasonably well.

Effectiveness of applying 3DCC to other datasets

We showed qualitatively in Fig. 4.5 that 3DCC can be applied to standard vision datasets
like ImageNet [210] and COCO [211] by leveraging predicted depth from a state-of-the-art
model from MiDaS [268]. Here, we quantitatively show the impact of using predicted
depth instead of ground truth. For this, we use the Replica [87] dataset that comes with
ground truth depth labels. We then generated 1280 corrupted images using ground truth
depth and predicted depth from MiDaS [268] without fine-tuning on Replica. Figure 4.11
shows the trends on three corruptions from 3DCC generated using ground truth and
predicted depth. The trends are similar and the correlation of errors is strong (0.79). This
suggests that the predicted depth can be effectively used to apply 3DCC to other datasets,
and the performance is expected to improve with better depth predictions.

Figure 4.10: Corruptions of 3DCC are similar to expensive realistic synthetic
ones while being cheaper to generate. Scatter plots of ℓ1 errors from the baseline
model predictions on 3DCC against those created by Adobe After Effects (AE). The
correlation between 3DCC near (far) focus and those from AE near (far) focus is the
strongest (numbers are in the legend of left column). We also added the most similar cor-
ruption from 2DCC (defocus blur) for comparison, yielding weaker correlations (middle).
Shot noise (right) is a control baseline, i.e. a randomly selected corruption, to calibrate
the significance of the correlation measure.

3DCC evaluations on semantic tasks

The previous benchmarking results were focusing on surface normals and depth estimation
tasks. Here we perform a benchmarking on panoptic segmentation and object recognition
tasks as additional illustrative 3DCC evaluations. In particular for panoptic segmentation,
we use semantic corruptions from Sec. 4.3.1, and for object classification, we introduce

71

Chapter 4. 3D Common Corruptions

0.00 0.05 0.10 0.15 0.20
Pred. Depth - Near Focus (1 error)

0.00

0.05

0.10

0.15

0.20
GT

 D
ep

th
 -

Ne
ar

 F
oc

us
 (

1 e
rro

r)
r = 0.90

0.00 0.05 0.10 0.15 0.20 0.25
Pred. Depth - Far Focus (1 error)

0.00

0.05

0.10

0.15

0.20

GT
 D

ep
th

 -
Fa

r F
oc

us
 (

1 e
rro

r)

r = 0.69

0.00 0.05 0.10 0.15 0.20
Pred. Depth - Fog 3D (1 error)

0.00

0.05

0.10

0.15

0.20

GT
 D

ep
th

 -
Fo

g
3D

 (
1 e

rro
r)

r = 0.78

Figure 4.11: Effectiveness of applying 3DCC without ground truth depth. Three
corruptions from 3DCC are generated using depth predictions from MiDaS [268] model
on unseen Replica data. Scatter plots show the ℓ1 errors from the baseline model when
corruptions are generated using the predicted depth (x-axis) or the ground truth (y-axis).
The trends are similar between two corrupted data results, suggesting the predicted
depth is an effective approximation to generate 3DCC. See the appendix for more tests
including control baselines.

Figure 4.12: Qualitative results of learning with 3D data augmentation on
random queries from OASIS [270], AE (Sec. 4.5.2), manually collected DSLR data, and
in-the-wild YouTube videos for surface normals. The ground truth is gray when it is
not available, e.g. for YouTube. The predictions in the last two rows are from the
O+DPT+2DCC+3D (Ours) model. It is further trained with cross-task consistency (X-
TC) constraints [72] (Ours+X-TC). They are noticeably sharper and more accurate.

ImageNet-3DCC by applying corruptions from 3DCC to ImageNet validation set, similar
to 2DCC [2].

Semantic corruptions: We evaluate the robustness of two panoptic segmentation
models from [132] against occlusion corruption of 3DCC. The models are trained on
Omnidata [132] and Taskonomy [88] datasets with a Detectron [271] backbone. See the

72

4.5 Experiments

appendix for details.

0.25 0.50 0.75 1.00
Occlusion ratio

0.0
0.2
0.4
0.6
0.8
1.0

Io
U

Couch
Taskonomy
Omnidata

0.25 0.50 0.75 1.00
Occlusion ratio

Fridge

0.25 0.50 0.75 1.00
Occlusion ratio

Bicycle

Figure 4.13: Robustness against occlusion corruption of 3DCC. The plot shows the
intersection over union (IoU) scores of Detectron models [271] for different objects over a range
of occlusion ratios. The models are trained on Taskonomy [88] or Omnidata [132] datasets. The
occlusion ratio is defined as the number of occluded pixels divided by the sum of occluded and
visible pixels of the object. This is computed over the test scenes of Replica [87]. The plots
expose the occlusion handling capabilities of the models and show that the Omnidata trained
model is generally more robust than the Taskonomy one. The degradation in model predictions
is class-specific and becomes more severe with higher occlusion ratios.

SIN (A)
Standard SIN (C)

SIN (B)
ANT (3x3)

AugMix DA
AugMix+DA0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
co

rru
pt

io
n

er
ro

r (
m

CE
)

ImageNet-3DCC
ImageNet-2DCC

Figure 4.14: Robustness on ImageNet-3DCC and ImageNet-2DCC. Errors on
ImageNet validation images corrupted by 3DCC and 2DCC are computed for the models
in robustness leaderboards [2, 264]. Following [2], we compute the mean corruption
error (mCE) relative to AlexNet [101]. The performance degrades significantly against
ImageNet-3DCC, thus it can serve as a challenging benchmark. As expected, the general
trends are similar between the two benchmarks as 2D and 3D corruptions are not com-
pletely disjoint. A similar observation was also made in [230] even when the corruptions
are designed to be dissimilar to 2DCC. Still, there are notable differences that can be
informative during model development by exposing trends and vulnerabilities that are not
captured by 2DCC, e.g. ANT [41] has better mCE on 2DCC compared to AugMix [36],
while they perform similarly on 3DCC. Likewise, combining DeepAugment [7] with
AugMix improved the performance on 2DCC significantly more than 3DCC. See the
appendix for more results.

Figure 4.13 quantifies the effect of occlusion on the predictions of models, i.e. how the
models’ intersection over union (IoU) scores change with increasing occlusion, for selected
objects. This is computed on the test scenes from Replica [87]. The Omnidata trained

73

Chapter 4. 3D Common Corruptions

model is generally more robust than the Taskonomy one, though we see a decrease in
IoU in both models as occlusion increases. The trends are class-specific possibly due to
shape of the objects and their scene context, e.g. fridge predictions remain unchanged up
until 0.50 occlusion ratio, while couch predictions degrade more linearly for Omnidata
model. This evaluation showcases one use of semantic corruptions in 3DCC, which are
notably harder to accomplish using other benchmarks that do not operate based on 3D
scans.

ImageNet-3DCC: We compare performances of the robust ImageNet models [96, 41,
36, 7] from RobustBench [264] and ImageNet-2DCC [2] (i.e. ImageNet-C) leaderboards
in Fig. A.39. Following 2DCC, we compute mean corruption error (mCE) by dividing the
models errors by AlexNet [101] errors and averaging over corruptions. The performance
of models degrade significantly, including those with diverse augmentations. Thus,
ImageNet-3DCC can serve as a challenging benchmark for object recognition task. As
expected, while the general trends are similar between the two benchmarks as 2D and
3D corruptions are not completely disjoint [230], 3DCC exposes vulnerabilities that are
not captured by 2DCC, which can be informative during model development. See the
appendix for further results.

4.5.3 3D data augmentation to improve robustness

We demonstrate the effectiveness of the proposed augmentations qualitatively and quanti-
tatively. We evaluate UNet and DPT models trained on Taskonomy (T+UNet, T+DPT)
and DPT trained on Omnidata (O+DPT) to see the effect of training dataset and model
architecture. The training procedure is as described in Sec. 4.5.1. For the other models,
we initialize from O+DPT model and train with 2DCC augmentations (O+DPT+2DCC)
and 3D augmentations on top of that (O+DPT+2DCC+3D), i.e. our proposed model.
We also further trained the proposed model using cross-task consistency (X-TC) con-
straints from [72], denoted as (Ours+X-TC) in the results. Lastly, we evaluated a model
trained on OASIS training data from [270] (OASIS).

Qualitative evaluations: We consider i. OASIS validation images [270], ii. AE
corrupted data from Sec. 4.5.2, iii. manually collected DSLR data, and iv. in-the-wild
YouTube videos. Figure 4.12 shows that predictions made by the proposed models are
significantly more robust compared to baselines.

Quantitative evaluations: In Table 4.1, we compute errors made by the models on
2DCC, 3DCC, AE, and OASIS validation set (no fine-tuning). Again, the proposed
models yield lower errors across datasets showing the effectiveness of augmentations.
Note that robustness against corrupted data is improved without sacrificing performance
on in-the-wild clean data, i.e. OASIS.

74

4.6 Conclusion and Limitations

BenchmarkModel T+UNet T+DPT OASIS [270] O+DPT O+DPT+2DCC Ours Ours+X-TC [72]
2DCC [2] (ℓ1 error) 8.15 7.47 15.31 6.43 5.78 5.32 5.29

3DCC (ℓ1 error) 7.08 6.89 15.11 6.13 5.94 5.42 5.35
AE (Sec. 4.5.2) (ℓ1 error) 12.86 12.39 16.85 7.84 6.50 4.94 5.47

OASIS [270] (angular error) 30.49 32.13 24.63 24.42 23.67 24.65 23.89

Table 4.1: Effectiveness of 3D augmentations quantified using different bench-
marks. ℓ1 errors are multiplied by 100 for readability. The O+DPT+2DCC+3D model
is denoted by Ours. We also trained this model using cross-task consistency (X-TC)
constraints from [72] (Ours+X-TC). Our models yield lower errors across the benchmarks.
2DCC and 3DCC are applied on the same Taskonomy test images. More results are
given in the appendix. Evaluations on OASIS dataset sometimes show a large variance
due to its sparse ground truth.

4.6 Conclusion and Limitations

We introduce a framework to test and improve model robustness against real-world
distribution shifts, particularly those centered around 3D. Experiments demonstrate that
the proposed 3D Common Corruptions is a challenging benchmark that exposes model
vulnerabilities under real-world plausible corruptions. Furthermore, the proposed data
augmentation leads to more robust predictions compared to baselines. We believe this
direction opens up a promising direction in robustness research by showing the usefulness
of 3D corruptions in benchmarking and training. Below we briefly discuss some of the
limitations:

3D quality: 3DCC is upper-bounded by the quality of 3D data. The current 3DCC is
an imperfect but useful approximation of real-world 3D corruptions, as we showed. The
fidelity is expected to improve with higher resolution sensory data and better depth
prediction models.

Non-exhaustive set: Our set of 3D corruptions and augmentations are not exhaustive.
They instead serve as a starter set for researchers to experiment with. The framework
can be employed to generate more domain-specific distribution shifts with minimal
manual effort.

Large-scale evaluation: While we evaluate some recent robustness approaches in our
analyses, our main goal was to show that 3DCC successfully exposes vulnerabilities.
Thus, performing a comprehensive robustness analysis is beyond the scope of this work.
We encourage researchers to test their models against our corruptions.

Balancing the benchmark: We did not explicitly balance the corruption types in our
benchmark, e.g. having the same number of noise and blur distortions. Our work can
further benefit from weighting strategies trying to calibrate average performance on
corruption benchmarks, such as [272].

Use cases of augmentations: While we focus on robustness, investigating their usefulness

75

Chapter 4. 3D Common Corruptions

on other applications, e.g. self-supervised learning, could be worthwhile.

Evaluation tasks: We experiment with dense regression tasks. However, 3DCC can be
applied to different tasks, including classification and other semantic ones. Investigating
failure cases of semantic models against, e.g. on smoothly changing occlusion rates for
several objects, using our framework could provide useful insights.

This chapter is based on the paper: O. F. Kar, T. Yeo, A. Atanov, A. Zamir, 3D
Common Corruptions, CVPR 2022. I contributed to generating and evaluating on the
semantic corruptions, several other qualitative evaluations and quantitative evaluations
on OASIS.

76

Conclusion

This thesis touched upon three directions for making models useful in the real world
with a focus on improving robustness. For the first direction, we discussed robustness
mechanisms. There, we demonstrated how ensembling predictions from diverse cues
can be used to improve the final prediction. We also showed how generative models
can be used to generate targeted training data. For the second direction on adaptation
mechanisms, we presented an approach for efficient adaptation at test-time. Finally, for
the last direction, we proposed realistic corruptions that can be used as an evaluation
benchmark or as augmentations. However, this thesis has by no means fully addressed
its goal of making models more robust and adaptive. We will now discuss its limitations
and future work.

Limitations and Future Work

Focus on low level shifts like common corruptions. In all chapters, the bulk of
our evaluations were on (3D) Common Corruptions, followed by several cross-dataset
evaluations and unlabelled random images or videos from the internet. While many
works focus on robustness to corruptions, distribution shifts that can be encountered in
the real world are rich, complex, and not limited to these shifts. At the high level, there
can be unseen shifts, e.g., new geographic locations, spurious correlations due to e.g.,
objects co-occurring with certain backgrounds in the training data, or underrepresented
subpopulations. Furthermore, there have been massive efforts in the last few years in
putting together datasets with different kinds of shifts into an easy-to-use evaluation
framework e.g., WILDS [18, 273], Shift happens benchmark1. The methods proposed in
this thesis may be able to handle a wider range of shifts than what we have considered,
performing such evaluations would be interesting future work.

Benefits of scale. In Chapter 4, we saw that training a transformer model on a mixture
of datasets with heavy data augmentations resulted in significantly improved predictions,
and at times outperforming the predictions of the proposed methods in the other chapters.
This is in line with other recent works on classification that show that large pre-training
datasets and models improve robustness [102, 103]. This begs the question, how far

1https://github.com/shift-happens-benchmark/icml-2022

77

Limitations and Future Work

can scaling up take us and when do we need carefully curated inductive biases e.g.,
ensembling from diverse cues with explicit merging mechanisms? In this thesis, we have
implicitly assumed that the benefits of the latter, i.e., a more interpretable framework
that is less likely to fail silently, outweigh the benefits of a potentially more accurate
system that is less interpretable and may fail silently. However, which to choose likely
depends on context and application.

Efficient and continuous adaptation via universal representations. In Chapter 3,
we introduced a method for efficient adaptation. This is a promising direction, as it is
based on the premise that we are not able to anticipate all possible shifts, thus, one should
learn to adapt at test-time. Furthermore, there can also be shifts in the target task.
Our current models require substantial compute and data to adapt to new domains and
tasks. To do well on a single task/domain, the system learns to be invariant to attributes
that are irrelevant to the task/domain. However, on unseen tasks/domains, the seen
task’s/domain’s irrelevant attribute may be necessary for the new unseen task.

Thus, decomposing the input into different attributes can allow for more efficient adapta-
tion to new tasks/domains. Having decomposed the input, a learnable function is used to
select relevant attributes, depending on their relevance to the target task. Independent
modules can be used to process the different attributes and later aggregated to make
a final prediction. Thus, this results in a system that is potentially more robust as
the failure of one module is independent of the others. It can also be more efficient as
adapting to new tasks/domains only requires learning which attributes to use as opposed
to fine-tuning the entire network.

Language as an inductive bias. Language encodes some information about how we
see and understand the world, it may provide useful inductive biases that can make our
models more aligned with how we make decisions or perceive the world. In Chapter 2, we
made use of text-to-image models to generate training data. Controlling the generation
in the text space can allow us to generate data that is potentially more interpretable.
Another example is if performing the decomposition described above using a visual-
language model to attain more interpretable attributes would result in a model that is
more robust.

Active perception involves interaction and exploration to develop a better understand-
ing of the world. It allows for active data collection to e.g., minimize the uncertainty
of our predictions. More concretely, the input to the network can be heavily occluded
or corrupted that none of our advances with robustness methods on static images can
work. However, being able to change the camera’s parameters e.g., viewpoint, or zoom
can allow us to get a better view of the object and, thus, make a better prediction.
Furthermore, being able to interact with the environment allows for the learning of
causal representations. Such representations encode the data generation process or the
relationship between events. Thus, predictions based on these representations can be

78

Limitations and Future Work

potentially more robust.

Learning with richer inputs. This thesis mostly focused on learning from static I.I.D.
images, however, this is far removed from how we learn. We benefit from a stream of
rich, continuous inputs of different modalities [274]. Existing works have shown that
this can also be beneficial for neural networks [275, 276]. We are interested in enriching
our data by combining different modalities, including non-visual ones e.g., audio, and
haptics feedback. Each modality offers different benefits, e.g., audio feedback gives us
information about objects or events that are not in our line of sight, and haptic feedback
gives us a description of the object in terms of its shape, weight, or material. Thus, the
network can learn to integrate these modalities, and in the event that any input modality
is corrupted, it is able to use the others to return an accurate prediction.

The distribution shifts that neural networks will encounter in the real world can be rich
and complex. Despite the advancements in the community, neural networks remain brittle
or only work well under certain shifts. This thesis presented several directions toward
the goal of having models that work well in the real world. We hope that it can inspire
people to think about the many possible directions for tackling this problem.

79

A Appendix

81

Appendix A. Appendix

A.1 Ensembling diverse predictions

A.1.1 Quantitative Results

Performance on Distorted Data

Performance under common corruptions and dataset shift: Figure A.7 shows the
ℓ1 errors of our method and several baselines for each distortion, for normal, reshading
and depth targets. The proposed inverse variance and network merging approaches
consistently outperform baselines. In Table A.1 we report results on Replica with
common corruptions (Replica-C) and Habitat. They show supportive trends for our
method, similar to Taskonomy results in Fig. 6 of main paper.

Method Replica-C Habitat
Normals Reshading Depth Depth

Blind guess 15.0 17.0 5.3 8.1
Baseline 6.2 12.1 3.7 5.2

Deep ensembles 6.0 11.6 3.3 4.6
Ours 5.1 10.1 2.4 4.3

Table A.1: Robustness on common corruptions and dataset shift. The table
provides quantitative evaluation on Replica-C and Habitat. ℓ1 losses are reported,
multiplied by 100 for readability. Our proposed method outperforms the baselines.

Perceptual losses: Similar to the evaluation setup by [72], besides the direct metric, we
also report perceptual errors in Figure A.5 for a more complete evaluation. Such metrics
evaluate the same prediction in a different representation space (e.g. depth → normal)
to give a non-uniform weighting to pixels depending on their properties. The proposed
method yields notably lower perceptual errors for all target domains compared to
baselines.

Additional ablation results: Figure A.6 demonstrates the performance when the
proposed method does not use sigma training and training with consistency constraints.
This evaluation is performed for both target and perceptual domains. We also provide
the results when deep ensembles are trained with consistency constraints. Our method
significantly outperforms the baselines in all evaluations. In Figure A.8 we further
demonstrate the performance for each distortion.

Performance on Clean Data

In Table A.4, we report quantitative evaluations on the undistorted Taskonomy [88] and
Replica [87] datasets for the target domains depth, reshading, and surface normals. Our
method variants yield similar performance on in-distribution data, while also being more
robust against distribution shifts as shown in the main paper. This demonstrates the
robustness on out-of-distribution data did not come at the cost of degraded performance
for in-distribution data. We do not expect robust methods (ours and deep ensembles) to

82

A.1 Ensembling diverse predictions

yield a better performance on in-distribution data as well, since they are not designed to
do so and do not have a reason for that. However, we observe that they occasionally fit
better to even the in-distribution data, as shown in Table A.4.

Noise Blur Weather Digital
Method Clean error Avg. Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Im
ag

eN
et Baseline ResNet-50 24.4 76.2 73.0 74.7 78.8 79.9 92.1 81.5 82.5 75.2 75.6 64.0 59.2 65.3 90.6 74.8 75.9

Deep ensembles 21.5 70.4 67.4 69.7 72.5 73.4 87.4 76.1 76.9 70.3 70.3 60.1 52.4 61.7 83.8 66.4 68.3
Ours 21.6 67.9 66.6 68.6 71.2 71.7 82.1 75.6 77.3 69.1 67.2 59.1 51.3 55.8 82.1 54.4 65.9

C
IF

A
R

10
0 Baseline ResNet-18 24.9 48.6 76.7 68.9 72.4 40.6 50.0 45.8 44.3 41.8 47.2 40.1 30 51.0 37.3 47.1 46.1

Deep ensembles 21.0 44.1 74.1 65.2 70.1 35.9 45.2 40.8 39.4 37.1 42.3 35.7 25.5 47.0 32.4 42.2 40.4
Ours 20.3 41.8 69.8 60.5 59.5 35.8 45.2 41.2 40.0 36.9 40.7 37.1 23.9 46.6 32.7 39.0 36.4

C
IF

A
R

10 Baseline ResNet-26 7.9 26.3 55.5 44.8 20.5 19.9 26.6 26.7 24.7 18.4 21.5 18.2 10.3 30.8 18.3 32.8 20.2
Deep ensembles 6.5 23.3 46.5 36.1 33.9 18.4 22.7 23.7 22.3 16.3 18.0 15.0 7.9 28.0 15.1 29.1 16.8

Ours 6.7 20.7 40.5 31.6 27.9 15.4 19.9 21.5 18.4 15.8 16.3 16.0 8.0 25.8 13.8 26.2 13.9

Table A.2: Robustness on ImageNet-C, CIFAR-100-C, and CIFAR-10-C. Error
on clean and distorted data. For all metrics, lower is better. All methods are trained only
on clean ImageNet, CIFAR-100, and CIFAR-10 training data, respectively. Our method
performs noticeably better compared to deep ensembles and a single model baseline
ResNet.

Additional ablations with deep ensembles

The key role of middle domains can be further seen from Figure A.2. It shows the error
against distribution shift when deep ensembles is trained with consistency constraints
(cons) and sigma training (ST) for Reshade task. Merging is done with both the proposed
uncertainty based weighting (inv. var. merging) and the average of the predictions
(uniform merging). Thus, the only remaining difference between deep ensembles and ours
is in utilizing middle domains. In both cases, our method clearly outperforms.

Path Importance

Figure A.9 shows the performance for individual distortions as a function of number
of paths. The proposed method consistently outperforms deep ensembles and the
performance improves with more paths. In Table A.3 and Figure A.4, we further
investigate the importance of each employed path and best performing paths for the
depth, reshading, and normals prediction.

Effect of Employed Distortions for Sigma Training

Here we investigate the effect of using different distortions for the sigma training (ST)
step. For this we consider four paths: rgb, greyscale, sharpened, 2D edges. We combine
the predictions from these paths using the inverse variance merging with three different
distortion sets for the ST stage: ST #1 uses Gaussian blur and Gaussian noise similar
to the results in the main paper while ST #2 uses speckle noise and pixelate distortions
and ST #3 uses pixelate and Gaussian blur distortions. Figure A.1 shows the average ℓ1
error evaluated on nine unseen distortions for these variants. As can be seen, all variants
perform similarly, suggesting that the ST step does not require handpicking the training
distortions, and can be performed successfully with any distortion with sufficiently high
intensity.

83

Appendix A. Appendix

0 1 2 3 4 5
Shift Intensity

0.10

0.15

0.20

` 1
er
ro
r

inv. var. merging (ST #1)
inv. var. merging (ST #2)
inv. var. merging (ST #3)
inv. var. merging (no ST)

Figure A.1: Sigma training does not require handpicking the training distortions.
We consider inverse variance merging with four paths (direct, grey, sharpened, edge) for
reshading prediction. ST #1 is trained with Gaussian blur and Gaussian noise, while
ST #2 is trained with speckle noise and pixelate distortions, and ST #3 is trained
with pixelate and Gaussian blur distortions (no ST shows the results when there is no
sigma training). The evaluations are performed over nine unseen distortions (shot noise,
impulse noise, defocus blur, glass blur, contrast, brightness, saturate, jpeg compression,
spatter) for these variants. As can be seen, sigma training performs similarly, suggesting
that any distortion with sufficiently high intensity works.

Figure A.2: Deep ensembles trained with consistency constraints and sigma
training (ST). The only remaining difference between deep ensembles and ours is in
utilizing middle domains. Our method outperforms for both inv. var. merging (left)
and uniform merging (right).

Performance on Imagenet-C, CIFAR-100-C, and CIFAR-10-C

The absolute errors on ImageNet-C, CIFAR-100-C, and CIFAR-10-C are given in Ta-
ble A.2. For deep ensembles and our method, we use the same backbone as the baseline
ResNet model. Our method significantly outperforms the baselines for all three classifi-
cation tasks.

84

A.1 Ensembling diverse predictions

DomainBest # paths 1 2 3 4 5 6 7 8
Direct × D,R D,R,N D,R,N D,R,N D,R,N D,R,N D,R,N

2D Edge × × D,N D,R,N D,R,N D,R,N D,R,N D,R,N
Lap. Edge × × × × × D,N D,N D,R,N

Emboss × N × N D,N R,N D,R,N D,R,N
Greyscale × × R D D,R D,R D,R,N D,R,N
Low pass D,R,N D,R,N D,R,N D,R,N D,R,N D,R,N D,R,N D,R,N

Sharpened × × × R R R R D,R,N
Wavelet × × × × N D,N D,R,N D,R,N

Figure A.3: Statistically informed guesses (“Blind Guess") on the Taskonomy
dataset for depth, normal, and reshading tasks. Top row shows the predicted mean and
the bottom row shows the predicted standard deviation. The predictions minimize the
NLL loss on the training dataset.

Taskonomy Dataset Replica Dataset
Depth Reshade Normal Depth Reshade Normal

Method Perceptual error Direct Perceptual error Direct Perceptual error Direct Perceptual error Direct Perceptual error Direct Perceptual error Direct
Reshade Normal error Depth Normal error Reshade Depth error Reshade Normal error Depth Normal error Reshade Depth error

Blind guess 25.517 21.232 7.951 9.068 19.939 21.639 31.529 5.123 16.169 21.001 22.397 5.307 4.778 16.460 16.986 28.424 3.390 15.012
Baseline UNet 9.227 8.933 2.187 2.829 6.379 6.807 19.376 4.587 4.590 11.133 7.608 2.517 2.252 5.731 8.867 18.211 3.298 4.413

Baseline UNet (cons.) 8.121 7.409 2.198 2.360 5.494 7.252 8.121 1.784 4.957 9.172 6.192 2.090 2.535 5.288 9.051 8.915 1.377 4.405
Multi-domain 10.732 10.548 2.435 2.911 6.483 6.963 18.978 4.633 4.700 12.461 9.606 2.215 2.270 5.954 8.946 17.664 3.489 4.458

Multi-task 11.080 10.542 2.333 3.045 6.742 6.958 22.117 5.194 5.199 11.840 9.270 1.814 1.984 5.778 9.423 22.487 4.516 5.300
Deep ensembles 8.934 8.192 2.207 2.779 5.983 6.470 19.914 4.810 4.448 9.755 6.965 1.925 2.018 5.497 8.513 19.557 3.788 4.305

Deep ensembles (cons.) 8.348 7.338 2.289 2.279 5.184 6.730 8.110 1.960 4.644 9.068 5.871 2.014 2.176 4.966 8.614 9.917 1.874 4.271
Ours (Uniform merging) 8.522 7.510 2.359 2.433 5.435 6.929 8.523 2.338 4.770 8.884 5.960 1.989 2.080 5.029 8.484 10.258 2.264 4.392
Ours (Inv. var. merging) 8.542 7.877 2.301 2.339 5.389 6.787 8.342 2.044 4.685 9.443 6.798 1.980 2.194 5.051 8.451 9.539 1.734 4.220
Ours (Network merging) 8.791 8.123 2.337 2.404 5.456 6.918 8.290 1.946 4.678 9.886 6.986 2.167 2.127 5.036 8.469 9.279 1.529 4.194

Table A.4: Robustness on out-of-distribution data did not come at the cost of
degrading performance on in-distribution data. The table provides quantitative
evaluation on undistorted Taskonomy and Replica test sets. Results are reported for
depth, reshading, and normal using direct and perceptual error metrics. The perceptual
metrics evaluate the target prediction in another domain, similar to [72]. ℓ1 losses
are reported, multiplied by 100 for readability. Our proposed method outperforms on
the perceptual metrics while being comparable in the direct metrics, showing that the
performance does not decrease on undistorted data while being robust against distribution
shifts.

shot noise

speckle noise

impulse noise

defocus blur

contrast

brightnesssaturate

jpeg compression

pixelate

spatter

glass blur

0 1 2 3 4 5 6 7 8

2D edges
Wavelet
Direct
Emboss
Greyscale
Low-pass
Laplace edges
Sharpened

Depth Reshade
shot noise

speckle noise

impulse noise

defocus blur

contrast

brightnesssaturate

jpeg compression

pixelate

spatter

glass blur

0 1 2 3 4 5 6 7 8

shot noise

speckle noise

impulse noise

defocus blur

contrast

brightnesssaturate

jpeg compression

pixelate

spatter

glass blur

0 1 2 3 4 5 6 7 8

Normals

Figure A.4: Importance of each middle domain for different distortion. The
order of the best performing paths for depth, reshade, and surface normals predictions
for each of the distortions, with 8 denoting the most important and 1 the least important
one, is shown. This is an extension of Fig. 7b in the main paper with reshade and depth
target domains.

85

Appendix A. Appendix

A.1.2 Qualitative Results

Video Evaluation

We perform video evaluations on distorted and undistorted video clips to further evaluate
the performance of our method against several baselines. We strongly recommend
watching them.

Distorted Images and External Queries

We provide qualitative results in Figure A.10 on out of distribution data that is markedly
different from those seen during training to demonstrate the generalizability of our method.
Furthermore, in Figures A.11,A.12,A.13,A.14 we provide additional prediction results for
distorted Replica test images for normals, reshading, and depth prediction.

A.1.3 Further Method Details

Formulation for Learning Based Merging

Multi-modal predictions: For ill-posed problems such as ours, adopting mixture
models allows us to capture inherent ambiguity in the data by assuming that there are
several possible distributions that could have generated the observed data (e.g. there
can be several depth estimates that corresponds to a given RGB image). Given K

random variables, their mixing weights {ŵi}K
i=1 reflect the uncertainty over which of the

K variables generated the observed data. From Sec. 3.1 in the main paper, we estimate
the parameters of these K distributions, {ẑi, ŝi}K

i=1, then function m learns to output
the mixing weights given these set of parameters. Our final distribution is a mixture of
Laplacians,

hMix(z) =
∑

i

ŵih(z|ẑi, ŝi) (A.1)

where h(z|ẑi, ŝi) is the probability density function of a Laplace distribution with
mean ẑi and scale exp(ŝi). The final loss is the NLL of the multi-modal prediction
Lm = 1

N

∑N
n=1 − log hMix(zn).

Mixture-weights: The final prediction is computed as the weighted average of mixture
components’ means using the weights ŵi as in Eq. A.1. We approximate the weights for a
path to be proportional to its mixture probability distribution function (p.d.f.) evaluated
at its estimate ẑi, i.e. ŵi ∝ hMix(ẑi). To enforce that hMix is a p.d.f, we require ŵi ≥ 0
and ∑

i ŵi = 1.

Learning based merging: We consider a stacking model [98] that obtains the final
predictions given the outputs from each path using the predicted mixture weights ŵi. It
has the advantage that the loss is over the entire image, thus, taking into account its
spatial structure. This option is denoted as Network merging.

86

A.1 Ensembling diverse predictions

Training with Cross-Task Consistency Loss

The proposed ensembling method can be further augmented with “cross-task consistency
constraints" [72], to ensure that predictions from the different paths are in cross-task
agreement. While this is not a fundamental step for the method, it yields better accuracy
especially in fine-grained regions. Following [72], we consider a set of perceptual loss
networks on the outputs of g. This corresponds to minimizing an ℓ1 error between the
predictions obtained by the model and those from the ground truth in the perceptual
domain.

Adversarial Attack/Defence Setup

To generate the I-FGSM attack [10], we apply the following:

X0 = X, (A.2)
Xn+1 = ClipX,ϵ{Xn + αsign(∇J(Xn, y))} (A.3)

Similar to [10], we set α = 1 in our experiments and the number of iterations given by
N = min(4 + ϵ, 1.25ϵ). For adversarial training, we finetune the Baseline UNets with an
equal number of adversarial and clean examples in the training data. The former were
generated from a I-FSGM attack with ϵ = (0 − 16].

Table A.5 shows that the proposed method outperforms the baselines against corruptions
generated with I-FSGM.

Blind Guess Baseline

This baseline is computed using the following formula:

g∗ = min
g

LNLL (A.4)

The resulting “blind guess" minimizes expected NLL loss on the training dataset. Hence
it is a statistically informed guess which does not look at the input for predicting the
label. A visualization of these guesses for depth, normal, and reshading are provided in
Figure A.3.

A.1.4 Middle domain definitions

Here we define the middle domains. They can be extracted with standard libraries such
as OpenCV [93], Scikit-Image [277], or implemented in Pytorch [217]. Our Pytorch
implementation for them can be found here.

2D edges are from the output of a Canny edge detector without non-maximum suppres-
sion.

87

https://github.com/EPFL-VILAB/XDEnsembles

Appendix A. Appendix

Normal Reshade Depth
Methodϵ 2 4 8 16 2 4 8 16 2 4 8 16

Baseline UNet 8.23 11.53 13.03 14.37 17.92 22.78 27.26 34.40 5.50 6.76 8.36 9.80
Deep ensembles 7.49 11.13 13.36 15.65 15.66 21.95 27.75 34.98 5.45 6.68 8.27 10.52

Uniform merging 7.77 9.48 11.00 13.21 15.50 18.61 21.32 27.20 4.85 5.45 5.97 7.36
Inv. var. merging 7.60 8.89 10.40 12.77 15.56 16.55 18.93 22.01 4.94 4.99 5.93 6.75

Adv. T. (lower bound error) 5.78 5.74 5.45 5.53 9.39 8.98 8.07 8.20 2.23 2.27 2.39 2.74

Table A.5: Robustness against adversarial corruptions. ℓ1 errors for surface normals,
reshade, and depth under adversarial attacks are reported. (Lower is better. Errors
are multiplied by 100 for readability.) The proposed method significantly improves
robustness against I-FGSM [10] based attacks without adversarial training, compared to
the baselines. The last row shows the error for a model that has undergone adversarial
training [11] with the same attacks as those evaluated at test time, hence it gives a lower
bound on the error.

Greyscale images are computed by taking the average over the R, G, and B channels of
the input image.

Embossed: We perform the filtering using four emboss kernels with different directions
and concatenate the embossed outputs.

Laplace edges: Similar to 2D edges, we perform the filtering using a Laplacian fil-
ter.

Low-pass filtered: We perform a low pass filtering with a Gaussian filter.

Sharpened: We sharpen the image by subtracting its low-pass filtered version and then
adding the original image.

Wavelet: We use the Daubechies-1 with 3 levels of decomposition to obtain wavelet
coefficients. We then perform bilinear upsampling on the low resolution coefficients to
have the same size as the original image.

A.1.5 Visualizations of Common Corruption on Taskonomy data

Common Corruptions [2] used during evaluation are shown for a sample Taskonomy
image in Figure A.15.

88

A.1 Ensembling diverse predictions

0 1 2 3 4 5
Shift Intensity

0.10

0.15

0.20

0.25
1e

rr
or

Depth Reshade
deep ensembles
uniform merging
inv. var. merging
net. merging
direct unet
direct unet (adv.t.)
multi-domain
multi-task

0 1 2 3 4 5
Shift Intensity

0.02

0.03

0.04

0.05

0.06

1e
rr

or

Reshade Depth

0 1 2 3 4 5
Shift Intensity

0.02

0.03

0.04

0.05

1e
rr

or

Normals Depth

0 1 2 3 4 5
Shift Intensity

0.08

0.10

0.12

0.14

0.16

0.18

1e
rr

or

Depth Normal

0 1 2 3 4 5
Shift Intensity

0.06

0.08

0.10

0.12

0.14

1e
rr

or

Reshade Normal

0 1 2 3 4 5
Shift Intensity

0.10

0.15

0.20

0.25

0.30

1e
rr

or

Normals Reshade

Figure A.5: Average ℓ1 loss over 11 unseen distortions in perceptual domains.
Similar to Fig. 6 in the main paper, this shows the performance for unseen distortions
where ℓ1 losses are computed in perceptual domains instead, e.g. for the top left plot, loss
in the reshade inferred out of the predicted depth is computed. The proposed ensembling
approaches are more robust against shift with increasing intensities in perceptual domains
as well.

0 1 2 3 4 5
Shift Intensity

0.02

0.03

0.04

0.05

0.06

0.07

1e
rr

or

Depth
deep ensembles
deep ensembles (cons)
ours
ours (no ST)
ours (no ST + no cons.)

0 1 2 3 4 5
Shift Intensity

0.10

0.15

0.20

1e
rr

or

Reshade

0 1 2 3 4 5
Shift Intensity

0.06

0.08

0.10

0.12

1e
rr

or

Normals

0 1 2 3 4 5
Shift Intensity

0.10

0.15

0.20

0.25

1e
rr

or

Depth Reshade
deep ensembles
deep ensembles (cons)
ours
ours (no ST)
ours (no ST + no cons.)

0 1 2 3 4 5
Shift Intensity

0.02

0.03

0.04

0.05

0.06

1e
rr

or

Reshade Depth

0 1 2 3 4 5
Shift Intensity

0.02

0.03

0.04

0.05

1e
rr

or

Normals Depth

0 1 2 3 4 5
Shift Intensity

0.08

0.10

0.12

0.14

1e
rr

or

Depth Normal
deep ensembles
deep ensembles (cons)
ours
ours (no ST)
ours (no ST + no cons.)

0 1 2 3 4 5
Shift Intensity

0.06

0.08

0.10

0.12

1e
rr

or

Reshade Normal

0 1 2 3 4 5
Shift Intensity

0.10

0.15

0.20

0.25

0.30

1e
rr

or

Normals Reshade

Figure A.6: Average ℓ1 loss over 11 unseen distortions in target and perceptual
domains. This shows the performance in target and perceptual domains when the
proposed method does not use sigma training or training with consistency constraints.

89

Appendix A. Appendix

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

shot_noise
inv. var. merging (ours)
net. merging (ours)
uniform merging (ours)
deep ensembles
direct unet
direct unet (adv.t.)
direct unet (style)
multi-domain
multi-task

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14 speckle_noise

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14 impulse_noise

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14 defocus_blur

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

glass_blur

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14 contrast

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14 brightness

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14 saturate

0 1 2 3 4 5
Shift Intensity

0.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

jpeg_compression

0 1 2 3 4 5
Shift Intensity

0.04

0.06

0.08

0.10

0.12

0.14 pixelate

0 1 2 3 4 5
Shift Intensity

0.04

0.06

0.08

0.10

0.12

0.14 spatter

0 1 2 3 4 5
0.075

0.100

0.125

0.150

0.175

0.200

1 e
rro

r

shot_noise
inv. var. merging (ours)
net. merging (ours)
uniform merging (ours)
deep ensembles
direct unet
direct unet (adv.t.)
direct unet (style)
multi-domain
multi-task

0 1 2 3 4 5
0.075

0.100

0.125

0.150

0.175

0.200
speckle_noise

0 1 2 3 4 5
0.075

0.100

0.125

0.150

0.175

0.200
impulse_noise

0 1 2 3 4 5
0.075

0.100

0.125

0.150

0.175

0.200
defocus_blur

0 1 2 3 4 5
0.075

0.100

0.125

0.150

0.175

0.200

1 e
rro

r

glass_blur

0 1 2 3 4 5
0.075

0.100

0.125

0.150

0.175

0.200
contrast

0 1 2 3 4 5
0.075

0.100

0.125

0.150

0.175

0.200
brightness

0 1 2 3 4 5
0.075

0.100

0.125

0.150

0.175

0.200
saturate

0 1 2 3 4 5
Shift Intensity

0.075

0.100

0.125

0.150

0.175

0.200

1 e
rro

r

jpeg_compression

0 1 2 3 4 5
Shift Intensity

0.075

0.100

0.125

0.150

0.175

0.200
pixelate

0 1 2 3 4 5
Shift Intensity

0.075

0.100

0.125

0.150

0.175

0.200
spatter

Figure A.7: ℓ1 error for each distortion for our method against several baselines
for normal and reshade task. This figure is an extension of Fig. 6 in the main paper
for individual distortions.

90

A.1 Ensembling diverse predictions

0 1 2 3 4 50.02

0.03

0.04

0.05

0.06

0.07

0.08

1 e
rro

r

shot_noise
inv. var. merging (ours)
net. merging (ours)
uniform merging (ours)
deep ensembles
direct unet
direct unet (adv.t.)
direct unet (style)
multi-domain
multi-task

0 1 2 3 4 50.02

0.03

0.04

0.05

0.06

0.07

0.08 speckle_noise

0 1 2 3 4 50.02

0.03

0.04

0.05

0.06

0.07

0.08 impulse_noise

0 1 2 3 4 50.02

0.03

0.04

0.05

0.06

0.07

0.08 defocus_blur

0 1 2 3 4 50.02

0.03

0.04

0.05

0.06

0.07

0.08

1 e
rro

r

glass_blur

0 1 2 3 4 50.02

0.03

0.04

0.05

0.06

0.07

0.08 contrast

0 1 2 3 4 50.02

0.03

0.04

0.05

0.06

0.07

0.08 brightness

0 1 2 3 4 50.02

0.03

0.04

0.05

0.06

0.07

0.08 saturate

0 1 2 3 4 5
Shift Intensity

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 e
rro

r

jpeg_compression

0 1 2 3 4 5
Shift Intensity

0.02

0.03

0.04

0.05

0.06

0.07

0.08 pixelate

0 1 2 3 4 5
Shift Intensity

0.02

0.03

0.04

0.05

0.06

0.07

0.08 spatter

Figure A.7: ℓ1 error for each distortion for our method against several baselines
for depth task. This figure is an extension of Fig. 6 in the main paper for individual
distortions.

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

shot_noise
deep ensembles
deep ensembles (cons)
ours
ours (no ST)
ours (no ST + no cons.)

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

speckle_noise

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

impulse_noise

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

defocus_blur

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

glass_blur

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

contrast

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

brightness

0 1 2 3 4 50.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

saturate

0 1 2 3 4 5
Shift Intensity

0.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

jpeg_compression

0 1 2 3 4 5
Shift Intensity

0.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

pixelate

0 1 2 3 4 5
Shift Intensity

0.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

spatter

Figure A.8: ℓ1 error for each distortion for our method without sigma training
and consistency training stages. This figure is an extension of Fig. 7a (top) in the
main paper for individual distortions.

91

Appendix A. Appendix

0 1 2 3 4 50.06

0.08

0.10

0.12

0.14

0.16

1 e
rro

r

shot_noise
deep ensembles
deep ensembles (cons)
ours
ours (no ST)
ours (no ST + no cons.)

0 1 2 3 4 50.06

0.08

0.10

0.12

0.14

0.16

1 e
rro

r

speckle_noise

0 1 2 3 4 50.06

0.08

0.10

0.12

0.14

0.16

1 e
rro

r

impulse_noise

0 1 2 3 4 50.06

0.08

0.10

0.12

0.14

0.16

1 e
rro

r

defocus_blur

0 1 2 3 4 50.06

0.08

0.10

0.12

0.14

0.16

1 e
rro

r

glass_blur

0 1 2 3 4 50.06

0.08

0.10

0.12

0.14

0.16
1 e

rro
r

contrast

0 1 2 3 4 50.06

0.08

0.10

0.12

0.14

0.16

1 e
rro

r

brightness

0 1 2 3 4 50.06

0.08

0.10

0.12

0.14

0.16

1 e
rro

r

saturate

0 1 2 3 4 5
Shift Intensity

0.06

0.08

0.10

0.12

0.14

0.16

1 e
rro

r

jpeg_compression

0 1 2 3 4 5
Shift Intensity

0.06

0.08

0.10

0.12

0.14

0.16

1 e
rro

r

pixelate

0 1 2 3 4 5
Shift Intensity

0.06

0.08

0.10

0.12

0.14

0.16

1 e
rro

r

spatter

0 1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 e
rro

r

shot_noise
deep ensembles
deep ensembles (cons)
ours
ours (no ST)
ours (no ST + no cons.)

0 1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 e
rro

r

speckle_noise

0 1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 e
rro

r

impulse_noise

0 1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 e
rro

r

defocus_blur

0 1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 e
rro

r

glass_blur

0 1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 e
rro

r

contrast

0 1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 e
rro

r

brightness

0 1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 e
rro

r

saturate

0 1 2 3 4 5
Shift Intensity

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 e
rro

r

jpeg_compression

0 1 2 3 4 5
Shift Intensity

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 e
rro

r

pixelate

0 1 2 3 4 5
Shift Intensity

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 e
rro

r

spatter

Figure A.8: ℓ1 error for each distortion for our method without sigma training
and consistency training stages for reshade and depth task. This figure is an
extension of Fig. 7a (top) in the main paper for individual distortions.

92

A.1 Ensembling diverse predictions

1 2 3 4 5 6 7 80.04

0.06

0.08

0.10

0.12

0.14
1 e

rro
r

shot_noise
deep ensembles
uniform merging
inv. var. merging

1 2 3 4 5 6 7 80.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

speckle_noise

1 2 3 4 5 6 7 80.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

impulse_noise

1 2 3 4 5 6 7 80.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

defocus_blur

1 2 3 4 5 6 7 80.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

glass_blur

1 2 3 4 5 6 7 80.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

contrast

1 2 3 4 5 6 7 80.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

brightness

1 2 3 4 5 6 7 80.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

saturate

1 2 3 4 5 6 7 8
Number of Paths

0.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

jpeg_compression

1 2 3 4 5 6 7 8
Number of Paths

0.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

pixelate

1 2 3 4 5 6 7 8
Number of Paths

0.04

0.06

0.08

0.10

0.12

0.14

1 e
rro

r

spatter

1 2 3 4 5 6 7 80.08

0.10

0.12

0.14

0.16

0.18

0.20

1 e
rro

r

shot_noise
deep ensembles
uniform merging
inv. var. merging

1 2 3 4 5 6 7 80.08

0.10

0.12

0.14

0.16

0.18

0.20

1 e
rro

r

speckle_noise

1 2 3 4 5 6 7 80.08

0.10

0.12

0.14

0.16

0.18

0.20

1 e
rro

r

impulse_noise

1 2 3 4 5 6 7 80.08

0.10

0.12

0.14

0.16

0.18

0.20

1 e
rro

r

defocus_blur

1 2 3 4 5 6 7 80.08

0.10

0.12

0.14

0.16

0.18

0.20

1 e
rro

r

glass_blur

1 2 3 4 5 6 7 80.08

0.10

0.12

0.14

0.16

0.18

0.20

1 e
rro

r

contrast

1 2 3 4 5 6 7 80.08

0.10

0.12

0.14

0.16

0.18

0.20

1 e
rro

r

brightness

1 2 3 4 5 6 7 80.08

0.10

0.12

0.14

0.16

0.18

0.20
1 e

rro
r

saturate

1 2 3 4 5 6 7 8
Number of Paths

0.08

0.10

0.12

0.14

0.16

0.18

0.20

1 e
rro

r

jpeg_compression

1 2 3 4 5 6 7 8
Number of Paths

0.08

0.10

0.12

0.14

0.16

0.18

0.20

1 e
rro

r

pixelate

1 2 3 4 5 6 7 8
Number of Paths

0.08

0.10

0.12

0.14

0.16

0.18

0.20

1 e
rro

r

spatter

Figure A.9: Robustness as a function of number of paths for normal and reshade
tasks. This is an extension of Fig. 7a (bottom) in the main paper and shows the ℓ1 error
for each unseen distortion as we increase the number of paths. For deep ensembles, this
corresponds to increasing the number of ensemble components. The proposed method
(inv. var. merging) and its simpler variants (uniform merging) consistently outperforms
deep ensembles.

93

Appendix A. Appendix

1 2 3 4 5 6 7 80.02

0.03

0.04

0.05

0.06

0.07

1 e
rro

r

shot_noise
deep ensembles
uniform merging
inv. var. merging

1 2 3 4 5 6 7 80.02

0.03

0.04

0.05

0.06

0.07

1 e
rro

r

speckle_noise

1 2 3 4 5 6 7 80.02

0.03

0.04

0.05

0.06

0.07

1 e
rro

r

impulse_noise

1 2 3 4 5 6 7 80.02

0.03

0.04

0.05

0.06

0.07

1 e
rro

r

defocus_blur

1 2 3 4 5 6 7 80.02

0.03

0.04

0.05

0.06

0.07

1 e
rro

r

glass_blur

1 2 3 4 5 6 7 80.02

0.03

0.04

0.05

0.06

0.07
1 e

rro
r

contrast

1 2 3 4 5 6 7 80.02

0.03

0.04

0.05

0.06

0.07

1 e
rro

r

brightness

1 2 3 4 5 6 7 80.02

0.03

0.04

0.05

0.06

0.07

1 e
rro

r

saturate

1 2 3 4 5 6 7 8
Number of Paths

0.02

0.03

0.04

0.05

0.06

0.07

1 e
rro

r

jpeg_compression

1 2 3 4 5 6 7 8
Number of Paths

0.02

0.03

0.04

0.05

0.06

0.07

1 e
rro

r

pixelate

1 2 3 4 5 6 7 8
Number of Paths

0.02

0.03

0.04

0.05

0.06

0.07

1 e
rro

r

spatter

Figure A.9: Robustness as a function of number of paths for depth task. This is
an extension of Fig. 7a (bottom) in the main paper and shows the ℓ1 error for each unseen
distortion as we increase the number of paths. For deep ensembles, this corresponds
to increasing the number of ensemble components. The proposed method (inv. var.
merging) and its simpler variants (uniform merging) consistently outperforms deep
ensembles.

Figure A.10: Qualitative results on undistorted external query images for the proposed
method and baselines trained with (Cons) and without (No Cons) consistency constraints.

94

A.1 Ensembling diverse predictions

Figure A.11: Qualitative results on Replica images with pixelate distortion (shift intensity
3) for the proposed method and baselines trained with (Cons) and without (No Cons)
consistency constraints.

95

Appendix A. Appendix

Figure A.12: Qualitative results on Replica images with shot noise distortion (shift
intensity 3) for the proposed method and baselines trained with (Cons) and without (No
Cons) consistency constraints.

96

A.1 Ensembling diverse predictions

Figure A.13: Qualitative results on Replica images with defocus blur distortion (shift
intensity 3) for the proposed method and baselines trained with (Cons) and without (No
Cons) consistency constraints.

97

Appendix A. Appendix

Figure A.14: Qualitative results on Replica images with JPEG distortion (shift intensity
3) for the proposed method and baselines trained with (Cons) and without (No Cons)
consistency constraints.

98

A.1 Ensembling diverse predictions

Figure A.15: Visuals of common corruptions used for a single image sample with
increasing severities from left to right.

99

Appendix A. Appendix

A.2 Fast adaptation using test-time feedback

A.2.1 Monocular Depth

Training Details

All networks for our method and baselines use the same UNet architecture [94] and were
trained with AMSGrad [95], with a learning rate of 5 × 10−4, weight decay 2 × 10−6 and
batch size of 64.

Rapid Network Adaptation (RNA). We aim to fuse the additional information
provided by g at test-time into fθ via a small network, hϕ. We insert k Feature-wise
Linear Modulation (FiLM) layers into the network fθ, we denote this network as fθ̂.
Each FiLM layer performs the following operation FiLM(xi; γi, βi) = γi ⊙ xi + βi, where
xi is the activation of layer i. For depth estimation, hϕ only predicts {βi}k

i=1, thus,
γi = 1, i = 1 . . . k as it gave similar results with fewer parameters. hϕ consists of an
encoder with 3 downsampling blocks and k convolution layers (one for each FiLM layer)
to predict the βi parameters. hϕ was trained by randomly masking the GT, with sparsity
ratio ranging from 0% to 0.25%. hϕ is trained using the following loss function:

min
ϕ

L =
N∑

n=1
∥fθ(xn; hϕ(yn ⊙ m̄n)) − yn∥1 (A.5)

where m̄n is the mask that simulates the sparsity pattern that will be encountered at
test-time. If g extracts sparse depth via SFM, we use the model from [278] to extract
keypoints locations to generate m̄. This creates a sparse binary mask that we apply on
the GT. We then add Gaussian noise to yn ⊙ m̄n to account for potential outliers. At
test-time, RNA only requires a forward pass through hϕ and fθ̂.

Test-Time Optimization (TTO) details. We use the same optimization parameters
as in training time. Optimization is done for 10 iterations for each batch. With the
exception of the TENT baseline, all parameters of the model were updated. For TENT,
only the GroupNorm parameters were updates as it results in more stable optimization.
Test-Time Optimization minimizes the following loss function:

min
θ̂

L =
N∑

n=1
∥fθ(xn) ⊙ mn − zn∥1. (A.6)

where N is the number of datapoints, ⊙ is the element-wise product and θ̂ is the subset
of parameters of fθ that is updated i.e., θ̂ ⊆ θ.

100

A.2 Fast adaptation using test-time feedback

Additional Results

RNA with existing supervision signals. We show that one can train a controller
network to use existing adaptation signals, e.g. prediction entropy and Sobel edges to
get better performance at test time. As described in Sec. 4.1 in the main paper, to use
supervision from entropy, we train a Baseline UNet model with NLL loss. The model
outputs the prediction and an uncertainty estimate of the predictions. We also show
results with the model from [142] with calibrated uncertainty estimates as it was shown
to predict uncertainties that are better correlated with error. The results are shown in
Table A.6. For all cases, RNA improves on the performance over the baseline, even if the
adaptation signal is poor. This is in contrast to TTO, where the performance can be
worse after adaptation, e.g. after optimizing entropy.

Method\Supervision Sobel edge Entropy Entropy (calibrated) Sparse GT

RNA 0.29 0.07 0.12 4.06
TTO (GN) -0.02 -0.11 0.04 0.55
TTO (F) 0.06 -1.21 0.06 2.76

Table A.6: RNA can be used with existing supervision signals. ℓ1 errors on the
depth prediction task. The numbers are relative to the baseline error (i.e. the difference
between that method’s ℓ1 error and that of the pre-adaptation baseline’s). F denotes
TTO by optimizing all parameters and GN denotes TTO by optimizing only group
normalization parameters.

Controlling for different number of parameters. Table A.7 shows the results on
Common Corruptions applied to Taskonomy test set. All methods have the same archi-
tecture, thus, same number of parameters. RNA still outperforms, thus, its performance
is not due to extra parameters or architecture.

Shift Pre-adaptation
Baseline Densification TTO RNA

CC 0.045 0.023 0.019 0.018

Table A.7: Controlling for number of parameters. ℓ1 errors (multiplied by 100 for
readability) on the depth estimation task, evaluated on the Taskonomy test set under a
subset of common corruptions. Each method is using the same architecture and number
of parameters. The adaptation signal here is masked GT, fixed at 0.05% of valid pixels.

Implementations of RNA with different architectures. We experimented with
several versions of RNA. Instead of adding FiLM layers to adapt fθ (denoted as FiLM-f),
we also added FiLM layers to a UNet model that is trained to update the input image
x (denoted as FiLM-x). For FiLM-x, only x is updated and there is no adaptation on
fθ. Lastly, as Hypernetworks [145] have been shown to be expressive and suitable for
adaptation, we trained a HyperNetwork, in this case an MLP, to predict the weights
of a 3-layer convolutional network that updates x (denoted as HyperNetwork-x). In all
cases, RNA takes in the sparse error, i.e., the difference between the predictions and the

101

Appendix A. Appendix

adaption signal, as opposed to separate inputs as done in the main paper. The results of
adaptation with these variants of RNA are shown in Table A.8. The FiLM-f variant
performed best, thus, we adopted it as our main architecture.

Method\Shift None Taskonomy-CC Taskonomy-3DCC Hypersim BlendedMVG

Pre-adaptation 0.027 0.057 0.048 0.336 3.450
RNA (HyperNetwork-x) 0.019 0.041 0.033 0.257 2.587
RNA (FiLM-x) 0.019 0.039 0.033 0.279 2.636
RNA (FiLM-f) 0.013 0.024 0.020 0.198 2.310

Table A.8: RNA with different architectures. ℓ1 errors on the depth estimation task
under distribution shifts are reported. The adaptation signal here is masked GT, fixed
at 0.05% of valid pixels.

RNA performs better than training a single model that takes as input the
RGB image and sparse supervision concatenated. We call this model Multi-
domain. For 0.05% GT supervision, RNA has a much better performance, with an
average loss over all distortions and severities of 0.0179 while the multi-domain model
has an average loss of 0.0255 (see Fig. A.16).

Results for different levels of GT supervision. In Fig. A.16, we show how the error
changes with increasing GT supervision for our proposed methods and the baselines.
Note that for the two RNA variants (frozen f and jointly trained f), and multi-domain
model, we also included the case where only the supervision signal z in passed as input
to hϕ. These methods have been post-fixed with ‘z input only’ in the legend.

Model-based RNA. During training of RNA, we applied several augmentations on
both x (speckle noise, Gaussian noise, spatter) and y (affine transformation). The
augmentations on x are those from the validation set of Common Corruptions [2].
Training with validation corruptions has also been done in [41]. The motivation for y

augmentation is that there is a scale ambiguity for monocular depth estimation. Thus,
we can change the scale of the ground truth depth label, while keeping x the same, this
trains RNA to predict depth values in different ranges. We call the parameters of these
augmentations e.g., the kernel size for Gaussian blur, environmental parameters.

We trained RNA to predict environmental parameters, and to use these parameters
for adaptation. Thus, compared to the variants of RNA mentioned before, we are now
forcing RNA to learn a model of the environment. Training is done in several stages.
First, we trained h1

ϕ to take in environmental parameters and update x. This is akin
to a controller. Next, we train h2

ϕ to predict these environment parameters from the
adaptation signal and predictions, akin to a sensor. Finally, we finetune both h1

ϕ and h2
ϕ.

Thus, hϕ = h2
ϕ ◦h1

ϕ. This model is denoted as (model-based). We also trained a version of
this with a single training stage, i.e., hϕ is not forced to learn to predict the environment
parameters (denoted as model-free). The results are shown in Tab. A.9. Although the
performance of both version of RNA are similar, we believe this is an interesting future
direction.

102

A.2 Fast adaptation using test-time feedback

Method\Shift None Taskonomy-CC Taskonomy-3DCC Hypersim BlendedMVG

Pre-adaptation 0.025 0.053 0.045 0.336 3.450
RNA (model-based) 0.020 0.042 0.035 0.212 2.281
RNA (model-free) 0.020 0.041 0.033 0.215 2.326

Table A.9: Comparison of model-based and model-free versions of RNA. ℓ1
errors on the depth estimation task, under distribution shifts. The adaptation signal
here is masked GT, fixed at 0.05% of valid pixels.

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

gaussian_noise,shot_noise,impulse_noise
Pre-adaptation Baseline
RNA (frozen f, z input only)
RNA (frozen f)
RNA (jointly trained f)
RNA (jointly trained f, z input only)
Multi-domain (z input only)
Multi-domain
Densification
TTO (episodic)
TTO (online)

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

defocus_blur,glass_blur,motion_blur,zoom_blur

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

contrast,jpeg_compression,pixelate

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

fog,frost,snow,brightness

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.01

0.02

0.03

0.04

0.05
1 E

rro
r

0.00 0.05 0.10 0.15 0.20 0.25
% GT supervision

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.00 0.05 0.10 0.15 0.20 0.25
% GT supervision

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.00 0.05 0.10 0.15 0.20 0.25
% GT supervision

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

0.00 0.05 0.10 0.15 0.20 0.25
% GT supervision

0.01

0.02

0.03

0.04

0.05

1 E
rro

r

Figure A.16: ℓ1 error vs different levels of GT supervision. These results are on
Taskonomy-CC data, as described in Sec. 4.3 in the main paper. Each curve shows an
average over all the distortions listed in the title.

Qualitative results. We provide more qualitative results in Fig. A.23 where our method
outperforms the baselines.

A.2.2 Optical Flow Experiments

To predict optical flow, we use a pre-trained RAFT model from [215]. We use sparse
optical flow as our supervision signal, attained from keypoint matching between images.
We perform TTO to adapt the model. We use the same episodes from Replica+CC
as described in Sec. 4.3 in the main paper. TTO was done for 10 iterations for each
episode, all parameters of the RAFT model were updated. Figure A.17 shows the results.

103

Appendix A. Appendix
ga

us
sia

n_
no

ise
sh

ot
_n

oi
se

sp
ec

kl
e_

no
ise

im
pu

lse
_n

oi
se

de
fo

cu
s_

bl
ur

co
nt

ra
st

br
ig

ht
ne

ss
sa

tu
ra

te
sp

at
te

r
gl

as
s_

bl
ur

m
ot

io
n_

bl
ur

zo
om

_b
lu

r
ga

us
sia

n_
bl

ur fo
g

av
er

ag
e0

2

4

6

8

10

12

14

1 E
rro

r

severity 1
baseline
TTO

ga
us

sia
n_

no
ise

sh
ot

_n
oi

se
sp

ec
kl

e_
no

ise
im

pu
lse

_n
oi

se
de

fo
cu

s_
bl

ur
co

nt
ra

st
br

ig
ht

ne
ss

sa
tu

ra
te

sp
at

te
r

gl
as

s_
bl

ur
m

ot
io

n_
bl

ur
zo

om
_b

lu
r

ga
us

sia
n_

bl
ur fo
g

av
er

ag
e0

2

4

6

8

10

12

14 severity 2

sh
ot

_n
oi

se
sp

ec
kl

e_
no

ise
im

pu
lse

_n
oi

se
de

fo
cu

s_
bl

ur
co

nt
ra

st
br

ig
ht

ne
ss

sa
tu

ra
te

sp
at

te
r

gl
as

s_
bl

ur
m

ot
io

n_
bl

ur
zo

om
_b

lu
r

ga
us

sia
n_

bl
ur fo
g

av
er

ag
e0

2

4

6

8

10

12

14 severity 3

Figure A.17: Quantiative results for optical flow. These results were attained from
Replica+CC data, as described in Sec 4.3 in the main paper.

Adaptation with TTO results in an 8.5% improvement over the baseline.

A.2.3 Dense 3D Reconstruction

Test-Time Optimization details. As mentioned in the main paper, we achieve multi-
view consistency using the same process as [179], where: 1. every pixel is backprojected
into 3D world-coordinates using the estimated depth and camera poses, 2. optical-flow
predictions are employed to establish dense correspondences across pixels, 3. weights of
the depth model are optimized to minimize the discrepancy between the estimated 3D
world coordinates of corresponding pixels.

We provide additional qualitative results and the corresponding error images in Fig. A.18.

A.2.4 Semantic Segmentation

Training Details

TTO. We optimize by SGD with 0.0001 learning rate, 0.9 momentum, batch size 2 for
10 iterations per batch.

TENT. Following [53], we optimize by SGD with 0.0001 learning rate, 0.9 momentum,
batch size 1. As TENT is unstable for online and multi-iteration optimization, we
restart the model after each batch, i.e. episodic optimization, and run 1 iteration per
batch.

TENT (all). In contrast to [53] which only updates batch normalization parameters
at test-time, we also included a TENT baseline that optimizes all parameters. We
optimize by SGD with 0.00001 learning rate, 0.9 momentum, batch size 1. We run the
optimization for each image for 10 iterations to be comparable to the TTO model. Note
that we reduced learning rate by a factor of 10 as TENT was unstable. Since TENT and
TENT (all) models perform similarly, we only show the TENT results in the main paper.
See A.2.4 for all results.

104

A.2 Fast adaptation using test-time feedback

Figure A.18: Extension of Fig. 4 from main paper to show more examples and error
maps.

RNA. As an encoder we used a small CNN with 3 downsampling blocks. We trained the
FiLM generator with frozen segmentation model on the clean COCO training dataset
with cross entropy losses. During the training we sparsify the target segmentation mask
uniformly in [0,30] pixels to generate sparse ground truth inputs to the encoder. We
optimize by Adam with 0.0001 learning rate and 0.0001 weight decay. We select the
model with highest mean IOU on the clean validation set. The model is trained with two
forward passes. During the first pass the input to FiLM encoder is sparse ground truth
and zeros as prediction. After this, in the second pass the encoder takes the sparse ground
truth and the prediction from the previous pass as input. We compute the cross-entropy
loss for the prediction of second pass.

Densification. It uses the same FCN-ResNet50 model as other baselines and is trained
with the same setup as RNA.

Additional Results

105

Appendix A. Appendix

Quantitative Results. We provide the results for mean IOU vs number of pixels for
different severities in Fig. A.24. Figures A.25, A.26, A.27, A.28, A.29, A.30, A.31 give a
breakdown of the performance for our methods and baselines for each corruption, severity
level, and number of pixel annotations.

Qualitative Results. We include additional qualitative comparisons between our
methods and baselines in Figures A.32, A.33, A.34.

A.2.5 Image classification

Generating Coarse Label Sets

One method to generate coarse label sets using WordNet tree [208] is proposed in [194].
This method and other clustering methods create imbalanced coarse labels and too
many ImageNet classes are assigned to coarse labels that are either too coarse or too
fine-grained (See Figure A.19 and Table A.14 for the statistics). As we aim to use coarse
supervision to adapt models at test-time, we focus on generating more balanced coarse
labels, as explained below.

To generate balanced coarse label sets, instead of going from top to bottom or bottom to
top for a fixed depth in WordNet tree, we follow a different approach. For each ImageNet
class we go up until we get to a hypernym that has a certain number of hyponyms that
are ImageNet classes. That number determines the coarsity level of the coarse label. To
achieve this, we use a priority-based selection criteria where we define certain ranges to
reach a given coarsity level. Using this approach, we created three different coarse sets
with 26, 45, and 85 coarse labels. See Tables A.10, A.11, A.12, A.13 for the coarse labels
and their IDs. The resulting sets are more balanced than the 127-label set provided
in [194]. See Figures A.19, A.20, A.21, A.22 and Table A.14 for more details about the
statistics of the coarse label sets.

Training Details

The baseline model used for classification is ResNet50 trained on ImageNet.

TTO. We optimize by SGD with 0.00025 learning rate, 0.9 momentum and batch size 64,
following [53]. The following loss function is used for TTO, which is a linear combination
of cross-entropy loss on the summation of probabilities of all of the classes in the coarse
label set, and the entropy of the predictions:

min
ϕ

L = − log
∑
c∈

pc + we

∑
c

−pc log pc (A.7)

where pc is the probability of class c and is the set of classes that are present in the
coarse label.

106

A.2 Fast adaptation using test-time feedback

TENT. We used the optimizer and parameters that were reported in [53] to adapt
TENT. For both TTO and TENT, we optimize the transformation parameters of the
normalization layers and estimate the normalization statistics from the current batch.
Note that for each batch we re-evaluate after the updates (in our experiments we run 1
iteration per batch) to get the final predictions.

RNA. We optimize by Adam with 0.0001 learning rate, 0.0001 weight decay, batch
size 64 and for about 50 epochs. The FiLM generator we used has an encoder-decoder
structure. The encoder has one hidden layer with 128 nodes and 64 nodes for the output
layer. The decoder for each FiLM layer has one hidden layer with 64 nodes and the
output size is equal to the number of FiLM layer parameters. The FiLM layers are
inserted between normalization layers and ReLUs. During training all of the model
parameters are fixed and only the FiLM generator parameters are being trained, and
cross-entropy loss is minimized.

Additional Results

In Figures A.35, A.36, A.37 we provide a breakdown of performance against individual
corruptions from ImageNet-C and ImageNet-3DCC using 26-,45-, and 85-way coarse
labels. We also included the results when we used 127-way coarse labels from [194]
in Fig. A.38. Note that this coarse set has imbalances as explained in A.2.5, yet our
methods can still benefit from it.

107

Appendix A. Appendix

n01428580 soft-finned fish
n01482330 shark

n01495701 ray
n01503061 bird

n01629276 salamander
n01639765 frog

n01662784 turtle
n01674990 gecko

n01676755 iguanid
n01685439 teiid lizard

n01687665 agamid
n01689411 anguid lizard

n01691951 venomous lizard
n01692864 lacertid lizard

n01693783 chameleon
n01694709 monitor

n01697178 crocodile
n01698434 alligator

n01703569 ceratopsian
n01726692 snake

n01767661 arthropod
n01861778 mammal

n01909422 coelenterate
n01922303 worm

n01940736 mollusk
n02316707 echinoderm

n02512938 food fish
n02605316 butterfly fish

n02606384 damselfish
n02638596 ganoid

n02642644 scorpaenid
n02652668 plectognath
n02807260 bath linen

n02856463 board

n02858304 boat
n02924116 bus

n02942699 camera
n02954340 cap

n03035510 cistern
n03039947 cleaning implement

n03094503 container
n03101156 cooker

n03122748 covering
n03151500 cushion
n03183080 device
n03236735 dress

n03241093 drill rig
n03257586 duplicator
n03278248 electronic

equipment
n03294833 eraser
n03309808 fabric

n03405725 furniture
n03414162 game equipment

n03419014 garment
n03441112 glove

n03446832 golf equipment
n03450516 gown

n03472232 gymnastic
apparatus

n03476083 hairpiece
n03497657 hat

n03510583 heavier-than-air
craft

n03513137 helmet
n03528263 home appliance

n03540267 hosiery
n03597469 jewelry

n03613592 key
n03619396 kit

n03664943 ligament
n03666917 lighter-than-air

craft
n03678362 litter

n03764276 military vehicle
n03825080 nightwear

n03837422 oar
n03880531 pan

n03896233 passenger train
n03906997 pen

n03961939 platform
n03964744 plaything

n03990474 pot
n04015204 protective garment
n04077734 rescue equipment

n04099429 rocket
n04100174 rod

n04125853 safety belt
n04128837 sailing vessel

n04185071 sharpener
n04194289 ship
n04235291 sled

n04264914 spacecraft
n04285622 sports implement

n04317420 stick
n04341686 structure

n04377057 system
n04447443 toiletry

n04451818 tool
n04500060 turner

n04509592 uniform
n04571292 weight

n06595351 magazine
n06793231 sign
n06874019 light
n07557434 dish
n07560652 fare

n07579575 entree
n07582609 dip

n07611358 frozen dessert
n07612996 pudding

n07680932 bun
n07681926 cracker

n07683786 loaf of bread
n07707451 vegetable

n07800740 fodder
n07829412 sauce

n07882497 concoction
n07891726 wine
n07929519 coffee
n07930554 punch

n09214060 bar
n09287968 geological

formation
n09289709 globule
n09820263 athlete
n10019552 diver

n10401829 participant
n11669921 flower
n12992868 fungus

n13134947 fruit

n15074962 tissue

n00002137 abstraction
n00004475 organism

n00007347 causal agent
n00020090 substance

n00020827 matter
n00021265 food

n00021939 artifact
n01503061 bird

n01525720 oscine
n01627424 amphibian

n01661091 reptile
n01661818 diapsid
n01674464 lizard
n01726692 snake

n01767661 arthropod
n01844917 aquatic bird

n01861778 mammal
n01886756 placental

n01905661 invertebrate
n02000954 wading bird

n02075296 carnivore
n02083346 canine

n02084071 dog

n02087122 hunting dog
n02087551 hound
n02092468 terrier

n02098550 sporting dog
n02103406 working dog
n02104523 shepherd dog

n02120997 feline
n02159955 insect
n02329401 rodent

n02370806 ungulate
n02394477 even-toed ungulate

n02469914 primate
n02484322 monkey

n02512053 fish
n02528163 teleost fish

n02778669 ball
n02913152 building

n02958343 car
n03051540 clothing

n03076708 commodity
n03094503 container

n03100490 conveyance
n03122748 covering

n03125870 craft
n03183080 device

n03257877 durables
n03278248 electronic

equipment
n03294048 equipment

n03297735 establishment
n03309808 fabric

n03405265 furnishing
n03405725 furniture

n03414162 game equipment
n03419014 garment

n03528263 home appliance
n03563967 implement
n03574816 instrument

n03575240 instrumentality
n03699975 machine

n03733925 measuring
instrument

n03738472 mechanism
n03791235 motor vehicle

n03800933 musical instrument
n03839993 obstruction

n04014297 protective covering
n04081844 restraint

n04170037 self-propelled
vehicle

n04285146 sports equipment
n04341686 structure
n04447443 toiletry

n04451818 tool
n04524313 vehicle
n04530566 vessel
n04531098 vessel

n04576211 wheeled vehicle
n04586932 wind instrument

n07570720 nutriment
n07705931 edible fruit
n07707451 vegetable
n09287968 geological

formation
n12992868 fungus

n13134947 fruit

Table A.11: The classes used in the 85-coarse label set. See Figure A.20 for more
details.

n00002137 abstraction
n00004475 organism

n00007347 causal agent
n00019128 natural object

n00020827 matter
n00021939 artifact

n01503061 bird
n01627424 amphibian

n01661091 reptile
n01861778 mammal
n01886756 placental

n01905661 invertebrate

n02075296 carnivore
n02083346 canine

n02084071 dog
n02087551 hound
n02092468 terrier

n02098550 sporting dog
n02103406 working dog

n02120997 feline
n02370806 ungulate

n02441326 musteline mammal
n02469914 primate

n02512053 fish

n03093574 consumer goods
n03094503 container

n03100490 conveyance
n03122748 covering
n03183080 device

n03294048 equipment
n03309808 fabric

n03405265 furnishing
n03563967 implement
n03574816 instrument

n03575240 instrumentality
n03699975 machine

n03738472 mechanism
n03800933 musical instrument
n04014297 protective covering

n04081844 restraint
n04341686 structure

n04524313 vehicle
n04531098 vessel

n09287968 geological
formation

n12992868 fungus

Table A.12: The classes used in the 45-coarse label set. See Figure A.21 for more
details.

108

A.2 Fast adaptation using test-time feedback

n00002137 abstraction
n00004475 organism

n00007347 causal agent
n00020827 matter
n00021939 artifact

n01503061 bird
n01627424 amphibian

n01661091 reptile
n01861778 mammal

n01905661 invertebrate
n02075296 carnivore

n02512053 fish
n03122748 covering
n03183080 device

n03257877 durables
n03294048 equipment

n03309808 fabric
n03405265 furnishing
n03563967 implement

n03575240 instrumentality
n04341686 structure

n04524313 vehicle
n04531098 vessel

n09287968 geological
formation

n12992868 fungus
n13134947 fruit

Table A.13: The classes used in the 26-coarse label set. See Figure A.22 for more
details.

Coarse Label Set Min Max Mean Median Mode Standard Deviation
127-way 1 218 88.40 59.0 218 79.96
85-way 6 522 44.05 24.0 26 59.10
45-way 7 522 59.33 50.0 67 60.27
26-way 7 522 105.86 67.0 158 84.77

Table A.14: The statistics of coarse label sets. See Figures A.19, A.20, A.21, A.22
for more details.

109

Appendix A. Appendix

0 20 40 60 80 100 120
coarse label ID

0

50

100

150

200

nu
m

be
r o

f a
ss

ig
ne

d
Im

ag
eN

et
 c

la
ss

es

0 20 40 60 80 100 120
coarse label ID

0

50

100

150

200
le

ve
l o

f c
oa

rs
ity

127-coarse label set

0 100 200 300 400 500 600
coarsity level

0

50

100

150

200

nu
m

be
r o

f a
ss

ig
ne

d
Im

ag
eN

et
 c

la
ss

es

0 100 200 300 400 500 600
coarsity level

0

200

400

600

800

1000

cu
m

ul
at

iv
e

su
m

 o
f n

um
be

r o
f

as
sig

ne
d

Im
ag

eN
et

 c
la

ss
es

0 20 40 60 80
coarse label ID

0

5

10

15

20

25

30

nu
m

be
r o

f a
ss

ig
ne

d
Im

ag
eN

et
 c

la
ss

es

0 20 40 60 80
coarse label ID

0

100

200

300

400

500

le
ve

l o
f c

oa
rs

ity

85-coarse label set

0 100 200 300 400 500 600
coarsity level

0

10

20

30

40

50

60

70

80

nu
m

be
r o

f a
ss

ig
ne

d
Im

ag
eN

et
 c

la
ss

es

0 100 200 300 400 500 600
coarsity level

0

200

400

600

800

1000

cu
m

ul
at

iv
e

su
m

 o
f n

um
be

r o
f

as
sig

ne
d

Im
ag

eN
et

 c
la

ss
es

Figure A.20: Distribution of 85-coarse label set. None of ImageNet classes are
using coarse labels with coarsity level of 5 or less, 114 classes are using coarse labels with
coarsity level of 10 or less, and 28 classes are using the coarse labels with coarsity level
of 200 or more.

110

A.2 Fast adaptation using test-time feedback

0 10 20 30 40
coarse label ID

0

10

20

30

40

50

60

70

nu
m

be
r o

f a
ss

ig
ne

d
Im

ag
eN

et
 c

la
ss

es

0 10 20 30 40
coarse label ID

0

100

200

300

400

500

le
ve

l o
f c

oa
rs

ity

45-coarse label set

0 100 200 300 400 500 600
coarsity level

0

10

20

30

40

50

60

70

nu
m

be
r o

f a
ss

ig
ne

d
Im

ag
eN

et
 c

la
ss

es

0 100 200 300 400 500 600
coarsity level

0

200

400

600

800

1000

cu
m

ul
at

iv
e

su
m

 o
f n

um
be

r o
f

as
sig

ne
d

Im
ag

eN
et

 c
la

ss
es

0 5 10 15 20 25
coarse label ID

0

20

40

60

80

100

120

140

160

nu
m

be
r o

f a
ss

ig
ne

d
Im

ag
eN

et
 c

la
ss

es

0 5 10 15 20 25
coarse label ID

0

100

200

300

400

500

le
ve

l o
f c

oa
rs

ity

26-coarse label set

0 100 200 300 400 500 600
coarsity level

0

20

40

60

80

100

120

140

160

nu
m

be
r o

f a
ss

ig
ne

d
Im

ag
eN

et
 c

la
ss

es

0 100 200 300 400 500 600
coarsity level

0

200

400

600

800

1000

cu
m

ul
at

iv
e

su
m

 o
f n

um
be

r o
f

as
sig

ne
d

Im
ag

eN
et

 c
la

ss
es

Figure A.22: Distribution of 26-coarse label set. None of ImageNet classes are
using coarse labels with coarsity level of 5 or less, 38 classes are using coarse labels with
coarsity level of 10 or less, and 113 classes are using the coarse labels with coarsity level
of 200 or more.

111

Appendix A. Appendix

Figure A.23: Supplementary results for monocular depth estimation. Qualitative
comparison of our method vs baselines on query images from ScanNet, Replica, and
Taskonomy datasets.

3 6 9 12 15 18 21 24
Number of pixels

10

20

30

40

50

60

70

M
ea

n
IO

U

Severity 1

Baseline Clean (60.4)
Baseline (48.85)
TENT (49.27)
TENT (all) (50.47)
Densification (29.40)
TTO (48.43)
RNA (63.18)

3 6 9 12 15 18 21 24
Number of pixels

10

20

30

40

50

60

70

M
ea

n
IO

U

Severity 2

Baseline Clean (60.4)
Baseline (41.98)
TENT (42.62)
TENT (all) (43.33)
Densification (29.40)
TTO (45.00)
RNA (58.06)

3 6 9 12 15 18 21 24
Number of pixels

10

20

30

40

50

60

70

M
ea

n
IO

U

Severity 3

Baseline Clean (60.4)
Baseline (35.83)
TENT (36.75)
TENT (all) (36.63)
Densification (29.40)
TTO (42.92)
RNA (53.50)

3 6 9 12 15 18 21 24
Number of pixels

10

20

30

40

50

60

70

M
ea

n
IO

U

Severity 4
Baseline Clean (60.4)
Baseline (27.31)
TENT (28.67)
TENT (all) (27.73)
Densification (29.40)
TTO (38.68)
RNA (45.40)

3 6 9 12 15 18 21 24
Number of pixels

10

20

30

40

50

60

70

M
ea

n
IO

U

Severity 5
Baseline Clean (60.4)
Baseline (19.94)
TENT (21.44)
TENT (all) (20.11)
Densification (29.40)
TTO (33.96)
RNA (37.17)

Figure A.24: Supplementary results for semantic segmentation. Mean IOU vs
number of pixels for different severities. Numbers in the legend denote the average over
all pixel levels.

112

A.2 Fast adaptation using test-time feedback

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 1, Number of Pixels: 3
Baseline (48.85)
Densification (13.79)
TENT (49.27)
TENT (all) (50.47)
TTO (38.67)
RNA (55.27)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 2, Number of Pixels: 3
Baseline (41.98)
Densification (13.79)
TENT (42.62)
TENT (all) (43.33)
TTO (35.03)
RNA (49.19)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 3, Number of Pixels: 3
Baseline (35.83)
Densification (13.79)
TENT (36.75)
TENT (all) (36.63)
TTO (32.18)
RNA (43.46)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 4, Number of Pixels: 3
Baseline (27.31)
Densification (13.79)
TENT (28.67)
TENT (all) (27.73)
TTO (27.53)
RNA (34.49)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 5, Number of Pixels: 3
Baseline (19.94)
Densification (13.79)
TENT (21.44)
TENT (all) (20.11)
TTO (23.44)
RNA (26.35)

Figure A.25: Supplementary results for semantic segmentation. Mean IOU vs
individual corruptions for different severities when the number of pixels is 3. Numbers in
the legend denote the average over the corruptions.

113

Appendix A. Appendix

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 1, Number of Pixels: 4
Baseline (48.85)
Densification (16.00)
TENT (49.27)
TENT (all) (50.47)
TTO (42.72)
RNA (57.70)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 2, Number of Pixels: 4
Baseline (41.98)
Densification (16.00)
TENT (42.62)
TENT (all) (43.33)
TTO (39.05)
RNA (51.72)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 3, Number of Pixels: 4
Baseline (35.83)
Densification (16.00)
TENT (36.75)
TENT (all) (36.63)
TTO (36.94)
RNA (46.29)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 4, Number of Pixels: 4
Baseline (27.31)
Densification (16.00)
TENT (28.67)
TENT (all) (27.73)
TTO (32.42)
RNA (37.37)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 5, Number of Pixels: 4
Baseline (19.94)
Densification (16.00)
TENT (21.44)
TENT (all) (20.11)
TTO (27.87)
RNA (29.07)

Figure A.26: Supplementary results for semantic segmentation. Mean IOU vs
individual corruptions for different severities when the number of pixels is 4. Numbers in
the legend denote the average over the corruptions.

114

A.2 Fast adaptation using test-time feedback

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 1, Number of Pixels: 5
Baseline (48.85)
Densification (18.39)
TENT (49.27)
TENT (all) (50.47)
TTO (45.31)
RNA (59.31)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 2, Number of Pixels: 5
Baseline (41.98)
Densification (18.39)
TENT (42.62)
TENT (all) (43.33)
TTO (41.94)
RNA (53.63)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 3, Number of Pixels: 5
Baseline (35.83)
Densification (18.39)
TENT (36.75)
TENT (all) (36.63)
TTO (39.61)
RNA (48.39)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 4, Number of Pixels: 5
Baseline (27.31)
Densification (18.39)
TENT (28.67)
TENT (all) (27.73)
TTO (35.42)
RNA (39.62)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 5, Number of Pixels: 5
Baseline (19.94)
Densification (18.39)
TENT (21.44)
TENT (all) (20.11)
TTO (30.76)
RNA (31.29)

Figure A.27: Supplementary results for semantic segmentation. Mean IOU vs
individual corruptions for different severities when the number of pixels is 5. Numbers in
the legend denote the average over the corruptions.

115

Appendix A. Appendix

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 1, Number of Pixels: 10
Baseline (48.85)
Densification (28.81)
TENT (49.27)
TENT (all) (50.47)
TTO (50.85)
RNA (64.36)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 2, Number of Pixels: 10
Baseline (41.98)
Densification (28.81)
TENT (42.62)
TENT (all) (43.33)
TTO (47.60)
RNA (59.27)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 3, Number of Pixels: 10
Baseline (35.83)
Densification (28.81)
TENT (36.75)
TENT (all) (36.63)
TTO (45.71)
RNA (54.87)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 4, Number of Pixels: 10
Baseline (27.31)
Densification (28.81)
TENT (28.67)
TENT (all) (27.73)
TTO (41.61)
RNA (46.79)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 5, Number of Pixels: 10
Baseline (19.94)
Densification (28.81)
TENT (21.44)
TENT (all) (20.11)
TTO (36.60)
RNA (38.49)

Figure A.28: Supplementary results for semantic segmentation. Mean IOU vs
individual corruptions for different severities when the number of pixels is 10. Numbers
in the legend denote the average over the corruptions.

116

A.2 Fast adaptation using test-time feedback

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 1, Number of Pixels: 15
Baseline (48.85)
Densification (37.27)
TENT (49.27)
TENT (all) (50.47)
TTO (53.04)
RNA (67.00)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 2, Number of Pixels: 15
Baseline (41.98)
Densification (37.27)
TENT (42.62)
TENT (all) (43.33)
TTO (49.63)
RNA (62.37)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 3, Number of Pixels: 15
Baseline (35.83)
Densification (37.27)
TENT (36.75)
TENT (all) (36.63)
TTO (47.67)
RNA (58.42)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 4, Number of Pixels: 15
Baseline (27.31)
Densification (37.27)
TENT (28.67)
TENT (all) (27.73)
TTO (43.71)
RNA (50.83)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 5, Number of Pixels: 15
Baseline (19.94)
Densification (37.27)
TENT (21.44)
TENT (all) (20.11)
TTO (38.53)
RNA (42.51)

Figure A.29: Supplementary results for semantic segmentation. Mean IOU vs
individual corruptions for different severities when the number of pixels is 15. Numbers
in the legend denote the average over the corruptions.

117

Appendix A. Appendix

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 1, Number of Pixels: 20
Baseline (48.85)
Densification (43.39)
TENT (49.27)
TENT (all) (50.47)
TTO (53.93)
RNA (68.76)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 2, Number of Pixels: 20
Baseline (41.98)
Densification (43.39)
TENT (42.62)
TENT (all) (43.33)
TTO (50.50)
RNA (64.40)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 3, Number of Pixels: 20
Baseline (35.83)
Densification (43.39)
TENT (36.75)
TENT (all) (36.63)
TTO (48.91)
RNA (60.81)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 4, Number of Pixels: 20
Baseline (27.31)
Densification (43.39)
TENT (28.67)
TENT (all) (27.73)
TTO (44.65)
RNA (53.45)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 5, Number of Pixels: 20
Baseline (19.94)
Densification (43.39)
TENT (21.44)
TENT (all) (20.11)
TTO (39.98)
RNA (45.25)

Figure A.30: Supplementary results for semantic segmentation. Mean IOU vs
individual corruptions for different severities when the number of pixels is 20. Numbers
in the legend denote the average over the corruptions.

118

A.2 Fast adaptation using test-time feedback

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 1, Number of Pixels: 25
Baseline (48.85)
Densification (48.15)
TENT (49.27)
TENT (all) (50.47)
TTO (54.50)
RNA (69.89)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 2, Number of Pixels: 25
Baseline (41.98)
Densification (48.15)
TENT (42.62)
TENT (all) (43.33)
TTO (51.21)
RNA (65.82)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 3, Number of Pixels: 25
Baseline (35.83)
Densification (48.15)
TENT (36.75)
TENT (all) (36.63)
TTO (49.42)
RNA (62.25)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 4, Number of Pixels: 25
Baseline (27.31)
Densification (48.15)
TENT (28.67)
TENT (all) (27.73)
TTO (45.40)
RNA (55.25)

cle
an

sh
ot

_n
ois

e

im
pu

lse
_n

ois
e

de
foc

us
_b

lur

co
nt

ra
st

br
igh

tn
es

s

jpe
g_

co
mpr

es
sio

n

pix
ela

te

gla
ss

_b
lur

mot
ion

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_
tra

ns
for

m

0

10

20

30

40

50

60

70

80

m
ea

n
Io

U

Severity 5, Number of Pixels: 25
Baseline (19.94)
Densification (48.15)
TENT (21.44)
TENT (all) (20.11)
TTO (40.51)
RNA (47.23)

Figure A.31: Supplementary results for semantic segmentation. Mean IOU vs
individual corruptions for different severities when the number of pixels is 25. Numbers
in the legend denote the average over the corruptions.

119

Appendix A. Appendix

Figure A.32: Supplementary results for semantic segmentation. Qualitative
comparison of our method vs baselines for defocus blur and glass blur corruptions applied
to COCO validation images.

120

A.2 Fast adaptation using test-time feedback

Figure A.33: Supplementary results for semantic segmentation. Qualitative
comparison of our method vs baselines for JPEG compression and motion blur corruptions
applied to COCO validation images.

121

Appendix A. Appendix

Figure A.34: Supplementary results for semantic segmentation. Qualitative
comparison of our method vs baselines for shot noise corruption applied to COCO
validation images.

122

A.2 Fast adaptation using test-time feedback

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 1, Coarsity level: 26
Baseline (0.41)
TENT (0.33)
TTO (0.32)
RNA (0.30)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 1, Coarsity level: 26
Baseline (0.42)
TENT (0.36)
TTO 26 (0.35)
RNA (0.33)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 2, Coarsity level: 26
Baseline (0.52)
TENT (0.39)
TTO (0.37)
RNA (0.38)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 2, Coarsity level: 26
Baseline (0.48)
TENT (0.41)
TTO 26 (0.38)
RNA (0.38)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 3, Coarsity level: 26
Baseline (0.61)
TENT (0.44)
TTO (0.40)
RNA (0.45)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r
ImageNet-3DCC, Severity 3, Coarsity level: 26

Baseline (0.54)
TENT (0.46)
TTO 26 (0.42)
RNA (0.44)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 4, Coarsity level: 26
Baseline (0.72)
TENT (0.52)
TTO (0.45)
RNA (0.55)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 4, Coarsity level: 26
Baseline (0.62)
TENT (0.52)
TTO 26 (0.48)
RNA (0.51)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 5, Coarsity level: 26
Baseline (0.82)
TENT (0.62)
TTO (0.52)
RNA (0.64)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 5, Coarsity level: 26
Baseline (0.70)
TENT (0.60)
TTO 26 (0.54)
RNA (0.59)

Figure A.35: Supplementary results for ImageNet classification. Error for
individual corruptions from ImageNet-C and ImageNet-3DCC. TTO and RNA uses
26-way coarse label supervision. Numbers in the legend denote the average over the
corruptions.

123

Appendix A. Appendix

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 1, Coarsity level: 45
Baseline (0.41)
TENT (0.33)
TTO (0.32)
RNA (0.26)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 1, Coarsity level: 45
Baseline (0.42)
TENT (0.36)
TTO 45 (0.35)
RNA (0.29)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 2, Coarsity level: 45
Baseline (0.52)
TENT (0.39)
TTO (0.36)
RNA (0.33)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 2, Coarsity level: 45
Baseline (0.48)
TENT (0.41)
TTO 45 (0.38)
RNA (0.34)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 3, Coarsity level: 45
Baseline (0.61)
TENT (0.44)
TTO (0.39)
RNA (0.40)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 3, Coarsity level: 45
Baseline (0.54)
TENT (0.46)
TTO 45 (0.42)
RNA (0.39)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 4, Coarsity level: 45
Baseline (0.72)
TENT (0.52)
TTO (0.45)
RNA (0.49)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 4, Coarsity level: 45
Baseline (0.62)
TENT (0.52)
TTO 45 (0.47)
RNA (0.46)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 5, Coarsity level: 45
Baseline (0.82)
TENT (0.62)
TTO (0.51)
RNA (0.59)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 5, Coarsity level: 45
Baseline (0.70)
TENT (0.60)
TTO 45 (0.53)
RNA (0.54)

Figure A.36: Supplementary results for ImageNet classification. Error for
individual corruptions from ImageNet-C and ImageNet-3DCC. TTO and RNA uses
45-way coarse label supervision. Numbers in the legend denote the average over the
corruptions.

124

A.2 Fast adaptation using test-time feedback

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 1, Coarsity level: 85
Baseline (0.41)
TENT (0.33)
TTO (0.32)
RNA (0.23)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 1, Coarsity level: 85
Baseline (0.42)
TENT (0.36)
TTO 85 (0.35)
RNA (0.26)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 2, Coarsity level: 85
Baseline (0.52)
TENT (0.39)
TTO (0.36)
RNA (0.29)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 2, Coarsity level: 85
Baseline (0.48)
TENT (0.41)
TTO 85 (0.38)
RNA (0.30)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 3, Coarsity level: 85
Baseline (0.61)
TENT (0.44)
TTO (0.39)
RNA (0.35)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r
ImageNet-3DCC, Severity 3, Coarsity level: 85

Baseline (0.54)
TENT (0.46)
TTO 85 (0.42)
RNA (0.35)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 4, Coarsity level: 85
Baseline (0.72)
TENT (0.52)
TTO (0.44)
RNA (0.43)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 4, Coarsity level: 85
Baseline (0.62)
TENT (0.52)
TTO 85 (0.47)
RNA (0.41)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 5, Coarsity level: 85
Baseline (0.82)
TENT (0.62)
TTO (0.50)
RNA (0.52)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 5, Coarsity level: 85
Baseline (0.70)
TENT (0.60)
TTO 85 (0.53)
RNA (0.49)

Figure A.37: Supplementary results for ImageNet classification. Error for
individual corruptions from ImageNet-C and ImageNet-3DCC. TTO and RNA uses
85-way coarse label supervision. Numbers in the legend denote the average over the
corruptions.

125

Appendix A. Appendix

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 1, Coarsity level: 127
Baseline (0.41)
TENT (0.33)
TTO (0.32)
RNA (0.26)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 1, Coarsity level: 127
Baseline (0.42)
TENT (0.36)
TTO 127 (0.35)
RNA (0.29)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 2, Coarsity level: 127
Baseline (0.52)
TENT (0.39)
TTO (0.36)
RNA (0.33)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 2, Coarsity level: 127
Baseline (0.48)
TENT (0.41)
TTO 127 (0.38)
RNA (0.34)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 3, Coarsity level: 127
Baseline (0.61)
TENT (0.44)
TTO (0.39)
RNA (0.40)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 3, Coarsity level: 127
Baseline (0.54)
TENT (0.46)
TTO 127 (0.42)
RNA (0.39)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 4, Coarsity level: 127
Baseline (0.72)
TENT (0.52)
TTO (0.44)
RNA (0.49)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 4, Coarsity level: 127
Baseline (0.62)
TENT (0.52)
TTO 127 (0.47)
RNA (0.45)

cle
an

sh
ot_

no
ise

im
pu

lse
_n

ois
e

de
foc

us
_b

lur
co

ntr
as

t
bri

gh
tne

ss
jpe

g_
co

mpre
ssi

on
pix

ela
te

gla
ss_

blu
r

moti
on

_b
lur

zo
om

_b
lur

ga
us

sia
n_

no
ise fog fro
st

sn
ow

ela
sti

c_t
ran

sfo
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-C, Severity 5, Coarsity level: 127
Baseline (0.82)
TENT (0.62)
TTO (0.51)
RNA (0.58)

cle
an

bit
_e

rro
r

co
lor

_q
ua

nt
far

_fo
cu

s

fla
sh

fog
_3

d

h2
65

_a
br

h2
65

_cr
f

iso
_n

ois
e

low
_lig

ht
ne

ar_
foc

us
xy

_m
oti

on
_b

lur
z_m

oti
on

_b
lur

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro

r

ImageNet-3DCC, Severity 5, Coarsity level: 127
Baseline (0.70)
TENT (0.60)
TTO 127 (0.53)
RNA (0.53)

Figure A.38: Supplementary results for ImageNet classification. Error for
individual corruptions from ImageNet-C and ImageNet-3DCC. TTO and RNA uses
127-way coarse label supervision from [194]. Numbers in the legend denote the average
over the corruptions.

126

A.3 3D Common Corruptions

A.3 3D Common Corruptions

A.3.1 Quantitative Results

Robustness mechanisms against 3DCC and 2DCC

Figure A.43 shows ℓ1 errors of robustness mechanisms against individual corruptions
in 3DCC for surface normals estimation. Figure A.44 shows the same result for depth
estimation. For both tasks, 3DCC leads to significantly degraded predictions for models
trained with robustness mechanisms. For completeness, we also provide performances of
these models against corruptions in 2DCC, in Figures A.45 and A.46.

Redundancy between 3DCC and 2DCC

We provide in Figures A.47 and A.48 the full affinity matrices between 2DCC and
3DCC by computing the correlations of ℓ1 errors made in the surface normals and
depth estimation tasks, respectively. Figure A.49 shows the same result by computing
ℓ1 errors in the RGB domain. As can be seen, 3DCC yields lower correlations both
intra-benchmark and against 2DCC.

Effectiveness of predicted depth to generate 3DCC

We compare the effectiveness of using MiDaS [268] depth estimation model to generate
3DCC against two control baselines in Fig A.42. The first one is incorrect instance
depth where we randomly swap depth predictions for a given RGB image with another
depth prediction. The second one is blind guess depth which minimizes the expected
likelihood loss in the training dataset, hence it is a statistically informed guess reflecting
the dataset regularities [142, 72] (See Fig. A.41 for its visualization). As shown in
Fig. A.42, the predicted depth yields higher correlation with the ground truth compared
to control baselines, showing that it can be used to generate 3DCC for datasets without
3D information.

Comparing robust ImageNet models on 2DCC and 3DCC benchmarks

We compare performances of the robust ImageNet models from RobustBench and
ImageNet-C leaderboards below (See the links for full model names) in Figure A.39.
A quick look at the scatter plot (top) shows that the general trends between 2DCC
and 3DCC are similar, an observation also made in [230] even when the corruptions
are designed to be dissimilar to 2DCC. Hence, this is also expected for our case as 2D
and 3D corruptions are not completely disjoint (expected). But, we observe notable
differences between the two benchmarks in local trends, e.g. in the ellipsoid regions
certain robustness mechanisms improved performance on 2DCC while being ineffective
against 3DCC.

The bar plot (bottom) comparing a subset of corruptions that exists in both benchmarks

127

https://robustbench.github.io/#div_imagenet_corruptions_heading
https://github.com/hendrycks/robustness

Appendix A. Appendix

Figure A.39: Comparing ImageNet models on 2DCC and 3DCC benchmarks (i.e.
ImageNet-C vs ImageNet-3DCC). Top: Comparison of mean corruption errors (MCEs)
on 2DCC and 3DCC. Bottom: Comparison of MCEs for a subset of corruptions that
exists in both benchmarks (e.g. 2D defocus blur vs its 3D version). See Sec. A.3.1 for
details.

(e.g. 2D defocus blur vs its 3D version), further reflects the differences where 1. all
models have consistently higher errors on 3D corruptions compared to their 2DCC
counterparts and 2. certain models, e.g. AugMix and AugMix+DA, face a larger drop
in performance on 3DCC compared to the other models, indicating that AugMix may
be biased towards 2DCC. Thus, 3DCC evaluations can be informative during model
development as they expose nonlinear trends and vulnerabilities that are not
captured by 2DCC (also discussed in Sec. 5.2.2).

Performance of 3D data augmentation

We show in Fig. A.50 the performance of 3D data augmentation and baselines on individual
corruptions from 3DCC for surface normals estimation task. Similarly, Fig. A.51 shows the
performance on 2DCC and Table A.15 provides full performance metrics on OASIS [270]
benchmark. As can be seen from the results, 3D data augmentation notably boosts
robustness.

A.3.2 Qualitative Results

Video evaluations

We perform evaluations on clips from manually collected DSLR data, YouTube videos,
Adobe After Affects (AE) generated corrupted data (Sec.5.2.3 in the main paper), and
sample queries from OASIS [270]. They suggest the proposed 3D data augmentation
yields notably sharper and more accurate predictions with less flickering, compared to

128

A.3 3D Common Corruptions

baselines. We recommend watching the clips on the project page.

Additional queries

In addition to video evaluations in Sec. A.3.2 we provided additional results on OASIS
and AE datasets in Figures A.52 and A.53, again suggesting 3D data augmentation is
beneficial for improving robustness.

A.3.3 Further method details

Data augmentation mechanisms

Below we provide additional details about the training procedures of data augmentation
models. All models were finetuned from the Baseline UNet (T+UNet) with an equal
number of clean and augmented images.

Adversarial training: The adversarial examples are generated from an I-FSGM attack
with ϵ = (0 − 16]. To generate the I-FGSM attack [10], we apply the following:

X0 = X, (A.8)
Xn+1 = ClipX,ϵ{Xn + αsign(∇J(Xn, y))} (A.9)

where J is the loss function. Similar to [10], we set α = 1 in our experiments and the
number of iterations given by N = min(4 + ϵ, 1.25ϵ).

Style [96]: We applied the AdaIN style transfer [150]. The stylization coefficient is
randomly selected from the range [0.1, 0.5].

DeepAugment [7]: We use the same perturbations as [7], with the exception of the
ones that change the scene geometry, e.g. rotation, flipping.

Implementing corruptions

We release the full open source code of our pipeline, which enables using the implemented
corruptions on any dataset. Below, we provide further details about implementing
corruptions.

Depth of field: We divide the scene into two regions using hyperfocal distance [279]
which is the focus distance yielding the largest depth of field. We then define near focus
region as parts of the scene closer to camera than hyperfocal distance (and vice versa for
far focus). After picking the focus region, we perform the blurring (See Fig. 3 right of
main paper for an illustration.)

Video: We use ffmpeg scripts to generate video-based corruptions.

Semantics: We use Replica[87] dataset which comes with 3D mesh annotations. To

129

https://3dcommoncorruptions.epfl.ch

Appendix A. Appendix

Angular error° % within t° Relative Normal
Mean Median 11.25° 22.5° 30° AUCo AUCp

T+UNet 30.49 22.93 23.18 49.24 61.12 0.6095 0.5953
T+DPT 32.13 25.68 18.82 44.06 57.13 0.6078 0.5484
OASIS 24.63 19.06 30.10 57.34 69.91 0.5693 0.5490
O+DPT 24.42 18.46 28.82 59.53 72.39 0.6320 0.5484
O+DPT+2DCC 23.67 17.75 30.24 61.22 73.83 0.6287 0.6806
O+DPT+2DCC+3D (Ours) 24.65 18.53 28.89 58.97 71.89 0.6251 0.6796
Ours (+X-TC [72]) 23.89 18.34 28.66 60.00 73.29 0.6264 0.6928

Table A.15: Evaluations on OASIS. Similar to Table 1 in the main paper, but results
for more metrics are shown.

Figure A.40: Visualizations of view change corruptions from 3DCC for different sampled
angles.

obtain occlusion masks, while it is possible to perform ray-tracing, it could be expensive
and time-consuming. Thus, we also investigated an alternative approach and modified
the mesh by removing all the objects except the target one and rendering semantic masks.
Performing a second rendering when all objects are in the mesh, i.e. original state, yields
the semantic masks with occlusions (e.g. blue masks in Fig 1 and Fig. 4 in the main
paper). The difference between the two masks correspond to occlusion mask (e.g. red
masks in Fig. 1 and Fig. 4 in the main paper).

A.3.4 Visualizing Corruptions

We show visualizations of corruptions from 3DCC and 2DCC for 5 shift intensities in
Figures A.54 and A.55, respectively. Furthermore, we also show samples from view
changes corruptions from 3DCC in Fig. A.40.

130

A.3 3D Common Corruptions

Figure A.41: Statistically informed blind guess depth prediction of Taskonomy
dataset [142, 72].

0.00 0.05 0.10 0.15 0.20
1 error

0.00

0.05

0.10

0.15

0.20

GT
 D

ep
th

 -
Ne

ar
 F

oc
us

 (
1 e

rro
r)

Predicted Depth (r = 0.90)

0.00 0.05 0.10 0.15 0.20 0.25
1 error

0.00

0.05

0.10

0.15

0.20

GT
 D

ep
th

 -
Fa

r F
oc

us
 (

1 e
rro

r)

Predicted Depth (r = 0.69)

0.00 0.05 0.10 0.15 0.20
1 error

0.00

0.05

0.10

0.15

0.20
GT

 D
ep

th
 -

Fo
g

3D
 (

1 e
rro

r)

Predicted Depth (r = 0.78)

0.00 0.05 0.10 0.15 0.20 0.25
1 error

0.00

0.05

0.10

0.15

0.20

GT
 D

ep
th

 -
Ne

ar
 F

oc
us

 (
1 e

rro
r)

Incorrect Instance Depth (r = 0.71)

0.00 0.05 0.10 0.15 0.20 0.25
1 error

0.00

0.05

0.10

0.15

0.20

GT
 D

ep
th

 -
Fa

r F
oc

us
 (

1 e
rro

r)

Incorrect Instance Depth (r = 0.36)

0.00 0.05 0.10 0.15 0.20
1 error

0.00

0.05

0.10

0.15

0.20

GT
 D

ep
th

 -
Fo

g
3D

 (
1 e

rro
r)

Incorrect Instance Depth (r = 0.68)

0.00 0.05 0.10 0.15 0.20 0.25
1 error

0.00

0.05

0.10

0.15

0.20

GT
 D

ep
th

 -
Ne

ar
 F

oc
us

 (
1 e

rro
r)

Blind Guess Depth (r = 0.80)

0.00 0.05 0.10 0.15 0.20
1 error

0.00

0.05

0.10

0.15

0.20

GT
 D

ep
th

 -
Fa

r F
oc

us
 (

1 e
rro

r)

Blind Guess Depth (r = 0.49)

0.00 0.05 0.10 0.15 0.20
1 error

0.00

0.05

0.10

0.15

0.20

GT
 D

ep
th

 -
Fo

g
3D

 (
1 e

rro
r)

Blind Guess Depth (r = 0.82)

Figure A.42: Effectiveness of applying 3DCC without ground truth depth.
Similar to Fig. 12 in the main paper, but control baselines are also provided, namely
incorrect instance depth and blind guess depth. The predicted depth from MiDaS [268]
model yields the strongest correlations with the ground truth depth.

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Color Quant.
Baseline
Style
Adv.Train
Deepaug.
X-DE
2DCC Aug.

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Bit Error

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

ISO Noise

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Low-light

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Near Focus

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Far Focus

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Fog 3D

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

ABR Compr.

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

XY-Motion

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Z-Motion

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Shadow

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Multi-ill.

1 2 3 4 5
Shift Intensity

0.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Flash

1 2 3 4 5
Shift Intensity

0.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

CRF Compr.

Figure A.43: Average ℓ1 losses of robustness mechanisms against corruptions
in 3DCC for surface normals estimation. Similar to Fig. 6 in the main paper, but
demonstrates the performance for individual corruptions in 3DCC.

131

Appendix A. Appendix

1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

Color Quant.
Baseline
Style
Adv.Train
Deepaug.
X-DE
2DCC Aug.

1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

Bit Error

1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

ISO Noise

1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

Low-light

1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

Near Focus

1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

Far Focus

1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

Fog 3D

1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

ABR Compr.

1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

XY-Motion

1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

Z-Motion

1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

Shadow

1 2 3 4 50.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

Multi-ill.

1 2 3 4 5
Shift Intensity

0.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

Flash

1 2 3 4 5
Shift Intensity

0.01
0.02
0.03
0.04
0.05
0.06

1 e
rro

r

CRF Compr.

Figure A.44: Average ℓ1 losses of robustness mechanisms against corruptions in
3DCC for depth estimation. Similar to Fig. 6 in the main paper, but demonstrates
the performance for individual corruptions in 3DCC.

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Shot Noise
Baseline
Style
Adv.Train
Deepaug.
X-DE
2DCC Aug.

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Impulse Noise

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Defocus Blur

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Contrast

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Brightness

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

JPEG Compression

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Pixelate

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Glass Blur

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Motion Blur

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Zoom Blur

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Gaussian Noise

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Fog

1 2 3 4 5
Shift Intensity

0.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Frost

1 2 3 4 5
Shift Intensity

0.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Snow

1 2 3 4 5
Shift Intensity

0.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Elastic Transform

Figure A.45: Average ℓ1 losses of robustness mechanisms against corruptions
in 2DCC for surface normals estimation. Similar to Fig. 6 in the main paper, but
demonstrates the performance for individual corruptions in 2DCC.

132

A.3 3D Common Corruptions

1 2 3 4 5

0.02

0.04

0.06

0.08
1 e

rro
r

Shot Noise
Baseline
Style
Adv.Train
Deepaug.
X-DE
2DCC Aug.

1 2 3 4 5

0.02

0.04

0.06

0.08

1 e
rro

r

Impulse Noise

1 2 3 4 5

0.02

0.04

0.06

0.08

1 e
rro

r

Defocus Blur

1 2 3 4 5

0.02

0.04

0.06

0.08

1 e
rro

r

Contrast

1 2 3 4 5

0.02

0.04

0.06

0.08

1 e
rro

r

Brightness

1 2 3 4 5

0.02

0.04

0.06

0.08

1 e
rro

r

JPEG Compression

1 2 3 4 5

0.02

0.04

0.06

0.08

1 e
rro

r

Pixelate

1 2 3 4 5

0.02

0.04

0.06

0.08

1 e
rro

r

Glass Blur

1 2 3 4 5

0.02

0.04

0.06

0.08

1 e
rro

r

Motion Blur

1 2 3 4 5

0.02

0.04

0.06

0.08

1 e
rro

r
Zoom Blur

1 2 3 4 5

0.02

0.04

0.06

0.08

1 e
rro

r

Gaussian Noise

1 2 3 4 5

0.02

0.04

0.06

0.08

1 e
rro

r

Fog

1 2 3 4 5
Shift Intensity

0.02

0.04

0.06

0.08

1 e
rro

r

Frost

1 2 3 4 5
Shift Intensity

0.02

0.04

0.06

0.08

1 e
rro

r

Snow

1 2 3 4 5
Shift Intensity

0.02

0.04

0.06

0.08

1 e
rro

r

Elastic Transform

Figure A.46: Average ℓ1 losses of robustness mechanisms against corruptions in
2DCC for depth estimation. Similar to Fig. 6 in the main paper, but demonstrates
the performance for individual corruptions in 2DCC.

133

Appendix A. Appendix

Figure A.47: Redundancy among corruptions in 2DCC and 3DCC in the ℓ1
errors of surface normals prediction. Similar to Fig. 9 in the main paper, but are
shown for all corruptions.

134

A.3 3D Common Corruptions

Figure A.48: Redundancy among corruptions in 2DCC and 3DCC in the ℓ1
errors of depth prediction. Similar to Fig. 9 in the main paper, but are shown for
all corruptions.

135

Appendix A. Appendix

Figure A.49: Redundancy among corruptions in 2DCC and 3DCC in the ℓ1
errors of RGB images. Similar to Fig. 9 in the main paper, but are shown for all
corruptions.

136

A.3 3D Common Corruptions

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r
Color Quant.

T+UNet
T+DPT
O+DPT
O+DPT+2DCC
O+DPT+2DCC+3D

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Bit Error

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

ISO Noise

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Low-light

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Near Focus

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Far Focus

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Fog 3D

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

ABR Compr.

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

XY-Motion

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r
Z-Motion

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Shadow

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Multi-ill.

1 2 3 4 5
Shift Intensity

0.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Flash

1 2 3 4 5
Shift Intensity

0.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

CRF Compr.

Figure A.50: Average ℓ1 losses of 3D data augmentation and baselines against
corruptions in 3DCC for surface normals estimation. Similar to Tab. 1 in the
main paper, but demonstrates the performance for individual corruptions in 3DCC.

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Shot Noise
T+UNet
T+DPT
O+DPT
O+DPT+2DCC
O+DPT+2DCC+3D

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Impulse Noise

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Defocus Blur

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Contrast

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Brightness

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

JPEG Compression

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Pixelate

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Glass Blur

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Motion Blur

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Zoom Blur

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Gaussian Noise

1 2 3 4 50.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Fog

1 2 3 4 5
Shift Intensity

0.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Frost

1 2 3 4 5
Shift Intensity

0.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Snow

1 2 3 4 5
Shift Intensity

0.04
0.06
0.08
0.10
0.12
0.14

1 e
rro

r

Elastic Transform

Figure A.51: Average ℓ1 losses of 3D data augmentation and baselines against
corruptions in 2DCC for surface normals estimation. Similar to Tab. 1 in the
main paper, but demonstrates the performance for individual corruptions in 2DCC.

137

Appendix A. Appendix

Figure A.52: Qualitative results on corruptions generated with After Effects.
An extension of the qualitative results in Fig. 8 of the main paper showing the benefits
of 3D augmentation. See Sec. 5.2.3 of the main paper for details on how the corruptions
were generated.

138

A.3 3D Common Corruptions

Figure A.53: Qualitative results on OASIS [270]. An extension of the qualitative
results in Fig. 8 of the main paper showing the benefits of 3D augmentation.

Figure A.54: Visualizations of corruptions from 3DCC for 5 shift intensities.

139

Appendix A. Appendix

Figure A.55: Visualizations of corruptions from 2DCC for 5 shift intensities.

140

Bibliography

[1] O. Wiles, S. Gowal, F. Stimberg, S. Alvise-Rebuffi, I. Ktena, K. Dvijotham,
and T. Cemgil, “A fine-grained analysis on distribution shift,” arXiv preprint
arXiv:2110.11328, 2021.

[2] D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to
common corruptions and perturbations,” arXiv preprint arXiv:1903.12261, 2019.

[3] Y. Dong, S. Ruan, H. Su, C. Kang, X. Wei, and J. Zhu, “Viewfool: Evaluating the
robustness of visual recognition to adversarial viewpoints,” Advances in Neural
Information Processing Systems, vol. 35, pp. 36789–36803, 2022.

[4] O. F. Kar, T. Yeo, A. Atanov, and A. Zamir, “3d common corruptions and data
augmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18963–18974, 2022.

[5] Y. Wang, X. Chen, Y. You, L. E. Li, B. Hariharan, M. Campbell, K. Q. Weinberger,
and W.-L. Chao, “Train in germany, test in the usa: Making 3d object detectors
generalize,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11713–11723, 2020.

[6] A. Dubey, V. Ramanathan, A. Pentland, and D. Mahajan, “Adaptive methods for
real-world domain generalization,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14340–14349, 2021.

[7] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo, R. Desai,
T. Zhu, S. Parajuli, M. Guo, et al., “The many faces of robustness: A critical
analysis of out-of-distribution generalization,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 8340–8349, 2021.

[8] D. Dai and L. Van Gool, “Dark model adaptation: Semantic image segmentation
from daytime to nighttime,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), pp. 3819–3824, IEEE, 2018.

[9] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-

141

Bibliography

gus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199,
2013.

[10] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,”
arXiv preprint arXiv:1611.01236, 2016.

[11] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083,
2017.

[12] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “Exploring the
landscape of spatial robustness,” in International conference on machine learning,
pp. 1802–1811, PMLR, 2019.

[13] A. Atanov, A. Filatov, T. Yeo, A. Sohmshetty, and A. Zamir, “Task discovery: Find-
ing the tasks that neural networks generalize on,” Advances in Neural Information
Processing Systems, vol. 35, pp. 15702–15717, 2022.

[14] A. Azulay and Y. Weiss, “Why do deep convolutional networks generalize so poorly
to small image transformations?,” Journal of Machine Learning Research, vol. 20,
no. 184, pp. 1–25, 2019.

[15] Y. Xiang, R. Mottaghi, and S. Savarese, “Beyond pascal: A benchmark for 3d object
detection in the wild,” in IEEE winter conference on applications of computer
vision, pp. 75–82, IEEE, 2014.

[16] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in CVPR 2011,
pp. 1521–1528, IEEE, 2011.

[17] J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy disparities
in commercial gender classification,” in Conference on fairness, accountability and
transparency, pp. 77–91, PMLR, 2018.

[18] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani,
W. Hu, M. Yasunaga, R. L. Phillips, I. Gao, et al., “Wilds: A benchmark of
in-the-wild distribution shifts,” in International Conference on Machine Learning,
pp. 5637–5664, PMLR, 2021.

[19] H. Shah, K. Tamuly, A. Raghunathan, P. Jain, and P. Netrapalli, “The pitfalls of
simplicity bias in neural networks,” Advances in Neural Information Processing
Systems, vol. 33, pp. 9573–9585, 2020.

[20] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive
uncertainty estimation using deep ensembles,” in Advances in Neural Information
Processing Systems, pp. 6402–6413, 2017.

142

Bibliography

[21] F. Wenzel, J. Snoek, D. Tran, and R. Jenatton, “Hyperparameter ensembles for
robustness and uncertainty quantification,” arXiv preprint arXiv:2006.13570, 2020.

[22] S. Zaidi, A. Zela, T. Elsken, C. Holmes, F. Hutter, and Y. W. Teh, “Neural ensemble
search for performant and calibrated predictions,” arXiv preprint arXiv:2006.08573,
2020.

[23] T. Pang, K. Xu, C. Du, N. Chen, and J. Zhu, “Improving adversarial robustness
via promoting ensemble diversity,” arXiv preprint arXiv:1901.08846, 2019.

[24] S. Kariyappa and M. K. Qureshi, “Improving adversarial robustness of ensembles
with diversity training,” arXiv preprint arXiv:1901.09981, 2019.

[25] H. Yang, J. Zhang, H. Dong, N. Inkawhich, A. Gardner, A. Touchet, W. Wilkes,
H. Berry, and H. Li, “Dverge: Diversifying vulnerabilities for enhanced robust
generation of ensembles,” Advances in Neural Information Processing Systems,
vol. 33, 2020.

[26] A. Rame and M. Cord, “Dice: Diversity in deep ensembles via conditional redun-
dancy adversarial estimation,” arXiv preprint arXiv:2101.05544, 2021.

[27] M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes, A. S. Morcos,
H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith, et al., “Model soups: averaging
weights of multiple fine-tuned models improves accuracy without increasing inference
time,” in International Conference on Machine Learning, pp. 23965–23998, PMLR,
2022.

[28] A. Rame, M. Kirchmeyer, T. Rahier, A. Rakotomamonjy, P. Gallinari, and M. Cord,
“Diverse weight averaging for out-of-distribution generalization,” Advances in Neural
Information Processing Systems, vol. 35, pp. 10821–10836, 2022.

[29] A. Rame, K. Ahuja, J. Zhang, M. Cord, L. Bottou, and D. Lopez-Paz, “Model
ratatouille: Recycling diverse models for out-of-distribution generalization,” 2023.

[30] R. He, S. Sun, X. Yu, C. Xue, W. Zhang, P. Torr, S. Bai, and X. Qi, “Is syn-
thetic data from generative models ready for image recognition?,” arXiv preprint
arXiv:2210.07574, 2022.

[31] J. Yuan, F. Pinto, A. Davies, A. Gupta, and P. Torr, “Not just pretty pictures: Text-
to-image generators enable interpretable interventions for robust representations,”
arXiv preprint arXiv:2212.11237, 2022.

[32] M. B. Sariyildiz, K. Alahari, D. Larlus, and Y. Kalantidis, “Fake it till you make it:
Learning transferable representations from synthetic imagenet clones,” in CVPR
2023–IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

143

Bibliography

[33] V. Besnier, H. Jain, A. Bursuc, M. Cord, and P. Pérez, “This dataset does not exist:
training models from generated images,” in ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, IEEE,
2020.

[34] A. Jahanian, X. Puig, Y. Tian, and P. Isola, “Generative models as a data source
for multiview representation learning,” arXiv preprint arXiv:2106.05258, 2021.

[35] E. Wong and J. Z. Kolter, “Learning perturbation sets for robust machine learning,”
arXiv preprint arXiv:2007.08450, 2020.

[36] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan,
“Augmix: A simple data processing method to improve robustness and uncertainty,”
arXiv preprint arXiv:1912.02781, 2019.

[37] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment:
Learning augmentation policies from data,” arXiv preprint arXiv:1805.09501, 2018.

[38] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical automated
data augmentation with a reduced search space,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, pp. 702–703,
2020.

[39] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Regularization
strategy to train strong classifiers with localizable features,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 6023–6032, 2019.

[40] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical
risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[41] E. Rusak, L. Schott, R. S. Zimmermann, J. Bitterwolf, O. Bringmann, M. Bethge,
and W. Brendel, “A simple way to make neural networks robust against diverse
image corruptions,” in European Conference on Computer Vision, pp. 53–69,
Springer, 2020.

[42] D. Yin, R. G. Lopes, J. Shlens, E. D. Cubuk, and J. Gilmer, “A fourier perspective
on model robustness in computer vision,” in Advances in Neural Information
Processing Systems, pp. 13276–13286, 2019.

[43] G. Blanchard, G. Lee, and C. Scott, “Generalizing from several related classification
tasks to a new unlabeled sample,” Advances in neural information processing
systems, vol. 24, 2011.

[44] K. Muandet, D. Balduzzi, and B. Schölkopf, “Domain generalization via invariant
feature representation,” in International conference on machine learning, pp. 10–18,

144

Bibliography

PMLR, 2013.

[45] D. Li, Y. Yang, Y.-Z. Song, and T. Hospedales, “Learning to generalize: Meta-
learning for domain generalization,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 32, 2018.

[46] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural networks,”
The journal of machine learning research, vol. 17, no. 1, pp. 2096–2030, 2016.

[47] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep domain adapta-
tion,” in Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands,
October 8-10 and 15-16, 2016, Proceedings, Part III 14, pp. 443–450, Springer,
2016.

[48] H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization with adversarial
feature learning,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5400–5409, 2018.

[49] A. Rame, C. Dancette, and M. Cord, “Fishr: Invariant gradient variances for out-
of-distribution generalization,” in International Conference on Machine Learning,
pp. 18347–18377, PMLR, 2022.

[50] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, “Invariant risk minimiza-
tion,” arXiv preprint arXiv:1907.02893, 2019.

[51] S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang, “Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case
generalization,” arXiv preprint arXiv:1911.08731, 2019.

[52] I. Gulrajani and D. Lopez-Paz, “In search of lost domain generalization,” arXiv
preprint arXiv:2007.01434, 2020.

[53] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell, “Tent: Fully test-time
adaptation by entropy minimization,” in International Conference on Learning
Representations, 2020.

[54] J. Liang, D. Hu, and J. Feng, “Do we really need to access the source data?
source hypothesis transfer for unsupervised domain adaptation,” in International
Conference on Machine Learning, pp. 6028–6039, PMLR, 2020.

[55] J. Baxter, “A model of inductive bias learning,” Journal of artificial intelligence
research, vol. 12, pp. 149–198, 2000.

[56] I. P. Howard and B. J. Rogers, Seeing in depth, Vol. 2: Depth perception. University

145

Bibliography

of Toronto Press, 2002.

[57] I. P. Howard, B. J. Rogers, et al., Binocular vision and stereopsis. Oxford University
Press, USA, 1995.

[58] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the bias/variance
dilemma,” Neural computation, vol. 4, no. 1, pp. 1–58, 1992.

[59] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning,
vol. 1. Springer series in statistics New York, 2001.

[60] T. G. Dietterich, “Ensemble methods in machine learning,” in International Work-
shop on Multiple Classifier Systems, pp. 1–15, Springer, 2000.

[61] Z. Yang, Y. Yu, C. You, J. Steinhardt, and Y. Ma, “Rethinking bias-variance
trade-off for generalization of neural networks,” arXiv preprint arXiv:2002.11328,
2020.

[62] A. Der Kiureghian and O. Ditlevsen, “Aleatory or epistemic? does it matter?,”
Structural Safety, vol. 31, no. 2, pp. 105–112, 2009.

[63] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning
for computer vision?,” in Advances in Neural Information Processing Systems,
pp. 5574–5584, 2017.

[64] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing
model uncertainty in deep learning,” in International Conference on Machine
Learning, pp. 1050–1059, 2016.

[65] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The Journal
of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[66] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty
in neural networks,” arXiv preprint arXiv:1505.05424, 2015.

[67] A. Graves, “Practical variational inference for neural networks,” in Advances in
neural information processing systems, pp. 2348–2356, 2011.

[68] C. Louizos and M. Welling, “Multiplicative normalizing flows for variational bayesian
neural networks,” arXiv preprint arXiv:1703.01961, 2017.

[69] C. Louizos and M. Welling, “Structured and efficient variational deep learning with
matrix gaussian posteriors,” in International Conference on Machine Learning,
pp. 1708–1716, 2016.

146

Bibliography

[70] Y. Wen, P. Vicol, J. Ba, D. Tran, and R. Grosse, “Flipout: Efficient
pseudo-independent weight perturbations on mini-batches,” arXiv preprint
arXiv:1803.04386, 2018.

[71] C. Riquelme, G. Tucker, and J. Snoek, “Deep bayesian bandits showdown: An
empirical comparison of bayesian deep networks for thompson sampling,” arXiv
preprint arXiv:1802.09127, 2018.

[72] A. Zamir, A. Sax, T. Yeo, O. Kar, N. Cheerla, R. Suri, Z. Cao, J. Malik,
and L. Guibas, “Robust learning through cross-task consistency,” arXiv preprint
arXiv:2006.04096, 2020.

[73] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural
networks,” in International Conference on Machine Learning, pp. 1321–1330, 2017.

[74] V. Kuleshov, N. Fenner, and S. Ermon, “Accurate uncertainties for deep learning
using calibrated regression,” in International Conference on Machine Learning,
pp. 2796–2804, 2018.

[75] D. Hafner, D. Tran, T. Lillicrap, A. Irpan, and J. Davidson, “Noise contrastive priors
for functional uncertainty,” in Uncertainty in Artificial Intelligence, pp. 905–914,
PMLR, 2020.

[76] D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep anomaly detection with
outlier exposure,” arXiv preprint arXiv:1812.04606, 2018.

[77] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-distribution
image detection in neural networks,” arXiv preprint arXiv:1706.02690, 2017.

[78] K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated classifiers for
detecting out-of-distribution samples,” arXiv preprint arXiv:1711.09325, 2017.

[79] M. Leordeanu, M. Pirvu, D. Costea, A. Marcu, E. Slusanschi, and R. Sukthankar,
“Semi-supervised learning for multi-task scene understanding by neural graph
consensus,” arXiv preprint arXiv:2010.01086, 2020.

[80] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 2223–2232, 2017.

[81] D. Xu, W. Ouyang, X. Wang, and N. Sebe, “Pad-net: Multi-tasks guided prediction-
and-distillation network for simultaneous depth estimation and scene parsing,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 675–684, 2018.

147

Bibliography

[82] I. Kim, Y. Kim, and S. Kim, “Learning loss for test-time augmentation,” Advances
in Neural Information Processing Systems, vol. 33, 2020.

[83] A. Ashukha, A. Lyzhov, D. Molchanov, and D. Vetrov, “Pitfalls of in-
domain uncertainty estimation and ensembling in deep learning,” arXiv preprint
arXiv:2002.06470, 2020.

[84] N. Ford, J. Gilmer, N. Carlini, and D. Cubuk, “Adversarial examples are a natural
consequence of test error in noise,” arXiv preprint arXiv:1901.10513, 2019.

[85] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon, B. Laksh-
minarayanan, and J. Snoek, “Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift,” in Advances in Neural Information
Processing Systems, pp. 13991–14002, 2019.

[86] J. Hartung, G. Knapp, and B. K. Sinha, Statistical meta-analysis with applications,
vol. 738. John Wiley & Sons, 2011.

[87] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J. Engel, R. Mur-
Artal, C. Ren, S. Verma, A. Clarkson, M. Yan, B. Budge, Y. Yan, X. Pan, J. Yon,
Y. Zou, K. Leon, N. Carter, J. Briales, T. Gillingham, E. Mueggler, L. Pesqueira,
M. Savva, D. Batra, H. M. Strasdat, R. D. Nardi, M. Goesele, S. Lovegrove, and
R. Newcombe, “The Replica dataset: A digital replica of indoor spaces,” arXiv
preprint arXiv:1906.05797, 2019.

[88] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S. Savarese, “Taskonomy:
Disentangling task transfer learning,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3712–3722, 2018.

[89] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub,
J. Liu, V. Koltun, J. Malik, et al., “Habitat: A platform for embodied ai research,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 9339–9347, 2019.

[90] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition
challenge,” International journal of computer vision, vol. 115, no. 3, pp. 211–252,
2015.

[91] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.

[92] T. Acharya and A. K. Ray, Image processing: principles and applications. John
Wiley & Sons, 2005.

148

Bibliography

[93] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[94] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical Image
Computing and Computer-assisted Intervention, pp. 234–241, Springer, 2015.

[95] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,”
arXiv preprint arXiv:1904.09237, 2019.

[96] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel,
“Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness,” arXiv preprint arXiv:1811.12231, 2018.

[97] Y. Wen, D. Tran, and J. Ba, “Batchensemble: an alternative approach to effi-
cient ensemble and lifelong learning,” in International Conference on Learning
Representations, 2020.

[98] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, no. 2, pp. 241–259,
1992.

[99] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples,” arXiv preprint
arXiv:1802.00420, 2018.

[100] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

[101] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, pp. 1097–1105, 2012.

[102] R. Taori, A. Dave, V. Shankar, N. Carlini, B. Recht, and L. Schmidt, “Measuring
robustness to natural distribution shifts in image classification,” Advances in Neural
Information Processing Systems, vol. 33, pp. 18583–18599, 2020.

[103] J. P. Miller, R. Taori, A. Raghunathan, S. Sagawa, P. W. Koh, V. Shankar, P. Liang,
Y. Carmon, and L. Schmidt, “Accuracy on the line: On the strong correlation
between out-of-distribution and in-distribution generalization,” in International
Conference on Machine Learning, pp. 7721–7735, PMLR, 2021.

[104] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution
image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10684–10695, 2022.

149

Bibliography

[105] L. Zhang and M. Agrawala, “Adding conditional control to text-to-image diffusion
models,” arXiv preprint arXiv:2302.05543, 2023.

[106] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, and
D. Cohen-Or, “An image is worth one word: Personalizing text-to-image generation
using textual inversion,” arXiv preprint arXiv:2208.01618, 2022.

[107] S. Jain, H. Lawrence, A. Moitra, and A. Madry, “Distilling model failures as
directions in latent space,” arXiv preprint arXiv:2206.14754, 2022.

[108] C. Mou, X. Wang, L. Xie, J. Zhang, Z. Qi, Y. Shan, and X. Qie, “T2i-adapter:
Learning adapters to dig out more controllable ability for text-to-image diffusion
models,” arXiv preprint arXiv:2302.08453, 2023.

[109] A. Hertz, R. Mokady, J. Tenenbaum, K. Aberman, Y. Pritch, and D. Cohen-Or,
“Prompt-to-prompt image editing with cross attention control,” arXiv preprint
arXiv:2208.01626, 2022.

[110] G. Couairon, J. Verbeek, H. Schwenk, and M. Cord, “Diffedit: Diffusion-based
semantic image editing with mask guidance,” arXiv preprint arXiv:2210.11427,
2022.

[111] T. Brooks, A. Holynski, and A. A. Efros, “Instructpix2pix: Learning to follow image
editing instructions,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 18392–18402, 2023.

[112] R. Mokady, A. Hertz, K. Aberman, Y. Pritch, and D. Cohen-Or, “Null-text
inversion for editing real images using guided diffusion models,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6038–
6047, 2023.

[113] I. Huberman-Spiegelglas, V. Kulikov, and T. Michaeli, “An edit friendly ddpm
noise space: Inversion and manipulations,” arXiv preprint arXiv:2304.06140, 2023.

[114] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman, “Dream-
booth: Fine tuning text-to-image diffusion models for subject-driven generation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 22500–22510, 2023.

[115] O. Avrahami, K. Aberman, O. Fried, D. Cohen-Or, and D. Lischinski, “Break-
a-scene: Extracting multiple concepts from a single image,” arXiv preprint
arXiv:2305.16311, 2023.

[116] L. Han, Y. Li, H. Zhang, P. Milanfar, D. Metaxas, and F. Yang, “Svdiff: Compact
parameter space for diffusion fine-tuning,” arXiv preprint arXiv:2303.11305, 2023.

150

Bibliography

[117] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsuper-
vised learning using nonequilibrium thermodynamics,” in International conference
on machine learning, pp. 2256–2265, PMLR, 2015.

[118] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances
in neural information processing systems, vol. 33, pp. 6840–6851, 2020.

[119] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” arXiv
preprint arXiv:2010.02502, 2020.

[120] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole,
“Score-based generative modeling through stochastic differential equations,” arXiv
preprint arXiv:2011.13456, 2020.

[121] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon, “Sdedit:
Guided image synthesis and editing with stochastic differential equations,” arXiv
preprint arXiv:2108.01073, 2021.

[122] Y. Wen, N. Jain, J. Kirchenbauer, M. Goldblum, J. Geiping, and T. Goldstein,
“Hard prompts made easy: Gradient-based discrete optimization for prompt tuning
and discovery,” arXiv preprint arXiv:2302.03668, 2023.

[123] S. Beery, E. Cole, and A. Gjoka, “The iwildcam 2020 competition dataset,” arXiv
preprint arXiv:2004.10340, 2020.

[124] S. Beery, A. Agarwal, E. Cole, and V. Birodkar, “The iwildcam 2021 competition
dataset,” arXiv preprint arXiv:2105.03494, 2021.

[125] L. Dunlap, A. Umino, H. Zhang, J. Yang, J. E. Gonzalez, and T. Darrell, “Diversify
your vision datasets with automatic diffusion-based augmentation,” arXiv preprint
arXiv:2305.16289, 2023.

[126] G. Le Moing, T.-H. Vu, H. Jain, P. Pérez, and M. Cord, “Semantic palette:
Guiding scene generation with class proportions,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9342–9350, 2021.

[127] M. Zhang, S. Levine, and C. Finn, “Memo: Test time robustness via adaptation
and augmentation,” arXiv preprint arXiv:2110.09506, 2021.

[128] Y. Gandelsman, Y. Sun, X. Chen, and A. A. Efros, “Test-time training with masked
autoencoders,” arXiv preprint arXiv:2209.07522, 2022.

[129] R. G. Lopes, D. Yin, B. Poole, J. Gilmer, and E. D. Cubuk, “Improving robustness
without sacrificing accuracy with patch gaussian augmentation,” arXiv preprint
arXiv:1906.02611, 2019.

151

Bibliography

[130] D. Hendrycks, K. Lee, and M. Mazeika, “Using pre-training can improve model
robustness and uncertainty,” in International Conference on Machine Learning,
pp. 2712–2721, PMLR, 2019.

[131] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with noisy student
improves imagenet classification,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10687–10698, 2020.

[132] A. Eftekhar, A. Sax, J. Malik, and A. Zamir, “Omnidata: A scalable pipeline for
making multi-task mid-level vision datasets from 3d scans,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10786–10796, 2021.

[133] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models from
natural language supervision,” in International conference on machine learning,
pp. 8748–8763, PMLR, 2021.

[134] S. M. Xie, A. Kumar, R. Jones, F. Khani, T. Ma, and P. Liang, “In-n-out:
Pre-training and self-training using auxiliary information for out-of-distribution
robustness,” arXiv preprint arXiv:2012.04550, 2020.

[135] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 3,
2022.

[136] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are
scalable vision learners,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16000–16009, 2022.

[137] T. Cohen and M. Welling, “Group equivariant convolutional networks,” in Interna-
tional conference on machine learning, pp. 2990–2999, PMLR, 2016.

[138] S. Bhojanapalli, A. Chakrabarti, D. Glasner, D. Li, T. Unterthiner, and A. Veit,
“Understanding robustness of transformers for image classification,” arXiv preprint
arXiv:2103.14586, 2021.

[139] R. Shao, Z. Shi, J. Yi, P.-Y. Chen, and C.-J. Hsieh, “On the adversarial robustness
of visual transformers,” arXiv preprint arXiv:2103.15670, 2021.

[140] X. Mao, G. Qi, Y. Chen, X. Li, R. Duan, S. Ye, Y. He, and H. Xue, “Towards robust
vision transformer,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12042–12051, 2022.

[141] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for

152

Bibliography

the 2020s,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986, 2022.

[142] T. Yeo, O. F. Kar, and A. Zamir, “Robustness via cross-domain ensembles,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 12189–12199, October 2021.

[143] S. Jain, D. Tsipras, and A. Madry, “Combining diverse feature priors,” in Interna-
tional Conference on Machine Learning, pp. 9802–9832, PMLR, 2022.

[144] M. Pagliardini, M. Jaggi, F. Fleuret, and S. P. Karimireddy, “Agree to dis-
agree: Diversity through disagreement for better transferability,” arXiv preprint
arXiv:2202.04414, 2022.

[145] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” arXiv preprint arXiv:1609.09106,
2016.

[146] D. Kang, D. Dhar, and A. Chan, “Incorporating side information by adaptive
convolution,” Advances in Neural Information Processing Systems, vol. 30, 2017.

[147] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information
processing systems, vol. 30, 2017.

[148] V. Dumoulin, J. Shlens, and M. Kudlur, “A learned representation for artistic
style,” arXiv preprint arXiv:1610.07629, 2016.

[149] G. Ghiasi, H. Lee, M. Kudlur, V. Dumoulin, and J. Shlens, “Exploring the struc-
ture of a real-time, arbitrary neural artistic stylization network,” arXiv preprint
arXiv:1705.06830, 2017.

[150] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive
instance normalization,” in Proceedings of the IEEE International Conference on
Computer Vision, pp. 1501–1510, 2017.

[151] B. Oreshkin, P. Rodríguez López, and A. Lacoste, “Tadam: Task dependent
adaptive metric for improved few-shot learning,” Advances in neural information
processing systems, vol. 31, 2018.

[152] J. Requeima, J. Gordon, J. Bronskill, S. Nowozin, and R. E. Turner, “Fast and flex-
ible multi-task classification using conditional neural adaptive processes,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[153] L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson, “Fast context
adaptation via meta-learning,” in International Conference on Machine Learning,

153

Bibliography

pp. 7693–7702, PMLR, 2019.

[154] E. Triantafillou, H. Larochelle, R. Zemel, and V. Dumoulin, “Learning a universal
template for few-shot dataset generalization,” in International Conference on
Machine Learning, pp. 10424–10433, PMLR, 2021.

[155] X. Jiang, M. Havaei, F. Varno, G. Chartrand, N. Chapados, and S. Matwin,
“Learning to learn with conditional class dependencies,” in international conference
on learning representations, 2019.

[156] V. Dumoulin, E. Perez, N. Schucher, F. Strub, H. d. Vries, A. Courville, and Y. Ben-
gio, “Feature-wise transformations,” Distill, 2018. https://distill.pub/2018/feature-
wise-transformations.

[157] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film: Visual
reasoning with a general conditioning layer,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, 2018.

[158] K. Li and J. Malik, “Learning to optimize,” arXiv preprint arXiv:1606.01885, 2016.

[159] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik, “Human pose estimation
with iterative error feedback,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4733–4742, 2016.

[160] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul,
B. Shillingford, and N. De Freitas, “Learning to learn by gradient descent by
gradient descent,” Advances in neural information processing systems, vol. 29,
2016.

[161] A. R. Zamir, T.-L. Wu, L. Sun, W. B. Shen, B. E. Shi, J. Malik, and S. Savarese,
“Feedback networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1308–1317, 2017.

[162] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation
of deep networks,” in International conference on machine learning, pp. 1126–1135,
PMLR, 2017.

[163] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G. Colmenarejo, M. Denil,
N. Freitas, and J. Sohl-Dickstein, “Learned optimizers that scale and generalize,”
in International conference on machine learning, pp. 3751–3760, PMLR, 2017.

[164] W.-C. Ma, S. Wang, J. Gu, S. Manivasagam, A. Torralba, and R. Urtasun, “Deep
feedback inverse problem solver,” in Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, pp. 229–246,
Springer, 2020.

154

Bibliography

[165] T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and W. Yin, “Learning
to optimize: A primer and a benchmark,” 2021.

[166] B. Amos, “Tutorial on amortized optimization for learning to optimize over contin-
uous domains,” arXiv preprint arXiv:2202.00665, 2022.

[167] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-efficient
approach to policy search,” in Proceedings of the 28th International Conference on
machine learning (ICML-11), pp. 465–472, 2011.

[168] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[169] J. Marino, Y. Yue, and S. Mandt, “Iterative amortized inference,” in International
Conference on Machine Learning, pp. 3403–3412, PMLR, 2018.

[170] T.-H. Wang, F.-E. Wang, J.-T. Lin, Y.-H. Tsai, W.-C. Chiu, and M. Sun, “Plug-and-
play: Improve depth prediction via sparse data propagation,” in 2019 International
Conference on Robotics and Automation (ICRA), pp. 5880–5886, IEEE, 2019.

[171] Y. Yang, A. Wong, and S. Soatto, “Dense depth posterior (ddp) from single image
and sparse range,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3353–3362, 2019.

[172] Y. Chen, B. Yang, M. Liang, and R. Urtasun, “Learning joint 2d-3d representations
for depth completion,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 10023–10032, 2019.

[173] Y. Verdié, J. Song, B. Mas, B. Busam, A. Leonardis, and S. McDonagh, “Cromo:
Cross-modal learning for monocular depth estimation,” in 2022 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 3927–3937, IEEE,
2022.

[174] W. Yin, J. Zhang, O. Wang, S. Niklaus, S. Chen, and C. Shen, “Towards domain-
agnostic depth completion,” arXiv preprint arXiv:2207.14466, 2022.

[175] I. Chugunov, Y. Zhang, Z. Xia, X. Zhang, J. Chen, and F. Heide, “The implicit
values of a good hand shake: Handheld multi-frame neural depth refinement,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2852–2862, 2022.

[176] J. Watson, O. Mac Aodha, V. Prisacariu, G. Brostow, and M. Firman, “The
temporal opportunist: Self-supervised multi-frame monocular depth,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

155

Bibliography

pp. 1164–1174, 2021.

[177] Y. Kuznietsov, M. Proesmans, and L. Van Gool, “Comoda: Continuous monocular
depth adaptation using past experiences,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 2907–2917, 2021.

[178] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, “Unsupervised monocular
depth and ego-motion learning with structure and semantics,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
pp. 0–0, 2019.

[179] X. Luo, J.-B. Huang, R. Szeliski, K. Matzen, and J. Kopf, “Consistent video depth
estimation,” ACM Transactions on Graphics (ToG), vol. 39, no. 4, pp. 71–1, 2020.

[180] J. Kopf, X. Rong, and J.-B. Huang, “Robust consistent video depth estimation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1611–1621, 2021.

[181] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt, “Test-time training
with self-supervision for generalization under distribution shifts,” in International
conference on machine learning, pp. 9229–9248, PMLR, 2020.

[182] Y. Liu, P. Kothari, B. van Delft, B. Bellot-Gurlet, T. Mordan, and A. Alahi,
“Ttt++: When does self-supervised test-time training fail or thrive?,” Advances in
Neural Information Processing Systems, vol. 34, pp. 21808–21820, 2021.

[183] J. Gao, J. Zhang, X. Liu, T. Darrell, E. Shelhamer, and D. Wang, “Back to the
source: Diffusion-driven test-time adaptation,” arXiv preprint arXiv:2207.03442,
2022.

[184] M. Boudiaf, R. Mueller, I. Ben Ayed, and L. Bertinetto, “Parameter-free online
test-time adaptation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8344–8353, 2022.

[185] C. Yi, S. Yang, Y. Wang, H. Li, Y.-P. Tan, and A. C. Kot, “Temporal coherent test-
time optimization for robust video classification,” arXiv preprint arXiv:2302.14309,
2023.

[186] S. Niu, J. Wu, Y. Zhang, Z. Wen, Y. Chen, P. Zhao, and M. Tan, “Towards stable
test-time adaptation in dynamic wild world,” arXiv preprint arXiv:2302.12400,
2023.

[187] D. Lin, J. Dai, J. Jia, K. He, and J. Sun, “Scribblesup: Scribble-supervised
convolutional networks for semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3159–3167, 2016.

156

Bibliography

[188] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei, “What’s the point:
Semantic segmentation with point supervision,” in European conference on computer
vision, pp. 549–565, Springer, 2016.

[189] D. P. Papadopoulos, J. R. Uijlings, F. Keller, and V. Ferrari, “Extreme clicking for
efficient object annotation,” in Proceedings of the IEEE international conference
on computer vision, pp. 4930–4939, 2017.

[190] G. Shin, W. Xie, and S. Albanie, “All you need are a few pixels: semantic
segmentation with pixelpick,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1687–1697, 2021.

[191] S. Zhi, T. Laidlow, S. Leutenegger, and A. J. Davison, “In-place scene labelling and
understanding with implicit scene representation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 15838–15847, 2021.

[192] B. Cheng, O. Parkhi, and A. Kirillov, “Pointly-supervised instance segmentation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2617–2626, 2022.

[193] Y. Xu, Q. Qian, H. Li, R. Jin, and J. Hu, “Weakly supervised representation learning
with coarse labels,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 10593–10601, 2021.

[194] M. Huh, P. Agrawal, and A. A. Efros, “What makes imagenet good for transfer
learning?,” 2016.

[195] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin,
“Emerging properties in self-supervised vision transformers,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 9650–9660, 2021.

[196] L. Castrejon, Y. Aytar, C. Vondrick, H. Pirsiavash, and A. Torralba, “Learning
aligned cross-modal representations from weakly aligned data,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 2940–2949,
2016.

[197] R. Arandjelovic and A. Zisserman, “Look, listen and learn,” in Proceedings of the
IEEE international conference on computer vision, pp. 609–617, 2017.

[198] H. Tan and M. Bansal, “Lxmert: Learning cross-modality encoder representations
from transformers,” arXiv preprint arXiv:1908.07490, 2019.

[199] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang, “Visualbert: A simple
and performant baseline for vision and language,” arXiv preprint arXiv:1908.03557,
2019.

157

Bibliography

[200] J.-B. Alayrac, A. Recasens, R. Schneider, R. Arandjelović, J. Ramapuram,
J. De Fauw, L. Smaira, S. Dieleman, and A. Zisserman, “Self-supervised mul-
timodal versatile networks,” Advances in Neural Information Processing Systems,
vol. 33, pp. 25–37, 2020.

[201] Y.-C. Chen, L. Li, L. Yu, A. El Kholy, F. Ahmed, Z. Gan, Y. Cheng, and J. Liu,
“Uniter: Universal image-text representation learning,” in Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXX, pp. 104–120, Springer, 2020.

[202] H. Akbari, L. Yuan, R. Qian, W.-H. Chuang, S.-F. Chang, Y. Cui, and B. Gong,
“Vatt: Transformers for multimodal self-supervised learning from raw video, audio
and text,” Advances in Neural Information Processing Systems, vol. 34, pp. 24206–
24221, 2021.

[203] R. Bachmann, D. Mizrahi, A. Atanov, and A. Zamir, “Multimae: Multi-modal
multi-task masked autoencoders,” in Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXVII,
pp. 348–367, Springer, 2022.

[204] R. Girdhar, M. Singh, N. Ravi, L. van der Maaten, A. Joulin, and I. Misra,
“Omnivore: A single model for many visual modalities,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16102–
16112, 2022.

[205] E. Triantafillou, T. Zhu, V. Dumoulin, P. Lamblin, U. Evci, K. Xu, R. Goroshin,
C. Gelada, K. Swersky, P.-A. Manzagol, et al., “Meta-dataset: A dataset of datasets
for learning to learn from few examples,” arXiv preprint arXiv:1903.03096, 2019.

[206] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., “Matching networks for
one shot learning,” Advances in neural information processing systems, vol. 29,
2016.

[207] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,” in Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2016.

[208] G. A. Miller, “WordNet: A lexical database for English,” in Human Language
Technology: Proceedings of a Workshop held at Plainsboro, New Jersey, March
8-11, 1994, 1994.

[209] M. Huh, P. Agrawal, and A. A. Efros, “What makes imagenet good for transfer
learning?,” arXiv preprint arXiv:1608.08614, 2016.

[210] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision

158

Bibliography

and Pattern Recognition, pp. 248–255, Ieee, 2009.

[211] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European
Conference on Computer Vision, pp. 740–755, Springer, 2014.

[212] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner,
“Scannet: Richly-annotated 3d reconstructions of indoor scenes,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839,
2017.

[213] M. Roberts, J. Ramapuram, A. Ranjan, A. Kumar, M. A. Bautista, N. Paczan,
R. Webb, and J. M. Susskind, “Hypersim: A photorealistic synthetic dataset for
holistic indoor scene understanding,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 10912–10922, 2021.

[214] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for dense predic-
tion,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 12179–12188, 2021.

[215] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for optical flow,”
in European conference on computer vision, pp. 402–419, Springer, 2020.

[216] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440, 2015.

[217] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing Systems,
pp. 8024–8035, 2019.

[218] B. Roessle, J. T. Barron, B. Mildenhall, P. P. Srinivasan, and M. Nießner, “Dense
depth priors for neural radiance fields from sparse input views,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12892–
12901, 2022.

[219] F. Ma and S. Karaman, “Sparse-to-dense: Depth prediction from sparse depth
samples and a single image,” in 2018 IEEE international conference on robotics
and automation (ICRA), pp. 4796–4803, IEEE, 2018.

[220] M. Jaritz, R. De Charette, E. Wirbel, X. Perrotton, and F. Nashashibi, “Sparse
and dense data with cnns: Depth completion and semantic segmentation,” in 2018
International Conference on 3D Vision (3DV), pp. 52–60, IEEE, 2018.

159

Bibliography

[221] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet classifiers general-
ize to imagenet?,” in International Conference on Machine Learning, pp. 5389–5400,
PMLR, 2019.

[222] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor adaptation for
legged robots,” arXiv preprint arXiv:2107.04034, 2021.

[223] T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural
networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[224] N. Sambasivan, S. Kapania, H. Highfill, D. Akrong, P. Paritosh, and L. M. Aroyo,
““everyone wants to do the model work, not the data work”: Data cascades in
high-stakes ai,” in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–15, 2021.

[225] A. Paullada, I. D. Raji, E. M. Bender, E. Denton, and A. Hanna, “Data and its (dis)
contents: A survey of dataset development and use in machine learning research,”
arXiv preprint arXiv:2012.05345, 2020.

[226] C. Kamann and C. Rother, “Benchmarking the robustness of semantic segmentation
models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8828–8838, 2020.

[227] C. Michaelis, B. Mitzkus, R. Geirhos, E. Rusak, O. Bringmann, A. S. Ecker,
M. Bethge, and W. Brendel, “Benchmarking robustness in object detection: Au-
tonomous driving when winter is coming,” arXiv preprint arXiv:1907.07484, 2019.

[228] P. Chattopadhyay, J. Hoffman, R. Mottaghi, and A. Kembhavi, “Robustnav:
Towards benchmarking robustness in embodied navigation,” arXiv preprint
arXiv:2106.04531, 2021.

[229] C. Yi, S. Yang, H. Li, Y.-p. Tan, and A. Kot, “Benchmarking the robustness of
spatial-temporal models against corruptions,” arXiv preprint arXiv:2110.06513,
2021.

[230] E. Mintun, A. Kirillov, and S. Xie, “On interaction between augmentations and
corruptions in natural corruption robustness,” arXiv preprint arXiv:2102.11273,
2021.

[231] J. Sun, Q. Zhang, B. Kailkhura, Z. Yu, C. Xiao, and Z. M. Mao, “Benchmarking
robustness of 3d point cloud recognition against common corruptions,” arXiv
preprint arXiv:2201.12296, 2022.

[232] A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund, J. Tenenbaum,
and B. Katz, “Objectnet: A large-scale bias-controlled dataset for pushing the

160

Bibliography

limits of object recognition models,” 2019.

[233] G. Leclerc, H. Salman, A. Ilyas, S. Vemprala, L. Engstrom, V. Vineet, K. Xiao,
P. Zhang, S. Santurkar, G. Yang, et al., “3db: A framework for debugging computer
vision models,” arXiv preprint arXiv:2106.03805, 2021.

[234] J. Djolonga, J. Yung, M. Tschannen, R. Romijnders, L. Beyer, A. Kolesnikov,
J. Puigcerver, M. Minderer, A. D’Amour, D. Moldovan, et al., “On robustness and
transferability of convolutional neural networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16458–16468, 2021.

[235] M. Naseer, K. Ranasinghe, S. Khan, M. Hayat, F. S. Khan, and M.-H. Yang,
“Intriguing properties of vision transformers,” arXiv preprint arXiv:2105.10497,
2021.

[236] E. Rusak, L. Schott, R. Zimmermann, J. Bitterwolfb, O. Bringmann, M. Bethge,
and W. Brendel, “Increasing the robustness of dnns against image corruptions by
playing the game of noise,” 2020.

[237] A. E. Orhan, “Robustness properties of facebook’s resnext wsl models,” arXiv
preprint arXiv:1907.07640, 2019.

[238] R. Fattal, “Single image dehazing,” ACM transactions on graphics (TOG), vol. 27,
no. 3, pp. 1–9, 2008.

[239] C. Sakaridis, D. Dai, and L. Van Gool, “Semantic foggy scene understanding
with synthetic data,” International Journal of Computer Vision, vol. 126, no. 9,
pp. 973–992, 2018.

[240] A. Von Bernuth, G. Volk, and O. Bringmann, “Simulating photo-realistic snow and
fog on existing images for enhanced cnn training and evaluation,” in 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pp. 41–46, IEEE, 2019.

[241] X. Hu, C.-W. Fu, L. Zhu, and P.-A. Heng, “Depth-attentional features for single-
image rain removal,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8022–8031, 2019.

[242] M. Tremblay, S. S. Halder, R. de Charette, and J.-F. Lalonde, “Rain rendering for
evaluating and improving robustness to bad weather,” International Journal of
Computer Vision, vol. 129, no. 2, pp. 341–360, 2021.

[243] T. Brooks and J. T. Barron, “Learning to synthesize motion blur,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6840–
6848, 2019.

161

Bibliography

[244] S. Niklaus, L. Mai, J. Yang, and F. Liu, “3d ken burns effect from a single image,”
ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–15, 2019.

[245] M. Potmesil and I. Chakravarty, “A lens and aperture camera model for synthetic
image generation,” ACM SIGGRAPH Computer Graphics, vol. 15, no. 3, pp. 297–
305, 1981.

[246] L. Wang, X. Shen, J. Zhang, O. Wang, Z. Lin, C.-Y. Hsieh, S. Kong, and
H. Lu, “Deeplens: Shallow depth of field from a single image,” arXiv preprint
arXiv:1810.08100, 2018.

[247] N. Wadhwa, R. Garg, D. E. Jacobs, B. E. Feldman, N. Kanazawa, R. Carroll,
Y. Movshovitz-Attias, J. T. Barron, Y. Pritch, and M. Levoy, “Synthetic depth-of-
field with a single-camera mobile phone,” ACM Transactions on Graphics (ToG),
vol. 37, no. 4, pp. 1–13, 2018.

[248] B. A. Barsky and T. J. Kosloff, “Algorithms for rendering depth of field effects in
computer graphics,” in Proceedings of the 12th WSEAS international conference
on Computers, vol. 2008, World Scientific and Engineering Academy and Society
(WSEAS), 2008.

[249] Z. Xu, K. Sunkavalli, S. Hadap, and R. Ramamoorthi, “Deep image-based relighting
from optimal sparse samples,” ACM Transactions on Graphics (ToG), vol. 37,
no. 4, pp. 1–13, 2018.

[250] M. E. Helou, R. Zhou, J. Barthas, and S. Süsstrunk, “Vidit: virtual image dataset
for illumination transfer,” arXiv preprint arXiv:2005.05460, 2020.

[251] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical poissonian-
gaussian noise modeling and fitting for single-image raw-data,” IEEE Transactions
on Image Processing, vol. 17, no. 10, pp. 1737–1754, 2008.

[252] K. Wei, Y. Fu, J. Yang, and H. Huang, “A physics-based noise formation model
for extreme low-light raw denoising,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2758–2767, 2020.

[253] D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE signal processing
magazine, vol. 13, no. 3, pp. 43–64, 1996.

[254] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing
camera shake from a single photograph,” in ACM SIGGRAPH 2006 Papers, pp. 787–
794, 2006.

[255] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations
over learned dictionaries,” IEEE Transactions on Image processing, vol. 15, no. 12,

162

Bibliography

pp. 3736–3745, 2006.

[256] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse
models for image restoration,” in 2009 IEEE 12th International Conference on
Computer Vision, pp. 2272–2279, IEEE, 2009.

[257] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising,” IEEE transactions on image
processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[258] C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the dark,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3291–3300, 2018.

[259] S. Nah, T. Hyun Kim, and K. Mu Lee, “Deep multi-scale convolutional neural
network for dynamic scene deblurring,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3883–3891, 2017.

[260] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep cnn denoiser prior for
image restoration,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3929–3938, 2017.

[261] J. Rim, H. Lee, J. Won, and S. Cho, “Real-world blur dataset for learning and
benchmarking deblurring algorithms,” in European Conference on Computer Vision,
pp. 184–201, Springer, 2020.

[262] S. Nah, S. Son, S. Lee, R. Timofte, and K. M. Lee, “Ntire 2021 challenge on image
deblurring,” in CVPR Workshops, pp. 149–165, June 2021.

[263] A. Abdelhamed, S. Lin, and M. S. Brown, “A high-quality denoising dataset for
smartphone cameras,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1692–1700, 2018.

[264] F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti, N. Flammarion, M. Chi-
ang, P. Mittal, and M. Hein, “Robustbench: a standardized adversarial robustness
benchmark,” arXiv preprint arXiv:2010.09670, 2020.

[265] B. O. Community, Blender - a 3D modelling and rendering package. Blender
Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[266] I. Armeni, Z.-Y. He, J. Gwak, A. R. Zamir, M. Fischer, J. Malik, and S. Savarese,
“3d scene graph: A structure for unified semantics, 3d space, and camera,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 5664–5673, 2019.

163

Bibliography

[267] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE Transactions on Image
Processing, vol. 13, no. 4, pp. 600–612, 2004.

[268] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer,”
arXiv preprint arXiv:1907.01341, 2019.

[269] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image
is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint
arXiv:2010.11929, 2020.

[270] W. Chen, S. Qian, D. Fan, N. Kojima, M. Hamilton, and J. Deng, “Oasis: A large-
scale dataset for single image 3d in the wild,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 679–688, 2020.

[271] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2.” https:
//github.com/facebookresearch/detectron2, 2019.

[272] A. Laugros, A. Caplier, and M. Ospici, “Using synthetic corruptions to measure
robustness to natural distribution shifts,” arXiv preprint arXiv:2107.12052, 2021.

[273] S. Sagawa, P. W. Koh, T. Lee, I. Gao, S. M. Xie, K. Shen, A. Kumar, W. Hu,
M. Yasunaga, H. Marklund, et al., “Extending the wilds benchmark for unsupervised
adaptation,” arXiv preprint arXiv:2112.05090, 2021.

[274] L. Smith and M. Gasser, “The development of embodied cognition: Six lessons
from babies,” Artificial life, vol. 11, no. 1-2, pp. 13–29, 2005.

[275] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron,
M. Gimenez, Y. Sulsky, J. Kay, J. T. Springenberg, et al., “A generalist agent,”
arXiv preprint arXiv:2205.06175, 2022.

[276] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A.
Huang, Y. Zhu, and A. Anandkumar, “Minedojo: Building open-ended embodied
agents with internet-scale knowledge,” Advances in Neural Information Processing
Systems, vol. 35, pp. 18343–18362, 2022.

[277] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner,
N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in python,”
PeerJ, vol. 2, p. e453, 2014.

[278] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-supervised
interest point detection and description,” in Proceedings of the IEEE conference on

164

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

Bibliography

computer vision and pattern recognition workshops, pp. 224–236, 2018.

[279] F. W. Campbell, “The depth of field of the human eye,” Optica Acta: International
Journal of Optics, vol. 4, no. 4, pp. 157–164, 1957.

165

B Curriculum Vitae

Email: teresa.ysq@gmail.com ⋄ Website: aserety.github.io

EDUCATION

École Polytechnique Fédérale de Lausanne Lausanne, CH
PhD in Computer Science Sept 2017 - Aug 2023
Advisors: Amir Zamir, Pierre Dillenbourg
University of Cambridge Cambridge, UK
MPhil in Machine Learning and Machine Intelligence Sept 2015 - Aug 2016

EXPERIENCE

Teaching Assistant, EPFL Sept 2017 - Aug 2022
Fall 2021: CS503 Visual Intelligence: Machines and Minds
Spring 2018, 2019, 2020: EE559 Deep Learning
Fall 2020: MATH111 Linear Algebra
Fall 2019: CS433 Machine Learning

PAPERS

Training Data Generation with Diffusion Models for Robustness In Progress
T. Yeo, A. Atanov, A. Alekseev, H. Benoit, R. Ray, P. Esmaeil, A. Zamir
4M: Massively Multimodal Masked Modelling NeurIPS’23 (Spotlight)
D. Mizrahi, R. Bachmann, O. F. Kar, T. Yeo, M. Gao, A. Dehghan, A. Zamir
Fast Adaptation of Neural Networks Using Test-Time Feedback ICCV’23
T. Yeo, O. F. Kar, Z. Sodagar, A. Zamir
Task Discovery: Finding the Tasks that Neural Networks Generalize on NeurIPS’22
A. Atanov, A. Filatov, T. Yeo, A. Sohmshetty, A. Zamir
3D Common Corruptions and Data Augmentation CVPR’22 (Oral)
O. F. Kar, T. Yeo, A. Atanov, A. Zamir
Robustness via Cross-domain Ensembles ICCV’21 (Oral)
T. Yeo*, O. F. Kar*, A. Sax, A. Zamir
Robust Learning Through Cross-Task Consistency Arxiv’20
A. Zamir*, A. Sax*, T. Yeo, O. F. Kar, N. Cheerla, R. Suri, Z. Cao,
J. Malik, L. Guibas
Iterative Classroom Teaching AAAI’19 (Oral)
T. Yeo, P. Kamalaruban, A. Singla, A. Merchant, T. Asselborn, L. Faucon,
P. Dillenbourg, V. Cevher

167

mailto:teresa.ysq@gmail.com
https://aserety.github.io/

	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Types of distribution shifts
	Reasons for lack of robustness
	Making models robust
	Making models adaptive

	I Robustness Mechanisms
	Ensembling diverse predictions
	Introduction
	Related Work
	Method
	Estimating Per-Path Predictions and Uncertainty
	Merging Predictions

	Experiments
	Evaluations on Pixel-Wise Prediction Tasks
	Robustness of Sigmas to Distribution Shifts
	Evaluation on Classification Tasks

	Conclusion and Discussion

	Controlled Training Data Generation
	Introduction
	Related Work
	Method
	Preliminaries on diffusion models and textual inversion
	Optimizing for a S* that maximizes loss
	Constraining the optimization of S*

	Experiments
	Experimental setup
	Fine-tuning on generated data

	Discussion on target domain informed vs uninformed generation
	Conclusion

	II Adaptation Mechanisms
	Fast adaptation using test-time feedback
	Introduction
	Related Work
	Method
	How to adapt at test-time?
	Which test-time adaptation signals to use?

	Experiments
	Experimental Setup
	Adaptation with RNA vs TTO
	Experiments using Various Target Tasks
	Ablations and additional results

	Discussions of RNA compared to other approaches
	Conclusion and Limitations

	III Benchmarks
	3D Common Corruptions
	Introduction
	Related Work
	Generating 3D Common Corruptions
	Corruption Types
	Starter 3D Common Corruptions Dataset
	Applying 3DCC to standard vision datasets

	3D Data Augmentation
	Experiments
	Preliminaries
	3D Common Corruptions Benchmark
	3D data augmentation to improve robustness

	Conclusion and Limitations

	Conclusion
	Limitations and Future Work

	Appendix
	Ensembling diverse predictions
	Quantitative Results
	Qualitative Results
	Further Method Details
	Middle domain definitions
	Visualizations of Common Corruption on Taskonomy data

	Fast adaptation using test-time feedback
	Monocular Depth
	Optical Flow Experiments
	Dense 3D Reconstruction
	Semantic Segmentation
	Image classification

	3D Common Corruptions
	Quantitative Results
	Qualitative Results
	Further method details
	Visualizing Corruptions

	Bibliography
	Curriculum Vitae

