
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Worst-Case Delay Analysis of Time-Sensitive
Networks with Network Calculus

Seyed Mohammadhossein TABATABAEE

Thèse n° 10 523

2023

Présentée le 15 décembre 2023

Prof. V. Kuncak, président du jury
Prof. J.-Y. Le Boudec, Prof. P. Thiran, directeurs de thèse
Prof. A. Rizk, rapporteur
Prof. J. Schmitt, rapporteur
Prof. M. Grossglauser, rapporteur

Faculté informatique et communications
Laboratoire pour les communications informatiques et leurs applications 2
Programme doctoral en informatique et communications

To Mahshid, my extraordinary mother

To Mehdi, my strong father

To Nasim, my beloved wife . . .

Acknowledgements

First and foremost, I extend my heartfelt thanks to my thesis director, Prof. Jean-Yves Le

Boudec. I cannot thank him enough for his invaluable guidance, support, and mentorship

throughout my PhD research. His passion for research, dedication to teaching, and commit-

ment to excellence have inspired me and countless others. Working under his supervision and

learning from him has been a real honor. As his final PhD student, I can only confirm that he

has profoundly impacted the lives of so many students, researchers, and colleagues. I also

thank my thesis co-director, Prof. Patrick Thiran, who agreed to be my backup advisor and has

made this PhD thesis possible and peaceful.

I thank my PhD defense committee members, Prof. Viktor Kunčak, Prof. Amr Rizk, Prof. Jens

Schmitt, and Prof. Matthias Grossglauser, for their time and support through this final step of

the PhD process.

Having the best administrative assistants facilitated my life in Lausanne: The LCA2 secretaries,

Patricia Hjelt and Angela Devenoge, were extremely helpful in assisting me with settling down

and coordinating my work trips. Holly B. Cogliati, a professional editor, was always willing

to hollify my papers’ English and lend a hand in filling in any missing articles. Regarding

technical IT issues, the system administrators, Marc-André Lüthi and Yves Lopes, were my

go-to people. I truly appreciate all these individuals’ dedication and hard work.

During my time in LCA2, I had the wonderful opportunity to work alongside pleasant col-

leagues such as Jagdish, Marguerite, Roman, Alaeddine, Ehsan, Ludovic, Stéphan, Plouton,

and Louis. We always had interesting discussions during lunch and coffee breaks. And we

collaborated to organize course exercises and projects, sharing many enjoyable moments. I

thank all the bachelor’s and master’s students I had the pleasure to work with on fascinating

projects: Andrea, Karim, Dubravka, Cyril, Weiran, Chun-Tso, and Edin. Also, I thank my friends

outside LCA2 and the Iranian community that mainly formed my outside-the-office life.

I am deeply grateful to my parents, Mahshid and Mehdi, for your unwavering support, par-

ticularly during my PhD journey. I could not have accomplished anything without your love,

encouragement, and faith in me. I am forever grateful for the opportunities you have given

me. Thank you for always believing in me and for your unconditional love. Also, I give many

thanks to my super-kind sister, Malihe, and my brothers, Amin and Ehsan, for being the best

i

Acknowledgements

siblings I could wish for.

Last but certainly not least, I extend my heartfelt thanks to my loving wife, Nasim. Your unwa-

vering belief in me, patience, and understanding have been the bedrock of my achievements.

Your continuous support and selflessness have upheld me during difficult moments, and your

companionship has given purpose to this adventure. I appreciate you consistently being by

my side when I needed you the most.

Lausanne, July 21, 2023 Hossein Tabatabaee

ii

Abstract

Time-sensitive networks, as in the context of IEEE Time-Sensitive Networking (TSN) and IETF

Deterministic Networking (DetNet), offer deterministic services with guaranteed, bounded

latency in order to support safety-critical applications. In this thesis, we focus on the analysis

of time-sensitive networks to address an essential requirement, namely, worst-case delay.

Finding the exact worst-case delays is an NP-hard problem that is generally not feasible;

therefore, we are interested in bounds on the worst-case delays. To this end, a standard

approach is network calculus. It abstracts the service offered by a node by means of a service

curve. It then uses service-curve characterizations of the network nodes and arrival curves of

flows at their sources and obtains end-to-end delay bounds; an arrival curve is a constraint on

the amount of data a flow can send, and it is necessary to obtain finite delay bounds.

First, service-curve characterizations, in some cases, were too simple or non-existent: Round-

robin schedulers are widespread, particularly in request balancing in cloud infrastructures,

in the Linux Virtual Server scheduling, and in network on chip, and they are known to have

efficient implementations. Also, they can be applied to time-sensitive networks, however,

they have not been fully analyzed in this context. Interleaved Weighted Round-Robin (IWRR)

is a variant of the classic Weighted Round-Robin (WRR) with a smoother service; no prior

literature has obtained delay bounds for IWRR. We find the best obtainable strict service curve

for IWRR, and we show that delay bounds derived from it are tight for flows of packets of

constant size. With IWRR and WRR, the allocated bandwidth to each flow depends on the

packet sizes; Deficit Round-Robin (DRR) is a later variant that solves this and provides fair

queuing with variable-length packets. We derive the best obtainable strict service curve for

DRR, where delay bounds derived from it dramatically dominate all previous works. So far, we

have not considered that DRR automatically allocates unused capacity to improve service for

other queues. Hence, we obtain delay bounds that remain valid, even if some traffic classes

misbehave, but might be overly pessimistic in cases where interfering traffic is limited and

behaves as expected. For such cases, we find novel strict service curves for DRR and show that

delay bounds derived from them significantly dominate all previous works. Following our

work for DRR, others found similar results for WRR and IWRR. End-to-end delay bounds in a

DRR network can be obtained using global network analysis with our DRR strict service curve.

For the former, Polynomial-size Linear Programming (PLP) is known to provide better bounds

and larger stability region compared to its existing alternatives, but it was never applied to DRR

iii

Abstract

networks. However, this raises dependency loops in networks with cyclic dependencies: On

the one hand, our DRR strict service curves rely on traffic characteristics inside the network,

which comes as the output of PLP. On the other hand, PLP requires prior knowledge of the

DRR service curves. Iterative methods can solve this. However, PLP itself requires making

cuts, which imposes other levels of iteration. We propose, PLP-DRR, a generic method for

combining all the iterations sequentially or in parallel. We provide the best-known, proven

worst-case delay analysis of time-sensitive networks of generic topology with round-robin

schedulers, which dramatically dominate all previous works.

Second, for tractability, the arrival curve constraints of flows are often taken to be affine

functions. For periodic flows, a common and critical type of traffic in time-sensitive networks,

affine arrival curves are known to provide less good bounds than ultimately pseudo-periodic

(UPP) arrival curves that precisely capture the periodic behaviors. This is because, in existing

tools, handling many periodic flows and UPP curves becomes quickly intractable: When

aggregating several UPP curves, the pseudo-period of the aggregate might become extremely

large. We propose, FH-TFA, a method that computes finite horizons over which arrival and

service curves can be restricted without affecting the end results. This method significantly

improves bounds obtained using linear curves while remaining computationally feasible, as we

show for industrial networks. FH-TFA has been jointly implemented with RealTime-at-Work.

An orthogonal direction for reducing the pessimism of aggregating arrival curve constraints is

to use the affine functions but to permit some violation probability. We consider independent

periodic flows, and we compute quasi-deterministic and affine arrival curve constraints for

their aggregate traffic. The deterministic approach is tight only when all periodic flows are

perfectly synchronized, which is highly unlikely in practice and results in an overly pessimistic

bound. Our quasi-deterministic arrival curve constraint with a small, non-zero violation

probability is considerably smaller than the deterministic one and grows sub-linearly, unlike

the deterministic one that grows linearly. Our quasi-deterministic bounds are the first of their

kind. We provide the best-known, proven worst-case delay analysis of time-sensitive networks

of generic topology with many periodic flows that, while remaining computationally feasible,

dramatically reduce the pessimism of existing works.

Keywords— Network calculus, Time-Sensitive Networks, Deterministic Networks, Delay bound, Weighted

Round-Robin (WRR), Interleaved Weighted Round-Robin (IWRR), Deficit Round-Robin (DRR), Peri-

odic Flows, Total Flow Analysis (TFA), Polynomial-Size Linear Program (PLP), Quasi-Deterministic,

Aggregate Burstiness, Service Curve, Arrival Curve.

iv

Résumé

Les réseaux temps-réels, comme ceux spécifiés par lEEE Time-Sensitive Networking (TSN) et lETF

Deterministic Networking (DetNet), offrent des services déterministes avec une latence garantie et

bornée pour prendre en charge des applications critiques. Dans cette thèse, nous nous concentrons sur

l’analyse des réseaux temps-réels afin de répondre à une exigence essentielle, à savoir le délai pire-cas.

Trouver les délais de pire cas exacts est un problème NP-difficile et généralement non réalisable ; par

conséquent, nous nous intéressons aux délais pire-cas bornés. Une approche standard est le calcul

réseau. Elle abstrait le service offert par un nœud au moyen d’une courbe de service. Elle utilise ensuite

les caractérisations des courbes de service des nœuds du réseau et les courbes d’arrivée des flux à leurs

sources pour obtenir des bornes de délai de bout en bout ; une courbe d’arrivée est une contrainte sur

la quantité de données qu’un flux peut envoyer, et elle est nécessaire pour obtenir des bornes de délai

finies.

Premièrement, les caractérisations des courbes de service sont parfois trop simples ou inexistantes : les

ordonnanceurs round-robin sont couramment utilisés, en particulier dans l’équilibrage des requêtes

dans les infrastructures de réseau en nuage, dans la planification du serveur virtuel Linux et dans les

réseaux sur puce, et sont connus pour avoir des implémentations efficaces. Ils peuvent également être

appliqués aux réseaux temps-réels ; cependant, ils n’ont pas été entièrement analysés dans ce contexte.

Interleaved Weighted Round-Robin (IWRR) est une variante du Weighted Round-Robin (WRR) classique

avec un service plus régulier. Aucune borne de délai pour l’IWRR n’a été proposée dans la littérature.

Nous dérivons la meilleure courbe de service stricte possible pour l’IWRR, et nous montrons que les

bornes de délai dérivées de celle-ci sont exactes pour les flux de paquets de taille constante. Avec l’IWRR

et le WRR, la bande passante allouée à chaque flux dépend des tailles de paquets ; Deficit Round Robin

(DRR) est une variante ultérieure qui atténue cela et offre un équitable traitement des files d’attente

avec des paquets de longueur variable. Nous dérivons la meilleure courbe de service stricte possible

pour le DRR, dont les bornes de délai dérivées dominent largement tous les travaux existants. Jusqu’à

présent, nous n’avons pas pris en compte le fait que le DRR alloue automatiquement une capacité

inutilisée pour améliorer le service des autres files d’attente ; ainsi, nous avons obtenu des bornes de

délai qui restent valables même si certaines classes de trafic se comportent mal, mais qui peuvent être

excessivement pessimistes quand le trafic perturbateur est limité et se comporte comme prévu. Pour

de tels cas, nous dérivons de nouvelles courbes de service strictes pour le DRR, et nous montrons que

les bornes de délai dérivées de celles-ci dominent considérablement tous les travaux existants. À la

suite de notre travail sur le DRR, des résultats similaires pour le WRR et l’IWRR ont été obtenu dans la

littérature. Dans un réseau DRR, les bornes de délai de bout en bout peuvent être obtenues en utilisant

une analyse globale du réseau avec notre courbe de service stricte. Polynomial-size Linear Program

(PLP) est une analyse globale du réseau qui est connue pour fournir de meilleures bornes et une région

de stabilité par rapport à ses alternatives existantes, mais n’a jamais été appliquée aux réseaux DRR.

v

Résumé

Cependant, cela crée des boucles de dépendance dans les réseaux avec des dépendances cycliques :

d’une part, nos courbes de service strictes pour le DRR reposent sur les caractéristiques du trafic à

l’intérieur du réseau, qui sont les résultats de PLP, et d’autre part, PLP nécessite une connaissance

préalable des courbes de service du DRR. Les méthodes itératives peuvent être utilisées, mais PLP

lui-même nécessite de faire des coupes, ce qui impose d’autres niveaux d’itération. Nous proposons

une méthode générique, appelée PLP-DRR, pour combiner toutes les itérations séquentiellement ou

en parallèle. Nous améliorons significativement l’état de l’art pour un réseau industriel. Nous avon

obtenu la meilleure analyse de délai pire-cas pour un réseau temps-réels quelle que soit la topologie

avec des ordonnanceurs round-robin. Nos résultats dominent largement tous les travaux existants.

Deuxièmement, pour des raisons de faisabilité, les contraintes des courbes d’arrivée des flux sont

souvent des fonctions affines. Pour les flux périodiques, un type de trafic très utilisé dans le cadre

des réseaux temps-réels, les courbes d’arrivée affines sont connues pour fournir des bornes moins

bonnes que les courbes d’arrivée ultimement pseudo-périodiques (UPP), qui capturent précisément les

comportements périodiques. Cela est dû au fait que, dans les outils existants, la gestion de nombreux

flux périodiques et des courbes UPP devient rapidement très complexe : lors de l’agrégation de plusieurs

courbes UPP, la pseudo-période de l’agrégat peut devenir extrêmement grande. Nous proposons une

méthode, appelée FH-TFA, qui calcule des horizons finis sur lesquels les courbes d’arrivée et de service

peuvent être restreintes sans affecter les résultats finaux. Cette méthode améliore considérablement

les bornes obtenues à l’aide de courbes linéaires, tout en restant réalisables en termes de calcul,

comme nous le montrons pour des réseaux industriels. FH-TFA a été implémenté conjointement

avec RealTime-at-Work. Une direction orthogonale pour réduire le pessimisme de l’agrégation des

contraintes des courbes d’arrivée consiste à utiliser les fonctions affines mais à autoriser une certaine

probabilité de violation. Nous considérons des flux indépendants et périodiques, et nous calculons

des contraintes de courbes d’arrivée quasi-déterministes et affines pour leur trafic agrégé. L’approche

déterministe est précise uniquement lorsque tous les flux périodiques sont parfaitement synchronisés,

ce qui est hautement improbable en pratique et entraîne une borne excessivement pessimiste. Notre

contrainte de courbe d’arrivée quasi-déterministe avec très faible probabilité de violation non nulle

est considérablement plus petite que la borne déterministe, et elle croît de manière sous-linéaire,

contrairement à la borne déterministe qui croît de manière linéaire. Nos bornes quasi-déterministes

sont les premières de leur genre dans la littérature. Nous avon obtenu la meilleure analyse de délai

pire-cas pour un réseau temps-réels quelle que soit la topologie avec de nombreux flux périodiques.

Nos résultats, tout en restant réalisables en termes de calcul, réduisent considérablement le pessimisme

des travaux existants.

Mots clés— Calcul réseau, Réseaux temps-réels, Réseaux déterministes, Bornes de délai , Round-robin

pondéré (WRR), Round-robin pondéré et entrelacé (IWRR), Round-robin à déficit (DRR), Flux pério-

diques, Analyse de flux total (TFA), Programme linéaire à complexité polynomial, Quasi-déterministe,

Rafales agrégées, Courbe de service, Courbe d’arrivée.

vi

Contents

Acknowledgements i

Abstract (English/Français) iii

List of Figures xiii

List of Tables xv

Acronyms xvii

I Introduction and Technical Background 1

1 Introduction 3

1.1 Context . 3

1.1.1 Worst-Case Delay Guarantees for Time-Sensitive Networks 4

1.1.2 Network Calculus: Arrival Curves, Service Curves, and FIFO-Per-Class Heuristics 5

1.2 Gaps in Worst-Case Delay Analysis of Time-Sensitive Networks with Round-Robin Sched-

ulers . 5

1.2.1 Non-Existent Service Curve Characterization for Interleaved Weighted Round-

Robin (IWRR) . 6

1.2.2 Too Simple Service Curve Characterizations for Deficit Round-Robin (DRR) . . . 6

1.2.3 Loose End-to-End Delay Bounds in Time-Sensitive Networks with DRR 7

1.3 Gaps in Worst-Case Delay Analysis of Time-Sensitive Networks with Many Periodic Flows 7

1.3.1 Too Simple Arrival Curve Constraints for Periodic Flows 7

1.3.2 Pessimism in Arrival Curve Aggregation for Periodic Flows 8

1.4 Contributions and Roadmap . 8

2 Technical Background 11

2.1 Network Calculus . 11

2.1.1 Main Concepts of Network Calculus . 11

2.1.2 Network Calculus Bounds . 16

2.1.3 End-to-End Worst-Case Delay Analysis for FIFO-per-Class Networks 17

2.1.4 Existing Worst-Case Delay Analysis Tools . 20

2.2 Lower Pseudo-Inverse . 21

2.3 Notation List Used Throughout the Thesis . 22

II Efficient and Accurate Worst-Case Delay Analysis of Time-Sensitive Net-

vii

Contents

works with Round-Robin Schedulers 23

3 Strict Service Curves for Interleaved Weighted Round-Robin 25
3.1 System Model . 26

3.2 Related Works . 28

3.3 Strict Service Curves for IWRR . 29

3.4 Tightness . 31

3.4.1 Tightness of Strict Service Curve . 31

3.4.2 Tightness of Delay Bounds with Constant Packet Sizes 32

3.5 Numerical Examples . 32

3.6 Proofs . 34

3.6.1 Proof of Theorem 3.1 . 34

3.6.2 Proof of Theorem 3.2 . 40

3.6.3 Proof of Theorem 3.3 . 40

3.6.4 Proof of Theorem 3.4 . 43

3.6.5 Proof of Theorem 3.5 . 45

3.6.6 Proof of Theorem 3.6 . 48

3.6.7 Proof of Theorem 3.7 . 48

3.6.8 Proof of Theorem 3.8 . 49

3.7 Conclusion . 49

3.8 Notation . 50

4 Strict Service Curves for Deficit Round-Robin 51
4.1 System Model . 53

4.2 Related Works . 54

4.2.1 Strict Service Curve of Boyer et al. 54

4.2.2 Correction Term of Soni et al. 55

4.2.3 Bouillard’s Strict Service Curves . 55

4.3 Counter Example to The Correction Term of Soni et al. 56

4.3.1 System Parameters . 56

4.3.2 Trajectory Scenario . 57

4.3.3 The Contradiction with the Bound of Soni et al. 57

4.4 New DRR Strict Service Curve . 58

4.5 New DRR strict Service Curves that Account for Arrival Curves of Interfering Classes . . 62

4.5.1 A Mapping to Refine Strict Service Curves for DRR by Accounting for Arrival Curves

of Interfering Classes . 62

4.5.2 Convex Versions of the Mapping . 66

4.6 Numerical Evaluation . 72

4.6.1 Single Server . 72

4.6.2 Illustration Networks . 72

4.6.3 Industrial-Sized Network . 75

4.7 Proofs . 77

4.7.1 Proof of Theorem 4.1 . 77

4.7.2 Proof of Theorem 4.2 . 79

4.7.3 Proof of Theorem 4.3 . 82

4.7.4 Proof of Theorem 4.4 . 83

4.7.5 Proof of Theorem 4.5 . 83

4.7.6 Proof of Corollary 4.3 . 85

viii

Contents

4.8 Conclusion . 86

4.9 Notation . 87

5 Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit Round-Robin 89
5.1 System Model . 92

5.1.1 Deficit Round-Robin Scheduling . 92

5.1.2 Network Model and Resulting Graphs . 93

5.2 Background and Related Works . 93

5.2.1 Strict Service Curves of DRR . 94

5.2.2 Total Flow Analysis (TFA) . 95

5.2.3 Polynomial-size Linear Programming (PLP) . 96

5.3 Overview of the Proposed Method: PLP-DRR . 97

5.4 Two Improvements to PLP . 98

5.4.1 PLP to Upper-bound the Aggregate Burstiness of Flows 99

5.4.2 iPLP: a PLP that Supports Non-Convex Service Curves 100

5.5 Our Proposed Method: PLP-DRR . 100

5.5.1 Initial Phase: TFA-DRR . 101

5.5.2 Refinement Phase: PLP and Parallelization . 102

5.5.3 Post-Process Phase: Computing the End-to-End Delay 105

5.6 Numerical Evaluation . 105

5.7 Proofs . 109

5.7.1 Proof of Theorem 5.1 . 109

5.7.2 Proof of Theorem 5.2 . 110

5.7.3 Proof of Theorems 5.3 and 5.4 . 110

5.8 Conclusion . 111

5.9 Notation . 112

Appendices 113
5.A Detailed Background on DRR Strict Service Curves . 113

5.A.1 Degraded Operational Mode . 113

5.A.2 Non-Degraded Operational Mode . 114

5.B Detailed Background on PLP . 115

5.B.1 PLPdelay
f ,c : A PLP That Computes an End-to-end Delay Bound for a Single Flow . . 115

5.B.2 PLPbacklog
f ,c : A PLP That Computes a Backlog Bound for a Single Flow 117

5.B.3 FP-PLPc : A PLP That Computes Bounds on The Burstiness of Flows at Cuts . . . 117

III Efficient and Accurate Handling of Periodic Flows in Time-Sensitive Net-
works 119

6 Total Flow Analysis For Time-Sensitive Networks with Periodic Sources 121
6.1 Background and Related Works . 124

6.1.1 Family of Functions and Operators . 124

6.1.2 FixPoint Total Flow Analysis (FP-TFA) . 126

6.1.3 Compact Domains for Delay Computation . 126

6.2 System Model . 127

6.3 GFP-TFA: A New Version of FP-TFA That Handles Arrival Curves and Service Curves of

Generic Shapes . 128

6.3.1 FF-TFA: TFA for Feed-Forward Networks . 129

ix

Contents

6.3.2 GFP-TFA . 130

6.4 FH-TFA: A Practical Version of GFP-TFA . 130

6.4.1 Description of FH-TFA . 132

6.4.2 Validity and Accuracy of FH-TFA . 135

6.5 Numerical Evaluation . 137

6.5.1 A Feed-Forward Network . 137

6.5.2 A Small-sized Network with Cyclic Dependencies 138

6.5.3 An Extremely Large Network with Cyclic Dependencies 138

6.5.4 Results . 138

6.6 Proofs . 139

6.6.1 Proof of Theorem 6.2 . 139

6.6.2 Proof of Theorem 6.3 . 139

6.6.3 Proof of Theorem 6.4 . 140

6.7 Conclusion . 142

6.8 Notation . 143

7 Quasi-Deterministic Burstiness Bound for Aggregate of Independent, Periodic Flows 145

7.1 Assumptions and Problem Statement . 147

7.1.1 Assumptions . 147

7.1.2 Problem Statement . 147

7.2 Related Works . 148

7.3 Homogeneous Case . 149

7.4 Heterogeneous Case . 154

7.5 Numerical Evaluation . 157

7.5.1 Homogeneous Case . 157

7.5.2 Heterogeneous Case . 158

7.6 Conclusion . 158

7.7 Notation . 160

IV Conclusion 161

8 Conclusion and Future Works 163

V Appendix 165

A Saihu : A Common Interface of Worst-Case Delay Analysis Tools for Time-Sensitive Networks 167

A.1 System Model . 169

A.2 Included Tools . 170

A.3 Software Description . 170

A.3.1 Network Description File . 170

A.3.2 Tool Usage . 174

A.3.3 Analysis Reports . 174

A.4 Conclusion and Extension . 175

A.5 Current code version . 176

Bibliography 190

x

Contents

List of Publications 191

Curriculum Vitae 193

xi

List of Figures

2.1 Arrival and departure cumulative functions . 12

2.2 Frequently used arrival and service curves . 14

2.3 An example of the min-plus convolution . 14

2.4 A function f and its non-decreasing and non-negative closure
[

f
]+
↑ 15

2.5 Effect of Pay Burst Only Once (PBOO) . 17

2.6 Network calculus delay bound . 18

2.7 A function f and its lower pseudo inverse f ↓ . 21

3.1 An example of the smoother service offered by IWRR compared to WRR 27

3.2 IWRR strict service curves . 30

3.3 Improvement in delay bound obtained by IWRR compared to WRR 33

3.4 Relative improvement in delay bound obtained by IWRR compared to WRR 33

3.5 Illustration of two possible cases of τσ(p) ≥ t and τσ(p) < t 35

4.1 Counter example to the correction term of Soni et al. 56

4.2 DRR strict service curves (with no assumption on the interfering traffic) 59

4.3 Illustration of functions φi , j , φmaxRate
i , j , φminLatency

i , j , and φconcave
i , j 61

4.4 DRR strict service curves (Non-convex, Full mapping) . 64

4.5 DRR strict service curves (Non-convex, Simple Mapping) 66

4.6 DRR strict service curves (Convex, Full mapping) . 68

4.7 DRR strict service curves (Convex, Simple mapping) . 70

4.8 A summary of DRR strict service curves . 71

4.9 Illustration DRR networks . 73

4.10 Flow parameters for the illustration DRR networks . 73

4.11 Delay bound obtained for the illustration DRR networks 74

4.12 Industrial-sized DRR network . 75

4.13 Delay bounds of the industrial case for all source-destination pairs in the system 76

4.14 Delay bounds of the industrial case for all source-destination pairs in the system 76

4.15 Illustration of ψi and its lower-pseudo inverse ψ↓
i . 78

4.16 Example of the trajectory scenario presented in Section 4.7.2 with p = 2. 79

4.17 Illustration of function H defined in (4.62) . 84

5.1 Toy network with 2 DRR classes . 92

5.2 The graphs induced by flows of class c1 and c2 of toy network of Fig. 5.1 92

5.3 A non-convex part of a DRR service curve . 94

5.4 Overview of PLP analysis . 96

5.5 Overview of the method PLP-DRR . 101

5.6 Two implementations of the refinement phases with parallelization and shared memory 105

xiii

List of Figures

5.7 Industrial-sized network topology. 105

5.8 Delay bounds obtained by our methods, TFA-DRR and PLP-DRR, compared to the state-

of-the-art . 106

5.9 Delay bounds of PLP-DRR compared to alternative methods 106

5.10 Delay bounds of PLP-DRR compared to alternative methods 107

6.1.1Frequently used arrival and service curves . 124

6.1.2UPP and UA curves . 125

6.2.1Example of intractability of aggregating many UPP curves with different periods 128

6.4.1Construction of UA arrival and service curves . 136

6.5.1FH-TFA delay bounds compared to those of FP-TFA and simulations 137

7.5.1Quasi-deterministic bounds (Homogeneous case) . 157

7.5.2Quasi-deterministic bounds (Heterogeneous case) . 158

A.0.1Data flow of Saihu . 168

A.1.1Device model. 169

A.3.1Physical and output port network examples . 171

A.3.2Human-friendly Markdown report. 175

xiv

List of Tables

2.1 Notation List Used Throughout the Thesis . 22

3.1 Notation List, Specific to Chapter 3 . 50

4.1 Delays bounds of all classes of Section 4.6.1. 72

4.2 Notation List, Specific to Chapter 4 . 87

5.1 Traffic Characterization . 106

5.2 Run-times . 108

5.3 Notation List, Specific to Chapter 5 . 112

6.5.1Run-times for networks of Fig. 6.5.1 . 138

6.8.1Notation List, Specific to Chapter 6 . 143

7.7.1Notation List, Specific to Chapter 7 . 160

A.2.1Supported methods are marked with a “V”. 170

A.5.1Code metadata . 176

xv

Acronyms

AFDX Avionics Full-Duplex swithed Ethernet.

ATM Asynchronous Transfer Mode.

AVB Audio Video Bridging.

CBS Credit Based-Shaper.

CPS Cyper-Physical Systems.

CPU Central Processing Unit.

DetNet Deterministic Networking.

DKW Dvoretzky–Kiefer–Wolfowitz.

DRR Deficit Round-Robin.

ELP Exponential-size Linear Programming.

FF-TFA Feed-Forward Total Flow Analysis.

FH-TFA Finite Horizon Total Flow Analysis.

FIFO First-In-First-Out.

FP-TFA FixPoint Total Flow Analysis.

GFP-TFA Generic Fixed Point Total Flow Analysis.

GNN Graph neural Network.

GPC Greedy-Processing Component.

IEEE Institute of Electrical and Electronics Engineering.

IETF Internet Engineering Task Force.

iPLP ineger Polynomial-size Linear Programming.

IWRR Interleaved Weighted Round-Robin.

JSON JavaScript Object Notation.

LANs Local Area Networks.

LP Linear Programming.

xvii

Acronyms

LUDB Least Upper Delay Bound.

MILP Mixed-Integer Linear Programming.

NFV Network Function Virtualizations.

NoC Network on Chip.

PBOO Pay Burst Only Once.

PLP Polynomial-size Linear Programming.

PMOO Pay Multiplexing Only Once.

RTaW RealTime-at-Work.

RTC Real-Time Calculus.

SBB Stochastically Bounded Burstiness.

SFA Single Flow Analysis.

SOA State-Of-the-Art.

TAS Time-Aware Shaper.

TFA Total Flow Analysis.

TMA Tandem Matching Analysis.

TSN Time-Sensitive Networking.

UA Ultimately Affine.

UPP Ultimately Pseudo-Periodic.

WRR Weighted Round-Robin.

XML Extensible Markup Language.

xviii

Part IIntroduction and Technical
Background

1

1 Introduction

1.1 Context

Time-sensitive networks are a subset of communication networks that offer deterministic services

with guaranteed, bounded latency. They support safety-critical applications with delay constraints,

where violation can cause catastrophic damages such as death, severe injuries, significant financial

loss, and/or harm to the environment [1, Section 10.10]. Examples of time-sensitive networks with

such applications are, but not limited to, the following: Automotive networks, where safety-relevant

control messages have a delay constraint of 1ms [2]; avionics networks, where parametric data for the

fly-by-wire system have a delay constraints of 2ms [3]; and industrial automation, where fault detection

in power-line equipment has a delay constraint of 100ms [4]. This contrasts classic communication

networks, such as the Internet, that provide statistical guarantees in terms of average delay, bandwidth,

and packet loss.

Time-sensitive networks originated in the late twentieth century and were initially used in only a few

of industrial sectors, including aerospace and automotive. Today, more applications and industries

require deterministic services such as the tactile Internet [5], the industrial Internet of Things [6],

electricity distribution [7], and Industry 4.0 [8]. The Institute of Electrical and Electronics Engineering

(IEEE) responded to the growing need for deterministic services by creating standards for performance

guarantees in multimedia applications. These standards include requirements for flow behavior and

the quality of service, as well as mechanisms for scheduling, shaping, and reservation. This effort

resulted in the development of the IEEE 802.1BA Audio Video Bridging (AVB) standard [9]. Currently,

the IEEE 802.1 Time-Sensitive Networking (TSN) task group [10] is expanding its standardization

efforts to include a broader range of applications than what is offered by IEEE 802.1BA AVB. This

includes both control-data traffic and multimedia streams over the Link Layer (L2) of the Internet

protocol suite [11]. The purpose of the IEEE TSN initiative is to bring together the requirements

and mechanisms of existing Ethernet-based solutions for time-sensitive networks, with a focus on

interconnecting switches and end systems within Local Area Networks (LANs). The Deterministic

Networking (DetNet) working group [12] of the Internet Engineering Task Force (IETF) is working on

expanding time-sensitive networking by incorporating the Internet Layer (L3) and utilizing IP packets.

This expansion will benefit applications such as electrical utilities, building-automation systems, and

industrial machine-to-machine communication [13].

The time-sensitive networks studied in the thesis are FIFO-per-class networks: We assume that flows are

grouped into classes, packets inside one class are processed First-In-First-Out (FIFO), and classes are

3

Introduction

isolated using schedulers. Flows with different worst-case delay requirements coexist in time-sensitive

networks. To support such requirements, flows are grouped into some classes, and the service received

by the flows of each class is isolated by means of a scheduling policy implemented at network nodes;

the scheduling policy describes the algorithm or set of algorithms in a system that decides which packet

to serve among those waiting for service. There exists a system-level and a class-level scheduling policy:

The former decides which class to serve among those waiting, and the latter decides which packet to

serve among those of the class waiting for service; throughout this thesis, this is the FIFO policy.

1.1.1 Worst-Case Delay Guarantees for Time-Sensitive Networks

Time-sensitive networks require deterministic guarantees on worst-case delay, worst-case delay-jitter

(defined as the difference between worst-case and best-case delays), zero congestion-loss, jitter, in-

order packet delivery, and seamless redundancy [14, 15, 16, 17, 18, 19]. The main focus of this thesis

is on the worst-case delays: For a flow, the maximum delay of all non-lost packets sent by the flow

during its lifetime; this is one of the most common requirements across time-sensitive applications.

The problem of finding the exact worst-case delays in a network setting is known to be NP-hard

and is not feasible in general [20, 21]: For tree networks with First-In-First-Out (FIFO) multiplexing

nodes, finding the exact worst-cases is super-exponential and applicable on only very small sized

networks [20, 22]; for non-tree networks or networks with cyclic dependencies, there is no approach

that finds the exact worst cases, even when node scheduling is as simple as can be (FIFO). Hence, the

exact worst cases are unknown. An alternative is to find achievable delays by means of simulation

or real-life measurements [23, 24]. However, the main limitation of this approach is the difficulty in

detecting rare events with low probabilities, and thus the measured delays serve only as lower bounds

of the unknown worst-case delay and do not provide deterministic guarantees. Therefore, to validate a

deterministic service, we require an upper bound on the worst-case delay.

Obtaining upper bounds on the worst-case delay requires the use of deterministic approaches. Sev-

eral deterministic approaches have been used for time-sensitive networks: The model-cheeking ap-

proach [25] verifies system properties by analyzing states and transitions. Several time-sensitive

networks had their timing properties verified by using it [26, 27]. Model-checking approaches can

determine the exact worst-case delays, but is only applicable on very small-sized networks as the

number of possible network states grows exponentially. The trajectory approach [28] involves finding

trajectory scenarios where a flow experience the worst interference from all other interfering flows,

and it was used for Avionics Full-Duplex swithed Ethernet (AFDX) [29, 30, 31]. However, finding such

scenarios is a hard problem and impractical, because there are numerous interference patterns and di-

verse network systems. Holistic approaches [32, 33, 34, 35, 36, 37] consider the inter-dependencies and

interactions among various system components, tasks, and resources. They struggle to find end-to-end

delay bounds in networks with asynchronous system-level scheduling (e.g., round-robin schedulers,

credit-based schedulers). Network calculus [38, 39, 40] is a mathematical framework with a set of tools

and results for computing delay and backlog bounds. It has been useful for modeling time-sensitive

networks with complex topologies and technologies, and it has been applied in various industries

and applications: For AFDX in [41, 42, 43], for industrial Internet of Things in [44, 45, 46], for Cloud

Computing in [47, 48], for Cyper-Physical Systems (CPS) in [49, 50, 51], for Multimedia Streaming

in [52, 53], etc. We select network calculus as the deterministic approach used in this thesis.

4

1.2 Gaps in Worst-Case Delay Analysis of Time-Sensitive Networks with Round-Robin
Schedulers

1.1.2 Network Calculus: Arrival Curves, Service Curves, and FIFO-Per-Class Heuris-
tics

Network calculus abstracts the service offered by a network node to flows of a given class by means

of a (per-class) service curve. Per-class service curves have been vastly analyzed for some scheduling

policies: Static Priority [17, Section 8.6.8.1] in [38, Section 6.2.1][54, Sections 7.3.2, 8.2.1]; Credit Based-

Shaper (CBS) [17, Section 8.6.8.2] in [55, 56, 57, 58]; Time-Aware Shaper (TAS) [17, Sections 8.6.8.3-4,

8.6.9] in [54, Section 8.2.5] [59]. Strict service curves are a special kind of service curve that are frequently

used. A strict service curve is a function that lower-bounds the service offered by the system in its

backlogged periods.

Consider a network element and a class of interest. A bound on the worst-case delay is obtained by

combining the per-class service curve with an arrival curve for the class of interest. An arrival curve is a

constraint on the amount of data observed for traffic; such a constraint is necessary for the existence

of a finite delay bound. In a network setting, network calculus limits the amount of data a flow can

send at the source by some arrival curves. Finding accurate arrival curves for flows at their sources

is generally less challenging compared to service curves; still, a recent work improved arrival curve

constraints for when packet-level information is available [60].

Then, for flows of a given class, network calculus analyzes the FIFO-per-class network: It uses the

per-class service curve characterization at network nodes and arrival curve constraints of flows at their

sources and computes end-to-end delay bounds. Several heuristics have been proposed for the analysis

of FIFO-per-class networks: Total Flow Analysis (TFA) [61, 62, 63, 64], Single Flow Analysis (SFA) [62,

Section 3.3], Pay Multiplexing Only Once (PMOO) [62, Section 3.4][65], Least Upper Delay Bound

(LUDB) [22, 66], Flow Prolongations [67], Exponential-size Linear Programming (ELP) [20], Polynomial-

size Linear Programming (PLP) [68], etc. Among these, in this thesis, we consider TFA and PLP: They

are the only known methods that can be applied to FIFO-per-class networks with cyclic dependencies.

For time-sensitive networks, cyclic dependencies are linked to certain primary properties, such as

improving availability and decreasing reconfiguration effort, hence they are important and cannot be

ignored [69, 70].

It is known that TFA is outperformed by PLP that always provides delay bounds better than or equal

to those of TFA and, at high network utilization, often converges when TFA does not. TFA is still of

interest, as it is much simpler and more tractable than PLP. Also, by design, PLP uses delay bounds

obtained by TFA (if available) as a constraint in all its linear programs. Note that other methods, such

as LUDB [22] and flow prolongations [67], also tend to dominate TFA, however, unlike PLP, they do not

apply to generic topologies.

1.2 Gaps in Worst-Case Delay Analysis of Time-Sensitive Networks

with Round-Robin Schedulers

One of the first use of round-robin scheduling in the network context appeared in [71], with a fairness

objective, i.e., a fair way to share the bandwidth among sessions. It is also mentioned in [72] as a way

to implement “fair queueing”. Round-robin schedulers have been applied in Ethernet [73, Sec. 8.6,

Sec. 8.6.8.3, Sec. 37], in request balancing in cloud infrastructures [74], in the Linux Virtual Server

scheduling [75], in network of chip [76], etc. Also, round-robin schedulers are a great candidate for

network slicing that is a natural solution to simultaneously accommodate, over a common network

5

Introduction

infrastructure, the wide range of services, e.g., in 5G networks with Network Function Virtualizations

(NFV) [77, 78, 79]. They have been widely used as they have low complexity and very efficient imple-

mentations exist [80, 81, 82, 83]. Round-robin schedulers can be applied to time-sensitive networks,

however, they have been overlooked and not been fully analyzed in the context of time-sensitive

networks.

1.2.1 Non-Existent Service Curve Characterization for Interleaved Weighted Round-
Robin (IWRR)

An important variant of round-robin schedulers is Weighted Round-Robin (WRR). With WRR, the

capacity is shared among several queues by giving each of them a weight, which is a positive integer,

and by providing more service to those with larger weights. Specifically, queues are visited one after

the other, and when a queue has an emission opportunity, a number of packets equal to the weight

allocated to the queue can be served consecutively, which leads to a bursty service. Interleaved

Weighted Round-Robin (IWRR) mitigates this effect [84]. IWRR spreads out emission opportunities of

each queue, which is expected to result in a smoother service and lower worst-case delays.

However, no prior literature exists for worst-case delay bounds with IWRR. The network calculus

approach was applied to WRR in [40, Sec. 8.2.4], where a strict service curve is obtained. However,

compared to WRR, the interleaving in IWRR makes the analysis more difficult, and the method of proof

in [40, Sec. 8.2.4] cannot easily be extended.

1.2.2 Too Simple Service Curve Characterizations for Deficit Round-Robin (DRR)

Although WRR and IWRR were originally designed in the context of Asynchronous Transfer Mode

(ATM) [85] with constant-size packets to share the bandwidth in proportion to allocated weights, they

have been applied to networks with variable-length packets. In such cases, the allocated bandwidth

to each queue depends on not only the weights but also on the packet sizes. This is not desirable, as

the intention of the weights is to control the allocated bandwidth to each queue; however, they do

not entirely control this as the packet sizes interfere. Deficit Round-Robin (DRR) is a later variant that

solves this and achieves fair queuing in the presence of variable-length packets. With DRR, every queue

is associated with a static number, called quantum. Queues are visited one after the other, and at

every visit, they receive service (measured in bits for communication networks, in seconds for task

processing systems) up to the quantum value. Tasks or packets are of variable sizes, and it may happen

that, during one visit of the server, there remains at least one task or packet in the queue that cannot be

served because the unused part of the quantum is positive but not large enough. In such a case, the

unused part of the quantum (called the residual deficit) is carried over to the next round. DRR shares

resources flexibly (the amount of service reserved for one queue is proportional to its quantum) and

efficiently (when a queue is idle, the server capacity is available to other queues). It is widely used as it

has low complexity and very efficient implementations exist [80].

Worst-case delay bounds for DRR were obtained in [86, 87, 88] by using various ad-hoc analyses. These

results were improved in [89], where the authors obtain a strict service curve for DRR; this strict service

curve is too simple and does not account for the details of DRR hence calls for improvement.

Round-robin schedulers are efficient, which means that, when a queue is idle, the server capacity

is available to other queues. The service curves we presented in the last paragraph do not take this

6

1.3 Gaps in Worst-Case Delay Analysis of Time-Sensitive Networks with Many Periodic
Flows

into account as they do not make any assumptions on the interfering traffic; thus, on the one hand,

delay bounds derived from them are valid even if the interfering traffic misbehaves, and on the other

hand, they might be pessimistic, when all time-sensitive traffic behaves as expected. In time-sensitive

networks, some or all interfering traffic is deterministic and, in normal operation, is limited at the

source by an arrival curve constraint. There is also interest in obtaining proven bounds under normal

conditions when all time-sensitive traffic satisfies its source constraints. For such cases, two improve-

ments were proposed. The former uses a correction term derived from a semi-rigorous heuristic [90].

The latter rigorously derives convex strict service curves for DRR that account for the arrival curve

constraints of the interfering traffic [91]. However, these strict service curves are too simple and do not

account for the details of DRR hence call for improvement.

1.2.3 Loose End-to-End Delay Bounds in Time-Sensitive Networks with DRR

As explained in Section 1.1.2, finding delay bounds in a DRR network requires incorporating DRR strict

service curves with a FIFO-per-class network analysis. One aspect of improving delay bounds is by

improving service curve characterizations. Another aspect is to employ better heuristics for the analysis

of FIFO-per-class networks. PLP is known to provide better bounds and stability region compared to

its existing alternatives but has never been applied to DRR networks. A straightforward application of

PLP is to use DRR strict service curves that have no assumption on the interfering traffic. They depend

only on the assigned quantum and maximum packet size of every class hence can be computed for

all classes at all nodes a priori to PLP. Thus, per-class networks are independent and can be analyzed

separately (i.e., the network is sliced into some per-class networks), and one instance of PLP can be

run per-class to obtain bounds. However, the combination of PLP with DRR strict service curves that

account for the interfering traffic is far from straightforward: Using PLP to analyze DRR networks

requires introducing the DRR strict service curve into the PLP procedure. PLP uses internal variables

that the computation of which depends on the DRR strict service curves; the DRR strict service curves

rely on traffic characteristics inside the network, which comes as the output of PLP. Iterative methods

can solve this, however, PLP itself requires making cuts, which imposes other levels of iteration.

1.3 Gaps in Worst-Case Delay Analysis of Time-Sensitive Networks

with Many Periodic Flows

The development of industrial automation requires timely and accurate monitoring of the status of

the network. In time-sensitive networks, a common assumption for critical types of traffic is that

devices send packets periodically. This makes periodic flows a common and critical type of traffic in

time-sensitive networks [2, 3, 4]

1.3.1 Too Simple Arrival Curve Constraints for Periodic Flows

Periodic flows are known to be constrained by an Ultimately Pseudo-Periodic (UPP) arrival curve that

precisely captures the periodic behaviors. Tools such as RTaW [92], Nancy [93], DiscoDNC [94], etc. use

infinite precision arithmetic (with rational numbers) and implement UPP curves; UPP curves have

a transient part at the beginning, followed by a pseudo-periodic pattern. UPP curves are of interest

in practice as they have a finite representation, and they capture periodic behaviors. However, when

aggregating several UPP curves, the pseudo-period of the aggregate function might become extremely

7

Introduction

large. Furthermore, the required memory to store the aggregate function might explode, as the number

of segments required to describe the aggregate function quickly grows. An early example of where this

issue occurs is the avionic onboard communication system analyzed in [95]. In fact, for tractability,

arrival curve constraints of periodic flows are often taken to be affine functions. This results in less

good delay bounds hence calls for improvements. Also, in networks with cyclic dependencies, there

is no method in the existing works that provides proven delay bounds with arrival curves and service

curves of generic shapes.

1.3.2 Pessimism in Arrival Curve Aggregation for Periodic Flows

As already mentioned, in time-sensitive networks, a common assumption for critical types of traffic is

that devices send packets periodically. These packets are aggregated and forwarded to the controller.

Characterizing this aggregate traffic is then crucial for effective resource management. Indeed, an

arrival curve constraint can be obtained for the aggregate traffic by aggregating the arrival curve of

individual flows. However, such arrival curve superposition is known to be pessimistic: It grows linearly

with the number of flows [96]. Also, this is tight only when all periodic flows are perfectly synchronized,

which is highly unlikely in practice and results in an overly pessimistic bound. An orthogonal solution

to our discussion in the previous section is still to use affine arrival curves but permit some violation

probability. Probabilistic versions of network calculus (known as Stochastic Network Calculus) have

emerged, and their aim is to compute performances when a small violation probability is permitted. By

using probabilistic tools, such as moment-generating functions [97] or martingales [98], recent works

mainly compute probabilistic arrival curve constraints for the aggregate traffic with small violation

probability at an arbitrary point in time [97, 99, 100, 101, 102, 103]. In time-sensitive networks, we

are interested in the probability that a bound is not violated during some interval (e.g., the network’s

lifetime), not just one arbitrary point in time. Existing works do not provide such information; the

violation probability of a bound being small at one arbitrary point in time does not imply that the

probability that the bound is never violated during a period of interest is small. In fact, there would

likely be some violations.

1.4 Contributions and Roadmap

The details of our contributions in this thesis are as follows:

1. We provide the first-ever delay bounds for IWRR. We find a strict service curve for IWRR, and

show that it is the best possible one. We find that delay bounds derived by it are tight (i.e.,

worst-case) for flows of constant packet sizes; we show similar results for the strict service

curve of classic WRR that was previously published. We show that our IWRR strict service

curve dominates the WRR strict service curve, hence it dominates the delay bounds. Details are

presented in Chapter 3. The content of this chapter was published in [104, 105].

2. We find a novel strict service curve for DRR that we show is the best obtainable one. Also, we

introduce a novel method that obtains better strict service curves for DRR when the interfering

traffic behaves as expected and is constrained by some arrival curve constraints. Delay bounds

derived by our strict service curves are significantly smaller than all previous works. We also

show that the first attempt in previous works to obtain delay bounds in such cases is incorrect.

Following our research, others provide similar delay bounds for WRR and IWRR [106]. Details

are presented in Chapter 4. The content of this chapter was published in [107, 108].

8

1.4 Contributions and Roadmap

3. We provide a method, called PLP-DRR, for the worst-case delay analysis of DRR network: It

combines our DRR strict service curves (that account for the interfering traffic) and PLP in a

novel way. We find very significant improvements, for an industrial network, in terms of delay

bounds and stability region compared to the previous works. The combination is far from trivial,

as there are dependencies in different levels: PLP uses DRR strict service curves and improves

the traffic characterization inside the network; and this results in better DRR strict service curves,

which in return improves the output of PLP. PLP also uses some internal variables that have

two-way dependencies between both DRR strict service curves and the traffic characterization

inside the network. Hence, there are many dimensions that play together, and a simple iterative

method cannot solve this issue. We invent a generic framework that uses a distributed computing

model with shared memory, where individual improvements can be applied in any order. We

theoretically show that any execution provides the same valid bounds, regardless of the order in

which the individual improvements are applied. We design two concrete implementations of the

method, with parallel for-loops, that are efficient in terms of run times. Also, when applying PLP

to DRR, we make two further improvements to the existing PLP. The former computes improved

arrival curve constraints for the aggregate of flows. The latter enables us to use non-convex

service curves in PLP and obtains better delay bounds. Details are presented in Chapter 5. The

content of this chapter was submitted [109].

4. We develop and validate FH-TFA, an algorithm that provides delay bounds for time-sensitive

networks with generic topology, and generic arrival and service curves that are implemented

as UPP curves. We give a numerical application to real, industrial cases, provided by industrial

partners of RealTime-at-Work (RTaW), and we observe that bounds obtained with FH-TFA and

UPP curves are considerably less than previous works. To obtain FH-TFA, we first generalize

the theory of existing versions of TFA to arrival curves and service curves of generic shapes for

networks with generic topology. We then replace the original, UPP arrival and service curves

with some simpler curves that are accurate enough not to affect the end results but also simple

enough to remain tractable in the existing tools. FH-TFA has been jointly implemented with

RTaW. Details are presented in Chapter 6. The content of this chapter was published in [110].

5. We find quasi-deterministic arrival curve constraints for the aggregate traffic of independent,

periodic flows. We use affine arrival curve constraints, but we permit some violation probability

and obtain an arrival curve constraint for the aggregate that is valid at all times with large

probability. Our quasi-deterministic bounds are the first of their kind. For the homogeneous

case, we obtain a closed-form expression that, for a non-zero violation probability, provides a

considerably smaller arrival curve for the aggregate than the deterministic one; it grows sub-

linearly, unlike the deterministic one that grows linearly. For the heterogeneous case, we obtain

a bound by grouping flows into homogeneous sets and combining the bounds obtained for each

set using a convolution bounding technique. Details are presented in Chapter 7. The content of

this chapter was submitted [111].

6. Side contribution: We present Saihu, a Python interface that integrates the three most frequently

used worst-case network analysis tools: xTFA, which implements the method of TFA; DiscoDNC,

which implements the methods of TFA, LUDB, PMOO, SFA, etc.; and Panco, which implements

the methods of TFA, SFA, PLP and ELP. Saihu enables users to define a network once and execute

all tools in a single shot, without any modification. It is open-source and publicly available [112].

Details are presented in Appendix A. The content of this chapter was submitted [113].

9

2 Technical Background

In this chapter, we provide the necessary and common background of the rest of the thesis. We provide

a summary of network calculus in Section 2.1. We also present pseudo inverse functions in Section 2.2.

A summary of notation and symbols used throughput this thesis are given in Section 2.3.

2.1 Network Calculus

Network calculus [38, 39, 40] is a theory for obtaining bounds on the worst-case delay and backlog

of communication networks. Le Boudec and Chang concurrently [114, 115] developed its framework

based on the seminal work of Cruz [116, 117]. In this section, we first provide a summary of the basic

concepts in network calculus; then, we present the main theorems for obtaining backlog and delay

bounds. We also provide the network calculus model for time-sensitive networks. We give a list of

worst-case delay analysis tools. Lastly, we give a list of methods and techniques to compute end-to-end

delay bounds within a network. Readers who might prefer a video tutorial or those who are new to

concepts of network calculus are strongly invited to watch the following tutorial [118].

In this thesis, we often use wide-sense increasing functions. Let F denote the set of wide-sense

increasing functions f : R+ 7→ R+∪ {+∞}, where R is the set of real numbers; we say f is wide-sense

increasing if and only if ∀0 ≤ s ≤ t , f (s) ≤ f (t).

2.1.1 Main Concepts of Network Calculus

2.1.1.1 Cumulative Functions

Consider a system S and a flow f through S. The system can be a single queue or a network of queues.

Network calculus, for convenience, describes the data flow by means of the cumulative function arrival

(resp. departure) function A f (resp. D f), where A f (t) (resp. D f (t)) is the number of bits arrived (resp.

departure) for flow f between times 0 and t . By convention, we take A f (0) = D f (0) = 0, which means

time 0 represents a time origin where no data has been sent before t = 0. By definition, cumulative

functions are wide-sense increasing. In the rest of this thesis, we assume that the time and the amount

of data are continuous quantities unless otherwise specified (See Fig 2.1).

11

Chapter 2. Technical Background

𝐴! 𝐷!

𝑡

bits

time

3/36

𝑥(𝑡)

𝑑(𝑡)

Figure 2.1: Representing the arrival and departure by cumulative functions results in con-
veniently finding the delay and backlog: x(t) is the backlog at time t (if the system is causal
and lossless) and is the vertical distance between the cumulative arrival function A f and
cumulative departure function D f at time t . Also, the horizontal distance d(t) between the
functions is the delay that the bit arriving at t experiences in the system (if the system is causal,
lossless, and FIFO).

2.1.1.2 Backlog and Delay

The choice of representing the arrival and departure of a flow by cumulative functions results in

conveniently finding the delay and backlog: If system S is causal (i.e, the system does not produce or

duplicate any data internally), x(t) = A f (t)−D f (t) is the amount of data that has entered, but not yet

left, the system up to time t ; if system S is lossless (i.e., the system does not lose any data) as well, it

follows that x(t) is the amount of data inside the system at t , i.e., backlog at time t . Indeed, the backlog

at time t is the vertical distance between the cumulative arrival function A f and cumulative departure

function D f at time t (see Fig. 2.1). Also, if system S is FIFO, it follows that the horizontal distance d(t)

between the functions is the delay that the bit arriving at t experiences in the system (see Fig. 2.1).

It follows that given the cumulative arrival function A f and cumulative departure function D f , the

worst-case delay and backlog can be obtained by finding the horizontal and vertical deviation between

A f and D f ; the definitions of horizontal and vertical deviation are as follows:

Definition 2.1 (Horizontal deviation hDev). For f , g ∈F , the horizontal deviation betweenf and g is

hDev(f , g)
def= sups≥0{inf{d ≥ 0| f (s) ≤ g (s +d)}}.

Definition 2.2 (Vertical deviation v). For f , g ∈F , the vertical deviation betweenf and g is vDev(f , g)
def=

sups≥0{ f (s)− g (s)}.

The horizontal (resp. vertical) deviation between f and g can be visually obtained by finding the

longest horizontal (vertical) line between the two functions.

Note that the pair of (A f ,D f) is only one instance of many possible arrival and departure functions for

flow f through system S; the sources generate the packets at random time instants, thus A f and D f are

not known and cannot be used to compute the worst-case backlog or delay. We are interested in delay

and backlog bounds that are valid for all acceptable pairs of (A f ,D f). To do so, network calculus relies

on arrival and service curves.

12

2.1 Network Calculus

2.1.1.3 Arrival Curves

As mentioned, the cumulative arrival function A f is not known; network calculus counterpart this by

limiting the amount of data that a flow can send by means of an arrival curve.

Definition 2.3 (Arrival Curve). We say that a flow f , with the the cumulative arrival function A f , is

constrained by an arrival curve α f ∈F if and only if

∀0 ≤ s ≤ t , A f (t)− A f (s) ≤α f (t − s) (2.1)

An arrival curve α f limits the amount of data observed for a flow at any time interval, and it takes as

input the duration of a time interval rather than the absolute times. An arrival curve α f can always

be assumed to be sub-additive, i.e., to satisfy ∀s, t , α f (t)+α f (s) ≥ α f (t + s). Otherwise, it can be

replaced by its sub-additive closure (see [54, Section 2.2]). Two frequently used arrival curves are γr,b ,

a token-bucket function with rate r and burst b, and νp,b , a stair function defined below. They are

sub-additive.

Definition 2.4 (Token-bucket function γr,b). ∀r,b ≥ 0, the token-bucket function γr,b ∈F is defined by

(see Fig. 2.2)

γr,b(t)
def=

{
0 if t = 0

r t +b if t > 0
(2.2)

Definition 2.5 (Stair function νp,b). ∀b ≥ 0 and p > 0, the stair function νp,b ∈ F is defined by (see

Fig. 2.2)

νp,b(t)
def= b⌈ t

p
⌉ (2.3)

Arrival curves are not unique; indeed, a flow that is constrained by an arrival curveα f is also constrained

by any α′
f such that α′

f ≥α f . Sometimes for tractability, arrival curves are replaced by simpler upper

bounds. For example, a periodic flow with period p that sends packets of size b is constrained by a stair

arrival curve νp,b ; however, for tractability, it can be replaced by a token-bucket arrival curve γr,b with

r = b
p (see Fig. 2.2 and Chapter 6 for more details).

It might also happen that we know several non-dominated arrival curves for a flow; if α f and α′
f are

two arrival curves for flow f , then a better arrival curve can be obtained by α f ⊗α′
f . For example, if

a flow, with arrival curve α and a maximum packet size l max, arrives on a link with a rate c, a better

arrival curve for this flow at the output of the link is the min-plus convolution of α and the function

t 7→ l max + ct ; this is known as line-shaping (also known as grouping)(see Fig. 2.6).

2.1.1.4 Service Curves

As mentioned, the cumulative arrival and departure functions A f and D f are not known; by means of

an arrival curve, the former is constrained. Then, a service curve abstracts the service offered by the

system and models the system.

Definition 2.6 (Service Curve). Consider a system S and a flow f through S with cumulative arrival and

departure functions A f and D f and let β ∈F . We say that the system S offers β as a service curve to the

flow if

D f ≥ A f ⊗β (2.4)

13

Chapter 2. Technical Background

�r,b

⌫p,b

p 2p 3p 4p

b
2b
3b
4b

non-convex service

�c,LL

Fig. 2: Left: the stair function ⌫b,p 2 F defined for t � 0 by
⌫b,p(t) = b

l
t
p

m
and token-bucket function �r,b 2 F defined for

t > 0 by �r,b(t) = b + rt and for t = 0 by �r,b(0) = 0 (in
the figure, we have r = b

p
). Right: a non-convex service curve

and a rate-latency �c,L 2 F that lower bounds it with �c,L(t) =
max (0, c (t� L)).

(f ↵ �d) (t) = f(t + d) (left-shift).

B. Total Flow Analysis (TFA)

Total Flow Analysis (TFA) [5]–[8] is a method for obtaining
worst-case delay and backlog bounds in a FIFO network. In
a network where a service curve is known at every node and
an arrival curve for every flow is known at the source, one
run of TFA returns a valid delay bound at every node and
propagated burstiness for flows. Although TFA is simple and
modular, it takes into account the effect of packetizer and line-
shaping. When the graph induced by flows is feed-forward
(i.e, cycle-free), each node is visited in the topological order,
whereby a delay bound and output burstiness bounds of flows
are computed; output burstiness of flows are used as an input
by the following nodes. If the graph induced by flows has
cyclic dependencies, a topological order cannot be defined;
instead an iterative method is used and a fixpoint is computed
[7], [8]. The method in [7], called FP-TFA, requires to first
make some artificial cuts in the induced graph in order to
create a feed-forward network. It then computes estimated
burstiness of flows at cuts and iterates. It is shown that, if
the iteration converges, the obtained fixpoint is a valid bound
on the burstiness of flows at cuts, and the network is stable.
Other versions of TFA that do not make cuts are presented
in [8], where it is shown that they are equivalent to FP-
TFA, i.e., they provide the same bounds and stability regions
[8]. For networks with cyclic dependencies, all versions of
TFA assume only token-bucket arrival curves and rate-latency
service curves, and the validity of the results are shown with
these assumptions. In Section IV, we provide a new version
of FP-TFA, called Generic FP-TFA (GFP-TFA), that can be
applied with any arrival curves and service curves of generic
shapes, including UPP and UA ones. When arrival curve are
token-bucket and service curves are rate-latency, GFP-TFA is
essentially the same as FP-TFA.

C. Compact Domains for Delay Computation

It has been observed in [15] that, for some systems, the
computation of the delay bounds does not require to handle
the full function (i.e., all values of the function for all time
t in [0, +1)), but only its values on a finite prefix domain.
However, the theory in [15] lacks a proof that computation
in such compact domains does not affect the accuracy of

the end-results. The challenge consists in computing in each
node a value h such that the computation on the compact
domain [0, h] is sufficient to get accurate result on this node
but also on the next ones along the flow path. The intuition
is the following: Consider a flow that traverses two nodes in
sequence. Assume that the first node (resp. the second node)
requires that the arrival curve of the flow at the input of the
node is accurate in [0, h] (resp. [0, h0]). As the arrival curve
of the flow increases along the path and some information
is lost at propagation, arrival curve of the flow at the input
of the first node should be accurate for some [0, h00] where
h00 > max(h, h0) is large enough.

Authors in [22] derive compact domains where they prove
that the accuracy of the end-results are not affected; their
results and proofs only hold for input/output relations in
acyclic network of the Greedy-Processing Component (GPC),
used in Real-Time Calculus (RTC).

Authors in [16] derive such compact domains, in a more
general context. They show that, at a single node where an
arrival curve and a service curve are known, network calculus
operations, including delay computations, can be restricted
to finite domains without affecting the end-results. Here, we
rewrite one of their findings that we use in the paper, using
our notation:

Theorem 1 (Theorem 4 of [16]). Consider a flow constrained
by an arrival curve ↵ that traverse a node that offers a super-
additive service curve �. Let ↵0 and ↵00 be a lower bound and
upper bound, respectively, for ↵, i.e., ↵0  ↵  ↵00. Also, let
�0 and �00 be an upper bound and lower bound, respectively,
for �, i.e., �00  �  �0. Define

h↵ def
= max (u, v) and h� def

= max (u + D00, v) (1)

with

D0 = hDev (↵0, �0) (2)
B0 = vDev (↵0, �0) (3)
u = sup

t�0
{↵00(t) � �00(t + D0)} (4)

v = sup
t�0

{↵00(t) � �00(t) + B0} (5)

D00 = hDev (↵00, �00) (6)

Then, the horizontal deviation hDev(↵, �) and the vertical
deviation vDev(↵, �) depend only on the values of ↵(t) for
t 2 [0, h↵] and �(t) for t 2

⇥
0, h�

⇤
(see Section II-A2 for

definitions of super-additive service curve, hDev and vDev.)

Note that in the above, ↵00 and �00 are valid, safe arrival
curve and service curve, respectively; however, ↵0 and �0

are unsafe arrival curve and service curve, respectively. Note
that the method requires that service curves are super-additive
(see Section II-A2). Authors in [16] also find such compact
domains for min-plus deconvolution, and explain how to
integrate such compact domains with Pay-Burst-Only-Once
(PBOO) [14] and Pay-Multiplexing-Only-Once (PMOO) [14]
principles in sink-tree networks with arbitrary multiplexing.

�r,b

⌫p,b

p 2p 3p 4p

b
2b
3b
4b

non-convex service

�R,LL

Fig. 2: Left: the stair function ⌫b,p 2 F defined for t � 0 by
⌫b,p(t) = b

l
t
p

m
and token-bucket function �r,b 2 F defined for

t > 0 by �r,b(t) = b + rt and for t = 0 by �r,b(0) = 0 (in
the figure, we have r = b

p
). Right: a non-convex service curve

and a rate-latency �c,L 2 F that lower bounds it with �c,L(t) =
max (0, c (t� L)).

(f ↵ �d) (t) = f(t + d) (left-shift).

B. Total Flow Analysis (TFA)

Total Flow Analysis (TFA) [5]–[8] is a method for obtaining
worst-case delay and backlog bounds in a FIFO network. In
a network where a service curve is known at every node and
an arrival curve for every flow is known at the source, one
run of TFA returns a valid delay bound at every node and
propagated burstiness for flows. Although TFA is simple and
modular, it takes into account the effect of packetizer and line-
shaping. When the graph induced by flows is feed-forward
(i.e, cycle-free), each node is visited in the topological order,
whereby a delay bound and output burstiness bounds of flows
are computed; output burstiness of flows are used as an input
by the following nodes. If the graph induced by flows has
cyclic dependencies, a topological order cannot be defined;
instead an iterative method is used and a fixpoint is computed
[7], [8]. The method in [7], called FP-TFA, requires to first
make some artificial cuts in the induced graph in order to
create a feed-forward network. It then computes estimated
burstiness of flows at cuts and iterates. It is shown that, if
the iteration converges, the obtained fixpoint is a valid bound
on the burstiness of flows at cuts, and the network is stable.
Other versions of TFA that do not make cuts are presented
in [8], where it is shown that they are equivalent to FP-
TFA, i.e., they provide the same bounds and stability regions
[8]. For networks with cyclic dependencies, all versions of
TFA assume only token-bucket arrival curves and rate-latency
service curves, and the validity of the results are shown with
these assumptions. In Section IV, we provide a new version
of FP-TFA, called Generic FP-TFA (GFP-TFA), that can be
applied with any arrival curves and service curves of generic
shapes, including UPP and UA ones. When arrival curve are
token-bucket and service curves are rate-latency, GFP-TFA is
essentially the same as FP-TFA.

C. Compact Domains for Delay Computation

It has been observed in [15] that, for some systems, the
computation of the delay bounds does not require to handle
the full function (i.e., all values of the function for all time
t in [0, +1)), but only its values on a finite prefix domain.
However, the theory in [15] lacks a proof that computation
in such compact domains does not affect the accuracy of

the end-results. The challenge consists in computing in each
node a value h such that the computation on the compact
domain [0, h] is sufficient to get accurate result on this node
but also on the next ones along the flow path. The intuition
is the following: Consider a flow that traverses two nodes in
sequence. Assume that the first node (resp. the second node)
requires that the arrival curve of the flow at the input of the
node is accurate in [0, h] (resp. [0, h0]). As the arrival curve
of the flow increases along the path and some information
is lost at propagation, arrival curve of the flow at the input
of the first node should be accurate for some [0, h00] where
h00 > max(h, h0) is large enough.

Authors in [22] derive compact domains where they prove
that the accuracy of the end-results are not affected; their
results and proofs only hold for input/output relations in
acyclic network of the Greedy-Processing Component (GPC),
used in Real-Time Calculus (RTC).

Authors in [16] derive such compact domains, in a more
general context. They show that, at a single node where an
arrival curve and a service curve are known, network calculus
operations, including delay computations, can be restricted
to finite domains without affecting the end-results. Here, we
rewrite one of their findings that we use in the paper, using
our notation:

Theorem 1 (Theorem 4 of [16]). Consider a flow constrained
by an arrival curve ↵ that traverse a node that offers a super-
additive service curve �. Let ↵0 and ↵00 be a lower bound and
upper bound, respectively, for ↵, i.e., ↵0  ↵  ↵00. Also, let
�0 and �00 be an upper bound and lower bound, respectively,
for �, i.e., �00  �  �0. Define

h↵ def
= max (u, v) and h� def

= max (u + D00, v) (1)

with

D0 = hDev (↵0, �0) (2)
B0 = vDev (↵0, �0) (3)
u = sup

t�0
{↵00(t) � �00(t + D0)} (4)

v = sup
t�0

{↵00(t) � �00(t) + B0} (5)

D00 = hDev (↵00, �00) (6)

Then, the horizontal deviation hDev(↵, �) and the vertical
deviation vDev(↵, �) depend only on the values of ↵(t) for
t 2 [0, h↵] and �(t) for t 2

⇥
0, h�

⇤
(see Section II-A2 for

definitions of super-additive service curve, hDev and vDev.)

Note that in the above, ↵00 and �00 are valid, safe arrival
curve and service curve, respectively; however, ↵0 and �0

are unsafe arrival curve and service curve, respectively. Note
that the method requires that service curves are super-additive
(see Section II-A2). Authors in [16] also find such compact
domains for min-plus deconvolution, and explain how to
integrate such compact domains with Pay-Burst-Only-Once
(PBOO) [14] and Pay-Multiplexing-Only-Once (PMOO) [14]
principles in sink-tree networks with arbitrary multiplexing.

Figure 2.2: Left: the stair function νb,p ∈F defined for t ≥ 0 by νb,p (t) = b
⌈

t
p

⌉
and token-bucket

function γr,b ∈F defined for t > 0 by γr,b(t) = b + r t and for t = 0 by γr,b(0) = 0 (in the figure, we
have r = b

p). Right: a non-convex service curve and a rate-latency βR,L ∈F that lower bounds it with
βR,L(t) = max(0,R (t −L)).

where, the symbol ⊗ denotes the min-plus convolution, defined for arbitrary functions f , g ∈F by

(f ⊗ g)(t)
def= inf

0≤s≤t
{ f (t − s)+ g (s)}. (2.5)

This often means that for every t ≥ 0 there exists some s ≤ t such that D f (t) ≥ A f (s)+β(t − s). Similar

to arrival curves, service curves are defined for time intervals rather than absolute times. See Fig. 2.3

for an example of min-plus convolution used in this thesis.

2 BACKGROUND

We consider a DRR system in the context of deterministic
networking, and we are interested in the worst-case delays
for flows, given arrival curve constraints on the flows. In
order to do that, we use network calculus approach, where
necessary background are explained in Section 2.1. The DRR
is explained in Section 2.2. Lastly, in Sections 2.3, 2.4, and 2.5,
we explain the state-of-the-arts.

2.1 Network Calculus Background

We use the framework of network calculus [11]–[13]. Let F
denote the set of wide-sense increasing functions f : R+ 7!
R+ [{+1}. A flow is represented by a cumulative arrival
function A 2 F and A(t) is the number of bits observed on
the flow between times 0 and t. We say that a flow has ↵ 2
F as arrival curve if for all s  t, A(t)�A(s)  ↵(t� s). An
arrival curve ↵ can always be assumed to be sub-additive,
i.e., to satisfy ↵(s + t)  ↵(s) + ↵(t) for all s, t. A periodic
flow that sends up to a bits every b time units has, as arrival
curve, the stair function, defined by ⌫a,b(t) = a

⌃
t
b

⌥
. Another

frequently used arrival curve is the token-bucket function
↵ = �r,b, with rate r and burst b, defined by �r,b(t) = rt + b
for t > 0 and �r,b(t) = 0 for t = 0 (see Fig. 1). Both of these
arrival curves are sub-additive.

Consider a system S and a flow through S with input
and output functions A and D; we say that S offers � 2
F as a strict service curve to the flow if the number of bits
of the flow output by S in any backlogged interval (s, t] is
D(t)�D(s) � �(t� s).

Arriv
al curve !

Str
ict

 se
rvi

ce
 cu

rve
 "

bits

time interval

Delay bound
ℎ(!, ")

'∗

!!,#

"$,%

bits

time interval

'∗

Delay bound

("#$

Ra
te

)

Burst *

Rate +

Latency ,

Ra
te

 -

Fig. 1: Left: Horizontal deviation of an arrival curve ↵ and a
strict service curve �, h(↵, �), is a delay bound for a flow; this
computation can be restricted to t⇤, the first time after zero
where ↵ and � meet. Right: Illustration of a token-bucket arrival
curve �r,b and rate-latency strict service curve �R,T ; the yellow
line shows the effect of grouping (also known as shaping) that
improves the arrival curve, hence the delay bound.

A strict service curve � can always be assumed to be
super-additive (i.e., to satisfy �(s + t) � �(s) + �(t) for
all s, t) and wide-sense increasing (otherwise, it can be
replaced by its super-additive and non-decreasing closure
[13]). A frequently used strict service curve is the rate-
latency function �R,T 2 F , with rate R and latency T ,
defined by �R,T (t) = R[t� T]+, where we use the notation
[x]+ = max {x, 0}. It is super-additive (see Fig. 1)..

Assume that a flow, constrained by a sub-additive arrival
curve ↵, traverses a system that offers a strict service curve
� and that respects the ordering of the flow (per-flow FIFO).
The delay of the flow is upper bounded by the horizontal
deviation defined by h(↵, �) = supt�0{inf{d � 0|↵(t) 
�(t + d)}} (see Fig. 1). Also, the output flow is constrained

by an arrival curve ↵⇤ = ↵↵� where↵ is the deconvolution
operation defined in the next paragraph. The computation
of h(↵, �) and ↵⇤ can be restricted to t 2 [0, t⇤] for t⇤ �
infs>0{↵(s)  �(s)} (see Fig. 1). [13, Prop. 5.13], [14].

For f and g in F , the min-plus convolution is defined
by (f ⌦ g)(t) = inf0st{f(t� s) + g(s)} and the min-plus
deconvolution by (f↵g)(t) = sups�0{f(t+s)�g(s)} [11]–
[13]. We will use the min-plus convolution of a stair function
with a linear function, as shown in Fig. 2.

p 2p 3p 4p

b
2b
3b
4b

t

⌫p,b(t)

(a) ⌫a,b

b p 2p 3p 4p

b
2b
3b
4b

t

(�1 ⌦ ⌫p,b) (t)

(b) (�1 ⌦ ⌫a,b)

Fig. 2: Left: the stair function ⌫a,b 2 F defined for t � 0 by
⌫a,b(t) = a

⌃
t
b

⌥
. Right: min-plus convolution of ⌫a,b with the

function �1 2 F defined by �1(t) = t for t � 0, when a  b. The
discontinuities are smoothed and replaced with a unit slope.

If a flow, with arrival curve ↵ and a maximum packet
size lmax, arrives on a link with a rate c, a better arrival
curve for this flow at the output of the link is the min-plus
convolution of ↵ and the function t 7! lmax + ct; this is
known as grouping (also known as line-shaping) and is also
explained Section 2.4 (see Fig. 1).

The non-decreasing closure f" of a function f : R+ !
R+[{+1} is the smallest function in F that upper bounds
f and is given by f"(t) = supst f(s). Also, the non-
decreasing and non-negative closure [f]

+
" of f is the smallest

non-negative function in F that upper bounds f (see Fig. 3
(a)).

!
! ↑

"

(a) f and [f]+"

!
!↓" =

$

"

$
(b) f and f#.

Fig. 3: Left: A function f and its non-decreasing and non-
negative closure [f]+" , which is the smallest non-negative and
non-decreasing function that upper bounds f . Right: A function
f and its lower pseudo inverse f#; To obtain the lower pseudo
inverse of a function, first, the axes are flipped to find its inverse;
if there are plateaux (i.e., horizontal lines) in f , they create
vertical lines in its inverse; then, at each vertical line, the lowest
value is taken.

The lower pseudo-inverse f# of a function f 2 F is
defined by f#(y) = inf{x|f(x) � y} = sup{x|f(x) < y}
(see Fig. 3 (b)).

2

(a) νp,b

2 BACKGROUND

We consider a DRR system in the context of deterministic
networking, and we are interested in the worst-case delays
for flows, given arrival curve constraints on the flows. In
order to do that, we use network calculus approach, where
necessary background are explained in Section 2.1. The DRR
is explained in Section 2.2. Lastly, in Sections 2.3, 2.4, and 2.5,
we explain the state-of-the-arts.

2.1 Network Calculus Background

We use the framework of network calculus [11]–[13]. Let F
denote the set of wide-sense increasing functions f : R+ 7!
R+ [{+1}. A flow is represented by a cumulative arrival
function A 2 F and A(t) is the number of bits observed on
the flow between times 0 and t. We say that a flow has ↵ 2
F as arrival curve if for all s  t, A(t)�A(s)  ↵(t� s). An
arrival curve ↵ can always be assumed to be sub-additive,
i.e., to satisfy ↵(s + t)  ↵(s) + ↵(t) for all s, t. A periodic
flow that sends up to a bits every b time units has, as arrival
curve, the stair function, defined by ⌫a,b(t) = a

⌃
t
b

⌥
. Another

frequently used arrival curve is the token-bucket function
↵ = �r,b, with rate r and burst b, defined by �r,b(t) = rt + b
for t > 0 and �r,b(t) = 0 for t = 0 (see Fig. 1). Both of these
arrival curves are sub-additive.

Consider a system S and a flow through S with input
and output functions A and D; we say that S offers � 2
F as a strict service curve to the flow if the number of bits
of the flow output by S in any backlogged interval (s, t] is
D(t)�D(s) � �(t� s).

Arriv
al curve !

Str
ict

 se
rvi

ce
 cu

rve
 "

bits

time interval

Delay bound
ℎ(!, ")

'∗

!!,#

"$,%

bits

time interval

'∗

Delay bound

("#$

Ra
te

)

Burst *

Rate +

Latency ,

Ra
te

 -

Fig. 1: Left: Horizontal deviation of an arrival curve ↵ and a
strict service curve �, h(↵, �), is a delay bound for a flow; this
computation can be restricted to t⇤, the first time after zero
where ↵ and � meet. Right: Illustration of a token-bucket arrival
curve �r,b and rate-latency strict service curve �R,T ; the yellow
line shows the effect of grouping (also known as shaping) that
improves the arrival curve, hence the delay bound.

A strict service curve � can always be assumed to be
super-additive (i.e., to satisfy �(s + t) � �(s) + �(t) for
all s, t) and wide-sense increasing (otherwise, it can be
replaced by its super-additive and non-decreasing closure
[13]). A frequently used strict service curve is the rate-
latency function �R,T 2 F , with rate R and latency T ,
defined by �R,T (t) = R[t� T]+, where we use the notation
[x]+ = max {x, 0}. It is super-additive (see Fig. 1)..

Assume that a flow, constrained by a sub-additive arrival
curve ↵, traverses a system that offers a strict service curve
� and that respects the ordering of the flow (per-flow FIFO).
The delay of the flow is upper bounded by the horizontal
deviation defined by h(↵, �) = supt�0{inf{d � 0|↵(t) 
�(t + d)}} (see Fig. 1). Also, the output flow is constrained

by an arrival curve ↵⇤ = ↵↵� where↵ is the deconvolution
operation defined in the next paragraph. The computation
of h(↵, �) and ↵⇤ can be restricted to t 2 [0, t⇤] for t⇤ �
infs>0{↵(s)  �(s)} (see Fig. 1). [13, Prop. 5.13], [14].

For f and g in F , the min-plus convolution is defined
by (f ⌦ g)(t) = inf0st{f(t� s) + g(s)} and the min-plus
deconvolution by (f↵g)(t) = sups�0{f(t+s)�g(s)} [11]–
[13]. We will use the min-plus convolution of a stair function
with a linear function, as shown in Fig. 2.

p 2p 3p 4p

b
2b
3b
4b

t

⌫p,b(t)

(a) ⌫a,b

b p 2p 3p 4p

b
2b
3b
4b

t

(�1 ⌦ ⌫p,b) (t)

(b) (�1 ⌦ ⌫a,b)

Fig. 2: Left: the stair function ⌫a,b 2 F defined for t � 0 by
⌫a,b(t) = a

⌃
t
b

⌥
. Right: min-plus convolution of ⌫a,b with the

function �1 2 F defined by �1(t) = t for t � 0, when a  b. The
discontinuities are smoothed and replaced with a unit slope.

If a flow, with arrival curve ↵ and a maximum packet
size lmax, arrives on a link with a rate c, a better arrival
curve for this flow at the output of the link is the min-plus
convolution of ↵ and the function t 7! lmax + ct; this is
known as grouping (also known as line-shaping) and is also
explained Section 2.4 (see Fig. 1).

The non-decreasing closure f" of a function f : R+ !
R+[{+1} is the smallest function in F that upper bounds
f and is given by f"(t) = supst f(s). Also, the non-
decreasing and non-negative closure [f]

+
" of f is the smallest

non-negative function in F that upper bounds f (see Fig. 3
(a)).

!
! ↑

"

(a) f and [f]+"

!
!↓" =

$

"

$
(b) f and f#.

Fig. 3: Left: A function f and its non-decreasing and non-
negative closure [f]+" , which is the smallest non-negative and
non-decreasing function that upper bounds f . Right: A function
f and its lower pseudo inverse f#; To obtain the lower pseudo
inverse of a function, first, the axes are flipped to find its inverse;
if there are plateaux (i.e., horizontal lines) in f , they create
vertical lines in its inverse; then, at each vertical line, the lowest
value is taken.

The lower pseudo-inverse f# of a function f 2 F is
defined by f#(y) = inf{x|f(x) � y} = sup{x|f(x) < y}
(see Fig. 3 (b)).

2

(b) (λ1 ⊗νp,b)

Figure 2.3: Left: the stair function νp,b ∈F defined for t ≥ 0 by νp,b(t) = b
⌈

t
p

⌉
. Right: min-plus

convolution of νp,b with the function λ1 ∈ F defined by λ1(t) = t for t ≥ 0. When b ≤ p, the
discontinuities are smoothed and replaced with a unit slope.

Service curves are not unique; indeed, a system that offers a service curve β, also offers any service

curves β′ such that β′ ≤ β. Sometimes for tractability, service curves are replaced by simpler lower

bounds. For example, a non-convex service curve can be replaced by a rate-latency function that

lower-bounds it (see Fig. 2.2 and see Chapters 3 and 4 for more details.).

14

2.1 Network Calculus

Definition 2.7 (Rate-latency function βR,T). ∀R,T ≥ 0, the rate-latency function βR,T ∈F is defined by

(see Fig. 2.2)

βR,T (t)
def= R[t −T]+ (2.6)

where we use the notation [x]+ = max(0, x).

A service curve β can always be assumed to be non-negative and non-decreasing, otherwise, it can be

replaced by its non-negative and non-decreasing closure.

Definition 2.8 (Non-decreasing and non-negative closure
[

f
]+
↑). The non-decreasing and non-negative

closure
[

f
]+
↑ of a function f :R+ →R∪ {+∞} is the smallest function in F that upper bounds f (see Fig.

2.4) and is given by [
f
]+
↑ (t)

def= sup
s≤t

[f (s)]+ (2.7)

𝑓
𝑓 ↑

"

Figure 2.4: A function f and its non-decreasing and non-negative closure
[

f
]+
↑ , which is the

smallest non-negative and non-decreasing function that upper bounds f .

A special kind of service curve is a strict service curve that lower-bounds the service offered by the

system in its backlog periods:

Definition 2.9 (Backlogged periods). Consider a system S and a flow f through S with cumulative

arrival and departure functions A f and D f . An interval (s, t] is a backlogged period if A f (τ) > D f (τ) for

all τ such that s < τ≤ t .

For a backlogged period (s, t], u = supv≤t {D f (v) = A f (v)} is the start of this the beginning of this

backlogged period, and indeed u ≤ s and (u, t] is also a backlogged period.

Definition 2.10 (Strict Service Curve). We say that system S offers a strict service curve β ∈F to the flow

if, whenever (s, t] is a backlogged period

D f (t)−Ds (s) ≥β(t − s) (2.8)

If β is a strict service curve, then it is a service curve, but the converse is not always true [38, Sec.

1.3]. A frequently used service curve is the rate-latency function βR,T . Saying that a system offers a

15

Chapter 2. Technical Background

service curve βR,T to a flow expresses that the flow is guaranteed a service rate R, except for possible

interruptions that might impact the delay by at most T . Saying that a system offers a strict service curve

βR,T to a flow expresses that the flow is guaranteed a service rate R, except for possible interruptions

that might not exceed T in total per backlogged period.

A strict service curve β can always be assumed to be super-additive, i.e., to satisfy ∀s, t , β(t)+β(s) ≤
β(t + s). Otherwise, it can be replaced by its super-additive closure [40, Prop. 5.6]. Note that this is not

true for non-strict service curves. Also, if β and β′ are two strict service curves offered by S, then S also

offers max
(
β,β′) as a strict service curve.

2.1.2 Network Calculus Bounds

Theorem 2.1 (Network Calculus Three Bounds). Assume that a flow f , constrained by arrival curve α f ,

traverses a system S that offers a service curve β to the flow. Assume that system S is causal, lossless, and

FIFO.

1. The delay of flow f is upper bounded by hDev(α f ,β);

2. The backlog of flow f inside S is upper-bounded by vDev(α f ,β);

3. Flow f is contained by an arrival curve α∗
f =α f ⊘β at the output of the system.

In the above, the horizontal deviation hDev and vertical deviation vDev are defined in definitions 2.1,

2.2. The symbol ⊘ denotes the min-plus deconvolution, defined for arbitrary functions f , g ∈F by

(f ⊘ g)(t)
def= sup

0≤s
{ f (t + s)− g (s)} (2.9)

See Fig. 2.6 for illustration. The computation of hDev(α f ,β) and α∗
f can be restricted to a sufficient

horizon t∗: Only values of α f (t) and β(t) for t ∈ [0, t∗] with t∗ ≥ infs>0{α f (s) ≤β(s)} are required (see

Fig. 2.6) [40, Prop. 5.13]. In Chapter 6, we will provide more details on the sufficient horizon.

Let us apply Theorem 2.1 on an example: Consider a flow f that crosses n systems S1 and S2 in

sequence. Assume that Si offers to flow f the service curve βi with i = 1 : 2. Also, assume that flow

f is constrained by an arrival curve α f at the input of system S1 (see Fig. 2.5). Then, at S1 we apply

Theorem 2.1 and obtain h
(
α f ,β1

)
a valid delay bound for the first server (item 1); also, we find α f ⊘β1,

an arrival curve for the flow at the output of the server (item 3) which can be used as the input to next

server. Finally, an end-to-end delay bound can be obtained for the flows by summing the delay bound

experienced at each system:

d e2e
f = hDev

(
α f ,β1

)+hDev
(
α f ⊘β1,β2

)
(2.10)

We can improve on this delay bound by concatenating the service offered by the systems.

Theorem 2.2 (Concatenation of systems). Consider a flow f that crosses systems S1 and S2 in sequence.

Assume that Si offers to flow f the service curve βi with i = 1 : 2. Then, the concatenation of S1 and S2

offers to flow f the service curve β1 ⊗β2, where ⊗ is the min-plus convolution defined in (2.5).

By Theorem 2.2 we obtain

d e2e
f

′ = hDev
(
α f ,β1 ⊗β2

)
(2.11)

16

2.1 Network Calculus

Flow 𝑓
Arrival curve 𝛼! ⊘𝛽!

System 1
Service curve 𝛽!

System 2
Service curve 𝛽"

Concatenated system
Service curve 𝛽! ⊗𝛽"

Flow 𝑓
Arrival curve 𝛼!

Flow 𝑓
Arrival curve 𝛼!

Figure 2.5: A flow f that crosses two systems S1 and S2 in sequence. By Theorem 2.2, the
concatenation of S1 and S2 offers to flow f the service curve β1 ⊗β2; then, by one application
of Theorem 2.1, an end-to-end delay bound for flow f is obtained. This always dominates the
end-to-end delay bound for flow f obtained by the successive application of Theorem 2.1.
This effect is known as Pay Burst Only Once (PBOO).

d e2e
f

′
is always better than d e2e

f , obtained by the successive application of Theorem 2.1. This effect is

known as Pay Burst Only Once (PBOO).

2.1.2.1 Packetizer

Theorem 2.1 requires abstracting the system by some service curve characterization. There are some

systems where we can produce results that are better than what their service-curve representation can

provide.

Definition 2.11 (Packetizer P L). A packetizer P L is a causal, lossless, FIFO system that transforms a fluid,

bit-by-bit stream into a packetized stream by releasing the packet’s bits only when the last one is received.

Appending a packetizer to a node does not increase the packet delay at this node [38, Theorem 1.7.1].

However, the packetizer increases the arrival curve of the departure flows and hence can increase

the end-to-end delay bounds. In Chapter 6, we take into this in account when the arrival rate at the

packetizer’s input is limited.

2.1.3 End-to-End Worst-Case Delay Analysis for FIFO-per-Class Networks

So far, we considered a unique flow that crosses one or several systems. In a given time-sensitive

network, it is unlikely that f be the only flow that crosses a system. The time-sensitive networks studied

in the thesis are FIFO-per-class networks: We assume that flows are grouped into classes, packets

inside one class are processed First-In-First-Out (FIFO), and classes are isolated using schedulers. We

assume that flows are statistically assigned to a class. Also, we assume that flows are constrained by

some arrival curves at their sources.

Now consider a flow f that belongs to class c. Packets of flows that belong to class c compete at each

network node with flows of other classes; also, packets of different flows inside a class compete with

each other within a class. In order to compute a bound on its end-to-end delays, the following steps are

required:

1. Abstract the service offered by the system-level scheduling policy to class c at every network

17

Chapter 2. Technical Background

Arriv
al curve 𝛼!

Se
rv

ice
 cu

rv
e 𝛽

bits

time interval

Delay bound

hDev(𝛼!, 𝛽)

𝛾!,#

𝛽$,%

bits

time interval

Delay bound

𝑙"#$

Ra
te

 𝑐

Burst 𝑏

Rate 𝑟

Latency 𝑇

Ra
te

 𝑅

𝑡∗ 𝑡∗

Figure 2.6: Left: Horizontal deviation of an arrival curve α f and a service curve β, hDev(α f ,β), is
a delay bound for a flow; a backlog bound can be obtained by finding the vertical deviation; these
computations can be restricted to t∗, the first time after zero where α f and β meet. Right: Illustration
of a token-bucket arrival curve γr,b and rate-latency strict service curve βR,T ; the yellow line shows
the effect of line-shaping (also known as grouping) that improves the arrival curve, hence the delay
bound.

node (also called residual service curve); this models the service offered to aggregate flows of

class c at each node.

2. Worst-case analysis of the FIFO-per-class network of class c: Given the service characterization

offered to class c at all network nodes and arrival curve constraints for flows of class c at their

sources, obtain a bound for packets of flow f .

For the former, Per-class service curves have been vastly analyzed for some scheduling policies: Static

Priority [17, Section 8.6.8.1] in [38, Section 6.2.1][54, Sections 7.3.2, 8.2.1]; Credit Based-Shaper (CBS)

[17, Section 8.6.8.2] in [55, 56, 57, 58]; Time-Aware Shaper (TAS) [17, Sections 8.6.8.3-4, 8.6.9] in [54,

Section 8.2.5] [59]. In Chapters 3 and 4, we also find such service curves for round-robin schedulers in

this thesis.

2.1.3.1 Total Flow Analysis (TFA)

Total Flow Analysis (TFA) [62, 63, 64, 119] is a method to conduct worst-case analysis in a FIFO network.

In a per-class network where a service curve is known for every class at every node, one instance of TFA

is run per class, and it outputs per-node delay bounds as well as propagated burstiness for flows. TFA is

simple, yet it can consider several important features, such as the effect of packetizer and line-shaping.

If the network is feed-forward (i.e., cycle-free), for each node in a topological order, a delay bound

and output burstiness bounds of flows are computed: the output burstiness bounds at a node are

used as input by its successors in the induced graph. Else if the network has cyclic dependencies, no

topological order can be defined, and a fixed point must be computed, using an iterative method [64].

If the iteration converges to a finite value for all delay and burstiness bounds, then the network is stable,

and the computed bounds are valid. Otherwise, TFA diverges, and the network might be truly unstable

or not. All versions of TFA (specifically, FP-TFA, SyncTFA, AsyncTFA, and AltTFA) are equivalent, i.e.,

they give the same bounds and stability regions [64].

Note that for networks with cyclic dependencies, all versions of TFA are designed and validated only

18

2.1 Network Calculus

when arrival curves are token-bucket functions and service curves are rate-latency functions. In

Chapter 6, we present and prove the validity of, a new version of TFA with arrival curves and service

curves of generic shapes.

2.1.3.2 Single Flow Analysis (SFA)

SFA [62] computes an end-to-end delay bound for every flow of interest as follows and applies the PBOO

principle by concatenating the residual service curves: First, it computes a residual service curve offered

to the flow at every node in its path using [54, Theorem 7.5]. Second, it uses the concatenation results

of Theorem 2.2 and obtains an end-to-end service curve offered to the flow of interest. Lastly, it uses

the end-to-end service curve and the arrival curve of the flow at the source and applies Theorem 2.1 to

obtain a delay bound. Unlike TFA, SFA benefits from PBOO, however, it does not account for the effect

of line-shaping. Also, the first step, in the case of FIFO multiplexing, requires finding the optimal values

for some parameters, which increases with the length of the flow path, thus increasing the complexity of

SFA. SFA applies to feed-forward networks, and existing versions of SFA cannot be applied to networks

with cyclic dependencies.

2.1.3.3 Pay Multiplexing Only Once (PMOO)

PMOO [62] goes in the same direction as SFA and computes an end-to-end service curve offered to the

flow of interest by finding residual service curve at each node and concatenate them using Theorem 2.2;

however, it groups interfering flows that share a sequence of systems, and then calculates an aggregate

arrival-curve for each group. This results in accounting for the burst of interfering flows once within a

flow path, which ultimately improves the end-to-end delay bound. PMOO can be only applied to FIFO

tandem networks (where nodes are placed on a line and the path of each flow is a continuous sub-path

of this line).

2.1.3.4 Least Upper Delay Bound (LUDB)

LUDB [22, 120, 121] relies on PMOO and is applied in FIFO tandem networks. It [120] provides tight

delay bounds for FIFO sink-tree networks (where all flows leave the network at the same server). This

process involves solving multiple Linear Programming (LP) problems, each providing an upper limit

on the maximum delay. By solving each LP problem and choosing the smallest upper limit, the overall

least upper bound can be determined. Authors in [22] extended the analysis of Least Upper Delay

Bound (LUDB) for FIFO tandem networks to FIFO feed-forward networks; the method is called LUDB

-FF.

2.1.3.5 Flow Prolongation

It has been observed that prolonging the paths of some interfering traffic might improve the bounds

obtained by Pay Multiplexing Only Once (PMOO) and Least Upper Delay Bound (LUDB); the method is

called flow prolongation [122]. Authors in [67] proposed a Graph neural Network (GNN) that predicts

the best flow prolongations setting. We have implemented this GNN that is open source and publicly

available in [123].

19

Chapter 2. Technical Background

2.1.3.6 Mixed-Integer Linear Programming (MILP), Exponential-size Linear Programming

(ELP), and Polynomial-size Linear Programming (PLP)

MILP [20] considers the arrival and departure time of a bit of interest; it then derives a number of

time instants at every node, each of which is represented by a variable in MILP. Every time instant at

a node is also associated with a variable that represents the value of the cumulative arrival function

of the flows at this time instant. Network calculus relations such as arrival curve constraints, FIFO

constraints, and service curve constraints are translated into linear constraints; the objective function

to be maximized is the delay or backlog of the flow of interest. Also, it uses many integer variables.

MILP provides tight delay bounds for FIFO feed-forward networks. However, it is applicable only to

very small-sized networks.

ELP [20, 68] removes the integers variables of MILP, and thus provides less good bounds and loses the

tightness property of MILP. However, the number of variables and constraints of ELP grows exponen-

tially, and still, it is applicable only to very small-size FIFO feed-forward networks.

PLP [68] considerably makes ELP smaller by removing many variables and constraints. On the one

hand, as the name suggests, the number of variables does not grow exponentially. On the other hand,

PLP obtains less good bounds than ELP. To compensate for that, PLP uses delay bounds obtained by

TFA and SFA as constraints; this improves the bounds obtained by PLP and guarantees that PLP always

provides bounds that are less than or equal to those obtained by TFA or SFA. PLP can be applied to

networks with cyclic dependencies, and it is known that it improves the stability region compared to

TFA. We provide a more detailed background for PLP in Chapter 5.

2.1.4 Existing Worst-Case Delay Analysis Tools

The existing research or industrial network analysis tools related to network calculus are, but not limited

to, DiscoDNC [66, 124], RTC Toolbox [125, 126], CyNC [127], RTaW-PEGASE [128], WoPANets [129],

DelayLyzer [130], DEBORAH [131], NetCalBounds [132, 133], NCBounds [134], Siemens Network Plan-

ner (SINETPLAN) [135], xTFA [61], and Panco [136]. There also exist tools especially devoted to the

min-plus algebra, such as Nancy [93], [137], and RTaW [92].

xTFA, DiscoDNC, and Panco support some of the methods we presented in the previous section. These

tools altogether cover most of the widely recognizable methods within the community:

• xTFA is developed in Python and supports a more advanced TFA.

• DiscoDNC is developed in Java and partially uses linear programming with CPLEX [138] for

LUDB.

• Panco is developed in Python and uses linear programming. So, it requires lpsolve [139] to

execute TFA, SFA, PLP, and ELP.

In Appendix A, we present Saihu, a Python interface that integrates these three worst-case network

analysis tools.

20

2.2 Lower Pseudo-Inverse

2.2 Lower Pseudo-Inverse

The lower pseudo-inverse f ↓ of a function f ∈F is defined by (see Fig. 2.7)

f ↓(y) = inf{x| f (x) ≥ y} = sup{x| f (x) < y} (2.12)

We use the following property from [140, Sec. 10.1]:

∀x, y ∈R+, y ≤ f (x) ⇒ x ≥ f ↓(y) (2.13)

𝑓
𝑓↓𝑦 =

𝑥

𝑦

𝑥
Figure 2.7: A function f and its lower pseudo inverse f ↓; To obtain the lower pseudo-inverse
of a function, first, the axes are flipped to find its inverse; if there are plateaux (i.e., horizontal
lines) in f , they create vertical lines in its inverse; then, at each vertical line, the lowest value is
taken.

21

Chapter 2. Technical Background

2.3 Notation List Used Throughout the Thesis

Table 2.1: Notation List Used Throughout the Thesis

f A flow
S A system
α f An arrival curve for flow f at the source
βn A service curve offered by system S
A f Cumulative arrival function of flow f
D f Cumulative departure function of flow f
λc Rate function with λc (t) = ct
βR,L Rate-latency function with βc,L(t) = max(0,c(t −L))
R+ Set of non-negative real numbers
F Set of wide-sense increasing functions f :R+ 7→R+∪ {+∞}

νp,b Stair function with νp,b(t) = b
⌈

t
p

⌉
γr,b Token-bucket function with γr,b(0) = 0 and γr,b(t) = r t +b for t > 0
[x]+ [x]+ = max(0, x)
hDev Horizontal deviation hDev(α,β) = supt≥0{inf{d ≥ 0|α(t) ≤β(t +d)}}
f ↓ Lower pseudo inverse f ↓ = inf{x| f (x) ≥ y} = sup{x| f (x) < y}
⊗ Min-plus convolution (f ⊗ g)(t) = inf0≤s≤t { f (t − s)+ g (s)}
⊘ Min-plus deconvolution (f ⊘ g)(t) = sups≥0{ f (t + s)− g (s)}[

f
]+
↑ The non-decreasing and non-negative closure of f given by

[
f
]+
↑ (t) = sups≤t [f (s)]+

vDev Vertical deviation vDev(α,β) = supt≥0{α(t)−β(t)}

22

Part IIEfficient and Accurate Worst-Case
Delay Analysis of Time-Sensitive

Networks with Round-Robin
Schedulers

23

3 Strict Service Curves for Interleaved
Weighted Round-Robin

In the realm of scheduling, where packets flow,

A dance of tasks, a rhythmic show.

Weighted Round-Robin, simple and clear,

Serves bursts of packets, without any fear.

But bursty service, a challenge we find,

Interleaved Round-Robin eases our mind.

Seeking bounds on delays, we delve deep,

Using network calculus, our promises to keep.

With IWRR, a strict curve we trace,

Derived from the pseudo-inverse’s embrace.

Tight bounds we unveil, worst-case they be,

For constant-sized packets, a guarantee.

This service curve, dominant and grand,

Leaving WRR’s curve far behind, unmanned.

Numerical examples, they come alive,

Revealing IWRR’s reduction, as we strive.

So, let the chapter unfold, the findings astound,

As IWRR’s triumph, in delays we confound.

Created with ChatGPT, free research preview (version May 24) [141]

Weighted Round-Robin (WRR) is a scheduling algorithm that is often used for scheduling tasks, or

packets, in real-time systems or communication networks. The capacity is shared among several clients

or queues by giving each of them a weight, which is a positive integer, and by providing more service

to those with larger weights. Specifically, queues are visited one after the other, and when a queue i

with weight wi has an emission opportunity, it sends wi packets, or less if fewer packets are present.

The advantage of WRR is that it is fair and simple. However, the service is bursty because up to wi

packets can be served consecutively for queue i , which can cause a large worst-case waiting time

for other queues. Interleaved Weighted Round-Robin (IWRR) mitigates this effect [84]. With IWRR, a

queue i with weight wi has wi emission opportunities per round and can send up to one packet at

every emission opportunity. In contrast, with WRR, it has one emission opportunity per round and can

send up to wi packets at every emission opportunity. Hence, IWRR spreads out emission opportunities

25

Chapter 3. Strict Service Curves for Interleaved Weighted Round-Robin

of each queue in a round, which is expected to result in a smoother service and lower worst-case

delays. There exist several versions of IWRR; we focus on the simplest one, where queue i has emission

opportunities in the first wi cycles within a round (see Section 3.1 for a formal description of IWRR

and Section 3.2 for WRR variants). As explained in Section 1.2.1, no prior literature exists for worst-case

delay bounds with IWRR.

The network calculus approach was applied to WRR in [40, Sec. 8.2.4], where a strict service curve is

obtained. As explained in Section 2.1.1.4, strict service curves are a special kind of service curve, hence

can be used to derive valid delay bounds. Our first contribution is to obtain a strict service curve for

IWRR. Compared to WRR, the interleaving in IWRR makes the analysis more difficult, and the method

of proof in [40] cannot easily be extended. To circumvent this difficulty, we rely heavily on the method

of pseudo-inverse, recalled in Section 2.2. As expected, the IWRR strict service curve dominates that of

WRR, hence the resulting delay bounds for IWRR are always less than or equal to those for WRR.

The strict service curve enables us to obtain delay bounds by using network calculus, but such bounds

might not always be tight, i.e., they might not always be equal to worst cases. This is because the strict

service curve is an abstraction of the system. Our second contribution is to show that, for flows with

packets of constant sizes, the strict service curve obtained for IWRR does provide tight delay bounds.

We show that the same result holds for the existing strict service curve of WRR. It follows that, for flows

with packets of constant size, the obtained characterization of IWRR (and of WRR) with a strict service

is the best possible among all possible service curves, strict or not.

The strict service curve obtained for IWRR has some description complexity; see also Fig. 3.2. Therefore,

we provide simplified lower bounds that can be used, at the expense of sub-optimality, when analytic,

closed-form expressions are important.

The rest of this chapter is as follows: We describe our system model in Section 3.1. We describe the

state-of-the-art in Section 3.2. In Section 3.3, we present our strict service curve for IWRR. In Section 3.4,

we show that both the IWRR and WRR strict service curves are the best possible and that they give tight

delay bounds for a with constant packet sizes. We use numerical examples to illustrate the worst-case

latency improvement of IWRR over WRR obtained with our method in Section 3.5. We present proofs

of results in Section 3.6. We conclude the chapter in Section 3.7. A summary of notation and symbols

used in this chapter are given in Section 3.8.

3.1 System Model

We assume that we have 1,2, . . . ,n classes and each flow is statistically assigned to a class: We consider

a weighted round-robin subsystem that serves n input classes, has one queue per class, and uses a

weighted round-robin algorithm to arbitrate between classes. The arbitration algorithm assumed in

this chapter is IWRR, shown in Algorithm 3.1. When a packet of flow that belongs to class i enters the

weighted round-robin subsystem, it is put into queue i . The weight of class i is wi . IWRR runs an

infinite loop of rounds. In one round, each queue i has wi emission opportunities; one packet can be

sent during one emission opportunity. The inner loop defines a cycle, where each queue is visited, but

only those with a weight not smaller than the cycle number have an emission opportunity. The send
instruction is assumed to be the only one with a non-null duration. Its actual duration depends on the

packet size but also on the amount of service available to the entire weighted round-robin subsystem.

See Fig. 3.1 for an illustration.

26

3.1 System Model

1 2 3 1 2 3 2 3 3 3 1 2 3 1 2 3 2 3 3 3

cycle 1 cycle 2 c 3 c 4 c 5 cycle 1 cycle 2 c 3 c 4 c 5
round 𝑛 round 𝑛 + 1

Figure 3.1: Emission opportunities on two successive rounds for IWRR with three classes and
w1 = 2, w2 = 3, w3 = 5. Mind that this is not temporal behavior: each opportunity can lead to an
empty interval if the queue is empty at this time. Furthermore, the duration of each non-empty
interval depends on the packet size and the aggregate service available (we do not assume constant
rate service).

The weighted round-robin subsystem is itself placed in a larger system, and can compete with other

queuing subsystems. For example, consider the case of a constant-rate server with several priority

levels, without preemption, and where the weighted round-robin subsystem is at a priority level that is

not the highest, as in [73, Sec. 8.6.8.3]. Assuming some arrival curve constraints for the higher priority

traffic, the service received by the entire weighted round-robin subsystem can be modelled using a

strict service curve [40, Sec. 8.3.2].

This motivates us to assume that the aggregate of all classes in the weighted round-robin subsystem

receives a strict service curve, say β ∈F that we call “aggregate strict service curve”. If the weighted

round-robin subsystem has exclusive access to a transmission line of rate c, then β(t) = ct for t ≥ 0.

We assume that β(t) is finite for every (finite) t and, without loss of generality, we assume β to be

super-additive. Note that the aggregate strict service curve β, which models the service offered to the

aggregate of all flows, should not be confused with the strict service curves such as βi , which captures

service offered to class i ; strict service curves such as βi are called “residual" strict service curves in

some references.

Algorithm 3.1: Interleaved Weighted Round-Robin

Input: Integer weights w1 ≤ w2 ≤ .. ≤ wn

1 wmax ← max w1, .., wn ;
2 while true do

//A round starts.
3 for C ← 1 to wmax do

//A cycle starts.
4 for i ← 1 to n do
5 if C ≤ wi then

//Queue i is visited.
6 if (not empty(i)) then

//A service for queue i.
7 print(now, i);
8 send(head(i));
9 removeHead(i);

//A cycle finishes.
//A round finishes.

Here, we use the context of communication networks, but the results equally apply to real-time systems:

27

Chapter 3. Strict Service Curves for Interleaved Weighted Round-Robin

Simply map flow to task, packet to job, packet size to job execution time, and strict service curve to

“delivery curve” [142, 143].

3.2 Related Works

One of the first use of round-robin scheduling in the network context appeared in [71], with a fairness

objective, i.e., a fair way to share the bandwidth among sessions. It is also mentioned in [72] as a way to

implement “fair queueing”.

The term “Weighed Round-Robin” was coined in [84] as a generalization of round-robin to share

the bandwidth “in proportion to prescripted weights” in the context of ATM (i.e., with constant-size

packets). Two versions of the algorithm are presented in [84]. The former is presented in Algorithm 3.1:

at cycle C (with C between 1 and wmax), only classes with weight wi ≥ C can emit one packet. We

call this version IWRR. The latter version assumes that there exists for each class i a bit-list of length

wmax, oi ∈ {0,1}wmax , such that wi =
∑wmax

k=1 oi [k]. A class i can emit a packet at cycle C only if oi [C] = 1.

A strategy is given to build these vectors in [84] and is refined with fairness objectives in [144]. Call

LIWRR (list-based IWRR) this version.

IWRR is modified into WRR/SB in [145] to enable some classes to send slightly more packets than

permitted in a cycle, and to decrease accordingly at the next cycle.

As mentioned, plain WRR (which we simply call “WRR”) enables each class i to send up to wi packets

every time it is selected [146]. A “Multiclass WRR” is also defined in [146]. Surprisingly, the authors

of [146] were not aware of [84] and have re-invented LIWRR. Note that even if WRR was designed for

packets of constant size, it has been applied in networks of variable-size packets such as Ethernet [73,

Sec. 8.6, Sec. 8.6.8.3, Sec. 37], in request balancing in cloud infrastructures [74], in the LinuxVirtualServer

scheduling [75], in network of chip [76], and so on. In fact, looking for expression “weighted round-

robin” in the title or abstracts of papers index by Scopus returns more than 553 entries (May 2023),

and Google references more than 4000 patents with this expression (May 2023). Unfortunately, when

authors refer to WRR, they often do not explicit which version of WRR it is.

A WRR server is also a latency-rate server, with latency and rates given in [147] for packets of constant

size. The latency result is generalized to LIWRR in [148]. Even if the notion of the latency-rate server is

very close to the one of a service curve βr,T in network calculus, both notions are slightly different, and

results cannot be directly imported from one theory to the other [149]. In [76], the authors consider a

Network on Chip (NoC), with WRR arbitration at the flit level. A flit is the elementary data unit of the

NoC, one flit is sent per CPU/NoC cycle. Assuming that the weights are such that packets are never

fragmented by the arbiter, a strict service curve βRi ,Ti for class i is found, with Ri = wi∑
k wk

, Ti =
∑

j ̸=i w j .

WRR arbitration in an Ethernet switch is also considered in [150], with the assumption that all classes

of an output port have the same constant packet size. It then computes, in the network calculus

framework, a residual service with a service curve βRi ,Ti with Ri = wi∑
k wk

C , Ti =
∑

j ̸=i w j

C , where C is the

link rate. We assume that the missing packet size in the Ti term was a typo. This network calculus

result for conventional WRR arbitration in Ethernet is refined in [151], considering packets of variable

size, leading to residual service with a strict service curve βRi ,Ti with Ri = wi l min
i

wi l min
i +∑

j ̸=i w j l max
j

C and

Ti =
∑

j ̸=i w j l max
j

C (cf. Eq. (1) and (2) in [151]) where l min
i , l max

i are, respectively, lower and upper bounds

on the size of the packets in class i . It refines this result by subtracting the part of the bandwidth not

28

3.3 Strict Service Curves for IWRR

used by interfering classes (considering their arrival curves).

Observe that computing a residual service with a βR,T curve is pessimistic as it assumes that, once the

worst latency is paid, each packet is served with the long-term residual rate. Whereas, in reality, each

packet, when it is selected for emission, is transmitted at full link speed up to completion. A residual

service for the conventional WRR with a curve that is an alternation of full services and plateaus is given

in [40, Sec. 8.2.4]. This effect of “full speed up to completion” can also be captured when computing

the local delay of a server with βR,T service curve [152].

3.3 Strict Service Curves for IWRR

Our first result is a strict service curve for IWRR that, as we show in Section 3.4, is the best possible. We

compare it to WRR and also give simpler, lower approximations.

Theorem 3.1 (Strict Service Curve of IWRR). Let S be a server shared by n classes that uses IWRR as

explained in Section 3.1, with weight wi for class i . Recall that the server offers a strict service curve β

to the aggregate of the n classes. For any class i , l min
i [resp. l max

i] is a lower [resp. upper] bound on the

packet size.

Then, S offers to every class i a strict service curve βi given by βi (t) = γi (β(t)) with

γi =λ1 ⊗Ui (3.1)

Ui (x)
def=

wi−1∑
k=0

νLtot,l min
i

([
x −ψi (kl min

i)
]+)

(3.2)

Ltot = wi l min
i +

∑
j , j ̸=i

w j l max
j (3.3)

ψi (x)
def= x +

∑
j , j ̸=i

φi , j

(⌊
x

l min
i

⌋)
l max

j (3.4)

φi , j (x)
def=

⌊
x

wi

⌋
w j +

[
w j −wi

]++min(x mod wi +1, w j) (3.5)

In the above, νp,b is the stair function, λ1 is the unit rate function and ⊗ is the min-plus convolution, all

are described in Fig. 2.3.

Furthermore, βi is super-additive.

The proof is in Section 3.6.1. See Fig. 3.2 for some illustration of βi . Our strict service curve captures the

round-robin manner of IWRR: The fact that the service is interrupted in order to serve other queues,

and then the class is served at a rate given by the server; each plateau (i.e., horizontal line) corresponds

to a service interruption for class i . Observe that γi in Eq. (3.1) is the strict service curve obtained when

the aggregate strict service curve is β=λ1 (i.e., when the aggregate is served at a constant, unit rate). In

the common case where β is equal to a rate-latency function, say βc,T , we have βi (t) = γi (c(t −T)) for

t ≥ T and βi (t) = 0 for t ≤ T , namely, βi is derived from γi by a rescaling of the x axis and a right-shift.

The key point of Theorem 3.1 is as follows: We take into account the details of IWRR in our analysis,

thanks to the pseudo-inverse technique; all constraints are written without any attempts to invert

them in closed form, and only at the final step they are inverted. Specifically, as shown in the proof,

in (s, t], a backlogged period (see Definition 2.9) of the class of interest i , the service received by an

29

Chapter 3. Strict Service Curves for Interleaved Weighted Round-Robin

Illustration of Theorems 3.1, 3.2, and 3.3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
0

20

40

60

IWRR Strict Service Curve (�i)

Optimal Rate-latency Service Curve

WRR Strict Service Curve (�0
i)

Time (µs)

bi
ts

(⇥
10

24
)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
0

20

40

60 IWRR Strict Service Curve (�i)

WRR Strict Service Curve (�0
i)

Non-dominated Rate-Latency with minimum latency

Non-dominated Rate-Latency with maximum rate

Time (µs)

bi
ts

(⇥
10

24
)

ms

ms

Figure 3.2: Strict service curves obtained in Section 3.3 for an example with four input classes, weights
= {4,6,7,10}, l min = {4096,3072,4608,3072} bits, l max = {8704,5632,6656,8192} bits and β(t) = ct with
c = 10 Mb/s (i.e., the aggregate of all flows is served at a constant rate). The figure shows the
IWRR service curve βi and the WRR strict service curve β′

i for two of the classes; it also shows the
non-dominated rate-latency strict service curves βr∗0 ,T ∗

0
and βr∗

k∗ ,T ∗
k∗

of Theorem 3.3 (in the top panel
both are equal).

interfering class j (i.e., D j (t)−D j (s)) is upper bounded as a function of the service received by class i

(i.e., φi , j (Di (t)−Di (s)), where φi , j is defined in (3.5).

As mentioned in Section 6.1, any strict service curve that is not super-additive can be improved, by

replacing it with its super-additive closure. The last statement in the theorem guarantees that it is not

possible to improve the obtained service curve in this way.

We now compare to WRR. The best known service curve for (non-interleaved) WRR is given in [40, Sec.

8.2.4] and is

β′
i (t) = (λ1 ⊗νLtot,qi)

([
β(t)−Qi

]+)
(3.6)

with qi = wi l min
i and Qi =

∑
j , j ̸=i w j l max

j . In Section 3.4, we show that β′
i (t) is indeed the best possible

strict service curve for WRR. Furthermore, it is dominated by the strict service curve for IWRR:

Theorem 3.2. With the assumptions in Theorem 3.1 and in Eq. (3.6):

β′
i ≤βi (3.7)

The proof is in Section 3.6.2. Figure 3.2 illustrates how the strict service curve for IWRR improves on

that for WRR, by providing a smoother, and generally larger, service.

The service curve found in Theorem 3.1 is the best possible one but has a complex expression. If there

is interest in a simpler expression, any lower bounding function is a strict service curve; in particular,

the strict service curve β′
i for WRR is also a valid, though sub-optimal, strict service curve for IWRR.

There is often interest in service curves that are rate-latency functions. Observe that, if the aggregate

service curve β is a rate-latency function, then replacing γi by a rate-latency lower-bounding function

also yields a rate-latency function for βi , and vice-versa. Therefore, we are interested in rate-latency

functions that lower bound γi .

30

3.4 Tightness

Among all of these, there is not a single best one, as some have a smaller latency while others have a

larger rate. We say that a rate-latency function βr,T that lower bounds γi is non-dominated if there is

no other rate latency function βr ′,T ′ that lower bounds γi and dominates βr,T , i.e., such that r ′ ≥ r and

T ′ ≤ T . The following result gives all such non-dominated rate-latency functions. Let r∗ = qi
Ltot

= wi l min
i

Ltot
,

rwi−1 = 1, and

rk =
l min

i

ψi ((k +1)l min
i)−ψi (kl min

i)
, 0 ≤ k < wi −1 (3.8)

k∗ = min{0 ≤ k < wi | rk ≥ r∗} (3.9)

r∗
k = min(rk ,r∗), 0 ≤ k ≤ k∗ (3.10)

Theorem 3.3. With the assumptions in Theorem 3.1 and the definitions (3.8)-(3.10), a rate-latency

function βr,T lower bounds γi and is non-dominated if and only if r = r∗
k∗ and T =ψi (k∗l min

i)− k∗l min
i

r ,

or r∗
k−1 ≤ r < r∗

k and T =ψi (kl min
i)− kl min

i
r for some integer k with 0 < k ≤ k∗. Among all such rate-latency

functions, the one with the lowest latency is βr∗0 ,T ∗
0

and the one with the largest rate is βr∗
k∗ ,T ∗

k∗
.

The proof is in Section 3.6.3. Figure 3.2 illustrates βr∗0 ,T ∗
0

and βr∗
k∗ ,T ∗

k∗
in some examples. Observe

that k 7→ r∗
k is wide-sense increasing with k for 0 ≤ k ≤ k∗, but the values of r∗

k are not necessarily all

distinct. It can also occur that k∗ = 0 (as in the top panel of Fig. 3.2); in which case, there is one optimal

rate-latency service curve. In general, however, this does not occur, and a simple lower bounding

approximation can be obtained with the supremum of all non-dominated rate-latency service curves,

as given by the next theorem.

Theorem 3.4. With the assumptions in Theorem 3.3, the supremum of all non-dominated rate-latencies

is equal to max
(
βr∗0 ,T ∗

0
, . . . ,βr∗

k∗ ,T ∗
k∗

)
, and it is the largest convex function that lower bounds γi .

The proof is in Section 3.6.4. There is often interest in service curves that are piecewise linear and

convex. Specifically, convex piecewise-linear functions are stable under addition and maximum, and

the min-plus convolution can be computed in automatic tools very efficiently [40, Sec. 4.2]. The above

theorem thus gives the best such strict service curve.

3.4 Tightness

We first show that the strict service curve we have obtained is the best possible. The proofs of all results

in this section are in Section 3.6.

3.4.1 Tightness of Strict Service Curve

Theorem 3.5. (Tightness of the IWRR Service Curve) Consider a weighted round-robin subsystem that

uses the IWRR scheduling algorithm, as defined in Section 3.1. Assume the following system parameters

are fixed: the number of input classes, the weight w j allocated to every class j , the bounds on packet sizes

l min
j and l max

j for every class j , and the strict service curve β for the aggregate of all flows. We assume that

β is Lipschitz-continuous, i.e., there exists a constant K > 0 such that β(t)−β(s)
t−s ≤ K for all 0 ≤ s < t . Let i

be the index of one of the classes.

31

Chapter 3. Strict Service Curves for Interleaved Weighted Round-Robin

Assume that bi ∈F is a strict service curve for class i in any system that satisfies the specifications above.

Then bi ≤βi where βi is given in Theorem 3.1.

The proof is in Section 3.6.5. The idea of the proof is as follows: For any value of the system parameters,

for any τ> 0, and for any class i , we create a trajectory scenario of a system such that

∃s ≥ 0, (s, s +τ] is backlogged for class i

and Di (s +τ)−Di (s) =βi (τ)
(3.11)

,i.e., for the class of interest i , we create a backlogged period (see definition 2.9) of duration τ where

the service received by class i is exactly equal to βi (τ). Then, it follows that every other strict service

curve bi is upper bounded by βi . Note that assuming the aggregate strict service curve β is Lipschitz-

continuous does not appear to be a restriction as the rate at which data is served has a physical limit.

Interestingly, we obtain a similar result for WRR. Recall that β′
i is the strict service curve for class i ,

described in Eq. (3.6), which was obtained in [40, Sec. 8.2.4].

Theorem 3.6. (Tightness of the WRR Service Curve) Theorem 3.5 is also valid if we replace IWRR with

WRR. Specifically, using WRR as a scheduling policy, β′
i is the largest possible strict service curve for class

i .

3.4.2 Tightness of Delay Bounds with Constant Packet Sizes

Having obtained the best-possible strict service curve does not guarantee that the delay bounds derived

from it are tight, i.e., are worst-case delays. This is because a service curve is only an abstraction of the

system; and we have obtained a strict service curve, and non-strict service curves might provide better

results. However, we show that, for flows of packets of constant size, we do obtain tight delay bounds.

We show that it holds for IWRR and for WRR.

Recall that a delay bound requires the knowledge of an arrival curve αi for the class of interest. If

flows of this class generate only packets of length l , then αi can be assumed to be a multiple of l and

sub-additive. A delay bound for this class is then equal to hDev(αi ,βi) (see Theorem 2.1).

Theorem 3.7. (Tightness of Delay Bound for IWRR with Constant Packet Size) Consider a system, as

in Theorem 3.5, with the additional assumption that, for the class of interest i , l min
i = l max

i = l .

Let αi ∈F be a sub-additive function that is an integer multiple of l , and assume that class i has αi as

an arrival curve. The network calculus delay bound is tight, i.e, there exists a trajectory where the delay

of one packet of class i is equal to hDev(αi ,βi).

Theorem 3.8. (Tightness of Delay Bound for WRR with Constant Packet Size) Theorem 3.7 is also valid

for the WRR policy.

3.5 Numerical Examples

To compare IWRR and WRR worst-case delays, we provide some numerical examples. First, we consider

a system of 8 input classes f1, . . . , f8 with respective weights {22,27,28,30,30,34,41,45} and l min = l max =
l = 7119 bit. Let the aggregate service, β, be a constant bit rate of 10 Mb/s. For every class i , we compute

the IWRR and WRR strict service curves βi ,β′
i . Then, for every i , we generate N = 1000 token-bucket

32

3.5 Numerical Examples 2.6. Proofs

1 2 3 4 5 6 7 8

0

20

40

60

80

100

120

140

160

180

Median of WRR Worst-case Delay

Flows

W
R

R
W

o
rs

t-
ca

se
D

el
ay

°
IW

R
R

W
o

rs
t-

ca
se

D
el

ay
(T

im
e

(m
s)

)

Absolute Improvement of Delay Bounds of IWRR wrt WRR on one Configuration

Median of WRR Worst-case Delay

Figure 2.3 – Box-and-whisker plots of di�erence between WRR and IWRR delay bounds with weights
{22,27,28,30,30,34,41,45} and l = 7119 bit with random arrival curves. Median WRR delay bounds
are also provided.

Second, we repeated the same study for M = 10000 sets of system parameters. For each system,

we choose the weights of 8 flows by picking them uniformly at random between 10 and 50, and

we pick a packet length l uniformly at random between 64 to 1522 bytes. For each experiment,

we call flow 1 the flow with the smallest weight, flow 2 with second smallest weight, and so

on. As the scale of delay bounds depends on the choices of weights and the packet length, the

ḋ k
i °d k

i series are divided by ḋ m̄
i , the median of WRR delay bounds for flow i . Figure 2.4 gives

the box-and-whisker plots of the
ḋ k

i °d k
i

ḋ m̄
i

series. Using IWRR improves worst-case delays, as

expected, and the improvement is larger for flows with larger weights.

2.6 Proofs

2.6.1 Proof of Theorem 2.1

The idea of proof is as follows. We consider a backlogged period (s, t] of flow of interest i , and

we let p be the number of packets of flow i that are entirely served during this period. For every

other flow j , the number of packets that are entirely served is upper bounded by a function

of p, given in Lemma 2.3. Also, p is upper bounded by a function of the amount of service

received by flow i in Lemma 2.5. Combining these two results gives an implicit inequality

for the total amount of service in Eq. (2.23). By using the technique of pseudo-inverse, this

inequality is inverted and provides a lower bound for the amount of service received by the

flow of interest.

21

Figure 3.3: Box-and-whisker plots of difference between WRR and IWRR delay bounds with weights
{22,27,28,30,30,34,41,45} and l = 7119 bit with random arrival curves. Median WRR delay bounds
are also provided.Chapter 2. Interleaved Weighted Round-Robin

1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

70

80

90

100

Flows

W
R

R
W

o
rs

t-
ca

se
D

el
ay

°I
W

R
R

W
o

rs
t-

ca
se

D
el

ay
M

ed
ia

n
o

fW
R

R
W

o
rs

t-
ca

se
D

el
ay

(P
er

ce
n

ta
ge

%
)

Relative Improvement of Delay Bounds of IWRR wrt WRR on a Set of Cconfigurations

Figure 2.4 – Box-and-whisker plots of di�erence between WRR and IWRR delay bounds normalized
to the median of WRR delay bounds, for several systems with weights picked uniformly at random
in [10,50], assigned to flow by increasing order, and a packet length picked uniformly at random in
[64,1522] bytes.

Key Variables and Basic Properties

Let (s, t] be a backlogged period of flow i . Let (øk , fk) be couples of (instant, flow), printed

at line 8 of Algorithm 1. Note that øk < øk+1 as the send instruction has a non-null duration

(because the aggregate service curve Ø is Lipschitz continuous). Let æ(0),æ(1), . . . be the

sequence of service opportunities for flow i at or after s, i.e., æ(0) = min{m | øm ∏ s, fm = i }

and æ(k) = min{m | øm > øæ(k°1), fm = i }. The kth service opportunity for flow i occurs at time

øæ(k°1); we say that it is “complete” if øæ(k°1)+1 ∑ t , i.e., the interval taken by this service is

entirely in [s, t]. Let p ∏ 0 be the number of complete service opportunities. Observe that it is

possible that p = 0, and it might happen that øæ(p) < t or øæ(p) ∏ t (see Fig. 2.5).

In each service of flow i , during a backlogged period, it sends one packet with a length ∏ l min
i ,

thus, for all k = 0. . . (p °1), we have R§
i (øæ(k+1))°R§

i (øæ(k)) ∏ l min
i , therefore

R§
i (øæ(p))°R§

i (øæ(0)) ∏ pl min
i (2.11)

Amount of Service to Other Flows

In order to upper bound the number of emission opportunities for another flow j , we first find

an expression, in Lemma 2.1, for the number of emission opportunities for flow j between

two consecutive emission opportunities for flow i . Lemma 2.2 then finds an upper bound on

the number of emission opportunities for flow j in (s,øæ(p)), as a function of the cycle number

(variable C in Algorithm 1) at øæ(0). Lastly, Lemma 2.3 maximizes the previous upper bound

over all values of C .

22

Figure 3.4: Box-and-whisker plots of difference between WRR and IWRR delay bounds normalized to
the median of WRR delay bounds, for several systems with weights picked uniformly at random in
[10,50], assigned to a class by increasing order, and a packet length picked uniformly at random in
[64,1522] bytes.

33

Chapter 3. Strict Service Curves for Interleaved Weighted Round-Robin

arrival curves γr,bk
, k = 1, . . . , N , with rate r = 0.5 Mb/s and burst bk picked uniformly at random in

[1,20] packets. Then, we use αk
i = ⌈γr,bk

l ⌉l to satisfy the conditions of Theorems 3.7 and 3.8 and to

compute d k
i = h(αk

i ,βi) and ḋ k
i = h(αk

i ,β′
i). Figure 3.3 gives the box-and-whisker plots of the ḋ k

i −d k
i

series. The median of WRR delay bounds ḋ k
i are also provided to illustrate the improvement.

Second, we repeated the same study for M = 10000 sets of system parameters. For each system, we

choose the weights of 8 classes by picking them uniformly at random between 10 and 50, and we pick a

packet length l uniformly at random between 64 to 1522 bytes. For each experiment, we call class 1 the

class with the smallest weight, class 2 with the second smallest weight, and so on. As the scale of delay

bounds depends on the choices of weights and the packet length, the ḋ k
i −d k

i series are divided by ḋ m̄
i ,

the median of WRR delay bounds for class i . Figure 3.4 gives the box-and-whisker plots of the
ḋ k

i −d k
i

ḋ m̄
i

series. Using IWRR improves worst-case delays, as expected, and the improvement is larger for classes

with larger weights.

3.6 Proofs

3.6.1 Proof of Theorem 3.1

The idea of proof is as follows. We consider a backlogged period (see definition 2.9) (s, t] of the class of

interest i , and we let p be the number of packets of class i that are entirely served during this period.

For every other class j , the number of packets that are entirely served is upper bounded by a function

of p, given in Lemma 3.3. Also, p is upper bounded by a function of the amount of service received by

class i in Lemma 3.5. Combining these two results gives an implicit inequality for the total amount of

service in Eq. (3.24). By using the technique of pseudo-inverse, this inequality is inverted and provides

a lower bound for the amount of service received by the class of interest.

3.6.1.1 Key Variables and Basic Properties

Let (s, t] be a backlogged period of class i . Let (τk , fk) be couples of (instant, class), printed at line 7 of

Algorithm 3.1. Note that τk < τk+1 as the send instruction has a non-null duration (because the aggre-

gate service curve β is Lipschitz continuous). Let σ(0),σ(1), . . . be the sequence of service opportunities

for class i at or after s, i.e., σ(0) = min{m | τm ≥ s, fm = i } and σ(k) = min{m | τm > τσ(k−1), fm = i }. The

kth service opportunity for class i occurs at time τσ(k−1); we say that it is “complete” if τσ(k−1)+1 ≤ t ,

i.e., the interval taken by this service is entirely in [s, t]. Let p ≥ 0 be the number of complete service

opportunities. Observe that it is possible that p = 0, and it might happen that τσ(p) < t or τσ(p) ≥ t (see

Fig. 3.5).

In each service of class i , during a backlogged period, it sends one packet with a length ≥ l min
i , thus, for

all k = 0. . . (p −1), we have Di (τσ(k+1))−Di (τσ(k)) ≥ l min
i , therefore

Di (τσ(p))−Di (τσ(0)) ≥ pl min
i (3.12)

3.6.1.2 Amount of Service to Other classes

In order to upper bound the number of emission opportunities for another class j , we first find an

expression, in Lemma 3.1, for the number of emission opportunities for class j between two consecutive

34

3.6 Proofs

Illustration of Theorems 1, 2, and 3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
0

20

40

60

IWRR Strict Service Curve (�i)

Optimal Rate-latency Service Curve

WRR Strict Service Curve (�0
i)

Time (µs)

bi
ts

(⇥
1
02

4
)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
0

20

40

60 IWRR Strict Service Curve (�i)

WRR Strict Service Curve (�0
i)

Non-dominated Rate-Latency with minimum latency

Non-dominated Rate-Latency with maximum rate

Time (µs)

bi
ts

(⇥
1
02

4
)

Fig. 3: Strict service curves obtained in Section V for an example with four input flows, weights = {4, 6, 7, 10}, lmin =
{4096, 3072, 4608, 3072} bits, lmax = {8704, 5632, 6656, 8192} bits and �(t) = ct with c = 10Mb/s (i.e., the aggregate of all flows is
served at a constant rate). The figure shows the IWRR service curve �i and the WRR strict service curve �0

i for two of the flows; it
also shows the non-dominated rate-latency strict service curves �r⇤

0 ,T⇤
0

and �r⇤
k⇤ ,T⇤

k⇤ of Theorem 3 (in the top panel both are equal).

gives an implicit inequality for the total amount of service in
(26). By using the technique of pseudo-inverse, this inequality
is inverted and provides a lower bound for the amount of
service received by the flow of interest.

A. Key Variables and Basic Properties

Let (s, t] be a backlogged period of flow i. Let (⌧k, f lk)
be couples of (instant,flow), printed at line 8 of Algorithm 1.
Note that ⌧k < ⌧k+1 as the send instruction has a non-null
duration (because the aggregate service curve � is Lipschitz
continuous). Let �(0), �(1), . . . be the sequence of service op-
portunities for flow i at or after s, i.e., �(0) = min{m | ⌧m �
s, flm = i} and �(k) = min{m | ⌧m > ⌧�(k�1), f lm = i}.
The kth service opportunity for flow i occurs at time ⌧�(k�1);
we say that it is “complete” if ⌧�(k�1)+1  t, i.e., the interval
taken by this service is entirely in [s, t]. Let p � 0 be the
number of complete service opportunities. Observe that it is
possible that p = 0, and it might happen that ⌧�(p) < t or
⌧�(p) � t.

s ⌧�(0)�1 ⌧�(0) ⌧�(0)+1 ⌧�(p�1) ⌧�(p�1)+1 t ⌧�(p)

class i is served class i is served

s ⌧�(0)�1 ⌧�(0) ⌧�(0)+1 ⌧�(p�1) ⌧�(p�1)+1 ⌧�(p) t ⌧�(p)+1

class i is served class i is served class i is served

In each service of flow i, during a backlogged period,
it sends one packet with a length � lmin

i , thus, for all
k = 0 . . . (p� 1), R⇤

i (⌧�(k+1))�R⇤
i (⌧�(k)) � lmin

i , therefore

R⇤
i (⌧�(p))�R⇤

i (⌧�(0)) � plmin
i (14)

B. Amount of Service to Other Flows

In order to upper bound the number of emission oppor-
tunities for another flow j, we first find an expression, in
Lemma 1, for the number of emission opportunities for flow
j between two consecutive emission opportunities for flow i.
Lemma 2 then finds an upper bound on the number of emission
opportunities for flow j in (s, ⌧�(p)), as a function of the cycle
number (variable C in Algorithm 1) at ⌧�(0). Lastly, Lemma 3
maximizes the previous upper bound over all values of C.

Lemma 1. The number of emission opportunities for flow j 6=
i between two consecutive emission opportunities for flow i,
given that the latter emission opportunity for flow i occurs at
cycle C, is equal to qi,j(C)

def
=

8
><
>:

0 if 1 < C  wi and wj < C

1 if 1 < C  wi and wj � C

[wj � wi]
+

+ 1 if C = 1

(15)

Proof. According to Algorithm 1, flow i has emission oppor-
tunities only in the first wi cycles of each round. Both emission
opportunities are either in the same round (Case 1) or in two
consecutive rounds (Case 2). As C is the cycle number for the
second emission opportunity for flow i, Case 1 can occur only
when 1 < C  wi, and Case 2 can occur when C = 1. For
Case 1, we further differentiate between wj < C and wj � C.

Case 1a: 1 < C  wi and wj < C: Queue j does not have
an emission opportunity in cycle C because wj < C. Also, we
must have wj < wi, thus queue j does not have an emission
opportunity after i in cycle C � 1. Hence, qi,j(C) = 0.

Case 1b: 1 < C  wi and wj � C: If wj > wi, then queue
j has an emission opportunity after queue i in cycle C � 1. If

Figure 3.5: Illustration of two possible cases of τσ(p) ≥ t and τσ(p) < t .

emission opportunities for class i . Lemma 3.2 then finds an upper bound on the number of emission

opportunities for class j in (s,τσ(p)), as a function of the cycle number (variable C in Algorithm 3.1) at

τσ(0). Lastly, Lemma 3.3 maximizes the previous upper bound over all values of C .

Lemma 3.1. The number of emission opportunities for class j ̸= i between two consecutive emission

opportunities for class i , given that the latter emission opportunity for class i occurs at cycle C , is equal to

qg , f (C) =


0 if 1 <C ≤ wi and w j <C

1 if 1 <C ≤ wi and w j ≥C[
w j −wi

]++1 if C = 1

(3.13)

Proof: According to Algorithm 3.1, class i has emission opportunities only in the first wi cycles of each

round. Both emission opportunities are either in the same round (Case 1) or in two consecutive rounds

(Case 2). As C is the cycle number for the second emission opportunity for class i , Case 1 can occur

only when 1 <C ≤ wi , and Case 2 can occur when C = 1. For Case 1, we further differentiate between

w j <C and w j ≥C .

Case 1a: 1 <C ≤ wi and w j <C : Queue j does not have an emission opportunity in cycle C because

w j <C . Also, we must have w j < wi , thus queue j does not have any emission opportunity after i in

cycle C −1. Hence, qi , j (C) = 0.

Case 1b: 1 <C ≤ wi and w j ≥C : If w j > wi , then queue j has an emission opportunity after queue i

in cycle C −1. If w j = wi , then queue j has an emission opportunity before i in cycle C , or after i in

cycle C −1. Else, C ≤ w j < wi and queue j has an emission opportunity in cycle C , before i . In all cases,

qi , j (C) = 1.

Case 2: C = 1: The first emission opportunity for i is in the last cycle of a round that includes i (cycle

wi). If w j > wi , then queue j has an emission opportunity in the rest of cycle wi and also has emission

opportunities during the next (w j −wi) cycles of the last round. In this case, qi , j (C) = w j −wi +1,

which is also the value in the last line of Eq. (3.13). Else if w j = wi , queue j has an emission opportunity

before i in this cycle or after i in cycle wi of the first round, thus qi , j (C) = 1, which is also the value in

the last line of Eq. (3.13). Else, w j < wi and queue j has an emission opportunity before i in this cycle.

Here too, qi , j (C) = 1, the value in the last line of Eq. (3.13).

Lemma 3.2. The number of emission opportunities for class j ̸= i in (s,τσ(p)), for any backlogged period

(s, t] of class i with p complete services, given that the first service starts at cycle number C (cycle number

35

Chapter 3. Strict Service Curves for Interleaved Weighted Round-Robin

at time τσ(0)) is upper bounded by

q ′
i , j

(
C , p

) def=
p∑

k=0
qi , j ((C +k −1) mod wi +1) (3.14)

Also, let C ′(p) be the cycle number at τσ(p). Then,

C ′(p) = (
C +p −1

)
mod wi +1 (3.15)

Proof: By induction on p.

Base Case: p = 0

In this case, q ′
i , j (C ,0) is the number of emission opportunities for class j between two consecutive

emission opportunities for class i that by Lemma 3.1, is equal to qi , j (C). As 1 ≤C ≤ wi , (C −1) mod wi +
1 =C thus qi , j (C) = qi , j ((C −1) mod wi +1). This shows Eq. (3.14). Also, by definition, C ′(0) =C ; using

again (C −1) mod wi +1 =C shows that Eq. (3.15) holds.

Induction step:

We assume that Eq. (3.14) and Eq. (3.15) hold for p −1, and we want to show that they also hold for p.

First, let us prove Eq. (3.15). There are two possible cases: (a) if 0 ≤C ′(p −1) < wi , then both (p −1)st

and pth emission opportunities occur in the same round, thus C ′(p) =C ′(p −1)+1. By the induction

hypothesis,
(
C +p −2

)
mod wi +1 < wi , i.e.,

(
C +p −2

)
mod wi < wi −1. Note that, for any integer x

(x +1) mod w =
{

(x mod w)+1 if (x mod w) < w −1

0 otherwise
(3.16)

By using Eq. (3.16), we obtain that C ′(p) is given by Eq. (3.15) as required. (b) In the second case,

C ′(p −1) = wi , then the next emission opportunity occurs in the first cycle of the next round, thus

C ′(p) = 1. Here too, applying Eq. (3.16) shows that C ′(p) is given by Eq. (3.15) as required.

Then, we prove Eq. (3.14). Let N be the number of emission opportunities for class j in [s,τσ(p)). N is

the sum of N1, the number of emission opportunities in [s,τσ(p−1)), and N2, the number of emission

opportunities in (τσ(p−1),τσ(p)). By the induction hypothesis, N1 ≤ q ′
i , j

(
C , p −1

)
. Also, by Lemma 3.1,

we have N2 ≤ qi , j (C ′(p)). Thus, by using Eq. (3.15) which was just shown to also hold for p, we obtain

N ≤
p−1∑
k=0

qi , j ((C +k −1) mod wi +1)+qi , j
((

C +p −1
)

mod wi +1
)

(3.17)

where the right-hand side is equal to q ′
i , j (C , p) as required.

Lemma 3.3. For any backlogged period (s, t] of class i with p complete services, the number of emission

opportunities for class j ̸= i in (s,τσ(p)) is upper bounded by φi , j (p), defined in Eq. (3.5).

Proof: Lemma 3.2 gives the number of emission opportunities for class j ̸= i in (s,τσ(p)), for any

backlogged period (s, t] of class i with p complete services, when the first service starts at cycle number

C (cycle number at time τσ(0)). To obtain the lemma, we maximize this result over C . We show the

following properties.

36

3.6 Proofs

(P1) For any integer C ∈ [1, wi],

wi−1∑
k=0

qi , j ((C +k −1) mod wi +1) = w j (3.18)

The mapping k 7→ (C +k −1) mod wi +1 is one-to-one from {0, ..., wi −1} onto {1, ..., wi }, thus the left-

hand side of Eq. (3.18) is equal to
∑wi

k=1 qi , j (k) that as we show now, is equal to w j . First, we have

qi , j (1) = [
w j −wi

]++1. Also, qi , j (k) = 1 when k > 1 and w j ≥ k +1. Thus,
∑wi

k=2 qi , j (k) = min(wi −
1, w j −1) and finally the left-hand side is equal to

[
w j −wi

]++min(wi −1, w j −1)+1, which is equal

to w j .

(P2) For any integers C ∈ [1, wi] and p ≥ 0,

q ′
i , j

(
C , p

)= ⌊
p

wi

⌋
w j +

p mod wi∑
k=0

qi , j ((C +k −1) mod wi +1) (3.19)

qi , j is a periodic function with period wi . By (P1), the sum over one complete period is w j . Also, we

can write p =
⌊

p
wi

⌋
wi +p mod wi . Thus, we have

⌊
p

wi

⌋
complete rounds, and the sum in Eq. (3.19) is

the remainder.

(P3) qi , j is a wide-sense decreasing function. This means that for any integer k ∈ [1, wi), qi , j (k +1) ≤
qi , j (k). If k = 1, this follows from qi , j (1) ≥ 1 and qi , j (2) ≤ 1. Else if k ≤ w j < k +1, then qi , j (k +1) = 0

and qi , j (k) = 1. Else, they are equal. Hence, in all cases, the property holds.

(P4) For any integer C ∈ [1, wi] and p ≥ 0,

q ′
i , j

(
C , p

)≤ q ′
i , j

(
1, p

)
(3.20)

By using (P2), we should show that

p mod wi∑
k=0

qi , j ((C +k −1) mod wi +1)

is upper bounded by
∑p mod wi

k=0 qi , j (kmod wi +1). Note that here we have kmod wi = k. Both sides are

the sum of a
def= p mod wi +1 unique elements of the set {qi , j (k)}k∈[1,wi]. By (P3), the right-hand side is

the maximum sum of a unique elements of this set.

(P5) For any integer p ≥ 0,
q ′

i , j

(
1, p

)=φi , j (p) (3.21)

We apply (P2) with C = 1 to compute q ′
i , j

(
1, p

)
. Then, the sum in the right-hand side of Eq. (3.19) is

equal to
∑p mod wi

k=0 qi , j (k +1), as kmod wi = k. Then, by using the same argument after Eq. (3.18), it is

equal to
[
w j −wi

]++1+min(p mod wi , w j −1), which, by Eq. (3.5), is precisely φi , j (p).

The lemma then follows directly from (P4) and (P5).

Lemma 3.4. For every class j ̸= i ,

D j (t) ≤ D j (τσ(p)) (3.22)

Proof: If t ≤ τσ(p), the result follows from D j being wide-sense increasing. Else, we have t > τσ(p); this

37

Chapter 3. Strict Service Curves for Interleaved Weighted Round-Robin

implies that class i is served during [τσ(p), t]; thus for any other class j , D∗
j (t) = D∗

j (τσ(p)).

3.6.1.3 Amount of Service to Class of Interest

Lemma 3.5. The number of complete services, p, of class of interest, i , in (s, t] is upper bounded by

p ≤
⌊

Di (t)−Di (s)

l min
i

⌋
(3.23)

Proof: First, Di (s) ≤ Di (τσ(0)), as s ≤ τσ(0) and Di is wide-sense increasing. Second, consider the

two cases in 3.6.1.1. If t ≥ τσ(p), the property holds. Else, the scheduler in not serving class i in

[τσ(p−1)+1,τσ(p)), thus, Di (t) = Di (τσ(p)). Hence, in both cases Di (t) ≥ Di (τσ(p)). By Eq. (3.12), Di (t)−
Di (s) ≥ pl min

i . Then, observe that p is an integer.

3.6.1.4 Total Amount of Service

Lemma 3.6. For any backlogged period (s, t] of the class of interest i ,

β(t − s) ≤ψi (Di (t)−Di (s)) (3.24)

where ψi is defined in Eq. (3.4).

Proof: As the interval (s, t] is a backlogged period, by the definition of the strict service curve for

the aggregate of classes, β(t − s) ≤ ∑
j D j (t)−D j (s). We upper bound D j (t) for all j ̸= i by applying

Lemma 3.4,

β(t − s) ≤ (Di (t)−Di (s))+
∑

j , j ̸=i
D j (τσ(p))−D j (s) (3.25)

Each class j has at most φi , j (p) emission opportunities during
(
s,τσ(p)

)
(Lemma 3.3) and can send at

most one packet of maximum size in each. Thus,

β(t − s) ≤ (Di (t)−Di (s))+
∑

j , j ̸=i
φi , j (p)l max

j (3.26)

Also, Lemma 3.5 finds an upper bound on p. Thereby,

β(t − s) ≤ (Di (t)−Di (s))+
∑

j , j ̸=i
φi , j

(⌊
Di (t)−Di (s)

l min
i

⌋)
l max

j (3.27)

where the right-hand side is equal to ψi (Di (t)−Di (s)).

3.6.1.5 Lower Pseudo-inverse ofψi

Our next step is to invert Eq. (3.24) by computing the lower-pseudo inverse of ψi . As the calculus of

pseudo inverses applies to wide-sense increasing functions, we first show:

Lemma 3.7. ψi , defined in Eq. (3.4), is wide-sense increasing.

Proof: It is sufficient to show that φi , j , defined in Eq. (3.5), is a wide-sense increasing function. For

38

3.6 Proofs

any non-negative integers x and y such that y ≤ x, we can write x = kwi + (x mod wi) and y = k ′wi + (y

mod wi), where k and k ′ are non-negative integers. We must have k ≤ k ′. If k = k ′, we know that (y

mod wi ≤ x mod wi) and
⌊

x
wi

⌋
=

⌊
y

wi

⌋
. Hence,φi , j (y) ≤φi , j (x). Else, k > k ′ and

⌊
x

wi

⌋
>

⌊
y

wi

⌋
. Thereby,

φi , j (x) is at least one w j larger than φi , j (y). Hence, φi , j (y) <φi , j (x).

Lemma 3.8. Let g0, g1, . . . , gk , . . . be a non-negative sequence such that gk+1 − gk ≥ 1. The sequence can

be extended to a function in F by g (x) = g⌊x⌋ and let g ↓ be its lower pseudo-inverse, so that g ↓(y) =
k +1 ∈N⇔ gk < y ≤ gk+1. Define f ∈F by f (x) = g⌊x⌋+xmod 1. Then, f ↓ =λ1 ⊗ g ↓.

Proof: Observe that convolving g ↓ with λ1 consists in smoothing the unit steps with a slope of 1

(Fig. 2.3). Thus (λ1 ⊗ g ↓)(y) = k + y − gk whenever gk ≤ y ≤ gk +1 and (λ1 ⊗ g ↓)(y) = k +1 whenever

gk +1 ≤ y ≤ gk+1.

Also, f is piecewise linear and can be inverted in a closed form on every interval where it is linear.

A direct calculation gives f ↓(y) = k + y − gk whenever gk ≤ y ≤ gk + 1 and f ↓(y) = k + 1 whenever

gk +1 ≤ y ≤ gk+1.

Lemma 3.9. Let f ∈F and l ,m > 0. Define h ∈F by h(x) = m f
(x

l

)
. Then, for all y ≥ 0, h↓(y) = l f ↓ (y

m

)
.

Proof: Let B(f , y)
def= {

x ≥ 0,h(x) ≥ y
}

so that f ↓(y) = infB(y, f). Observe that x ∈ B(h, y) ⇔ x
l ∈ B

(
f , y

m

)
.

Lemma 3.10. Let a ∈ F and l > 0. Define b ∈ F by b(x) = l f
(x

l

)
. Then, for all x ≥ 0, (λ1 ⊗b)(x) =

l (λ1 ⊗a)
(x

l

)
.

Do the change of variable u = l v in the expansion (λ1 ⊗ b)(x) = inf0≤u≤x (u +b(x −u)) and obtain

(λ1 ⊗b)(x) = inf0≤v≤ x
l

(
l v +a

(x
l − v

))= l (λ1 ⊗a)
(x

l

)
.

We can now compute the lower-pseudo inverse ofψi . First, define the sequence g by gk = 1
l min

i
ψi

(
kl min

i

)
.

As in Lemma 3.8, g can be extended to a piecewise constant function whose lower-pseudo inverse, g ↓,

can be directly computed:

g ↓(x) = 1

l min
i

wi−1∑
k=0

νLtot,l min
i

(
l min

i

[
x − gk

]+)
(3.28)

Second, observe that for all x ≥ 0, ψi (x) = ψi (⌊ x
l min

i
⌋l min

i)+ xmod l min
i . Define f and h from g as

in Lemmas 3.8 and 3.9 with l = m = l min
i , so that h = ψi . Apply Lemmas 3.8 and 3.9 and obtain

ψ↓
i (x) = l min

i

(
λ1 ⊗ g ↓) (x

l min
i

). Now apply Lemma 3.10 with a = g ↓, l = l min
i , and b =Ui to obtain

ψ↓
i =λ1 ⊗Ui (3.29)

Proof of Theorem 3.1: Lemma 3.6 gives, in Eq. (3.24), an upper bound on the total amount of service

as a function of the service received by the class of interest. We invert Eq. (3.24) by the lower-pseudo

inverse technique in Eq. (2.13) and obtain Di (t)−Di (s) ≥ψ↓
i (β(t − s)). The lower-pseudo inverse of ψi

is given by Eq. (3.29), thus

Di (t)−Di (s) ≥ (λ1 ⊗Ui)
(
β (t − s)

)=βi (t − s) (3.30)

39

Chapter 3. Strict Service Curves for Interleaved Weighted Round-Robin

Lastly, we need to prove that βi is super-additive. This follows from the tightness result in Theorem 3.5

(the proof of which is independent of the rest of this proof). Indeed, the super-additive closure β̄i of βi

is also a strict service curve, and β̄i (t) ≥ βi (t) for all t [40, Prop. 5.6]). By Theorem 3.5, we also have

β̄i (t) ≤βi (t) for all t , hence β̄i =βi .

3.6.2 Proof of Theorem 3.2

Proof: The WRR strict service curve [40, Sec. 8.2.4] is defined by β′
i (t) = γ′i (β(t)) with

γ′i = (λ1 ⊗νLtot,qi)
(
[t −Qi]+

)
(3.31)

ψ′
i (x)

def= x +
∑

j , j ̸=i
φ′

i , j

(⌊
x

l min
i

⌋)
l max

j (3.32)

φ′
i , j (x)

def=
(
1+

⌊
x

wi

⌋)
w j (3.33)

where γ′i is the lower-pseudo inverse of ψ′
i . We know that for IWRR, γi is also the lower-pseudo inverse

of ψi (defined in Eq. (3.4)). We first show that ψi ≤ψ′
i .

It is sufficient to prove that for all j ̸= i and for all k ∈N, φi , j (k) ≤φ′
i , j (k). From the definition of φi , j

and as min(xmod wi +1, w j) ≤ min(wi , w j),

φi , j (x) ≤
⌊

x

wi

⌋
w j +

[
w j −wi

]++min(wi , w j) (3.34)

Observe that
[
w j −wi

]++min(wi , w j) = w j . Hence, the right-hand side is φ′
i , j (x). This shows that

ψi ≤ψ′
i (3.35)

In [140, Sec. 10.1], it is shown that

∀ f , g ∈F , f ≥ g ⇒ f ↓ ≤ g ↓ (3.36)

Apply Eq. (3.36) to Eq. (3.35) to conclude the proof.

3.6.3 Proof of Theorem 3.3

Lemma 3.11. Consider some integers w ≥ 1 and 0 ≤ k ≤ w −1, a finite sequence g0, g1, . . . , gw−1, and a

number a ∈R that satisfy

1. ∀ℓ ∈N if 0 ≤ ℓ≤ w −2 then gℓ+1 − gℓ ≥ 1

2. ∀ℓ ∈N if 0 ≤ ℓ≤ w −3 then gℓ+2 − gℓ+1 ≤ gℓ+1 − gℓ

3. if k ≤ w −2 then a ≥ gk+1 − gk else a ≥ 1

4. if k ≥ 1 then a ≤ gk − gk−1

Define f : [0, w) →R by f (x) = g⌊x⌋+xmod 1 and h:[0, w) →R by h(x) = a(x −k)+ gk . Then h ≥ f .

40

3.6 Proofs

Proof: First, we show that

∀ℓ ∈ {0, . . . , w −1} , gk − gℓ ≥ a(k −ℓ) (3.37)

Case 1: ℓ< k. Then gk − gℓ =
∑k−1

k ′=ℓ(gk ′+1 − gk ′). By 2) every term in the sum is ≥ gk − gk−1, by 4) is also

≥ a and there are (k −ℓ) terms, which shows Eq. (3.37).

Case 2: ℓ= k. Then Eq. (3.37) is obvious.

Case 3: ℓ> k. Then gℓ− gk =∑ℓ−1
k ′=k (gk ′+1 − gk ′). By 2) every term in the sum is ≤ gk+1 − gk ; note that

we must have k ≤ w −2 thus by 3), every term in the sum is also ≤ a; also, there are ℓ−k terms. Thus

gℓ− gk ≤ a(ℓ−k), which shows Eq. (3.37) in this case.

We now proceed with the proof of the lemma. Consider some arbitrary x ∈ [0, w) and let ℓ= ⌊x⌋. Then

f (x) = x −ℓ+ gℓ (3.38)

h(x) = a(x −ℓ)+a(ℓ−k)+ gk (3.39)

h(x)− f (x) = (a −1)(x −ℓ)︸ ︷︷ ︸
A

+gk − gℓ−a(k −ℓ)︸ ︷︷ ︸
B

(3.40)

Observe that we must have a ≥ 1: if k = w −1 this follows from 3), and if k ≤ w −2 it follows from 3) and

1); thus A ≥ 0. Also B ≥ 0 by Eq. (3.37).

Lemma 3.12. Let T > 0 and P a bounded, wide-sense increasing function [0,T) → R. Extend P to a

function P̄ ∈F by ∀x ≥ 0, P̄ (x) = ⌊ x
T

⌋
P (T −)+P (xmod T) where P (T −)

def= sup0≤t<T P (t).

Also, consider an affine function L, defined by L(x) = ax +b for some a ≥ P (T −)
T and some b ∈R.

If L(x) ≥ P (x) for all x in [0,T) then L ≥ P̄ .

Proof: Observe that, for x ≥ 0, L(x) = a
⌊ x

T

⌋
T+L(xmod T). Now L(xmod T) ≥ P (xmod T) by hypothesis.

Thus

L(x) ≥ a
⌊ x

T

⌋
T +P (x mod T) (3.41)

≥ P (T −)

T

⌊ x

T

⌋
T +P (x mod T) = P̄ (x) (3.42)

Lemma 3.13. Let f ∈F and a rate-latency function βr,T such that r > 0, T > 0, and βr,T ≤ f . Assume

that βr,T (x1) = f (x1) for x1 > T .

Then there is no other rate-latency function βr ′,T ′ (i.e., with (r ′,T ′) ̸= (r,T)) such that βr,T ≤βr ′,T ′ ≤ f .

Proof: Assume that βr,T ≤βr ′,T ′ ≤ f . The proof consists in showing that (r,T) = (r ′,T ′).

First, we know that βr,T (x1) = f (x1) and x1 > T ; thus r (x1 −T) = f (x1) and

T = x1 −
f (x1)

r
(3.43)

Second, observe that we must have T ′ ≤ T , since otherwise βr,T (T ′) > 0 =βr ′,T ′ (T ′).

41

Chapter 3. Strict Service Curves for Interleaved Weighted Round-Robin

Third, observe that f (x1) =βr,T (x1) ≤βr ′,T ′ (x1) ≤ f (x1) thus βr ′,T ′ (x1) = f (x1) and

T ′ = x1 −
f (x1)

r ′ (3.44)

Combining the last three paragraphs, it follows x1 − f (x1)
r ′ ≤ x1 − f (x1)

r , i.e., r ′ ≤ r . Also, we must have

r ′ ≥ r , since otherwise ∀x > x0, βr,T (x) > βr ′,T ′ (x) with x0 = r T−r ′T ′
r−r ′ . Thus, r ′ = r , and it follows from

Eq. (3.43) and Eq. (3.44) that T ′ = T .

Now we proceed with the proof of Theorem 3.3.

1) We first show that rk ≤ rk+1 for k = 0, . . . , wi − 2. Define sequence g by gk = 1
l min

i
ψi

(
kl min

i

)
for

k = 0, . . . , wi −1. By definition, we have gk+1 − gk =

1+ 1

l min
i

∑
j , j ̸=i

(
min(k +2, w j)−min(k +1, w j)

)
l max

j (3.45)

Observe that
(
min(k +2, w j)−min(k +1, w j)

)
is equal to 1 if k+1 < w j , and equal to 0 otherwise. Thus,

gk+2 − gk+1 ≤ gk+1 − gk for 0 ≤ k < wi −2, which shows that rk ≤ rk+1 for k = 0, . . . , wi −3. Also, observe

that gk+1 − gk ≥ 1, i.e., rk ≤ 1, for 0 ≤ k ≤ wi −2. Hence, rwi−2 ≤ rwi−1.

2) Let r ∈ [r∗
0 ,r∗

k∗] and let T (r) be the value of T defined in the Theorem, namely, T (r)
def= ψi (kl min

i)−
kl min

i
r , where k is defined by r∗

k−1 ≤ r < r∗
k if r ∈ [r∗

0 ,r∗
k∗) and k = k∗ if r = r∗

k∗ . We now show that

βr,T (r) ≤ γi .

We consider two cases: r∗
0 ≤ r < r∗

k∗ or r = r∗
k∗ . For the former case, for any r , apply Lemma 3.11

with w = wi , g as defined in 1), k as defined in the paragraph above, and a = 1
r . As by construction

1
rk

< a ≤ 1
rk−1

and 1
rk−1

= gk − gk−1, 3) and 4) are satisfied. For the latter case, apply again Lemma 3.11

with the same g and w = wi but now with k = k∗ and a = 1
r = 1

r∗
k∗

. By construction, we have 1
r∗

k∗
≥

1
rk∗

= gk∗+1 − gk∗ and 1
r∗

k∗
≤ 1

rk∗−1
= gk∗ − gk∗−1. Thus, conditions 3) and 4) of Lemma 3.11 are satisfied.

Let f be the corresponding function f in Lemma 3.11, i.e., f (x) = g⌊x⌋+ xmod 1 for 0 ≤ x < wi . Note

that for both cases, f is the same. Also, let fr be the corresponding function h in Lemma 3.11, i.e.,

fr (x) = 1
r (x −k)+ gk for 0 ≤ x < wi . By Lemma 3.11, fr ≥ f .

Observe that f (w−
i) = 1

l min
i

(
ψi ((wi −1)l min

i)+1
) = 1

l min
i

(
wi l min

i +∑
j , j ̸=i w j l max

j

)
= Ltot

l min
i

= wi
r∗ . Then, as

fr (x) ≥ f (x) for 0 ≤ x < wi and 1
r ≥ 1

r∗ = f (w−
i)

wi
, we can apply Lemma 3.12 with P = f and L = fr . It gives

us f̄ defined by f̄ (x) = ⌊ x
wi

⌋ Ltot

l min
i

+ f (xmod wi) such that fr ≥ f̄ .

Then, by using Eq. (3.36), f ↓
r ≤ f̄ ↓. Also, as f̄ ↓ ≥ 0, we have

[
f ↓

r

]+
≤ f̄ ↓. Note that for an increasing,

linear function L, defined by ∀x ≥ 0,L(x) = ax +b with some a > 0 and b > 0, we have
[
L↓]+ = β 1

a ,b ;

and observe that fr (x) = x
r + gk − k

r = x
r + T (r)

l min
i

. Hence,
[

f ↓
r

]+
=βr, T (r)

lmin
i

.

Until now, we have shown thatβr, T (r)

l min
i

≤ f̄ ↓. Lastly, we show that l min
i f̄ ↓(x

l min
i

) = γi (x) and l min
i βr, T (r)

lmin
i

(x
l min

i
) =

βr,T (r)(x). Observe that l min
i f̄ (x

l min
i

) = ⌊ x
wi l min

i
⌋Ltot +ψi ((x

l min
i

mod wi)l min
i). Also, ψi (x) = ⌊ x

wi l min
i

⌋Ltot +
ψi (xmod wi l min

i). Hence, we have ψi (x) = l min
i f̄ (x

l min
i

). By using Lemma 3.9 with l = m = l min
i ,

42

3.6 Proofs

l min
i f̄ ↓(x

l min
i

) =ψ↓
i (x) = γi (x). Also, observe that l min

i βr, T (r)

lmin
i

(x
l min

i
) =βr,T (r)(x).

Combine the last paragraphs to conclude that βr,T (r) ≤ γi for all r in [r∗
0 ,r∗

k∗].

3) We now show that for any r ∈ [r∗
0 ,r∗

k∗], βr,T (r) is a non-dominated lower-bound of γi . Let r ′ ≥ 0,T ′ ≥ 0

such that βr,T (r) ≤βr ′,T ′ ≤ γi . We have to show that r ′ = r and T ′ = T (r).

First, if r in [r∗
0 ,r∗

k∗), observe that βr,T (r)(x) = γi (x) for x =ψi (kl min
i) >ψi (kl min

i)− kl min
i
r = T (r). Then,

apply Lemma 3.13 with βr,T =βr,T (r) and f = γi to conclude that r ′ = r and T ′ = T (r).

Second, if r = r∗
k∗ , observe that βr,T (r)(x) = γi (x) for x = ψi (k∗l min

i) + Ltot > T (r). Again, apply

Lemma 3.13 with βr,T =βr,T (r) and f = γi to conclude that r ′ = r and T ′ = T (r).

4) We now show that there is no other non-dominated rate-latency function, βr ′,T ′ , that is upper

bounded by γi .

First, we must have T ′ ≥ T (r∗
0). This is because γi (x) = 0 for x ≤ψi (0) = T (r∗

0).

Second, we must have r ′ ≥ r∗
0 . Otherwise, we have r ′ < r∗

0 and we previously showed T ′ ≥ T (r∗
0). Thus,

βr ′,T ′ ≤βr∗0 ,T (r∗0) ≤ γi , which is in contradiction with βr ′,T ′ being non-dominated.

Third, we must have r ′ ≤ r∗
k∗ . We proceed to prove this by contradiction. If T ′ ≥ T (r∗

k∗) and r ′ > r∗
k∗ , ob-

serve that βr ′,T ′ (x0) =βr∗
k∗ ,T (r∗

k∗)(x0) with x0 =
r ′T ′+r∗

k∗T (r∗
k∗)

r ′−r∗
k∗

and ∀x, x > x0 ⇒βr ′,T ′ (x) >βr∗
k∗ ,T (r∗

k∗)(x);

for any arbitrary, non-negative integer k, let xk be defined by xk = ψi (k∗l min
i) + kLtot. Then ob-

serve that βr∗
k∗ ,T (r∗

k∗)(xk) = γi (xk). Choose some k large enough such that xk > x0; then, βr ′,T ′ (xk) >
βr∗

k∗ ,T (r∗
k∗)(xk) = γi (xk), which is in contradiction with βr ′,T ′ ≤ γi . Also, if T ′ < T (r∗

k∗) and r ′ > r∗
k∗ ,

we have ∀x, x > T ′ ⇒ βr ′,T ′ (x) > βr∗
k∗ ,T (r∗

k∗)(x). Choose some k large enough such that xk > T ′; then,

βr ′,T ′ (xk) >βr∗
k∗ ,T (r∗

k∗)(xk) = γi (xk), which is in contradiction with βr ′,T ′ ≤ γi . Therefore, r ′ > r∗
k∗ is in

contradiction with βr ′,T ′ ≤ γi .

Therefore, we must have r ′ in [r∗
0 ,r∗

k∗]. We now show that T ′ = T (r ′). Because otherwise, if T ′ < T (r ′),

we haveβr ′,T (r ′) ≤βr ′,T ′ ≤ γi , which is in contradiction withβr ′,T (r ′) being a non-dominated rate latency

function. Also, if T ′ > T (r ′), we have βr ′,T ′ ≤ βr ′,T (r ′) ≤ γi , which is in contradiction with βr ′,T ′ being

non-dominated.

3.6.4 Proof of Theorem 3.4

Let us call the supremum of all non-dominated rate-latency functions B . We want to show that

B = max
(
βr∗0 ,T ∗

0
, . . . ,βr∗

k∗ ,T ∗
k∗

)
. The proof consists on three steps.

1) B(x) = 0 for all x in [0, l min
i g0].

2) B(x) =βr∗k−1,T ∗
k−1

(x) for all x in [l min
i gk−1, l min

i gk] and k = 1. . .k∗.

3) B(x) =βr∗
k∗ ,T ∗

k∗
(x) for all x ≥ l min

i gk∗ .

To prove 1), as every non-dominated rate-latency function is equal to zero before l min
i g0, we have

B(x) = 0 for all x in [0, l min
i g0].

To prove 2), we consider two cases for any other non-dominated rate-latency βr ′,T (r ′): First, r∗
0 ≤ r ′ <

43

Chapter 3. Strict Service Curves for Interleaved Weighted Round-Robin

r∗
k−1. Second, r∗

k−1 < r ′ ≤ r∗
k∗ .

For the former case, we show that

βr ′,T (r ′)
(
l min

i gk−1
)≤βr∗k−1,T ∗

k−1

(
l min

i gk−1
)

(3.46)

Then, as r ′ < r∗
k−1, it follows βr ′,T (r ′)(x) ≤βr∗k−1,T ∗

k−1
(x) for all x in [l min

i gk−1, l min
i gk].

Let k ′ defined by r ′ ∈ [r∗
k ′−1,r∗

k ′). Then, by definition

βr ′,T (r ′)
(
l min

i gk−1
)= r ′ (l min

i gk−1 − l min
i gk ′

)+k ′l min
i (3.47)

=r ′
(

k−2∑
e=k ′

ge+1 − ge

)
l min

i +k ′l min
i (3.48)

≤r∗
k ′

(
k−2∑
e=k ′

ge+1 − ge

)
l min

i +k ′l min
i (3.49)

=
∑k−2

e=k ′ ge+1 − ge

gk ′+1 − gk ′
l min

i +k ′l min
i (3.50)

Then, as ge+1 − ge is decreasing, we have
∑k−2

e=k ′ ge+1 − ge ≤ (
k −1−k ′)(gk ′+1 − gk ′

)
. Combine it with

Eq. (3.50) to conclude that βr ′,T (r ′)
(
l min

i gk−1
)≤ (k −1) l min

i ; lastly, observe that βr∗k−1,T ∗
k−1

(
l min

i gk−1
)=

(k −1) l min
i . Therefore, Eq. (3.46) is proven.

For the latter case, we show that

βr ′,T (r ′)
(
l min

i gk
)≤βr∗k−1,T ∗

k−1

(
l min

i gk
)

(3.51)

Then, as r ′ > r∗
k−1, it follows βr ′,T (r ′)(x) ≤βr∗k−1,T ∗

k−1
(x) for all x in [l min

i gk−1, l min
i gk].

Let k ′ defined by r ′ ∈ [r∗
k ′−1,r∗

k ′). Then, by definition

βr ′,T (r ′)
(
l min

i gk
)= r ′ (l min

i gk − l min
i gk ′

)+k ′l min
i (3.52)

=r ′
(
−

k ′−1∑
e=k

ge+1 − ge

)
l min

i +k ′l min
i (3.53)

≤r∗
k ′

(
−

k ′−1∑
e=k

ge+1 − ge

)
l min

i +k ′l min
i (3.54)

≤
−∑k ′−1

e=k ge+1 − ge

gk ′+1 − gk ′
l min

i +k ′l min
i (3.55)

Then, as ge+1 − ge is decreasing, we have −∑k ′−1
e=k ge+1 − ge ≤ (

k −k ′)(gk ′+1 − gk ′
)
. Combine it with

Eq. (3.55) to conclude that βr ′,T (r ′)
(
l min

i gk
) ≤ kl min

i ; lastly, observe that βr∗k−1,T ∗
k−1

(
l min

i gk
) = kl min

i .

Therefore, Eq. (3.51) is proven.

Combining these two cases, 2) is proven.

To prove 3), for any other non-dominated rate-latency βr ′,T (r ′), we show that

βr ′,T (r ′)
(
l min

i gk∗
)≤βr∗

k∗ ,T ∗
k∗

(
l min

i gk∗
)

(3.56)

44

3.6 Proofs

Then, as r ′ < r∗
k∗ , it follows βr ′,T (r ′)(x) ≤βr∗

k∗ ,T ∗
k∗

(x) for all x ≥ l min
i gk∗ .

Let k ′ defined by r ′ ∈ [r∗
k ′−1,r∗

k ′). Then, by definition

βr ′,T (r ′)
(
l min

i gk∗
)= r ′ (l min

i gk∗ − l min
i gk ′

)+k ′l min
i (3.57)

=r ′
(

k∗−1∑
e=k ′

ge+1 − ge

)
l min

i +k ′l min
i (3.58)

≤r∗
k ′

(
k∗−1∑
e=k ′

ge+1 − ge

)
l min

i +k ′l min
i (3.59)

≤
∑k∗−1

e=k ′ ge+1 − ge

gk ′+1 − gk ′
l min

i +k ′l min
i (3.60)

Then, as ge+1 − ge is decreasing, we have
∑k∗−1

e=k ′ ge+1 − ge ≤ (
k∗−k ′)(gk ′+1 − gk ′

)
. Combine it with

Eq. (3.60) to conclude that βr ′,T (r ′)
(
l min

i gk∗
)≤ k∗l min

i ; lastly, observe that βr∗
k∗ ,T ∗

k∗
(
l min

i gk∗
)= k∗l min

i .

Therefore, Eq. (3.56) is proven.

Until now, we have shown 1), 2), and 3). Let A = max
(
βr∗0 ,T ∗

0
, . . . ,βr∗

k∗ ,T ∗
k∗

)
. Observe that first, by

1), it follows A = 0 for all x in [0, l min
i g0]; second, by 2, it follows A(x) = βr∗k−1,T ∗

k−1
(x) for all x in

[l min
i gk−1, l min

i gk] and k = 1. . .k∗; lastly, by 3), A(x) =βr∗
k∗ ,T ∗

k∗
(x) for all x ≥ l min

i gk∗ . Therefore, A = B ,

i.e., B = max
(
βr∗0 ,T ∗

0
, . . . ,βr∗

k∗ ,T ∗
k∗

)
.

We now want to show that B is the largest convex function upper bounded by γi , i.e., if f is a convex

function and is upper bounded by γi , then f ≤ B .

Pick an arbitrary x ≥ 0. Let Gx be a subgradient of f at x. Note that a subgradient exists because f is

convex [153, Sec. 5.4]. By definition of subgradient [153, Sec. 5.4], for L, defined by ∀x ′ ≥ 0,L(x ′) =
Gx (x ′−x)+ f (x), we have L ≤ f ; then, as f ≤ γi , we have L ≤ γi . We now consider two cases for Gx and

proceed with the proof to show that f (x) ≤ B(x) in both cases.

Case 1: Gx ≤ 0

As L(0) ≤ γi (0) = 0, we have L ≤ 0; also, observe that B ≥ 0. Hence, L ≤ B . It follows L(x) = f (x) ≤ B(x).

Case 1: Gx > 0

Define βr,T with r = Gx and T = x − f (x)
Gx

. Observe that r ≥ 0 and as L(0) ≤ γi (0) = 0, it follows T ≥ 0.

We now proceed to show that βr,T ≤ γi . As L ≤ γi and γi ≥ 0, we have [L]+ ≤ γi ; also, observe that

[L]+ =βr,T . Therefore, βr,T ≤ γi .

Then, as βr,T is a rate-latency function upper bounded by γi , it is dominated by one of the non-

dominated rate-latencies or is equal to one of them. It follows βr,T ≤ B ; also, observe that βr,T (x) = f (x).

Thus, f (x) ≤ B(x).

Lastly, the above result applies to any x ≥ 0, thus ∀x ≥ 0, f (x) ≤ B(x), i.e., f ≤ B .

3.6.5 Proof of Theorem 3.5

We use the following lemma about the lower pseudo-inverse technique.

Lemma 3.14. For a right-continuous function f in F and x, y in R+, f ↓ (
y
)= x if and only if f (x) ≥ y

45

Chapter 3. Strict Service Curves for Interleaved Weighted Round-Robin

and there exists some ε> 0 such that ∀x ′ ∈ (x −ε, x), f (x ′) < y.

Proof:

⇒:

Let S = {
x ′, f (x ′) ≥ y

}
so that x = infS (see Eq. (2.12)). From the definition of an inf, there exists

a sequence xn such that xn ∈ S for all n, xn ≥ x, and limn→∞ xn = x. Since f is right-continuous,

limn→∞ f (xn) = f (x), which shows that f (x) ≥ y . Also, again by definition of an inf, any x ′ < x does not

belong to S, i.e. ∀x ′ < x, f (x ′) < y .

⇐:

By the first part of the hypothesis, x ∈ S therefore x ≥ infS = f ↓ (
y
)
. Let also S′ = {

x ′, f (x ′) < y
}

so that

f ↓ (
y
)= supS′ (see Eq. (2.12)). By the second part of the hypothesis, S′ contains the interval (x −ε, x)

hence supS′ ≥ x, which shows that f ↓ (
y
)≥ x. Combining the two shows that f ↓ (

y
)= x.

Proof of Theorem 3.5

We prove that, for any value of the system parameters, for any τ> 0, and for any class i , there exists one

trajectory of a system such that

∃s ≥ 0, (s, s +τ] is backlogged for class i

and Di (s +τ)−Di (s) =βi (τ)
(3.61)

Step 1: Constructing the Trajectory

1) Classes are labeled in order of weights, i.e., w j ≤ w j+1.

2) At time 0, the input of every queue j ̸= i is a burst of size

⌈
β(τ)
l max

j

⌉
l max

j +w j l max
j .

3) Every class, j ̸= i , is packetized according to its maximum packet size, l max
j .

4) The output of the system is at rate K (the Lipschitz constant of β) from time 0 to times s, which is

defined as the time at which queue i is visited at cycle wi in the first round, namely

s = 1

K

∑
j , j ̸=i

min
(
wi −1, w j

)
l max

j (3.62)

It follows that

∀t ∈ [0, s],D(t) = K t (3.63)

5) The input of queue i starts just after time s, with a burst of size

⌈
β(τ)
l min

i

⌉
l min

i .

6) Class i is packetized according to its minimum packet size, l min
i .

7) After time s, the output of the system is equal to the guaranteed service; by 2) and 5), the busy period

lasts for at least τ, i.e.,

∀t ∈ [s, s +τ],D(t) = D(s)+β(t − s) (3.64)

46

3.6 Proofs

In particular,

D(s +τ)−D(s) =β(τ) (3.65)

If we applyψ↓
i to both sides of Eq. (3.65), the right-hand side is equal to βi (τ). Thereby, we should prove

ψ↓
i (D(s +τ)−D(s)) = Di (s +τ)−Di (s) (3.66)

Let y = D(s +τ)−D(s) and x = Di (s +τ)−Di (s). Our goal is now to prove that

ψ↓
i

(
y
)= x (3.67)

From 5), we know that the first packet of class i is served at the first cycle of a round (C = 1 in Algo-

rithm 3.1). Thus, applying Lemma 3.2 and (P5) in Lemma 3.3, the number of services to each class j is

equal to φi , j (p). From 2), class j sends packets with the maximum length. Thus∑
j , j ̸=i

D j (s +τσ(p))−D j (s) =
∑

j , j ̸=i
φi , j (p)l max

j (3.68)

Now there are two cases for s +τ (3.6.1.1).

Case 1: s +τ< τσ(p) In this case the scheduler is not serving class i in [τσ(p), s +τ] and x = pl min
i . Thus

Di (s +τ) = Di (τσ(p)). It follows that

ψi (x) = x +
∑

j , j ̸=i
φi , j (⌊ x

l min
i

⌋)l max
j︸ ︷︷ ︸∑

j , j ̸=i D j (τσ(p))−D j (s)

y = x +
∑

j , j ̸=i
D j (s +τ)−D j (s)

(3.69)

and thus

ψi (x) ≥ y (3.70)

Let x − l min
i < x ′ < x; class i ’s output becomes equal to x ′ during the emission of packet p −1 thus

ψi (x ′) = x ′+
∑

j , j ̸=i
D j (τσ(p−1))−D j (s) (3.71)

Hence

∀x ′ ∈ (x − l min
i , x),ψi (x ′) < y (3.72)

Combining Eq. (3.70) and Eq. (3.72) with Lemma 3.14 shows Eq. (3.67).

Case 2: s +τ≥ τσ(p) In this case the scheduler is serving class i in [τσ(p), s +τ]. For every other class j ,

we have D j (s +τ) = D j (τσ(p)). Hence,

ψi (x) = Di (s +τ)−Di (s)+
∑

j , j ̸=i
φi , j (p)l max

j = y (3.73)

As with case 1, for any x ′ ∈ ((p −1)l min
i , x), we have ψi (x) < y , which shows Eq. (3.67).

This shows that Eq. (3.61) holds. It remains to show that the system constraints are satisfied.

47

Chapter 3. Strict Service Curves for Interleaved Weighted Round-Robin

Step 2: Verifying the Trajectory

We need to verify that the service offered to the aggregate satisfies the strict service curve constraint.

Our trajectory has one busy period, starting at time 0 and ending at some time Tmax ≥ τ. We need to

verify that

∀t1, t2 ∈ [0,Tmax] with t1 < t2,D(t2)−D(t1) ≥β(t2 − t1) (3.74)

Case 1: t2 < s

Then D(t2)−D(t1) = K (t2 − t1). Observe that, by the Lipschitz continuity condition on β, for all t ≥ 0,

β(t) =β(t)−β(0) =β(t) ≤ K t thus K (t2 − t1) ≥β(t2 − t1).

Case 2: t1 < s ≤ t2

Then D(t2)−D(t1) =β(t2 − s)+K (s − t1). By the Lipschitz continuity condition:

β(t2 − t1)−β(t2 − s) ≤ K (s − t1) (3.75)

thus D(t2)−D(t1) ≥β(t2 − t1).

Case 3: s ≤ t1 < t2

Then D(t2)−D(t1) =β(t2)−β(t1) ≥β(t2 − t1) because β is super-additive.

3.6.6 Proof of Theorem 3.6

Proof: The proof is very similar to the proof of Theorem 3.5. The necessary changes in the proof are the

following:

1) s is the time of the first visit to class i .

2) Instead of functions ψi and φi , j , use functions ψ′
i and φ′

i , j , defined in Eq. (3.32) and Eq. (3.33).

3.6.7 Proof of Theorem 3.7

Proof: The proof contains the following steps:

1) Consider the same trajectory as in the proof of Theorem 3.5, yet with one difference: the input of

class i is Ai (t) =αi (t − s) for t ≥ s and zero before s. Observer that as αi is sub-additive, ∀t1, t2: t2 ≥
t1 ≥ s ⇒ Ai (t2)− Ai (t1) =αi (t2)−αi (t1) ≤αi (t2 − t1).

2) Define s′ = inf{u > 0|αi (u) ≤βi (u)}. This is the first time after zero that the service curve meets the

arrival curve. Note that s′ can be infinite as well.

3) Then, it is guaranteed that class i is backlogged in (s, s + s′]. Therefore, using Eq. (3.61), we have

Di (t) =βi (t − s) for t ≥ s and zero before s.

4) Combining 1 and 3, the horizontal deviation of Ai and Di in (s, s + s′] is equal to the horizontal

deviation of αi and βi in [0, s′].

48

3.7 Conclusion

4) Using [40, Sec. 5.3.3], the horizontal deviation of αi and βi can be restricted to [0, s′].

Thereby, we find a valid trajectory (verified in the proof of Theorem 3.5) where the delay bound is

achieved.

3.6.8 Proof of Theorem 3.8

Proof: The same proof of Theorem 3.7 works here as well. However, we use the trajectory defined in the

proof of Theorem 3.6.

3.7 Conclusion

IWRR is a variant of WRR with the same long-term rate and the same complexity. We have provided a

residual strict service curve for IWRR and have shown that it is the best possible one under general

assumptions. For classes with packets of constant size, we have shown that the delay bounds derived

from it are worst-case. We have proved that IWRR worst-case delay is not greater than WRR and shown

on experiments that the gain is significant (20 %–60 %) in practice, which speaks in favor of using IWRR

as a replacement to WRR. Our result assumes that the aggregate of all IWRR queues receives a strict

service curve guarantee, and we find a strict service curve guarantee for every IWRR queue. Therefore,

our results apply to hierarchical schedulers.

49

Chapter 3. Strict Service Curves for Interleaved Weighted Round-Robin

3.8 Notation

Table 3.1: Notation List, Specific to Chapter 3

i A class
A Aggregate, cumulative arrival function of all classes
D Aggregate, cumulative departue function of all classes
αi An arrival curve for class i
βi A strict service curve offered to class i
β A strict service curve offered to aggregate of all classes
Ai Cumulative arrival function of class i
Di Cumulative departure function of class i
n Number of classes
l max

i Maximum packet size for flows of class i
l min

i Minimum packet size for flows of class i
wi Weight of class i
Ltot wi l min

i +∑
j , j ̸=i w j l max

j

λc Rate function with λc (t) = ct
βR,L Rate-latency function with βc,L(t) = max(0,c(t −L))
R+ Set of non-negative real numbers
F Set of wide-sense increasing functions f :R+ 7→R+∪ {+∞}

νp,b Stair function with νp,b(t) = b
⌈

t
p

⌉
γr,b Token-bucket function with γr,b(0) = 0 and γr,b(t) = r t +b for t > 0
[x]+ [x]+ = max(0, x)
⌊x⌋ Flooring function
f ↓ Lower pseudo inverse f ↓ = inf{x| f (x) ≥ y} = sup{x| f (x) < y}
⊗ Min-plus convolution (f ⊗ g)(t) = inf0≤s≤t { f (t − s)+ g (s)}

50

4 Strict Service Curves for Deficit
Round-Robin

In the realm of queues, where fairness prevails,

Deficit Round-Robin, its method unveils.

With packets variable, it stands strong,

Providing fair scheduling all along.

Worst-case delays, Boyer’s bounds did find,

Network calculus, a rigorous kind.

A convex strict curve, service defined,

For one class of interest, so refined.

But assumptions lacking, when traffic interferes,

Pessimism arises, fueling our fears.

Soni proposed a correction, a semi-rigor guide,

Yet alas, incorrect, a counter-example beside.

Bouillard stepped in, with rigor embraced,

Convex strict curves, arrival curves placed.

Improvements we seek, our mission prevails,

In two ways we delve, advancing the trails.

A non-convex curve, DRR refined,

No arrival constraint, its greatness defined.

An iterative method, constraints to appease,

Improving all curves, bringing solace and ease.

Today, our results stand tall and profound,

The best-known bounds, DRR’s honor renowned.

Pseudo-inverse method, our ally and guide,

In the pursuit of knowledge, we stride.

So let this chapter unfold, a journey untold,

As DRR’s secrets, we begin to behold.

Created with ChatGPT, free research preview (version May 24) [141]

As explained in Section 1.2.2, although WRR and IWRR were originally designed in the context of

ATM [85] with constant-size packets to share the bandwidth in proportion to allocated weights, they

51

Chapter 4. Strict Service Curves for Deficit Round-Robin

have been applied to networks with variable-length packets. In such cases, the bandwidth allocated

to each queue depends on not only the weights but also on the packet sizes. This is not desirable,

as the intention of the weights is to control the allocated bandwidth to each queue; however, they

do not entirely control this as the packet sizes interfere. Deficit Round-Robin (DRR) [154] is a later

variant that solves this. DRR is often used for scheduling tasks, or packets, in real-time systems or

communication networks. With DRR, every queue is associated with a static number, called quantum.

Queues are visited round-robin (one after the other), and at every visit, receive service (measured in

bits for communication networks, in seconds for task processing systems) up to the quantum value.

Tasks or packets are of variable sizes, and it may happen that, during one visit of the server, there

remains at least one task or packet in the queue that cannot be served because the unused part of

the quantum is positive but not large enough. In such a case, the unused part of the quantum (called

the residual deficit) is carried over to the next round. DRR shares resources flexibly (the amount of

service reserved for one queue is proportional to its quantum) and efficiently (when a queue is idle, the

server capacity is available to other queues). It is widely used as it has low complexity and very efficient

implementations exist [80].

DRR can be applied to time-sensitive networks, i.e., to communication networks where it is required

to obtain bounds on worst-case delay (not on average). Here, flows are grouped in some classes, and

every class corresponds to one DRR queue at every node. Furthermore, the traffic that every flow can

send is limited at the source by an arrival curve constraint, i.e., a limit to the number of bits that can be

sent over any time interval. Worst-case delay bounds for such a setting were obtained in [86, 87, 88]

using various ad-hoc analyses. These results were improved in [89], where the authors obtain a strict

service curve for DRR , i.e., a function that lower-bounds the amount of service received by every DRR

queue. A strict service curve is a special case of a service curve hence can be used to derive delay (and

backlog) bounds (see Section 2.1.1.4). We call this method the strict service curve of Boyer et al.

In a DRR system, if a queue does not have enough traffic to use its quantum at every visit of the server,

then the leftover capacity is automatically used to improve the service received by other queues. In

a time-sensitive network, some or all interfering traffic is deterministic, and in normal operation, is

limited at the source. There is interest in obtaining proven bounds for both the degraded operational

mode (when some traffic classes misbehave) and for the non-degraded mode (when all time-sensitive

traffic satisfies its source constraints). The strict service curve of Boyer et al. does not make any

assumptions on the interfering traffic. Hence, the resulting delay bounds are valid, even in degraded

operational mode.

For the non-degraded operational mode, i.e., when arrival curve constraints can be assumed for

interfering traffic, significantly smaller delay bounds were presented at a RTSS conference [90]. They

use the result of [89], which is improved by what we call the correction term of Soni et al. Unfortunately,

the method is semi-rigorous and cannot be fully validated. Indeed, our first contribution is to show

that the correction term of Soni et al. is incorrect; we do so by exhibiting a counter-example that

satisfies their assumptions and that has a larger delay (Section 4.3). The main idea of the correction

term of Soni et al. is the assumption that only packets of interfering flows arriving within a duration

of the delay bound of Boyer et al. will get a chance to delay a given packet of the flow of interest; in

our counter-example, we observed that this assumption is incorrect, and all packets of interfering

flows arriving within the global backlogged period might delay a packet of the flow of interest. Later,

Bouillard, in [91], derived new strict service curves for DRR that account for the arrival curve constraints

of the interfering traffic and improve on the strict service curve of Boyer et al., hence on the delay

bounds. These results are formally proven. They require that arrival curves are concave (which does

52

4.1 System Model

not always hold, e.g., when sources are periodic).

Our next contribution is obtaining a better strict service curve for DRR when we do not take into

account arrival curve constraint on interfering traffic, i.e., for degraded operational mode. To do so, we

rely on the method of pseudo-inverse, as it enables us to capture all details of DRR ; we used a similar

method to obtain a strict service curve for Interleaved Weighted Round-Robin (IWRR) in Chapter 3.

We also provide simplified lower bounds that can be used when analytic, closed-form expressions are

important. One such lower bound is precisely the strict service curve of Boyer et al. (Fig. 4.2), hence the

worst-case delay bounds obtained with our strict service curve are guaranteed to be less than or equal

to those of Boyer et al.

Our following contribution is a new iterative method for obtaining better strict service curves for DRR

that account for the arrival curve constraints of interfering flows. Our method is rigorous and is based

on pseudo-inverses and output arrival curves of interfering flows. We also provide simpler variants.

Our method improves on any available strict service curves for DRR, hence, we always improve on

Bouillard’s strict service curve. Furthermore, our method accepts any type of arrival curves, including

non-concave ones (such as the stair function used with periodic flows), and can be applied to any type

of strict service curve, including non-convex ones (such as the strict service curve we obtained when

there is no arrival curve constraint on interfering traffic).

The delay bounds obtained with our method are fully proven. Furthermore, we compute them for

the same case studies as in Bouillard’s work [91] (one single server analysis) and as in Soni et al. [90]

(including two illustration networks and an industrial-sized one). We find that they are smaller than

Bouillard’s and the incorrect ones that use the correction term of Soni et al. Hence as of today, it

follows that our delay bounds are the best-proven delay bounds for DRR, with or without constraints

on interfering traffic.

The rest of this chapter is organized as follows. After giving related works in Section 4.2, we describe the

counter-example to Soni et al. in Section 4.3. In Section 4.4, we present our new strict service curves for

DRR, with no knowledge of interfering traffic. In Section 4.5, we present our new strict service curves

for DRR; they account for the interfering arrival curve constraints. In Section 4.6, we use numerical

examples to illustrate the improvement in delay bounds obtained with our new strict service curves.

We present proofs of results in Section 4.7. We conclude the chapter in Section 4.8. A summary of

notation and symbols used in this chapter are given in Section 4.9.

4.1 System Model

We consider a DRR system in the context of deterministic networking, and we are interested in the

worst-case delays for flows, given arrival curve constraints on the flows. A DRR subsystem serves n

inputs, has one queue per input, and uses Algorithm 4.1 for serving packets. Each queue i is assigned a

quantum Qi . DRR runs an infinite loop of rounds. In one round, if queue i is non-empty, a service for

this queue starts and its deficit is increased by Qi . The service ends when either the deficit is smaller

than the head-of-the-line packet or the queue becomes empty. In the latter case, the deficit is set

back to zero. The send instruction is assumed to be the only one with a non-null duration. Its actual

duration depends on the packet size but also on the amount of service available to the entire DRR

subsystem.

53

Chapter 4. Strict Service Curves for Deficit Round-Robin

Algorithm 4.1: Deficit Round-Robin
Input: Integer quantum Q1,Q2, . . . ,Qn

1 for i ← 1 to n do
//Deficits are initially zero.

2 di ← 0;

3 while true do
4 for i ← 1 to n do
5 if (not empty(i)) then

//A service for queue i starts.
6 di ← di +Qi ;

7 while (not empty(i)) and (size (head(i)) ≤ di) do
8 di ← di − size (head(i));

9 send(head(i));

10 removeHead(i);

//A service for queue i ends.
11 if (empty(i)) then
12 di ← 0;

In [89] as in much of the literature on DRR, the set of packets that use a given queue is called a flow; a

flow may, however, be an aggregate of multiple flows, called micro-flows [155] and an aggregate flow is

called a class in [90]. In order to be consistent with the rest of this thesis, we consider that a DRR input

corresponds to one class.

The DRR subsystem is itself placed in a larger system and can compete with other queuing subsystems.

A common case is when the DRR subsystem is at the highest priority on a non-preemptive server with

line rate c. Due to non-preemption, the service offered to the DRR subsystem might not be instantly

available. This can be modeled by means of a rate-latency strict service curve (see Section 2.1 for the

definition), with rate c and latency c
Lmax where Lmax is the maximum packet size of lower priority. If

the DRR subsystem is not at the highest priority level, this can be modeled with a more complex strict

service curve [40, Section 8.3.2]. This motivates us to assume that the aggregate of all flows in the DRR

subsystem receives a strict service curve β, which we call “aggregate strict service curve”. If the DRR

subsystem has exclusive access to a transmission line of rate c , then β(t) = ct for t ≥ 0. We assume that

β(t) is finite for every (finite) t . Note that the aggregate strict service curve β, which models the service

offered to the aggregate of all flows, should not be confused with the strict service curves such as βm
i ,

which captures service offered to class i ; strict service curves such as βm
i are called “residual" strict

service curves in [89].

Here, we use the language of communication networks, but the results equally apply to real-time

systems: Simply map flow to task, map packet to job, map packet size to job-execution time, and map

strict service curve to “delivery curve" [142, 143].

4.2 Related Works

4.2.1 Strict Service Curve of Boyer et al.

The strict service curve of Boyer et al. for DRR is given in [89], and we rewrite it using our notation. For

class i , let d max
i be its maximum residual deficit, defined by d max

i = l max
i −ϵwhere l max

i is an upper bound

54

4.2 Related Works

on the packet size and ϵ is the smallest unit of information seen by the scheduler (e.g., one bit, one

byte, one 32-bit word, ...). Also, let Qtot =
∑n

j=1 Q j . Then, for every class i , their strict service curve is the

rate-latency service curveβRi ,Ti

(
β(t)

)
with rate Ri = Qi

Qtot
and latency Ti =

∑
j ̸=i d max

j +(1+ d max
i
Qi

)
∑

j ̸=i Q j

(see Section 2.1.1.4 for the definition of a rate-latency function). This rate-latency is illustrated in Fig. 4.2

(the red curve); Note that the latency is equal to the maximum service interruption plus additional

terms. As Boyer et al. find a rate-latency with the maximum rate, they were forced to take a latency

larger than the maximum service interruption; this explains why it is not optimal.

4.2.2 Correction Term of Soni et al.

When interfering classes are constrained by some arrival curves, Soni et al. give a correction term that

improves the obtained delay bounds using the strict service curve of Boyer et al. in [90], which we

now rewrite using our notation. Assume that every class i has an arrival curve αi , and the server is a

constant-rate server with a rate equal to c . Let DBoyer-et-al
i be the network calculus delay bound for class

i obtained by combining αi with the strict service curve of Boyer et al., as explained in Section 4.2.1.

The delay bound proposed in [90] is DSoni-et-al
i = DBoyer-et-al

i −C Soni-et-al
i with

C Soni-et-al
i =

∑
j , j ̸=i

[
S j (DBoyer-et-al

i)−α j (DBoyer-et-al
i)

]+
c

(4.1)

where S j (t)
def=

(
Q j +d max

j

)
1t≥hi +Q j (1+⌊ c(t−Hi)

Qtot
⌋)1t≥Hi , hi =

∑
j ̸=i Q j +d max

j

c and Hi = hi +
Qi−d max

i +∑
j ̸=i Q j

c .

The correction term is obtained by subtracting two terms: The former, function S j , gives the maximum

possible interference caused by an interfering class j in a backlogged period of the class of interest i

and is derived from a detailed analysis of DRR ; and the latter gives the effective interference caused by

an interfering class j in a backlogged period of the class of interest i , given the knowledge of an arrival

curve of that interfering class, α j .

Two additional improvements are used in [90]. The former, called line shaping, uses the fact that, if a

collection of flows is known to arrive on the same link, the rate limitation imposed by the link can be

used to derive, for the aggregate flow, an arrival curve that is smaller than the sum of arrival curves of

the constituent flows (as explained in Section 2.1.1.3). This improvement is also known under the name

of grouping and is used, for example, in [42, 156, 157]. The other improvement, called offsets, uses the

fact that, if several periodic flows have the same source and if their offsets are known, the temporal

separation imposed by the offsets can be used to compute, for the aggregate flow, an arrival curve that

is also smaller than the sum of arrival curves of the constituent flows (the latter would correspond to an

adversarial choice of the offsets). Both improvements reduce the arrival curves, hence the delay bounds.

Note that both improvements are independent of the correction term (and, unlike the correction term,

are correct); they can be applied to any method used to compute delay bounds, as we do in Section 4.6.

4.2.3 Bouillard’s Strict Service Curves

A new method to compute strict service curves for DRR that account for the interfering arrival curve

constraints was recently presented in [91]; the method works only when arrival curves are concave and

the aggregate strict service curve is convex, and it improves on the strict service curve of Boyer et al.

Specifically, in [91, Theorem 1], for the class of interest i , there exists non-negative numbers ĤJ for any

55

Chapter 4. Strict Service Curves for Deficit Round-Robin

J ∈ {1, . . . ,n} \ {i } such that βBouillard
i is given by

βBouillard
i = sup

J⊆{1,...,n}\{i }

Qi∑
j∉J Q j

[
β−

∑
j∈J

α j − ĤJ

]+
(4.2)

where an inductive procedure is presented to compute ĤJ . We call these Bouillard’s strict service

curves.

4.3 Counter Example to The Correction Term of Soni et al.

𝑡 = 0

10 62 4 1

𝑡! = 10
𝑙
𝑐 𝑡"#$$ = 72.093

𝑙
𝑐 𝑡"

%&' = 87
𝑙
𝑐

𝐷"()= 14.907 *
+

Flow 1: Flow 3:Flow 2:

10

Output:

Packet Arrival:

(Arrival and departure of packet of interest)

10 20 30 40 50 60 62

Figure 4.1: Trajectory scenario for the packet of interest of class 1 (Section 4.3.2). This packet arrives
at t arr

2 and departs at t dep
2 .

In this section, we show that the delay bound of Soni et al., namely the correction term given in equation

(14) in [90], rewritten using our notation in (4.1), is invalid. For class 2 in a system, we denote the delay

bound of Soni et al. by DSoni-et-al
2 , and we denote the delay experienced by a packet of class 2 in the

trajectory scenario by DTS
2 .

4.3.1 System Parameters

Consider a constant-rate server, with a rate equal to c, that uses the DRR scheduling policy. All flows

have packets of constant size l , and have quanta Q1 = 10l , Q2 = 100l , and Q3 = 5l .

Each class is constrained by a token-bucket arrival curve:

1. α1 = γr1,b1 with 0 ≤ r1 < Q1
Qtot

c and b1 = 20l .

2. α2 = γr2,b2 with r2 = 0.86c and b2 = l .

3. α3 = γr3,b3 with r3 = 0.0401c and b3 = l .

Assuming a token-bucket γr,b , defined in Section 2.1.1.3, for a class implies that this class has a

minimum packet-arrival time equal to l
r . Also, observe that ri < Qi

Qtot
c for i = 1,2,3. We compute

the delay bound of Soni et al. for class 2, as explained in Section 4.2.2, and we obtain DSoni-et-al
2 =

14.03383 l
c −1.236215 ϵ

c .

56

4.3 Counter Example to The Correction Term of Soni et al.

4.3.2 Trajectory Scenario

We now construct a possible trajectory for our system. First, we give the inputs of our three classes. All

queues are empty, and the server is idle at time t = 0. Then,

1. Class 1 arrives first and A1(t) = min(α1(t),20l) for t > 0 (yellow arrows in Fig. 4.1).

2. Class 2 arrives shortly after class 1 and A2(t) = min(α2(t),63l) for t > 0 (green arrows in Fig. 4.1).

3. Class 3 arrives shortly after classes 1 and 2 and A3(t) = min(α3(t),4l) for t > 0 (red arrows in

Fig. 4.1).

Then, for the output, we have the following:

1) Class 1 arrives first and has 20 ready packets. As its deficit was zero before this service and Q1 = 10l ,

the server serves 10 packets of this class. The end of the service for class 1 is t1 = 10 l
c (the first yellow

part in Fig. 4.1).

2) Then, there is an emission opportunity for class 2 and A2(t1) = 9.6l , which means class 2 has 9 ready

packets at time t1. The server starts serving packets of this class. At the end of service of these first

9 packets, at t2 = 19 l
c , class 2 has another 8 ready packets; hence, the server still serves packets of

class 2. This continues and 62 packets of class 2 are served in this emission opportunity; the emission

opportunity ends at t4 = 72 l
c (the first green part in Fig. 4.1).

3) Then, there is an emission opportunity for class 3 and A3(t4) = 3.8872l , which means class 3 has 3

ready packets at time t4. At the end of the service of 3 packets, another packet is also ready for class 3.

In total, 4 packets of class 3 are served in this emission opportunity (the red part in Fig. 4.1).

4) A packet for class 2 arrives at t arr
2 = 72+ 0.08l

r1
≈ 72.093 l

c . This packet should wait for class 3 and class

1 to use their emission opportunities, and then it can be served. We call this the packet of interest of

class 2, for which we capture the delay (the first blue arrow, at t arr
2 , on Fig. 4.1).

5) For class 1, again, 10 packets are served (the second yellow part in Fig. 4.1).

6) Finally, the packet of interest is served and its departure time is t dep
2 = 87 l

c .

It follows that the delay for the packet of interest is DTS
2 = t dep

2 − t arr
2 = 15 l

c − 0.08l
r2

≈ 14.907 l
c . Note that

DTS
2 > DSoni-et-al

2 . To fix ideas, if l = 100 bytes and c = 100 Mb/s, the delay bounds are DBoyer-et-al
2 =

146.228µs, DSoni-et-al
2 = 112.172µs, and DTS

2 = 119.256µs.

4.3.3 The Contradiction with the Bound of Soni et al.

We found a trajectory scenario such that DSoni-et-al
2 is not a valid delay bound. Let us explain why the

approach of Soni et al., presented in [90], gives an invalid delay bound. In [90], it is implicitly assumed

that as the delay for a packet of class 2 is upper bounded by DBoyer-et-al
2 (the obtained delay bound using

the strict service curve of Boyer et al. for class 2), only packets of interfering classes arriving within

a duration DBoyer-et-al
2 will get a chance to delay a given packet of class 2. However, in the trajectory

scenario given in Section 4.3.2, all packets of class 3 (an interfering class for class 2) arriving within the

time interval [0,75 l
c] with the duration 75 l

c >> DBoyer-et-al
2 = 18.3 l

c −2.15 ϵ
c delay the packet of interest

of class 2.

57

Chapter 4. Strict Service Curves for Deficit Round-Robin

Remark: Soni et al. recently have revisited the method in [158]; in (4.1), they replaced α j , the input

arrival curve for class j , by α∗
j , an output arrival curve for flow j . Thus, the delay bounds obtained by

their method are less good. However, its validity remains a question mark as still, the method assumes

that only packets of interfering classes arriving within a duration of a delay bound of the class of interest

will get a chance to delay a given packet.

4.4 New DRR Strict Service Curve

Our next result is new DRR strict service curves that do not take into account the arrival curves of the

interfering traffic. First, a non-convex strict service curve for DRR. We show that it is the largest one

and that it dominates the state-of-the-art rate-latency strict service curve for DRR by Boyer et al. We

also give simpler, lower approximations of it. Specifically, we also find a convex strict service curve and

two rate-latency strict service curves.

Theorem 4.1 (Non-convex Strict Service Curve for DRR). Let S be a server shared by n classes that uses

DRR , as explained in Section 4.1, with quantum Qi for class i . Recall that the server offers a strict service

curve β to the aggregate of the n classes. For any class i , d max
i is the maximum residual deficit (defined in

Section 4.2.1).

Then, for every i , S offers to class i a strict service curve βNCDM
i given by βNCDM

i (t) = γi
(
β(t)

)
with

γi (x) = (
λ1 ⊗νQtot,Qi

)([
x −ψi

(
Qi −d max

i

)]+)
+min

([
x −

∑
j ̸=i

(
Q j +d max

j

)]+
,Qi −d max

i

)
(4.3)

Qtot =
n∑

j=1
Q j (4.4)

ψi (x)
def= x +

∑
j , j ̸=i

φi , j (x) (4.5)

φi , j (x)
def=

⌊ x +d max
i

Qi

⌋
Q j +

(
Q j +d max

j

)
(4.6)

Here, νp,b is the stair function,λ1 is the unit rate function and ⊗ is the min-plus convolution, all described

in Fig. 2.3. Also we use the notation [x]+ = max(x,0).

Furthermore, βNCDM
i is super-additive.

The proof is in Section 4.7.1. See Fig. 4.2 for some illustrations ofβNCDM
i (NCDM: non-convex, degraded

mode). Our strict service curve captures the round-robin manner of DRR: The fact that the service

is interrupted in order to serve other queues, and then the class is served at a rate given by server;

each plateau (i.e., horizontal line) corresponds to a service interruption for class i . The first plateau

shows the maximum service interruption where all other classes j are served by (Q j +d max
j), and in the

rest of their services, they are served by Q j , as no deficit remains to carry on. Also, class i is served by

(Qi −d max
i) in its first service, and it is served by Qi in other services, as it always carries the maximum

residual deficit d max
i . Observe that γi in (4.3) is the strict service curve obtained when the aggregate

strict service curve is β=λ1 (i.e., when the aggregate is served at a constant, unit rate). In the common

case where β is equal to a rate-latency function, say βc,T , we have βNCDM
i (t) = γi (c(t −T)) for t ≥ T and

βNCDM
i (t) = 0 for t ≤ T , namely, βNCDM

i is derived from γi by a re-scaling of the x axis and a right-shift.

58

4.4 New DRR Strict Service Curve

The key point of Theorem 4.1 is as follows: We take into account the details of DRR in our analysis,

thanks to the pseudo-inverse technique; all constraints are written without any attempts to invert them

in closed form, and only at the final step they are inverted; this contrasts with previous papers (e.g.,

Boyer et al. in [89]) where, for tractability, approximations needed to be made at multiple inversion

steps. Specifically, as shown in Section 4.7.1, in (s, t], a backlogged period of the class of interest i ,

the service received by an interfering class j (i.e., D j (t)−D j (s)) is upper bounded as a function of

the service received by class i (i.e., φi , j (Di (t)−Di (s)), where φi , j is defined in (4.6) and illustrated in

Fig. 4.3). Using φi , j , as it is, results in a non-convex strict service curve of Theorem 4.1.

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

β
minLatency
i

βmaxRate
i

βNCDM
i

βconvex
i

max service interruption

Time (µs)

B
yt

es

Figure 4.2: Strict service curves for DRR for an example with three input classes, quanta
= {199,199,199} bytes, maximum residual deficits d max = {99,99,99} bytes, and β(t) = ct with c = 100
Mb/s (i.e., the aggregate of all classes is served at a constant rate). The figure shows the non-convex
DRR strict service curve βNCDM

i of Theorem 4.1; it also shows the two rate-latency strict service
curves βmaxRate

i (same as that Boyer et al.) and β
minLatency
i in Corollary 4.1 and the convex service

curve βconvex
i = max

(
βmaxRate

i ,βminLatency
i

)
in Corollary 4.2.

We then show that the strict service curve we have obtained is the best possible one.

Theorem 4.2 (Tightness of the DRR Strict Service Curve). Consider a DRR subsystem that uses the

DRR scheduling algorithm, as defined in Section 4.1. Assume the following system parameters are fixed:

the number of input classes n, the quantum Q j allocated to every class j , maximum residual deficits

d max
j for every class j , and the strict service curve β for the aggregate of all classes. We assume that β is

Lipschitz-continuous, i.e., there exists a constant K > 0 such that β(t)−β(s)
t−s ≤ K for all 0 ≤ s < t . Let i be

the index of one of the classes.

Assume that bi ∈F is a strict service curve for class i in any system that satisfies the specifications above.

Then bi ≤βNCDM
i where βNCDM

i is given in Theorem 4.1.

The proof is in Section 4.7.2. The idea of the proof is as follows: For any value of the system parameters,

for any τ> 0, and for any class i , we create a trajectory scenario of a system such that

∃s ≥ 0, (s, s +τ] is backlogged for class i

and Di (s +τ)−Di (s) =βNCDM
i (τ)

(4.7)

59

Chapter 4. Strict Service Curves for Deficit Round-Robin

,i.e., for the class of interest i , we create a backlogged period of duration τ where the service received

by class i is exactly equal to βNCDM
i (τ). Then, it follows that every other strict service curve bi is upper

bounded by βNCDM
i . Note that assuming the aggregate strict service curve β is Lipschitz-continuous

does not appear to be a restriction as the rate at which data is served has a physical limit. We then

provide closed-form for the network calculus delay bounds when the class of interest i is constrained

by frequent types of arrival curves, as defined in Section 2.1.1.3.

Theorem 4.3 (Closed-form Delay Bounds Obtained with the Non-convex Strict Service Curve of DRR).
Make the same assumptions as in Theorem 4.1, yet with one difference: Assume that the aggregate strict

service curve is a rate-latency function, i.e., β=βc,T . Also, assume that class of interest i has αi ∈F as

an arrival curve. Let ψi be defined as in (4.5).

Then, the closed-form of the network calculus delay bound hDev(αi ,βNCDM
i) is given as follows:

1) if αi is a token-bucket arrival curve, i.e., αi = γri ,bi with ri ≤ Qi
Qtot

,

T +max

(
ψi (bi)

c
,
ψi (αi (τi))

c
−τi

)
(4.8)

with τi =
Qi−

(
bi+d max

i

)
mod Qi

ri
.

2) if αi is a token-bucket arrival curve and we take into account the effect of grouping, i.e., αi (t) =
min

(
ct + l max

i ,γri ,bi (t)
)

with ri ≤ Qi
Qtot

,

T +max

(
ψi (αi (τi))

c
,
ψi (αi (τ̄i))

c
− τ̄i

)
(4.9)

with τi =
bi−l max

i
c−ri

and τ̄i =
Qi−

(
αi (τi)+d max

i

)
mod Qi

ri
.

3) if αi is a stair arrival curve, i.e., αi (t) = ai ⌈ t
bi
⌉ with ai

bi
≤ Qi

Qtot
,

T +max

(
ψi (ai)

c
,
ψi (αi (τi))

c
−τi

)
(4.10)

with τi = ⌈Qi−
(
ai+d max

i

)
mod Qi

ai
⌉bi

The proof is in Section 4.7.3. The idea of the proof is that we write hDev
(
αi ,βNCDM

i

)= supt≥0

{
βNCDM

i
↓

(αi (t))− t
}

,

as in [38, Prop. 3.1.1], and we plug in the αi and βNCDM
i . Theorem 4.3 enables us to compute the exact

delay bounds in a very simple closed form, independent of the complicated expression of our non-

convex strict service curve. However, we provide simplified lower bounds of the non-convex strict

service curve for DRR when analytic, closed-form expressions are important. As explained, the function

φi , j (x), defined in (4.6), is the maximum interference that class j can create in any backlogged period

of class i , such that class i receives a service x. Using φi , j , as it is, results in the strict service curve of

Theorem 4.1, which has a complex expression. If there is interest in simpler expressions, any lower

bounding function is a strict service curve. In Theorem 4.4, we show that any upper bounding of

function φi , j , (which gives a lower bound on γi) results in a lower bound of βNCDM
i , which is a valid,

though less good, strict service curve for DRR.

Theorem 4.4 (Lower Bounds of Non-convex Strict Service Curves for DRR). Make the same assumptions

as in Theorem 4.1. Also, for class i , consider functions φ′
i , j ∈ F such that for every other class j ̸= i ,

60

4.4 New DRR Strict Service Curve

φ′
i , j ≥φi , j . Let ψ′

i be defined as in (4.5) by replacing functions φi , j with φ′
i , j for every class j ̸= i . Then,

let γ′i be the lower-pseudo inverse of ψ′
i , i.e., γ′i =ψ

′↓
i .

Let β′
i be the result of Theorem 4.1 by replacing functions φi , j , ψi , and γi with φ′

i , j , ψ′
i , and γ′i .

Then, S offers to class i a strict service curve β′
i and β′

i ≤βNCDM
i .

ri  Qi

Qtot
,

T + max

✓
 i(bi)

c
,
 i (↵i(⌧i))

c
� ⌧i

◆
(9)

with ⌧i =
Qi�(bi+dmax

i)mod Qi

ri
.

2) if ↵i is a token-bucket arrival curve and we
take into account the effect of grouping, i.e., ↵i(t) =
min (ct + lmax

i , �ri,bi(t)) with ri  Qi

Qtot
,

T + max

✓
 i (↵i(⌧i))

c
,
 i (↵i(⌧̄i))

c
� ⌧̄i

◆
(10)

with ⌧i =
bi�lmax

i

c�ri
and ⌧̄i =

Qi�(↵i(⌧i)+dmax
i)mod Qi

ri
.

3) if ↵i is a stair arrival curve, i.e., ↵i(t) = aid t
bi
e with

ai

bi
 Qi

Qtot
,

T + max

✓
 i(ai)

c
,
 i (↵i(⌧i))

c
� ⌧i

◆
(11)

with ⌧i = dQi�(ai+dmax
i)mod Qi

ai
ebi

The proof is in Appendix A.3. The idea of the proof is
that we write h

�
↵i, �

NCDM
i

�
= supt�0{�NCDM

i

#
(↵i(t))� t},

as in [11, Prop. 3.1.1], and we plug in the ↵i and �NCDM
i .

Theorem 3 enables us to compute the exact delay bounds
in a very simple closed-form, independent of the compli-
cated expression of our non-convex strict service curve.
However, we provide simplified lower bounds of the non-
convex strict service curve for DRR when analytic, closed-
form expressions are important. As explained, the function
�i,j(x), defined in (7), is the maximum interference that flow
j can create in any backlogged period of flow i, such that
flow i receives a service x. Using �i,j , as it is, results in
the strict service curve of Theorem 1, which has a complex
expression. If there is interest in simpler expressions, any
lower bounding function is a strict service curve. In Theo-
rem 4, we show that any upper bounding of function �i,j ,
(which gives a lower bound on �i) results in a lower bound
of �NCDM

i , which is a valid, though less good, strict service
curve for DRR.

Theorem 4 (Lower Bounds of Non-convex Strict Service
Curves for DRR). Make the same assumptions as in Theorem
1. Also, for flow i, consider functions �0i,j 2 F such that for
every other flow j 6= i, �0i,j � �i,j . Let 0

i be defined as in (6) by
replacing functions �i,j with �0i,j for every flow j 6= i. Then, let
�0i be the lower-pseudo inverse of 0

i, i.e., �0i =
0#
i .

Let �
0
i be the result of Theorem 1 by replacing functions �i,j ,

 i, and �i with �0i,j , 0
i, and �0i.

Then, S offers to flow i a strict service curve �0
i and �

0
i 

�NCDM
i .

The proof is in Appendix A.4. The idea of the proof
is to show �0

i is in F (i.e., is wide-sense increasing) and
lower bounds �NCDM

i ; then, the conclusion follows from the
fact that any lower bound in F of a strict service curve
is a strict service curve. There is often interest in service
curves that are piecewise-linear and convex, a simple case is
a rate-latency function. Specifically, convex piecewise-linear
functions are stable under addition and maximum, and the
min-plus convolution can be computed in automatic tools

0 100 200 300 400 500 600 700
0

500

1,000

1,500 �
minLatency
i,j

�maxRate
i,j

�i,j

�concave
i,j

Bytes

By
te

s

Fig. 6: Illustration of functions �i,j , �maxRate
i,j , �minLatency

i,j , and
�concave

i,j defined in (7), (12), (13), and (18), respectively. These
functions are obtained for the example of Fig. 5.

very efficiently [13, Sec. 4.2]. Observe that, if the aggregate
service curve � is a rate-latency function, replacing �i by
a rate-latency (resp. convex) lower-bounding function also
yields a rate-latency (resp. convex) function for �NCDM

i , and
vice-versa. Therefore, we are interested in rate-latency (resp.
convex) functions that lower bound �i. We now give two
lower bounds of the non-convex strict service curve for DRR
using Theorem 4 that are common: a convex lower bound
and two rate-latency lower bounds.

To obtain a rate-latency strict service curve, we use two
affine upper bounds of �i,j : �maxRate

i,j , which results in a rate-
latency function with the maximum rate, and �

minLatency
i,j ,

which results in a rate-latency function with the minimum
latency (Fig. 6). They are defined by

�maxRate
i,j (x)

def
=

Qj

Qi
(x + dmax

i) + Qj + dmax
j (12)

�
minLatency
i,j (x)

def
=

Qj

Qi � dmax
i

x + Qj + dmax
j (13)

Corollary 1 (Rate-Latency Strict Service Curve for DRR).
With the assumption in Theorem 1 and the definitions (12)-(13),
S offers to every flow i strict service curves �maxRate

i (�(t)) and
�

minLatency
i (�(t)) with

�maxRate
i = �Rmax

i ,T max
i

(14)

�
minLatency
i = �

Rmin
i ,T min

i
(15)

Rmax
i =

Qi

Qtot
and T max

i =
X

j,j 6=i

�maxRate
i,j (0) (16)

Rmin
i =

Qi � dmax
i

Qtot � dmax
i

and T min
i =

X

j,j 6=i

�
minLatency
i,j (0) (17)

The right-hand sides in (14) and (15) are the rate-latency func-
tions defined in Section 2.1.

The above result is obtained by using Theorem 4
with �maxRate

i,j and �
minLatency
i,j ; hence, �i � �maxRate

i and
�i � �

minLatency
i . Also, observe that the strict service

curve of Boyer et al., explained in Section 2.3, is equal to
�maxRate

i (�(t)). It follows that �NCDM
i dominates it; hence,

obtained delay bound using �NCDM
i are guaranteed to be

less than or equal to those of Boyer et al.

7

Figure 4.3: Illustration of functions φi , j , φmaxRate
i , j , φ

minLatency
i , j , and φconcave

i , j defined
in (4.6), (4.11), (4.12), and (4.17), respectively. These functions are obtained for the example of
Fig. 4.2.

The proof is in Section 4.7.4. The idea of the proof is to show β′
i is in F (i.e., is wide-sense increasing)

and lower bounds βNCDM
i ; then, the conclusion follows from the fact that any lower bound in F of a

strict service curve is a strict service curve. There is often interest in service curves that are piecewise

linear and convex; a simple case is a rate-latency function. Specifically, convex piecewise-linear

functions are stable under addition and maximum, and the min-plus convolution can be computed

in automatic tools very efficiently [40, Sec. 4.2]. Observe that, if the aggregate service curve β is a

rate-latency function, replacing γi by a rate-latency (resp. convex) lower-bounding function also

yields a rate-latency (resp. convex) function for βNCDM
i , and vice-versa. Therefore, we are interested

in rate-latency (resp. convex) functions that lower bound γi . We now give two lower bounds of the

non-convex strict service curve for DRR using Theorem 4.4 that are common: a convex lower bound

and two rate-latency lower bounds.

To obtain a rate-latency strict service curve, we use two affine upper bounds of φi , j : φmaxRate
i , j , which

results in a rate-latency function with the maximum rate, andφminLatency
i , j , which results in a rate-latency

function with the minimum latency (Fig. 4.3). They are defined by

φmaxRate
i , j (x)

def= Q j

Qi

(
x +d max

i

)+Q j +d max
j (4.11)

φ
minLatency
i , j (x)

def= Q j

Qi −d max
i

x +Q j +d max
j (4.12)

Corollary 4.1 (Rate-Latency Strict Service Curve for DRR). With the assumption in Theorem 4.1 and the

61

Chapter 4. Strict Service Curves for Deficit Round-Robin

definitions (4.11)-(4.12), S offers to every class i strict service curves γmaxRate
i

(
β(t)

)
and γminLatency

i

(
β(t)

)
with

γmaxRate
i =βRmax

i ,T max
i

(4.13)

γ
minLatency
i =βRmin

i ,T min
i

(4.14)

Rmax
i = Qi

Qtot
and T max

i =
∑

j , j ̸=i
φmaxRate

i , j (0) (4.15)

Rmin
i =

Qi −d max
i

Qtot −d max
i

and T min
i =

∑
j , j ̸=i

φ
minLatency
i , j (0) (4.16)

The right-hand sides in (4.13) and (4.14) are the rate-latency functions defined in Section 2.1.

The above result is obtained by using Theorem 4.4 with φmaxRate
i , j and φminLatency

i , j ; hence, γi ≥ γmaxRate
i

and γi ≥ γminLatency
i . Also, observe that the strict service curve of Boyer et al., explained in Section 4.2.1,

is equal to γmaxRate
i

(
β(t)

)
. It follows that βNCDM

i dominates it; hence, obtained delay bounds using

βNCDM
i are guaranteed to be less than or equal to those of Boyer et al.

A better upper bound on φi , j can be obtained by taking its concave closure (i.e., the smallest concave

upper bound) that is equal to the minimum of φmaxRate
i , j and φminLatency

i , j :

φconcave
i , j (x) = min

(
φmaxRate

i , j (x),φminLatency
i , j (x)

)
(4.17)

Corollary 4.2 (Convex Strict Service Curve for DRR). With the assumption in Theorem 4.1 and the

definitions (4.13)-(4.14), S offers to every class i a strict service curve γconvex
i

(
β(t)

)
with

γconvex
i (x) = max

(
γmaxRate

i (x),γminLatency
i (x)

)
(4.18)

The above result is obtained by using Theorem 4.4 with φconcave
i , j . Also, it can be shown that it is the

largest convex lower bound of γi . When β is a rate-latency function, this provides a convex piecewise-

linear function, which has all the good properties mentioned earlier.

4.5 New DRR strict Service Curves that Account for Arrival Curves

of Interfering Classes

The next result provides a method to improve on any strict service curve by taking into account the

arrival curve constraints of interfering classes. It can thus be applied to the strict service curves

presented in Section 4.4 and to Bouillard’s strict service curves.

4.5.1 A Mapping to Refine Strict Service Curves for DRR by Accounting for Arrival
Curves of Interfering Classes

Theorem 4.5 (Non-convex, Full Mapping). Let S be a server with the assumptions in Theorem 4.1.

Also, assume that every class i has an arrival curve αi ∈F and a strict service curve βold
i ∈F , and let

Ni = {1,2, . . . ,n} \ {i }, and for any J ⊆ Ni , let J̄ = Ni \ J .

62

4.5 New DRR strict Service Curves that Account for Arrival Curves of Interfering Classes

Then, for every class i , a new strict service curve βnew
i ∈F is given by

βnew
i = max

βold
i ,max

J⊆Ni
γJ

i ◦
[
β−

∑
j∈ J̄

(
α j ⊘βold

j

)]+

↑

 (4.19)

with

γJ
i (x) =

(
λ1 ⊗νQ J ,i

tot ,Qi

)([
x −ψJ

i

(
Qi −d max

i

)]+)
+min([x −

∑
j∈J

(
Q j +d max

j

)
]+,Qi −d max

i) (4.20)

Q J ,i
tot =Qi +

∑
j∈J

Q j (4.21)

ψJ
i (x)

def= x +
∑
j∈J

φi , j (x) (4.22)

In (4.19), [.]+↑ is the non-decreasing and non-negative closure, defined in Section 2.1, and ◦ is the compo-

sition of functions.

The proof is in Section 4.7.5. The essence of Theorem 4.5 is as follows. Equation (4.19) gives new strict

service curves βnew
i for every class i ; they are derived from already available strict service curves βold

i
and from arrival curves on the input classes α j ; thus, it enables us to improve any collection of strict

service curves that are already obtained.

The key point of Theorem 4.5 is as follows: As explained in Section 4.4, in (s, t], a backlogged period of

the class of interest i , the service received by an interfering class j (i.e., D j (t)−D j (s)) is upper bounded

as a function of the service received by class i (i.e., φi , j (Di (t)−Di (s)), where φi , j is defined in (4.6)).

Also, the service received by an interfering class j is upper bounded by the output arrival curve of class

j (i.e., (α j ⊘βold
j)(t − s)); combining both upper bounds results in our Non-convex, Full mapping.

The computation of service curves in Theorem 4.5 and of the resulting delay bounds can be restricted

to a finite horizon. Indeed, all computations in Theorem 4.5 are causal except for the min-plus

deconvolution α j ⊘βold
j . But, as mentioned in Section 2.1, such computation and the computation of

delay bounds can be limited to t ∈ [0; t∗] for any positive t∗ such that α j (t∗) ≤βold
j (t∗) for every m ≥ 1

and j = 1:n. To find such a t∗, we can use any lower bound on βold
j .

We then compute t∗j = infs>0{α j (s) ≤βold
j (s)} and take, as sufficient horizon, t∗ = max j t∗j . The compu-

tations in Theorem 4.5 can then be limited to this horizon or any upper bound on it. The computations

can be performed with a tool such as RealTime-at-Work (RTaW) [92], which uses an exact representation

of functions with finite horizon, by means of rational numbers with exact arithmetic.

An iterative scheme can be obtained as follows: Theorem 4.5 can be iteratively applied, starting from

any available strict service curves for all classes, and for every class, an increasing sequence of strict

service curves is obtained; specifically, let β0
i be an initial strict service curve for every class i ; then, for

every integer m ≥ 1 and every class i , define βm
i by replacing βold

j with βm−1
j in (4.19):

βm
i = max

βm−1
i ,max

J⊆Ni
γJ

i ◦
[
β−

∑
j∈ J̄

(
α j ⊘βm−1

j

)]+

↑

 (4.23)

63

Chapter 4. Strict Service Curves for Deficit Round-Robin

B
yt

es

50

100

150

200

250

300

350

400

450

500

550

0
Time (𝜇𝑠)

20 40 60 80 100 120 140 160 180 200

𝛽!
" = 𝛽!

#$%&

𝛽!'
𝛽!
(

B
yt

es

50

100

150

200

250

300

350

400

450

500

550

0
Time (𝜇𝑠)

20 40 60 80 100 120 140 160 180 200

𝛽!
"#$%

𝛽!
’'

𝛽!
()*+,,-./

𝛽!
’0 = max(𝛽!

"#$%, 𝛽!
()*+,,-./)

Figure 4.4: Strict service curves for class 2 of the example of Fig. 4.2, where all classes have token-
bucket arrival curves with r = {5,1,1} l

512 Mb/s and b = {5l , l , l }. When iteratively applying Theorem 4.5,
starting with either β0

i (Top: the sequence β0
i ≤β1

i ≤β2
i) or starting with max

(
βBouillard

i ,β0
i

)
(Bottom:

the sequence β′
i

0 ≤β′
i

1 =β2
i), after 2 iterations, the strict service curves of all classes become stationary

in the horizon of the figure, and the scheme stops. The sufficient horizon t∗ in this example is 200µs.
Obtained with the RTaW online tool.

64

4.5 New DRR strict Service Curves that Account for Arrival Curves of Interfering Classes

It follows that βm
i is a strict service curve for class i and β0

i ≤β1
i ≤β2

i ≤

We are guaranteed simple convergence for the strict service curves of all classes when iteratively

applying Theorem 4.5, starting from any available strict service curves for all classes. This is because,

first, as explained above, computations of such strict service curves can be limited to a sufficient finite

horizon; second, by iteratively applying Theorem 4.5, we obtain an increasing sequence of strict service

curves for all classes, and every strict service curve is upper bounded by β, the aggregate strict service

curve. In all cases that we tested, the iterative scheme became stationary in such a finite horizon.

Note that the computed strict service curves at each iteration are valid, hence can be used to derive

valid delay bounds; this means the iterative scheme can be stopped at any iteration. For example, the

iterative scheme can be stopped when the delay bounds of all classes decrease insignificantly.

This iterative scheme can be initialized by strict service curves that do not make any assumptions on

interfering traffic, as obtained in Section 4.4; specifically, recall that βNCDM
i is defined in Theorem 4.1,

then, for every class i , let β0
i = βNCDM

i , and for every integer m ≥ 1, βm
i is obtained as in (4.23) (see

Fig. 4.4 (top)).

Alternatively, we can first compute Bouillard’s strict service curveβBouillard
j for every class j , as explained

in Section 4.2.3. Observe that βBouillard
j does not usually dominate the non-convex service curve βNCDM

i
obtained in Theorem 4.1 (see Figure 4.5). Therefore, since the maximum of two strict service curves is a

strict service curve, we can take the maximum of both. Specifically, define β′
i

0 = max
(
βBouillard

i ,βNCDM
i

)
,

then, for every integer m ≥ 1 and every class i , define β′
i

m as in (4.31) (see Fig. 4.4 (bottom)).

In practice, in all cases that we tested, when initializing the method with either choice, we always

converge to the same strict service curve for every class (Fig. 4.4). Note that when initializing the

method with strict service curves that are true for the degraded operational mode (i.e., ones that do

not take into account the arrival curves of the interfering classes), the iterative scheme will always

converge to the same strict service curves. This is because, in the first iteration, we take into account

our strict service curve, found in Theorem 1, which is the best possible one, shown in Theorem 4.2;

hence, whatever the initial strict service curves will be dominated by ours, and the scheme iterates

independent from the initial strict service curve.

Observe that the computation to compute strict service curve of Theorem 4.5, βnew
i in (4.19), requires

2n−1 computations of γJ
i ◦

[
β−∑

j∈ J̄

(
α j ⊘βold

j

)]+
↑

for each J (where n is the total number of the input

classes of the DRR subsystem). In some cases (class-based networks), n is small, and this is not an

issue; in other scenarios (per-flow queuing), this may cause excessive complexity. To address this, we

find lower bounds on the strict service curve of Theorem 4.5 where only one computation at each step

m is needed; this is less costly when n is large.

Corollary 4.3 (Non-convex, Simple Mapping). Make the same assumption as in Theorem 4.5. Then, for

every class i , a new strict service curve β̄new
i ∈F is given by

β̄new
i = max

(
βold

i ,γi ◦
(
β+δold

i

)
↑

)
(4.24)

with

δold
i (t)

def=
∑

j , j ̸=i

[
φi , j

(
βold

i (t)
)
−

(
α j ⊘βold

j

)
(t)

]+
(4.25)

Also, β̄new
i ≤βnew

i .

65

Chapter 4. Strict Service Curves for Deficit Round-Robin

In (4.24), ↑ is the non-decreasing closure, defined in Table 4.2, and ◦ is the composition of functions; also,

note that β and δold
i are functions of the time t .

The proof is in Section 4.7.6. The essence of Corollary 4.3 is the same as explained after Theorem 4.5.

Corollary 4.3 can be iteratively applied either starting with β0
i , defined in Theorem 4.1, or starting with

β0
i
′ = max

(
βBouillard

i ,β0
i

)
, i.e., the maximum of β0

i and the strict service curve of Bouillard, explained in

Section 4.2.3 (see Fig. 4.5).

In the examples that we tested, we observed that the iterative scheme obtained with Theorem 4.5,

our non-convex, full mapping, converges to the same results as the iterative scheme obtained with

Corollary 4.3, our non-convex, simple mapping; however, it requires more iterations (see Fig. 4.4 and

Fig. 4.5).

Time (𝜇𝑠)

B
yt

es

𝛽̅!
"’

𝛽̅!
$’

𝛽̅!
%’

50

100

150

200

250

300

350

400

450

500

550

0 20 40 60 80 100 120 140 160 180 200

𝛽!
&

𝛽!
'()*++,-.

𝛽̅!
&’ = max(𝛽!

&, 𝛽!
'()*++,-.)

Figure 4.5: Strict service curves for flow 2 of the example of Fig. 4.4, when iteratively apply-
ing Corollary 4.3, starting with either β0

i (Top: the sequence β̄0
i ≤ β̄1

i ≤ β̄2
i ≤ β̄3

i) or starting with
max

(
βBouillard

i ,β0
i

)
(Bottom: the sequence β̄0′

i ≤ β̄1′
i ≤ β̄2′

i ≤ β̄3′
i), after 3 iterations, the strict service

curves of all flows become stationary in the horizon of the figure, and the scheme stops. The sufficient
horizon t∗ in this example is 200µs. The strict service curves of the last step is precisely equal to the
last step of Fig. 4.4, i.e., β̄3′

i =β2
i . Obtained with the RTaW online tool.

4.5.2 Convex Versions of the Mapping

Computation of the strict service curves of Theorem 4.5 and Corollary 4.3 can be costly. We first explain

some sources of complexity and how to address them. We then propose convex versions, for both the

non-convex, full mapping in Theorem 4.5 and the non-convex, simple mapping in Corollary 4.3.

66

4.5 New DRR strict Service Curves that Account for Arrival Curves of Interfering Classes

4.5.2.1 Convex Versions of Theorem 4.5

One source of complexity lies in the initial strict service curves β0
i . For every class i , β0

i can be replaced

by its simpler lower bounds. As presented in Section 4.4, β0
i can be replaced by its convex closure

γconvex
i

(
β(t)

)
, or rate-latency functions γminLatency

i

(
β(t)

)
and γmaxRate

i

(
β(t)

)
.

Another source of complexity is function γJ
i , as defined in (4.20), is non-convex and results in strict ser-

vice curves that are also non-convex (Fig. 4.4). If there is interest in simpler expressions of Theorem 4.5,

any lower bounding function on γJ
i results in a lower bound of βnew

i , which is a valid, though less good,

strict service curve for DRR.

Corollary 4.4 (Convex, Full Mapping). Make the same assumptions as in Theorem 4.5. Also, for a class i ,

let γ̂J
i ∈F such that γ̂J

i ≤ γ
J
i .

Let β̂new
i be the result of Theorem 4.5, in (4.19), by replacing functions γJ

i with γ̂J
i .

Then, S offers to class i a strict service curve β̂new
i and β̂new

i ≤βnew
i .

As of today, in tools such as RTaW working with functions that are linear and convex is simpler and

tractable. Hence, we apply Corollary 4.4 with γ̂J
i = γconvex

i
J = max

(
γmaxRate

i
J
,γminLatency

i

J)
(convex

closure of function γJ
i) and

γmaxRate
i

J =βRmax
i

J ,T max
i

J (4.26)

γ
minLatency
i

J =β
Rmin

i
J
,T min

i
J (4.27)

Rmax
i

J = Qi

Q J ,i
tot

and T max
i

J =
∑
j∈J

φmaxRate
i , j (0) (4.28)

Rmin
i

J =
Qi −d max

i

Q J ,i
tot −d max

i

and T min
i

J =
∑
j∈J

φ
minLatency
i , j (0) (4.29)

The sequence of obtained strict service curves is thus defined by βconvex,0
i = γconvex

i ◦β=βconvex
i and for

m ≥ 1 (see Fig. 4.6 (top)):

βconvex,m
i = max

J⊆Ni
γconvex

i
J ◦

[
β−

∑
j∈ J̄

(
α j ⊘βconvex,m−1

j

)]+

↑
(4.30)

Alternatively, we can first compute the strict service curve of Bouillard βBouillard
j for every class j , as ex-

plained in Section 4.2.3, and iteratively apply Corollary 4.5 withγconvex
i

J , starting with max
(
βBouillard

i ,βconvex
i

)
;

specifically, βconvex,0
i

′ = max
(
βBouillard

i ,βconvex
i

)
, then, for every integer m ≥ 1 and every class i , define

βconvex,m
i

′ as

βconvex,m
i

′ = max
J⊆Ni

γconvex
i

J ◦
[
β−

∑
j∈ J̄

(
α j ⊘βconvex,m−1

j
′)]+

↑
(4.31)

It follows that βconvex,m
i

′ is a strict service curve for class i and at each step m ≥ 1, one can use a better

strict service curve max
(
βconvex,m

i
′,βconvex,m−1

i
′)

(see Fig. 4.6 (bottom)).

In practice, in all cases that we tested, when initializing the method with either choice, we always

67

Chapter 4. Strict Service Curves for Deficit Round-Robin

B
yt

es

50

100

150

200

250

300

350

400

450

500

550

00 20 40 60 80 100 120 140 160 180 200

𝛽!
"#$%&',) = 𝛽!

"#$%&'

𝛽!
"#$%&',*𝛽!

"#$%&',+

Time (𝜇𝑠)

B
yt

es

50

100

150

200

250

300

350

400

450

500

550

00 20 40 60 80 100 120 140 160 180 200

𝛽!
"#$%&',) = 𝛽!

"#$%&'

𝛽!
"#$%&',*’

Time (𝜇𝑠)

𝛽!
,#-.//012

𝛽!
"#$%&3,)’ = max(𝛽!

"#$%&', 𝛽!
,#-.//012)

Figure 4.6: Strict service curves for class 2 of the example of Fig. 4.4, when iteratively ap-
plying Corollary 4.4 as explained in (4.30), starting with either βconvex

i (Top: the sequence
βconvex,0

i ≤ βconvex,1
i ≤ βconvex,2

i) or starting with max
(
βBouillard

i ,βconvex
i

)
(Bottom: the sequence

βconvex,0
i

′ ≤ βconvex,1
i

′ = βconvex,2
i), after 2 iterations, the strict service curves of all classes become

stationary in the horizon of the figure, and the scheme stops. The sufficient horizon t∗ in this example
is 200µ. Obtained with the RTaW online tool.

68

4.5 New DRR strict Service Curves that Account for Arrival Curves of Interfering Classes

converge to the same strict service curve for every class (Fig. 4.6).

Let us explain why computing the above strict service curves is simpler. Min-plus convolution and

deconvolution of piecewise linear convex can be computed in automatic tools, such as RTaW, very

efficiently [40, Section 4.2]. As illustrated in Fig. 4.6, obtained strict service curves are convex, thus

computing the min-plus deconvolution with such strict service curves is much simpler than with

those in Fig. 4.4. Also, the composition is simpler, as for f ∈F , a function f , γconvex
i

J (
f (t)

)
is equal

to max
(
Rmax

i
J ,

[
f (t)−T max

i
J
]+

,Rmin
i

J
[

f (t)−T min
i

J
]+)

, which includes only multiplication, addition,

and maximum operations.

4.5.2.2 Convex Versions of Corollary 4.3

Again here, a source of complexity lies in the initial strict service curves β0
i . For every class i , β0

i can

be replaced by its simpler lower bounds. As presented in Section 4.4, β0
i can be replaced by its convex

closure γconvex
i

(
β(t)

)
, or rate-latency functions γminLatency

i

(
β(t)

)
and γmaxRate

i

(
β(t)

)
.

Also, another source of complexity is function φi , j (and the resulting function γi). Function φi , j , as

defined in (4.6), is non-concave and non-linear (because it uses floor operations). This might create

discontinuities that can make the computation hard, see Fig. 4.5. To address this problem, we derive

the following convex version of Corollary 4.3.

Corollary 4.5 (Convex, Simple Mapping). Make the same assumptions as in Corollary 4.3. Also, for a

class i , let φ′
i , j and γ′i be defined as in Theorem 4.4.

Let β̄new
i ′ be the result of Corollary 4.3 by replacing functions φi , j and γi with φ′

i , j and γ′i , respectively.

Then, S offers to every class i a strict service curve β̄new
i ′.

The proof is not given in detail, as it is similar to the proof of Corollary 4.3 after replacing functions φi , j

and γi with φ′
i , j and γ′i , respectively.

We apply Corollary 4.5 as follows: Apply Corollary 4.5 by replacing φi , j and γi with φmaxRate
i , j and

γmaxRate
i defined in (4.11) and (4.13); also, Apply Corollary 4.5 by replacing φi , j and γi with φminLatency

i , j

and γminLatency
i defined in (4.12) and (4.14); then, we take the maximum of the two strict service curves

obtained in each case.

This can be iteratively applied: In both cases, let the initial strict service curves βconcave,0
i be defined

as in Corollary 4.2. Specifically, the sequence of obtained strict service curves are thus defined by

either β̄convex,0
i = γconvex

i ◦β = βconvex
i or β̄convex,0

i = max
(
βconvex

i ,βBouillard
i

)
and for m ≥ 1, β̄convex,m

i =
max

(
β̄m′

i , β̄m′′
i

)
with

β̄m′
i = γminLatency

i ◦
(
β+δminLatency,m−1

i

)
↑

,

β̄m′′
i = γmaxRate

i ◦
(
β+δmaxRate,m−1

i

)
↑

,

δ
minLatency,m−1
i =

∑
j ̸=i

[
φ

minLatency
i , j ◦ β̄convex,m−1

i −α j ⊘ β̄convex,m−1
j

]+
,

δmaxRate,m−1
i =

∑
j ̸=i

[
φmaxRate

i , j ◦ β̄convex,m−1
i −α j ⊘ β̄convex,m−1

j

]+
.

(4.32)

69

Chapter 4. Strict Service Curves for Deficit Round-Robin

B
yt

es

50

100

150

200

250

300

350

400

450

500

550

00 20 40 60 80 100 120 140 160 180 200
Time (𝜇𝑠)

𝛽̅!
"#$%&',) = 𝛽!

"#$%&'

𝛽̅!
"#$%&',*

𝛽̅!
"#$%&',+

B
yt

es

50

100

150

200

250

300

350

400

450

500

550

00 20 40 60 80 100 120 140 160 180 200
Time (𝜇𝑠)

𝛽!
"#$%&'

𝛽!
(#)*++,-.

𝛽̅!
"#$%&',0’ = max(𝛽!

"#$%&', 𝛽!
(#)*++,-.)

𝛽̅!
"#$%&',2’

𝛽̅!
"#$%&',3’

Figure 4.7: Strict service curves for class 2 of the example of Fig. 4.4, when iteratively applying
Corollary 4.5, starting with either βconvex

i (Top: the sequence β̄convex,0 ≤ β̄convex,1 ≤ . . .) or starting
with max

(
βBouillard

i ,βconvex
i

)
(Bottom: the sequence β̄convex,0′ ≤ β̄convex,1′ ≤ . . .). The iterative scheme

stops when the computed delay bounds for all classes decrease by less than 0.25µs. The sufficient
horizon t∗ in this example is 200µs. The delay bounds obtained with the strict service curve of the
last iteration of both cases are equal, however, the strict service curves are different. The strict service
curves of all classes become stationary after 16 iterations. Obtained with the RTaW online tool.

70

4.5 New DRR strict Service Curves that Account for Arrival Curves of Interfering Classes

Let us explain why computing the above strict service curves is simpler (see Fig. 4.7). The first reason

is in computing the composition of φmaxRate
i , j (resp. φminLatency

i , j) with another function. Observe that

for a function f ∈ F , φmaxRate
i , j

(
f (t)

)
(resp. φminLatency

i , j

(
f (t)

)
) is equal to

Q j

Qi
f (t)+φmaxRate

i , j (0) (resp.
Q j

Qi−d max
i

f (t)+φminLatency
i , j (0)), which includes only multiplication, addition, and minimum operations.

The second reason is in computing the min-plus deconvolution; min-plus convolution and deconvo-

lution of piecewise linear convex can be computed in automatic tools, such as RTaW, very efficiently

[40, Section 4.2], and as illustrated in Fig. 4.7, obtained strict service curves are convex, thus com-

puting the min-plus deconvolution with such strict service curves is much simpler than with those

in Fig. 4.5. The last reason is in computing the composition of γmaxRate
i (resp. γminLatency

i) with an-

other function. Observe that for a function f ∈F , γmaxRate
i

(
f (t)

)
(resp. γminLatency

i

(
f (t)

)
) is equal to

Rmax
i

[
f (t)−T max

i

]+ (resp. Rmin
i

[
f (t)−T min

i

]+
), which again includes only multiplication, addition,

and maximum operations.

Alternatively, one can apply Corollary 4.5 by replacing φi , j and γi with φconcave
i , j and γconvex

i defined

in (4.17) and (4.18); however, in this case, there is no guarantee that this version conserves convexity

and we do not consider it further.

In the examples that we tested, we observed that the iterative scheme obtained with Corollary 4.4, our

convex, full mapping, converges to the same results as the iterative scheme obtained with Corollary 4.5,

our convex, simple mapping; however, it requires more iterations (see Fig. 4.6 and Fig. 4.7).

Time (𝜇𝑠)

B
yt

es

𝛽!
"#$%&'∗

𝛽!
"#$%&'

𝛽!∗ 𝛽!
)*+,

50

100

150

200

250

300

350

400

450

500

550

0
0 20 40 60 80 100 120 140 160 180 200

𝛽!
-#./00123

Figure 4.8: A summary of strict service curves for class 2 of the example of Fig. 4.4. The strict service
curves β0

i and βconvex
i are our non-convex and convex strict service curve of Section 4.4, with no

assumption on the interfering traffic. The strict service curves β∗
i and βconvex∗

i are our best non-convex
and convex strict service curve that accounts for the interfering traffic, explained in Section 4.5.
Obtained with the RTaW online tool.

71

Chapter 4. Strict Service Curves for Deficit Round-Robin

4.6 Numerical Evaluation

Table 4.1: Delays bounds of all classes of Section 4.6.1.

Class Boyer et al. Thm. 4.1 Bouillard Thm. 4.5 Cor. 4.4 Simulation (non-degraded) Simulation (degraded)
Electric protection (µs) 52 44.51 52 44.51 52 44.51 44.51

Virtual reality games (ms) 1.75 1.74 1.33 1.32 1.32 1.32 1.74
Video conference (ms) 2.61 2.61 1.82 1.81 1.81 1.81 2.61

4k videos (ms) 5.78 5.77 2.74 2.72 2.72 2.71 5.77

In this section, we compare the obtained delay bounds by using our new strict service curves for DRR,

presented in Sections 4.4 and 4.5, to those of Boyer et al., Bouillard, and Soni et al. We use all network

configurations that were presented by Bouillard in [91] and Soni et al. in [90], specifically, one single

server, two illustration networks, and an industrial-sized one. For the illustration networks, we use the

exact same configuration of classes and switches that Soni et al. use. For the industrial-sized network,

Soni kindly replied to our e-mail request by saying that, for confidentiality reasons, they do not have

the rights to provide more details about the network configuration than what is already given in [90].

Consequently, we use the same network but randomly choose the missing information (explained in

detail in Section 4.6.3).

4.6.1 Single Server

We use the exact same configuration of classes and the server that Bouillard uses in [91]. Consider a DRR

subsystem with four classes of traffic: Electric protection, Virtual reality games, Video conference, and

4k videos constrained with token bucket arrival curves with bursts b = {42.56,2160,3240,7200} kb and

rates r = {8.521,180,162,180} Mbps, respectively; also, the packet sizes are l max = {3.04,12,12,12} kb.

The server is a constant-rate server with a rate equal to c = 5Gb/s, i.e., β(t) = ct . All classes have the

same quantum equal to 16000 bits.

The delay bounds obtained with different methods are given in Table 4.1. Our delay bounds always

improve on those of Boyer et al. and Bouillard; when the delay is very small (electric protection), our

non-convex service curves bring a considerable improvement. As discussed in Section 4.5, the results

are the same with the non-convex, full mapping (Theorem 4.5) and the non-convex simple mapping

(Corollary 4.4). The results of the convex full and simple mappings (Corollary 4.3 and Theorem 4.5)

are also identical, but less good than the former. Also, the results are the same for all choices of initial

strict service curves. Finally, we used the same trajectory scenario, given in Section 4.7.2, to provide a

lower bound on the worst-case delay; we observe that our delay bounds are tight (for 4k videos almost

tight), i.e., exactly equal to the worst-case delays, in either degraded (i.e., when some traffic classes

misbehave) and non-degraded (i.e., when arrival curve constraints can be assumed for interfering

traffic) operational mode in this single server example. As we showed that the delay bounds of Soni et

al. are incorrect, we do not compute them for this example, but for the sake of comparison, we will

compute them for their case studies.

4.6.2 Illustration Networks

Examples 1 and 2 are illustrated in Fig. 4.9 and 4.10. We use the exact same network with the exact

same configuration for flows and switches as used by Soni et al. in [90]. Examples 1 and 2 differ only by

the configuration of the switch S4. Flows {v1 . . . v5}, {v6 . . . v12}, and {v13 . . . v20} are assigned to class C1,

C2, and C3, respectively. There is one DRR scheduler at every switch output port and there are n = 3

72

4.6 Numerical Evaluation

The paper is organized as follows. The considered network
model is presented in section II. It is followed by a brief
recall of the DRR scheduling policy, its latency and delay
calculation using Network Calculus in section III. Section IV
exhibits sources of pessimism in DRR WCTT analysis. The
main contribution is given in section V, where we propose an
optimized NC approach for DRR scheduler based networks.
In Section VI further improvements to classical NC approach
are given, including the integration of end system scheduling.
An evaluation on an industrial configuration is given in section
VII. Section VIII concludes the paper and gives directions for
future works.

II. NETWORK AND FLOW MODEL

In this paper, we consider a real-time switched Ethernet
network. It is composed of a set of end systems, interconnected
by switched Ethernet network via full-duplex links. Thus, there
are no collisions on links. Each link offers a bandwidth of R
Mbps in each direction.

Each end system manages a set of flows, and each switch
forwards a set of flows through its output ports, based on a
statically defined forwarding table. This forwarding process
introduces a switching latency, denoted by sl. Each port h of
a switch Sx, denoted by Sh

x , can be connected at most to one
end system or another switch. Each output port, of a switch or
of an end system, has a set of buffers managed by a scheduler
supporting a scheduling policy, for example: First-In-First-Out
(FIFO), Fixed Priority (FP) queuing or Round Robin (RR) etc.
In this paper, the considered network uses Deficit Round Robin
(DRR) scheduler at each output port.

Sporadic flows are transmitted on this network. Each spo-
radic flow vi gives rise to a sequence of frames emitted
by a source end system with respect to the minimum inter-
arrival duration imposed by a traffic shaping technique. This
minimum inter-arrival duration is called the period Ti of flow
vi. If the duration between any two successive emissions of
a flow vi is Ti, then, the flow vi is periodic. The size of
each frame of flow vi is constrained by a maximum frame
length (lmax

i) and a minimum frame length (lmin
i). Each flow

vi follows a predefined path Pi from its source end system till
its last visited output port, and then arrives at its destination
end system.

Figure 1 shows an example of a switched Ethernet network
configuration which consists of 4 switches, S1 to S4, intercon-
necting 10 end systems, e1 to e10, through full duplex links
to transfer 20 flows, v1 to v20. In this work, each output port
of a switch has a set of buffers controlled by a Deficit Round
Robin (DRR) scheduler. The links provide a bandwidth of
R = 100 Mbits/s. Table I summarizes flow features (inter-
arrival duration Ti as well as minimum and maximum frame
size lmin

i and lmax
i).

III. DEFICIT ROUND ROBIN

In this section, we briefly recall the DRR scheduling policy.
A more detailed description can be found in [6] and [7]. We

e1
e7
e2
e4

e5
e6

e3

v1

e10

v12
v17
v13

v2 v14
v18 v20

v6v3
v15 v19

v12v1 v13 v17
v2 v14 v18 v20

v6v3 v15 v19
v7 v9 v10v4
v8 v11v5 v16

v1 ... v5
v6 ... v12

v13 ... v20
S4

1

2

e8
e9S2

S1

S3

Fig. 1: Switched Ethernet network (Example 1)

TABLE I: Network Flow Configuration

Flows vi Ti(µsec) lmax
i (byte) lmin

i (byte)
v12, v20 512 100 80
v1, v7, v8, v9, v17 512 99 80
v2, v4, v5, v10, v13, v16, v18 256 100 80
v3, v11, v14, v15, v19 256 99 80
v6 96 100 80

then summarize the DRR worst-case analysis in [7], [8]. This
analysis is based on network calculus [1].

A. DRR scheduler principle

DRR was designed in [6] for a fair sharing of server capacity
among flows. DRR is mainly a variation of Weighted Round
Robin (WRR) which allows flows with variable packet length
to fairly share the link bandwidth.

The flow traffic in a DRR scheduler is divided into buffers
based on few predefined classes. Each class receives service
sequentially based on the presence of a pending frames in a
class buffer and the credit assigned to the class. Each class
buffer follows FIFO queuing to manage the flow packets. The
DRR scheduler service is divided into rounds. In each round
all the active classes are served. A class is said to be active
when it has some flow packet in output buffer waiting to
be transmitted. The basic idea of DRR is to assign a credit
quantum Qh

x to each flow class Cx at each switch output port
h. Qh

x is the number of bytes which is allocated to Cx for each
round at port h. At any time, the current credit of a class Cx

at a port h is called its deficit ∆h
x. Each time Cx is selected

by the scheduler, Qh
x is added to its deficit ∆h

x. As long as
Cx queue is not empty and ∆h

x is larger than the size of Cx

queue head-of-line packet, this packet is transmitted and ∆h
x

is decreased by this packet size. Thus, the scheduler moves
to next class when either Cx queue is empty or the deficit
∆h

x is too small for the transmission of Cx queue head-of-line
packet. In the former case, ∆h

x is reset to zero. In the latter
one, ∆h

x is kept for the next round.
The credit quantum Qh

x is defined for each port h. It must
allow the transmission of any frame from class Cx crossing
h. Thus, Qh

x has to be at least the maximum frame size of
Cx flows at port h. Let Fh

Cx
be the set of flows of class Cx

at output port h. Let lmax,h
Cx

and lmin,h
Cx

be the max and min
frame size among all class Cx flows at output port h. We have:

lmax,h
Cx

= max
i∈Fh

Cx

lmax
i , lmin,h

Cx
= min

i∈Fh
Cx

lmin
i (1)

Algorithm 1 shows an implementation of DRR at a switch
output port h with n traffic classes. First, deficits are set to 0

���

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 09,2020 at 18:31:58 UTC from IEEE Xplore. Restrictions apply.

to FS1
4

C1
= v1, v2, v3, v4, v5. The overall arrival curve of class

C1 can be computed by:

↵
S1

4

C1
(t) =

X

i2FS1
4

C1

↵
S1

4
i (t)

which is illustrated by blue line in Figure 4a.

bits

Q
S1

4
1 -�max,S1

4
1

D
S1

4
1

1
R

1

t
(µsec)sl

↵
S1

4
C1

P

i2FS1
4

C1

(bi)

X
S1

4
C1

Y
S1

4
C1

⇥
S1

4
C1

�
S1

4
C1

⇢
S1

4
C1

P
1j3

Q
S1
4

j ��
max,S1

4
1

R

bits

Qh
x-�max,h

x

Dh
i

1

R
1

t
(µsec)

sl

↵h
x,SER

P
i2Fh

Cx

(bi)

Xh
x Y h

x

⇥h
x

�h
x

⇢h
x

max
i2Fh

x

(bi)

(a) NC curves at S1
4 (b) NC Curves with serialization

Fig. 4: NC curves at S1
4

b) Service Curve: According to NC, the full service
provided at a switch output port h with a transmission rate
of R (bits/s) is defined by:

�h(t) = R[t� sl]+

where sl is the switching latency of the switch, and [a]+ means
max{a, 0}.

According to [8] and [7], the full service is shared by
all DRR classes at an output port h and each class Cx has
a predefined service rate ⇢h

x based on its assigned credit
quantum Qx as explained in Section III-B Equation (2).
Besides a reduced service rate, each class Cx could experience
a DRR scheduler latency ⇥h

x before receiving service with the
predefined rate ⇢h

x. The scheduler latency can be calculated
by Equation (6). Therefore, based on the NC approach, the
residual service �DRR

Cx
to each class Cx is given by:

�h
Cx

(t) = ⇢h
x[t�⇥h

x � sl]+ (8)

Y h
x delay is considered right after Xh

x , in order to get a convex
service curve.

In the example of the output port S1
4 , class C1 service curve

is:

�
S1

4

C1
(t) = ⇢

S1
4

1 ⇤ [t�⇥
S1

4
1 � sl]+ =

100

3
(t� 63.52� sl)+

which is illustrated in Figure 4a.
The actual service curve is a staircase one (shown by the

dashed black line in Figure 4a), as a flow alternates between
being served and waiting for its DRR opportunity, as explained
in [8]. For computation reason, NC approach employs the
convex curve represented by equation (8) which is an under-
estimated approximation of actual staircase curve.

c) Delay bound: According to NC, the delay experienced
by a Cx flow vi constrained by the arrival curve ↵h

Cx
(t) in a

switch output port h offering a strict DRR service curve �h
Cx

(t)
is bounded by the maximum horizontal difference between the
curves ↵h

Cx
(t) and �h

Cx
(t). Let Dh

i be this delay. It is computed
by:

Dh
i = sup

s�0
(inf{⌧ � 0|↵h

Cx
(s)  �h

Cx
(s + ⌧)}) (9)

Therefore, the end-to-end delay upper bound of a Cx flow
vi is denoted by DETE

i and it is calculated by:

DETE
i =

X

h2Pi

Dh
i (10)

Based on the equation (9) and (10), the delay bound calcu-
lated for flow v1 of class C1 is found to be D

S1
4

1 = 234.91 µs
and DETE

1 = 387.63 µs.

IV. PESSIMISM OF DRR WCTT ANALYSIS

The delay upper bound Dh
i for flow vi from class Cx

presented in the previous section assumes that, at each output
port h, every interfering class Cy consumes maximum service.
More precisely, it assumes that, in any DRR round rdk, each
class Cy (y 6= x) is always active and transmits frames of at
least the size of its quantum value Qh

y . Such an assumption
might be pessimistic. Indeed, the traffic from one or several
Cy classes might be too low to consume quantum values Qh

y

in each round. The effect of such a pessimism on service curve
is shown in Figure 5.

bits

t

rd1 rd2 rd3

C1, C2, C3

active
C1, C2

active

t

rd1 rd2 rd3 service

C1, C2, C3

active
C1, C2, C3

active

t
C1, C2, C3

active
C1, C2

active

Case 1

Case 1

Case 2

Case 2

�‘C1

�C1

end of
service
end of

Fig. 5: Pessimism in DRR Service

This pessimism can be illustrated with the example in Figure
6. This example is based on the network architecture in Figure
1. The difference is that part of C2 and C3 flows that are
transmitted from S4 to e8 in Figure 1 are transmitted to e9 in
Figure 6.

S2
S1

S3
e6

v12v1 v13 v17
v2 v14 v18 v20

v6v3 v15 v19
v7 v9 v10v4
v8 v11v5 v16e10

S4
1

2

v1 ... v5
v6 v7 v8 v12

v13 v14 v15 v20

v9 ... v11
v16 ... v19

e8
e9

Fig. 6: Switched Ethernet network (Example 2)

We focus on output port S1
4 to calculate the delay experi-

enced by flow v1 from class C1. In the given example, it is

Example 1, taken from Soni et al. Example 2, taken from Soni et al.

Figure 4.9: Networks of Examples 1 and 2, taken from Soni et al. [90]. Examples 1 and 2 differ only
by the configuration of the switch S4.

The paper is organized as follows. The considered network
model is presented in section II. It is followed by a brief
recall of the DRR scheduling policy, its latency and delay
calculation using Network Calculus in section III. Section IV
exhibits sources of pessimism in DRR WCTT analysis. The
main contribution is given in section V, where we propose an
optimized NC approach for DRR scheduler based networks.
In Section VI further improvements to classical NC approach
are given, including the integration of end system scheduling.
An evaluation on an industrial configuration is given in section
VII. Section VIII concludes the paper and gives directions for
future works.

II. NETWORK AND FLOW MODEL

In this paper, we consider a real-time switched Ethernet
network. It is composed of a set of end systems, interconnected
by switched Ethernet network via full-duplex links. Thus, there
are no collisions on links. Each link offers a bandwidth of R
Mbps in each direction.

Each end system manages a set of flows, and each switch
forwards a set of flows through its output ports, based on a
statically defined forwarding table. This forwarding process
introduces a switching latency, denoted by sl. Each port h of
a switch Sx, denoted by Sh

x , can be connected at most to one
end system or another switch. Each output port, of a switch or
of an end system, has a set of buffers managed by a scheduler
supporting a scheduling policy, for example: First-In-First-Out
(FIFO), Fixed Priority (FP) queuing or Round Robin (RR) etc.
In this paper, the considered network uses Deficit Round Robin
(DRR) scheduler at each output port.

Sporadic flows are transmitted on this network. Each spo-
radic flow vi gives rise to a sequence of frames emitted
by a source end system with respect to the minimum inter-
arrival duration imposed by a traffic shaping technique. This
minimum inter-arrival duration is called the period Ti of flow
vi. If the duration between any two successive emissions of
a flow vi is Ti, then, the flow vi is periodic. The size of
each frame of flow vi is constrained by a maximum frame
length (lmax

i) and a minimum frame length (lmin
i). Each flow

vi follows a predefined path Pi from its source end system till
its last visited output port, and then arrives at its destination
end system.

Figure 1 shows an example of a switched Ethernet network
configuration which consists of 4 switches, S1 to S4, intercon-
necting 10 end systems, e1 to e10, through full duplex links
to transfer 20 flows, v1 to v20. In this work, each output port
of a switch has a set of buffers controlled by a Deficit Round
Robin (DRR) scheduler. The links provide a bandwidth of
R = 100 Mbits/s. Table I summarizes flow features (inter-
arrival duration Ti as well as minimum and maximum frame
size lmin

i and lmax
i).

III. DEFICIT ROUND ROBIN

In this section, we briefly recall the DRR scheduling policy.
A more detailed description can be found in [6] and [7]. We

e1
e7
e2
e4

e5
e6

e3

v1

e10

v12
v17
v13

v2 v14
v18 v20

v6v3
v15 v19

v12v1 v13 v17
v2 v14 v18 v20

v6v3 v15 v19
v7 v9 v10v4
v8 v11v5 v16

v1 ... v5
v6 ... v12

v13 ... v20
S4

1

2

e8
e9S2

S1

S3

Fig. 1: Switched Ethernet network (Example 1)

TABLE I: Network Flow Configuration

Flows vi Ti(µsec) lmax
i (byte) lmin

i (byte)
v12, v20 512 100 80
v1, v7, v8, v9, v17 512 99 80
v2, v4, v5, v10, v13, v16, v18 256 100 80
v3, v11, v14, v15, v19 256 99 80
v6 96 100 80

then summarize the DRR worst-case analysis in [7], [8]. This
analysis is based on network calculus [1].

A. DRR scheduler principle

DRR was designed in [6] for a fair sharing of server capacity
among flows. DRR is mainly a variation of Weighted Round
Robin (WRR) which allows flows with variable packet length
to fairly share the link bandwidth.

The flow traffic in a DRR scheduler is divided into buffers
based on few predefined classes. Each class receives service
sequentially based on the presence of a pending frames in a
class buffer and the credit assigned to the class. Each class
buffer follows FIFO queuing to manage the flow packets. The
DRR scheduler service is divided into rounds. In each round
all the active classes are served. A class is said to be active
when it has some flow packet in output buffer waiting to
be transmitted. The basic idea of DRR is to assign a credit
quantum Qh

x to each flow class Cx at each switch output port
h. Qh

x is the number of bytes which is allocated to Cx for each
round at port h. At any time, the current credit of a class Cx

at a port h is called its deficit ∆h
x. Each time Cx is selected

by the scheduler, Qh
x is added to its deficit ∆h

x. As long as
Cx queue is not empty and ∆h

x is larger than the size of Cx

queue head-of-line packet, this packet is transmitted and ∆h
x

is decreased by this packet size. Thus, the scheduler moves
to next class when either Cx queue is empty or the deficit
∆h

x is too small for the transmission of Cx queue head-of-line
packet. In the former case, ∆h

x is reset to zero. In the latter
one, ∆h

x is kept for the next round.
The credit quantum Qh

x is defined for each port h. It must
allow the transmission of any frame from class Cx crossing
h. Thus, Qh

x has to be at least the maximum frame size of
Cx flows at port h. Let Fh

Cx
be the set of flows of class Cx

at output port h. Let lmax,h
Cx

and lmin,h
Cx

be the max and min
frame size among all class Cx flows at output port h. We have:

lmax,h
Cx

= max
i∈Fh

Cx

lmax
i , lmin,h

Cx
= min

i∈Fh
Cx

lmin
i (1)

Algorithm 1 shows an implementation of DRR at a switch
output port h with n traffic classes. First, deficits are set to 0

���

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 09,2020 at 18:31:58 UTC from IEEE Xplore. Restrictions apply.

Figure 4.10: Flows Parameters for networks of Examples 1 and 2, taken from Soni et al. [90].

classes. Inside a class, arbitration is FIFO (all packets of all flows of a given class are in the same FIFO

queue). Also, as in [90], we assume that queuing is on output ports only. All classes have the same

quantum equal to 199 bytes. The rate of the links is equal to c = 100 Mb/s, and every switch Si has a

switching latency equal to 16µs. Every flow vi has a maximum packet size l max
i and minimum packet

arrival Ti . Hence, flow vi is constrained by a token-bucket arrival curve with a rate equal to
l max

i
Ti

and

burst equal to l max
i ; also, it is constrained by a stair arrival curve given by l max

i ⌈ t
Ti
⌉.

For the sake of comparison, as Soni et al. do not consider grouping and offsets (explained in Sec-

tion 4.2.2) in these two examples, we also do not consider them. This means that the arrival curve

we use for bounding the input of a class at a switch is simply equal to the sum of arrival curves ex-

pressed for every member flow. Arrival curves are propagated using the delay bounds computed at

the upstream nodes. We illustrate the reported values in [90] for the delay bounds of Soni et al. For

the other results, we use the RTaW online tool (Fig. 4.11). As explained in Section 2.1, RTaW provides

all the necessary operations to implement our new strict service curves for DRR. First, observe that

delay bounds obtained with our new strict service curves for DRR, with no knowledge of the interfering

traffic, are always better than those of Boyer et al. Second, delay bounds obtained with our new strict

service curve for DRR that accounts for the arrival curves of interfering flows are always better than the

(incorrect) ones of Soni et al. and are considerably better than Bouillard’s. The obtained delay bounds

using Theorem 4.5, our non-convex full mapping, are better than or equal to those obtained using

Corollary 4.4, its convex version; also, they are equal to those of Corollary 4.3, our non-convex simple

mapping. Note that the results do not differ, whatever the initial strict service curves are. When using

token-bucket arrival curves, the run-times (on the RTaW online tool) of Theorem 4.5 and Corollary 4.3

are in the order of 3 minutes; for their convex versions, Corollary 4.4 and Theorem 4.5, they are in

the order of 30 seconds; when using stair arrival curves, the run-times (on the RTaW online tool) of

Theorem 4.5 and Corollary 4.3 are in the order of 5 minutes; for their convex versions, Corollary 4.4 and

Theorem 4.5, they are in the order of 1 minute and 45 seconds, respectively.

73

Chapter 4. Strict Service Curves for Deficit Round-Robin

v4 v5 v2 v7 v9 v10 v1 v3 v16 v8 v11 v18 v20 v15 v19 v12 v6 v14 v13 v17
200

250

300

350

400

450

500

D
el

ay
s

(m
ic

ro
 s

ec
on

ds
)

Token-bucket arrival curves

Boyer et al.
Corollary 2
Theorem 1
Bouillard
Soni et al.
Corollary 4, our convex full mapping
Theorem 5, our non-convex full mapping

v4 v5 v2 v7 v9 v10 v1 v3 v16 v18 v20 v8 v11 v15 v19 v14 v12 v6 v13 v17
200

250

300

350

400

450

500

D
el

ay
s

(m
ic

ro
 s

ec
on

ds
)

Stair arrival curves

Boyer et al.
Corollary 2
Theorem 1
Bouillard
Soni et al.
Corollary 4, our convex full mapping
Theorem 5, our non-convex full mapping

(a) Example 1

v9 v10 v11 v16 v18 v4 v19 v20 v7 v5 v6 v17 v15 v8 v2 v14 v12 v13 v1 v3
100

150

200

250

300

350

400

D
el

ay
s

(m
ic

ro
 s

ec
on

ds
)

Stair arrival curves

Boyer et al.
Corollary 2
Theorem 1
Bouillard
Soni et al.
Corollary 4, our convex full mapping
Theorem 5, our non-convex full mapping

v9 v10 v11 v16 v18 v19 v4 v7 v20 v17 v5 v15 v8 v2 v14 v6 v12 v13 v1 v3
100

150

200

250

300

350

400

D
el

ay
s

(m
ic

ro
 s

ec
on

ds
)

Token-bucket arrival curves

Boyer et al.
Corollary 2
Theorem 1
Bouillard
Soni et al.
Corollary 4, our convex full mapping
Theorem 5, our non-convex full mapping

(b) Example 2

Figure 4.11: Delay bounds of flow v1, v2, . . . , v20 in Example 1 and Example 2 of Fig. 4.9. In each
example, we follow [90] and assume once that flows are constrained by token-bucket arrival curves,
and once that flows are constrained by stair arrival curves. The delay bounds of Soni et al. are taken
from [90], and other results are computed with the RTaW online tool. First, delay bounds obtained
with our new strict service curves for DRR, with no knowledge on the interfering traffic, are always
better than those of Boyer et al. Second, delay bounds obtained with our new strict service curve for
DRR that accounts for the arrival curve of interfering flows are always better than those of Soni et al.
and are considerably better than the delay bounds of Bouillard. The obtained delay bound obtained
with Theorem 4.5 and Corollary 4.4, our non-convex and convex full mapping, are equal to those
obtained with Corollary 4.3 and Theorem 4.5, our non-convex and convex simple mapping. In each
plot, flows are ordered by values of Boyer’s bound. The state-of-the-art, i.e., delay bounds of Boyer et
al., Soni et al, and Bouillard are plotted with dashed lines.

74

4.6 Numerical Evaluation

• The required crossing delay of the network in order to
allow the applications to preserve their response times.
Network latency is a key performance parameter since
flight-critical data must be delivered on time. Network
latency is defined as the duration of time it takes for a
frame to pass through a network.

• The output queues sizes which allow us to dimension
the frame loss caused by the congestions.

The objective of this paper is to present and shortly com-
pare three methods for the evaluation of end-to-end delays:
network calculus, queuing networks simulation and model
checking.

In a first step, we present main characteristics of an
AFDX network and end-to-end traffic. In a second step, we
compare the network calculus approach on a realistic exam-
ple. In a third step, we compare on a simpler example the
two previous approaches with a model checking approach.

2. The AFDX network main characteristics

In this section, we present main characteristics of the net-
work architecture and the traffic that flows on the network.

2.1. AFDX network architecture

Avionics Full Duplex Switched Ethernet is a static net-
work (802.1D tables are statically set up and no spanning
tree mechanism is implemented). Flows are statically iden-
tified in order to obtain a predictable deterministic behavior
of the application on the network architecture.

An example network architecture is depicted on figure
1. It corresponds to a test configuration provided by Airbus
for a previous study [22]. It is composed of several inter-
connected switches. There is at most 24 ports per switch
(8 on this example). There are no buffers on input ports
and one FIFO buffer for each output port. The inputs and
outputs of the networks are called End Systems (the little
circles on figure 1). Each End System is connected to ex-
actly one switch port and each switch port is connected to at
most one End System. Links between switches are all full
duplex. On figure 1, the values on End Systems indicates
number of flows that are dispatched between End Systems.
Number of input and output End Systems per switch are not
specified on figure 1.

2.2. End-to-end traffic characterization

The Virtual Link is the basis of the Avionics Switched
Ethernet protocol. As defined by ARINC-664, Virtual Link
(VL) is a concept of virtual communication channels; It has
the advantage of statically defining the flows which enters
the network [9].

S1

S2

820113

113 821

S3S8

S4 S7

S6

S5

66 358 132 1156

143 1207 95 457 160 857

142 708

Figure 1. AFDX network architecture

End-Systems exchange Ethernet frames through VL.
Switching a frame from a transmitting to a receiving End
System is based on a VL (deterministic routing). The Vir-
tual Link defines a logical unidirectional connection from
one source End-system to one or more destination End sys-
tems. It is a path with multicast characteristic. Figure 2
shows an example of a multicast Virtual Link, considering
the network architecture of figure 1. Its source End System
is an input of switch S1 and its destination End Systems are
outputs of switches S8, S3, S4 and S7. This VL includes the
four paths S1-S8, S1-S3, S1-S8-S4 and S1-S8-S4-S7 (they
are depicted as plain lines on figure 2).

S3S8

S4 S7

S6

S5S2

S1
src dest1 dest2

dest3 dest4

Figure 2. A multicast Virtual Link

The routing of each VL is statically defined. Only one
End System within the Avionics network can be the source
of one Virtual Link, (i.e., Mono Transmitter assumption).

The objective is to provide a logical isolation of VL: a
given maximum bandwidth is allocated to each VL. Regard-
less of the attempted utilization of a VL by one application,
the available Bandwidth on any other VL is unaffected.

A virtual Link is defined by the following parameters :

• the name of the VL,

• the Bandwidth Allocation Gap (BAG) of the VL,
which corresponds to the minimum delay between the
emission of two consecutive frames of the VL by its
source End System,

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)

0-7695-2619-5 /06 $20.00 © 2006 IEEE
Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 21,2020 at 15:56:58 UTC from IEEE Xplore. Restrictions apply.

Figure 4.12: Industrial-sized network topology. The figure is taken from [31].

4.6.3 Industrial-Sized Network

We use the network of Fig. 4.12; it corresponds to a test configuration provided by Airbus in [42]. The

industrial-sized case study that Soni et al. use in [90] is based on this network in [31]. We combine the

available information in both papers to understand this network. It includes 96 end-systems, 8 switches,

984 flows, and 6412 possible paths. The rate of the links is equal to c = 100 Mb/s, and every switch Si has

a switching latency equal to 16µs. We find that each switch has 6 input and 6 output end-systems. Three

classes of flows are considered: critical flows, multimedia flows, and best-effort flows. There is one DRR

scheduler at every switch output port with n = 3 classes. At every DRR scheduler, the quanta are 3070

bytes for the critical class, 1535 bytes for the multimedia class, and 1535 bytes for the best-effort class.

128 multicast flows, with 834 destinations, are critical; they have a maximum packet size equal to 150

bytes and their minimum packet arrival time is between 4 and 128ms. 500 multicast flows, with 3845

destinations, are multimedia and their class has a quantum equal to 1535 bytes; they have a maximum

packet size equal to 500 bytes; and their minimum packet-arrival time is between 2 and 128ms. 266

multicast flows, with 1733 destinations, are best-effort; they have a maximum packet-size equal to

1535 bytes; and their minimum packet arrival time is between 2 and 128ms. For every flow, the path

from the source to a destination can traverse at most 4 switches. Specifically, 1797, 2787, 1537, and

291 source-destination paths have 1, 2, 3, and 4 hops, respectively. We choose the paths randomly and

satisfy all these constraints.

Due to the limited expressiveness of the language used by the RTaW online tool, we could not implement

the industrial-size network there. Therefore, we used MATLAB, which has the required expressiveness.

The obtained delay bounds are quasi-identical for the full and simple versions of the mappings,

therefore we illustrate results only for Theorem 4.5 (non-convex full mapping) and Corollary 4.4

(convex full mapping).

Note that the results are identical for both mentioned choices of initial strict service curves. We also

computed the delay bounds obtained with the strict service curve of Boyer et al., with Bouillard’s strict

service curve and with the correction term of Soni et al. In all cases, and as in [90], the arrival curve

used for bounding the input of a class at a switch incorporates the effects of delay bounds computed

upstream, as well as grouping (line shaping) and offset (Section 4.2.2); furthermore, the offsets are such

that they create maximum separation, as with [90]. We find that our bounds significantly improve upon

75

Chapter 4. Strict Service Curves for Deficit Round-Robin

0 1000 2000 3000 4000 5000 6000 7000
Source-destination pairs

0

50

100

150

200

250

300

D
el

ay
s

(m
s)

Delay bounds of Boyer et al.
Delay bounds of Soni et al.
Delay bounds obtined using Theorem 5

Delay bounds of Boyer et al.
Delay bounds Soni et al.
Delay bounds obtained with Theorem 5

Figure 4.13: Delay bounds of the industrial case for all source-destination pairs in the system. The
comparison with delay bounds with Bouillard’s method is illustrated in Fig. 4.14. The obtained delay
bound obtained with Theorem 4.5 and Corollary 4.4, our non-convex and convex full mapping, are
equal to those obtained with Corollary 4.3 and Theorem 4.5, our non-convex and convex simple
mapping. Source-destination paths are ordered by values of Boyer’s bound.

0 1000 2000 3000 4000 5000 6000 7000
Source-destination pairs

0

10

20

30

40

50

60

70

D
el

ay
s

(m
s)

Delay bounds of Bouillard
Delay bounds obtined using convex version of Theorem 5
Delay bounds obtined using Theorem 5

0 100 200 300 400 500 600 700 800 900
Source-destination pairs

0.5

1

1.5

2

2.5

3

3.5

4

4.5

D
el

ay
s

(m
s)

Delay bounds of Bouillard
Delay bounds obtained with Corollary 4, our convex full mapping.
Delay bounds obtained with Theorem 5, our non-convex full mapping.

Figure 4.14: Delay bounds of the industrial case for all source-destination pairs in the system. The
obtained delay bound obtained with Theorem 4.5 and Corollary 4.4, our non-convex and convex full
mapping, are equal to those obtained with Corollary 4.3 and Theorem 4.5, our non-convex and convex
simple mapping. Source-destination paths are ordered by values of Bouillard’s bound.

76

4.7 Proofs

the existing bounds, even the incorrect ones (Fig. 4.13). Moreover, we always improve on Bouillard’s

delay bounds. Also, delay bounds obtained using Theorem 4.5 are considerably improved compared to

its convex version for flows with low delay bounds.

Remark on run-times: For the industrial-sized described above, run-times (on a 2.6 GHz 6-Core Intel

Core i7 computer) of Theorem 4.5 and its convex version are 96 and 72 minutes, respectively; however,

run-times of Corollary 4.3 and its convex version are higher and are 130 and 103 minutes, respectively.

This is because the number of classes is small, i.e., 3 classes. To increase this, we divided, at uniformly

random, flows of each class into three new classes, which resulted in 9 classes in total. By doing so,

run-times of Theorem 4.5 and its convex version are 275 and 220 minutes, respectively; however,

run-times of Corollary 4.3 and its convex version are lower and are 162 and 130 minutes, respectively.

This supports the fact that the computation of strict service curves of Corollary 4.3 is faster than those

of Theorem 4.5 for when the number of flows is large.

4.7 Proofs

4.7.1 Proof of Theorem 4.1

The idea of the proof is as follows. We consider a backlogged period (s, t] of the class of interest i , and

we let p be the number of complete service opportunities for class i in this period, where a complete

service opportunity starts at line 5 and ends at line 10 of Algorithm 4.1. p is upper bounded by a

function of the amount of service received by class i , given in (4.34). Given this, the amount of service

received by every other class j is upper bounded by a function of the amount of service received by

class i , given in (4.36). Using this result gives an implicit inequality for the total amount of service in

(4.38). By using the technique of pseudo-inverse, this inequality is inverted and provides a lower bound

for the amount of service received by the class of interest.

From [89, Sub-goal 1], the number p of complete service opportunities for class of interest, i , in (s, t],

satisfies

Di (t)−Di (s) ≥ pQi −d max
i (4.33)

An intuitive explanation to obtain this inequality is as follows: In this interval, class i has at least p

complete services, and its residual deficit after each of these services is the maximum residual deficit,

d max
i ; thus, in its first complete service (if p > 0), it receives a service at least equal to Qi −d max

i , and

other services (if any), it receives a service at least equal to Qi . Therefore, as p is integer:

p ≤
⌊Di (t)−Di (s)+d max

i

Qi

⌋
(4.34)

Furthermore, it is shown in the proof of [89, Sub-goal 2] that

D j (t)−D j (s) ≤ (p +1)Q j +d max
j (4.35)

An intuitive explanation to obtain this inequality is as follows: In this interval, class i has p complete

services; it follows that all other classes j have at most p +1 complete service as we have a round-robin

scheduler; its first service in this interval starts with its maximum residual deficit, d max
j , and its residual

deficits remain zero after each of its services; it means in its first service it receives a service at most

equal to Q j +d max
j , and in all other services (if any), it receives a service at most equal to Q j . Using (4.34),

77

Chapter 4. Strict Service Curves for Deficit Round-Robin

we obtain

D j (t)−D j (s) ≤
⌊Di (t)−Di (s)+d max

i

Qi

⌋
Q j + (Q j +d max

j)︸ ︷︷ ︸
φi , j (Di (t)−Di (s))

(4.36)

Next, as the interval (s, t] is a backlogged period, by the definition of the strict service curve for the

aggregate of classes we have

β(t − s) ≤ (Di (t)−Di (s))+
∑
j ̸=i

(
D j (t)−D j (s)

)
(4.37)

We upper bound the amount of service to every other class j by applying (4.36):

β(t − s) ≤ (Di (t)−Di (s))+
∑

j , j ̸=i
φi , j (Di (t)−Di (s))︸ ︷︷ ︸

ψi (Di (t)−Di (s))

(4.38)

Then we invert (4.38) using (2.13) and obtain

Di (t)−Di (s) ≥ψ↓
i (β(t − s)) (4.39)

Lastly, we want to computeψ↓
i . Observe that, by pluggingφi , j in (4.5),ψi (x) = x+

⌊
x+d max

i
Qi

⌋(∑
j ̸=i Q j

)+

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

! !"
#(𝑄

!
+
𝑑 !$

%&
)

𝑄# − 𝑑#$%&

!
!"#

𝑄!

𝑄#

𝑄#

!
!"#

(𝑄! + 𝑑!$%&)

𝑄#

!
!"#

𝑄!
𝑄# − 𝑑#$%&

𝜓
#(
𝑄 #
−
𝑑 #$

%&
)

𝜓#(𝑄# − 𝑑#$%&)

𝑦 =
𝑥

𝑄#

𝜓!

𝜓!
↓ = 𝛾!

Figure 4.15: Illustration of ψi and its lower-pseudo inverse ψ↓
i , equal to γi , defined in (4.5) and (4.40),

respectively. Function γJ
i has the same form as γi .

∑
j ̸=i

(
Q j +d max

j

)
; as there is no plateau in ψi , its lower-pseudo inverse is simply its inverse which is

78

4.7 Proofs

obtained by flipping the axis (Fig. 4.15), and is obtained as

ψ↓
i (x) =(

λ1 ⊗νQtot,Qi

)([
x −ψi

(
Qi −d max

i

)]+)
+min

(
[x −

∑
j ̸=i

(
Q j +d max

j

)
]+,Qi −d max

i

)
(4.40)

ψ↓
i is illustrated in Fig. 4.15. In (4.40), observe that the term with min expresses the finite part at the

beginning between 0 and ψi
(
Qi −d max

i

)
; also, observe that the term with the min-plus convolution

expresses the rest (see Fig. 2.3.b with a =Qi and b =Qtot =
∑n

j=1 Q j .).

Lastly, we need to prove that βNCDM
i is super-additive. This follows from the tightness result in The-

orem 4.2 (the proof of which is independent of the rest of this proof). Indeed, the super-additive

closure βNCDM′
i of βNCDM

i is also a strict service curve, and βNCDM′
i (t) ≥ βNCDM

i (t) for all t [40, Prop.

5.6]). By Theorem 4.2, we also have βNCDM′
i (t) ≤βNCDM

i (t) for all t , hence βNCDM′
i (t) =βNCDM

i (t).

4.7.2 Proof of Theorem 4.2

𝑡 = 0

∑!"#(𝑄! − 𝑑!
$%&) 𝑄! −𝑑!"#$∑!"#(𝑄! + 𝑑!

$%&)∑!"#(𝑄! − 𝑑!
$%&)

𝑡 = 𝑠

∑!"#𝑄! 𝑄'

For /lows 𝑗 ≠ 𝑖: {𝑙!
$%&, …, 𝑙!

$%&, 𝑙!
$()*+ , 𝑙!

$%&, …, 𝑙!
$%&, 𝑙!

$(),+ , 𝑙!
$%&, …, 𝑙!

$%&, 𝑙!
$(), 𝑙!

$%&, …, 𝑙!
$%&, 𝑙!

$()}

𝑛! − 1 𝑛! + 1 𝑛!
For /low 𝑖: {𝑙'

$%&, …, 𝑙'
$%&, 𝑙'

$()*+ , 𝑙'
$%&, …, 𝑙'

$%&, 𝑙'
$(), 𝑙'

$%&, …, 𝑙'
$%&, 𝑙'

$()}

𝑛' − 1 𝑛'

𝑡 = 𝑠 + 𝜏

𝑛!

𝑛'

∑!"#𝑄! 𝑄'

𝑡 = 𝜏-

Output:

Packet Arrivals:

Round 1 Round 2 Round 3 Round 4

Figure 4.16: Example of the trajectory scenario presented in Section 4.7.2 with p = 2.

Proof of Theorem 4.2. We prove that, for any value of the system parameters, for any τ> 0, and for any

class i , there exists one trajectory of a system such that

∃s ≥ 0, (s, s +τ] is backlogged for class i

and Di (s +τ)−Di (s) =βNCDM
i (τ)

(4.41)

Step 1: Constructing the Trajectory

1) We use the following packet lengths for each class j : As explained in Section 4.1, we have Q j ≥
l max

j ; thus, there exists an integer n j ≥ 1 such that Q j = n j l max
j + (Q j mod l max

j). Then, let l mod
j = (Q j

mod l max
j), l mod-ϵ

j = l mod
j −ϵ, l mod+ϵ

j = l mod
j +ϵ.

2) Classes are labeled in order of quanta, i.e., Q j ≤Q j+1.

3) At time 0, the server is idle, and the input of every queue j ̸= i is a bursty sequence of packets as

follows:

• First, (n j −1) packets of length l max
j followed by a packet of length l mod+ϵ

j ;

• Second, (n j +1) packets of length l max
j followed by a packet of length l mod-ϵ

j . Note that if l mod
j = 0,

79

Chapter 4. Strict Service Curves for Deficit Round-Robin

the sequence can be changed to n j packets of length l max
j followed by a packet of length l max

j −ϵ
and the rest of the proof remains the same;

• Third,

(
⌊β

NCDM
i (τ)+d max

i
Qi

⌋−1

)
times of a sequence of n j packets of length l max

j followed by a packet

of length l mod
j .

4) Let class i ′ be the first class that is visited after class i by the DRR subsystem, i.e., i ′ = (i +1)mod n.

The input of class i ′ arrives shortly before all other classes j ̸= i at time 0.

5) The output of the system is at rate K (the Lipschitz constant of β) from time 0 to times s, which is

defined as the time at which queue i is visited in the second round, namely

s = 1

K

∑
j ̸=i

(
Q j −d max

j

)
(4.42)

It follows that

∀t ∈ [0, s],D(t) = K t (4.43)

6) The input of queue i starts just after time s, with a bursty sequence of packets as follows:

• First, (ni −1) packets of length l max
i followed by a packet of length l mod+ϵ

i ;

• Second,

(
⌊β

NCDM
i (τ)+d max

i
Qi

⌋
)

times of a sequence of ni packets of length l max
i followed by a packet

of length l mod
i .

7) After time s, the output of the system is equal to the guaranteed service; by 3) and 6), the busy period

lasts for at least τ, i.e.,

∀t ∈ [s, s +τ],D(t) = D(s)+β(t − s) (4.44)

In particular,

D(s +τ)−D(s) =β(τ) (4.45)

Step 2: Analyzing the Trajectory

Let p be the number of complete services for class i in (s, s+τ], and let τp be the start of the first service

for class i after these p services. We want to prove that

D j (τp)−D j (s) =φi , j (Di (s +τ)−Di (s)) (4.46)

We first analyze the service received by every other class j ̸= i . First, observe that every j ̸= i sends

(n j −1) packets of length l max
j followed by a packet of length l mod+ϵ

j in the first service after t = 0; this is

because at the end of serving these packets, the deficit of class j becomes d max
j and the head-of-the-line

packet has a length l max
j > d max

j . Second, for the first service after time s, every other class j ̸= i sends

(n j +1) packets of length l max
j followed by a packet of length l mod-ϵ

j , and at the end of this service, the

deficit becomes zero. Third, observe that in any other complete services for class j (if any), it sends

n j packets of length l max
j followed by a packet of length l mod

j . Hence, in the first complete service of

class j after time s, class j is served by
(
Q j +d max

j

)
; and in every other complete service for class j , it is

served by Q j . (the red parts in Fig. 4.16)

80

4.7 Proofs

We then analyze the service received by class i . First, it should wait for all other j ̸= i to use their first

service after time s, and then class i sends (ni −1) packets of length l max
i followed by a packet of length

l mod+ϵ
i ; this is because at the end of serving these packets, the deficit of class i becomes d max

i and the

head-of-the-line packet has a length l max
i > d max

i . Second, observe that in any other complete services

for class i (if any), it sends n j packets of length l max
j followed by a packet of length l mod

j . Hence, in the

first complete service of class i , which happens after time s, class i is served by
(
Qi −d max

i

)
; and in

every other complete service for class i , it is served by Qi . (the green parts in Fig. 4.16)

Then, by combining the last two paragraphs, observe that (Fig. 4.16)

• Class i is served in (s,τp] by
[
pQi −d max

i

]+.

• Every other class j has p+1 complete services in (s,τp], and they are served by
(
(p +1)Q j +d max

j

)
.

It follows that

D j (τp)−D j (s) =φi , j
(
Di (τp)−Di (s)

)
(4.47)

Then, there are two cases for s + τ: whether s + τ < τp or s + τ ≥ τp . In the former case, s + τ is

not in the middle of a service for the class of interest, and hence Di (s + τ) = Di (τp); in the latter

case, s + τ is in the middle of a service for class i and Di (s + τ) − Di (τp) < Qi ; thus observe that

φi , j (Di (s +τ)−Di (s)) =φi , j
(
Di (τp)−Di (s)

)
. Hence, in both cases, (4.46) holds.

Then, If we apply ψ↓
i to both sides of (4.45), the right-hand side is equal to βNCDM

i (τ). Thereby, we

should prove

ψ↓
i (D(s +τ)−D(s)) = Di (s +τ)−Di (s) (4.48)

Let y = D(s +τ)−D(s) and x = Di (s +τ)−Di (s). Our goal is now to prove that

ψ↓
i

(
y
)= x (4.49)

Again consider the two cases for s +τ.

Case 1: s +τ< τp

In this case the scheduler is not serving class i in [τp , s +τ]; thus Di (s +τ) = Di (τp). Combining it

with (4.47), it follows that
ψi (x) = x +

∑
j , j ̸=i

φi , j (x)︸ ︷︷ ︸∑
j , j ̸=i

(
D j (τp)−D j (s)

)
y = x +

∑
j , j ̸=i

(
D j (s +τ)−D j (s)

) (4.50)

and thus

ψi (x) ≥ y (4.51)

Let x − l mod
i < x ′ < x; class i ’s output becomes equal to x ′ during the emission of the last packet thus

ψi (x ′) = x ′+
∑

j , j ̸=i

(
D j (τp−1)−D j (s)

)
(4.52)

Hence

∀x ′ ∈ (x − l mod
i , x),ψi (x ′) < y (4.53)

81

Chapter 4. Strict Service Curves for Deficit Round-Robin

Combining (4.51) and (4.53) with Lemma 3.14 shows (4.49).

Case 2: s +τ≥ τp

In this case, the scheduler is serving class i in [τp , s +τ]. For every other class j , we have D j (s +τ) =
D j (τp). Hence, combining it with (4.46),

ψi (x) = Di (s +τ)−Di (s)+
∑

j , j ̸=i
φi , j (Di (s +τ)−Di (s))︸ ︷︷ ︸

D j (s+τ)−D j (s)

= y (4.54)

As with case 1, for any x ′ ∈ (x − l mod
i , x), we have ψi (x) < y , which shows (4.49).

This shows that (4.41) holds. It remains to show that the system constraints are satisfied.

Step 3: Verifying the Trajectory

We need to verify that the service offered to the aggregate satisfies the strict service curve constraint.

Our trajectory has one busy period, starting at time 0 and ending at some time Tmax ≥ τ. We need to

verify that

∀t1, t2 ∈ [0,Tmax] with t1 < t2,D(t2)−D(t1) ≥β(t2 − t1) (4.55)

Case 1: t2 < s

Then D(t2)−D(t1) = K (t2 − t1). Observe that, by the Lipschitz continuity condition on β, for all t ≥ 0,

β(t) =β(t)−β(0) =β(t) ≤ K t thus K (t2 − t1) ≥β(t2 − t1).

Case 2: t1 < s ≤ t2

Then D(t2)−D(t1) =β(t2 − s)+K (s − t1). By the Lipschitz continuity condition:

β(t2 − t1)−β(t2 − s) ≤ K (s − t1) (4.56)

thus D(t2)−D(t1) ≥β(t2 − t1).

Case 3: s ≤ t1 < t2

Then D(t2)−D(t1) =β(t2)−β(t1) ≥β(t2 − t1) because β is super-additive.

4.7.3 Proof of Theorem 4.3

We first prove the following:

h
(
αi ,βNCDM

i

)= T + sup
t≥0

{
1

c
ψi (αi (t))− t } (4.57)

First, as in [38, Prop. 3.1.1],

h
(
αi ,βNCDM

i

)= sup
t≥0

{βNCDM
i

↓
(αi (t))− t } (4.58)

Second, we show that

βNCDM
i

↓ = T + 1

c
γ↓i (4.59)

82

4.7 Proofs

As in [159, Prop. 7], for two functions f , g ∈F where f is right-continuous, we have (f ◦ g)↓ = g ↓ ◦ f ↓;

as βNCDM
i = γi ◦β and γi is continuous , it follows that

βNCDM
i

↓ =β↓ ◦γ↓i (4.60)

Observe that β↓(x) = 1
c x +T for x > 0 and β↓(x) = 0 for x = 0. Combine this with the above equation to

conclude (4.59).

Third, observe that γ↓i is the left-continuous version of ψi , and let us denote it by γ↓i =ψL
i . It follows

that

h
(
αi ,βNCDM

i

)= T + sup
t≥0

{
1

c
ψL

i (αi (t))− t } (4.61)

Observe that supt≥0{ψL
i (αi (t))− t } = supt≥0{ψi (αi (t))− t } as ψi is right-continuous. Therefore, com-

bining it with the above equation, (4.57) is shown.

Let us prove item 1), i.e., assuming αi = γri ,bi . Define H as

H(t)
def= T + 1

c
ψi (αi (t))− t (4.62)

Using (4.57), we have h
(
αi ,βNCDM

i

) = supt≥0{H(t)}. By plugging αi and ψi in H , we have H(t) =

T +
∑

j ̸=i

(
Q j +d max

j

)
c + 1

c

(
ri t +b +⌊ ri t+b+d max

i
Qi

⌋∑ j ̸=i Q j

)
− t Then, as ri ≤ Qi

Qtot
c, observe that function H is

linearly decreasing between 0 ≤ t < τi with a jump at t = τi ; also, H(t) ≤ H(τi) for all t ≥ τi (see the

above panel of Fig. 4.17). Hence, the supremum of H is obtained either at t = 0 or t = τi . This concludes

item 1).

Item 2) can be shown in a similar manner, however, function H is non-decreasing between 0 ≤ t < τi

(see the bottom panel of Fig. 4.17).

The same proof holds for item 3).

4.7.4 Proof of Theorem 4.4

First observe that, since φ′
i , j ∈F , it follows that β′

i ∈F . Second, as for every j ̸= i , φi , j ≤φ′
i , j , we have

ψi ≤ψ′
i . In [140, Sec. 10.1], it is shown that ∀ f , g ∈F , f ≥ g ⇒ f ↓ ≤ g ↓. Applying this with f =ψ′

i and

g =ψi gives that ψ′↓
i ≤ψ↓

i . It follows β′
i (t) =ψ′↓

i

(
β(t)

)≤ψ↓
i

(
β(t)

)=βi (t). The conclusion follows from

the fact that any lower bound in F of a strict service curve is a strict service curve.

4.7.5 Proof of Theorem 4.5

First, we give a lemma on the operation of DRR, which follows from some of the results in the proof of

Theorem 4.1.

Lemma 4.1. Assume that the output of classes j ∈ J̄ are constrained by arrival curves α∗
j ∈F , i.e., D j is

constrained by α∗
j . Then, γJ

i ◦
[
β−∑

j∈ J̄ α
∗
j

]+
↑

is a strict service curve for class i .

Proof. Consider a backlogged period (s, t] of the class of interest i . As the interval (s, t] is a backlogged

83

Chapter 4. Strict Service Curves for Deficit Round-Robin

𝑇 +
1
𝑐
𝜓!(𝑏!)

𝑟!
𝑐
− 1

∑"#!𝑄"
𝑐 𝑄!

𝑐

𝜏!

𝜏!.𝜏!

𝑇 +
1
𝑐
𝜓! 𝛼! 𝜏! 𝑟!

𝑐
− 1

∑"#!𝑄"
𝑐

𝑄!
𝑐

1) 𝛼! = 𝛾$!,&!

2) 𝛼! = min(𝛾$!,&! , 𝑐𝑡 + 𝑙!
'())

𝑡

𝑡

𝐻

𝐻

Figure 4.17: Illustration of function H defined in (4.62)

period, and since β is a strict service curve for the aggregate of flows, we have

β(t − s) ≤ (Di (t)−Di (s))+
∑
j ̸=i

(
D j (t)−D j (s)

)
(4.63)

For j ∈ J , upper bound
(
D j (t)−D j (s)

)
as in (4.36), and for j ∈ J̄ , upper bound

(
D j (t)−D j (s)

)≤α∗
j (t−s),

as α∗
j is an arrival curve for D j , to obtain

β(t − s)−
∑
j∈ J̄

α∗
j (t − s) ≤ (Di (t)−Di (s))+

∑
j∈J

φi , j (Di (t)−Di (s))︸ ︷︷ ︸
ψJ

i (Di (t)−Di (s))

(4.64)

As ψJ
i is a non-negative function, it follows that[

β−
∑
j∈ J̄

α∗
j

]+
(t − s) ≤ψJ

i (Di (t)−Di (s)) (4.65)

As ψJ
i is an increasing function, it follows that the right-hand side is an increasing function of (t − s).

Then, by applying [40, Lemma 3.1], it follows that the inequality holds for the non-decreasing closure

of the left-hand side (with respect to t − s), namely[
β−

∑
j∈ J̄

α∗
j

]+

↑
(t − s) ≤ψJ

i (Di (t)−Di (s)) (4.66)

84

4.7 Proofs

Then, we use the lower pseudo-inverse technique to invert (4.66) as in (2.13),

Di (t)−Di (s) ≥ψJ↓
i

[
β−

∑
j∈ J̄

α∗
j

]+

↑
(t − s)

 (4.67)

Hence, the right-hand side is a strict service curve for class i . Observe that γJ
i =ψ

J↓
i .

We now proceed to prove Theorem 4.5. Asβold
j is a strict service curve for class j , it follows thatα j ⊘βold

j

is an arrival curve for the output of class j . Then, for every J ⊆ Ni , apply Lemma 4.1 with α∗
j =α j ⊘βold

j

for j ∈ J̄ and conclude that γJ
i ◦

[
β−∑

j∈ J̄

(
α j ⊘βold

j

)]+
↑

is a strict service curve for class i . Lastly, the

maximum over all J is also a strict service curve for class i .

4.7.6 Proof of Corollary 4.3

We proceed with the proof by showing that for every class i , β̄new
i ≤βnew

i . Fix i ≤ n and t ≥ 0. We want

to show that β̄new
i (t) ≤βnew

i (t). Let J∗ be { j ∈ Ni | φi , j

(
βold

i (t)
)
<

(
α j ⊘βold

j

)
(t)}. Then, observe that

βnew
i (t) ≥ γJ∗

i

(
β(t)−

∑
j∈ J̄∗

(
α j ⊘β j

)
(t)

)
(4.68)

Apply ψJ∗
i to the both side and observe that

ψJ∗
i

(
βnew

i (t)
)≥β(t)−

∑
j∈ J̄∗

(
α j ⊘βnew

i

)
(t) (4.69)

as βnew
i ≥βold

i (t) and φi , j is increasing, it follows that

∑
j∈ J̄∗

φi , j
(
βnew

i (t)
)≥ ∑

j∈ J̄∗
φi , j

(
βold

i (t)
)

(4.70)

Then, sum the both side of (4.69) and (4.70) to obtain

ψi
(
βnew

i (t)
)≥β(t)+

∑
j∈ J̄∗

(
φi , j

(
βi (t)

)− (
α j ⊘βold

j

)
(t)

)
︸ ︷︷ ︸∑

j ̸=i
[
φi , j (βi (t))−

(
α j ⊘β j

)
(t)

]+
(4.71)

Then, by applying [40, Lemma 3.1], it follows that the above inequality holds for the non-decreasing

closure of the left-hand side. Thus,

ψi
(
βnew

i (t)
)≥ (

β+
∑
j ̸=i

[
φi , j ◦βi −

(
α j ⊘βold

j

)]+)
↑

(t) (4.72)

85

Chapter 4. Strict Service Curves for Deficit Round-Robin

Lastly, we use the lower pseudo-inverse technique to invert as in (2.13) and as ψ↓
i = γi

βnew
i (t) ≥ γi ◦

(
β+

∑
j ̸=i

[
φi , j ◦βi −

(
α j ⊘βold

j

)]+)
↑

(t)

︸ ︷︷ ︸
β̄new

i (t)

(4.73)

which concludes the proof.

4.8 Conclusion

The method of the pseudo-inverse enables us to perform a detailed analysis of DRR and to obtain strict

service curves that significantly improve the previous results. Our results use the network calculus

approach and are mathematically proven, unlike some previous delay bounds that we have proved to be

incorrect. Our method assumes that the aggregate service provided to the DRR subsystem is modeled

with a strict service curve. Therefore it can be recursively applied to hierarchical DRR schedulers as

found, for instance, with class-based queuing.

86

4.9 Notation

4.9 Notation

Table 4.2: Notation List, Specific to Chapter 4

i A class
A Aggregate, cumulative arrival function of all classes
D Aggregate, cumulative departure function of all classes
αi An arrival curve for class i
βi A strict service curve offered to class i
β A strict service curve offered to aggregate of all classes
Ai Cumulative arrival function of class i
Di Cumulative departure function of class i
n Number of classes
l max

i Maximum packet size for flows of class i
d max

i Maximum residual deficit of class i
Qi Quantum of class i
Qtot

∑
j Q j

λc Rate function with λc (t) = ct
βR,L Rate-latency function with βc,L(t) = max(0,c(t −L))
R+ Set of non-negative real numbers
F Set of wide-sense increasing functions f :R+ 7→R+∪ {+∞}

νp,b Stair function with νp,b(t) = b
⌈

t
p

⌉
γr,b Token-bucket function with γr,b(0) = 0 and γr,b(t) = r t +b for t > 0
[x]+ [x]+ = max(0, x)
◦ Composition of functions
⌊x⌋ Flooring function
hDev Horizontal deviation hDev(α,β) = supt≥0{inf{d ≥ 0|α(t) ≤β(t +d)}}
f ↓ Lower pseudo inverse f ↓ = inf{x| f (x) ≥ y} = sup{x| f (x) < y}
⊗ Min-plus convolution (f ⊗ g)(t) = inf0≤s≤t { f (t − s)+ g (s)}
⊘ Min-plus deconvolution (f ⊘ g)(t) = sups≥0{ f (t + s)− g (s)}
f↑ Non-decreasing closure of function f defined by sups≤t f (s)[
f
]+
↑ The non-decreasing and non-negative closure defined by sups≤t [f (s)]+

87

5 Worse-Case Delay Analysis of Time-
Sensitive Networks with Deficit
Round-Robin

In time-sensitive networks, where delays reside,

DRR stands tall with bounds to confide.

Combining TFA and service curves strict,

Worst-case analysis, a method so slick.

Tabatabaee’s characterization, the best-known service curves,

But PLP, a gem in bounds it hides.

Polynomial-size LP, a powerful tool,

Improving stability, breaking limits’ rule.

Adapting PLP to DRR, an essential task,

Burstiness bounds calculated, no question to ask.

Non-convex curves, supported with care,

DRR’s potential, now fully aware.

Cyclic dependencies, a challenge untold,

DRR’s curves intertwined, a loop to behold.

Iterative methods, the solution we seek,

Combining the cuts, in harmony we peek.

PLP-DRR, the method we propose,

Sequential or parallel, convergence it knows.

Valid bounds, even before full accord,

At convergence, equal bounds assured.

Time-sensitive networks, with DRR in sight,

General topology, shining so bright.

Industrial application, a test so grand,

Improvements found, state-of-the-art in hand.

So let this chapter begin, a journey profound,

Exploring DRR’s bounds, forever renowned.

Created with ChatGPT, free research preview (version May 24) [141]

As explained in Section 1.2.3, finding end-to-end delay bounds in a DRR network involves two steps: a

single node analysis and a combination of nodes in a per-class network analysis. For the former, in the

89

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

previous chapter, we derived the best known worst-case delay bounds [86, 87, 88, 89, 91] by means of

strict service curves for DRR, with or without taking into account the interference of competing DRR

classes. We call this method the DRR strict service curve.

For the latter step, per-class network analysis, Total Flow Analysis (TFA) [40] was used in the previous

chapter. TFA obtains delay bounds in FIFO networks and can be applied to per-class networks that are

FIFO per class and where a service curve is known for every class at every node. When applying TFA to

DRR networks, DRR strict service curves require the knowledge of burstiness bounds of competing

classes inside the network, which is an output of the network analysis of TFA. Conversely, TFA needs

to know the strict service curves. In the previous chapter, we solve this problem by considering

only feed-forward networks (in the application example, we constrain flow routes to avoid cyclic

dependencies). However, cyclic dependencies are frequent in time-sensitive networks and cannot be

ignored. Recent versions of TFA [64, 119] apply to networks with cyclic dependencies and can therefore

be used: For a side contribution, in Section 5.5.1, we show how to apply TFA to DRR networks with

cyclic dependencies, by developing and proving the validity of, an iterative procedure, called TFA-DRR.

Our main contribution, however, goes well beyond TFA-DRR. Indeed, it is known that TFA is outper-

formed by Polynomial-size Linear Programming (PLP) [68] that always provides delay bounds better

than or equal to those of TFA and, at high network utilization, often converges when TFA does not.

Other methods, such as LUDB [22] and flow prolongations [67], also tend to dominate TFA; but, unlike

PLP, they do not apply to generic topologies. This motivates the purpose of this chapter, which is to

design how PLP can be applied to DRR networks. The existing PLP, like the recent versions of TFA,

applies to FIFO networks with any topology. PLP consists of three phases: First, per-node delay bounds

are computed (from TFA). Second, cuts are performed on the network topology in order to obtain a

collection of trees and valid burstiness bounds are computed at the cuts by solving a linear program.

And third, delay bounds for the flows of interest are computed on the cut network by solving another

linear program for every flow of interest. PLP uses the per-node delay bounds obtained by TFA as

a constraint in all its linear programs; hence it follows that the PLP delay bounds are guaranteed to

be as good as the bounds obtained with TFA. An intriguing feature is that this enables PLP to obtain

end-to-end delay bounds that are generally better than with TFA, whereas not using the per-node delay

bounds as constraints may provide worse results.

Using PLP to analyze DRR networks requires introducing the DRR strict service curve into the PLP

procedure. PLP uses internal variables such as the burstiness bounds at cuts and the per-node delay

bounds, the computation of which depends on the DRR strict service curves; the DRR strict service

curves depend on burstiness bounds of interfering flows at the output of every node, which can be

obtained by adding to PLP another family of linear programs; the outputs of such linear programs

depend on the burstiness at cuts, the per-node delay bounds, and the DRR strict service curves. In total,

there are four collections of variables (burstiness bounds at cuts, burstiness bounds for interfering flows

at DRR nodes, per-node delay bounds and DRR strict service curves), and the computation of every

collection depends on the values of the other collections. It is natural to propose an iterative procedure

as we mentioned above for the application of TFA to DRR (where there were only two collections,

per-node delay bounds and DRR strict service curves), however, it is not clear how the iterations should

be combined and whether some specific combinations provide better bounds. To solve this issue, we

propose a generic method to combine updates to any item in the four collections in any arbitrary order,

by using a distributed, shared-memory computing model. We show that the resulting bounds do not

depend on how the item updates are executed, as long as every update is executed infinitely often in a

hypothetical execution of infinite duration (Theorem 5.4). Still, some concrete implementations of the

90

method may have better execution times, and we propose two such concrete, parallel implementation

methods that we apply to the industrial network used in the previous chapter.

When applying PLP to DRR, we make two further improvements. First, the existing PLP obtains

burstiness bounds for individual flows, whereas the DRR strict service curve uses burstiness bounds for

the aggregate of all flows for every interfering DRR class at node output. Of course, a burstiness bound

for an aggregate can be obtained by summing the burstiness bounds of every individual flow, but this is

generally sub-optimal. In Theorem 5.1, we extend the PLP methodology to obtain such per-aggregate

bounds. Second, PLP requires convex service curves; we provide, in the previous chapter, both convex

and non-convex DRR strict service curves, and the latter may obtain smaller delay bounds when the

delay bounds are very small. We solve this issue with a modification of PLP, called iPLP, that adds one

binary variable to the linear program per DRR node (Section 5.4.2).

The contributions of this chapter are as follows:

• We provide a method (PLP-DRR), for the worst-case timing analysis of per-class DRR network

with or without cyclic dependencies, which combines DRR strict service curves and PLP in a

novel way. It has three phases: (i) initial, which obtains initial TFA bounds; (ii) refinement, which

improves the four collections of burstiness bounds at cuts, burstiness bounds for interfering

flows at DRR nodes, per-node delay bounds, and DRR strict service curves; (iii) post-process,

which obtains delay bounds for flows of interest using iPLP.

• The refinement phase uses a distributed computing model with shared memory, where individ-

ual improvements can be applied in any order. We show that any execution provides the same

bounds, regardless of the order in which the individual improvements are applied. We prove

that the bounds are valid. The bounds are guaranteed to be at least as good as those obtained

with TFA.

• We develop, and show the validity of, a method (TFA-DRR) to apply TFA to DRR networks with

cyclic dependencies. This method is of independent interest and is also used in the initial phase.

• We design two improvements to the PLP methodology. The former computes improved bursti-

ness bounds for aggregates of flows and is used in the refinement phase. The latter enables us to

use non-convex service curves in PLP and is used in the post-process phase.

• We design two concrete implementations of the method, with parallel for-loops in the refinement

phase, and we apply them to the industrial network in Chapter 4. We find that the delay bounds

are significantly better than the state-of-the-art.

The rest of this chapter is organized as follows. In Section 5.1, we describe the system model, including

DRR operation, the network under study and the resulting graphs. In Section 5.2, we give the necessary

background on DRR strict service curve, TFA, and PLP. In Section 5.3, we give a global view of PLP-DRR,

our method for combining the DRR strict service curve and PLP. It uses two improvements of PLP,

which are described and proven in Section 5.4. The details of PLP-DRR are described in Section 5.5,

including statements about the validity and the uniqueness of the obtained bounds. In Section 5.7,

we present the proofs of theorems. In Section 5.6, we apply the method to the industrial network of

the previous chapter and illustrate the obtained improvements on delay bounds. In Section 5.8, we

conclude the chapter. A summary of notation and symbols used in this chapter are given in Section 5.9.

91

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

5.1 System Model

We are interested in computing end-to-end delay bounds of flows in an asynchronous, time-sensitive

packet-switched network with DRR.

5.1.1 Deficit Round-Robin Scheduling

The DRR subsystem and DRR algorithm are explained in Section 4.1, which we use with the following

notations and a change: For each queue c, we use the notation Qc for the assigned quantum. Also, we

assumed that the DRR subsystem is placed in a larger system and can compete with other queuing

subsystems, and the service offered to the DRR subsystem is modeled by means of a strict service curve

B(). In this chapter, we assume that B is the rate-latency function with rate R and latency T , defined by

βR,T (t) = R[t −T]+, unlike Section 4.1 where B is generic.

DRR
RR

DRR
RR

𝑓!

c

c c
𝑓" 𝑓#

𝑓$

𝑓%

𝑣! 𝑣"

𝑣#

c Flow Source Port Switch Fabric
Flow of class 𝑐"
Flow of class 𝑐#

Figure 5.1: Toy Network with 2 DRR classes. Flows f1, f2, and f3 belong to class c1; flow f4 and f5

belong to class c2.

𝑓!

𝑓"

𝑣" 𝑣#

𝑣$

𝑓#

Cu
t

(a) Gc1

𝑓!
𝑓"𝑣" 𝑣#

𝑣$

(b) Gc2

Figure 5.2: The graphs induced by flows of class c1 and c2 of toy network of Fig. 5.1, also showing
the flows path. Gc1 has one cyclic dependency, Gc2 has none.

92

5.2 Background and Related Works

5.1.2 Network Model and Resulting Graphs

5.1.2.1 Device Model

Devices represent switches or routers and consist of input ports, output ports, and a switching fabric.

Each packet enters a device via an input port and is stored in a packetizer. A packetizer releases a packet

only when the entire packet is received. Then, the packet goes through a switching fabric. A switching

fabric transmits the packet to a specific output port, based on the static route of the packet. Then, the

packet, based on its static class, is either queued in a FIFO-per-class queue or exits the network via a

terminal port. At each non-terminal output port, packets of flows of different classes are processed

according to DRR scheduling, as explained in 5.1.1. See Fig. 5.1. The aggregate service received by the

DRR scheduler of a non-terminal output port v ∈ V is modeled by a strict service curve B v , that we

assume to be a rate-latency function βRv ,T v with rate Rv and a latency T v (not to be confused with the

strict service curve offered by the DRR scheduler to each class).

5.1.2.2 Flow Model

We assume that there are n classes of traffic 1, . . . ,n in the system, and flows are statically assigned a

class and a path. Traffic generated by flows is constrained at the source by means of a token-bucket

arrival curve γr f ,b f
(see Section 2.1.1.3 for the definition of token-bucket arrival curves).

5.1.2.3 Graph induced by flows

For every class c, the graph Gc = (Vc ,Ec) induced by flows is the directed graph defined as follows: 1)

Vc ⊆ V is the subset of all non-terminal output ports used by at least one flow of class c . 2) The directed

edge e = (v,u) ∈ Ec exists if there is at least one flow of class c that traverses v and u in this order. We

say that Gc has a cyclic dependency if it contains at least one cycle. Let E cut
c ⊆ Ec be a cut such that

artificially removing the edges in E cut
c creates a tree or a forest (i.e., a collection of non-connected trees).

Such cuts can be obtained by any traversal graph algorithm [160]. We keep the same node naming of

vertices across graphs of different classes, namely, output ports of different classes that are connected

to the same DRR scheduler have the same name. Let Inc (v) ⊂ Ec (resp. Outc (v)) denote the set of edges

of class c that are incidents at (resp. leave) node v . Consider the toy network of Fig. 5.1. We assume

we have two classes where f1, f2, and f3 belong to class c1 and, f4 and f5 belong to class c2. The graph

induced by flows of c1 and c2, as well as the flow paths, are illustrated in Fig. 5.2. Graph Gc1 has a cycle;

the figure shows one possible artificial cut to create a tree.

5.2 Background and Related Works

In this section, we provide the necessary background for analyzing a DRR system. In the network

calculus framework, the classical method for this analysis combines two techniques: 1) the computation

of strict service curves for each DRR class at each node, presented in Section 5.2.1; 2) the analysis of one

FIFO network per DRR class. Two methods are presented, TFA in Section 5.2.2 and PLP in Section 5.2.3.

93

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

T1 T2

q v
c

d nc,v
c

d c,v
c

βnc,v βc,v

αv
c

Time (µs)

B
it

s

Figure 5.3: A non-convex part of a service curve βnc,v (t) = min
(
βRv ,T1 (t), q v

c

)
and T2 = T1 + qv

c
Rv at

some node v and for some class c. The convex function βc,v is also a valid service curve, and so is
the maximum of βc,v and βnc,v . The figure also shows an arrival curve αv

c and illustrates that the
bound obtained when considering the non-convex service curve, d nc,v

c , is better than with the convex
service curve, d c,v

c , when the delay bound is small.

5.2.1 Strict Service Curves of DRR

Strict Service Curves of DRR are presented in detail in Chapter 4. In this section, we provide a notation

in the specific case where arrival curves are token-bucket and the aggregate service curve is rate-latency.

5.2.1.1 Degraded Operational Mode

Let v be a node shared by n classes that uses DRR, as explained in Section 5.1.1, with quantum Qc for

class c . The node offers a strict service curve B v to the aggregate of the n classes. Then, for every class c ,

node v offers to class c a strict service curve βCDM,v
c that is the maximum of two rate-latency functions,

and hence, is piece-wise and convex; The rate and latency depend on the quanta and maximum

residual deficits. See Appendix 5.A.1 for more details. Non-convex strict service curves of DRR can

improve delay bounds when they are small, specifically if the service for a flow finishes in the first

round (i.e., the flow is never backlogged at the end of each of its round of service). This motivates us

to consider only the first non-convex part of the DRR strict service curve, say βnc,v
c , as it corresponds

to the first service round. We have βnc,v
c (t) = min

(
βRv ,T1 (t), q v

c

)
where T1 is the maximum period of

time during which no data of class c can be served and (see Fig. 5.3); the exact values are given in

Appendix 5.A.1. We use it as follows in Section 5.4.2: since βnc,v
c is a strict service curve, we can replace

any other strict service curve for class c, βv
c , by max(βv

c ,βnc,v
c), which is also a strict service curve.

5.2.1.2 Non-Degraded Operational Mode

When some arrival curves can be assumed for the interfering classes, the service received by the class

of interest can be improved. We present in Chapter 4 a method that starts from service curves with no

assumption on the interfering traffic (i.e., βCDM,v
c explained in Section 5.2.1.1), and iteratively improves

them by taking into account the arrival curve constraints of interfering traffic.

We call DRRserviceinputArrival
v (αv) the method that computes a collection of strict service curves for

each class given αv , input arrival curves of all classes at node v (See Appendix 5.A.2 for more details.).

We also use (5.15) in Appendix 5.A.2 (same as Lemma 4.1 in Chapter 4), which improves the strict

service curves of DRR, given output arrival curves of every class. Specifically, we apply it when every

94

5.2 Background and Related Works

class c has a token-bucket arrival curve at the output, say γrc ,bv
c

, and a known strict service curve βv
c . We

call DRRserviceoutputBurst
v

(
βv ,bv

)
the function that implements (5.15) in Appendix 5.A.2 and returns

an improved collection of strict service curves for all classes at node v . In the above, βv and bv are the

collection of βv
c strict service curves and the collection of bv

c output burstiness of all classes at node v .

In the common case where the aggregate strict service curve is a rate-latency function say βcv ,Tv , the

obtained strict service curves are the maximum of a finite number of rate-latency functions. Specifically,

consider class c and partition other classes into two arbitrary sets J and J̄ . Then, let r v, J̄ = ∑
c ′∈ J̄ rc ′

and bv, J̄ =∑
c ′∈ J̄ bc ′ , i.e., r v, J̄ and bv, J̄ are the aggregated arrival rate and aggregated output burstiness

bound of interfering classes in J̄ . Then, two rate-latency functions βR̄max,v,J
c ,T̄ max,v,J

c
and βR̄min,v,J

c ,T̄ min,v,J
c

can be computed for class c with

R̄max,v,J
c = (cv − r v, J̄)Rmax

c (5.1)

R̄min,v,J
c = (cv − r v, J̄)Rmin

c (5.2)

T̄ max,v,J
c = cv Tv +T max

c +bv, J̄

(cv − r v, J̄)
(5.3)

T̄ min,v,J
c = cv Tv +T min

c +bv, J̄

(cv − r v, J̄)
(5.4)

In the above, values of Rmax
c , T max

c , Rmin
c , and T min

c depend on the quantum and the maximum resid-

ual deficit of class c and interfering classes in J ; the exact values are given in (5.17)-(5.18) in Ap-

pendix 5.A.2. Thus, any choices of sets J and J̄ results in two rate-latency functions for class c ; function

DRRserviceoutputBurst
v

(
βv ,bv

)
computes the maximum of rate-latency functions obtained by all pos-

sible choices of sets J and J̄ . Observe that the latencies of the above functions, T̄ max,v,J
c and T̄ min,v,J

c

in (5.3) and (5.4), are linear functions of output burstinesses of interfering classes bv
c , and the rates,

R̄max,v,J
c and R̄min,v,J

c in (5.1) and (5.2), only depend on arrival rates rc .

5.2.2 Total Flow Analysis (TFA)

As explained in Section 2.1.3.1, in a FIFO-per-class network where a service curve is known for every

class at every node, one instance of TFA is run per class, and it outputs per-node delay bounds as well

as propagated burstiness for flows. If the graph induced by flows is feed-forward (i.e, cycle-free), for

each node in a topological order, a delay bound and output burstiness bounds of flows are computed:

the output burstiness bounds at a node are used as input by its successors in the induced graph. Else if

the graph induced by flows has cyclic dependencies, no topological order can be defined and a fixed

point must be computed, using an iterative method [64]. If the iteration converges to a finite value

for all delay and burstiness bounds, then the network is stable and the computed bounds are valid.

Otherwise, TFA diverges and the network might be truly unstable or not.

All versions of TFA (specifically, FP-TFA, SyncTFA, AsyncTFA, and AltTFA) are equivalent, i.e., they give

the same bounds and stability regions [64]. We let (dc , zc) = GenericTFAc
(
βc

)
denote any version of

TFA that computes per-node delay bounds and bounds on propagated burstiness for class c, given

per-node strict service curves βc . We always apply TFA to the original (uncut) graph.

In networks with cyclic dependencies, there is a two-way dependency between TFA and DRR strict

service curves: TFA needs to know DRR strict service curves a priori, however, DRR strict service curves

depend on burstiness bounds of flows at the output of a node, which is a result of TFA. Specifically, on

95

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

the one hand, DRR strict service curves of node v depend on bv , the collection of bv
c output burstiness

bound of all classes at node v (see Section 5.2.1.2). On the other hand, bv is obtained from bounds on

the propagated burstiness bounds zc which is computed by TFA (i.e., (dc , zc) = GenericTFAc
(
βc

)
) and

requires knowing βc , the collection of DRR service curve for class c at every node v . Authors in [108]

avoid this two-way dependency between TFA and DRR by restricting their analysis only to feed-forward

networks.

As of today, for networks with cyclic dependencies, the only TFA solution is to use DRR strict service

curves in the degraded operational mode (see Section 5.2.1.1), which only depend on the assigned

quantum and maximum packet size of every class and hence can be computed for all classes at all

nodes a priori to TFA; thus, per-class networks are independent and can be analyzed separately (i.e., the

network is sliced into some per-class networks), and one instance of TFA can be run per-class to obtain

bounds; we call this method TFA-SOA, and consider it the state-of-the-art as it is the straight-forward

application of TFA with our DRR strict service curves.

As a first step, we propose an iterative method in Algorithm 5.1, called TFA-DRR, and prove its validity

in Theorem 5.3; it combines DRR strict service curve in non-degraded operational mode (i.e., where

some arrival curves can be assumed for the interfering traffic) and TFA, and it serves as the initial phase

of our main method; see Fig. 5.8 for some numerical application.

5.2.3 Polynomial-size Linear Programming (PLP)

As explained in Section 2.1.3.6, PLP computes end-to-end delay bounds in FIFO networks [68], so one

instance of PLP is run per class. It requires piece-wise linear convex service curves. PLP improves

the bounds and stability region compared to TFA while remaining tractable. The definition of linear

programs is straightforward for tree topologies. The analysis of general topologies requires first making

some cuts in the induced graph in order to create a forest (i.e., one or several non-connected trees).

The analysis has three steps (see Fig. 5.4):

Network
(generic shape) TFA

Perform cuts
Cut network

(forest)

Per-node delay
bounds 𝑑!

𝑧!"#$ = FPPLP"(𝛽! , 𝑑!)
𝑧!"#$ 𝑑%

&'& = PLP%,!
)&*+,(𝛽! , 𝑑! , 𝑧!"#$)

𝑑%
&'&

Burstiness bounds of flows at cuts,
computed in the original network

End-to-end delay bound of flow 𝑓,
computed in the cut network

Figure 5.4: Overview of PLP analysis for the FIFO-per-class network of some class c (see items 1)-3)
in Section 5.2.3).

1. TFA analysis to obtain per-node delay bounds dc ;

2. Then, output burstiness bounds at the cuts are computed. by solving one single linear program,

which is equivalent to computing a fixpoint. We call FP-PLPc (βc ,dc) the algorithm that computes

burstiness bounds of flows at cuts given strict service curves and per-node delay bounds of class

c;

3. One linear program per flow of interest obtains an end-to-end delay or backlog bound; we call

PLPdelay
f ,c (βc ,dc , zcut

c) (resp. PLPbacklog
f ,c (βc ,dc , zcut

c)) the algorithm that computes the end-to-end

delay (resp. backlog) bound of flow f belonging to class c given output burstiness bounds at the

cuts, strict service curves and per-node delay bounds of class c.

96

5.3 Overview of the Proposed Method: PLP-DRR

We use FP-PLP as is and use improved versions of PLPdelay and PLPbacklog, as explained in Section 5.4.

As PLP uses per-node delay bounds computed by TFA, the end-to-end bounds are always better than

with TFA. In a network with cyclic dependencies, it is possible that TFA diverges and hence the per-node

delay bounds be infinite. In this case, the constraints used by PLP that involve infinite per-node delay

bounds are simply always satisfied and PLP might or might not compute finite end-to-end bounds. In

general, though, PLP finds a larger stability region than TFA, i.e., it often finds finite delay bounds when

the TFA per-node delay bounds are infinite.

Detailed background on these linear programs is presented in Section 5.B.

Combining PLP and DRR strict service curves require more adaptation compared to TFA: Similar to

TFA, there is a two-way dependency between DRR strict service curves and PLPbacklog. Specifically, on

the one hand, DRR strict service curves of node v depend on bv , the collection of bv
c output burstiness

bound of all classes at node v (see Section 5.2.1.2). On the other hand, bv is obtained using PLPbacklog,

which requires knowing βc (see item 3) in the above), the collection of DRR service curve for class

c at every node v . Thus, this creates a level of iteration between collection b and collection β. Also,

PLPbacklog uses the collection of per-node delay bounds d (see item 3) in the above) which depends

on both DRR strict service curves β and burstiness bounds of flows at the input of nodes, obtained

using PLPbacklog; this imposes another level of iteration. Moreover, PLPbacklog requires cuts and bounds

on the burstiness of flows at cuts, zcut (see item 3) in the above), is obtained using FP-PLP where

FP-PLP requires knowing DRR strict service curves β and per-node delay bounds d (see item 2) in the

above); this imposes yet another level of iteration. Thus, we have a collection of DRR service curves

β, a collection of per-node delay bounds d , a collection of output bound for flows at cuts zcut, and a

collection of burstiness bounds b at the input and output of nodes, and we have different functions such

as DRR strict service curves, PLPbacklog, FP-PLP, etc. that each uses some values of these collections

and improves some other values, hence, imposing different levels of iteration; it is not clear how to

combine them.

As of today, the only PLP solution is to use DRR strict service curves in the degraded operational mode

(see Section 5.2.1.1), which only depend on the assigned quantum and maximum packet size of every

class and hence can be computed for all classes at all nodes a priori to PLP; thus, per-class networks are

independent and can be analyzed separately (i.e., the network is sliced into some per-class networks),

and one instance of PLP can be run per-class to obtain bounds; we call this method PLP-SOA, consider

it the state-of-the-art as it is the straightforward application of PLP with our DRR strict service curves.

see Fig. 5.8.

We first perform the necessary adaptation of PLP to DRR by computing burstiness bounds per-class

and per-output aggregate and by enabling PLP to support non-convex service curves. We then propose

a generic method in Section 5.5.2.1, called PLP-DRR, for combining all these iterations sequentially

and in parallel. We show, in Theorem 5.4, that obtained bounds using our method are always valid

even before convergence. Also, we show that, at convergence, the bounds are the same regardless of

how iterations are combined. Lastly, we present two concrete implementations, using a distributed

computing model with shared memory (see Fig. 5.5 and Fig. 5.6).

5.3 Overview of the Proposed Method: PLP-DRR

Our method, called “PLP-DRR", applies the PLP methodology to DRR and is illustrated in Fig. 5.5. The

starting point is the collection of per-class graphs and a cutset. We use the following notations:

97

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

• β= (βv
c)1≤c≤n,v∈V , is a valid collection of strict service curves of each class c at each node v ,

• d = (d v
c)1≤c≤n,v∈V , is a valid collection of per-node delay bounds of each class c at each node v ,

• zcut, is a valid collection of output burst bounds for each flow at every edge of the cutset,

• zcut, is a valid collection of output burst bounds for each flow at every edge of the cutset,

• b = (bg
c)1≤c≤n,g∈V ∪E is a valid collection of burstiness bounds for aggregates of flows, indexed by

a class c and by some g . The index g can be either an edge, in which case the aggregate is the set

of all flows of class c carried on this edge, or a vertex v , in which case it is the set of all flows of

class c that exit the output buffer represented by v .

All components of β are finite; the components of d , zcut and b might be infinite.

As PLP requires per-node delay bounds, the method starts with an initial phase that performs a TFA

analysis of the original (uncut) network. Note that DRR requires the service curve collection β to be

computed from output burstiness bounds, which we derive from the TFA analysis; hence, we apply an

iterative procedure, which we prove to be valid. At the end of this initial phase, we have a collection of

service curves β and per-node delay bounds d , from which some propagated burstiness bounds (i.e.,

burstiness bounds for all flows at every output), hence zcut and b, can be derived.

The next phase in the classical PLP methodology, FP-PLP, computes a fixpoint zcut by solving a linear

program. Here, however, a new value of zcut allows to compute better output burstiness bounds in b

using another linear program with PLPbacklog, which, in turn, allows to compute better service curves β

using the DRR service curve method recalled in Section 5.2.1. The linear program in PLPbacklog uses

per-node delay bounds d , which can, in turn, be improved by re-running TFA whenever β is improved,

and then PLPbacklog could also be re-run. Also, better β and d enable FP-PLP to re-compute a better

fixpoint zcut, which can, in turn, be used to improve all other variables. Therefore, the second phase of

the PLP methodology needs to apply a number of refinements again and again. Instead of proposing a

specific arrangement of the refinements, we propose to perform them in any arbitrary order, using a

shared-memory model (Fig. 5.5). As we show in Section 5.5.2, all refinements provide valid bounds,

therefore, the method can be stopped at any time. However, we show that it converges to bounds (some

of them possibly infinite) that are independent of the arrangement of the refinements.

The “DRR strict service curve" block in the refinement phase uses as input some burstiness bounds

for the aggregate of all flows of all interfering classes at the output of a node. Such a bound could be

obtained by using the existing version of PLPbacklog applied to all flows in the aggregate. We improve

both the obtained bound and the computing time by using the modification of PLPbacklog described in

Section 5.4.1.

The third phase of PLP is to obtain end-to-end bounds by applying one instance of PLPdelay to every flow

of interest. Here, we use PLPdelay with one improvement (iPLP), which enables us to use non-convex

service curves at the expense of adding a few binary variables to the linear program (Section 5.4.2).

Such an improvement could also be used in the refinement phase, but we found experimentally that

this would have no noticeable effect.

5.4 Two Improvements to PLP

In this section, we first show how to compute an upper bound of aggregate burstiness of flows and

how to include some non-convex service curves in the PLP analysis. Note that our two improvements

98

5.4 Two Improvements to PLP

concern PLPbacklog
f ,i and PLPdelay

f ,i in step 3) of PLP as explained in Section 5.2.3; specifically, in this

section, we assume that we have a collection of trees where TFA per-node delay bounds and bounds on

the burstiness of flows at cuts are already obtained.

Let us first briefly present the linear programs used by PLP, more details can be found in Appendix 5.B.

PLP considers the arrival and departure time of a bit of interest; it then derives a number of time

instants at every node, each of which is represented by a variable in PLP. To every time instant at a node

is also associated with a variable that represents the value of the cumulative arrival function of the flows

at this time instant. Network calculus relations such as arrival curve constraints, FIFO constraints, and

service curve constraints are translated into linear constraints; the objective function to be maximized

is the delay or backlog of the flow of interest.

Recall that at this step, we use the cut network and thus assume that the graph induced by flows is a

collection of non-connected trees, and the analysis is done on every tree (with edges directed towards

the root). It follows that each node v , except the root, has a unique successor. We let sc(v) denote the

successor of node v , and add an artificial node v0 to be the successor of the root. Define the depth of

nodes dp as follows: dp(v0) = 0 and for every v , dp(v) = dp(sc(v))+1.

Time Variables: For every node v , define t(v,k) with k ∈ {0, . . . ,dp(v)}.

Process Variables: For every node v and v ′ and every f at v , define Ftv, f
v ′,k with k ∈ {0, . . . ,dp(v ′)}, where

Ftv, f
v ′,k is a variable for the cumulative arrival function of flow f at the input of node v at time t(v ′,k). In

the next paragraphs, we only present the parts of the linear program that are modified. The complete

linear programs are presented in Appendix 5.B.

5.4.1 PLP to Upper-bound the Aggregate Burstiness of Flows

We show that the same PLP, used to compute a backlog bound for a single flow, can be used to compute

a backlog bound for the aggregate with some modifications: Consider a set of flows of interest F , whose

destination is the root of the tree. Modify the PLP used to compute a backlog bound for a single flow as

follows: Let v f be the first node visited by flow f in the tree for all f ∈ F .

• Additional constraints: ∀ f ∈ F , ∀k, k ∈ [0, dp(v f)], Ft
v f , f
v0,0 −Ft

v f , f

v f ,k ≤ b f + r f (t(v0,0) − t(v f ,k));

• New objective: Maximize
∑

f ∈F

(
Ft

v f , f
v0,0 −Ftv0, f

v0,0

)
.

We call PLPbacklog
v,c the resulting program when applied to class c and to the sub-tree of the cut network

rooted at some node v . Here F is the set of flows that exit node v , and the program obtains the aggregate

burstiness of flows of class c at the output of node v ; the results are used by DRRserviceoutputBurst
v in the

refinement phase to compute DRR strict service curves. We also apply this program when e is an edge,

and also call it PLPbacklog
e,c . Here, F is the set of flows that use edge e and the sub-tree is rooted at the

node that edge e exits. The results are used in the refinement phase by perNodeDelayv,c to compute

per-node delay bounds.

Theorem 5.1 (PLP to Upper-bound the Aggregate Burstiness of Flows). The solution of PLPbacklog
g ,c is a

valid bound on aggregate burstiness of flows carried by edge or node g .

The proof is in Section 5.7.1, and the key idea of the proof is as follows: We show that a valid backlog

bound for an aggregate of some flows is also a valid burstiness bound for the aggregate. This is obtained

99

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

in Lemma 5.1 where we show that in any acceptable trajectory scenario of the system (i.e., a set of valid

input/output processes for all flows), the burstiness of the aggregate never exceeds the backlog bound.

5.4.2 iPLP: a PLP that Supports Non-Convex Service Curves

Our goal here is to modify PLP, used to compute a delay, such that it can handle a non-convex service

curve expressed, at node v and class c, as max(βv
c ,βnc,v), where βv

c is piece-wise linear convex (i.e.,

βv
c = maxp βRv

p ,T v
p

)), and βnc,v
c = min(βRv ,T1 , q v

c) as described in Section 5.2.1. Similar to the previous

case, we present only the parts of the linear program that are modified, namely the service constraints.

For the sake of concision, we now introduce the variables and constraints Atv
u =∑

f ∈In(v) Ftu, f
u,dp(u) and

Atv
v =∑

f ∈In(v) Ftv, f
v,dp(v), where u = sc(v).

The original service curve constraints of PLP are kept:

Atv
u −Atv

v ≥ 0; (5.5)

∀p, Atv
u −Atv

v ≥ Rv
p

(
t(u,dp(u)) − t(v,dp(v)) −T v

p

)
. (5.6)

As βnc,v is the minimum of a rate-latency function and a constant (see Fig. 5.3); the implementation

of βnc,v requires a “if then else” structure: If t(u,dp(u)) − t(v,dp(v)) ≤ T2, then we must have Atv
u −Atv

v ≥
Rv (t(u,dp(u)) − t(v,dp(v)) −T1). Else, if t(u,dp(u)) − t(v,dp(v)) > T2, we must have Atv

u −Atv
v ≥ q v

c . This can be

modeled by means of a binary variable in a linear program. Define bv ∈ {0,1} and consider a large

enough positive M , and add the following constraints:

Atv
u −Atv

v ≥ Rv (t(u,dp(u)) − t(v,dp(v)) −T1)−Mbv ; (5.7)

Atv
u −Atv

v ≤ q v
c +Mbv ; (5.8)

Atv
u −Atv

v ≥ q v
c −M(1−bv). (5.9)

We let iPLPdelay
f ,c denote this Integer, Polynomial-sized Linear Program. Theorem 5.2 is proved in

Section 5.7.2.

Theorem 5.2 (iPLP: a PLP that supports non-convex service curves). Consider iPLP as constructed

above. Then, 1) iPLP gives a valid delay bound for the flow of interest, and 2) the bound is less than or

equal to that of PLP.

Note that iPLP solves a Mixed-Integer Linear Programming (MILP), and the MILP solver we use does

not guarantee that it finds the optimal solution. However, it guarantees that the solution is feasible, and

it indicates whether the obtained solution is optimal. In all examples we tested, we always obtained the

optimal solution (see Fig. 5.10 (b)).

5.5 Our Proposed Method: PLP-DRR

In this section, we provide the details of our generic method and we present two concrete implementa-

tions.

100

5.5 Our Proposed Method: PLP-DRR

TFA analysis (Algo 1)

initial phase, Sec. 5.5.1
shared memory (β,d , zcut,b) collection of
service curves, per-node delays and bursts

End-to-end delay bounds

de2e
f = iPLP

delay
f ,c

(β,d , zcut)

post-process phase, Sec. 5.5.3

zcut
c = FP-PLPc (βc ,dc)

zcut
c = FP-PLPc (βc ,dc)zcut

c = FP-PLPc (βc ,dc)

bursts at cuts, Sec. 5.2.3

per class
c

b
g
c = PLP

backlog
g ,c (zcut

c ,βc ,dc)
b

g
c = PLP

backlog
g ,c (βc ,dc , zcut

c)b
g
c = PLP

backlog
g ,c (βc ,dc , zcut

c)

aggregated bursts, Sec. 5.4.1

per class
c,

per node/e
dge g

βv = DRRservice
outputBurst
v (βv ,bv)

βv = DRRservice
outputBurst
v (βv ,bv)βv = DRRservice

outputBurst
v (βv ,bv)

DRR strict service curve, Sec. 5.2.1.2

per node v

d v
c = perNodeDelayv,c (βv ,bv)

d v
c = perNodeDelayv,c (βv

c ,bc)d v
c = perNodeDelayv,c (βv

c ,bv
c)

per-node delay, Sec. 5.5.2

per class
c,

per node v

(β,d , zcut,b) (β,d , zcut)

update z cutc

read (βc ,dc)

update b g
read

(β
c ,d

c ,z cutc
)

updat
e
β v

re
ad

(β
v ,b

v)

update d
v
c

read (β
v
c
,b

v
c
)

refinement phase, Sec. 5.5.2

Figure 5.5: Overview of the method. The refinement phase consists in applying, in any order, any of
the four types of refinement blocks shown at the top of the figure, which each improves the bounds
stored in the shared memory. The refinement phase may be stopped using any criterion, such as
convergence of the variables in the shared memory or a timeout. If stopped at convergence, the value
of the shared memory is always the same, regardless of the order of the refinements.

5.5.1 Initial Phase: TFA-DRR

The goal of the first phase is to provide valid values for (β,d , zcut,b), using TFA. Specifically, we want

to analyze the original (uncut) network using TFA (note that TFA itself does not necessarily require

cuts [64]). In networks with cyclic dependencies, the TFA analysis of a DRR system of [108] cannot

be directly applied here, as propagated burstiness bounds are needed to compute the DRR strict

service curves and vice-versa. However, it is possible to first compute DRR strict service curves without

assumption of the arrival curves using βCDM,v
c for each node v and class c: these service curves only

depend on the fixed parameters such as assigned quanta, the aggregate strict service curve, and

maximum packet sizes of classes at a node, as explained in Section 5.2.1.1. From there, one can iterate

between the computation of output bursts (used to deduce the arrival curves) and the DRR strict

service curves that take into account the arrival curves.

The method is described in Algorithm 5.1: The local variable z represents the propagated burstiness

of all flows at all outputs. First, at line 1, initial strict service curves of DRR in degraded operational

mode are computed at all nodes for all classes. Then, the algorithm alternates between performing a

TFA analysis and computing new DRR strict service curves. More precisely, at line 3, a TFA analysis

(explained in Section 5.2.2) is performed for each class, with the previously computed service curves;

hence, some bounds on propagated burstiness of flows z and per-node delay bounds d are computed

and used to compute arrival curves at each node for each class (line 5). Then, at line 6, DRR strict service

curves are improved by taking into account these arrival curves. This procedure continues until we

reach stopping criteria; for example, when each component of vector d decreases insignificantly. Note

that computed bounds are valid at each iteration. At this point, TFA analysis is completed, however,

we need to compute bounds on the aggregate burstiness of flows of every class either at each edge

(including at the cutset) and at the output of every node, as this is used in the refinement phase. This is

performed at lines 7-11.

The delay and burstiness bounds computed by the TFA analysis at line 3 might not be finite. For

example, after the first execution of line 3, some classes might provide finite delay bounds (called stable

classes) and other infinite delay bounds (called unstable classes). At the first execution of lines 4-6, the

DRR strict service curves of the unstable classes are improved using the arrival curves of the stable

classes. Then, at the next iteration, more stable classes might be obtained, and so on.

101

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

Algorithm 5.1: Initial Phase: TFA-DRR

Result: Initial values of
(
β,d , zcut,b

)
Local Variable :z, collection of bounds on the propagated burstiness of flows

1 for node v ← 1 to |V | do βv ←βCDM,v ;
2 while Stopping criteria not reached do
3 for each class c do (dc , zc) ← GenericTFAc

(
βc

)
;

4 for node v ← 1 to |V | do
5 for each class c do compute αv

c from zInc (v)
c ;

6 βv ← DRRserviceinputArrival
v (αv);

7 for each class c do zcut
c ← z

E cut
c

c ;
8 for node v ← 1 to |V | do
9 for each class c and each e ∈ Inc (v) do

10 be
c ←

∑
ze

c ;

11 bv
c ←∑

zOutc (v)
c ;

12 return (β,d , zcut,b)

Theorem 5.3 (Correctness and Convergence of TFA-DRR). Consider a network with DRR scheduling

per class, as described in Section 5.1, and consider Algorithm 5.1. Then, 1)
(
β,d , z

)
(and the resulting

zcut and b obtained from z at lines 7-11) are valid bounds at every iteration at lines 2-6, and 2) they

converge as the number of iterations goes to infinity. Note that some values of d , z (and the resulting

zcut and b) might be infinite.

The proof is in Section 5.7.3. At this point we have obtained a value of (β,d , zcut,b) that constitute valid

bounds.

5.5.2 Refinement Phase: PLP and Parallelization

The next phase of the method is to improve the value of (d ,β, zcut,b) using the PLP methodology. As

mentioned in Section 5.3, the variables (β,d , zcut,b) are interdependent, and can be improved by some

refinements that we list here:

• zcut
c ← FP-PLPc (βc ,dc): computes burstiness bounds at cuts for class c (Section 5.2.3);

• bg
c ← PLPbacklog

g ,c (βc ,dc , zcut
c): computes burstiness bounds of the aggregate flows of class c at the

output of node g , if g ∈ V , or carried by edge g , if g ∈ Ec (Section 5.4.1);

• βv ← DRRserviceoutputBurst
v

(
βv ,bv

)
: computes the DRR strict service curves at node v given the

output burstiness bounds at this node (Section 5.2.1).

• d v
c ← perNodeDelayv,c (βv

c ,bc): computes the per-node delay of node v for class c. This is the

horizontal distance between the arrival curve and the service curve. For each input edge e of

node v , in addition to the aggregate burstiness be
c , a rate limitation imposed by the link can be

used to improve the arrival curve. This is known as line-shaping [42, 63, 68]. Then, we take into

account the effect of line shaping and of the packetizer as in Section VI-B of [119].

102

5.5 Our Proposed Method: PLP-DRR

All these refinements can be applied in any order, and it is not clear in what order we should use. We

avoid the issue by first presenting a generic scheme that uses a distributed computing model with a

shared memory, and we show that the values converge to the same values regardless of the order of the

operations under mild assumptions. We also then present two practical, concrete implementations of

this scheme with parallel-for loops.

5.5.2.1 Generic Scheme: A Distributed Computing Model with Shared Memory

The generic scheme is presented in Fig. 5.5. We consider a distributed system with a shared memory

and a finite number of workers (processes or threads). The shared memory stores the current value of

(β,d , zcut,b); it is initialized with the result of the initial phase described in Section 5.5.1. Every worker

has read and write access to the shared memory, and whenever a worker is free and decides to work, it

performs the following steps:

• It chooses a refinement in the list above, let us call it h; for example, it may choose FP-PLPc () for

some class c, or PLPbacklog
g ,c () for some c, g , etc.

• The worker then makes a read-only operation on the shared memory in order to obtain the

value, say x, of its argument. For example, if h is FP-PLPc (), then the worker reads x = (βc ,dc).

We assume that read-only operations are atomic, i.e., the values read by the worker cannot be

modified by other workers during the read operation (such that the worker has a valid snapshot).

• The worker computes y = h(x), i.e., a new value of some of the bounds in the shared memory.

For example, if h is FP-PLPc (), the worker computes y = zcut
c .

• The worker asks for a read/write lock on the shared memory. Such a lock prevents other workers

from writing into the memory until the lock is released by this worker. Once the lock is obtained,

the worker reads the current value y ′ of the same variables it wants to update from the shared

memory, computes the component-wise minimum of y and y ′, writes the resulting values into

the shared memory, and releases the lock. The minimum is computed because some other

worker might have improved the same value during the computing time of this worker.

• The worker is now free and might decide to work again.

Note that some delay bounds and burstiness bounds might be infinite. For example, initial bounds

obtained by TFA might be infinite for a class (but they might become finite after the operations of some

workers).

This generic scheme does not prescribe any specific arrangement of how the workers are scheduled.

But, for convergence, we assume:

(H) In a hypothetical execution of infinite duration, for every time t > 0 and every refinement h, there

exists a time s > t at which one worker starts working and chooses h.

Theorem 5.4 (Correctness and Convergence of PLP Refinement Phase of Section 5.5.2.1). Consider

a network with DRR scheduling per class, as described in Section 5.1, and consider the generic method

described above. Let (βt ,d t , zcut,t ,bt) be the value of the shared memory at time t > 0. Then,

1. (βt ,d t , zcut,t ,bt) are valid bounds; some values of (d t , zcutt ,bt) might be infinite.

103

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

Algorithm 5.2: DRRtree
T : DRR Analysis of a tree

Data: T a tree component of the network, (β,d , zcut,b)
Result: Updated values for (β,d , zcut,b)

1 for each node v ∈ T in the topological order of T do
2 for each class c in parallel do

3 bv
c ← PLPbacklog

v,c (βc ,dc , zcut
c ,bc);

4 βv ← DRRserviceoutputBurst
v (βv ,bv);

5 for each class c in parallel do
6 for e ∈ Inc (v) in parallel do

7 be
c ← PLPbacklog

e,c (βc ,dc , zcut
c ,bc);

8 d v
c ← perNodeDelayv,c (βv

c ,bc);

9 return (β,d , zcut,b)

2. The limit of (βt ,d t , zcut,t ,bt) as t → ∞ exists (call it (β∗,d∗, zcut,∗,b∗)). Some components of

d∗, zcut,∗, and b∗ might be infinite.

3. Given the initial value of the shared memory, the limit (β∗,d∗, zcut,∗,b∗) is independent of the

order and the execution time of every refinement.

Theorem 5.4 assumes that each refinement is performed infinitely often (hypothesis H). Otherwise,

obtained bounds in the limit will be larger than or equal to that obtained by our scheme.

5.5.2.2 Two Implementations of PLP Refinements

We presented the generic presentation of this phase. By Theorem 5.4, any implementation results in

the same final bounds. In this section, we present two concrete implementations.

Both implementations have two main blocks: computing output burstiness bounds at cuts (with

FP-PLP), and locally improving the per-node delays and DRR strict service curves. The main difference

between the two implementations is when to switch between these two blocks of operations.

For each class c , after removing edges E cut
c in Gc , we obtain a collection of trees. Let T be the collection

of trees of all classes. The second block, called DRRtree
T , is executed in parallel on each tree T ∈T : it is

described in Algorithm 5.2.

The algorithm is based on the observation that in a feed-forward topology, when service curves and

per-node delay bounds are computed in the topological order, there is no need for iterations. Some

operations are performed in the topological order of the nodes of the tree (the operation on one node

must wait for the operation on its predecessors to be finished). For each node v , there are two steps in

sequence. The former, at lines 2-4, computes the DRR strict service curve for all classes. This operation

requires the refinement of the output burstiness bounds bv
c for each class, and can be computed in

parallel (lines 2-3). The latter, at lines 5-8, improves the per-node delays of node v based on the newly

computed service curves. Again, this operation requires the refinements of the burstiness bounds at all

input edges of the node, which can be computed in parallel (lines 6-7).

The two implementations are illustrated in Fig. 5.6. The first implementation (without the dashed

arrow) alternates between the two sets of blocks (FP-PLP and DRRtree
T). Each set of blocks is started

104

5.6 Numerical Evaluation

zcut
1 = FP-PLP1(β1,d1)

zcut
n = FP-PLPn (βn ,dn)

Parallel on each class c

(β,d , zcut,b) = DRRtree
T1

(β,d , zcut,b)

(β,d , zcut,b) = DRRtree
Tk

(β,d , zcut,b)

Parallel on each tree component Tk
(β,d , zcut,b) sync.

sync.

u
n

tilco
n

v.

(β,d , zcut,b)

(Only for Implementation 2) until d converges

Figure 5.6: Two implementations of the refinement phases with parallelization and shared memory.
Implementation 1 (without the dashed arrow): alternating between the FP-PLP and DRRtree

T blocks;
Implementation 2 (with the dashed arrow): convergence of DRRtree

T before the execution of FP-PLP.

• The required crossing delay of the network in order to
allow the applications to preserve their response times.
Network latency is a key performance parameter since
flight-critical data must be delivered on time. Network
latency is defined as the duration of time it takes for a
frame to pass through a network.

• The output queues sizes which allow us to dimension
the frame loss caused by the congestions.

The objective of this paper is to present and shortly com-
pare three methods for the evaluation of end-to-end delays:
network calculus, queuing networks simulation and model
checking.

In a first step, we present main characteristics of an
AFDX network and end-to-end traffic. In a second step, we
compare the network calculus approach on a realistic exam-
ple. In a third step, we compare on a simpler example the
two previous approaches with a model checking approach.

2. The AFDX network main characteristics

In this section, we present main characteristics of the net-
work architecture and the traffic that flows on the network.

2.1. AFDX network architecture

Avionics Full Duplex Switched Ethernet is a static net-
work (802.1D tables are statically set up and no spanning
tree mechanism is implemented). Flows are statically iden-
tified in order to obtain a predictable deterministic behavior
of the application on the network architecture.

An example network architecture is depicted on figure
1. It corresponds to a test configuration provided by Airbus
for a previous study [22]. It is composed of several inter-
connected switches. There is at most 24 ports per switch
(8 on this example). There are no buffers on input ports
and one FIFO buffer for each output port. The inputs and
outputs of the networks are called End Systems (the little
circles on figure 1). Each End System is connected to ex-
actly one switch port and each switch port is connected to at
most one End System. Links between switches are all full
duplex. On figure 1, the values on End Systems indicates
number of flows that are dispatched between End Systems.
Number of input and output End Systems per switch are not
specified on figure 1.

2.2. End-to-end traffic characterization

The Virtual Link is the basis of the Avionics Switched
Ethernet protocol. As defined by ARINC-664, Virtual Link
(VL) is a concept of virtual communication channels; It has
the advantage of statically defining the flows which enters
the network [9].

S1

S2

820113

113 821

S3S8

S4 S7

S6

S5

66 358 132 1156

143 1207 95 457 160 857

142 708

Figure 1. AFDX network architecture

End-Systems exchange Ethernet frames through VL.
Switching a frame from a transmitting to a receiving End
System is based on a VL (deterministic routing). The Vir-
tual Link defines a logical unidirectional connection from
one source End-system to one or more destination End sys-
tems. It is a path with multicast characteristic. Figure 2
shows an example of a multicast Virtual Link, considering
the network architecture of figure 1. Its source End System
is an input of switch S1 and its destination End Systems are
outputs of switches S8, S3, S4 and S7. This VL includes the
four paths S1-S8, S1-S3, S1-S8-S4 and S1-S8-S4-S7 (they
are depicted as plain lines on figure 2).

S3S8

S4 S7

S6

S5S2

S1
src dest1 dest2

dest3 dest4

Figure 2. A multicast Virtual Link

The routing of each VL is statically defined. Only one
End System within the Avionics network can be the source
of one Virtual Link, (i.e., Mono Transmitter assumption).

The objective is to provide a logical isolation of VL: a
given maximum bandwidth is allocated to each VL. Regard-
less of the attempted utilization of a VL by one application,
the available Bandwidth on any other VL is unaffected.

A virtual Link is defined by the following parameters :

• the name of the VL,

• the Bandwidth Allocation Gap (BAG) of the VL,
which corresponds to the minimum delay between the
emission of two consecutive frames of the VL by its
source End System,

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)

0-7695-2619-5 /06 $20.00 © 2006 IEEE
Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 21,2020 at 15:56:58 UTC from IEEE Xplore. Restrictions apply.

Figure 5.7: Industrial-sized network topology. The figure is taken from [31].

after synchronizing the previous set of blocks. We start by FP-PLP blocks because classes considered

unstable in the initial phase (the TFA analysis outputs infinite bounds) might become stable after PLP

analysis. In contrast, DRRtree
T cannot improve the stability region.

The second implementation tightens as much as possible the DRR service curves and per-node delays

before executing again the first FP-PLP block (dashed arrow in Fig. 5.6). The aim of this implementation

is to execute the FP-PLP block less often as it is more time-consuming. Indeed, it requires solving a

much larger LP than in the other block. Therefore, the second block is executed several times until

convergence is reached on the delay bounds.

5.5.3 Post-Process Phase: Computing the End-to-End Delay

When the refinement phase of Section 5.5.2 has converged, we proceed and compute end-to-end delay

bound for each flow of interest. Strict service curves β obtained are piece-wise linear and convex. As

stated in Section 5.2.1, delays can be improved when considering the non-convex strict service curve

described in Fig. 5.3. Thus, we apply iPLPdelay to compute end-to-end delay bounds.

5.6 Numerical Evaluation

We use the network of Fig. 5.7, a test configuration provided by Airbus in [42]. The industrial-sized case

study of Chapter 4 is based on this network in [31]. It includes 96 end-systems, 8 switches, 984 flows,

and 6412 possible paths. The rate of the links is equal to R = 1 Gb/s, and every switch Si has a switching

105

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

Table 5.1: Traffic Characterization

Traffic Classes Number of Flows Assigned Quantum (bytes) Maximum Packet size (bytes)
Critical 834 3070 150

Multimedia 3845 1535 500
Best Efforts 1733 1535 1535

]

1000 2000 3000 4000 5000 6000

Source-Destination Pairs

0

20

40

60

80

100

120

140

160

D
el

ay
s

(m
s)

 Maximum link utilization = 89 %

TF
A-

SO
A,

PL
P-

SO
A,

an
d

TF
A-

D
R

R
gi

ve
 in

fin
ite

bo
un

ds
 fo

r
 c

la
ss

 2

TFA-SOA (state-of-the-art)
PLP-SOA (state-of-the-art)
TFA-DRR (Our initial phase)
PLP-DRR (Our full method)

1000 2000 3000 4000 5000 6000

Source-Destination Pairs

0

20

40

60

80

100

120

D
el

ay
s

(m
s)

 Maximum link utilization = 40 %

TF
A-

SO
A

an
d

PL
P-

SO
A

gi
ve

 in
fin

ite
bo

un
ds

 fo
r

 c
la

ss
 2

TFA-SOA (state-of-the-art)
PLP-SOA (state-of-the-art)
TFA-DRR (Our initial phase)
PLP-DRR (Our full method)

Figure 5.8: Delay bounds obtained by our methods, TFA-DRR and PLP-DRR (plain plots), and
the state-of-the-art, TFA-SOA and PLP-SOA (dashed plots). TFA-SOA and PLP-SOA use DRR
strict service curves in the degraded operational mode. TFA-SOA and PLP-SOA both provide
infinite bounds for class 2 even when the maximum link utilization is 40%. Source-destination
paths are ordered by values of our full method, and finite delays for other methods are shown
first.

0 1000 2000 3000 4000 5000 6000 7000

Source-Destination Pairs

0

10

20

30

40

50

60

D
el

ay
s

(m
s)

 Maximum link utilization = 89 %

TF
A

gi
ve

s
in

fin
ite

bo
un

ds
 fo

r
 c

la
ss

 2

TFA
TFA + iPLP
PLP-DRR (Our full method)

(a)

0 1000 2000 3000 4000 5000 6000 7000

Source-Destination Pairs

0

10

20

30

40

50

60

70

80

D
el

ay
s

(m
s)

 Maximum link utilization = 40 %

TFA
TFA + iPLP
PLP-DRR (Our full method)

(b)

Figure 5.9: Delay bounds of our method compared to alternative methods: comparison with 1)-2). At
link utilization 89%, TFA-DRR analysis gives infinite delays for class 2. Source-destination paths are
ordered by values of our full method, except in (a) where finite delays for TFA-DRR are shown first.

106

5.6 Numerical Evaluation

0 1000 2000 3000 4000 5000 6000 7000

Source-Destination Pairs

0

5

10

15

20

25

D
el

ay
s

(m
s)

 Maximum link utilization = 40 %

PLP-DRR without improv. of Section V-A
PLP-DRR (our full method)

(a)

0 100 200 300 400 500 600 700 800 900

Source-Destination pairs of class 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
el

ay
s

(m
s)

 Maximum link utilization = 40 %

PLP-DRR with PLP instead of iPLP
PLP-DRR (our full method)

(b)

Figure 5.10: Delay bounds of our method compared to alternative methods: comparison with 3)-4),
the effect of the two PLP improvements of Section 5.4.

latency equal to 16µs. Every switch has 6 input and 6 output end-systems. There are three classes of

flows: (1) critical, (2) multimedia, and (3) best-effort. Worst-case delay bounds are required for classes

1 and 2 only. There is one DRR scheduler at every switch output port with n = 3 classes (see Table 5.1

for details). For every flow, the path from the source to a destination can traverse at most 4 switches.

In Chapter 4, as our method only applies to feed-forward networks, flow paths are chosen randomly

with the constraint that graphs induced by flows are feed-forward. In this chapter, we removed this

restriction and, as the network has much redundancy, this automatically generates induced flow graphs

with cyclic dependencies, and is more representative of a realistic deployment. We obtain different

network utilization factors by varying the minimum packet inter-arrival times. We consider two modes:

when the network is lightly loaded with a maximum link utilization of 40%, and when the network is

highly loaded with a maximum link utilization close to 100%.

As of today, the only methods that compute bounds on the worst-case delay of DRR networks with

cyclic dependencies are TFA-SOA (see Section 5.2.2) and PLP-SOA (see Section 5.2.3) where they use

DRR strict service curves in degraded operational mode (see Section 5.2.1.1). As illustrated in Fig. 5.8,

our methods TFA-DRR and PLP-DRR significantly improve delay bounds and provide larger stability

regions.

As our method, PLP-DRR, contains a number of improvements, we perform a numerical analysis to

evaluate whether each of our improvement is useful or not. We compare our full method, PLP-DRR, to

the following four alternatives:

1. TFA-DRR: we apply the initial phase only; this is the best that can be obtained with TFA and DRR

service curves.

2. TFA-DRR + iPLP: we apply the initial phase and the post-process phase but do not apply the

refinement phase; this shows the effect of the refinement phase.

3. Full method but we do not use our improvement in Section 5.4.1 to compute per-aggregate

bounds; instead, we sum the burstiness bounds of every individual flow obtained using PLP; this

shows the effect of this PLP improvement.

107

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

4. Full method but with PLP instead of iPLP in the post-process phase; this shows the effect of this

PLP improvement.

In Fig. 5.9, we compare delay bounds of 1) and 2) to our full method; TFA diverges for class 2 at

link utilization of 89% whereas our full method remains stable at all link utilizations below 100%. In

Fig. 5.10 (a), we compare 3) to our full method. Our PLP improvements reduce the delay bounds as well

as the run-times: when we use PLP per aggregate, we solve fewer PLPs. In Fig. 5.10 (b), we compare 4) to

our full method. We show numerically that when delay bounds are small, iPLP captures a non-convex

part of DRR strict service curves and brings an improvement compared to PLP. Experimentally, the

improvements increase with the link utilization.

Note that infinite bounds might only be obtained in networks with cyclic dependencies that are highly

loaded (as we assume local stability), e.g., in the industrial network we tested, when the maximum

link utilization reaches 89%, TFA-DRR provides infinite bounds (see Fig. 5.9). Obtaining finite bounds

implies that the network is truly stable; whereas, obtaining infinite bounds does not necessarily imply

that the network is unstable, and the network might or might not be truly stable.

We use MATLAB on a 2.6 GHz 6-Core Intel Core i7 computer; thus, we have 6 workers to implement

our two parallel versions of Section 5.5.2. We provide the 95% confidence interval for the run-times

of the Initial phase (TFA) and two parallel implementations of the refinement phase at two different

maximum link utilization; we run the program 10 times. When the maximum link utilization is 40%

and 89%, 95% confidence intervals of run-times are provided in Table 5.2. Regarding the post-process

phase, we compare run-times of PLP and iPLP for the flows with the longest path. We run the program

100 time and give the 95% confidence intervals in Table 5.2.

Table 5.2: Run-times

Max Link Util. Initial Phase (TFA-DRR) Refinement Phase Version 1 Refinement Phase Version 2 Post-Process (iPLP) Post-Process (PLP)
40 % [0.5,0.6] (minutes) [5.8,5.9] (minutes) [4.6,4.7] (minutes) [6.4,6.5] (seconds) [5.7,5.75] (seconds)
89 % [3,4] (minutes) [9,10] (minutes) [5.5,6.5] (minutes)

Our full method, PLP-DRR, clearly dominates the bounds and the stability region compared to our

initial phase, TFA-DRR (see Fig. 5.9), but, comes with longer run times. As observed in this industrial-

sized network, PLP-DRR converges relatively fast, and bounds are obtained in several minutes; also, we

experimentally observe that even in a very large network (a ring-shaped topology with 20 nodes and 3

DRR classes), our method PLP-DRR converges in 6 hours; note that these run-times are obtained using

a 2.6 GHz 6-Core Intel Core i7 laptop, and one should expect a fraction of these run-times in a server

or a more powerful computing setup. Nevertheless, as long as PLP-DRR is feasible and has a finite

run-time, say hours, the extended running time of PLP-DRR compared to TFA-DRR is not a concern.

This is because, typically, finding delay bounds in a network setting is an offline problem, hence run

times that are in the order of several hours are acceptable. Moreover, our bounds in the refinement

phase are always valid even before convergence, hence, one can always stop iterating in the refinement

phase with respect to a run-time budget and obtain delay bounds that are at least as good as those of

the initial phase. Lastly, we experimentally observe that iPLP comes at a negligible cost compared to

PLP (see Table 5.2) even when the network becomes very large.

108

5.7 Proofs

5.7 Proofs

5.7.1 Proof of Theorem 5.1

We first prove Lemma 5.1: Consider a system S and a set of flows F that traverses S. Let A f (resp. D f)

denote the cumulative arrival (resp. departure) of flow f ∈ F . Let A = ∑
f ∈F A f (resp. D = ∑

f ∈F D f)

denote the arrival (resp. departure) of the aggregate of flows of interest. Assume that: (A1) System S is

causal, i.e., ∀(A,D) ∈S, A ≥ D and D(t) only depends on A(s)s≤t ; (A2) The departure D of system S is

continuous; (A3) Every flow of interest f ∈ F has a token-bucket arrival curve α f with rate r f and burst

b f ; also, α f is the only constraint on the arrival of the flow of interest, i.e., every cumulative arrival A f

constrained by α f is a possible arrival for this flow; (A4) B is a backlogged bound for every possible

arrival and departure of the aggregate of flows of interest that belongs to system S, i.e., ∀(A,D) ∈S, we

have A−D ≤B.

Lemma 5.1. Assume the assumptions (A1)-(A4). Then, the departure of the aggregate of the set of flows

of interest F is constrained by a token-bucket arrival curve with rate r and burst B where r =∑
f ∈F r f ,

i.e., γr,B .

Note that in a specific case where we have only one flow of interest, assumptions (A1)-(A4) are satisfied

by those of Theorem 4 of [68], and both theorems give exactly the same result. Also, this result already

appears in Corollary 2 of [161], unproved, and in a slightly more restrictive case.

Proof. Fix (A f ,D f) ∈ S for every f ∈ F and s ≤ t . Let r = ∑
f ∈F r and b = ∑

f ∈F b f . We prove that

D(t)−D(s) ≤ γr,B(t − s) =B+ r (t − s).

We first prove that A(s)−D(s)+H ≤B with H = b− b̄(s) and b̄(s)
def= supu≤s {A(s)−A(u)−r (s−u)}. Note

that b̄(s) is the bucket size of the token-bucket γr,b at time s, so H ≥ 0. Define A′ as follows: A′(u) = A(u)

for u ≤ s and A′(u) = A(s)+H + r (u − s) for u > s. Observe that A′ is constrained by γr,b and A′ ≥ A.

Hence, by (A3), A′ is a possible arrival in S: there exists D ′ such that (A′,D ′) ∈S. Hence, by (A4), we

have A′(s+)−D ′(s+) ≤B where f (x+) = limy→x,y>x f (y). As A′(u) = A(u) for u ≤ s and by (A1), we have

D ′(u) = D(u) for u ≤ s; also, by (A2), D ′(s+) = D ′(s). By combining this and A′(s+) = A(s)+H , we obtain

A(s)−D(s)+H ≤B.

To conclude, we notice that D(t)
(A1)≤ A(t) ≤ A′(t) = A(s)+H + r (t − s), so D(t)−D(s) ≤ A(s)+H + r (t −

s)−D(s) ≤B+ r (t − s).

Theorem 5 of [68] proves the correctness of PLP. The proof consists in showing that any trajectory

scenario of the network is a feasible solution of the PLP; given a trajectory scenario, the variables of

the PLP (time variable and process variables) are extracted from the scenario such that all constraints

are satisfied. We only add some arrival curve constraints for flows f ∈ F . In [68] it is shown that these

constraints are correct for a single flow and hence the same proof can be used for each flow f ∈ F .

In particular, Ft
v f , f
v0,0 (resp. Ftv0, f

v0,0) represents the arrival process (departure process from the system)

of flow f at time t(v0,0). No other constraint is modified. Only the objective function changes and

maximizes the quantity of data of the flows of interests at time t(v0,0):
∑

f ∈F Ft
v f , f
v0,0 −Ftv0, f

v0,0 is a backlog

bound the aggregate flows and PLPbacklog
g ,c computes a backlog bound for an aggregate of flows when F

is chosen to be the set of flows of class c traversing node or edge g . By Lemma 5.1, this is a bound on

the output burstiness.

109

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

5.7.2 Proof of Theorem 5.2

We proceed as explained in the last paragraph above and prove that the constraints we added are

correct. Specifically, we only need to prove that a solution of the linear problem satisfies (with the

notations previously introduced) Atv
u −Atv

v ≥ max(βv
c ,βnc,v

c)(t(u,dp(u)) − t(v,dp(v))). From (5.5) and (5.6),

Atv
u −Atv

v ≥βv
c (t(u,dp(u)) − t(v,dp(v))) holds, so we just need to focus on βnc,v

c , and distinguish two cases,

depending on the value of bv : This follows from the cases explained above (5.7) and (5.8) and the fact

that M is large enough. Hence, it finishes the proof of 1). As iPLP has more constraints than PLP, the

output of iPLP is less than or equal to that of PLP, which concludes 2).

5.7.3 Proof of Theorems 5.3 and 5.4

We use the following lemma. We assume a finite set of isotone mappings H , in C →C with C ⊆ (R+∪
{+∞})I . An execution of H is (hk , sk , tk ,uk)k≥1 such that: ∀k ≥ 1, (C1) hk ∈ H ; (C2) 0 < sk ≤ tk < uk ;

(C3) uk+1 > uk ; (C4) ∀k ′ ̸= k, (tk ,uk] and (tk ′ ,uk ′] are disjoint. We also assume that (C5) Each function

h ∈H is executed infinitely many times; (C6) limk→∞ sk =∞. In the description of Section 5.5.2, sk ,

tk , and uk , respectively, correspond to the reading time, locking, and unlocking times of the write

operation in the execution of the k-th refinement (by order of completion times). Let x0 ∈C be the state

of the memory at time 0. Given an execution (hk , sk , tk ,uk)k≥1, the state of the memory x(t) evolves

with time t as follows: x(t) is piece-wise constant, right-continuous; it is modified at times uk , k ≥ 1,

and x(uk) = min(x(tk),hk (x(sk)).

Lemma 5.2. There exists x∗ such that for all executions of H as explained above, limt→∞ x(t) = x∗.

Proof. Let us first prove that limt→∞ x(t) exists given (hk , sk , tk ,uk)k≥1. From (C2) and (C4), uk ≤ tk+1 <
uk+1 holds, so x(tk+1) = x(uk). Then, x(uk+1) = min(hk+1(x(sk+1)), x(uk)) ≤ x(uk), and (x(uk))k≥1 is a

non-increasing sequence in (R∪ {+∞})I , hence converges. As limk→∞ uk =+∞, x(t) converges.

Second, we prove that the limit of x only depends on the initial value x0. Consider two executions

(hk , sk , tk ,uk)k≥1, and (h′
k , s′k , t ′k ,u′

k)k≥1, and the state of their respective shared memory x and x ′, with

respective limits x∗ and x ′∗. Set u0 = 0 and define ϕ the following way: Set u′
0 = 0 and ϕ(0) = 0. For all

k ≥ 1, defineϕ(k) = min{k ′ ≥ 1, h′
k ′ = hk and s′k ′ ≥ u′

ϕ(k−1)}. In particular, by (C2) u′
ϕ(k−1) ≤ s′

ϕ(k) < u′
ϕ(k),

so by (C3) (ϕ(k))k≥1 is (strictly) increasing.

Let us now show by induction that x(uk) ≥ x ′(u′
ϕ(k)) for all k ≥ 0. The base case holds since x(0) =

x ′(0) = x0. Let us now assume that x(uk) ≥ x ′(u′
ϕ(k)).

On the one hand, x(uk+1) = min(hk+1(x(sk+1)), x(uk)). By induction hypothesis, x(uk) ≥ x ′(u′
ϕ(k)). By

construction hk+1 = h′
ϕ(k+1) and by (C2) sk+1 < uk+1, so x(sk+1) ≥ x(uk) ≥ x ′(u′

ϕ(k)). Then, it follows

that x(uk+1) ≥ min(h′
ϕ(k+1)(x ′(u′

ϕ(k))), x ′(u′
ϕ(k))).

On the other hand, x ′(u′
ϕ(k+1)) = min(h′

ϕ(k+1)(x ′(s′
ϕ(k+1))), x ′(t ′

ϕ(k+1))). By construction of ϕ, t ′
ϕ(k+1) ≥

s′
ϕ(k+1) ≥ u′

ϕ(k), so x ′(t ′
ϕ(k+1)) ≤ x ′(u′

ϕ(k)). We finally obtain x ′(u′
ϕ(k+1)) ≤ min(h′

ϕ(k+1)(x ′(u′
ϕ(k))), x ′(u′

ϕ(k))).

Hence, x(uk+1) ≥ x ′(u′
ϕ(k+1)), which proves the induction step.

Therefore, x∗ = limt→∞ x(t) = limk→∞ x(uk) ≥ limk→∞ x ′(u′
ϕ(k)) = x ′∗. Inverting the roles of the two

executions finishes the proof.

Proof of Theorem 5.4. The shared memory contains non-negative numbers (burstiness bounds and

110

5.8 Conclusion

per-node delays) and piece-wise linear convex functions (the DRR strict service curves). First, observe

that the piece-wise linear convex functions we deal with can be described by a finite set of elements of

R+∪ {+∞}. As explained in Section 5.1.1, the result of DRRserviceoutputBurst(βv ,bv) is the maximum of

a finite number of rate-latency functions, whose rates are in a finite set, depending on fixed parameters

(the arrival rates of flows) and the latencies are linearly decreasing with the output burstiness bounds

bv . Hence, the shared memory can be expressed as a family of x = (T,d , zcut,b).

5.7.3.1 Validity

Assuming valid initial bounds, the four types of functions used, PLPbacklog, FP-PLP, DRRserviceoutputBurst

and perNodeDelay (defining set H), provide valid bounds, proved in the literature. Moreover, if

(T,d , zcut,b) and (T ′,d ′, z ′cut,b′) are valid bounds, then (T ∧T ′,d ∧d ′, zcut ∧ z ′cut,b ∧b′) are also valid

bounds (where ∧ is the minimum operation). This is straightforward for the per-node delays and

burstiness bounds. For the service curves, it is enough to notice that the maximum of two strict service

curves for a node is also a strict service curve for that node. So if x(tk) and hk (x(sk)) represent valid

bounds, min(x(tk),hk (x(sk))) are also valid bounds, so x(t) always represents valid bounds.

5.7.3.2 Convergence

We then set C as the set of valid parameters for the problem and apply Lemma 5.2 where sk , tk , and

uk respectively correspond to the reading time, locking, and unlocking times of the write operation.

(C1)–(C3) hold by definition and (C4) because of the lock operation. (C5) follows from (H). Furthermore,

since there is a finite number of workers, (H) also implies that every execution completes except for at

most a finite number, which implies (C6).

Proof of Theorem 5.3. Consider lines 2-6 of Algorithm 5.1, and assume an infinite loop. The algorithm

is sequential and hence is a specific case of the shared memory computing, where updates are one

after the other, i.e., ∀k, sk+1 > uk . The variables x is the collection (T,d , z), and the initial value is +∞
at each coordinate except for two latencies per node and class (from line 1). Two types of functions

are used: GenericTFA and DRRserviceinputArrival (defining set H). Note that decreasing delays and

bursts decreases the latencies involved in the DRR service curves and conversely, so at each step

x(tk) = x(sk) ≥ hk (x(sk)) and x(uk) = hk (x(sk)), which is exactly how the algorithm is updated. As a

consequence, Lemma 5.2 can be applied: x(t) converges in R+∪ {+∞}.

5.8 Conclusion

We solved the problem of how to combine DRR strict service curves and the network analysis of PLP

in order to obtain worst-case delay bounds in time-sensitive networks. Our method is guaranteed

to find delay bounds that are at least as good as the state-of-the-art, and we found very significant

improvements in the industrial network under study. It is based on a generic shared memory execution

model, implementations of which can differ by the scheduling of the individual operations in the

refinement phase. We proved that all implementations produce the same bounds. We proposed two

concrete implementations and found that the latter performs faster.

111

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

5.9 Notation

Table 5.3: Notation List, Specific to Chapter 5

f , α f = γr f ,b f A flow, its token-bucket arrival curve
B v Aggregate strict service curve offered to v
E cut

c Cutset: removing E cut
c creates a tree or a forest for class c

Gc = (Vc ,Ec) The graph induced by flows of class c
V , v The set of all output ports, an output port
Vc The set of all output ports of class c
Ec , e The set of edges of class c, an edge of class c
Inc (v) ⊂ Ec The set of edges of class c that are incidents at node v
Outc (v) ⊂ Ec The set of edges of class c that leave node v
be

c Bound on aggregate burstiness of flows of class c carried by edge e
bv

c Bound on aggregate burstiness of flows of class c that exits node v
ze

c Collection of burstiness upper bounds for transit flows of class c carried by edge e
zE

c Collection of ze
c such that e ∈ E

z Collection of zEc
c of all classes c

b Collection of bv
c and be

c for every class c, every edge e, and every node v
dc Collection of delay bounds at all nodes for class c
d Collection of dc (per-node, per-class delay bounds)
βc Collection of per-node strict service curve offered to class c at all nodes
β Collection of βc (per-node, per-class strict service curves)
zcut Collection of zcut

c for all classes c
d v

c Delay bound on node v for class c
βv

c Strict service curve offered to class c at node v
zcut

c Upper bounds on the burstiness of flows of class c at cuts E cut
c

βR,T βR,T (t) = R[t −T]+, rate-latency function

βCDM,v
c DRR strict service curve, no assumption on arrival curves

βnc,v
c Non-convex DRR strict service curve
R+ Set of non-negative real numbers
F Set of wide-sense increasing functions f :R+ 7→R+∪ {+∞}
γr,b Token-bucket function with γr,b(0) = 0 and γr,b(t) = r t +b for t > 0

112

Appendix

5.A Detailed Background on DRR Strict Service Curves

Here we present more background on DRR strict service curves of Chapter 4, using the notations and

assumptions used in this chapter, that enables a reader to implement what we use in the chapter.

5.A.1 Degraded Operational Mode

Here we present Corollary 4.2 of Chapter 4 that presents a convex strict service curve for DRR, in

degraded operational mode:

Let v be a node that, shared by n classes, uses DRR, as explained in Section 5.1.1, with quantum Qv
c for

class c. The node offers a strict service curve B v to the aggregate of the n classes. For any class c, d max
c

is the maximum residual deficit defined by d max
c = l max

c −ϵ where l max
c is an upper bound on the packet

size of flows of class c at node v and ϵ is the smallest unit of information seen by the scheduler (e.g.,

one bit, one byte, one 32-bit word, ...).

Then, for every c, v offers to class c a strict service curve βCDM,v
c given by βCDM,v

c (t) = γconvex
i (B v (t))

with

γconvex
i = max

(
βRmax

c ,T max
c

,βRmin
c ,T min

c

)
(5.10)

Rmax
c = Qv

c

Qv
tot

, T max
c =

∑
c ′,c ′ ̸=c

(
Qv

c ′ +d max
c ′ +

Qv
c ′

Qv
c

d max
c

)
(5.11)

Rmin
c = Qv

c −d max
c

Qv
tot −d max

c
, T min

c =
∑

c ′,c ′ ̸=c

(
Qv

c ′ +d max
c ′

)
(5.12)

and Qv
tot =

∑
c Qv

c . In (5.10), βR,T is a rate-latency function defined in Table 5.3.

For the non-convex strict service curve, βnc,v
c , we have

q v
c =Qv

c −d max
c (5.13)

T1 = T min
c (5.14)

113

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

5.A.2 Non-Degraded Operational Mode

Here we present a new formulation of Corollary 4.4. We slightly generalize Corollary 4.4, using

Lemma 4.1, such that it enables us to take into account any available output arrival curves. Specifically,

Corollary 4.4 is an application of this new formulation where we replace α∗
c ′ with αc ′ ⊘βold

c ′ , which is an

output arrival curve for class c ′, in (5.15). Note that ⊘ is the min-plus deconvolution defined in (2.9).

Let v be a node with the assumptions in Section 5.A.1. Also, assume that every class c has an output

arrival curve α∗
c and a strict service curve βold

c , and let Nc = {c1,c2, . . . ,cn} \ {c}, and for any J ⊆ Nc , let

J̄ = Nc \ J . Then, for every class c, a new strict service curve βnew
c is given by

βnew
c = max

βold
c ,max

J⊆Nc
γconvex

i
J ◦

[
B v −

∑
c ′∈ J̄

α∗
c ′

]+

↑

 (5.15)

with

γconvex
i

J = max
(
βRmax

c
J ,T max

c
J ,β

Rmin
c

J
,T min

c
J

)
(5.16)

Rmax
c

J = Qv
c

Q J ,c
tot

, T max
c

J =
∑

c ′∈J

(
Qv

c ′ +d max
c ′ +

Qv
c ′

Qv
c

d max
c

)
(5.17)

Rmin
c

J = Qv
c −d max

c

Q J ,c
tot −d max

c

, T min
c

J =
∑

c ′∈J

(
Qv

c ′ +d max
c ′

)
(5.18)

Q J ,c
tot =Qc +

∑
c ′∈J

Qc ′ (5.19)

In (5.15), [.]+↑ is the non-decreasing and non-negative closure: The non-decreasing and non-negative

closure
[

y
]+
↑ of a function y :R+ →R+∪ {+∞} is the smallest non-negative, non-decreasing function

that upper bounds y . Also, ◦ is the composition of functions. In (5.16), βR,T is a rate-latency function

defined in Table 5.3; note that a rate-latency function, as defined in Table 5.3, has a rate expressed in

bit/s, and a latency expressed in seconds, however, rate and latencies defined in (5.17) and (5.18) are

respectively unitless and in bits. This is because βRmax
c

J ,T max
c

J and β
Rmin

c
J
,T min

c
J are later composed by a

function expressed in bit/s, in (5.15), hence the final results also are in bit/s and seconds.

The essence of (5.15) is as follows. Equation (5.15) gives new strict service curves βnew
c for every flow

c; they are derived from already available strict service curves βold
c and from output arrival curves of

classes α∗
c ; this enables us to improve any collection of strict service curves that are already obtained.

LetΠconvex
v : F 2n →F n be the mapping at server v that maps

(
βold

1 ,βold
2 , . . . ,βold

n

)
using

(
α∗

1 ,α∗
2 , . . . ,α∗

n

)
to

(
βnew

1 ,βnew
2 , . . . ,βnew

n

)
as in (5.15). Then, an iterative scheme can be defined as in Algorithm 5.3.

In Chapter 4, we showed that for every class c , βold
c and βnew

c are strict service curves for class c and

βold
c ≤βnew

c , i.e., an increasing sequence of strict service curves is obtained for every class. Also, this

sequence is a guaranteed simple convergence, starting from any valid initial strict service curves. Note

that the computed strict service curves at each iteration are valid and hence can be used to derive

valid delay bounds; this means the iterative scheme can be stopped at any iteration. For example, the

iterative scheme can be stopped when the delay bounds of all classes decrease insignificantly. The

scheme requires being initialized by strict service curves. We use βCDM,v
c , obtained in Section 5.A.1 for

the initial strict service curves at lines 1-2.

114

5.B Detailed Background on PLP

Algorithm 5.3: DRRserviceinputArrival
v (α1, . . . ,αn)

Result: Collection of strict service curves
(
βv

1 , . . . ,βv
n

)
Local Variables :Collections of strict service curves

(
βold

1 , ...,βold
n

)
and

(
βnew

1 , ...,βnew
n

)
1 for c ← 1 to n do
2 βold

c ←βCDM,v
c ;

3 while Stopping criteria not reached do
4 for c ← 1 to n do
5 α∗

c ←αc ⊘βold
c ;

6 βnew ←Πconvex
v

(
α∗,βold

)
;

7 βv ←βnew;
8 return

(
βv

1 , . . . ,βv
n

)

When every class c has a token-bucket arrival curve at the output, say γrc ,bv
c

, and a known strict service

curve βv
c , DRRserviceoutputBurst

v
(
βv ,bv

)
is the function that implements (5.15) (i.e., Πconvex

v defined

above) and returns an improved collection of strict service curves for all classes at node v .

5.B Detailed Background on PLP

Here we present more background on PLP of [68], using our notations, which enables a reader to

implement what we use in the chapter. Specifically, we summarize linear programs used by PLP. For

the rest of the section, a reader is invited to recall the definitions of Section 5.4. Readers who know

reference [68] can map our notations to those of [68] and vice-versa as follows: For time variables, map

t(j ,k) of [68] to t(v,k) by mapping j to v . For process variables, map F j
i t(j ′,k) of [68] to Ftv, f

v ′,k by mapping

j to v , i to f , and j ′ to v ′.

Note that linear programs of [68] contains some constraints obtained from the Single Flow Analysis

(SFA) delay bounds [40]. However, in practice, such constraints have no or negligible effects as SFA

bounds are often dominated by those of TFA. Hence, in this chapter, we do not use SFA constraints.

5.B.1 PLPdelay
f ,c : A PLP That Computes an End-to-end Delay Bound for a Single

Flow

The goal of PLPdelay
f ,c (βc ,dc , zcut

c) is to find a valid end-to-end delay bound for a flow of interest f that

belongs to a class c. We assume a sub-tree of the cut network where the root is the sink server of the

flow of interest f (i.e., the last server is traversed by flow f). Recall that we add an artificial node, node

v0, that is the successor of the root. We call V
f

c the set of output ports in this sub-tree. We assume

that the burstiness of flows at cuts is given, i.e., zcut
c . Also, for each node v , a convex, piece-wise linear

service curve (i.e., βc) and a per-node delay bounds (i.e., dc) are provided.

5.B.1.1 Constraints

In the constraints we define below, let server u = sc(v) be the successor of server v . Also, we denote

flows by g , not to be confused by the flow of interest f .

115

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

• Time Constraints:

- ∀v ∈ V
f

c , ∀k ∈ [0, dp(v)−1],t(v,k) ≥ t(v,k+1);

- ∀v ∈ V
f

c , ∀k ∈ [0, dp(v)],t(v,k) ≤ t(u,k).

• FIFO Constraints:

- ∀v ∈ V
f

c , ∀k ∈ [0, dp(u)],∀g ∈ Inc (v),Ftv,g
v,k = Ftu,g

u,k .

• Service Curve Constraints:

Recall thatβv
c is piece-wise linear convex (i.e.,βv

c = maxp βRv
p ,T v

p
)), and also recall Atv

u =∑
g∈In(v) Ftu,g

u,dp(u)

and Atv
v =∑

g∈In(v) Ftv,g
v,dp(v), where u = sc(v). Then, ∀v ∈ V

f
c ,

- Atv
u −Atv

v ≥ 0;

- ∀p, Atv
u −Atv

v ≥ Rv
p

(
t(u,dp(u)) − t(v,dp(v)) −T v

p

)
.

• Per-node Delay Bound Constraints:

- ∀v ∈ V
f

c , ∀k ∈ [0, dp(u)], t(u,k) − t(v,k) ≤ d v
c .

• Arrival Curve Constraints:

For each flow g of class c, recall that vg is the source server of flow g . Define b̄g , the burstiness bound

of flow g , as follows: If flow g is a fresh flow, its arrival curve is a token-bucket arrival curve γrg ,bg , as

defined in Section 5.1, and thus b̄g = bg . Else, flow g is a cut flow, its arrival curve is a token-bucket

arrival curve γrg ,b̄g
where b̄g is obtained from zcut

c .

For every flow g ,

- ∀0 ≤ k < k ′ ≤ dp(vg), Ft
vg ,g
vg ,k −Ft

vg ,g
vg ,k ′ ≤ b̄g + rg

(
t(vg ,k) − t(vg ,k ′)

)
.

• Shaping Constraints:

For every v ∈ V
f

c and every edge e = (v,u), let Fv,u be the set of flows of class c, carried by the edge

e = (v,u). Then,

- ∀0 ≤ k < k ′ ≤ dp(u),
∑

g∈Fv,u

(
Ftu,g

u,k −Ftu,g
u,k ′

)
≤ l max

c +Rv
(
t(u,k) − t(u,k ′)

)
.

• Monotonicity Constraints:

Recall that for each flow g of class c, vg is the source server of flow g . Then, for every flow g ,

- ∀k ∈ [0,dp
(
vg

)−1], Ft
vg ,g
vg ,k ≥ Ft

vg ,g
vg ,k+1.

5.B.1.2 Objective

The Objective is max
(
t(v0,0) − t(v f ,0)

)
.

116

5.B Detailed Background on PLP

5.B.2 PLPbacklog
f ,c : A PLP That Computes a Backlog Bound for a Single Flow

The goal of PLPbacklog
f ,c (βc ,dc , zcut

c) is to find a valid backlog bound for a flow of interest f that belongs

to a class c. By [68, Theorem 4], the objective of this linear program, is a bound on the burstiness of

flow f at the output of node v .

5.B.2.1 Constraints

This linear program contains all the constraints of PLPdelay
f ,c , defined in Section 5.B.1, with the following

changes:

First, for shaping constraints, we should remove the flow of interest f from Fv,u . Specifically, we should

replace Fv,u by Fv,u \ { f }, i.e., the set of flows of class c, carried by the edge e = (v,u), excluding flow of

interest f .

Second, we add the following constraints: Recall that v f is the source of flow of interest f .

- ∀k ∈ [0,dp
(
v f

)
], Ft

v f , f
v0,0 −Ft

v f , f

v f ,k ≤ b f + r f

(
t(v0,0) − t(v f ,k)

)
.

5.B.2.2 Objective

The Objective is max
(
Ft

v f , f
v0,0 −Ftv0, f

v0,0

)
.

5.B.3 FP-PLPc : A PLP That Computes Bounds on The Burstiness of Flows at Cuts

The goal of FP-PLPc (βc ,dc) is to find valid bounds on the burstiness for flows of class c at cuts, i.e., to

compute valid values for zcut
c . We assume for each node v , a convex, piece-wise linear service curve

(i.e., βc) and a per-node delay bounds (i.e., dc) are provided.

Let F cut
c be the set of cut flows of class c. For each flow f ∈ F cut

c , we define a variable x f that represents

the burstiness of the arrival curve of flow f at its source. FP-PLPc is constructed as follows: For each

cut flow f ∈ F cut
c , a fresh set of time and process variables is defined, and all constraints of PLPbacklog

f ,c ,

defined in Section 5.B.2, are added to the set of constraints of FP-PLPc ; The common variables between

constraints of different cut flows are only x f variables. Then, FP-PLPc maximizes the sum of all x f

variables; it is shown that in [68, Theorems 7 and 8], if the solution is bounded, the values of x f in the

solution, are valid bounds on the burstiness of cut flows.

5.B.3.1 Constraints

We define the constraints of FP-PLPc as follows:

• For each fresh flow f ∈ F cut
c (i.e., flow f has an arrival curve γb f ,r f

), we add x f ≤ b f ;

• For each transit flow f ∈ F cut
c (i.e., a flow that is not a fresh flow), we first define a fresh set of time and

process variables, say t and Ft, and we add all constraints of PLPbacklog
f ,c , defined in Section 5.B.2. Also,

the objective of PLPbacklog
f ,c is added as an constraint for x f : x f ≤

(
Ft

v f , f
v0,0 −Ftv0, f

v0,0

)
. Note that for arrival

117

Chapter 5. Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit
Round-Robin

curve constraints of a cut flow g ∈ F cut
c , the burstiness b̄g is replaced by the variable xg .

5.B.3.2 Objective

The Objective is max
∑

f ∈F cut
c

x f .

118

Part IIIEfficient and Accurate Handling of
Periodic Flows in Time-Sensitive

Networks

119

6 Total Flow Analysis For Time-Sensitive
Networks with Periodic Sources

Within time-sensitive networks, a realm profound,

Total Flow Analysis, its insights unbound.

With service curves characterized, nodes unfold,

And affine curves, their stories once told.

Yet periodic flows, a challenge we find,

Affine curves, their bounds left behind.

Enter UPP, the pseudo-periodic grace,

Capturing periodicity, a flawless embrace.

Existing tools, their limitations disclosed,

Many flows and UPP, intractability imposed.

But fear not, for a solution is near,

Finite-Horizon TFA, its path is clear.

Horizons finite, a focused gaze,

Restricting curves, traversing boundless maze.

Cyclic dependencies, their complexities untold,

Finite-Horizon TFA, its power behold.

Numerical wonders, in computations we see,

Bounds improved, where linear curves used to be.

Feasibility maintained, efficiency in sight,

As the method shines, revealing its might.

So let this chapter commence, a journey profound,

Finite-Horizon TFA, its marvels abound.

In time-sensitive networks, bounds refined,

Affine curves surpassed, a new era defined.

Created with ChatGPT, free research preview (version May 24) [141]

So far, we have addressed the service curve characterizations being, in some cases, too simple or non-

existent in previous works. As explained in Section 1.3.1, in addition to service curve characterizations

of network nodes, obtaining end-to-end delay bounds requires knowing arrival curve constraints of

flows at their sources. It is then crucial to find accurate arrival curve constraints for flows, in particular,

for periodic flows that are a common and critical type of traffic in time-sensitive networks. We assume

121

Chapter 6. Total Flow Analysis For Time-Sensitive Networks with Periodic Sources

that flows are grouped into classes, packets inside one class are processed First-In-First-Out (FIFO) and

classes are isolated using schedulers. The number of bits that flows can generate is limited at sources

by arrival curve constraints and the service offered by a node to a class is characterized by means of a

service curve.

Total Flow Analysis (TFA) [62, 63] obtains end-to-end delay bounds in FIFO networks and can be

applied to per-class networks that are FIFO per class, where a service curve is known at every node

and an arrival curve is known for every flow at the source. When the network is feed-forward, validity

and correctness of TFA are shown with arrival curves and service curves of generic shapes. TFA is

extended to networks with cyclic dependencies by FixPoint-TFA (FP-TFA) [119] and its variants such

as SyncTFA [64], however with the restriction that arrival and service curves should be linear (i.e.,

token-bucket arrival curves and rate-latency service curves). Such a restriction often results in bounds

that are pessimistic as they cannot accurately abstract the arrival model and the service model. For

instance, for periodic flows, common in real-time and time-sensitive networks, a pseudo-periodic

arrival curve, a stair function, exactly captures the periodic behavior of the flow traffic (see Fig. 6.1.1).

As another example, non-convex service curves for schedulers such as Deficit Round-Robin (Chapter 4),

Weighted Round-Robin (Chapter 3), and Credit Base Shaper [162] are known to improve delay bounds

compared to rate-latency ones, as they accurately capture the scheduler’s behavior (see Fig. 6.1.1). For

time-sensitive networks, as in the context of IEEE TSN and IETF DetNet, cyclic dependencies are linked

to certain primary properties, such as improving availability and decreasing reconfiguration effort,

hence they are important and cannot be ignored. However, as of today, methods that analyze networks

with cyclic dependencies are restricted to only linear curves, hence are potentially pessimistic.

Our first step is to generalize the theory of FP-TFA to arrival and service curves of generic shapes, which

provides tighter bounds for networks with cyclic dependencies. Specifically, we present a new version

of FP-TFA, called Generic FP-TFA (GFP-TFA), and prove its validity and correctness for arrival and

service curves with generic shapes (Theorem 6.3). GFP-TFA is not a practical algorithm when there are

many periodic sources, as we explain next; however, it serves as a theoretical reference; furthermore, it

is used as a building block in the main algorithm later presented in this chapter.

Tools such as RTaW [92], Nancy [93], DiscoDNC [94], etc. use infinite precision arithmetic (with rational

numbers) and implement Ultimately Pseudo-Periodic (UPP) curves; UPP curves have a transient part

at the beginning, followed by a periodic pattern. UPP curves are of interest in practice as they have

a finite representation, and moreover, they capture periodic behaviors (see Fig. 6.1.2). For instance,

in the case of periodic flows, UPP curves can accurately describe their periodic arrival curve, and in

the case of service curves, UPP curves can describe non-convexity. However, applying GFP-TFA with

many flows and UPP curves quickly becomes intractable. This is because when aggregating several

UPP curves, the pseudo-period of the aggregate function might become extremely large; moreover, the

required memory to store the aggregate function might explode as the number of segments required to

describe the aggregate function quickly grows (see Fig. 6.2.1). An example where this issue occurs is the

avionic onboard communication system analyzed in [95]. More industrial examples can be found in

Section 7.5.

An attempt to overcome this issue consists in replacing periods by smaller values such that the hyper-

periods remain small, e.g., when aggregating three UPP curves with pseudo-periods equal to 3, 4,

and 8, the hyper-period becomes 24; but, the pseudo-period 3 can be safely replaced by 2 thus the

hyper-period becomes 8. However, this increases the load, hence the bounds, and moreover, it is not

robust: It should be reapplied whenever a change happens, e.g., a period changes or a new periodic

flow is added. Also, if a network is highly loaded, tweaking periods might violate local stability and the

122

network analysis fails. This is why, for tractability, TFA is generally applied with linear arrival curves.

In summary, on the one hand, we have UPP curves that provide good bounds, but applying GFP-TFA

with many periodic flows and UPP curves might be practically intractable; on the other hand, we have

linear curves, which are very tractable but provide less good bounds. Authors in [163] show that the

network-calculus delay-computation (i.e., horizontal deviation) only depends on a finite part at the

beginning of the arrival curve and the service curve and not the complete curves. This motivates us to

find a middle point, namely, curves that follow original, UPP curves up to a finite horizon, and beyond

that, follow simpler, linear curves. An Ultimately Affine (UA) curve can exactly capture this: a UA curve

has a transient part at the beginning, followed by a linear curve (see Fig. 6.1.2); working with UA curves

mitigates the description complexity of UPP curves for an aggregate curve (see Fig. 6.2.1). Moreover, as

UA curves are a subset of UPP curves, one can use a UPP implementation to handle UA curves. The

main problem is now how to carefully construct such UA curves, from original, UPP curves and their

linear upper/lower bounds, such that the end-results are not affected, i.e., as good as those obtained

with original, UPP curves.

In order to solve this problem, we propose a second new version of TFA, called Finite Horizon Total

Flow Analysis (FH-TFA), which can be viewed as an efficient, practical replacement for GFP-TFA, and

hence can be applied to networks with cyclic dependencies. The method computes sufficient finite

horizons for every UPP arrival and service curve by adopting the compact domains of [163]. Note that

the results about compact domains in [163] that are presented for a single node do not directly apply to

TFA or FP-TFA; indeed, in a network analysis, arrival curves of flows increase as flows go deeper into

the network, hence the compact domains required for delay computations increase as well. To address

this, FH-TFA first applies FP-TFA using linear curves; this is very fast and provides enough information

to compute sufficient finite horizons. Next, it constructs UA curves where the duration of the transient

part is set to the computed sufficient finite horizons (see Fig. 6.4.1). Last, it applies GFP-TFA with these

UA curves; the complexity is small due to the replacement of UPP curves by UA curves. In the common

case where service curves are super-additive, we prove that FH-TFA produces the very same bounds as

the intractable GFP-TFA (Theorem 6.4). Since FH-TFA is considerably less complex, this provides a

tractable, efficient solution to the analysis of networks with UPP curves.

The contributions of this chapter are as follows:

• We develop and validate FH-TFA, an algorithm that provides delay bounds for deterministic

networks with generic topology, and generic arrival and service curves that are implemented as

UPP or UA curves (Theorem 6.4). In contrast, for networks with cyclic dependencies, existing

versions of TFA are limited to linear arrival and service curves, which may affect the quality of

the delay bounds.

• We develop and validate GFP-TFA, an algorithm that generalizes the theory of existing versions

of TFA (FP-TFA) to arrival curves and service curves of generic shapes, and provides tighter

bounds for networks with generic shapes (Theorem 6.3). GFP-TFA is used to derive a building

block of FH-TFA and to establish the validity of FH-TFA. GFP-TFA is of independent interest, but

in practice applying it with many periodic sources with different periods might be intractable. In

the common case where the service curves are super-additive, FH-TFA produces the very same

bounds as the GFP-TFA (item (2) of Theorem 6.4) but at considerably less complexity.

• FH-TFA always provides valid delay bounds that are guaranteed to be less than or equal to those

obtained by FP-TFA (item (1) of Theorem 6.4).

• FH-TFA is thus the only known method that obtains formally proven delay bounds with TFA,

123

Chapter 6. Total Flow Analysis For Time-Sensitive Networks with Periodic Sources

�r,b

⌫p,b

p 2p 3p 4p

b
2b
3b
4b

non-convex service

�c,LL

Fig. 2: Left: the stair function ⌫b,p 2 F defined for t � 0 by
⌫b,p(t) = b

l
t
p

m
and token-bucket function �r,b 2 F defined for

t > 0 by �r,b(t) = b + rt and for t = 0 by �r,b(0) = 0 (in
the figure, we have r = b

p
). Right: a non-convex service curve

and a rate-latency �c,L 2 F that lower bounds it with �c,L(t) =
max (0, c (t� L)).

(f ↵ �d) (t) = f(t + d) (left-shift).

B. Total Flow Analysis (TFA)

Total Flow Analysis (TFA) [5]–[8] is a method for obtaining
worst-case delay and backlog bounds in a FIFO network. In
a network where a service curve is known at every node and
an arrival curve for every flow is known at the source, one
run of TFA returns a valid delay bound at every node and
propagated burstiness for flows. Although TFA is simple and
modular, it takes into account the effect of packetizer and line-
shaping. When the graph induced by flows is feed-forward
(i.e, cycle-free), each node is visited in the topological order,
whereby a delay bound and output burstiness bounds of flows
are computed; output burstiness of flows are used as an input
by the following nodes. If the graph induced by flows has
cyclic dependencies, a topological order cannot be defined;
instead an iterative method is used and a fixpoint is computed
[7], [8]. The method in [7], called FP-TFA, requires to first
make some artificial cuts in the induced graph in order to
create a feed-forward network. It then computes estimated
burstiness of flows at cuts and iterates. It is shown that, if
the iteration converges, the obtained fixpoint is a valid bound
on the burstiness of flows at cuts, and the network is stable.
Other versions of TFA that do not make cuts are presented
in [8], where it is shown that they are equivalent to FP-
TFA, i.e., they provide the same bounds and stability regions
[8]. For networks with cyclic dependencies, all versions of
TFA assume only token-bucket arrival curves and rate-latency
service curves, and the validity of the results are shown with
these assumptions. In Section IV, we provide a new version
of FP-TFA, called Generic FP-TFA (GFP-TFA), that can be
applied with any arrival curves and service curves of generic
shapes, including UPP and UA ones. When arrival curve are
token-bucket and service curves are rate-latency, GFP-TFA is
essentially the same as FP-TFA.

C. Compact Domains for Delay Computation

It has been observed in [15] that, for some systems, the
computation of the delay bounds does not require to handle
the full function (i.e., all values of the function for all time
t in [0, +1)), but only its values on a finite prefix domain.
However, the theory in [15] lacks a proof that computation
in such compact domains does not affect the accuracy of

the end-results. The challenge consists in computing in each
node a value h such that the computation on the compact
domain [0, h] is sufficient to get accurate result on this node
but also on the next ones along the flow path. The intuition
is the following: Consider a flow that traverses two nodes in
sequence. Assume that the first node (resp. the second node)
requires that the arrival curve of the flow at the input of the
node is accurate in [0, h] (resp. [0, h0]). As the arrival curve
of the flow increases along the path and some information
is lost at propagation, arrival curve of the flow at the input
of the first node should be accurate for some [0, h00] where
h00 > max(h, h0) is large enough.

Authors in [22] derive compact domains where they prove
that the accuracy of the end-results are not affected; their
results and proofs only hold for input/output relations in
acyclic network of the Greedy-Processing Component (GPC),
used in Real-Time Calculus (RTC).

Authors in [16] derive such compact domains, in a more
general context. They show that, at a single node where an
arrival curve and a service curve are known, network calculus
operations, including delay computations, can be restricted
to finite domains without affecting the end-results. Here, we
rewrite one of their findings that we use in the paper, using
our notation:

Theorem 1 (Theorem 4 of [16]). Consider a flow constrained
by an arrival curve ↵ that traverse a node that offers a super-
additive service curve �. Let ↵0 and ↵00 be a lower bound and
upper bound, respectively, for ↵, i.e., ↵0  ↵  ↵00. Also, let
�0 and �00 be an upper bound and lower bound, respectively,
for �, i.e., �00  �  �0. Define

h↵ def
= max (u, v) and h� def

= max (u + D00, v) (1)

with

D0 = hDev (↵0, �0) (2)
B0 = vDev (↵0, �0) (3)
u = sup

t�0
{↵00(t) � �00(t + D0)} (4)

v = sup
t�0

{↵00(t) � �00(t) + B0} (5)

D00 = hDev (↵00, �00) (6)

Then, the horizontal deviation hDev(↵, �) and the vertical
deviation vDev(↵, �) depend only on the values of ↵(t) for
t 2 [0, h↵] and �(t) for t 2

⇥
0, h�

⇤
(see Section II-A2 for

definitions of super-additive service curve, hDev and vDev.)

Note that in the above, ↵00 and �00 are valid, safe arrival
curve and service curve, respectively; however, ↵0 and �0

are unsafe arrival curve and service curve, respectively. Note
that the method requires that service curves are super-additive
(see Section II-A2). Authors in [16] also find such compact
domains for min-plus deconvolution, and explain how to
integrate such compact domains with Pay-Burst-Only-Once
(PBOO) [14] and Pay-Multiplexing-Only-Once (PMOO) [14]
principles in sink-tree networks with arbitrary multiplexing.

�r,b

⌫p,b

p 2p 3p 4p

b
2b
3b
4b

non-convex service

�R,LL

Fig. 2: Left: the stair function ⌫b,p 2 F defined for t � 0 by
⌫b,p(t) = b

l
t
p

m
and token-bucket function �r,b 2 F defined for

t > 0 by �r,b(t) = b + rt and for t = 0 by �r,b(0) = 0 (in
the figure, we have r = b

p
). Right: a non-convex service curve

and a rate-latency �c,L 2 F that lower bounds it with �c,L(t) =
max (0, c (t� L)).

(f ↵ �d) (t) = f(t + d) (left-shift).

B. Total Flow Analysis (TFA)

Total Flow Analysis (TFA) [5]–[8] is a method for obtaining
worst-case delay and backlog bounds in a FIFO network. In
a network where a service curve is known at every node and
an arrival curve for every flow is known at the source, one
run of TFA returns a valid delay bound at every node and
propagated burstiness for flows. Although TFA is simple and
modular, it takes into account the effect of packetizer and line-
shaping. When the graph induced by flows is feed-forward
(i.e, cycle-free), each node is visited in the topological order,
whereby a delay bound and output burstiness bounds of flows
are computed; output burstiness of flows are used as an input
by the following nodes. If the graph induced by flows has
cyclic dependencies, a topological order cannot be defined;
instead an iterative method is used and a fixpoint is computed
[7], [8]. The method in [7], called FP-TFA, requires to first
make some artificial cuts in the induced graph in order to
create a feed-forward network. It then computes estimated
burstiness of flows at cuts and iterates. It is shown that, if
the iteration converges, the obtained fixpoint is a valid bound
on the burstiness of flows at cuts, and the network is stable.
Other versions of TFA that do not make cuts are presented
in [8], where it is shown that they are equivalent to FP-
TFA, i.e., they provide the same bounds and stability regions
[8]. For networks with cyclic dependencies, all versions of
TFA assume only token-bucket arrival curves and rate-latency
service curves, and the validity of the results are shown with
these assumptions. In Section IV, we provide a new version
of FP-TFA, called Generic FP-TFA (GFP-TFA), that can be
applied with any arrival curves and service curves of generic
shapes, including UPP and UA ones. When arrival curve are
token-bucket and service curves are rate-latency, GFP-TFA is
essentially the same as FP-TFA.

C. Compact Domains for Delay Computation

It has been observed in [15] that, for some systems, the
computation of the delay bounds does not require to handle
the full function (i.e., all values of the function for all time
t in [0, +1)), but only its values on a finite prefix domain.
However, the theory in [15] lacks a proof that computation
in such compact domains does not affect the accuracy of

the end-results. The challenge consists in computing in each
node a value h such that the computation on the compact
domain [0, h] is sufficient to get accurate result on this node
but also on the next ones along the flow path. The intuition
is the following: Consider a flow that traverses two nodes in
sequence. Assume that the first node (resp. the second node)
requires that the arrival curve of the flow at the input of the
node is accurate in [0, h] (resp. [0, h0]). As the arrival curve
of the flow increases along the path and some information
is lost at propagation, arrival curve of the flow at the input
of the first node should be accurate for some [0, h00] where
h00 > max(h, h0) is large enough.

Authors in [22] derive compact domains where they prove
that the accuracy of the end-results are not affected; their
results and proofs only hold for input/output relations in
acyclic network of the Greedy-Processing Component (GPC),
used in Real-Time Calculus (RTC).

Authors in [16] derive such compact domains, in a more
general context. They show that, at a single node where an
arrival curve and a service curve are known, network calculus
operations, including delay computations, can be restricted
to finite domains without affecting the end-results. Here, we
rewrite one of their findings that we use in the paper, using
our notation:

Theorem 1 (Theorem 4 of [16]). Consider a flow constrained
by an arrival curve ↵ that traverse a node that offers a super-
additive service curve �. Let ↵0 and ↵00 be a lower bound and
upper bound, respectively, for ↵, i.e., ↵0  ↵  ↵00. Also, let
�0 and �00 be an upper bound and lower bound, respectively,
for �, i.e., �00  �  �0. Define

h↵ def
= max (u, v) and h� def

= max (u + D00, v) (1)

with

D0 = hDev (↵0, �0) (2)
B0 = vDev (↵0, �0) (3)
u = sup

t�0
{↵00(t) � �00(t + D0)} (4)

v = sup
t�0

{↵00(t) � �00(t) + B0} (5)

D00 = hDev (↵00, �00) (6)

Then, the horizontal deviation hDev(↵, �) and the vertical
deviation vDev(↵, �) depend only on the values of ↵(t) for
t 2 [0, h↵] and �(t) for t 2

⇥
0, h�

⇤
(see Section II-A2 for

definitions of super-additive service curve, hDev and vDev.)

Note that in the above, ↵00 and �00 are valid, safe arrival
curve and service curve, respectively; however, ↵0 and �0

are unsafe arrival curve and service curve, respectively. Note
that the method requires that service curves are super-additive
(see Section II-A2). Authors in [16] also find such compact
domains for min-plus deconvolution, and explain how to
integrate such compact domains with Pay-Burst-Only-Once
(PBOO) [14] and Pay-Multiplexing-Only-Once (PMOO) [14]
principles in sink-tree networks with arbitrary multiplexing.

Figure 6.1.1: Left: the stair function νb,p ∈F defined for t ≥ 0 by νb,p (t) = b
⌈

t
p

⌉
and token-bucket

function γr,b ∈F defined for t > 0 by γr,b(t) = b + r t and for t = 0 by γr,b(0) = 0 (in the figure, we
have r = b

p). Right: a non-convex service curve and a rate-latency βR,L ∈F that lower bounds it with
βR,L(t) = max(0,R (t −L)).

and can handle many periodic sources with different periods.

We give a numerical application to real, industrial cases provided by industrial partners of RTaW, a

leading company in Ethernet TSN design, performance evaluation and automated configuration tools;

these examples are anonymized and slightly changed. We observe the following:

• GFP-TFA with UPP curves cannot be applied to any of the examples we tested, as it produces a

memory size error.

• In contrast, FH-TFA with UPP curves applies and remains tractable in all examples we tested,

even in a very large, industrial network with cyclic dependencies and many periodic flows.

• Bounds obtained with FH-TFA and UPP curves (recall that they are the same as would be

obtained with GFP-TFA) are considerably less than those obtained with linear approximations

of the UPP curves.

The rest of the chapter is organized as follows. In Section 6.1, we give the necessary background and

state-of-the-art. In Section 6.2, we describe the problem definition, the system model, the network

under study, and the resulting graph. In Section 6.3, we describe GFP-TFA, a theoretical solution to

the problem at hand. In Section 6.4, we describe FH-TFA, a practical solution to the problem at hand.

In Section 6.6, we present proofs of theorems. In Section 6.5, we apply FH-TFA to some industrial

networks, and we give the obtained delay bounds and run-times. In Section 6.7, we conclude the

chapter. A summary of notation and symbols used in this chapter are given in Section 6.8.

6.1 Background and Related Works

6.1.1 Family of Functions and Operators

In this section, we define UPP and UA functions, and explain how to represent such functions with a

finite amount of information.

124

6.1 Background and Related Works

increment I

period ptransient part T

pseudo-periodic part

t0 t1 t2 t3 = T t4 = T + p

f(t0)

f(t0+)

f(t1�)

t

f

Fig. 1: Function f , a UPP curve with a representation
([s1, s2, s3, s4] , T, p, I) where [s1, s2, s3, s4] are the 4 affine
segments in [0, T + p), T is the rank (size of the tran-
sient part), p is the pseudo-period, and I is the increment.
Values outside this interval can be computed on demand by
8t > T, f(t + kp) = f(t) + kI .

transient part T

slope r

t0 t1 t2 t3 = T

f(t0)

f(t0+)

f(t1�)

b

t

f

Fig. 2: Function f , a UA curve with a representation
([s1, s2, s3] , T, p, I) where [s1, s2, s3] are the 3 affine seg-
ments in [0, T), T is the rank, b and r are the burst and
the slope of the linear part with 8t > T, f(t) = b+ r(t�T).

minimal set, i.e., at each ti, there is either a discontinuity or
a change of slope (see Fig. 1).

The tuple (S, T, r, b) is a finite representation for a UA
function f ,; S is defined in a similar manner as UPP functions
with sk+1 = T , and f(t) = b+r(t�T) for t � T (see Fig. 2).

It is shown that UPP (resp. UA) functions are closed
under addition, subtraction, min-plus convolution, min-plus
deconvolution (defined in Section II-A2), minimum and max-
imum of two functions [17]. Moreover, such operations are
automated in tools such as RealTime-at-Work (RTaW) [12],
Nancy [13], and DiscoDNC [14]; these interpreters provides
efficient implementations of min-plus convolution, min-plus
deconvolution, non-decreasing closure, horizontal deviation,
the composition of two functions, and a maximum and min-
imum of functions. All computations use infinite precision
arithmetic (with rational numbers), and functions are repre-
sented as UPP or UA functions. Other network calculus tools
also implements UPP and UA functions [17]–[19].

2) Network Calculus Background: We say that a flow has
↵ 2 F as arrival curve if the number of bits generated by this
flow for any s  t is upper bounded by ↵(t � s). An arrival
curve ↵ can always be assumed to be sub-additive, i.e., to
satisfy ↵(s+ t)  ↵(s)+↵(t) for all s, t. Otherwise it can be
replaced by its sub-additive closure [20]. A periodic flow that
sends up to b bits every p time units has, as arrival curve, the
stair function, defined by ⌫p,b(t) = b

l
t
p

m
; it is UPP. Another

frequently used arrival curve is the token-bucket function ↵ =

�r,b

⌫p,b

p 2p 3p 4p

b

2b

3b

4b
non-convex service

�c,LL

Fig. 3: Left: the stair function ⌫b,p 2 F defined for t � 0 by
⌫b,p(t) = b

l
t
p

m
and token-bucket function �r,b 2 F defined for

t > 0 by �r,b(t) = b + rt and for t = 0 by �r,b(0) = 0. Right:
a non-convex service curve and a rate-latency �c,L 2 F that
lower bounds it with �c,L(t) = max (0, c (t� L)).

�r,b, with rate r and burst b, defined by �r,b(t) = rt + b for
t > 0 and �r,b(t) = 0 for t = 0; it is UA (see Fig. 3). Both
of these arrival curves are sub-additive.

Consider a system and a flow through the system. We say
that a system offers a strict service curve � 2 F to the flow
if the number of bits of the flow output by the system in any
backlogged interval (s, t] is at least �(t� s). A strict service
curve is a special case of service curves; the exact definition
of a non-strict service curve (known as minimum or min-plus
minimal service curve) can be found in [2, Section 5.2]. A
strict service curve � can be always assumed to be super-
additive (i.e., to satisfy �(s + t) � �(s) + �(t) for all s, t),
otherwise, it can be replaced by its super-additive closure
[2]. Service curves of schedulers such as Deficit Round-
Robin [9], Weighted Round-Robin, and Interleaved Weighted
Round-Robin [21] are strict hence super-additive. Non-strict
service curves are often super-additive but not always. Service
curves of Credit-Based Shapers [11] and Non-Preemptive
Static Priority [2] are not strict, however, it can be shown that
in the common cases they are super-additive. A frequently
used service curve is the rate-latency function �c,L 2 F , with
rate c and latency L, defined by �c,L(t) = c[t � L]+, where
we use the notation [x]+ = max {x, 0} (see Fig. 3); it is UA
and super-additive.

Assume that a flow, constrained by an arrival curve ↵, tra-
verses a FIFO system that offers a service curve �. The delay
of the flow is upper bounded by the horizontal deviation de-
fined by hDev(↵, �) = supt�0{inf{d � 0|↵(t)  �(t + d)}}.
The backlog for the flow is upper-bounded by the vertical
deviation defined by vDev(↵, �) = supt�0{↵(t)� �(t)}.

For f, g 2 F , the min-plus convolution is defined by
(f ⌦ g)(t) = inf0st{f(t � s) + g(s)} and the min-plus
deconvolution by (f↵g)(t) = sups�0{f(t+s)�g(s)} [1], [2],
[22]. Pure delay function �d(t) = 0 for t  d and �d(t) =1
for t > d; it is UA (with the slope equal to 1). We will use
(f ↵ �d) (t) = f(t + d), i.e., shifts f by d in to the left.

B. Total Flow Analysis (TFA)

Total Flow Analysis (TFA) [5]–[8] is a method to conduct
worst-case analysis in a FIFO network. In a network where a
service curve is known at every node and an arrival curve for
every flow is known at the source, one run of TFA returns a

3

(a) UPP curve

increment I

period ptransient part T

pseudo-periodic part

t0 t1 t2 t3 = T t4 = T + p

f(t0)

f(t0+)

f(t1�)

t

f

Fig. 1: Function f , a UPP curve with a representation
([s1, s2, s3, s4] , T, p, I) where [s1, s2, s3, s4] are the 4 affine
segments in [0, T + p), T is the rank (size of the tran-
sient part), p is the pseudo-period, and I is the increment.
Values outside this interval can be computed on demand by
8t > T, f(t + kp) = f(t) + kI .

transient part T

slope r

t0 t1 t2 t3 = T

f(t0)

f(t0+)

f(t1�)

b

t

f

Fig. 2: Function f , a UA curve with a representation
([s1, s2, s3] , T, p, I) where [s1, s2, s3] are the 3 affine seg-
ments in [0, T), T is the rank, b and r are the burst and
the slope of the linear part with 8t > T, f(t) = b+ r(t�T).

minimal set, i.e., at each ti, there is either a discontinuity or
a change of slope (see Fig. 1).

The tuple (S, T, r, b) is a finite representation for a UA
function f ,; S is defined in a similar manner as UPP functions
with sk+1 = T , and f(t) = b+r(t�T) for t � T (see Fig. 2).

It is shown that UPP (resp. UA) functions are closed
under addition, subtraction, min-plus convolution, min-plus
deconvolution (defined in Section II-A2), minimum and max-
imum of two functions [17]. Moreover, such operations are
automated in tools such as RealTime-at-Work (RTaW) [12],
Nancy [13], and DiscoDNC [14]; these interpreters provides
efficient implementations of min-plus convolution, min-plus
deconvolution, non-decreasing closure, horizontal deviation,
the composition of two functions, and a maximum and min-
imum of functions. All computations use infinite precision
arithmetic (with rational numbers), and functions are repre-
sented as UPP or UA functions. Other network calculus tools
also implements UPP and UA functions [17]–[19].

2) Network Calculus Background: We say that a flow has
↵ 2 F as arrival curve if the number of bits generated by this
flow for any s  t is upper bounded by ↵(t � s). An arrival
curve ↵ can always be assumed to be sub-additive, i.e., to
satisfy ↵(s+ t)  ↵(s)+↵(t) for all s, t. Otherwise it can be
replaced by its sub-additive closure [20]. A periodic flow that
sends up to b bits every p time units has, as arrival curve, the
stair function, defined by ⌫p,b(t) = b

l
t
p

m
; it is UPP. Another

frequently used arrival curve is the token-bucket function ↵ =

�r,b

⌫p,b

p 2p 3p 4p

b

2b

3b

4b
non-convex service

�c,LL

Fig. 3: Left: the stair function ⌫b,p 2 F defined for t � 0 by
⌫b,p(t) = b

l
t
p

m
and token-bucket function �r,b 2 F defined for

t > 0 by �r,b(t) = b + rt and for t = 0 by �r,b(0) = 0. Right:
a non-convex service curve and a rate-latency �c,L 2 F that
lower bounds it with �c,L(t) = max (0, c (t� L)).

�r,b, with rate r and burst b, defined by �r,b(t) = rt + b for
t > 0 and �r,b(t) = 0 for t = 0; it is UA (see Fig. 3). Both
of these arrival curves are sub-additive.

Consider a system and a flow through the system. We say
that a system offers a strict service curve � 2 F to the flow
if the number of bits of the flow output by the system in any
backlogged interval (s, t] is at least �(t� s). A strict service
curve is a special case of service curves; the exact definition
of a non-strict service curve (known as minimum or min-plus
minimal service curve) can be found in [2, Section 5.2]. A
strict service curve � can be always assumed to be super-
additive (i.e., to satisfy �(s + t) � �(s) + �(t) for all s, t),
otherwise, it can be replaced by its super-additive closure
[2]. Service curves of schedulers such as Deficit Round-
Robin [9], Weighted Round-Robin, and Interleaved Weighted
Round-Robin [21] are strict hence super-additive. Non-strict
service curves are often super-additive but not always. Service
curves of Credit-Based Shapers [11] and Non-Preemptive
Static Priority [2] are not strict, however, it can be shown that
in the common cases they are super-additive. A frequently
used service curve is the rate-latency function �c,L 2 F , with
rate c and latency L, defined by �c,L(t) = c[t � L]+, where
we use the notation [x]+ = max {x, 0} (see Fig. 3); it is UA
and super-additive.

Assume that a flow, constrained by an arrival curve ↵, tra-
verses a FIFO system that offers a service curve �. The delay
of the flow is upper bounded by the horizontal deviation de-
fined by hDev(↵, �) = supt�0{inf{d � 0|↵(t)  �(t + d)}}.
The backlog for the flow is upper-bounded by the vertical
deviation defined by vDev(↵, �) = supt�0{↵(t)� �(t)}.

For f, g 2 F , the min-plus convolution is defined by
(f ⌦ g)(t) = inf0st{f(t � s) + g(s)} and the min-plus
deconvolution by (f↵g)(t) = sups�0{f(t+s)�g(s)} [1], [2],
[22]. Pure delay function �d(t) = 0 for t  d and �d(t) =1
for t > d; it is UA (with the slope equal to 1). We will use
(f ↵ �d) (t) = f(t + d), i.e., shifts f by d in to the left.

B. Total Flow Analysis (TFA)

Total Flow Analysis (TFA) [5]–[8] is a method to conduct
worst-case analysis in a FIFO network. In a network where a
service curve is known at every node and an arrival curve for
every flow is known at the source, one run of TFA returns a

3

(b) UA curve

Figure 6.1.2: Left: Function f , a UPP curve with a representation
(
[s1, s2, s3, s4] ,T, p, I

)
where

[s1, s2, s3, s4] are the 4 affine segments in [0, T +p), T is the rank (size of the transient part), p is the
pseudo-period, and I is the increment. Values outside this interval can be computed on demand by
∀t > T, f (t +kp) = f (t)+kI . Right: Function f , a UA curve with a representation

(
[s1, s2, s3] ,T, p, I

)
where [s1, s2, s3] are the 3 affine segments in [0, T), T is the rank, b and r are the burst and the slope
of the linear part with ∀t ≥ T, f (t) = b + r (t −T).

6.1.1.1 UPP and UA Curves

We follow the terminology in [164, Definition 1]. Let F piece-wise-linear denote the set of piece-wise linear

and wide-sense increasing functions f :Q+ 7→Q+∪ {+∞} whereQ+ is the set of non-negative rational

numbers. For f ∈F piece-wise-linear:

• f is Ultimately Affine (UA) if there exist T,r,b ∈Q+ such that for all t ≥ T, f (t) = r (t −T)+b; T is

called a rank of function f , and the smallest possible value for T is the rank of the function; r

and b are called the rate and the burst of the linear part (see Fig. 6.1.2).

• f is Ultimately Pseudo-Periodic (UPP) if there exist T, I ∈Q+ and p ∈Q+ \ {0} such that ∀t > T

and every non-negative integer k, f (t +kp) = f (t)+kI ; p is called a pseudo-period and I is

called an increment (see Fig. 6.1.2).

The tuple
(
S,T, p, I

)
is a finite representation for a UPP function f : S represents values of f in the

interval [0,T +p), then values of f beyond this interval can be computed using S, pseudo-period p, and

increment I . S is defined as follows: S = [s1, . . . , sk] is a list of affine segments where for i ∈ [0,k], si =(
ti , ti+1, f (ti), f (ti+), f (ti+1−)

)
such that ∀t ∈]ti , ti+1[, f (t) is the affine function that connects points(

ti , f (ti+)
)

and
(
ti+1, f (ti+1−)

)
, with f (t+) = limϵ→0 f (t +ϵ) and f (t−) = limϵ→0 f (t −ϵ). We require

that (1) t1 = 0, (2) there exists i0 where ti0 = T , and (3) tk < T +p and tk+1 = T +p. We assume that S is

the minimal set, i.e., at each ti , there is either a discontinuity or a change of slope (see Fig. 6.1.2).

The tuple (S,T,r,b) is a finite representation for a UA function f ; S is defined in a similar manner as

UPP functions with tk+1 = T , and ∀t ≥ T, f (t) = b + r (t −T) (see Fig. 6.1.2).

It is shown that UPP (resp. UA) functions are closed under addition, subtraction, min-plus convolution,

min-plus deconvolution (see (2.5) and (2.9) for definitions), minimum and maximum of two func-

tions [164]. Moreover, such operations are automated in tools such as RealTime-at-Work (RTaW) [92],

Nancy [93], DiscoDNC [94], and etc. [164, 165, 166]; these interpreters provide efficient implementa-

tions of min-plus convolution, min-plus deconvolution, horizontal deviation, and a maximum and

125

Chapter 6. Total Flow Analysis For Time-Sensitive Networks with Periodic Sources

minimum of functions. All computations use infinite precision arithmetic (with rational numbers),

and functions are represented as UPP or UA functions.

6.1.2 FixPoint Total Flow Analysis (FP-TFA)

Total Flow Analysis (TFA) [62, 63, 64, 119] is a method for obtaining worst-case delay and backlog

bounds in a FIFO network. In a network where a service curve is known at every node and an arrival

curve for every flow is known at the source, one run of TFA returns a valid delay bound at every node

and propagated burstiness for flows. Although TFA is simple and modular, it takes into account the

effect of packetizer and line-shaping. When the graph induced by flows is feed-forward (i.e, cycle-free),

each node is visited in the topological order, whereby a delay bound and output burstiness bounds of

flows are computed; output burstiness of flows are used as an input by the following nodes. If the graph

induced by flows has cyclic dependencies, a topological order cannot be defined; instead, an iterative

method is used and a fixpoint is computed [64, 119]. The method in [119], called FP-TFA, requires

first making some artificial cuts in the induced graph in order to create a feed-forward network. It

then computes the estimated burstiness of flows at cuts and iterates. It is shown that, if the iteration

converges, the obtained fixpoint is a valid bound on the burstiness of flows at cuts, and the network is

stable. Other versions of TFA that do not make cuts are presented in [64], where it is shown that they

are equivalent to FP-TFA, i.e., they provide the same bounds and stability regions [64]. For networks

with cyclic dependencies, all versions of TFA assume only token-bucket arrival curves and rate-latency

service curves, and the validity of the results is shown with these assumptions. In Section 6.3, we

provide a new version of FP-TFA, called Generic FP-TFA (GFP-TFA), that can be applied with any arrival

curves and service curves of generic shapes, including UPP and UA ones. When arrival curves are

token-bucket and service curves are rate-latency, GFP-TFA is essentially the same as FP-TFA.

6.1.3 Compact Domains for Delay Computation

It has been observed in [95] that, for some systems, the computation of the delay bounds does not

require handling the full function (i.e., all values of the function for all time t in [0,+∞)), but only

its values on a finite prefix domain. However, the theory in [95] lacks a proof that computation in

such compact domains does not affect the accuracy of the end-results. The challenge consists in

computing in each node a value h such that the computation on the compact domain [0,h] is sufficient

to get accurate results on this node but also on the next ones along the flow path. The intuition is the

following: Consider a flow that traverses two nodes in sequence. Assume that the first node (resp. the

second node) requires that the arrival curve of the flow at the input of the node is accurate in [0,h]

(resp. [0,h′]). As the arrival curve of the flow increases along the path and some information is lost at

propagation, the arrival curve of the flow at the input of the first node should be accurate for some

[0,h′′] where h′′ > max(h,h′) is large enough.

Authors in [167] derive compact domains where they prove that the accuracy of the end-results is

not affected; their results and proofs only hold for input/output relations in acyclic networks of the

Greedy-Processing Component (GPC), used in Real-Time Calculus (RTC).

Authors in [163] derive such compact domains, in a more general context. They show that, at a single

node where an arrival curve and a service curve are known, network calculus operations, including

delay computations, can be restricted to finite domains without affecting the end-results. Here, we

rewrite one of their findings that we use in the chapter, using our notation:

126

6.2 System Model

Theorem 6.1 (Theorem 4 of [163]). Consider a flow constrained by an arrival curve α that traverses

a node that offers a super-additive service curve β. Let α′ and α′′ be a lower bound and upper bound,

respectively, for α, i.e., α′ ≤α≤α′′. Also, let β′ and β′′ be an upper bound and lower bound, respectively,

for β, i.e., β′′ ≤β≤β′. Define

hα
def= max(u, v) and hβ

def= max
(
u +D ′′, v

)
(6.1)

with

D ′ = hDev
(
α′,β′) (6.2)

B ′ = vDev
(
α′,β′) (6.3)

u = sup
t≥0

{α′′(t) ≥β′′(t +D ′)} (6.4)

v = sup
t≥0

{α′′(t) ≥β′′(t)+B ′} (6.5)

D ′′ = hDev
(
α′′,β′′) (6.6)

Then, the horizontal deviation hDev
(
α,β

)
and the vertical deviation vDev

(
α,β

)
depend only on the

values of α(t) for t ∈ [0,hα] and β(t) for t ∈ [
0,hβ

]
(see Section 2.1.1.4 for definition of super-additive

service curve, see definitions 2.1 and 2.2 for hDev and vDev.)

Note that in the above, α′′ and β′′ are valid, safe arrival curve and service curve, respectively; however,

α′ and β′ are unsafe arrival curve and service curve, respectively. Note that the method requires that

service curves are super-additive (see Section 2.1.1.4). Authors in [163] also find such compact domains

for min-plus deconvolution, and explain how to integrate such compact domains with Pay Burst Only

Once (PBOO) [94] and Pay Multiplexing Only Once (PMOO) [94] principles in sink-tree networks with

arbitrary multiplexing. Later, authors in [168], generalize the work of [167], using the findings of [163],

to be independent of GPC’s operational semantics. Lastly, authors in [40, Prop. 5.13] provide looser

bounds than those of Theorem 6.1.

6.2 System Model

We consider a packet-switched network. We assume that flows are grouped into static classes, and

packets inside a class are processed First-In-First-Out (FIFO). Every device represents switches or

routers and consists of input ports, output ports, and a switching fabric. Each packet enters a device via

an input port and is stored in a packetizer. A packetizer releases a packet only when the entire packet

is received. Then, the packet goes through a switching fabric. Then, the packet, based on its class, is

either queued in a FIFO-per-class queue or exits the network via a terminal port.

In the rest of the chapter, we focus on one class of interest. We assume that the service offered to the

aggregate of all flows that use some output port, say n, from the exit of the packetizer (on an input port)

to the transmission line fed by output port n can be modeled with a service curve βUPP
n , where βUPP

n is

a UPP function (see Section 6.1.1). Let cn denote the transmission rate of the line fed by output port n.

Each flow f of the class of interest is constrained at source by an arrival curve α0,UPP
f , where α0,UPP

f is

a UPP function (see Figure 6.1.1). In the case of periodic flows, arrival curves are stair functions (see

Fig. 6.1.1). We assume that α0,UPP
f (0+) ≥ l max, where f (t+) = limϵ←0 f (t +ϵ). Also, flows are statically

assigned to a path, and let path(f) denote a sequence of nodes in the path of flow f . Let flows(f)

127

Chapter 6. Total Flow Analysis For Time-Sensitive Networks with Periodic Sources

0 20 40 60 80 100
0

2

4

6
·104

sufficient horizon

UA curve = UPP curve

UA curve for aggregate

UPP curve for aggregate

Time (ms)

b
yt

es

Figure 6.2.1: We consider a single node that offers a rate-latency service curve βc,L with c = 1Gb/s
and L = 16µs. We assume 6 fresh, periodic flows that are constrained by stair function νp,b with
p ∈ {2,4,5,10,33,100}ms and b ∈ {3,3,3,10,30,3}∗100bytes. The aggregated arrival curve has the
pseudo-period equal to 3300 and moreover, 2020 segments are required to represent it; here we only
plot values in [0,100]. Whereas, only 13 segments are required to represent the UA curve computed
using our method. The sufficient horizon in this example is 16.37.

denote the set of flows at node n.

We assume that the network is locally stable, i.e., the aggregate long-term arrival rate to each output

port is strictly less than the long-term service rate.

The graph G = (N ,E) induced by flows is the directed graph defined as follows: 1) Let N denote the

subset of all non-terminal output ports used by at least one flow. 2) The directed edge e = (n,n′) ∈ E

exists if there is at least one flow that traverses n and n′ in this order. We say that G has a cyclic

dependency if it contains at least one cycle. Let E cut ⊆ E be a cut such that artificially removing

the edges in E cut creates a feed-forward graph. Such cuts can be obtained by any traversal graph

algorithm [160]. Without loss of generality, output ports are labeled in a topological order of the cut

graph, starting from output ports at the edges. Such topological orders exist as the cut network is

feed-forward.

Problem Statement: The first problem is to provide, and prove the validity of, a new version of TFA that

handles arrival and service curves of generic shapes in networks with generic topologies. The second

problem is to apply the concept of the sufficient horizon and obtain a new version of TFA for generic

topologies that remains tractable with many UPP curves.

6.3 GFP-TFA: A New Version of FP-TFA That Handles Arrival Curves

and Service Curves of Generic Shapes

In this section, we present GFP-TFA, an adaptation of FP-TFA, that can be applied with arrival curves

and service curves of generic shapes. GFP-TFA is an algorithm that exactly solves the problem (see

Section 6.2), but, GFP-TFA has high computational complexity and in practice, applying GFP-TFA with

128

6.3 GFP-TFA: A New Version of FP-TFA That Handles Arrival Curves and Service Curves of
Generic Shapes

many UPP curves might be intractable. However, it serves as a theoretical reference, and it is used as a

building block in the main algorithm, FH-TFA, presented in Section 6.4.

FP-TFA assumes that arrival curves are token-bucket, then only the burst of arrival curves increases

along the path, called propagated burstiness, and the rate remains unchanged; thus, one of the variables

that FP-TFA iterates on is the propagated burstiness. However, for arrival curves of generic shapes,

propagated burstiness is not defined. To address this, in GFP-TFA, we replace propagated burstiness by

delay-jitter bound from the source to the point of interest (variable τ): This is because an arrival curve

for a flow at the point of interest is the one at the source, shifted to the left by a delay-jitter bound from

the source to the point of interest; unlike propagated burstiness, this result holds for arrival curves of

the generic shapes, thus GFP-TFA can be applied with any types of arrival curves. Also, FP-TFA uses a

result on the effect of packetizer that is only expressed for token-bucket arrival curves, and needs to be

adapted for arrival curves of generic shapes. We do this adaption in Theorem 6.2. The transformation

of FP-TFA into GFP-TFA is otherwise straightforward, but for the sake of completeness, we describe

GFP-TFA in details. The validity of GFP-TFA, which is less straightforward, is given in Theorem 6.3.

Recall that, as explained in Section 6.1.2, FP-TFA first cuts the network and analyzes the resulting

cut network, which is feed-forward, and iterates on propagated burstiness at cuts until a fix-point is

reached. We follow the same structure, with some adaptations.

6.3.1 FF-TFA: TFA for Feed-Forward Networks

FF-TFA is a building block of GFP-TFA. It applies to the feed-forward network obtained after removing

a cutset and is described in Algorithm 6.1. It takes as input the collection α0 of arrival curves of all flows

at the sources, the collection β of service curves of all nodes, the cutset E cut, and a collection τcut of

delay-jitter bounds from source to cut for every flow that is cut. It outputs a collection d of per-node

delay bounds and a collection τ of delay-jitter bounds for every flow from its source to each node in its

path.

The delay-jitter bound for every flow f at every node in its path is initialized to zero (line 1); for a flow

at a cut, it is initialized to the corresponding value in τcut (lines 2-4). Then, nodes are visited in the

topological order of the cut network; an aggregate arrival curve at the input of node n is computed

(lines 5-6) by using the function aggregateArrivalCurven defined at line 13. This function implements

the effect of line shaping (line 19) and packetizer (line 21). Line shaping [42, 156] addresses the fact

that when some flows are known to arrive from the same link (i.e., carried by the same edge), a better

arrival curve can be computed for the aggregate of flows; specifically, for an edge e, αe , an aggregate

arrival curve for flows carried by edge e, can be replaced by αe ⊗γce ,0 where ce is the maximum link

speed of the edge e. For the packetizer (see Section 6.2), [119] studies the effect of packetizer when the

aggregate flow is constrained by a token-bucket arrival; here we present a minor adaptation of [119,

Theorem 1] that applies to arrival curves of generic shapes.

Theorem 6.2 (Output Arrival Curve at the Output of Packetizer). Consider a packetizer that is placed on

a transmission line with a fixed rate c, and assume that it serves an aggregate flow, constrained by an

arrival curve α; also, let l max be the maximum packet size of the aggregate flow. Then, α⊘δ lmax
c

, is an

arrival curve for the aggregate flow at the output of the packetizer. Function δd is defined in Table 6.8.1.

The proof is in Section 6.6.1. Note that α⊘δ lmax
c

is equal to α shifted to left by l max

c , i.e., (α⊘δ l max
c

)(t) =
α(t + l max

c).

129

Chapter 6. Total Flow Analysis For Time-Sensitive Networks with Periodic Sources

Combining αn , an arrival curve for the aggregate of flows at the input of node n with βn , the service

curve offered by node n, the improved network calculus delay bound is computed as in [169] (line 8):

When an output port is followed by a transmission line, authors in [169, Theorem 5] find delay bounds

that improve on the classical network calculus result (which is equal to the horizontal deviation between

the arrival and the service curve, i.e., hDev
(
αn ,βn

)
); this is implemented in line 8. Then, the delay-jitter

of node n is added for flows at successors of node n (lines 9-11); note that a delay-jitter at node n is

obtained by the subtraction of the worst-case and best-case delay bound at a node, i.e., subtraction of

dn and the transmission time of a packet of minimum size.

6.3.2 GFP-TFA

GFP-TFA is described in Algorithm 6.2: It takes as input α0, a collection of arrival curves for each flow

at the source, β, a collection of service curves offered by each node, and a cutset E cut such that the cut

network is feed-forward. In lines 1-7, it first computes τ̄cut, a collection of valid delay-jitter bounds from

the sources to the cuts for every flow at cuts. It initializes delay-jitter bounds from the source to the cut

to zero for every flow at the cut (line 2). It then iteratively calls FF-TFA, described in Algorithm 6.1, to

compute new values for delay-jitter bounds of flows from source to cut. Note that since the initial values

of τ̄cut are 0, the scheme is monotonically non-decreasing, and thus either converges or goes to ∞. To

force termination, the values are rounded up to an integer number of a chosen time resolution ∆ (this

is similar to rounding of burstiness to an integer number of bits in the original version of FP-TFA); then

the iteration stops either when τ̄cut becomes stationary, or reaches a very large value called “infinite".

Then, if τ̄cut is finite, FF-TFA is called one last time, and hence a collection of valid, finite delay bounds

at each node and a collection of valid, finite delay-jitter bounds for every flow from the source to each

node in its path are obtained (because the cut network is feed-forward and locally stable). Otherwise, if

the obtained τ̄cut bounds are infinite, GFP-TFA returns infinite bounds; in this case, the network might

or might not be stable.

Theorem 6.3 (Validity of GFP-TFA). Consider a FIFO network, as described in Section 6.2, and apply

Algorithm 6.2. Then,
(
d̄ , τ̄

)
are upper bounds on per node delay and per-flow jitter.

The proof is in Section 6.6.2. Note that if the original network is feed-forward, the cutset E cut is empty

and GFP-TFA applies FF-TFA only once. When arrival curves α0
f of every flow f at the source are

token-bucket and service curves βn offered by every node n are rate-latency, GFP-TFA is essentially the

same as FP-TFA of [119].

6.4 FH-TFA: A Practical Version of GFP-TFA

In this section, we present our second new version of TFA, FH-TFA, which provides the exact same

bounds as theoretical GFP-TFA (when service curves are super-additive), while reducing the complexity.

The main difference between GFP-TFA and FH-TFA is as follows: Instead of working with original,

UPP curves, FH-TFA only keeps a part of each UPP curve that affects the end-result, and beyond that,

uses linear upper-bounds (resp. lower-bounds) of arrival (resp. service) curves. Specifically, FH-TFA

first computes sufficient finite horizons for every curve by applying the compact domains of [163],

presented in Theorem 6.1. Note that, with TFA, arrival curves of flows increase as we go deeper into the

network, hence the compact domains required for delay computations increase as well. To address

130

6.4 FH-TFA: A Practical Version of GFP-TFA

Algorithm 6.1: (d ,τ) = FF-TFA
(
α0,β,E cut,τcut

)
Input :

(
α0,β,E cut,τcut

)
, collection of arrival curves of all flows at sources, collection

of service curves of all nodes, a cutset that creates a feed-forward network,
and a collection of delay-jitter bounds from source to cut, for every flow that is
present at a cut edge.

Output : (d ,τ), a collection of per-node delay bounds and a collection of delay-jitter
bounds for every flow from its source to input of every node on its path.

1 τ f ,n ← 0, ∀flow f and ∀node n ∈ path(n);
2 for each edge e = (n′,n) ∈ E cut do
3 for each flow f carried by edge e do
4 τ f ,n ← τcut

f ,n ;

5 for each node n in the topological order of the cut network do
6 αn ← aggregateArrivalCurven

(
α0,τ

)
;

7 l min
n ← min f ∈In(n) l min

f ;

8 dn ← hDev
(
αn − l min

n ,βn
)+ l min

n
cn

;

9 for each edge e = (n,n′) in the original, uncut network do
10 for each flow f carried by edge e do

11 τ f ,n′ ← τ f ,n + (dn − l min
n
cn

);

12 return (d ,τ);
13 Function αn = aggregateArrivalCurven

(
α0,τ

)
14 αfresh

n ←∑
fresh f ∈In(n)α

0
f ;

15 for each edge e ∈ In(n) do
16 for each flow f carried by edge e do
17 α f ,n ←α0

f ⊘δτ f ,n ;

18 αe ←
∑

f ∈e α f ,n ;
// Effect of line-shaping Section 6.3.1

19 αe ←αe ⊗γce ,0 ;
// Effect of packetizer Section 6.3.1

20 l max
e ← max f ∈e l max

f ;

21 αe ←αe ⊘δ lmax
e
ce

;

22 αtransit
n ←∑

e∈In(n)αe ;

23 αn ←αtransit
n +αfresh

n ;
24 return αn ;

131

Chapter 6. Total Flow Analysis For Time-Sensitive Networks with Periodic Sources

Algorithm 6.2:
(
d̄ , τ̄

)= GFP-TFA
(
α0,β,E cut

)
Input :

(
α0,β,E cut

)
, collection of arrival curves of all flows at the source,

collection of service curves of all nodes, and a cutset such that
removing them creates a feed-forward network, respectively.

Output :
(
d̄ , τ̄

)
, a collection of valid per-node delay bound at every node and a

collection of delay-jitter bound for every flow from the source to each
node in its path, respectively.

1 k ← 0;

2 τcut,k
f ,n ← 0, ∀flow f and ∀e = (n′,n) ∈ E cut;

3 while (τcut,k > τcut,k−1) and (τcut,k < infinite) do
4 k ← k +1;

// FF-TFA is described in Algorithm 6.1

5 (d ,τ) ← FF-TFA
(
α0,β,E cut,τcut,k−1

)
;

6 Extract new values for τcut,k from τ and round them up to an integer number of the
minimum resolution ∆ (e.g., 1 nanosecond);

7 τ̄cut ← τcut,k ;
8 if all element of τ̄cut are finite then
9

(
d̄ , τ̄

)← FF-TFA
(
α0,β,E cut, τ̄cut

)
10 else
11

(
d̄ , τ̄

)←∞;
12 return

(
d̄ , τ̄

)
;

this, FH-TFA first applies GFP-TFA using linear curves, i.e., token-bucket arrival curves and rate-latency

service curves; this is very fast and provides enough information to compute sufficient finite horizons.

It then replaces every UPP curve by a UA curve that follows the UPP curve up to the computed sufficient

horizon, and beyond that follows a linear upper-bound (resp. lower-bound) of the UPP arrival (resp.

service) curve (see Fig. 6.4.1).

We first describe FH-TFA, and we then prove its validity and accuracy in Theorem 6.4.

6.4.1 Description of FH-TFA

FH-TFA is described in Algorithm 6.3:

• Arrival curves of all flows at the source (resp. service curves at all nodes) are lower-bounded and

upper-bounded by token-bucket (resp. rate-latency) curves (lines 1-6); see Section 6.4.1.1.

• We obtain compact domains, required for delay computation, as in equation (6.1) of Theorem 6.1

at every node. As (6.1) requires to know a lower-bound and an upper-bound for the arrival curve

at a node, we run two instances of GFP-TFA (using linear curves) once with safe curves, (i.e.,

upper-bounds of arrival curves and lower bounds of service curves), and once with unsafe curves.

When this is done, we obtain compact domains at every node n, i.e.,
(
hαn ,hβn

)
(lines 7-14). Note

that if the application of GFP-TFA with safe curves returns infinite bounds (i.e., (d̄ L′′
, τ̄L′′

) at line 7

are infinite), we then cannot find finite compact domains, and thus the rest of the algorithm is

skipped, and GFP-TFA is applied with UPP, original curves (line 23). Such cases might happen in

132

6.4 FH-TFA: A Practical Version of GFP-TFA

networks with cyclic dependencies that are highly loaded.

• We then compute a sufficient horizon for the arrival curve of each flow at the source; as the

arrival curve of the flow increases along its path, this horizon should be large enough such that

the arrival curve of the flow respects the compact domains at every node in its path (lines 15-18);

see Section 6.4.1.2.

• A UA curve is constructed, for each UPP curve, that follows the original, UPP curve up to the

computed sufficient horizon, and beyond that, follows the linear upper (resp. lower for service

curves) of the original, UPP curve (lines 18-20); see Section 6.4.1.3 and Fig. 6.4.1.

• Lastly, GFP-TFA is run using UA curves (line 21).

6.4.1.1 Linear Upper and Lower Bounds of UPP Curves

This section describes the four functions used in lines 2, 3, 5, and 6 of Algorithm 6.3. Note that upper-

bounds and lower-bounds of the original, UPP curves can be freely chosen, as they are used in the

method only to compute sufficient horizons, and they do not affect the end-results obtained by FH-TFA.

We propose to use token-bucket curves (for arrival curves) and rate-latency curves (for service curves)

as they can be easily computed, and are very tractable.

Consider flow f . We find two token-bucket curves α0,L′
f and α0,L′′

f such that α0,L′
f ≤ α0,UPP

f ≤ α0,L′′
f .

Specifically, we compute the token-bucket function that upper (resp. lower) bounds α0,UPP
f , and

achieves the minimum (resp. maximum) possible rate; let p and I be the period and increment of

α0,UPP
f , then α0,L′′

f = γr f ,b′′
f

and α0,L′
f = γr f ,b′

f
with r f = I

p and

b′′
f = min

t≥0
{α0,UPP

f − r f t } and b′
f = max

t≥0
{α0,UPP

f − r f t } (6.7)

Observe that the long-term rate of α0,UPP
f , which is equal to r f = I

p , is the minimum (resp. maximum)

possible rate that α0,L′′
f (resp. α0,L′

f) can achieve, otherwise they are not an upper (resp. a lower) bound

of α0,UPP
f . Then, burstiness b′′

f (resp. b′
f) is chosen to be as small (resp. large) as possible. In a frequent

case, whereα0,UPP
f is a stair function, say νp f ,b f

(i.e., a periodic flow that sends b f bits each p f seconds),

r f =
b f

p f
, b′′

f = b f , and b′
f = 0 (see Fig. 6.1.1).

Consider node n. We find two rate-latency curves βL′′
n and βL′

n such that βL′′
n ≤βUPP

n ≤βL′
n . Specifically,

we compute the rate-latency function that lower-(resp. upper-)bounds βUPP
n , and achieves the maxi-

mum (resp. minimum) possible rate; let p and I be the pseudo-period and increment of βUPP
n , then

βL′′
n =βcn ,L′′

n
and βL′

n =βcn ,L′
n

with cn = I
p and

L′′
n = min

t≥0
{t − βUPP

n (t)

cn
} and L′

n = max
t≥0

{t − βUPP
n (t)

cn
} (6.8)

Observe that the long-term rate of βUPP
n , which is equal to cn = I

p , is the maximum (resp. minimum)

possible rate that βL′′
n (resp. βL′

n) can achieve, otherwise they are not a lower (resp. an upper) bound of

βUPP
n . Observe that latency L′′

n (resp. L′
n) is computed to be as small (resp. large) as possible.

133

Chapter 6. Total Flow Analysis For Time-Sensitive Networks with Periodic Sources

Algorithm 6.3:
(
d̄ , τ̄

)= FH-TFA
(
α0,UPP,βUPP,E cut

)
Input :

(
α0,UPP,βUPP,E cut

)
: collection of UPP arrival curves of all flows at the source,

collection of UPP service curves of all nodes, and a cutset that creates a
feed-forward network.

Output :
(
d̄ , τ̄

)
, a collection of valid per-node delay bound at every node and a

collection of delay-jitter bounds for every flow from source to every node in its
path.

1 for each flow f do
// see Section 6.4.1.1

2 α0,L′′
f ← smallestAffineUpperBoundMinRate(α0,UPP

f);

3 α0,L′
f ← largestAffineLowerBoundMaxRate(α0,UPP

f);

4 for each node n do
// see Section 6.4.1.1

5 βL′′
n ← largestRateLatencyLowerBoundMaxRate(βUPP

n);

6 βL′
n ← smallestRateLatencyUpperBoundMinRate(βUPP

n);

7 (d̄ L′′
, τ̄L′′

) ← GFP-TFA
(
α0,L′′

,βL′′
,E cut

)
;

8 (d̄ L′
, τ̄L′

) ← GFP-TFA
(
α0,L′

,βL′
,E cut

)
;

9 if (d̄ L′′
, τ̄L′′

) is finite then
10 for each node n do

// see Function in Algorithm 6.1

11 αL′′
n ← aggregateArrivalCurven

(
α0,L′′

, τ̄L′′′)
;

12 αL′
n ← aggregateArrivalCurven

(
α0,L′

, τ̄L′)
;

13
(
hα,hβ

)← apply (6.1) in Theorem 6.1 with α′ =αL′
n , α′′ =αL′′

n , β′ =βL′
n , β′′ =βL′′

n ;

14 hαn ← hα and hβn ← hβ;

15 for each flow f do
// see Section 6.4.1.2

16 s f ← sink of flow f ;

17 hαf ← τ̄L′′
f ,s f

+maxn∈path(f) hαn ;

// see (6.9) in Section 6.4.1.3

18 α0,UA
f ← uaArrivalCurve

(
α0,UPP

f ,α0,L′′

f ,hαf

)
;

19 for each node n do
// see (6.10) in Section 6.4.1.3

20 βUA
n ← uaServiceCurve

(
βUPP

n ,βL′′
n ,hβn

)
;

21
(
d̄ , τ̄

)← GFP-TFA
(
α0,UA,βUA,E cut

)
;

22 else
23

(
d̄ , τ̄

)← GFP-TFA
(
α0,UPP,βUPP,E cut

)
;

24 return
(
d̄ , τ̄

)
;

134

6.4 FH-TFA: A Practical Version of GFP-TFA

6.4.1.2 Sufficient Horizons for Arrival Curves of Flows at the Source

Consider flow f . As the arrival curve of flow f increases along its path, this horizon should be large

enough such that the arrival curve of the flow, respects the compact domain at every node in its path.

Specifically, consider node n in the path of flow f . Then, at the input of node n, an arrival curve for

flow f is its arrival curve at the source, but shifted to the left by a delay-jitter bound from the source

to node n, say τUPP
f ,n . Hence, sufficient horizon of flow f should be larger than or equal to hαn +τUPP

f ,n at

every node n in its path. Thus, we use hαf = maxn∈path(f) hαn + τ̄L′′
f ,s f

where s f is the sink of flow f ; note

that τ̄L′′
f ,s f

is an upper-bound on the the end-to-end delay-jitter, for flow f , hence τ̄L′′
f ,s f

≥ τUPP
f ,n .

Observe that the already computed compact domain hβn is a sufficient horizon for the service curve of

node n.

6.4.1.3 Construction of UA Curves

Consider flow f . Function α0,UA
f = uaArrivalCurve

(
α0,UPP

f ,α0,L′′
f ,hαf

)
, at line 18 of Algorithm 6.3, con-

structs this UA curve as follows (see Fig. 6.4.1):

α0,UA
f (t) =

α
0,UPP
f (t) if t ≤ hαf

α0,L′′
f (t) otherwise

(6.9)

Consider node n. FunctionβUA
n = uaServiceCurve

(
βUPP

n ,βL′′
n ,hβn

)
, at line 20 of Algorithm 6.3, constructs

this UA curve as follows (see Fig. 6.4.1):

βUA
n (t) =

βUPP
n (t) if t ≤ hβn

min
(
βUPP

n (hβn),βL′′
n (t)

)
otherwise

(6.10)

6.4.2 Validity and Accuracy of FH-TFA

Theorem 6.4 (Validity and Accuracy of FH-TFA). Consider a FIFO network, as described in Section 6.2

and Algorithms 6.2 and 6.3. Then, (1) FH-TFA provides valid bounds. (2) If original, UPP service curves

of all nodes are super-additive, FH-TFA and GFP-TFA provide the exact same bounds.

The proof is in Section 6.6.3. In the common case where service curves are super-additive, FH-TFA

and GFP-TFA return the same output, i.e., FH-TFA returns finite bounds if and only if GFP-TFA returns

finite bounds and, if bounds are finite, both algorithms provide the same bounds. FH-TFA is thus a

practical alternative to GFP-TFA, which may become too complex when there are many UPP curves.

FH-TFA is always applicable and provides valid bounds, as stated in item (1) in the theorem, and

super-additivity of service curves is not a requirement for FH-TFA; furthermore, the obtained bounds

by FH-TFA are guaranteed to be less than or equal to those obtained by FP-TFA (which uses linear

curves). We use super-additivity of service curves only to prove that bounds obtained by FH-TFA are

exactly equal to those of GFP-TFA. When service curves are not super-additive, it is not clear whether

they are equal to those that would be obtained by GFP-TFA (using original, UPP curves), and this is left

135

Chapter 6. Total Flow Analysis For Time-Sensitive Networks with Periodic Sources

↵0,UA
f

↵0,L00

f

↵0,UPP
f

h↵
f

sufficient horizon

�UPP
n

�UA
n

�L00
n

h�
n

sufficient horizon

Fig. 4: ↵0,UPP
f (resp. �UPP

n) is the original, UPP arrival curve for
flow f at the source (resp. service curve of node n), ↵0,L00

f (resp.
�L00

n) is the smallest token-bucket (resp. largest rate-latency) that
upper bounds ↵0,UPP

f (resp. lower bounds �UPP
n), and h↵

f (resp.
h�

n) is a sufficient horizon for the arrival curve of flow f (resp.
service curve of node n). Then, ↵0,UA (resp. �UA

n) follows ↵0,UPP
f

(resp. �UPP
n) in [0, h↵

f] (resp. [0, h�
n]) and beyond that follows

↵0,L00
f (resp. �L00

n).

2) Sufficient Horizons for Arrival Curves of Flows at the
Source: Consider flow f . As the arrival curve of flow f
increases along its path, this horizon should be large enough
such that arrival curve of the flow, respects the compact
domain at every node in its path. Specifically, consider node
n in the path of flow f . Then, at the input of node n, arrival
of flow f is its arrival curve at the source, but shifted to left
by a delay-jitter bound from the source to node n, say ⌧UPP

f,n .
Hence, sufficient horizon of flow f should be larger than or
equal to h↵

n + ⌧UPP
f,n at every node n in its path. Thus, we use

h↵
f = maxn2path(f) h↵

n + ⌧̄L00
f,sf

where sf is the sink of flow
f ; note that ⌧̄L00

f,sf
is an upper-bound on the the end-to-end

delay-jitter, for flow f , hence ⌧̄L00
f,sf
� ⌧UPP

f,n .
Observe that the already computed compact domain h�

n is
a sufficient horizon for the service curve of node n.

3) Construction of UA Curves: Consider flow f . Function
↵0,UA

f = uaArrivalCurve
⇣
↵0,UPP

f , ↵0,L00

f , h↵
f

⌘
, at line 18 of

Algorithm 3, constructs this UA curve as follows (see Fig. 4):

↵0,UA
f (t) =

(
↵0,UPP

f (t) if t  h↵
f

↵0,L00

f (t) otherwise
(9)

Consider node n. Function �UA
n =

uaServiceCurve
⇣
�UPP

n , �L00
n , h�

n

⌘
, at line 20 of Algorithm 3,

constructs this UA curve as follows (see Fig. 4):

�UA
n (t) =

(
�UPP

n (t) if t  h�
n

min
⇣
�UPP

n (h�
n), �L00

n (t)
⌘

otherwise
(10)

B. Validity and Accuracy of FH-TFA

Theorem 4 (Validity and Accuracy of FH-TFA). Consider a
FIFO network, as described in Section III and Algorithms 2
and 3. Then, (1) FH-TFA provides valid bounds. (2) If original,
UPP service curves of all nodes are super-additive, FH-TFA
and GFP-TFA provide the exact same bounds.

The proof is in Section VI. In the common case where
service curves are super-additive, FH-TFA and GFP-TFA

return the same output, i.e., FH-TFA returns finite bounds if
and only if GFP-TFA returns finite bounds and, if bounds are
finite, both algorithms provide the same bounds. FH-TFA is
thus a practical alternative to GFP-TFA, which may become
too complex when there are many UPP curves.

FH-TFA is always applicable and provides valid bounds,
as stated in item (1) in the theorem, and super-additivity of
service curves is not a requirement for FH-TFA; furthermore,
the obtained bounds by FH-TFA are guaranteed to be less
than or equal to those obtained by FP-TFA (which uses linear
curves). We use super-additivity of service curves only to
prove that bounds obtained by FH-TFA are exactly equal
to those of GFP-TFA. When service curves are not super-
additive, it is not clear whether they are equal to those
that would be obtained by GFP-TFA (using original, UPP
curves), and this is left for further study. Note that service
curves of frequent schedulers, including DRR, WRR, IWRR,
CBS, and Non-Preemptive Strict-Priority, are super-additive,
as explained in Section II-A2.

Remarks on time and space complexity: GFP-TFA itera-
tively calls function FF-TFA (line 5 of Algorithm 2) and
the number of iterations cannot be determined in advance,
however, we analyze the complexity of one instance of FF-
TFA. FF-TFA (Algorithm 1) includes operations such as
addition, min-plus convolution, horizontal deviation, etc. on
UPP or UA functions; [17] formally studies the compu-
tational complexity of such operations, the addition being
the most costly [17, Proposition 10]. FF-TFA calls once
function aggragteArrivalCurven for each node n (line 6 of
Algorithm 3). With the addition being the most costly, the
complexity of aggragteArrivalCurven is in the order of the
complexity of summing arrival curves of all flows. Specifically,
assume that there are F flows with UPP arrival curves ↵0,UPP

f

with a pseudo-period pf and a rank Tf for f 2 [1, F] (see
Section II-A1). Let p be the hyper-period of the aggregate
and T = maxf2[1,F] Tf , and let Mf be the number of
segments required to define ↵0,UPP

f in [0, T +p) for f 2 [1, F].
Then, by [17], the required space to compute

PF
f=1 ↵

0,UPP
f

is
PF

f=1 Mf and the addition can be computed in time
O((

PF
f=1 Mf) log2 F). Thus, as we have N nodes, one

instance of FF-TFA inside GFP-TFA (using UPP curves) is
run in time O(N(

PF
f=1 Mf) log2 F); the required space for

GFP-TFA is O(N(
PF

f=1 Mf) log2 F) plus the space required
to store service curves �UPP

n for all node n.

However, FH-TFA restricts UPP functions to a finite horizon
(i.e., UA functions) and applies GFP-TFA with UA curves.
Specifically, it applies GFP-TFA with ↵0,UA

f defined in (9). Let
Mh

f be the number of segments required to define ↵0,UPP
f in

[0, h↵
f) (i.e., the number of segments required to define ↵0,UA

f ;
see Figure 4) for f 2 [1, F]. With the same reasoning as the
previous paragraph, one instance of FF-TFA inside GFP-TFA,
using UA curves, is run in time O(N(

PF
i=1 Mh

f) log2 F);
the required space for FH-TFA (GFP-TFA using UA curves)
is O(N(

PF
i=1 Mh

f) log2 F) plus the space required to store

(a)

↵0,UA
f

↵0,L00

f

↵0,UPP
f

h↵
f

sufficient horizon

�UPP
n

�UA
n

�L00
n

h�
n

sufficient horizon

Fig. 4: ↵0,UPP
f (resp. �UPP

n) is the original, UPP arrival curve for
flow f at the source (resp. service curve of node n), ↵0,L00

f (resp.
�L00

n) is the smallest token-bucket (resp. largest rate-latency) that
upper bounds ↵0,UPP

f (resp. lower bounds �UPP
n), and h↵

f (resp.
h�

n) is a sufficient horizon for the arrival curve of flow f (resp.
service curve of node n). Then, ↵0,UA (resp. �UA

n) follows ↵0,UPP
f

(resp. �UPP
n) in [0, h↵

f] (resp. [0, h�
n]) and beyond that follows

↵0,L00
f (resp. �L00

n).

2) Sufficient Horizons for Arrival Curves of Flows at the
Source: Consider flow f . As the arrival curve of flow f
increases along its path, this horizon should be large enough
such that arrival curve of the flow, respects the compact
domain at every node in its path. Specifically, consider node
n in the path of flow f . Then, at the input of node n, arrival
of flow f is its arrival curve at the source, but shifted to left
by a delay-jitter bound from the source to node n, say ⌧UPP

f,n .
Hence, sufficient horizon of flow f should be larger than or
equal to h↵

n + ⌧UPP
f,n at every node n in its path. Thus, we use

h↵
f = maxn2path(f) h↵

n + ⌧̄L00
f,sf

where sf is the sink of flow
f ; note that ⌧̄L00

f,sf
is an upper-bound on the the end-to-end

delay-jitter, for flow f , hence ⌧̄L00
f,sf
� ⌧UPP

f,n .
Observe that the already computed compact domain h�

n is
a sufficient horizon for the service curve of node n.

3) Construction of UA Curves: Consider flow f . Function
↵0,UA

f = uaArrivalCurve
⇣
↵0,UPP

f , ↵0,L00

f , h↵
f

⌘
, at line 18 of

Algorithm 3, constructs this UA curve as follows (see Fig. 4):

↵0,UA
f (t) =

(
↵0,UPP

f (t) if t  h↵
f

↵0,L00

f (t) otherwise
(9)

Consider node n. Function �UA
n =

uaServiceCurve
⇣
�UPP

n , �L00
n , h�

n

⌘
, at line 20 of Algorithm 3,

constructs this UA curve as follows (see Fig. 4):

�UA
n (t) =

(
�UPP

n (t) if t  h�
n

min
⇣
�UPP

n (h�
n), �L00

n (t)
⌘

otherwise
(10)

B. Validity and Accuracy of FH-TFA

Theorem 4 (Validity and Accuracy of FH-TFA). Consider a
FIFO network, as described in Section III and Algorithms 2
and 3. Then, (1) FH-TFA provides valid bounds. (2) If original,
UPP service curves of all nodes are super-additive, FH-TFA
and GFP-TFA provide the exact same bounds.

The proof is in Section VI. In the common case where
service curves are super-additive, FH-TFA and GFP-TFA

return the same output, i.e., FH-TFA returns finite bounds if
and only if GFP-TFA returns finite bounds and, if bounds are
finite, both algorithms provide the same bounds. FH-TFA is
thus a practical alternative to GFP-TFA, which may become
too complex when there are many UPP curves.

FH-TFA is always applicable and provides valid bounds,
as stated in item (1) in the theorem, and super-additivity of
service curves is not a requirement for FH-TFA; furthermore,
the obtained bounds by FH-TFA are guaranteed to be less
than or equal to those obtained by FP-TFA (which uses linear
curves). We use super-additivity of service curves only to
prove that bounds obtained by FH-TFA are exactly equal
to those of GFP-TFA. When service curves are not super-
additive, it is not clear whether they are equal to those
that would be obtained by GFP-TFA (using original, UPP
curves), and this is left for further study. Note that service
curves of frequent schedulers, including DRR, WRR, IWRR,
CBS, and Non-Preemptive Strict-Priority, are super-additive,
as explained in Section II-A2.

Remarks on time and space complexity: GFP-TFA itera-
tively calls function FF-TFA (line 5 of Algorithm 2) and
the number of iterations cannot be determined in advance,
however, we analyze the complexity of one instance of FF-
TFA. FF-TFA (Algorithm 1) includes operations such as
addition, min-plus convolution, horizontal deviation, etc. on
UPP or UA functions; [17] formally studies the compu-
tational complexity of such operations, the addition being
the most costly [17, Proposition 10]. FF-TFA calls once
function aggragteArrivalCurven for each node n (line 6 of
Algorithm 3). With the addition being the most costly, the
complexity of aggragteArrivalCurven is in the order of the
complexity of summing arrival curves of all flows. Specifically,
assume that there are F flows with UPP arrival curves ↵0,UPP

f

with a pseudo-period pf and a rank Tf for f 2 [1, F] (see
Section II-A1). Let p be the hyper-period of the aggregate
and T = maxf2[1,F] Tf , and let Mf be the number of
segments required to define ↵0,UPP

f in [0, T +p) for f 2 [1, F].
Then, by [17], the required space to compute

PF
f=1 ↵

0,UPP
f

is
PF

f=1 Mf and the addition can be computed in time
O((

PF
f=1 Mf) log2 F). Thus, as we have N nodes, one

instance of FF-TFA inside GFP-TFA (using UPP curves) is
run in time O(N(

PF
f=1 Mf) log2 F); the required space for

GFP-TFA is O(N(
PF

f=1 Mf) log2 F) plus the space required
to store service curves �UPP

n for all node n.

However, FH-TFA restricts UPP functions to a finite horizon
(i.e., UA functions) and applies GFP-TFA with UA curves.
Specifically, it applies GFP-TFA with ↵0,UA

f defined in (9). Let
Mh

f be the number of segments required to define ↵0,UPP
f in

[0, h↵
f) (i.e., the number of segments required to define ↵0,UA

f ;
see Figure 4) for f 2 [1, F]. With the same reasoning as the
previous paragraph, one instance of FF-TFA inside GFP-TFA,
using UA curves, is run in time O(N(

PF
i=1 Mh

f) log2 F);
the required space for FH-TFA (GFP-TFA using UA curves)
is O(N(

PF
i=1 Mh

f) log2 F) plus the space required to store

(b)

Figure 6.4.1: α0,UPP
f (resp. βUPP

n) is the original, UPP arrival curve for flow f at the source (resp.
service curve of node n), α0,L′′

f (resp. βL′′
n) is the smallest token-bucket (resp. largest rate-latency)

that upper bounds α0,UPP
f (resp. lower bounds βUPP

n), and hαf (resp. hβn) is a sufficient horizon for the
arrival curve of flow f (resp. service curve of node n). Then, α0,UA (resp. βUA

n) follows α0,UPP
f (resp.

βUPP
n) in [0,hαf] (resp. [0,hβn]) and beyond that follows α0,L′′

f (resp. βL′′
n).

for further study. Note that service curves of frequent schedulers, including DRR, WRR, IWRR, CBS,

and Non-Preemptive Strict-Priority, are super-additive.

Remarks on time and space complexity: GFP-TFA iteratively calls function FF-TFA (line 5 of Algo-

rithm 6.2) and the number of iterations cannot be determined in advance, however, we analyze the

complexity of one instance of FF-TFA. FF-TFA (Algorithm 6.1) includes operations such as addition,

min-plus convolution, horizontal deviation, etc. on UPP or UA functions; [164] formally studies the

computational complexity of such operations, the addition being the most costly [164, Proposition 10].

FF-TFA calls once function aggragteArrivalCurven for each node n (line 6 of Algorithm 6.3). With the

addition being the most costly, the complexity of aggragteArrivalCurven is in the order of the complex-

ity of summing arrival curves of all flows. Specifically, assume that there are F flows with UPP arrival

curves α0,UPP
f with a pseudo-period p f and a rank T f for f ∈ [1,F] (see Section 6.1.1.1). Let p be the

hyper-period of the aggregate and T = max f ∈[1,F] T f , and let M f be the number of segments required

to define α0,UPP
f in [0,T +p) for f ∈ [1,F]. Then, by [164], the required space to compute

∑F
f =1α

0,UPP
f is∑F

f =1 M f and the addition can be computed in time O((
∑F

f =1 M f) log2 F). Thus, as we have N nodes,

one instance of FF-TFA inside GFP-TFA (using UPP curves) is run in time O(N (
∑F

f =1 M f) log2 F); the

required space for GFP-TFA is O(N (
∑F

f =1 M f) log2 F) plus the space required to store service curves

βUPP
n for all node n.

However, FH-TFA restricts UPP functions to a finite horizon (i.e., UA functions) and applies GFP-TFA

with UA curves. Specifically, it applies GFP-TFA with α0,UA
f defined in (6.9). Let M h

f be the number of

segments required to define α0,UPP
f in [0,hαf) (i.e., the number of segments required to define α0,UA

f ; see

Figure 6.4.1) for f ∈ [1,F]. With the same reasoning as the previous paragraph, one instance of FF-TFA

inside GFP-TFA, using UA curves, is run in time O(N (
∑F

i=1 M h
f) log2 F); the required space for FH-TFA

136

6.5 Numerical Evaluation

(a) (b) (c)

50 100 150 200 250

Flows
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
el

ay
s

(m
s)

FP-TFA
FH-TFA
Simulations

20 40 60 80 100 120 140 160 180 200 220

Flows
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

D
el

ay
s

(m
s)

FP-TFA
FH-TFA
Simulations

50 100 150 200 250 300

Flows
0

0.05

0.1

0.15

0.2

0.25

D
el

ay
s

(m
s)

FP-TFA
FH-TFA
Simulations

Figure 6.5.1: Delay bounds obtained with FP-TFA, which uses token-bucket arrival curves, and our
FH-TFA. GFP-TFA with original UPP curves, fails as we face a memory size error. FH-TFAsignificantly
improves the bounds compared to those obtained by FP-TFA. Moreover, the improvement is more
considerable when we compare the tightness gaps using the simulation values. See Table 6.5.1 for
run-times. Flows are ordered by values of FP-TFA.

(GFP-TFA using UA curves) is O(N (
∑F

i=1 M h
f) log2 F) plus the space required to store service curves

βUA
n for all node n. As the number of segments in the horizon,

∑F
f =1 M h

i (i.e., transient part) might

be extremely smaller than those of the hyper-period,
∑F

f =1 M f (see Figure 6.2.1 where
∑F

f =1 M h
i = 13

and
∑F

f =1 M f = 2020.), FH-TFA might significantly reduce the time and space complexity compared to

GFP-TFA. As observed in Section 7.5, GFP-TFA has high computational complexity and is an impractical

method, while FH-TFA is successfully applied to each of our industrial case studies.

6.5 Numerical Evaluation

We use three real, industrial networks provided by industrial partners of RTaW, a leading company in

Ethernet TSN design, performance evaluation and automated configuration tools; these examples are

anonymized and slightly changed. We first explain each network, and we then present the results.

6.5.1 A Feed-Forward Network

It is illustrated in Fig. 6.5.1 (a): This network is feed-forward. It has 13 end-nodes and 5 switches: Link

speeds are c = 2Gb/s and switches (blue squares) have switching latency equal to L = 15µs, i.e., nodes

offer a rate-latency service curve βc,L with L = 0 for end-nodes and L = 15 for switches. There are 50

periodic flows: periods are 0.03, 0.06, 0.12, 0.24, 1, 5, 10, 20, 25, 60, 125, 200, and 1000 ms; packet sizes

are [130,1360] bytes.

137

Chapter 6. Total Flow Analysis For Time-Sensitive Networks with Periodic Sources

6.5.2 A Small-sized Network with Cyclic Dependencies

It is illustrated in Fig. 6.5.1 (b): This network has cyclic dependencies. It has 6 end-nodes and 3 switches:

Link speeds are c = 2Gb/s and switches (blue squares) have switching latency equal to L = 1.5µs, i.e.,

nodes offer a rate-latency service curve βc,L with L = 0 for end-nodes and L = 1.5 for switches. There

are 56 periodic flows: periods are 0.24, 0.25, 0.28, 0.5, 0.8, 1, 1.28, 2, 2.4, 20, 24, 100, 800, 1600, and 2400

ms; packet sizes are [65,530] bytes.

6.5.3 An Extremely Large Network with Cyclic Dependencies

It is illustrated in Fig. 6.5.1 (c): This network has cyclic dependencies. It has 291 end-nodes and 220

switches: Link speeds are c = {0.1,1,10}Gb/s and switches (blue squares) have switching latency equal

to L = 2µs. There are 486 periodic flows: periods are 0.125, 0.24, 0.28, 0.608, and 10 ms; packet sizes are

[96,1518] bytes.

6.5.4 Results

We apply three methods to compute end-to-end delay bounds: 1) GFP-TFA with original UPP curves,

i.e., stair arrival curve for flows (see Fig. 6.1.1); 2) FP-TFA; 3) FH-TFA. Also, we use the RTAW-Pegase tool

to do simulations where we compute some true delays for each flow that serve as lower-bounds on

the worst-case. Note that the true worst-case is between the simulation bound and the smallest delay

bound, hence this provides a bound on the tightness.

First, we observe that in all three networks, GFP-TFA with original UPP curves, fails as we face a

memory size error. Indeed as explained before, GFP-TFA has high computational complexity and is an

impractical method that is used to validate our second version of TFA, FH-TFA. Second, FP-TFA, which

uses token-bucket arrival curves, and FH-TFA are successfully applied to each network, and obtained

delay bounds are illustrated in Fig. 6.5.1: FH-TFA significantly improves the bounds compared to those

obtained by FP-TFA with token-bucket arrival curves; namely, FH-TFA improves bounds by around

20% (median) and 65% (maximum) compared to FP-TFA in our examples. This increases efficiency as

more traffic can be accepted while meeting required deadlines, and making the network more robust

to changes in network conditions and physical infrastructure. Moreover, the improvement is more

considerable when we compare the tightness gap using the simulation values. Note that as service

curves are rate-latency, hence super-additive, by Theorem 6.4, FH-TFA and GFP-TFA provide the exact

same bounds.

Table 6.5.1: Run-times for networks of Fig. 6.5.1

Method Network (a) Network (b) Network (c)
GFP-TFA with UPP curves - - -

FP-TFA (s) [0.053, 0.059] [2.66, 2.68] [10.8, 10.88]
FH-TFA (s) [0.8, 0.82] [7.07, 7.1] [35.17, 35.37]

We also provide run-times in Table 6.5.1: We use the min-plus interpreter of RTaW [92] that has infinite

precision using rational numbers. We use Java on a 2.6 GHz 6-Core Intel Core i7 computer. As GFP-TFA

with UPP curves fails hence no run-time is provided; for the other methods, we run the program ten

times, and 95% confidence interval is reported. FH-TFA is fast and practical, even for the extremely

large network. Note that, in our experiment, we use the minimum resolution ∆ equal to 1 nanosecond

138

6.6 Proofs

(line 6 of Algorithm 6.2).

6.6 Proofs

6.6.1 Proof of Theorem 6.2

Proof of Theorem 6.2. As the packetizer is fed by a transmission link with rate c, it follows that when a

packet of size l arrives to the packetizer, it is released after a time equal to l
c . Hence, the release time of

any packet is upper-bounded by l max

c . Then, by [40, Theorem 6.2], it follows that a pure delay δ lmax
c

is a

service curve for the packetizer, hence the output arrival curve is min-plus deconvolution of the input

arrival curve and δ lmax
c

.

6.6.2 Proof of Theorem 6.3

Proof of Theorem 6.3. The proof follows similar steps as in the proof of Theorem 2 of [119]. Let F be

the mapping that maps τcut,k−1 to τcut,k in lines 1-6 of Algorithm 6.2.

Fix an acceptable trajectory scenario, i.e., the set of all cumulative arrival functions at all nodes in the

networks such that arrival curve and service curve constraints are met. Let t prop be the minimum of all

link propagation delays and θ = t prop

2 , so that 0 < θ < t prop. Consider an arbitrary η≥ 0.

• Let W (resp. U) represents the set of point located just before (resp. just after) the cuts. Note

that in the original, uncut network, U and W are connected via some links. Also, the network

between U and W is feed-forward.

• Let V represent the points located exactly θ seconds before W . As θ < t prop and t prop is the

minimum propagation delay, V is on the same links as W .

• For M = {U ,V ,W }, let CM represent the collection of cumulative arrival functions; let Cη

M repre-

sent the collection of cumulative arrival functions stopped at timeη, i.e., Cη

M (t) = min
(
CM (t),CM (η)

)
;

let C
′η
M represent the collection of cumulative arrival functions when inputs at U and all sources

are stopped at time η.

• For M = {U ,V ,W }, we denote by τM the collection of worst-case delay jitter from the source to

M for all flows at M ; we denote by τηM collection of worst-case delay jitter from the source to M

for all flows at M observed up to time η; we denote by τ
′η
M collection of worst-case delay jitter

from the source to M for all flows at M when inputs at U and all sources are stopped at time η.

First, observe that τηM and τ
′η
M are finite. This is because as η is finite and as sources are constrained at

the source, a finite number of bits ever entered the network, hence delays are finite. Then:

1) observe that τηV ≤ τ
′η
V ; This is implied by the fact that the network is causal, and hence, ∀t ≤ η,C

′η
M (t) =

Cη

M (t) and ∀t > η,C
′η
M (t) ≥Cη

M (t).

2) As the network between U and W is feed-forward, function F computes a bound on the delay-jitters

from the source to W , given delay-jitters from the source to U , and hence, τ
′η
W ≤ F

(
τ
η

U

)
.

139

Chapter 6. Total Flow Analysis For Time-Sensitive Networks with Periodic Sources

3) As there is a constant delay θ between V and W , ∀t ≥ 0, C
′η
W (t+θ) =C

′η
V (t); it follows that τ

′η
W ≤ F

(
τ
η

U

)
τ
′η
V = τ

′η
W .

Combine 1), 2), and 3) and obtain

τ
η

V = F
(
τ
η

U

)
(6.11)

Observe that τηV = τη+θW . This is because the exact same traffic that is observed by V between 0 to η is

observed by W between θ to η+θ, and the difference is only a constant delay θ; this does not change

the delay-jitter. Also, as in the original, uncut network U and W are connected, τηW = τ
η+θ
U . Thus,

τ
η

V = τ
η+θ
U . Combine this with (6.11) and obtain τ

η+θ
U = F

(
τ
η

U

)
. This is valid for every η ≥ 0, apply it

with η= kθ and obtain: ∀k ≥ 0,τ(k+1)θ
U = F

(
τkθ

U

)
. As the network is empty at time zero, τ0

U = 0. As F is

wide-sense increasing and F (τ̄) = τ̄ and a simple induction, it follows that τkθ
U ≤ τ̄ and hence τηU ≤ τ̄

for η≥ 0. Hence, supη≥0τ
η

U ≤ τ̄, i.e., for any acceptable trajectory scenario, the worst-case delay jitter

bound from a source to a cut for every flow at cuts is upper-bounded by τ̄.

6.6.3 Proof of Theorem 6.4

Proof of Theorem 6.4. The validity of the bounds is directly implied by the validity of the constructed

UA curves. Specifically, UA curves constructed in FH-TFA, are safe upper/lower bounds of the original,

UPP curves, i.e., α0,UPP ≤α0,UA and βUA ≤βUPP (see Fig. 6.4.1). Then, as GFP-TFA is isotone, it follows

that bounds obtained by FH-TFA are larger than or equal to those obtained by GFP-TFA (using original,

UPP curves), hence valid and (1) is shown.

We now proceed to show item (2) when service curves are super-additive. We first prove the following

lemmas.

Lemma 6.1. Consider Algorithm 6.3 and consider node n. Then, the computation of the delay bound

at node n, d UPP
n = hDev

(
αUPP

n − l min
n ,βUPP

n

)+ l min
n
cn

(see line 8 of Algorithm 6.1), involves only values of

αUPP
n (t) for t ∈ [

0,hαn
]

and βUPP
n (t) for t ∈

[
0,hβn

]
, where αUPP

n is the aggregate arrival curve at node n

computed by GFP-TFA using UPP curves, l min
n is the minimum packet size of flows at node n, and cn is

the transmission rate at node n.

Proof. As α0,L′′
f ≥ α0,UPP

f (resp. α0,L′
f ≤ α0,UPP

f) and βL′′
n ≤ βUPP

n (resp. βL′
n ≥ βUPP

n) and as GFP-TFA is

isotone, it follows that (d L′
,τL′

) ≤ (d UPP,τUPP) ≤ (d L′′
,τL′′

). Thus, αL′
n ≤αUPP

n ≤αL′′
n . Also, by construc-

tion, βL′′
n ≤ βUPP

n ≤ βL′
n . Apply Theorem 6.1 with α = αUPP

n , α′′ = αL′′
n , α′ = αL′

n , β = βUPP
n , β′′ = βL′′

n ,

and β′ =βL′
n to conclude that hDev

(
αUPP

n ,βUPP
n

)
depends only on values of αUPP

n (t) for t ∈ [
0,hαn

]
and

βUPP
n (t) for t ∈

[
0,hβn

]
. Observe that these compact domains are also sufficient for the computation of

hDev
(
αUPP

n − l min
n ,βUPP

n

)
.

Lemma 6.2. Consider Algorithm 6.3 and assume a τcut such that 0 ≤ τcut ≤ τ̄cut,L′′
where τ̄cut,L′′

are delay-

jitters for flows at cuts extracted from τ̄L′′
, obtained at line 7. Then, FF-TFA

(
α0,UPP,βUPP,E cut,τcut

) =
FF-TFA

(
α0,UA,βUA,E cut,τcut

)
where FF-TFA is described in Algorithm 6.1.

Proof. First, we show that for every node n,

∀t ∈ [0, hβn], βUA
n (t) =βUPP

n (t) (6.12)

140

6.6 Proofs

∀ f ∈ flows(n), ∀t ∈ [0, hαn], αUA
f ,n(t) =αUPP

f ,n (t) (6.13)

d UA
n = d UPP

n (6.14)

Observe that (6.12) is by construction. We now prove (6.13) and (6.14). by induction on node n. Recall

that, as explained in Section 6.2, nodes are labeled in a topological order of the cut network (such

orders exist as the cut network is feed-forward). We assume, to simplify the notation, that the node

label n is an integer that reflects this topological order. The base case of our induction is thus for a

node n that is an edge node, i.e., where all flows at node n are either fresh or cut.

Base Case: n is an edge node in the cut network

f is fresh: We show that for every fresh f , ∀t ∈ [0, hαn], α0,UA
f (t) =α0,UPP

f (t). By construction, α0,UA
f (t) =

α0,UPP
f (t) for t ∈ [0, hαf], hence we should show that hαf ≥ hαn : Recall that hαf = maxn∈Path(f) hαn + τ̄L′′

f ,s f
,

and as τ̄L′′
f ,s f

≥ 0, it follows that hαf ≥ hαn .

f is cut: For every flow f that is cut at node n (if any), we show that ∀t ∈ [0, hαn], α0,UA
f

(
t +τcut

f

)
=

α0,UPP
f

(
t +τcut

f

)
. By construction, α0,UA

f (t) = α0,UPP
f (t) for t ∈ [0, hαf], hence we must show that hαf ≥

hαn +τcut
f ,n : Recall that hαf = maxn∈Path(f) hαn + τ̄L′′

f ,s f
; observe that hαf ≥ hαn + τ̄L′′

f ,s f
. Then, as s f ≥ n and as

delay-jitter increases along the path, τ̄L′′
f ,s f

≥ τ̄L′′
f ,n , hence hαf ≥ hαn + τ̄L′′

f ,n . By construction, as τ̄cut,L′′
is

extracted form τ̄L′′
, we have τ̄L′′

f ,n = τ̄cut,L′′
f ,n , hence hαf ≥ hαn + τ̄cut,L′′

f ,n . Lastly, by hypothesis of the lemma,

τ̄cut,L′′ ≥ τcut, and therefore, hαf ≥ hαn +τcut
f ,n .

Hence, the base case is shown for (6.13). Then, by Lemma 6.1, (6.12), and (6.13), it follows that

d UA
n = d UPP

n hence the base case is shown for (6.14).

Induction Case: n is not an edge node in the cut network

In this case, we assume that for every n′ < n, (6.13) and (6.14) holds, and we prove them at node n.

First, observe that for a fresh flow or cut flow f ∈ flows(n), the proof of (6.13) is similar to the base case.

Second, for a transit flow f ∈ flows(n), (6.13) can be rewritten as follows:

∀t ∈ [0, hαn], α0,UA
f (t +τUA

f ,n) =α0,UPP
f (t +τUPP

f ,n) (6.15)

By induction hypothesis for (6.14), we have d UA
n′ = d UPP

n′ for n′ < n, thus τUA
f ,n = τUPP

f ,n is implied by the

construction. Hence, (6.15) can be rewritten as follows:

∀t ∈ [0, hαn], α0,UA
f (t +τUPP

f ,n) =α0,UPP
f (t +τUPP

f ,n) (6.16)

Recall that α0,UA
f (t) =α0,UPP

f (t) for t ∈ [0, hαf], we need to show that hαf ≥ τUPP
f ,n +hαn . By construction,

hαf = maxn∈Path(f) hαn +τ̄L′′
f ,s f

≥ hαn +τ̄L′′
f ,s f

. Observe that τ̄L′′
f ,s f

≥ τ̄L′′
f ,n and τ̄L′′

f ,n ≥ τUPP
f ,n , and hence hαf ≥ hαn +

τUPP
f ,n . This shows (6.15) and hence the induction case is shown for (6.13). Then, by Lemma 6.1, (6.12),

and (6.13), it follows that d UA
n = d UPP

n hence the induction case is shown for (6.14). Therefore, (6.13)

and (6.14) are shown. Lastly, by (6.14), both methods return the same collection of per-node delay

bounds, hence also of delay-jitters for flows.

We now proceed to conclude the proof of item (2) of Theorem 6.4. Observe that if one of the components

141

Chapter 6. Total Flow Analysis For Time-Sensitive Networks with Periodic Sources

of (d̄ L′′
, τ̄L′′

), obtained in line 7 of Algorithm 6.3, is infinite, then FH-TFA applies GFP-TFA with the

original, UPP curves hence (2) is concluded. We now proceed by assuming that (d̄ L′′
, τ̄L′′

) is finite

(thus the network is stable) and show that GFP-TFA
(
α0,UA,βUA,E cut

)
returns the same bounds as GFP-

TFA
(
α0,UPP,βUPP,E cut

)
. First, observe that GFP-TFA starts with τcut = 0. Next, as FF-TFA is isotone,

bounds obtained at each iteration inside GFP-TFA, using UA or UPP curves, are upper-bounded by

those obtained using linear curves; hence, for flows at cuts, delay-jitter bounds obtained at each

iteration using UA or UPP curves are always upper-bounded by the fix-point τ̄cut,L′′
. Then, iteratively

apply Lemma 6.2 to conclude that at each iteration where GFP-TFA calls FF-TFA the same bounds are

obtained using UA and UPP curves. Therefore, FH-TFA and GFP-TFA provide the exact same finite

bounds.

6.7 Conclusion

TFA quickly becomes intractable when there is a large number of periodic sources and UPP curves.

This problem is frequently observed in time-sensitive and real-time networks. We provide a practical

solution, FH-TFA, that obtains delay bounds that are formally proven, and that can handle a large

number of periodic sources with different periods.

142

6.8 Notation

6.8 Notation

Table 6.8.1: Notation List, Specific to Chapter 6

f A flow
E cut Cutset: removing E cut creates a feed-forward graph
G = (N ,E) The graph induced by flows of class
path(f) The sequence of output ports in the path of flow f
N ,n The set of all output ports, an output port
E ,e The set of edges, an edge
In(n) The set of edges of that are incidents at node n
flows(n) The set of flows at output port n
αn Aggregate arrival curve of all flows at the input of node n
αfresh

n Aggregate arrival curve of all fresh flows at the input of node n
αtransit

n Aggregate arrival curve of all transit flows at the input of node n
α f ,n An arrival curve for flow f at the input of node n
α0

f An arrival curve for flow f at the source

βn A service curve offered to node n
α0 Collection of arrival curves of all flows at the source
d Collection of delay bound dn for every node n
τcut Collection of delay-jitter bounds τ f ,n for every flow f at cuts
τ Collection of delay-jitter bounds τ f ,n for every flow f at every node n in its path
β Collection of service curves of all nodes
dn Delay bound at node n
τ f ,n Delay-jitter bound for flow f from the source to the input of node n
l max

f Maximum packet size for flow f

l min
f Minimum packet size for flow f

∆ Minimum resolution of times, e.g., 1 nanosecond
h Sufficient horizon
cn Transmission rate of the line fed by output port n
δd Pure delay function with δd (t) = 0 for t ≤ d and δd (t) =∞ for t > d
βc,L Rate-latency function with βc,L(t) = max(0,c(t −L))
Q+ Set of non-negative rational numbers
F piece-wise-linear Set of piece-wise linear and wide-sense increasing functions f :Q+ 7→Q+∪ {+∞}

νp,b Stair function with νp,b(t) = b
⌈

t
p

⌉
γr,b Token-bucket function with γr,b(0) = 0 and γr,b(t) = r t +b for t > 0
hDev Horizontal deviation hDev(α,β) = supt≥0{inf{d ≥ 0|α(t) ≤β(t +d)}}
⊗ Min-plus convolution (f ⊗ g)(t) = inf0≤s≤t { f (t − s)+ g (s)}
⊘ Min-plus deconvolution (f ⊘ g)(t) = sups≥0{ f (t + s)− g (s)}
vDev Vertical deviation vDev(α,β) = supt≥0{α(t)−β(t)}

143

7 Quasi-Deterministic Burstiness
Bound for Aggregate of Indepen-
dent, Periodic Flows

In time-sensitive networks, where moments unfold,

Monitoring the status, a story to be told.

Devices send packets, with periodic grace,

Aggregated and forwarded, to the controller’s embrace.

Bounding aggregate burstiness, a task at hand,

For effective resource management, a demand so grand.

Independent and periodic flows, our focus true,

Bounding their burstiness, with insights anew.

Deterministic bounds, in perfect sync they lie,

But in practice, unlikely, as time passes by.

Overly pessimistic, an impractical view,

Probability emerges, shedding light so true.

For flows synchronized, with periods aligned,

A closed-form bound, a treasure we find.

Dvoretzky-Kiefer-Wolfowitz, inequality’s name,

A bound that shines, in mathematical fame.

Heterogeneous realms, where diversity thrives,

Grouping flows, through creative strives.

Convolution bound, the bounds we combine,

For aggregate burstiness, a path so fine.

Numerical proximity, simulations reveal,

Tight bounds obtained, their accuracy we feel.

Aggregate burstiness, with a non-zero chance,

Smaller than deterministic, in a graceful dance.

Growth transformed, as n takes its stand,√
n logn, a growth that feels grand.

For number of flows, an elegant decree,

Burstiness estimation, in mathematical glee.

So let this chapter commence, a journey we embark,

In time-sensitive networks, where resource management sparks.

Bounding aggregate burstiness, with precision and might,

145

Chapter 7. Quasi-Deterministic Burstiness Bound for Aggregate of Independent, Periodic
Flows

A tale of bounds, shining with insightful light.

Created with ChatGPT, free research preview (version May 24) [141]

We already proposed a solution that more accurately handles periodic flows by using UPP curves, and

we mitigated the tractability issue of aggregating many UPP curves. As explained in Section 1.3.2, an

orthogonal direction to reduce the pessimism of aggregating arrival curve constraints is to use the

affine functions but to permit some violation probability. The development of industrial automation

requires timely and accurate monitoring of the status of the network. In time-sensitive networks, a

common assumption for critical types of traffic is that devices send packets periodically. These packets

are aggregated and forwarded to the controller. Characterizing this aggregate traffic is then crucial for

effective resource management.

We consider independent, periodic flows and are interested in bounding the burstiness of their aggre-

gate traffic. If all flows are synchronized (i.e., have the same phase), then the aggregate burstiness is

the sum of the packet sizes of all flows. Otherwise, the aggregate burstiness would likely be smaller.

We assume that phases are random and uniformly distributed, and we are then interested in finding

the probability that the aggregate burstiness exceeds some pre-specified value, i.e., bounds on the tail

probability of the aggregate burstiness. This enables us to estimate an upper bound for the aggregate

burstiness, which is valid with probability of at least 1−ε throughout the entire network’s lifetime,

where ε is a small, non-zero violation tolerance. (Deterministic) network calculus can then be applied

to obtain delay and backlog bounds that are valid with probability of at least 1−ε (quasi-deterministic

bounds). As we show in Section 7.3, such quasi-deterministic bounds are considerably less than those

obtained if we do not allow any probability of violation (deterministic bounds).

To overcome this issue, probabilistic versions of network calculus (known as Stochastic Network Cal-

culus) have emerged, and their aim is to compute performances when a small violation probability

is allowed. Using probabilistic tools such as moment-generating functions [97] or martingales [98],

existing works [97, 99, 100, 101, 102] do not provide quasi-deterministic bounds, rather they find the

probability of delay or backlog violation at an arbitrary point in time, in stationary regime; however,

in time-sensitive networks, we are interested in the probability that a delay or backlog bound is not

violated during some interval (e.g., the network’s lifetime), not just one arbitrary point in time. The

violation probability of a delay bound being small at one arbitrary point in time, does not imply that

the probability that the delay bound is never violated during a period of interest is small. In fact, there

would likely be some violations. [101, Section 4.4] points out that quasi-deterministic bounds are

always trivial when arrival processes are stationary and ergodic. However, it has been overlooked that

there is interest in some non-ergodic arrival processes, as in our case. Indeed, with our model, phases

are drawn randomly but remain the same during the entire period of interest; thus, our arrival pro-

cesses are not ergodic. As of today, we present the only known method that obtains quasi-deterministic

bounds for independent, periodic flows.

Contributions of this chapter are the following:

1. For the homogeneous case (i.e., flows with the same packet size and period), we provide a closed-

form expression that bounds the tail probability of the aggregate burstiness (Theorem 7.1). We

obtain this bound using the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [170]. When the

number of flows is large, this bound is fairly tight compared to simulations. Also, it results in a

closed-form expression for the quasi-deterministic burstiness estimated for a non-zero violation

probability (Corollary 7.1); it grows in
√

n logn, unlike the deterministic one that grows in n,

146

7.1 Assumptions and Problem Statement

where n is the number of flows. We also provide Theorem 7.2, a refinement of Theorem 7.1 that

provides a slightly better bound when the number of flows is small, but at the expense of not

having a closed-form expression.

2. For the heterogeneous case (i.e., flows with different packet sizes and periods), we obtain a bound

by grouping flows into homogeneous sets and combining the bounds obtained for each set, using

a convolution bounding technique based on Abel’s summation (Theorem 7.3). The obtained

convolution bound can be efficiently computed using discrete convolution. For a specific case,

when flows have the same period and different packet sizes, we provide an alternative bound

that may be better, when the number of flows per packet size is small (Theorem 7.4).

3. We numerically show that our bounds are close to simulations. The quasi-deterministic aggre-

gate burstiness we obtain with a small, non-zero violation tolerance is considerably smaller than

the deterministic one. For the heterogeneous case, we show that our convolution bounding

technique provides bounds significantly smaller than those obtained by the union bound.

The rest of this chapter is organized as follows: We present our model in Section 7.1, and then in

Section 7.2, we present some results from state-of-the-art. Our contributions are detailed in Section 7.3

for the homogeneous case and in Section 7.4 for the heterogeneous case. Finally, we provide some

simulation results in Section 7.5 to demonstrate the tightness of the bounds. In Section 7.6, we conclude

the chapter. A summary of notation and symbols used in this chapter are given in Section 7.7.

7.1 Assumptions and Problem Statement

In the whole chapter, we will denoteN= {0,1, . . .} andNn = {1, . . . ,n}.

7.1.1 Assumptions

We consider n periodic flows of packets. Each flow f ∈ Nn is periodic with period τ f and phase

φ f ∈ [0,τ f), and sends packets of size ℓ f : the number of bits of flow f arriving in the time interval [0, t)

is ℓ f ⌈[t −φ f]+/τ f ⌉ where we use the notation [x]+ = max(0, x) and ⌈⌉ denotes the ceiling.

For every flow f , we assume that φ f is random, uniformly distributed in [0,τ f], and that the different

(φ f) f ∈Nn are independent random variables.

7.1.2 Problem Statement

We consider the aggregation of the n flows and let A[s, t) denote the number of bits observed in time

interval [s, t). Our goal is to find a token-bucket arrival curve constraining this aggregate, that is, a

rate r and a burst b such that ∀s ≤ t , A[s, t) ≤ r (t − s)+b. It follows from the assumptions that each

individual flow f ∈Nn is constrained by a token-bucket arrival curve with rate r f = ℓ f /τ f and burst ℓ f .

Therefore, the aggregate flow is constrained by a token-bucket arrival curve with rate r tot =∑n
f =1 r f

and burst ℓtot =∑n
f =1ℓ f .

However, due to the randomness of the phases, ℓtot might be larger than what is observed, and we are

rather interested in token-bucket arrival curves with rate r tot and a burst b valid with some probability;

specifically, we want to find a bound on the tail probability of the aggregate burstiness, which is defined

147

Chapter 7. Quasi-Deterministic Burstiness Bound for Aggregate of Independent, Periodic
Flows

as the smallest value of B such that the aggregate flow is constrained by a token-bucket arrival curve

with rate r tot and burst B , for the entire network lifetime. The aggregate burstiness is given by

B = sup
t≥0

B̄(t). (7.1)

where B̄(t) is the token-bucket content at time t for a token-bucket that is initially empty, and is given

by

B̄(t) = sup
s≤t

{A[s, t)− r tot(t − s)}. (7.2)

Note that B is a function of the random phases of the flows, therefore, is also random. Assume that

P(B > b) = ε; this means that, with probability 1−ε, after periodic flows started, the aggregate burstiness

is ≤ b. Conversely, with probability ε, the aggregate burstiness is > b.

Observe thatP(B > b) = 0 for all b ≥ ℓtot, as ℓtot is a deterministic bound on the aggregate burstiness.

Then, for some pre-specified value 0 ≤ b < ℓtot, our problem is equivalent to finding ϵ(b) that bounds

the tail probability of the aggregate burstiness B , i.e.,

P(B > b) ≤ ϵ(b). (7.3)

7.2 Related Works

Bounding the burstiness of flows in Network Calculus is an important problem since it has a strong

influence on the delay and backlog bounds. The deterministic aggregate burstiness can be improved

(compared with summing burstiness of all flows) when the phases of the flows are known exactly [171].

Regarding the Stochastically Bounded Burstiness (SBB) [101, 172], three models have been proposed,

depending on how quantifiers are used,

SBB : ∀0 ≤ s ≤ t , P (A[s, t)− r (t − s) > b) ≤ ϵ(b), (7.4)

S2BB : ∀t ≥ 0, P(sup
0≤s≤t

{A[s, t)− r (t − s)} > b) ≤ ϵ(b), (7.5)

S3BB :P(sup
0≤s≤t

{A[s, t)− r (t − s)} > b) ≤ ϵ(b). (7.6)

First, notice that S3BB =⇒ S2BB =⇒ SBB. Indeed, SBB is a probability upper bound that the arrival

curve constraint is invalid for a fixed pair of times s ≤ t . In contrast, S2BB is the probability that token-

bucket content at time t , B̄(t) exceeds b, hence the “∀s” appearing inside the probability. Last, S3BB

represents the violation probability of the aggregate burstiness B of the whole process. A deterministic

arrival curve is a special case of S3BB, with ϵ(b) = 0, which is why, for a non-zero violation probability

ϵ(b), b is called a quasi-deterministic bound on the burstiness.

The first model SBB is the weakest, but also the easiest to handle: bounding the arrivals during a

given interval of time can be done for many stochastic models. It was also used for the study of

aggregated independent flows with periodic patterns [97, 99, 100, 101, 102, 103]. All the approaches

can be summarized as follows: a) defining an event Es of interest related to some time interval [s, t)

and aggregation of the flows; b) combining the events (Es)s≤t together to obtain a violation probability

of the burstiness or of the backlog bound at time t .

148

7.3 Homogeneous Case

The second model S2BB seems at first more adapted to network calculus analysis, as performance

bounds can be directly derived from the formulation. However, the probability bound of S2BB is usually

deduced from SBB, which leads to pessimistic bounds for a single server. Nevertheless, this framework

may become necessary for more complex cases [173].

In time-sensitive networks, we are interested in the probability that a delay or backlog bound is not

violated during some interval (e.g., the network’s lifetime), not just one arbitrary point in time, so the

two models SBB and S2BB are not adapted, as they do not provide the violation probability of a delay

bound during a whole period of interest. In contrast, when using S3BB, we can guarantee, with some

probability, that delay and backlog bounds derived by deterministic network calculus are never violated

during the network’s lifetime, which is why we choose this formulation in our model.

As pointed out in [101, Section 4.4], when arrival processes are stationary and ergodic, S3BB is always

trivial and the bounding function ϵ(b) in (7.6) is either zero or one. This is perhaps why the literature

was discouraged from studying S3BB characterizations. However, it has been overlooked that there is

interest in some non-ergodic arrival processes, as in our case. Indeed, with our model, phases φ f are

drawn randomly but remain the same during the entire period of interest; thus, our arrival processes

are not ergodic.

7.3 Homogeneous Case

In this section, we consider the case where flows have the same packet size and same period.

More precisely, we assume

(H) There exist τ,ℓ > 0 such that ∀ f ∈Nn , ℓ f = ℓ,τ f = τ and (φ f) f ∈Nn is a family of independent

and identically distributed (iid) uniform random variables (rv) on [0,τ).

We present two bounds for the aggregate burstiness; the former gives a closed form, unlike the latter,

which might be slightly more accurate when the number of flows is small.

Let us first prove a useful result when the period τ is equal to 1; it shows that if the time origin is shifted

to the arrival time of the first packet of flow i , the phases of the n −1 other flows remain uniformly

distributed on [0,1) and mutually independent. For this, we define the function h as ∀x, y ∈ [0,1),

h(x, y) = (x − y)1x≥y + (1+x − y)1x<y . (7.7)

Intuitively, if x =φ j and y =φi , h(x, y) is the time until the arrival of the first packet of flow j , counted

from the arrival time of the first packet of flow i .

Lemma 7.1. Let U1, . . . ,Un be a sequence of n iid uniform rv on [0,1). Let i ∈ Nn and define W j for

j ∈Nn \ {i } by W j = h(U j ,Ui). Then, (W j) j ̸=i is a family of n −1 iid uniform rv on [0,1).

Proof. Let us first do a preliminary computation for all ui ∈ [0,1] and all bounded measurable function

149

Chapter 7. Quasi-Deterministic Burstiness Bound for Aggregate of Independent, Periodic
Flows

g j :

E[g j (h(U j ,ui))] =
∫ 1

u j =0
g j (h(u j ,ui))du j =

∫ 1

u j =ui

g j (u j −ui)du j +
∫ ui

u j =0
g j (1+u j −ui)du j

=
∫ 1−ui

u j =0
g j (w j)d w j +

∫ 1

u j =1−ui

g j (w j)d w j =
∫ 1

w j =0
g j (w j)d w j .

Then, consider a collection of bounded measurable functions (g j) j ̸=i : we can computeE[
∏

j ̸=i g j (W j)] =
E[

∏
j ̸=i g j (h(U j ,Ui))] = ∫ 1

ui=0E[
∏

j ̸=i g j (h(U j ,ui))]dui =
∫ 1

0
∏

j ̸=i E[g j (h(U j ,ui))]dui =
∫ 1

0
∏

j ̸=i E[g j (V j)]dui =∏
j ̸=i E[g j (V j)] =E[

∏
j ̸=i g j (V j)], where (V j) j ̸= j is a collection of n −1 iid uniformly rv on [0,1).

The bounds we are to present are based on the order statistics: consider n − 1 rv U1, . . . ,Un−1 and

its order statistics is U(1) ≤ ·· · ≤U(n−1), defined by sorting U1, . . . ,Un−1 in non-decreasing order. It is

well-known [174, Equation 1.145] that if (Ui) is an iid family of uniform rv on [0,1], the density function

of the joint distribution of U(1), . . . ,U(n−1) is

fU(1),...,U(n−1) (y1, . . . , yn−1) = (n −1)!10≤y1≤y2≤...≤yn−1≤1. (7.8)

The next proposition connects the order statistics of the phases with the aggregate burstiness, and is

key for Theorems 7.1 and 7.2.

Proposition 7.1. Assume model (H). For all 0 ≤ b < nℓ,

P(B > b) ≤ nP(E), (7.9)

with

E
def=

n−1⋃
k=⌊b/ℓ⌋

{
U(k) <

(k +1)−b/ℓ

n

}
, (7.10)

where U(1), . . . ,U(n−1) is the order statistic of n −1 iid uniform rv on [0,1].

Proof. Note that the normalized process Ã[s, t) = 1
ℓ A[τs,τt) follows model (H) with τ= ℓ= 1, and

P(B > b) =P(B̃ > b/ℓ).

We then assume in this proof (and that of Theorem 7.1) that τ= ℓ= 1, and the final result is obtained by

replacing b by b/ℓ. One can also remark that the bound is independent of τ.

Let T j , j ≥ 1 be the arrival time of the j -th packet in the aggregate. With probability 1, T j is strictly

increasing as we assume all phases are different. First, for all i ≤ j , for all (ti , t j) ∈ (Ti−1,Ti]×(T j ,T j+1]
def=

Ci , j , A[ti , t j) = j − i +1, and Hi , j
def= supti ,t j ∈Ci , j

A[ti , t j)−n(ti − t j) = j − i +1−n(T j −Ti). Then, we can

rewrite the aggregate burstiness as

B = sup
1≤i≤ j

sup
ti ,t j ∈Ci , j

A[ti , t j)−n(ti − t j) = sup
1≤i≤ j

Hi , j . (7.11)

As our model is the aggregation of n flows of period 1, T j+n = T j +1 for j ≥ 1, and Hi , j+n = j +n − i +
1−n(T j −1−Ti) = Hi , j for all j ≥ i . Similarly, Hi+n, j = Hi , j for all j ≥ i +n. Combine this with (7.11)

150

7.3 Homogeneous Case

and obtain

B = max
j≥1

max
i∈N j

Hi , j = max
i∈Nn

max
i≤ j≤n−1

Hi , j︸ ︷︷ ︸
Bi

. (7.12)

We now prove that ∀i ∈Nn ,P (Bi > b) =P(E).

Observe that for all j ≥ i , we have the equality of events {Hi , j > b} = {T j −Ti < (j − i +1−b)/n}, so for

all i ∈Nn , {Bi > b} =⋃i+n−1
j=i

{
T j −Ti < (j − i +1−b)/n

}
.

We can also notice that the sequence (T j −Ti)n+i−1
j=i+1 is the ordered sequence of phases starting from

time origin Ti . Conditionally to Ti =φ f , or equivalently φ(i) = f , (T j −Ti)n+i−1
j=i+1 is the order statistics of

(φ j −φ f) j ̸= f , which is, from Lemma 7.1, iid and uniformly distributed on [0,1). If follows that

P(Bi > b | φ(i) = f) =P(∪n−1
k=1{U(k) <

k −b

n
}) =P(∪n−1

k=⌊b⌋{U(k) <
k −b

n
}) =P(E),

since U(k) ≥ 0. Then, using the law of total probabilities,P(Bi > b) =∑n
f =1P(Bi > b | φ(i) = f)P(φ(i) =

f) =P(E).

Lastly, we conclude by using the union bound: P(B > b) =P(∪n
i=1Bi > b) ≤∑n

i=1P(Bi > b) = nP(E).

We now present the first bound on the tail probability of the aggregate burstiness B .

Theorem 7.1 (Homogeneous case, DKW bound). Assume model (H) with n > 1. For all b < nℓ, a bound

on the tail probability of the aggregate burstiness B is given by

P (B > b) ≤ n exp

(
−2(n −1)

(⌊b/ℓ⌋
n −1

− 1

n

)2)
def= εdkw(n,ℓ,b). (7.13)

Proof. Let us assume that τ= ℓ= 1 in the proof, as in the proof of Proposition 7.1. Observe that when

⌊b⌋ < 1− 1
n +

√
(n−1)log2

2 , we have εdkw(n,1,b) ≥ n
2 , hence (7.13) holds. Therefore we now proceed to

prove (7.13) when ⌊b⌋ ≥ 1− 1
n +

√
(n−1)log2

2 .

Step 1: Consider n −1 iid, rv U1, . . . ,Un−1 and its order statistics is U(1) ≤ ·· · ≤U(n−1), defined by sorting

U1, . . . ,Un−1 in non-decreasing order. For ε> 0, define E ′(ε) by

E ′(ε)
def=

n−1⋃
k=1

{
U(k) <

k

n −1
−ε

}
. (7.14)

We now show that if ε≥
√

log2
2(n−1) ,

P
(
E ′(ε)

)≤ e−2(n−1)ε2
. (7.15)

Let Fn−1 be the (random) empirical cumulative distribution function of U1, . . . ,Un−1, defined ∀x ∈ [0,1]

by

Fn−1(x) = 1

n −1

n−1∑
i=1
1U(i)≤x . (7.16)

151

Chapter 7. Quasi-Deterministic Burstiness Bound for Aggregate of Independent, Periodic
Flows

The Dvoretzky–Kiefer–Wolfowitz inequality [170] states that if ε≥
√

log2
2(n−1) , then

P
(

sup
x∈[0, 1]

(Fn−1(x)−x) > ε)≤ e−2(n−1)ε2
. (7.17)

We can apply this to find the bound of interest. First, we prove that

sup
x∈[0, 1]

(Fn−1(x)−x) > ε⇔∃k ∈Nn−1, U(k) <
k

n −1
−ε. (7.18)

Proof of ⇐: First, observe that Fn−1(U(k)) = k/(n −1), so if k
n−1 −U(k) > ε for some k, then Fn−1

(
U(k)

)−
U(k) > ε, and the left-hand side holds.

Proof of ⇒: Set U(0) = 0 and U(n) = 1. Observe that for all k ∈ {0, . . . ,n −1}, and all U(k) ≤ x < U(k+1),

Fn−1 (x) = Fn−1
(
U(k)

)= k
n−1 . Hence, Fn−1(x)−x = k

n−1 −x is decreasing on each segment [U(k),U(k+1)).

Then, the supremum in the left-hand side of (7.18) is obtained for some x =U(k), i.e., supx∈[0, 1](Fn−1(x)−
x) = supk∈{0,...,n−1}(Fn−1(U(k))−U(k)) = supk∈{0,...,n−1}(

k
n−1 −U(k)), which implies the right-hand side

(Fn−1(0)−0 = 0 < ε).

This proves (7.18), and Step 1 is concluded by combining it with (7.17).

Step 2: We now proceed to show that if

ε= ⌊b⌋
n −1

− 1

n
, (7.19)

then, E ⊆ E ′(ε), where event E is defined in Proposition 7.1.

It is enough to show that for all k ∈ {⌊b⌋, . . . ,n −1}, k+1−b
n ≤ k−⌊b⌋

n−1 + 1
n , which can be deduced from the

following implications:

k +1−b

n
≤ k −⌊b⌋

n −1
+ 1

n
⇔ k −b

n
≤ k −⌊b⌋

n −1
⇐ k −⌊b⌋

n
≤ k −⌊b⌋

n −1
⇔ 1

n
≤ 1

n −1
.

Step 3: By Step 2, we have P(E) ≤ P(E ′(ε)). Also, observe that ⌊ b
l ⌋ ≥ 1− 1

n +
√

(n−1)log2
2 implies ε ≥√

log2
2(n−1) . Thus, combine it with Step 1 to obtain

P(E) ≤P(E ′(ε)) ≤ exp
(
−2(n −1)

(⌊b⌋
n −1

− 1

n

)2)
. (7.20)

Combine (7.20) with Proposition 7.1 to conclude the theorem.

Note that the bound of Theorem 7.1 is only less than one and is non-trivial when ⌊ b
l ⌋ ≥ 1− 1

n +
√

(n−1)log2
2 .

The following corollary provides a closed-form formulation for the minimum value for the aggregate

burstiness with a violation probability of at most ε. It is obtained by setting the right-hand side of (7.13)

in Theorem 7.1 to ε.

Corollary 7.1 (Quasi-deterministic burstiness bound). Assume model (H) with n > 1. Consider some

152

7.3 Homogeneous Case

0 < ε< 1, and define

b(n,ℓ,ε)
def= ℓ

⌈
1− 1

n
+

√
(n −1)(log n − log ε)

2

⌉
. (7.21)

Then, b(n,ℓ,ε) is a quasi-deterministic burstiness bound for the aggregate with the violation probability

of at most ε, i.e.,P (B > b (n,ℓ,ε)) ≤ ε.

Observe that b(n,ℓ,ε) grows in
√

n logn as opposed to the deterministic bound (ℓtot = nℓ) that grows

in linearly (see Fig. 7.5.1b).

Proposition 7.1 introduces the event E such that an upper bound ofP(E) is used to derive an upper

bound on the tail probability of the aggregate burstiness. Theorem 7.1 is derived from the DKW upper

bound ofP(E), which is tight when the number of flows n is large. In Theorem 7.2, we compute the

exact value ofP(E); thus, it provides a slightly better bound when the number of flows is small but at

the expense of not having a closed-form expression.

Theorem 7.2 (Refinement of Theorem 7.1 for small groups). Assume model (H) with n > 1. For all b ≥ 0.

Then, a bound on the tail probability of the aggregate burstiness B is

P (B > b) ≤ n(1−p(n,ℓ,b))
def= εthm2(n,ℓ,b), (7.22)

with

p(n,ℓ,b) = (n −1)!
∫ 1

yn−1=un−1

∫ yn−1

yn−2=un−2

. . .
∫ yi+1

yi=ui

. . .
∫ y2

y1=u1

1d y1 . . . d yn−1, (7.23)

and uk = [(k+1)−b/ℓ]+
n , for all k ∈Nn−1 and [x]+ = max(0, x).

Note that the computation of the bound of Theorem 7.2 requires computing p(n,ℓ,b) in (7.23), which

is a series of polynomial integrations, and finding a general closed-form formula might be challenging.

However, computing the bound can be done iteratively as in Algorithm 7.1: The integrals are computed

from the inner sign to the outer (incorporation factor i from the factorial in the i -th integral). Polynoms

are computed at each step and variable qm
j represents the coefficient of degree j of the m-th integral.

Note that we always have qm
m = 1, so the monomial of degree n −1 cancels in (7.22).

All computations involve exact representations of the integrals (no numerical integration) and use

exact arithmetic with rational numbers; therefore, the results are exact with infinite precision.

Algorithm 7.1: Computation of εthm2 (n,ℓ,b) from Theorem 7.2
Inputs :number of flows n, a burst b, and a packet size ℓ.

Output :εthm2(n,ℓ,b) such thatP(B > b) ≤ εthm2(n,ℓ,b).

1 m ←⌊b/ℓ⌋−1;

2
(
qm

0 , qm
1 , . . . , qm

m

)← (0,0, . . . ,0,1);

3 for m ←⌊b/ℓ⌋ to n −1 do
4 um ← (m +1−b/ℓ)/n;

5 qm
0 ←−∑m−1

j=0

mqm−1
j

j+1 u j+1
m ;

6 for i ← 1 to m do qm
i ← mqm−1

i−1
i ;

7 return n
∑n−2

i=0 qn−1
i

153

Chapter 7. Quasi-Deterministic Burstiness Bound for Aggregate of Independent, Periodic
Flows

Proof. Let Ē be the complementary event of E defined in Proposition 7.1.

Ē =
n−1⋂
k=1

{
U(k) ≥

[k +1−b/ℓ]+

n

}
. (7.24)

Let fU(1),...,U(n−1) be the density function of the joint distribution of U(1), . . . ,U(n−1), given in (7.8). Then

P
(
Ē

)= ∫ 1

yn−1=un−1

. . .
∫ 1

yi=ui

. . .
∫ 1

y1=u1

fU(1),...,U(n−1)

(
y1, . . . , yn−1

)
d y1 . . . d yn−1 (7.25)

=
∫ 1

yn−1=un−1

. . .
∫ 1

yi=ui

. . .
∫ 1

y1=u1

(n −1)!10≤y1≤y2≤...≤yn−1≤1 d y1 . . . d yn−1 (7.26)

= (n −1)!
∫ 1

yn−1=un−1

. . .
∫ yi+1

yi=ui

. . .
∫ y2

y1=u1

1d y1 . . . d yn−1 = p(n,ℓ,b). (7.27)

Combine it withP
(
Ē

)= 1−P (E) and Proposition 7.1 to conclude the theorem.

Note that since Theorem 7.2 computes the exact probability of event E , we have εdkw(n,ℓ,b) ≥
εthm2(n,ℓ,b).

7.4 Heterogeneous Case

In this section, we consider the case where flows have different periods and packet sizes. We present

burstiness bounds in two different settings: First, when flows can be grouped into homogeneous flows;

second, when all packets have the same period but with different packet sizes.

Let us first focus on the model where flows are grouped according to their characteristics:

(G) There exists a partition I1, . . . , Ig of Nn such that Ii is a group of ni flows satisfying model (H)

with packet size ℓi and period τi . All phases are mutually independent.

Proposition 7.2 (Convolution Bound). Let X1, X2, . . . , Xg be g ≥ 1 mutually independent rv onN. Assume

that for all i ∈Nn ,Ψi is wide-sense increasing and is a lower bound on the CDF of Xi , namely, ∀b ∈N,

P(Xi ≤ b) ≥Ψi (b). Define ψi by ψi (0) =Ψi (0) and ψi (b) =Ψi (b)−Ψi (b −1) for b ∈N\ {0}.

Then, a lower bound on the CDF of
∑g

i=1 Xi is given by: ∀b ∈N,

P
(g∑

i=1
Xi ≤ b

)
≥ (

ψ1 ∗ψ2 ∗·· ·∗ψg−1 ∗Ψg
)

(b), (7.28)

where, the symbol ∗ denotes the discrete convolution, defined for arbitrary functions f1, f2 :N→R by

∀b ∈N, (f1 ∗ f2)(b) =
b∑

j=0
f1(j) f2(b − j). (7.29)

Proof. We prove it by induction on g .

Base Case g = 1: There is nothing to prove: for all b ∈N,P(X1 ≤ b) ≥Ψ1(b).

Induction Case: We now assume that Equation (7.28) holds for g variables, and we show that it also

holds for g +1 variables.

154

7.4 Heterogeneous Case

We can apply Equation (7.28) to variables X2, X3, . . . , Xg+1, and let us denote Y = X2 +·· ·+ Xg+1 and

Ψ=ψ2 ∗·· ·∗ψg ∗Ψg+1. We need to show that for all b ∈N,

P(X1 +Y ≤ b) ≥ (ψ1 ∗Ψ)(b). (7.30)

Let F (b) =P(Y ≤ b) and observe that P(Y = 0) = F (0) and P(Y = b) = F (b)−F (b −1) for b ∈ N \ {0}.

Then, since X1 and Y are independent,

P(X1 +Y ≤ b) =
b∑

j=0
P(X1 + j ≤ b|Y = j)P(Y = j) =

b∑
j=0
P(X1 + j ≤ b)P(Y = j) (7.31)

≥
b∑

j=0
Ψ1(b − j)P(Y = j) (7.32)

≥Ψ1(b)F (0)+
b∑

j=1
Ψ1(b − j)(F (j)−F (j −1)). (7.33)

We now use Abel’s summation by parts in (7.33) and obtain

P(X1 +Y ≤ b) ≥Ψ1(b)F (0)+
b∑

j=1
Ψ1(b − j)F (j)−

b∑
j=1
Ψ1(b − j)F (j −1) (7.34)

=Ψ1(b)F (0)+
b∑

j=1
Ψ1(b − j)F (j)−

b−1∑
j=0
Ψ1(b − j −1)F (j) (7.35)

=
b∑

j=0
Ψ1(b − j)F (j)−

b−1∑
j=0
Ψ1(b − j −1)F (j) (7.36)

=Ψ1(0)F (b)+
b−1∑
j=0

(Ψ1(b − j)−Ψ1(b − j −1))F (j) (7.37)

=ψ1(0)F (b)+
b−1∑
j=0

ψ1(b − j)F (j) =
b∑

j=0
ψ1(b − j)F (j) (7.38)

≥
b∑

j=0
ψ1(b − j)Ψ(j) = (ψ1 ∗Ψ)(b). (7.39)

We can conclude by using the associativity of the discrete convolution: ψ1∗Ψ=ψ1∗·· ·∗ψg ∗Ψg+1.

Remarks. 1. Note that (ψ1 ∗Ψ2)(b) =∑
i+ j≤bψ1(i)+ψ2(j) = (ψ2 ∗Ψ1)(b), so the convolution bound is

independent of the order of X1, . . . , Xg .

2. An alternative to Proposition 7.2 is to use then union bound rather than the convolution bound:

for all (b1, . . . ,bg) ∈ Ng such that
∑g

i=1 bi = b, we have
{∑g

i=1 Xi > b
} ⊆ ⋃g

i=1 {Xi > bi }, so P(X > b) ≤∑g
i=1P(Xi > bi) ≤∑g

i=1(1−Ψi (bi)). We can choose (bi)g
i=1 so as to minimize this latter term, and take

the complement to obtain

P(
g∑

i=1
Xi ≤ b) ≥ 1− min

b1+···+bg =b

g∑
i=1

(1−Ψi (bi)). (7.40)

This bound is also valid when rvs Xi are not independent, but it can be shown that the convolution

bound always dominates the union bound. In our numerical evaluations, we find that the convolution

155

Chapter 7. Quasi-Deterministic Burstiness Bound for Aggregate of Independent, Periodic
Flows

bound provides significantly better results than the union bound.

Theorem 7.3 (Flows with different periods and different packet-sizes). Assume model (G). Let εi be a

wide-sense decreasing function that bounds the tail probability of aggregate burstiness Bi of each group

i ∈Ng : for all b ∈N,P (Bi > b) ≤ εi (b) for all b ∈N. DefineΨi (b) = 1−εi (b) for b ∈N and define ψi by

ψi (0) =Ψi (0) and ψi (b) = εi (b −1)−εi (b) for b ∈N\ {0}.

Then, a bound on the tail probability of the aggregate burstiness of all flows B is given by ∀b ∈Nℓtot ,

P (B > b) ≤ 1− (
ψ1 ∗ψ2 ∗·· ·∗ψg−1 ∗Ψg

)
(b), (7.41)

Proof. For all group i ∈Ng , let Ai [s, t) be the aggregate of flows of group i during the interval [s, t), r i ,

its aggregate arrival rate, and Bi its aggregate burstiness. Observe that for all s ≤ t , A(s, t] =∑g
i=1 Ai [s, t)

and r tot =∑g
i=1 r i . We then obtain

B = sup
0≤s≤t

{A(s, t]− r tot(t − s)} = sup
0≤s≤t

{ g∑
i=1

(
Ai (s, t]− ri (t − s)

)}
(7.42)

≤
g∑

i=1
sup

0≤s≤t
{Ai (s, t]− ri (t − s)} =

g∑
i=1

Bi ≤
g∑

i=1
⌈Bi ⌉. (7.43)

Hence, it follows thatP(B ≤ b) ≥P(
∑g

i=1⌈Bi ⌉ ≤ b), b ∈N .

We now apply Proposition 7.2 with Xi = ⌈Bi ⌉ andΨi as defined in the theorem: it suffices to observe

that (⌈Bi ⌉)i∈Ng are mutually independent rv on N; as εi is wide-sense decreasing, Ψi is wide-sense

increasing; Hence, by Proposition 7.2, we obtain that for all b ∈N, P(
∑g

i=1⌈Bi ⌉ ≤ b) ≥ (ψ1 ∗ψ2 ∗ . . .∗
ψg−1 ∗Ψg)(b), which concludes the proof.

We now turn to our second heterogeneous model: when all flows have the same period but different

packet sizes.

(P) There exists τ> 0 such that ∀ f ∈Nn , τ f = τ; ℓ1 ≥ ℓ2 ≥ ·· · ≥ ℓn > 0 and (φ f) f ∈Nn is a family of iid

uniform rv on [0,τ).

Theorem 7.4 (Flows with the same period but different packet sizes). Assume model (P). For all

0 ≤ b < ℓtot, set η
def= min

{
k

n−1 −
∑k+1

j=1 ℓ j

ℓtot , k ∈Nn−1,
∑k+1

j=1 ℓ j > b
}

. Then

1. A bound on the tail probability of the aggregate burstiness of all flows B is

P(B > b) ≤ n exp
(
−2(n −1)

(
η+ b

ℓtot

)2
)
. (7.44)

2. For all ε ∈ (0,1), for all n ≥ 2, the violation probability of at most ε, i.e.,P (B > b(n,ℓ1, . . . ,ℓn ,ε)) ≤
ε with

b(n,ℓ1, . . . ,ℓn ,ε)
def= ℓtot

⌈√
log n − log ε

2(n −1)
−η

⌉
. (7.45)

156

7.5 Numerical Evaluation

3. A bound on the tail probability of the aggregate burstiness of all groups B is given byP (B > b) ≤
n(1− p̄(n,ℓ1, . . . ,ℓn ,b)), where p̄(n,ℓ1, . . . ,ℓn ,b) is computed as in Equation (7.23), where for all

k ∈Nn−1, uk = [
∑k+1

j=1 ℓ j −b]+

ℓtot .

When all flows have the same packet-sizes ℓ, this is model (H) and the bounds provided are exactly the

same as in Section 7.3. Algorithm 7.1 can also be used to compute the bound of item 3 if a) line 1 is

replaced by m ← max{k ≥ 0 | ∑k+1
j=1 ℓ j ≤ b} and b) the values of um are adapted in line 4.

Proof. The proof is done by adapting Proposition 7.1. Then the proofs of each item follow exactly the

steps of Theorems 7.1, Corollary 7.1 and Theorem 7.2. The key difference in Proposition 7.1 is the

computation of Hi , j : Hi , j ≤
∑ j−i+1

k=1 ℓk −ℓtot(T j −Ti): we bound this value as if the packets arrived in

this arrival where the j − i +1 longest ones.

7.5 Numerical Evaluation

5 10 15 20 25 30 35 40

Aggregate burstiness

10-4

10-3

10-2

10-1

100

Bo
un

d
on

 th
e

ta
il

pr
ob

ab
ilit

y
of

 th
e

ag
gr

ea
gt

e
bu

rs
tin

es
s

DKW Bound (Theorem 1)
Bound of Theorem 2
Simulation

(a)

0 500 1000 1500 2000 2500 3000

Number of flows

0

20

40

60

80

100

120

140

160

180

200

Q
ua

si
-d

et
er

m
in

is
tic

 b
ur

st
in

es
s

w
ith

 v
io

al
tio

n
pr

ob
ab

ili
ty

 o
f 1

0
-7

Deterministc Burstiness Bound
DKW Bound (Theorem 1)
Theorem 2

(b)

Figure 7.5.1: (a): Bound on the tail probability of the aggregate burstiness obtained by Theo-
rems 7.1, 7.2, and simulations. (b): The obtained quasi-deterministic burstiness with violation
probability of 10−7 by Corollary 7.1 and Theorem 7.2, as the number of flows grows; the deterministic
bound (dashed plot) grows linearly with the number of flows.

In this section, we numerically illustrate our bounds in Fig. 7.5.1 and Fig. 7.5.2.

7.5.1 Homogeneous Case

In Fig. 7.5.1 (a), we consider 250 flows with the same packet size (with respect to a unit, is assumed

to be 1) and the same period. We then compute bounds on the tail probability of their aggregate

burstiness using Theorems 7.1 and 7.2. We also compute the bound using simulations: For each flow,

we independently pick a phase uniformly at random, and we then compute the aggregate burstiness as

in (7.1); we repeat this 108 times. We then compute bounds on the tail probability of their aggregate

burstiness and its 99% Kolmogorov–Smirnov confidence band. The bound of Theorem 7.2 is slightly

better than that of Theorem 7.1. Also, compared to simulations, our bounds are fairly tight.

157

Chapter 7. Quasi-Deterministic Burstiness Bound for Aggregate of Independent, Periodic
Flows

100 200 300 400 500 600

Aggreagte burstiness

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

Bo
un

d
on

 th
e

ta
il

pr
ob

ab
ilt

y
of

 th
e

ag
gr

ea
gt

e
bu

rs
tin

es
s

8 groups, union bound
8 groups, convolution bound
5 groups, union bound
5 groups, convolution bound
4 groups, union bound
4 groups, convolution bound
2 groups, union bound
2 groups, convolution bound
1 group (Theoem 1)

(a)

0 20 40 60 80 100 120 140 160

Aggreagte burstiness

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

B
ou

nd
 o

n
th

e
ta

il
pr

ob
ab

ilt
y

of
 th

e
ag

gr
ea

gt
e

bu
rs

tin
es

s

10 groups of size 10, Theorem 3
10 groups of size 10, Theorem 4
5 groups of size 20, Theorem 4
5 groups of size 20, Theorem 3

(b)

Figure 7.5.2: (a): Comparison of the convolution bound of Theorem 7.3 to the union bound when
combining bound obtained for homogeneous sets of flows. (b): Slight improvement of Theorem 7.4
compared to Theorem 7.3 when the number of flows per packet-size is small.

In Fig. 7.5.1 (b), we consider n ∈ {2, . . . ,3000} flows with the packet size 1 and same period. We then com-

pute a quasi-deterministic burstiness bound with violation probability of 10−7 once using Corollary 7.1

and once using Theorem 7.2; they are almost equal and as n grows are exactly equal, as Theorem 7.1 is

as tight as Theorem 7.2 for large n. Also, our quasi-deterministic burstiness bound is considerably less

than the deterministic one (i.e., n) and grows in
√

n log n.

7.5.2 Heterogeneous Case

To assess the efficiency of the bound in the heterogeneous case, we consider in Fig. 7.5.2 (a) 10000

homogeneous flows with period and packet length 1, and divide them into g groups of 10000/g flows,

for g ∈ {1,2,4,5,8}. We compute a bound for each group by Theorem 7.1, and combine them once with

the convolution bound of Theorem 7.3 and once by the union bound (as explained after Proposition 7.2).

Our convolution bound is significantly better than the union bound, and the differences increase fast

with the number of sets.

In Fig. 7.5.2 (b), we consider 10 (resp. 5) homogeneous groups of 10 (resp. 20) flows, flows of each

set g ∈N10 (resp. g ∈N5), have a packet-size equal to g , and all flows have the same period. We then

compute the bound on the tail probability of the aggregate burstiness once with Theorem 7.3 and once

with Theorem 7.4. When groups are small (here of 10 flows), Theorem 7.4 provides better bounds than

Theorem 7.3, but when groups are larger (here of 20 flows), Theorem 7.3 dominates Theorem 7.4.

7.6 Conclusion

In this chapter, we provided quasi-deterministic bounds on the aggregate burstiness for independent,

periodic flows. When a small violation tolerance, is allowed, the bounds are considerably better

compared to the deterministic bounds. We obtained a closed-form expression for the homogeneous

case, and for the heterogeneous case, we combined bounds obtained for homogeneous sets using

the convolution bounding technique. We on purpose limited our study to the burstiness. Quasi-

158

7.6 Conclusion

deterministic delay and backlog bounds can be obtained by applying any method from deterministic

network calculus, and combining it with our results.

159

Chapter 7. Quasi-Deterministic Burstiness Bound for Aggregate of Independent, Periodic
Flows

7.7 Notation

Table 7.7.1: Notation List, Specific to Chapter 7

f A (periodic) flow
n Number of flows
ℓ f Packet length of flow f
τ f Period of flow f
φ f Phase of flow f

r f Rate of flow f , equal to
ℓ f

τ f

B Aggregate burstiness
B̄(t) Aggregate burstiness when observing the aggregate traffic up to time t
ℓtot Aggregate packet length
r tot Aggregate rate
A[s, t) Number of bits observed in time interval [s, t) for the aggregate traffic
λc Rate function with λc (t) = ct
βR,L Rate-latency function with βc,L(t) = max(0,c(t −L))
N {1,2,3, . . .}
Nn {1,2,3, . . . ,n}
[x]+ [x]+ = max(0, x)
∗ discrete convolution ∀b ∈N, (f1 ∗ f2)(b) =∑b

j=0 f1(j) f2(b − j)

160

Part IVConclusion

161

8 Conclusion and Future Works

In the first part of this thesis, we have provided the best-known, proven worst-case delay analysis of

time-sensitive networks of generic topology with round-robin schedulers, which dramatically dominate

all previous works:

• In Chapter 3, we have provided a residual strict service curve for IWRR, a variant of WRR with

the same long-term rate and the same complexity but with smoother service. We show that

the IWRR strict service curve is the best possible one under general assumptions, thanks to the

method of the pseudo-inverse. For classes with packets of constant size, we have shown that

the delay bounds derived from it are worst-case. We have proved that IWRR worst-case delay is

not greater than WRR and shown on experiments that the gain is significant in practice, which

speaks in favor of using IWRR as a replacement to WRR.

Future Works: Our IWRR strict service curves are obtained under the assumption that all packets

of the interfering traffic are of the maximum packet size and all packets of the class of interest

are of the minimum packet size; this can be improved with supplementary hypotheses on

classes and considering packet size distribution, with “packet curves” [175]. Also, as explained

in Section 3.2, two versions for IWRR are presented in [84], which we analyzed one of them. The

other version, called List-Based IWRR (LBIWRR), obtains even a smoother service than IWRR,

but the analysis might be more complicated.

• In Chapter 4, the method of the pseudo-inverse enabled us to perform a detailed analysis of

DRR and to obtain strict service curves that significantly improve the previous results. Our

results use the network calculus approach and are mathematically proven, unlike some previous

delay bounds that we have proved to be incorrect. Our method assumes that the aggregate

service provided to the DRR subsystem is modeled with a strict service curve. Therefore it can

be recursively applied to hierarchical DRR schedulers as found, for instance, with class-based

queuing.

Future Works: Our strict service curves in the degraded operational mode (i.e., when there is

no assumption on the arrival curves of interfering classes) are the best possible ones; however,

for the non-degraded operational mode (i.e., when some arrival curves can be assumed for

interfering classes), our strict service curves are the best possible ones so far, but the jury is still

out on them. Also, the same method can be applied to IWRR and results in strict service curves

for IWRR that account for the arrival curves of the interfering traffic.

• In Chapter 5, we solved the problem of how to combine DRR strict service curves and the

163

Chapter 8. Conclusion and Future Works

network analysis of PLP in order to obtain worst-case delay bounds in time-sensitive networks.

Our method is guaranteed to find delay bounds that are at least as good as the state-of-the-

art, and we found very significant improvements for the industrial network under study. It

is based on a generic shared memory execution model, implementations of which can differ

by the scheduling of the individual operations in the refinement phase. We proved that all

implementations produce the same bounds. We proposed two concrete implementations and

found that the latter performs faster.

Future Works: It will be interesting to study other concrete implementations that aim at reducing

computing time, and to have a publicly available implementation. Also, we enabled PLP to

support non-convex service curves; the same method can be applied for arrival curves and to

enable PLP to support non-affine arrival curves, for example stair functions.

In the second part of this thesis, we have provided the best-known, proven worst-case delay analy-

sis of time-sensitive networks of generic topology with many periodic flows that, while remaining

computationally feasible, dramatically reduce the pessimism of existing works:

• TFA quickly becomes intractable when there is a large number of periodic sources and UPP

curves. This problem is frequently observed in time-sensitive and real-time networks. In

Chapter 6, we provided a practical solution, FH-TFA, that obtains delay bounds that are formally

proven, and can handle a large number of periodic sources with different periods.

Future Works: It will be interesting to explore other versions of TFA that do not require cuts, such

as AsyncTFA and AltTFA [64], and to also make them practical and applicable in the presence of

a large number of periodic sources and UPP curves. This is of interest as FH-TFA is currently

based on GFP-TFA, which is a sequential algorithm, but other versions of TFA can benefit from

parallel computations, thus might further reduce the run times.

• In Chapter 7, we provided quasi-deterministic bounds on the aggregate burstiness for indepen-

dent, periodic flows. When a small violation tolerance, is allowed, the bounds are considerably

better compared to the deterministic bounds. We obtained a closed-form expression for the

homogeneous case, and for the heterogeneous case, we combined bounds obtained for homo-

geneous sets using the convolution bounding technique.

Future Works: Our method uses the affine arrival curves, and it will be interesting to obtain

quasi-deterministic arrival curve constraints but with UPP curves.

Lastly, as a side contribution, in Appendix A, we presented Saihu, a Python interface capable of

executing multiple network analysis tools easily. It enables users to define a network and retrieve the

analysis results for multiple tools. Its unified input and output layers enable the automation of all the

tedious re-interpretation of a network for each tool. Such design not only simplifies many mechanical

procedures previously hindering network researchers’ works but also helps publicize these useful tools

to more potential users due to its simplicity.

Future Works: Saihu is modular and hopefully will also be extended to other analysis tools.

164

Part VAppendix

165

A Saihu : A Common Interface of Worst-
Case Delay Analysis Tools for Time-
Sensitive Networks

In time-sensitive networks, where bounds reside,

Delays of utmost importance, a need to confide.

Tools aplenty, methods diverse,

Valid bounds they offer, yet which is to immerse?

IEEE-TSN and IETF-Detnet, the realms we tread,

Worst-case delays, the challenge ahead.

Different tools, different paths they pave,

Uncertainty lingers, which bound to save?

Implementing multiple codes, a cumbersome chore,

Syntax variations, errors galore.

Impracticality looms, a burden to bear,

A solution we seek, a simpler affair.

Saihu emerges, a Python interface in sight,

xTFA, DiscoDNC, Panco unite.

Three tools combined, six methods entwined,

A unified interface, simplicity defined.

Networks defined in a single file,

Tools executed, results compiled with style.

Formatted reports, effortlessly exported,

Time-sensitive networks, easily supported.

With Saihu as our guide, the burden dissolves,

Accessible to all, as it evolves.

Simplified execution, a user’s delight,

Time-sensitive networks, now within our sight.

Created with ChatGPT, free research preview (version May 24) [141]

As explained in Section 1.1.2, several methods are proposed in the literature to obtain bounds on

the end-to-end worst-case delays, given the arrival curve constraints of flows at the sources and

service curves offered by the nodes. Finding the best delay bound is an NP-hard problem and is

generally not feasible, therefore, several methods were developed to find good delay bounds. Frequently

used methods are Total Flow Analysis (TFA) [61, 62, 63, 64], Single Flow Analysis (SFA) [62, Section

167

Appendix A. Saihu : A Common Interface of Worst-Case Delay Analysis Tools for
Time-Sensitive Networks

3.3], Pay Multiplexing Only Once (PMOO) [62, Section 3.4][65], Least Upper Delay Bound (LUDB)

[22, 66, 120, 121], Tandem Matching Analysis (TMA) [176], Polynomial-size Linear Programming (PLP)

[68], and Exponential-size Linear Programming (ELP) [20]. All methods provide valid delay bounds

but differ in their design and implementation, and it is not trivial to identify the best, smallest bound

among them. Therefore, it is interesting to compare different methods and find the smallest delay

bound.

The existing worst-case delay analysis tools, such as xTFA [61], DiscoDNC [66, 124], and Panco [136]

(see Section 2.1.4 for more tools), support some of the frequently used methods. These tools altogether

cover most of the widely recognizable methods within the community. As of today, despite the great

potential of utilizing multiple tools, users must implement multiple pieces of code with different

syntaxes for each of them, which is impractical and error-prone.

We present Saihu, Superimposed worst-case delay Analysis Interface for Human-friendly Usage, to

simplify the whole process. Users can execute analyses and compare the results from each tool easily

with a single interface and simple commands. Saihu provides a general interface that enables defining

the networks in one XML or JSON file and executing all tools simultaneously without any modification;

it automatically generates input for each tool respectively and executes the analyses on them. Saihu

can produce analysis results in formatted reports and offer automatic network generation for certain

types of networks. Therefore, with its straightforward syntax and ease of execution, Saihu simplifies the

worst-case bounds comparisons in time-sensitive networks. Its design is modular and supports the

addition of new tools. Fig. A.0.1 illustrates the design of Saihu with its data flow. An introductory video

is available on https://youtu.be/MiOhLay8Kr4.

Figure A.0.1: Data flow of Saihu: Red represents the user options; blue is for our contribution; green
is for the existing tools; and yellow is for the potential extension of Saihu for more tools. It automates
all the programming details in the middle and requires only a few commands listed on the right.

168

https://youtu.be/MiOhLay8Kr4

A.1 System Model

Figure A.1.1: Device model.

A.1 System Model

Devices represent switches or routers that compose the network of interest; they consist of input ports,

output ports, and a switching fabric. Fig. A.1.1 shows one such device. Each packet enters a device via

an input port and is stored in a packetizer. A packetizer releases a packet only when the entire packet is

received. Then, the packet goes through a switching fabric, which transmits the packet to a specific

output port based on the static route of the packet; the packet is either buffered in a First-In-First-Out

(FIFO) queue and then is serialized on the output line at the transmission rate of the line or exits the

network via a terminal port (i.e., a sink).

A flow is a stream of packets generated from the same source, following the same path, and destined

for the same sink. We assume that flows are statically assigned to a path. A path consists of a source, a

sequence of devices (with the corresponding input port and output port), and a sink (see Fig. A.3.1).

For each flow i , we let l max
i and l min

i denote the maximum and minimum packet size, respectively.

Every flow is constrained at the source by an arrival curve which we assume to be piece-wise linear

and concave. Such an arrival curve, say α, can be described by a collection of m rates r1,r2, ...,rm

and bursts b1,b2, ...,bm such that α(t) = mink=1:m(rk t + bk); each function t 7→ rk t + bk is called a

token-bucket function with rate rk and burst bk . The long-term arrival rate of a flow is mink rk . Note

that the parameters (m,r1:m ,b1:m) may differ for every flow.

A flow can be either unicast (one source, one destination) or multicast (one source, multiple destina-

tions). In the latter case, traffic can be split at one or several intermediate devices. For the tools that do

not support multicast flows, we replace every multicast flow with p sub-paths by p unicast flows with

the same arrival curve constraint at the source; this increases the traffic inside the network, and thus

delay bounds that we obtain are valid but might be less good than those obtained by tools that natively

support multicast flows.

The service offered to the aggregation of all flows of interest at an output port is represented by a

service curve, which we assume to be piece-wise linear and convex. Such a service curve, say β,

can be described by a collection of n rates R1,R2, ...,Rn and latencies T1,T2, ...,Tn such that β(t) =
maxk=1:n(Rk [t −Tk]+), with the notation [x]+ = max(x,0); each function t → Rk [t −Tk]+ is called a

rate-latency function with rate Rk and latency Tk . The long-term service rate of the output port is

defined as maxk Rk . Note that the parameters (n,R1:n ,T1:n) may differ at every output port.

We assume that the network is locally stable, namely, at every output port, the aggregate long-term

arrival rate (equal to the sum of the long-term arrival rates of all flows using the output port) is less

169

Appendix A. Saihu : A Common Interface of Worst-Case Delay Analysis Tools for
Time-Sensitive Networks

than the long-term service rate. This is a necessary condition for the existence of finite delay bounds;

it is also sufficient in feed-forward networks, but not in networks that have cyclic dependencies [40,

Chapter 12].

A.2 Included Tools

Saihu currently includes three tools: xTFA, DNC, and Panco. Fig. A.2.1 summarizes supported methods

for each tool.

Method\Tool DNC xTFA Panco

TFA V V V

SFA V V

PLP V

ELP V

PMOO V

LUDB V

TMA V

Table A.2.1: Supported methods are marked with a “V”.

• xTFA [61] is developed in Python and supports a more advanced TFA. For its input, an XML

file describes the network (cf. Sec. A.3.1.1). xTFA supports analyzing networks with cyclic

dependency and multicast flows.

• DiscoDNC [124] is developed in Java and partially uses linear programming with CPLEX [138]

for LUDB. It supports TFA, SFA, PMOO, LUDB, and TMA. It supports more methods, for example,

Unique Linear Program (ULP) [177], but there are not supported yet in Saihu. A network is

defined through its own Java classes. Saihu uses the information from an output port network

to create a network in DNC syntax internally. Moreover, with DNC, one cannot manually set

shaping with FIFO multiplexing but only with arbitrary multiplexing. Also, DNC does not support

networks with cyclic dependency and does not support multicast flows (see Section A.1).

• Panco [136] is developed in Python and uses linear programming. So, it requires lpsolve [139]

to execute TFA, SFA, PLP, and ELP. A network is described with its own Python classes. Saihu

internally creates the network in Panco syntax from the information of an output port network.

All methods of Panco except for ELP support networks with cyclic dependencies. Panco does

not support multicast flows (see Section A.1).

A.3 Software Description

Saihu’s analysis are done in three steps: describe a network to be analyzed (Sec. A.3.1); execute analyses

with selected tools (Sec. A.3.2); and export analysis reports back to the user (Sec. A.3.3).

A.3.1 Network Description File

Saihu allows the user to write a network in either a physical network or an output port network format.

Examples are shown in Fig. A.3.1. Briefly speaking, a physical network represents the physical connec-

170

A.3 Software Description

tions between multiple switches and stations and flows that travel through different input and output

ports of switches; it represents the view of a real-world network. On the other hand, as a physical

network includes more than enough information, we provide the output port network format as a

simplified form to define a network. As we assume the output ports to be the main points of resource

competition, even if we provide full network information, we only describe output ports as service

units instead of the entire device.

(a) Physical Network.

(b) Output Port Network.

Figure A.3.1: Physical and output port network examples

Although the output port network contains all the necessary information for analysis, we still provide

both physical and output port networks as available input file forms. People may prefer to write directly

in the physical network format to avoid the translation to an output port format, and some people may

prefer the output port network to write a network concisely.

While xTFA takes a physical network as an XML file and the others parse from an output port network as

a JSON file, one can choose the format they prefer to define a network as Saihu automatically converts

a file when needed.

A.3.1.1 Option 1: Physical Network in XML

A physical network is written as an XML file in the same format as in xTFA, and at least contains General
network information, Servers, Links, and Flows. A minimal example of defining a physical network is

shown in Listing. A.1.

171

Appendix A. Saihu : A Common Interface of Worst-Case Delay Analysis Tools for
Time-Sensitive Networks

1 <network name="demo" technology="FIFO+IS" minimum-packet-size="50B"/>
2 <station name="src0"/>
3 <switch name="s0" service-latency="10us" service-rate="4Mbps"/>
4 <station name="sink0"/>
5 <link name="src0-s0" from="src0" to="s0" fromPort="o0" toPort="i0"/>
6 <link name="s0-sink0" from="s0" to="sink0" fromPort="o0" toPort="i0" transmission-

capacity="10Mbps"/>
7 <flow name="f0" arrival-curve="leaky-bucket" lb-burst="10B" lb-rate="10kbps" maximum-

packet-size="50B" source="src0">
8 <target>
9 <path node="s0"/>

10 <path node="sink0"/>
11 </target>
12 </flow>

Listing A.1: Example of a physical network representation

First, one network element defines the general network information as its attributes: the network’s

name (name), several analysis parameters concatenated by the plus sign (technology, IS stands for

Input Shaping), and optionally some default value (e.g. minimum-packet-size) across the network.

Second, the servers of the network are either a station or a switch and represent a physical node.

Although they are physically different, they both serve as service-providing devices in our tools, as

mentioned in Section A.1, or sources/sinks of a data flow. The service parameters service-latency
and service-rate define a default service curve for all the output ports on this device.

Third, a link connects two devices. Saihu tools consider output ports as processing units, so the physi-

cal link must be defined from a physical node to another node with the input and output ports used by

the link. Namely, it goes from an output port of one server to an input port of another server. Since a link

directly attaches to an output port, users can define service via a link. The transmission-capacity
of the link can also be specified to consider line shaping. Without defined values, the system will apply

the default values defined at the upper levels (switch/station or network).

Finally, a flow element defines a flow. Flow paths are surrounded by target elements, where each

node it traverses is listed as a path element with its node attribute indicating the name of the physical

node. In this format, multicast flow is possible by defining multiple target elements within the same

flow. A token-bucket curve at the source is defined by arrival-curve, lb-burst, and lb-rate
keywords. Packetization is considered with maximum and minimum packet sizes. Saihu analyzes all

the output ports in the order of the flow path.

A.3.1.2 Option 2: Output Port Network in JSON

Output port format is designed by the authors to write the network concisely. The file contains at least

General network information, Servers, and Flows. An example is shown as Listing A.2.

First, a network object defines the general network information, the default values, and units through-

out the network.

Second, servers defines all servers as an array. The parameters can be either a string as a number

172

A.3 Software Description

1 {
2 "network": {
3 "name": "demo",
4 "multiplexing": "FIFO",
5 "rate_unit": "Mbps"
6 },
7 "servers": [
8 {
9 "name": "s0-o0",

10 "service_curve": {
11 "latencies": ["10us", "1ms"],
12 "rates": [4, "50Mbps"]
13 },
14 "capacity": "200Mbps"
15 }
16],
17 "flows": [
18 {
19 "name": "f0",
20 "path": ["s0-o0"],
21 "arrival_curve": {
22 "bursts": ["10B", "2kB"],
23 "rates": ["10kbps", 0.5]
24 },
25 "max_packet_length": "50B",
26 }
27]
28 }

Listing A.2: Network information with default values.

followed by a unit, e.g., "10us" for 10 microseconds; or a number that uses the predefined unit. The

service curve is taken as the maximum of all rate-latency curves defined in service_curve (see

Sec. A.1). Each rate-latency curve is described by a pair of rate and latency values with the same index.

For example, the service curve of server s0-o0 is derived from 2 rate-latency curves: the first has a 10

microseconds latency and 4 megabits per second rate, and the second has a 1000 microseconds latency

and 50 megabits per second rate.

Notice that in an output port network format, we don’t manually define links. We use graph-induced-

by-flows as the network topology. A link between two servers exists only when at least one flow crosses

these two servers consecutively. Therefore, the link’s transmission capacity attached to an output port

is directly defined on a server with the keyword capacity.

Finally, flows represents the flows as an array. Each flow is defined by a path as an array of servers, and

an arrival_curve at its source. The arrival curve is defined as the minimum of the multiple token-

bucket curves, each pair of burst and rate values represents a token-bucket curve (see Section A.1). For

example, f0’s arrival curve is composed of a token-bucket curve of burst 10 bytes and rate 10 kbps, and

a curve of burst 2 kilobytes and rate 0.5 megabits per second.

All flows written in the output port network format are assumed to be unicast flows. When being

converted from a physical network with multicast flows, it separates the paths into multiple unicast

flows with the same source and arrival curve (see Section A.1).

173

Appendix A. Saihu : A Common Interface of Worst-Case Delay Analysis Tools for
Time-Sensitive Networks

1 python main.py demo.json -a

Listing A.3: Use Saihu as command line tool.

1 from saihu.interface import TSN_Analyzer
2 analyzer = TSN_Analyzer("demo.json")
3 analyzer.analyze_all()
4 analyzer.export("demo")

Listing A.4: Use Saihu as package.

A.3.2 Tool Usage

Saihu analysis execution can be done via the command line tool main.py or by importing the file

interface.py if one wishes to integrate Saihu into their project. We demonstrate the simplest way to

analyze a network file, say demo.json, with both possibilities. Listing A.3 and Listing A.4 show two ways

to analyze demo.json with all the tools and methods available inside Saihu.

To switch between different tools in the package, one uses different functions with names like analyze_xxx,

where analyze_all executes all available tools. Methods are specified as function arguments (cf. List-

ing A.5). One can execute multiple analyses and all the results will be stored in the internal buffer of the

analyzer until they are exported into Saihu reports. As for the command line interface, selecting tools

or methods is simply specifying different flags.

1 analyzer.analyze_dnc("LUDB")
2 analyzer.analyze_panco(methods=["SFA", "PLP"])

Listing A.5: Execute different tools and methods.

A.3.3 Analysis Reports

Saihu can generate 2 kinds of reports:

1. A human-friendly report is generated as a Markdown file that gives the per-flow end-to-end

delay, per-server delay, and execution time for each tool. The delay bounds are presented in

tables where each row is a flow or a server, and each column is a method executed by a tool. The

last column contains the minimum result obtained in the current round of analysis. Fig. A.3.2

demonstrates an example of per-flow end-to-end delay and execution time as a reference.

The report also contains some reminders about the user inputs: network topology using the

graph-induced-by-flows (Sec. A.3.1.2), flow paths, and link utilization by nodes. Link utilization

is defined as the ratio between the aggregated arrival rate at a node and its service rate.

2. A machine-friendly report is written in JSON format for easy parsing from other programs. It

stores the execution outputs, i.e. the per-flow end-to-end delay, per-server delay, and execution

time. An example is shown in Listing A.6. Note that the numbers in a human-friendly report are

always rounded to 3 decimal digits while there’s no such rounding for a machine-friendly report.

As a result, one should read the machine-friendly report if they require a very precise result.

174

A.4 Conclusion and Extension

(a) Flow end-to-end delay. (b) Execution time.

Figure A.3.2: Human-friendly Markdown report.

1 {
2 "name": "demo",
3 "flow_e2e_delay": {
4 "f0": {
5 "xTFA_TFA": 99.32394489448944,
6 "Panco_PLP": 80.05,
7 "Panco_ELP": 80.05,
8 "DNC_SFA": 80.0501253132832,
9 "DNC_PMOO": 80.20050125313283,

10 "DNC_LUDB": 80.0501253132832
11 },
12 ...
13 "server_delay": {
14 "s0-o0": {
15 "xTFA_TFA": 50.0
16 },
17 ...
18 "execution_time": {
19 "xTFA_TFA": 5.716085433959961,
20 "Panco_PLP": 147.26519584655762,
21 "Panco_ELP": 129.76408004760742,
22 "DNC_SFA": 12.0,
23 "DNC_PMOO": 9.0,
24 "DNC_LUDB": 172.0
25 },
26 "units": {
27 "flow_delay": "us",
28 "server_delay": "us",
29 "execution_time": "ms"
30 }
31 }

Listing A.6: JSON report.

A.4 Conclusion and Extension

We presented Saihu, a Python interface capable of executing multiple network analysis tools easily. It

allows users to define a network and retrieve the analysis results for multiple tools. Its unified input and

175

Appendix A. Saihu : A Common Interface of Worst-Case Delay Analysis Tools for
Time-Sensitive Networks

output layers enable the automation of all the tedious re-interpretation of a network for each tool. Such

design not only simplifies many mechanical procedures previously hindering network researchers’

works but also helps publicize these useful tools to more potential users due to its simplicity.

A.5 Current code version

Nr. Code metadata description Information
C1 Current code version v1
C2 Permanent link to code/repository used

for this code version
https://github.com/adfeel220/Saihu-TSN-

Analysis-Tool-Integration

C3 Permanent link to Reproducible Capsule
C4 Legal Code License MIT License
C5 Code versioning system used Git
C6 Software code languages, tools, and ser-

vices used
Python, Java (by DiscoDNC), lpsolve (by
Panco), and CPLEX (by LUDB option of
DiscoDNC)

C7 Compilation requirements, operating en-
vironments & dependencies

Python packages: xTFA, Panco,
Python packages numpy, networkx,
matplotlib, mdutils, and pulp. Java
package: DiscoDNC

C8 If available Link to developer documenta-
tion/manual

https://github.com/adfeel220/Saihu-
TSN-Analysis-Tool-
Integration/blob/main/README.md

C9 Support email for questions chun-tso.tsai@epfl.ch

Table A.5.1: Code metadata

176

https://github.com/adfeel220/Saihu-TSN-Analysis-Tool-Integration
https://github.com/adfeel220/Saihu-TSN-Analysis-Tool-Integration
https://github.com/adfeel220/Saihu-TSN-Analysis-Tool-Integration/blob/main/README.md
https://github.com/adfeel220/Saihu-TSN-Analysis-Tool-Integration/blob/main/README.md
https://github.com/adfeel220/Saihu-TSN-Analysis-Tool-Integration/blob/main/README.md
mailto:chun-tso.tsai@epfl.ch

Bibliography

[1] David D. Walden, Garry J. Roedler, Kevin Forsberg, R. Douglas Hamelin, and Thomas M. Shortell.

Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities. Wiley,

Hoboken, NJ, fourth edition, 2015. ISBN 978-1118999400.

[2] IEEE 802.1 Working Group. Use Cases - IEEE P802.1DG, V0.4, 2019. URL https://www.ieee802.

org/1/files/public/docs2019/dg-pannell-automotive-use-cases-0919-v04.pdf. [Online].

[3] IEEE 802.1 Working Group. Aerospace Traffic Characterization, 2021. URL https://www.ieee802.

org/1/files/public/docs2021/dp-Jabbar-et-all-Aerospace-Traffic-Characterization-0421-v02.

pdf. [Online].

[4] IEEE 802.1 Working Group. Industrial Automation Traffic Types and their Mapping

to QoS/TSN Mechanisms, 2018. URL https://www.ieee802.org/1/files/public/docs2018/

60802-ademaj-traffic-type-characterization-1118-v01.pdf. [Online].

[5] Ian F. Akyildiz and Josep M. Jornet. The tactile internet: Vision, recent progress, and open

challenges. IEEE Internet of Things Journal, 3(5):596–616, 2016. doi: 10.1109/JIOT.2016.2576398.

[6] ITU-T. ITU-T Y.3000-series - Representative use cases and key network requirements for Network

2030. Technical report, 2020. URL https://www.itu.int/rec/T-REC-Y.Sup67-202007-I.

[7] T. Wong, N. Finn, and X. Wang. TSN Profile for Service Provider Net-

works, No Date. URL https://www.ieee802.org/1/files/public/docs2018/

new-tsn-wangtt-TSN-profile-for-service-provider-network-0718.pdf.

[8] C. Mannweiler, B. Gajic, P. Rost, R. S. Ganesan, C. Markwart, R. Halfmann, J. Gebert, and A. Wich.

Reliable and deterministic mobile communications for industry 4.0: Key challenges and solutions

for the integration of the 3gpp 5g system with ieee. In Mobile Communication - Technologies and

Applications; 24. ITG-Symposium, pages 1–6, 2019.

[9] ISO/IEC/IEEE. ISO/IEC/IEEE International Standard - Information technology – Telecommuni-

cations and information exchange between systems – Local and Metropolitan Area Networks –

Specific requirements – Part 1BA: Audio video bridging (AVB) systems, 2016.

[10] Time-sensitive networking (TSN) task group. Time-sensitive networking (TSN) task group. URL

https://1.ieee802.org/tsn/.

[11] Sergiu S. Craciunas, Regina S. Oliver, and Tarun Ag. An overview of scheduling mechanisms

for time-sensitive networks. In Proceedings of the French Summer School on Real-Time Systems

l’École d’Été Temps Réel (ETR), pages 1551–3203, Gif-sur-Yvette, France, 2017.

177

https://www.ieee802.org/1/files/public/docs2019/dg-pannell-automotive-use-cases-0919-v04.pdf
https://www.ieee802.org/1/files/public/docs2019/dg-pannell-automotive-use-cases-0919-v04.pdf
https://www.ieee802.org/1/files/public/docs2021/dp-Jabbar-et-all-Aerospace-Traffic-Characterization-0421-v02.pdf
https://www.ieee802.org/1/files/public/docs2021/dp-Jabbar-et-all-Aerospace-Traffic-Characterization-0421-v02.pdf
https://www.ieee802.org/1/files/public/docs2021/dp-Jabbar-et-all-Aerospace-Traffic-Characterization-0421-v02.pdf
https://www.ieee802.org/1/files/public/docs2018/60802-ademaj-traffic-type-characterization-1118-v01.pdf
https://www.ieee802.org/1/files/public/docs2018/60802-ademaj-traffic-type-characterization-1118-v01.pdf
https://www.itu.int/rec/T-REC-Y.Sup67-202007-I
https://www.ieee802.org/1/files/public/docs2018/new-tsn-wangtt-TSN-profile-for-service-provider-network-0718.pdf
https://www.ieee802.org/1/files/public/docs2018/new-tsn-wangtt-TSN-profile-for-service-provider-network-0718.pdf
https://1.ieee802.org/tsn/

Bibliography

[12] Deterministic Networking (DetNet). URL https://datatracker.ietf.org/wg/detnet/about/. Ac-

cessed: 2019-03-26.

[13] E. Grossman. RFC8578: Deterministic Networking Use Cases, May 2019. URL https://www.

rfc-editor.org/info/rfc8578.

[14] P802.1DG – TSN Profile for Automotive In-Vehicle Ethernet Communications. https://1.ieee802.

org/tsn/802-1dg/, N/A. Accessed: 13/07/2022.

[15] IEC and IEEE. IEC/IEEE 60802 - Time-Sensitive Networking Profile for Industrial Automation.

Iec/ieee 60802 (d1.3), Sep. 2021.

[16] IEEE. Draft Standard for Local and metropolitan area networks — Time-Sensitive Networking

Profile for Service Provider Networks. Ieee p802.1df™/d0.1, Dec. 2020.

[17] IEEE. IEEE Standard for Local and Metropolitan Area Network–Bridges and Bridged Networks.

IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014), Jul. 2018. Conference Name: IEEE Std

802.1Q-2018 (Revision of IEEE Std 802.1Q-2014).

[18] R. Salazar, T. Godfrey, N. Finn, C. Powell, B. Rolfe, and M. Seewald. Utility Applications of Time

Sensitive Networking White Paper. Technical report, Utility Applications of Time Sensitive

Networking White Paper, 2019.

[19] N. Finn, P. Thubert, B. Varga, and J. Farkas. RFC8655: Deterministic Networking Architecture.

Technical report, 2019. URL https://www.rfc-editor.org/info/rfc8655.

[20] Anne Bouillard and Giovanni Stea. Exact worst-case delay in fifo-multiplexing feed-forward

networks. IEEE/ACM Transactions on Networking, 23(5):1387–1400, 2015. doi: 10.1109/TNET.

2014.2332071.

[21] Anne Bouillard and Aurore Junier. Worst-case delay bounds with fixed priorities using network

calculus. In Proceedings of the 5th International ICST Conference on Performance Evaluation

Methodologies and Tools, VALUETOOLS ’11, page 381–390, Brussels, BEL, 2011. ICST (Insti-

tute for Computer Sciences, Social-Informatics and Telecommunications Engineering). ISBN

9781936968091.

[22] Alexander Scheffler and Steffen Bondorf. Network calculus for bounding delays in feedforward

networks of fifo queueing systems. In Alessandro Abate and Andrea Marin, editors, Quantitative

Evaluation of Systems, pages 149–167, Cham, 2021. Springer International Publishing. ISBN

978-3-030-85172-9.

[23] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul. Methods for bounding end-to-end delays

on an afdx network. In 18th Euromicro Conference on Real-Time Systems (ECRTS’06), pages 10

pp.–202, 2006. doi: 10.1109/ECRTS.2006.15.

[24] Jonathan Falk, David Hellmanns, Ben Carabelli, Naresh Nayak, Frank Dürr, Stephan Kehrer, and

Kurt Rothermel. Nesting: Simulating ieee time-sensitive networking (tsn) in omnet++. In 2019

International Conference on Networked Systems (NetSys), pages 1–8, 2019. doi: 10.1109/NetSys.

2019.8854500.

[25] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent

systems using temporal logic specifications. ACM Trans. Program. Lang. Syst., 8(2):244–263, apr

1986. ISSN 0164-0925. doi: 10.1145/5397.5399. URL https://doi.org/10.1145/5397.5399.

178

https://datatracker.ietf.org/wg/detnet/about/
https://www.rfc-editor.org/info/rfc8578
https://www.rfc-editor.org/info/rfc8578
https://1.ieee802.org/tsn/802-1dg/
https://1.ieee802.org/tsn/802-1dg/
https://www.rfc-editor.org/info/rfc8655
https://doi.org/10.1145/5397.5399

Bibliography

[26] J. Krakora, L. Waszniowski, P. Pisa, and Z. Hanzalek. Timed automata approach to real time

distributed system verification. In IEEE International Workshop on Factory Communication

Systems, 2004. Proceedings., pages 407–410, 2004. doi: 10.1109/WFCS.2004.1377759.

[27] Daniel Witsch, Birgit Vogel-Heuser, Jean-Marc Faure, and Gaëlle Marsal. Performance analysis of

industrial ethernet networks by means of timed model-checking. IFAC Proceedings Volumes, 39

(3):101–106, 2006. ISSN 1474-6670. doi: https://doi.org/10.3182/20060517-3-FR-2903.00063.

URL https://www.sciencedirect.com/science/article/pii/S1474667015357839. 12th IFAC Sympo-

sium on Information Control Problems in Manufacturing.

[28] Steven Martin. Maîtrise de la dimension temporelle de la qualité de service dans les réseaux.

Theses, Université Paris XII Val de Marne, July 2004. URL https://theses.hal.science/

tel-00007638. Francis COTTET (ENSMA)
Françoise SIMONOT-LION (ENSMN)
Yacine

AMIRAT(Université Paris 12)
Laurent GEORGE (Université Paris 12)
Pascal LORENZ

(Université de Haute Alsace)
Pascale MINET (INRIA Rocquencourt
Samir TOHME

(Université de Versailles St-Quentin).

[29] Xiaoting Li, Olivier Cros, and Laurent George. The Trajectory approach for AFDX FIFO networks

revisited and corrected. In The 20th IEEE International Conference on Embedded and Real-

Time Computing Systems and Applications, Chongqing, China, August 2014. IEEE. URL https:

//hal.science/hal-00975730.

[30] Henri Bauer, Jean-Luc Scharbarg, and Christian Fraboul. Applying Trajectory approach with

static priority queuing for improving the use of available AFDX resources. In 18th International

Conference on Real-Time and Network Systems, pages 69–78, Toulouse, France, November 2010.

URL https://hal.science/hal-00544508.

[31] H. Charara, J. . Scharbarg, J. Ermont, and C. Fraboul. Methods for bounding end-to-end delays

on an afdx network. In 18th Euromicro Conference on Real-Time Systems (ECRTS’06), pages 10

pp.–202, 2006. doi: 10.1109/ECRTS.2006.15.

[32] Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard real-time

systems. Microprocessing and Microprogramming, 40(2):117–134, 1994. ISSN 0165-6074. doi:

https://doi.org/10.1016/0165-6074(94)90080-9. URL https://www.sciencedirect.com/science/

article/pii/0165607494900809. Parallel Processing in Embedded Real-time Systems.

[33] Paul Pop, Petru Eles, and Zebo Peng. Scheduling with optimized communication for time-

triggered embedded systems. In Proceedings of the seventh international workshop on hardware/-

software codesign, pages 178–182, 1999.

[34] P. Pop, P. Eles, and Zebo Peng. Schedulability analysis and optimization for the synthesis of

multi-cluster distributed embedded systems. In 2003 Design, Automation and Test in Europe

Conference and Exhibition, pages 184–189, 2003. doi: 10.1109/DATE.2003.1253606.

[35] T. Pop, P. Pop, P. Eles, and Zebo Peng. Optimization of hierarchically scheduled heterogeneous em-

bedded systems. In 11th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA’05), pages 67–71, 2005. doi: 10.1109/RTCSA.2005.67.

[36] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. Synthesis of communication schedules

for ttethernet-based mixed-criticality systems. In Proceedings of the Eighth IEEE/ACM/IFIP

International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS

179

https://www.sciencedirect.com/science/article/pii/S1474667015357839
https://theses.hal.science/tel-00007638
https://theses.hal.science/tel-00007638
https://hal.science/hal-00975730
https://hal.science/hal-00975730
https://hal.science/hal-00544508
https://www.sciencedirect.com/science/article/pii/0165607494900809
https://www.sciencedirect.com/science/article/pii/0165607494900809

Bibliography

’12, page 473–482, New York, NY, USA, 2012. Association for Computing Machinery. ISBN

9781450314268. doi: 10.1145/2380445.2380518. URL https://doi.org/10.1145/2380445.2380518.

[37] Domiţian Tămaş-Selicean, Paul Pop, and Wilfried Steiner. Design optimization of ttethernet-

based distributed real-time systems. Real-Time Systems, 51(1):1–35, 2015. doi: 10.1007/

s11241-014-9214-8. URL https://doi.org/10.1007/s11241-014-9214-8.

[38] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deterministic Queuing

Systems for the Internet, volume 2050. Springer Science & Business Media, 2001. ISBN 978-3-540-

42184-9.

[39] C. S. Chang. Performance Guarantees in Communication Networks. Springer-Verlag, New York,

2000.

[40] Anne Bouillard, Marc Boyer, and Euriell Le Corronc. Deterministic Network Calculus: From

Theory to Practical Implementation. Wiley-ISTE, 2018. ISBN 978-1-119-56341-9.

[41] Michel Boyer and Christian Fraboul. Tightening end to end delay upper bound for AFDX network

calculus with rate latency FIFO servers using network calculus. In Proceedings of the 2008 IEEE

International Workshop on Factory Communication Systems, pages 11–20, Dresden, Germany,

2008. IEEE.

[42] Jérôme Grieu. Analyse et évaluation de techniques de commutation ethernet pour

l’interconnexion des systèmes avioniques. September 2004. URL https://oatao.univ-toulouse.fr/

7385/.

[43] Fabrice Frances, Christian Fraboul, and Jérôme Grieu. Using network calculus to optimize the

AFDX network. 2006.

[44] Luyue Ji, Wenjie Wu, Chaojie Gu, Jichao Bi, Shibo He, and Zhiguo Shi. Network calculus-based

routing and scheduling in software-defined industrial internet of things. In 2022 IEEE 20th

International Conference on Industrial Informatics (INDIN), pages 463–468, 2022. doi: 10.1109/

INDIN51773.2022.9976177.

[45] Yinzhi Lu, Liu Yang, Simon X. Yang, Qiaozhi Hua, Arun Kumar Sangaiah, Tan Guo, and Keping

Yu. An intelligent deterministic scheduling method for ultralow latency communication in

edge enabled industrial internet of things. IEEE Transactions on Industrial Informatics, 19(2):

1756–1767, 2023. doi: 10.1109/TII.2022.3186891.

[46] Rahul Nandkumar Gore, Elena Lisova, Johan Åkerberg, and Mats Björkman. Network calculus

approach for packet delay variation analysis of multi-hop wired networks. Applied Sciences,

12(21), 2022. ISSN 2076-3417. doi: 10.3390/app122111207. URL https://www.mdpi.com/

2076-3417/12/21/11207.

[47] Qian Ren, Kui Liu, and Lianming Zhang. Multi-objective optimization for task offloading based

on network calculus in fog environments. Digital Communications and Networks, 8(5):825–833,

2022. ISSN 2352-8648. doi: https://doi.org/10.1016/j.dcan.2021.09.012. URL https://www.

sciencedirect.com/science/article/pii/S2352864821000729.

[48] G. Kesidis, Y. Shan, B. Urgaonkar, and J. Liebeherr. Network calculus for parallel processing.

SIGMETRICS Perform. Eval. Rev., 43(2):48–50, sep 2015. ISSN 0163-5999. doi: 10.1145/2825236.

2825256. URL https://doi.org/10.1145/2825236.2825256.

180

https://doi.org/10.1145/2380445.2380518
https://doi.org/10.1007/s11241-014-9214-8
https://oatao.univ-toulouse.fr/7385/
https://oatao.univ-toulouse.fr/7385/
https://www.mdpi.com/2076-3417/12/21/11207
https://www.mdpi.com/2076-3417/12/21/11207
https://www.sciencedirect.com/science/article/pii/S2352864821000729
https://www.sciencedirect.com/science/article/pii/S2352864821000729
https://doi.org/10.1145/2825236.2825256

Bibliography

[49] Nicholas Jacobs, Shamina Hossain-McKenzie, and Adam Summers. Modeling data flows with

network calculus in cyber-physical systems: Enabling feature analysis for anomaly detection

applications. Information, 12(6), 2021. ISSN 2078-2489. doi: 10.3390/info12060255. URL

https://www.mdpi.com/2078-2489/12/6/255.

[50] Huan Yang, Liang Cheng, and Xiaoguang Ma. Combining measurements and network calculus in

worst-case delay analyses for networked cyber-physical systems. In IEEE INFOCOM 2019 - IEEE

Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 1065–1066,

2019. doi: 10.1109/INFCOMW.2019.8845285.

[51] Huan Yang, Liang Cheng, and Xiaoguang Ma. Combining measurements and network calculus in

worst-case delay analyses for networked cyber-physical systems. In IEEE INFOCOM 2019 - IEEE

Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 1065–1066,

2019. doi: 10.1109/INFCOMW.2019.8845285.

[52] Sheng Zhu, Zhen Sun, Yong Lu, Lianming Zhang, Yehua Wei, and Geyong Min. Centralized

qos routing using network calculus for sdn-based streaming media networks. IEEE Access, 7:

146566–146576, 2019. doi: 10.1109/ACCESS.2019.2943518.

[53] Joan Adrià Ruiz De Azua and Marc Boyer. Complete modelling of avb in network calculus

framework. In Proceedings of the 22nd International Conference on Real-Time Networks and

Systems, RTNS ’14, page 55–64, New York, NY, USA, 2014. Association for Computing Machinery.

ISBN 9781450327275. doi: 10.1145/2659787.2659810. URL https://doi.org/10.1145/2659787.

2659810.

[54] Anne Bouillard, Marc Boyer, and Euriell Le Corronc. Deterministic Network Calculus: From

Theory to Practical Implementation. John Wiley & Sons, 2018.

[55] Hugo Daigmorte, Marc Boyer, and Luxi Zhao. Modelling in network calculus a TSN architecture

mixing Time-Triggered, Credit Based Shaper and Best-Effort queues. working paper or preprint,

June 2018. URL https://hal.science/hal-01814211.

[56] Kohei Hirano and Yoshihiro Ito. Study on appropriate idleslope value of credit based shaper for

qos control on in-vehicle ethernet. In 2020 IEEE 9th Global Conference on Consumer Electronics

(GCCE), pages 686–687, 2020. doi: 10.1109/GCCE50665.2020.9291833.

[57] Ehsan Mohammadpour, Eleni Stai, Maaz Mohiuddin, and Jean-Yves Le Boudec. Latency and

backlog bounds in time-sensitive networking with credit based shapers and asynchronous traffic

shaping. In 2018 30th International Teletraffic Congress (ITC 30), volume 02, pages 1–6, 2018. doi:

10.1109/ITC30.2018.10053.

[58] Luxi Zhao, Paul Pop, Zhong Zheng, and Qiao Li. Timing analysis of avb traffic in tsn networks

using network calculus. In 2018 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 25–36, 2018. doi: 10.1109/RTAS.2018.00009.

[59] Dinh-Khanh Dang and Ahlem Mifdaoui. Timing analysis of tdma-based networks using network

calculus and integer linear programming. In 2014 IEEE 22nd International Symposium on

Modelling, Analysis and Simulation of Computer and Telecommunication Systems, pages 21–30,

2014. doi: 10.1109/MASCOTS.2014.12.

[60] Ehsan Mohammadpour, Eleni Stai, and Jean-Yves Le Boudec. Improved network calculus delay

bounds in time-sensitive networks, 2022.

181

https://www.mdpi.com/2078-2489/12/6/255
https://doi.org/10.1145/2659787.2659810
https://doi.org/10.1145/2659787.2659810
https://hal.science/hal-01814211

Bibliography

[61] Ludovic Thomas. Analysis of the side-effects on latency bounds of combinations of scheduling,

redundancy and synchronization mechanisms in time-sensitive networks. PhD thesis, l’Institut

Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), 2022. URL http://www.theses.

fr/2022ESAE0041. Thèse de doctorat dirigée par Mifdaoui, Ahlem et Le Boudec, Jean-Yves

Informatique et Télécommunications Toulouse, ISAE 2022.

[62] Jens B. Schmitt and Frank A. Zdarsky. The disco network calculator: A toolbox for worst

case analysis. In Proceedings of the 1st International Conference on Performance Evalua-

tion Methodolgies and Tools, valuetools ’06, page 8–es, New York, NY, USA, 2006. Associa-

tion for Computing Machinery. ISBN 1595935045. doi: 10.1145/1190095.1190105. URL

https://doi.org/10.1145/1190095.1190105.

[63] Ahlem Mifadoui and Thierry Leydier. Beyond the Accuracy-Complexity Tradeoffs of Composi-

tionalAnalyses using Network Calculus for Complex Networks. In 10th International Workshop

on Compositional Theory and Technology for Real-Time Embedded Systems (co-located with

RTSS 2017), pages pp. 1–8, Paris, France, December 2017. URL https://hal.archives-ouvertes.fr/

hal-01690096.

[64] Stephan Plassart and Jean-Yves Le Boudec. Equivalent versions of total flow analysis. CoRR,

abs/2111.01827, 2021. URL https://arxiv.org/abs/2111.01827.

[65] Jens B. Schmitt, Frank A. Zdarsky, and Ivan Martinovic. Improving performance bounds in feed-

forward networks by paying multiplexing only once. In Messung, Modellierung und Bewertung

von Rechen- und Kommunikationssystemen, 2011.

[66] Alexander Scheffler and Steffen Bondorf. Network calculus for bounding delays in feedforward

networks of FIFO queueing systems. In Proc. of the 18th International Conference on Quantitative

Evaluation of Systems, QEST ’21, pages 149–167, August 2021. URL https://link.springer.com/

chapter/10.1007/978-3-030-85172-9_8.

[67] Fabien Geyer, Alexander Scheffler, and Steffen Bondorf. Tightening network calculus delay

bounds by predicting flow prolongations in the fifo analysis. In 2021 IEEE 27th Real-Time

and Embedded Technology and Applications Symposium (RTAS), pages 157–170, 2021. doi:

10.1109/RTAS52030.2021.00021.

[68] Anne Bouillard. Trade-off between accuracy and tractability of network calculus in FIFO networks.

Perform. Eval., 153(C), feb 2022. ISSN 0166-5316. doi: 10.1016/j.peva.2021.102250. URL https:

//doi.org/10.1016/j.peva.2021.102250.

[69] Iec 62439: High availability automation networks: High availability automation networks. Tech-

nical report, 2012.

[70] Iec 62439-3, industrial communication networks - high availability automation networks - part 3:

Parallel redundancy protocol (prp) and high-availability seamless redundancy (hsr). Technical

report, 2016.

[71] Ellen L. Hahne and Robert G. Gallager. Round robin scheduling for fair flow control in data

communication networks. In Proc. of the IEEE Int. Conf. on Communications (ICC 86), June 1986.

[72] J. Nagle. On packet switches with infinite storage. Communications, IEEE Transactions on, 35(4):

435–438, Apr 1987. ISSN 0090-6778. doi: 10.1109/TCOM.1987.1096782.

182

http://www.theses.fr/2022ESAE0041
http://www.theses.fr/2022ESAE0041
https://doi.org/10.1145/1190095.1190105
https://hal.archives-ouvertes.fr/hal-01690096
https://hal.archives-ouvertes.fr/hal-01690096
https://arxiv.org/abs/2111.01827
https://link.springer.com/chapter/10.1007/978-3-030-85172-9_8
https://link.springer.com/chapter/10.1007/978-3-030-85172-9_8
https://doi.org/10.1016/j.peva.2021.102250
https://doi.org/10.1016/j.peva.2021.102250

Bibliography

[73] IEEE standard for local and metropolitan area networks – bridges and bridged networks. IEEE

Standard 802.1Q, IEEE, 2018.

[74] Dhinesh Babu L.D. and P. Venkata Krishna. Honey bee behavior inspired load balancing of

tasks in cloud computing environments. Applied Soft Computing, 13(5):2292–2303, 2013. ISSN

1568-4946. doi: https://doi.org/10.1016/j.asoc.2013.01.025. URL http://www.sciencedirect.com/

science/article/pii/S1568494613000446.

[75] Wensong. Weighted round-robin scheduling, documentation of the linuxvirtualserver knowledge

base, 2005.

[76] Yue Qian, Zhonghai Lu, and Wenhua Dou. Analysis of worst-case delay bounds for best-effort

communication in wormhole networks on chip. In Proc. of the 3rd ACM/IEEE International

Symposium on Networks-on-Chip (NoCS 2009), pages 44–53. IEEE, 2009.

[77] Ibrahim Afolabi, Tarik Taleb, Konstantinos Samdanis, Adlen Ksentini, and Hannu Flinck. Network

slicing and softwarization: A survey on principles, enabling technologies, and solutions. IEEE

Communications Surveys & Tutorials, 20(3):2429–2453, 2018. doi: 10.1109/COMST.2018.2815638.

[78] Xin Li, Mohammed Samaka, H. Anthony Chan, Deval Bhamare, Lav Gupta, Chengcheng Guo,

and Raj Jain. Network slicing for 5g: Challenges and opportunities. IEEE Internet Computing, 21

(5):20–27, 2017. doi: 10.1109/MIC.2017.3481355.

[79] Xenofon Foukas, Georgios Patounas, Ahmed Elmokashfi, and Mahesh K. Marina. Network

slicing in 5g: Survey and challenges. IEEE Communications Magazine, 55(5):94–100, 2017. doi:

10.1109/MCOM.2017.1600951.

[80] L. Lenzini, E. Mingozzi, and G. Stea. Aliquem: a novel DRR implementation to achieve better

latency and fairness at O(1) complexity. In IEEE 2002 Tenth IEEE International Workshop on

Quality of Service (Cat. No.02EX564), pages 77–86, 2002.

[81] Xin Yuan and Zhenhai Duan. Fair round-robin: A low complexity packet schduler with pro-

portional and worst-case fairness. IEEE Transactions on Computers, 58(3):365–379, 2009. doi:

10.1109/TC.2008.176.

[82] Yi-Mao Hsiao, Ming-Jen Chen, Yier Chen, Yuan-Sun Chu, and Cheng-Shong Wu. Design and

implementation of pipelined drr asic. In 2008 14th Asia-Pacific Conference on Communications,

pages 1–4, 2008.

[83] Linhua Zhong, Jin Xu, and Xianlei Wang. Vwqgrr: A novel packet scheduler. In Sixth International

Conference on Networking (ICN’07), pages 36–36, 2007. doi: 10.1109/ICN.2007.103.

[84] Manolis Katevenis, Stefanos Sidiropoulos, and Costas Courcoubetis. Weighted round-robin

cell multiplexing in a general-purpose ATM switch chip. IEEE Journal on Selected Areas in

Communications, 9(8):1265–1279, 1991.

[85] Rainer Handel, Manfred N. Huber, Stefan Schroder, and Lars Wolf. ATM Networks: Concepts,

Protocols, Applications. Addison-Wesley Professional, 2001.

[86] S. S. Kanhere and H. Sethu. On the latency bound of deficit round robin. In Proceedings. Eleventh

International Conference on Computer Communications and Networks, pages 548–553, 2002.

183

http://www.sciencedirect.com/science/article/pii/S1568494613000446
http://www.sciencedirect.com/science/article/pii/S1568494613000446

Bibliography

[87] Dimitrios Stiliadis. Traffic Scheduling in Packet-Switched Networks: Analysis, Design, and Imple-

mentation. PhD thesis, 1996. AAI9637506.

[88] L. Lenzini, E. Mingozzi, and G. Stea. Full exploitation of the deficit round robin capabilities by

efficient implementation and parameter tuning.

[89] M. Boyer, G. Stea, and W. M. Sofack. Deficit round robin with network calculus. In 6th Inter-

national ICST Conference on Performance Evaluation Methodologies and Tools, pages 138–147,

2012.

[90] A. Soni, X. Li, J. Scharbarg, and C. Fraboul. Optimizing network calculus for switched ethernet

network with deficit round robin. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages

300–311, 2018.

[91] Anne Bouillard. Individual service curves for bandwidth-sharing policies using network calculus.

IEEE Networking Letters, 3(2):80–83, 2021. doi: 10.1109/LNET.2021.3067766.

[92] RealTime-at-Work online Min-Plus interpreter for Network Calculus. https://www.

realtimeatwork.com/minplus-playground. Accessed: year-month-day.

[93] Raffaele Zippo and Giovanni Stea. Nancy: an efficient parallel network calculus library, 2022.

ISSN 2352-7110. URL https://arxiv.org/abs/2205.11449.

[94] Steffen Bondorf and Jens B. Schmitt. The DiscoDNC v2 – a comprehensive tool for deter-

ministic network calculus. In Proc. of the International Conference on Performance Eval-

uation Methodologies and Tools, ValueTools ’14, pages 44–49, December 2014. URL https:

//dl.acm.org/citation.cfm?id=2747659.

[95] Urban Suppiger, Simon Perathoner, Kai Lampka, and Lothar Thiele. Modular performance

analysis of large-scale distributed embedded systems: An industrial case study. Report, Zurich,

2010-11.

[96] Anne Bouillard and Thomas Nowak. Fast symbolic computation of the worst-case delay in

tandem networks and applications. Perform. Eval., 91:270–285, 2015. doi: 10.1016/j.peva.2015.

06.016.

[97] Markus Fidler and Amr Rizk. A guide to the stochastic network calculus. IEEE Communications

Surveys & Tutorials, 17(1):92–105, 2015. doi: 10.1109/COMST.2014.2337060.

[98] Felix Poloczek and Florin Ciucu. Scheduling analysis with martingales. Performance Evaluation,

79:56–72, 2014. ISSN 0166-5316. doi: https://doi.org/10.1016/j.peva.2014.07.004. URL http:

//www.sciencedirect.com/science/article/pii/S0166531614000674. Special Issue: Performance

2014.

[99] M. Vojnovic and J.-Y. Le Boudec. Bounds for independent regulated inputs multiplexed in a

service curve network element. In GLOBECOM’01. IEEE Global Telecommunications Conference

(Cat. No.01CH37270), volume 3, pages 1857–1861 vol.3, 2001. doi: 10.1109/GLOCOM.2001.

965896.

[100] Cheng-Shang Chang, Yuh-ming Chiu, and Wheyming Tina Song. On the performance of mul-

tiplexing independent regulated inputs. In Proceedings of the 2001 ACM SIGMETRICS Interna-

tional Conference on Measurement and Modeling of Computer Systems, SIGMETRICS ’01, page

184

https://www.realtimeatwork.com/minplus-playground
https://www.realtimeatwork.com/minplus-playground
https://arxiv.org/abs/2205.11449
https://dl.acm.org/citation.cfm?id=2747659
https://dl.acm.org/citation.cfm?id=2747659
http://www.sciencedirect.com/science/article/pii/S0166531614000674
http://www.sciencedirect.com/science/article/pii/S0166531614000674

Bibliography

184–193, New York, NY, USA, 2001. Association for Computing Machinery. ISBN 1581133340. doi:

10.1145/378420.378782. URL https://doi.org/10.1145/378420.378782.

[101] Florin Ciucu and Jens Schmitt. Perspectives on network calculus: No free lunch, but still good

value. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, SIGCOMM ’12, page 311–322, New

York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450314190. doi: 10.1145/

2342356.2342426. URL https://doi.org/10.1145/2342356.2342426.

[102] Fabrice M. Guillemin, Ravi R. Mazumdar, Catherine P. Rosenberg, and Yu Ying. A stochastic

ordering property for leaky bucket regulated flows in packet networks. Journal of Applied

Probability, 44(2):332–348, 2007. ISSN 00219002. URL http://www.jstor.org/stable/27595845.

[103] G. Kesidis and T. Konstantopoulos. Worst-case performance of a buffer with independent shaped

arrival processes. IEEE Communications Letters, 4(1):26–28, 2000. doi: 10.1109/4234.823539.

[104] Seyed Mohammadhossein Tabatabaee, Jean-Yves Le Boudec, and Marc Boyer. Interleaved

weighted round-robin: A network calculus analysis. In 2020 32nd International Teletraffic

Congress (ITC 32), pages 64–72, 2020. doi: 10.1109/ITC3249928.2020.00016.

[105] Seyed Mohammadhossein TABATABAEE, Jean-Yves LE BOUDEC, and Marc BOYER. Interleaved

weighted round-robin: A network calculus analysis. IEICE Transactions on Communications,

E104.B(12):1479–1493, 2021. doi: 10.1587/transcom.2021ITI0001.

[106] Vlad-Cristian Constantin, Paul Nikolaus, and Jens Schmitt. Improving performance bounds for

weighted round-robin schedulers under constrained cross-traffic. In 2022 IFIP Networking Con-

ference (IFIP Networking), pages 1–9, 2022. doi: 10.23919/IFIPNetworking55013.2022.9829772.

[107] Seyed Mohammadhossein Tabatabaee and Jean-Yves Le Boudec. Deficit round-robin: A sec-

ond network calculus analysis. In 2021 IEEE 27th Real-Time and Embedded Technology and

Applications Symposium (RTAS), pages 171–183, 2021. doi: 10.1109/RTAS52030.2021.00022.

[108] Seyed Mohammadhossein Tabatabaee and Jean-Yves Le Boudec. Deficit round-robin: A second

network calculus analysis. IEEE/ACM Transactions on Networking, pages 1–15, 2022. doi: 10.

1109/TNET.2022.3164772.

[109] Seyed Mohammadhossein Tabatabaee, Anne Bouillard, and Jean-Yves Le Boudec. Worst-case

delay analysis of time-sensitive networks with deficit round-robin, 2022. URL https://arxiv.org/

abs/2208.11400.

[110] Seyed Mohammadhossein Tabatabaee, Marc Boyer, Jean-Yves Le Boudec, and Jörn Migge.

Efficient and accurate handling of periodic flows in time-sensitive networks. In 2023 IEEE

29th Real-Time and Embedded Technology and Applications Symposium (RTAS), 2023. URL

http://infoscience.epfl.ch/record/302640.

[111] Seyed Mohammadhossein Tabatabaee, Anne Bouillard, and Jean-Yves Le Boudec. Quasi-

deterministic burstiness bound for aggregate of independent, periodic flows, 2023. URL

https://arxiv.org/abs/2305.14946.

[112] Github project: Saihu: A common interface of worst-case delay analysis tools for time-sensitive

networks. https://github.com/adfeel220/Saihu-TSN-Analysis-Tool-Integration.

185

https://doi.org/10.1145/378420.378782
https://doi.org/10.1145/2342356.2342426
http://www.jstor.org/stable/27595845
https://arxiv.org/abs/2208.11400
https://arxiv.org/abs/2208.11400
http://infoscience.epfl.ch/record/302640
https://arxiv.org/abs/2305.14946
https://github.com/adfeel220/Saihu-TSN-Analysis-Tool-Integration

Bibliography

[113] Chun-Tso Tsai, Seyed Mohammadhossein Tabatabaee, Stéphan Plassart, and Jean-Yves Le

Boudec. Saihu: A common interface of worst-case delay analysis tools for time-sensitive net-

works, 2023. URL https://arxiv.org/abs/2303.14565.

[114] Jean-Yves Le Boudec. Network calculus made easy. 1996.

[115] Cheng-Shang Chang. A filtering theory for deterministic traffic regulation. In Proceedings of

INFOCOM ’97, volume 2, pages 436–443 vol.2, 1997. doi: 10.1109/INFCOM.1997.644492.

[116] R.L. Cruz. A calculus for network delay. i. network elements in isolation. IEEE Transactions on

Information Theory, 37(1):114–131, 1991. doi: 10.1109/18.61109.

[117] R.L. Cruz. A calculus for network delay. ii. network analysis. IEEE Transactions on Information

Theory, 37(1):132–141, 1991. doi: 10.1109/18.61110.

[118] Jean-Yves Le Boudec. An introduction to network calculus. YouTube video, Apr. 5 2019. URL

https://www.youtube.com/watch?v=ABQ327BTc_o.

[119] Ludovic Thomas, Jean-Yves Le Boudec, and Ahlem Mifdaoui. On cyclic dependencies and

regulators in time-sensitive networks. In 2019 IEEE Real-Time Systems Symposium (RTSS), pages

299–311, 2019. doi: 10.1109/RTSS46320.2019.00035.

[120] Luciano Lenzini, Linda Martorini, Enzo Mingozzi, and Giovanni Stea. Tight end-to-end per-flow

delay bounds in fifo multiplexing sink-tree networks. Performance Evaluation, 63(9):956–987,

2006. ISSN 0166-5316. doi: https://doi.org/10.1016/j.peva.2005.10.003. URL https://www.

sciencedirect.com/science/article/pii/S0166531605001537.

[121] Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea. End-to-end delay bounds in fifo-

multiplexing tandems. In Proceedings of the 2nd International Conference on Performance

Evaluation Methodologies and Tools, ValueTools ’07, Brussels, BEL, 2007. ICST (Institute for Com-

puter Sciences, Social-Informatics and Telecommunications Engineering). ISBN 9789639799004.

[122] Steffen Bondorf. Better bounds by worse assumptions — improving network calculus accu-

racy by adding pessimism to the network model. In 2017 IEEE International Conference on

Communications (ICC), pages 1–7, 2017. doi: 10.1109/ICC.2017.7996996.

[123] Github project: Open-source implementation of graph neural network (gnn) used to tighten the

analysis of flow prolongation in fifo multiplexing system. https://github.com/wangweiran0129/

Degree_Project_Network_Calculus.

[124] Steffen Bondorf and Jens B Schmitt. The DiscoDNC v2: a comprehensive tool for deter-

ministic network calculus. In Proceedings of the 8th International Conference on Perfor-

mance Evaluation Methodologies and Tools, VALUETOOLS ’14, pages 44–49, Brussels, BEL,

2014. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications En-

gineering), ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-

tions Engineering). ISBN 9781631900570. doi: 10.4108/icst.Valuetools.2014.258167. URL

https://doi.org/10.4108/icst.Valuetools.2014.258167.

[125] Anne Bouillard, Laurent Jouhet, and Eric Thierry. Service curves in Network Calculus: dos and

don’ts. Research report, INRIA, 2009. URL https://hal.inria.fr/inria-00431674.

186

https://arxiv.org/abs/2303.14565
https://www.youtube.com/watch?v=ABQ327BTc_o
https://www.sciencedirect.com/science/article/pii/S0166531605001537
https://www.sciencedirect.com/science/article/pii/S0166531605001537
https://github.com/wangweiran0129/Degree_Project_Network_Calculus
https://github.com/wangweiran0129/Degree_Project_Network_Calculus
https://doi.org/10.4108/icst.Valuetools.2014.258167
https://hal.inria.fr/inria-00431674

Bibliography

[126] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-time

systems. In 2000 IEEE International Symposium on Circuits and Systems (ISCAS), volume 4, pages

101–104 vol.4, 2000. doi: 10.1109/ISCAS.2000.858698.

[127] Henrik Schioler, Hans P Schwefel, and Martin B Hansen. Cync: a matlab/simulink toolbox

for network calculus. In Proceedings of the 2nd international conference on Performance eval-

uation methodologies and tools, ValueTools ’07, page 60, Brussels, BEL, 2007. ICST (Institute

for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST (Insti-

tute for Computer Sciences, Social-Informatics and Telecommunications Engineering). ISBN

9789639799004.

[128] Jorn Migge, Marc Fumey, and Marc Boyer. Pegase - a robust and efficient tool for worst-case

network traversal time evaluation on afdx. In Aerospace Technology Conference and Exposition.

SAE International, oct 2011. doi: https://doi.org/10.4271/2011-01-2711. URL https://doi.org/10.

4271/2011-01-2711.

[129] Ahlem Mifdaoui and Hamdi Ayed. Wopanets: a tool for worst case performance analysis of

embedded networks. In Computer Aided Modeling, Analysis and Design of Communication Links

and Networks (CAMAD), 2010 15th IEEE International Workshop on, pages 91–95. IEEE, 2010.

doi: 10.1109/CAMAD.2010.5686958.

[130] Mark Schmidt, Sebastian Veith, Michael Menth, and Stephan Kehrer. Delaylyzer: A tool for

analyzing delay bounds in industrial ethernet networks. In Kai Fischbach and Udo R. Krieger,

editors, Measurement, Modelling, and Evaluation of Computing Systems and Dependability and

Fault Tolerance, pages 260–263, Cham, 2014. Springer International Publishing. ISBN 978-3-319-

05359-2.

[131] Luca Bisti, Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea. Deborah: A tool for worst-

case analysis of fifo tandems. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging

Applications of Formal Methods, Verification, and Validation, pages 152–168, Berlin, Heidelberg,

2010. Springer Berlin Heidelberg. ISBN 978-3-642-16558-0.

[132] Anne Bouillard and Giovanni Stea. Exact worst-case delay in FIFO-multiplexing feed-forward

networks. IEEE/ACM Transactions on Networking (TON), 23(5):1387–1400, 2015. doi: 10.1109/

TNET.2014.2332071.

[133] Anne Bouillard and Éric Thierry. Tight performance bounds in the worst-case analysis of feed-

forward networks. Discrete Event Dynamic Systems, 26(3):383–411, Sep 2016. ISSN 1573-7594.

doi: 10.1007/s10626-015-0213-2. URL https://doi.org/10.1007/s10626-015-0213-2.

[134] Anne Bouillard. Stability and performance bounds in cyclic networks using network calculus. In

Étienne André and Mariëlle Stoelinga, editors, Formal Modeling and Analysis of Timed Systems,

pages 96–113, Cham, 2019. Springer International Publishing. ISBN 978-3-030-29662-9.

[135] Sven Kerschbaum, Kai-Steffen Hielscher, and Reinhard German. The need for shaping non-

time-critical data in profinet networks. In 2016 IEEE 14th International Conference on Industrial

Informatics (INDIN), pages 160–165, 2016. doi: 10.1109/INDIN.2016.7819151.

[136] Anne Bouillard. Trade-off between accuracy and tractability of network calculus in fifo networks.

Performance Evaluation, 153:102250, 2022. ISSN 0166-5316. doi: https://doi.org/10.1016/j.peva.

2021.102250. URL https://www.sciencedirect.com/science/article/pii/S0166531621000675.

187

https://doi.org/10.4271/2011-01-2711
https://doi.org/10.4271/2011-01-2711
https://doi.org/10.1007/s10626-015-0213-2
https://www.sciencedirect.com/science/article/pii/S0166531621000675

Bibliography

[137] Lucien Rakotomalala, Pierre Roux, and Marc Boyer. Verifying min-plus computations with coq.

In NFM, volume 12673 of Lecture Notes in Computer Science, pages 287–303. Springer, 2021.

[138] IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation,

46(53):157, 2009.

[139] Michel Berkelaar, Kjell Eikland, and Peter Notebaert. lpsolve, May 2004. URL https://lpsolve.

sourceforge.net/5.5/.

[140] Jörg Liebeherr. Duality of the max-plus and min-plus network calculus. Foundations and Trends

in Networking, 11(3-4):139–282, 2017.

[141] OpenAI. ChatGPT: An ai language model by openai. OpenAI Website, 2023. URL https://openai.

com/.

[142] D. B. Chokshi and P. Bhaduri. Modeling fixed priority non-preemptive scheduling with real-time

calculus. In 2008 14th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications, pages 387–392, Aug 2008. doi: 10.1109/RTCSA.2008.28.

[143] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-time

systems. In 2000 IEEE International Symposium on Circuits and Systems (ISCAS), volume 4, pages

101–104 vol.4, May 2000. doi: 10.1109/ISCAS.2000.858698.

[144] Yao-Tzung Wang, Tzung-Pao Lin, and Kuo-Chung Gan. An improved scheduling algorithm for

weighted round-robin cell multiplexing in an ATM switch. In Proceedings of the International

Conference on Communications (SUPERCOMM’94), pages 1032–1037 vol.2, May 1994. doi:

10.1109/ICC.1994.368945.

[145] Hideyuki Shimonishi, Makiko Yoshida, Ruixue Fan, and Hiroshi Suzuki. An improvement of

weighted round robin cell scheduling in ATM networks. In Proc. of the IEEE Global Telecom-

munications Conference (GLOBECOM 97), volume 2, pages 1119–1123 vol.2, Nov 1997. doi:

10.1109/GLOCOM.1997.638500.

[146] Hemant. M Chaskar and Upamanyu Madhow. Fair scheduling with tunable latency: A round

robin approach. In Proc of the IEEE Global Telecommunications Conference (GLOBECOM’99),

volume 2, pages 1328–1333. IEEE, 1999.

[147] Dimitrios Stiliadis and Anujan Varma. Latency-rate servers: A general model for analysis of traffic

scheduling algorithms. IEEE/ACM Trans. Netw., 6(5):611–624, October 1998. ISSN 1063-6692. doi:

10.1109/90.731196. URL http://dx.doi.org/10.1109/90.731196.

[148] S Nananukul. Latency of weighted round-robin scheduler. Electronics Letters, 39(2):256–257,

2003.

[149] Yuming Jiang. Relationship between guaranteed rate server and latency rate server. Computer

Networks, 43(3):307–315, 2003. ISSN 1389-1286. doi: 10.1016/S1389-1286(03)00276-7. URL

http://www.sciencedirect.com/science/article/pii/S1389128603002767.

[150] Jean-Philippe Georges, Thierry Divoux, and Éric Rondeau. Network calculus: application to

switched real-time networking. In Proc. of the 5th Int. ICST Conf. on Performance Evaluation

Methodologies and Tools, VALUETOOLS ’11, pages 399–407, ICST, Brussels, Belgium, Belgium,

2011. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engi-

neering). ISBN 978-1-936968-09-1. URL http://dl.acm.org/citation.cfm?id=2151688.2151733.

188

https://lpsolve.sourceforge.net/5.5/
https://lpsolve.sourceforge.net/5.5/
https://openai.com/
https://openai.com/
http://dx.doi.org/10.1109/90.731196
http://www.sciencedirect.com/science/article/pii/S1389128603002767
http://dl.acm.org/citation.cfm?id=2151688.2151733

Bibliography

[151] Aakash Soni, Xiaoting Li, Jean-Luc Scharbarg, and Christian Fraboul. WCTT analysis of avionics

switched ethernet network with WRR scheduling. In Proc. of the 26th International Conference

on Real-Time Networks and Systems (RTNS), pages 213–222. ACM, 2018.

[152] Ehsan Mohammadpour, Eleni Stai, and Jean-Yves Le Boudec. Improved delay bound for a service

curve element with known transmission rate. IEEE Networking Letters, pages 1–1, 2019. doi:

10.1109/LNET.2019.2925176. URL http://infoscience.epfl.ch/record/267840.

[153] D.P. Bertsekas. Convex Optimization Theory. Athena Scientific optimization and computation

series. Athena Scientific, 2009. ISBN 9781886529311. URL https://books.google.ch/books?id=

0H1iQwAACAAJ.

[154] M. Shreedhar and G. Varghese. Efficient fair queuing using deficit round-robin. IEEE/ACM

Transactions on Networking, 4(3):375–385, 1996.

[155] Anna Charny and Jean-Yves Le Boudec. Delay bounds in a network with aggregate scheduling.

In International Workshop on Quality of Future Internet Services, pages 1–13. Springer, 2000.

[156] Ahlem Mifdaoui and Thierry Leydier. Beyond the Accuracy-Complexity Tradeoffs of Composi-

tionalAnalyses using Network Calculus for Complex Networks. In 10th International Workshop

on Compositional Theory and Technology for Real-Time Embedded Systems (co-located with

RTSS 2017), pages pp. 1–8, Paris, France, December 2017. URL https://hal.archives-ouvertes.fr/

hal-01690096.

[157] Anne Bouillard. Trade-off between accuracy and tractability of network calculus in fifo networks.

Performance Evaluation, 153:102250, 2022. ISSN 0166-5316. doi: https://doi.org/10.1016/j.peva.

2021.102250. URL https://www.sciencedirect.com/science/article/pii/S0166531621000675.

[158] Aakash Soni and Jean-Luc Scharbarg. Deficit round-robin: Network calculus based worst-case

traversal time analysis revisited. In 2022 IEEE 47th Conference on Local Computer Networks

(LCN), pages 275–278, 2022. doi: 10.1109/LCN53696.2022.9843526.

[159] Marc Boyer and Pierre Roux. A common framework embedding network calculus and event

stream theory. working paper or preprint, May 2016. URL https://hal.archives-ouvertes.fr/

hal-01311502.

[160] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to

Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN 0262033844.

[161] A. Bouillard. Stability and performance bounds in cyclic networks using network calculus. In

Étienne André and Mariëlle Stoelinga, editors, Formal Modeling and Analysis of Timed Systems -

17th International Conference, FORMATS 2019, Amsterdam, The Netherlands, August 27-29, 2019,

Proceedings, volume 11750 of Lecture Notes in Computer Science, pages 96–113. Springer, 2019.

doi: 10.1007/978-3-030-29662-9_6. URL https://doi.org/10.1007/978-3-030-29662-9_6.

[162] Hugo Daigmorte, Marc Boyer, and Luxi Zhao. Modelling in network calculus a TSN architecture

mixing Time-Triggered, Credit Based Shaper and Best-Effort queues. working paper or preprint,

June 2018. URL https://hal.archives-ouvertes.fr/hal-01814211.

[163] Kai Lampka, Steffen Bondorf, and Jens Schmitt. Achieving efficiency without sacrificing model

accuracy: Network calculus on compact domains. In 2016 IEEE 24th International Symposium

on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS),

pages 313–318, 2016. doi: 10.1109/MASCOTS.2016.9.

189

http://infoscience.epfl.ch/record/267840
https://books.google.ch/books?id=0H1iQwAACAAJ
https://books.google.ch/books?id=0H1iQwAACAAJ
https://hal.archives-ouvertes.fr/hal-01690096
https://hal.archives-ouvertes.fr/hal-01690096
https://www.sciencedirect.com/science/article/pii/S0166531621000675
https://hal.archives-ouvertes.fr/hal-01311502
https://hal.archives-ouvertes.fr/hal-01311502
https://doi.org/10.1007/978-3-030-29662-9_6
https://hal.archives-ouvertes.fr/hal-01814211

Bibliography

[164] Anne Bouillard and Éric Thierry. An algorithmic toolbox for network calculus. Discrete Event

Dynamic Systems, 18(1):3–49, 2008. doi: 10.1007/s10626-007-0028-x. URL https://doi.org/10.

1007/s10626-007-0028-x.

[165] Rafik Henia, Arne Hamann, Marek Jersak, R. Racu, Kai Richter, and Rolf Ernst. System level

performance analysis - the symta/s approach. Computers and Digital Techniques, IEE Proceedings

-, 152:148–166, 04 2005. doi: 10.1049/ip-cdt:20045088.

[166] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC) Toolbox.

http://www.mpa.ethz.ch/Rtctoolbox, 2006. URL http://www.mpa.ethz.ch/Rtctoolbox.

[167] Nan Guan and Wang Yi. Finitary real-time calculus: Efficient performance analysis of distributed

embedded systems. In 2013 IEEE 34th Real-Time Systems Symposium, pages 330–339, 2013. doi:

10.1109/RTSS.2013.40.

[168] Kai Lampka, Steffen Bondorf, Jens B. Schmitt, Nan Guan, and Wang Yi. Generalized finitary

real-time calculus. In IEEE INFOCOM 2017 - IEEE Conference on Computer Communications,

pages 1–9, 2017. doi: 10.1109/INFOCOM.2017.8056981.

[169] Ehsan Mohammadpour, Eleni Stai, and Jean-Yves Le Boudec. Improved network calculus delay

bounds in time-sensitive networks, 2022. URL https://arxiv.org/abs/2204.10906.

[170] P. Massart. The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality. The Annals of

Probability, 18(3):1269 – 1283, 1990. doi: 10.1214/aop/1176990746. URL https://doi.org/10.

1214/aop/1176990746.

[171] Hugo Daigmorte and Marc Boyer. Traversal time for weakly synchronized can bus. In Proceedings

of the 24th International Conference on Real-Time Networks and Systems, RTNS ’16, page 35–44,

New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450347877. doi:

10.1145/2997465.2997477. URL https://doi.org/10.1145/2997465.2997477.

[172] Yuming Jiang. A basic stochastic network calculus. In Proceedings of the 2006 Conference on

Applications, Technologies, Architectures, and Protocols for Computer Communications, SIG-

COMM ’06, page 123–134, New York, NY, USA, 2006. Association for Computing Machinery. ISBN

1595933085. doi: 10.1145/1159913.1159929. URL https://doi.org/10.1145/1159913.1159929.

[173] Florin Ciucu, Almut Burchard, and Jörg Liebeherr. Scaling properties of statistical end-to-end

bounds in the network calculus. IEEE/ACM Transactions on Networking (ToN), 14(6):2300–2312,

2006.

[174] J.E. Gentle. Computational Statistics. Statistics and Computing. Springer New York, 2009. ISBN

9780387981444. URL https://books.google.ch/books?id=mQ5KAAAAQBAJ.

[175] Anne Bouillard, Nadir Farhi, and Bruno Gaujal. Packetization and packet curves in network calcu-

lus. In Performance Evaluation Methodologies and Tools (VALUETOOLS), 2012 6th International

Conference on, pages 136–137. IEEE, 2012.

[176] Steffen Bondorf, Paul Nikolaus, and Jens B. Schmitt. Quality and cost of deterministic network

calculus: Design and evaluation of an accurate and fast analysis. In SIGMETRICS (Abstracts),

page 65. ACM, 2017.

[177] Anne Bouillard, Laurent Jouhet, and Eric Thierry. Tight performance bounds in the worst-case

analysis of feed-forward networks. In INFOCOM, pages 1316–1324. IEEE, 2010.

190

https://doi.org/10.1007/s10626-007-0028-x
https://doi.org/10.1007/s10626-007-0028-x
http://www.mpa.ethz.ch/Rtctoolbox
https://arxiv.org/abs/2204.10906
https://doi.org/10.1214/aop/1176990746
https://doi.org/10.1214/aop/1176990746
https://doi.org/10.1145/2997465.2997477
https://doi.org/10.1145/1159913.1159929
https://books.google.ch/books?id=mQ5KAAAAQBAJ

List of Publications

Here is the list of my publications as a PhD student at EPFL.

1. Seyed Mohammadhossein Tabatabaee, Jean-Yves Le Boudec, and Marc Boyer. Interleaved

weighted round-robin: A network calculus analysis. In 2020 32nd International Teletraffic

Congress (ITC 32), pages 64–72, 2020. doi: 10.1109/ITC3249928.2020.000162.

2. Seyed Mohammadhossein Tabatabaee, Jean-Yves Le Boudec, and Marc Boyer. Interleaved

weighted round-robin: A network calculus analysis.IEICE Transactions on Communications,

E104.B(12):1479–1493, 2021. doi: 10.1587/transcom.2021ITI00013.

3. Seyed Mohammadhossein Tabatabaee and Jean-Yves Le Boudec. Deficit round-robin: A sec-

ond network calculus analysis. In 2021 IEEE 27th Real-Time and Embedded Technology and

Applications Symposium (RTAS), pages 171–183, 2021. doi: 10.1109/RTAS52030.2021.000224.

4. Seyed Mohammadhossein Tabatabaee and Jean-Yves Le Boudec. Deficit round-robin: A second

network calculus analysis. IEEE/ACM Transactions on Networking, pages 1–15, 2022. doi: 10.

1109/TNET.2022.31647725.

5. Seyed Mohammadhossein Tabatabaee, Anne Bouillard, and Jean-Yves Le Boudec. Worst-

case delay analysis of time-sensitive networks with deficit round-robin, 2022. URL

https://arxiv.org/abs/2208.114006.

6. Seyed Mohammadhossein Tabatabaee,Marc Boyer, Jean-Yves Le Boudec, and Jörn Migge.

Efficient and Accurate Handling of Periodic Flows in Time-Sensitive Networks. In 2023

IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS). URL-

http://infoscience.epfl.ch/record/302640.

7. Seyed Mohammadhossein Tabatabaee, Anne Bouillard, and Jean-Yves Le Boudec. Quasi-

deterministic burstiness bound for aggregate of independent, periodic flows. Accepted at

Quantitative Evaluation of Systems (QEST) 2023. URL https: //arxiv.org/abs/2305.149467.

8. Chun-Tso Tsai, Seyed Mohammadhossein Tabatabaee, Stéphan Plassart, and Jean-Yves Le

Boudec. Saihu: A common interface of worst-case delay analysis tools for time-sensitive net-

works, 2023. URL https://arxiv.org/abs/2303.14565.

191

Seyed Mohammadhossein TABATABAEE

Curriculum Vitae B smh.tabatabaee96@gmail.com
Í www.linkedin.com/in/hosseintabatabaee/

Education
2019–2023 PhD in Computer and Communication Science, École Polytechnique Fédérale de Lausanne (EPFL),

Lausanne, Switzerland.
2015–1019 B.Sc in Electrical Engineering, Sharif University of Technology, Tehran, Iran.

Major Telecommunication

Core Experience
2019–2023 Research Assistant, Laboratory for Computer Communications and Applications (EPFL).

{ Worst-case analysis of large-scale time-sensitive networks, as in the context of IEEE TSN and IETF DetNet, in
terms of delay, delay-jitter, and buffer bounds.

{ Formal worst-case service modeling of wide-spread schedulers such as Deficit Round-Robin (DRR) and Interleaved
Weighted Round-Robin (IWRR).

{ Formal, large scale algorithm for end-to-end delay bounds computation for networks of generic shapes, using a
distributed, parallel computing model with shared memory.

{ Implementation and optimization of Linear Programs (LP) and Mixed-Integer Linear Programs (MILP) for
delay bound computation.

{ See Google Scholar for the list of publications.
Summer 2022 Research Intern, Real-Time-at-Work (RTaW), Grenoble, France.

{ RTaW is leading the way in Ethernet Time-Sensitive Networking (TSN) design, performance evaluation and
automated configuration tools.

{ Development and validation of an algorithm that provides tighter delay bounds for networks of generic topology
at considerably less complexity.

{ Implemented in Java and integrated in RTaW’s existing tool.

Additional Experience
2022–2023 Supervising a Semester Project, EPFL.

{ Saihu : A common, language-independent interface for worst-case delay analysis of time-sensitive networks.
{ Fully integration of the most frequently analysis tools, including NetCal/DNC (in Java), xTFA (in Python),

and panco (in Python).
2021–2022 Supervising a Master Thesis, EPFL.

{ Implementation a Graph Neural Network (GNN) that is used to tighten the delay bounds.
{ Applied Fast Gradient Signed Method (FGSM) adversarial attack to evaluate its robustness.
{ Implementation in Python.

2021–2022 Supervising a Semester Project, EPFL.
{ Formally verified the DRR modeling and algorithm, using Coq proof assistant.
{ Formally verified findings of our papers, using Coq proof assistant.

Summer 2018 Research Intern, Institute of Network Coding, CUHK, Hong Kong.
{ Study of Lattice-based Public-key Cryptography.

2018 Summer School, The Cornell, Maryland, Max Planck Pre-doctoral Research Summer School, Saar-
brücken, Germany.

2017–2018 Research Intern, Brain Engineering Research Center at IPM, Tehran, Iran.
{ Analyzed the effect of Prediction in a Non-random fMRI Experiment.
{ Applied regression model different machine learning approaches. 193

2017 - 2019 Other Projects, Sharif University of Technology, Tehran, Iran.
{ Designed a wireless communication system based on the IEEE 802.11n standard in MATLAB/Simulink.
{ Implementation of a server-based peer-to-peer chat application using TCP protocol in Python.
{ Implementation and simulation physical and MAC layers of a network protocol stack in NS3.
{ EEG Signal Processing using Machine Learning to help people who cannot talk in MATLAB.
{ Implementation of a distributed admission control using Software-defined Networking (SDN) in MATLAB.
{ Designed and Implementation of BJT Audio Amplifier and AM Transmitter.
{ Designed and Implementation of an elevator controller on a FPGA.

Expertise
Technical

Programming Matlab, Java, Python, C++, Past:{Scala, VHDL, Verilog}.
Tools Wireshark, LaTex, SVN, Git, Past:{Hspice, Altium Designer, Pspice, AutoCAD}

OS MAC OS, Linux, Windows.
Concepts

Networking TCP/IP, Congestion Control, ARP, Quic, Bier Rouing, OSPF, BGP, MPLS, VPN, TSN, DetNet.
Communication IEEE 802.11, 1G/2G/3G, OFDM, FDM, TDMA, CDMA, Cellular Networks, Encoding, Decoding.

Security Symmetric/Asymmetric encryption, Side-channel attacks, SQL injection.
ML Regression, Classification, Over/Underfitting, Regularization.

Soft Skills
Critical and structural thinking, Team-working, Stress and time management, Project management.

Related Teaching Experience
2020-2023 TCP/IP Networking, Teaching Assistant, EPFL.

{ Lecture on Congestion Control and BGP .
{ Responsible for labs with hands-on exercises on socket programming, TCP congestion control, IPv4/IPv6

interworking, OSPF, BGP, DNS, TCP, UDP, Https, TLS, tunneling, routing, and network security.
2022 Smart Grids Technology, Teaching Assistant, EPFL.

{ Lecture and labs with hands-on exercises on Introduction to TCP/IP .
2021 Performance Evaluation, Teaching Assistant, EPFL.

Responsible for the lab problems that involved performance patterns (bottlenecks, congestion collapse), model
fitting and forecasting, discrete-event simulation and queuing theory.

2020 Advanced information, computation, communication II, Teaching Assistant, EPFL.
Responsible for the homework problems that involved probability distribution, channel encoding/decoding, and
cryptography.

Honors and Awards
2022 Best Presentation Award , 6th Workshop on Network Calculus (WoNeCa-6).
2021 Outstanding Performance Award, EPFL.
2021 Teaching Assistant Award, EPFL.
2020 Best Presentation Award , 5th Workshop on Network Calculus (WoNeCa-5).
2014 Silver Medal, National Astronomy and Astrophysics Olympiad, Iran.

Languages
English (C1, fluent), French (A2/B1, intermediate), German (A1, elementary), Farsi (native).

Extra-curricular Activities
Swimming, Road trips, Hiking, and Traveling.

Personal Information
Married, Swiss driver’s license (Type B).194

	Acknowledgements
	Abstract (English/Français)
	Contents
	List of Figures
	List of Tables
	Acronyms
	I Introduction and Technical Background
	Introduction
	Context
	Worst-Case Delay Guarantees for Time-Sensitive Networks
	Network Calculus: Arrival Curves, Service Curves, and fifo-Per-Class Heuristics

	Gaps in Worst-Case Delay Analysis of Time-Sensitive Networks with Round-Robin Schedulers
	Non-Existent Service Curve Characterization for iwrr
	Too Simple Service Curve Characterizations for drr
	Loose End-to-End Delay Bounds in Time-Sensitive Networks with drr

	Gaps in Worst-Case Delay Analysis of Time-Sensitive Networks with Many Periodic Flows
	Too Simple Arrival Curve Constraints for Periodic Flows
	Pessimism in Arrival Curve Aggregation for Periodic Flows

	Contributions and Roadmap

	Technical Background
	Network Calculus
	Main Concepts of Network Calculus
	Network Calculus Bounds
	End-to-End Worst-Case Delay Analysis for fifo-per-Class Networks
	Existing Worst-Case Delay Analysis Tools

	Lower Pseudo-Inverse
	Notation List Used Throughout the Thesis

	II Efficient and Accurate Worst-Case Delay Analysis of Time-Sensitive Networks with Round-Robin Schedulers
	Strict Service Curves for Interleaved Weighted Round-Robin
	System Model
	Related Works
	Strict Service Curves for iwrr
	Tightness
	Tightness of Strict Service Curve
	Tightness of Delay Bounds with Constant Packet Sizes

	Numerical Examples
	Proofs
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Theorem 3.5
	Proof of Theorem 3.6
	Proof of Theorem 3.7
	Proof of Theorem 3.8

	Conclusion
	Notation

	Strict Service Curves for Deficit Round-Robin
	System Model
	Related Works
	Strict Service Curve of Boyer et al.
	Correction Term of Soni et al.
	Bouillard's Strict Service Curves

	Counter Example to The Correction Term of Soni et al.
	System Parameters
	Trajectory Scenario
	The Contradiction with the Bound of Soni et al.

	New drr Strict Service Curve
	New drr strict Service Curves that Account for Arrival Curves of Interfering Classes
	A Mapping to Refine Strict Service Curves for drr by Accounting for Arrival Curves of Interfering Classes
	Convex Versions of the Mapping

	Numerical Evaluation
	Single Server
	Illustration Networks
	Industrial-Sized Network

	Proofs
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Proof of Theorem 4.5
	Proof of Corollary 4.3

	Conclusion
	Notation

	Worse-Case Delay Analysis of Time-Sensitive Networks with Deficit Round-Robin
	System Model
	Deficit Round-Robin Scheduling
	Network Model and Resulting Graphs

	Background and Related Works
	Strict Service Curves of drr
	tfa
	plp

	Overview of the Proposed Method: plp-drr
	Two Improvements to plp
	plp to Upper-bound the Aggregate Burstiness of Flows
	iplp: a plp that Supports Non-Convex Service Curves

	Our Proposed Method: plp-drr
	Initial Phase: tfa-drr
	Refinement Phase: plp and Parallelization
	Post-Process Phase: Computing the End-to-End Delay

	Numerical Evaluation
	Proofs
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorems 5.3 and 5.4

	Conclusion
	Notation

	Appendices
	Detailed Background on DRR Strict Service Curves
	Degraded Operational Mode
	Non-Degraded Operational Mode

	Detailed Background on plp
	PLPdelayf, c: A plp That Computes an End-to-end Delay Bound for a Single Flow
	PLPbacklogf, c: A plp That Computes a Backlog Bound for a Single Flow
	FP-PLPc: A plp That Computes Bounds on The Burstiness of Flows at Cuts

	III Efficient and Accurate Handling of Periodic Flows in Time-Sensitive Networks
	Total Flow Analysis For Time-Sensitive Networks with Periodic Sources
	Background and Related Works
	Family of Functions and Operators
	FixPoint Total Flow Analysis (fptfa)
	Compact Domains for Delay Computation

	System Model
	 gfptfa: A New Version of fptfa That Handles Arrival Curves and Service Curves of Generic Shapes
	fftfa: tfa for Feed-Forward Networks
	gfptfa

	fhtfa: A Practical Version of gfptfa
	Description of fhtfa
	Validity and Accuracy of fhtfa

	Numerical Evaluation
	A Feed-Forward Network
	A Small-sized Network with Cyclic Dependencies
	An Extremely Large Network with Cyclic Dependencies
	Results

	Proofs
	Proof of Theorem 6.2
	Proof of Theorem 6.3
	Proof of Theorem 6.4

	Conclusion
	Notation

	Quasi-Deterministic Burstiness Bound for Aggregate of Independent, Periodic Flows
	Assumptions and Problem Statement
	Assumptions
	Problem Statement

	Related Works
	Homogeneous Case
	Heterogeneous Case
	Numerical Evaluation
	Homogeneous Case
	Heterogeneous Case

	Conclusion
	Notation

	IV Conclusion
	Conclusion and Future Works

	V Appendix
	Saihu : A Common Interface of Worst-Case Delay Analysis Tools for Time-Sensitive Networks
	System Model
	Included Tools
	Software Description
	Network Description File
	Tool Usage
	Analysis Reports

	Conclusion and Extension
	Current code version

	Bibliography
	List of Publications
	Curriculum Vitae

