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life and to my lifelong friend Sava Stevanović. Last but certainly not least, I am forever grateful

to my grandparents who gave me all their love and made me the person I am today.

Lausanne, August 2, 2023 A. S.

ii



Abstract

The way biological brains carry out advanced yet extremely energy efficient signal processing

remains both fascinating and unintelligible. It is known however that at least some areas of

the brain perform fast and low-cost processing relying only on a small number of temporally

encoded spikes. This thesis investigates supervised learning and inference of spiking neural

networks (SNNs) with sparse temporally encoded communication. We explore different setups

and compare the performance of our SNNs with that of the standard artificial neural networks

(ANNs) on data classification tasks.

In the first setup we consider: A family of exact mappings between a single-spike network and

a ReLU network. We dismiss training for a moment and analyse deep SNNs with time-to-first-

spike (TTFS) encoding. There exist a neural dynamics and a set of parameter constraints

which guarantee an approximation-free mapping (conversion) from a ReLU network to an

SNN with TTFS encoding. We find that a pretrained deep ReLU network can be replaced

with our deep SNN without any performance loss on large-scale image classification tasks

(CIFAR100 and PLACES365). However, we hypothesise that in many cases there is a need for

training or fine-tuning deep spiking neural network for the specific problem at hand.

In the second setup we consider: Training a deep single-spike network using a family of exact

mappings from a ReLU network. We thoroughly investigate the reasons for unsuccessful

training of deep SNNs with TTFS encoding and uncover an instance of the vanishing-and-

exploding gradient problem. We find that a particular exact mapping solves this problem

and yields an SNN with learning trajectories equivalent to those of ReLU network on large

image classification tasks (CIFAR100 and PLACES365). Training is crucial for fine-tuning SNNs

for the specific device properties such as low latency, the amount of noise or quantization.

We hope that this study will eventually lead to an SNN hardware implementation offering a

low-power inference with ANN performance on data classification tasks.

Keywords spiking neural network, temporal encoding, sparse communication, efficient data

classification, multiplication-free inference, backpropagation training, time-to-first-spike

encoding, deep ReLU network conversion, SNN-ReLU network equivalence, deep SNN training
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Zusammenfassung

Die Art und Weise, wie biologische Gehirne fortgeschrittene und zugleich äußerst energieeffi-

ziente Signalverarbeitung durchführen, bleibt sowohl faszinierend als auch unverständlich. Es

ist jedoch bekannt, dass zumindest einige Bereiche des Gehirns schnelle und kostengünstige

Verarbeitungsprozesse durchführen, die sich nur auf eine kleine Anzahl zeitlich codierter

Spitzen (spikes) stützt. Diese Arbeit untersucht das überwachte Lernen und die Inferenz von

gepulsten neuronalen Netzwerken (Spiking Neural Networks, fortan SNNs) mit sparsamer zeit-

lich codierter Kommunikation. Wir erkunden verschiedene Konfigurationen und vergleichen

die Leistung unserer SNNs mit der von herkömmlichen künstlichen neuronalen Netzwerken

(Artificial Neural Networks, fortan ANNs) bei der Klassifizierung von Daten.

In der ersten Konfiguration betrachten wir: Eine Familie exakter Zuordnungen zwischen einem

Einzel-Spike-Netzwerk und einem ReLU-Netzwerk. Wir verzichten vorerst auf das Training

und analysieren tiefe SNNs mit Time-to-First-Spike"(TTFS) Codierung. Es existieren eine

neuronale Dynamik und eine Reihe von Parameterbeschränkungen, die eine approximations-

freie Zuordnung (Konversion) von einem ReLU-Netzwerk zu einem SNN mit TTFS-Codierung

garantieren. Wir stellen fest, dass ein vortrainiertes tiefes ReLU-Netzwerk durch unser tiefes

SNN ohne Leistungsverlust bei Aufgaben zur Bildklassifizierung (CIFAR100 und PLACES365)

ersetzt werden kann. Dennoch vermuten wir, dass es in vielen Fällen notwendig ist, ein tiefes

Spiking Neural Network für das spezifische Problem zu trainieren oder anzupassen.

In der zweiten Konfiguration betrachten wir: Das Training eines tiefen Einzel-Spike-Netzwerks

mithilfe einer Familie von exakten Zuordnungen von einem ReLU-Netzwerk. Wir untersuchen

die Gründe für das erfolglose Training von tiefen SNNs mit TTFS-Codierung sorgfältig und

decken ein Beispiel des Problems des Verschwindens und Explodierens des Gradienten auf.

Wir stellen fest, dass eine bestimmte exakte Zuordnung dieses Problems löst und ein SNN

mit Lerntrajektorien erzeugt, die denen eines ReLU-Netzwerks bei Aufgaben zur Bildklas-

sifizierung (CIFAR100 und PLACES365) äquivalent sind. Die beobachtete Lernfähigkeit ist

entscheidend für das Feinabstimmen von SNNs für spezifische Geräteeigenschaften wie gerin-

ge Latenzzeit, die Menge an Rauschen oder Quantisierung. Wir hoffen, dass diese Arbeit eine

SNN-Hardwareimplementierung fördert, die eine energiesparende Inferenz mit ANN-Leistung

bei der Klassifizierung von Daten ermöglicht.
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Zusammenfassung

Stichworte gepulstes neuronales Netzwerk, zeitliche Codierung, sparsame Kommunikation,

effiziente Datenklassifizierung, multiplikationsfreie Inferenz, Backpropagation-Training, Time-

to-First-Spike-Codierung, Konversion von tiefen ReLU-Netzwerken, Äquivalenz von SNN und

ReLU-Netzwerk, Training von tiefen SNNs.
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1 Introduction

1.1 Motivation

State-of-the-art artificial intelligence (AI) models are now being utilized for applications that

were difficult to imagine only a decade ago. Some of the biggest accomplishments include self-

driving cars [Feng et al. (2023)], robotic control [Hwangbo et al. (2019)], medical diagnostics

[Yala et al. (2019)], being a world champion in Go [Silver et al. (2016)], generating images from a

text description [Ramesh et al. (2021)] and of course writing human-like text to lead discussions

on almost any topic [Brown et al. (2020)]. Nonetheless, there are still many challenges that

standard artificial neural network (ANN) models experience, which are straightforward for

humans. For example, the human brain is able to learn multiple tasks sequentially without

catastrophic forgetting [Parisi et al. (2019)]. Moreover, generalization from a few data samples

is relatively uncomplicated [Barnett and Ceci (2002)], and correct decisions are made even

when there are errors in the input [Geirhos et al. (2018)].

Most state-of-the-art ANNs which have impressive performance on the previously mentioned

tasks depend on a large amount of data and high computational power for their training and

inference [Brown et al. (2020)]. Therefore, these models are ’locked in’ on large, power-hungry

servers and are not portable in their full capacity to edge devices with small batteries. [Jiang

et al. (2018); Wang et al. (2020)]. As processing data near the location where it was collected

offers significant benefits, there has been a long-standing effort in machine learning to reduce

the size of ANN models to meet these constraints. Particularly interesting is a line of research

investigating binarized neural networks (BNNs), where neuron outputs and weights take

values of +1 or −1 [Courbariaux et al. (2016)]. While this approach reduces computational

energy, it often results in a significant loss of performance.

The human brain is a network of around 86 billion neurons which communicate via sparse

action potentials, which we may consider as binary spikes. Despite being an extremely

advanced signal processing system, this biological neural network requires only 20W for its

functioning (see Fig. 1.1). The standard ANN architectures and computing principles were

inspired by the brain in the past [McCulloch and Pitts (1943); Rosenblatt (1958)]. Therefore,

1



Chapter 1. Introduction

Figure 1.1: The brain is a network of neurons that operates on the power equivalent to that of
an average light bulb. Created by DALL·E.

there is a good reason to believe that by modeling neural networks with spike communication

and powerful brain-inspired dynamics, we could achieve energy-efficient processing without

compromising the performance of modern ANNs. In such a scenario, AI would truly become

ubiquitous.

We will now describe the main concepts observed in the brain, which are leveraged to create

models exhibiting low-power advanced processing. The introduction aims to provide a general

overview of the topic, while detailed explanations can be found in the subsequent chapters

and by accessing the provided references. In Section 1.2, we discuss potential spike encoding

mechanisms in the brain, emphasizing the efficient sparse temporal encoding scheme. In

Section 1.3, we describe spiking neural network (SNN) models and various learning algorithms.

Notably, Section 1.4 provides background information on SNNs with temporal coding, while

Section 1.5 offers a brief introduction to the image classification task and the datasets we

utilize. Finally, Sections 1.6 and 1.7 outline the thesis structure and detail the contributions

made by the author.

1.2 Spike encoding

What is spike encoding? Even though we are aware that in the signal processing pipeline

some cells might send analog signals to their neighbours [Kolb et al. (1995); Alle and Geiger

(2006)], the predominant mode of communication in the brain is binary. Information is

transmitted down the axon of the source neuron and through synapses to the input dendrites

of multiple target neurons. In most cases these connections remain silent (equivalent to a zero

value), and only sporadically do they transmit a short action potential which is always of the

same magnitude (equivalent to a value of one), see Fig. 1.2a. A more detailed explanation of

neuronal dynamics and the generation of action potentials is provided in Section 1.3. There are

several possibilities why this particular mode of communication was prioritised by evolution,

2



1.2 Spike encoding
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Figure 1.2: Spike encoding. a. Neurons in the brain communicate through sparse spikes
(yellow). The question arises: what information does each spike represent? Created by
DALL·E. b. An illustration of how popular spike encoding schemes represent inputs of varying
intensities. Adapted from [Park et al. (2020)]. c. Rate coding detection in the brain of a cat,
reproduced from [Li et al. (2022)]. d. Detection of source location in the horizontal plane by
temporal coding in the brain of a barn owl, part of image reproduced from [Grothe (2018)].

most notably: (i) the exceptional energy efficiency it offers and (ii) its robustness in long-

distance signal transmission. Indeed, the transmission of all-or-none signals enables low-cost

communication that is more resilient to noise.

When a neuron receives a spike train over time (a sequence of zeros and ones), a question

arises: what kind of information can be decoded or understood from such input? In Fig.

1.2b we observe how the same analog value can be interpreted from different sets of spikes

by following various proposed coding schemes. Each scheme adheres to specific rules for

encoding different analog values (color-coded). However, there is no consensus among

scientists regarding how information is represented in the brain. In fact, it has been observed

that different areas of the brain rely on different coding schemes, and the same spike train can

carry the meaning of multiple encoding mechanisms [Gollisch and Meister (2008)].

Rate coding In the late fifties, experiments were conducted to record the outputs of specific

3



Chapter 1. Introduction

neurons in the cat’s brain while presenting certain visual stimuli, see Fig. 1.2c [Hubel and

Wiesel (1959)]. When images of a light bar were displayed on the screen, scientists observed

that depending on the orientation of the bar, some neurons generated a smaller or a larger

number of spikes. This led to the conclusion that the information about bar orientation is

encoded in the spiking rate of these neurons. Note that the typical spiking frequency in the

brain ranges from 1Hz to 50Hz. Fig. 1.2b illustrates that with the rate coding scheme, larger

analogue values are represented by a higher number of spikes.

Temporal coding A neuron requires a significant amount of time to estimate the spiking

rate of its input. However, experiments conducted in the mid-nineties suggested that the

classification of complex natural images occurs very rapidly, within 150ms [Thorpe et al.

(1996)]. Given the multiple layers of processing and the typical spiking frequency, rate coding

alone cannot achieve the fast classification observed in these experiments. As a result, not

only the spiking rate but also the precise timing of spikes must carry the relevant information.

This gave rise to a new class of viable and efficient coding schemes known as temporal coding.

Temporally coded information was discovered in various brain areas dedicated to sensory

information processing [Kubke et al. (2002); Johansson and Birznieks (2004); O’Keefe and

Recce (1993)]. For instance, experiments with barn owls (see Fig. 1.2d) demonstrate that sound

localisation is determined by the interaural time difference (ITD). In other words, the position

of the sound source can be inferred based on the timing of the signal reaching the neurons.

Fig. 1.2b depicts three examples of temporal coding schemes: (i) phase coding, where the

information is contained in the timing relative to a periodic signal; (ii) spatio-temporal spike

pattern coding, where the information is contained in the timing relative to spikes across

different neurons [Abeles (1982)]; and (iii) time-to-first-spike coding, where the information is

contained in timing relative to some other time reference, such as stimulus onset.

Our work focuses on two schemes. Chapters 2, 3 and Section A.1 rely on time-to-first-spike

(TTFS) coding, whereas Section A.2 assumes spatio-temporal spike pattern coding.

1.3 Spiking neural networks (SNNs)

There is evidence that information processing in the brain occurs in a hierarchical manner

[Yamins and DiCarlo (2016)]. For example, the processing of an image typically begins in area

V1, continues to V2 and V4 and then progresses to MT and IT areas, see Fig. 1.3a. Along this

pathway, each neuron receives action potentials (spikes) from the previous layer through its

dendrites, see Fig. 1.3b. It also receives many inputs from neurons in the same brain area and

feedback connections from hierarchically higher areas, but we do not consider these. The

membrane potential of the neuron changes based on the input it receives from other neurons

and the strength of the corresponding synapses. When the membrane potential depolarizes

sufficiently, an action potential is generated and transmitted through the neuron’s axon. This

results in a spike train that is sent to the subsequent neurons in the network.

4
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Figure 1.3: Spiking neural network. a. After the input stimuli are received, their processing
occurs hierarchically across multiple brain areas (blue). Reproduced from [Zhao et al. (2020)].
b. Within each brain area, neurons receive input spikes through their dendrites and generate a
spike train which is transmitted down the axon. Reproduced from [Ghahari and Enderle (2014)]
c. An architecture of a spiking neural network (SNN) captures this hierarchical processing. d.
Within the SNN, each neuron receives input spikes from the previous layer through synaptic
connections with strengths denoted as w (n)

i j . The neuron then generates its own spike train at
the output.

To model hierarchical processing in the brain, we adopt a layered architecture similar to the

one used by the standard artificial neural networks (ANNs), see Fig. 1.3c. The input layer

generates spike trains which are transmitted to the first hidden layer, and so on. The neuronal

dynamics is modeled using the (leaky) integrate-and-fire model [Gerstner et al. (2014)]. Upon

receiving spikes, the neurons integrate them into their state variable (potential). The synaptic

strength (weight) w (n)
i j determines the impact of spikes coming from neuron j in layer n −1

on the potential variable of neuron i in layer n, see Fig. 1.3d. Whenever the potential reaches

a certain threshold value ϑ(n)
i , the neuron fires and the spike is transmitted to the neurons

in the subsequent layer. After spiking, the potential of the neuron is reset to its resting value,

typically 0, unless specified otherwise. In Chapters 2, 3 and Section A.1, we also incorporate a

refractory period, which introduces a specific time interval during which the neuron cannot

spike again. Moreover, in Chapters 2 and 3 the neurons in the output layer do not fire, but the

value of their potential is read out.

5



Chapter 1. Introduction

ANNs
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Figure 1.4: Learning in the brain and standard ANNs. a. When a child reads a book, certain
synapses in the brain can strengthen by increasing the number of communication channels
(bottom). The illustration at the top is created by DALL·E., whereas the one at the bottom
is reproduced from [Turrigiano (2012)]. b. Training of a standard feed-forward ANN where
the error is propagated backwards using the matrix B (n). In the case of backpropagation, B (n)

corresponds to the transposed matrix W (n).

Plasticity in the brain It is well-known that young children learn rapidly due to the high

plasticity of their brains. The brain is capable of changing itself by strengthening (creating) or

weakening (removing) synapses based on the processing of input information and experiences,

see Fig. 1.4a. The study of learning in the brain originated with the influential Hebbian rule,

which states that synapses between neurons that are active together become stronger [Hebb

(1949)]. Subsequent research has revealed that not only the coincidence but also the timing

of activity between two neurons is crucial. Specifically, if the presynaptic (source) neuron

fires after the postsynaptic (target) neuron, their connection will be weakened; reviewed in [Bi

and Poo (2001)] and [Markram et al. (2011)]. Over the years, various local learning rules have

been proposed to model Hebbian learning and STDP [Oja (1982); Bienenstock et al. (1982);

Pfister and Gerstner (2006); Graupner and Brunel (2012)]. More recently, it has been suggested

that in addition to local neuronal activity, certain global signals such as dopamine may also

contribute to the learning process [Frémaux and Gerstner (2016); Bailey et al. (2000)].

Supervised learning in standard ANNs Given a predefined loss function with a minimum

that solves the task at hand, the goal of learning is to adjust each weight (synapse) based on

6



1.3 Spiking neural networks (SNNs)

its overall impact on the value of loss. A first-order gradient descent method finds the local

minumum of the loss function by iteratively updating weights in the direction opposite to the

gradient. In this context, the popularization of the backpropagation algorithm [Rumelhart et al.

(1986)] enabled to efficiently calculate the gradients for deep networks with a large number of

parameters by propagating the error backwards through the network, see Fig. 1.4b. However,

the error signal often decreases or increases exponentially with the number of backpropagated

layers [Sussillo and Abbott (2014)], resulting in gradients that can be very close to zero or very

large, i.e., vanishing or exploding gradients, respectively. The impact of the vanishing gradient

problem [Bengio et al. (1994); Hochreiter et al. (2001)] is reduced network performance or

failed training. To address this issue, standard ANNs often combine backpropagation with

tricks of trade such as batch normalization and smart initialization [Goodfellow et al. (2016)].

Supervised learning in SNNs While biologically-inspired learning rules often struggle with

training deeper networks, the effective backpropagation algorithm serves as inspiration for

developing novel local learning rules that have the potential to scale better [Nøkland (2016);

Akrout et al. (2019); Meulemans et al. (2021)]. In this thesis, we focus on supervised learning in

spiking neural networks using the standard backpropagation algorithm, which can potentially

later on be replaced with one of the local variants. For the purposes of training we consider

two possible SNN representations: (i) continuous-time and (ii) discrete-time.

The continuous-time representation assumes a feed-forward artificial neural network where

neurons communicate analog spiking times t (n−1)
j of the original spiking neural network. For

the two networks to be equivalent, the ANN neuron has to follow a specific non-standard

dynamics. In Fig. 1.5a, a particular integrate-and-fire neuronal dynamics was transformed

into an ANN neuron where the output spiking time t (n)
i is calculated as a function of input

spiking times t (n−1)
j that arrived before the threshold ϑ(n)

i is reached [Zhang et al. (2021)]. The

obtained ANN neuron dynamic is continuous in all situations, except when the input set of

spiking times changes. For example, updating the spiking time t (n−1)
3 to a later time instant

in Fig 1.5a removes it from the input set and introduces a discontinuity. This could lead to

issues when training such an ANN with backpropagation algorithm. Moreover, it is worth

noting that while the mentioned tricks of the trade mitigate the vanishing gradient problem in

standard ANNs, there is no guarantee that they work for the specific artificial neural networks

introduced here.

The discrete-time representation assumes an SNN where neurons exchange spikes generated

at one of the discrete times steps. The spike sent from neuron j in layer n −1 to neuron i

in layer n is generated using a Heaviside step function. Training such a deep spiking neural

network with the backpropagation algorithm has historically faced challenges due to the

non-differentiable activation function, which makes gradient calculations not possible, see

Fig. 1.5b. Several approaches have been attempted to address this issue: (i) injecting noise to

smoothen out the activation function through a probabilistic approach [Gardner et al. (2015);

Pfister et al. (2006)]; (ii) approximating the step function with a smooth deterministic function

[Huh and Sejnowski (2018)] (iii) approximating the step function with a smooth deterministic
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Figure 1.5: Backpropagation in SNNs. a. Continuous-time representation. An integrate-and-
fire neuronal dynamics from SNN is transformed into a specific ANN neuron that calculates
and outputs the analog spiking time of the SNN neuron. The non-linear transformation of the
ANN neuron experiences discontinuities when an input spike t (n−1)

3 (top) is removed from the
input (bottom). This may cause a problem during training. b. Discrete-time representation.
(top) Heaviside step function H that is used in the spike generation process. The derivative of
this function is 0 everywhere except when the potential V (n)

i of neuron i in layer n is exactly

equal to the neuron’s threshold ϑ(n)
i (i.e. V (n)

i =ϑ(n)
i ) and then its value is undefined; (bottom)

The pseudo-derivative on the backward pass (purple) results in a significantly smoother loss,
which facilitates the training. Reproduced from [Neftci et al. (2019)].

function, but only on a backward pass, i.e. the surrogate gradient approach [Neftci et al. (2019),

Woźniak et al. (2020)], see Fig. 1.5b (bottom). Among these approaches, the surrogate gradient

has demonstrated the most success in training deep spiking networks for complex tasks such

as speech recognition [Bohnstingl et al. (2022a)].

1.4 SNNs with temporal coding

In this section we zoom in on spiking neural networks with temporal coding and explore

potential methods to obtain high performance and sparse SNNs.

Converting a standard pretrained feed-forward ANN to an SNN A significant amount of

prior research on SNNs has been devoted to converting pretrained standard artificial neural
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Figure 1.6: SNNs with temporal coding. a. A feed-forward ANN (top) with relatively standard
neuron dynamics (light blue) can be converted into an SNN (bottom) with various temporal
coding schemes and neuronal dynamics. b. Continuous-time representation. The TTFS coding
scheme in SNNs often results in very sparse input. The SNN with TTFS coding scheme (top)
can be transformed into a feed-forward ANN (bottom) where neurons communicate their
spiking times and exhibit specific dynamics (dark green). c. Discrete-time representation.
Learning to map a random input spatio-temporal spike pattern to a target spatio-temporal
spike pattern using surrogate gradient. A more complex target spike pattern with multiple
output neurons can also be learned (bottom). Reproduced from [Zenke and Ganguli (2018)].

networks into rate-coded spiking neural networks. More recently, there have been efforts to

employ the conversion approach to temporally-coded SNNs (see Fig. 1.6a). [Rueckauer and

Liu (2018)] pretrain a standard shallow ANN and convert it into an SNN with TTFS coding

(see Fig. 1.2b), where neurons have dynamical threshold. Additionally, [Stockl and Maass

(2021)] demonstrate that a neuron which spikes two times and has a complex parametrized

dynamics can emulate a ReLU. Furthermore, [Bu et al. (2022)] recently proved that by selecting

a specific activation function, it is possible to convert a deep ANN to a deep SNN without any

error. Therefore, the conversion approach has the potential to yield deep and sparse neural

networks with few spikes per neuron, while achieving performance comparable to ANNs on

benchmark datasets. In Chapter 2 we explore the conversion of deep ReLU networks to deep

SNNs with TTFS coding.
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Supervised learning of SNNs with continuous-time representation In the pioneering work

by [Bohte et al. (2002)], it was proposed to transform an SNN with TTFS coding into a feed-

forward ANN in which neurons communicate their real-valued spiking times and exhibit

specific dynamics (see Fig. 1.6b). The ANN is trained using the backpropagation algorithm

where the derivatives are calculated with respect to the neuron’s spiking time. Subsequent

studies by [Mostafa (2018)] and [Zhang et al. (2021)] have shown that networks with a few

hidden layers and various neuronal dynamics can be trained without any approximation. In

Section A.1 we investigate methods to improve this optimization process further and bridge

the remaining performance gap with ReLU networks. Moreover, the scalability of this approach

to deep networks has not been well-established. In Chapter 3 we investigate the potential

issues that may cause this limitation.

Supervised learning of SNNs with discrete-time representation The input vector of analog

values and the target vector are converted into matrices of zeros and ones using one of the

coding schemes (see Fig. 1.2b). An SNN that receives such spiking input is trained using

backpropagation in conjunction with one of the smoothing methods. Assuming the spatio-

temporal spike pattern coding, researchers such as [Gardner et al. (2015)] and [Zenke and

Ganguli (2018)] have demonstrated that a shallow SNN can be trained to predict a specific

target spike pattern when provided with an input spike pattern generated from random

positions over fixed time span (see Fig. 1.6c). Section A.2 focuses on exploring the scalability

of this approach to deeper networks and its applicability to real-world datasets. We investigate

whether the training process which involves learning to map from random input spike patterns

in the training data, can effectively generalize to unseen samples in the test data. Recently, it

has also been demonstrated that SNNs with TTFS coding scheme can be effectively trained

using one of the smoothing techniques [Cramer et al. (2022)].

1.5 Image classification task

Data classification is a fundamental task in traditional machine learning. The objective is

to train a model that assigns a class (label) to a given input. The main metric reported is

classification accuracy, which indicates the percentage of correct predictions on a given input

set. Additionally, other metrics may also be considered, depending on the specific application

and methodology. In this thesis, we primarily concentrate on image classification benchmarks.

Some of the most significant ones include:

• MNIST and Fashion-MNIST [Lecun et al. (1998); Xiao et al. (2017)] consist of grayscale

images. The MNIST images represent handwritten digits, while the Fashion-MNIST

images contain items of clothing, see Fig. 1.7a. Each image is of size 28×28×1 and there

are 10 possible labels. Both datasets contain 60000 training and 10000 test images.

• CIFAR [Krizhevsky et al. (2009)] dataset consists of colored images featuring various

objects, such as a car, see Fig. 1.7b. Each image is of size 32×32×3 and can be classified
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a b c

d

Figure 1.7: Datasets and architectures. a. Sample images from the MNIST (left) and the
Fashion-MNIST (right) datasets. Reproduced from [Lecun et al. (1998) and Xiao et al. (2017)].
b. Sample images from the CIFAR dataset, which consists of colored images. Reproduced
from [Krizhevsky et al. (2009)]. c. Sample images from the PLACES365 dataset, which consists
of colored large-sized images. Reproduced from [Zhou et al. (2017)]. d. An example of a
5-layer convolutional neural network for image processing known as LeNet5. Reproduced
from [Lecun et al. (1998)].

into 10 (CIFAR10) or 100 (CIFAR100) possible categories. The dataset includes 50000

training images and 10000 test images.

• PLACES365 [Zhou et al. (2017)] dataset is comprised of colored images depicting various

scenes, such as a pond, see Fig. 1.7c. The size of each image can vary, but it is typically

around 224×224×3, and there are 365 possible labels. The dataset contains 1.8 million

training images, 36500 validation images and 328500 test images.

The PLACES365 dataset shares properties with the ImageNet dataset [Russakovsky et al. (2015);

Yang et al. (2022)], which is omitted from our study due to data privacy issues.

Layers and architectures In general sense, a neural network typically consists of fully-connected

layers, where each node in the current layer connects to all neurons in the subsequent layer.

However, when it comes to image processing, additional layers and network architectures have

shown to be beneficial. Convolutional layers, inspired by receptive fields in the visual cortex,

allow each neuron to respond only to a limited part of the input, see Fig. 1.7d. To enable

the application of the same filter across various patches, the synaptic strengths (weights) are

shared among different neurons. Moreover, non-linear subsampling has proven to be a useful

element of the processing pipeline. In the max-pooling layer, a neuron reduces the size of the
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input by replacing each patch with its maximal activity. The well-known LeNet5 architecture

[Lecun et al. (1998)] exemplifies these essential components, see Fig. 1.7d.

1.6 Thesis structure

The thesis investigates brain-inspired spiking neural networks with sparse temporal coding

with the idea of offering an energy-efficient alternative to standard ANNs. We explore su-

pervised learning of SNNs as well as ANN-to-SNN conversion techniques in order to obtain

high-performing spiking models for data classification tasks.

In Chapter 2, we focus on the neuronal dynamics with a linear postsynaptic response and

explore SNN parameters that could establish an equivalence between deep SNN with time-

to-first-spike (TTFS) coding and deep ReLU network. We investigate a family of potential

exact mappings, where SNN parameters are determined as a function of weights and bias in a

pretrained ReLU network. The significance of these mappings lies in the fact that an energy-

efficient SNN can potentially replace the high-accuracy standard pretrained ANN without

sacrificing performance. The primary contribution of this chapter is showing that a pretrained

deep ReLU network, which may consist of fully-connected, convolutional, max pooling, or

batch normalization layers, can be mapped to a mathematically equivalent SNN. As a result,

we find that both networks exhibit the same performance on large image benchmarks, such as

CIFAR100 and PLACES365.

In Chapter 3, our main focus is to explore whether the exact mappings from a deep ReLU

network to a deep SNN could also lead to equivalent training of the two networks. We again

start from the neuronal dynamics with a linear postsynaptic response and investigate the

underlying reasons for the unsuccessful training of deep SNNs with TTFS coding. Additionally,

we explore the conditions which are needed not only to perform the effective learning but

to ensure that the training curves of the SNN and ReLU network align with each other. The

main contribution of this chapter is the detection of the vanishing gradient problem in SNNs

and an identification of an exact mapping that avoids this issue while also providing training

equivalent to that of a standard feed-forward ANN. Consequentially, we discover that SNN can

be trained to the same performance as ReLU network on CIFAR10, CIFAR100 and PLACES365,

whereas the learning capability is crucial in mitigating the effects of quantization, noise or

limited latency.

Chapter 4 summarizes our most important results and provides an outlook for future direc-

tions.

In Section A.1, our focus shifts to spiking neural networks with TTFS coding scheme, where

predictions are allowed to be made before all the inputs are received. We are interested in

the neuronal dynamics which enables translating a shallow SNN into a feed-forward ANN

that closely approximates a ReLU network. Additionally, we explore the adaptation of batch

normalization technique in this context with a goal of facilitating the backpropagation training.
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The primary contribution of the section is enabling the training of our SNN by leveraging

existing ReLU network techniques. We find that for MNIST dataset, our network is capable of

low-latency classification while achieving the performance of a standard feed-forward ANN.

In Section A.2, two novel spatio-temporal spike pattern coding schemes are proposed to

enable the generalization of learning to previously unseen data. We utilize backpropagation

along with the surrogate gradient to train deep spiking neural networks and investigate the

performance of such SNN classification systems on test data. Furthermore, we explore a

multiplication-free implementation to further reduce the complexity of the system. The

central contribution of this section are (i) correlative time encoding (CTE) and (ii) extended

correlative time encoding (ECTE) schemes. We discover that by utilizing the optimal number

of spikes, our network is able to perform a multiplication-free classification and achieve good

performance on datasets such as MNIST and CIFAR10.

1.7 Author contributions

Chapter 2 is based on the [Stanojevic et al. (2022b)] paper. Ana Stanojevic and Guillaume Bellec

conceived the idea. Ana Stanojevic and Wulfram Gerstner developed the theory. Ana Stano-

jevic designed and performed the simulations. Ana Stanojevic, Wulfram Gerstner, Stanisław

Woźniak, Guillaume Bellec, Giovanni Cherubini and Angeliki Pantazi analysed the results. Ana

Stanojevic and Wulfram Gerstner wrote the manuscript with input from Stanisław Woźniak,

Guillaume Bellec, Giovanni Cherubini and Angeliki Pantazi. The patent in preparation titled

Approximation-Free Mapping from Deep Artificial Neural Networks to Single-Spike Networks

by Stanojevic et al., directly relates to this work.

Chapter 3 is based on the [Stanojevic et al. (2023b)] paper. Wulfram Gerstner conceived

the idea. Ana Stanojevic, Guillaume Bellec and Stanisław Woźniak developed the theory.

Ana Stanojevic designed and performed the simulations. Ana Stanojevic, Wulfram Gerstner,

Stanisław Woźniak, Guillaume Bellec, Giovanni Cherubini and Angeliki Pantazi analysed the

results. Ana Stanojevic and Guillaume Bellec wrote the manuscript with input from Wulfram

Gerstner, Stanisław Woźniak, Giovanni Cherubini and Angeliki Pantazi.

Section A.1 is based on the [Stanojevic et al. (2022a)] paper. Wulfram Gerstner conceived the

idea. Ana Stanojevic and Wulfram Gerstner developed the theory. Ana Stanojevic designed

and performed the simulations. Ana Stanojevic, Wulfram Gerstner, Evangelos Eleftheriou,

Giovanni Cherubini, Stanisław Woźniak and Angeliki Pantazi analysed the results. Ana Stano-

jevic wrote the manuscript with input from Wulfram Gerstner, Giovanni Cherubini, Stanisław

Woźniak, Angeliki Pantazi and Evangelos Eleftheriou. The patent in preparation titled Optimal

Accuracy-Latency Trade-off in Single-Spike Spiking Neural Networks by Stanojevic et al., is

partially related to this work.

Section A.2 is based on the [Stanojevic et al. (2023a)] paper. Ana Stanojevic and Giovanni

Cherubini conceived the idea and developed the theory. Ana Stanojevic designed and per-
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formed the simulations. Ana Stanojevic, Giovanni Cherubini, Stanisław Woźniak and Evan-

gelos Eleftheriou analysed the results. Ana Stanojevic wrote the manuscript with input from

Giovanni Cherubini, Stanisław Woźniak and Evangelos Eleftheriou. The patent titled Correl-

ative time coding method for spiking neural networks [Cherubini, Stanojevic, and Sebastian

(2022)] is partially inspired by this work.
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2.1 Introduction

2.1 Introduction

Energy consumption of deep artificial neural networks (ANNs) with thousands of neurons

poses a problem not only during training [Strubell et al. (2020); Patterson et al. (2022)], but also

during inference [Brown et al. (2020)]. Among other alternatives [Hubara et al. (2016); Howard

et al. (2017); Tan and Le (2019)], hardware implementations of biologically inspired spiking

neural networks (SNNs) [Attwell and Laughlin (2001); Lennie (2003)] have been proposed

as an energy-efficient solution [Burr et al. (2017); Sebastian et al. (2018); Göltz et al. (2020);

Gallego et al. (2020); Göltz et al. (2021); Davies et al. (2021); Diehl et al. (2016)], not only for

large centralized applications, but also for computing in edge devices [Wang et al. (2020);

Boroumand et al. (2021); Jiang et al. (2018)]. In SNNs neurons communicate by ultra-short

pulses, called action potentials or spikes, that can be considered as point-like events in

continuous time. In deep multi-layer SNNs, if a neuron in layer n fires a spike, this event

causes a change in the voltage trajectory of neurons in layer n +1. If, after some time, the

trajectory of a neuron in layer n +1 reaches a threshold value, then this neuron fires a spike.

While there is no general consensus on how to best decode spike trains in biology [Rieke et al.

(1996); Gerstner and Kistler (2002); Pillow et al. (2008)], multiple pieces of evidence indicate

that immediately after an onset of a stimulus, populations of neurons in auditory, visual, or

tactile sensory areas respond in such a way that the timing of the first spike of each neuron after

stimulus onset contains a high amount of information about the stimulus features [Gollisch

and Meister (2008); Johansson and Birznieks (2004); Kubke et al. (2002)]. These and similar

observations have triggered the idea that, immediately after stimulus onset, an initial wave

of activity is triggered and travels across several brain areas in the sensory processing stream

[Optican and Richmond (1987); Thorpe et al. (1996, 2001); Hung et al. (2005); Yamins and

DiCarlo (2016)]. We take inspiration from these observations and assume in this paper that

information is encoded in the exact spike times of each neuron and that spikes are transmitted

in a wave-like manner across layers of a deep feedforward neural network.

Specifically, we use coding by time-to-first-spike (TTFS) [Gerstner and Kistler (2002)], a timing-

based code originally proposed in neuroscience [Gerstner (1998); Gerstner and Kistler (2002);

Gollisch and Meister (2008); Johansson and Birznieks (2004); Thorpe et al. (2001)], which

has recently attracted substantial attention in the context of neuromorphic implementations

[Göltz et al. (2020); Gallego et al. (2020); Göltz et al. (2021); Rueckauer and Liu (2018); Comşa

et al. (2021); Mostafa (2018); Zhang et al. (2021); Kheradpisheh and Masquelier (2020); Stanoje-

vic et al. (2022a)]. In our implementation of TTFS coding, each neuron fires exactly one spike.

The stronger the input to a given neuron the earlier it fires. Coding schemes with at most

one spike per neuron are intrinsically sparse in terms of the number of spikes. Since spike

generation is a costly process from the energetic point of view [Sorbaro et al. (2020)], TTFS

coding paves the way towards implementations with low energy consumption.

While a relation between ReLU networks and networks of non-leaky integrate-and-fire neurons

with TTFS coding has been suggested before [Rueckauer and Liu (2018); Zhang et al. (2021);
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Kheradpisheh and Masquelier (2020); Mirsadeghi et al. (2021)], there has been so far a major

obstacle that prevented a successful exact mapping from an arbitrary deep ANN to a deep

SNN with TTFS coding. In a standard ANN, time is discretized and layers are processed one

after the other. The hard problem of an exact conversion of ReLU activations into spike times

arises from the fact that in an SNN spikes are point-like events that arrive asynchronously in

continuous time. Imagine a neuron in a ReLU network that receives several positive inputs

that add up to a value of 0.8 and several negative inputs that add up to a value of -1.0. Assuming

a vanishing bias, the output of the unit is zero. However, if in the corresponding neuron of

the SNN all the positive inputs have arrived before the negative inputs, the spiking neuron

will have emitted a spike as soon as the firing threshold is reached [Rueckauer and Liu (2018)].

Yet, it is impossible to “call back” the spike later on so as to cancel it. A potential solution to

this problem is to consider that each layer starts its computation only once the calculation in

the previous layer has finished. In a recent conversion scheme a time-dependent threshold

was used to enforce the necessary waiting time [Rueckauer and Liu (2018)]. However, due to

imperfect conversion, there exists a small, but not negligible, loss in the final performance

measure. Other conversion approaches for deep networks use custom activation functions

[Bu et al. (2022)] for ANN training, or numerically optimized multi-spike codes for a given

activation function [Stockl and Maass (2021)]. Moreover, most earlier approaches assumed

that weights and biases of the ReLU network can be used as such in the corresponding SNN,

but there is no fundamental reason why this should be the case.

What we would like for an exact mapping from ANN to SNN with TTFS coding is (i) a guarantee

that no neuron fires too early so as to avoid the hard problem mentioned above; and (ii) a

coding rule of how to translate the output x̄(n)
i of neuron i in layer n of the ANN into a spike

time of a corresponding neuron in the SNN. As an aside, we note that the the hard problem

of TTFS coding disappears if the trajectory of spiking neurons is always positive. The ideal

mapping approach starts from a standard ReLU network with or without convolutional layers,

batch normalization, and max pooling and maps it by a potentially nonlinear transformation

of parameters to a corresponding SNN without any performance loss using a well-defined

mapping rule from rates to spike timings.

In this paper we construct an explicit mapping that addresses the points above and guarantees

the mathematical equivalence of an SNN with the corresponding ANN. We assume that there

is a pretrained ReLU network and that we have access to its weights and biases as well as the

input data on which the network was trained. Using TTFS coding, we propose a conversion

which maps a deep ANN with ReLUs to an equivalent deep SNN with non-leaky integrate-

and-fire units without any loss in performance. In contrast to other methods which require

fine-tuning of the SNN or training an SNN from scratch [Göltz et al. (2020); Kheradpisheh and

Masquelier (2020); Neftci et al. (2019); Zenke and Ganguli (2018); Bohte et al. (2002); Tavanaei

et al. (2019); Zenke and Vogels (2021); Bellec et al. (2020); Woźniak et al. (2020); Yan et al. (2021);

Park et al. (2020)], the goal of our work is to derive the final SNN from the pretrained deep ReLU

network. Further numerical approximation or optimization steps [Rueckauer and Liu (2018);

Stockl and Maass (2021); Bu et al. (2022)] are not needed in our approach. The key to building
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an efficient TTFS conversion method is to derive an exact mathematical equivalence between

an arbitrary deep ReLU network and the corresponding spiking network. Using standard

pretrained models available online, we demonstrate conversion with 0% performance loss on

CIFAR10 and CIFAR100 [Geifman (2018)] datasets as well as larger ImageNet-like [Russakovsky

et al. (2015); Yang et al. (2022)] datasets such as Places365 [Zhou et al. (2017)] and PASS [Asano

et al. (2021)] without any training or fine-tuning.

2.2 Results

The subsection ’Main Theoretical Result’ formulates the precise claim of a family of exact

mappings from ANN to SNN. We then present the main ideas of the proof for one specific

mapping scheme before we sketch alternative mapping schemes. Finally we test our mapping

algorithm on benchmark datasets.

2.2.1 Main Theoretical Result

Definition: Deep ReLU Network. A Deep ReLU Network consists of M ≥ 1 layers of hidden

neurons with full or convolutional feedforward connectivity. Each neuron implements a rectified

linear function x(n)
i = [a(n)

i ]+, where [ ]+ denotes rectification, and its activation variable a(n)
i is

defined as:

a(n)
i =∑

j
w (n)

i j x(n−1)
j +b(n)

i (2.1)

with weights w (n)
i j and a bias b(n)

i . An upper index n = 0 refers to the input layer and the i-th

input is denoted with x(0)
i . Optionally the network may also contain processing steps of max

pooling and batch normalization.

Our aim is to map each neuron of the Deep ReLU network to an integrate-and-fire neuron

in the SNN so that each neuron fires exactly once. A spike at time t (n−1)
j of neuron j in layer

n −1 generates a step current input with amplitude J (n)
i j into neuron i of layer n. The voltage

trajectory of neuron i in layer n evolves according to

dV (n)
i

dt
=α(n)

i H(t − t (n−1)
min )+∑

j
J (n)

i j H(t − t (n−1)
j )+ I (n)

i (t ) (2.2)

where H denotes the Heaviside step function with H(x) = 1 for x > 0 or zero otherwise. The

integration starts at time t (n−1)
min with a slope dV (n)

i /d t =α(n)
i > 0. The slope parameters α(n)

i ,

the weights J (n)
i j , and the thresholds ϑ(n)

i are parameters of the SNN. Neuron i in layer n may

also receive an additional input I (n)
i (t). If the trajectory of V (n)

i crosses the threshold ϑ(n)
i at

time t from below, then t = t (n)
i is the firing time of neuron i in layer n. In our mapping, we

use I (n)
i (t ) to induce a short current pulse so as to trigger a spike at time t (n−1)

max if neuron i has

not fired before.
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2. Convolutional: 
Convn, BN, ReLU
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SCALED RELU NETWORK

Scaled parameters:
𝑤!"
($), 𝑏!

($)

𝑋 $ = max
&,!

{𝑥!
($)(𝜇)}

1. Fully connected (BN): 
FCBNn, ReLU/softmax

2. Convolutional (BN): 
ConvBNn, ReLU

3. Max Min Pooling: 
MMP

4. Zero padding, bias change in 
FCBNn or ConvBNn
5. Input range [0, 1] and FCBN1
or ConvBN1

𝑎!
(#), 𝑥!

(#)

SNN

Weights 𝐽!"
($), thresholds 𝜗!

($), 
integration bias 𝛼($) ,
Intervals [𝑡()*

($) , 𝑡(+,
($) ]

1. Spiking Fully connected (BN):
SpFCBNn

2. Spiking Convolutional (BN): 
SpConvBNn

3. Spiking Max Min Pooling: 
SpMMP

4. 𝑡(+,
($-.) padding, bias change 

in SpFCBNn or SpConvBNin

5. Input range [0, 1] and 
SpFCBN1 or SpConvBN1

Spiking times 𝒕𝒊
(𝒏):

𝒕𝒊
(𝒏) = 𝒕𝐦𝐚𝐱

(𝒏) − 𝒙𝒊
(𝒏)

𝐜𝐥𝐚𝐬𝐬(𝝁) = 𝐀𝐍𝐍(𝝁) = 𝐀𝐍𝐍(𝝁) = 𝐒𝐍𝐍(𝝁)

Figure 2.1: Two phases of constructing a bidirectional mapping from ANN to SNN. In the first phase, Fully Connected (FCn) or
Convolutional (Convn) layers are identified; batch normalization (BN) is fused with the neighbouring layers yielding layers FCBNn and
ConvBNn, respectively; in case of zero padding, biases are adjusted at certain locations; max pooling steps are transformed to combined
’Max Min Pooling’ (MMP) steps; and inputs are normalized to [0,1]. Then the scaling symmetry of ReLU x(n)

i = [a(n)
i ]+ =C [a(n)

i /C ]+ for
an arbitrary constant C > 0 is applied to bring the weights of the ReLU network into a desired range and the maximum output X (n) for
each layer is calculated. Overline indicates scaled ReLU network. In the second phase, the resulting parameters {w̄ (n)

i j , b̄(n)
i , X (n)} are

mapped to the parameters {J (n)
i j ,ϑ(n)

i ,α(n), t (n)
min, t (n)

max} of the SNN. For an arbitrary input data point µ the three networks have the same
values in the output layer (before applying softmax) and are therefore predicting the same class(µ).
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2.2 Results

We claim that any Deep ReLU network can be mapped exactly to an SNN with integrate-and-

fire neurons.

Theorem: Exact mapping from ANN to SNN. Given the network parameters {w (n)
i j ,b(n)

i } of a

Deep ReLU network that has been trained to high performance on a training set and given

access to a representative subset of the input data of the training set, there exists a family of

bidirectional mappings from the Deep ReLU network to an SNN with TTFS coding without any

loss in performance where each ReLU is replaced by an integrate-and-fire unit with dynamics as

in Eq. (2.2) and parameters {J (n)
i j ,ϑ(n)

i ,α(n)
i , t (n)

min, t (n)
max}.

Remarks. (i) The theorem mentions a family of mappings since the mapping is not unique,

i.e., different combinations of parameters in the SNN give rise to an exact mapping. (ii) In the

family of mappings that we consider each neuron emits at most a single spike. (iii) A conse-

quence of the exact mapping is that both SNN and ANN have exactly the same performance

on a sample-by-sample basis: if for a specific sample the prediction of the ANN is wrong then

this is also the case for the SNN, and vice versa. (iv) One of the potential mappings is such

that slope parameter α(n)
i is identical for all neurons and all layers as stated in the following

corollary.

Corollary: Mapping with fixedα. An Exact mapping from ANN to SNN is possible with a slope

parameter α(n)
i =α> 0 that is identical for all neurons in all layers. Moreover, we may choose

t (n)
min = t (n−1)

max .

2.2.2 Proof Sketch of Main Theoretical Result

Our proof is constructive, i.e., we propose an explicit mapping algorithm. The arguments work

for arbitrary α(n)
i > 0. At the end of the argument we set α(n)

i =α to instantiate the conditions

of the Corollary; see Methods for details. The algorithm has two phases, see Fig. 2.1.

Phase 1: Preprocessing. The original ReLU network undergoes preprocessing such that the

network expects input in the [0,1] range and without any performance loss; furthermore batch

normalization steps are removed by fusing them with the weights of neighbouring layers; see

Fig. 2.2, Algorithm 1 and Methods for details.

Importantly, and different to other studies in the field of network conversion, we use the known

scaling symmetry of the ReLU activation function, i.e., [a(n)
i ]+ =C [a(n)

i /C ]+ for an arbitrary

constant C > 0, to implement a nonlinear transformation from the original weight and bias

parameters of the ReLU network to new parameters {w̄ (n)
i j , b̄(n)

i }. After the transformation we

can guarantee that the sum of the weights in each neuron is bounded in the range (−Blow) ≤∑
j w̄ (n)

i j ≤ 1−δ for hyperparameters Blow > 0 and 0 < δ≪ 1. The transformation proceeds

layer-wise from the input to the output layer and does not change the network output. Neuron
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Figure 2.2: Preprocessing for LeNet5 and VGG16 networks: a. LeNet5 original ReLU network with batch normalization (BN, black rectan-
gular sheet) before the activation function (red sheet); during preprocessing batch normalization is fused with previous convolutional
(Convn) and fully connected (FCn) layers. b. When fusing a batch normalization layer with the next convolutional layer containing zero
padding, some of the biases (in green) are changed; c. When fusing batch normalization with the next convolutonal layer with max
pooling (yellow) in between, specific channels might be changed to use min pooling function (violet). d. VGG16 original ReLU network
used for CIFAR10 classification with batch normalization after the activation function; during preprocessing batch normalization is
fused with following convolutional and fully connected layers.
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Figure 2.3: Mapping to multi-layer SNN with TTFS encoding and integrate-and-fire units.
Left: Neurons in layer n −1 are connected to neuron i in layer n. Right: Spikes from neurons
1 ≤ j ≤ N (n−1) arrive at times t (n−1)

j (green vertical arrows). The red trajectory shows the

evolution of the potential V (n)
i as a function of time. Neuron i fires at time t (n)

i (red vertical

arrow) when V (n)
i reaches the threshold ϑ(n)

i . The output value x̄(n)
i of the corresponding ReLU

corresponds to the time difference between t (n)
i and t (n)

max. Other neurons in layer n fire at other

moments (blue, magenta). No neuron in layer n can fire later than t (n)
max. Our exact mapping

procedure guarantees, that for all neurons the slope of the trajectory at the moment of spike
firing is positive. Moreover, since in our theorem the threshold is arbitrarily high (thick blue
vertical arrows) for t < t (n)

min, all firings in layer n occur for t > t (n)
min so that the hard problem of

late inhibitory input is solved.

i in layer n of the scaled ReLU network has an activation variable ā(n)
i and output x̄(n)

i . The

mapping is bidirectional so given the quantities ā(n)
i and x̄(n)

i of the scaled network we can

recover the variables a(n)
i and x(n)

i of the original network; see Methods Eqs. (2.20)-(2.23).

Finally, since we have access to a representative sample of input data used during training, we

extract X (n), the maximal activation of the rescaled ReLUs in layer n, across the input data and

all neurons in layer n.

Phase 2: Conversion. To construct an exact conversion of the scaled ReLU network to the

network of spiking neurons without any loss in performance we exploit six essential ideas (see

Methods for details):

(i) Choice of TTFS code. We construct a mapping such that each neuron i in layer n of the

SNN emits exactly one spike at t (n)
i , where t (n)

min < t (n)
i ≤ t (n)

max (see Fig. 2.3). Positive activation

leading to a ReLU output x̄(n)
i = ā(n)

i > 0 corresponds to an early firing time t (n)
i = t (n)

max− ā(n)
i , or

equivalently, ā(n)
i = t (n)

max − t (n)
i . Thus, spike times depend linearly on the output x̄(n)

i of active

ReLU neurons. Moreover if a neuron in layer n has not fired before time t (n)
max, it receives an
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Chapter 2. An exact mapping from ReLU networks to spiking neural networks

additional external input pulse I (n)
i (t ) = Rϑ(n)

i δ(t − t (n)
max) with R ≫ 1 that triggers immediate

firing at time t (n)
max. The parameters α(n)

i , ϑ(n)
i , the times t (n)

min = t (n−1)
max , as well as the weights

J (n)
i j of the spiking network are determined during the conversion for all i , j ,n as described in

Methods (see Algorithm 2) and are kept fixed thereafter. With this coding scheme each neuron

in layer n −1 fires exactly once up to t (n−1)
max = t (n)

min. Therefore for t > t (n)
min all input spikes to

neurons in layer n have arrived.

(ii) Slope of trajectory. Since for t > t (n)
min all input spikes to neurons in layer n have already

arrived, the trajectory of neuron i in layer n has, a constant slope dV /d t =∑
j J (n)

i j +α(n) [see.

Eq. (2.2)] which is independent of the sequence of spike arrivals.

(iii) Weight conversion. Since for t > t (n)
min the trajectories have constant slope, the mapping

from activations in the ReLU to firing times in the SNN can be derived from the threshold-

crossing condition V (n)
i = ϑ(n)

i for each neuron i in layer n. Evaluating this condition yields

the nonlinear conversion of weights

J (n)
i j = α(n)

i

1−∑
j ′ w̄ (n)

i j ′
w̄ (n)

i j (2.3)

which is invertible. A similar invertible relation holds for the bias parameter (see Methods).

Thus weights in the scaled ANN can be mapped to weights in the SNN without sign change.

Summation over j on both sides of Eq. (2.3) shows that the slope has a value α(n)
i +∑

j J (n)
i j =

α(n)
i /(1−∑

j w̄ (n)
i j ) > 0. Thus, once all input spikes have arrived, the slope of the trajectories is

positive because of the weight rescaling
∑

j w̄ (n)
i j < 1; This is the key motivation for the weight

rescaling in Phase 1.

(iv) Choice of t (n)
max . Given our TTFS code, we know that a stronger activation leads to earlier

spikes, yet we have to make sure that no neuron in layer n fires before the last spike of neurons

in layer n −1. The earliest possible spike in layer n occurs at time t (n)
max −X (n) where X (n) is the

maximal activation of ReLU neurons in layer n identified during the preprocessing phase. We

therefore set t (n)
max = t (n)

min + (1+ζ)X (n), where ζ > 0. In practice (see below) a value of ζ = 0.5

works well.

(v) Choice of threshold. By definition of our TTFS code, t (n)
max is the time when a neuron in layer

n that corresponds to a ReLU with activation ā(n)
i = 0 reaches the threshold ϑ(n)

i ; therefore this

condition defines the value of the threshold. Because of different biases and different weights

for different neurons, the thresholds ϑ(n)
i are neuron-specific (see Methods). This finishes the

proof in the general case.

(vi) Free slope parameter. Since the slope factor α(n)
i is a free parameter, we can arbitrarily set

α(n)
i = 1 for all neurons across all layers 1 ≤ n ≤ M . This yields the Corollary. The condition of

the Corollary is the specific case used in the simulations.
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2.2 Results

Remark. We may wonder how the above points solve the hard problem of TTFS coding.

Our analysis above makes no statement about the trajectories of neurons in layer n for the

time t < t (n)
min. Therefore we formally set the threshold for t < t (n)

min to an arbitrarily high

value to ensure that no spike occurs before t (n)
min. As mentioned under point (iii), our method

guarantees a positive slope after t (n−1)
max = t (n)

min. Since during the allowed spiking interval

[t (n)
min, t (n)

max] the slope is fixed and positive, a spike never needs to be "called back". Because of

the preprocessing, we know that
∑

j w̄ (n)
i j >−Blow. For example, a choice Blow = 10 and α(n) = 1

yields a slope larger than 1/11. Furthermore, because of our choice of t (n)
max under point (iv)

we know that the interval [t (n)
min, t (n)

max] is long enough to allow even the most activated neuron

to fire at the correct time. Finally, because of our choice of TTFS code under point (i) we are

sure that all neurons in layer n −1 have fired before or at t (n)
min. These choices together solve

the hard problem of TTFS coding.

2.2.3 Examples of equivalent mappings

As stated in the main Theorem, the mapping from ANN to SNN is not unique; rather there is a

family of equivalent mappings. Here we present several concrete implementation schemes.

Mapping with guaranteed positive slope

In the proof sketch above it was shown that the slope of all neurons is always positive once all

input spikes have been received. However, we cannot exclude that before the time t (n)
min the

trajectory transiently has a negative slope; see Fig. 2.3. If this is desired for some application,

we can use the free parameter α(n)
i =α(n) to ensure that the slope of the trajectory is always

non-negative, even before t (n)
min. To do so, we sum over all negative weights incoming to a given

neuron and choose the slope parameter in layer n such that

α(n) +min
i

∑
j

J (n)
i j H(−J (n)

i j ) > 0 (2.4)

This ensures that the slope is positive not only if all inhibitory spikes arrive before the first

excitatory spike, but also for all other possible timings of inhibitory input spikes. Therefore

the hard problem of late inhibitory spikes can even be solved with a threshold that remains

constant throughout the processing, i.e., even before t (n)
min . In practice we found that we could

work with a constant threshold even if we did not implement the strict condition on the slope

parameter formulated in Eq. (2.4) but worked instead with α(n) = 1. The strict condition in

Eq. (2.4) can lead to very large slope parameters α(n) and high firing thresholds ϑ(n)
i which we

might want to avoid in hardware implementations because of increased energy consumption.
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Chapter 2. An exact mapping from ReLU networks to spiking neural networks

Mapping with a dynamical threshold

In the proof sketch we assumed a constant threshold ϑ(n)
i for all times t > t (n)

min . However, we

can reinterpret the slope factor as a dynamical threshold. To see this, we integrate Eq. (2.2)

and write the threshold condition that determines the firing time t (n)
i < t (n)

max in the form

ϑ(n)
i =V (n)

i (t (n)
i ) =α(n)

i [t (n)
i − t (n−1)

min ]+∑
j

J (n)
i j ϵ(t (n)

i − t (n−1)
j ) (2.5)

where we have suppressed the external input and ϵ(s) is the voltage response to an input spike

arriving at s = 0 [Gerstner and Kistler (2002)]. Using standard textbook arguments, the term

α(n)
i [t (n)

i − t (n−1)
min ] can be shifted to the left-hand side which gives rise to a ’dynamical threshold’

[Gerstner and Kistler (2002)] defined as ϑ(n)
i (t ) =ϑ(n)

i −α(n)
i [t − t (n−1)

min ] . Thus, the mapping in

the corollary is identical to a mapping where the slope factor vanishes, but each neuron has a

dynamical threshold that decreases linearly with time.

Mapping with identical weights in SNN and ANN

Previous studies have proposed approximative mappings under the condition J (n)
i j = w̄ (n)

i j for

all neurons in all layers. A quick glance at Eq. (2.3) tells us that a mapping with J (n)
i j = w̄ (n)

i j

becomes exact under the condition of a neuron-specific slope parameter

α(n)
i = 1−∑

j
w̄ (n)

i j . (2.6)

Thus, in contrast to the mapping in the proof sketch of the Theorem, the slope parameter α(n)
i

is no longer a free parameter but must be chosen according to Eq. (2.6) if the aim is to have

the same set of weights in ANN and SNN. Interestingly, under this condition, the trajectory of

all neurons have the same slope of value one for t > t (n)
min.

Mapping with less than one spike per neuron

Even though our theory requires each neuron to spike exactly once, it is possible to have an

alternative implementation where a given spiking neuron fires only when the corresponding

ReLU is active. Instead of sending (costly) spikes of inactive neurons, it is sufficient to store

the reference times t (n)
max for all n. The trick is to set the slope of all trajectories of neurons i

in layer n to α(n)
i +∑

j J (n)
i j as soon as the maximum spike time t (n−1)

max of neurons in layer n −1

has been reached. This is mathematically equivalent to making all inactive neurons in layer

n −1 fire at time t (n−1)
max but reduces the overall number of spikes in the network significantly.

Therefore each neuron fires at most one spike. Since the ANN implements a nonlinear function

from input to output, at least one neuron has to be inactive for at least one input data point,

so that we know that on average there is strictly less than one spike per neuron. Since we

are interested in a low-energy solutions, we report in the following the average number of
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2.2 Results

active neurons across all inputs and all neurons for the given dataset. This number can

be interpreted as ’spikes per neuron per classification’. Note that this number depends on

the specific regularization used during training of the ANN and can be further reduced by

appropriate loss functions. Examples of this approach will be given below.

2.2.4 Performance on Benchmark Datasets

The above algorithm is a constructive proof that an exact mapping is possible. However, it

is not clear how well it would perform in practice since there might be stability issues in the

implementation or long processing delays that would reduce the attractivity of the mapping.

In the following we test this algorithm on several image classification tasks with different

standard datasets.

For each data set, we report the classification accuracy for the original ReLU network, for

the SNN, as well as the percentage of agreement on a image-by-image basis between class

prediction of original ReLU network and SNN network. Agreement is 100 percent, if for each

image that is correctly (wrongly) classified by the ReLU, the image is also correctly (wrongly)

classified by the SNN. Furthermore we report percentage of spikes per neuron under the

implementation scheme mentioned at the end of the previous subsection.

MNIST, Fashion-MNIST and CIFAR10

In order to compare our results with existing conversion approaches [Rueckauer and Liu

(2018); Yan et al. (2021)], we include MNIST and Fashion-MNIST [Deng (2012); Xiao et al.

(2017)] as well as CIFAR10 [Geifman (2018)] in our evaluation. We consider 16-layer VGG16, 5-

layer LeNet5 and 2-layer fully connected networks, see Table 2.1. VGG16 contains max pooling,

fully connected and convolutional layers together with zero padding and batch normalization

applied after ReLU activation functions. For the MNIST dataset the SNN achieves the same

99.6% accuracy as the original ReLU network with 100% agreement, whereas the number

of active neurons is around 51%. Similarly, for Fashion-MNIST there is a 100% agreement

between SNN and ReLU predictions with the accuracy of 93.7% and around 45% of active

neurons. In [Rueckauer and Liu (2018)] the authors perform a conversion of a 2-layer fully

connected network as well as a LeNet5 convolutional network such that the weights and

biases of the SNN and ANN are identical. We reproduce the ANN results of those models and

compare the performance of their SNN with the one obtained using our method. Our SNN

surpasses the accuracy in [Rueckauer and Liu (2018)], and has 100% agreement between SNN

and ANN with around 50% active neurons. Moreover, if we apply L1 activity regularization to

the 2-layer fully connected network, MNIST images are classified with the accuracy of 98.52%

with only 20 spikes in the hidden layer, i.e. 3.33% of active neurons. The original and the

scaled LeNet5 network can be seen in Fig. 2.2a. For the preprocessing and mapping details

refer to the Methods.
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Model & dataset Image size Classes Accuracy [%] Agreement [%] Spikes [%]
ReLU SNN

Fully connected, MNIST [Rueckauer and Liu (2018)] 28 × 28 × 1 10 98.50 98.35 - -
Fully connected, MNIST [ours] 28 × 28 × 1 10 98.52 98.52 100 50.28
Fully conn. L1, MNIST [ours] 28 × 28 × 1 10 98.52 98.52 100 3.33
LeNet5, MNIST [Rueckauer and Liu (2018)] 28 × 28 × 1 10 98.96 98.57 - -
LeNet5, MNIST (Fig. 2.2a) [ours] 28 × 28 × 1 10 99.03 99.03 100 50.18
VGG16, MNIST [ours] 28 × 28 × 1 10 99.60 99.60 100 51.21
VGG16, Fashion-MNIST [ours] 28 × 28 × 1 10 93.70 93.70 100 45.34
VGG16, CIFAR10 [Yan et al. (2021)] 32 × 32 × 3 10 92.55 92.48 - -
VGG16, CIFAR10 (Fig. 2.2d) [ours] 32 × 32 × 3 10 93.59 93.59 100 38.38
VGG16 L1, CIFAR10 [ours] 32 × 32 × 3 10 93.16 93.16 100 21.51

Large-scale tests

VGG16, CIFAR100 [ours] 32 × 32 × 3 100 70.48 70.48 100 38.21
VGG16, Places365 [ours] 224 × 224 × 3 365 52.69 52.69 100 53.72
VGG16, PASS [ours] 224 × 224 × 3 1000 N/A N/A 100 53.24

Table 2.1: Comparing performance of original ReLU networks and SNNs. Agreement metric shows percentage of inputs for which
original ReLU network and SNN network predict the same class. Spikes column reveals the average percentage of active neurons across
all hidden layers when the mapping with less than one spike per neuron is applied. Places 365 and PASS are used as substitutes for
ImageNet which breaches data privacy [Yang et al. (2022)]. Accuracy calculation is not applicable for PASS dataset, as it is unlabeled. L1
denotes model with regularization. The highest accuracy and the lowest percentage of spikes for model/dataset pairs across different
methods are highlighted in bold.
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Figure 2.4: Image Classification with spikes. A presentation of a cat image from the CIFAR dataset triggers spikes (filled and
open circles) in consecutive layers of the SNN. For layers 0, 1, 2 and 14, one of the neurons is the one that fires the earliest spike
for this image whereas the other nine are randomly selected. In a given layer, earlier spike times correspond to larger values
(darker color) of the corresponding ReLU in the original network. At the output layer, the maximum potential corresponds to the
largest activation variable in the ReLU network. Zoom inset: Voltage trajectories of three neurons from the same convolutional
channel in layer 2. Spike times correspond to the moments of threshold crossing. Histogram inset: Histogram of spike counts
per time bin of neurons in layer 2 averaged across all neurons and all images in the test set. Only 34.92% of neurons fire before
t (2)

max.
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Chapter 2. An exact mapping from ReLU networks to spiking neural networks

CIFAR10 contains color images of ten classes. The pretrained weights were obtained from

an online repository [Geifman (2018)] where a convolutional network similar to the VGG16

architecture (see Table 2.1) was used. It comprises 15 layers in total since it uses only two

fully connected layers instead of three (Fig. 2.2d). The network contains max pooling and

convolutional layers together with zero padding and batch normalization applied after the

ReLU activation functions. For CIFAR10 the SNN achieves the same 93.59% accuracy as

the original ReLU network with 100% agreement between the two networks, whereas at

38% the number of active neurons is smaller than for the other datasets. If we apply L1

activity regularization, a small subset of 21.51% active hidden neurons is enough to perform

classification with 93.16% accuracy. Further reduction of the number of spikes to 15.52%

already decreases the accuracy to 90.54%.

In Fig. 2.4 we show an example of an SNN inference for classification of a cat image from

CIFAR10. For input and hidden layers a raster plot of 10 neurons is shown and the spikes of

neurons with higher activation of the corresponding neuron in the ANN are color-coded with

darker shade. At the input layer the value of the data can be recovered from the spiking time of

neuron i as x0
i = 1− t (0)

i and in layer n the output of a neuron i of scaled ReLU network can be

recovered from the spiking time of the corresponding neuron in the SNN as x̄(n)
i = t (n)

max − t (n)
i .

The duration of the interval [t (n)
min, t (n)

max] varies considerably from one layer to the next. At the

output layer n = 15 a potential with darker color indicates a larger value of the activation

variable of the corresponding neuron in the original ReLU network. At time t (15)
max = t (14)

max +0.1

when all the input from the layer n = 14 has arrived, the maximum potential corresponds to

the neuron with maximal activation variable, i.e. both networks predict the same class.

Large-scale data sets

We avoided the ImageNet dataset because of privacy-concerns [Yang et al. (2022)] and used

instead Places 365, PASS, and CIFAR100 for more realistic tests. The ’Places365-Standard’

dataset contains high-resolution color images [Zhou et al. (2017)] resembling those in the

ImageNet dataset. The pretrained weights are obtained from an online repository [Zhou

(2018)] that contains a standard VGG16 network without batch normalization which we map

to a corresponding SNN; see Table 2.1. The SNN achieves the same 52.69% accuracy as the

original ReLU network with 100% agreement between the two networks, whereas the number

of active neurons is around 53%.

The PASS dataset consists of 1.4 million unlabeled images [Asano et al. (2021)] and is used as a

substitute for ImageNet [Asano et al. (2021)] so as to avoid privacy-concerns. We use the same

network as for the ’Places365-Standard’ dataset, see Table 2.1. The weights are downloaded

from the VGG16 model for ImageNet available in TensorFlow [Abadi et al. (2015); Russakovsky

et al. (2015)]. An inference on an image from PASS returns one of the 1000 ImageNet classes

as output. When performing inference with the SNN we verify the agreement of the class

prediction between the two networks. There is a 100% agreement between the original ReLU

network and our SNN, with the fraction of active neurons around 53%. The results of this
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and the previous paragraph together show that the SNN achieves the same accuracy as the

corresponding ANN on ImageNet-like datasets using spiking neurons that fire on average only

for 53% of the inputs.

A similar statement is true for the CIFAR100 dataset. Using the same network architecture as

for CIFAR10, and pretrained weights downloaded from an online repository [Geifman (2018)],

we find on CIFAR100 a 100% agreement between SNN and ReLU predictions with the accuracy

of 70.48% and around 38% of active neurons. Thus, on all tested large-scale datasets we find

100 percent agreement between the ANN and SNN indicating that the mapping is without any

performance loss.

Sensitivity to noise and parameter changes

As outlined in the introduction, the hardest problem of the conversion is to prevent spike firing

in layer n before all spikes from layer n −1 have arrived. In our mapping algorithm, a positive

value ζ> 0 should guarantee, for a large enough and representative subsample of input images

from the training set, that during test the above problem is avoided. For all implementation

results so far, the standard choice was ζ= 0.5. In order to check sensitivity to the choice of ζ, we

varied ζ across positive and negative values. Using the VGG16 model and the CIFAR10 dataset,

we found that the performance degrades gracefully when pushing ζ slightly into the negative

regime, but breaks down for a value ζ<−0.5, see Fig. 2.5a. Importantly, when switching from

ζ=+0.5 to ζ=−0.5, the total processing time for image classification is reduced by a factor of

three.

Noise in hardware implementations could potentially arise from a spike jitter caused for

example by imprecisions in detecting the exact time of threshold crossing. We add a Gaussian

noise of given standard deviation (SD) and perform 16 trials. No performance degradation is

observed up to a standard deviation of 0.001, see Fig. 2.5b. With a jitter of about 1 percent,

the accuracy drops from 93.59% to 92.93%, which depending on the application may or may

not be considered as acceptable. We note that spike times of hundreds of neurons in a given

hidden layer spread over an interval of one or a few time units so that even with a jitter of 0.01

the order of spike firing is considerably changed.

Imprecisions could also arise from heterogeneities in the hardware. A sensitive parameter is

the reference slope α(n). We modify the slope parameter in a neuron-specific way α(n)
i +Y

where Y is a zero-mean Gaussian random variable with a standard deviation that we control.

This simulates a systematic neuron-specific hardware manufacturing imperfection. Even a

standard deviation of 0.001 leads to a dramatic drop in performance, see Fig. 2.5c. This is

expected since a small mismatch in slope leads to a relatively large shift in spike timing because

changes are accumulated throughout the integration interval [t (n−1)
min , t (n)

max]. As mentioned

in the discussion, using existing learning rules for spiking neurons in the hardware loop

[Göltz et al. (2021)] could be used to rapidly fine-tuning weights to compensate for hardware

heterogeneities.
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Figure 2.5: Sensitivity tests a. Performance as a function of the parameter ζ. Note that the theorem requires ζ> 0; our standard choice
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2.3 Discussion

In this paper we propose an exact mapping from a ReLU network to an SNN with time-

to-first-spike coding. While a relation between ReLU networks and networks of non-leaky

integrate-and-fire neurons has been suggested before [Rueckauer and Liu (2018); Zhang et al.

(2021); Kheradpisheh and Masquelier (2020); Mirsadeghi et al. (2021)], there have been four

obstacles that in the past prevented a successful exact mapping from deep artificial neural

networks to deep spiking neural networks:

(i) As mentioned in the introduction, a neuron in layer n that fires a spike before the last

spike of neurons in the previous layer n −1 has arrived could compromise an exact mapping,

since not all inputs are taken correctly into account: in particular, a late inhibitory input

could have led to substantially different spiking time if taken into account. Having access to a

representative sample of inputs from the training data enables us to solve this problem by an

appropriate choice of intervals [t (n)
min, t (n)

max], with the condition t (n−1)
max = t (n)

min. In other words,

firing times of all neurons in layer n are guaranteed to fall into a desired interval, such that all

spikes from layer n −1 have arrived before the first neuron in layer n fires a spike.

(ii) In some implementations of an SNN, the slope of the potential of a neuron might be

negative, zero, or only marginally positive once all input spikes have arrived. In the last case,

the threshold could be eventually reached but spiking would be sensitive to noise. We have

solved this problem by a positive slope parameter α(n)
i for the trajectory of the integrate-and-

fire neuron in combination with a suitable (non-unique) preprocessing of ReLU parameters

that together guarantee that the slope of the trajectory is larger than some minimal value once

all input spikes have arrived.

(iii) In the past it has been left open how to map the neuron of ReLU that is inactive for a given

input vector to the corresponding spiking neuron. We have solved this problem by forcing

the corresponding spiking neuron to fire a spike at the maximum spike time for that layer. We

have also proposed an alternative implementation where inactive neurons do not fire spikes.

(iv) Existing spiking neural network approaches often use rate coding, custom activation

functions or specific constraints during ANN training [Rueckauer and Liu (2018); Neftci et al.

(2019); Zenke and Ganguli (2018); Zenke and Vogels (2021); Bellec et al. (2020); Woźniak et al.

(2020); Yan et al. (2021); Rueckauer et al. (2017); Zhang et al. (2019b); Huh and Sejnowski

(2018); Gardner et al. (2015)]. In contrast to prior work, our approach uses sparse TTFS coding,

standard ANN elements and does not involve learning. The advantage of our approach in

view of an application in neuromorphic edge devices is that a network consisting of standard

fully connected and convolutional layers with ReLU activation function as well as max pooling

and batch normalization can be pretrained using well-established optimization tools. After

conversion, the SNN is guaranteed to have the exact same accuracy as the original ANN. The

disadvantage is that hardware imperfections such as uncontrolled parameter variations are

not taken into account during training.
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Chapter 2. An exact mapping from ReLU networks to spiking neural networks

TTFS coding for a conversion from ANN to SNN has been used before in an implementation

[Rueckauer and Liu (2018)] that contains elements similar to our approach, but with a few

important differences. First, we have a systematic way to define the end t (n)
max of the allowed

spiking interval. Second, we use a TTFS code with a linear relation between spike times

and ReLU output whereas the relation is nonlinear in the earlier scheme [Rueckauer and Liu

(2018)]. Third, we identify for the case w̄ (n)
i j = J (n)

i j an exact condition for the slope parameter

and generalize to mappings where the weights are not simply copied from the ANN to the

SNN. The latter gives the freedom to choose the slope parameter so that the trajectory has

always positive slope.

The success of our method paves the road to many future research direction including both

theory and application:

(i) The discrete transition between spikes that are absent or present (depending on the input or

on parameter variations) has plagued learning algorithms for spiking neural networks [Göltz

et al. (2020); Kheradpisheh and Masquelier (2020); Neftci et al. (2019); Zenke and Ganguli

(2018); Bohte et al. (2002); Tavanaei et al. (2019)]. Our theoretical contributions imply that

spikes do not appear or disappear, but are rather shifted forward or backward within some

finite interval. Earlier learning approaches have shown that those spikes that are triggered

at moments when the slope of the potential is close to zero induce a high sensitivity of

spike timing to small parameter changes. By introducing a positive slope parameter into

an integrate-and-fire neuron in combination with a suitable (non-unique) preprocessing of

ReLU parameters our mapping guarantees that the slope of the trajectory is at the moment of

firing bounded within some favourable range, so that the problems of sensitivity or discrete

transitions are avoided. Therefore, our mapping approach opens the path towards stable

learning algorithms in single-spike deep SNNs, for example using the mapping suggested here

as initialization of parameters [Stanojevic et al. (2023b)]. Making a step towards increased

biological plausibility the approach can also be extended to a leaky integrate-and-fire neuron

model where each input spike causes a response described by a double-exponential filter

as long as the coding interval [t (n)
min, t (n)

max] is short compared to the two time constants of the

exponential [Stanojevic et al. (2023b)].

(ii) Extension of the mapping to other architectures such as ResNet and to other types of

neurons beyond non-leaky integrate-and-fire and ReLU would give the opportunity to have

higher flexibility in terms of pretrained models. Moreover, it is of interest to further expand

the theoretical framework such that it processes not just a single image but a stream of input

data. This would present significant benefits for applications. At the moment, our method

is limited to feedforward networks and an extension to Recurrent Neural Networks is left for

future work.

(iii) To leverage our theoretical contribution for low-energy applications, a hardware imple-

mentation of this algorithm is desirable [Widmer et al. (2023)]. In view of future hardware

implementations we are interested to further reduce the number of spikes and latency. With
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an improved implementation in combination with L1 regularization of the ANN, we have

already reduced the fraction of spikes per neuron to well below 50%, see Table 2.1. The overall

classification latency is defined as t (N )
max, which is the time instant when the readout at the

output layer happens. The obtained values for t (N )
max in VGG16 networks are around 3000 for

MNIST and 2000 for Fashion-MNIST. The shallower networks have much smaller classification

latency on the MNIST dataset of around 50 with LeNet5 and close to 15 for a 2-layer fully

connected network. Using the VGG16 model, CIFAR10 is classified with a latency close to 200

and around 300 for CIFAR100. Larger datasets yield higher latency, with values around 50’000

for Places365 and close to 100’000 for PASS. We emphasize that the units are arbitrary. The

classification latency can be reduced by a less conservative choice of meta-parameters of the

mapping so as to reduce the dead time between spike arrival times in layers n −1 and layer n.

In particular a choice ζ=−0.5 (instead of ζ=+0.5) reduces the overall processing time by a

factor of three without a dramatic loss in performance; see Fig. 2.5a. A further reduction of

latency is achievable with ζ<−0.5 in combination with retraining of weights and thresholds

along the lines discussed above under point (i) [Stanojevic et al. (2023b)].

(iv) For hardware implementations the question of robustness to noise and heterogeneities is

also important. We have started to explore the robustness of our algorithm to noise by adding

a Gaussian noise of given standard deviation to the spike times of each layer, see Fig. 2.5b.

Moreover, we have considered the case where the conversion was done with slope parameter

α(n) = 1, while the hardware introduces fixed noise of given standard deviation for the slope

parameter of each neuron, see Fig. 2.5c. It would be possible to fine-tune network weights

with existing algorithm [Göltz et al. (2020)] to compensate for hardware heterogeneities. Our

current approach assumes asynchronous processing in continuous time and real-valued

weights. In view of digital hardware implementations, it would also be of interest to study the

effects of weight and time quantization. Future work on quantification of energy reduction

will crucially depend on the concrete hardware implementation that is envisaged.

To summarize, this paper provides a constructive proof that deep ReLU networks and single-

spike neural networks of integrate-and-fire neurons are mathematically equivalent. As a

consequence, we reach functional deep spiking neural networks that have the same accuracy

as ReLU networks and where spiking neurons fire at most one spike per neuron. Since

spike transmission is an energy costly process in biology [Attwell and Laughlin (2001)] and

neuromorphic hardware [Sorbaro et al. (2020)], our mathematical results open a pathway to

low-energy computing with deep neural networks.

2.4 Methods

2.4.1 Preprocessing

Before we perform the mapping from the ReLU network to the SNN, we perform a few prepro-

cessing steps on the network with pretrained weights.

35



Chapter 2. An exact mapping from ReLU networks to spiking neural networks

(i) If the network doesn’t use batch normalization, this step is skipped. If batch normalization is

implemented, it is fused into the neighbouring fully connected and convolutional layers. The

parameters of the batch normalization are µ̂i
(n) and (σ̂i

(n))2 denoting the estimated mean and

variance, γ(n)
i and β(n)

i which indicate scaling and shift factors learned during the optimization

whereas ϵ is a small constant. In the following equations we use κ(n)
i to denote the scaling

factor γ(n)
i /

√
(σ̂i

(n))2 +ϵ.

When batch normalization is applied to the activation variable a(n)
i and before the activation

function, it is fused with the processing of the previous layer (see Fig. 2.2a). The parameters

are transformed as follows:

b(n)
i ← κ(n)

i (b(n)
i − µ̂i

(n))+β(n)
i (2.7)

w (n)
i j ← κ(n)

i w (n)
i j . (2.8)

Note that in case of convolutional architecture each index i corresponds to a different channel.

When batch normalization is applied to the output of the activation function x(n)
i , then it

is fused with the processing of the subsequent layer (see Fig. 2.2d). The parameters are

transformed as follows:

b(n+1)
k ← b(n+1)

k +∑
i

(β(n)
i −κ(n)

i µ̂i
(n))w (n+1)

ki , (2.9)

w (n+1)
ki ← κ(n)

i w (n+1)
ki . (2.10)

Note that the assignments of biases and weights need to be executed in this particular order.

Moreover, in case of convolutional architecture, there are a few special cases that need to be

considered.

When batch normalization is applied to a zero-padded input into a convolutional layer, the

bias change in Eq. (2.9) introduces an unnecessary offset at zero-padded locations. For these

particular locations, we calculate the bias by taking into account only the set of inputs Sl

which were not obtained through padding (see Fig. 2.2b). Eq. (2.9) is replaced with:

b(n+1)
k,l ← b(n+1)

k,l + ∑
i∈Sl

(β(n)
i −κ(n)

i µ̂i
(n))w (n+1)

ki (2.11)

When max pooling is applied after batch normalization, the weights of the subsequent con-

volutional layer are changed as described in Eqs. (2.9) and (2.10). The batch normalization

multiplies the output of each channel with factor κ(n)
i , see Eq. (2.10). When this value is nega-

tive, the sign of the output is changed. During the inference time, the max pooling operation is
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Algorithm 1 Preprocessing

Input: Model with parameters w (n)
i j and b(n)

i

Output: Model with parameters w̄ (n)
i j and b̄(n)

i

1: x(0)
i ← x(0)

i −p
q−p ▷ Rescale inputs to [0, 1]

2: for layer ∈ Model do ▷ Iterate over all layers in the Model
3: if layer ∈ [ Conv1, FC1 ] and [p, q] ̸= [0,1] then
4: Model ← fuse_BN_after_ReLU (Model, p, q) ▷ Fuse imaginary batch normaliza-

tion layer in case network was
trained on [p, q] range

5: else if layer = BN and layer+1 = ReLU then
6: Model ← fuse_BN_before_ReLU (Model) ▷ Fuse batch normalization before ac-

tivation with previous parametrized
layer

7: else if layer = BN and layer-1 = ReLU then
8: Model ← fuse_BN_after_ReLU (Model) ▷ Fuse batch normalization after acti-

vation with next parametrized layer
and process padding or max pool-
ing, Figs. 2.2b, 2.2c

9: end if
10: end for
11: c(0)

i ← 0, n ← 1
12: for layer ∈ Model do ▷ Iterate over all layers in the Model
13: if layer ∈ [ Convn, FCn ] then
14: Model, c(n)

i ← scale (Model, c(n−1)
i , Blow, δ) ▷ Scale layer with c(n−1)

i , Eqs. (2.17),

(2.19), and then with c(n)
i , Eqs. (2.16),

(2.18)
15: X (n) ← max_output (µ, Model) ▷ Calculate maximum output for layer

n given training samples µ
16: n ← n + 1
17: end if
18: end for

transformed into a min pooling operation for the channels with switched sign (see Fig. 2.2c).

(ii) If network has input in range [0,1], this step is skipped. Let’s assume that the network

has input in arbitrary range [p, q]. We would like for the network to operate for input in

[0,1] interval without changing its output. This scaling can be seen as an imaginary batch

normalization layer between the input layer and the first layer.

The input data is transformed as x(0)
i ← x(0)

i −p
q−p and the biases and weights of the first layer are

set to:

b(1)
k ← b(1)

k +p
∑

i
w (1)

ki , (2.12)
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Chapter 2. An exact mapping from ReLU networks to spiking neural networks

w (1)
ki ← (q −p)w (1)

ki . (2.13)

When there is zero padding in the first convolutional layer, Eq. (2.12) is replaced with:

b(1)
k,l ← b(1)

k,l +p
∑

i∈Sl

w (1)
ki (2.14)

(iii) In order to guarantee that the potential increases once all input spikes have arrived, we

rescale the parameters of the ReLU network. We exploit the scaling symmetry of ReLU neurons

[ai ]+ =C [ai /C ]+, for C > 0 and normalize weights so that the sum of input weights is smaller

than 1−δ, for some 0 < δ< 1. Similarly, we want to make sure that the sum of input weights

does not fall below some lower bound (−Blow) < 0. To implement the scaling, we begin from

the initial weights w̄ (n)
i j ← w (n)

i j and biases b̄(n)
i ← b(n)

i , start in layer n = 1 and proceed up to

n = M one layer at a time. For each neuron i , we calculate the sum over all the incoming

weights

c(n)
i =∑

j
w̄ (n)

i j (2.15)

If c(n)
i > (1−δ), we set for this specific neuron i its bias and incoming weights (for all j ) to

b̄(n)
i ← (1−δ)

c(n)
i

b̄(n)
i ; and w̄ (n)

i j ← (1−δ)

c(n)
i

w̄ (n)
i j (2.16)

and the outgoing weights (for all k) to

w̄ (n+1)
ki ← c(n)

i

1−δ w̄ (n+1)
ki (2.17)

Similarly, if c(n)
i ≤−Blow we set the bias and the incoming weights (for all j ) to

b̄(n)
i ← Blow

|c(n)
i |

b̄(n)
i ; and w̄ (n)

i j ← Blow

|c(n)
i |

w̄ (n)
i j (2.18)

and the outgoing weights (for all k) to

w̄ (n+1)
ki ← |c(n)

i |
Blow

w̄ (n+1)
ki (2.19)

Note that signs are not changed by the scaling operation. Scaling ensures that for all hidden

layers (−Blow) ≤∑
j w̄ (n)

i j < 1. We have larger weights in the final output layer (readout weights),

but this does not cause any problems. The network where all the above preprocessing steps are

applied is called a scaled ReLU network. Its parameters are denoted with a bar to distinguish

them from the original, unscaled, network.
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If c(n)
i > (1−δ) the activation variable ā(n)

i is given by

ā(n)
i ← (1−δ)

c(n)
i

a(n)
i (2.20)

and if c(n)
i ≤−Blow by

ā(n)
i ← Blow

|c(n)
i |

a(n)
i (2.21)

and ā(n)
i ← a(n)

i otherwise. Similarly, if c(n)
i > (1−δ) the output x̄(n)

i of ReLU is given by

x̄(n)
i ← (1−δ)

c(n)
i

x(n)
i (2.22)

and if c(n)
i ≤−Blow as

x̄(n)
i ← Blow

|c(n)
i |

x(n)
i (2.23)

and x̄(n)
i ← x(n)

i otherwise.

(iv) We apply all training data 1 ≤ µ ≤ P at the input layer of the scaled ReLU network and

observe the activation pattern for each neuron in the network. For each layer n we determine

the maximal output of the activation function x̄(n)
i (µ) across all training data 1 ≤µ≤ P and all

neurons i in that layer:

X (n) = max
i ,µ

{x̄(n)
i (µ)} (2.24)

If the number P is very large, we choose a statistically representative subset of data and

perform the max-operation over these.

2.4.2 Conversion to SNN

The essential idea of the mapping from the ReLU neurons to the spiking neurons is that a

positive activation leading to an output x̄(n)
i = ā(n)

i > 0 is identified with an early firing time:

t (n)
i = t (n)

max − ā(n)
i , whereas vanishing output x̄(n)

i = 0 corresponds to firing at t (n)
i = t (n)

max.

The actual mapping is defined as follows (see Fig. 2.3).

(i) Input encoding. The input data lies in the interval 0 ≤ x(0)
i < 1 and we set t (0)

min = 0, t (0)
max = 1

and t (0)
i = 1−x(0)

i . With the parameters of the input layer fixed, we now proceed layer by layer

from n = 1 to n = M

(ii) We set t (n)
min = t (n−1)

max

(iii) We set t (n)
max = t (n)

min +B (n) with B (n) = (1+ζ) X (n) and ζ> 0. The idea is that even the neuron

with the strongest input must fire within the desired interval [t (n)
min, t (n)

max], i.e., not too early.

Under the assumption that the test data comes from the same statistical distribution as the
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Chapter 2. An exact mapping from ReLU networks to spiking neural networks

Algorithm 2 Conversion

Input: Model with parameters w̄ (n)
i j and b̄(n)

i , X (n)

Output: SpModel with parameters J (n)
i j , ϑ(n)

i α(n), t (n)
min and t (n)

max

1: t (0)
mi n ← 0, t (0)

max ← 1, n ← 1, α(n) ← 1,∀n ← 1..M

2: for layer ∈ Model do ▷ Iterate layer-wise from the first to
the output layer and calculate pa-
rameters and intervals

3: if layer ∈ [ ConvBNn, FCBNn ] then
4: if layer+1=ReLU then
5: t (n)

mi n ← t (n−1)
max

6: t (n)
max ← t (n−1)

max + (1+ζ)X (n)

7: J (n)
i j ← α(n)w̄ (n)

i j

1−∑
w̄ (n)

i j

8: ϑ(n)
i ←α(n)(t (n)

max − t (n−1)
mi n )+∑

i J (n)
i j (t (n)

max − t (n)
mi n)− (α(n) +∑

i J (n)
i j )b̄(n)

i
9: else if layer+1=softmax then

10: α(n)
i ← b̄(n)

i

(t (n−1)
max −t (n−1)

mi n )

11: J (n)
i j ← w̄ (n)

i j
12: end if
13: n ← n +1
14: end if
15: end for

training data, a small value ζ≪ 1 should in practice provide a sufficient safety margin. Indeed,

if the training data set is large enough to be statistically representative, the probability that test

data contains a point causing activation larger than (1+ζ) X (n) decreases rapidly with ζ. The

range [t (n)
min, t (n)

max] is therefore large enough to encode all the values from layer n of the rescaled

ReLU network.

(iv) For a given α(n)
i > 0 we first choose a reference threshold ϑ̃(n)

i in layer n such that an

integrator without any spike input would fire at t (n)
max. Hence for t > t (n)

min the reference threshold

is

ϑ̃(n)
i =α(n)

i [t (n)
max − t (n−1)

min ] (2.25)

For the formal proof of the exact mapping, we set the reference threshold for t ≤ t (n)
min to a

sufficiently high value ϑ̃(n)
i = Θ→∞ for all times t ≤ t (n)

min. This ensures that no neuron in

layer n fires before t (n)
min. The value from Eq. (2.25) is used only for t > t (n)

min. However, for our

practical algorithmic implementations we use the threshold given in Eq. (2.25) throughout for

all t , because in all encountered data sets the probability of neurons in layer n firing before

t = t (n)
min was negligible.

(v) The actual threshold also depends on the bias and weights of the neuron. To account for
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this, we set the actual threshold of neuron i in layer n to a value

ϑ(n)
i = ϑ̃(n)

i +D (n)
i (2.26)

With these parameter choices, an exact mapping from ReLU network to an SNN is possible

with a value

D (n)
i = [B (n)

∑
j

J (n)
i j ]− [α(n)

i +∑
j

J (n)
i j ] b̄(n)

i . (2.27)

and weights

J (n)
i j = α(n)

i

1−∑
j ′ w̄ (n)

i j ′
w̄ (n)

i j (2.28)

where w̄ (n)
i j are the weights of the scaled ReLU network. Note that the denominator of Eq.

(2.28) is always positive since
∑

j w̄ (n)
i j < 1. Hence the mapping does not change the sign of the

weights. The inverse weight transform from SNN to ReLU is

w̄ (n)
i j = 1

α(n)
i +∑

j ′ J (n)
i j ′

J (n)
i j (2.29)

This completes the conversion.

Note that we kept biases b̄(n)
i as explicit parameters. However, following standard practice in

the ANN literature, we could replace biases by an additional input neuron with connection

weight equal to b̄(n)
i . The equations above as well as those for weight rescaling in Phase 1 are

to be used analogously in that case.

Lemma. With the conversion rules Eqs. (2.25) to (2.28) spike firing occurs at a value x̄(n)
i =

t (n)
max − t (n)

i .

Proof. Let us integrate the differential equation (2.2) of the integrate-and-fire units which

yields for t (n)
min < t < t (n)

max a voltage

V (n)
i (t ) = [t − t (n−1)

min ]α(n)
i +∑

j
J (n)

i j [t − t (n−1)
j ] , (2.30)

where all neurons in layer n −1 have firing times t (n−1)
j ≤ t (n−1)

max = t (n)
min. The firing time t (n)

i

of neuron i in layer n is given by the threshold condition V (n)
i (t (n)

i ) = ϑ(n)
i . We exploit that

neurons in layer n−1 that have not yet fired are forced to fire at t (n−1)
max . We now insert the claims

t (n)
i = t (n)

max − x̄(n)
i and t (n−1)

j = t (n−1)
max − x̄(n−1)

j into Eq. (2.30) and use Eqs. (2.25), (2.26),(2.27) as

well as t (n)
min = t (n−1)

max and B (n) = t (n)
max − t (n)

min to find

x̄(n)
i = 1

α(n)
i +∑

j J (n)
i j

∑
j

J (n)
i j x̄(n−1)

j +b(n)
i (2.31)
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Chapter 2. An exact mapping from ReLU networks to spiking neural networks

Thus, the Eq. (2.29) for the weights follows from a comparison of this formula with the ReLU

equation x̄(n)
i = ∑

j w̄i j x̄(n−1)
j ; see Eq. (2.1) with x̄(n)

i = [ā(n)
i ]+. The solution is unique since

trajectories have positive slope so that the threshold is reached at most once.

2.4.3 Conversion of Max pooling

If the ReLU network contains max pooling layers, the SNN contains layers performing max

pooling and min pooling, outputting the earliest and latest spiking time respectively. This

functionality can be implemented with integrate-and-fire neurons such that each neuron fires

exactly one spike. To this end we introduce connections K (n−1)
i j within a given layer. A spike at

time t (n−1)
j of a ReLU neuron j in layer n −1 generates a pulse current, modeled by a Dirac

delta pulse of total charge K (n−1)
i j , which is injected into neuron i of the max pooling or min

pooling operation belonging to the layer n −1. The voltage of neuron i evolves according to

dV (n−1)
i (MMP)

dt
=∑

j
K (n−1)

i j δ(t − t (n−1)
j ) (2.32)

If V (n−1)
i (MMP) crosses the threshold ϑ(n−1)

i (MMP) at time t then t = t (n−1)
i (MMP) is the firing time of neuron i .

For the layers which are preceded by a max pooling or min pooling operation the Eq. (2.2) is

replaced with:

dV (n)
i

dt
=α(n)

i H(t − t (n−1)
min )+∑

j
J (n)

i j H(t − t (n−1)
j (MMP))+ I (n)

i (t ) (2.33)

In case of the max pooling operation, all weights K (n)
i j are set to slightly larger values than

the threshold value ϑ(n)
i (MMP), such that the very first input spike triggers firing. In case of min

pooling operation, parameters K (n)
i j are set to the value of ϑ(n)

i (MMP)/Q < K (n)
i j <ϑ(n)

i (MMP)/(Q −1)

where Q is the total number of inputs. As a consequence, the very last input spike triggers the

firing.

2.4.4 Mapping of the output layer

The output layer of the scaled ReLU network has a softmax activation function and parameters

{w̄ (M+1)
i j , b̄(M+1)

i }. In the SNN we implement the output layer with an integrator unit, i.e. the

neurons just integrate the currents and do not spike spike. A spike arriving at the output layer

at time t (M)
j from a neuron in layer M generates a step current input with amplitude w̄ (M+1)

i j

into neuron i of layer M +1. The voltage of neuron i in layer M +1 evolves according to

dV (M+1)
i

dt
=α(M+1)

i H(t − t (M)
min)+∑

j
w̄ (M+1)

i j H(t − t (M)
j ) (2.34)
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where H denotes the Heaviside step function. The non-leaky integration starts at time t (M)
min

and lasts until time t (M)
max and α(M+1)

i takes value:

α(M+1)
i = b̄(M+1)

i

t (M)
max − t (M)

min

(2.35)

The largest potential V (M+1)
i at time t (M)

max determines the prediction.

2.4.5 Final remarks regarding the mapping

First, as mentioned in the results section, other mappings are also possible. For efficient

coding with short latency, the aim is to choose parameters such that the resulting time intervals

[t (n)
min, t (n)

max] are not too large, however large enough to encode all values from the ReLU network

with sufficient temporal resolution and such that the firing times of different layers do not

overlap. Note that (in contrast to leaky integration with time-constant τ) a non-leaky integrator

has no intrinsic time scale. Second, it would be possible to start the integration of all integrate-

and-fire units across all layers n synchronously at time t = 0, if we increase at the same time

the threshold in layer n by an amount α(n) t (n)
min.

Third, since α(n)
i +∑

j J (n)
i j > 0 and all neurons in layer n −1 have fired at or before t (n−1)

max , the

voltage trajectories V (n)
i of all neurons i in layer n have for t > t (n−1)

max = t (n)
min a positive slope;

see. Eq. (2.2). If, after preprocessing,
∑

j w̄ (n)
i j ≤ 1−δ, then the maximal slope of the trajectory

at threshold is α(n)/δ. Similarly, if after preprocessing
∑

j w̄ (n)
i j ≥ −Blow, then the minimal

slope at the moment of firing is α(n)/(1+Blow). A small slope of the potential close to the

threshold should be avoided, since this increases the sensitivity to noise (in particular in view

of combining with learning algorithms or unknown heterogeneities in the exact value of the

slope). In practice, a value of Blow = 10 worked fine for our numerical simulations.

Fourth, we used a value of ζ= 0.5. If the training set is large, and if we have access to all data

in the training set, a positive but small ζ→ 0 would be sufficient to guarantee that a neuron

cannot fire ’too early’. However, the test set could potentially include data where the total

activation is slightly larger than the maximal activation in the training set. Since training

set and test set arise, in principle, from the same statistical distribution, a parameter choice

ζ= 0.5 should provide a sufficient safety margin and this is confirmed in our simulations in

the Results section.

2.4.6 Datasets

All the experiments were performed with Python programming language and TensorFlow

library. The simulations were executed on NVIDIA A100 GPUs. We consider six datasets of

different sizes and complexity:
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Chapter 2. An exact mapping from ReLU networks to spiking neural networks

(i) MNIST and Fashion MNIST datasets contain greyscale images of size 28×28 which are

labeled into ten classes. For each of the two datasets there are 60000 training images and

10000 testing images. Data preprocessing step includes normalizing pixel values to the [0,1]

range and in the case of a fully connected network the input is also reshaped. The pretrained

parameters of the original ReLU networks are obtained by training with backpropagation using

Adam optimizer [Kingma and Ba (2014)] with exponential learning rate schedule and standard

cross-entropy loss. We apply dropout for regularization. In case of the VGG16 architecture the

kernel was always of size 3 and the input of each convolutional operation is zero padded such

that the shape at the output remains the same. Due to small input size, the first max pooling

operation in the standard VGG16 architecture is omitted. The output of the convolutional

part of VGG16 is of size 512 which is followed by two fully connected layers each containing

512 neurons and the output layer. The LeNet5 architecture has three convolutional, two max

pooling and two fully connected layers with 84 and 10 neurons, see Fig 2.2a. Finally, the 2-layer

fully connected network has one hidden layer with 600 units. LeNet5 and VGG16-like networks

also contain batch normalization before and after ReLU function, respectively.

In Fig. 2.2a we see the scaled LeNet5 network where the batch normalization are fused with

previous convolutional and fully connected layers and the parameters of the network are

scaled. For VGG16 network the batch normalization are fused with next convolutional and

fully connected layers. Moreover, in this case the shift which appears due to zero padding is

counter balanced with bias change at certain locations, see Fig. 2.2b, and every time batch

normalization appears before max pooling, the channels whose sign is changed are replaced

with min pooling, see Fig. 2.2c. Since the model is trained on [0,1] range there is no need to

fuse an imaginary batch normalization after the input. In order to obtain the scaled ReLU

network the parameters of the network are scaled. Finding the maximum output X (n) of each

layer on the subset of the training set finalizes the preprocessing step (see Fig. 2.1). In the

following mapping phase the parameters of SNN are calculated.

(ii) CIFAR10 and CIFAR100 contain images of size 32×32×3 [Krizhevsky et al. (2009)]. For

each of the two datasets there are 50000 training images and 10000 testing images. The data

preprocessing step includes normalizing data with given fixed mean and standard deviation

as given in [Geifman (2018)]. The network was trained on the data rounded to [−3,3] range.

In preparation for SNN mapping and inference, the input x(0)
i is further preprocessed as

x(0)
i ← x(0)

i +3
6 . The kernel is always of size 3 and the input of each convolutional operation is

zero padded such that the shape at the output stays the same. The output of the convolutional

part of the VGG16 architecture has size 512 which is followed by two fully connected layers

with 512 and 10 neurons.

During the preprocessing, the batch normalization is fused with the next convolutional and

fully connected layers and bias is changed in locations where the input is coming from the

zero padding. When necessary, the max pooling function is replaced with min pooling. Since

the model is trained on [−3,3] range the imaginary batch normalization is fused with first

convolutional layer and in locations where the input is generated by zero padding the bias
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is changed. In order to obtain the scaled ReLU network the parameters of the network are

scaled. Finding the maximum output X (n) of each layer on the subset of training set finalizes

the preprocessing step (see Fig. 2.1). In the following mapping phase the parameters of SNN

are calculated.

(iii) The images in Places365-Standard dataset are labeled into 365 scene categories. There

are 1.8 million training images, 36500 validation images and 328500 test images. Since the

labels for the test set are not publicly available, we report the metrics on the validation set.

Data preprocessing step includes centralizing data around a given fixed mean and reshaping

it to the size of 224×224×3 as described in [Zhou (2018)]. The network is trained on the

data which can be rounded to [−200,200] interval. In preparation for SNN mapping and

inference the input x(0)
i is further preprocessed as x(0)

i ← x(0)
i +200

400 . Since the model is trained

on [−200,200] range the imaginary batch normalization is fused with first convolutional layer

and in locations where the input is generated by zero padding the bias is changed. In order

to obtain the scaled ReLU network the parameters of the network are scaled. Finding the

maximum output X (n) of each layer on the subset of training set finalizes the preprocessing

step (see Fig. 2.1). In the following mapping phase the parameters of SNN are calculated.

(iv) We randomly sample 100000 testing and 5000 training images from PASS dataset. Most

of the images in the dataset are colored and the few ones that are not are dropped during

data preprocessing. The images are reshaped to 224×224×3 and preprocessed with the same

function as ImageNet for VGG16, which includes centering each color channel around zero

mean. Since the model is trained on [−200,200] range, in preparation for SNN mapping and

inference, the input x(0)
i is further preprocessed as x(0)

i ← x(0)
i +200

400 situating the input on the

[0,1] range. Moreover, the imaginary batch normalization is fused with the first convolutional

layer and in locations where the input is generated by zero padding the bias is changed. In

order to obtain the scaled ReLU network the parameters of the network are scaled. Finding the

maximum output X (n) of each layer on the subset of training set finalizes the preprocessing

step (see Fig. 2.1). In the following mapping phase the parameters of SNN are calculated.

45





3 Are training trajectories of deep
single-spike and deep ReLU network
equivalent?

Paper information
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Pantazi, Wulfram Gerstner

Abstract Communication by binary and sparse spikes is a key factor for the energy efficiency

of biological brains. However, training deep spiking neural networks (SNNs) with backprop-

agation is harder than with artificial neural networks (ANNs), which is puzzling given that

recent theoretical results provide exact mapping algorithms from ReLU to time-to-first-spike

(TTFS) SNNs. Building upon these results, we analyze in theory and in simulation the learning

dynamics of TTFS-SNNs. Our analysis highlights that even when an SNN can be mapped

exactly to a ReLU network, it cannot always be robustly trained by gradient descent. The

reason for that is the emergence of a specific instance of the vanishing-or-exploding gradient

problem leading to a bias in the gradient descent trajectory in comparison with the equivalent

ANN. After identifying this issue we derive a generic solution for the network initialization

and SNN parameterization which guarantees that the SNN can be trained as robustly as its

ANN counterpart. Our theoretical findings are illustrated in practice on image classification

datasets. Our method achieves the same accuracy as deep ConvNets on CIFAR10 and enables

fine-tuning on the much larger PLACES365 dataset without loss of accuracy compared to

the ANN. We argue that the combined perspective of conversion and fine-tuning with robust

gradient descent in SNN will be decisive to optimize SNNs for hardware implementations

needing low latency and resilience to noise and quantization.

Publication The chapter is under review at NeurIPS 2023 conference.
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Chapter 3. Are training trajectories of deep single-spike and deep ReLU network
equivalent?

3.1 Introduction

Similar to the brain, neurons in spiking neural networks (SNNs) communicate via short

pulses called spikes – in striking contrast to artificial neural networks (ANNs) where neurons

communicate by the exchange of real-valued signals. While ANNs are the basis of modern

artificial intelligence (AI) with impressive achievements [Brown et al. (2020); Jaegle et al. (2021);

Yu et al. (2021)], their high performance on various tasks comes at the expense of high energy

consumption [Strubell et al. (2020); Patterson et al. (2022); Wu et al. (2022)]. In general, high

energy consumption is a challenge in terms of sustainability or deployment in low-power edge

devices [Wang et al. (2020); Boroumand et al. (2021); Jiang et al. (2018)]. Due to their sparse

binary communication scheme, SNNs may offer a potential solution by reducing resource

usage in the network [Burr et al. (2017); Sebastian et al. (2018); Göltz et al. (2020); Gallego et al.

(2020); Göltz et al. (2021); Davies et al. (2021); Diehl et al. (2016)], but these studies have shown

that it is difficult to demonstrate working SNNs which perform at the same level as ANNs.

There exist multiple methods to train the parameters of an SNNs with various advantages

and drawbacks. Traditionally, SNNs were trained with plasticity rules observed in biology

[Masquelier and Thorpe (2007); Kheradpisheh et al. (2018); Illing et al. (2019)] but it appears

more efficient to rely on gradient-descent optimization as done in deep learning (see [Markram

et al. (2011); Dellaferrera and Kreiman (2022); Scellier and Bengio (2017); Meulemans et al.

(2021); Illing et al. (2021); Bellec et al. (2020)] for theoretical relationships between the plasticity

rules and gradient descent). One of the most successful training paradigms for SNNs views

the spiking neuron as discrete-time recurent unit with binary activation and uses a pseudo-

derivative or surrogate gradient on the backward pass while keeping the strict threshold

function in the forward pass [Neftci et al. (2019); Bellec et al. (2018); Zenke and Ganguli (2018);

Woźniak et al. (2020); Huh and Sejnowski (2018)]. Other approaches [Schmitt et al. (2017);

Gardner et al. (2015); Stanojevic et al. (2023a)] either translate ANN activations into SNN spike

counts to train the SNN with the ANN gradients, or use temporal coding with a large number

of spikes, both of which can jeopardize the energy efficiency of SNNs.

More recently, and in contrast to spike-count measures in neuroscience [Hubel and Wiesel

(1959)], it was found in sensory brain areas that neurons also encode information in the exact

timing of the first spike, i.e. more salient information leads to earlier spikes [Gollisch and

Meister (2008); Johansson and Birznieks (2004); Kubke et al. (2002)] which in turn leads to a

fast response to the stimuli [Thorpe et al. (1996, 2001)]. While it is possible to train temporally

coded spiking neural networks where neurons send multiple spikes to transmit information,

we focus in this paper on a time-to-first-spike (TTFS) coding scheme [Gerstner (1998)] where

each neuron fires at most a single spike. The goal of the present study is (1) to analyze

theoretically why all attempts at training SNNs with TTFS encoding run into difficulties with

deep networks (beyond 4 layers) and (2) to provide a solution to these problems.

Related work There is a long history of implementations of gradient descent in SNNs with

TTFS. In [Bohte et al. (2002)] the authors used the Spike Response Model [Gerstner (1998)]
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and calculated backpropagation gradients with respect to spike timing and parameters. While

the paper states that the learning rule contains an approximation, it turns out to be the exact

gradient when the number of spikes is fixed to avoid discontinuities, i.e. spikes do not appear

or disappear. This approach was rediscovered recently, extended to other neuron models

[Göltz et al. (2021); Wunderlich and Pehle (2021); Zhang et al. (2021); Mostafa (2018); Stanojevic

et al. (2022a)] and applied to small machine learning datasets like MNIST and Fashion-MNIST

[Göltz et al. (2021); Comşa et al. (2021); Zhang et al. (2021); Stanojevic et al. (2022a)] with

architectures of 4 hidden layers or less.

A different line of work avoids training altogether and converts directly an ANN into an SNN.

Beyond the classic conversion techniques based on rate coding [Rueckauer et al. (2017);

Hunsberger and Eliasmith (2016)], some studies considered the conversion from ANNs to

temporally coded SNNs [Stockl and Maass (2021); Bu et al. (2022); Rueckauer and Liu (2018);

Stanojevic et al. (2022b)]. While most of them relied on an inexact mapping algorithm or un-

conventional threshold dynamics, it was recently shown that approximation-free conversion

from ANN to TTFS-SNN is possible [Stanojevic et al. (2022b)]. However, these results have not

shown any benefits outside of the network conversion setting, therefore it remains difficult

to understand why gradient descent in the TTFS cannot be used for training or fine-tuning

deep SNNs. We build upon this aforementioned work [Stanojevic et al. (2022b)] to study the

learning dynamics of SNNs.

Contributions of the paper Our work combines the exact backpropagation update steps

[Wunderlich and Pehle (2021); Zhang et al. (2021); Mostafa (2018); Stanojevic et al. (2022a)] with

an exact mapping between ANNs and SNNs [Stanojevic et al. (2022b)], and goes considerably

beyond the state-of-the-art with respect to the following points:

• Even if a TTFS-SNN has an equivalent ReLU ANN, they do not necessarily follow

equivalent learning trajectories. We extend the theory from [Stanojevic et al. (2022b)]

to provide a reversed mapping from TTFS-SNN to an equivalent ReLU network. We

propose the conditions and an adaptive SNN hyperparameter update rule, which are

necessary for the equivalence to hold throughout training. Furthermore, the linearly

mappable condition from SNN to ANN parameters is identified as the one that guar-

antees that gradient descent follows the learning trajectories of the equivalent ReLU

ANN.

• Hard instance of the vanishing-gradient problem. We identify that naively using ANN

weight matrix initialization techniques [Bengio et al. (1994); Hochreiter et al. (2001);

Goodfellow et al. (2016)] with TTFS-SNN results in a severe instance of the vanishing-

gradient problem. We identify the problem analytically and provide a generic recipe to

solve it and initialize TTFS-SNN efficiently.

• Training SNNs to the state-of-the-art accuracy on large datasets. All previous learn-

ing attempts in the TTFS setting were limited to MNIST or Fashion-MNIST datasets

49



Chapter 3. Are training trajectories of deep single-spike and deep ReLU network
equivalent?

and networks of up to 4 layers [Göltz et al. (2021); Comşa et al. (2021); Kheradpisheh

and Masquelier (2020); Mostafa (2018); Zhang et al. (2021)]. We are the first to train

TTFS-SNN on CIFAR10 [Krizhevsky et al. (2009)], CIFAR100 [Krizhevsky et al. (2009)]

and PLACES365 [Zhou et al. (2017)]. As predicted by the theory, on all datasets, our

TTFS-SNN achieves the exact same performance as a ReLU network with the same

architecture.

• Demonstrating the benefits of training under hardware constraints. Since SNNs can

be implemented in low-energy neuromorphic hardware, we test their robustness to

quantization of spike times and weights, by fine-tuning the quantized network with our

training framework. We show that the latency to decision can be reduced by a factor of

four with a performance drop of less than 3 percent on CIFAR10.

3.2 Definition and properties of time-to-first-spike networks

In the following section, we will analyze the gradient descent dynamics in a TTFS setting. To

avoid any approximation we follow [Stanojevic et al. (2022b)] and study deep spiking neural

networks consisting of neurons with triangular post-synaptic integration filters. This model

should be viewed as the linearization of a more classical double-exponential filter [Göltz et al.

(2021); Comşa et al. (2021)] where all the spikes of a layer arrive within a time window that

is small compared to the two time constants of the double-exponential. As we will see in

the following section, the theory becomes rigorous under this linearized approximation – we

discuss the extension to a spike response model with a double-exponential post-synaptic

potential filter in Section 3.6.1.

A time-to-first-spike (TTFS) network model The neurons are arranged in N hidden layers

where the spikes of neurons in layer n are sent to neurons in layer n +1. The layers are either

fully-connected (i.e. each neuron receives input from all neurons in the previous layer) or

convolutional (i.e. connections are limited to be local and share weights). All connections are

feed-forward, i.e. there are no recurrent connections.

Input layer: At the first layer, the analog input to the network represents, for example, the pixel

intensity. We assume that the input is scaled to the interval [0,1] and the values are encoded

with TTFS coding (a high input pixel intensity x(0)
j leads to an early spike at t (0)

j ):

t (0)
j = τc [1−x(0)

j ] = t (0)
max −τc x(0)

j (3.1)

where spiking time t (0)
j of neuron j in the input layer encodes the real-valued input x(0)

j ∈ [0,1]

and t (0)
max = τc is the last possible spike time in the input layer. The conversion parameter τc

translates unit-free inputs into time units. In biology τc in sensory areas is in the range of a

few milliseconds [Gollisch and Meister (2008); Johansson and Birznieks (2004)] whereas in

hardware devices it could be in the range of microseconds or even shorter.

50



3.2
D

efi
n

itio
n

an
d

p
ro

p
erties

o
ftim

e-to
-fi

rst-sp
ike

n
etw

o
rks

𝑡!
(#$%)

𝑡'
(#)

𝑡()*
(#)𝑡()*

(#$%)𝑡(+,
(#$%)

𝑉'
(#)

𝑡

𝜗'
(#)

𝑡!
(#$%)

𝑡'
(#)

𝑡()*
(#)𝑡()*

(#$%)𝑡(+,
(#$%)

𝑡

𝜗'
(#)

𝛼'
(#) = 1 𝛼'

(#) = 1 −%
!

𝑊'!
(#)

𝑉'
(#)

b ca

n-1

n

n+1

i

Figure 3.1: Network of TTFS neurons. a. A feed-forward TTFS architecture. b. Potential V (n)
i for different neurons i as a function of time.

The intial slope is always zero. For α(n)
i = 1 slopes of all neurons i are increased by 1 at t (n−1)

max = t (n)
min. c. For α(n)

i = 1−∑
j W (n)

i j slopes of all

neurons i are equal to 1 for t ≥ t (n)
min.
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Neuron dynamics In the hidden layers and similarly to [Stanojevic et al. (2022b)], the potential

Vi (t ) of neuron i models an integrate-and-fire neuron. Given the spike times t (n−1)
j of neurons

j in the previous layer, the potential V (n)
i of neuron i in layer n follows the dynamics:

τc
dV (n)

i

dt
=α(n)

i H(t − t (n)
min)+∑

j
W (n)

i j H(t − t (n−1)
j ) (3.2)

where t (n)
min is a constant which will become by construction a lower bound of the earliest

possible spike time in layer n, α(n)
i is a positive scalar which can be seen as the weight of an

external spike at t (n)
min, W (n)

i j is the synapse strength from neuron j to neuron i , and H denotes

the Heaviside function which takes a value of 1 for positive inputs and is 0 otherwise. When

the potential V (n)
i reaches the threshold ϑ(n)

i , neuron i generates a spike at time t (n)
i and sends

it to the next layer. Once a neuron spikes we assume a very large refractory period to ensure

that every neuron spikes at most once. According to Eq. (3.2), each input spike t (n−1)
j changes

the slope of the potential by a fixed amount proportional to W (n)
i j . Integration of Eq. (3.2)

therefore leads to a piecewise linear behaviour of the potential, see Fig. 3.1. Without loss of

generality, we assume V to be unit-free and so are the parameters W (n)
i j and α(n)

i , whereas t

and τc have units of time. Rescaling time by t → (t/τc ) would remove the units, but we keep it

in the equations to show the role of the conversion factor τc . Note that this is the same spiking

neuron model as defined in [Stanojevic et al. (2022b)] with the minor modification that the

ramping input of strength α(n)
i arrives at t (n)

min and not t (n−1)
min , which will simplify our equations

in the following. We initialize ϑ(n)
i , t (n)

min, t (n)
max so that all the neurons of layer n spike once in the

interval [t (n)
min, t (n)

max]. The threshold ϑ(n)
i is defined as ϑ(n)

i
def= ϑ̃(n)

i +D (n)
i where D (n)

i is a model

parameter initialized at 0 and ϑ̃(n)
i is the base threshold. We define a maximum spike time

t (n)
max, after which emission of a spike is forced in all neurons of layer n which have not spiked

yet. The construction of t (n)
min and t (n)

max is recursive as t (n)
min

def= t (n−1)
max . Details of the choice of the

base threshold and t (n)
max are given in Section 3.6.2.

Adaptive t (n)
max parameters During training as we update the network parameters W (n)

i j and

D (n)
i the hyperparameters like t (n)

max need to be changed as well such that the condition that

all the neurons of layer n spike once in the interval [t (n)
min, t (n)

max] remains true. We suggest a

new adaptive update rule which moves t (n)
max. Note that this is an addition to the model in

[Stanojevic et al. (2022b)] where an adaptive t (n)
max was not necessary since the parameters were

fixed. Formally, when processing the training dataset, we update t (n)
max as follows:

∆t (n)
max =

γ(t (n)
max −mini ,µt (n)

i )− (t (n)
max − t (n)

min), if t (n)
max − t (n)

min < γ(t (n)
max −mini ,µt (n)

i )

0, otherwise
(3.3)

The minimum operator iterates over all neurons i and input samples µ in the batch and

γ is a constant. After this update, we change the subsequent time window accordingly so

that: t (n+1)
min = t (n)

max, and we iterate over all layers sequentially. The base threshold ϑ̃(n)
i is then

updated accordingly, see Section 3.6.2. This adaptation effectively moves all the spikes t (n)
j

away from the boundary t (n)
min. For simplicity, in the theory section, we consider that this
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update has reached an equilibrium, so we consider that t (n)
max, t (n)

min, and ϑ̃(n)
i are constants w.r.t.

the SNN parameters, the condition t (n+1)
min = t (n)

max is always satisfied and all the spikes of layer n

arrive within [t (n)
min, t (n)

max].

Output layer The output layer has index N +1 and contains non-spiking read-out neurons.

Each neuron m simply integrates input spikes coming from layer N without firing. Integration

of V (N+1)
m stops at time t (N+1)

min and the softmax and the standard cross-entropy loss L are

calculated using real-valued potentials, analogous to real-valued activations of ANNs.

General reverse mapping from SNN to ANN Building upon the conversion method from

ANN with rectified linear units (ReLUs) to TTFS networks [Stanojevic et al. (2022b)], we now

describe a reversed mapping strategy defining uniquely the parameters of an equivalent

ANN for given SNN parameters. This mapping will be a fundamental pillar in the following

theoretical analysis. In the most general case, to find a ReLU network with weights w and bias

b which is equivalent to our SNN model, we define:

B (n)
i

def=α(n)
i +∑

k
W (n)

i k and w (n)
i j

def=
W (n)

i j

B (n)
i

and b(n)
i

def=−ϑ
(n)
i

B (n)
i

+ t (n)
max − t (n)

min

τc
. (3.4)

Here, B (n)
i has a simple interpretation: it is the slope of the potential at the moment of threshold

crossing in the SNN if time is measured in units of τc (see Eq. (3.2)). We call B (n)
i the ’slope-

at-threshold factor’ and it will play an important role in the following. Then if we define the

ANN activation at the input layer as the pixel intensity x(0), Eq. (3.4) defines uniquely a ReLU

network with activations x(n) such that (this is the reciprocal mapping inspired by [Stanojevic

et al. (2022b)]):

x(n)τc = t (n)
max − t(n). (3.5)

At the output layer, we resort directly to the simpler parameter mapping of the output layer

from [Stanojevic et al. (2022b)]: with w (N+1)
i j

def= W (N+1)
i j and b(N+1)

i
def= α(N+1)

i (t (N )
max − t (n)

min) the

logits and the cross-entropy loss L are also equal in the SNN and the equivalent ANN.

Proof. Starting from the introduced SNN definition, we compute analytically the spikes at

time t (n)
i in the SNN. In case the potential V (n)

i reaches the threshold ϑ(n)
i before t (n)

max, the

spiking condition ϑ(n)
i =V (n)

i (t (n)
i ) yields:

τcϑ
(n)
i =α(n)

i (t (n)
i − t (n)

min)H(t (n)
i − t (n)

min)+∑
j

W (n)
i j (t (n)

i − t (n−1)
j )H(t (n)

i − t (n−1)
j ). (3.6)

Since we constructed the SNN such that t (n)
i arrives in the time window [t (n)

min, t (n)
max], all the

terms H(·) are equal to 1 in the previous equation. So for any spike t (n)
i arriving before t (n)

max,

we have:

t (n)
i =

τcϑ
(n)
i +α(n)

i t (n)
min +

∑
j W (n)

i j t (n−1)
j

α(n)
i +∑

k W (n)
i k

= A(n)
i

B (n)
i

. (3.7)
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We can already identify the slope-at-threshold Bi in the denominator, then we replace α(n)
i by

B (n)
i −∑

k W (n)
i j in A(n)

i and subtract t (n)
max on both sides:

t (n)
i − t (n)

max = τc
ϑ(n)

i

B (n)
i

+ t (n)
min − t (n)

max +
∑

j

W (n)
i j

B (n)
i

(t (n−1)
j − t (n)

min). (3.8)

Using this identity, and using that the rectified linear unit is in its operating regime xi > 0

if and only if the spiking neuron i fires before tmax, one can now prove by induction that

the definition Eq. (3.4) defines an equivalent ReLU network satisfying the identity from Eq.

(3.5).

3.3 Analysis of learning dynamics

The linearly mappable condition We now define a specific choice of SNN, so-called linearly

mappable SNN and we will show that it satisfies the theoretical conditions for robust SNN

training via gradient descent optimization. The linearly mappable condition is defined by the

choice of α(n)
i :

α(n)
i = 1−∑

j
W (n)

i j . (3.9)

This choice implies that the slope-at-threshold B (n)
i = 1, and results in the linear mapping

formula:

w (n)
i j

def=W (n)
i j and b(n)

i
def=−ϑ(n)

i + t (n)
max − t (n)

min

τc
(3.10)

Vanishing-gradient problem for deep SNNs Previous TTFS-SNNs with exact gradients use

mostly shallow networks containing one hidden layer [Göltz et al. (2020); Comşa et al. (2021);

Mostafa (2018); Stanojevic et al. (2022a)], or at most 4 hidden layers [Zhang et al. (2021)].

The question arises why the exact gradient approach does not scale to larger networks. We
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demonstrate in this section that TTFS networks are prone to yield vanishing or exploding

gradients (vanishing-gradient problem [Goodfellow et al. (2016); Bengio et al. (1994)]). To

solve this problem, we show that a tight balance has to be respected between the weight

initialization and the slope-at-threshold vector B(n). This analysis will result in the definition

of robust initialization schemes for TTFS networks.

The vanishing-gradient problem has been studied exhaustively in ANNs [Bengio et al. (1994)].

Similarly, TTFS networks are also subject to this problem. To see this, one has to observe that

the network state at layer n is summarized by the vector of spike timings t(n) such that the loss

with respect to the weight parameter at layer n factorizes as:

dL

dW(n)
= dL

dV(N+1)

dV(N+1)

dt(N )

dt(N )

dt(N−1)
. . .

dt(n+1)

dt(n)

dt(n)

dW(n)
. (3.11)

where V(N+1) is a vector containing potentials of neurons in layer N +1 at time t (N+1)
min . Hence, if

the product of Jacobians: dt(n+1)

dt(n) is naively defined, the amplitude of this gradient might vanish

or explode exponentially fast as the number of layers becomes large. As analyzed in [Bengio

et al. (1994); Sussillo and Abbott (2014)], a way to solve this problem is to make sure that the

largest eigenvalues of the Jacobian dt(n+1)

dt(n) are close to 1 in absolute value.

We now compute analytically the Jacobian of the SNN. It requires the definition M (n)
i which is

1 if and only if spike t (n)
i arrives before t (n)

max. We also denote with M (n) the matrix containing

M (n)
i on the diagonal and 0 elsewhere, with t(n) a vector of spike times in layer n and with B(n)

a diagonal matrix of slope-at-threshold factors. By deriving Eq. (3.7) we find that the Jacobian

of the network can be written as (· is the matrix multiplication):

dt(n)

dt(n−1)
= M (n) · 1

B (n)
·W (n) (3.12)

We can now analyze the conditions for which the vanishing-or-exploding gradient problems

are solved. We observe primarily that (1) the eigenvalues of this Jacobian are strongly deter-

mined by the slope-at-threshold B (n) and not only by the weight matrix W (n) as in ANN; then

(2) the eigenvalues of the Jacobian of the SNN are the same as the eigenvalues of the Jacobian

of the equivalent ANN. To see this, one may recall from Eq. (3.4) that the ANN weights are

w (n) = 1
B (n) ·W (n) and M (n)

i is 1 if and only if the equivalent ReLU unit is saturated.

Robust initialization of TTFS networks Before defining a generic recipe for initializing the

weight matrix W (n), we illustrate why using naively the standard deep learning recipes with

SNN results in vanishing or exploding gradients. In Fig. 3.2, we demonstrate numerically that

this naive approach faces the vanishing-gradient problem. We initialized the weight matrix

of an SNN with W (n) = 1p
340

N (0,1) where 340 is the number of units in the layers (this is

one of the many standard choices in deep learning) so the eigenvalue of W (n) with largest

absolute value is close to 1. We can use this matrix to estimate the eigenvalue spectrum of

the SNN at initialization. Following classical work in the ANN literature [Sussillo and Abbott

(2014); He et al. (2015)], we assume that M (n) has a small impact on the distribution of the
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eigenvalues, and we can display the eigenvalue spectrum of w (n) = 1
B (n) ·W (n) which are closely

related to the eigenvalue spectrum of the SNN Jacobian dt(n)

dt(n−1) . As shown in Fig. 3.2a, this naive

initialization produces multiple eigenvalues with modulus larger than 1 when α(n)
i = 1; this

eigenvalue spectrum leads to an explosion of the gradient norm in backpropagation.

Our theory also provides a recipe to initialize the SNN outside of the linearly mappable

condition. Since we know from Eq. (3.12) that a good SNN initialization requires the equivalent

ANN to have a good initialization, we can first choose the matrix in the ANN parameter space,

and map it to the SNN initialization with the inverse map of Eq. (3.4). This is for instance

automatically corrected with the linearly mappable condition in Fig. 3.2b since the SNN and

ANN are the same, so the eigenvalues stay tightly within the unit circle, showing numerically

that the vanishing-gradient problem is avoided.

Biased gradient descent trajectory with the generic mapping Beyond initialization, we

also analyze whether the gradient descent trajectory in the SNN parameter space neces-

sarily follows the gradient descent trajectory of the equivalent ReLU network. To describe

the gradient descent trajectory of the SNN, we consider a gradient descent step with learn-

ing rate η when applying backpropagation to the SNN: ∆W (n)
i j =−η dL

dW (n)
i j

, and compute the

corresponding update in the space of the ANN parameters. We denote with δw (n)
i j the up-

date in ANN parameter space, and we use Mα to denote the mapping formula such that

w (n)
i j =Mα(W (n)

i j ); see Eq. (3.4). If we assume that α(n)
i is a constant independent of W (n)

i j , we

find: δw (n)
i j =Mα(W (n)

i j −η dL

dW (n)
i j

)−Mα(W (n)
i j ). Assuming a small learning rate, we make a first-

order approximation using the derivative dMα

dW (n)
i j

= dw (n)
i j

dW (n)
i j

= B (n)
i −W (n)

i j

(B (n)
i )2

leading to the approximate
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update in ANN parameter space:

δw (n)
i j ≈−η dMα

dW (n)
i j

δW (n)
i j =−η dMα

dW (n)
i j

dL

dW (n)
i j

=−η
 dw (n)

i j

dW (n)
i j

2
dL

dw (n)
i j

(3.13)

The difference between Eq. (3.13) and a direct ANN update obtained through gradient descent

δw (n)
i j ∝ dL

dw (n)
i j

cannot be corrected with a different learning rate η, because the multiplicative

bias in Eq. (3.13) changes for every neuron pair (i , j ) and algorithmic iteration. We conclude

that in general, the gradient descent trajectory in SNN is "biased", meaning that it is impos-

sible to find a naive gradient descent trajectory in the ANN for which SNN and ANN remain

equivalent from initialization to convergence. Under the linearly mappable condition, the

multiplicative bias disappears since
dw (n)

i j

dW (n)
i j

= 1 and this is the choice made in Section 3.4. An

alternative might be to work with specifically designed ’metrics’ [Surace et al. (2020)] that

counterbalances the multiplicative factor in Eq. (3.13).

The difficulty to train an SNN withα(n)
i = 1 is illustrated in Fig. 3.3. Both SNNs (with or without

the linearly mappable condition) are initialized to be equivalent to the same ReLU ANN which

solves the vanishing-gradient problem at initialization. Nevertheless, only the SNN with the

linearly mappable condition follows the ANN whereas the other one diverges away from the

true ReLU trajectories after 20 epochs (Fig. 3.3b). This is true despite using the small learning

rate.

3.4 Benchmark results

In the following we always consider SNN initialized with the linearly mappable condition and

trained with the Adam optimizer and exponential learning rate schedule (See Section 3.6.3 for

simulation details).

Dataset Acc [%]

ReLU SNN

MNIST 99.57 ± 0.01 99.57 ± 0.00

f-MNIST 94.24 ± 0.02 94.26 ± 0.03

CIFAR10 93.68 ± 0.02 93.69 ± 0.001

Table 3.1: Resulting when training TTFS-
SNNs on MNIST, f-MNIST and CIFAR10

Comparison with previous TTFS training We re-

port the performance on the MNIST [Deng (2012)]

and Fashion-MNIST [Xiao et al. (2017)] to compare

with previous implementation of TTFS training

paradigms. We tested a 16-layer fully-connected

SNN and a ConvNet SNN (similar to LeNet5). As

expected from the theory our network achieves

the same performance as the ReLU ANN as seen

in Figure 3.4 and Table 3.1. The performance is

therefore better than all previous TTFS implemen-

tations which were limited to 4 layers (see Section 3.6.3).

State-of-the art TTFS performance on CIFAR100 and PLACES365 Previously, tackling larger-

scale image datasets like CIFAR100 [Krizhevsky et al. (2009)] or PLACES365 [Zhou et al. (2017)]
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(similarly large as ImageNet) was considered impossible. We propose to combine conver-

sion from pre-trained VGG16 and fine-tuning with our approach to build competitive TTFS

ConvNet. In Fig. 3.4b we use a pre-trained VGG16 architecture downloaded from an online

repository [Geifman (2018); Zhou (2018)] and map it to the SNN without loss of performance

(similarly to [Stanojevic et al. (2022b)]). The networks are then fine-tuned with a reduced

learning rate. In Table 3.2 we see results for different datasets, fine-tuning provides an increase

of the SNN accuracy by 1.76% on CIFAR100 and 1.17% on PLACES365. We are not aware of

any TTFS method achieving higher accuracies. More interestingly, fine-tuning SNNs promises

to be most useful when the SNN performance is degraded through conversion, for instance,

because of hardware constrains like quantization as demonstrated in the next section.

Mitigating quantization, noise effects and reducing latency Let’s consider a scenario in

which a ReLU network was pre-trained with full precision weights. After mapping to the SNN

it is assumed to be deployed on a device with parameter noise, limited temporal resolution

or limited weight precision. We use fine-tuning of the VGG16 to recover the SNN accuracy

in all these situations in Fig. 3.5. All the experiments are done on CIFAR10 dataset with 10

epochs of fine-tuning. In all three cases (spike time jitter, time-step quantization or SNN

Dataset Image size Classes Acc [%] w/o FT Acc [%] w/ FT [%]
ReLU SNN ReLU SNN

CIFAR100 32 × 32 × 3 100 70.48 70.48 72.23 ± 0.06 72.24 ± 0.06
PLACES365 224 × 224 × 1 365 52.69 52.69 53.86 ± 0.01 53.86 ± 0.02

Table 3.2: VGG16 architecture before and after fine-tuning, for our SNN and the equivalent
ANN
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Figure 3.5: Fine-tuning (FT) VGG16 for quantization/noise robustness or low latency. In all
cases after only 10 epochs of fine-tuning on CIFAR10 (purple) the performance of the initially
mapped network (blue) is significantly improved. a. Adding noise with certain standard
deviation (SD) to all spiking times in the network. b. Quantizing spiking times in the network
to a given number of time steps per layer. c. Representing all weights W (n)

i j with given number

of bits. d. Reducing the latency by reducing the size of [t (n)
min, t (n)

max].

weight quantization) fine-tuning enables to recover the performance. We demonstrate in

particular TTFS VGG16 networks achieving higher than 90% accuracy on CIFAR 10 with 16

time-steps per layer or weights quantized on 4 bits. We also investigated whether it is possible

to improve the classification latency through fine-tuning by reducing the intervals [t (n)
min, t (n)

max]

after conversion from ANN. Doing this we indeed improve latency but the SNN diverges away

from the pre-trained ANN. Through fine-tuning, performance higher than 90% test accuracy

is recovered, even when the latency is improved by a factor of 4.

3.5 Discussion and future work

In this work we solved the hard instance of a vanishing-gradient problem for single-spike

neural networks. Moreover, we showed that through application of the linear-mapping con-

dition the learning trajectories of ReLU ANN and SNN become equivalent. Based on this

result, we demonstrated, to the best of our knowledge for the first time, that training of deep

single-spike neural networks with sixteen layers yields identical performance as ReLU ANN

on large datasets such CIFAR100 and PLACES365. In the future we plan to train even deeper

networks and more sophisticated architectures such as ResNets, but this requires to map skip

connections to the SNN model which is not trivial.

The work will be probably most impactful when implemented in either digital or analog SNN
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hardware. We are able to fine-tune the single-spike neural network to adapt the SNN to specific

device constraints. Moreover, the learning can be generalized to leaky neuronal dynamics

which further addresses the imperfections in hardware elements. After downloading the pre-

trained network on the device we envision a continual online learning on chip with energy-

efficient and low latency inference. Our demonstration that gradient descent is possible

in deep SNNs might provide in the future the opportunities to derive a completely local,

hardware-friendly, training algorithm.
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3.6 Supplemental information

3.6.1 Generalization to other neuronal dynamics

Linearization of the double exponential In this paper we solve the vanishing-gradient prob-

lem for a spiking neural network with piecewise linear postsynaptic potential, i.e. a spike at

time t (n−1)
j < t causes a response:

a(n)
i (t ) =

t − t (n−1)
j

τc
H(t − t (n−1)

j ) (3.14)

in neuron i of layer n. However, biologically inspired models in related works [Comşa et al.

(2021); Göltz et al. (2021)] often use double-exponential filter, i.e.:

a(n)
i (t ) = [1−exp(−

t − t (n−1)
j

τ1
)]exp(−

t − t (n−1)
j

τ2
)H(t − t (n−1)

j ) (3.15)

where τ1 and τ2 are time constants and τ2 ≥ 2τ1 > 0, see. Fig. 3.6.

0 2 4 6 8 10

0.4

0.2

0.0

Figure 3.6: An example of a(t ) = [1−exp(− t
τ1

)]exp(− t
τ2

) function for τ1 = 1,τ2 = 2.

We notice that in the vicinity of zero, the exponential function can be expressed using Taylor

expansion as: exp(− t
τ ) = [1− t

τ + (1/2)( t
τ )2 . . . ]. Therefore the equation for a(n)

i (t ) of the double-

exponential filter can be approximated around 0 as:

a(n)
i (t ) =

(t − t (n−1)
j )

τ1
H(t − t (n−1)

j ), (3.16)

Therefore if we replace our SNN model with a double-exponential model we have to define

our neuron dynamics with the physically interpretable time constant τ1 which replaces the

time constant τc in the neuron dynamics in Eq. (3.2). As a result the voltage V (n)
i of neuron i

in layer n at time t becomes:

V (n)
i (t ) =α(n)

i

(t − t (n−1)
min )

τ1
H(t − t (n−1)

min )+∑
W (n)

i j

(t − t (n−1)
j )

τ1
H(t − t (n−1)

j ). (3.17)
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Figure 3.7: Updating the latest spike time t (n)
max using γ= 2. If the minimal spiking time across

neurons i and batch inputs µ lies in the first half of the interval [t (n)
min, t (n)

max], the interval is
extended.

Scaling the interval [t (n)
min, t (n)

max] to stay in the linear range In order for the network dynamics

to always remain in the linear ramping phase of the double-exponential filter, we need to

ensure that the linear approximation given in Eq. (3.16) is satisfied within the entire coding

interval maxn[t (n)
max − t (n−1)

min ]. As the maximum of the function is reached at t > τ1, see Fig. 3.6,

implementing our SNN with a double-exponential model requires the following relationship

to be satisfied:

maxn[t (n)
max − t (n−1)

min ] < 0.5τ1 (3.18)

This is possible if we separate the definition of the interval τc of the pixel encoding from

the neuron time constant τ1 (see Section 3.6.2 for the recursive construction of the intervals

[t (n)
max − t (n−1)

min ]). Keeping the notation τ1 for the neuron time constant and τc for the pixel

encoding, we can construct our network with an arbitrary scaling factor between them to

fulfill Eq. (3.18).

Example for a CIFAR 10 network In order to observe what could be concrete values which

satisfy the condition given in Eq. (3.18) let’s take as an example the CIFAR10 dataset and

VGG16 architecture which we have already explored in detail in Section 3.4. For the model

which was fine-tuned for reduced latency, see Fig. 3.5d, the [t (n−1)
min , t (n)

max] interval has a value of

around 10τc . Therefore, the acceptable value for τ1 is τ1 = 20τc .

Besides being more biologically plausible, the dynamics given with Eq. (3.15) can be impacted

by the specifications of the hardware. This can set additional constraints on the time scales of

the SNN model and it is likely that fine-tuning the model as explained in the main text would

become crucial in this setting.

3.6.2 Setting t (n)
max and the threshold

Initialization: As indicated in the main text, the base threshold ϑ̃(n)
i and the parameter t (n)

max

are initialized recursively starting from the input interval [t (0)
min, t (0)

max]. Let us now assume that

we have adjusted the base threshold and the maximum firing time t (n−1)
max up to layer n −1.

In layer n, the earliest firing time t (n)
min is defined as: t (n)

min = t (n−1)
max . At time t (n)

min we evaluate the

membrane potential of all neurons in layer n and determine its maximum maxµ,i V (n)
i (t (n)

min)
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where the index µ is running over many samples from the training dataset and i iterates

over all neurons in layer n. Since for all valid mappings the slope factor B (n)
i of trajectories is

positive for t > t (n)
min, we define a reference voltage in layer n by

Ṽ (n)
0 = (1+ζ)max

µ,i
V (n)

i (t (n)
min) (3.19)

where ζ> 0 is a small safety margin. We choose the latest possible firing time t (n)
max to be

t (n)
max

def= t (n)
min +τcṼ (n)

0 /B0 (3.20)

where B0 is a reference slope factor of unit value. We then set the base threshold for neuron i

in layer n to

ϑ̃(n)
i

def= B (n)
i

(
t (n)

max − t (n)
min

τc

)
(3.21)

Since the neuron-specific threshold ϑ(n)
i

def= ϑ̃(n)
i +D (n)

i is initialized with a shift parameter

D (n)
i = 0, the choice in Eqs. (3.19) - (3.21) guarantees that, with our initialization of the network

parameters, the threshold is reached at a time t > t (n)
min from below.

Note that Eq. (3.21) defines the base threshold for t > t (n)
min. Since for t < t (n)

min the membrane

potential trajectories could transiently take a value above ϑ̃(n)
i , we formally set the threshold

for t < t (n)
min to a large value (e.g., 100 · ϑ̃(n)

i ) so as to make spiking impossible [Stanojevic et al.

(2022b)].

For the linear mapping between SNNs and ReLU networks (which is the one chosen to avoid

the vanishing-gradient problem) the actual slope factor takes a value B (n)
i = B0 = 1 and this

is also the choice for our simulations, i.e., we set α(n)
i = 1−∑

k W (n)
i k . In the context of this

mapping, we note that V (n)
i (t) at time t (n)

min has the same value as the activation variable of

neuron i in layer n of the equivalent ReLU network, see Eqs. (3.2) and (3.4). Therefore the

interval [t (n)
min, t (n)

max] is large enough to encode all outputs of layer n in the ReLU network at

initialization (with bias parameter initialized at zero).

Iterative updates during training. Throughout training the latest possible firing time and the

base threshold are related by Eq. (3.21). In each iteration the parameters W (n)
i j and D (n)

i change.

Whenever necessary, the iterative update rule for t (n)
max in Eq. (3.3) shifts the maximal firing

time in a regime with additional safety margin. This influences in turn the threshold ϑ(n)
i

which is recalculated according to Eq. (3.21).

Additional Remarks.

(i) In principle, we are free to initialize t (n)
max (or ϑ̃(n)

i ) at arbitrarily high values, much larger

than those proposed in this subsection. In this case the adaptive rule for t (n)
max (see Fig. 3.7)

can be omitted. However, the price to be payed is a very long spiking delay, in particular in

networks with many layers.
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Both the initialization of the reference voltage with a parameter ζ > 0 and the iterative up-

date rule for t (n)
max in Eq. (3.3) provide a safety margin that lead to spiking delays that could

potentially be avoided. However, the t (n)
max used during training does not need to be same

as during inference. In order to reduce the classification latency during inference, t (n)
max is

recalculated with the fixed parameters found after training such that, in each layer n, the

earliest possible spike across all neurons and a representative sample from the training base

happens immediately after t (n)
min which in turn leads to a tight value for the threshold via Eq.

(3.21).

3.6.3 Simulation details

Each simulation run was executed on one NVIDIA A100 GPU. In all experiments τc was

set to 1U where U stands for the concrete unit such as ms or µs. Note that although the

choice of units in simulations can be arbitrary, it becomes a critical parameter for a hardware

implementation. Moreover, we set ζ= 0.5 whereas a hyperparameter γ= 10 ensures that even

for higher values of initial learning rate all the spikes happen inside the [t (n)
min, t (n)

max] interval.

The simulation results were averaged across 16 trials. Batch size was set to 8. In all cases

we used the Adam optimizer where for the initial learning rate “lr0” and iteration “it” an

exponential learning schedule was adopted following the formula: lr0 ∗0.9
it

5000 .

The data preprocessing included normalizing pixel values to the [0, 1] range and in the case

of a fully connected network the input was also reshaped to a single dimension. For MNIST,

Fashion-MNIST, CIFAR10 and CIFAR100 the training was performed on the training data

whereas the evaluation was performed on the test data. For PLACES365 the fine-tuning was

performed on 1% random sample of the training data and the evaluation was performed on

the validation data (since the labels for test data are not publicly available).

In fully connected architectures all hidden layers always contain 340 neurons. The LeNet5

contains three convolutional, two max pooling and two fully connected layers with 84 and

10 neurons, respectively. Moreover, some of the datasets utilize a slightly modified version

of VGG16. The kernel was always of size 3 and the input of each convolutional operation

was zero padded to ensure the same shape at the output. For MNIST and Fashion-MNIST

datasets, due to a small image size, the first max pooling layer in VGG16 was omitted. In this

case there are two fully connected hidden layers containing 512 neurons each. For CIFAR10

and CIFAR100 the convolutional layers are followed by only one fully connected hidden layer

containing 512 neurons, yielding 15 layers in total. Finally, for PLACES365, there are two fully

connected hidden layers with 4096 neurons each. The spiking implementation of max pooling

operation was done as in [Stanojevic et al. (2022b)].

Analysis of learning dynamics In Fig. 3.3 we illustrated that training SNN with α(n)
i = 1 is

difficult. For the optimization process we used plain stochastic gradient descent (SGD). In Fig.

3.3a the SNN with linearly mappable condition was trained with initial learning rate equal to

0.0005 which is the same as in the corresponding ReLU network. When α(n)
i = 1 the learning
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process with the same initial learning rate struggles to surpass the training accuracy of around

20%. In this case we found the optimal initial learning rate to be 0.00003, leading to a slower

training compared to both ReLU network and SNN with linearly mappable condition. In Fig.

3.3b the goal is to understand how much the SNN weights diverge from the ReLU weights

during training. In order to enable a fair comparison in this case all three networks were

trained with initial learning rate equal to 0.00003.

Comparison with previous TTFS training approaches A shallow network with one fully-

connected hidden layer is tested on MNIST and Fashion-MNIST datasets, similar to networks

in [Göltz et al. (2021); Comşa et al. (2021); Zhang et al. (2021); Mostafa (2018); Stanojevic

et al. (2022a)]. Before training, the ReLU network and SNN are initialized with the same

parameters and the seed is fixed in order to avoid any other source of randomness. Both

networks are trained for 50 epochs with initial learning rate equal to 0.0005. In Table 3.3 we see

the performance comparison, where all networks contain 340 or more neurons in the hidden

layer. Therefore, our model is one of the smallest, but nonetheless its performance surpasses

all other approaches.

For deeper networks we noticed that even though the SNN and ReLU network are initialized

with the same parameters, they exhibit different performance after certain number of epochs

due to numerical instabilities. For this reason, in all cases where the number of hidden layers

is larger than one we report the average performance across trials.

Dataset Model Acc [%]

MNIST ReLU 98.3
MNIST[ours] SNN 98.3
MNIST [Comşa et al. (2021)] SNN 97.96
MNIST [Zhang et al. (2021)] SNN 98
MNIST [Stanojevic et al. (2022a)] SNN 98.2
fMNIST ReLU 90.14
fMNIST[ours] SNN 90.14
fMNIST [Zhang et al. (2021)] SNN 88.1
fMNIST [Stanojevic et al. (2022a)] SNN 88.93

Table 3.3: Performance of shallow fully-connected networks.

State-of-the art TTFS performance on CIFAR100 and PLACES365 Some of the pretrained

models we use have batch normalization layers [Geifman (2018)]. The exact mapping fuses

them with neighbouring fully connected and convolutional layer similar as in [Stanojevic

et al. (2022b)], after which the fine-tuning is conducted for 10 epochs. Since the models are

already pretrained, the fine-tuning is done with a reduced initial learning rate of 10−6 for

CIFAR100 and 10−7 for PLACES365. This gives state-of-the-art performance of TTFS-SNN

on large datasets. Importantly, the simulations show that the SNN fine-tuning yields zero

performance loss compared to the corresponding ReLU network. Therefore when fine-tuning

SNN with hardware constraints, we can be sure that the reduced performance comes solely
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from the device properties and not the training algorithm.

Mitigating quantization, noise effects and reducing latency We consider independently four

types of constraints: (i) spiking time jitter, (ii) reduced number of time steps per layer, (iii)

reduced number of weight bits, and (iv) limited latency. In practice, these constraints often

coexist, and for the future work it would be of interest to consider them not only separately

but also jointly.

(i) Spiking time jitter. A Gaussian noise of given standard deviation is added to the spiking

times in each layer. This leads to a reduced classification accuracy in comparision with the

original noise-free performance, see Fig. 3.5a. Fine-tuning the SNN improves the classification

accuracy and especially avoids drastic failure of the network when the larger amount of noise

is present.

(ii) Time quantization. In digital hardware, the spike times of the network are subjected to

quantization leading to discrete time steps. To mitigate the impact of the spike time outliers,

the size of the [t (n)
min, t (n)

max] interval is chosen to contain 99% of the activation function outputs

in layer n when training data is sent to the input of the ReLU network. This results in the

smaller spiking times being "clipped" at t (n)
min. We emphasize that in this case the adaptive

rule which changes t (n)
max is not applied. I.e. the initial interval is divided into quantized steps

which are fixed during the fine-tuning. The network is very robust to discretization until the

number of time steps is reduced to 16 where the fine-tuning brings the network within 1.5% of

the full-precision performance, see Fig. 3.5b.

(iii) Weights quantization. To reduce the size of the storage memory, we apply quantization

aware training such that at the inference time the weights are represented with a smaller

number of bits. Similarly as for the spiking time, we remove outliers before the quantization.

In this case we remove a predefined percentile as follows on both sides of the distribution.

In case of a larger number of bits, only the first and last percentile were removed. However,

in case of a 4-bit representation we reduce the interval further by removing first four and

last four percentiles. As before, the obtained range is divided into quantized steps which are

then fixed during the fine-tuning. At the inference time the quantized steps are scaled to the

integer values on [−2q−1,2q−1 −1] range (where q is the number of bits), whereas the other

parameters are adjusted accordingly. The fine-tuning leads to a 6-bit representation reaching

the performance within 1% of the baseline, whereas in case of 4-bit representation retraining

recovers SNN from a complete failure, see Fig. 3.5c.

(iv) Reduced latency. Finally, the robustness to a reduced classification latency is tested by

picking smaller [t (n)
min, t (n)

max] intervals. We emphasize that the adaptive rule which changes

t (n)
max is not applied here. I.e. the initial interval is fixed during fine-tuning. Once again the

[t (n)
min, t (n)

max] interval is obtained such that it contains some percentage of the activation function

outputs in layer n when training data is sent to the input of the ReLU network. The chosen

values of percentiles are 100, 99, 95, 92 and 90 (yielding 22% of the initial latency). This leads

to smaller spiking times being "clipped" at t (n)
min. For convolutional layers we keep ζ = 0.5,
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and otherwise we use ζ= 0. When the latency is reduced to ≈ 33% (95th percentile), the fine-

tuning keeps the performance close to 1% of the baseline. Further decrease in latency leads

to detrimental reduction in accuracy of the baseline network which is however significantly

mitigated by the short SNN fine-tuning, see Fig. 3.5d.
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4 Conclusion

In the brain, spikes enable low-cost, robust and long-distance communication. Spiking neural

networks intend to replicate some of the same behaviour with the objective of developing

a high-performance, energy-efficient, artificial intelligence. This thesis focuses on spiking

neural networks with sparse temporal coding schemes. The SNNs are evaluated on data

classification tasks using different setups, including supervised learning, conversion from

pretrained ANNs, or a combination of both.

In Chapter 2, we explore the question of whether there is an equivalence between a ReLU net-

work and an SNN with TTFS coding and linear postsynaptic potential. It is found that starting

from a multi-layer ReLU network, there exists a family of exact mappings that determine the

SNN parameters and guarantee an approximation-free conversion. We observe that for a deep

ReLU network which can contain fully-connected, convolutional, batch normalizaton and

max pooling layers, an equivalent deep SNN achieves the same accuracy on larger benchmarks

such as CIFAR100, PLACES365 and PASS. The experiments show that such SNN is robust to

spike time jitter, whereas it is more sensitive to scenarios where its parameters are affected

by noise. Therefore, a pretrained ReLU network and a mapped SNN are mathematically

equivalent, but the performance of the SNN may be affected by device limitations.

Upon analysing the learning in deep single-spike neural networks with linear postsynaptic

potential, Chapter 3 identifies an instance of the vanishing-and-exploding gradient problem.

It is found that by relying on a specific exact mapping, the SNN parameters can be determined

in a way that enables successful training and ensures equivalent learning trajectories between

the SNN and ReLU network. We observe that a deep SNN can be trained or fine-tuned to

achieve the same performance as the ReLU network on benchmark datasets such as CIFAR10,

CIFAR100 and PLACES365. Moreover, the experiments show that the spiking neural network

can be efficiently fine-tuned to constraints such as quantization, noise or limited latency. We

conclude that deep SNNs with TTFS coding have the potential to be successfully implemented
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in hardware, providing energy-efficient high-accuracy classification.

The research field as whole continues to investigate the development of low-power, biologically-

inspired solutions that can compete with modern AI implementations. With this thesis, we

aspire to contribute to the community by considering algorithms which lead to functional

deep spiking models with sparse temporal coding. We see our work as evidence that deep and

sparse spiking neural networks can have the same performance as rate-coded SNNs or stan-

dard ANNs. Furthermore, the presented solutions demonstrate a certain level of robustness

when confronted with device limitations. In this regard, we hope that our research will inspire

potential hardware implementations, allowing for comprehensive testing of various metrics

ranging from performance and energy consumption to silicon area.
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A.1 Approximating ReLU networks by single-spike computation

Paper information

Authors: Ana Stanojevic, Evangelos Eleftheriou, Giovanni Cherubini, Stanisław Woźniak,

Angeliki Pantazi, Wulfram Gerstner

Abstract Developing energy-saving neural network models is a topic of rapidly increasing in-

terest in the artificial intelligence community. Spiking neural networks (SNNs) are biologically

inspired models that strive to leverage the energy efficiency stemming from a long process of

evolution under limited resources. In this paper we propose a SNN model where each neuron

integrates piecewise linear postsynaptic potentials caused by input spikes and a positive

bias, and spikes maximally once. Transformation of such a network into the ANN domain

yields an approximation of a standard ReLU network, leading to a facilitated training based

on backpropagation and an adaptation of the batch normalization. With backpropagation-

trained weights, SNN inference offers a sparse-signal and low-latency classification, which

can be readily adapted for a stream of input patterns, lending itself to an efficient hardware

implementation. The supervised classification of MNIST and Fashion-MNIST datasets, using

this approach, provides accuracy close to that of an ANN and surpassing other single-spike

SNNs.

Keywords spiking neural network, one spike per neuron, image processing, ReLU, efficient

classification

Publication The chapter is accepted as a conference paper at IEEE International Conference
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on Image Processing (ICIP) 2022. ([Stanojevic et al. (2022a)])
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A.1 Approximating ReLU networks by single-spike computation

A.1.1 Introduction

Even though the processing of information in the brain is highly sophisticated, it does not

require a large amount of electrical power for its operation. Artificial neural networks (ANNs)

adopt a neuron model, that was initially inspired by biological neurons [McCulloch and Pitts

(1943)]. However, the advances in modern-day artificial intelligence (AI) are mainly driven

by abstract neuronal units [Goodfellow et al. (2016)]. This progress was often targeting the

accuracy of prediction on benchmark tasks, with limited consideration of energy efficiency

[Bianco et al. (2018)]. Therefore, it is of great importance to go back to the principles of the

brain’s operation to better understand and implement concepts leading to sustainable AI,

where also energy efficiency and classification latency are important metrics.

Spiking neural networks (SNNs) are closer to biology than ANNs. They assume spike-based

neuronal communication and stateful neuronal dynamics. However, it is still unclear which

algorithm is the best for training SNNs. The brain possesses complex learning mechanisms

that have been studied for decades [Kandel et al. (2000); Markram et al. (2011); Frémaux and

Gerstner (2016)] and applied to SNNs [Zenke et al. (2015)], but are often unable to achieve the

performance of ANNs trained with backpropagation. Due to non-differentiable nonlinearities

in the SNN neuronal dynamics, a backpropagation algorithm that relies on derivatives to

solve the optimization problem related to learning is not directly applicable. There has been

extensive research to adapt the backpropagation through time (BPTT) algorithm to the SNN

training [Huh and Sejnowski (2018); Gardner et al. (2015); Woźniak et al. (2020); Neftci et al.

(2019)] and to derive more biologically plausible approximations [Bellec et al. (2020); Zenke

and Ganguli (2018); Neftci et al. (2019)]. Some of these approaches proved to be successful

in solving benchmark problems with classification accuracy close to that of ANNs. However,

these models often use a large number of spikes by encoding information in the rate of

neuronal activity. Rate coding indeed complies with early neuroscience experiments [Hubel

and Wiesel (1959)], in which it has been observed that certain stimuli cause particular neurons

in the brain to increase their spiking rate. However, it also introduces a significant classification

latency.

Further experiments [Kubke et al. (2002); Gollisch and Meister (2008); Johansson and Birznieks

(2004); O’Keefe and Recce (1993)] suggested that in some parts of the brain information is

encoded in the precise timing of individual spikes. Building on this insight, SNN training

mechanisms were recently introduced, where each neuron spikes exactly once [Göltz et al.

(2021); Comşa et al. (2021); Mostafa (2018); Kheradpisheh and Masquelier (2020); Zhang

et al. (2021)]. In this paper we focus on pattern-classification applications and propose

an SNN model, where each neuron spikes at most once, thus improving system efficiency.

Specifically, each neuron has an associated observation period, after which it is assumed

that the membrane potential is so low that no further spiking is possible. The inputs are

represented according to the time-to-first-spike principle, where important information is

encoded into earlier spike times and the predicted class is determined from the output neuron

that spikes first. The neuronal dynamics are described by a non-leaky integrate-and-fire
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Figure A.1: Mapping of SNN to an equivalent ANN a) SNN network with stateful IF neurons. Each layer 0 ≤ l ≤ L has a reference time Rl

b) Dynamics of membrane potential V l
i in three different situations where each neuron has an observation time leading to a subset of

"late" spikes (after the green vertical line) to be removed c) Processing flow of spike times t l (b)
i ,1 < b < B of one batch of size B = 6 d)

Equivalence of the SNN with an ANN having stateless neurons
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model with a positive integration bias and a linear postsynaptic potential. The SNN can be

transformed into an equivalent feed-forward ANN network, where neurons communicate

through their spiking times. The derivatives are directly calculated with respect to the spiking

times, as required by the temporal coding scheme. Furthermore, the linear postsynaptic

potential leads to a piecewise linear response in the feed-forward network, approximating a

ReLU model. The observation period is chosen to reflect the bias and batch normalization is

used as in ReLU networks, yielding faster training and increased accuracy. During inference,

the SNN resorts to very few spikes exhibiting low latency, as a neuron typically integrates only

a subset of the inputs that are received prior to its spiking time.

A.1.2 Method

We consider a spiking neural network with L layers, where each layer 1 ≤ l ≤ L contains N l non-

leaky integrate-and-fire neurons and there are N 0 input neurons. The membrane potential of

neuron i in layer l ≥ 1 evolves according to
dV l

i
d t =αl

i + I l
i , where I l

i is the total synaptic current

arriving at neuron i in layer l and αl
i > 0 denotes a positive bias. The real-valued information

Γ j presented at neuron j of the input layer, is encoded into a spike with spiking time:

x0
j = t 0

j =
Γmax −Γ j

Γmax
T +ϵ (A.1)

where Γmax is the maximum real-valued input in the database of input patterns and T is

the time period over which the input spikes are sent to the SNN. Specifically, the earliest

spike occurs at x0
j = ϵ= 10−4 with the reference time R0 = 0, whereas x l

j = 0 denotes the lack

of spiking events. The reference time Rl of layer l is determined as the arrival of the first

spike from the previous layer, i.e., Rl = mink:x l−1
k ̸=0(x l−1

k ) (see Fig. A.1a). Rl is considered the

beginning of neuronal events from the perspective of layer l and defines the time instant when

the bias term αl
i t is activated (see Eq. A.2). The incoming spiking times in layer l are perceived

as x̂ l−1
j = (x l−1

j −Rl +ϵ)H(x l−1
j ), where H denotes the Heaviside function. Each spike triggers

a linearly increasing postsynaptic potential in the receiving neuron. The membrane potential

V l
i (t ) of neuron i in layer l is expressed as:

V l
i (t ) =αl

i t +ωH(t − t l
i (obs))+

N l−1∑
j=1

w l
i j H(t − x̂ l−1

j )H(x̂ l−1
j )(t − x̂ l−1

j ) (A.2)

where t l
i (obs) indicates the observation period after which no incoming spike is processed by

the neuron, ω represents a negative constant with large absolute value and w l
i j defines the

synaptic strength between neurons j and i . If the membrane potential reaches the threshold ϑ

at time t l
i , a spike is generated, i.e. x l

i = t l
i (see Fig. A.1b). Otherwise, x l

i = 0 denotes the lack of

spiking and it will be ignored in the calculations of the next layer. We assume that the neuron

has a long refractory period and therefore it can generate at most one spike per input pattern.
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Mapping from SNN to ANN

The processing of the proposed SNN network can be mapped to that of a specific feed-forward

ANN network, where the spiking information is communicated as the real values x l
i . We now

map spike times t l
i in the SNN to the variable x l

i in the ANN (see Fig. A.1d). If the membrane

potential V l
i (t ) reaches the threshold ϑ then we have:

ϑ=αl
i t l

i +
∑
j∈J l

i

w l
i j H(x̂ l−1

j )(t l
i − x̂ l−1

j ) (A.3)

where J l
i denotes the set of input spikes that were received before spiking time t l

i , i.e., H(t l
i −

x̂ l−1
j ) > 0. Therefore, the spiking time of neuron i in layer l is:

t l
i (J l

i ) =
ϑ+∑

j∈J l
i

w l
i j x̂ l−1

j

mi (J l
i )

(A.4)

where ml
i (J l

i ) =∑
j∈J l

i
w l

i j H (x̂ l−1
j )+αl

i is the slope of the membrane potential after receiving the

last input spike in set J l
i (see Fig. A.1b). The membrane potential doesn’t reach the threshold ϑ

if either the slope ml
i (J l

i ) is negative (silent neuron) or the observation time ti (obs) has already

elapsed. In order to account for this if-condition, we introduce an auxiliary variable sl
i (J l

i ):

sl
i (J l

i ) = H(ml
i (J l

i ))H(ti (obs) − t l
i ) (A.5)

where the first Heaviside function denotes that the membrane potential reaches the threshold

with positive slope, whereas the second one enforces that this occurs before the expiration of

the observation period. Furthermore, to account for the assumed refractoriness in SNNs, the

set J l
i is defined as the smallest subset of input spikes, such that sl

i (J l
i ) > 0 and where the next

input spike (if there is one) comes after time t l
i (J l

i ). If such a subset doesn’t exist, we assume

that J l
i contains all input spikes. Finally, the output of neuron i in layer l is defined as:

x l
i = t l

i (J l
i )sl

i (J l
i ) (A.6)

where the neuron outputs x l
i = t l

i if there exist J l
i such that condition sl

i (J l
i ) = 1 is satisfied, and

0 otherwise. Eqs. A.4 and A.6 together implement a ReLU nonlinearity.

Observation period approximates batch normalization

The neuronal membrane potential exhibits a non-linear behavior due to the finite observation

period, the silent neuron condition (see Eqs. A.5 and A.6) or the causality condition H (t − x̂ l−1
j )

(see Eq. A.4). We focus on the first cause. To determine t l
i (obs) we adopt ideas from ANN

ReLU networks. In ReLU networks the bias value determines the threshold between zero and

non-zero outputs, whereas batch normalization ensures that the inputs effectively utilize the

operation range on both sides. Here we adjust the batch threshold statistics by finding the
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median and tuning the observation time so that each neuron spikes 50% of the time. During

training, for the observed neuron i and batch size B , we would like to ensure that the neuron

outputs a non-zero value for B
2 samples (see Fig. A.1c). Let us denote the number of samples

that lead to a silent neuron i in layer l as ζl
i ≤ B

2 . The spiking times are then sorted, and t l
i (obs)

is determined such that the B
2 −ζl

i largest spiking times are mapped to zero. Furthermore,

the moving average of ti (obs) is stored for each neuron during training and is used during the

inference phase.

A.1.3 Results

We assess the SNN performance on permutation invariant versions of two image recognition

benchmark datasets: MNIST and Fashion-MNIST. MNIST contains images of handwritten

digits, while Fashion-MNIST comprises images of fashion items, both labeled with 10 possible

classes. Images have dimensions 28×28 and are split into 10000 test images and 60000 used

for training and validation in 9:1 ratio.

The weights w l
i j are initialized with a uniform distribution over the interval [− 1p

8N l−1
, 1p

8N l−1
]

and αl
i = 1. The training is performed using backpropagation with a log-loss function and a

softmax activation function with hyperparameter β:

xL
m = e−βt L

m∑N L

m=1 e−βt L
m

L =−
N L∑

m=1
ymlog (xL

m) (A.7)

where ym denotes the one-hot encoded labels. To avoid a zero value argument in the log

function during training, the updates are ignored when there is at least one silent neuron in

the last layer. Furthermore, two penalty terms are added to the loss function of Eq. A.7:

Lsilent = κ
∑

i
max(0,−∑

j
w l

i j ) (A.8)

Lreg =λ
∑
i , j

(w l
i j )2 (A.9)

where κ and λ are hyperparameters. The small absolute values of the weights that are obtained

through initialization and kept during training with the regularization loss (Eq. A.9) make

αl
i the dominant factor in determining the spiking time distribution and diminish the non-

linearity stemming from causality H(t − x̂ l−1
j ). The regularizer in Eq. A.8 ensures that the

summation of input weights to a neuron doesn’t drop below zero so as to avoid silent neurons.

Training was performed using the Adam [Kingma and Ba (2014)] optimizer (β1 = 0.9, β2 =
0.999), an exponential learning rate schedule (learning rate=0.0002, 500 decay steps and 0.96

decay rate) and a batch size of 64. Furthermore, we applied gradient clipping with value a

1000, while dropout was used to increase generalization. Other hyperparameters of the system

are: T = 1, ϑ= 1, β= 1000. The class is predicted by the index of the earliest spiking neuron

(see Fig. A.2a), and classification accuracy is reported.
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To compare with earlier work [Comşa et al. (2021); Mostafa (2018); Zhang et al. (2021)], the

MNIST dataset is tested with three shallow architectures of 800, 400 or 340 hidden neurons.

The results in Figs. A.2c and A.2d show that our SNN system well approximates the ANN

network performance with ReLU non-linearity. Furthermore, the performance of our system

surpasses state-of-the-art single-spike models across different architectures. In Fig. A.2e we

observe that for the more challenging Fashion-MNIST dataset SNN comes close to the ANN

performance and outperforms the previous state-of-the-art result for single-spike models.

Discussion

The proposed neuronal dynamics of our model retains the biological spirit, but it is simplified

as incorporating more biological effects would significantly increase the complexity of approxi-

mating a ReLU network. Unlike in ReLU networks, where the bias can be trained, in our model

a neuron is trained to transmit spikes to the next layer in about 50% of the cases. Furthermore,

in a ReLU network the batch normalization uses the mean value and the variance of the batch

distribution to shift and scale the neuronal output. In our case we use a median and there is

no scaling of spike distribution.

A one-spike-per-neuron network typically uses significantly fewer spikes than a rate-coded

network, therefore it increases energy efficiency. Furthermore, for classification tasks the

class is determined after the first output neuron spikes, yielding a short inference latency. For

a network with 800 hidden neurons, classification of images from the test set occurs after

receiving on average 233 spikes from the hidden layer (see Fig. A.2b). This paper advances

the state of the art by reducing the overall number of spikes as each neuron spikes at most

once while increasing the classification accuracy by leveraging techniques inspired by ReLU

networks. Our approach is also applicable to convolutional layers, making it a research

milestone towards mapping complex image processing networks onto efficient SNNs.

A.1.4 Conclusion

We propose an SNN model, where each neuron spikes at most once and the input spikes

together with a positive integration bias determine a piecewise linear postsynaptic potential.

An observation period limits the number of spikes and leads to an SNN that is equivalent to an

ANN with ReLU activations. Such equivalence enables training within AI frameworks originally

developed for the ANN domain, while inference in the SNN domain is performed with a low

number of spikes and low latency. Importantly, in hardware realizations temporally encoded

visual input spike patterns could be supplied directly from the output of a retina-like chip

[Gallego et al. (2020); Lichtsteiner et al. (2008)]. The classification accuracy achieved on two

image datasets is close to the ANN baselines and surpasses previously reported single-spike

SNN performance.
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encoding, where the information is carried by the temporal position of spikes, is playing a

crucial role at least in some parts of the brain where estimation of the spiking rate with a large

latency cannot take place. Motivated by the efficiency of temporal coding, compared with the

widely used rate coding, the goal of this paper is to develop and train an energy-efficient time-

coded deep spiking neural network system. To ensure that the similarity among input stimuli

is translated into a correlation of the spike sequences, we introduce correlative temporal

encoding (CTE) and extended correlative temporal encoding (ECTE) techniques to map analog

input information into input spike patterns. Importantly, we propose an implementation

where all multiplications in the system are replaced with at most a few additions. As a more

efficient alternative to both rate-coded SNNs and artificial neural networks (ANNs), such

system represents a preferable solution for the implementation of neuromorphic hardware.

We consider data classification tasks where input spike patterns are presented to a feed-

forward architecture with leaky-integrate-and-fire (LIF) neurons. The SNN is trained by

backpropagation through time with the objective to match sequences of output spikes with

those of specifically designed target spike patterns, each corresponding to exactly one class.

During inference the target spike pattern with the smallest van Rossum distance from the

output spike pattern determines the class. Extensive simulations indicate that the proposed

system achieves a classification accuracy at par with that of state-of-the-art machine learning

models.
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A.2.1 Introduction

The human brain is a phenomenal system capable of mapping sensory inputs to many non-

trivial responses in a highly computationally efficient manner. Many studies of biological

neural structures have been conducted to investigate how the information from sensory

inputs is processed to obtain a desired response. For example, the structure used to process

scents in the fruit fly olfactory system has been studied to determine the computational

strategies that take place in the insect’s brain for solving similarity search problems [Dasgupta

et al. (2017); Eichler et al. (2017); Ryali et al. (2020)]. One of the most debated questions in

artificial intelligence is whether neural networks are able to mimic their biological counterparts

when solving problems of practical interest. Nowadays, classification tasks are found in

ubiquitous applications, from edge devices as part of the emerging internet-of-things network

[Jankowski et al. (2020)], to servers where data storage at large scale requires classification of

items in terms of relevance or category [Cherubini et al. (2016)]. Data classification is rather

well understood in the machine learning and artificial neural network (ANN) communities

[Cortes and Vapnik (1995); Schmidhuber (2015)]. However, ANNs usually require floating-

point multiplications between the synaptic weights and the activations, making them quite

inefficient in terms of power consumption [Strubell et al. (2020); Devlin et al. (2018)]. Inspired

by the computationally efficient brain, spiking neural networks (SNNs) constitute a class of

neural networks [Ghosh-Dastidar and Adeli (2009); Ponulak and Kasinski (2011); Zambrano

et al. (2019); Boybat et al. (2018); Sebastian et al. (2018)], where neuronal information is

communicated asynchronously through sequences of spikes. The spike trains are commonly

interpreted as sequences of sparse binary signals, leading to an efficient operation and are

therefore of importance for many applications [Garain et al. (2021); Luo et al. (2022); Toğaçar

et al. (2021)]. Due to their low-power operation, SNNs are often considered together with their

hardware implementation. Some of the most important challenges in this domain include

designing specific hardware components [Liu et al. (2021)] and online learning rules [Hu

et al. (2021)] as well as autonomous mobile robots control based on SNNs [Cao et al. (2015);

Jimenez-Romero and Johnson (2017)].

The problem of energy efficiency has long been recognized in the machine learning commu-

nity. In order to increase the energy efficiency of ANNs, binarized neural networks (BNNs)

[Courbariaux et al. (2016)] have been proposed where only bit-wise operations are executed

by constraining all the activations and weights to +1 and -1 values. While extremely efficient,

this approach results in a performance gap which is to some extent addressed by different

techniques trying to reduce the quantization error [Lin et al. (2020); Liu et al. (2020); Wang

et al. (2021)] or improve training [Lin et al. (2021); Bulat and Tzimiropoulos (2019); Liu et al.

(2018); Xu et al. (2021)]. As a common characteristic, both SNNs and BNNs adopt binary

communication, and also largely reduce the required computation and storage. However,

spiking neural networks further imply specific neuronal and synaptic dynamics, offering a

computationally powerful system which we leverage in our solution.

Newly proposed SNN systems and learning algorithms are often compared with ANNs that ex-
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hibit well-established performance [Bellec et al. (2020); Zenke and Ganguli (2018); Comşa et al.

(2021)]. However, an overall theoretical framework for the supervised training of SNNs has not

been developed yet, mainly because the computation of gradients for weight updates requires

differentiation of functions with discontinuities. Early approaches to SNN training include

converting a pre-trained ANN into an SNN representing continuous ANN communication

as spiking rates [Rueckauer et al. (2017)], introducing differentiable approximations of non-

continuous functions [Huh and Sejnowski (2018)], and resorting to a probabilistic framework

[Gardner et al. (2015)]. Training schemes that avoid taking the derivative of functions with

discontinuities were also presented [Comşa et al. (2021); Hunsberger and Eliasmith (2016)].

Recently, it was proposed to train SNNs by a backpropagation through time (BPTT) algorithm,

where non-continuous functions are approximated by differentiable functions only during

the backward pass [Woźniak et al. (2020); Neftci et al. (2019); Bohte (2011)].

A further active research topic is the encoding of information for neuronal transmission

in SNNs. In early neuroscientific experiments [Hubel and Wiesel (1959)], it was observed

that a stimulus is able to generate a large number of spikes in some neurons, leading to the

conclusion that a high spiking rate is related to a high neuronal response. Rate coding is a

well established encoding scheme and many works rely on it for a successful SNN training

[Bellec et al. (2020); Woźniak et al. (2020); Neftci et al. (2019)]. In [Fabre-Thorpe et al. (1998)],

it was shown that image classification in the brain takes place so fast, i.e., in about 150ms after

presenting the stimulus, that there is no sufficient time to reliably estimate the spiking rate for

a single neuron. Later neuroscience experiments further confirmed that the temporal position

of spikes contains the information [Kubke et al. (2002); Gollisch and Meister (2008); Johansson

and Birznieks (2004)]. Therefore, recent work on SNNs is also focused on temporal coding

schemes which enable faster inference and require fewer spikes. Specifically, the time-to-first-

spike (TTFS) method is an extreme version of temporal coding where each neuron uses only

one spike per neuron. TTFS is able to achieve relatively high classification accuracy for simple

tasks and shallow architectures, however it requires a new training framework to be developed

for each neuronal dynamics and results are often obtained only for the continuous domain

[Bohte et al. (2002); Mostafa (2018); Comşa et al. (2021)].

In this paper, we introduce a novel temporal encoding approach for the encoding of input

information into input spike patterns, whereby the similarity among input stimuli is translated

into a correlation of the spike sequences. Two encoding methods based on this approach

are investigated: correlative temporal encoding (CTE) and extended correlative temporal

encoding (ECTE), which differ in the assumed input data type. Furthermore, we propose a

data classification system based on an SNN structure that maps input information into the

temporal position of spikes, and determines the network response from the observation of

the spike sequences at the output neurons. We also adopt temporal encoding to map class

labels into target spike patterns. For class prediction we utilize the van Rossum metric, which

takes into account the entire sequence of spikes when assessing which target spike pattern is

closest to the output spike pattern. The SNN dynamics [Gerstner et al. (2014)] are trained in a

supervised manner, following the recently introduced approach based on spiking neural units
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(SNUs) [Woźniak et al. (2020)]. The training is performed by BPTT assuming a weighted binary

cross-entropy loss function, with the objective that the sequences of output spikes match

those of the target spike patterns. Finally, we introduce a multiplication-free implementation

of the model, which is obtained by an approximation of the neuronal dynamics by using

shift-and-add operations [Marimuthu et al. (2010)], and investigate the possible trade-off

between classification accuracy and computational complexity of the proposed system.

As it has been shown in [Woźniak et al. (2020)], it is possible to train deep spiking neural

networks with rate coding and reach accuracy close to that of ANNs on many benchmarks.

The main purpose of this work is to leverage the brain-inspired dynamics and powerful training

setup of a rate coding scheme for high accuracy, while proposing temporal coding schemes

to reduce the latency and the number of used spikes. Importantly, reducing the number

of spikes together with the multiplication-free implementation of a SNN lead to a superior

energy-efficient solution compared to networks based on rate coding as well as standard

ANNs, making it a viable alternative for neuromorphic hardware implementations.

A.2.2 System Architecture

Data classification using ANNs usually includes the flow of {preprocessing → network opera-

tions → class prediction}. In SNNs, there are further requirements of providing information

to the input neurons as sequences of spikes, and of obtaining the predicted class from the

sequences of spikes at the output neurons. Therefore, when non-spiking datasets are used, two

additional steps need to be considered in the pipeline, i.e., the encoding of input information

into spatio-temporal input spike patterns and the encoding of class labels into spatio-temporal

target spike patterns, see Fig. A.3a. In this section, we assume that the two encoding functions

are known, and focus on the remaining parts of the system. The input and output encoding

functions will be described in detail in Section A.2.3.

Preprocessing

We assume a classification system operating with input data items comprising features ex-

tracted from any dataset, e.g., image, text, video, etc. In this paper, we consider datasets with

image and text files.

Definition 1. The set of all input data items is denoted by D; Dtrain denotes subset of D contain-

ing items for training the classification system.

Definition 2. The set of all class labels for the items in the dataset D is denoted by C , whereas

the set of all features obtained from preprocessing of the dataset D is denoted by F . Furthermore,

the i -th class in the set C is denoted by ci .

The input features f ∈ F can take any form. For instance, categorical features may be encoded

with any pattern rather than with the commonly used one-hot-encoding transformation. To
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Figure A.3: Architecture of the proposed classification system a) Input items from D (see Def. 1) go through initial preprocessing to
generate real-valued feature vectors; the values of each feature are allocated into q f bins to generate x⃗; x⃗ is then encoded into the binary
vector x⃗ that is reshaped into the spatio-temporal input spike pattern X0 (dots denote spikes in the diagram); the SNN receives X0 and
generates the output spike pattern XL ; the output is compared with the target spike patterns corresponding to different classes using
the van Rossum metric; the closest pattern finally determines the predicted class b) Computational graph of forward and backward
pass c) An example of replacing a full precision multiplication with shift-and-add (SaA) operations, where at each step sl

t ,i is shifted by ι
positions to the right and added to the previous value
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obtain a tractable number of values for numerical features, the values of each numerical

feature in training data are uniformly quantized into Q levels, where Q is a system parameter.

For each numerical feature f , the quantized values are allocated in q f bins, where q f ≤Q,∀ f .

Definition 3. For a feature f ∈ F , A f = {a f ,1, a f ,2, . . . , a f ,q f } is the set of quantized values that

can be assigned to that feature. Furthermore, we assume that a f ,1 ≤ a f ,2, . . . ,≤ a f ,q f , where a f ,i

denotes the i-th value of the feature f .

A feature f may also take a zero value. In order to increase the efficiency of the classification

system, a zero value of a feature will be encoded with a zero signal at the input of the SNN.

Definition 4. For an input item x ∈D, F ̸=0(x) ⊆ F denotes the set of non-zero features.

We assume that the sets F and A f ,∀ f , are finite, and that each input item takes values for all

|F | features, with |F ̸=0(x)| > 0,∀x, where | · | denotes the cardinality of a set. An item x can thus

be represented as

x⃗ = [x1, x2, . . . , x|F |] (A.10)

where xi ∈ Ai , for i = 1, ..., |F | (see Figs. A.3a, A.4a). We remark that the vector notation with

an arrow above is used for sequences of features. In other cases, vectors are denoted by the

upright boldface type notation.

Spiking Neural Network

We consider SNNs with a feed-forward architecture, i.e., without recurrent connections, with

N input neuronal units, L−1 fully-connected hidden layers each with M l , l = 1. . .L−1, units,

and O output neuronal units. The number of units in the input and output layer are sometimes

also denoted as M 0 and M L respectively (see Fig. A.3a). For each input item the SNN receives

an input spike pattern, which is a binary matrix of dimension N ×T , where T is the number of

discrete time steps over which the input pattern is defined (see Fig. A.3a). For all the neurons

in hidden layers, a leaky-integrate-and-fire (LIF) model is employed [Gerstner et al. (2014)].

At every time instant t , the neurons integrate the binary inputs (0 or 1) that are modulated

with the synaptic weights, and store the result into an internal state variable called membrane

potential. The rate of decay of the membrane potential is determined by a leak parameter

0 < ν< 1, see Eq. A.11. When the membrane potential sl
t ,i of the i -th neuron in a layer l with

M l units reaches a threshold value β, the neuron generates a spike equal to one, and in all

other time instants it outputs zero. The behavior of the M l neurons receiving inputs from

M l−1 neurons is described in discrete time by [Woźniak et al. (2020)]:

sl
t = g (Wl ·χl−1

t +ν1M l ⊙sl
t−1 ⊙ (1−χl

t−1)) (A.11)

χl
t = θ(st −β1M l ) (A.12)
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for l = 1, ...,L −1, where sl
t is the M l -dimensional neuronal state vector at time t , χl−1

t and

χl
t denote the input and output vectors of layer l at time t , respectively, Wl represents an

M l ×M l−1 synaptic weight matrix, 1l
M is an M l -dimensional vector with M l elements all equal

to one, and ⊙ stands for the element-wise product. The activation function θ in our work is

set to the Heaviside function for all layers, whereas g is equal to the identity. The proof that

the neuronal dynamics described in discrete time by Eqs. A.11 and A.12 follow the dynamics

of a LIF neuron in continuous time is given in [Woźniak et al. (2020)].

The output layer consists of simple integrating neurons with a sigmoid (σ) as an activation

function, i.e. χL
t =σ(WL ·χl−1

t −β1M ). Each of the |C | possible labels corresponds to a target

spike pattern, given by a binary matrix of dimensions O×T . During the training phase, at each

time instant and for each output neuron a weighted binary cross-entropy loss (see Eq. A.13) is

computed between the desired prediction value of the correct class ci defined by the target

spike pattern Xtar(ci ) and the output spike pattern XL (with χl
t as columns, see Fig. A.3a).

Loss(XL ,Xtar(ci )) =−
O∑
o

T∑
t=1

ωX tar
o,t (ci )log (X L

o,t )+ ((1−X tar
o,t (ci ))log (1−X L

o,t )) (A.13)

where X L
o,t is the output of neuron with index o at time t , X tar

o,t (ci ) is a corresponding target

of class ci and the constant factor ω≥ 1 is introduced to enhance the contribution of sparse

spikes. All the synaptic weights and the threshold β are updated by backpropagation through

time (see Fig. A.3b), whereas the leak parameter ν is not trainable. To avoid the singularity

arising from the non-differentiability of the Heaviside function, an approximation obtained by

the derivative of the tanh function is adopted, as introduced in [Woźniak et al. (2020)].

We remark that here we focus on a supervised learning approach. A more directly biologically

inspired version of the proposed classification system, where unsupervised learning is imple-

mented by a spike-time-dependent-plasticity (STDP) learning rule [Bi and Poo (2001)] and a

winner-takes-all approach, was presented in [Stanojevic et al. (2020)].

Class Prediction

During inference, the network is expected to output spikes at time positions that are close to

the spike positions in the pattern of the correct target class.

We adopt the van Rossum distance [van Rossum (2001); Gardner et al. (2015); Zenke and

Ganguli (2018)] as a distance metric between two spike patterns:

X̃
L
o,t = X̃

L
o,t−1e−

1
τm +XL

o,t (A.14)

D(X̃
L

,Xtar(ci )) = 1

τm

O∑
o

T∑
t=1

(X̃
L
o,t − X̃ tar

o,t (ci ))2 (A.15)

where τm is a time constant parameter and X̃ L
o,t is equivalent to the convolution of the output
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spike sequence with an exponential having time constant τm . Therefore, the spiking activity

of the output neurons is observed over a number of time steps to determine the similarity

of spike sequences. The overall distance between output and target patterns is obtained by

averaging over all the output neurons. For each input item, the predicted class is determined

as the target pattern with the smallest van Rossum distance from the output spike pattern (see

Fig. A.3a).

Multiplication-Free Inference System

A significant advantage of SNNs is the adoption of binary sequences of spikes for neuron

communications, i.e., discrete-time signals having 1 if a spike is present or 0 otherwise. This

means that the matrix-vector product in Eq. A.11 that would usually require floating point

multiplications (FPM) is replaced by a small number of additions (ADD), i.e.,

Wl ·χl−1
t = ∑

j :χl−1
t , j ̸=0

W l
i j (A.16)

for neuron i in layer l receiving spikes at time t . However, floating point multiplications

are present in other parts of the system that might dominate the complexity. Therefore, we

propose an implementation where all multiplications are replaced with one or few additions.

There are two other parts of the system where multiplications are performed, namely in the

computation of the neuron dynamics in hidden layers (see Eq. A.11) and at the output where

sigmoid function and van Rossum distance metric (see Eqs. A.14 and A.15) are calculated.

In each time step a membrane potential decay is computed in Eq. A.11 by multiplying the

state variable st with a decay parameter ν. To compute the van Rossum metric in Eq. A.14,

the convolution value at each step requires multiplying the value at the previous step with

the factor e−
1
τm . Furthermore, the square of the difference of two sequences is required in Eq.

A.15. To obtain a computationally efficient realization, we replace the multiplications by the

factors ν and e−
1
τm with shift-and-add operations (see Fig. A.3c). Eqs. A.11 and A.14 are then

expressed as

sl
t ,i = g (

∑
j :χl

t , j ̸=0

Wl
i j +

∑
ι

sl (ι)
t−1,i (1−χl

t−1,i )), i = 1, ..., M l (A.17)

X̃
l
o,t =

∑
ι

X̃
l (ι)
o,t−1 +Xo,t (A.18)

where sl (ι)
t−1,i and X̃

l (ι)
o,t−1 are obtained from sl

t−1,i and X̃
l
o,t−1, respectively, by multiplication

with 2−ι, which is equivalent to a shift of ι positions to the right in two’s complement binary

representation. The square norm in Eq. A.15 is then replaced with the sum of absolute values,

yielding

D(X̃
L

,Xtar(ci )) = 1

τvr

O∑
o

T∑
t=1

|X̃L
o,t − X̃ tar

o,t (ci )| (A.19)
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Figure A.4: An example of generating input spike patterns for |F | = 3, T = 4, N f = 1, d f = 1 and target spike patterns for |C | = 2, Oc = 2,
dc = 1 a) Two items x and y are represented with sequences of features x⃗ and y⃗ which consist of binned values and zeros b) CTE algorithm
transforms sequences of features x⃗ and y⃗ into x⃗ and y⃗; Zero value is transformed into zero-vector c) ECTE algorithm transforms sequences
of features x⃗ and y⃗ into x⃗ and y⃗ with hyperparameters Q = 3, η= 1, δn = 1, µ1 = 1, µ2 = 2, µ3 = 2 d) x⃗ and y⃗ vectors are reshaped into input
spike patterns of shape N ×T and sent to SNN; Output of SNN is compared with two target spike patterns, where neurons corresponding
to the class are active and others are silent
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Finally, the computation of the sigmoid function is accomplished by look-up tables, where

the quantized values of the sigmoid are stored with a predefined precision. As a further

observation, multiplications in the computation of the neuronal dynamics can be completely

avoided by adopting the integrate-and-fire (IF) neuronal model [Gerstner et al. (2014)] instead

of LIF. However, here we consider the LIF model to allow higher flexibility of the neuronal

dynamics.

A.2.3 Time Encoding of Input and Target Patterns

Correlative Time Encoding (CTE)

An objective of input encoding in SNNs is to generate input spike patterns while retaining

the information about item similarity that is present in the sequences of features. In fact, if

for each item an individual random input spike pattern were generated, the network would

not be able to find any similarity between items in the training dataset and in the test set. It

would then be very difficult to perform classification tasks. It is therefore necessary to devise

a method for the generation of the input spike patterns that retains the similarity between

different items and generalizes well whenever new data is encountered. Furthermore, from a

biological perspective, it can be conjectured that the signal in the brain carries the information

about the similarity of the newly received input with the already processed inputs, thus easing

the learning process [Dasgupta et al. (2017)]. In previous work on temporal encoding of input

information in SNNs, the spike positions were chosen randomly [Gardner et al. (2015); Zenke

and Ganguli (2018)]. In this section, we introduce temporal encoding methods, which yield

spike patterns that retain input item similarity.

Let us consider a similarity metricψ f (x f , y f ) between two features x f and y f in the sequences

of features x⃗ and y⃗ . We define the similarity between two items x and y as a weighted sum of

the similarities for each feature [Venkatesan et al. (2018)]:

Ψα(x, y) =
|F |∑
f =1

α f ψ f (x f , y f ) (A.20)

where α = [α1, ...,α|F |] indicates the vector of positive real parameters that represent the

relevance of the corresponding features and normalize the summation. Here we assume

α=α f = 1p|F ̸=0(x)||F ̸=0(y)| , ∀ f .

For the correlative time encoding (CTE) algorithm the partial similarity is defined as:

ψC T E
f (x f , y f ) =

1, x f = y f , x f ̸= 0, y f ̸= 0

0 otherwise.
(A.21)
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Therefore, (A.20) becomes:

ΨC T E (x, y) =α ∑
f ,x f =y f ,x f ̸=0,y f ̸=0

1. (A.22)

Thus the similarity between items x and y is determined by the number of equal non-zero

features, see Fig. A.4a.

As an input spike pattern contains only zeros and ones, it can be associated with a binary

vector x⃗ of length n = N T , obtained by concatenating the binary sequences given by the spike

patterns of each neuron. The temporal encoding of input information can thus be seen as

a map that relates a sequence of features x⃗ to a binary vector x⃗ (see Fig. A.4b). Two input

spike patterns that have spikes on the same positions will be perceived by the network as

similar, as the same information will propagate for both inputs. Therefore, we choose the

cosine similarity as a metric for the similarity between input spike patterns representing items

x and y :

ρ(⃗x,⃗y) = < x⃗,⃗y >
∥⃗x∥∥⃗y∥ (A.23)

where < ·, · > denotes the inner product and ∥ · ∥ is the two-norm. The input spike patterns

will thus exhibit a similarity proportional to the number of spikes in the same positions. The

encoding function should map the feature sequence x⃗ into the binary vector x⃗ such that:

∀x, y, ΨC T E (⃗x, y⃗) ≈ ρ(⃗x,⃗y). (A.24)

Definition 5. Let B = {b( j ) ∈ {0,1}ξ,1 ≤ j ≤ ξ}, ξ ∈N. A vector b( j ), ∀ j , is generated as a Poisson

process with vanishingly small rate λ= o(ξ−
1
2 ); therefore the average number of ones in b( j ) is

expressed as d =λξ= o(ξ
1
2 ), leading to the generation of sparse vectors. For large but finite ξ, we

refer to the vectors in B as quasi-orthogonal vectors.

Lemma 1. Let B = {b( j ) ∈ {0,1}ξ,1 ≤ j ≤ ξ} be a set of quasi-orthogonal vectors. Then ∀i , j ,

with i ̸= j , P (< b(i ),b( j ) ≯= 0) → 0 and the vectors b(1), . . . ,b(ξ) converge in probability to an

orthogonal set as ξ→∞.

Proof. The inner product of vectors b(i ) and b( j ) can be rewritten as a sum:

< b(i ),b( j ) >=
ξ∑

k=1
b(i )

k b( j )
k .

Therefore,

P (< b(i ),b( j ) ≯= 0) = P (
ξ∑

k=1
b(i )

k b( j )
k ̸= 0).
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Let Ek denote the event b(i )
k b( j )

k ̸= 0. Then

P (
ξ∑

k=1
b(i )

k b( j )
k ̸= 0) = P (∪ξk=1Ek ).

From the union bound we have P (∪ξk=1Ek ) ≤∑ξ
k=1 P (Ek ). Therefore,

P (
ξ∑

k=1
b(i )

k b( j )
k ̸= 0) ≤

ξ∑
k=1

P (b(i )
k b( j )

k ̸= 0).

Furthermore, as the vectors are generated independently, we have P (b(i )
k b( j )

k ̸= 0) = P (b(i )
k ̸=

0)P (b( j )
k ̸= 0). Then

P (
ξ∑

k=1
b(i )

k b( j )
k ̸= 0) ≤

ξ∑
k=1

P (b(i )
k ̸= 0)P (b( j )

k ̸= 0).

For large ξ, a Poisson distribution converges to a binomial distribution with parameters ξ

and p = d
ξ [Simons and Johnson (1971)], where d = o(ξ

1
2 ) and ∀i ,P (b(i )

k ̸= 0) = d
ξ . From the

definition of little-o notation we have that d = o(ξ
1
2 ) means that limξ→∞ d

ξ
1
2
= 0. Therefore:

lim
ξ→∞

P (
ξ∑

k=1
b(i )

k b( j )
k ̸= 0) ≤ lim

ξ→∞

ξ∑
k=1

P (b(i )
k ̸= 0)P (b( j )

k ̸= 0) (A.25)

∼ lim
ξ→∞

ξ
d

ξ

d

ξ
(A.26)

= lim
ξ→∞

d

ξ
1
2

lim
ξ→∞

d

ξ
1
2

= 0 (A.27)

We now describe the input spiking pattern encoding function. For the N input neurons and |F |
features, where N ≥ |F |, we assume that the number of input neurons of the SNN is uniformly

divisible by the number of features, although in general a non-uniform assignment is possible.

Therefore, each feature is assigned N f = N /|F | input neurons. For each value a f ,i we define a

mapping into a binary vector of length n f = N f ×T .

Definition 6. For a given non-zero value a f ,i , a sparse binary vector a f ,i of length n f = N f ×
T is generated as a Poisson process with rate λ f = o(n

− 1
2

f ) (d f = λ f n f = o(n
1
2

f )), and λ f is

independent of a f ,i . The zero value is encoded with a zero vector of length n f . The set of all

vectors a f ,i that may represent a feature f is denoted as A f .

From Eq. (A.10), we have that an item x is represented by x⃗ = [x1, x2, . . . x|F |], where x1 ∈ A1,

x2 ∈ A2, etc. The binary vector with length n = N T of the input spike pattern associated with

item x is given by:

x⃗ = [x1,x2, . . . ,x|F |] (A.28)
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where x1 ∈ A1, . . . , x|F | ∈ A|F | (see Fig. A.4b). The input spike pattern X0 represented as a matrix

of dimensions N ×T is then obtained by reshaping the vector x⃗ as shown in Fig. A.4d.

As the set F is finite, n f →∞ as n →∞. Therefore, we have that for all non-zero values a f ,i ,

∥a f ,i∥ converges to
√

d f as n →∞, as all the components are generated as Poisson processes

with parameter d f . Consequently, ∀x, ∥⃗x∥ =
√

|F ̸=0(x)|d f as n →∞.

Lemma 2. Consider vectors x⃗ and y⃗ that are built by concatenating vectors x f ∈ Af and y f ∈ Af,

f = 1, . . . , |F |, respectively. Then ρ(⃗x,⃗y) = <⃗x,⃗y>
∥⃗x∥∥⃗y∥ =

∑
f <x f ,y f >p|F ̸=0(x)||F ̸=0(y)|d f

as n →∞.

Following the steps of the proof for Lemma 1, one finds that the binary vectors of length

n f that are generated as Poisson processes with parameter d f , where d f = o(n
1
2

f ), are quasi-

orthogonal. Therefore, the non-zero vectors a f ,i are also quasi-orthogonal and their inner

product vanishes as n →∞. Hence, the inner product of binary vectors corresponding to

different features also vanishes. The inner product between two binary vectors x f and y f for

feature f is given in the limit by:

< x f ,y f >=
d f , x f = y f , x f ̸= 0, y f ̸= 0

0 otherwise.
(A.29)

Therefore, for the binary vectors x⃗ and y⃗, the cosine similarity is given in the limit by:

∀x, y, ρ(⃗x,⃗y) =α ∑
f ,x f =y f ,x f ̸=0,y f ̸=0

d f

d f

=ΨC T E (⃗x, y⃗). (A.30)

The similarity of the vectors associated with the input spike patterns converges as n →∞ to

the similarity among input items (see Fig. A.4b). Simulation results presented in Section A.2.4

indicate that the proposed approach yields satisfactory results for large but finite dimensional

vectors.

Extended CTE (ECTE)

So far we have considered the general case, where features can be of any data type. Assuming,

as in most applications, that all features are of numerical type, we consider a further similarity
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metric expressed as:

ψEC T E
f (x f , y f ) =

ψEC T E
f (a f ,i (x f ), a f , j (y f )) =max(0,

µ f −| j−i |
µ f

), x f ̸= 0, y f ̸= 0

0,otherwise
(A.31)

where x f and y f are the values of feature f , a f ,i (x f ) and a f , j (y f ) indicate that the items x

and y take the i -th and j -th value of feature f , respectively (see Def. 3). The number of

neighbouring values (including the value itself) for feature f , for which two items exhibit

non-zero similarity, is denoted by µ f ∈ {1, . . . , q f },∀ f . The similarity of two items is given by:

ΨEC T E (⃗x, y⃗) =α∑
f
ψEC T E

f (x f , y f )

=α∑
f
ψEC T E

f (a f ,i (x f ), a f , j (y f ))

=α ∑
f ,x f ̸=0,y f ̸=0

max(0,
µ f −| j (y f )− i (x f )|

µ f
) (A.32)

where i (x f ) and j (y f ) are the indices of values x f and y f in A f (see Fig. A.4c).

As in the case of CTE, each feature is assigned N f = N /|F | input neurons, and the vector

representation of the input spike pattern for item x is given in Eq. A.28, with the cosine

similarity chosen as a similarity metric. The goal is now to construct vectors a f ,i and a f , j , such

that their cosine similarity reproduces the similarity between a f ,i and a f , j , see Eq. A.31.

The ECTE algorithm which maps values of feature f to binary vectors is given in Alg. 3. Initially,

sparse vectors a f ,i are generated as in Def. 6, see Alg. 3 line 6. To control the similarity between

vectors, we resort to an overlap technique, whereby a partial overlap of vectors associated with

different feature values is introduced. The idea is that the resulting overlap should lead to a

cosine similarity between two vectors that closely reflects the similarity of two values as given

in Eq. A.31 (see Fig. A.4c).

In each non-zero sparse binary vector a f ,i an integer number ∆n f of consecutive elements

are replaced. This altered segment of the vector a f ,i is denoted by ∆pat ter n f ,i ∈ {0,1}∆n f .

A segment ∆pat ter n f ,i consists of µ f consecutive shorter segments of integer length δn =
∆n f

µ f
, denoted byδ f ,i ,ℓ ∈ {0,1}δn , ℓ= 1, . . . ,µ f . We start by building the initial segment∆pat ter n f ,1,

see Alg. 3 line 10. Each new δ f ,1,ℓ segment is built by randomly setting η≤ δn elements equal

to one, whereas the remaining δn −η elements are set to zero, for ℓ= 1, . . . ,µ f . Then the first

∆n f elements of the initial vector a f ,1 are replaced by the obtained segment ∆pat ter n f ,1, see

Alg. 3 line 13.

To obtain the next vector, a f ,2, we first get ∆pat ter n f ,2 by removing the first δn positions in
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∆pat ter n f ,1, i.e., δ f ,1,1, and by inserting a new segment δ f ,2,µ f in the last δn positions, see

Alg. 3 line 15. We then replace the elements at the positions δn +1,δn +2, . . . ,δn +∆n of the

initial binary vector a f ,2 with ∆pat ter n f ,2. As a result, the vectors a f ,1 and a f ,2 have equal

elements at positions δn +1,δn +2, . . . ,∆n f , leading to a partial overlap of size (µ f −1)∗δn.

The procedure is iterated q f −1 times. A new segment ∆pat ter n f ,i is first obtained from

∆pat ter n f ,i−1 and δ f ,i ,µ f . Then the initial vector a f ,i is modified by replacing the elements at

the positions δn∗ (i −1)+1,δn∗ (i −1)+2, . . . ,δn∗ (i −1)+∆n f with ∆pat ter n f ,i . Therefore,

the overlap between vectors associated with consecutive bins has size (µ f −1)∗δn. In general,

the overlap between vectors a f ,i and a f , j is of size max(0,δn ∗ (µ f −| j − i |)).

Algorithm 3 ECTE

Ensure: ∀i , construct a f ,i

1: ∆pat ter n f ,1 ← empty array
2: for i in 1. . . q f do
3: if ai , f = 0 then
4: continue
5: end if
6: a f ,i ← Poisson process with d f

7: if i = 1 then
8: for l in 1. . .µ f do
9: δ f ,1,l ← random_spikes(len=δn , num=η)

10: ∆pat ter n f ,1 ← concat(∆pat ter n f ,1, δ f ,1,l )
11: end for
12: end if
13: a f ,i [(i −1)∗δn : ((i −1)∗δn +∆n f )] ←∆pat ter n f ,i

14: δ f ,i ,µ f ← random_spikes(len=δn , num=η)
15: ∆pat ter n f ,i+1 ← concat(∆pat ter n f ,i [δn :],δ f ,i ,µ f )
16: end for

We observe that the parameters µ f , η and δn need to satisfy the constraints ∀ f :

δn(µ f + (Q −1)) < n f (A.33)

∥∆pat ter n f ,i∥ =
√
µ f η>>

√
d f (A.34)

η≤ δn (A.35)

µ f ≤ q f (A.36)

This encoding method generates vectors x⃗ that comply with the desired property in Eq. A.24.

From Lemma 1 we know that the inner product, and therefore cosine similarity, vanishes for all

pairs of initial vectors a f ,i and a f , j , for i ̸= j , and for non-zero vectors we have ∥a f ,i∥ =
√

d f ,

as n →∞. From Eq. A.34 and for large n the cosine similarity of a f ,i and a f , j is approximately
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given by the cosine similarity of the overlap between the two vectors:

∀x, y,

ρ(⃗x,⃗y) ≈α ∑
f ,x f ̸=0,y f ̸=0

ρ(a f ,i (x f ),a f , j (y f ))

≈α ∑
f ,x f ̸=0,y f ̸=0

max(0,
η(µ f −| j (y f )− i (x f )|))

∥∆pat ter n f ,i∥2

=ΨEC T E (⃗x, y⃗) (A.37)

where the first approximation follows from Lemma 2 (see Fig. A.4c). Therefore, the item

similarity defined in Eq. (A.31) is approximated for large n by the cosine similarity of the

vectors associated with the input spike patterns (see Fig. A.4d).

Temporal Encoding of Target Patterns

An output neuron predicts a value zero or one at each time step t , depending on the input spike

pattern. For each of the |C | input labels a target spike pattern is defined, which determines the

time instants when the output spikes should occur.

Unlike the generation of the input spike patterns where the objective is to approximate the

similarity of the input items, in the generation of target spike patterns the objective is to

obtain orthogonal patterns. To achieve such condition, one could simply choose a one-hot

representation for each class, where the number of vector elements is equal to the number of

classes, and all elements are zero except the one corresponding to the correct class. One could

also assign one output neuron to each class, similarly to what is usually found in ANNs. Here

we consider a more general definition, consistent with that of the input encoding function.

For each class c, a binary vector c⃗ of length m = OT is generated (see Fig. A.4e). For the

O output neurons and |C | classes, where O ≥ |C |, we assign all output neurons of the SNN

uniformly among labels, although in general a non-uniform assignment is possible. Without

loss of generality, under uniform assignment, the total number of neurons O is assumed to be

divisible by the number of labels |C |. Therefore, each label will be assigned Oc =O/|C | output

neurons.

The vector ci associated with label ci ,1 ≤ i ≤ |C |, is generated as specified in Def. 6 with rate

λc . The overall vector associated with the target pattern for label i is then given by:

c⃗ = [0, . . . ,0,ci ,0, . . . ,0] (A.38)

where (i −1)Oc T zeros precede ci and (|C |− i )Oc T zeros follow ci . The target spike pattern

Xtar(ci ) represented as a matrix of dimensions O×T is then obtained by reshaping the vector c⃗

similarly as at the input (see Figs. A.4d, A.4e).
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A.2.4 Simulation Results

In this section we investigate the performance of the proposed system by simulations that are

conducted on two dataset types – images and texts. The MNIST dataset [Deng (2012)] is a well

established benchmark in machine learning as well as spiking neural network community.

While for MNIST it is possible to obtain high classification accuracy even with binarized input,

the Fashion-MNIST [Xiao et al. (2017)] image dataset is more challenging and requires signals

with higher precision to be input to the network. The third considered dataset is BBC News

[Greene and Cunningham (2006)]. It contains textual articles which should be classified by

the topic. We use a permutation invariant version of the three datasets and different fully-

connected architectures. Finally, we also demonstrate classification of colored images in 10

and 100 classes (CIFAR10 and CIFAR100 [Krizhevsky et al. (2009)]) for which we consider a

spiking convolutional neural network. Through simulations we compare the performance of

CTE and ECTE encoding schemes and multiplication-free SNN implementation.

After loading and initial preprocessing of the input dataset, the non-zero features’ values are

quantized in Q levels (see Def. 3), where bins are determined using the training dataset, such

that each bin contains the same number of instances. If many instances have the same value,

some bins may be merged, leading to an overall number of quantization levels equal to q f ≤Q.

For Q ≥ 2, far-left and far-right bin edges are set to −∞ and +∞, respectively, to be able to bin

large unseen values from validation and test datasets. As a special case, if Q = 1, the features

are binarized, and all non-zero values belong to the same bin with q f =Q = 1.

The system is set up with hyperparameters T = 100∗1ms, ν= 0.8 andβ= 0.07 (Eqs. A.11, A.12),

input rate (see Def. 5)λ f = 50H z and d f =λ f T = 5, output rateλc = 100H z and dc =λc T = 10,

whereas the van Rossum distance metric is computed with τm = 50 (Eq. A.14). SNN models are

trained with backpropagation through time, using an Adam optimizer [Kingma and Ba (2014)]

with β1 = 0.9,β2 = 0.999,ϵ= 10−7, exponential learning rate schedule (see Figs. A.5b, A.6b and

A.8b) and batch of size 64. The training dataset is shuffled as to avoid the impact of a specific

order on the training process. A network is trained using a weighted binary cross-entropy loss

(Eq. A.13) and a class is predicted that corresponds to a target spike pattern with the smallest

van Rossum distance (Eq. A.15, Fig. A.3a). A target spike pattern is generated such that the

neurons that are activated for the correct class start being active after 40 time steps (see Fig.

A.5d), to accommodate for transients of the neuronal membrane potential. We implement

regularization with dropout [Srivastava et al. (2014)] and early stopping [Goodfellow et al.

(2016)] with patience of 100 epochs.

We compare SNN performance with the performance of a corresponding architecture of a

fully-connected feed-forward ANN. For the ANN system, a dataset is loaded and the same

preprocessing steps are performed as with SNN. However, in the case of ANN the steps of

binning and encoding are ignored and real-valued vectors are sent to the input. The output of

the ANN is given by real values that are used to compute the categorical cross-entropy loss.

Training of the ANN is done using backpropagation (BP), while optimizer, learning schedule,
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regularization methods and batch size are identical to what is used with SNN. As a baseline,

the comparison is also done with a linear SVM [Cortes and Vapnik (1995)]. The input is exactly

the same as for the ANN and L2 regularization is used to avoid overfitting. For MNIST, Fashion-

MNIST, CIFAR10 and CIFAR100 datasets, results were obtained on test dataset, while for BBC

News, which is a much smaller dataset, we used 10-fold cross-validation. All experiments were

performed with 5 trials and mean value and standard deviation are reported.

We are also interested in the computational complexity of the proposed SNN system. To focus

on the impact of input encoding schemes, we report the number of operations executed in

the first hidden layer, i.e. W1 ·χ0
t and ν1M 1 ⊙s1

t (see Eqs. A.11, A.12), for all T time steps. The

contribution of the other neuronal operations inside a neuron, such as the computation of

activation functions, are ignored as they represent only a small fraction of the two previously

stated operations. The vectors a f ,i are stored in a dictionary and in the process of generating

input spike pattern they are read and concatenated with total complexity of O(|F |). Similarly,

assigning existing bins to features’ values has complexity of order of magnitude O(|F |). The

complexity of initial preprocessing steps will be briefly described for each dataset separately.

Similarly, in SVMs we observe the number of operations in matrix-vector multiplication of

weights and inputs (the number of additions is taken to be the same as the number of floating

point multiplications), whereas other operations are ignored.

MNIST

The MNIST dataset contains 70000 grayscale images of handwritten digits of shape 28×28,

labeled with one of the ten possible classes. 10000 images are used for testing while the rest

60000 are used for training and validation in ratio 9:1.

As the number of input pixels (features) is relatively large, the number of input neurons

N is chosen such that each feature corresponds to exactly one neuron, i.e. N = |F |. The

performance of the proposed system is tested in two architectures (see Fig. A.6a): a shallow

one containing one hidden layer and a large number of neurons (800) and a deeper one

containing three hidden layers with 256 neurons each. In a preprocessing step, the pixel values

of all images are normalized to the [0,1] range and flattened to 1D arrays. The complexity

of these operations is O(|F |). Pixel values are binned and input spike patterns are generated

using either the CTE or the ECTE algorithm (see Fig. A.6c). At the output of the SNN, each

class corresponds to 5 neurons (see Fig. A.6d).

After hyperparameter optimization, we find that the CTE algorithm performs better when the

input values are binarized with Q = 1, while ECTE yields better performance with higher Q

value and number of neighbours µ f (see Fig. A.5b). For all features f , µ f was set at 5, except

when q f < Q, in which case µ f = q f . The chosen values for µ f , η and δn are satisfying the

constrains in Eqs. A.33, A.34, A.35 and A.36. In Fig. A.5e we see that SNN models exhibit

performance close to the ANN model and much better than the SVM model. Notably, the ECTE

algorithm has a slightly higher accuracy than the CTE algorithm and the deeper architecture
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Figure A.5: Setup and results for the MNIST dataset, |F | = 784, T = 100, N f = 1, d f = 5 a) Two considered SNN architectures: 784-800-50
and 784-256-256-256-10 b) Hyperparameters, µ f , η and δn correspond to ECTE Alg. 3 c) An example of CTE encoding of pixels for two
images; a black pixel is encoded as a zero vector, whereas encoding vectors a f ,i of non-zero values are obtained as Poisson processes
with parameter d f ; as Q = 1, a vector a f ,i is the same for all non-zero values of a feature d) Target spike pattern of digit 0; First 40 time
steps of all neurons are set to zero e) Accuracy obtained for various systems; "shallow" and "deep" correspond to architectures with one
hidden layer and three hidden layers, respectively; f) Accuracy for multiplication-free SNN systems (denoted by ’ADD’) g) Number of
operations corresponding to first hidden layer for state-of-the-art and multiplication-free SNN systems expressed in additions (ADD)
and floating point multiplications (FPM)

99



Appendix A. Additional publications

performs slightly better than the shallow one. In Fig. A.5f we observe that training and

inference with a multiplication-free implementation of the system, doesn’t significantly affect

the accuracy. Finally, in Fig. A.5g the number of operations is presented for various algorithms.

For example, the number of multiplications for the first layer of ANN (and similarly for SVM)

is computed as 125600 = 0.2 ·784 ·800, where we use a factor of 0.2, as on average 80% of

input pixels are 0. The number of additions of a first layer of shallow SNN network with CTE

encoding is 868000 = 5 ·0.2 ·784 ·800+3 ·800 ·100. The first term corresponds to W1 ·χ0
t and

d f = 5 input spikes per neuron and the second term comes from ν1M 1 ⊙s1
t and is computed

for 100 time steps where each multiplications is replaced with 3 additions using shift-and-add

operations. Similarly, the number of additions of a first layer of deep SNN network with

ECTE encoding is 1445760 = 30 ·0.2 ·784 ·800+3 ·800 ·100. The number of input spikes per

neuron is dominated by ∆pat ter n f ,i , which has µ f · η <= 5 · 6 = 30 spikes, see Eq. A.34,

Alg. 3. For rate coding, the number of operations is calculated for the 5-layer system given

in [Woźniak et al. (2020)], where each hidden layer consists of 256 units. The number of

multiplications for 300 time steps is as ν1M 1 ⊙ s1
t = 256 ·300 = 76800, while the number of

additions is W1 ·χ0
t = 100 ·0.2 ·784 ·256 = 4014080 where we assume that all active pixels are

white and take the maximal spiking rate of 100.

Fashion-MNIST

The Fashion-MNIST dataset contains 70000 grayscale images of clothes and fashion items of

shape 28×28, labeled with one of the ten possible classes, such as ’pullover’, ’coat’ or ’sandal’.

Same as with MNIST, 10000 of images are used for testing while the rest 60000 are used for

training and validation in ratio 9:1. N is chosen such that N = |F |. Performance is evaluated

for a shallow architecture with one hidden layer containing 800 neurons and for a deeper one

having three hidden layers with 256 neurons each (see Fig. A.6a). Pixel values of all images

are normalized to [0,1], flattened and binned. Using either CTE or ECTE algorithm, bins are

encoded into vectors of spikes (see Fig. A.6c) which are then reshaped into input spike patterns.

Each class is assigned 10 output neurons (see Fig. A.6d).
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Figure A.6: Setup and results for the Fashion-MNIST dataset, |F | = 784, T = 100, N f = 1, d f = 5 a) Two considered SNN ar-
chitectures: 784-800-50 and 784-256-256-256-10 b) Hyperparameters c) An example of ECTE encoding of pixels for three im-
ages; Three consecutive values of 211-th pixel a211,1,a211,2,a211,3 are generated by changing corresponding µ f δn positions with
∆pat ter n211,1,∆pat ter n211,2,∆pat ter n211,3 respectively d) Target spike pattern of fifth class assigned to label ”Coat” e) Accuracy
for various systems f) Accuracy for multiplication-free SNN systems g) Number of operations corresponding to first hidden layer
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Figure A.7: Accuracy and number of operations for Fashion-MNIST dataset with multiplication-
free shallow network and ECTE algorithm; The reduced number of spikes and operations is
achieved by decreasing η while other hyperparameters are fixed

The chosen values for Q, µ f , η and δn are given in Fig. A.5b and satisfy the constrains (see

Eqs. A.33, A.34, A.35 and A.36). SNN models show performance close to the ANN model

and significantly outperform the SVM model (see Fig. A.6e). Notably, the ECTE algorithm

has significantly higher accuracy than the CTE algorithm, which justifies our assertion that

Fashion-MNIST is more challenging than MNIST and requires a higher input precision. Inter-

estingly, a deep architecture performs slightly worse than the shallow one, which is also the

case for the ANN. This is due to a smaller number of total parameters, once again suggesting

that Fashion-MNIST is a more diverse dataset. Multiplication-free implementation of the

system doesn’t affect the accuracy (see Fig. A.5f). In Fig. A.5g the number of operations

of various algorithms is calculated in the same manner as for MNIST, and the number of

non-zero pixels is around 50%. Importantly, reducing the number of operations for ECTE

algorithm leads to a drop of accuracy, but in a non-linear manner, see Fig. A.7.

BBC News

The BBC News dataset contains 2225 articles labeled with one of five possible topics, such

as ’sport’ or ’business’. Inputs are used for training and validation in ratio 9:1. Each article is

mapped into a real-valued vector where words are features and the tf-idf score [Manning and

Schutze (1999); Qaiser and Ali (2018)] denotes their significance in a particular document (see

Fig. A.8c). The complexity of these operations is O(|F |). Tf-idf score is computed as:

tf_idf(word,doc,CORP) = (A.39)

tf(word,doc) · idf(word,CORP) =
f r eqword,doc

max( f r eqdoc)
· log

|CORP|
|CORPword|

(A.40)
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where f r eqword,doc denotes the term frequency, i.e., the raw count of a word in a document,

max( f r eqdoc) = max{ f r eqword’,doc,word’ ∈ doc} and CORPword = {doc ∈ CORP : word ∈ doc}.

Corpus and ordering of words is determined (fit) from the training data.

Due to the large number of words in a corpus, the number of input neurons N is chosen

such that N = |F |. The performance is tested in a shallow architecture with one hidden layer

containing 200 units (see Fig. A.8a). Tf-idf values of words are binned and encoded using

either CTE or ECTE algorithm (see Fig. A.8c). At the output of SNN, 10 neurons are assigned to

each class (see Fig. A.8d).

Fig. A.8b reports the chosen hyperparameters for this dataset. Hyperparameter optimization

for Q, µ f , η and δn yields values that satisfy the constrains in Eqs. A.33, A.34, A.35 and A.36.

The performance of SNN system is close to that of the ANN model. Notably, the SVM model

with one layer yields a very good accuracy. Unlike image datasets, where classification thrives

when pixel values are processed in multiple layers, using deep networks seems not to improve

the accuracy in the case of tf-idf values. Notably, the ECTE and CTE algorithms have similar

performance (see Fig. A.8e). This suggests that the simple appearance of a particular word in

a document brings considerable information, yet the additional tf-idf similarity information

conveyed with ECTE further slightly improves the accuracy. In Fig. A.8f we observe that the

multiplication-free implementation only slightly reduces the performance of both CTE and

ECTE systems. Finally, the number of operations for the different algorithms is computed in

the same manner as for the corresponding systems with MNIST and Fashion-MNIST datasets

(see Fig. A.8g). The number of non-zero tf-idf values in the input vector is around 32%.

CIFAR10 and CIFAR 100

The CIFAR10 and CIFAR100 datasets contain 60000 colored images of shape 32×32×3, labeled

with one of the 10 and 100 possible classes, respectively. 10000 of images are used for testing

while the rest 50000 are used for training. N is chosen such that N = |F |. Pixel values of all

images are normalized.

We test two different setups. In the first case we use the pretrained ANN weights of the

convolutional part of the model based on VGG16 network [Geifman (2018)] to generate a

feature vector of size 512. The feature vector is binned and encoded into vectors of spikes

using either CTE or ECTE algorithm, and then reshaped into an input spike pattern. This

input is sent to a fully-connected classifier which is trained, see Fig. A.9a. Each class is

assigned 1 and 5 output neurons for CIFAR10 and CIFAR100, respectively. For both CIFAR10

and CIFAR100 the obtained performance shows that there is almost no loss of accuracy of SNN

classifier compared to ANN classifier, see Fig. A.9b. For higher efficiency it is also possible to

train a spiking convolutional network. To showcase the performance of our approach with

convolutional layers, we trained a 4-layer spiking convolutional neural network, see Fig. A.9c.

In this case, pixel values of all images are flattened and binned. Using either CTE or ECTE

algorithm, bins are encoded into vectors of spikes which are then reshaped into input spike
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Figure A.8: Setup and results for the BBC News dataset, |F | ≈ 10000, T = 100, N f = 1, d f = 5 a) SNN Architecture: 10000-200-50; the
number of input neurons depends on the number of words in the training data, which is typically around 10000 b) Hyperparameters
c) An example of ECTE encoding of word "early" for three articles; word "early" is 5681-th in the fixed ordering; the first document
has low tf-idf value, therefore it corresponds to a5681,1, whereas the second document has high tf-idf value and corresponds to a5681,4;
the two vectors have small overlap denoted with bold text; the last document doesn’t contain the word "early", and is encoded as a
zero vector d) Target spike pattern of fifth class assigned to label "sport" e) Classification accuracy for various systems f) Accuracy for
multiplication-free SNN systems g) Number of operations for the first hidden layer
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Figure A.9: Setup and results for the CIFAR10 and CIFAR100 datasets a) Fully-connected SNN classifier architectures b) Accuracy of
CIFAR10 and CIFAR100 datasets obtained with SNN classifiers; The performance is compared with fully-connected ANN classifiers
with the same architecture; c) Spiking convolutional neural network trained with both temporal encoding (ECTE and CTE) and rate
encoding; d) Top-5 accuracy of the spiking convolutional neural networks g) Number of operations in the first hidden layer of spiking
convolutional neural network;
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patterns of shape 32×32×3×T . Each class is assigned 1 output neuron. This small network

leads to the top-5 classification accuracy of around 95% on CIFAR10 and around 50% on

CIFAR100, see Fig. A.9d.

The chosen values of Q, µ f , η and δn as well as training procedure is exactly the same as for

the MNIST dataset, see Fig. A.5b. The dropout value is 0.2, whereas ω= 20. We emphasize that

for the convolutional spiking neural network architecture we didn’t perform an exhaustive

hyperparameter search and the number of training epochs was limited to 150. To make a

comparison with rate coding scheme we train the same network with the rate encoded input

following the same steps as in [Woźniak et al. (2020)]. In Fig. A.5g the number of operations

of various algorithms is calculated in the same manner as for MNIST, and the number of

non-zero pixels is estimated at 100%. The rate-coded system requires higher latency and larger

number of spikes to achieve high accuracy.

Discussion

Our goal is to devise a low-complexity data classification system, which can be used for various

data types. In Fig. A.3a we introduce a computationally efficient SNN model and consider

a fully-connected feed-forward architecture, which doesn’t assume any prior knowledge on

the data type. Figs. A.4, A.5c, A.6c and A.8c depict two novel temporal coding schemes

which reduce the number of spikes while retaining important properties, e.g., similarity-

preserving input coding and orthogonality of the output patterns. Furthermore, we propose

a multiplication-free implementation that is accomplished by removing all multiplications

from the model, and replacing them with additions, see Fig. A.3c. Finally, Figs. A.9c and A.9d

show that our approach can readily be extended to spiking convolutional neural networks.

In the theoretical study, we introduce similarity metrics (see Eqs. A.22 and A.32) between

data items and prove that, for a length of the input patterns n →∞, our encoding methods

preserve similarity in the SNN input. We find that n = 100 is sufficient in practice to yield

high classification accuracy, whereas higher values of n either bring negligible performance

improvements or even reduce the accuracy because of overfitting.

Figs. A.5f, A.6f, A.8f and A.9b show that the proposed system achieves high classification

accuracy across various datasets for both the CTE and ECTE schemes with ECTE regularly

outperforming CTE. In Figs. A.5g, A.6g, A.8g and A.9e, where the number of operations in the

first hidden layer is shown, we see that this higher performance comes at the cost of utilizing a

larger number of spikes and operations. Moreover, the multiplication-free system (denoted

with ADD) experiences no loss of performance. These methods preserve the similarity of

values for individual features, but not across different features. For some datasets, this does

not seem to be a limitation, but extending our correlative temporal encoding techniques to

also preserve the similarity information across features might represent a promising avenue.

Our method is complementary to the TTFS and rate coding. On one hand, the TTFS technique
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offers classification with small number of spikes and low latency, however so far this technique

has been mainly shown to work in shallow networks [Comşa et al. (2021); Mostafa (2018)].

Furthermore, for each neuronal dynamics, this approach requires a novel mathematical

framework for training, whereas in our case BPTT performs the learning for any type of unit.

Finally, since our approach utilizes multiple spikes to encode each value, it might be more

robust towards jitter and therefore more suitable for hardware implementation. On the other

hand, using rate coding and BPTT it is possible to scale SNN models to large number of layers

and different neuronal dynamics [Woźniak et al. (2020); Neftci et al. (2019)], however the

number of used spikes and latency is high. Our approach can be trained easily with BPTT

and scales to larger number of layers, while also being efficient in terms of spikes, number of

operations and latency, see Fig A.5g, A.6g, A.8g, A.9e. Moreover, it is well suited for classification

tasks, where a continuous stream of input data, e.g., images or text, needs to be processed.

In this work, we are interested in exploring the trade-off between accuracy and resources

expressed through the number of parameters, inference delay or computational complexity.

The recent results on MNIST dataset show that increasing the amount of resources leads to

higher performance. For example, in [Woźniak et al. (2020)], the rate coding utilizes signifi-

cant number of time steps and spikes which translates to large latency and computational

complexity. However, even with a relatively small number of parameters in fully-connected

784-256-256-256-10 architecture and standard leaky integrate-and-fire neuronal dynamics,

the authors report a good accuracy of 98.37%. On the contrary, in [Zhang et al. (2019a)], the

inference results on the MNIST dataset are obtained with low latency. Nonetheless, even with

complex neuronal behaviour which is adapting over time and the large number of parameters

in fully-connected 784-1200-1200-10 architecture, the reached accuracy is only 97.2% (see Fig.

A.5e). In [Mostafa (2018)], the inference is done with small latency and it requires only one

spike per neuron, however the fully-connected 784-800-10 architecture reaches accuracy of

only 97.55% and the algorithm does not seem to scale to deeper networks.

When it comes to training SNNs, simpler benchmarks such as MNIST are typically chosen.

Here we go a step further and consider two more challenging image datasets as well as a

benchmark from the group of natural language processing tasks. One recent work on Fashion-

MNIST dataset considers a fully-connected 784-200-200-200-200-200-10 architecture and

standard leaky integrate-and-fire neural dynamics [Zhao et al. (2020)]. The reported maximum

accuracy of 89.05% is lower than the average accuracy which we obtain for a similar number

of parameters. It is worth mentioning that the Fashion-MNIST dataset is often considered

with convolutional architectures [Ranjan et al. (2020); She et al. (2019)] which are specialized

in image processing. Therefore the results of fully-connected architectures are still 4% lower

than the accuracy achieved by the state-of-the-art CNNs. For CIFAR10 and CIFAR100 datasets

we consider a fully-connected classifier trained on feature vectors which are obtained from a

preprocessing step corresponding to the analogue processing happening in the eye (before

the spikes are sent down the optical nerve) [Volobuev et al. (2011)]. Even though the spiking

classifier is efficient, the convolutions which are performed in the preprocessing step can

lead to large complexity. For an increased energy efficiency some of the later convolutional
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layers could be transformed into spiking and trained. For the maximal efficiency, we train

an end-to-end spiking convolutional neural network, see Figs. A.9c, A.9d. In case of the

image datasets, increasing the number of parameters and depth of the network appears to be

advantageous in terms of achieved accuracy. In general, employing more complex neuronal

dynamics and trying out different shapes of pseudo-derivative during training could lead to

interesting insights and increase of the performance.

This work provides a bridge between models using rate coding and the temporal coding with

only one spike per neuron. Besides its efficiency, one of the most attractive characteristics

of the proposed system is its flexibility. Namely, using well-established frameworks it is easy

to train novel architectures and neural dynamics. Importantly, as we can see in Fig. A.7,

ECTE method makes it possible to control the trade-off between accuracy and computational

complexity through a simple change of η or µ f hyperparameters in Alg. 3.

The computational complexity of a neuron is often ignored in the SNN literature, even though

for large observation intervals it can be dominant and significantly reduce the advantage

obtained through spike-based neural communication. In our system, the precision of a multi-

plication approximation can be readily controlled by adjusting the number of additions (see

Eq. A.17). In practice, we find that three shift-and-add operations are sufficient to avoid per-

formance deterioration. For a more detailed analysis, one could compare the computational

complexity of the complete system. In this case, the multiplication-free van Rossum distance

computation would bring a non-negligible complexity reduction (see Eqs. A.18, A.19). Further

improvement of the overall network efficiency could be obtained by regularizing the number

of spikes in the hidden layers [Woźniak et al. (2020); Bellec et al. (2018)].

Our complexity calculations aim at providing a basis for investigations on algorithmic trade-

offs often posed to SNN systems, without addressing the details of hardware implementation.

We remark that addition-based systems exhibit highly desirable properties for the hardware

implementation of SNNs [Farsa et al. (2019)], as present hardware solutions suggest that

full-precision multiplications are significantly more expensive in terms of energy than addi-

tions. In fact, multiplications are estimated to require up to two orders of magnitude more

energy per operation than additions, depending on the number of bits and on the adopted

VLSI technology [Horowitz (2014); Sze et al. (2019)]. As a final remark, recent works de-

scribe hardware-friendly local implementations of the BPTT training algorithm [Bellec et al.

(2018); Neftci et al. (2019); Bohnstingl et al. (2022b)], which can potentially be extended to a

multiplication-free implementation.

A.2.5 Conclusions and future work

An SNN-based system for classification with low computational complexity was introduced.

The complexity was primarily reduced by engaging temporal coding which has been shown

to be part of the processing in some areas of the brain and is an efficient way of information

encoding. In order to represent the real-valued features in the form of spike trains at the input
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of the SNN, two novel temporal coding schemes were presented that map such features to

correlated input spike patterns. Furthermore, we propose the implementation of the system

based solely on additions. Various models and configurations are investigated on the data

classification task and their accuracy is evaluated on image and textual datasets. Temporal

coding schemes together with multiplication-free implementation provide significantly higher

efficiency whereas the classification accuracy is at par with that of ANN and linear SVM

with full precision multiplications and similar number of parameters. The flexibility of the

system makes it easy to combine this work with more complex neuronal dynamics as well

as to make trade-offs between resources and performance for each use case. Therefore, our

low-complexity and high-accuracy system is a viable choice for neuromorphic hardware.

This work bridges the SNN models using widely adopted yet inefficient rate coding and sparse

models built on the premise of temporal coding. Namely, we introduce SNN-based systems

where the amount of sparsity and the exact form of the input spike patterns are controlled

via hyperparameters. For the future it would be interesting to utilize this set up and observe

how the number of spikes and the specific form of a temporal coding scheme impact the

accuracy for various benchmarks. It is conjectured that inference on certain datasets is

impacted stronger by the sparsity. For a concrete hardware implementation this information

is important, as the number of spikes and computational complexity translate into energy

consumption and area.

The main contribution of this work is provided by two temporal coding schemes, making it

possible to reach good performance on benchmark tasks using temporal coding. However,

there is room for further improvement in a form of a general theoretical framework that would

provide a mapping from analog values to input spike patterns without any loss of information.

For example, it would be interesting to further generalize the concepts of ECTE which are

proven to be effective in an experimental setting.

The proposed SNN-based system reaches its full potential when running on a hardware

accelerator, which would fully utilize its sparsity and multiplication-free implementation.

The concrete hardware design is a topic of interest and one of the most significant future

endeavors. In fact, it is of importance to develop solutions and perform simulations while

considering a hardware implementation. Therefore, future work includes testing the impact

of quantization on the system performance, as well as implementing a hardware-friendly local

realization of the BPTT training algorithm.
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A.3 Design of Time-Encoded Spiking Neural Networks in 7nm CMOS

Technology

Paper information

Authors: Sandro Widmer, Marcel Kossel, Giovanni Cherubini, Stanisław Woźniak, Pier Andrea

Francese, Ana Stanojevic, Matthias Brändli, Klaus Frick, Angeliki Pantazi

Abstract In biologically inspired spiking neural networks (SNNs) neurons communicate by

short pulses, called spikes. SNNs have the potential to be more power efficient than artificial

neural networks (ANNs), thanks to the fewer computational steps required by the spike trans-

mission and processing, as compared to the multiply-and-accumulate (MAC) operations with

wide bitvectors usually adopted in ANNs. We present the design of two types of SNNs with

integrate-and-fire dynamics and single-spike per neuron operation, where neural commu-

nication is based on synchronous time-to-first-spike (sTTFS) and time-to-first-spike (TTFS)

encoding schemes. In the considered time-encoded SNNs, the information is carried by the

timing of the spikes with respect to a reference time. In 7nm CMOS technology both designs

are synthesized as VHDL-based random-logic-macros (RLMs) and compared to an equivalent

ANN design in terms of power consumption, latency and silicon area, using the Iris data set

for inference. A cost function expressed as a product of energy consumption and silicon area

is introduced to compare the three network designs. With respect to this cost function, it turns

out that the SNN-TTFS implemented for the considered classification task outperforms the

ANN used as baseline model.

Keywords Spiking neural networks (SNNs), artificial neural networks (ANNs), synchronous

time-to-first-spike (sTTFS) encoding, time-to-first-spike (TTFS) encoding

Publication [Widmer et al. (2023)] (https://ieeexplore.ieee.org/document/10129114).
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Thomas Bohnstingl, Stanisław Woźniak, Angeliki Pantazi, and Evangelos Eleftheriou. Online

spatio-temporal learning in deep neural networks. IEEE Transactions on Neural Networks

and Learning Systems, 2022b.

Sander M Bohte. Error-backpropagation in networks of fractionally predictive spiking neurons.

In International Conference on Artificial Neural Networks, pages 60–68. Springer, 2011.

Sander M Bohte, Joost N Kok, and Han La Poutre. Error-backpropagation in temporally

encoded networks of spiking neurons. Neurocomputing, 48(1-4):17–37, 2002.

Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F Oliveira,

Xiaoyu Ma, Eric Shiu, and Onur Mutlu. Google neural network models for edge devices:

Analyzing and mitigating machine learning inference bottlenecks. In 2021 30th International

Conference on Parallel Architectures and Compilation Techniques (PACT), pages 159–172.

IEEE, 2021.

Irem Boybat, Manuel Le Gallo, S. R. Nandakumar, Timoleon Moraitis, Thomas Parnell, Tomas

Tuma, Bipin Rajendran, Yusuf Leblebici, Abu Sebastian, and Evangelos Eleftheriou. Neuro-

morphic computing with multi-memristive synapses. Nature Communications, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models

are few-shot learners. Advances in neural information processing systems, 33:1877–1901,

2020.

112



Bibliography

T. Bu, W. Fang, J. Ding, P. Dai, Z. Yu, and T. Huang. Optimal ann-snn conversion for high-

accuracy and ultra-low-latency spiking neural networks. ICLR, 2022.

Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Improved binary neural networks.

arXiv preprint arXiv:1909.13863, 2019.

Geoffrey W Burr, Robert M Shelby, Abu Sebastian, Sangbum Kim, Seyoung Kim, Severin

Sidler, Kumar Virwani, Masatoshi Ishii, Pritish Narayanan, Alessandro Fumarola, et al.

Neuromorphic computing using non-volatile memory. Advances in Physics: X, 2(1):89–124,

2017.

Zhiqiang Cao, Long Cheng, Chao Zhou, Nong Gu, Xu Wang, and Min Tan. Spiking neural

network-based target tracking control for autonomous mobile robots. Neural Computing

and Applications, 26(8):1839–1847, 2015.

Giovanni Cherubini, Jens Jelitto, and Vinodh Venkatesan. Cognitive storage for big data.

Computer, 49:43–51, September 2016.

Giovanni Cherubini, Ana Stanojevic, and Abu Sebastian. Correlative time coding method for

spiking neural networks, 2022. US Patent 11,403,514.
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Stanisław Woźniak, Angeliki Pantazi, Thomas Bohnstingl, and Evangelos Eleftheriou. Deep

learning incorporating biologically inspired neural dynamics and in-memory computing.

Nature Machine Intelligence, 2(6):325–336, 2020.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,

Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental

implications, challenges and opportunities. Proceedings of Machine Learning and Systems,

4:795–813, 2022.

Timo C Wunderlich and Christian Pehle. Event-based backpropagation can compute exact

gradients for spiking neural networks. Scientific Reports, 11:12829, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for bench-

marking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Zihan Xu, Mingbao Lin, Jianzhuang Liu, Jie Chen, Ling Shao, Yue Gao, Yonghong Tian, and

Rongrong Ji. Recu: Reviving the dead weights in binary neural networks. In Proceedings of

the IEEE/CVF international conference on computer vision, pages 5198–5208, 2021.

Adam Yala, Constance Lehman, Tal Schuster, Tally Portnoi, and Regina Barzilay. A deep

learning mammography-based model for improved breast cancer risk prediction. Radiology,

292(1):60–66, 2019.

D.L.K. Yamins and J.J. DiCarlo. Using goal-driven deep learning models to understand sensory

cortex. Nat. Neurosci., 19:356–365, 2016.

Zhanglu Yan, Jun Zhou, and Weng-Fai Wong. Near lossless transfer learning for spiking neural

networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages

10577–10584, 2021.

K. Yang, J.H. Yau, J. Deng, and O. Russakovsky. A study of face obfuscation in imagenet. Proc.

39th Intern. Conf. Machine Learning PMLR, 162(1):25313–25330, 2022.

123



Bibliography

Gang Yu, Kai Sun, Chao Xu, Xing-Hua Shi, Chong Wu, Ting Xie, Run-Qi Meng, Xiang-He Meng,

Kuan-Song Wang, Hong-Mei Xiao, et al. Accurate recognition of colorectal cancer with

semi-supervised deep learning on pathological images. Nature communications, 12(1):6311,

2021.

Davide Zambrano, Roeland Nusselder, H Steven Scholte, and Sander M Bohté. Sparse compu-

tation in adaptive spiking neural networks. Frontiers in neuroscience, 12:987, 2019.

F. Zenke and T.P. Vogels. The remarkable robustness of surrogate gradient learning for instilling

complex function in spiking neural networks. Neural Computation, page 899–925, 2021.

Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking

neural networks. Neural computation, 30(6):1514–1541, 2018.

Friedemann Zenke, Everton J Agnes, and Wulfram Gerstner. Diverse synaptic plasticity mech-

anisms orchestrated to form and retrieve memories in spiking neural networks. Nature

communications, 6(1):1–13, 2015.

Anguo Zhang, Hongjun Zhou, Xiumin Li, and Wei Zhu. Fast and robust learning in spiking

feed-forward neural networks based on intrinsic plasticity mechanism. Neurocomputing,

365:102–112, 2019a.

Lei Zhang, Shengyuan Zhou, Tian Zhi, Zidong Du, and Yunji Chen. Tdsnn: From deep neural

networks to deep spike neural networks with temporal-coding. In Proceedings of the AAAI

conference on artificial intelligence, volume 33, pages 1319–1326, 2019b.

Malu Zhang, Jiadong Wang, Jibin Wu, Ammar Belatreche, Burin Amornpaisannon, Zhixuan

Zhang, Venkata Pavan Kumar Miriyala, Hong Qu, Yansong Chua, Trevor E Carlson, et al.

Rectified linear postsynaptic potential function for backpropagation in deep spiking neural

networks. IEEE Transactions on Neural Networks and Learning Systems, 33(5):1947–1958,

2021.

Dongcheng Zhao, Yi Zeng, Tielin Zhang, Mengting Shi, and Feifei Zhao. Glsnn: A multi-

layer spiking neural network based on global feedback alignment and local stdp plasticity.

Frontiers in Computational Neuroscience, 14, 2020.

Bolei Zhou. Github, 2018. URL https://github.com/zhoubolei.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10

million image database for scene recognition. IEEE transactions on pattern analysis and

machine intelligence, 40(6):1452–1464, 2017.

124

https://github.com/zhoubolei


PERSONAL INFORMATION Ana Stanojevic

Wasserschöpfi 49, 8055 Zurich, Switzerland

+41786832054

anastanojevic93@gmail.com

github.com/ana-stanojevic

Date of birth 26/06/1993 | Nationality Serbian | Swiss residence permit C

PROFESSIONAL EXPERIENCE

(Oct. 2019 - Oct. 2023) Predoctoral researcher, machine learning
IBM Research, Zurich (https://www.zurich.ibm.com/)

▪ Topic: spiking neural networks - learning algorithms, input encoding schemes, neural
dynamics, applications of spiking neural networks in big data

(Feb. 2019 - Aug. 2019) Researcher, machine learning (Internship)
IBM Research, Zurich (https://www.zurich.ibm.com/)

▪ Master’s thesis topic: File Classification Based on Spiking Neural Networks
​ Supervisors: Prof. Dr. Wulfram Gerstner, Dr. Giovanni Cherubini, Dr. Abu Sebastian

▪ Technologies: TensorFlow, Python;
(Aug. 2018 - Feb. 2019) Software engineer (Internship)

Google, Zurich (https://www.google.com/about/)
▪ Topic: Google Assistant product, Improving the relevance of a given answer in case when

user issues multiple dependent queries
▪ Technologies: Python, C++;

(Jun. 2017 - Feb. 2018) Data scientist (Junior)
Deeption, Lausanne (http://deeption.com//)

▪ Topic: Analysing public opinion on social media
▪ Technologies: Python (data science libraries), Twitter API, Stanford Parser, FastText,

SIF embedding, Gephi, Elastic Search, JavaScript;
EDUCATION
(Feb. 2020 - Nov. 2023) PhD student of computer and communication sciences

Laboratory of computational neuroscience (LCN), Supervisor: Prof. Wulfram Gerstner
École Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Communication
Sciences, Lausanne

▪ Subjects - Networks out of control, Deep Learning in Artificial and Biological Neuronal
Networks, Spatio-Temporal Modelling in Biology, Mobile Health and Activity Monitoring;

▪ Semester project: “Time-to-First-Spike Coding for Spiking Neural Networks”, LCN;
▪ Semester project: “Efficient Hardware Implementation of Gaussian Proc. Modelling”, LIA

(Sept. 2016 - Sept. 2019) Master of Science in Communication Systems
Specialization: Data analytics
École Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Communication
Sciences, Lausanne

▪ Subjects - Pattern classification and machine learning; Applied data analysis; Analytic
algorithms; Cryptography and security; Computer vision; Distributed information systems,
Data visualisation, Information theory and coding, A network tour of data science,
Entrepreneurship laboratory (e-lab), Deep learning, Lab in data science, Artificial neural
networks, Statistical signal and data processing, Industrial automation;

▪ Semester project: “Data analytics of MOOC (massive open online course) data”, CHILI lab;

(Sept. 2012 - Aug. 2016) Bachelor of Science in Electrical and Computer Engineering
School of Electrical Engineering, Department of Computer and Software Engineering, Belgrade

▪ Subjects - Algorithms and Data Structures; Databases; System Programming; Computer
networks; Compilers; Software Design; VLSI Computer Systems;

▪ Bachelor’s thesis: Development of ML tool for restoring diacritical characters in text.
TEACHING EXPERIENCE

(Jan. 2021 - Jan. 2023) Teaching Assistant

125



École Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Communication
Sciences, Lausanne

▪ Course: Artificial Neural Networks

(Feb. 2017 - Jul. 2018) MOOC Teaching Assistant (“Smart Cities - Management of Smart Urban Infrastructures”)
IGLUS - Innovative Governance of Large Urban Systems, Lausanne (http://iglus.org/)

▪ Daily discussions with international participants about Smart Cities and Internet of Things.
TECHNICAL SKILLS

▪ Programming languages/Libraries: C, C++, Java, Python, Matlab, JavaScript, Bash,
Keras, PyTorch, sklearn, pandas, Tensorflow;

▪ Big Data: Apache Spark, Apache Hadoop HDFS, Apache Kafka;
▪ Misc: Mathematica, LaTex, SQL, git, Docker;

AWARDS AND DIPLOMAS
▪ EPFL Excellence Fellowship, Lausanne, 2016-2018
▪ Dositeja award, Serbian Government Fund for Young Talents, Scholarships for the best

students of the final years, Serbia, 2015/2016
▪ Scholarship for exceptionally talented high school and university students, Ministry of

Education, Science and Technological Development, Serbia, 2009-2015
▪ Certificate for successful completion of International Summer School for Young

Physicist, Perimeter Institute, Canada, 2010
SELECTED PUBLICATIONS
AND PATENTS

▪ Giovanni Cherubini, Ana Stanojevic, Abu Sebastian, “Correlative time coding method
for spiking neural networks”, US Patent App. 15/931,514, 2021

▪ Stanojevic, Ana, et al. "Approximating ReLU Networks by Single-Spike Computation”,
2022 IEEE International Conference on Image Processing (ICIP), 2022
We show that an SNN with time-to-first-spike (TTFS) encoding and a specific piecewise
linear postsynaptic potential approximates a standard ReLU network. Adapting batch
normalisation paradigm during learning yields ANN-like performance of our 2-layer SNN on
image classification task (MNIST).

▪ Stanojevic, Ana, et al. "Time Encoding Schemes in Spiking Neural Networks with no
Multiplications: Data Classification Application”, 2022, Neural Computing and
Applications journal
We leverage surrogate gradient for SNN training, and propose two temporal encoding
schemes which translate the similarity of the analog input into a correlation of the
corresponding input spike patterns. Using our multiplication-free SNN system it is possible
to obtain a good performance on image classification tasks (MNIST and CIFAR10).

▪ Stanojevic, Ana, et al. "An Exact Mapping from ReLU Networks to Spiking Neural
Networks”, 2023, Neural Networks, under review
We find that there exist a neural dynamics and a set of parameter constraints which
guarantee an approximation-free mapping from ReLU network to an SNN with TTFS
encoding. A pretrained deep ReLU network can be replaced with deep SNN without any
performance loss on large-scale image classification tasks (CIFAR100 and PLACES365).

▪ Stanojevic, Ana, et al. "Are training trajectories of deep single-spike and deep ReLU
network equivalent?”, 2023, NeurIPS2023, under review
We discover that the reason for unsuccessful training of deep SNNs with TTFS encoding is
vanishing-and-exploding gradient problem. A particular neural dynamics and a set of
parameter constraints solves the problem and yields the same learning trajectories as ReLU
network on large image classification tasks (CIFAR100 and PLACES365).

LANGUAGES
LISTENING READING SPEAKING WRITING

English C2 C2 C1 C1
Certification - TOEFL iBT: 102 points (120 maximum), Sept. 2015

German B1 A2 B1 A2
fide-Test, Jan. 2023

French A1 A1 A1 A1
Attestation – EPFL Centre de langues – Modules Intensifs – Niveau A1, Aug. 2016

VOLUNTEERING EXPERIENCE

(Sept. 2019 - Jun. 2021) IT Trainer
Powercoders (A coding academy for refugees), Zurich (https://powercoders.org/)

126


	Acknowledgements
	Abstract (English/Deutsch)
	Contents
	Introduction
	Motivation
	Spike encoding
	Spiking neural networks (SNNs)
	SNNs with temporal coding
	Image classification task
	Thesis structure
	Author contributions

	An exact mapping from ReLU networks to spiking neural networks
	Introduction
	Results
	Main Theoretical Result
	Proof Sketch of Main Theoretical Result
	Examples of equivalent mappings
	Performance on Benchmark Datasets

	Discussion
	Methods
	Preprocessing
	Conversion to SNN
	Conversion of Max pooling
	Mapping of the output layer
	Final remarks regarding the mapping
	Datasets


	Are training trajectories of deep single-spike and deep ReLU network equivalent?
	Introduction
	Definition and properties of time-to-first-spike networks
	Analysis of learning dynamics
	Benchmark results
	Discussion and future work
	Supplemental information
	Generalization to other neuronal dynamics
	Setting tmax(n) and the threshold
	Simulation details


	Conclusion
	Additional publications
	Approximating ReLU networks by single-spike computation
	Introduction
	Method
	Results
	Conclusion

	Time-encoded multiplication-free spiking neural networks: application to data classification tasks
	Introduction
	System Architecture
	Time Encoding of Input and Target Patterns
	Simulation Results
	Conclusions and future work

	Design of Time-Encoded Spiking Neural Networks in 7nm CMOS Technology

	Bibliography
	Curriculum Vitae



