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"And God said, Let there be light: and there was light.

And God saw the light, that it was good: and God divided the light from the darkness."

— Genesis 1:3-4

To my parents. . .
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Abstract

Measurements of large-scale structure (LSS), as performed on the largest 3D map of over two

million extragalactic sources from the Sloan Digital Sky Survey, together with measurements

of the cosmic microwave background (CMB) anisotropies, are in complete agreement with a

flat ΛCDM Universe. In this model, the accelerating expansion of the Universe is driven by

dark energy (Λ), and galaxies are formed under the gravitational pull of cold dark matter. The

precise nature of these two dark components remains unknown. The Dark Energy Spectro-

scopic Instrument (DESI) aims to unravel the mystery of the former by probing the Universe

at different epochs through measurements of LSS. This thesis presents an overview of the nec-

essary steps for studying LSS with spectroscopic surveys, along with my contributions toward

building realistic galaxy simulations to estimate covariance matrices, as well as improving and

developing models to constrain cosmological parameters from real data.

Using the Baryon Acoustic Oscillations (BAO) as a standard ruler, DESI aims to measure the

distances of 40 million galaxies and quasars with a sub-percent precision. Achieving such level

of precision requires a careful analysis of the systematic effects. Therefore, DESI has initiated a

mock challenge to test different methods to construct covariance matrices, which are needed

for estimating the precision of the measurements. Chapter 2 presents some techniques to

build realistic galaxy simulations starting from simulated dark matter haloes, and how these

simulations can be used to compute a covariance matrix. The last section shows that using

a Halo Occupation Distribution (HOD) model to assign galaxies to the FASTPM dark matter

haloes, the resulting galaxy two-point clustering is consistent with the one of the reference

N -body simulation. Moreover, the estimated sample covariance matrices are robust against

the details of the HOD fitting at the scales of interest for LSS studies.

Chapter 3 is dedicated to the study of cosmic voids as tracers of underdense regions. Voids and

galaxies have been part of multi-tracer BAO studies that have provided stronger constraints

on cosmological parameters than galaxy studies alone. Nevertheless, voids require careful

modelling due to the exclusion effect that affects their clustering. Therefore, the last section

introduces two new numerical models of the void clustering that yield unbiased BAO mea-

surements when subjected to a series of robustness tests. Moreover, they are preferred over

the previous models, according to the Bayesian analysis.
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Résumé

Les mesures de la structure à grande échelle (SGE), effectuées sur la plus grande carte 3D de

plus de deux millions de sources extragalactiques du Sloan Digital Sky Survey, ainsi que les

mesures des anisotropies du fond diffus cosmologique, sont en parfait accord avec un Univers

plat ΛCDM. Dans ce modèle, l’expansion accélérée de l’Univers est régie par l’énergie sombre

(Λ), et les galaxies se forment sous l’attraction gravitationnelle de matière sombre froide (en

anglais Cold Dark Matter – CDM). La nature précise de ces deux composantes obscures reste

inconnue. La collaboration Dark Energy Spectroscopic Instrument (DESI) vise à percer le

mystère de la première en sondant l’Univers à différentes époques grâce à des mesures du

SGE. Cette thèse présente une vue d’ensemble des étapes nécessaires à l’étude des SGE avec

des relevés spectroscopiques, ainsi que mes contributions à la construction de simulations

réalistes de galaxies pour estimer les matrices de covariance, ainsi qu’à l’amélioration et

au développement de modèles pour contraindre les paramètres cosmologiques à partir de

données réelles.

En utilisant les oscillations acoustiques baryoniques (OAB) comme règle standard, DESI vise à

mesurer les distances de 40 millions de galaxies et de quasars avec une précision inférieure à

un pour cent. Pour atteindre un tel niveau de précision, il faut analyser soigneusement les

effets systématiques. C’est pourquoi DESI a lancé un défi scientifique pour tester différentes

méthodes de construction de matrices de covariance, nécessaires à l’estimation de la précision

des mesures. Le chapitre 2 présente quelques techniques pour construire des simulations

réalistes de galaxies à partir de halos de matière noire simulés, et comment ces simulations

peuvent être utilisées pour calculer une matrice de covariance. La dernière section montre

qu’en utilisant un modèle de distribution d’occupation du halo (DOH) pour assigner les

galaxies aux halos de matière noire – obtenus par le programme FASTPM – la répartition

statistique des galaxies qui en résulte est cohérente avec celle de la simulation de référence

à N -corps. De plus, les matrices de covariance résultantes sont robustes par rapport aux

modifications des paramètres du modèle DOH aux échelles d’intérêt pour les études SGE.

Le chapitre 3 est consacré à l’étude des vides cosmiques en tant que traceurs des régions sous-

denses. Les études les plus récentes de OAB, qui incluent les galaxies et les vides cosmiques ont

fourni des contraintes plus fortes sur les paramètres cosmologiques que les études de galaxies

seules. Néanmoins, les vides nécessitent une modélisation soigneuse en raison de l’effet
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d’exclusion qui affecte leur répartition statistique. C’est pourquoi la dernière section présente

deux nouveaux modèles numériques décrivant statistiquement des vides qui donnent des

mesures OAB non biaisées lorsqu’ils sont soumis à une série de tests de robustesse. En outre,

ils sont préférés aux modèles précédents, selon l’analyse bayésienne.

Mots clefs: Cosmologie ; Enquêtes spectroscopiques ; Simulations numériques ; Structures à

grande échelle ; Oscillations acoustiques baryoniques ; Énergie sombre
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Rezumat

Măsurătorile marii structuri ale Universului (MSU), realizate cu ajutorul celei mai mari hărt, i

3D, care cuprinde peste două milioane de galaxii s, i care a fost creată de Sloan Digital Sky Survey,

precum s, i măsurătorile anizotropiei fondului cosmic de microunde sunt în deplin acord cu un

Univers ΛCDM plat. În acest model, expansiunea accelerată a Universului este cauzată de en-

ergia întunecată (Λ), iar galaxiile se formează sub atract, ia gravitat, ională a materiei întunecate

(în engleză Cold Dark Matter – CDM). Natura exactă a acestor două componente întunecate

rămâne, însă, necunoscută. Colaborat, ia "Dark Energy Spectroscopic Instrument (DESI)" îs, i

propune să dezlege misterul energiei întunecate studiind istoria Universului prin măsurători

ale MSU. Această teză oferă o prezentare de ansamblu a etapelor necesare pentru studierea

MSU cu ajutorul măsurătorilor spectroscopice. Ea cuprinde contribut, iile mele la construirea

unor simulări realiste de galaxii în vederea estimării matricilor de covariant, ă s, i contribuie

la îmbunătăt, irea s, i dezvoltarea de modele pentru a constrânge parametrii cosmologici din

măsurători.

Utilizând oscilat, iile acustice ale barionilor (OAB) pe post de riglă standard, DESI îs, i propune

să măsoare distant, ele a 40 de milioane de galaxii s, i quasari cu o precizie de sub un procent.

Atingerea unui astfel de nivel de precizie necesită o analiză atentă a efectelor sistematice.

Prin urmare, DESI a init, iat o serie de proiecte pentru a testa diferite metode de construire

a matricelor de covariant, ă necesare pentru estimarea preciziei măsurătorilor. Capitolul 2

prezintă câteva tehnici de simulări realiste ale galaxiilor pornind de la simulări ale halo-urilor

de materie întunecată s, i, de asemenea, explică modul în care aceste simulări pot fi utilizate

pentru a calcula o matrice de covariant, ă. Ultima sect, iune arată că, utilizând un model de

tipul Halo Occupation Distribution (HOD) pentru a repartiza galaxii la halo-urile de materie

întunecată – simulate utilizând aproximat, iile programului FASTPM – distribut, ia statistică

a galaxiilor este în concordant, ă cu cea din simularea de referint, ă. Mai mult, matricile de

covariant, ă rezultante sunt robuste fat, ă de anumite detalii ale modelului HOD la scările de

interes pentru studiile MSU.

Capitolul 3 este dedicat studiului vidurilor cosmice. Cele mai recente studii ale OAB, care

integrează nu doar galaxiile, ci s, i vidurile în procesele de măsurare, au demonstrat îmbunătăt, iri

ale măsurătorilor parametrilor cosmologici. Cu toate acestea, vidurile necesită o modelare

atentă din cauza efectului de excludere care afectează distribut, ia lor spat, ială. Prin urmare,

vii



Chapter 0 Rezumat

ultima sect, iune prezintă două noi modele numerice pentru a descrie statistic vidurile. Aceste

modele permit studierea MSU utilizând OAB cu o mare acuratet, e chiar s, i atunci când sunt

supuse unei serii de teste de robustet, e. În plus, analiza bayesiană arată o preferint, ă pentru

aceste două modele fat, ă de modelele anterioare.

Cuvinte cheie: Cosmologie; Măsurători spectroscopice; Simulări numerice; Marea structură a

Universului; Oscilat, iile acustice ale barionilor; Energie întunecată

viii



Contents

Acknowledgements i

Abstract (English/Français/Română) iii
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1 Introduction

The main goal of this thesis is to show how the study of the large-scale structure (LSS) using

the Baryon Acoustic Oscillations (BAO) as standard ruler allows us to understand the Dark

Energy (DE) – for a schematic overview see Figure 1.1. To this end, I have contributed toward

building realistic galaxy simulations to estimate covariance matrices, as well as improving

and developing models to constrain cosmological parameters from real data. This chapter

introduces fundamental notions about the Universe and the LSS. The second chapter explains

how one can build galaxy simulations and how they can be used to compute covariance

matrices that are needed to estimate the uncertainties of the final measurements. Lastly, the

third chapter shows the cosmological results achieved using galaxies and cosmic voids and

introduces two new robust numerical models for cosmic voids.

The current chapter begins with the presentation of the notions of space, time and gravity

and how they evolved in time, reaching the modern’s understanding through the General

Theory of Relativity (GR). The space and time form the 4D space-time that adapts such that

the maximum speed in vacuum is the speed of light c and it curves under the effect of massive

objects, hence explaining the gravitational interaction (Section 1.1). GR allows for a natural

description of the Universe at large scales through the Friedmann equations, where it can

be seen as statistical homogeneous and isotropic (Section 1.2.1). In addition, GR gives the

possibility that a cosmological constant Λ drives the current accelerated expansion of the

Universe. Generalising the state equation of Λ, one obtains the more general concept of DE.

Given that different kinds of DE can have distinct effects on the expansion of the Universe –

hence on the measured cosmological distances – one can gain insight in the nature of DE by

measuring distances (Section 1.2.2).

Sections 1.2.4 and 1.2.3 present a brief history of the early Universe starting with a phenomeno-

logical description of the inflation. The Big-Bang Nucleosynthesis is introduced as the mecha-

nism that allowed for the creation of light elements such as deuterium, beryllium and lithium.

In addition, the study of the primordial abundances of light elements can be used to measure

the baryon mass density. Furthermore, the BAO are described as the propagation of the initial

fluctuations – that could be explained by inflationary models – in the primordial plasma of

1
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Figure 1.1: A scheme of the large-scale structure analysis. The two upper subplots represent
the two-point correlation functions measured from the early Data Release of DESI (in red) and
from 1000 galaxy simulations (in grey). The lower plot shows the covariance matrix obtained
from the 1000 realisations of the two-point correlation function. See the text for more details.

baryons and photons that stops when electrons and ions recombine and hence imprints an

overdense region at around 100Mpc/h in comoving coordinates. This distance is a standard

ruler that can be used to determine cosmological distances and can be measured in the galaxy

clustering as shown in Section 1.4.4. After recombination, the photons are free to travel inside

the Universe and today we detect them as the Cosmic Microwave Background (CMB), whose

temperature fluctuations reveal the effect of the BAO and provide constraints on cosmological

parameters.

The matter distribution at the epoch of recombination set the seeds for the LSS formation

that is theoretically modelled as described in Section 1.3. Given the stochastic nature of the

matter distribution, one must study the LSS statistically through the two-point or higher order

correlation functions (and their Fourier counterparts). The first step is to include the physical

phenomena that occurred before the recombination through the transfer function computed

using rather sophisticated Boltzmann codes (Section 1.3.2).

In order to evolve the matter density field one can solve either perturbatively (Lagrangian

or Eulerian perspective, i.e. Sections 1.3.4 or 1.3.5, respectively.) or numerically (e.g. N -

body simulations, Section 1.3.6) the Vlasov equation (Section 1.3.3). An important limit of

the perturbation theory is the shell crossing, i.e. when multiple streams of matter intersect.

Nevertheless, models such as the spherical collapse can improve the LSS study beyond shell

crossing since it can provide insight into the formation of dark matter haloes.

In N -body simulations, the dark matter haloes can be detected from the evolved dark matter

2
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field using a variety of algorithms (e.g. Friends-of-Friends, spherical overdensity). The dark

matter haloes are required to create realistic galaxy simulations using galaxy-halo connection

models, as described in Section 2.2 part of Chapter 2. From the statistical point of view, galaxies

and haloes as biased tracers of the dark matter field as described in Section 1.4.3.

Given that in practice, haloes are not directly observable, one creates 3D maps of galaxies

(quasars, neutral hydrogen clouds as well) by performing photometric (Section 1.4.1) and

spectroscopic surveys (Section 1.4.2). The clustering statistics of these 3D maps is computed

as shown in Section 1.4.3 in order to detect the BAO signal and measure the cosmological

parameters as explained in Section 1.4.4. To this end, one requires a covariance matrix

to estimate the noise in the measurements (Section 2.1), where one method is to create

many realistic galaxy simulations and compute their clustering statistics, as described in

Section 2.1.1. In terms of realism, in addition to the matching clustering statistics, one has to

apply the survey geometry on the cubic simulations, as shown in Section 2.3. Lastly, Section 2.4

– i.e. a submitted first-author paper – describes the galaxy catalogues and the corresponding

covariance matrices obtained by applying a Halo Occupation Distribution model on the

FASTPM dark matter haloes.

In addition to the BAO signal, the galaxy clustering is affected by the Redshift-Space Distor-

tions (RSD, Section 1.4.5) that are induced by the galaxy peculiar velocities on the redshift

measurements. Apart from being a probe of gravity models, RSD dilute the BAO signal. Never-

theless, the BAO reconstruction – introduced in Section 1.4.6 – can partially remove this effect

and hence improve the BAO signal. Therefore, BAO reconstruction is standard process applied

on galaxy catalogues for the BAO studies.

In the end, one requires a clustering model to fit the measurements together with an estimated

covariance matrix. For this, Section 3.2 – i.e. a published first-author paper – introduces two

new numerical models for the clustering of cosmic voids that are robust against different

systematic effects and against the fitting interval. Section 3.1.1 introduces the concept of

cosmic voids and then focuses on Delaunay Triangulation (DT) voids. Lastly, it presents the

results of the latest multi-tracer BAO analysis of galaxies and DT voids based on BOSS and

eBOSS data, where the combined sample yields better constraints on cosmological parameters

than the galaxy sample alone.

1.1 Space, Time and Gravity

Along the history of physics the concepts of time, space and gravity have changed, depend-

ing strongly on the available experimental evidences and mathematical tools. Newton has

introduced the laws of motion in a Euclidean 3D space in which information can travel in-

stantaneously. In this context, the gravity was an attractive force between massive objects.

The Special Theory Relativity (SR) has connected the space and time and provided a universal

constant, i.e. the speed of light. Finally, GR explains how gravity and space–time are linked to

the presence of mass.

3
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The books: The Feynman Lectures on Physics1 and the Mechanics Berkeley Course have

been a great source of inspiration for the first two subsections (Feynman et al., 2006; Kittel,

1973). Schutz (2009); Weinberg (1972); Rich (2010) are the main references used for the last

subsection.

1.1.1 The Newtonian perspective

At the time when Isaac Newton was alive, there were some important observations regarding

the moving objects such as Galileo Galilei’s law of inertia for horizontal motion and Kepler’s

laws of planetary motion. Additionally, the highest experimented velocities were of the order

of hundreds of meters per second (e.g. cannon balls) which are thousands times smaller than

the speed of light. The space was seen as a theatre stage where all motions and interactions

occurred and time was the same for all observers.

Newton thus introduced the concept of absolute space in which his laws of motion would be

true and all frames that are in relative uniform motion to absolute space would be an inertial

frame. Moreover, all these inertial frames would share the so-called universal time. With this

view of the world, he formalised what we now call the Newton’s laws of motion:

1. A moving body at constant speed or at rest will continue moving at constant speed or

remain at rest as long as it does not interact with other bodies.

2. The total force F that acts on a body changes the linear momentum P of the body:

F = dp
dt .

3. When two bodies interact, they apply forces to one another that are equal in magnitude

and opposite in direction.

It is important to emphasise that in a non-inertial reference frame these laws can fail, as for

example on Earth, one needs to take into account the effect of the rotation by introducing the

Coriolis pseudo-force – responsible for the direction of rotation of cyclones.

Mathematically, the inertial frames are linked by Galilean transformations. Supposing that the

frame R ′(x ′, y ′, z ′, t ′) moves along the x axis of the reference R(x, y, z, t ) with velocity vx with

respect to R, as in Figure 1.2, the transformations are:

t ′ = t (1.1)

x ′ = x − vx t (1.2)

y ′ = y (1.3)

z ′ = z, (1.4)

1https://www.feynmanlectures.caltech.edu/
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Figure 1.2: The two reference frames have relative movement. If the observer is found in
reference R, the reference R ′ moves farther along the x axis with a velocity vx .

where (x, y, z) and (x ′, y ′, z ′) are the 3D spatial coordinates of R and R ′, in which the time is

described by t and t ′, respectively. In the case of a 3D displacement, one can trivially generalise

the transformations. This is also known as the Galilean relativity.

Lastly, based on Kepler’s laws of planetary motion and the previously mentioned laws, Newton

was able to describe the gravity as an attractive force that acts between bodies with masses.

Assuming two point sources with masses M and m separated radially by r , the gravitational

force F (r ) is:

F (r ) = −G
Mm

r 2

r

r
, (1.5)

where G = 6.67408×10−11 m3 kg−1 s−2 is the gravitational constant. Generally, if one wants to

determine the gravitational pull exerted by a mass distribution ρ(r ), on a particle of mass m,

one has to solve the Poisson equation for the gravitational potential φ:

∇2φ = 4πGρ(r ) (1.6)

and then obtain the force through the gradient of the potential: F (r ) = −m∇φ. This is mathe-

matically possible because equation (1.5) has a zero curl.

1.1.2 The Special Theory of Relativity

In the second half of the 19th century, Maxwell has developed the dynamical theory of the

electromagnetic field, unifying the electricity and magnetism. Moreover, these equations

predicted the existence of electromagnetic waves. Later, Hertz’s discovery of transverse elec-
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tromagnetic waves which propagated at the same speed as light was a strong experimental

support of Maxwell’s theory and of the connection between electromagnetism and optics.

Given the fact that the propagation of waves had always involved a medium, it was natural to

assume that light would also need a medium through which to propagate in vacuum. This

was called the ether. On short, experiments such as Michelson-Morely have not observed

evidence of this medium – more details can be found in Jackson (1999) and references therein.

Additionally, Maxwell’s equations were not invariant under Galilean transformations. These

arguments have lead Albert Einstein to develop the SR, based on two postulates:

1. The laws of physics are invariant in all inertial frames of reference.

2. There is a finite universal limiting speed for physical entities in every inertial frame,

which is equal to the speed of light c in vacuum.

Using the two postulates, one can derive the Lorentz transformation of coordinates between

two inertial reference frames, that have a relative movement as the one illustrated in Figure 1.2:

t ′ = γ
(
t − vx x

c2

)
(1.7)

x ′ = γ (x − vx t ) (1.8)

y ′ = y (1.9)

z ′ = z, (1.10)

where

γ =
1√

1− v2
x

c2

(1.11)

and c is the speed of light in vacuum. Under these transformations, Maxwell’s equations

remain invariant to the change of inertial reference frame. Analysing them, one can observe

that for a vx << c, γ≈ 1 and the Lorentz transformations become the previously mentioned

Galilean transformations, equations (1.1)-(1.4). This shows, that Newton’s laws and vision

about the laws of physics are not incorrect, but rather a good approximation when the relative

speeds are much lower than the speed of light.

The second postulate breaks the concepts of an absolute space and a universal time. It implies

that the space and time have to adapt so that no velocity in an inertial frame becomes larger

than c. In other words, space and time become connected and thus, one can define the

space-time infinitesimal invariant ds:

ds2 = c2dt 2 −|dx |2. (1.12)

If we imagine a particle with a velocity u with respect to an inertial reference R, the infinitesi-

6
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mal change in position dx = udt and thus:

ds2 = c2dt 2(1−β2), (1.13)

where β = u/c. Analysing the particle in its own reference frame, then dx ′ = 0 and dt ′ ≡ dτ,

where τ is called the proper time of the particle. Thus ds = cdτ, with dτ = dt
√

1−β2. The

space-time invariant ds shows whether two events can or cannot be causally connected –

timelike separation with ds > 0 and spacelike separation with ds < 0, respectively – since the

physical interactions cannot propagate from one point to another with velocities greater than

c. In addition, for ds = 0, two events can be connected only by light signals.

Given the connection between space and time, one can define a 4D position contravariant

vector, whose elements ξα are (ct , x, y, z). Using the summation convention for repeated

indices, one can rewrite equation (1.12):

ds2 = ηαβdξαdξβ, (1.14)

where ηαβ is the Minkowski metric tensor2:

ηαβ =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (1.15)

Furthermore one can differentiate the 4D position to obtain the 4D velocity and acceleration:

uα =
dξα

dτ
aα =

d2ξα

dτ2 . (1.16)

Finally, the SR is the standard framework with which all new theories have to be consistent.

Precise atomic phenomena, nuclear physics and high-energy physics use and depend on the

formalism of SR. In this case, it is obvious to ask for the theory of gravity to be consistent with

SR.

1.1.3 The General Theory of Relativity

The SR has been an great step forwards in understanding the fundamental physical laws,

however it put Newton’s law of gravity under great scrutiny. Newton’s gravitational force

does not depend on time and it implies that changes in the matter distribution would be

instantaneously felt in the gravitational potential. The latter observation is in contradiction to

the postulate of SR.

The solution was inspired by a fact observed even by Galileo Galilei: objects of different masses

2Note that there are also other sign conventions for the metric.
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fall with the same acceleration in a gravitational field. This implies that the inertial mass, mI

that appears in the second Newton’s law, and the gravitational mass mG part of equation (1.5)

are equal. Hundreds of years later, the Baron Eötvös de Vásárosnamény has reconfirmed the

mI = mG equality using pendulums and a torsion balance to high precision (see Weinberg

(1972) for more details). This experimental equality has lead Einstein to postulate what we

now call Weak Equivalence Principle: Trajectories of particles in the gravitational field are

locally indistinguishable from the trajectories of free particles as viewed from an accelerated

reference frame. In other words, in a gravitational field there is an accelerated reference system

in which the effect of gravity is cancelled. This is called the free-falling reference frame.

Consequently, if one describes mathematically the SR in an arbitrary coordinate system, the

resulting mathematical tools can be used to describe gravity.

Metric

Given a gravitational field, the equivalence principle implies that mathematically, in the free-

falling frame, the suitable metric is the Minkowski one, equation (1.15). This means that in

a general coordinate system (random reference frame) such as xµ = xµ(ξα), the space-time

infinitesimal invariant becomes:

ds2 = ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
dxµdxν = gµνdxµdxν. (1.17)

Therefore, in this frame, the distances are not computed using the Minkowski metric, but

rather using the metric:

gµν = ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
, (1.18)

where gλνgνµ = δλµ is Kronecker delta, which is 0 for µ ̸= λ and 1 otherwise. There are three

important observations:

1. gνµ is a description of the effect of the gravity in xµ coordinates.

2. xµ are not some special coordinates, as one can mathematically always describe the

same physical system in a new set of coordinates.

3. In the presence of gravity, the metric is not globally Minkowskian. One can choose a

coordinate system where the metric becomes ηαβ on a line, but not on the whole space.

Einstein’s equations

In Newtonian framework, the mass distribution ρ(r ) is determining the potential φ through

the Poisson equation. In a similar way, the energy-momentum tensor (or stress energy tensor,

the relativistic version of the matter distribution) Tµν, affects the metric gµν through the

8
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Einstein’s equations:

Gµν ≡ Rµν− 1

2
gµνR =

8πG

c4 Tµν, (1.19)

where Gµν is the Einstein’s tensor, Rµν is the Ricci tensor and R = gµνRµν is the Ricci scalar.

These equations can be obtained by minimising the Einstein-Hilbert action, which is defined

using the simplest (non-trivial) available scalar that includes up to second order derivatives of

the metric gµν, i.e the Ricci scalar. In addition, it turns out that one can add a constant Λ in

the previous action resulting into

Gµν =
8πG

c4 Tµν−Λgµν. (1.20)

Here, Λ is the cosmological constant that was initially introduced by Einstein to theoretically

describe a static and eternal Universe (according to the available observations at that time).

However, currently, Λ is used to explain the accelerated expansion of the Universe.

Einstein’s equations are set of ten coupled equations that require both initial and boundary

conditions. However, the ten coupled equations are reduced to only six independent equations

using the Bianchi identities. These equations determine the six independent components of

the metric tensor.

Finally, in the case of Λ = 0 and the weak field approximation (|φ| ≪ c2, |v | ≪ c, i.e. the

gravitational field cannot impose velocities close to the speed of light c), GR reproduces the

Newtonian gravity. Mathematically, Einstein’s equations become the Poisson equation (1.6)

for the gravitational potential φ generated by a mass density ρ.

Geodesic equation

In GR, the movement of a free-particle in a curved space-time – i.e. in the presence of gravity –

is described by the geodesic equation (the analogue of the second Newton’s law):

d 2xµ

dλ2 +Γ
µ

αβ

d xα

dλ

d xβ

dλ
= 0, (1.21)

where λ represents a general parameter for both massive and massless particles. On one hand,

λ = s for massive particles. On the other hand, for massless particles ds = 0, thus λ represents a

random possible parametrization. For a massive particle, the geodesic equation provides the

minimum proper time trajectory of that particle in a gravitational field.

Additionally, Γµ
αβ

are called the Christoffel symbols and have the following form:

Γ
µ

αβ
=

1

2
gµρ

(
∂gρβ
∂xα

+ ∂gρα

∂xβ
− ∂gαβ

∂xρ

)
. (1.22)
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They include information about the local gravitational interaction and the fictitious forces (e.g

centrifugal, Coriolis) that arise when using non-inertial reference frames. Thus Γ becomes

zero in the absence of gravity and in an inertial frame.

As a short intuitive summary, let us imagine a particle of mass m in the gravitational field

provided by the Earth. In practice, one should obtain the metric in the presence of the Earth

using the Einstein’s equations. Furthermore, the resulting metric should be introduced in the

geodesic equation to predict the movement of the particle under the effect of gravity. In case

the particle is under the influence of other forces (e.g. electromagnetic ones), they have to be

mathematically included in the geodesic equation.

1.2 Modern Cosmology

The modern understanding of the Universe and its evolution is based on GR and statistical

mechanics. Boltzmann equations of statistical mechanics describe the collective behaviour of

matter and radiation – as there is no interest in the evolution of an individual particle at the

scale of the Universe – in a perturbed space-time defined by Einstein’s equations.

The theoretical description of the Universe has been guided and complemented by important

observational discoveries over the last century: the expansion of the Universe by Hubble

(1929); the requirement of the Dark Matter (DM) to explain the Galaxy rotation curve (Zwicky,

1933; Rubin & Ford, 1970), the observation of a strong gravitational lens by Walsh et al. (1979)

and the anisotropies in the Cosmic Microwave Background (CMB) by Smoot et al. (1992); the

accelerating expansion of the Universe (e.g. Perlmutter et al., 1999), that can be explained

by the presence of the Cosmological Constant Λ as a DE. These observations have led to the

development of the standard cosmological model Λ Cold Dark Matter (ΛCDM) of the Universe:

the Universe is in accelerated expansion due to the dominating DE and contains DM, baryons

and a cold sea of photons (CMB).

Given its expansion, Gamow (1946); Gamow (1948) have suggested that the Universe has

started as a very dense and hot point-like region called big bang. Moreover, the expansion of

the Universe provides a mechanism that can explain the observed cosmological abundance of

the chemical elements. Today, it is called the Big-Bang Nucleosynthesis. Lastly, by including an

inflationary period, one can explain the fluctuations in the CMB and thus the current structure

in the matter distribution. Figure 1.3 illustrates the history of the Universe as function of time

and temperature, from the hypothetical period of inflation until today.

1.2.1 The Friedmann Equations

The set of Einstein’s equations can be used to understand very different scales, starting from

the precession of the perihelion of Mercury, to black holes and even the Universe, (e.g. Schutz,

2009). By making assumptions about the studied problem, one may simplify the set of equa-
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Figure 1.3: The history of the Universe as function of time (in seconds) and temperature (in
MeV). Electron-Volt (eV) is a standard way to measure energies (e.g. kinetic, binding) and
temperatures in particle physics. Figure 1.11 from Dodelson & Schmidt (2020).

tions and identify exact or near-exact solutions. At large scales – i.e. hundreds of megaparsecs3

– the Cosmological Principle assumes that the Universe is statistically homogeneous and

isotropic. This means that the Universe looks statistically the same from any point in space

and in all directions.

The Cosmological Principle transforms the generic gµν metric – equation (1.18) – into the

Friedmann–Lemaître–Robertson–Walker (FLRW) metric:

(ds)2 = (cdt )2 −a(t )2
[

(dX)2

1−k ·X2 +X2 (
(dθ)2 + sin2θ(dϕ2)

)]
, (1.23)

where c is the speed of light, t is the cosmic time, (X,θ,φ) are the spherical comoving coor-

dinates and a(t)4 is the dimensionless scale factor related to the expansion of the Universe.

Lastly, k is the curvature of the Universe that can be negative, 0 or positive, meaning an open,

flat or closed Universe, respectively. One can perform a change of variables such as

dR =
dXp

1−k ·X2
(1.24)

and obtain an equivalent representation

(ds)2 = (cdt )2 −a(t )2 [
(dR)2 +S2

k (R)
(
(dθ)2 + sin2θ(dϕ2)

)]
, (1.25)

where:

X = Sk (R) ≡


1p
k

sin
p

kR k > 0

R k = 0.
1p
|k| sinh

√
|k|R k < 0

(1.26)

3one parsec, i.e. 1pc ≈ 3.26light−years
4Some conventions such as the one in Carroll (1997), perform the following substitutions k → k

|k| ; X→
√
|k|X;

a → ap|k| , leaving the form of the metric unchanged, but k = −1,0,1 and a(t ) has dimension of distance.
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In order to determine the scale factor a(t ), one has to include the FLRW metric into Einstein’s

equations and solve them for a given stress-energy tensor Tµν. To this end, let us consider a

perfect fluid5 that fills the homogeneous and isotropic Universe. Therefore, the stress-energy

tensor becomes:

Tµν =
( p

c2 +ρ
)

uµuν−pgµν, (1.27)

where p is the pressure, ρ is the mass (energy) density, and uµ is the velocity quadri-vector.

Assuming that the fluid is at rest uµ = (c,0,0,0), the remaining components of Tµν are T00 = ρ

and Ti j = −pgi j . Finally, imposing the FLRW metric (1.23) and the stress-energy tensor of

a perfect fluid at rest into the Einstein’s equations (1.20), one obtains the two Friedmann’s

equations:

ȧ2

a2 + kc2

a2 − Λc2

3
=

8πG

3
ρ, (1.28)

2
ä

a
+ ȧ2

a2 + kc2

a2 −Λc2 = −8πG

c2 p, (1.29)

with the three unknown functions of time: a(t), ρ(t) and p(t). Due to the fact that a cosmo-

logical model (e.g. ΛCDM) imposes the components of the cosmological fluid, each with its

specific equation of state p = p(ρ), one can solve the resulting set of differential equations and

find the time evolution of a(t ), ρ(t ) and p(t ), given the values of k and Λ.

ΛCDM standard model

The current measurements (see Table 1.1) are consistent with an expanding Universe described

by a ΛCDM model. In this model, the cosmological constant Λ – that has been initially

introduced as a property of space (i.e. a scaling of the metric gµν) – is imagined as a dark

energy (or fluid) with a constant density in time and a state equation:

ρΛ =
Λc2

8πG
pΛ = −ρΛc2. (1.30)

Therefore, one can define a total energy density ρtot = ρΛ+ρ and a total pressure ptot = pΛ+p.

In this case, the DE explains approximately 70 per cent of the total energy density in the

Universe. The remaining 30 per cent is represented by the rest mass of the non-relativistic

matter (CDM and baryons) with an equation of state pm = 0. Lastly, the relativistic components

(e.g. photons or relativistic neutrinos) with an equation of state:

prel =
ρrelc

2

3
(1.31)

constitute a negligible part of the total energy content of the Universe today. Nevertheless,

5A perfect fluid is entirely described by its rest frame mass density and isotropic pressure, i.e. it has no viscosity.
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they have played an important role in the evolution of the Universe.

Other representations of the Friedmann’s equations

On one hand, working with a total energy density and a total pressure ρtot(t ) and ptot(t ), one

can combine the two Friedmann equations6 and obtain an equation equivalent to the first law

of thermodynamics (dE +pdV = 0):

d(ρtotc2a3)

dt
+ptot

da3

dt
= 0. (1.32)

This equation can be obtained from the conservation of the stress-energy tensor Tµν, i.e. the

ν = 0 component of ∇µT µν = 0. Moreover, it implies that the rate of change in the energy

compensates the work done by the expansion of the Universe.

On the other hand, by subtracting equation (1.29) from equation (1.28) and using ρtot(t ) and

ptot(t ), one obtains:

ä

a
= −4πG

3

[
3

c2 ptot +ρtot

]
. (1.33)

It is important to mention that only two out of the four equations (1.28), (1.29), (1.32) and

(1.33) are mathematically independent. Nevertheless, depending on the nature of the stud-

ied problem, one might find useful to use one of them instead of another. For example,

equation (1.32) helps us determine ρ(a), as shown in the next paragraphs.

Solutions of the Friedmann equations

In what follows, we describe the evolution of a flat Universe (i.e. k = 0) using Friedmann

equations throughout the radiation, matter, and dark energy dominated epochs, successively.

Radiation dominated Universe: In a Universe dominated by radiation ρtot = ρrad. As radia-

tion is relativistic ptot = prad = ρradc2/3. Thus, using equations (1.32) and (1.28) one obtains,

respectively:

ρrad = ρ0rad

( a0

a

)4
, a(t ) = a0

(
t

t0

)1/2

(1.34)

and finally ρrad ∝ t−2, where the subscript 0 denotes the values measured today. The universe

is expanding but given the fact that ä < 0, the expansion is decelerating.

6After computing the time derivative of equation (1.28) one must subtract from it the equation (1.29).
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Matter dominated Universe: In a Universe dominated by pressureless matter (baryonic mat-

ter and DM) ρtot = ρm and ptot = 0. Therefore, equations (1.32) and (1.28) provide respectively:

ρm = ρ0m

( a0

a

)3
, a(t ) = a0

(
t

t0

)2/3

(1.35)

Consequently, ρm ∝ t−2, i.e. the density has the same time dependence as in a radiation

dominated Universe. Moreover, the Universe is expanding, but the deceleration is larger than

in the previous case.

Dark Energy dominated Universe: Lastly, in this case, ρtot = ρΛ is a constant. Using equa-

tion (1.28), it follows that:

a(t ) = a0 exp

√
Λ

3
c(t − t0)

. (1.36)

This means that the expansion of the Universe is exponentially accelerating.

Figure 1.4 shows the energy density of the three main components (matter, radiation and

DE) as function of the age of the Universe. Additionally, it shows the evolution of the scale

factor as function of the age of the Universe. One can observe that the radiation density has

been the highest in the first 40 thousands years indicating a radiation dominated era. As a

result, the scale factor increases as a power law function of time that is consistent with the

one found in equations (1.34). Furthermore, for ≈ 10 billions years matter has dominated in

the entire Universe. This imposes a scale factor that depends on time as a power law with an

index consistent with 2/3 (see equation (1.35)). Lastly, in the last three billions years, the DE

has driven an exponential expansion of the Universe.

General solution: Let us assume a ΛCDM Universe with a curvature k, matter, radiation and

DE as Λ. One can treat the evolution of the matter and radiation as independent – i.e. matter

does not turn into radiation and radiation does not transform into matter. As a consequence

ρtot and ptot are solutions of equation (1.32), given the equation of state of each component,

where:

ρtot(a) = ρm(a)+ρrad(a)+ρΛ ptot = pm +prad(a)+pΛ (1.37)

and ρ(a) for the three components are the previously found solutions. To summarise, equa-

tion (1.32) provides ρtot(a) and the state equations connect p and ρ. Therefore, there is only

one remaining Friedmann equation that can be used from the system of all independent equa-

tions, in order to obtain a(t ). Introducing ρtot(a) in equation (1.28), the resulting differential
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Figure 1.4: The energy density and the scale factor as function of the age of the Universe.
The curves are computed using Planck 2015 (Planck Collaboration et al., 2016) flat ΛCDM
cosmological parameters by employing ASTROPY (Astropy Collaboration et al., 2022) and
NBODYKIT (Hand et al., 2018) PYTHON packages. The dotted curves represent the best-fitting
curves for [10,103]years and [106,108]years intervals, in order to capture the radiation and
matter dominated epochs, respectively.

equation of a(t) can be solved given k, Λ, ρ0m and ρ0rad
7. In practice, one uses the redshift

representation of equation (1.28), given ρtot(a).

Redshift representation of the first Friedmann equation

The redshift z shows how much the observed light wavelength (λobs) is shifted towards the

red end of the spectrum compared to the emitted light (λem) when there is a relative motion

between the observer and emitter. Mathematically, it is defined as follows:

1+ z =
λobs

λem
. (1.38)

Due to the expansion of the Universe, the light from distant galaxies is redshifted. Thus, the

scale factor is related to the redshift:

a =
a0

1+ z
, (1.39)

7The values of k, Λ, ρ0m are provided by cosmological measurements
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where a0 is the value of the scale factor today and a0 = 1 by convention. Due to the fact that the

redshift is a direct outcome of the Spectroscopic Surveys (see Section 1.4.2), equation (1.28)

is usually presented under a different form. In the following paragraphs, we show how to

transform equation (1.28), given ρtot(a).

Firstly, the Hubble expansion rate H (t ) and the critical density ρc(t ) transform equation (1.28)

into:

kc2

a2H 2 =
ρtot

ρc
−1, (1.40)

where

H(t ) ≡ ȧ(t )

a(t )
, ρc(t ) ≡ 3H 2(t )

8πG
. (1.41)

This intermediate representation suggests a relationship between the curvature k of an ex-

panding Universe, ρtot and ρc:
k > 0, closed universe if ρtot > ρc

k = 0, flat universe if ρtot = ρc

k < 0, open universe if ρtot < ρc.

Furthermore, let us define:

Ω(t ) ≡ ρ(t )

ρc(t )
Ωk ≡− kc2

a2H 2 . (1.42)

Given ρtot from equation (1.37) and the previous definitions, equation (1.40) becomes:

H 2(t ) = H 2
0

[
Ω0Λ+Ω0m

( a0

a

)3
+Ω0rad

( a0

a

)4
+Ω0k

( a0

a

)2
]

, (1.43)

where Ω0 (for the curvature k and all components: radiation, matter, Λ) and H0 represent the

values measured today at t = t0, H0 is known as the Hubble’s constant and a0 = 1 is the value of

the scale factor today by convention.

Finally, transforming the scale factor into redshift using equation (1.39), one obtains:

H 2(z) = H 2
0

[
Ω0Λ+Ω0m (1+ z)3 +Ω0rad (1+ z)4 +Ω0k (1+ z)2] . (1.44)

In practice, one measures the values of the Ω0 parameters and H0, in order to determine H(z)

and thus the scale factor a(t). However, Ω0rad ≈ 10−5, thus it is usually neglected in many

cosmological calculations at low enough redshifts.

Figure 1.5 shows the evolution of Ω and Hubble parameters as function of the redshift for a

flat (i.e. k = 0) ΛCDM model. One can observe that the sum of the three components is equal
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Figure 1.5: Ω and Hubble parameters redshift evolution. The curves are computed using
Planck 2015 (Planck Collaboration et al., 2016) flat ΛCDM cosmological parameters by em-
ploying ASTROPY (Astropy Collaboration et al., 2022) and NBODYKIT (Hand et al., 2018) PYTHON

packages.

to one, representing equation (1.40). Additionally, one can observe again the two transitions:

radiation – matter at z ≈ 3400 and matter – dark energy at z ≈ 0.3. Lastly, the Hubble parameter

has been decreasing with time, asymptotically approaching a minimum in the DE dominated

era.

wCDM model

This model generalises the state equation for Λ – i.e. equation (1.30) – and thus the time

dependency of the energy density to:

p = wρc2 ρ(t ) = ρ0

( a0

a

)3(1+w)
. (1.45)

For w = −1, one obtains the standard negative pressure and constant energy density of Λ.

The previous general state equation of DE reflects into the Friedmann’s equation as follows:

H 2(z) = H 2
0

[
Ω0DE(1+ z)3(1+w) +Ω0m (1+ z)3 +Ω0rad (1+ z)4 +Ω0k (1+ z)2] . (1.46)

This model is called owCDM, while for Ωk = 0, the model is simply wCDM.

Figure 1.6 shows the effect of different w and Ω0Λ values on the Hubble parameter. One can
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observe that the Hubble parameter is the most sensitive on the changes in the values at large

redshift. Therefore, cosmological measurements that can put constraints on H(z) at large

redshifts can more easily differentiate between models of DE, see Section 1.4.2.

1.2.2 Distances in the Universe

An important issue in astrophysics and cosmology is the estimation of distances to far galaxies.

The fact that the Universe is expanding provides us the intuitive connection between redshift

and distance, however the actual conversion is not trivial and depends on the used technique

and on cosmological parameters. This section is mainly inspired from Hogg (1999); Davis &

Lineweaver (2004). Figure 1.7 shows all the discussed distances in this section.

Comoving distance

The expansion of the Universe is encoded in the scale factor a(t ) from FLRW metric – equa-

tion (1.23) – thus using (X,θ,φ) comoving coordinates that expand with the Universe, one can

compute a differential comoving distance that is independent on the expansion:

dx2 ≡ (dX)2

1−k ·X2 +X2 (
(dθ)2 + sin2θ(dϕ2)

)
= (dR)2 +S2

k (R)
(
(dθ)2 + sin2θ(dϕ2)

)
. (1.47)

The interpretation of this distance comes naturally when one looks at the trajectory of a

photon. In this case, ds = 0 and thus from FLRW one obtains:

dx =
cdt

a(t )
. (1.48)
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Figure 1.7: Cosmological distances and the look-back time. The curves are computed using
Planck 2015 (Planck Collaboration et al., 2016) flat ΛCDM cosmological parameters by em-
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packages. The colour convention is the same as in Figure 1.5: blue – radiation dominated
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Practically, the comoving distance is the distance travelled by a photon in a given time, when

the expansion is taken into account trough the scale factor. Consequently, by integrating this

equation from tem, the time when a source emits a photon, until tobs, the time the observer

detects the photon, one obtains the comoving distance between the observer and that emitter:

x =
∫ tobs

tem

cdt

a(t )
. (1.49)

Particle horizon. The particle horizon is a specific case of equation (1.49):

η(t ) =
∫ t

0

cdt ′

a(t ′)
. (1.50)

It is the distance light could have travelled since the beginning of the Universe until a time t .

Practically, it denotes a region of causal contact at time t .

Radial comoving distance. In this scenario, the observer and the emitter are displaced only

along the radial coordinate, thus dθ = dφ = 0. Therefore, x =R. Additionally, given the fact that

there is a one to one correspondence between the cosmological redshift and the time, one can

change the time variable t to redshift z. Let us consider today (a0 = 1) an observer on Earth

receiving light from galaxies at different redshifts z. One can thus change the time variable t

to z in equation (1.49):

x =R =
∫ z

0

cdz ′

H(z ′)
(= DC), (1.51)
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where DC is the notation in Hogg (1999).

Transverse comoving distance. Considering two events at the same redshift (i.e. same radial

distance, thus dX = dR = 0), but separated by an angle δθ on the sky, the comoving distance

between the two is (DMδθ ≡)Xδθ = Sk (R)δθ, where X is the transverse comoving distance and

is shown explicitly in equation (1.26). In addition, DM is the notation in Hogg (1999).

Proper distance

Let us imagine two cars travelling with a relative velocity between them, thus the distance

between them changes in time. Consequently, if one wants to measure the separation between

the two cars with a ruler, one can do it only at a fixed time. In a similar way, the proper distance

between two far away galaxies – in an expanding Universe – is defined at a fixed time, so that

one can "place" a ruler between the two galaxies and measure the distance. In this case, at a

given time t , we have dt = 0, thus the (ds)2 = −a2(t )(dx)2. The fact that the invariant is negative

means that the two points separated by the proper distance r and comoving distance x:

r (t ) ≡ a(t )x (1.52)

are not in causal contact at time t . By convention, today at t0, a(t0) = 1, thus the proper

distances are numerically equal to the comoving distances.

As previously mentioned, the comoving distance x does not change with the expanding

Universe, however, galaxies have a peculiar motion due to the gravitational interaction. As a

consequence x has also a time dependence, thus differentiating equation (1.52) with respect

time t leads to

ṙ (t ) = ȧ(t )x +a(t )ẋ(t ), (1.53)

where

vrec(t ) ≡ ȧ(t )x(t ) = H(t )r (t ) (1.54)

is the recession velocity (also called the Hubble’s law) and u(t) ≡ a(t)ẋ(t) is the peculiar

velocity.

Luminosity distance

Given a light source of known luminosity L, the flux F measured by an observer is:

F =
L

4πD2
L

, (1.55)
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Figure 1.8: (a) The distance modulus for 1550 Ia supernovae part of 18 different surveys
(different colors) as function of their redshift. (b) The best-fitting magnitude residuals. The
fitting has been performed for a flat wCDM model, resulting in Ω0m = 0.309+0.063

−0.069, Ω0Λ =
0.691+0.069

−0.063 and w = −0.9±0.14. Figure 4 of Brout et al. (2022)

where DL is the luminosity distance between the observer and the light source

DL(z) = (1+ z)a0X(= (1+ z)a0DM) (1.56)

and X is the transverse comoving distance between the source and the observer – a0 = 1 by

convention.

The luminosity distance is used in cosmological measurements based on Type Ia Supernovae

(SNIa). The SNIa are thermonuclear explosions of carbon-oxygen white dwarfs that surpass

the Chandrasekhar mass limit by acquiring matter from a binary partner. This limit makes

SNIa nearly photon "Standard Candles" and thus useful in estimating distances, see Rich

(2010) for more details. Starting from the definition of the distance modulus µ:

µ≡ 5log
DL

10pc
= 2.5logF −2.5log

L

4π(10pc)2 , (1.57)
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Figure 1.9: Illustration of the angular diameter distance. The light emitted by the galaxies G1
and G2 at time t1 is detected by the observer O at time t2 > t1. Thus, the observer sees the two
galaxies as they were at t1. See text for details. Galaxy pictogram from https://www.iconspng.
com/image/35332/spiral-galaxy

the luminosity and flux are experimentally calibrated and measured, and DL is modelled

theoretically as in equation (1.56), see Figure 1.8. Schmidt et al. (1998); Riess et al. (1998);

Perlmutter et al. (1999) have performed measurements up to z ≈ 0.83 using 60 SNIa leading to

the first observations of and accelerated expansion of the Universe due to the Ω0Λ ̸= 0. More

recently, Brout et al. (2022) have measured cosmological parameters using 1550 SNIa in the

redshift interval z ∈ [0.001,2.26].

Angular diameter distance

Figure 1.9 illustrates two moments in the evolution of the Universe. At time t1, the two galaxies

are situated at a very large proper distance a(t1)XOA from the observer O, compared to the

separation a(t1)XG1G2 between them. The photons emitted at t1 arrive to the observer at time

t2 > t1. Thus, the observer sees the galaxies as they were at t1. When measuring the angular

separation ∆θ, the observer obtains:

∆θ =
a(t1)XG1G2

a(t1)XOA
=
XG1G2

XOA
, (1.58)

where the angular diameter distance between the observer and the galaxies is DA ≡ a(t1)XOA.

Consequently, one can express the angular diameter distance as function of the redshift z of a

light-source:

DA(z) =
a0X

1+ z

(
=

a0DM

1+ z

)
, (1.59)
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where X is the transverse comoving distance – a0 = 1 by convention.

Let us assume that there exists a Standard Ruler, whose size Xstandard ruler in comoving co-

ordinates is known and does not change in time. In this case, the measured angular size of

the standard ruler found at a redshift z provides a constrain for the DA(z) that depends on

cosmological parameters:

∆θm =
Xstandard ruler

(1+ z)DA(z)
. (1.60)

We show in Section 1.2.3 a practical example of a standard ruler. Figure 1.6 illustrates the effect

of different w and Ω0Λ values on the DA and suggests that the constraints on the DA at large

redshifts z > 1 can distinguish between different models of DE. We detail in Section 1.4.4 how

DA can be measured at different redshifts.

Without entering in details, another example of cosmological measurements which involves

measuring angular diameter distances is the time-delay technique that can be used to measure

H0 (Refsdal, 1964; Rhee, 1991; Shajib et al., 2020). These measurements are using the effect

of strong gravitational lensing, in which the rays of light from a far away varying light-source

(e.g. a quasar or a supernova) are deviated due to a massive object (e.g. galaxy, cluster of

galaxies) found between the Earth and the source, leading to multiple images of the source.

This means that the light of the source reaches the observer along different paths that could

lead to different detection times of the light. The time difference (also called time-delay, ∆t )

induced by the different paths is

∆t ∝ DdDs

Dds
∝ H−1

0 , (1.61)

where Dd is the angular diameter distance to the lens (the massive object between the source

and the observer), Ds is the angular diameter distance to the source and Dds is the angular

diameter distance between the source and the lens.

Look-back time

Due to the finite speed of light, an observer on Earth receives today the photons emitted by a

galaxy in the past. The farther the galaxy is, the longer the travelling time of the light becomes,

therefore earlier periods are observed. Given the fact that farther galaxies have higher redshifts,

there is a direct one-to-one mapping between the time and the redshift:∫ t0

t
dt = t0 − t =

∫ z

0

dz

(1+ z)H(z)
, (1.62)

where t0 ≈ 13.8 billion years is the age of the Universe today, t is the age of the Universe when

the galaxy at redshift z has emitted the light that the observer detects today and t0 − t is the

look-back time. Observing a higher redshift galaxy means that the observer looks even further
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back in time. Figure 1.7 illustrates the look-back time as function of redshift. One can notice

that the majority of the history of the Universe is captured up to z ≈ 1.5, as t (z ≈ 1.5) ≈ 4 billion

years.

1.2.3 The Big-Bang

As already unveiled in previous sections, the Universe is expanding, therefore the matter

and radiation densities decrease with time. Moreover, analysing the spectrum of the CMB

today, one observes that it matches with the one of a black body whose temperature is T0 =

2.72548±0.00057K (Fixsen, 2009). Due to the fact that the wavelengths of the emitted radiation

depend on the temperature and the fact that the expansion decreases the energy of photons

with a, the temperature of the cosmic plasma scales as (Dodelson, 2003; Dodelson & Schmidt,

2020):

T (t ) =
T0

a(t )
. (1.63)

According to the Big-Bang theory, the Universe started 13.8 billion years ago as an extremely

dense and hot plasma. Non-controversial physics – as described by Rich (2010) – allows the

understanding of the Universe since it had a temperature of T ≈ 1GeV and the matter was a

homogeneous soup of quarks gluons and leptons. The expansion of the Universe decreased

the temperature, allowing for hadrons, nuclei and finally atoms to form. The formation of

neutral atoms allowed for the photons to freely travel inside the Universe, giving birth to the

CMB.

Furthermore, the gravitational collapse of atoms lead to the formation of stars and galaxies,

which "reionized" the neutral gas inside the Universe.

Big-Bang Nucleosynthesis

This subsection is mainly based on Rich (2010); Dodelson (2003); Dodelson & Schmidt (2020);

Workman et al. (2022). Starting from t ≈ 10−6 s (T ≈ 400 MeV) after the Big-Bang, the tempera-

ture was low enough that hadrons such as neutrons and protons could be produced. Moreover,

during the first second after the Big-Bang, the weak interactions have been in thermal equilib-

rium, meaning that neutrinos ν could easily interact with the surrounding particles, keeping a

fixed ratio of neutrons and protons n/p = e−∆m/T , where ∆m = mn −mp = 1.293MeV is the

neutron-proton mass difference.

When the Universe celebrated its first second, the temperature cooled down to T ≈ 1MeV ≈
1010 K8. At that moment, the cosmic plasma was composed out of:

• Photons, electrons and positrons as relativistic particles in equilibrium through electro-

81 Kelvin: 1K = −272.15 ◦C
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magnetic interactions (e.g. e++e− ↔ γ+γ);

• Neutrions ν as decoupled relativistic particles: ν could travel freely and thus the weak

interactions were no longer in thermal equilibrium. This moment is also called "freeze-

out".

• Baryons as nonrelativistic particles: due to the initial asymmetry of baryons and anti-

baryons, at T ≈ 1 MeV, most anti-baryons have annihilated, thus:

η≡ nb

nγ
≈ 6×10−10, (1.64)

where nb is the number density of baryons and nγ is the photon number density. Ad-

ditionally, the ratio of neutrons to protons is n/p = e−∆m/Tfr ≈ 1/6 (Workman et al.,

2022).

The formation chain of complex nuclei starts with the production of deuterium (D or 2H):

p+n → γ+D. Even though the nuclear binding energy for deuterium is ∆D = 2.23MeV and the

T ≈ 1MeV, deuterium cannot be formed until temperature drops to T ≈ 100keV. The reason

is that photons follow a black-body distribution of energies at a given temperature, thus the

number of photons per baryon that have the energy larger than ∆D is larger or equal than

unity. Therefore the photo-dissociation prevents the formation of the deuterium and further

nucleosynthesis.

As a consequence, while the temperature was 1MeV > T > 100keV, i.e. for approximately three

minutes, neutrons9 are free to β-decay (n → p +e−(β−)+νe), reaching a neutron fraction of

n/p ≈ 1/7. At T ≈ 100keV, most neutrons got glued into 4He – mostly through D+p → γ+3 He

and 3He+D → p +4 He – determining the quantity of helium, see Figure 1.10:

Yp =
2(n/p)

1+n/p
≈ 0.25. (1.65)

Given the lack of metastable or stable elements with mass number A = 5 or A = 8 and the

increasing efficiency of the coulomb barrier between charged nuclei, it became challenging to

form heavier elements than 4He based on the two primary species 4He and 1H. Consequently,

nuclear reactions froze-out at T ≈ 30keV, resulting in a stable abundance of 7Li, 4He, 3He and

D, see Figure 1.10.

One can predict the abundances of these elements, however the observations are performed

at later epochs, after star formation has taken place. One has to search for regions with low

metal abundance in order to measure light element abundances that are more similar to the

primordial values, given the fact that stars produce heavier elements ("metals") such as C,

N, O and Fe. After measuring the deuterium abundance, Cooke et al. (2018) have estimated

9Free neutrons have a mean lifetime of 878.4±0.5s (Workman et al., 2022).
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Figure 1.10: Temperature and time dependent abundances of light elements. Figure 4.3 from
Dodelson & Schmidt (2020) and Figure 1 from Pospelov & Pradler (2010)

today’s density of baryons:

100Ω0bh2 = 2.166±0.015±0.011, (1.66)

where the first error comes from uncertainty in the measurement of deuterium abundance

and the second term is the error introduced by the BBN calculations.

Baryonic Acoustic Oscillations

In this section, we describe in a phenomenological manner the Baryonic Acoustic Oscillations

(BAO; Peebles & Yu, 1970) based on the Eisenstein et al. (2007a) description in configuration

space. This oscillations propagated in the first 400 thousand years of the Universe until the

ions and electrons recombined and the baryonic matter decoupled from photons. A schematic

description is shown in Figure 1.11.

The initial quantum fluctuations10 occur in the CDM, neutrinos and primordial plasma of

baryons and photons. As discussed in the previous section about BBN, neutrinos decoupled

10Inflationary models can provide mechanisms for the initial fluctuations, as mentioned in Section 1.2.4. Here,
we skip the inflationary period and start directly with fluctuations in the primordial plasma.
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Figure 1.11: The propagation of Baryonic Acoustic Oscillations in the primordial plasma of
photons, baryons and neutrinos. Figure 1 of Eisenstein et al. (2007a).

from the baryon-photon plasma in the first second after the Big-Bang, thus the evolution of

neutrino fluctuations was less correlated to the fluctuations in the plasma. Moreover, CDM

interacts only through gravitational forces with the plasma so they did not follow the same

evolution.

Before decoupling, the thermal equilibrium between the baryons, electrons and photons

is kept through the photon-electron scattering11 and electron-proton Coulomb scattering.

Practically, baryons are indirectly coupled to the photons, through electrons. Therefore, the

term baryonic matter includes both baryon and electron species.

The mean free path of the photon-electron scattering was much less than the Hubble distance,

11Compton and Thomson scattering, see Dodelson & Schmidt (2020)
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therefore the overdense regions had slightly higher temperatures and thus larger pressures.

This created a gradient in pressure that drove a spherical acoustic wave into the plasma. The

sound waves propagated at the speed of sound cs (Eisenstein & Hu, 1998):

cs(z) =
cp
3

[
1+ 3ρb(z)

4ργ(z)

]−1/2

, (1.67)

where ρb(z) and ργ(z) are the time-dependent (redshift-dependent) energy densities of

baryons and photons, respectively and c is the speed of light. After the recombination, the

pressure-supplying photons evaded the plasma and the speed of sound decreased sharply.

However, the baryonic fluctuations propagated until the moment when the baryonic matter

decoupled from the photons. Consequently, the comoving distance travelled by the oscillation,

also called sound horizon rs is:

rs =
∫ td

0

cs(t )dt

a(t )
=

∫ ∞

zd

cs(z)dz

H(z)
, (1.68)

where td and zd are the time and the redshift of the decoupling12 of the baryonic matter from

the photons and H(z) is the Hubble parameter, see Table 1.1 for numerical values of rs. This

comoving distance can be considered a standard ruler and it can be used to estimate distances

as we show in Section 1.4.4.

After decoupling, there were a CDM overdensity at the initial position and a spherical shell of

plasma around it. Furthermore, both attracted gas and CDM, being seeds of the gravitational

instability and thus structure formation. Finally, the photons became free to travel throughout

the Universe, with an energy density decreasing with a4. Today, we see them as the CMB.

Cosmic Microwave Background

In 1960s, Arno Penzias and Robert Wilson were experimenting with a microwave antenna

for telecommunications and astronomy when they observed an isotropic flux of microwaves

across the sky. This was the discovery of the CMB (Penzias & Wilson, 1965a,b). Twenty five

years later, NASA’s Cosmic Background Explorer (COBE) satellite was into Earth’s orbit to

further study the CMB detecting for the first time tiny fluctuations in the temperature (Smoot

et al., 1992). COBE’s successor, Wilkinson Microwave Anisotropy Probe (WMAP; Bennett et al.,

2003), launched in 2001, has further improved the measurements of these fluctuations and

thus provided increased precision on cosmological parameters (Hinshaw et al., 2013). The

state-of-the-art CMB anisotropy measurements are provided by the ESA’s Planck mission

(2009-2013; Tauber et al., 2010).

Figure 1.12 shows the CMB spectrum from WMAP measurements and a black body spectrum

that follows well the measurements. Combining multiple measurements from the literature,

12Also known as the redshift of the drag epoch, zd ≈ 1059. This redshift is slightly smaller than the redshift at
recombination z∗ ≈ 1089, see Planck Collaboration et al. (2020b) for more details
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Figure 1.12: The black body Spectrum of CMB with a temperature of T0 = 2.72548±0.00057K.
Figure 3 of Fixsen (2009)

Fixsen (2009) has obtained a CMB black body temperature of T0 = 2.72548±0.00057K.

Nevertheless, looking at Figure 1.13, one can observe temperature anisotropies of the order of:

∆T

T
≈ 10−5. (1.69)

They are directly connected to the fluctuations in the primordial plasma of baryons and

photons that also caused the BAO.

Given the fact that the CMB provides 2D measurements on the surface of a sphere, one

can expand the temperature anisotropies into spherical harmonics Yℓm(θ,φ) (Dodelson &

Schmidt, 2020):

∆T

T
=

∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(θ,φ), (1.70)

where aℓm contain all the information found in the temperature field and ℓ and m are conju-

gate to the real space θ and φ angles on the sky. For density perturbations, one can only make

predictions about the distribution from which they are drawn. Given that 〈∆T
T 〉 = 0, 〈aℓm〉 = 0,
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Figure 1.13: CMB temperature anisotropy map from https://wiki.cosmos.esa.int/
planck-legacy-archive/index.php/CMB_maps.

thus one can get information from the variance Cℓ:

〈aℓm a∗
ℓ′m′〉 = δℓℓ′δmm′Cℓ. (1.71)

Due to the mathematical properties of the spherical harmonics, for a given ℓ, one can measure

2ℓ+1 independent m modes, which means that there is a fundamental uncertainty that affects

the knowledge one can extract from Cℓ. This uncertainty ∆Cℓ is called the cosmic variance13

and affects mostly the low ℓ (Dodelson & Schmidt, 2020):

∆Cℓ = Cℓ

√
2

2ℓ+1
. (1.72)

In practice, one computes the amplitude of the temperature fluctuations DT T
ℓ

= (2π)−1ℓ(ℓ+
1)Cℓ, that is shown in Figure 1.14. There are three main features that can be observed:

1. Late-time Integrated Sachs-Wolfe effect at large scales, i.e. ℓ< 30 14. The fluctuations

at these scales are strongly affected by the gravitational potential of galaxy clusters or

voids found in the paths of CMB photons from the last scattering surface (the epoch

of decoupling) to the observers on Earth (today). For example, a photon entering in a

potential well of a cluster increases its energy due to the gravitational blueshift15. Given

13Cosmic variance affects the matter clustering as well, see Section 1.3.1 for a discussion.
14(Sachs & Wolfe, 1967; White & Hu, 1997; Rich, 2010; Dodelson & Schmidt, 2020)
15The opposite of redshift
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Figure 1.14: The amplitude of the temperature fluctuations DT T
ℓ

(red points with error bars)
and its best-fitting flat ΛCDM model (blue). The residuals are shown in the lower panel.
Figure 1 of Planck Collaboration et al. (2020b)

the faster expansion of the Universe in the DE dominated epoch, the potential well of

the cluster gets shallower during the travel of the photon, thus the loss of energy to get

out of the well is lower than the initial gain. Consequently, a photon slightly increases its

frequency when it passes through a cluster. The opposite is true for a photon entering a

void.

2. The BAO are visible in the temperature power spectrum as wiggles, given that in the

configuration space it should be a spherical shell, i.e. a radial peak16.

3. Photon diffusion at small scales that induces the Silk damping (Silk, 1968). Photons scat-

ter off on electrons and thus have a random walk of a given distanceλD ≈λMFP

√
neσTH−1

(H–Hubble parameter, ne –number density of electrons, σT – Thomson17 cross section

, λMFP – mean free path). This random walk washes out fluctuations smaller than λD

(Dodelson & Schmidt, 2020).

In order to model such high precision CMB measurements, one must employ sophisticated

codes that solve the Boltzmann equations that describe the physics before recombination, as

described in Section 1.3.2.

16The Fourier transform of a sharp peak is a sine wave
17Thomson scattering is the elastic interaction between electromagnetic radiation and charged particles.
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Parameter H0 Ω0Λ Ω0m -
Unit (km/s)/Mpc -

ΛCDM -
BAO (eB) - 0.7010±0.0160 0.2990±0.0160 -
CMB (P18) 67.27±0.60 0.6834±0.0084 0.3166±0.0084 -
CMB + BAO (eB) 67.61±0.44 0.6881±0.0059 0.3119±0.0059 -
CMB + mtBAO 67.96±0.39 0.6930±0.0051 0.3070±0.0051 -
BBN + BAO 67.35±0.98 0.7010±0.0160 0.2990±0.0160 -
BBN + mtBAO 67.58±0.91 0.7100±0.0150 0.2900±0.0150 -

oΛCDM Ω0k

BAO - 0.6370.084
−0.074 0.078+0.086

−0.099
CMB 54.5+3.3

−3.9 0.561+0.050
−0.041 −0.044+0.019

−0.014
CMB + BAO 67.59±0.61 0.6882±0.0060 −0.0001±0.0018

wCDM w
BAO - 0.729+0.017

−0.038 −0.69±0.15
CMB - 0.801+0.057

−0.022 −1.58+0.16
−0.35

CMB + BAO 68.4+1.4
−1.5 0.694±0.012 −1.034+0.061

−0.053

Parameter 100Ω0bh2 Ω0CDMh2 rdrag ns

Unit Mpc

ΛCDM -
CMB (P18) 2.236±0.015 0.1202±0.0014 147.05±0.30 0.9649±0.0044
BAO + BBN (eB) - - 149.3±2.8 -

Table 1.1: The measurements of cosmological parameters using different probes. The values of the
parameters for oΛCDM and wCDM are from eBOSS(eB; Alam et al., 2021). The Planck18 measurements
(in addition, ln

(
1010 As

)
= 3.045±0.016, at kp = 0.05Mpc−1) (P18; Planck Collaboration et al., 2020b)

include the temperature and polarisation power spectra. The "mt" – in CMB + mtBAO and BBN +
mtBAO – stands for multi-tracer BAO analysis that includes voids (see Zhao et al., 2022, for more details
and for BBN + BAO results). We discuss the different measurements in Section 1.4.4 and Section 3.1.1.
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Table 1.1 shows the constraints on cosmological parameters obtained using Planck 2018 data

(Planck Collaboration et al., 2020b). The value of the curvature parameters Ωk is very close to

zero. This means that Ωtot – i.e. equations (1.33) and (1.42) – had to be tuned to the value of

one to a level of ≈ 10−60 (see Rich (2010)) at very early times in the history of the Universe. The

necessity of this kind of fine-tuning is called the Flatness Problem.

Moreover, the fact that the temperature fluctuations are of the order of 10−5 means that the

primordial plasma was in an almost perfect thermal equilibrium. However, today we can

observe the CMB photons from patches in the plasma that were not in causal contact at the

time of recombination18. This means that plasma could not have thermalized in that period

of the history of the Universe. This is called the Horizon Problem.

Lastly, the Big-Bang theory does not provide a mechanism to create the fluctuations seen in

the CMB temperature maps. However, we know that these fluctuations are the seeds for the

large-scale structure formation.

1.2.4 Inflation

In order to solve the Horizon and Flatness problems, Guth (1981); Linde (1982); Albrecht &

Steinhardt (1982) have introduced the concept of inflation.

The inflation has been introduced as an exponential expansion of the very early Universe even

before the radiation dominated epoch, during which the scale factor a(t ):

a(t ) = ae eHinf(t−te ), (1.73)

for tb < t < te and where Hinf is a constant Hubble parameter during the inflation, tb and te

represent the beginning and end time of inflation. Lastly, ae is the scale factor at the end of

inflation (Dodelson & Schmidt, 2020). This exponential expansion allowed the communication

over larger distances before it occurred, i.e. one can approximate that for t < tb , the scale

factor a ≈ a(tb), allowing for large enough patches to be in thermal equilibrium. Finally, the

exponential inflation would just extend the space and spread the thermalized patch.

In order to fulfill the CMB observations (and thus solve the Horizon problem), the scale

factor must increase by at least a factor of 1026 at the end of inflation, i.e. ae /ab > 1026, if

one approximates the beginning of the inflation at a temperature Tb ≈ 1015 GeV. The whole

process should last for ≈ 10−34 s (Rich, 2010). Additionally, Rich (2010) shows that such an

expansion would smooth out a possible curvature k of the initial Universe so that it allows

for the current observed values of Ωk without the requirement of fine tuning Ωtot during very

early epochs.

There are many attempts to theoretically define and describe the field that drives the inflation

(see review of Workman et al. (2022)), however it is certain that at the end of it, the Universe

18On the sky, the ≈ 2◦ angular separation denotes the limit above which patches were not in causal contact.
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Figure 1.15: Large-Scale Structure formation using a N -body simulation of cold dark matter
from z = 10 to the present epoch. Figure from http://cosmicweb.uchicago.edu/filaments.html

was filled with radiation. Thus, there should be a conversion mechanism between the two

states. Today, these mechanisms and the nature of inflation are still unknown, therefore it is

beyond the scope of the thesis to get into more details.

Finally, the inflation field can give birth to Gaussian quantum fluctuations – with mean zero –

that can translate into fluctuations of the matter and radiation fields observed in the CMB, see

Dodelson & Schmidt (2020)

1.3 Large-Scale Structure

Observations of the distribution of galaxies and matter in the Universe have revealed that the

matter is not randomly and uniformly distributed inside the Universe. At scales of the order of

hundreds of megaparsecs, structures such as filaments, sheets and super clusters (nodes) in

the matter distribution can be observed. The structures have been most likely formed from the

primordial fluctuations in the collisionless cold dark matter (CDM) that have evolved under

the gravitational interaction.

It is important to notice that the primordial fluctuations occurred on a large range of scales

and they have been imprinted in all components of the Universe – i.e. photons, baryons,

neutrinos and CDM – except DE. Consequently, their evolution – except the CDM that inter-

acts only gravitationally – has been influenced by multiple physical phenomena, before the

recombination of ions and electrons, see Section 1.3.2. The distribution of the fluctuations in

the photon density field at the recombination can be observed as temperature fluctuations

in CMB observations such as WMAP and Planck (e.g. Planck Collaboration et al., 2020a), see

Section 1.2.3. Lastly, the matter (CDM and baryonic matter) distribution, at the moment of

recombination, can be regarded as the seed of the Large-Scale Structure (LSS) formation.

Figure 1.15 shows the time evolution of the CDM distribution in a simulated box of side length

43 Mpc, from a redshift z = 10 to z = 0 (present time). One can observe that at very early

times, the distribution of matter seems to be closer to uniformity. Nevertheless due to the

gravitational collapse, the small initial seeds grow, giving birth to the nodes and filaments.

In this section, we provide a brief phenomenological and analytical description of LSS and
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its evolution. Due to the stochastic aspect of the density fields, we introduce in Section 1.3.1

some important statistical tools used to study the LSS (inspired by the review of Bernardeau

et al. (2002)). In Section 1.3.2, we explain the impact of CDM, baryons and neutrinos on the

linear matter power spectrum (i.e. the matter power spectrum after decoupling, but still at

high enough redshift). Section 1.3.3 presents the Vlasov equation for collisionless CDM that

embodies its gravitational evolution. Sections 1.3.4 and 1.3.5 introduce Perturbation Theory

(PT) as a technique to solve the Vlasov equation and study the LSS formation and evolution

(mostly based on Bernardeau et al. (2002); Peebles (1980)). The last section, Section 1.3.6,

presents the N -body simulations as discrete numerical solutions of the Vlasov equation.

1.3.1 Statistical description

Due to the fact that the LSS formation must have started from the fluctuations in the primordial

plasma, it is useful to define the density contrast or the cosmic density field δ(x):

δ(x) =
ρ(x)

ρ
−1, (1.74)

where ρ is the spatial average of the ρ(x) and x is – usually – the comoving 3D position at

which the density is evaluated.

The matter density field (together with other fields such as the velocity divergence field or the

cosmic gravitational potential, defined in the next subsection) can be described in the early

Universe by a Gaussian Random Field (GRF Planck Collaboration et al., 2020c), meaning that

its values are randomly sampled from a Gaussian distribution with mean zero. This has two

main consequences:

1. the density field must be must be studied statistically;

2. there is an intrinsic uncertainty called cosmic variance (e.g. Somerville et al., 2004) that

affects all clustering measurements.

The fundamental problem in cosmology is that we do not have access to other sampled

universes. Therefore, we must assume the ergodicity principle, which makes the equivalence

between the ensemble average (of multiple Universes) and the volume average (in a single

Universe). Consequently:

1. the 〈R〉 ensemble average operator is used interchangeably with R , where R is a random

field;

2. the cosmic variance can be reduced by probing larger volumes in our Universe.

A GRF with mean zero, i.e. 〈δ(x)〉 = 0, can be entirely described by its variance. Therefore, we
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define the two-point correlation function (2PCF, ξ(s)):

ξ(s) = 〈δ(x)δ(x + s)〉 (1.75)

and the power spectrum P (k):

〈δ(k)δ(k1)〉 = δD (k +k1)P (k) (1.76)

of the matter density field δ(x), where s is the separation vector between two positions with

an absolute value s. The power spectrum is the Fourier Transform19 (FT) of the 2PCF:

ξ(s) =
∫

d3kP (k)exp(i k · s), (1.77)

where δD is the three-dimensional Dirac delta distribution and the wave vector k is the Fourier

counterpart of the separation s. The absolute values of s and k (i.e. s and k) are used assuming

that the Universe is statistically homogeneous and isotropic. In this case, the FT becomes the

Hankel transform20:

ξ(s) = 4π
∫ ∞

0
k2P (k)

sin(ks)

ks
dk P (k) =

4π

(2π)3

∫ ∞

0
s2ξ(s)

sin(ks)

ks
ds, (1.78)

where the ratio j0(ks) = sin(ks)/(ks) is the spherical Bessel function with index 0. Nonetheless,

Redshift Space Distortions (Section 1.4.5) and the Alcock & Paczynski (AP Alcock & Paczynski,

1979) effect (Section 1.4.4) introduce aniosotropies in measurements. As a consequence, one

must adapt the previous equations to include these effects (Section 1.4.3).

Another important observation is that the matter density field becomes non-Gaussian due to

the gravitational evolution. Therefore, higher order moments (such as bispectrum and the

equivalent three-point correlation function) are needed to entirely describe the density field

(see e.g. Bernardeau et al., 2002).

1.3.2 Transfer function

In the early epochs of the Universe, the fluctuations can be described as following a Gaussian

distribution with mean zero and variance:

Pprimordial(k) = Askns , (1.79)

known as primordial power spectrum, where ns is the scalar index and As is the amplitude

of the variations at a certain pivot kp, see Table 1.1. For ns = 1, the fluctuations are scale-

free (Harrison, 1970; Zeldovich, 1972). Afterwards, the density fields of the components (i.e.

19The convention used in this section is the one from Bernardeau et al. (2002), i.e. Ã(k ,τ) =∫ d3x
(2π)3 exp(−i k ·x)A(x ,τ), A(x ,τ) =

∫
d3k exp(i k · x)A(k ,τ)

20The Hankel transform is equivalent to a Fourier transform in spherical coordinates along the radial component
(e.g. Karamanis & Beutler, 2021).
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Figure 1.16: The interactions between the components of the Universe are described by
Boltzmann-Einstein equations. The Coulomb scattering between nuclei and electrons binds
them into a single component that is called baryons. Figure 5.1 from Dodelson & Schmidt
(2020)

baryons, CDM, photons, neutrinos) evolve in time, through the radiation, matter and Λ

dominated eras.

In order to follow the evolution of the CDM, baryons, photons and neutrinos up to the de-

coupling, one has to solve the Einstein equation together with one Boltzmann equation for

each component. This set of equations is coupled through the physical interactions between

all components (see Figure 1.16), therefore it must be solved numerically with codes such as

(CAMB; Lewis et al., 2000) and (CLASS; Blas et al., 2011). The solution is the transfer function

T (k) that adapts the primordial power spectrum by including the physical effects:

P L
m(k) = Askns |T (k)|2, (1.80)

where P L
m(k) is the matter power spectrum (also called linear power spectrum) sometime after

decoupling, while the evolution is still linear.

The evolution of perturbations is dependent on the balance between opposing effects. On one

hand, the gravitational force pulls matter towards over dense regions. On the other hand, the

expansion of the Universe pulls apart the particles of all species such that the perturbations

grow more slowly when the Universe is expanding faster. In addition, photons exert a pressure

that is proportional to the density, pushing the plasma of baryons and photons towards lower

density, hindering the accumulation of baryonic matter.

In what follows, we briefly present the effects of the components on the transfer function

based on the analytical solutions of Dodelson & Schmidt (2020) in some limiting cases that are
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Figure 1.17: Examples of transfer functions (numerical results and best-fitting curves). In this
figure, Ω0 =Ωb +Ω0CDM, where Ω0, Ωb Ω0CDM are the total matter, the baryonic and the CDM
densities today, respectively. Additionally, H0 = 100h km/s/Mpc. Figure 3 from Eisenstein &
Hu (1998)
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defined with respect to the particle horizon η(t ), equation (1.50). The description is done in

Fourier space because the evolution of each k mode can be treated independently. Figure 1.17

shows examples of transfer functions for different matter and baryonic densities.

Cold Dark Matter. CDM interacts only gravitationally with the other components, thus the

perturbations in the CDM are mainly dependent on the gravitational forces and expansion

of the Universe. The small fluctuations that enter the horizon in the matter dominated era

(i.e. kη< 1 until the matter dominated era) grow as a power-law of time, during both radiation

and matter dominated epochs. In contrast, smaller fluctuations that are inside the horizon

during the radiation epoch have a logarithmic grow in time until the matter starts to dominate

and the growth becomes proportional to a power-law of time. The logarithmic growth is

much slower than the power-law, thus for k > keq, (keq represents the scale of particle horizon

at radiation-matter equality epoch, it depends linearly on Ω0m (Eisenstein & Hu, 1998)) the

transfer function drops significantly (Dodelson & Schmidt, 2020)), while for k < keq, the

transfer function is close to one.

Baryons. Before the recombination, baryons are strongly coupled to the photons and thus

the plasma of baryons and photons experiences acoustic oscillations as described in Sec-

tion 1.2.3. These waves are observed as oscillatory behaviour in the transfer function. One

can observe in Figure 1.17 that without baryons the oscillations vanish. In addition, due to

the fact that radiation pressure hinders the gravitational collapse below the sound horizon

scale, the growth of the baryonic fluctuations is suppressed. Consequently, one can neglect

the effect of the baryons to the gravitational wells at those scales (Eisenstein & Hu, 1998) and

thus, the amplitude of the transfer function is lower than in the case without baryons. After the

recombination, the baryonic fluid becomes pressureless and its perturbations start following

the ones in CDM by falling into the CDM gravitational potential wells.

Photons. As mentioned in Section 1.2.3, the diffusion of photons due to the scattering

on electrons, wash out the fluctuations at small scales (k > kSilk, Silk damping (Silk, 1968)).

Additionally, photons can push the baryons away from overdensities to underdense regions,

washing away the fluctuations (i.e. Compton drag). This is seen as an exponential damping of

the acoustic oscillations.

Massive neutrinos. A first effect of neutrinos on the growth of perturbations is related to

the energy density evolution, which initially decreases with a−4 and then slows down to a−3.

This changes the Hubble parameter that enters in to the growth factor (see equation (1.104)).

Secondly, the neutrino perturbations smaller than the free-streaming scale (i.e. the distance

travelled by neutrinos as they escape the high-density regions) are washed out, weakening

the gravitational pull on the CDM. This means that the amplitude of CDM perturbations
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is lower than it could have been in the absence of massive neutrinos at scales smaller than

the free-streaming scale. The more massive the neutrinos are, the more important their

contribution is to the gravitational potential well. As a consequence, the CDM fluctuation

amplitude decreases with the neutrinos mass (for more details, see e.g. Dodelson & Schmidt,

2020; Agarwal & Feldman, 2011).

1.3.3 Vlasov equation for collisionless Cold Dark Matter

In the previous subsection, we have presented the evolution of fluctuations in a phenomeno-

logical way, given the coupled Einstein-Boltzmann equations of all components. This de-

scription is useful to estimate the resulting CDM linear density field after baryons-photons

decoupling. In what follows, we present the mechanism to describe the evolution of the CDM

perturbations in an arbitrary homogeneous and isotropic background Universe filled with

matter and dark energy Λ and with a curvature k, that follows the Friedmann equations21:

kc2 = (Ωtot(τ)−1)H 2(τ), (1.81)

∂H (τ)

∂τ
=

(
ΩΛ(τ)−Ωm(τ)

2

)
H 2(τ), (1.82)

where τ is the conformal time dt = a(τ)dτ.

Even though there is no direct evidence of CDM particles, there are multiple theoretical models

attempting to describe the DM. Nevertheless, one can approximate the CDM particles by a

non-relativistic collisionless fluid that obeys the Vlasov equation of the phase space f (x , p ,τ):

d f

dτ
≡ ∂ f

∂τ
+ dx

dτ
·∇x f + dp

dτ
·∇p f = 0, (1.83)

where x is the comoving coordinate r = ax , with r the proper distance (coordinate); p is the

linear momentum and τ represents the conformal time. The phase space density function

f (x , p ,τ) of the CDM particles is defined as a comoving density:

dNparticles = f (x , p ,τ)d3xd3p = f (r , p , t )d3r d3p . (1.84)

This is in contrast to other functions, such as the matter density ρ(x ,τ)22.

Practically, the Vlasov equation is the continuum limit of the Hamiltonian mechanics with

gravitational forces (Angulo & Hahn, 2022). Consequently, the natural linear momentum

21The two shown equations are the conformal time representation of equations (1.40) and (1.33), where H ≡
dln a/dτ = H a.

22Mathematically, if F̃ (r , t ) is a function of proper (physical) distance and cosmic time and F (x ,τ) is a function
of comoving distance and conformal time, there is a conversion function C that (r , t ) = C (x ,τ), such that F̃ (r , t ) =
(F̃ ◦C )(x ,τ) and F = (F̃ ◦C ). Thus, the physical interpretation of a function is the same in both sets of coordinates.
Consequently, we simply use the notation F (r , t ) = F (x ,τ), unless specified otherwise.
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degree of freedom of a particle is (see Peebles (1980) for more details):

p(x ,τ) = amu(x ,τ), (1.85)

where m is the particle mass and u(x ,τ) = dx
dτ is its peculiar velocity defined through the total

velocity v = ṙ 23:

v (r , t ) = H(t )r +a ẋ v (x ,τ) = H (τ)x +u(x ,τ). (1.86)

Furthermore, the equations of motion of a particle become:

dv

dt
≡ ä

a
r + 1

ma

dp

dt
= −∇rφ(r , t )

dv

dτ
≡ ∂H (τ)

∂τ
x + 1

ma

dp

dτ
= −∇xφ(x ,τ), (1.87)

where φ is sourced by the dark energy component Λ and the matter, through the Poisson

equation (see Peebles (1980) for more detailed arguments):

∇2
rφ(r , t ) = 4πGρ(r , t )−Λc2 1

a2 ∇2
xφ(x ,τ) = 4πGρ(x ,τ)−Λc2, (1.88)

and ρ denotes the proper matter density. This works in the approximation that particles

interact only through Newtonian gravity – given the non-relativistic aspect (low velocities) at

scales smaller than the Hubble radius – but in an expanding Universe.

So far, we have shown formulas using both (r , t) and (x ,τ), but in the next paragraphs we

restrict the description solely to (x ,τ). The background model, see e.g. Peebles (1980), neglects

any non-linear coupling between the evolution of the Universe through the scale factor a(t )

and the inhomogeneities in the matter field. Therefore, one can split ρ and φ in a component

corresponding to the uniform background related to the evolution of a(t ) and a component

related to the evolution of the matter fluctuations. Given the total matter density ρ, we define

the matter density contrast:

δ(x ,τ) =
ρ(x ,τ)

ρ(τ)
−1, (1.89)

where ρ is the spatial average of the ρ(x ,τ) and is the component that enters in the Friedmann

equation (1.28). Furthermore, the cosmological gravitational potential φ can be decomposed

as well:

φ(x ,τ) ≡ φ̄(x ,τ)+Φ(x ,τ), (1.90)

where Φ(x ,τ) is sourced by the fluctuations in the matter field (δ(x ,τ)) and φ̄(x ,τ) is related

to the uniform and homogeneous background that affects the expansion of the Universe.

Analysing the equation (1.87), one can observe the "independent" effects of the two compo-

23The dot derivative of a function f is defined with respect to t the cosmic time, i.e. ḟ =
d f
dt
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nents of φ.

φ̄(x ,τ) = −1

2

∂H (τ)

∂τ
x2, (1.91)

dp

dτ
= −am∇xΦ(x ,τ), (1.92)

i.e. φ̄ imposes the Hubble flow on a particle, given the evolution of the Universe and Φ affects

the momentum of a CDM "particle", through Newtonian gravity. Using the definitions of Ω

parameters and equations (1.91) and (1.82), one obtains the Poisson equation for Φ:

∇2
xΦ(x ,τ) =

3

2
Ωm(τ)H 2(τ)δ(x ,τ). (1.93)

Finally, replacing equations (1.85), (1.92) in equation (1.83), one obtains a non-linear partial

differential equation with seven variables:

∂ f

∂τ
+ p

ma
·∇x f −am∇xΦ(x ,τ) ·∇p f = 0. (1.94)

The purpose of the numerical simulations is to resolve the Vlasov–Poisson set of equations –

eqs. (1.93) and (1.94) – for a given number of particles N , that fixes the mass resolution of the

numerical simulation, see Section 1.3.6.

In the next two subsections, we present two frameworks to further understand the dynamics

of the CDM fluid: Eulerian and Lagrangian. The first one looks at the fluid as a field and thus

works with density and velocity fields that are functions of spatial coordinates. In other words,

the CDM fluctuations stay at fixed positions, but their amplitudes grow or decay. On the other

hand, the Lagrangian point of view analyses the evolution of a chunk of fluid. In the current

situation, the Lagrangian framework solves the equation of motion for each CDM particle.

1.3.4 Eulerian perspective

Given the difficulty to solve the Vlasov–Poisson set of equations and the fact that we are

interested in the evolution of the spatial distribution, we can limit ourselves to the study of the

linear momentum moments of f (x , p ,τ). The zeroth, first and second order moments are:∫
d3p f (x , p ,τ) ≡ a3

m
ρ(x ,τ), (1.95)∫

d3p
p

am
f (x , p ,τ) ≡ a3

m
ρ(x ,τ)u(x ,τ), (1.96)∫

d3p
pi p j

a2m2 f (x , p ,τ) ≡ a3

m
ρ(x ,τ)ui (x ,τ)u j (x ,τ)+σi j (x ,τ). (1.97)

Taking into account the definition of the phase space density function dNparticles = f (x , p ,τ)d3xd3p ,

the a3/m factors transform the proper mass density ρ(x ,τ), as defined above, in a comoving

42



Introduction Chapter 1

number density. Furthermore, u(x ,τ) is the peculiar velocity flow and σi j (x ,τ) denotes the

stress tensor. Generally, for a fluid σi j = −P δK
i j +η(∇i u j +∇ j ui − 2

3δ
K
i j∇·u)+ζδK

i j∇·u, where

P is the pressure, η and ζ are viscosity coefficients.

The stress tensor describes how different the particle motions are compared to single coherent

flows (i.e. single stream). Therefore, in the early stages of the structure formation – before

gravitational collapse and virialization – , one can set σi j = 0 for the CDM fluid (ideal fluid

with zero pressure). Nevertheless, even during later periods one can meaningfully model the

structure formation at sufficiently large scales using the approximation σi j ≈ 0. Deviations

from this value indicate the existence of velocity dispersion induced by the multiple streams,

also known as shell crossing.

Computing the zeroth order moment of the Vlasov equation (1.94), one obtains the continuity

equation:

∂δ(x ,τ)

∂τ
+∇x · [(1+δ(x ,τ))u(x ,τ)] = 0, (1.98)

where ρ is replaced from equation (1.89). If one multiplies the continuity equation with u(x ,τ)

and subtracts the result from the first order of Vlasov equation, one obtains the Euler equation

that describes the conservation of momentum:

∂u(x ,τ)

∂τ
+H (τ)u(x ,τ)+u(x ,τ) ·∇x u(x ,τ) = −∇xΦ(x ,τ)− 1

ρ

∂

∂x j
(ρσi j ). (1.99)

Mathematically, a vector field can be entirely described by its divergence and curl. Conse-

quently, this fact is used to simplify the Euler equation by computing its divergence and curl24.

Therefore, the velocity field u is replaced by θ(x ,τ) ≡∇·u(x ,τ) and its vorticity w = ∇×u(x ,τ).

Eulerian Linear Perturbation Theory

The CDM fluctuations in the Universe at really large scales are very small compared to the

uniform background, thus assuming δ(x ,τ) ≪ 1 and ∇x u ≪ H , one can keep only linear

terms in the equations (1.98), (1.99), i.e. δ2, δu and u2 can be neglected. Moreover, one can

set σi j = 0. Therefore, one obtains:

∂δ(x ,τ)

∂τ
+θ(x ,τ) = 0 (1.100)

∂u(x ,τ)

∂τ
+H (τ)u(x ,τ) = −∇xΦ(x ,τ). (1.101)

Analysing these two equations in Fourier space, one can notice that different k modes – i.e.

Fourier analogues of the position x – have an independent evolution. In other words, modes

are not coupled in Eulerian Linear Perturbation Theory.

24because ∇×∇Φ = 0 and ∇·∇Φ = ∇2Φ, see equation (1.93)
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If one computes the divergence of the linear Euler equation and the time derivative of the

continuity equation, one can replace the ∂θ(x ,τ)
∂τ

and θ(x ,τ) terms into the linear Euler equation.

Furthermore, due to the fact that in the resulting equation only δ(x ,τ) depends on position

x , one can split the density field in a time-dependent component D1(τ) – the linear growth

factor – and a position-dependent component: δ(x ,τ) = D1(τ)δ(x ,0). Consequently, the final

second order differential equation is:

d2D1(τ)

dτ2 +H (τ)
dD1(τ)

dτ
=

3

2
Ωm(τ)H 2(τ)D1(τ). (1.102)

The general solution of this type of equation is a sum of two independent solutions:

δ(x ,τ) = D (+)
1 (τ)A(x)+D (−)

1 (τ)B(x), (1.103)

where D (+)
1 is the so-called the fast growing mode, the D (−)

1 is the slow growing mode and lastly,

A(x) and B(x) describe the initial conditions. In a Universe filled with matter and dark energy,

i.e. H 2(a) = H 2
0

[
Ω0Λ+Ω0ma−3 + (1−Ω0m −Ω0Λ)a−2

]
:

D (+)
1 =

H(a)

H0

5Ω0m

2

∫ a

0

da

[aH(a)/H0]3 D (−)
1 =

H(a)

H0
. (1.104)

One can notice that the evolution of δ in this linear approximation is local. In other words,

δ(x ,τ) is only influenced by the δ(x ,0) and the dδ
dt (x ,0), i.e. the initial conditions at position x ,

(Peebles, 1980).

Finally, using the solutions for δ(x ,τ) and equation (1.100) one obtains the solution for θ:

θ(x ,τ) = −H (τ)
[

f (Ω0m,Ω0Λ)D (+)
1 A(x)+ g (Ω0m,Ω0Λ)D (−)

1 B(x)
]

, (1.105)

where one defines g and the linear growth rate of structure f :

f (Ω0m,Ω0Λ) ≡ 1

H

dlnD (+)
1

dτ
g (Ω0m,Ω0Λ) ≡ 1

H

dlnD (−)
1

dτ
. (1.106)

In order to completely understand the evolution of the velocity field u one has to know its

curl together with its divergence θ. Computing the curl of equation (1.101), one obtains that

w = ∇×u(x ,τ) ∝ a−1. This means that in the linear regime, any initial curl decays with the

expansion of the Universe.

The theoretical matter power spectrum in linear theory (also called, the 0-loop or the tree-level

contribution) is thus:

P (0)(k,τ) =
[

D (+)
1

]2
P L

m(k), (1.107)

where P L
m(k) is defined in equation (1.80). Linear theory describes well the CDM fluctuations
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Figure 1.18: The blue and green points denote the power spectra of N -body simulations.
The dot-dashed lines illustrate the linear power spectrum. The solid red lines denote the
power spectrum up to 1-loop correction (i.e. the density field up to third order in Eulerian
perturbation theory). The power spectra are divided by the no-wiggle (no-oscillation, i.e. no
BAO wiggles) power spectrum computed as in Eisenstein & Hu (1998). The curves shown at
different redshifts. Figure 3 from Jeong & Komatsu (2006)

on scales larger than 0.1h/Mpc (see Figure 1.18). Theoretical modelling below this threshold

requires the addition of non-linear terms into the description of the density field.

Eulerian Non-Linear Perturbation Theory

Perturbation theory is based on the fact that linear fluctuations are small and thus supposes

that density and velocity fields can be approximated starting from the linear solutions δ(1)

and θ(1), on top of which one adds non-linear terms – e.g. δ(2) and θ(2) quadratic in the initial

density field:

δ(x ,τ) =
∞∑

n=1
δ(n)(x ,τ), θ(x ,τ) =

∞∑
n=1

θ(n)(x ,τ) (1.108)

In this scenario, one must suppose that both the initial vorticity and the σi j are zero to ensure

that the vorticiy degrees of freedom can be neglected. A non-zero initial vorticity would be

amplified by non-linear effects at small enough scales.
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In contrast to the linear theory, when one computes the Fourier transform of the equa-

tions (1.98) and (1.99), one obtains:

∂δ̃(k ,τ)

∂τ
+ θ̃(k ,τ) = −

∫
d3k1d3k2δD (k −k12)α(k1,k2)θ̃(k1,τ)δ̃(k2,τ) (1.109)

∂θ̃(k ,τ)

∂τ
+H (τ)θ̃(k ,τ)+ 3

2
Ωm(τ)H 2(τ)δ̃(k ,τ) = (1.110)

=−
∫

d3k1d3k2δD (k −k12)β(k1,k2)θ̃(k1,τ)θ̃(k2,τ), (1.111)

where one can observe the mode coupling that occurs due to the non-linear terms through:

α(k1,k2) ≡ k12 ·k1

k2
1

, β(k1,k2) ≡ k2
12(k1 ·k2)

2k2
1k2

2

(1.112)

, where k12 = k1 +k2 and δD is the three-dimensional Dirac delta distribution. The mode

coupling implies the non-locality25 of the density and velocity fields evolution, which occurs

already at the second order perturbation theory (Peebles, 1980).

In order to compute higher order density and velocity field terms, there are clear recipes that

involve mathematical kernels and recursive relations. In a similar way, one can compute

higher order corrections for the power spectrum, by including the non-linear density terms.

In this case, we provide the correction up to the first order (also known as 1-loop):

P (k,τ) = P (0)(k,τ)+P (1)(k,τ), (1.113)

where

P (1)(k,τ) =
[

D (+)
1

]4
(P22(k,τ)+P13(k,τ)) . (1.114)

The i , j indices from Pi j (k)26 denote the order of the density field correction δ(i ), δ( j ).

Figure 1.18 displays the resulting power spectrum in comparison to the linear case and the

reference N -body simulation. One can observe that adding non-linear terms – the 1-loop

correction – to the power spectrum, improves the match with the reference. Nevertheless, the

more detailed study of Gil-Marín et al. (2012) shows that a precise (i.e. less than on per cent

deviation) description of the N -body reference can be achieved only up to k ≈ 0.05h/Mpc

for z = 0 and k ≈ 0.1h/Mpc for z = 1, by adding the 1-loop correction. However, higher order

corrections can improve considerably the agreement.

25The non-locality refers to the fact that the evolution of the density field at a certain position depends on the
values of the density field at other positions as well.

26Depending on the convention, P13 might be multiplied by a factor of two, see Jeong & Komatsu (2006);
Gil-Marín et al. (2012)
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1.3.5 Lagrangian perspective

In contrast to Eulerian perspective where one follows the evolution of fields, in the Lagrangian

framework, one tracks the individual trajectories of particles (or fluid elements). The initial

position q of a particle is connected to the final Eulerian position x by the displacement field

Ψ(q):

x(τ) = q +Ψ(q ,τ). (1.115)

As a consequence, one performs a change of variables from x to q using the fact that the

total mass has to be conserved by this change, i.e. ρ [1+δ(x ,τ)]d3x = ρd3q . In this case, the

Jacobian J(q ,τ) of transformation between Eulerian and Lagrangian spaces is connected to

the density field:

1+δ(x ,τ) =
1

Det

(
δK

i j + ∂Ψi

∂q j

) ≡ 1

J (q ,τ)
. (1.116)

Furthermore, the derivatives change as follows:

∂

∂xi
=

(
δK

i j +Ψi , j

)−1 ∂

∂q j
, (1.117)

where Ψi , j = ∂Ψi

∂q j
is the tidal tensor.

Following individual particles, one can rewrite the equation of motion, i.e. equation (1.92):

dx2

dτ2 +H (τ)
dx

dτ
= −∇xΦ (1.118)

and further apply a divergence and replace the coordinates equation (1.115), such that one

obtains:

J (q ,τ)∇x ·
[

dΨ2

dτ2 +H (τ)
dΨ

dτ

]
=

3

2
Ωm(τ)H 2(J −1). (1.119)

One can further change the ∇x using equation (1.117) and then express the equation of motion

completely with Lagrangian coordinates.

Interestingly, the regions where shell crossing induced by multi-stream flow occurs27 make

the Jacobian zero. In practice, the Lagrangian Perturbation Theory (LPT) series

Ψ(q ,τ) =Ψ(1)(q ,τ)+Ψ(2)(q ,τ)+ . . . (1.120)

converges until the first shell crossing takes place. Consequently, the LPT predictions are

27the Eulerian final positions x where particles with different initial positions q arrive at the same time
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limited by this moment. Nevertheless, Rampf & Hahn (2021) have shown that using LPT one

can robustly study the first shell crossing in a ΛCDM Universe.

Equation (1.116) expresses the intrinsic non-linear connection between the density field

and the displacement field. This means that a slight change in the displacement field of

a particle introduces non-linear information into the Eulerian density and velocity fields.

Mathematically, this is observed as non-zero Eulerian PT kernels for all orders, when the LPT

is truncated to a given order. In order words, even the first order LPT includes non-zero higher

order Eulerian PT terms.

Zel’dovich Approximation and Linear Perturbation Theory

The Zel’dovich Approximation (ZA; Zel’dovich, 1970; White, 2014) provides a solution for the

linear displacement field Ψ(1)(q ,τ) by imposing the linear Eulerian PT solution at large scales.

Expanding equation (1.116) and keeping the first order terms, one obtains:

∇qΨ
(1) = −D1(τ)δ(q), (1.121)

where ZA is implicitly used. Neglecting vorticity, this equation completely determines the first

order displacement, where D1 is found again with equation (1.102)28.

The solutions for the displacement fields are curl-free up to the second-order, assuming the

initial conditions are in the growing mode. Consequently, it is often useful to define Lagrangian

potentials ϕ such that:

Ψ(1) = −D (+)
1 ∇qϕ

(1) x = q −D (+)
1 ∇qϕ

(1). (1.122)

Furthermore, the velocity field u can be computed as follows:

u = −D (+)
1 f1H (τ)∇qϕ

(1), (1.123)

where f1 ≡
(
dlnD (+)

1

)
/(dln a).

Further analysis of this solution shows that the particle evolution is local, i.e. it is independent

on the other particles. This physically means that when multiple CDM streams cross, they do

not interact between themselves and thus the high-density regions are incorrectly too diffuse

using ZA.

Nevertheless, ZA is a useful theoretical description of non-linear structure formation. Applying

ZA in equation (1.116), the density field becomes:

1+δ(x ,τ) =
1

[1−λ1D1(τ)] [1−λ2D1(τ)] [1−λ3D1(τ)]
, (1.124)

28If one replaces Ψ(1) in equation (1.119), one obtains equation (1.102)
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Figure 1.19: X P (k) ≡ 〈|δapprox(k)δ∗N−body(k)|〉/
(√

Papprox(k)
√

PN−body(k)
)

denotes the nor-

malised cross-power spectra between the evolved matter fields with N -body simulation and
analytical approximations from Lagrangian Perturbation Theory and Spherical Collapse (SC)
model. Figure 4 from Kitaura & Hess (2013)

where (λ1,λ2,λ3) are the three local eigenvalues of the Ψi , j . The values of λ describe four

evolution scenarios for the density field δ(x):

1. planar collapse, when one eigenvalue is positive and larger than the rest;

2. filamentary collapse, when two eigenvalues are positive and larger than the third;

3. spherical collapse, when all eigenvalues are positive and equal;

4. evolution of an underdense region, when all eigenvalues are negative.

Figure 1.19 displays in blue the normalised cross-power spectrum between the ZA evolved

CDM density field and a N -body simulation. One can observe that up to k ≈ 0.1h/Mpc, ZA

density field is almost entirely correlated to the N -body simulation. Nonetheless, a high degree

of correlation is maintained up to k ≈ 0.3h/Mpc.
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Higher order Perturbation Theory

The second-order LPT (2LPT) correction to the displacement field is:

∇qΨ
(2) =

1

2
D2(τ)

∑
i ̸= j

(
Ψ(1)

i ,i Ψ
(1)
j , j −Ψ(1)

i , jΨ
(1)
j ,i

)
, (1.125)

where D2(τ) is the second-order growth factor. This factor can be approximated by D2(τ) ≈
−3

7 D2
1(τ)Ω−1/143

0m up to 0.6 per cent precision for flat ΛCDM with 0.01 ≤Ω0m ≤ 1. In a similar

way to the ZA, one can express the solutions using the Lagrangian potentials ϕ:

Ψ(2) = D (+)
2 ∇qϕ

(2) x = q −D (+)
1 ∇qϕ

(1) +D (+)
2 ∇qϕ

(2). (1.126)

Moreover, the velocity field u has the form:

u = −D (+)
1 f1H (τ)∇qϕ

(1) +D (+)
2 f2H (τ)∇qϕ

(2), (1.127)

where fi ≡
(
dlnD (+)

i

)
/(dln a).

Figure 1.19 shows that the 2LPT substantially improves the evolution of the density field with

respect to the ZA at smaller scales. A high correlation with the N -body is maintained up

to k ≈ 0.4h/Mpc for 2LPT. This significant improvement occurs due to the inclusion of the

non-local aspect (also called gravitational tidal effects) of the gravitational instability in the

2LPT.

In contrast to Eulerian PT, LPT does not provide a recursive solution to determine higher order

terms. Moreover, it has been shown that in most interesting cases, the third-order LPT (3LPT)

is not improving significantly the clustering description compared to the 2LPT, see for example

Figure 1.19. Consequently, it is beyond the scope of this thesis to study in more details the

higher-order corrections.

As previously mentioned, LPT is limited by the shell crossing, thus it cannot describe well the

small scales. Therefore, Kitaura & Hess (2013) have proposed to use a combination of the 2LPT

to evolve the large scales and the Spherical Collapse approximation to model the small scales.

This is called Augmented-LPT (ALPT).

Spherical Collapse

Let us imagine a ΛCDM Universe, in which the CDM density field fluctuations are described

by δ, the average matter density is ρm(t ). If we focus our attention onto a spherical overdense

region like the one in Figure 1.20, one can interpret it as a part of the Universe with an average

matter density ρ̃m > ρm, where the Friedmann equation (1.33):

¨̃a

ã
= −4πG

3

[
3

c2 pΛ+ ρ̃m

]
, (1.128)
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Figure 1.20: A sketch of a Spherical Collapse together with its time evolution in a matter
dominated Universe. "ta" denotes the turnaround point after which the overdensity collapses.
Figure 12.7 from Dodelson & Schmidt (2020)

with pΛ being the pressure imposed by the Λ. This results into the Newton equation of motion

for a spherical mass of proper radius r (t ) and mass M :

r̈ (t ) = − GM

r 2(t )
+ 8πG

3
ρλr (t ). (1.129)

This equation can be solved numerically.

Nonetheless, in a matter dominated Universe, one can obtain analytical solutions as function

of a parameter θ:

r (t ) =
rta

2
(1−cosθ), (1.130)

t =
tta

π
(θ− sinθ). (1.131)

Figure 1.20 displays the radius r (t) as function of time. Initially, the fluctuation increases

in size due to the expansion of the Universe. The maximum achieved size of the spherical

overdensity is the turnaround radius rta and this occurs at time tta. After this moment, the

fluctuation starts to collapse. The turnaround point depends on the initial size and δ.

This is the Spherical Collapse (SC) model, an approximation that provides an analytical

understanding of the non-linear evolution of spherical perturbations (see e.g. Peebles, 1980;

Rich, 2010; Dodelson & Schmidt, 2020).

One can further estimate the critical value of the overdensity δcr that constitutes a threshold
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above which, fluctuations would collapse. Dodelson & Schmidt (2020) argue that the inclusion

of the Λ in the computation of this threshold is minor and provides the δcr ≈ 1.686. Addition-

ally, it has been shown that if the density of the perturbation reaches values that are ≈ 200

times larger than the background density, it collapses into a DM halo. Therefore, this threshold

can be used to find haloes in DM simulations, see Section 1.3.6. The SC model can be further

used to estimate the number density of halos per halo mass (also called halo mass function).

In addition, the SC model can be used to estimate the time evolution of the fluctuations

(Bernardeau, 1994):

1+δ(x ,τ) ≈
(
1− 2

3
δ(1)

)−3/2

, (1.132)

where δ(1) = δL
m(x)D1(τ) is the linearly evolved initial density field (i.e. after recombination, see

Sections 1.3.2 and 1.3.4). Furthermore, Mohayaee et al. (2006) have estimated the divergence

of the displacement field based on equation (1.132):

∇q ·ΨSC = 3

[(
1− 2

3
δ(1)

)1/2

−1

]
. (1.133)

As previously mentioned, Kitaura & Hess (2013) have combined the power of 2LPT to describe

the large scales together with the SC approximation for the small scales to develop ALPT.

Figure 1.21 shows a comparison of different structure formation models. One can observe that

2LPT exhibits strong shell crossing, while for ALPT this effect is reduced in knots (nodes) and

in thick filaments. The additional success of ALPT is that it can capture small filaments that

are formed in the N -body simulations, but not present in 2LPT.

Figure 1.19 shows that the SC has lower power even than the ZA, proving that 2LPT is indeed

necessary for larger scales. Moreover, ALPT has more power towards smaller scales than 2LPT,

having a strong correlation with the N -body simulation up to k ≈ 0.5h/Mpc. Additionally, the

decrease in power for ALPT is less steep than for 2LPT.

Tosone et al. (2021) have further improved the description of smaller scales using generalisa-

tions of the SC model. Therefore, together with the 2LPT at large scales, they have surpassed

the ALPT performance.

1.3.6 N-body simulations

A detailed presentation of the N -body simulations is beyond the purpose of this thesis, there-

fore we refer to the review of Angulo & Hahn (2022) and the references therein. The Eulerian

and Lagrangian perspectives together with Perturbation Theory helped at solving the Vlasov

equation for the collisionless fluid-like CDM that evolves under the gravitational interaction.

Nevertheless, as previously discussed, PT fails to describe strongly non-linear evolution, more

specifically, it cannot describe the gravitational evolution after shell crossing (adding spherical
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Figure 1.21: Density fields evolved with different structure formation models. Upper-left:
2LPT; upper-right: N -body simulation; lower-left: 2LPT with collapse threshold; lower-right:
ALPT (2LPT + SC). Figure 2 from Kitaura & Hess (2013)

collapse can help, as shown for ALPT, however). Figures 1.18 1.19 1.21 show comparisons

between N -body simulations and PT.

A solution to the non-linear modelling is to perform N -body simulations, that practically solve

a discrete version of the Vlasov equation (i.e. Hamiltonian equations of motion) after sampling

the phase space using N particles with (X i ,P i ), i = 1...N :

fN (x , p ,τ) =
∑

n∈Z3

N∑
i =1

Mi

m
δD (x −X i (τ)−nL)δD

(
p −P i (τ)

)
, (1.134)

where L is the side-length of a box, on which one imposes periodic boundary conditions.

Mi = M = Ω0mρ0cV /N represents the particle mass in the simulation and m is the mass of

the actual CDM "particle". Nonetheless, there are simulations where N particles can have
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different masses.

An important aspect of the N -body simulations is setting the initial positions and velocities of

the N particles. A traditionally used technique – back-scaling – in N -body simulations is to

solve the linear order Einstein-Boltzmann EB) equations up to a = atarget (i.e. the target time

in the history of the Universe), in order to get a density field that includes the physics before

the last scattering, see Section 1.3.2. Practically, a Gaussian random field is sampled to match

the output power spectrum of EB numerical codes. Furthermore, the resulting field is scaled

linearly to very early times a → 0 and rescaled using the required nLPT approximation to astart

(the initial redshift of the N -body simulation, usually zstart ≈ 100). Finally, the particles are

allowed to evolve under the gravitational interaction.

Starting from the Vlasov equation, the equations of motion29 for the N gravitationally interact-

ing bodies are:

dX i

dτ
=

P i

Mi a

dP i

dτ
= −aMi∇xΦ|X i , (1.135)

where Φ is sourced by the fluctuations in the matter field and can be computed from the

discrete estimation of ρ – obtained from equation (1.134) – using Poisson equation. The

discretisation of ρ sets the quality the force calculation and how close the simulation is to the

continuous limit.

Apart from the number of particles and their mass, N -body simulations depend on the time

evolution (in practice, the number of time steps and the order of the steps to evolve the

particles) and on the force calculation.

Time evolution

Considering that the phase-space (conjugate coordinates and momenta) area must be con-

served 30, specific numerical integration techniques have been developed to accommodate

this demand. One such technique is the second order "leap-frog" integrator, which applies a

drift-kick-drift (DKD) scheme or KDK one in one step, where the drift updates the positions of

the particles and the scale factor and the kick updates the linear momenta of the particles.

Lastly, there is no optimal choice of the time steps as it depends on the details of the simula-

tions, such as redshift or force accuracy. However, some examples of time stepping schemes

are: linearly or logarithmicaly spaced scale factor steps; schemes that decrease the time step

with the evolution of the simulation; hierarchical time stepping schemes, where there are two

kick operators, one for ’slow’ particles and one for the ’fast’ particles.

29We show the equation of motion using the conformal time τ, but Angulo & Hahn (2022) work with cosmic time
t .

30One must also check for other quantities such as the total energy or total angular momentum.
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Gravity solver

The most time consuming part of a N -body simulation is the computation of the gravitational

interactions. Some important techniques are

1. Particle-Mesh (PM) based methods solve the Poisson equation in Fourier space, after

the mass of each particle is assigned on a fixed grid. The technique is efficient when it

can take advantage of the periodic boundary conditions, otherwise the grid must be

zero padded, increasing thus the memory requirements. Finally, the resulting forces on

the grid are reversely interpolated to the particles positions.

2. The direct Particle-to-Particle (P2P) summation technique calculates the interactions

directly at the particle level. Therefore, the gravitational potential in which a particle i is

found reads:

Φ(x i ) = −a−1
∑

n∈Z3

[
N∑

j =1,i ̸= j

GM j

||X i −X j −nL|| +ϕbox,L (X i −nL)

]
, (1.136)

summing the effects of all other particles. The uniform background density is taken into

account into the box potential ϕbox,L . Thus, Φ is sourced by the density contrast ρ−ρ.

This summation scales with O
(
N 2

)
, meaning that it can become easily very expensive

from the computation point of view.

3. Hybrid methods split the potential into two terms: a long range potential that can be

estimated using PM methods and a short range that can be calculated using P2P, or tree

technique. The PM - P2P combination is called P3M method.

4. The hierarchical tree methods organise the N particles in tree structures based on the

distances between themselves. Therefore, one can compute the gravitational potential

of groups (represented by a node in the tree) of particles and replace the P2P by particle-

node interaction. Due to the fact that the depth of the tree is O
(
log N

)
, the complexity

of the force calculation decreases from O
(
N 2

)
to O

(
N log N

)
.

FASTPM (Feng et al., 2016) is an N -body code that is used in Chapter 2. It uses a modified

set of kick and drift operators that include – during the time step – an acceleration motivated

by the ZA equation of motion. This allows for a description of the large scales that is in

agreement with ZA, but with a significantly reduced number of steps compared to a full N -

body simulation. Lastly, it uses the Particle-Mesh technique to compute the gravitational

interactions.

Halo detection

Once the DM density field is evolved under the gravitational interaction using N -body sim-

ulations, one can detect bound structures such as haloes that can be further used to assign
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Figure 1.22: A CDM simulation with visible large-scale structures (haloes, filaments, etc). The
DM haloes can host multiple luminous galaxies (yellow). Figure from https://news.fnal.gov/2020/
04/the-milky-ways-satellites-help-reveal-link-between-dark-matter-halos-and-galaxy-formation/

galaxies as described in Chapter 2. There are many halo finders (see e.g. Knebe et al., 2011, for

a comparison), but one can classify them in two main categories: particle collector algorithms

(e.g. Friends-of-Friends (FOF) Davis et al., 1985; Behroozi et al., 2013) and density peak locator

(e.g. spherical overdensity (SO) Warren et al., 1992; Hadzhiyska et al., 2022).

The FOF algorithms connect particles that are closer than a certain characteristic length and

that are found in a region with a density above a threshold. The resulting collection of particles

is considered the virialised31 halo. FOF can be applied on the 3D configuration or 6D phase

space.

The SO methods identity the density peaks and consider them as the centres of the haloes.

Particles are added in a sphere whose size is increased until the enclosed density reaches a

certain threshold (e.g. virialisation criterion).

The position of a halo can be considered to be the position of the maximum density peak or

the average location of all the particles inside it. The halo velocity can be estimated as an

average particle velocity. Lastly, the mass is simply the sum of all mass particles inside the

halo. It is obvious that these properties depend strongly on the border (shape) of the halo.

Finally, these properties play an important role in galaxy assignment on haloes (Wechsler &

Tinker, 2018). Figure 1.22 illustrates a CDM simulation, in which the DM haloes host luminous

galaxies (see Section 2.2 for methods to create galaxy simulations).

31A virialised object follows the virial theorem, i.e. a stable set of discrete particles at equilibrium bound by a
conservative force must follow 2K +U = 0, where U is the total potential energy of the system and K is the kinetic
energy
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1.4 Mapping the Universe

A rapidly evolving method to probe and better understand the Universe and its evolution is to

map its structure through the three-dimensional positioning of matter tracers. On one hand,

the 2D angular position on the sky is usually measured from wide field photometric surveys

such as the Sloan Digital Sky Survey (SDSS; York et al., 2000) or the Legacy Surveys32 (LS; Dey

et al., 2019). On the other hand, the third dimension is represented by the redshift which can

be related to distances, as discussed in Section 1.2.2

The redshift of a light-source can be estimated using photometric data, see e.g. Nishizawa

et al. (2020); Zhou et al. (2021), however its precision is inferior to the redshift measured from

a light-spectrum. Therefore, large scale spectroscopic surveys have been devised to measure

the light-spectra of sources selected from photometric data.

The recently finished spectroscopic surveys part of SDSS – Baryon Oscillation Spectroscopic

Survey (BOSS) and its extension extended-BOSS (eBOSS) – have mapped over 2 million33

galaxies and quasars in more than ten years (Alam et al., 2021) with a 2.5 m telescope and 1000

optical fibres34. The on-going Dark Energy Spectroscopic Instrument (DESI; DESI Collabora-

tion et al., 2022) plans to map 40 million galaxies and quasars in five years with a 4 m telescope

and 5000 optical fibres. DESI’s proposed successor, MegaMapper(Schlegel et al., 2022), aims

at measuring 100 million spectra in 2 < z < 5 redshift range, using a 6.5 m telescope and 26000

optical fibres. A similar project, MUltiplexed Survey Telescope (MUST), for the northern sky is

conceived by Zhang et al. (2023): a 6.5 m telescope with 20000 optical fibres, possibly located

in Northwest China.

The Cosmology Redshift Survey (CRS; Richard et al., 2019), part of the 4-metre Multi-Object

Spectroscopic Telescope (4MOST; de Jong et al., 2012, 2019) consortium, is dedicated to

mapping ≈ 7 million galaxies and quasars in the southern sky. Since DESI primarily targets

the northern sky, CRS collects complementary data to the DESI. The quasar redshift range of

the DESI is similar to the one of CRS, however CRS covers galaxies only up to z ≈ 1 while DESI

reaches z ≈ 1.6 with the help of emission line galaxies.

The EUCLID (Laureijs et al., 2011; Euclid Collaboration et al., 2022) 1.2 m space telescope,

which was recently launched, will explore the redshift range of 1 < z < 2 and aims to measure

30 million spectroscopic redshifts in approximately six years. As a result, EUCLID effectively

extends the CRS measurements to higher redshifts. In addition to the spectroscopic data,

EUCLID will provide photometric information in four bands (one in the visible domain,

500−1000nm and three in the near infrared, 1000−2000nm) for approximately two billion

galaxies.

32https://www.legacysurvey.org/
33Videos about the 3D map https://www.youtube.com/watch?v=VGA4NrqqYiU and https://www.youtube.com/

watch?v=UTlYUxucEZA.
34The optical fibres guide the light from a target of interest to the spectrograph and the resulting spectrum is

captured by a CCD. See Section 1.4.2 for more details
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Figure 1.23: The number of galaxy redshifts for different spectroscopic surveys. The red line
illustrates that every decade the sizes of different surveys increase by a factor of approximately
ten. Figure 1 of Schlegel et al. (2022).

The Large Synoptic Survey Telescope (LSST; Ivezić et al., 2019) will have an 8.4 m primary

mirror and will map 20 billion galaxies in the southern sky in six different optical bands,

320− 1050nm. In this case, EUCLID can provide near infrared photometric data for the

common targets. Finally, LSST and EUCLID can provide the photometric data to select the

targets of interest for the future spectroscopic surveys such as MUST and MegaMapper. For

cosmological forecasts of future surveys, one can consult e.g. Ivezić et al. (2019); Euclid

Collaboration et al. (2020); d’Assignies D et al. (2023); Sailer et al. (2021).

A relatively new technique to probe the LSS is the 21-cm intensity mapping that traces the

neutral hydrogen in the Universe. The 21-cm emission is caused by the hyperfine spin-flip

transition of the electron in the neutral hydrogen. The probability of this transition is very low,

however it is compensated by the large abundance of the neutral hydrogen in the Universe.

Mapping the sky in different frequencies provides the 3D distribution of neutral hydrogen that

can be used to compute the hydrogen clustering and detect the BAO (see e.g. Bull et al., 2015).

The proof-of-concept Canadian Hydrogen Intensity Mapping Experiment (CHIME; CHIME

Collaboration et al., 2022) has measured for the first time the clustering amplitude of the

neutral hydrogen from LSS (Amiri et al., 2023). This represents an important step for future

radio-frequency experiments such as Packed Ultra-wideband Mapping Array (PUMA; Slosar

et al., 2019), Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX; Crichton et al.,

2022) and Square Kilometre Array (SKA; Huynh & Lazio, 2013; Square Kilometre Array Cos-

mology Science Working Group et al., 2020) that aim to provide LSS measurements with a

precision which is comparable to surveys like MegaMapper (Sailer et al., 2021).
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The current thesis is focused on studying the LSS using 3D maps of matter tracers built by

photometric and spectroscopic surveys together. Therefore, the first subsection is focused on

the LS (Dey et al., 2019): Beijing-Arizona Sky Survey (BASS; Zou et al., 2017), Mayall z-band

Legacy Survey (MzLS) and Dark Energy Camera Legacy Survey (DECaLS), that have been used

as photometric precursors for the DESI. The second one presents BOSS/eBOSS and DESI –

with a focus on the latter – and how they measure the redshifts. Lastly, starting from the 3D

clustering of matter tracers, the BAO and the Redshift Space Distortions (RSD) are described

as methods to measure cosmological parameters.

1.4.1 Photometric Surveys

The principle behind photometric surveys is simple: telescopes collect and reflect the photons

arriving on the mirror onto the cameras (CCD array) found in the focal plane. Practically, one

takes pictures of the sky and detects all bright enough light-sources found in the scanned

footprint after a given exposure time.

However, one has to model the detected photometric signal in order to extract the useful

information. The raw image D(x, y) acquired by the telescope is determined by the flux as a

function of the position (x, y) on the CCDs. This is modelled as follows:

D(x, y) =
[
I (x, y)+Sky(x, y)

]
F (x, y)+B(x, y), (1.137)

where I (x, y) is the scientifically interesting signal. B(x, y) is called the "bias level" and it is a

positive constant value set in the hardware in order diminish the readout noise and thus avoid

negative values in the image. F (x, y), the "flat-field" represents the response of the camera at

the pixel level. Lastly, the Sky level comprises any source of light that is not of scientific interest

(e.g. the Moon light, a distant town, repeated scattering of sunlight in the upper atmosphere,

the airglow, the sunlight scattering off zodiacal dust grains in the solar system). While, F and

B are measured, for the LS the sky-level is modelled together with the astronomical sources

using TRACTOR35.

Each light-source is modelled using an analytic profile (e.g point-source, exponential, Sérsic)

creating thus a model image of the considered region, that is optimised using a χ2 min-

imisation. The resulting catalogues of this routine include source positions, fluxes, shape

parameters, and morphological quantities that can be used to discriminate extended sources

from point-sources, together with errors on these quantities, see Dey et al. (2019).

A first important observation is that the sky is surveyed in different filters that set the wave-

length (λ) intervals that are observed. This allows the probing of different regions of the

light-spectrum, but in a relatively short time. The LS have mapped more than 20000 square

degrees of the sky using four different filters (see Figure 1.24) in nine years. In practice, the flux

f [J/cm2/s] measured in each filter is converted into magnitudes m, such as the AB system for

35https://github.com/dstndstn/tractor
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Figure 1.24: Coverage of Legacy Survey Data Release (DR) 9 and 10. The filters used by all
Legacy Surveys. https://www.legacysurvey.org/status/

LS (Oke & Gunn, 1983):

m = 22.5−2.5log10 f , (1.138)

where 22.5 is a calibration constant.

For LSS measurements, one requires to have a sample of matter tracers that are homogeneous

as possible on the sky. However, there are systematic effects at the level of the photometric

survey that can affect the homogeneity such as:

• the galactic extinction due to the presence of the dust (also called reddening);

• the finite exposure time that fixes the depth of the observation;

• the bright stars that can produce ghost images and thus spurious targets;

• the density of stars that can simply cover interesting targets;

• the presence of the atmosphere that degrade the image quality and disturbs the shapes

of the sources (seeing).

Figure 1.25 depicts the reddening map computed by Schlegel et al. (1998) in the footprint of

LS. One can observe as expected, that the extinction is more significant around the galactic

plane, where the dust density is more significant. Nevertheless, one accounts for this effect in

mcorrected:

mcorrected = mmeasured − Afilter ×EBV, (1.139)

where mmeasured is the direct measured magnitude, Afilter is a correction factor dependent on

the used filter (see Schlafly & Finkbeiner (2011)) and EBV is the value of the reddening at the
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Figure 1.25: Upper panel: Dust reddening (EBV); middle panel: g -band depth of Legacy
Survey; lower panel: the extinction corrected depth. Figure 1 of Raichoor et al. (2023)

position of the luminous target. In most cases, the corrected magnitudes are used for target

selection, except when it is specifically mentioned.

The LS have adopted a dynamic observing strategy, meaning that they have adapted the

exposure time to the sky conditions (e.g. transparency, sky brightness) and the positions on

the sky (e.g. galactic dust reddening), in order to achieve a uniform depth. The second panel of

Figure 1.25 shows the g -band galaxy depth, which shows that in the regions where the galactic

extinction is more significant, the exposure time is larger. Therefore, the extinction-corrected

depth map in the third panel is more homogeneous.

In addition, one can observe a systematic difference between the g -depth in the northern

regions (BASS) and the southern ones (DECaLS). The g and r bands are shallower for BASS

than for DECaLS, meaning that one has to account for this in the target selection, described in
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Figure 1.26: The effect of GAIA bright stars on the relative LRG densities. Left panels show
fractional overdensity as function of RA and DEC. Right panels show the fractional overdensity
as function from the distance to the bright star. Figure 22 of Zhou et al. (2023)

the next section.

Figure 1.26 illustrates the effect of a Gaia (Gaia Collaboration et al., 2016) bright star on the

number density of targets. Around the bright star, the number of targets is much larger

than it should naturally be (upper panels) due to ghost images, and scattering in the Earth’s

atmosphere and the telescope optics. Thus, putting a mask on stars below given magnitudes

(lower panels) reduces the systematic overdensity to practically zero.

The systematic effects are studied in more details after the selection of interesting targets is

performed. In practice, a certain weight corresponding to a systematic effect is attributed

to each target such that the weighted sample is as close as possible to homogeneity, see e.g.

Raichoor et al. (2023) for the Emission Line Galaxy sample.
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Target Selection

The resulting number of unique sources in Data Release (DR) 9 of LS is approximately two

billion36. In contrast, DESI plans to measure the spectra of ≈ 40 million extragalactic sources in

five years, meaning that one has to select carefully the targets of interest from the photometric

surveys. The studied targets are determined by the scientific goals and by the instrumental

and physical constraints of DESI (discussed in more details in Section 1.4.2). Therefore, the

selections are built to optimise the science goals given the constraints.

In practice, the selection is based on some quality and magnitude cuts and a colour selection,

i.e. a difference between the magnitudes in two different filters, and morphological properties.

Some examples of quality cuts include a high signal-to-noise ratio in all the bands needed

for the colour selection and the removal of targets that are too close to bright stars or bright

galaxies. The magnitude cuts impose a maximum exposure time required to measure the

spectrum of a source with a high enough signal-to-noise ratio. Morphological properties can

be used, for example, to discriminate between point sources and extended ones. Lastly, the

colour selection can help to select the redshift interval of interest for the envisioned goal or to

discriminate between types of galaxies.

DESI plans to study four types of extragalactic targets: Bright Galaxies (BG; Ruiz-Macias et al.,

2020; Hahn et al., 2023), Luminous Red Galaxies (LRG; Zhou et al., 2020, 2023), Emission Line

Galaxies (ELG; Raichoor et al., 2020, 2023) and Quasars (QSO; Yèche et al., 2020; Chaussidon

et al., 2023). QSO have the highest fibre assignment priority, of the three "dark"37 time tracers,

followed by LRG and then by ELG. We provide a more detailed description of the ELG target

selection as it represents the largest DESI galaxy sample and thus it is expected to yield the

best constraints on cosmological parameters for measurements in 1.1 < z < 1.6. Nevertheless,

we briefly introduce the other targets.

Bright Galaxies. These targets have been selected to optimise the DESI survey during the

"bright" time i.e. when the moon is bright enough, above the horizon. The plan is to create

the most detailed map of the Universe for z < 0.6 using more than 10 million galaxies. There

are three subsamples: one that is magnitude limited r < 19.5, a second magnitude limited

one 19.5 < r < 20.175, that is optimised using a colour-selection to achieve a high redshift

efficiency and a low-redshift quasar sample. The BGS should provide the best BAO and RSD

measurements for z < 0.4 to date.

Luminous Red Galaxies. The LRG sample is the lowest redshift "dark" time sample. The

plan is to measure 8 million LRG redshifts in 0.4 < z < 1.0, reaching a much higher density

than former LRG surveys (e.g. BOSS, eBOSS), i.e. 5×10−4 (h/Mpc)3. The colour selection

is done using g , r , z bands from the LS and W 1 infra-red band from WISE, but part of the

36https://www.legacysurvey.org/dr9/description/
37When the moon is not on the sky
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LS catalogues. The resulting sample is robust against systematic effects and low in stellar

contamination rate.

Quasars. In constrast to LRGs, QSOs cover the highest redshift intervals, i.e. z > 0.9. The

sample of direct dark-matter tracers spans 0.9 < z < 2.1, while the one used for Lyα forests 38

has z > 2.1. The QSO catalogue is selected using a random forest algorithm applied on the g ,

r , z, W 1 and W 2 magnitudes. The sample has a magnitude < 16.5 < r < 23 and a density of

310deg−2 from which ≈ 70 per cent are true quasars, based on the visual inspection of the

survey validation.

Emission Line Galaxies

One-third of all DESI tracers will be ELGs, that will probe the Universe in 0.6 < z < 1.6, i.e. ≈ 80

per cent of cosmic history. The maximum z = 1.6 is imposed by the wavelenght coverage of

the spectrographs and by the fact that the redshift measurement of ELGs is planned to be

performed using the [OII] emission doublet39, as it is an unambiguous signature in the galaxy

spectrum.

The ELG target selection has been performed in two steps. Initially, a selection (see Figure 1.27)

has been developed on a few hundreds of squared degrees using LS photometric data, HSC

photometric redshifts(Nishizawa et al., 2020)40 and using DEEP2 spectroscopic information

for the [OII] flux, see Raichoor et al. (2020) for more information.

Finally, after the DESI Survey Validation (SV) program has provided spectroscopic data, the

selections have been optimised, see more details in Raichoor et al. (2023). The ELG main

target selection has been performed using the DR9 LS photometric data and it provides two

ELG target subsamples: a) one with low fibre assignment priority (LOP) favouring 1.1 < z < 1.6

and a target density of 1940deg−2; b) one with very low priority (VLO) and a target density

of 460deg−2, that favours 0.6 < z < 1.1. In practice, by randomly selecting 10 per cent of the

ELG-LOP and ELG-VLO a third subsample has been defined, ELG-HIP, that has the same fibre

assignment priority as the LRG.

The final selection is based on some quality criteria and a colour selection, see Figure 1.28.

The latter is needed to impose the redshift range of interest and to choose targets that exhibit

the [O II] doublet feature with a high enough signal-to-noise ratio – to secure a reliable

measurement of the zspec. The two subsamples share the quality criteria:

38Lyα forests are an imprint in the spectrum of a far QSO, caused by the neutral gas bubbles at different redshifts
between the Earth the QSO. The neutral hydrogen strongly absorbs light at the Lyα wavelength λ = 121.567nm,
creating many absorption lines in the QSO spectrum.

39[OII] emission doublet are two spectral lines of oxygen at λ≈ 372.6nm and λ≈ 372.9nm.
40Photometric redshifts are estimated using multiple magnitude bands and are less precise than the spectro-

scopic ones.
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Figure 1.27: The colour-colour diagram (g − r as function of r − z) and the preliminary colour
selection of ELGs for DESI. The colour bar on the top denotes the photometric redshift. The
blue and red histograms contain the photometric redshifts of the selected targets for the south
and north footprints, respectively. The grey histogram contains all objects within a given g
magnitude interval. Figure 1 from Raichoor et al. (2020)

1. Each target must have at least one photometric observation in each of the three filters g ,

r , z;

2. The signal-to-noise ratio has to be positive in all three bands g , r , z;

3. The target must not be close to a bright star or a bright galaxy.

The ELG-LOP should, in addition, pass the following selections:

1. a magnitude cut so that it ensures the spectra can be measured in a given exposure time:

g > 20 and gfibre < 24.1, where gfibre is predicted from the g band flux of the object that

can be observed using a 1.5” diameter optical fibre and g is the total g magnitude of the

object41;

2. r − z > 0.15 cut that rejects galaxies with a redshift z > 1.6 because the [OII] doublet is

outside the DESI spectrograph;

3. g − r < 0.5× (r − z)+0.1 selection to discriminate between stars or low redshift objects

and the higher redshift targets;

4. g − r <−1.2× (r − z)+1.3 selection to optimise the redshift range and to select targets

that have a higher [OII] flux.

On the other hand, ELG-VLO should pass:

41Check for additional information https://www.legacysurvey.org/dr9/catalogs/
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Figure 1.28: Left: The main target selection for low priority (LOP) and Very LOw priority
(VLO) ELGs. The colours denote the photometric redshift. Right: The spectroscopic redshift
distribution of the ELG-LOP (top) and ELG-VLO (bottom) samples after one year of DESI
measurements. The vertical black lines denote the z = 0.6, z = 1.0, z = 1.6 redshfits. Figures 3
and Figure 21 of Raichoor et al. (2023)

1. (g > 20) and gfibre < 24.1;

2. r − z > 0.15;

3. g − r < 0.5× (r − z)+0.1;

4. a (g − r >−1.2× (r − z)+1.3) and (g − r <−1.2× (r − z)+1.6) selection to optimise the

redshift range and to select targets the have a higher [OII] flux.

Figure 1.28 illustrates the spectroscopic redshift distribution of the ELGs selected using the

previously described selections, after one year of DESI measurements. It proves the two sets of

selection criteria favoured the two redshift ranges 1.1 < z < 1.6 (LOP) and 0.6 < z < 1.1 (VLO),

respectively.

1.4.2 Spectroscopic Surveys

Photometric surveys can accurately provide the angular positions on the sky, right-ascension

and declination (RA, DEC) of the targets of interest. Having measurements in different bands,
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one can even estimate photometric redshifts (e.g. Nishizawa et al., 2020; Zhou et al., 2021), i.e.

the third dimension42. Nevertheless, the current precision of these estimations is far from the

requirements of LSS studies. Therefore, the 3D LSS studies rely on spectroscopic surveys to

provide precise measurements of the redshift through the spectrum of the light sources (e.g.

galaxies).

The latest completed large scale spectroscopic surveys are BOSS and eBOSS, both part of SDSS.

The on-going DESI plans to map 40 million galaxies and quasars in five years, i.e. 20 times

more targets than BOSS/eBOSS, during half the time needed by the previous generation. The

measurement process is similar between the two generations: the light of a target is collected

by an optical fibre and guided to a spectrograph to obtain the light-spectrum and detect it by

CCDs. Nevertheless, the instrumentation has an important role in the survey speed through

the exposure time and the number of spectra per observation, and the time between two

successive exposures. Therefore, DESI has been designed to surpass BOSS/eBOSS.

BOSS/eBOSS Instrumentation

A brief description of the instrumentation of the two surveys is presented here. Nevertheless,

for more details one can consult Gunn et al. (2006); Dawson et al. (2013, 2016).

BOSS and eBOSS have used the 2.5 meters Sloan telescope located at Apache Point Observatory

and have taken advantage of 3◦ diameter field of view. The focal plane hosted a plate (see

Figure 1.29) with 1000 holes each holding an optical fibre. The plate was designed for one

exposure in a specific region of the sky, meaning that after each exposure, another plate with

optical fibres would replace the former. In total there were ≈ 4000 unique plates for BOSS

and eBOSS together. The 1000 optical fibres were pre-plugged during the day due to the ≈ 45

minutes long process, while switching between plates could be done with an overhead of 5 to

10 minutes during the night. Nevertheless, the instrumentation only allowed nine plates to be

pre-plugged, strongly limiting the speed of the survey.

Lastly, two spectrographs – each having two arms – collected the light from the optical fibres

and guided the spectrum to the CCDs, see Figure 1.29. They allowed the study of spectra in

the [350−1000]nm wavelength interval with a resolution R ≈ 2000.

DESI Instrumentation

A more detailed description of DESI can be found in DESI Collaboration et al. (2016b, 2022);

Silber et al. (2023) and the articles in preparation found at https://data.desi.lbl.gov/doc/

papers/.

DESI is installed at the 4 m Mayall telescope at Kitt Peak National Observatory. The increased

size of the telescope compared to Sloan allows for more light to be collected and thus deeper

42The redshift is directly connected to a distance, see equation (1.51)
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Figure 1.29: The plate (top) in the focal plane of the Sloan telescope. It has 1000 holes for the
optical fibres that carry the light of luminous targets to the two spectrographs (bottom). Fig-
ure 2 from Dawson et al. (2013) and https://www.sdss4.org/instruments/boss_spectrograph/

observations. For bright enough sources DESI can also decrease the exposure time compared

to the one Sloan would need. Nevertheless, the optical corrector allows for a 3.2◦ diameter

field of view, similar as for BOSS/eBOSS.

The most important improvement compared to BOSS/eBOSS is the optical fibre system. The

focal plane of the Mayall telescope hosts 5000 optical fibres, each being individually pointed

by a pen-sized robot (see Figure 1.30). This allows for the measurement of approximately 5000

spectra at the same time, compared to the 1000 of BOSS/eBOSS. Due to the robotic system,

DESI allows many more configurations per night compared to BOSS/eBOSS, even though the

overhead time is only reduced from 5 to 2 minutes.

Due to the large number of optical fibres, ten identical spectrographs are needed to analyse

the light-spectrum. Figure 1.31 shows a scheme of a DESI spectrograph. Each one has three
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Figure 1.30: The 10 petals in the focal plane of the Mayall telescope used by DESI. Each petal
contains 500 robots that position the optical fibres onto the targets of interest. Pictures and
a diagram of a pen-sized robot and its two axes of rotation. Figure 3 and 17 from Silber et al.
(2023)

arms recording the light wavelengths from 360 nm to 980 nm with a spectral resolution ranging

from 2000 to nearly 5500, respectively.

Spectroscopic measurements

From December 2020 until June 2021, DESI has measured the spectra of 1.8 million targets

and has published the Early Data Release (EDR; DESI Collaboration et al., 2023b). This shows

the efficiency and the speed of the instrument to measure spectra. In comparison, BOSS has

measured approximately the same number of spectra in 5 years. The entire DESI system (from

the telescope to the spectrographs) has been optimised to detect and resolve the [OII] doublet

of ELGs (galaxies, in general):

• within the 0.6 < z < 1.6 redshift range;

• in 1000 seconds of effective exposure time, i.e. in reference conditions (zenith, dark sky,

FWHM seeing of 1.1 arcsecond and no Galactic extinction);
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Figure 1.31: Left: the scheme of a DESI spectrograph. Right: the spectrum of an ELG measured
by eBOSS (≈ 1 hour) and DESI (≈ 15 minutes), zoomed on the [OII] doublet. Figure 14 of DESI
Collaboration et al. (2022) and Figure 11 of Raichoor et al. (2023)

• down to fluxes of 8×10−17 erg/s/cm2.43

Figure 1.31 shows a comparison between the spectra of eBOSS and DESI for the same target,

zoomed on the [OII] doublet. While the exposure time for that target was over one hour for

eBOSS, DESI observed it for over 15 minutes, but it managed to resolve the doublet.

Figure 1.32 shows four measured DESI spectra, one for each extragalactic target type: BGS,

LRG, ELG and QSO 44. The shown spectra have been classified as high quality during the

visual inspection due to the presence of absorption and emission spectral lines. The presence

of such spectral lines allow for a robust redshift measurement. Notably, the ELG spectrum

has not only the [OII] doublet, but also FeII and MgII absorption lines, see Lan et al. (2023).

Nevertheless, not all spectra have the same quality and thus do not provide good quality

redshift measurements.

Figure 1.33 shows the number of good quality redshifts per extragalactic tracer category and

per redshift bin. According to DESI Collaboration et al. (2016a) the redshift measurements

must have at least a precision of σz /(1+ z) ≈ 0.0005 per galaxy, in order to preserve the BAO

feature along the line of sight45. DESI Collaboration et al. (2023a) have shown using the EDR

data that BGS, LRG, ELG and QSO with z < 2.1 have a typical precision and accuracy much

lower than the required ones for BAO studies, see Table 1.2. Nonetheless, Yu et al. (2023);

Yuan et al. (2023) have observed that for LRGs and QSOs, these redshift uncertainties have an

431erg = 10−7 J
44Stars are also observed by DESI, but their study is beyond the scope of the thesis.
45(Ishikawa et al., 2023) have shown that even with photometric redshifts that have three per cent precision, the

BAO signature can be detected, but the expected uncertainties on cosmological parameters are much larger than
the case with spectroscopic redshifts
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Figure 1.32: The measured spectra of the four DESI extragalactic target types and their best-
fitting redshift. The blue lines illustrate the emission lines, while the absorption lines are
shown in green. The wavelength range is limited by the spectrograph. Figure adapted from
Lan et al. (2023); Alexander et al. (2023).
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BGS LRG ELG Tracer QSO
σz

1+z 0.00003 0.00014 0.000026 0.00041
∆z
1+z 0.000022 0.00001 0.0000033 0.000087

Table 1.2: Random redshift error σz and typical systematic shift ∆z of DESI tracers, see DESI
Collaboration et al. (2023a) for more details.
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Figure 1.33: Number of DESI redshifts in the Early Data Release from a footprint of 1489deg2

and the number density of targets as function of redshift z, for a flat ΛCDM with Ω0m = 0.3166,
see Table 1.1. Figure adapted from DESI Collaboration et al. (2023b).

impact on the clustering measurements at small scales.

The same Figure 1.33 illustrates the radial number density of galaxies and QSOs. The n(z)

together with the footprint of the survey (see Figure 1.25 for the entire DESI footprint, and

Figure 1.26 for an example of an added mask) are two examples of systematic effects that

one must take into account when performing LSS studies. In practice, the FKP weights

(Feldman et al., 1994) are computed based on the n(z) to counterbalance the nonuniform

distribution and thus to optimise the signal-to-noise in two-point clustering measurements

(see Section 1.4.3). The footprint must be taken into account in the random catalogue and the

window function as explained in Section 1.4.3.

As for the photometric surveys, spectroscopic surveys (such as DESI and eBOSS) suffer from

specific systematic effects. The low signal-to-noise in some spectroscopic measurements can

lead to failures in estimating some redshifts. These failures can introduce additional angular

inhomogeneities (angular completeness) that must be taken into account through weights.

Moreover, they also introduce artificial effects along the radial distribution affecting the n(z),

therefore specific weighs must be applied to account for these spectroscopic completeness as

well, see e.g. Ross et al. (2020).

Another important systematic effect is introduced by the fibre assignment process which is

illustrated in Figure 1.34. The fibre assignment implements a priority scheme, where QSO
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Figure 1.34: The overlapping circles denote the coverage regions of each fibre positioned by a
robot: red – science fibres; green – standard stars; blue – sky fibres; cyan and grey – disabled
robots. The dots represent the targets that can be reached by non-disabled robots. The colour
scheme is the same as for the circles. Figure 21 of DESI Collaboration et al. (2022)

have the highest priority (due to low number density), then the LRGs are followed by the lower

priority ELGs. In addition there are fibres that are pointed towards standard stars and blank

sky regions in order to calibrate the system.

Due to the fact that neighbouring robots have overlapping coverage regions, there is a chance46

that targets found in those overlapping regions cannot be observed during the survey observa-

tions. Nevertheless, one can account for this incompleteness effect using a weighting scheme,

see e.g. Ross et al. (2020); DESI Collaboration et al. (2023b).

The final catalogue that includes:

46This chance depends strongly on how many repeated observations are performed on the same field-of-view.
For example the SV3, part of EDR, has a very high fibre completeness, due to repeated observations, see DESI
Collaboration et al. (2023b).
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1. the 3D positions: RA, DEC (angular) and spectroscopic redshift z (radial);

2. weights: e.g. incompleteness, spectroscopic, FKP;

together with the information about the n(z) and the footprint including masking (needed for

the window function, see Section 1.4.3) can be used in clustering measurements.

1.4.3 Statistical measurements

In Section 1.3, we have defined the 2PCF and power spectra of a continuous matter density

field. In contrast, surveys like BOSS/eBOSS or DESI provide 3D positions of galaxies or quasars.

In this section, we briefly introduce the relation between galaxies and the matter field and

explain how the 2PCF and power spectra are computed from a catalogue of discrete tracers.

For a pedagogical overview of some of the next topics, one can consult (Percival, 2013).

Two-point correlation function

The 2PCF ξ(s) measures the excess of probability that two galaxies or quasars are separated by

a distance s, with respect to a random probability:

dP = n2 [1+ξ(s)]dV1dV2, (1.140)

where n denotes the average tracer number density and dV1 and dV2 represent the volume

elements where the tracers are located. In practice, ξ can be estimated by counting the number

of pairs – in separation bins [s, s +∆s] – from a data (D) catalogue and compare them by the

ones from a random sample. The random catalogue (R) must have the same footprint and

redshift distribution (i.e. n(z)) of points as the data catalogue, but the number of objects (NR)

can and is recommended to be larger than the data (ND), in order to decrease the Poisson

noise.

Therefore, several examples of 2PCF estimators are: the Peebles–Hauser (ξPH; Peebles &

Hauser, 1974), the Davis–Peebles estimator (ξDP; Davis & Peebles, 1983), (ξHam; Hamilton,

1993) and Landy–Szalay (ξLS; Landy & Szalay, 1993):

ξPH(s) =
DD

RR
−1, (1.141)

ξDP(s) =
DD

DR
−1, (1.142)

ξHam(s) =
DD×RR

(DR)2 −1, (1.143)

ξLS(s) =
DD−2DR+RR

RR
, (1.144)

(1.145)
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where, DD and RR represent the normalised number of pairs for the data and the random

catalogues:

DD(s) =
NDD(s)

ND(ND −1)
RR(s) =

NRR(s)

NR(NR −1)
DR(s) =

NDR(s)

NDNR
, (1.146)

with NDD(s), NRR(s) and NDR(s) being the number of data-data, random-random, data-

random pairs separated by a distance s, respectively. Pons-Bordería et al. (1999); Kerscher et al.

(2000); Vargas-Magaña et al. (2013) present comparisons between some of these estimators. It

turns out that while the PH one is convenient for a cubic simulation, the LS is more adapted

for a survey-like geometry (i.e. light-cone).

Often, the RR term must be estimated using a random catalogue47 that has the same survey

geometry as the data (footprint with masking and n(z)), however, for cubic simulations with

periodic boundary conditions one can compute it analytically:

RR(s) =
4π

3

s3
max − s3

min

2V
, (1.147)

where V is the volume of the box, smax and smin determine the boundaries of a separation bin.

One should notice that this calculations assume that the clustering is isotropic, which is in

agreement with the cosmological principle. Nevertheless, the RSD and the Alcock & Paczynski

(AP Alcock & Paczynski, 1979) effect induce anisotropies with respect to the line-of-sight

(LOS). Consequently, it is interesting to study how the clustering changes with respect to this

direction.

Anisotropic two-point correlation function. Given two galaxies at s1 and s2, with respect to

the Earth, the LOS can be approximated by l = (s1 + s2)/2. Therefore, the 2D 2PCF is defined

for s⊥ and s∥ separations, where ⊥ and ∥ denote the directions perpendicular to the LOS and

along the LOS:

s∥ =
s · l

|l | |s⊥| =
√

s2 − s2
∥ , (1.148)

where s = s2 − s1 is the separation between the two galaxies. ξ(s⊥, s∥) can be computed with

the same estimator as for the isotropic 2PCF, but the 1D separation bins are replaced by 2D

separation grids. Lastly, (s⊥, s∥) are usually replaced by (s, µ), where µ = cosθ = s∥/|s| and the

ξ(s,µ) is projected using the Legendre polynomials Lℓ(µ) into multipoles:

ξℓ(s) =
2ℓ+1

2

∫ 1

−1
Lℓ(µ)ξ(s,µ)dµ, (1.149)

47A random catalogue should contain 3D randomly and uniformly sampled positions, on which the data survey
geometry can be applied.
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where ℓ = 0, ℓ = 2 and ℓ = 4 denote the monopole, quadrupole and hexadecapole, that are most

often used in BAO and RSD analyses.

Two-point cross correlation function. When two different types of tracers share the same

volume (e.g. LRG and ELG), besides studying only the individual auto-2PCF – as defined

previously – one can also compute the cross-2PCF between the two tracers 1 and 2, e.g.:

ξPH =
D1D2

R1R2
−1, (1.150)

ξLS =
D1D2 −D1R2 −D2R1 +R1R2

R1R2
, (1.151)

(1.152)

In this case, D1 and D2 denote the two data catalogues, with their corresponding R1 and R2

random catalogues. Moreover, both 1D (isotropic) and 2D (anisotropic) cross-2PCF can be

computed, as well.

Power spectrum

In order to compute the power spectrum, one needs the density field δ(k), which is usually

obtained using Fast Fourier Transform (FFT) of the configuration space density field δ(x). In

practice, the δ(x) is estimated on a grid of size NG using a grid sampling scheme (e.g. Nearest

Grid Point or Cloud-In-Cell, see Sefusatti et al. (2016) for a comparison of several methods)

starting from a catalogue of matter tracers.

Finally, the isotropic power spectrum is computed in k shells of a given width and volume Vs:

P (k) =
Vs

Nk

Nk∑
i =1

|δ′(k i )|2, (1.153)

where Nk is the number of modes in a given k shell. In a similar way as the 2PCF, there is

an anisotropic power spectrum P (k,µ), as well, that can be decomposed in multipoles Pℓ(k)

using Legendre polynomials.

In contrast to the 2PCF, one has to subtract the shot-noise from the isotropic P (k) and from the

monopole of the P (k,µ), due to the self-correlation of discrete objects. The Poisson shot-noise

can be estimated as the inverse of the mean tracer number density.

In a similar way to the 2PCF, a random catalogue – having the same footprint and n(z) must be

used to compute a correctly normalised power spectrum of a data-like48 catalogue. Despite

48light-cone
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the correct normalisation using the random catalogue, the resulting P (k)obs:

P (k)obs =
∫

dk ′W (k,k ′)P (k ′)true (1.154)

is a convolution of the true power spectrum with a window function W (k,k ′). The window

function includes the footprint, n(z), the weights and the effect introduced by using a cos-

mological model to convert the redshift into distance (see Section 1.4.4), that may different

than the "true" cosmology of the Universe. The true power spectrum is the actual physical

power spectrum in the absence of any systematic effect. For details on how to compute the

power spectrum and include the effect of the window function, one can consult Feldman et al.

(1994); Cole et al. (2005); Percival et al. (2007); Beutler et al. (2017); Gil-Marín et al. (2020) and

the references therein.

The bias function

The current understanding of the galaxy formation suggests that galaxies are formed into

DM haloes that are found in the overdense (above a threshold) regions of the dark matter

field. As a consequence, galaxies and haloes constitute biased samples of the matter density

field. This means that mathematically, the matter tracer (tr, galaxy or halo) field at a given

redshift δtr(x , z) is connected to the underlying matter field δm(x , z) through a bias function B:

δtr(x , z) =B (δm(x , z)). For an in-depth review of the galaxy bias, one can consult Desjacques

et al. (2018).

In general, the bias of galaxies is different than the one of haloes due to the fact that there is no

one-to-one match between galaxies and haloes. This is partly caused by the specific physical

processes of the baryonic matter. Nevertheless, neglecting the baryonic physics (see more

details in Chapter 2), one can study perturbatively the bias of haloes and galaxies in the same

way. Therefore, the matter tracer density field up to the second order in the Eulerian PT is

(Nicola et al., 2023):

1+δtr = 1+b1δm + b2

2

(
δ2

m −δ2
m

)
+ bK

2

(
K 2 −K 2

)
+ε, (1.155)

where b1 and b2 are the linear and quadratic Eulerian biases and ε captures the stochasticity

of the discrete tracers. Furthermore, K 2 = Ki j K i j and K is the tidal tensor with its bias bK :

Ki j ≡ ∂2Φ

∂xi∂x j
−δK

i j
∇2Φ

3
. (1.156)

The δ2
m and K 2 have been subtracted to ensure that the matter tracer field has mean zero.

One can also define the Lagrangian bias with respect to the initial density field. However, the

Eulerian and Lagrangian expansions are equivalent if all terms are considered up to a given

order.
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The resulting linear order galaxy (or halo) auto power spectrum Pgg and galaxy-matter cross

power spectrum follow:

Pgg = b2
1Pmm +PSN Pgm = b1Pmm, (1.157)

where PSN at the lowest order can be approximated to the Poisson shot-noise introduced by

the discrete nature of the galaxies. Numerically, PSN = 1/ng, where ng is the average galaxy

number density. Finally, the linear bias is a good approximation at scales k ≤ 0.03h/Mpc at

z = 0 within ≈ 10 per cent precision.

1.4.4 The Baryonic Acoustic Oscillations as Standard Ruler

As discussed in Section 1.2.3, BAO (see Weinberg et al. (2013) for a review) propagated until the

decoupling of baryons from the photons, leaving an overdense spherical shell of size rs around

the initial fluctuation. Due to gravitational instability, matter accumulated in the overdense

regions leading to galaxy formation. Consequently, one expects a higher probability to see

galaxies separated by a distance rs and thus an imprint in the 2PCF and power spectrum. In

this subsection, we explain how the measured 2PCF and power spectrum are modelled to

capture the BAO signature and thus constrain cosmological parameters. We focus on the

isotropic model, but we discuss about some aspects of the anisotropic case, see e.g. Bautista

et al. (2021); Gil-Marín et al. (2020) for more details.

Before computing the 2PCF ξm(s) or the power spectrum P m(k) of the matter tracers as

described in Section 1.4.3, the (RA, DEC and z) measurements provided by photometric and

spectroscopic surveys must be converted to comoving Cartesian coordinates x = (x1, x2, x3)

using a fiducial cosmology49:

x1 =X(z)cos(DEC)cos(RA) (1.158)

x2 =X(z)cos(DEC)sin(RA) (1.159)

x3 =X(z)sin(DEC), (1.160)

where X is the transverse comoving distance at a redshift z, see equation 1.26. The top panels

of Figure 1.35 show one of the earliest measurements of LRGs 2PCF side-by-side with the latest

LRG clustering of the DESI EDR, both detecting the BAO signature. On one hand, the shape of

the 2PCF has two peaks: the first peak represents the initial fluctuations, while the second one

corresponds the BAO imprint caused by the propagating fluctuations, see Figure 1.11. On the

other, the BAO signature in the power spectrum has a undulate shape. This is explained by the

fact that the Fourier transform of a peak has a sinusoidal shape.

The lower panels of Figure 1.35 illustrate recent power spectrum and 2PCF measurements

from the BOSS and eBOSS surveys, together with their best-fitting curves. The isotropic 2PCF

49For a study on the impact of the fiducial cosmology on BAO measurements, one can consult Carter et al. (2020).
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Figure 1.35: The Baryonic Acoustic Oscillations signature in the galaxy clustering mea-
surements (and best-fitting models for the lower panels). Figure 2 of Eisenstein et al.
(2005); Figure 5 from Moon et al. (2023); Figures from https://www.sdss4.org/science/
final-bao-and-rsd-measurements/.
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and power spectrum models are of the following kind (Xu et al., 2012):

ξ(s) = B 2(s)ξtemp(αs)+ A(s) P (k) = B 2(k)P temp(k/α)+ A(k), (1.161)

where B(s), B(k), A(s) and A(k) are nuisance functions that describe the broadband shape and

do not contain BAO information, hence one can marginalise them. Nevertheless, the choice of

these functions may bias the BAO measurements. A typical choice for the configuration space,

that should not bias the BAO measurements according to (Xu et al., 2012; Vargas-Magaña et al.,

2014), is a free B parameter and a polynomial function for A(s):

A(s) = a0s−2 +a1s−1 +a2, (1.162)

where a0, a1, a2 are free parameters. More details about the Fourier space model can be found

in e.g. Xu et al. (2012); Ross et al. (2015).

The cosmologically significant parameter is α, which is related to the Alcock–Paczynski pa-

rameter50 (Alcock & Paczynski, 1979). Technically, α shifts the template 2PCF ξtemp(s) or

power spectrum P temp(k), such that their BAO signature matches the one from the measured

clustering. Furthermore, the template 2PCF can be obtained through the Hankel transform of

a template power spectrum Pt(k) 51:

ξtemp(s) =
1

2π2

∫ ∞

0
k2 j0(ks)Pt(k)dk, (1.163)

Pt(k) =

[(
P L

m(k)

P L,nw
m (k)

−1

)
e−

1
2 k2Σ2

nl +1

]
P L,nw

m (k). (1.164)

In the previous equation, both P L,nw
m (k) and P L

m(k) are linear power spectra computed with

the fiducial cosmological parameters. However, while P L
m(k) is the result of codes such CAMB

or CLASS, as described in Section 1.3.2, P L,nw
m (k) can be estimated using the formulas of

Eisenstein & Hu (1998) and denotes the smooth (without BAO wiggles, nw) linear power

spectrum. Lastly,Σnl takes into account the non-linear damping of the BAO feature (Eisenstein

et al., 2007a) and j0(x) is the zeroth order spherical Bessel function.

In order to understand the cosmological information captured by α, one has to use the sound

horizon rs as a standard ruler, i.e. a fixed known scale within the entire Universe. Therefore, it

is worth analysing separately the comoving sound horizon parallel r ∥
s and perpendicular r⊥

s to

the LOS through the equations (1.51) (1.60):

r⊥
s = (1+ z)DA(z)∆θs r ∥

s =
c∆zs

H(z)
, (1.165)

where ∆θs and ∆zs are the angular and radial sizes of the sound horizon at redshift z, respec-

tively. The cosmological principle assumes that the Universe is isotropic, therefore r⊥
s = r ∥

s for

50Sometimes α is called the Alcock–Paczynski parameter, however (Alcock & Paczynski, 1979) study ∆z
z∆θ

.
51In practice, the isotropic model of the power spectrum is based on Pt(k) as well.
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a given set of cosmological parameters. Nevertheless, we show that this may not be the case

for the measured sound horizon r⊥,m
s and r ∥,m

s from the measured clustering ξm(s) or P m(k).

The values of r⊥,m
s and r ∥,m

s depend on the real angular and radial sizes of the sound horizon

(∆θreal
s , ∆zreal

s ) in the observable Universe, and the fiducial cosmology needed to compute

Dfid
A , H fid(z):

r⊥,m
s = (1+ z)Dfid

A (z)∆θreal
s r ∥,m

s =
c∆zreal

s

H fid(z)
. (1.166)

Therefore, there are two important effects that lead to the r⊥,m
s ̸= r ∥,m

s inequality:

1. due to the RSD effect, ∆zreal
s is smaller than the actual radial size of the sound horizon,

see Section 1.4.5;

2. the Alcock–Paczynski effect (Alcock & Paczynski, 1979) implies that ∆zs

z∆θs
depends on the

cosmological parameters, hence
∆zfid

s

z∆θfid
s

̸= ∆zreal
s

z∆θreal
s

52, if the fiducial cosmology is different

than the real one.

Furthermore, starting from equation (1.165) and considering the template clustering com-

puted using the fiducial cosmological parameters:

r fid
s = (1+ z)Dfid

A (z)∆θfid
s r fid

s =
c∆zfid

s

H fid(z)
. (1.167)

In this case, r⊥,fid
s = r ∥,fid

s because there is only one set of cosmological parameters involved

in the computation and the RSD effect is not introduced into the template. Lastly, using

equation (1.165) with the real cosmological parameters (they are unknown, but are the final

product of the BAO measurements), one obtains:

r real
s = (1+ z)Dreal

A (z)∆θreal
s r real

s =
c∆zreal

s

H real(z)
. (1.168)

In contrast to the fiducial case, r⊥,real
s ̸= r ∥,real

s
53 due to the RSD effect. Nevertheless, the

BAO reconstruction – presented in Section 1.4.6 – is used to remove the RSD effect, hence

r⊥,real
s = r ∥,real

s for BAO studies.

52Using equation (1.167),
r⊥,m

s

r ∥,m
s

=
∆θreal

s

∆zreal
s

∆zfid
s

∆θfid
s

53It is important to remark that the superscript "real" refers to the real cosmological parameters, but ∆zreal

is from real measurements. This means that there is a "true" sound horizon r true
s that is not affected by RSD

and is directly computed using the real cosmological parameters. This can also provide ∆ztrue. Ideally, the BAO
reconstruction should bring the r real

s close to r true
s , thus we use interchangeably r true

s and r real
s . Nevertheless for

RSD fitting, one must use r true
s in equations (1.173) and the RSD model takes into account the anisotropy that

makes r⊥,real
s ̸= r ∥,real

s .
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In the isotropic case, it is more convenient to define an angle-averaged sound horizon54 and

spherically-averaged distance DV (z):

rs =
[(

r⊥
s

)2 · r ∥
s

]1/3
, (1.169)

DV (z) =

[
cz(1+ z)2D2

A(z)

H(z)

]1/3

. (1.170)

Considering now that when then template clustering fits the measured clustering, α should

match the measured sound horizon with the fiducial one. Therefore, one obtains using the

equations (1.166) (1.167):

α =
r fid

s

r m
s

=

(
∆θfid

s

∆θreal
s

)2/3 (
∆zfid

s

∆zreal
s

)1/3

. (1.171)

Finally, replacing the equations (1.167) (1.168) (1.170) into the previous one:

α =

(
Dreal

A (z)

Dfid
A (z)

)2/3 (
H fid(z)

H real(z)

)1/3
r fid

s

r real
s

=
Dreal

V (z)

r real
s

r fid
s

Dfid
V (z)

. (1.172)

Given the dependency of the Hubble parameter H(z) and the angular diameter distance

DA(z) on the cosmological parameters, one can notice that α quantifies how different the real

cosmological parameters are compared to the fiducial ones. In practice, the value of α and its

uncertainty are obtained by fitting a BAO model to the measured clustering, and Dfid
A (z) and

H fid(z) are computed directly using the fiducial cosmological parameters. Consequently, a

constraint on α translates into constraints on the cosmological parameters through Dreal
A (z)

and H real(z). While for low redshift 55 galaxy samples an isotropic BAO study performs similarly

to an anisotropic one, at higher redshifts, it is better to fit separately (Anderson et al., 2014)56:

α∥ =
H fid(z)r fid

s

H real(z)r real
s

α⊥ =
Dreal

A (z)r fid
s

Dfid
A (z)r real

s

, (1.173)

where α =
(
α∥α2

⊥
)1/3

. One of the reasons is that the anisotropic BAO study can provide addi-

tional cosmological constraints at higher redshifts. Moreover, as previously discussed, the

sound horizon is affected by the RSD along the line-of-sight.

If we replace the equations (1.68) (1.59) and the Hubble parameter H(z) from Section 1.2.1

into the formulas of α, equation (1.172), one observes that there is a degeneracy between H0

and the ρ0 parameters of the cosmological components (or k for curvature)57. This means

54Due to anisotropies (RSD or AP) the BAO "sphere" of radius rs is in fact an ellipsoid with two axes of size r⊥s
and one of size r ∥s and of volume V = 4π

3 r⊥s × r⊥s × r ∥s . If the volume of the ellipsoid is transformed into a sphere of

volume V = 4π
3 r 3

s , one obtains the angle-average sound horizon.
55At low redshifts, the different cosmological distances become similar.
56In addition, the signal was not strong enough for Anderson et al. (2014) to perform aniostropic measurements.
57For a given H0, there is a set of ρ0 and k parameters such that α remains unchanged.
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that BAO measurements alone can provide constraints only on Ω0 parameters. Nevertheless,

one has to remove the dependency on the rs, either by measuring the anisotropic BAO or by

having measurements at different redshifts. Otherwise, one needs additional constraints such

as CMB or BBN measurements.

Table 1.1 contains measurements from CMB anisotropies, BAO, BBN and different combina-

tions of data-sets. One can observe that the latest BAO measurements have weaker constraints

on the cosmological parameters than the CMB ones. Nonetheless, the combined BAO and

CMB analysis improves significantly the precision on the Ω0 parameters. Specifically in the

case of oΛCDM, the combined BAO+CMB measurements improve the precision by almost

an order of magnitude. In a similar way, for the wCDM, the precision on w is significanlty

improved for the combined BAO+CMB analysis. These improvements are induced by the BAO

due to the 3D58 measurements at multiple redshifts. Lastly, the combined BAO+BBN59 studies

do not improve the measurements for the Ω0 parameters, but they allow to constrain H0 and

rs ≡ rdrag to values consistent with CMB measurements alone.

1.4.5 Redshift Space Distortions

Due to the expansion of the Universe, the redshift of a light-source is related to its distance with

respect to the Earth, i.e. farther sources have higher redshifts, see Section 1.2.2. Nevertheless,

light-sources have an additional peculiar motion due to the gravitational interaction (similarly

to CDM particles in Section 1.3.3, see equation (1.86)). This peculiar velocity introduces

Doppler redshift of the light, distorting the cosmological redshift (Redshift Space Distortions,

Kaiser, 1987). Therefore, the measured redshift by spectroscopic surveys represents an overlap

of the expansion and the peculiar motion.

Consequently,

• the distances estimated from the redshifts as in equation (1.51) are distorted:

– if a light-source moves away from Earth, its estimated distance will be larger than

the actual one;

– if a light-source approaches Earth, its estimated distance will be smaller than the

actual one.

• a 3D map of the light-sources will be anisotropic, as RSD affects the radial measurements

(redshift) and not the angular ones.

Figures 1.36 and 1.37 illustrate the effect of peculiar motion on the distance estimation and

thus on the galaxy 2PCF. Due to the RSD, the spherically symmetric BAO feature appears

squeezed along the line-of-sight.

58Note that the CMB maps of temperature anisotropies are only angular (2D) maps at a single redshift.
59These studies include implicitly the CMB black body temperature measurement (Fixsen, 2009) T0 = 2.72548±

0.00057 K, that is needed to estimate the energy density of photons in the computation of rs, equation (1.68).
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Figure 1.36: Redshift space distortions. Icons from https://www.onlinewebfonts.com/icon

At lower scales, i.e. ≈ 50Mpc/h, as galaxies are closer to the overdense region, their peculiar

velocities cancel out the separation due to the Hubble flow. Therefore, galaxies that should

be separated by a certain distance appear as collapsed along the radial direction. Lastly, at

non-linear scales below 20Mpc/h, the virial motion of galaxies causes the Finger-of-God effect

(Jackson, 1972).

The multipole decomposition of the 2D 2PCF is shown in the right-hand side of the Figure 1.37.

The presence of the RSD effect makes the quadrupole different than zero. This suggests that

instead of fitting the entire 2D 2PCF to extract cosmological parameters, one can fit the 2PCF

(or power spectrum) multipoles, simplifying the process. Nevertheless, in practice, one creates

a model of the 2D power spectrum P (k,µ) and then decomposes it into multipoles. The

simplest 2D model power spectrum that accounts for the RSD effect is (Kaiser, 1987):

P (k,µ) = (b(k)+ f µ2)2Pm(k). (1.174)

In the former equation, Pm(k) is the matter power spectrum (that can be obtained from linear

or non-linear PT), b(k) is a scale-dependent bias and f ≡ dlnD1(a)/da, equation (1.106). After

the P (k,µ) model is decomposed in multipoles Pℓ(k), one can directly fit the measured power

spectrum multipoles. On the other hand, one can Hankel transform the model multipoles:

ξℓ(s) =
iℓ

2π2

∫ ∞

0
k2 jℓ(ks)Pℓ(k)dk (1.175)
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Figure 1.37: The effect of redshift space distortions on the 2D two-point correlation function
and the BAO signature and the multipole decomposition of the 2D 2PCF. Figures from https:
//www.sdss4.org/science/final-bao-and-rsd-measurements/, (Bautista et al., 2021).

and then fit the measured 2PCF multipoles – with jℓ the spherical Bessel functions of order ℓ.

The combined study of BAO and RSD can be used to test the GR (e.g. the reviews Weinberg

et al., 2013; Ishak, 2019). Nevertheless, more accurate models are needed (e.g. Gil-Marín et al.,

2012). Recent BAO+RSD studies (e.g. Bautista et al., 2021; Gil-Marín et al., 2020) have shown

that the measurements are in agreement with the GR and ΛCDM models.

1.4.6 Reconstruction

As discussed earlier in this section, after the decoupling of baryons and photons, the gravita-

tional attraction leads to the formation of the LSS. In addition, this coherent flow of matter

affects the BAO signature in two ways:

1. gives birth to the RSD effect previously discussed, squeezing the signature;

2. displaces the particles that form a "perfect" BAO spherical shell in the early Universe,

such that the BAO signature is smeared out in time (top panels of Figure 1.38). From

the point of view of the statistical description, part of the BAO signal in the two-point

clustering statistics leaks into the higher-order clustering statistics (Schmittfull et al.,

2015).

Eisenstein et al. (2007b) have introduced the BAO reconstruction technique to displace the

galaxies back in time, in order to estimate the linear density field and thus increase the BAO

signal – by restoring the information from higher-order statistics into the two-point clustering

(Schmittfull et al., 2015), hence pushing the monopole and quadrupole close to zero –, see the

bottom panels of Figure 1.38. Further studies (Padmanabhan et al., 2012; Burden et al., 2014,
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2015; Seo et al., 2022, e.g. ) have developed BAO reconstruction to remove the RSD effect as

well.

Mathematically, one must solve the following equation to find the displacement field Ψ (of

galaxies, for example) inspired from the ZA equation (1.121):

∇·Ψ+ f ∇· (Ψ · s)s = −δgal

b
. (1.176)

The additional term f ∇ · (Ψ · s)s to ZA is required to describe the RSD effect (Ψ · s is the

displacement along the line-of-sight). The bottom left panel of Figure 1.38 illustrates the

Lagrangian displacement field Ψ in blue, that is applied oppositely on the galaxies (particles).

The result can be observed in the bottom right panel, where the BAO feature is much closer to

the red ring, increasing thus the BAO signal.

The first application of the BAO reconstruction to galaxy surveys has been performed by

Anderson et al. (2012); Padmanabhan et al. (2012). Padmanabhan et al. (2012) have observed

that BAO reconstruction decreases the error on the BAO measurements by almost a factor of

two. However, it is worth noting that the reconstruction has been performed on a low-redshift

galaxy sample, where it is the most helpful. Therefore the same level of improvement is not

expected at higher redshifts. Consequently, since then, this technique has been continuously

used in BAO studies (e.g. Bautista et al., 2021; Gil-Marín et al., 2020; Alam et al., 2021; Zhao

et al., 2022) to increase the precision and accuracy of the cosmological parameters.
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Figure 1.38: Top: A thin slice of a matter density field simulation: the blue points represent
an overdense region; the black points around the red circle represent the BAO feature that is
being spread out due to the gravitational evolution; the blue arrows illustrate the displacement
field Ψ. The inner panels show the radial profile of the BAO signature: the black continuous
line show the radial profile of the black points around the red circle, whereas the long-dashed
lines denote the initial radial profile. Bottom: The 2PCF multipole from a reconstructed galaxy
catalogue. Figure 1 from Padmanabhan et al. (2012) and Figure 3 from Bautista et al. (2021).
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2 Constructing galaxy catalogues for
covariance matrix estimation

Due to the stochastic nature of the large scale structure, an implicit uncertainty – cosmic

variance, whose estimation is a challenge in itself – is inherent in its measurement. The first

section of this chapter introduces various techniques to estimate the cosmic variance for large

scale structure clustering measurements, each having its own advantages and disadvantages.

Therefore, a crucial task is to compare different methods for estimating covariance matrices –

mathematical objects that describe the cosmic variance – for clustering measurements. Given

that DESI will achieve an unprecedented level of statistical precision, making systematic

effects potentially significant, the Cosmological Simulations Working Group (CosmoSimsWG)

has initiated the DESI mock challenge (Chuang et al., 2023). This challenge aims to compare

different methodologies for constructing covariance matrices and to assess the impact of

certain systematic effects on the simulated data.

One method involves building numerous galaxy simulations to replicate multiple measure-

ments sampled from the same intrinsic probability distribution. Given the fact that the full

N -body simulations are computationally expensive, faster methods like FASTPM have been

developed to evolve the DM field and obtain haloes. As a consequence, the second section

presents an overview of different methods to create galaxy catalogues starting from DM haloes.

The third section summarises my contribution to the generation of the First Generation Mocks

for DESI. Practically, I have co-developed a code and applied it on cubic simulations to cut the

survey geometry and make them more realistic.

Part of the DESI mock challenge, I have applied the Halo Occupation Distribution (HOD)

technique to assign galaxies to FASTPM haloes. Additionally, I have assessed the sensitivity of

the estimated covariance matrices to the HOD fitting. The results are presented in the last sec-

tion, which constitutes an article submitted to the Monthly Notices of the Royal Astronomical

Society (MNRAS) (Variu et al., 2023a).

89



Chapter 2 Constructing galaxy catalogues for covariance matrix estimation

2.1 Covariance matrix estimation

As explained in Section 1.4.4, the cosmological parameters are constrained by fitting a dedi-

cated model to the clustering statistics (e.g. power spectrum or 2PCF) for which a covariance

matrix is needed. There are multiple methods to estimate the covariance matrix: the mock

based technique in which the covariance matrix is computed from an ensemble of simulated

datasets, internal estimators that resample the observed dataset (e.g. jackknife estimation),

and analytical methods.

2.1.1 Sampled covariance matrix

In order to compute the sampled covariance matrix, one requires multiple clustering mea-

surements. This can be achieved by building many simulations and measure their clustering

statistics. Previous surveys have used faster approximate simulations such as PATCHY mocks

(Kitaura et al., 2013) and EZMOCKS (Chuang et al., 2015; Zarrouk et al., 2021; Zhao et al., 2021)

(for BOSS and eBOSS). DESI tests additional simulations such as BAM (Balaguera-Antolínez

et al., 2020; Balaguera-Antolínez et al., 2019; Pellejero-Ibañez et al., 2020) and FASTPM. One

issue is the fact that approximate techniques are less accurate at the non-linear scales which

can affect the covariance matrix at the those scales. Additionally, the estimated matrix is

sampled from a Wishart distribution which can affect the estimation of the parameter errors,

see e.g. Hartlap et al. (2007); Percival et al. (2022).

Denoting by Y (x) the clustering statistics as function of x (e.g. P (k), ξ(s)), one can compute

the sampled covariance matrix:

Cs =
1

Nmocks −1
MTM, (2.1)

where the components of the matrix M are defined

Mi j = Yi (x j )− Ȳ (x j ), i = 1,2, ..., Nmocks, x j ∈ [xmin, xmax]. (2.2)

The Yi denotes the vector corresponding to the i−th clustering realisation, Ȳ represents

the mean vector over all Nmocks realisations and [xmin, xmax] defines the interval of points of

interest.

2.1.2 Jackknife

In this Section, we only introduce the delete-one Jackknife (or just Jackknife) technique.

Nevertheless, other resampling methods such as bootstrapping exist. For more details of

internal estimators one can consult e.g. Norberg et al. (2009); Mohammad & Percival (2022).

The principle behind the delete-one Jackknife is to split the volume in Nsub sub-volumes and

compute the clustering statistics for the total volume of (Nsub −1) sub-volumes. This means,
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that there are Nsub clustering realisations each using a fractional (Nsub −1)/Nsub volume of

the total.

CJK =
Nsub −1

Nsub
MTM, (2.3)

where the components of the matrix M are similar to the ones of equation (2.2) except i , that

runs from 1 to Nsub instead of Nmocks.

The advantage of this technique is that all physical effects in the data are present in the

covariance as well. In contrast, for mock based techniques one has to transform the cubic

simulations into realistic one by adding systematic effects. The disadvantage is that the

internal estimators can overestimate the true covariance matrix by 25 to 60 per cent, see

e.g. Norberg et al. (2009). Nevertheless, Mohammad & Percival (2022) have shown that their

weighting schemes can adjust the Jackknife to reliably estimate the covariance matrix for the

2PCF. Lastly, for these kind of methods, it is more difficult to estimate the window function (i.e.

the shape of the volume) when computing the power spectrum from the Jackknife volumes.

2.1.3 Analytical covariance matrix

Considering that the primordial overdensities are sampled from a Gaussian distribution and

all Fourier k modes of δ(k) grow independently, the covariance matrix between
(
ξℓ(s),ξℓ′(s)

)
is (Xu et al., 2013):

Cℓℓ′
i j =

2(2ℓ+1)(2ℓ′+1)

V

∫
k3dlogk

2π2 jℓ(kri ) jℓ′(kr j )P 2
ℓℓ′

(k), (2.4)

where V is the survey volume, jℓ(kr ) is the spherical Bessel function of order ℓ and

P 2
ℓℓ′

(k) =
1

2

∫ 1

−1

[
P (k,µ)+ 1

n

]2

Lℓ(µ)Lℓ′(µ)dµ. (2.5)

P (k,µ) is the 2D power spectrum, n is the average galaxy number density and Lℓ(µ) are

Legendre polynomials of order ℓ. This covariance matrix does not take into account the

binning of the correlation function, however the binned version can be consulted in Xu et al.

(2013).

As explained in Section 1.3, non-linear evolution introduces mode coupling. However, one

can largely account for mode coupling by using non-linear models for the 2D power spectrum

and shot-noise. Moreover, in the previous formula n is redshift independent, but Xu et al.

(2013) provides a method to include n(z).

In terms of the power spectrum, one can find different models for its covariance matrix in

e.g. Wadekar & Scoccimarro (2020); Wadekar et al. (2020); Blake et al. (2018). In this case, it

can be complicated to account for the survey geometry (through the window function) and

other effects. Moreover, higher-order correlations such as four-point (a.k.a trispectrum) may
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be included to account for various non-Gaussian effects.

Finally, analytical covariance matrices are not affected by sampling noise and are cheaper from

the computational cost point of view. Nevertheless, survey geometry (through the window

function) is difficult to model analytically, making the mock-based covariance matrices a

preferred approach from this point of view.

2.2 Galaxy-Halo connection

Section 1.3 presents the gravitational evolution of the CDM starting from the initial fluctuations

in the CDM and primordial plasma of baryons and photons to the large scale structure of

the Universe and collapsed objects such as DM haloes. However, that description does not

include the specificity of the baryonic evolution after the baryon-photon decoupling. In this

section, we briefly introduce the main modelling techniques to understand the evolution and

creation of galaxies in the cosmological context, i.e. the galaxy-halo connection and how they

can be used to create galaxy catalogues starting from DM haloes ones. For a more detailed

presentation, we refer to Wechsler & Tinker (2018) and references therein.

After decoupling, the gas began to fell in the potential wells of the DM haloes. Furthermore,

the gas cooled down enough to form stars and then protogalaxies, in the massive enough DM

haloes. The further galaxy evolution is influenced by the evolution of DM haloes and energetic

processes within galaxies such as feedback effects. The galaxy-halo connection incorporates

both the physical and statistical links between halos and galaxies.

Figure 2.1 shows the large scale structure formed out of the CDM fluid and a biased galaxy

distribution that is tuned to match clustering properties of an observed galaxy sample. The

bias1 implies that galaxies form only in some regions of the DM structure, usually in DM haloes

about a certain mass threshold 2. One of the reason is that due to different astrophysical effects,

the gas in some regions cannot collapse to form stars.

Studies of the stellar-to-halo mass relation (i.e. the mass of a typical galaxy as function of

its host halo mass) show that in fact, assuming all haloes contain Ωb/Ωm ≈ 0.17 fraction of

baryons, only 20 to 30 per cent – at its peak – of baryons have collapsed into stars. For more

massive and less massive haloes, the percentage is even lower. The Active-Galactic-Nucleus

(AGN) of galaxies can heat the halo gas hindering the star formation and thus decreasing

the abundance of high mass galaxies in massive haloes. For lower mass haloes, feedback of

massive stars such as stellar winds can eject gas or prevent it from falling into a galaxy, limiting

the maximum galaxy mass.

In addition, Figure 2.1 contains a summary of main types of galaxy-halo connection models.

These models can be used to produce simulated galaxy catalogues. It is important to mention

1See also Section 1.4.3.
2Note that not all haloes above this threshold contain galaxies.
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Figure 2.1: The simulated dark matter distribution and the corresponding galaxy distribution
obtained using an abundance matching model. A summary of galaxy-halo connection models.
Figure 1 of Wechsler & Tinker (2018)
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that there is no approach that is agreed to as "strictly correct". Each method has its own

limitations where it may not match the data in particular regimes. Therefore, we briefly

introduce each of them.

2.2.1 Abundance Matching models

Abundance Matching (AM) models require a match between some properties (e.g. mass, size)

of galaxies and some halo properties (e.g. mass, maximum circular velocity). The simplest and

most intuitive match is the one of masses. One can assume that the most massive galaxies

are hosted by the most massive haloes. Nevertheless, one has to consider a certain scatter

between these two properties.

The CDM paradigm suggests that the DM haloes contain substructures, called subhaloes. As a

consequence, a simple generalisation is that each halo and subhalo – above a certain threshold

– host a galaxy whose mass (or other property) is matched by abundance to the property of its

host. This is called subhalo abundance matching (SHAM).

AM can be regarded as a non-parametric technique that directly links the stellar mass function

to the halo mass function, despite the necessity of including a scatter and finding the matching

properties. Nevertheless, an important requirement of these models is high-resolution simula-

tions capable to resolve the DM substructures and to accurately keep track of the history of

the halo (i.e. merger tree).

2.2.2 The Halo Occupation Distribution

The Halo Occupation Distribution (HOD) method has been used in the article shown in

Section 2.4. Briefly, the number of galaxies (central or satellite) is determined by a Probabil-

ity Distribution Function, whose mean depends on the halo mass (or luminosity) through

different functional forms.

A generalisation of this method is to include a conditional luminosity function (CLF) in order

to describe the full distribution of galaxy luminosities for a given halo mass. In a similar way

as for HOD, the distribution of central galaxy luminosities and the one of satellite galaxies are

treated separately.

Compared to AM models, the HOD ones can be very complicated depending on the studied

galaxy sample, i.e. whether it was selected by star formation rates or emission lines.

2.2.3 Empirical forward modelling

Empirical forward modelling is used to understand the galaxy evolution inside haloes through

time. This is achieved by studying the galaxy-halo connection at each epoch. For example,

one can perform AM at each epoch and follow the evolution in time of haloes through the
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mass accretion histories (e.g. in a N -body simulation), in order to study the galaxy accretion

history and star formation history.

Another technique is to parameterize the connection between galaxy star formation rate and

the halo mass accretion rate and use simulated merger histories, in order to analyse and predict

the galaxy evolution (such as star formation histories and statistical galaxy properties). A

downside of this approach is that it requires high-resolution simulations to trace the evolution

of DM haloes and subhaloes.

2.2.4 Hydrodynamical simulations

In contrast to the previous models, hydrodynamical simulations build galaxies by solving

the equations of both gravity and hydrodynamics in an expanding Universe. This is done by

including astrophysical processes such as stellar, black hole and supernovae feedbacks, gas

cooling, and following the evolution of dark matter, gas and stars over time.

As it is impossible to simulate in a cosmological context, all physical phenomena down to the

scales needed for galaxy formation, one needs to parameterize physical phenomena occurring

below the resolution scale. These effects are included in the so-called "subgrid physics"

domain. These parameterizations can be tuned using real measurements or using results of

empirical models (e.g. AM, HOD) connected to the observations, as well.

The combined study of hydrodynamical simulations and empirical models such as HOD

allows for robustness tests for both of them. On one hand, it is possible to test the assumptions

in the empirical models by comparing them to the these simulations. On the other hand,

having HOD models constrained from the data and measured from the hydrodynamical

simulations, one can check how realistic hydrodynamical simulations are.

2.2.5 Semi-analytic models

The idea behind these models is to approximate some physical processes with analytic func-

tions that can be used through the merging history of haloes, in order to decrease the compu-

tational cost for the study of galaxy formation and evolution. In practice, one can apply these

analytic models through the merger trees of N -body simulations. The main disadvantage is

that these models have a large number (10 to 30) of parameters. Therefore, the exploration of

the parameter space becomes a challenge. In addition, due to the implicit simplifications of

these models, one needs to continuously test them against full hydrodynamical simulations

and data.
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Figure 2.2: The SV3 radial number density n(z) of the three tracers: LRG, ELG, QSO. The
green curves denote the input n(z) used to downsample the number of objects, the red and
blue curves denote the measured n(z) from a final mock: for the supposed DESI Year 5 (red)
footprint and for the SV3 (blue) footprint .

2.3 First Generation Mocks for DESI

Numerical simulations are done in boxes and using (x, y, z) Cartesian coordinates. In contrast,

the resulting galaxy catalogues of photometric and spectroscopic surveys contain positions

in (RA, DEC, z). Moreover, the radial distribution of the measured targets is not uniform (see

Figure 1.28) and the targets do not cover the entire sky, see Figure 1.25. These two observations

describe what is called the survey geometry.

In order to correctly estimate the cosmic variance of measurements, the covariance matrix has

to take into account the survey geometry. Therefore, at first order, the simulated catalogues

must have the same survey geometry of the data. The mocks that have the same survey

geometry as the data are called CutSky. Part of CosmoSimWG, I have been tasked to apply the

survey geometry on the DESI First Generation Mocks (FirstGenMocks) for LRG, ELG and QSO.

The FirstGenMocks are sets of BGS, LRG, ELG and QSO catalogues, whose clustering matches

the one from the SV3 DESI data (DESI Collaboration et al., 2023b).
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My task was to convert the (x, y, z) into (RA, DEC, z) and apply the survey geometry for

25 realisations of 2Gpc/h ABACUSSUMMIT (Maksimova et al., 2021) simulation, 1000 cubic

EZMOCKS (Chuang et al., 2015; Zarrouk et al., 2021; Zhao et al., 2021) of 2Gpc/h and 2000

cubic EZMOCKS of 6Gpc/h, for each of the three tracers: LRG, ELG, QSO.

To this end, I have co-developed an adaptable PYTHON code3 (Generate-Survey-Mocks, GSM)

that reads in parallel the sub-boxes of a simulation, converts in parallel the (x, y, z) to (RA,

DEC, z) and applies the survey geometry, see Figure 2.2. The 2Gpc/h boxes have a lower

volume than the one surveyed by DESI for each of the tracer. Therefore, GSM applies the

periodic boundary conditions and practically multiplies the box as much as needed to cover

the requested volume and then it cuts the survey geometry. As a consequence, the cosmic

variance of the CutSky computed from the 2Gpc/h boxes is not correctly estimating the

uncertainty in the real measurements, since the same regions of the box are used multiple

times. Nevertheless, the 2Gpc/h EZMOCKS have been conceived to replicate the cosmic

variance of the ABACUSSUMMIT simulations.

In contrast, a 6Gpc/h box is large enough – if rotated optimally – to cut the volume4 of either

the North Galactic Cap (NGC) or the South Galactic Cap (SGC) of the DESI Year 5 footprint.

This is the reason why there are 2000 6Gpc/h EZMOCKS: 1000 for the NGC and 1000 for the

SGC. In the end, the covariance matrix for each of the three tracers is estimated using 1000

mocks. Similarly to the 2Gpc/h, GSM uses the periodic boundary conditions on the optimally

rotated 6Gpc/h box to cut the survey volume. Nevertheless, due to the larger volume and the

optimally chosen rotation, the final CutSky does not contain repeated volumes and thus the

set of 1000 CutSky can estimate correctly the cosmic variance of the data.

It is important to notice that the rotation has the role of optimising the necessary cubic volume

of the initial simulation. However, there are remapping techniques that transform a cubic

simulation into an elongated box-like shape, optimising even more the necessary initial cubic

volume (see e.g. Carlson & White, 2010).

The final mocks (survey geometry + additional masking and customisation) have been used by

Moon et al. (2023) in the first detection of the BAO on the EDR DESI data (DESI Collaboration

et al., 2023b).

2.4 Preprint version: "DESI Mock Challenge: Constructing DESI

galaxy catalogues based on FASTPM simulations"

3https://github.com/Andrei-EPFL/generate_survey_mocks
4up to a redshift of 3
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ABSTRACT
Together with larger spectroscopic surveys such as the Dark Energy Spectroscopic Instrument (DESI), the precision of large
scale structure studies and thus the constraints on the cosmological parameters are rapidly improving. Therefore, one must build
realistic simulations and robust covariance matrices.

We build galaxy catalogues by applying a Halo Occupation Distribution (HOD) model upon the FastPM simulations, such
that the resulting galaxy clustering reproduces high resolution 𝑁-body simulations. While the resolution and halo finder are
different from the reference simulations, we reproduce the reference galaxy two-point clustering measurements – monopole
and quadrupole – to a precision required by the DESI Year 1 Emission Line Galaxy sample down to non-linear scales, i.e.
𝑘 < 0.5 ℎ/Mpc or 𝑠 > 10 Mpc/ℎ.

Furthermore, we compute covariance matrices based on the resulting FastPM galaxy clustering – monopole and quadrupole.
We study for the first time the effect of fitting on Fourier conjugate [e.g. power spectrum] on the covariance matrix of the Fourier
counterpart [e.g. correlation function]. We estimate the uncertainties of the two parameters of a simple clustering model and
observe a maximum variation of 20 per cent for the different covariance matrices. Nevertheless, for most studied scales the
scatter is between two to ten per cent

Consequently, using the current pipeline we can precisely reproduce the clustering of 𝑁-body simulations and the resulting
covariance matrices provide robust uncertainty estimations against HOD fitting scenarios. We expect our methodology will be
useful for the coming DESI data analyses and their extension for other studies.

Key words: keyword1 – keyword2 – keyword3

1 INTRODUCTION

The study of Large Scale Structure of the Universe has significantly
improved in the last two decades leading to Baryon Oscillation Spec-
troscopic Survey (BOSS; Alam et al. 2017) and extended-BOSS
(eBOSS; Alam et al. 2021a) surveys. They have published the largest
3D map of over 2 millions galaxies and quasars (Alam et al. 2021a).
This has allowed the measurement of cosmological parameters to
a percent-level precision studying Baryonic Acoustic Oscillations
(BAO) and Redshift Space Distortions (RSD).

Currently, the Dark Energy Spectroscopic Instrument (DESI; Levi
et al. 2013; DESI Collaboration et al. 2022) is a five years long spec-
troscopic survey that will outperform previous surveys by a an order

★ E-mail: andrei.variu@epfl.ch
† E-mail: shadab.alam@tifr.res.in

of magnitude(DESI Collaboration et al. 2016a), aiming to constrain
the cosmological parameters with precision at a sub-percent level.
With its 5000 robotically controlled optical fibres (Silber et al. 2023;
Miller et al. 2023; DESI Collaboration et al. 2016b), DESI will scan
a third of the sky to map 40 millions galaxies (Lan et al. 2023) and
quasars (Alexander et al. 2023). Only after the five-month Survey
Validation (DESI Collaboration et al. 2023a), DESI has measured
the spectra of more than one million galaxies leading to the recent
Early Data Release (EDR) (DESI Collaboration et al. 2023b).

Based on the DESI Legacy Imaging Surveys (Zou et al. 2017;
Dey et al. 2019; Schlegel et al. 2023), there are five types of targets
that are selected (Myers et al. 2023) on which optical fibres are
assigned (Raichoor et al. 2023a) to measure and analyse their spectra
(Guy et al. 2023; Bailey et al. 2023; Brodzeller et al. 2023): Milky
Way Stars (MWS; Allende Prieto et al. 2020; Cooper et al. 2022),
Bright Galaxies (BGS; Ruiz-Macias et al. 2020; Hahn et al. 2022),

© 2021 The Authors
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2 Andrei Variu et al.

Luminous Red Galaxies (LRG; Zhou et al. 2020, 2023), Emission
Line Galaxies (ELG; Raichoor et al. 2020, 2023b), quasars (QSO;
Yèche et al. 2020; Chaussidon et al. 2023). Such a complex system
requires pipelines to optimise the observations (Schlafly et al. 2023;
Kirkby et al. 2023).

The sub-percent precision measurements expected from ongoing
and future surveys require careful analyses of the systematic effects.
To this end, the DESI Mock Challenge was launched as a series of
studies and projects to build and validate the methodology for the
cosmological analysis. In particular, one must find the most robust
way to estimate the uncertainty of the measurements (Chuang et
al. 2023). To achieve this goal, one needs to create multiple realistic
simulations of the large-scale structure, which is required to lower the
noise on covariance matrix and to describe accurately the non-linear
scales.

On one hand, the 𝑁-body simulations – e.g. (SLICS;
Harnois-Déraps et al. 2018), (UNIT; Chuang et al. 2019) and
(AbacusSummit; Maksimova et al. 2021) – are accurate, but they are
computationally expensive. Therefore, they are mainly used in testing
models and systematic effects, and it becomes impractical with the
increase of mapped volume to have enough realisations to estimate
and test covariance matrices. Consequently, faster but less accu-
rate techniques have been developed – e.g. (EZmocks; Chuang et al.
2015; Zarrouk et al. 2021; Zhao et al. 2021), (PATCHY; Kitaura et al.
2013), (BAM; Balaguera-Antolínez et al. 2020; Balaguera-Antolínez
et al. 2019; Pellejero-Ibañez et al. 2020) – to be run multiple times
and estimate robustly the uncertainty.

In this study, we investigate the possibility to tune FastPM cat-
alogues to reproduce the clustering of SLICS reference with the
final goal of estimating the covariance matrix. In contrast to the
other fast methods, FastPM uses accelerated particle-mesh solvers
to evolve the dark-matter field, that should provide a higher accu-
racy of the large scale structure. The additional accuracy provided by
FastPM can be important given the unprecedented statistical power
of the DESI survey. Therefore, the FastPM covariance matrix is com-
pared with different methods (BAM, EZmock, Jackknife (Zhang et
al. 2023), analytical models (Xu et al. 2013; Wadekar & Scoccimarro
2020; Wadekar et al. 2020)) in a parallel DESI Mock Challenge paper
(Chuang et al. 2023).

Fundamentally similar to standard 𝑁-body simulations, FastPM
evolves the dark matter field into the cosmic web, the skeleton of the
large scale structure in the Universe (e.g. Mo et al. 2010; Wechsler
& Tinker 2018). After the dark matter haloes are selected, one must
implement galaxy-halo connection models (Wechsler & Tinker 2018)
to assign galaxies. There are more empirically inspired models such
as the Halo Occupation Distribution (HOD; e.g. Benson et al. 2000;
Seljak 2000; Peacock & Smith 2000; White et al. 2001; Berlind &
Weinberg 2002; Cooray & Sheth 2002) and Sub-Halo Abundance
Matching (SHAM; e.g. Kravtsov et al. 2004; Tasitsiomi et al. 2004;
Vale & Ostriker 2004) and more physically inspired ones such as
full hydro-dynamical simulations (e.g. Schaye et al. 2010, 2015;
Dubois et al. 2014; McCarthy et al. 2017; Pillepich et al. 2018; Davé
et al. 2019) or Semi Analytical Models (SAMs; e.g. Guo et al. 2011;
Gonzalez-Perez et al. 2014). In this case, we adopt a HOD model as
it is one the most efficient ways to create mock galaxy catalogues.

The purpose of the current paper is to show that the galaxy assign-
ment process on FastPM halo catalogues with a HOD model can be
adjusted to match the reference SLICS galaxy clustering. We thus
compare the impact of different clustering statistics and examine the
effects of various scales on the HOD fitting. Finally, we calculate
covariance matrices for all the studied scenarios and perform a com-

parison to understand the influence of the HOD modelling on the
parameter uncertainty.

In Section 2, we present the SLICS and FastPM simulations. The
methodology that we follow is detailed in Section 3. We describe our
results on the HOD fitting performance and the covariance matrix
comparison in Section 4. In the end, Section 5 concludes the article.

2 SIMULATIONS

2.1 Scinet LIght-Cone Simulations

The Scinet LIght-Cone Simulations (SLICS, Harnois-Déraps & van
Waerbeke 2015; Harnois-Déraps et al. 2018) consist of over 900
𝑁-body mocks based on noise independent initial conditions. The
large number of realisations is exploited to estimate the covariance
matrices for weak lensing data (Joudaki et al. 2017; Hildebrandt
et al. 2017; Martinet et al. 2018; Harnois-Déraps et al. 2022) and
for combinations of weak lensing and foreground clustering data
(Brouwer et al. 2018; van Uitert et al. 2018).

The cubic mocks – with 𝐿box = 505 Mpc/ℎ – simulate a flat
ΛCDM cosmology, described by the cosmology of the WMAP9 +
SN + BAO, i.e. (Ωm, 𝜎8, Ωb, 𝑤0, ℎ, 𝑛s) = (0.2905, 0.826, 0.0447,
-1.0, 0.6898, 0.969). They are obtained by running the non-linear
double-mesh Poisson solver cubep3m (Harnois-Déraps et al. 2013)
to gravitationally evolve 15363 particles – with a particle mass 𝑚p =
2.88 × 109 𝑀⊙/ℎ – on a 30723 grid from 𝑧 = 99.0 up to 𝑧 = 0.

The dark matter haloes have been selected by applying a spherical
over-density halo-finder (Harnois-Déraps et al. 2013). Their mass
function follows precisely the Sheth et al. (2001) fitting function, as
shown in Figure 2 of Harnois-Déraps et al. (2018). The redshift of
the halo catalogues included in this study is 𝑧 = 1.041. Lastly, given
that some halo catalogues have been corrupted at the run time, we
are limited to only 139 independent mocks.

This study, together with the BAM (Balaguera-Antolínez et al.
2022), JackKnife and the DESI covariance matrix comparison papers
(Chuang et al. 2023) focused on the DESI Emission Line Galaxies
(ELGs) sample. Thus, one must assign galaxies on the SLICS halo
catalogues. To this end, a HOD model adjusted for ELGs (Alam et al.
2020, 2021b) is implemented to create a set of 139 galaxy catalogues
that are used as reference in all the studies mentioned before. More
details about the SLICS galaxy catalogues production can be found in
the DESI covariance matrix comparison paper (Chuang et al. 2023).

2.2 Fast Particle-Mesh

Accelerated Particle–Mesh (PM) solvers – such as the FastPM soft-
ware (Feng et al. 2016) – are able to produce accurate halo popu-
lations with respect to the full 𝑁-body simulations. Thus, they are
suitable to accurately simulate large volumes.

FastPM makes use of a pencil domain-decomposition Poisson
solver and Fourier-space four-point differential kernel to compute
the force. Additionally, the vanilla leap-frog scheme for the time
integration is adjusted to account for the acceleration of velocity
during a step, allowing for the accurate tracking of the linear growth
of large-scale modes regardless of the number of time steps.

For the current analysis. we have run FastPM with two resolu-
tions, resulting in one set of 778 Low Resolution boxes (LR; 12963

particles) and one set of 141 High Resolution (HR; 15363 parti-
cles) catalogues. Both sets output snapshots at the same redshift
(𝑧 = 1.041), and have the same box side length (𝐿box = 505 Mpc/ℎ)
and cosmology as the SLICS simulations. In contrast to SLICS, the
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particle mass of the HR simulations is 2.86444 × 109 𝑀⊙/ℎ, while
for LR it is 4.77 × 109 𝑀⊙/ℎ. The resolution of the force mesh is
boosted by a factor of 𝐵 = 2 compared to the number of particles per
side, for both LR and HR. Lastly, 40 linear steps have been used to
evolve the density field from 𝑎 = 0.05 to 𝑎 = 0.96.

Due to the small number of SLICS galaxy realisations, for 123 runs
of the FastPM (LR and HR likewise), we use the SLICS initial con-
ditions. This plays an important role to reduce the effect of the cosmic
variance in the clustering statistics and thus in the HOD fitting. SLICS
initial density field (initial conditions) has been estimated using the
Zel’dovich approximation (Zel’dovich 1970): 𝛿HR

IC (q) = −∇qΨ𝑍 (q),
where Ψ𝑍 (q) = 𝑞−𝑞G is the difference between the Lagrangian par-
ticle coordinates 𝑞 and the Lagrangian coordinates 𝑞G of a 15363

regular grid. Lastly, the initial conditions had been downgraded to
the LR by cutting in Fourier space the high frequency modes larger
than the Nyquist frequency corresponding to the LR field.

The halos have been selected from the dark matter field with
the Friends-of-Friends halo finder in nbodykit (Hand et al. 2018).
During the galaxy assignment process – Section 3.3 – we only make
use of halos with a minimum mass of 5.72 × 1010 𝑀⊙/ℎ.

Finally, in Section 3, when we mention FastPM, we imply for
simplicity both HR and LR. We only make the distinction in the
results section, i.e. Section 4.

3 METHODOLOGY

3.1 Clustering computation

3.1.1 Two point correlation function

Mathematically, the two-point correlation function (2PCF) is a con-
tinuous function that can describe the clustering of galaxies. How-
ever, given the discrete nature of the galaxy distribution in the Uni-
verse, the 2PCF is measured using discrete estimators. In the case
of cubic mocks, one can implement the natural estimator (Peebles &
Hauser 1974):

𝜉 (𝑠, 𝜇) = 𝐷𝐷 (𝑠, 𝜇)
𝑅𝑅(𝑠, 𝜇) − 1, (1)

where 𝐷𝐷 (𝑠, 𝜇) and 𝑅𝑅(𝑠, 𝜇) are the data and the random pair
counts, respectively, as functions of the radial distance

𝑠 =
√︃
𝑠2⊥ + 𝑠2

∥ , (2)

and the cosine of the angle between s and the line-of-sight

𝜇 =
𝑠∥
𝑠
. (3)

In the previous equations, 𝑠⊥ and 𝑠∥ are the perpendicular (⊥) and
parallel (∥) to the line-of-sight components of s , respectively. While
the 𝐷𝐷 term is evaluated directly on the data catalogue, 𝑅𝑅 is
calculated theoretically.

In the present analysis, we run pyFCFC1 the python wrapper
of the Fast Correlation Function Calculator2 (Zhao 2023, FCFC)
to estimate the 2PCF. Lastly, we decompose the 2D 2PCF (𝜉 (𝑠, 𝜇))
into 1D multipoles (𝜉ℓ (𝑠)) with the help of the Legendre polynomials
𝐿ℓ (𝜇) of order ℓ, as follows:

𝜉ℓ (𝑠) =
2ℓ + 1

2

∫ 1

−1
𝜉 (𝑠, 𝜇)𝐿ℓ (𝜇)𝑑𝜇. (4)

1 https://github.com/dforero0896/pyfcfc
2 https://github.com/cheng-zhao/FCFC

3.1.2 Power spectrum

From the mathematical point of view, the power spectrum 𝑃(k) is
the Fourier Transform of the 2PCF. However, the limited volume of
a survey or a simulation creates mode coupling and makes the two
clustering measurements not completely equivalent. Consequently,
𝑃(k) is computed starting from the density field in Fourier space
𝛿(𝑘), as follows:

⟨𝛿(k)𝛿(k′)⟩ = (2𝜋)3𝛿𝐷 (k + k′)𝑃(k), (5)

where 𝛿𝐷 is the Dirac delta function.
As for the 2PCF, we evaluate the multipoles (𝑃ℓ (𝑘)) of the power

spectrum (𝑃(𝑘, 𝜇)):

𝑃ℓ (𝑘) =
2ℓ + 1

2

∫ 1

−1
𝑃(𝑘, 𝜇)𝐿ℓ (𝜇)𝑑𝜇, (6)

where 𝜇 is the cosine angle between k and the line-of-sight, i.e.,

𝜇 = 𝑘 ∥/𝑘, 𝑘 =
√︃
𝑘2⊥ + 𝑘2

∥ . (7)

In practice, we harness the versatility of POWSPEC3 described in
Zhao et al. (2021) through its python wrapper4 to calculate the power
spectra and their multipoles starting from the galaxy catalogues.
We estimate the density field on a grid of size 5123, by applying
the Cloud-In-Cell (CIC; Sefusatti et al. 2016) particle assignment
scheme on the catalogues of galaxies. Lastly, we exploit the grid
interlacing technique (Sefusatti et al. 2016) to reduce the alias effects
at small scales.

In the current analysis, we show the monopole (ℓ = 0), quadrupole
(ℓ = 2) and hexadecapole (ℓ = 4) for both the 2PCF and the power
spectrum.

3.1.3 Bi-spectrum

The power spectrum and the 2PCF are two-point clustering statistics,
but higher order statistics are necessary to characterize more precisely
the galaxy distributions. In this study, we also look at the three-
point clustering statistics, namely the bi-spectrum 𝐵(k1, k2, k3), the
Fourier pair of the three-point correlation function (e.g. Bernardeau
et al. 2002):

𝛿𝐷 (k1 + k2 + k3)𝐵(k1, k2, k3) = ⟨𝛿(k1)𝛿(k2)𝛿(k3)⟩. (8)

The three vectors k1, k2, k3 are chosen to form a triangle whose
two of the three sides are fixed (𝑘1 = 0.1±0.05 and 𝑘2 = 0.2±0.05),
but the angle 𝜃12 between k1 and k2 is varied from 0 to 𝜋. In practice,
we run the bispec5 code with a grid size of 5123 to compute the
monopole of the bispectra, .

3.2 FastPM HOD model

The galaxy population and its associated clustering covariance matrix
can potentially be influenced by halo properties beyond just mass, as
shown in Alam et al. (2023). Nonetheless, such effects are expected
to be small for large volume surveys such as DESI and hence we plan
to address them in future work. Additionally, the FastPM haloes are
less accurate than the ones from a 𝑁-body simulation, thus we do not
expect that the final HOD model and parameters maintain the same
physical interpretation.

3 https://github.com/cheng-zhao/powspec
4 https://github.com/dforero0896/pypowspec
5 https://github.com/cheng-zhao/bispec
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As a consequence, we can adopt the simple five-parameter HOD
model described in Zheng et al. (2005) to assign galaxies to the
FastPM halo catalogues, as long as the resulting clustering and
covariance matrix match the reference. Nevertheless, in future work
one can study more complex and more adapted models for the studied
ELG sample.

The current model assumes that each halo can host at most one
central galaxy with a probability B(1) = ⟨𝑁cen⟩(𝑀h) dependent on
the halo mass 𝑀h, where B(𝑥) denotes the Bernoulli distribution
and:

⟨𝑁cen⟩(𝑀h) =
1
2

[
1 + erf

(
log 𝑀h − log 𝑀min

𝜎log 𝑀

)]
(9)

with erf the error function:

erf (𝑥) = 2√
𝜋

∫ 𝑥

0
𝑒−𝑢

2
𝑑𝑢. (10)

log 𝑀min is the halo mass at which the probability to host a central
galaxy is one half and 𝜎log 𝑀 controls the steepness of the transition
from a probability of one to zero. Lastly, the positions and velocities
of the central galaxies are precisely the values of their parent haloes.

In contrast, the number of satellite galaxies 𝑛sat per halo is sampled
from a Poisson distribution P(𝑛sat |⟨𝑁sat⟩(𝑀h)) with the mean:

⟨𝑁sat⟩(𝑀h) =
(
𝑀h − 𝑀0

𝑀1

)𝛼
, (11)

where 𝑀0 is a minimum halo mass threshold below which haloes
cannot host satellite galaxies and together with 𝑀1 indicating the halo
mass at which one halo hosts on average one satellite galaxy, and 𝛼
is the power-law index. Furthermore, the positions and velocities of
the satellite galaxies follow the Navarro-Frenk-White (Navarro et al.
1996, NFW) density profile.

In the interest of adjusting the smaller scales and the quadrupole,
we introduce a velocity dispersion factor (𝑣disp) for the velocity
parallel (∥) to the line-of-sight (i.e o𝑍 in the current case) of the
satellite galaxies, in addition to the five HOD parameters:

𝑣sat,new
∥ =

(
𝑣sat,old
∥ − 𝑣halo

∥
)
× 𝑣disp + 𝑣halo

∥ , (12)

where 𝑣halo
∥ is the velocity parallel to the line-of-sight of the satellites’

parent halo. Finally, the six free parameters are fitted so that the
resulting FastPM clustering matches the SLICS one.

3.3 HOD fitting

We would like to draw the attention of the reader to Table 1. It contains
a summary of important symbols related to the HOD fitting.

With the aim of finding the best-fitting FastPM clustering, we run
a HOD Optimization Routine (HODOR6). It uses the Halotools
(Hearin et al. 2017) package to define and apply the HOD model
and PyMultiNest (Buchner et al. 2014) the python wrapper of
MultiNest (Feroz & Hobson 2008; Feroz et al. 2009, 2019) to
sample the six HOD parameters.

MultiNest is a sampler based on Bayes’ theorem that provides
the maximum likelihood (best-fitting) parameters, as well as the pos-
terior probability distribution of parameters alongside the Bayesian
evidence. Bayes’ theorem combines prior knowledge about the Θ pa-
rameters of a model 𝑀 with information from the data 𝐷 to calculate
the posterior probability density of the Θ parameters:

𝑝(Θ|𝐷, 𝑀) = 𝑝(𝐷 |Θ, 𝑀)𝑝(Θ|𝑀)
𝑝(𝐷 |𝑀) , (13)

6 https://github.com/Andrei-EPFL/HODOR

Notation Meaning

𝑁 cov
mocks = 123 The number of FastPM and SLICS pairs

that share the same initial conditions.
These catalogues have been used

to compute C𝑠 , Eq.(19), part of Σdiff .
𝑁fit

mocks = 20 The number of FastPM and SLICS pairs for which
we have computed the clustering during the HOD

fitting described in Section 3.3.1 and Section 3.3.2.
Σdiag Eq. (16): Diagonal matrix used during

the first step of the HOD fitting, see Section 3.3.1.
𝜎𝑛g Estimation of the galaxy number density noise

used in Σdiag.
Standard deviation of 139 SLICS mocks,

divided by
√

139.
Σdiff Eq. (20): Difference covariance matrix used during

the second step of the HOD fitting, see Section 3.3.2.
𝜎′
𝑛g Estimation of the galaxy number density noise

used in Σdiff .
Standard deviation of 139 SLICS mocks,

divided by
√︃
𝑁fit

mocks.
Σ𝜒 Eq. (22): The covariance matrix used to compute

the 𝜒2
𝜈 , Eq.(21). It is not used for fitting.

Table 1. A summary of some of the most important and possibly confusing
notations and their meaning.

name log 𝑀min
𝑀⊙ 𝜎log 𝑀 log 𝑀1

𝑀⊙ 𝜅 𝛼 𝑣disp

min 11.6 0.01 9 0 0 0.7
max 13.6 4.01 14 20 1.3 1.5

Table 2. The limits of the uniform prior distributions included in the HOD
fitting. Note that 𝑀0 from Eq. (11) is 𝑀0 ≡ 𝜅 × 𝑀min. 𝑀⊙ denotes the solar
mass.

where 𝑝(Θ|𝑀) is the prior distribution of Θ of the model 𝑀 ,
𝑝(𝐷 |Θ, 𝑀) is the likelihood, and 𝑝(𝐷 |𝑀) is a normalizing factor
called Bayesian evidence.

The uniform prior distributions that we impose on all six pa-
rameters are shown in Table 2. Furthermore, we approximate the
likelihood by a multivariate Gaussian:

𝑝(𝐷 |Θ, 𝑀) = L(Θ) ∼ e−𝜒
2 (Θ)/2, (14)

with the chi-squared:

𝜒2 (Θ) = vTC−1v, (15)

where v is the difference between the data and model vectors v =
𝑆data − 𝑆model (Θ), and C is the covariance matrix.

The purpose of a covariance matrix C is to estimate the noise
in the data, in the context of a noise-free model. Nevertheless, the
peculiarity of this study is that both the model (𝑆model (Θ), FastPM)
and the data (𝑆data, SLICS) are affected by noise. Due to the small
volume of the SLICS and FastPM boxes, the cosmic variance com-
ponent of the noise would be larger than the expected precision of
ongoing surveys such as DESI. However, since the simulations have
been run with matching initial conditions, the relevant noise factor is
no longer the cosmic variance but rather the difference in the gravi-
tational evolution. Hence, the mock covariance estimated by SLICS
or FastPM substantially over-estimates the error for our fittings. The
more suitable noise term is the accumulated noise due to gravitational
evolution while starting with exactly the same initial conditions.
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𝑆data = [ 𝜉S
0 , 𝜉
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2 , �̄�
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g ],
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F
2 , �̄�

F
g ],

C = Σdiag

MultiNest fitting

Initial Guess (IG)
IG-FastPM galaxy boxes,

𝜉F
IG (𝑠) , 𝑃F

IG (𝑘 )
Δ𝑃
ℓ,IG = 𝑃F

ℓ,IG (𝑘 ) − 𝑃S
ℓ
(𝑘 )

Δ𝜉
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ℓ,IG (𝑠) − 𝜉S
ℓ
(𝑠)
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S
2 , �̄�

S
g ],
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0 , �̄�
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MultiNest fitting

Final FastPM galaxy boxes,
𝜉F (𝑠) , 𝑃F (𝑘 ) , 𝐵F (𝜃 ) ,

covariance matrices

MultiNest fitting

Final FastPM galaxy boxes,
𝜉F (𝑠) , 𝑃F (𝑘 ) , 𝐵F (𝜃 ) ,

covariance matrices

Figure 1. The two-step HOD fitting process that is detailed in Section 3.3.

Consequently, in order to more appropriately estimate the noise, we
perform a two-step HOD fitting as schematically shown in Figure 1:

(i) we fit the monopole and quadrupole of the 2PCF [𝜉0, 𝜉2] and
the galaxy number density 𝑛g using a diagonal covariance matrix
(Σdiag) and thus obtain an initial-guess (IG) best-fitting FastPM
galaxy catalogues (IG-FastPM), see Section 3.3.1;

(ii) we compute the differences [Δ0,Δ2] between the clustering
(monopole, quadrupole) of the IG best-fitting FastPM and the SLICS
galaxy catalogues; we use these differences to calculate a new co-
variance matrix (Σdiff) with which we perform again the fitting, see
Section 3.3.2.

In both cases, we use 20 FastPM (F) and 20 SLICS (S) halo boxes
(𝑁fit

mocks = 20) – sharing the same initial conditions – for the purpose
of decreasing the noise. Nonetheless, the average �̄�S

g is computed
using 139 realisations, while the average �̄�F

g is calculated using the
20 realisations included in the HOD fitting. There are three main
reasons behind this discrepancy: first, it quickly becomes expensive
to apply galaxies using HOD to more than 20 FastPM simulations;
second, the number of SLICS reference simulations has to be the
same as for FastPM, so that the cosmic variance is reduced in the
clustering by the shared initial conditions; third, the noise in the
galaxy number density is not reduced by the shared initial conditions,
thus one needs more realisations to estimate a (practically) noiseless
SLICS reference galaxy number density. The galaxy number density
is an important constraint as it governs the shot-noise which has a
significant role in the covariance matrix.

3.3.1 The First Step

Initially, we perform the HOD fitting on the monopole and the
quadrupole of the 2PCF, together with the galaxy number density.
Hence, the data vector 𝑆data is formed by concatenating their re-
spective averages for the SLICS (S) mocks: 𝑆data = [𝜉S

0 , 𝜉
S
2 , �̄�

S
g ].

Similarly, the model vector 𝑆model is determined from the FastPM
(F) boxes: 𝑆model = [𝜉F

0 , 𝜉
F
2 , �̄�

F
g ].

Considering that the computing time of clustering measurements
scales with the maximum separation, we need a large enough upper-
limit to constrain relevant parameters, but small enough to keep a
reasonable execution time for model evaluation during the HOD
fitting. Additionally, since we are interested in capturing the non-
linear effects, the lower-limit is set to 0. Consequently, the monopole
and the quadrupole of the 2PCF are evaluated for 𝑠 ∈ [0, 50] Mpc/ℎ,
with a bin size of 5 Mpc/ℎ. Thus, 𝑠 is an array containing 10 elements
(𝑠1, . . . , 𝑠10).

As previously argued, in the first step, there is no appropriate noise
estimation. Therefore, we can use an approximate covariance matrix
that enables us to proceed to the second step and calculate a more
suitable one. In this regard, we create a diagonal covariance matrix:

Σdiag =

©«

𝜎2
1

. . .

𝜎2
10

𝜎2
1

. . .

𝜎2
10

𝜎2
𝑛g

ª®®®®®®®®®®®®®¬

, (16)

where the first 20 elements are defined as follows:

𝜎𝑖 =
3
𝑠2
𝑖

, 𝑖 = 1, . . . , 10. (17)

This selection of the diagonal covariance matrix is based on an
examination of the 𝑠2𝜎SLICS (𝑠) values, where 𝜎SLICS (𝑠) represents
the standard deviation of the SLICS 2PCF. Notably, the highest value
is approximately three; hence, we initially approximate all values as
three for simplicity.

The last element 𝜎𝑛g is computed as the standard deviation of 139
SLICS galaxy number densities, divided by

√
139, so that it estimates

the uncertainty corresponding to the average of 139 realisations. The
strong constraint on the 𝑛𝑔 improves the fitting time, as HODOR
initially evaluates the goodness-of-fit based only on the �̄�F

g and �̄�S
g ,

and does not compute the clustering if �̄�F
g is 10𝜎 away from the

reference. Additionally, the lack of covariance terms in the covariance
matrix should, as well, decrease the convergence time.

Finally, we apply the best-fitting HOD model to all 𝑁cov
mocks = 123

FastPM halo boxes that share the initial conditions with the SLICS
mocks to obtain the IG-FastPM.

3.3.2 The Second Step

To examine the influence of smaller scales on the HOD fitting, we
compute the following for both SLICS and FastPM:

(i) the power spectrum for 𝑘 ∈ [0.02, 𝑘max] ℎ/Mpc, with a bin
size of 0.02 ℎ/Mpc,

(ii) the 2PCF for 𝑠 ∈ [𝑠min, 50] Mpc/ℎ, with a bin size of
5 Mpc/ℎ,

where the values of 𝑘max and 𝑠min are presented in Table 3. Conse-
quently, we create the data and model vectors as follows:
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name Large Medium Small

𝑘max [ℎ/Mpc] 0.5 0.4 0.3
𝑁ℓ

bins 24 19 14

𝑠min [Mpc/ℎ] 0 5 10
𝑁ℓ

bins 10 9 8

Table 3. The fitting ranges for the HOD fitting process described in Sec-
tion 3.3.2: 𝑘 ∈ [0.02, 𝑘max ] ℎ/Mpc and 𝑠 ∈ [𝑠min, 50] Mpc/ℎ. 𝑁ℓ

bins is the
number of bins per multipole ℓ.

(i) 𝑆data = [�̄�S
0 , �̄�

S
2 , �̄�

S
g ] and 𝑆model = [�̄�F

0 , �̄�
F
2 , �̄�

F
g ];

(ii) 𝑆data = [𝜉S
0 , 𝜉

S
2 , �̄�

S
g ] and 𝑆model = [𝜉F

0 , 𝜉
F
2 , �̄�

F
g ].

In order to estimate the noise in the context of shared initial condi-
tions between SLICS and FastPM, we use the 𝑁cov

mocks galaxy boxes
of both SLICS and IG-FastPM, along with their corresponding clus-
tering measurements (power spectrum or 2PCF). Furthermore, we
introduce Δ𝑃

ℓ,IG = 𝑃F
ℓ,IG (𝑘) − 𝑃S

ℓ
(𝑘) and Δ𝜉

ℓ,IG = 𝜉F
ℓ,IG (𝑠) − 𝜉S

ℓ
(𝑠),

as well as the generic vector ΔIG (𝑥) = [Δ0,IG,Δ2,IG] to express the
difference between the SLICS and the IG-FastPM galaxy clustering
that share the initial conditions. Here, the variable 𝑥 represents either
𝑘 or 𝑠.

Taking advantage of the previous definitions, we further define a
matrix M with the following elements:

M𝑖 𝑗 = ΔIG
𝑖 (𝑥 𝑗 ) − Δ̄IG (𝑥 𝑗 ), 𝑖 = 1, 2, ..., 𝑁cov

mocks, 𝑥 𝑗 ∈ [𝑥min, 𝑥max],
(18)

where ΔIG
𝑖 denotes the vector corresponding to the 𝑖−th (SLICS,

IG-FastPM) pair, Δ̄IG represents the mean vector over all (SLICS,
IG-FastPM) pairs and [𝑥min, 𝑥max] defines the interval of points
involved in the fitting, see Table 3. Starting from this matrix and its
transpose, we calculate the sample covariance matrix C𝑠 as follows:

C𝑠 =
1

𝑁cov
mocks − 1

MTM. (19)

Lastly, we calculate the𝜎′
𝑛g as the standard deviation of 139 SLICS

galaxy number densities, divided by
√︃
𝑁fit

mocks – so that it estimates
the uncertainty corresponding to the average of 𝑁fit

mocks realisations
– and we attach it to the C𝑠 to obtain the final covariance matrix used
in the HOD fitting:

Σdiff ≡
(C𝑠 0

0 𝜎′2
𝑛g

)
. (20)

Note that while the error estimate for the clustering is based on the
difference in clustering due to matched initial condition, the error of
the number density is directly computed from the SLICS realisations,
as we aim to constrain the absolute number density, which has strong
effect on the final clustering covariance.

3.3.3 Goodness-of-fit

In this section, we define a reduced 𝜒2 – 𝜒2
𝜈 – that expresses the

goodness-of-fit for the average of 𝑁fit
mocks FastPM galaxy cluster-

ing realisations with respect the SLICS reference, i.e. the 𝑛g is not
included:

𝜒2
𝜈 = 𝑁fit

mocks ×
𝚫TΣ−1

𝜒 𝚫

𝜈
, (21)

K [ℎ/Mpc] 0.1 0.15 0.2 0.25

S [Mpc/ℎ] 15 20 25 30

Table 4. The fitting ranges – 𝑘 ∈ [0.02, K] ℎ/Mpc and 𝑠 ∈
[S, 200] Mpc/ℎ used in the clustering fitting described in Section 3.4

where 𝚫 denotes the difference between FastPM and SLICS cluster-
ing – monopole and quadrupole – and 𝜈 = 𝑁bins − 𝑁params, with

(i) 𝑁params = 6 – the number of free parameters;
(ii) 𝑁bins = 2×𝑁ℓ

bins – the length of theΔIG (𝑥) vector, see Table 3.

The Σ−1
𝜒 is the unbiased estimate of the inverse covariance matrix

(Hartlap et al. 2007):

Σ−1
𝜒 = C−1

𝑠

𝑁cov
mocks − 𝑁bins − 2
𝑁cov

mocks − 1
, (22)

where C𝑠 is defined in Eq. (19). Sellentin & Heavens (2016); Percival
et al. (2022) have shown that this correction may not be the optimal
choice for accurately determining the uncertainty of the parame-
ters. However, since our main focus is on obtaining the best-fitting
clustering and assessing its goodness-of-fit, it remains a reasonable
correction.

Finally, as we fit the average of 𝑁fit
mocks realisations, we must scale

the covariance matrix C𝑠 by a factor of 1/𝑁fit
mocks. As a consequence,

the 𝑁fit
mocks factor appears in Eq.(21).

3.4 Covariance matrix comparison

Given that the main goal is to have a robust estimation of the un-
certainty on the cosmological parameters, we want to compare the
constraining power of the covariance matrices. To this end, we fit the
123 individual SLICS clustering (monopole and quadrupole) with
the following models:

𝑃ℓ
model (𝑘) = 𝑏ℓ × �̄�ℓ

123,SLICS (𝑘) (23)

and

𝜉ℓmodel (𝑠) = 𝑏ℓ × 𝜉ℓ123,SLICS (𝑠), (24)

where �̄�ℓ
123,SLICS (𝑘) and 𝜉ℓ123,SLICS (𝑠) are averages of the 123 re-

alisations and 𝑏ℓ denotes the two free parameters.
Moreover, the covariance matrices are computed similarly to

the Eq. (22), but using 778 LR FastPM realisations. The fit-
ting is performed using PyMultiNest, for different fitting ranges
(𝑘 ∈ [0.02, K] ℎ/Mpc and 𝑠 ∈ [S, 200] Mpc/ℎ, see Table 4) for
the purpose of comparing the effect of the covariance matrices at
different scales. The largest fitting intervals are chosen so that they
cover the nominal scales included in the BAO and RSD analyses, i.e.
K ≈ 0.2 ℎ/Mpc and S ≈ 20 Mpc/ℎ (e.g. Tamone et al. 2020; de
Mattia et al. 2021). Finally, the shown values are the average (𝑏ℓ )
and standard deviation (𝜎𝑏ℓ ) of the marginalised posterior 𝑝(𝑏ℓ )
and covariance (R[𝑏0, 𝑏2]) of the posterior distribution of 𝑏0 and
𝑏2, 𝑝(𝑏0, 𝑏2). By construction, the values of 𝑏ℓ should be one.

The main reason why we perform such a simplified test is to
avoid the systematic errors that can arise due to the modelling. Con-
sequently, the comparison between the quoted 𝜎𝑏ℓ and R[𝑏0, 𝑏2]
should be directly related to the differences in FastPM covariance
matrices. We, nevertheless, reckon that these comparisons do not
show how the errors on the parameters of a realistic BAO/RSD model
would behave.
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Figure 2. Monopole and quadrupole error bars: left panels – 2PCF; right
panels – power spectrum. Black – estimated uncertainty for the entire DESI
survey; Dotted black – estimated uncertainty for the Year 1 DESI survey;
Blue – square root of the Σdiag’s terms; Dashed orange – square root of the
Σdiff ’s diagonal terms, divided by

√
20, 𝑁fit

mocks = 20; Dashed red – stan-
dard deviation of the differences between the best-fitting FastPM clustering
(from the second HOD fitting step, one HOD fitting scenario) and SLICS
(𝑁fit

mocks realisations), further divided by
√︃
𝑁fit

mocks; Grey – standard deviation

of 𝑁fit
mocks SLICS clustering realisations, further divided by

√︃
𝑁fit

mocks.

4 RESULTS

One of the challenges of HOD fitting is addressing the high precision
imposed by large volume surveys such as DESI because it requires
prohibitively many large volume simulations. Figure 2 illustrates this
issue as a comparison between 𝜎20,SLICS

7 the noise corresponding
to the average of 𝑁fit

mocks = 20 SLICS clustering realisations and the
expected DESI Y58 and Y19 errors of the ELG sample. It is obvious
that 𝑁fit

mocks SLICS realisations do not reach the required precision10.
In order to overcome this issue, we employ the novel matched

initial conditions simulations (SLICS and FastPM). In this case, the
effect of the cosmic variance on the clustering difference is mostly
removed. Therefore, as discussed in Section 3.3, the relevant error
estimate is given by the covariance matrix of the clustering difference
between the two simulations. Given the fact that we use 𝑁fit

mocks pairs
to perform the HOD fitting, the covariance matrix must be rescaled
by 𝑁fit

mocks. The square root of the diagonal of the resulting covariance
matrix is illustrated with an dashed orange line in Figure 2. One can
observe that the matched initial conditions significantly reduce the
noise to values below 𝜎20,SLICS.

Furthermore, we would like to highlight that the precision depicted
by the dashed orange line is either better than or equal to DESI Y1

7 This would be the noise level in a hypothetical case where SLICS and
FastPM would not share the initial conditions.
8 The DESI Year 5 error is estimated by rescaling 𝜎20,SLICS to match the
Y5 ELG sample volume, which is assumed to be 24 Gpc3 ℎ−3.
9 The DESI Year 1 error is estimated by rescaling 𝜎20,SLICS to match the
Y1 ELG sample volume, which is assumed to be one third of the Y5 volume.
10 A simple calculation reveals that one would need 192 SLICS realisations
to meet the DESI Y5 precision requirements.

precision up to 𝑘 ≈ 0.25 ℎ/Mpc. Consequently, the results presented
in this paper are precise enough with respect to the requirements
of further DESI Y1 analyses. Nonetheless, it might be necessary to
readdress this study for the full DESI sample, to account for even
lower noise levels. For this, one could use the 1800 AbacusSummit
(Maksimova et al. 2021) 𝑁-body 0.5 Gpc/ℎ cubic boxes.

In addition, Figure 2 illustrates the comparison between 𝜎DIFF
and the square root of the diagonal elements of Σdiff . In this context,
𝜎DIFF represents the standard deviation of the differences between the
best-fitting FastPM (obtained from the second HOD fitting step) and
SLICS clustering, further divided by

√︃
𝑁fit

mocks. Ideally, an iterative
HOD fitting process should be performed to ensure a robust Σdiff ,
but the close agreement between 𝜎DIFF and the diagonal elements of
Σdiff suggests that Σdiff has approximately converged after a single
iteration. A more detailed argument in support of the convergence of
Σdiff is presented in Section A.

As pointed out in Section 3.3, it is important that the FastPM
galaxy catalogues reproduce the SLICS shot-noise. Examining the
FastPM galaxy number densities of all HOD fitting cases, we ob-
served that the largest deviation, |�̄�S

g − �̄�F
g |/𝜎′

𝑛g , is approximately
0.5𝜎, but most values are below 0.2𝜎. This strongly supports that
the galaxy number density is well constrained and that it is safe to
define a 𝜒2

𝜈 without including 𝑛g – see Eq.(21).
Furthermore, the values of the 𝜒2

𝜈 are subject to uncertainties due
to the finite number of realisations used to estimate the covariance
matrix and the limited number of HOD realisations per halo cata-
logue. The most significant uncertainty, ≈ 27 per cent, arises from
the limited number of HOD realisations. The remaining values are
below 20 per cent, see Section B for more details. The 𝜒2

𝜈 is simply
used as a metric to evaluate the goodness-of-fit. For this reason it is
important to consider that it is affected by a large uncertainty when
comparing its magnitude to the expected value of one.

The primary focus of this paper is to investigate the limits of
the FastPM capabilities to model the non-linear scales captured by
𝑁-body simulations. Furthermore, we study the effect of fitting to
successively more non-linear scales and either Fourier or configura-
tion space statistics on the FastPM covariance matrix.

4.1 Power spectrum fitting

Figure 3 shows the results of the HOD fitting performed on the
power spectrum for three different 𝑘 intervals, defined in Table 3. The
second, third and fifth rows display the difference in the clustering
scaled by the difference error. We remind the reader that this error
is smaller than the expected one for the given volume, due to the
matched initial conditions between the two simulations, see Figure 2.

The best fitting monopoles and quadrupoles are within ±1𝜎 for
most scales. Moreover, the results for the HR FastPM – presented
with dashed line – are only marginally better than the ones for LR
FastPM. Given the modest difference between the performances of
the two resolutions, we believe that the LR FastPM is precise enough
to describe the two-point clustering to non-linear scales for the DESI
Y1 ELG-like galaxies.

Considering that we only fit the first two even multipoles, there is
no guarantee that the third one would match the reference. Neverthe-
less, the fifth row of Figure 3 illustrates that fitting the monopole and
quadrupole to smaller scales improves the agreement of the hexade-
capole. For instance, fitting on the Large interval pushes the ℓ = 4
multipole within ±2𝜎 for 𝑘 < 0.4 ℎ/Mpc, whereas for Medium and
Small intervals, the hexadecapole is placed within ±2𝜎 only for
𝑘 < 0.3 ℎ/Mpc or 𝑘 < 0.2 ℎ/Mpc, respectively.
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Figure 3. The average of 20 SLICS (reference-black) and 20 FastPM (model-colours) clustering realisations and the tension (𝜎DIFF is shown in Figure 2)
between them: left - power spectrum and right - 2PCF. FastPM mocks share the white-noise through the initial conditions with the SLICS ones. The fitting
has been performed: 1) on the monopole and quadrupole of the power spectrum; 2) for three different fitting ranges, see Table 3; 3) using HR (dashed) and LR
(continuous) FastPM realisations. The O𝑥 axis of the 2PCF panels has a linear scale from 0 to 50 Mpc/ℎ and a logarithmic scale above this limit.

Due to the fact that the power spectrum is affected by the window
function, it is not obvious that a good matching in Fourier space
translates as a good matching in Configuration space. Thus, we com-
pute and display the corresponding 2PCF in the right-hand side of
Figure 3. Most monopoles and quadrupoles agree within ±2𝜎 with
SLICS for separations larger than 20 Mpc/ℎ. This suggests that it
is possible to obtain a reasonable 2PCF above a certain minimum
separation, even when performing HOD fitting on the power spec-
trum. However, fitting on the Medium and Large intervals, the 2𝜎
matching goes down to a separation of 10 Mpc/ℎ.

In contrast, for separations smaller than 5 Mpc/ℎ, the non-linear
effects become dominant, making it difficult to replicate the velocity
field. This is why increasing the fitting range up to 𝑘max = 0.5
can improve the monopole but not the quadrupole. Lastly, the 2PCF
hexadecapole exhibits a bias of over 3𝜎 for 𝑠 < 50 Mpc/ℎ in all six
cases.

After a more qualitative description of the results, we present
the 𝜒2

𝜈 values in the upper panels of Figure 4. Generally, the HR
FastPM produces lower 𝜒2

𝜈 values than the LR, as expected from

Figure 3. However, 𝜒2
𝜈 [𝑃(0.02, 𝑘max)] ≃ 1, which reiterates that

by fitting the monopole and quadrupole of the power spectrum up
to the three 𝑘max values, one can achieve a good match with the
SLICS reference, within the DESI Y1 precision even with LR. In
addition, 𝜒2

𝜈 [𝜉 (20, 50)] ≃ 2 for the small fitting interval of the LR
power spectrum, reinforcing the fact that one can get a reasonable
2PCF above a certain minimum separtion threshold when the fitting
is performed on the power spectrum.

Additionally, we can observe the behaviour of 𝜒2
𝜈 when it is es-

timated on different intervals than those used for the fitting. When
the fitting is performed on the Large interval, the 𝜒2

𝜈 ≃ 1 for all
smaller intervals, regardless of the resolution. However, fitting on
the Medium interval shows that the difference between HR and LR
becomes more significant for 𝑘 > 0.4 ℎ/Mpc (see also Figure 3): the
𝜒2
𝜈 ≃ 2 for LR, while for HR, it is close to one. These findings imply

that fitting up to 𝑘 ≤ 0.4 ℎ/Mpc is satisfactory for HR FastPM,
whereas smaller scales play a more significant role in LR.

Furthermore, fitting on the Small interval shows that although
𝜒2
𝜈 [𝑃(0.02, 0.3)] ≃ 1, it is much larger for 𝑘 > 0.3 ℎ/Mpc, indi-
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Figure 4. The 𝜒2
𝜈 as defined in Section 3.3.3. We compute 𝜒2

𝜈 : 1) for different intervals (see O𝑦 and O𝑥 axes) of the clustering statistics (left panels - power
spectrum; right panels - 2PCF); 2) for different fitted clustering (upper panels - power spectrum, see Section 4.1; lower panels - 2PCF, see Section 4.2); 3) for
different fitting ranges (see Table 3).

cating strong clustering divergence beyond that value (see Figure 3).
Therefore, both LR and HR benefit from considering the clustering
information contained in smaller scales 𝑘 > 0.3 ℎ/Mpc.

4.2 2PCF fitting

When the HOD fitting is performed on the power spectrum, the min-
imum 2PCF 𝜒2

𝜈 is 𝜒2
𝜈 [𝜉 (10, 50)] ≈ 2. While this translates to a 2𝜎

agreement down to the separation of 10 Mpc/ℎ between FastPM and
SLICS 2PCF, we test whether fitting directly the 2PCF can improve
the results. Therefore, in this section, we analyse the outcomes of the
HOD fitting performed on the 2PCF monopole and quadrupole, for
𝑠 ∈ [𝑠min, 50] Mpc/ℎ, see Table 3.

Figure 5 presents the monopole, quadrupole and hexadecapole
of the 2PCF computed for 𝑠 ∈ [0, 200] Mpc/ℎ as well as the
tensions between the FastPM and SLICS. The FastPM cluster-
ing typically falls within 2𝜎 of the reference for scales larger than
50 Mpc/ℎ and is largely unaffected by the fitting scenario. However,

the HR monopoles are consistently closer to the reference than LR
monopoles by approximately 0.5𝜎 at scales larger than≈ 150 Mpc/ℎ.

Including the smallest scales (Large interval) in the HOD fitting,
we observe a 1 to 2𝜎 agreement with the reference for 𝑠 < 10 Mpc/ℎ
in both the monopole and quadrupole. However, at intermediate
scales 𝑠 ∈ [10, 50] Mpc/ℎ, the monopole is significantly biased, ex-
hibiting a deviation of 3𝜎. In contrast, for the Medium and Small sce-
narios, we notice that the tensions for the monopole and quadrupole
at intermediate scales drop to 1𝜎, while the smallest scales can get
biased by more than 3𝜎. Nevertheless, they match better the reference
than the power spectrum HOD fitting case. Lastly, the hexadecapole
does not depend on the resolution nor the fitting range and is strongly
biased for 𝑠 < 60 Mpc/ℎ, showing no improvement compared to the
power spectrum fitting.

As in the previous subsection, we test the clustering statistics of the
best-fitting FastPM boxes that were not included in the HOD fitting,
i.e. the power spectrum in the Figure 5. The first observation is that
these FastPM power spectra do not fit as well the reference as the ones
from Figure 3. On one hand, for the HR case and Medium and Small
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Figure 5. Same as Figure 3, but the fitting is done on the monopole and quadrupole of the 2PCF.

fitting intervals a ±1𝜎 matching is possible up to 𝑘 = 0.4 ℎ/Mpc
and 𝑘 = 0.3 ℎ/Mpc, respectively. On the other hand, the LR FastPM
allows a good matching up to 𝑘 ≈ 0.2 ℎ/Mpc for the same fitting
intervals. While the 𝑠min = 0 case has a good matching quadrupole
up to 𝑘 ≈ 0.4 ℎ/Mpc, its monopole follows similar trend to the
2PCF monopole, i.e. the intermediate scales 𝑘 ∈ [0.25, 0.4] ℎ/Mpc
are biased and the rest are mostly within 2𝜎 deviation. Lastly, the
hexadecapole is within±2𝜎 up to 𝑘 ≈ 0.3 ℎ/Mpc for the Large fitting
interval and up to 𝑘 ≈ 0.2 ℎ/Mpc for the other cases.

A quantitative evidence that directly fitting the 2PCF yields supe-
rior matching of the 2PCF compared to fitting the power spectrum is
displayed in Figure 4. The majority of the 𝜒2

𝜈 values in the lower-right
panel are lower compared to those in the upper-right panel. Further-
more, fitting on the Small interval (𝑠min = 10), the 𝜒2

𝜈 ≈ 1, indicating
that the 2PCF is in good agreement with the SLICS reference above
a certain minimum separation. The almost constant 𝜒2

𝜈 for the Large
fitting interval in the lower-right panel of Figure 4 is explained by the
discrepancy at the intermediate scales of the monopole for the Large
fitting interval in Figure 5. Lastly, as in the previous fitting scenario,
the HR FastPM generally provides a lower 𝜒2

𝜈 than the LR. In con-
trast, only the HR simulations can provide a 𝜒2

𝜈 < 2 to both the 2PCF
and the power spectra, and only when fitting with the Medium and

Small intervals to 2PCF. Although not shown in the aforementioned
figure, it is important to note that 𝜒2

𝜈 [𝑃(0.02, 0.2)] = 2.4 for the
2PCF Small interval LR case.

4.3 Bi-spectrum comparison

Taking into account that the covariance matrix depends on the bi-
spectrum (Baumgarten & Chuang 2018), we aim to understand its
behaviour when incorporating various scales in the HOD fitting.
Figure 6 compares the average bi-spectrum of the 20 best-fitting
FastPM boxes with the one computed on the corresponding SLICS
boxes. It is evident that by increasing the fitting range to include
smaller scales, the FastPM bi-spectrum changes to the extent that
for 𝑘max = 0.5, the tension ranges from 1 to 2𝜎. In contrast, when
fitting the 2PCF the resulting bi-spectrum is more biased, i.e. the
lowest deviation is ≈ 5𝜎, for 𝑠min = 0 case. Finally, there is no
significant improvement in terms of the goodness-of-fit between the
HR and LR.

In the previous sections, we compare the HR and LR FastPM with
SLICS using the two-point clustering of the 20 cubic mocks included
in the HOD fitting. The HR simulations perform better than LR to
model the extremely non-linear scales, such as 𝑘 ≈ 0.5 ℎ/Mpc, 𝑠 ≈
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Figure 6. A comparison between the average SLICS bi-spectrum and the average FastPM bi-spectrum. The averages are computed from the 20 realisations
used during the HOD fitting. The left panel shows the results from fitting the power spectrum, as in Figure 3. The right panel displays the results from fitting the
2PCF, as in Figure 5. The shaded area denotes ±2𝜎 deviation.

0 Mpc/ℎ. In contrast, at mildly non-linear scales (𝑘 ≈ 0.3 ℎ/Mpc,
𝑠 ≈ 10 Mpc/ℎ) that are more relevant to BAO and RSD analyses (e.g.
Tamone et al. 2020; de Mattia et al. 2021), LR and HR show similar
performance. Moreover, Figure 6 suggests that the bi-spectrum does
not depend strongly on the resolution. Nevertheless, the computing
cost of HR is significantly higher than for LR and given the small
difference in precision, we argue it is optimal to use LR FastPM for
further analyses.

Furthermore, in Figure 7, we compare the average bi-spectra –
computed from 778 LR FastPM realisations – corresponding to the
six HOD fitting cases, see Table 3. In this and the next figures, we
choose the 𝑘max = 0.5 case as reference because:

(i) Figure 4 shows that the best-fitting power spectrum provides
𝜒2
𝜈 ≈ 1;
(ii) Figure 6 implies that the corresponding bi-spectrum is the

closest to the SLICS reference.

One can notice that 𝑠min = 0 bi-spectrum is at most 5 per cent
different than the reference, while the rest can reach 15 per cent
discrepancies. The 𝑘max = 0.3 and 𝑘max = 0.4 cases are 1 to 2
per cent different from each other and similarly for 𝑠min = 5 and
𝑠min = 10.

4.4 Covariance comparison

Having studied the behaviour of the bi-spectra, we now want to
understand their effect on the covariance matrices of the clustering
(power spectrum and 2PCF).

4.4.1 Power spectrum covariance

Figure 8 presents the correlation matrices and the corresponding
standard deviations𝜎ℓ for the monopole and quadrupole of the power
spectrum. The following pairs (𝑘max = 0.4, 𝑘max = 0.3), (𝑠min = 5,
𝑠min = 10) and (𝑠min = 0, 𝑘max = 0.5) have very similar correlation
matrices, thus we only show three cases. However, we introduce all
of them in Appendix C.

The similarity to the reference correlation matrix diminishes in
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Figure 7. Average bi-spectra computed using 778 LR FastPM realisations
for different HOD fitting cases, see Table 3. The reference for the bi-spectra
ratios is the average bi-spectrum computed for the 𝑘max = 0.5 case.

the following order: 𝑠min = 0, 𝑘max = 0.4, 𝑘max = 0.3, 𝑠min = 5
and 𝑠min = 10. However, for the largest scales of the quadrupole
(𝑘 < 0.15 ℎ/Mpc), the correlation coefficients are practically the
same for all cases.

The standard deviations in the lowest panels show similar trends.
The 𝑠min = 0 case is within two per cent of the reference case. The
𝑘max = 0.4, 𝑘max = 0.3 cases overestimate the 𝜎ℓ (𝑘) by approx-
imately two per cent for 𝑘 < 0.27 ℎ/Mpc and by ≈ 5 per cent for
smaller scales. Nevertheless, these two cases are consistent with each
other within one to two per cent. In contrast, 𝑠min = 5 and 𝑠min = 10
can overestimate the 𝜎ℓ (𝑘) by ≈ 2 to 5 per cent for 𝑘 < 0.27 ℎ/Mpc
and by 10 to 20 per cent for smaller scales. These two cases are also
consistent with each other for most scales, except for the quadrupole
𝑘 > 0.3 ℎ/Mpc. These findings are in agreement with the trends
observed in the bi-spectrum comparison in Figure 7.
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using the monopoles and quadrupoles of the power spectrum (left) and 2PCF
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of six different HOD fitting cases – see Table 3 – are presented here. However,
all cases can be found in Appendix C. The reference case corresponds to
𝑘max = 0.5. The upper triangular matrices display the correlation matrices,
while the lower triangular ones show the differences between the correlation
matrices and the reference one. The bottom panels illustrate the ratios between
the standard deviations. The shaded regions denote two and five per cent
limits.

In order to quantify the differences between the covariance matri-
ces we adopt the method described in Section 3.4 and thus obtain
the results displayed in Figures 9 and 10. The first one reveals that
none of the six covariance matrices bias the two fitting parameters,
regardless of the fitting range. We only present here the results of
one fitting range, however all cases can be found in Appendix C.

Examining the uncertainty on 𝑏0 in Figure 10, we observe that
including the smaller scales the discrepancy between the error esti-
mates of the six covariance matrices increases, as we expect from
Figure 8, reaching a maximum of ≈ 20 per cent larger error estima-
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Figure 9. The average of the 123 fitting parameters (𝑏ℓ ) obtained from 123
SLICS clustering realisations, as described in Section 3.4. The measurements
performed on the power spectra with 𝑘 ∈ [0.02, K] ℎ/Mpc are show on the
left, while those based on the 2PCF with 𝑠 ∈ [S, 200] Mpc/ℎ are depicted
on the right. The error bars are computed as the average of 123 𝜎𝑏ℓ , divided
by

√
123. Here, 𝜎𝑏ℓ represents the standard deviation of the 𝑏ℓ posterior

distribution. The colours correspond to the different FastPM covariance ma-
trices illustrated in Figure 8. Due to the similar results, only one value for K
and S are shown here. However, all tested values are presented in Appendix C

tion for the 𝑠min = 10 covariance at K = 0.25 ℎ/Mpc. Moreover,
each of the following pairs (𝑘max = 0.4, 𝑘max = 0.3), (𝑠min = 5,
𝑠min = 10) and (𝑠min = 0, 𝑘max = 0.5) provide coherent estimations
of the uncertainty, which is consistent with the observations on the
correlation matrices and standard deviations. Lastly, a five per cent
consensus between all six covariance matrices is achieved when we
fit the power spectra on the 𝑘 ∈ [0.02, 0.1] ℎ/Mpc.

The agreement between covariance matrices on 𝜎2 is much better
than𝜎0. Given the error bars, the six methods estimate the uncertainty
with a two per cent tolerance with each other for all K values.

Finally, all six covariance matrices provide values of R[𝑏0, 𝑏2]
that are consistent at the level of 5 per cent, given the error bars and
up to K = 0.2 ℎ/Mpc. For K = 0.25 ℎ/Mpc, the largest discrep-
ancy is shown by 𝑠min = 10 case which underestimates the value
of R[𝑏0, 𝑏2] by almost 50 per cent. The other cases underestimate
R[𝑏0, 𝑏2] by 10 to 20 per cent.

4.4.2 2PCF covariance

Comparing the correlation matrices obtained from 778 2PCF in Fig-
ure 8, one can observe that the largest differences occur at the smallest
scales 𝑠 < 30 Mpc/ℎ. Similarly to the power spectrum correlation
matrices, the same pairs of cases show resembling behaviours at all
scales. Equivalent qualitative comments can be made about the ratios
of the standard deviations. Nonetheless, all cases are within ≈ 2 per
cent from each other for 𝑠 > 30 Mpc/ℎ, while at smaller scales, the
differences can get larger than ≈ 20 per cent.

Following the method described in Section 3.4, we obtain the re-
sults shown in Figures 9 and 11. The first figure proves that all six
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Figure 10. The averages of 123 𝜎𝑏ℓ and 123 R[𝑏0, 𝑏2 ] – the standard deviation of the 𝑏ℓ posterior distribution and the covariance between 𝑏0 and 𝑏2,
respectively, detailed in Section 3.4 – obtained from 123 SLICS power spectra fitted on 𝑘 ∈ [0.02, K] ℎ/Mpc. In order to estimate the error bars, we split the
778 FastPM realisations in six distinct sets of 123 realisations and compute for each set 𝑢 a covariance matrix Σ𝑢

123,FastPM with which we fit the 123 SLICS
clustering realisations. Having obtained 123 values of 𝜎𝑢

𝑏ℓ
per set, we compute their average �̄�𝑢. Finally, the error bars are the standard deviation of the six

�̄�𝑢 divided by
√

6. The different colours stand for the different FastPM covariance matrices exhibited in Figure 8. The 𝑘max = 0.5 represents the reference, i.e.
all values (𝜎𝑏ℓ and its error bars) are scaled by the 𝜎𝑏ℓ corresponding to 𝑘max = 0.5 case. This is why all brown squares have the value of one. The shaded
areas delineate the 2 and 5 per cent regions with respect to the reference.

covariance matrices provide unbiased measurements of 𝑏ℓ parame-
ters.

Resembling the power spectrum fitting case, the six estimations
of 𝜎𝑏0 in Figure 11 are in better agreement when the smallest scales
are not included in the 2PCF fitting, however for S ≥ 20 Mpc/ℎ they
are all within ≈ 5 per cent from each other. The largest discrepancy
is around 10 per cent and occurs between 𝑠min = 0 and 𝑠min = 10 for
S = 15 Mpc/ℎ. The values of 𝜎𝑏2 are all consistent within ≈ 2 per
cent, given the error bars. Interestingly, including the smaller scales,
the R[𝑏0, 𝑏2] values are more coherent, such that all discrepancies
are within five per cent, given the error bars and for S < 30 Mpc/ℎ.
In contrast, when S = 30 Mpc/ℎ the 𝑠min = 10 and 𝑠min = 5 provide
values R[𝑏0, 𝑏2] that are approximately ten per cent larger than the
reference, but nevertheless consistent within the error bars.

5 CONCLUSIONS

We have implemented an HOD model to assign galaxies on the
FastPM halo cubic mocks, such that the resulting clustering –
monopole and quadrupole – matches the SLICS reference one. In
order to remove the cosmic variance, we have used 20 SLICS galaxy
catalogues and 20 halo FastPM mocks (low resolution or high reso-
lution) that share the initial conditions with the SLICS simulations.
Given the shared white noise, the standard covariance matrix is ob-
solete, thus we have performed a two-steps HOD fitting:

(i) use a simple diagonal covariance matrix to get Initial-Guess
best-fitting FastPM galaxy mocks;

(ii) compute the covariance matrix of the 123 realisations of the
difference between the IG-FastPM and the SLICS clustering, and
use it to perform the final HOD fitting.

The final HOD fitting has been performed on three different fitting

ranges for both power spectrum (𝑘max = 0.5, 𝑘max = 0.4, 𝑘max =
0.3) and 2PCF (𝑠min = 0, 𝑠min = 5, 𝑠min = 10).

On one hand, the HR FastPM generally performs better than the
LR at modelling the SLICS clustering. On the other hand, LR is also
able to provide a 𝜒2

𝜈 ≈ 1 for 𝑘max = 0.5, 𝑘max = 0.4, 𝑘max = 0.3
and 𝑠min = 10. The 𝑘max = 0.5 case is one of the most valuable as it
additionally offers 2𝜎 matching:

(i) power spectrum hexadecapole for 𝑘 < 0.4 ℎ/Mpc;
(ii) 2PCF monopole and quadrupole for 𝑠 > 10 Mpc/ℎ;
(iii) bi-spectrum.

Nevertheless, fitting the 2PCF with 𝑠min = 10, produce a 1𝜎 match-
ing power spectrum monopole and quadrupole for 𝑘 ≲ 0.2, but a
strongly biased bi-spectrum. In a similar way as the power spectrum,
one must include the smallest scales to better reproduce the SLICS
bi-spectrum, i.e. for 𝑠min = 0 the bi-spectrum tension drops from
20𝜎 to 5𝜎. As a general remark, the power spectrum hexadecapoles
can be slightly tuned by changing the values of 𝑘max or 𝑠min, but the
2PCF hexadecapole is practically independent on the fitting range.

Finally, it could be interesting for future studies to perform a join
fitting of both Fourier and Configuration clustering statistics to test
for possible improvements in modelling non-linear scales.

In the second part of the study, we have focused on the 778
LR FastPM realisations corresponding to the six best-fitting cases,
where 𝑘max = 0.5 is considered the reference. We have compared the
resulting covariance matrices together with the differences in their
constraining power using a simplified clustering model with two scal-
ing parameters, i.e. 𝑏0 and 𝑏2 for the monopole and quadrupole. We
focused on fitting intervals similar to the ones used in standard BAO
and RSD analyses i.e. K ≲ 0.20 ℎ/Mpc and S ≳ 20 Mpc/ℎ(e.g.
Tamone et al. 2020; de Mattia et al. 2021). In addition, we have anal-
ysed the bi-spectra from the point of view of the impact they have on
the covariance matrices.

The 𝑠min = 0 bi-spectrum is at most five per cent different than
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Figure 11. Same as Figure 10, but the fitting is performed on 123 SLICS 2PCF and 𝑠 ∈ [S, 200] Mpc/ℎ.

the 𝑘max = 0.5, while the other cases can reach a discrepancy of 15
per cent. However, each of these pairs (𝑘max = 0.4, 𝑘max = 0.3),
(𝑠min = 5, 𝑠min = 10) yield similar bi-spectra. These observations
are in a good agreement with a qualitative description of the shown
correlation matrices and the standard deviations.

Quantitatively, the power spectrum standard deviations of 𝑠min = 0
and (𝑘max = 0.4, 𝑘max = 0.3) are within two percent from the
reference for 𝑘 < 0.5 ℎ/Mpc and 𝑘 < 0.27 ℎ/Mpc, respectively.
Furthermore, the 2PCF standard deviations of all cases are within
two percent from the reference for 𝑠 > 30 Mpc/ℎ.

Using the simplified clustering model, 𝑏0 and 𝑏2 are measured
accurately for both power spectrum and 2PCF using all six covariance
matrices. The six estimations of 𝜎𝑏0 from the power spectrum fitting
up to K = 0.20 ℎ/Mpc are scattered within at most 20 per cent from
the reference, whereas the values of 𝜎𝑏2 are within two per cent
agreement, given the error bars. Lastly, the covariances between 𝑏0
and 𝑏2 are scattered within 5 per cent from the reference.

In contrast, the estimations of 𝜎𝑏0 from the 2PCF fitting down
to S = 20 Mpc/ℎ are found within five per cent from each other.
Similarly to the power spectrum case, the 𝜎𝑏2 values agree at the
level of two per cent. Given the error bars, the covariances between
𝑏0 and 𝑏2 are consistent at the level of five per cent.

In conclusion, one can use an HOD model on the low resolution
FastPM halo catalogues to tune the galaxy clustering such that it
matches the SLICS reference down to certain minimum scales. Ad-
ditionally, the HOD fitting intervals can have an impact on the final
FastPM based covariances. This influence is observed as a scatter in
the uncertainty estimation of up to 20 per cent for power spectrum
and five per cent for 2PCF at the scales interesting for BAO and RSD
analyses. Nevertheless, more accurate analyses could be performed
in the future using actual BAO and RSD models and larger mocks,
such as AbacusSummit.
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APPENDIX A: CONVERGENCE TESTS
Given the two-step approach to fit the HOD model, there is the important
question of convergence that has to be answered. Thus, we study whether the
Σdiff estimates well the noise in our HOD fitting process.

Figure A1 illustrates that the magnitude of the errors estimated after the
second HOD fitting step for all six hod fitting scenarios are consistent between
themselves within at most 10 to 20 per cent. However, there seems to be a

slight divergence between the error estimations when one approaches the
lowest scales.

Finally, compared to the square root of the diagonal ofΣdiff , the six standard
deviations for both 2PCF and power spectrum are found within at most 20
per cent deviation. In order to quantify these discrepancies, we have built the
difference covariance matrix using of each of the six best-fitting FastPM (of
the second HOD fitting step, see Table 3). Furthermore, we have computed the
𝜒2
𝜈 for the same best-fitting FastPM of the second HOD fitting step, but using

these six new difference covariance matrices. The results are summarised in
Figure A2.

Even though for most of the fitting cases, the six new difference covariance
matrices seem to provide coherent biased 𝜒2

𝜈 values compared to the Σdiff ,
the biases do not share the same sign between the fitting cases. In addition,
most 𝜒2

𝜈 values are within the error bars shown in Table B1 with respect to the
reference. This suggests that given the error bars, the hypothetical best-fittings
obtained using the six new covariance matrices, would be indistinguishable
from the best-fitting FastPM of the second HOD step. Consequently, we
argue that the Σdiff is a good approximation of the noise in the difference of
the (FastPM, SLICS) clustering, thus a hypothetical third step HOD would
not drastically change the best-fitting FastPM compared to the ones after the
second step.

APPENDIX B: UNCERTAINTY OF THE
GOODNESS-OF-FIT
In this section, we are studying the uncertainty introduced by the covariance
matrix and the finite number of HOD realisations per FastPM halo catalogue
in the values of 𝜒2

𝜈 , as defined in Eq. (21). The results are summarised in
Table B1.

B1 Covariance matrix induced uncertainty
Due to the fact that we have only 𝑁 cov

mocks = 123 SLICS and FastPM realisa-
tions that share the same initial conditions, we are bound to use the JackKnife
(JK) method to estimate the uncertainty introduced by the covariance matrix.
Additionally, the HOD fitting is computationally expensive (≈ 6000 CPU-
hours), thus we are not able to perform hundreds of HOD fittings with differ-
ent covariance matrices. Consequently, after obtaining one set of best-fitting
HOD parameters, we computed the 𝜒2

𝜈 with the same best-fitting FastPM
clustering, but with 𝑁 cov

mocks different covariance matrices.
The covariance matrices – Σ𝑖

𝜒 , with 𝑖 from 1 to 𝑁 cov
mocks – are estimated

using Eq. (22), but with only 𝑁 cov
mocks − 1 clustering realisations. Furthermore,

we compute 𝜒2,𝑖
𝜈,JK for each Σ𝑖

𝜒 , as defined in Eq. (21) and we calculate the
mean �̄�2

𝜈,JK and the variance 𝜎2
𝜒,JK:

�̄�2
𝜈,JK =

1
𝑁 cov

mocks

𝑁cov
mocks∑︁
𝑖=1

𝜒2,𝑖
𝜈,JK , (B1)

𝜎2
𝜒,JK =


𝑁 cov

mocks − 1
𝑁 cov

mocks

𝑁cov
mocks∑︁
𝑖=1

(
𝜒2,𝑖
𝜈,JK − �̄�2

𝜈,JK

)2

. (B2)

B2 HOD induced uncertainty
During the HOD fitting, for each FastPM halo catalogue we create a single
galaxy realisation, in order to reduce the optimisation time. As a consequence,
we introduce additional noise in the HOD fitting process, that is not considered
in the covariance matrix.

With the aim of estimating the effect of this noise on the 𝜒2
𝜈 , we compute

100 galaxy realisations for a given set of best-fitting HOD parameters and
per FastPM halo catalogue. Furthermore, using the 20 galaxy realisations
corresponding to the halo catalogues used in the HOD fitting process and
the same covariance matrix, we compute 𝜒2,𝑖

𝜈,HOD as in Eq. (21), where 𝑖 =
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Figure A1. The ratios between the standard deviations computed on the differences of 𝑁 cov
mocks = 123 (LR FastPM, SLICS) clustering pairs and the square

root of the diagonal of Σdiff , i.e. Σ𝑖𝑖
diff . The colours denote the HOD fitting scenarios in the second HOD fitting step, see Table 3. While the left panels include

monopole and quadrupole of the 2PCF, the right ones display the power spectrum.
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Figure A2. The 𝜒2
𝜈 as defined in Section 3.3.3, but using different covariance matrices. We compute 𝜒2

𝜈 : 1) for the six best-fitting FastPM cases, three cases
for the power spectrum in the left panel (see Section 4.1), and three cases for the 2PCF in the right panel (see Section 4.2); 2) with the six difference covariance
matrices obtained after the second HOD fitting step (the coloured dots). The black points show the best fitting 𝜒2

𝜈 for the six cases that also appear in Figure 4.

1, ..., 100. Finally, we calculate the mean and the standard deviation of the
100 𝜒2,𝑖

𝜈,HOD values:

�̄�2
𝜈,HOD =

1
100

100∑︁
𝑖=1

𝜒2,𝑖
𝜈,HOD, (B3) 𝜎2

𝜒,HOD =

[
1

100 − 1

100∑︁
𝑖=1

(
𝜒2,𝑖
𝜈,HOD − �̄�2

𝜈,HOD

)2
]
. (B4)
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𝑃 (𝑘 ) 𝜉 (𝑠)
Large
𝜒2
𝜈 from Figure 4 1.15 16.94

�̄�2
𝜈,HOD ± 𝜎𝜒,HOD 1.38 ± 0.26 17.03 ± 1.65

�̄�2
𝜈,JK ± 𝜎𝜒,JK 1.16 ± 0.31 16.97 ± 2.68

Medium
1.00 2.16
1.13 ± 0.23 2.19 ± 0.42
1.00 ± 0.19 2.16 ± 0.32

Small
1.50 1.59
1.50 ± 0.29 1.68 ± 0.41
1.51 ± 0.25 1.59 ± 0.26

Table B1. The values of the 𝜒2
𝜈 and their uncertainties introduced by the

covariance matrix (Eqs. (B1) and (B2)) and the finite number of HOD real-
isations per FastPM halo catalogue (Eqs. (B3) and (B4)). The estimations
have been performed on the LR (12963) FastPM galaxy catalogues and on
both the 2PCF and the power spectrum for the three specific fitting ranges
defined in Table 3.

APPENDIX C: COVARIANCE MATRIX COMPARISON
Analysing Figures C1 and C2 one can observe that the (𝑠min = 5, 𝑠min = 10)
and (𝑘max = 0.3, 𝑘max = 0.4) pairs have very similar correlation matrices.
Consequently, we only show 𝑘max = 0.3 and 𝑠min = 10 in the main text.

Figures C3 and C4 show the results of fitting the clustering with the
simplified model detailed in Section 3.4. Since most results are consistent with
the expected value of one, we only display the values for K = 0.25 ℎ/Mpc
and S = 20 Mpc/ℎ in the main text.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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error bars are computed as the average of 123 𝜎𝑏ℓ , divided by

√
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stand for the different FastPM covariance matrices exhibited in Figure C1.
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3 Void clustering models for cosmologi-
cal measurements

An important limitation of the large scale structure analysis is cosmic variance which depends

on the volume proved by the galaxy survey. Nevertheless, given a fixed survey volume, multi-

tracer analyses have the potential to decrease the cosmic variance by including multiple biased

tracers (for a brief review see Wang & Zhao, 2020). In this regard, Zhao et al. (2020) have shown

that a multi-tracer BAO analysis of voids (that have a negative bias) and galaxies (that have

a positive bias) improves the constraints compared to the galaxy alone. Therefore, showing

the importance of voids in the present and future galaxy surveys that probe the large scale

structure.

The first section introduces the concept of cosmic voids and two methods to detect them,

with a focus on Delaunay Triangulation (DT). Moreover, it briefly presents the improvements

brought by the latest multi-tracer BAO analysis (Zhao et al., 2022) with DT voids and galaxies.

In this study, I have contributed to the construction of the numerical model required to

describe the broadband shape of the DT void clustering affected by the exclusion effect.

The last section is dedicated to modelling the DT voids and it constitutes a published article

(Variu et al., 2023b). In this work, I have co-developed a numerical model1 of DT voids. In

addition, I have performed an in-depth analysis and comparison between different methods

for modelling DT voids to understand their impact on BAO measurements.

3.1 Cosmic voids

Qualitatively, cosmic voids are large volumes that do not contain luminous objects and that

are found in underdense regions of the CDM field (Rood, 1988; Sheth & van de Weygaert, 2004;

van de Weygaert & Schaap, 2009; van de Weygaert & Platen, 2011). Hoyle & Vogeley (2001,

2002) have measured an average void effective diameter of ≈ 30Mpc/h and a matter density

contrast of −0.92 to −0.96 for the 54 detected voids – defined as empty spheres detected from

galaxies. Nevertheless, there are multiple practical definitions and hence algorithms to find

1https://github.com/Andrei-EPFL/SICKLE
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Figure 3.1: The upper panels present the Voronoi (left) and Delaunay (right) Tessellations. For
a hypothetical 2D galaxy catalogue, the black points represent the galaxies, the red points
are the centres of the circumscribing circles (grey lines) of the triangles (black lines) defined
(detected by the Delaunay Tessellation) by three galaxies and the red lines denote the Voronoi
cells. The lower panels illustrate the Watershed method. Figures from https://en.wikipedia.
org/wiki/Delaunay_triangulation. Figure 1 of (Platen et al., 2007).

voids. Zhao et al. (2016) classify the cosmic voids in four groups:

1. regions with densities lower than the average, detected from the smooth DM, halo or

galaxy density field (e.g. Colberg et al., 2005; Neyrinck, 2008);

2. regions that are expanding in time, in contrast to the gravitational collapse of matter

(e.g. Hahn et al., 2007; Cautun et al., 2013);

3. regions found using the tessellations of the phase-space particle distribution, that do

not contain shell crossings (e.g. Shandarin et al., 2012);

4. empty geometrical structures detected from the distribution of discrete tracers (e.g.

El-Ad & Piran, 1997; Foster & Nelson, 2009; Zhao et al., 2016).
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The diversity of void definitions and detection methods makes them versatile tools for various

cosmological measurements. Their shape can be used to perform Alcock-Paczynski tests (e.g

Sutter et al., 2012; Mao et al., 2017), the void-galaxy cross clustering can be utilised in RSD

studies (e.g Hamaus et al., 2016; Hawken et al., 2020; Aubert et al., 2022), the void abundance,

bias and profile offer tests of modified gravity (e.g Perico et al., 2019) and serve as probes for

non-Gaussian primordial perturbations (e.g Kamionkowski et al., 2009). Additionally, their

clustering is sensitive to massive neutrinos (e.g Kreisch et al., 2019), and their density profiles

depend on the type of dark matter (e.g Yang et al., 2015). Lastly, voids have been used in BAO

studies (e.g. Chan & Hamaus, 2021; Zhao et al., 2020, 2022).

A comparison between some of the algorithms to detect voids can be found in (Colberg

et al., 2008). However, one commonly used algorithm for identifying voids – defined as

underdense regions – is ZOnes Bordering On Voidness (ZOBOV2; Neyrinck, 2008). ZOBOV

uses the Voronoi Tessellation Field Estimator (VTFE) to estimate the density field of matter

tracers. The algorithm creates a cell with a volume V (i ) around each matter tracer i , defining

it as "the region of space closer to matter tracer i than to any other tracer". The left panel of

Figure 3.1 illustrates these Voronoi cells with red lines. Furthermore, the density around tracer

i is estimated as 1/V (i ).

After estimating the density field across the entire space, a watershed algorithm is used to

detect the voids. The lower panel of Figure 3.1 metaphorically illustrates the watershed

algorithm: water is poured into the valleys of the density field to fill them up. These valleys

symbolise the voids, while the ridges correspond to the cosmic sheets and filaments. The

Watershed Void Finder (WVF; Platen et al., 2007) employs a similar void detection method,

although it estimates the density field with the Delaunay Tessellation Field Estimator (DTFE;

Schaap & van de Weygaert, 2000).

DTFE is based on Delaunay Tessellation (also known as Delaunay Triangulation, DT; Delaunay,

1934), which is illustrated in 2D space in the right panel of Figure 3.1. In 3D, the DT detects

the empty circumscribing spheres (DT spheres) of the tetrahedrons defined by four points.

DT and Voronoi Tessellation are fundamentally related; thus, by connecting the centres of

the DT spheres/circles, one can derive the Voronoi cells. In contrast to VTFE, DTFE uses

uniformly-random sampled points in space to estimate the density field at those positions.

The density field at a specific point is computed as the inverse of the volume of its surrounding

DT tetrahedrons. This technique allows for continuous density field estimation, unlike VTFE.

Naturally, as depicted in the lower panel of Figure 3.1, the resulting ZOBOV/WVF voids are

disjoint and can have arbitrary shapes associated with the cosmic web. In contrast, the

DT identifies overlapping empty spheres. This represents the fundamental idea behind the

concept of DT voids.

2Popular codes such as (VIDE; Sutter et al., 2015) or REVOLVER https://github.com/seshnadathur/Revolver are
based on this algorithm as well
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Figure 3.2: The black and blue points represent the haloes in a region of a cubic simulation.
The blue points are – in addition – haloes that define tetrahedrons (black lines), whose cir-
cumscribing spheres (with red centres) are shown in pink. The left panel shows voids with a
radius RV < 4Mpc/h, while the right panel illustrates voids with RV ∈ [26,27]Mpc/h. Figure 1
of (Zhao et al., 2016).

3.1.1 Delaunay Triangulation Voids

In the pursuit of identifying cosmic voids within a galaxy catalogue, the DT algorithm has

been implemented into the Delaunay trIangulation Void findEr (DIVE; Zhao et al., 2016) code.

Given a catalogue of 3D Cartesian positions as input, DIVE identifies a set of DT spheres,

each characterised by a 3D position and a radius. Figure 3.2 presents a region of a simulated

halo catalogue where the pink disks represent the overlapping DT spheres found by DIVE.

Notably, these spheres exhibit a wide-ranging distribution of radii, and the radius of each

sphere is strongly dependent on the local number density of the matter tracers (Zhao et al.,

2016; Forero-Sánchez et al., 2022).

Zhao et al. (2016) have shown that the size of the DT spheres is correlated with the possibility

of the spheres to trace underdense or overdense CDM regions. On one hand, Figure 3.3 shows

that the large DT spheres are found in the underdense regions of the CDM field – as expected

from Sheth & van de Weygaert (2004) – and are called "voids-in-voids". On the other hand,

Zhao et al. (2016) explain that the small DT spheres trace the overdense regions (similarly to

the haloes shown in Figure 3.3), therefore they are called "voids-in-clouds" (Sheth & van de

Weygaert, 2004).

These observations are supported by the comparison between the small and large spheres

in Figure 3.4. Firstly, the density contrast of large DT spheres is negative inside the spheres

and positive outside and at the border, while for the small DT spheres, the density contrast is
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Figure 3.3: The spatial distribution of haloes and DT spheres in the dark matter density field.
From top to bottom: the dark matter density field, the halo number density, the DT sphere
number density, the DT void (with RV ≤ 16Mpc/h) number density. The lowest panel contains
both haloes (red) and DT voids (green). Figure 8 of (Zhao et al., 2016).
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Figure 3.4: The left panel shows the bias of the small DT spheres (blue) and DT voids (red). The
same colour scheme is used to illustrate the radial density profile in the right panel. Figure 13
of (Zhao et al., 2016).

positive inside. Secondly, the linear bias of the large spheres is negative, while the one of the

small spheres is positive (Hamaus et al., 2014). As a consequence, the large DT spheres are

named DT voids. It is important to distinguish the fact that DT voids are not true voids, but

they are tracers of the underdense regions. Moreover, they are entirely geometrical structures

as DT relies only on geometry and does not require any parameters as input.

Liang et al. (2016) have defined a process to optimally select DT voids based on their radius3

such that the signal-to-noise ratio of the BAO signature in their clustering is maximised on

mocks. Based on this methodology, Kitaura et al. (2016) have detected for the first time the

BAO signal (see Figure 3.5) in the clustering of underdense regions, more specifically DT voids

constructed from the BOSS galaxy catalogues. Furthermore, they have shown that the BAO

feature is not detectable in the 2PCF of the disjoint DT voids4, suggesting the importance of

the overlapping feature of DT voids.

Due to the presence of the BAO feature in the DT void clustering, Zhao et al. (2020) have

conducted a galaxy-void multi-tracer BAO study using BOSS DR12 data to assess the potential

of DT voids to improve the constrains on cosmological parameters. Figure 3.6 presents a

summary of their results: the combined galaxy-DT void sample increases the precision on

the α parameter for most of the measurements on the simulated catalogues (black points).

Nonetheless, due to cosmic variance, certain combined measurements perform worse than

the galaxy measurements alone. This is notably the case for the BOSS galaxy sample at

0.5 < z < 0.75 as well. In contrast, they have found a 18 per cent improvement in the precision

of α for the 0.2 < z < 0.5 sample by including DT voids.

The latest and most complete multi-tracer BAO study with DT voids and galaxies has been

performed by Zhao et al. (2022), using the BOSS DR12 and eBOSS DR16 galaxy samples.

3This selection depends on the number density of matter tracers, see e.g. Forero-Sánchez et al. (2022).
4The disjoint DT voids form a subsample of all DT voids. They are selected one by one from the largest to the

smallest, by excluding each DT void that overlaps with the previously selected disjoint ones.
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Figure 3.5: The first detection of the BAO feature in the clustering of DT voids. The DT voids
have been identified in the galaxy sample of BOSS DR11. Figure 4 of Kitaura et al. (2016).

Figure 3.6: A comparison between the precision on the α parameter measured from the
galaxy sample alone (σα,galaxy ) and the precision from the combined galaxy-void sample
σα,combined. The black points indicate the results from 1000 mocks. The red stars represent
the measurements from BOSS DR12 data. The cyan lines denote σα,galaxy =σα,combined. The
orange lines illustrate the results from fitting the average of 1000 mocks. Figure 19 of Zhao
et al. (2020).
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Figure 3.7: Constraints on the DV (z) by different galaxy samples from multiple spectroscopic
surveys (colors). The DT void – galaxy multi-tracer (mtBAO) constraints are shown in black.
Constraints on different cosmological parameters of a flat-ΛCDM model, using BBN and
galaxy BAO or mtBAO. Figures 18 and 19 from Zhao et al. (2022).

The DT voids have been identified in four distinct galaxy samples: three LRG samples and

one set of ELGs. The resulting distance measurements from the isotropic BAO fitting of the

combined galaxy-DT void samples are shown in Figure 3.7 using black lines. The anisotropic

BAO measurements from BOSS/eBOSS have been converted to the spherically-averaged DV

in order to facilitate a comparison with the multi-tracer results. One can observe that by

including the DT voids, the distance measurements are improved in all cases. Numerically,

the precision increases by five to fifteen per cent for each of the four samples.

The right panel of Figure 3.7 presents a comparison between the cosmological parameters

obtained from:

• the anisotropic BAO measurements of Alam et al. (2021) – in orange;

• the isotropic results estimated from the combination of the anisotropic Alam et al. (2021)

measurements – in dashed red lines;

• the isotropic multi-tracer (galaxy + DT voids) BAO measurements – in black lines.

One can observe that the multi-tracer isotropic measurements provide better constraints than

the galaxy-only isotropic ones. However, the 2D analysis can have even tighter constraints. As
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a summary (see Table 1.1 as well), including the rest of the SDSS samples (MGS, QSO, and Lyα,

see Alam et al. (2021); Zhao et al. (2022) for more details), the uncertainties of the H0, Ω0m

and Ω0Λh2 are decreased by 6, 6 and 17 per cent, respectively, compared to the galaxy-only

measurements in Alam et al. (2021).

Kitaura et al. (2016); Zhao et al. (2022) explain that DT voids – being defined by tetrahedrons

formed out of four galaxies – include information from the higher order statistics, suggesting

the reason why the combined study of galaxies and DT voids provides tighter constrains.

Forero-Sánchez et al. (2022) have shown that the DT voids should improve the BAO constraints,

provided that the galaxy density field does not become fully Gaussian after BAO reconstruction.

Recently, Tamone et al. (2022) have studied the possibility to conduct BAO measurements

using the DT voids found in the QSO sample from eBOSS. They have found no improvements

on the data, however the measurements on 70 per cent of the mocks have lead to tighter

constraints.

Apart from the BAO signature, Figure 3.5 reveals the exclusion effect (Hamaus et al., 2014) on

the 2PCF of DT voids at scales s ∈ [RV,2RV], where RV is the radius cut to select the DT voids.

This effect influences the broadband shape of the DT void power spectrum as well. Therefore,

in order to perform the multi-tracer BAO fitting, Zhao et al. (2020) have adapted the template

power spectrum – equation (1.164) – to account for void exclusion. In Section 3.2, I describe

different methods to model the broadband shape of DT voids and test their effect on the BAO

fitting.

3.2 Preprint version: "Cosmic void exclusion models and their im-

pact on the distance scale measurements from large scale struc-

ture"
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ABSTRACT
Baryonic Acoustic Oscillations (BAOs) studies based on the clustering of voids and matter tracers provide important constraints
on cosmological parameters related to the expansion of the Universe. However, modelling the void exclusion effect is an important
challenge for fully exploiting the potential of this kind of analyses. We thus develop two numerical methods to describe the
clustering of cosmic voids. Neither model requires additional cosmological information beyond that assumed within the galaxy
de-wiggled model. The models consist in power spectra whose performance we assess in comparison to a parabolic model
on Patchy cubic and light-cone mocks. Moreover, we test their robustness against systematic effects and the reconstruction
technique. The void model power spectra and the parabolic model with a fixed parameter provide strongly correlated values
for the Alcock-Paczynski (𝛼) parameter, for boxes and light-cones likewise. The resulting 𝛼 values – for all three models – are
unbiased and their uncertainties are correctly estimated. However, the numerical models show less variation with the fitting range
compared to the parabolic one. The Bayesian evidence suggests that the numerical techniques are often favoured compared to the
parabolic model. Moreover, the void model power spectra computed on boxes can describe the void clustering from light-cones
as well as from boxes. The same void model power spectra can be used for the study of pre- and post-reconstructed data-sets.
Lastly, the two numerical techniques are resilient against the studied systematic effects. Consequently, using either of the two
new void models, one can more robustly measure cosmological parameters.

Key words: software: simulations –methods: numerical –methods: data analysis –methods: statistical – cosmology: observations
– large-scale structure of Universe

1 INTRODUCTION

In order to measure cosmological parameters and better understand
the Universe and its expansion, multiple techniques have been de-
veloped and implemented; one of them is the study of the Baryonic
Acoustic Oscillations (BAOs). They are oscillations in the primordial
plasma that have altered the matter distribution in the early Universe,
leaving an imprint that has been initially observed in the spectra
of Cosmic Microwave Background (CMB) temperature anisotropies
(e.g. Hinshaw et al. 2003; Planck Collaboration et al. 2020).
The large spectroscopic surveys provide complementary BAO

constraints to CMB. Currently, the most precise BAO studies us-
ing the 3D clustering statistics of galaxies have been achieved by
Baryon Oscillation Spectroscopic Survey (BOSS; Alam et al. 2017)
and extended-BOSS (eBOSS; Alam et al. 2021). The ongoing Dark
Energy Spectroscopic Instrument (DESI; DESI Collaboration et al.

★ E-mail: andrei.variu@epfl.ch
† E-mail: cheng.zhao@epfl.ch

2016) plans to further improve the precision of the BAO measure-
ments by increasing the number density of tracers andmapping larger
volumes. Meanwhile, the future Cosmology Redshift Survey (CRS;
Richard et al. 2019), part of 4-metre Multi-Object Spectroscopic
Telescope (4MOST; de Jong et al. 2019) survey, will provide com-
plementary measurements to DESI by scanning different regions on
the sky. In addition to the clustering of galaxies – e.g. luminous red
galaxies (LRG; Ross et al. 2017; Beutler et al. 2017), emission line
galaxies (ELG; Raichoor et al. 2020) – the BAO feature has been
detected in the clustering of quasi-stellar objects (QSO; Ata et al.
2017), Lyman 𝛼 forests (Ly𝛼 forests; Busca et al. 2013) and cosmic
voids (Kitaura et al. 2016).

While the matter tracers – except Ly𝛼 forests – are directly observ-
able, the cosmic voids are detected from the positions of the former.
In general, cosmic voids are regions in space emptied of luminous
objects that trace the under-dense zones of the density field (see re-
view of van deWeygaert & Platen 2011). However, in practice, there
are multiple definitions and thus different algorithms to detect them
(e.g. Padilla et al. 2005; Platen et al. 2007; Neyrinck 2008; Sutter

© 2022 The Authors

ar
X

iv
:2

21
1.

04
32

8v
2 

 [
as

tr
o-

ph
.C

O
] 

 1
6 

M
ar

 2
02

3



2 A. Variu et al.

et al. 2015; Zhao et al. 2016, and references therein). This allows
for a greater diversity of cosmological measurements. For example,
cosmic voids are part of BAO studies (e.g Zhao et al. 2020; Chan
& Hamaus 2021; Zhao et al. 2022), their geometry is involved in
performing Alcock-Paczynski tests (e.g. Sutter et al. 2012; Mao et al.
2017), their cross-clustering with galaxies has been used in Redshift-
Space-Distortions (RSD) studies (e.g. Hamaus et al. 2016; Nadathur
et al. 2019; Hamaus et al. 2020; Correa et al. 2022).
Multi-tracer analyses (Zhao et al. 2020; Zhao et al. 2022) of galax-

ies with voids determined using the Delaunay trIangulation Void
findEr (DIVE; Zhao et al. 2016) – code that uses the Delaunay Trian-
gulation (DT; Delaunay 1934) on the positions of the matter tracers –
show improvements on the precision of Alcock–Paczynski parameter
(𝛼; Alcock & Paczynski 1979) of the order of 10 per cent compared
to galaxy-only measurements. However, these studies imply the ad-
ditional challenge of modelling the void clustering. Compared to the
matter tracers, voids have large sizes, hence their exclusion has a
stronger impact on the clustering (Hamaus et al. 2014a). In conse-
quence, Zhao et al. (2020) have developed a more general model
than the galaxy de-wiggled one (Xu et al. 2012) in order to correctly
account for this difference.
The purpose of this paper is to introduce two numerical methods

that can be used in the modified de-wiggled model to provide a
description of the void exclusion effect. The principle behind the
two methods is to first create a halo catalogue by assigning them
directly on the density field corresponding to the initial conditions
and then detect the voids. Finally, the computed void power spectrum
represents the model for the void exclusion.
Section 2 presents the simulations involved in assessing the per-

formance of the void model power spectra. The description of the
two numerical techniques and the methodology employed in testing
them are described in Section 3. Section 4 shows the results of the
performance and robustness tests that have been effectuated on the
numerical techniques. The last section concludes the current article.

2 DATA

2.1 Patchy boxes

In this study, we use two sets of 2.5 ℎ−1Gpc cubic mock catalogues
obtained using the PerturbAtion Theory Catalogue generator of Halo
and galaxYdistributions (Patchy;Kitaura et al. 2013). This generator
uses theAugmentedLagrangian PerturbationTheory (ALPT;Kitaura
& Heß 2013) to model the structure formation and then it assigns
biased tracers (e.g. haloes or galaxies) to the density field based on a
bias model.
Both sets of Patchy boxes are calibrated against the BigMultiDark

(BigMD) 𝑁-body simulation (Klypin et al. 2016). However, the set
of 1000 boxes is tuned to match a BigMD Sub-Halo Abundance
Matching (SHAM) galaxy catalogue, whereas the set of 100 mocks
is calibrated with a BigMD halo catalogue.
The reference BigMD dark-matter box has a side length of

2.5 ℎ−1Gpc and contains 38403 dark-matter particles with a mass
of 2.359 × 1010 ℎ−1M� each. The cosmology of the simulation
is described by ℎ = 0.6777, ΩΛ = 0.692885, Ωm = 0.307115,
Ωb = 0.048206, 𝑛 = 0.96, 𝜎8 = 0.8228 1.
On one hand, the BigMD SHAM mock is based on the dark-

matter snapshot at redshift 𝑧 = 0.4656 and has a galaxy density of
𝑛 = 3.976980 × 10−4 ℎ3Mpc−3. On the other hand, the BigMD halo

1 https://www.cosmosim.org/cms/simulations/bigmdpl/

Figure 1. The NGC footprint of the BOSS DR12 (Alam et al. 2015) used to
build the Patchy light-cones.

catalogue uses the snapshot at 𝑧 = 0.5618 and has a number density
of 𝑛 = 3.5 × 10−4 ℎ3Mpc−3.

2.2 Patchy light-cones

In order to validate the suitability of the numerical models for survey-
like data, we construct the Light-Cones (LC) of all the 1000 Patchy
galaxy boxes using themake_survey2 (White et al. 2013) code. This
implies:

• the conversion of the (𝑋,𝑌, 𝑍) euclidean coordinates to Right
Ascension (RA), Declination (DEC) and redshift 𝑧;

• the cut of a survey geometry in (RA, DEC);
• the application of a radial selection function to sample tracers

along the line-of-sight.

On one hand, the applied footprint (Figure 1) corresponds to the
BOSS DR123 Northern-Galactic Cap (NGC) footprint (Alam et al.
2015). On the other hand, aGaussian distribution (Figure 2) is used as
a radial selection function, for 𝑧 ∈ [0.325, 0.775]. This distribution is
realistic enough for the current purpose and it allows for the flexibility
of choosing the redshift range and the shape.

3 METHODOLOGY

3.1 BAO reconstruction

The BAO reconstruction technique (Eisenstein et al. 2007b) is used
to increase the BAO signal (from the clustering of matter tracers)
and thus improve constraints on the cosmological parameters (e.g.
Anderson et al. 2014; Alam et al. 2017; Bautista et al. 2020; Raichoor
et al. 2020; Alam et al. 2021).
The principle of this technique is to estimate the displacement

of the biased matter tracers and then move them at positions corre-
sponding to higher redshifts to linearise the density field. By imple-
mentation, this method affects the distribution and the clustering of

2 https://github.com/mockFactory/make_survey
3 https://data.sdss.org/sas/dr12/boss/lss/
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Figure 2. The theoretical radial selection function used to build the Patchy
light-cones. The used redshift range is 𝑧 ∈ [0.325, 0.775], between the two
vertical grey lines.

the matter tracers, thus the distribution of the determined voids and
their clustering also change. Given that the reconstruction has been
used in multi-tracer analysis of voids and galaxies (Zhao et al. 2020;
Zhao et al. 2022) and it changes the void clustering, it is imperative
to test whether the numerical models can describe the voids obtained
from reconstructed Patchy mock catalogues.
In the current study, we adopt the iterative method proposed by

Burden et al. (2015) to perform the reconstruction. In practice, we
use the code Revolver4 described in Nadathur et al. (2019). The
required input parameters of the code are the number of iterations
(three, in this study) the linear bias of the mock tracers 𝑏 = 2.2, the
growth rate 𝑓 = 0.743 (corresponding to an effective redshift of the
simulation boxes 𝑧 = 0.4656), the smoothing scale 𝑆 = 15 ℎ−1Mpc
and the grid size of 5123 on which the density field is approximated
using a Cloud-In-Cell (CIC; Sefusatti et al. 2016) mass assignment
scheme.

3.2 Void detection

We apply the DIVE5 code (Zhao et al. 2016) to the galaxy and halo
catalogues to obtain the DT spheres. Similarly to other methods (e.g
Sheth & van de Weygaert 2004; Hamaus et al. 2014b), Zhao et al.
(2016) have shown that while the small DT spheres are mostly voids-
in-clouds and have positive matter density contrast, the larger DT
spheres (DT voids) are more probably voids-in-voids and exhibit a
negative matter density contrast. Consequently, a radius based selec-
tion – which depends on the matter tracers’ number density – can
discriminate the true tracers of under-dense regions from the possi-
ble tracers of over-dense regions. Moreover, Liang et al. (2016) have
proved that a radius based selection can be used to maximise the
signal-to-noise ratio of the BAO signal from the clustering of DT
voids.
In this study, we are interested in modelling only the DT voids

as they have been used in multi-tracer analyses such as Zhao et al.

4 https://github.com/seshnadathur/Revolver
5 https://github.com/cheng-zhao/DIVE

(2020); Zhao et al. (2022) to improve the precision of BAOmeasure-
ments. Thus,we select theDT sphereswith a radiusR𝑣 ≥ 16 ℎ−1Mpc
to form the DT void sample. This radius cut is chosen by anal-
ogy to Zhao et al. (2020) and based on the studies of Liang et al.
(2016); Forero-Sánchez et al. (2022). Forero-Sánchez et al. (2022)
have shown that the void selection based on a constant radius cut
yields unbiased BAO measurements when reconstruction is applied
on the galaxy catalogue or when systematical effects – such as a
small sample incompleteness – are present. Lastly, Zhao et al. (2016)
have observed that by selecting the large DT spheres, the resulting
DT void sample has a negative bias, consistently with the detailed
results of Hamaus et al. (2014a).

3.3 Clustering computation

3.3.1 Two point correlation function

In order to compute the 2PCF we use the Fast Correlation Function
Calculator6 (FCFC) code (Zhao 2023), which accepts as input both
boxes and light-cones and can employ any type of estimator. In the
current study, several estimators have been necessary to correctly
account for the specificity of the data sets.

• The natural estimator (Peebles & Hauser 1974) is used to com-
pute the void auto-2PCF and void-galaxy cross-2PCF from pre-
reconstructed boxes and the void auto-2PCF from post-reconstructed
boxes:

b (𝑠) = DvDv (𝑠)
RvRv (𝑠) − 1, (1)

b (𝑠) = DgDv (𝑠)
RgRv (𝑠) − 1. (2)

• The Landy–Szalay estimator (Landy & Szalay 1993) is needed
to compute the void auto-2PCF and void-galaxy cross-2PCF for the
light-cones:

b (𝑠) = DvDv (𝑠) − 2DvRv (𝑠) + RvRv (𝑠)
RvRv (𝑠) , (3)

b (𝑠) = DgDv (𝑠) − RgDv (𝑠) − DgRv (𝑠) + RgRv (𝑠)
RgRv (𝑠) . (4)

• A modified version of the Landy–Szalay estimator (Padmanab-
han et al. 2012) – inspired fromSzapudi&Szalay (1997) – is required
to compute the void-galaxy cross-2PCF from the post-reconstructed
boxes:

b (𝑠) = DgDv (𝑠) − SgDv (𝑠) − DgRv (𝑠) + SgRv (𝑠)
RgRv (𝑠) . (5)

On one hand, the letter D denotes the data catalogue of voids (Dv)
or galaxies (Dg) and thus DD represents the data-data normalised
pair counts. On the other hand, the random catalogue is expressed
through the letter R that can be related to both voids (Rv) and galaxies
(Rg). Consequently, RR and DR serve as the symbols for the random-
randomand data-randomnormalised pair counts, respectively. Lastly,
Sg is referring to a galaxy random catalogue that was shifted by the
same displacement field as the reconstructed galaxy catalogue and
thus SgRv represents the random-random pair counts.
The data-data pair counts can be directly computed given the

6 https://github.com/cheng-zhao/FCFC
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measured data catalogue. However, in order to compute the data-
random and random-random pair counts, one has to construct the
random part. For boxes, which implicitly have periodic boundary
conditions, the RR term (RvRv; RgRv) can be computed analytically:

RR(𝑠) =
4𝜋(𝑠32 − 𝑠31)

3
1
𝑉
, (6)

where 𝑠2 and 𝑠1 are the boundaries of a separation bin (𝑠2 > 𝑠1) and
𝑠 = (𝑠2 + 𝑠1)/2 for linearly separated bins.
In contrast, for light-cones, the RR term has to be evaluated on

randomcatalogueswhichmust include the same observational effects
as the data catalogues. For galaxies, we initially create a random box
(RB) of the same size as theBigMD and Patchy boxes, but ten times
denser, by randomly sampling Cartesian positions. Afterwards, we
apply make_survey with the same configurations as for the Patchy
boxes in order to obtain a random LC that is ten times denser than
the Patchy LC.
In the case of voids, we adopt a modified version of the ’shuffling’

technique (Liang et al. 2016). deMattia&Ruhlmann-Kleider (2019);
Zhao et al. (2021) have shown that it is necessary to avoid having
identical angular and radial positions of objects in the data and the
random catalogues, otherwise, the measured clustering is affected.
Consequently, to diminish this effect, we stack 100 void Patchy LC
mocks. Furthermore, we shuffle the RA-DEC pairs in bins of redshift
and void radius. This shuffling maintains the angular coverage, but
breaks the correlation between the redshift-radius pair and the RA-
DEC pair. Finally, we uniformly and randomly down-sample the
resulting shuffled catalogue down to 20 times the void density of the
Patchy LC. Having the void and galaxy random catalogues, one can
compute the RvRv, RgRv, DvRv, RgDv, DgRv pair counts for LC.
The shifted galaxy random cubic catalogues Sg are computed dur-

ing the reconstruction of the Patchy boxes by applying the displace-
ment field that is estimated from the Patchy boxes on the random
box RB. This creates a dedicated random catalogue to each of the
Patchy boxes. In comparison with galaxies, the void random box is
simply constructed by randomly and uniformly sampling Cartesian
positions inside a box of side-length of 2500 ℎ−1Mpc, so that the
density is ten times larger than the DT void sample.
We finally compute the pair counts and the 2PCF using 40 separa-

tion bins between 0 and 200 ℎ−1Mpc (i.e. a bin width of 5 ℎ−1Mpc).

3.3.2 Power spectrum

In the current study, we exploit the POWSPEC7 code – described in
Zhao et al. (2021) – to calculate the required power spectra. The den-
sity field is estimated using the Cloud-In-Cell (CIC; Sefusatti et al.
2016) particle assignment scheme and power spectra are computed
in 𝑘 bins of size 0.0025 ℎMpc−1.
The smoothness of the 2PCFs obtained through the Hankel trans-

form (see Section 3.4.1) of power spectra depends on the range
spanned by the wavenumber 𝑘 and on the number of power spectra
realisations. The large value of 𝑘 is required to ameliorate the effect
of the undulatory shape of the 0-order spherical Bessel function used
in the Hankel transform, while the large number of realisations is
needed to decrease the noise coming from cosmic variance. In order
to achieve a large enough 𝑘 interval, we use a grid size of 20483 to
measure the power spectra. This provides a 𝑘max ∼ 2.57 ℎMpc−1 for
boxes and a 𝑘max ∼ 1.88 ℎMpc−1 for light-cones.

7 https://github.com/cheng-zhao/powspec

Abbreviation Description

DW de-wiggled model, Eq. (10)
PAR parabolic model, Eq. (13)
PARU PAR with uniform prior, Eq. (29)
PARG PAR with a prior defined by Eq. (30)
fix c PAR with a fixed c parameter,

determined from the fit of the average
2PCF from 500 or 1000 realisations

SK SICKLE, details in Sec. 3.4.1.2 and Tab. 4
SKB calibrated SK model based on Boxes having

the same halo number density as the reference
SKdef defective SK model, see Tab. 4
SKLC the model obtained by applying the survey

geometry (Light-Cone) of the reference on the
halo boxes corresponding to SKB

CG CosmoGAME, details in Sec. 3.4.1.3 and Tab. 4
CGB same as SKB but for CG
CGdef same as SKdef but for CG
CGLC same as SKLC but for CG
CG80 calibrated CG model based on boxes having

a 20% lower halo number density than the reference
CG120 calibrated CG model based on boxes having

a 20% higher halo number density than the reference
gv void-halo (galaxy) cross-clustering
vv void auto-clustering

Table 1. The abbreviations of the studied models.

Given the fact that we need a large number of realisations to reduce
variances, it is computationally-expensive to always use a grid size
of 20483. Thus, we also calculate power spectrum realisations using
a grid size of 5123 in order to have a smoother power spectrum for
lower wavenumbers (see Section A for more details). In this case, we
use the grid interlacing technique (Sefusatti et al. 2016) to reduce the
alias effects introduced by the particle assignments scheme.

3.4 BAO fitting

3.4.1 BAO models

The theoretical model used to fit the 2PCF is defined as follows (Xu
et al. 2012):

bmodel (𝑠) ≡ 𝐵2bt (𝛼𝑠) + 𝐴(𝑠), (7)

where 𝐵 tunes the amplitude of the model, 𝛼 is the Alcock–Paczynski
(Alcock & Paczynski 1979) parameter that is related to the position
of the BAO peak and 𝐴(𝑠) is a function required to describe the
broad-band shape of the correlation function, which consists of three
nuisance parameters 𝑎0, 𝑎1, 𝑎2:

𝐴(𝑠) = 𝑎0 + 𝑎1𝑠
−1 + 𝑎2𝑠

−2. (8)

Xu et al. (2012) and Vargas-Magaña et al. (2014) have shown that
this function does not bias the measurement of 𝛼. Lastly, bt is the
Hankel transform of the template power spectrum 𝑃t (𝑘) as described
in Xu et al. (2012):

bt (𝑠) =
∫

𝑘2d𝑘
2𝜋2

𝑃t (𝑘) 𝑗0 (𝑘𝑠)e−𝑘
2𝑎2 , (9)

where 𝑗0 is the 0-order spherical Bessel function of the first kind (i.e.
the sinc function) and 𝑎 = 2 ℎ−1 Mpc is a factor for the Gaussian
damping of the Bessel function’s wiggles at high-𝑘 . A more detailed
discussion on how the value of 𝑎was chosen is presented in SectionA.
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In the case of galaxies, the template power spectrum can be ex-
pressed by the typical de-wiggled (DW) model (Anderson et al.
2014):

𝑃t,DW (𝑘) = [𝑃lin (𝑘) − 𝑃lin,nw (𝑘)]e−𝑘
2Σ2nl/2 + 𝑃lin,nw (𝑘), (10)

where 𝑃lin (𝑘) is the linear power spectrum that can be obtained
using CAMB8 software (Lewis et al. 2000), 𝑃lin,nw (𝑘) is the linear
power spectrum without the BAO feature (no wiggles, nw) computed
using the formula of Eisenstein & Hu (1998), and Σnl is the damping
parameter for BAO (Eisenstein et al. 2007a). In this work, we use
the input power spectrum employed in the generation of the Patchy
mocks as 𝑃lin (𝑘) for BAO fittings. This provides a predictable 𝛼
value in the absence of any systematic effects (see Section 3.4.4.2 for
a discussion on this topic).
Zhao et al. (2020) have shown that the de-wiggled model is not

suitable for voids due to the improper accounting of the broadband
shape. More precisely, the exclusion effect of voids (Hamaus et al.
2014a) affects significantly the clustering and thus the shapes of the
2PCF and power spectrum.
Consequently, Zhao et al. (2020) have introduced a more general

template power spectrum that accounts for the exclusion effect:

𝑃t (𝑘) = 𝜑(𝑘)𝑃t,DW (𝑘) (11)

and

𝜑(𝑘) = 𝑃t,nw (𝑘)
𝑃lin,nw (𝑘)

, (12)

where 𝑃t,nw (𝑘) is the non-wiggled tracer power spectrum, that can
practically include the void exclusion effect.
In this paper, we study different methods to model the additional

factor introduced in the template power spectrum, whose names
and abbreviations are summarised in Table 1. The first method is
introduced by Zhao et al. (2020) and it consists in approximating
the factor with a parabola (parabolic model). The other two methods
provide numerical models for the 𝑃t,nw (𝑘) term in three steps:
(i) create a halo catalogue using gauSsIan moCK tempLate

gEnerator (SICKLE9) or Cosmological GAussian Mock gEnerator
(CosmoGAME10);
(ii) apply DIVE on the constructed halo catalogues to get the DT

voids;
(iii) measure the power spectra of the resulting DT void cata-

logues.

SICKLE and CosmoGAME are two C codes that:

(i) generate Gaussian random fields based on 𝑃lin,nw (𝑘), using
the fixed amplitude (Angulo & Pontzen 2016) presented in Chuang
et al. (2019), in order to decrease the sample variance of halo–halo
and halo–void clustering;
(ii) assign haloes directly on the Gaussian fields without gravita-

tional evolution.

Nonetheless, the two techniques differ in their halo assignment
schemes.
By construction, our methods have the advantage of being gen-

eralisable for multiple definitions of voids as one needs to simply
apply the required necessary void finder on the resulting SICKLE
or CosmoGAME halo catalogue. However, the disadvantage is that

8 https://camb.info/
9 https://github.com/Andrei-EPFL/SICKLE
10 https://github.com/cheng-zhao/CosmoGAME

they are computationally expensive compared to analytical models.
Consequently, we may consider in future studies analytical models
based on the pioneering work to model the void exclusion (Hamaus
et al. 2014a) by Chan et al. (2014).

3.4.1.1 Parabolic model Zhao et al. (2020) have shown that the
additional factor – 𝜑(𝑘), Eq. (12) – can be approximated by a parabola
(PAR):

𝜑(𝑘) ∼ 1 + 𝑐𝑘2, (13)

where 𝑐 is a free parameter, determined through the fitting process.
In practice, when we fit the 2PCF, we force 𝑐 to take values only
inside a prior interval with a given probability distribution. More
details about the prior distribution are discussed in Section 3.4.3.

3.4.1.2 SICKLE The code generates a Gaussian random field in
Fourier space on a grid whose size can be tuned (𝑁grid). The field
is then scaled by a factor 𝛾 to encode the information about the
linear growth and the bias parameter. The resulting field is in an
approximation of the matter overdensity field in Fourier space 𝛿(k).
Furthermore, 𝛿(k) is transformed to real space into 𝛿m (r) using the
implementation of the Discrete Fourier Transform in the FFTW11
package.
Starting from the matter overdensity field 𝛿m (r), haloes are se-

lected by an iterative algorithm inspired from the CIC mass assign-
ment scheme until the desired number of haloes is reached:

(i) obtain the (𝑥, 𝑦, 𝑧) position of the maximum overdensity value;
(ii) scatter the (𝑥, 𝑦, 𝑧) position using displacements sampled from

aTriangular distribution (T (𝑥) = max(1−|𝑥 |, 0); given by theweight
of the CIC scheme) to get a new (𝑥′, 𝑦′, 𝑧′) position;
(iii) assign a halo at (𝑥′, 𝑦′, 𝑧′);
(iv) compute the contribution of the assigned halo to the matter

density field using the CIC scheme;
(v) subtract the previously computed contribution from the den-

sity field in order to emulate the exclusion of massive haloes;
(vi) go to (i).

The exclusion of massive haloes has a strong impact on the halo
clustering, thus itmust be taken into accountwhen the halo catalogues
are constructed (Somerville et al. 2001; Casas-Miranda et al. 2002;
Baldauf et al. 2013; Zhao et al. 2015). In our Universe, it is mainly
caused by the facts that:

• two or more haloes that are close enough can gravitationally
collapse into a single more massive one;

• there is not enough matter to form multiple massive haloes on
small scales.

For this method, the scaling factor 𝛾 and the size of the grid 𝑁grid
are the two parameters that can be tuned to influence the halo and
void clustering. Nevertheless, the effects of these parameters on the
resulting void power spectrumare not straightforwardly interpretable.

3.4.1.3 CosmoGAME Similarly to SICKLE, CosmoGAME esti-
mates the density field in real space 𝛿m (r) on which it assigns haloes.
While 𝛿m (r) is identical to the one estimated by SICKLE (except the
𝛾 factor), the halo selection process and the tunable parameters are
analogous to the galaxy assignment step for the Effective–Zel’dovich
mocks (EZmocks; Chuang et al. 2014; Zhao et al. 2021). It is im-
portant to re-emphasize the fact that whilst EZmocks include the

11 http://fftw.org/
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Zel’dovich approximation to estimate the gravitational evolution of
the density field, CosmoGAME uses directly the Gaussian random
field to assign haloes.
One of the CosmoGAME’s parameters used to select haloes is

the critical density (𝛿c). This variable plays the role of a threshold
below which one cannot assign haloes (Percival 2005) and thus has
an impact on the three-point clustering of haloes (Kitaura et al. 2015).
After picking the density field values above 𝛿c, random numbers

are added to them in order to take into account the stochasticity of
the tracers (Chuang et al. 2014):

𝛿t (r) = 𝐻 (𝛿m − 𝛿c)𝛿m (r) × (1 + 𝑆), (14)

where:

𝑆 =

{
𝐺 (_), 𝐺 (_) ≥ 0;
exp(𝐺 (_)) − 1, 𝐺 (_) < 0 (15)

and 𝐻 (𝑥) is the Heaviside step function. In the previous equation,
𝐺 (_) is a random number sampled from a Gaussian distribution with
a zero mean and a standard deviation _ – as a free parameter.
Lastly, a power-law probability density function (PDF) is used to

assign haloes to the resulting density values:

P(𝑛t) = 𝐴𝑏𝑛t , (16)

where P(𝑛t) is the probability to assign 𝑛t haloes to a density peak.
The fact that one has to ask for a fixed number of tracers puts a
constrain on one of two parameters (i.e. 𝐴 or 𝑏). Thus, we fix 𝐴 (with
𝐴 > 0) and treat 𝑏 as the only free parameter within 0 < 𝑏 < 1.
In practice, using the previous PDF, one computes the number of
density values to which one should assign 𝑛t tracers:

𝑛c (𝑛t) = b𝑁cellP(𝑛t)e, (17)

where 𝑁cell = 𝑁3grid (𝑁grid = 512, in this study) is the total number
of cells in the density grid and the b·e operator obtains the nearest
integer. Moreover, we compute the maximum number of haloes that
can be possibly assigned to one density value as:

𝑛t, max = min
𝑛t>0

{𝑛t |𝑁cellP(𝑛t) < 0.5}. (18)

The tracer assignment is performed – after the density values 𝛿t (r)
are sorted in descending order – as follows:

(i) one assigns 𝑛t, max haloes to the highest 𝑛c (𝑛t, max) density
values;
(ii) one continues to assign (𝑛t, max − 𝑖) haloes to the next

𝑛c (𝑛t, max − 𝑖) density values,
where 𝑖 takes values from 1 to 𝑛t, max. The positions of the assigned
haloes are sampled from a uniform distribution inside each of the
grid cells.
Another parameter of CosmoGAME, similarly to SICKLE, is the

grid size 𝑁grid. Nonetheless, by adjusting the other parameters, one
can emulate the effect of a different grid size. Thus, it is not used in
the tuning process.
Lastly, CosmoGAME has been already run to create the void

model power spectrum for the multi-tracer cosmological analysis
with SDSS data by Zhao et al. (2022).

3.4.2 Parameter inference

In order to infer the fitting parameters, we have written pyBAOfit12.
The code uses a combination of PyMultiNest13 – the python im-

12 https://github.com/Andrei-EPFL/pyBAOfit
13 https://github.com/JohannesBuchner/PyMultiNest

plementation of MultiNest (Feroz & Hobson 2008; Feroz et al.
2009, 2019) – and a Least-Square (LS) method (Press et al. 2007;
Zhao et al. 2022) in order to decrease the computational time. While
PyMultiNest samples the (𝛼, 𝐵,Σnl, 𝑐) parameters, the LS deter-
mines the best-fitting nuisance parameters (𝑎0, 𝑎1, 𝑎2). MultiNest
is a Bayesian Monte Carlo (MC) sampler, which provides not only
the best-fitting parameters, but also the Bayesian evidence and the
posterior distributions of the parameters. A more detailed discussion
about the different treatment of the two sets of parameters is done in
Section B.
The Bayesian inference is based on Bayes’ theorem that provides a

way tomerge the prior information about theΘ parameters of amodel
𝑀 with the measurements from the data 𝐷. Mathematically, the the-
orem provides the posterior probability density of the Θ parameters,
given the data 𝐷 and the model 𝑀:

𝑝(Θ|𝐷, 𝑀) = 𝑝(𝐷 |Θ, 𝑀)𝑝(Θ|𝑀)
𝑝(𝐷 |𝑀) , (19)

where 𝑝(Θ|𝑀) is the prior distribution of the Θ parameters (see
Section 3.4.3), 𝑝(𝐷 |Θ, 𝑀) is the likelihood – related to the mea-
surements from data 𝐷 – and 𝑝(𝐷 |𝑀) is the Bayesian evidence –Z,
a normalising factor and a valuable tool in model selection.
In the current study, we approximate the likelihood with a multi-

variate Gaussian:

𝑝(𝐷 |Θ, 𝑀) = L(Θ) ∼ e−𝜒2 (Θ)/2, (20)

where 𝜒2 is the chi-squared defined as:

𝜒2 (Θ) = vTC−1v. (21)

In the above formula, C−1 is the inverse of the unbiased covariance
matrix (Hartlap et al. 2007), and v is the difference between the
model and the data vectors, i.e. v = 𝝃data − 𝝃model (Θ).
The unbiased covariance matrix C is related to the sample covari-

ance matrix of mocks C𝑠 as follows:

C−1 = C−1
𝑠

𝑁mocks − 𝑁bins − 2
𝑁mocks − 1

, (22)

where 𝑁mocks is the number ofmocks used to compute the covariance
matrix and 𝑁bins is the length of the data vector 𝝃data included
in the fitting process. Furthermore, C𝑠 can be decomposed into a
multiplication between a matrixM and its transpose:

C𝑠 =
1

𝑁mocks − 1
MTM. (23)

Finally, the elements of the matrixM are computed as:
M𝑖 𝑗 = b𝑖 (𝑠 𝑗 ) − b̄ (𝑠 𝑗 ), 𝑖 = 1, 2, ..., 𝑁mocks, 𝑠 𝑗 ∈ [𝑠min, 𝑠max], (24)
where b𝑖 denotes the 2PCF of the 𝑖−th mock realisation, b̄ represents
the mean 2PCF of all mocks and [𝑠min, 𝑠max] represents the interval
of data points involved in the 2PCF fitting.
The quoted values of the parameters are the medians of the pos-

terior distributions, and the 1𝜎 uncertainties are half the differences
between the 84th and 16th percentiles, unless otherwise specified.

3.4.3 Parameter priors

The Bayesian inference method requires prior knowledge about the
measured parameters, generally implemented as a probability dis-
tribution function. In our case, we have mainly assumed uniform
distributionsU[𝑎, 𝑏] (Θ):

U[𝑎, 𝑏] (Θ) =


0, Θ < 𝑎
1

𝑏−𝑎 , Θ ∈ [𝑎, 𝑏]
0, Θ > 𝑏.

(25)
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Σnl Auto Cross
ℎ−1Mpc

fix-𝑐 9.03 9.77
PARG 9.03 9.77
SKB 6.88 5.28
CGB 7.03 3.88
SKLC 7.68 6.77
CGLC 7.64 5.80

Table 2. Prior values of Σnl when fitting the individual 2PCF of light-cones.
These are the best-fitting values of the average of 1000 2PCF computed from
light-cones. Cross – void-galaxy cross 2PCF; Auto – void auto 2PCF.

While for the priors of 𝛼 and 𝐵 we have generally imposed:

𝑝(𝛼) = U[0.8, 1.2] (𝛼), (26)

𝑝(𝐵) = U[0, 25] (𝐵), (27)

the prior of Σnl depends whether the 2PCF has been measured from
boxes or from light-cones. In the first case – i.e. for boxes – we
implement a uniform prior:

𝑝 (Σnl) = U[0, 30] ℎ−1Mpc (Σnl). (28)

In the second case – i.e. for light-cones – we fix the values of Σnl to
the ones in Table 2. The chosen intervals are large enough to not bias
the measurements, as shown by (Zhao et al. 2020) and also obvious
in Figures B1-B4.
The reason behind fixing the Σnl is that the light-cones have a

smaller volume than the boxes, thus the corresponding 2PCF are
noisier. Given the noisier 2PCF, Σnl is not properly constrained and
the uncertainty of 𝛼 is overestimated – see also Figure A3. Zhao
et al. (2022) have shown that fixing this parameter does not bias the
measurements and thus it is appropriate to do it for the light-cones.
In order to accurately measure Σnl, we have fitted the average of all
1000 2PCF realisations measured from light-cones with a covariance
matrix corresponding to the average 2PCF – i.e. computed from 1000
realisations and rescaled by 1000 (rescaled covariance matrix) – and
the uniform prior shown in Eq. (28), as performed by Zhao et al.
(2022). The best-fitting Σnl values (Table 2) are then used in fitting
the individual 2PCF from light-cones.
In the case of the parabolic model, as seen in Eq. (13), there is an

additional parameter 𝑐, for which we consider three cases:

• a uniform prior for 𝑐 (PARU)
𝑝(𝑐) = U[−104 , 104] ℎ−2Mpc2 (𝑐); (29)

• a uniform prior with two Gaussian tails (PARG), similar to the
one used in Zhao et al. (2020)

𝑝(𝑐) =




0, 𝑐 < 𝑐min

𝐴′ exp(− (𝑐−𝑐fmin)2
2𝜎2𝑐

), 𝑐 ∈ [𝑐min, 𝑐fmin]
𝐴′, 𝑐 ∈ [𝑐fmin, 𝑐fmax]
𝐴′ exp(− (𝑐−𝑐fmax)2

2𝜎2𝑐
), 𝑐 ∈ [𝑐fmax, 𝑐max]

0, 𝑐 > 𝑐max,

(30)

where 𝑐fmin = −100 ℎ−2Mpc2, 𝑐fmax = 900 ℎ−2Mpc2, 𝑐min =
−400 ℎ−2Mpc2, 𝑐max = 1200 ℎ−2Mpc2 and 𝜎𝑐 = 100 ℎ−2Mpc2;

• a fixed value of 𝑐 (fix 𝑐, see Table 3), as in (Zhao et al. 2022).

𝑐 Auto Cross
ℎ−2Mpc2

light-cone 2193 477
pre-recon box 1064 216
recon box 4030 319

Table 3. Prior values of 𝑐 when fitting the individual 2PCF with a parabolic
model. These are the best-fitting values of the average 2PCF (from 1000
light-cones or 500 boxes). Cross – void-galaxy cross 2PCF; Auto – void auto
2PCF.

The uniform prior on 𝑐 (Eq. (29)) has been always used when we
have fitted the average 2PCF (of 1000 realisations from LC and of
500 realisations from boxes). For the individual 2PCF, we have either
fixed the values of 𝑐 – as in Table 3 – or used the PARG prior, Eq. (30).
Similarly to Σnl, we have determined the value of 𝑐 by fitting the

average 2PCF (from 500 boxes or from 1000 light-cones) with the
rescaled covariance matrix – corresponding to the average 2PCF –
to mitigate the potential biases due to the cosmic variance of the
mocks. The best-fitting values of 𝑐 – shown in Table 2 – are used
in the fitting of individual 2PCF. In contrast, to test the 2PCF fitting
range, we use the covariance matrix corresponding to one 2PCF
realisation (unscaled covariance matrix) together with the average
2PCF.
It is important to note that all the above priors have been used

for fitting both the void auto-2PCF and the void-galaxy cross-2PCF.
However,whenwefit the void-galaxy cross-2PCF,we have to account
for the negative bias of the DT voids (Zhao et al. 2016). Generally,
the 𝐵2 term in Eq. (7) should be replaced by the product of the galaxy
bias with the void one: 𝐵galaxy × 𝐵void, with 𝐵void < 0. However,
in this work, we do not write the explicit form because we do not
fit simultaneously the void auto-2PCF, void-galaxy cross-2PCF and
galaxy auto-2PCF. Consequently, we simply replace 𝐵2 with −𝐵2
in Eq. (7) for the parabolic and the DW models. In contrast, the
numerical models contain the information of the void negative bias
in the shape of the resulting power spectrum, see the cross-clustering
in Figure 3.

3.4.4 Model comparison

In the next paragraphs, we define the parameters that we use to
compare the models.

3.4.4.1 Bayes factor Apart from inferring parameters, Bayes’ the-
orem can also be utilised to compare the quality of different models
given prior probabilities of each models and their evidences:

𝑝(𝑀1 |𝐷)
𝑝(𝑀2 |𝐷) =

𝑝(𝐷 |𝑀1)𝑝(𝑀1)
𝑝(𝐷 |𝑀2)𝑝(𝑀2)

, (31)

where

Z𝑖 ≡ 𝑝(𝐷 |𝑀𝑖) =
∫

L(Θ)𝑝(Θ|𝑀)dΘ (32)

is the Bayesian evidence, 𝑝(𝑀1)/𝑝(𝑀2) is the prior probability ratio
between the two models and 𝑝(𝑀1 |𝐷)/𝑝(𝑀2 |𝐷) is the posterior
probability ratio of the two models given the data set 𝐷.
Multinest provides the natural logarithm of the Bayesian ev-

idence, thus one can easily compute ln (Z1/Z2), i.e. the natural
logarithm of the Bayes factor between any two tested models. Given
that we consider the prior probabilities of the models to be equal
𝑝(𝑀1) = 𝑝(𝑀2), the Bayes factor is a direct indication of whether
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a model has a higher probability to be correct than another given a
data set.

3.4.4.2 Tension parameter Themost important aspect of a studied
model is the capability to provide unbiased measurements of the
Alcock–Paczynski parameter and its uncertainty. In order to have a
quantitative description of the possible biases, we define the tension
parameter 𝜏(𝑥, 𝑦 |𝜎𝑥 , 𝜎𝑦) between two values 𝑥 and 𝑦, given their
uncertainties 𝜎𝑥 and 𝜎𝑦 , respectively:

𝜏(𝑥, 𝑦 |𝜎𝑥 , 𝜎𝑦) = 𝑥 − 𝑦√︃
𝜎2𝑥 + 𝜎2𝑦

. (33)

Naturally, this parameter can quantify the differences between dif-
ferent models, however it can also show the bias with respect to a
reference.
Given the fact that the input power spectrum of the Patchymocks

takes also the role of 𝑃lin (𝑘) in Eq. (10) to perform the BAO fit-
ting, the expected measured value of 𝛼 should be equal to one, in
the absence of the non-linear evolution of the BAO peak and if all
systematic effects are taken into account. Nonetheless, Prada et al.
(2016) has shown that the BAO can have a shift towards higher 𝛼
values of ∼ 0.25 per cent for halo samples with linear bias from 1.2
to 2.8. Nevertheless, in this analysis, we approximate the reference
to one and thus we also study the values of 𝜏(𝛼, 1|𝜎𝛼, 0).

3.4.4.3 Relative difference We also formally define the relative
difference in order to compare two quantities:

R(𝑥, 𝑦) = 100 ×
(
𝑥

𝑦
− 1

)
. (34)

This tells us the difference in percentage between the two values.

3.4.4.4 Pull function In order to verify whether the uncertainties
are correctly estimated, we define the pull function:

𝑔(𝑥) = 𝑥 − 𝑥

𝜎𝑥
, (35)

where 𝑥 is the mean of a set of values 𝑥 and 𝜎𝑥 is its standard
deviation. If the histogramof the 𝑔(𝑥) values followa standard normal
distribution, one can conclude that the uncertainty of 𝑥 is correctly
estimated.

4 TESTS AND RESULTS

4.1 Analysis and comparison of void clustering models

We start by comparing the ratio 𝜑(𝑘) Eq. (12) of all models – DW,
PAR, SICKLE, CosmoGAME – to the one of pre-reconstructed
Patchy boxes. In Figure 3, the colour dotted curves denote the
numerical models, while the black curves represent the reference
computed from 500 Patchymocks. The horizontal dashed lines rep-
resent the DW model (𝜑(𝑘) = 1) that unequivocally under-fit the
exclusion-effect-dominated reference. In contrast, one can observe
that for small values of 𝑘 a parabola is a good approximation of the
ratio, however it evidently fails for 𝑘 > 0.05ℎ Mpc−1. Unlike the
previous models, the numerical models follow the reference up to
𝑘 = 0.6 ℎMpc−1.
Furthermore, we check the robustness of all four models to the

fitting range on the average correlation function – computed from 500
mocks – by evaluating the tension 𝜏(𝛼, 1|𝜎𝛼, 0). Figure 4 contains
the values of the tensions for the void auto-2PCF (left) and void-
galaxy cross-2PCF (right) for different fitting intervals. Generally,
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Figure 3. Comparison of 𝜑 (𝑘) – defined in Eq. (12) – with the ratio be-
tween the average mock power spectrum 𝑃mock and 𝑃lin,nw (black). 𝜑 (𝑘)
is computed for different models: grey dashed - de-wiggled model; green -
parabolic model; red and blue - numerical models. 𝑃mock is obtained from
500 pre-reconstructed Patchy cubic mocks. The numerical models were re-
scaled to match 𝑃mock, so the 𝑦 ticks are meaningless. See Table 4 for the
tuning parameters of the numerical models and Table 1 for the abbreviations.

CGB / CGLC CGdef CG80 CG120

𝛿𝑐 2.6 (1.8) 2.4 (1.6) 1.8 (1.2) 1.6 (1.8)
_ 1.0 (0.3) 2.0 (0.5) 0.4 (0.1) 1.5 (1.0)
𝑏 0.44 (0.28) 0.28 (0.20) 0.32 (0.08) 0.52 (0.28)

SKB / SKLC SKdef

𝑁grid 1024 1024
𝛾 0.075 0.3

Table 4. Upper table: The values of the CosmoGAME’s free parameters
used to create the numerical models. A more detailed description of the
parameters can be found in Section 3.4.1.3. The abbreviations are defined in
Table 1. The values in brackets are for the void-halo cross-power-spectrum,
while the rest are for the void auto-power-spectrum. Lower table: The values
of the SICKLE’s free parameters used to create the numerical models for
both the void auto-power-spectrum and the void-halo cross-power-spectrum.
More details can be found in Section 3.4.1.2

the tension depends on the fitting range. However, its values are also
influenced by the model and the studied clustering.
Obviously, in the case of the de-wiggled model, the values of 𝛼 are

strongly biased for most fitting intervals, reaching values of∼ 1𝜎 and
above. This observation is consistent with the fact that this model is
not suitable to describe the clustering of voids, as shown in Zhao et al.
(2020). The parabolic model shows significant improvements with
respect to the de-wiggled model as most values are within ±0.2𝜎
from zero. There are the clear outliers at 𝑠min = 40 ℎ−1Mpc) for the
void auto-2PCF, that do not appear for the void-galaxy cross-2PCF.
An explanation might be that the exclusion effect in configuration
space is present at smaller separations for the cross-clustering than
for the auto-clustering.
The numerical models are more robust to the fitting ranges –

compared to the other methods – given the fact that the tension of 𝛼

MNRAS 000, 1–19 (2022)



Cosmic void exclusion models 9

smax, A

50

70

s m
in

, D
W

smax, X

50

70

s m
in

, D
W

smax, A

50

70

s m
in

, P
A

R
U

smax, X

50

70
s m

in
, P

A
R

U

smax, A

50

70

s m
in

, S
K

B

smax, X

50

70

s m
in

, S
K

B

130 150 170
smax, A

50

70

s m
in

, C
G

B

130 150 170
smax, X

50

70

s m
in

, C
G

B

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

τ(
α
,1
|σ
,0

)

Figure 4. Comparison of different fitting ranges for four different models
using 𝜏 (𝛼, 1 |𝜎𝛼 , 0) , Eq. (33). Both the average void auto-2PCF (left) and
void-galaxy cross-2PCF (right) – computed from 500 individual Patchy
cubic mocks – are considered. The abbreviations are defined in Table 1.

is more homogeneous across the fitting ranges. There is the obvious
exception of the narrow 𝑠 ∈ [80, 130] ℎ−1Mpc interval, which yields
a strong bias given the lack of sufficient data points to describe well
the peak. For most other fitting ranges, the results from the void auto-
2PCF show little to no bias at all (±0.1𝜎), whilst a more consistent,
yet not significant bias is present for the void-galaxy cross-2PCF
(∼ 0.2𝜎).
Due to the fact that around the 𝑠 ∈ [60, 150] ℎ−1Mpc interval, the

results are not sensitive to the fitting range, and this interval has been
used in Zhao et al. (2020), we use it in the following tests.
Figure 5 presents the best-fitting curves of the average correla-

tion function for three models: parabolic model, SICKLE and Cos-
moGAME. All three models are describing well both the BAO peak
and the broadband shape. Looking at the BAO-free best-fitting curves
(the third panel and the dotted lines in the fourth panel of Figure 5),
one can ascertain that none of the models introduce any additional
signal at the position of the BAO peak.
Figures 6 and 7 show a comparison of the four different models

in terms of the measured 𝛼 values from the 500 individual mocks.
One can observe that the de-wiggled model induces a bias in the 𝛼
values with respect to all other models for both void auto-2PCF and
void-galaxy cross-2PCF.
The PARG model provides similar 𝛼 values to the numerical mod-

els, but it is prone to fit poorly which leads to extreme values (the
three points around the value of 0.8, in Figure 6). In contrast, the
parabolic model with fixed 𝑐 parameter is consistent with the nu-
merical models for both the void auto-2PCF and the void-galaxy
cross-2PCF. This suggests that a lack of a strong prior knowledge on
𝑐 presents risks of extreme failure. Consequently, we consider only
the fixed-𝑐 case in the further model comparison. Finally, the two
numerical models are indistinguishable in terms of the resulting 𝛼
values.
Analysing the average 𝛼 of the 500 values from Figure 8, one can

learn that the de-wiggled model introduces a bias of 0.4 to 0.7 per
cent. In contrast, the bias shown by the numerical models and the
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Figure 5. The best-fitting model curves for the average void auto-2PCF com-
puted from 100 individual PATCHY halo boxes and for the average void-
galaxy cross-2PCF computed from 500 individual Patchy galaxy boxes.
First panel: the complete auto-2PCF. Second panel: the BAO peak (i.e.
𝑠2 [b (𝑠) − b nw (𝑠) ]). Third panel: the 2PCF without the BAO peak. The
fourth panel: the complete cross-2PCF with the best-fitting curves (with and
without BAO peak). The abbreviations are defined in Table 1.

parabolic model with the fixed 𝑐 is around ±0.1 per cent for the void
auto-2PCF and around 0.15 per cent for void-galaxy cross-2PCF.
Moreover, the 𝛼 values for the void auto-2PCF tend to be lower than
one, while the values for the void-galaxy cross-2PCF larger than
one. This is consistent with the findings of McCullagh et al. (2013);
Neyrinck et al. (2018): due to the gravitational evolution, the clus-
tering of over-dense regions underestimates the length of the sound
horizon, whereas with the under-dense regions, the sound horizon is
overestimated. Additionally, one has to consider that the values of 𝛼
are slightly over-estimated, given the noise in the individual 2PCF
and the large prior interval for Σnl, as shown in Figure A3.
In order to more robustly check the tensions between the models,

we compute 𝜏(𝛼𝑥 , 𝛼𝑦 |𝜎𝑥 , 𝜎𝑦) between all pairs of models and show
the resulting histograms in the lower triangular plots of Figures 9
and 10. The mean tensions with respect to the de-wiggled model
reach values of ∼ −0.7𝜎 for void auto-2PCF, and ∼ −0.5𝜎 for void-
galaxy cross-2PCF, supporting previous claims. Moreover, despite
the important differences between the numerical models and the
parabolic model with the fixed 𝑐 parameter observed in Figure 3, the
actual tensions between the measured 𝛼 values are not significant (at
most ∼ 0.3𝜎 and on average ∼ 0.1𝜎). This is because the damping
term 𝑎 in the Hankel transform – defined in Eq. (9) – decreases the
amplitude of the models sharply at high 𝑘 , and thus the higher 𝑘
discrepancies become less important.
While the tensions between the models can be informative on the
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2PCF computed from Patchy cubic mocks. The abbreviations are defined in
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Figure 7. Same as Figure 6, but for the void-galaxy cross-2PCF.

possible introduced biases, the pull function 𝑔(𝑥) provides informa-
tion about the uncertainty estimation. The resulting histograms can
be observed along the diagonals of Figures 9 and 10. For both void
auto-2PCF and void-galaxy cross-2PCF, one can estimate well the
uncertainty 𝜎𝛼 with all models.
Finally, by studying the values of the Bayes factor for all pairs of

models in the upper triangular panels of Figures 9 and 10, one can
conclude that:

DW fix c CG B SK B
CG def SK def CG 80
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SK LC
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Figure 8.The average of 500 𝛼 values for Patchy boxes and of 1000 𝛼 values
forPatchy light-conesmeasured fromvoid auto-2PCF and void-galaxy cross-
2PCF. The error bars are computed as the standard deviation of the 500 (1000)
𝛼 values further divided by

√
500 (√1000) . The black horizontal denotes the

values of zero, while the grey shaded areas encompass the intervals of ±0.2%
and ±0.1% from the reference. See Table 1 for abbreviations.
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Figure 9.Diagonal panels: green - the histograms of the pull function 𝑔 (𝛼𝑥 )
values, Eq. (35); black - standard normal distributions. Lower triangular
plots: the values of 𝜏 (𝛼𝑥 , 𝛼𝑦 |𝜎𝑥 , 𝜎𝑦) , Eq. (33), for all combinations of
models. Upper triangular plot: the natural logarithm of the Bayes Factor
ln

(Z𝑦/Z𝑥
)
(see Section 3.4.4.1). The results correspond to the individual

fittings of the 500 void auto-2PCF computed from the Patchy cubic mocks.
The abbreviations are defined in Table 1.
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Figure 10. Same as Figure 9, but for the void-galaxy cross-2PCF.

(i) the DW model is the least likely to be true;
(ii) the parabolic model with a fixed 𝑐 is slightly disfavoured with

respect to the numerical models;
(iii) there is no preferential numerical model.

These observations can be naturally interpreted by analysing Fig-
ure 3:

(i) the DW model under-fits the exclusion wiggles;
(ii) the parabolic model is a better description of the wiggles than

DW, but worse than the numerical models;
(iii) both numerical models follow similarly the exclusion feature

up to 𝑘 = 0.6 ℎMpc−1.

4.2 Robustness tests against systematic errors

In this section, we investigate the sensitivity of BAO measurements
to possible systematic errors in the numerical models and the data.
Initially, we examine the sensitivity of the measured 𝛼 to the pa-
rameters of CosmoGAME and SICKLE by shifting them away from
the fiducial values (see Table 4). As a result, the newly computed
power spectra (defective models, SKdef , CGdef , see Figure 11) do
not describe as well as the fiducial ones the reference clustering.
The second set of tests evaluates the robustness of the numerical

models to potentially uncorrected systematic effects in the data. For
example, the galaxy number density along the redshift is assumed
to be isotropic, however, there are inhomogeneities across that sky,
which means that the local number density of galaxies is not every-
where correctly estimated (see e.g. Appendix A of Zhao et al. 2021).
This is important because a different matter density yields a different
void size distribution (Zhao et al. 2016; Forero-Sánchez et al. 2022)
that finally alters the exclusion pattern (Liang et al. 2016).
Another example of a systematic effect is the incompleteness in
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Figure 11. Same as Figure 3, but with different models. Upper panel: defec-
tively calibrated numericalmodels. Lower panel: calibrated numericalmodels
that are obtained from halo catalogues with a number density of 80% and
120% of the reference number density.

the data-set. For the SDSS data, on average, the incompleteness is
lower than 5 per cent. In some sectors, the incompleteness can get
as large as 50 per cent, but those regions cover small areas (Reid
et al. 2016; Ross et al. 2020). Normally, these effects are included in
the random and mock catalogues so that they compensate the ones
in the data. However, the estimation of the galaxy number density
might be imprecise, so the incompleteness effectmight not be entirely
removed. Consequently, we emulate these imprecise estimations by
re-calibrating both codes’ parameters (see Table 4), while asking for
a halo number density that is different than the reference by −20 per
cent (CG80) and +20 per cent (CG120). These considered differences
are fairly conservative compared to the expected errors in galaxy
density estimations.
Figure 12 shows how the numerical models shown in Figure 11

performwhen the average void auto-2PCF (left) and the average void-
galaxy cross-2PCF (right) from 500 mocks are fitted in different
fitting ranges. On one hand, for the void auto-2PCF, the defective
numerical models have generally a slightly larger bias compared
to the fiducial ones (Figure 4), however most values remain within
±0.1𝜎 from zero. On the other hand, for the void-galaxy cross-2PCF,
CGdef imposes a stronger bias on the measurement of 𝛼 (∼ 0.35𝜎)
than CGB, whereas SKdef decreases the bias from ∼ 0.2𝜎 (SKB) to
∼ 0.15𝜎. In the case of the void auto-2PCF, CG80 and CG120 remain
within ±0.1𝜎 bias from zero. For the void-galaxy cross-2PCF, the
bias induced by CG80 is similar to the fiducial case, while CG120
increases the bias to ∼ 0.3𝜎.
Figure 13 contains a comparison between the results of the fiducial

CGB model and the CGdef , CG80 and CG120 ones, for void auto-
2PCF (in blue) and void-galaxy cross-2PCF (in red). In the case of
the void auto-2PCF, the strongest tension occurs between CGB and
CGdef , i.e. ∼ 0.15 per cent or ∼ 0.15𝜎 on average. In terms of the
𝜎𝛼 values, these three models are consistent with the fiducial CGB
within ±1 per cent on average.
For SICKLE, we have only tested the sensitivity to the tuning pa-

rameters and we present the results in Figure 13. The bias introduced
by SKdef with respect to the fiducial SKB is on average −0.1 per cent
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Figure 12. Comparison of different fitting ranges for four different cases
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correspondingfiducial ones –CGB or SKB – using the clustering (blue for void
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pre-reconstructed Patchy cubic mocks. The abbreviations are defined in
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or −0.1𝜎. In contrast, the uncertainties are consistent with fiducial
case within ±1 per cent on average, as for CG.
Analysing the results of CGdef , CG120, CG80 and SKdef in Fig-

ure 8, the average of the 500 𝛼 values is within ∼ ±0.1 per cent from
the reference for four cases, while for the other four cases the bias is
lower than ∼ 0.2 per cent. This suggests that even for larger survey
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Figure 14. Same as Figure 3, but a different 𝑃mock and only CGB and SKB.
𝑃mock is computed from 500 Patchy reconstructed cubic mocks.

such as DESI, the numerical models are robust enough to provide
unbiased measurements of 𝛼.

4.3 Robustness tests against BAO reconstruction

Figure 14 shows a comparison between the average power spectrum
of 500 reconstructed Patchy catalogues and the numerical models
presented in Figure 3, for both void auto-2PCF and void-galaxy
cross-2PCF. It suggests that CGB and SKB can describe well the
void clustering and be employed in BAO analysis.
After fitting the 500 individual void auto-2PCF (upper panel) and

500 void-galaxy cross-2PCF (lower panel), we compute the his-
togram of the pull 𝑔(𝛼) values shown in Figure 15. In both cases, the
distributions are consistent with a standard normal one (black dashed
line),meaning fix 𝑐, CGB and SKB provide correct estimations of𝜎𝛼.
Moreover, looking at Figure 8, the 𝛼avg values corresponding to three
previous models (orange points) are within ±0.1 per cent from the
reference. One can also notice that for the void-galaxy cross-2PCF,
the bias has systematically decreased by applying reconstruction on
the galaxy catalogues, strengthening the observations of McCullagh
et al. (2013); Neyrinck et al. (2018) that the gravitational evolution
shifts the BAO peak of galaxies to lower separation.
Considering the fact that the reconstruction inverts the effect of

the gravitational evolution and that the numerical models are based
on Gaussian random fields – without any gravitational evolution –
these models should describe better the reconstructed data. Thus, one
should ideally calibrate theCosmoGAME and SICKLE for both post
and pre-reconstructed data. Nonetheless, the current results show that
the same set of void model power spectra (CGB and SKB) can be
used in both scenarios.

4.4 Robustness tests against survey-geometry effects

In this subsection, we investigate the performance and robustness of
the numerical models on light-cone data (described in Section 2.2).
Given the smaller volume of the light-cone compared to the box,
the correlation functions are noisier. Consequently, we have used
1000 Patchy realisations to reduce the noise. We have created two
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results are obtained using the two numerical models and the parabolic model
with a fixed 𝑐 parameter (coloured histograms, see Table 1 for abbreviations.).
The black dashed line represents a standard normal distribution.
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additional numerical models (CGLC and SKLC) by applying the
survey-geometry on the cubic catalogues corresponding to CGB and
SKB. The resulting voidmodel power spectra are shown in Figure 16.
At this stage, we only test CGB, SKB, CGLC, SKLC and the

parabolic model, given that the DW model is obviously insufficient
to describe voids. Figure 17 shows similar results as Figure 4, most
biases for the void auto-2PCF are within [−0.1, 0.1]𝜎 interval, while
for the void-galaxy cross-2PCF, most values of the tension are lower
than +0.2𝜎.
Studying the average of the 1000 𝛼 values in Figure 8, we observe
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Figure 17.Comparison of different fitting ranges for five different cases using
𝜏 (𝛼, 1 |𝜎, 0) . Both the average void auto-2PCF (left) and void-galaxy cross-
2PCF (right) – computed from 1000 individual Patchy light-cone mocks –
are considered. The abbreviations are defined in Table 1.

that five points – SKLC, CGLC, CGB, SKB for auto-2PCF and fix 𝑐
for cross-2PCF)– are within ±0.1 per cent from the reference, while
the remaining five are within ±0.2 per cent.
Analysing the tension parameter between the CGLC, CGB and the

fix-𝑐 models in Figures 18, 19, we observe that there is no significant
tension: the mean values of the histograms are at most 0.1𝜎 from 0,
while the highest deviations are ∼ 0.3𝜎. Moreover, the histograms
of the 1000 pull 𝑔(𝛼) values – diagonal panels of the same figures –
additionally show that the uncertainties of 𝛼 are correctly estimated
by all models.
In terms of the most probable model for the void auto-2PCF, the

logarithm of the Bayes Factor – upper diagonal panels of Figure 18 –
suggests that the parabolic model with a fixed 𝑐 parameter is slightly
disfavoured against the numerical models. Furthermore, the light-
cone numerical model is slightly preferred compared to the one
constructed for boxes. In contrast, the results from void-galaxy cross-
2PCF – Figure 19 – show that the parabolic model is slightly favoured
with respect to the numerical models. Moreover, it shows that CGLC
is slightly disfavoured against the CGB.
We only show the results of CosmoGAME due to visibility rea-

sons, however we have also analysed the results of SICKLE in Ap-
pendix C and shown that the same conclusions are available in this
case. Moreover, there is no preference between the CGLC and SKLC,
nor between CGB and SKB.

5 CONCLUSION

We have introduced two numerical techniques to model the DT void
clustering: CosmoGAME and SICKLE. The main steps to construct
the models are the following:
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• the initial conditions are built starting from a BAO free linear
power spectrum;

• haloes are assigned directly on the density field corresponding
to the initial conditions;

• voids are detected using DIVE;
• the void power spectrum is computed.

The difference between the two techniques lays into to the halo
assignment process on the density field.
Furthermore, we have compared the performance of the two nu-

mericalmodelswith the de-wiggledmodel of galaxies and a parabolic
model introduced by Zhao et al. (2020) for the BAO analysis with DT
voids. To this end, we have used 500 Patchy cubic mocks and 1000
Patchy light-cone mocks (similar to the BOSS DR12 LRG sample;
Alam et al. 2015). On one hand, the de-wiggled model can bias the
measurements of 𝛼 by 0.4 to 0.7 per cent on average, when fitting
the 2PCF from boxes. Thus, as also shown in Zhao et al. (2020), the
de-wiggled model is not a viable model for voids. On the other hand,
the parabolic model can provide unbiased results, however it tends
to provide outlier values of 𝛼 when the additional parameter 𝑐 is not
fixed. As a result, one has to fit the average of multiple mock 2PCF to
precisely measure the value of 𝑐, so that it can be fixed when fitting
individual 2PCF. Given that the cosmology of the mocks can be dif-
ferent from the one of the measured data, this might introduce a bias
when fitting the clustering of data. In contrast, the numerical models
can be directly calibrated on the void power spectrum computed from
the measured data, as the exclusion pattern is much stronger than the
noise.
By fitting the individual 2PCF from boxes, we have observed

that the numerical models and the fixed 𝑐 parabolic model are in
agreementwithin∼ 0.1𝜎.Moreover, the histograms of the 500 values
of 𝑔(𝛼) are consistent with a standard normal distribution, meaning
that all models estimate correctly the uncertainty of 𝛼. For the void
auto-2PCF, the three models provide 𝛼 values within ±0.1 per cent
from the reference, while for void-galaxy cross-2PCF the bias is
below ∼ 0.15 per cent. Studying the Bayes factor, the two numerical
methods are favoured with respect to the parabolic model and there
is no preferred numerical technique. Finally, the results provided by
the two new models are less affected by the fitting range than the
parabolic model.
We have analysed the robustness of the two numerical techniques

to systematic errors such as incompleteness and defective calibration.
The average of the 500 𝛼 values is within ∼ 0.2 per cent from the
reference value for all four cases affected by systematic effects. Thus,
we can conclude that CosmoGAME and SICKLE are resilient to
such systematic errors.
Given the fact that the BAO reconstruction is a standard proce-

dure in BAO analysis, we study the behaviour of the two newly
introduced techniques and the fixed 𝑐 parabolic model on the re-
constructed Patchy catalogues. We have observed that the values
of 𝛼 are consistent with one within ±0.1 per cent and the uncer-
tainty is well estimated, implying that CosmoGAME and SICKLE
can be employed in modelling voids from both reconstructed and
pre-reconstructed data-sets.
Lastly, we have tested CosmoGAME, SICKLE and the fixed 𝑐

parabolic model on light-cones. In this case, the numerical models
based on boxes have similar performances as the ones based on light-
cones, i.e. uncertainties are well estimated and no tension between
themodels have been noticed. Slight discrepancies occur between the
void auto-2PCF and void-galaxy cross-2PCF cases in terms of Bayes
factors. For the void-auto 2PCF, the light-cone based numerical mod-
els have a higher evidence than the box based ones and all void model
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power spectra are more likely to be correct than the parabolic model
with a fixed 𝑐. In contrast, for void-galaxy cross-2PCF, the numerical
models based on light-cones are slightly disfavoured against the ones
based on boxes and the parabolic model. Analysing, the average of
1000 𝛼 values, we have noticed that most void model power spectra
provide results within ±0.1 per cent from the reference and all of
them are within ±0.2 per cent. This suggests that there is no bias
introduced by the numerical models.
Even though, in the current case, the parabolic model with fixed

𝑐 parameter has similar performances to the numerical models – in
terms of estimating the 𝛼 and its uncertainty – Tamone et al. (2022)
have explained that for void quasars, that have a much stronger ex-
clusion at even larger scales, the parabolic model cannot be used
anymore. Therefore a better description of the void exclusion is nec-
essary and the two numerical models can provide it. Moreover, the
numerical models have the potential for even smaller biases due to the
possibility of fine tuning the parameters to reach a better agreement
at large values of 𝑘 .
Finally, as explained by Zhao et al. (2020); Zhao et al. (2022),

the combined 2PCF of voids and galaxies is preferred over multiple
2PCF due to a lower dimension of the data vector and thus a smaller
required number of mocks. Consequently, for future studies, we will
adapt the numerical models to the combined 2PCF for a multi-tracer
cosmological analysis.
In conclusion, the usage of CosmoGAME or SICKLE in a BAO

analysis with DT voids provides robust and unbiased measurements
of the Alcock-Paczynski parameter. Moreover, the Bayes factor indi-
cates a higher probability of these models to be true compared to the
parabolic one. Nevertheless, we foresee the utility of these numer-
ical methods in the study of different kind of voids or for different
properties: e.g. void density contrast.
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APPENDIX A: REDUCING THE NOISE OF THE
NUMERICAL MODELS

Given the fact that each halo and void catalogues produced by Cos-
moGAME and SICKLE has an intrinsic noise, the measured power
spectrum and its Hankel transform Eq. (9) are not smooth. In this sec-
tion, we analyse how the number of realisations used to compute the
void model power spectrum (𝑃t,nw (𝑘)) and the value of the damping
factor 𝑎 affect the Hankel transform of 𝑃t,nw (𝑘).
In Figure A1, one can see the 2PCF computed as the Hankel

transformof the average voidmodel power spectrum, for two different
damping factors (𝑎 = 1 ℎ−1Mpc and 𝑎 = 2 ℎ−1Mpc). The black
curves in the upper panels represent best-fitting polynomials (BFP)
of the 𝑠2b (𝑠) curve – computed using Eq. (9) and the average of
2000 power spectrum realisations – for two different 𝑠 intervals:
𝑠 ∈ (60, 150) ℎ−1Mpc and 𝑠 ∈ (150, 200) ℎ−1Mpc. The lower panels
of Figure A1 contain the differences between 𝑠2b (𝑠) curves and the
BFP.
Apart from the visual inspection of the noise in the 2PCF, we also

quantify it by computing:

Φ =
1
𝑛

𝑛∑︁
𝑖=1

[
𝑠2𝑖 b (𝑠𝑖) − BFP(𝑠𝑖)

]2
, (A1)

where 𝑛 is the number of bins in the given interval and 𝑖 is the index of
the bin. One can observe from Figure A1 and Table A1 that the noise
is drastically reduced when the number of realisations is increased
from 100 to 2000.
As mentioned in Section 3.3.2, we need:

• a grid size of 20483 to measure the power spectrum for a large
enough 𝑘 interval,

• a large number of realisations to minimise the effect of the noise
(cosmic-variance),

but achieving both conditions simultaneously is computationally-
expensive. Thus, we create a stitched model by computing 2000
power spectra using a grid size of 5123 (to decrease the noise at
large scales) and 50 power spectra using a grid size of 20483 (to have
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Figure A1. Upper panels: coloured curves - The result of the transformation
expressed by Eq. (9) of the SICKLE power spectra computed as the average of
100, 500, 2000 realisations and by stitching the average of 2000 realisations
with the one of 50 realisations (read text for details); black curve - the best-
fitting polynomial of the red curve. Lower panels: the difference between
the upper coloured curves and the black curve. The left and right panels
correspond to a different damping parameter (Eq. (9)), i.e. 𝑎 = 2 and 𝑎 = 1,
respectively.

a reasonably de-noised power spectrum up to a large value of 𝑘).
Figure A1 and Table A1 suggest that the stitched model performs at
least as well as the 500 case for the really large scales and reaches
the precision of the 1000 case for the lower scales.
One can also observe in Figure A1 and Table A1 that the

damping factor 𝑎 impacts the noise levels. By increasing it from
𝑎 = 1 ℎ−1Mpc to 𝑎 = 2 ℎ−1Mpc the amplitude of the noise is
reduced by almost one order of magnitude. Consequently, we have
tested whether the value of 𝑎 can bias the measurement of 𝛼, by
computing the tensions Eq. (33) between the 𝛼 values corresponding
to 𝑎 = 1 ℎ−1Mpc (𝛼1) and 𝑎 = 2 ℎ−1Mpc (𝛼2). Figure A2 shows
that there is no tension between the two cases and for both cases,
the histogram of the 500 𝜏(𝛼, 1|𝜎, 0) values are consistent with a
standard-normal distribution, meaning there is no bias and the un-
certainties are correctly estimated. Moreover, the relative difference
𝜌diff = (𝜎1 − 𝜎2)/[0.5 × (𝜎1 + 𝜎2)] shows that there is no bias in
the uncertainty estimation between the two cases. Given the previous
reasons, we fix 𝑎 = 2 ℎ−1Mpc in the current paper.
After fixing 𝑎 = 2 ℎ−1Mpc, we also test whether different number

of realisations for the model power spectra and the stitching method
affect the 𝛼 measurements and the corresponding uncertainties. Fig-
ure A3 shows a comparison between the results of the model power
spectra (SICKLE) computed from different number of realisations –
50, 100, 500, 1000, 2000 – and by stitching. We study three fitting
scenarios:

(i) on the average of the 500 Patchy 2PCF with a rescaled co-
variance matrix (blue);
(ii) on the individual 2PCF, with the normal covariance matrix

(red and green);
(iii) on the individual 2PCF, with the normal covariance matrix,

but with a fixed Σnl (orange and cyan).

The shown 𝛼 and 𝜎𝛼 corresponding to the three previous cases are,
respectively: (i) the median of the posterior distribution and half the

MNRAS 000, 1–19 (2022)
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Figure A2. Upper panels: (𝛼 − 1)/𝜎 for 𝑎 = 1 ℎ−1Mpc (𝛼1, 𝜎1, left)
and 𝑎 = 2 ℎ−1Mpc (𝛼2, 𝜎2, right). Lower panels: the tension between
the 𝛼 values measured using 𝑎 = 1 ℎ−1Mpc and 𝑎 = 2 ℎ−1Mpc (left)
and the relative difference between the uncertainties (𝜎) on 𝛼 (right). Blue
histograms: the results for the parabolic model with a PARG prior on 𝑐.
Orange histograms: the results for the CGB numericalmodel. 𝑎 is the damping
parameter from Eq. (9). The histograms contain the results of 500 individual
2PCF computed from Patchy cubic mocks.

Φ for 60–150 150–200
𝑎 = 1 ℎ−1Mpc ×10−3 ×10−3

100 30.0 44.7
200 14.6 35.4
500 10.2 14.9
1000 7.60 9.60
2000 6.60 7.14
stitch 10.3 27.2

Φ for 60–150 150–200
𝑎 = 2 ℎ−1Mpc ×10−4 ×10−4

100 189.0 306.0
200 50.0 235.0
500 29.5 73.1
1000 9.48 23.9
2000 3.56 6.16
stitch 8.66 74.5

Table A1. The Φ values defined in Eq. (A1) for two 𝑠 intervals 𝑠 ∈
(60, 150) ℎ−1Mpc and 𝑠 ∈ (150, 200) ℎ−1Mpc and for two values of the
damping factor 𝑎 = 1 ℎ−1Mpc and 𝑎 = 2 ℎ−1Mpc.

difference between the 84th and 16th percentiles; (ii) and (iii) the
average and the standard deviation – divided by

√
500 – of the 500 𝛼

values (red and orange). Additionally, the cyan and the green points
denote the mean of the 500 𝜎 provided by the individual fittings of
the 2PCF, divided by the

√
500. The uncertainties on the right panel

from void auto-2PCF and void-galaxy cross-2PCF are divided by the
corresponding blue 𝜎2000, which explains why the blue square and
circle for the 2000 case are exactly positioned at one.
On one side, one can observe that starting from the ’500’ model,

the 𝛼 converges to the same value, for both void auto- and void-
galaxy cross-2PCF and in all three fitting scenarios. On the other
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100× (α− 1)
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avg α

avg α; fix Σnl
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σα  / σ2000

Figure A3. Comparison between the results of the model power spectra
(SICKLE) computed from different number of realisations – 50, 100, 500,
1000, 2000 – and by stitching (see text), using the void auto- and void-galaxy
cross-2PCF computed from 500 pre-reconstructed Patchy cubic mocks. First
column shows the bias of 𝛼with respect one. The second column contains the
ratios between different uncertainty estimations and the blue coloured 𝜎2000.
The three colours denote the ways the fitting has been performed: blue - on
the average of the 500 2PCF, with a rescaled covariance matrix (by 500), thus
𝛼 is the median of the posterior distribution and 𝜎𝛼 is half the difference
between the 84th and 16th percentiles; red and green - on the individual 2PCF,
with the normal covariance matrix; orange and cyan - similarly to red and
green, but with a fixed Σnl. For red and orange, the shown 𝛼 and 𝜎𝛼 are the
average and the standard deviation – divided by

√
500 – of the 500 𝛼 values,

respectively. For green and cyan, 𝜎𝛼 is the mean of the 500 𝜎 provided by
the individual fittings of the 2PCF, divided by the

√
500
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𝑎0 [10−4 ] 𝑎1 [10−2 × ℎ−1Mpc] 𝑎2 [ℎ−2Mpc2 ]
CGB 2.3 (4.9) −8.7 (10) 7.6 (3.5)
SKB 5.4 (4.8) −12 (−8.6) 7.4 (2.5)
PARU 18 (0.69) −47 (6.7) 31 (-7.9)

Table B1. The best-fitting nuisance parameters for three models. The fitting
has been performed on the average void auto-2PCF and void-galaxy cross-
2PCF (in brackets) computed from 500 pre-reconstructed Patchy boxes. The
abbreviations are defined in Table 1.

side, all the ways to estimate the uncertainty provide 𝜎𝛼 values that
are consistent within one to two per cent between all models and
per method, except the ’500’ void auto-2PCF blue case, where the
deviation is around four per cent. Consequently, the stitched method
is chosen as the standard way to construct the void model power
spectrum throughout this paper.
We also fit the individual 2PCF with a fixed Σnl – in Figure A3

because we have observed that the noise in the Patchy void 2PCF
allows for larger values ofΣnl to fit the data, which enlarges the poste-
rior of 𝛼 towards larger values. This slightly biases the measurement
and overestimates the uncertainty. Given that throughout the paper
we have not fixed Σnl for boxes, one has to consider this 0.05 per cent
bias in the results of the main text.

APPENDIX B: THE STUDY OF THE NUISANCE
PARAMETERS

Given the fact that the Least-Squares (LS) is much faster than Py-
MultiNest, in the main analysis, we use a two–fold approach in
order to reduce the fitting time:

• PyMultiNest to fit 𝛼, 𝐵, Σnl, 𝑐;
• LS to fit the nuisance parameters 𝑎0, 𝑎1, 𝑎2.

In this section, we show that this approach does not bias the mea-
surements of 𝛼, 𝐵, Σnl, 𝑐 and that there are no degeneracies between
the nuisance parameters and 𝛼. To verify this, we fit the average void
auto-2PCF and the average void-galaxy cross-2PCF computed from
500 pre-reconstructed Patchy cubic mocks, using a rescaled covari-
ance matrix (i.e. divided by 500). Given that DW is not performing
well, we only test the CGB, SKB and PARU models.
Looking at the best-fitting nuisance parameters in Table B1, SKB

behaves similarly to CGB, thus we further focus on CGB and PARU.
Figures B1, B2, B3 and B4 show the posterior distributions of
the fitting parameters in two cases: red – all six or seven parame-
ters are sampled by PyMultiNest; blue – the two–fold approach.
In the first case, we used the following priors for the nuisance
parameters: 𝑝(𝑎0) = U[−1,1] (𝑎0), 𝑝(𝑎1) = U[−10,10] (𝑎1) and
𝑝(𝑎2) = U[−100,100] (𝑎2), that are wide enough to not influence
the fitting results.
The same figures reveal that the measurements of 𝛼, 𝐵, Σnl and

𝑐 are insensitive to the inclusion of the nuisance parameters in the
PyMultiNest chain as the blue curves are consistent with the red
ones. In the PARU case, there are slight degeneracies between 𝛼
and 𝑎1, 𝑎2, however, they may be caused by the introduction of the
𝑐 parameter and its strong degeneracy with 𝑎1, 𝑎2. In contrast, for
CGB, 𝛼 is not degenerate with the nuisance parameters. These results
are consistent with the observations provided by Zhao et al. (2020);
Zhao et al. (2022) and with the fact that the nuisance parameters
should describe the broad-band shape.

Figure B1. Triangle plot containing the posterior distributions of the fitting
parameters described in Section 3.4.1. The fitting has been performed on the
average void auto-2PCF computed from 500 pre-reconstructed Patchy cubic
mocks using the CGB numerical model. Red - all six parameters are given to
PyMultiNest; Blue - only 𝛼, 𝐵 and Σnl are given to PyMultiNest, while
the nuisance parameters are fitted using a Least-Square method.

Figure B2. Same as Figure B1, but the model is PARU.
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Figure B3. Same as Figure B1, but the reference is the average void-galaxy
cross-2PCF.

Figure B4. Same as Figure B1, but the model is PARU and the reference is
the average void-galaxy cross-2PCF.

Consequently, we argue that one can safely use the combined Py-
MultiNest – LS approach in order to measure the fitting parameters.

APPENDIX C: LIGHT-CONE RESULTS

As mentioned in Section 4.4, we have only shown the results for
CosmoGAME in the main text due to visibility reasons. Here, we
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Figure C1.Diagonal panels: green - the histograms of the pull function𝑔 (𝛼𝑥 )
values, Eq. (35); black - standard normal distributions. Lower triangular plots:
the values of 𝜏 (𝛼𝑥 , 𝛼𝑦 |𝜎𝑥 , 𝜎𝑦) , Eq. (33), for all combinations of models.
Upper triangular plot: the natural logarithm of the Bayes Factor ln

(Z𝑦/Z𝑥
)

(see Section 3.4.4.1). The results correspond to the individual fittings of the
1000 void auto-2PCF computed from the Patchy light-cone mocks. The
abbreviations are defined in Table 1.

show a comparison between all models CGB, SKB, CGLC, SKLC
and parabolic model with fixed 𝑐.
Studying the tension in the lower diagonal plots of Figures C1 and

C2, we observe that the box-based models and the light-cone based
models provide highly consistent results. There is however a slight
bias of the order of 0.1𝜎 between the fixed 𝑐 parabola and the numer-
ical models. All models estimate accurately the uncertainty of 𝛼. The
logarithm of the Bayes factor suggests that for the void auto-2PCF,
the fixed 𝑐 parabola is slightly disfavoured against the numerical
models, while for the void-galaxy cross-2PCF, the reverse is true.
Moreover, there are no siginificant differences between CGB and
SKB, nor between CGLC and SKLC. Lastly, for the void auto-2PCF,
the light-cone numerical models are slightly preferred compared to
the ones constructed for boxes, while the opposite is valid for the
void-galaxy cross-2PCF.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure C2. Same as Figure C1, but for void-galaxy cross-2PCF.
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4 Conclusion

In 1929, Edwin Hubble published his work in which he measured the distances and radial

velocities of 24 "Extra-Galactic Nebulae" (i.e. galaxies) providing compelling evidence for the

expansion of the Universe. Seven decades later, two teams of astrophysicists extended this

work by measuring the distances of tens of type-Ia supernovae up to a redshift of one (≈ 10

billion light-years away Earth) and established that the expansion of the Universe was, in fact,

accelerating. This finding was consistent with an expansion driven by a dark energy described

by the famous cosmological constant Λ.

Today, thirty years after the discovery of the cosmic acceleration, the Λ Cold Dark Matter

(ΛCDM) represents the standard cosmological paradigm. The high-precision measurements

of the Cosmic Microwave Background (CMB) temperature anisotropies remain consistent with

a flat ΛCDM Universe. Nevertheless, there are numerous open questions about the nature of

dark energy that could potentially find answers through even more precise measurements.

The study of large-scale structure provides a third dimension to the CMB measurements, using

the Baryon Acoustic Oscillations (BAO) as a standard ruler to measure distances at different

redshifts and thus probing different epochs in the history of the Universe. Over the past two

decades, the number of 3D-mapped galaxies and quasars has exponentially increased. This

culminated in 2020 with the public release of a 3D map by the Sloan Digital Sky Survey (SDSS),

containing over two million galaxies and quasars.

Recently, the on-going Dark Energy Spectroscopic Instrument (DESI) has published a map of

over one million galaxies and quasars measured over a six-month period. Ultimately, DESI

aims to create a 3D map of approximately 40 million extragalactic sources across 10 billion

years of cosmic history, covering one-third of the sky during its five years of operation. Since

the combined CMB+SDSS BAO measurements have already shown great improvements in

precision, DESI has the potential to provide insights about the dark energy.

During my thesis, I have contributed to different stages of a large-scale structure study. Being

part of DESI’s Cosmological Simulations Working Group (CosmoSimsWG), I have participated
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to the DESI mock challenge project that aims to compare different methodologies for con-

structing covariance matrices. This is an important task in the epoch of precision cosmology,

as the systematic effects can become significant.

For this purpose, I have used a Halo Occupation Distribution (HOD) model to assign galaxies

to the dark matter haloes identified in the FASTPM dark matter simulation. Furthermore, I

have assessed the impact of the HOD fitting on the resulting covariance matrices of the galaxy

clustering. The challenge has been to reproduce the two-point clustering statistics of a full

N -body simulation, considering that FASTPM is an approximate method to gravitationally

evolve the dark matter field.

Finally, I have built FASTPM galaxy catalogues whose two-point clustering is consistent with

the full N -body reference, within the expected uncertainty of the DESI Year 1 ELG dataset. In

addition, the resulting galaxy three-point clustering is in reasonable agreement with the refer-

ence one, without actually including it in the fitting process. Lastly, the estimated covariance

matrices are robust against the details of the HOD fitting at scales of interest for BAO and RSD

studies. This technique has the potential to provide galaxy catalogues that are accurate within

the expected precision requirements of the entire DESI dataset. Thus it represents a tool for

high-precision tests of systematic effects and for building high-precision covariance matrices,

however further studies must be performed.

Part of CosmoSim, I have also contributed to the construction of the First Generation Mocks

for DESI. I have been tasked to convert thousands of cubic simulations into light-cones and

apply the survey geometry. This is a crucial step in creating realistic simulations that are

needed for the final covariance matrix estimation.

A further step in a large-scale structure analysis involves testing and improving models. To

this end, I have co-developed a numerical model for Delaunay Triangulation (DT) voids and

conducted robustness tests on different methods to model the broadband shape of the DT

void clustering statistics. I have shown the importance of properly accounting for the exclusion

effect in the DT void modelling: the galaxy clustering model can bias the measurement of the

α parameter by 0.7 per cent. This bias is highly significant given the expected sub-percent

precision of surveys like DESI. In contrast, the two new numerical techniques recover αwithin

0.2 per cent for measurements on both cubic and light-cone simulations. Additionally, these

two numerical methods are resilient against systematic effects, such as incompleteness and

defective calibration.

Furthermore, the Bayesian analysis suggests that these two numerical models have similar

probabilities of being true, but they are more likely to be correct than the previous models.

Lastly, we foresee that these two new numerical techniques could be used to model different

kinds of voids.

The final step in large-scale structure analysis is to measure the cosmological parameters by

applying the set of tools that has been developed and tested on simulations to real data. To
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this end, I have contributed to tuning the numerical model necessary for describing the DT

void clustering in the latest multi-tracer BAO analysis of DT voids and galaxies based on the

most recent SDSS data release. We have shown that the combined study of voids and galaxies

improves the constraints on the cosmological parameters: H0, Ω0m and Ω0Λh2 by approxi-

mately 6, 6 and 17 per cent, respectively. Therefore, in the domain of precision cosmology, the

multi-tracer analysis of galaxies and DT voids – modelled by the robust numerical techniques

– represents a valuable resource that will enhance the precision of DESI and future large-scale

structure surveys measurements.
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