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Résumé

Dans cette thèse, nous dévoilons une troisième voie pour manipuler les ondes élastiques

au sein de milieux architecturés, distincte des concepts traditionnels de cristal phononique

et de métamatériau à résonance locale. L’innovation centrale repose sur le concept de réso-

nances non locales, définies comme des modes à fréquence nulle possédant des vecteurs

d’onde non nuls, ce qui entraîne la formation de cônes de dispersion anormaux dans le spectre

ondulatoire. Ce principe de fonctionnement original permet aux métamatériaux à résonance

non locale d’éviter le compromis entre la largeur de bande à indice négatif et la sous-longueur

d’onde qui caractérise les médias ondulatoires architecturés traditionnels.

En introduisant les graphes cinématiques comme outil de conception visuelle pour les modes

de fréquence nulle dans les métamatériaux élastiques planaires, nous identifions diverses

classes de mise à l’échelle des modes nuls, en mettant l’accent sur la classe oligomodale,

caractérisée par un nombre fixe de modes de déformation globaux indépendants de la taille

du système. Partant de cette base, nous obtenons des résonances élastiques non locales

en imposant une condition d’onde de Bloch aux modes nuls hébergés par les géométries

oligomodales.

Cela ouvre la voie à une exploration approfondie de la physique des ondes dans les méta-

matériaux à résonance non locale, aboutissant à une approche de conception inverse pour

positionner librement des cônes anormaux dans l’espace k. Nous validons ensuite notre théo-

rie par une combinaison de simulations par éléments finis, d’expériences de compression et

d’expériences de vibration, établissant la viabilité pratique des géométries oligomodales et

des métamatériaux à résonance non locale.

Ayant solidement ancré le concept central de résonance non locale, nous délimitons ses

frontières en étudiant divers cas limites. Nous commençons par considérer plusieurs cas de

bandes de fréquences interdites, ainsi que des domaines de vecteurs d’ondes instables, ce

qui nous permet antre autres de découvrir un lien direct entre les résonances non locales et

la dynamique des points exceptionnels. Nous nous écartons ensuite de l’adhésion stricte à

la condition d’onde de Bloch, révélant ainsi des états de bord et des signatures spectrales de

loi de puissance. Cela nous permet d’étendre notre perspective d’ondes pour inclure égale-

ment divers modes nuls non-Bloch qui émergent naturellement dans l’étude des géométries

oligomodales.

Enfin, nous revenons aux milieux architecturés qui ont inspiré cette introduction du concept
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de résonance non locale, à savoir les milieux de fils entrelacés électromagnétiques, en étudiant

leur équivalent élastique direct. Cela enrichit notre discussion en nous permettant d’étudier

l’interaction entre la symétrie et les résonances non locales dans un cadre tridimensionnel.

En particulier, nous montrons que la théorie des représentations s’applique naturellement à

l’espace de permutation des composants macroscopiques entrelacés qui constituent le milieu

de fils entrelacés.

En conclusion, cette thèse présente un nouveau paradigme pour la manipulation des ondes

élastiques, que nous appelons métamatériaux à résonance non locale, offrant de nouvelles

perspectives pour les matériaux multifonctionnels et le contrôle avancé des ondes.

Mots clefs : métamatériaux, résonance non-locale, géométries oligomodales, dispersion spa-

tiale, réfraction négative, bandes de fréquences interdites, rotons, matériaux à fils entrelacés,

cristaux phononiques.
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Abstract

In this thesis, we unveil a third design path to manipulate elastic waves within architected me-

dia, distinct from the traditional phononic crystal and locally-resonant metamaterial concepts.

The core innovation lies in the concept of nonlocal resonances, defined as zero-frequency

modes possessing non-zero wave-vectors, resulting in anomalous dispersion cones within

the wave spectrum. This distinct working principle allows nonlocally-resonant metamateri-

als to circumvent the bandwidth-subwavelengthness trade-off that characterises traditional

architected wave media.

Introducing kinematic graphs as a visual design tool for zero-frequency modes in planar

elastic metamaterials, we identify various classes of zero-mode scaling, with a specific focus

on the oligomodal class, characterised by a fixed number of global deformation modes that

remain independent of system size. Building upon this foundation, we obtain elastic nonlocal

resonances by imposing a Bloch-wave requirement on zero-modes hosted by oligomodal

geometries.

This opens up the door to a comprehensive exploration of the wave physics of nonlocally-

resonant metamaterials, culminating in an inverse design approach to freely position anoma-

lous cones within k-space. We then validate our theory through a combination of full-wave

simulations, compression experiments and vibration experiments, establishing the practical

viability of oligomodal geometries and nonlocally-resonant metamaterials.

Having firmly anchored the core concept of nonlocal resonance, we chart out its boundaries

by studying various edge cases. We start by considering mass gaps, higher-frequency gaps and

momentum gaps, and discover a connection between nonlocal resonances and exceptional-

point dynamics in the process. We then depart from strict adherence to the Bloch wave

requirement, thus revealing edge states and power-law spectral signatures. This allows us

to extend our wave perspective to also include various non-Bloch zero-modes that naturally

arise in the study of oligomodal geometries.

Finally, we connect back to the architected media that inspired the introduction of the nonlocal

resonance concept, namely electromagnetic interlaced wire media, by studying their direct

elastic equivalent. This enriches our discussion by allowing us to investigate the interplay

between symmetry and nonlocal resonances within a three-dimensional framework. In

particular, we show that representation theory naturally applies to the permutation space of
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the macroscopic interlaced components that constitute the interlaced wire medium.

In conclusion, this thesis presents a novel paradigm for manipulating elastic waves, which we

term nonlocally-resonant metamaterials, offering new vistas for multifunctional materials

and advanced wave control.

Key words: metamaterials, nonlocally-resonant, oligomodal, spatial dispersion, negative

refraction, band-gaps, rotons, interlaced, wire media, phononic crystals.
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1 Introduction

“Et si on les appelait méta-métamatériaux ? ”

— Moi

“Non”

— R. Fleury

The presence of mesoscale structure in many naturally-occurring materials heavily impacts

their physical properties. In the first section, we I stress this point with several examples. This

suggests introducing mesoscale structure in artificial materials as well [2], thus leading to the

notion of architected media which we discuss in the second section. There, we center our

discussion on wave properties, providing some historical context on the two main design

paths to control waves in architected media, namely photonic crystals and locally-resonant

metamaterials. In Sec.1.3, we sketch a third design strategy, based on nonlocal resonances.

Finally, we present the structure and objectives of this thesis.

1.1 The role of mesoscale structure in natural materials

To a certain degree, the physical properties of an object are determined by its external shape

and the atomic structure of the material composing it. For many materials, however, this

is not the end of the story. For instance, the mechanical properties of metallic alloys are

heavily impacted by structures at intermediate scales, which we will term the mesoscale

structure of the material. Indeed, most alloys are far from forming perfect crystals; they are

filled with various types of defects, dislocations and grain boundaries which modify their

physical properties. As a concrete example, the toughness of an alloy is directly related with

the average size of the crystalline grains through the Hall-Petch relationship [3, 4]. More

generally, irreversible plastic deformations, with their slipping crystal planes and wandering

defects, can be described in terms of dislocation dynamics [5].

II will use the pronoun “we” in the remainder of the thesis, as a way to include you, the reader, in the discussion.

1
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(b) (c) (d)(a) 1 mm 1 �m 100 nm

Figure 1.1: Hierarchy of mesoscale structure in natural materials. (a) Cross-section of a femur
head, with the main tension-bearing lines depicted in blue and the main compression-bearing
lines depicted in red. (b) Millimetric trabecular structure in the inner volume of the bone. (c)
Micrometric inner structure of a single trabecula, consisting of anisotropic sheets stacked with
varying orientation. (d) Nanometric structure of a single sheet, consisting of a composite of
collagen fibers (blue) and a mineral matrix (yellow).

Mesoscale structure takes on an even more central role in determining the physical charac-

teristics of living materials, which are actively reshaped by the forces of evolution to achieve

functionality at a minimal cost. As an example, consider the intricate internal structure of

bone, sketched in Fig.1.1. Several levels of organisation occur in the mesoscale range; slightly

below the millimeter scale, we find an intricate scaffolding consisting of so-called trabeculae

[6–8]. Going two orders of magnitude down in scale, it becomes apparent that each trabecula

consists of many layers of oriented bone sheets [9]. One more level of organisation appears

below the micrometer scale, revealing that each sheet is itself a composite of two materials,

namely collagen fibers embedded in a mineral matrix [10]. Only below this level are the

properties of the material directly determined by the type of atoms and their chemical bonds.

Such hierarchies of mesoscale structures are recurrent in natural materials. They lend bone

good mechanical properties in terms of fracture resistance and rigidity, for a low weight and

minimal manufacturing constraints.

Since this thesis is not only concerned with mechanics but also with waves, our next example

of mesoscale structure has to do with wave propagation. Consider the iridescent colours of

peafowl feathers (Fig.1.2(a)). As already described by Hooke in his Micrographia (1665) [11],

these colours are not related to pigmentation; they arise from an interference phenomenon.

To understand it, let us dive down the hierarchical structure of peafowl feathers. The barb

and barbule structures described in Fig.1.2(bc) have mechanical roles; we need to consider

interactions of light with the next mesoscale substructure of the feather to understand its

optical properties [12–14]. In Fig.1.2(d), we sketched the cross-section of a single barbule. The

walls contain regular arrays of melanin rods, spaced by a few hundred nanometers. When

light impinges on these rod structures, it is reflected at several depths. For light of appropriate

wavelengths, this leads to a type of constructive interference known as Bragg interference.

Mathematically, it can be understood by noting that a ray of light reflected by a rod layer at

depth L has to travel on a longer path than a ray reflected at the surface. In terms of the angle θ

2
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5 mm 50 �m 1 �m(b) (c) (d)(a)

θ

Figure 1.2: The mesoscale structure of peafowl feathers lends them their iridescent colour.
(a) Sketch of a peahen head. (b) Sketch of the barb structures (black lines) in feathers. (c)
Barbule substructure of a single barb. (d) Photonic crystal composed of melanin rods (black
points) in the cross-section of a single barbule. The wavy lines indicate photons interfering
constructively as they are reflected by layers at different depths. Rod layers are separated by a
thickness L.

between the surface and the ray, this additional length is equal to 2L sin(θ). If the colour of the

impinging light is such that an integer number of wavelengths fit in this added length, both

rays interfere constructively. This selective reflection also explains the iridescent character

of the feathers, because the length of the added path is angle-dependent. Different colours

therefore dominate at different angles.

With these three examples from the natural world, we have seen that mesoscale structures

can fundamentally alter material properties. Harnessing mesoscale structure in the design of

artificial materials results in the concept of architected media. Early studies in that domain

were mostly theoretical, given the crudity of the available manufacturing processes. While

reaching the sophistication of the hierarchical self-assembly processes present in living tissues

under ambient conditions remains a distant dream, the rise of additive manufacturing and

other novel assembly techniques has unleashed vast possibilities in the realm of architected

media.

1.2 Architected materials in wave physics

This section starts with a short historical perspective on architected wave media. We then

discuss the underlying physical mechanisms in more detail using two toy models. Finally, we

review the state of the art of elastic architected media and discuss the limitations of the two

dominant approaches.

In Fig.1.3, we provide a limited selection of landmark architected media in wave physics. Two

main flavours of architected media dominate wave physics: photonic crystals and locally-

resonant metamaterials. Photonic crystals appeared first; their working principle essentially

relies on Bragg interference, the very phenomenon on which structural color in peafowl feath-

ers depends. Research on photonic crystals [15, 19–27] took off in 1987 with theoretical studies

3
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(a) (b) (c) (d)

2 cm

Figure 1.3: The rise of architected media in wave physics. (a) Omnidirectional dielectric
mirror based on a photonic crystal. Adapted from [15]. (b) Doubly-negative electromagnetic
metamaterial based on overlapping local electric and magnetic resonances. Adapted with
permission from [16] (c) Elastic locally-resonant metamaterial based on spherical inclusions.
From [17]. Reprinted with permission from AAAS. (d) Doubly-negative acoustic metamaterial
based on soda cans. Adapted with permission from [18]

.

in electromagnetism and later blossomed experimentally, even reaching technologically rele-

vant applications such as the perfectII dielectric mirror [28, 29] depicted in Fig.1.3(a). Their

counterpart for elastic waves, phononic crystals, appeared later [30], opening new vistas in

vibration control [31, 32]. This type of architected medium exhibits interesting physical prop-

erties, such as frequency bands in which wave propagation is forbidden (known as band-gaps)

[33–37] and negative-index dispersion branches [38–44]. The main limitation of this approach

is the bulkiness of the resulting structures, in which the lattice spacing must be of the order of

the wavelength of interest to leverage Bragg interference. This is not a big issue in optics, but

it can quickly become a limiting factor at larger wavelengths.

This bulkiness provided part of the motivation to develop a second design path for architected

wave media. The second motivation was rooted in intriguing theoretical predictions by

Lamb, Schuster and Veselago relating to negative-index media [45–47]. In particular, the

latter predicted that media with simultaneously negative values for the electric permittivity

and the magnetic permeability would lead to negative refraction, by making the effective

refractive index ne f f negative. This intriguing notion, unobserved in natural materials, found

a wide echo after Pendry pointed that it could be leveraged to produce lenses beating the

diffraction limit [48, 49]. Using local resonances to effectively achieve negative properties

within limited frequency bands, [50, 51] paved the way towards concrete mesoscale structures

for doubly-negative media [52, 53]. One such structure is shown in Fig.1.3(b). Because their

mesoscale structure consists of many individually resonant elements, these media are called

locally-resonant metamaterials [54–59]. Again, elasticity followed electromagnetism with the

elastic metamaterial of [60], depicted in Fig.1.3(c). Many other elastic metamaterials followed

suit [17, 18, 61–96].

These developments also allowed the community to access the intervening regime of near-

IIIn the sense that it reflects at all angles and polarisations, without the losses associated to metallic mirrors.

4



Introduction Chapter 1

zero effective properties, such as permittivity and density [97–100]. This extended palette

of experimentally accessible refractive index values suggested an even more radical idea: in

transformation optics, the index ne f f is tuned locally [101–108]. Using a change of variables

based on conformal transformationsIII then allows one to translate back and forth between an

effective-index metamaterial realisation and a deformed virtual space in which the index is

constant. One can then leverage these deformed coordinates to cloak objects from imping-

ing waves at particular frequencies. At optical wavelengths, this evokes invisibility cloaks,

but nothing prevents us from considering much larger wavelengths. Pushing the relevant

mesoscale structure well beyond the usual material scales, one can even envision structuring

forests or cities to deflect seismic waves [109–111].

Local resonances provided a key to unlock this treasure trove of unusual wave phenomena, but

frustratingly, they come with their own limitations. Indeed, to break free of the lattice-constant

limitations that characterise photonic crystals, locally-resonant metamaterials have to pay a

heavy price in the form of limited bandwidth. Such constraints, as well as related causality

and nonlocality considerations, were studied in [112–115].
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Figure 1.4: The two traditional pathways to wave control in architected materials. (a) Spectrum
of a diatomic spring-mass chain, with a Bragg gap highlighted in grey and the sound cone
indicated with a dashed line. (b) Geometry of the corresponding unit-cell. (c) Spectrum of
a doubly-negative metamaterial, with the range of effective negative stiffness indicated in
orange and the range of effective negative density indicated in yellow. The sound cone is
indicated with a dashed line. (d) Metamaterial unit cell, with the mechanisms responsible for
negative effective properties colour-coded accordingly.

To explain some of these limitations and tradeoffs with a minimal amount of technical detail,

we introduce 1D models in Fig.1.4. We do so in the context of elasticityIV, since this will be

the physical setting of most of this thesis. First, we model phononic crystals with an infinite

spring-mass chain, as shown in Fig.1.4(b). Consider the case in which the two masses in the

unit cell are equal. The translation symmetry of the chain allows us to apply Bloch’s theorem,

thus relating the displacement at the nth mass in the chain to that of the mass at the origin

with a simple phase: un = e i nφu0. We can then compute the forces applying on the nth mass

IIIConformal transformations are particularly convenient because they leave the wave equation invariant up to
spatial variations in ne f f . In principle, one can also use more general transformations.

IVA field of research also pioneered by Hooke, incidentally.
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using Hooke’s law,

fn = K (un+1 −un)−K (un −un−1) =−2K
[
1−cos

(
φ

)]
un , (1.1)

where K denotes the stiffness of the springs. Inserting this in Newton’s second law and looking

for a solution at an angular frequency ω, we find
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m

[
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)]=
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2
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K
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Note that inter-cell phase from Bloch’s theorem,φ, is often substituted by a Bloch wavenumber

k, defined through φ= kL. Equations of the type of Eq.(1.2), which relate the frequency and

wavenumber of oscillatory modes, are called dispersion relations. In crystalline contexts, we

will also use the term “band structure” interchangeably. In this simple example, we see that

taking the long-wavelength limit (in which the intercell phase φ becomes small) leads to a

linear dispersion relation, with elastic waves moving at a speed of cs =
√

K L
m/L =

√
E
ρ . In this

formula, Young’s modulus E = K L and the density ρ = m/L respectively took over the roles

of stiffness and mass. In the long-wavelength limit, we therefore recover the behaviour of

continuum elasticity.

To model the interference phenomenon observed in the example of Fig.1.2, we now introduce

regularly spaced imperfections in the chain, on which elastic waves will scatter and interfere.

As shown in Fig.1.4(a), we achieve this by making every second cell slightly heavier. The

resulting dispersion relation is drawn in Fig.1.4(a); for most k, this is simply a folded version of

the relation obtained in Eq.(1.2). Something interesting occurs when the wavelength becomes

commensurate with twice the lattice spacing: there, we see a frequency gap opening, in which

waves can no longer propagate. This forbidden frequency range is called a Bragg gap; it results

from the same interference phenomenon as the colour of peafowl feathers. Above this gap, a

second band appears in addition to the usual acoustic dispersion band. This so-called optical

branch exhibits negative group velocity, the very property that provided the initial impetus

to the field of metamaterials. However, leveraging optical branch and Bragg gap properties

requires rather bulky structures. Concretely, opening a Bragg gap at a frequency f requires

unit-cells of a size
√

E/ρ/(2 f ). This class of architected media, whose functionality relies on

the phenomenon of Bragg interference, are called photonic or phononic crystals, depending

on the nature of the waves involved.

Turning our attention to locally-resonant metamaterials, we consider a chain with two types

of internal resonances, drawn in Fig.1.4(d). In the context of elasticity, the need for effectively

negative permittivity and permeability is replaced by the need for negative density and stiff-
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ness. Each of the contraptions [61, 96, 116] depicted in Fig.1.4(d) induces one of these effective

properties over a certain frequency range: the internal mass (yellow) induces negative density,

whereas the lateral-inertia mechanism (orange) induces negative stiffness.

Since the speed of sound is given by cs =
√

E
ρ , when either of these properties is negative,

cs becomes imaginary. The corresponding ranges of frequencies are called band-gaps. At

these frequencies, waves cannot propagate and are replaced by evanescent modes. In the

dispersion relation of the metamaterial chain, shown in Fig.1.4(c), we highlight these gaps

in orange and yellow. A complementary way to interpret these gaps is to consider them as

polariton hybridization gaps. A series of decoupled local resonances would be associated to a

flat band at a particular resonance frequency, since any k-vector could be realized by selecting

an appropriate initial phase in every resonator. As we couple them together, this flat band

hybridises with the dispersion of a spring-mass chain, thereby opening locally-resonant gaps.

Things become really interesting if we manage to tailor the internal structure of these two

mechanisms such that the two negative-property gaps overlap. This gives rise to a doubly-

negative dispersion branch, shown in Fig.1.4(c), in which waves are again allowed to propagate.

The twist is that group velocity in this low-frequency branch is negative, leading to all sorts of in-

teresting properties such as negative refraction and subwavelength imaging. Locally-resonant

band gaps and doubly-negative bands are no longer constrained by the lattice constant of

the material, which leads to the notion of subwavelength wave control. As mentioned earlier,

these properties are narrowband by design, since they are obtained by hybridising a standard

elastic band with local resonances. For certain applications, this is a serious limitation.

Figure 1.5: Negative index bandwidth versus subwavelength ratio k/k0 for various elastic
architected media. The data points are grouped in five families: phononic crystals (grey),
labyrinthine crystals (green), Lamb waves (yellow), locally-resonant metamaterials (blue)
and roton metamaterials (pink). The upper edge of the plot corresponds to the theoretical
maximum of relative bandwidth, namely ∆ω/ωc = 2.

In Fig.1.5, we illustrate this broadband-subwavelength tradeoff by compiling several elastic
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negative refraction studies involving phononic crystals [38–43, 71, 73, 79, 80, 85, 94] and elastic

metamaterials [44, 62, 63, 65, 68, 70, 72–78, 81, 84, 89]. We classify the studies into one group

or the other on the basis of their self-identification. We also included three related sub-types of

architected media in the diagram. First, we considered labyrinthine metamaterials [117–121],

in which waves are controlled by delaying them through intricate coiled paths. The second

category leverages points with zero group-velocity that can be found in the higher-frequency

Lamb waves [122–126].

As for the third category, it consists in a very recent variety of elastic metamaterials, known as

roton metamaterials [127–135]. In roton metamaterials, beyond-next-neighbour couplings

are introduced, leading to the introduction of a negative-index region in the first branch of

the spectrum. In practice, these couplings take the form of explicit elastic connectors or long-

range radiative interactions. The associated local minimum, by analogy with the dispersion

relations observed in superfluids [136–140], is called a roton minimum. After Ch.5 and Ch.7,

we will be able to articulate the connections between roton metamaterials and the concept of

nonlocal resonance, which we will introduce in the next section and develop in the remainder

of this thesis. For now, we simply note that a certain degree of nonlocality lies at the heart of

the roton approach, in the form of long-range couplings.

In Fig.1.5, we measure the subwavelength character of the material with the ratio k/k0 =
k/(ω1/cs). In this ratio, ω1 and k are respectively the frequency and wavenumber of the

negative branch’s lowest point, while cs denotes the speed of sound obtained in the long-

wavelength limit. This ratio compares the actual wavelength with a reference wavelength

predicted by using the linear dispersion of the continuum limit. In the presence of certain

mesoscale structures, like the locally-resonant inclusions of metamaterials, this reference

wavelength may be several times larger than the actual wavelength. As for the ordinate axis,

it represents the relative bandwidth ∆ω
ωc

:= ω2−ω1
(ω2+ω1)/2 , where ω2 is the highest frequency in the

negative-index band.

Interestingly, phononic crystals, labyrinthine phononic crystals, Lamb waves and locally-

resonant metamaterials form a single continuous cluster on this diagram, with no clear-cut

distinction. A continuous landscape of hybrid architected media exists. We also observe that

the high values of subwavelength ratio associated to locally-resonant metamaterials lead to

a quickly decreasing bandwidth, in line with the qualitative arguments we developed above.

With their nonlocal couplings, roton metamaterials escape this tendency, being simultane-

ously more subwavelength and broadband than traditional concepts. In the papers that form

the core of this thesis [141, 142], we followed a distinct, parallel path to escape the constraints

of traditional architected media. We present this path in the next section.

1.3 An alternative design path: nonlocal resonance

In electromagnetism, an intriguing class of architected media [143–148] avoids the limitations

of traditional architected media. These so-called interlaced wire media (IWMs) rely on a

8



Introduction Chapter 1

(c) (d)(a)

?
(b)

Figure 1.6: The quest for an elastic counterpart to interlaced wire media? (a) Unit-cell of
the original interlaced wire medium, with the coloured volumes depicting conductors. The
colours themselves indicate the two different electric potentials on these conductors. (b)
Associated electromagnetic band structure. Panels (ab) are adapted with permission from
[143]. (c) Hypothetical elastic equivalent, also exhibiting an anomalous cone (highlighted in
blue), centered at a nonzero wavevector kR . (d) Mysterious elastic micro-structure associated
to the anomalous cone property, to be introduced later.

completely different physical principle. In Fig.1.6(ab), we reproduce the geometry and band

structure from [143]. The presence of a wide, low-frequency domain of negative group velocity

is manifest in Fig.1.6(b). The underlying design principle of such structures is the following:

as shown in Fig.1.6(a), the medium consists of disconnected conducting components. In

the more standard case, there would be one distinct component for every unit cell, with no

global connectivity. In that case, we would be in the presence of a traditional wire medium,

which could act as a locally-resonant metamaterial or a photonic crystal depending on the

involved geometry and materials. In another well-known limit, a single, fully-connected giant

component acts as a Faraday cage and therefore prevents the propagation of electromagnetic

waves below a cutoff frequency determined by the lattice constant.

IWMs provide a strange intermediate situation: they consist in a finite number of disconnected

giant componentsV (GCs), which does not scale with the number of cells in the system. Since

they are disconnected, GCs can carry different static electric potentials. These nontrivial

potential distributions can be interpreted as electromagnetic zero-frequency modes (zero-

modes in short). Because the spectrum is continuous, other low-frequency modes emerge to

connect the zero-modes to the higher-frequency branches of the spectrum. Then comes the

literal twist: consider the case in which the GCs are interlaced, meaning that their positions

within the unit cell are permuted upon translation by a lattice vector. In this situation, the

positions of the zero-frequency electric potentials are also exchanged. This, in turn, implies

that the zero-mode is associated to a nonzero wavevector! The band that emerges from

this zero-mode therefore exhibits negative group velocity, one of the hallmark properties of

doubly-negative metamaterials.

VWe use the name “giant component” in reference to the well-established concept carrying the same name in
graph theory. In both cases, the word “giant” means that a macroscopic fraction of the material or graph must
belong to the giant component.
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To clarify this intriguing concept and to generalise it beyond electromagnetism, we seek to

extract its essential abstract ingredients. What is really needed to achieve the above behaviour

in a wave system ? An intensive number of zero-frequency modes with nontrivial, periodic

spatial patterns. In order to contrast them with the dominant concept of locally-resonant

metamaterials, we will call these delocalised zero-modes nonlocal resonances. In this thesis,

we seek to define a new class of architected media by generalising the abstract concept that

underlies IWMs to a completely different physical settingVI. We will then leverage this platform

to explore the peculiar physics associated to nonlocal resonances.

(a) (b)

(c)

(d)

(e)

Figure 1.7: Another historical strand: flexible metamaterials. (a) Ron Resch with a flexible
periodic origami (1960). (bc) Transverse deformation of compressed elastic materials (orange
domains) with the undeformed domains in yellow and white arrows indicating the compres-
sion direction. The material in (b) has ν= 0.5, while the material in (c) has ν=−1, namely the
theoretical lower bound for Poisson’s ratio in an isotropic material. (d) The counter-rotating
squares structure, with blue areas denoting rigid elements and white disks denoting hinges.
(e) Actuated counter-rotating squares mechanism.

To provide a clean break from IWMs, we change the physical setting in two ways: we hop down

from three to two dimensions and replace electromagnetism by elasticity. Note that this forbids

any direct translation from the IWM design method: indeed, three spatial dimensions are

required for interlacing. In this new setting, we seek an architected medium whose phononic

spectrum exhibits anomalous dispersion cones, as depicted in Fig.1.6(c).

In other words, we are looking for a 2D elastic medium that hosts regular, zero-frequency

deformation modes with nontrivial periodicity. This requirement resonates with another class

of architected media, namely flexible metamaterials. In the previous section, we focused on

wave metamaterials; flexible metamaterials belong to a different tradition centered around

static or quasistatic mechanical properties. These materials could broadly be characterised

VIWe do so in order to remove accidental properties of IWMs that may not be immediately related to their
nonlocally-resonant character.
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as artificial media that rely on folding motions and elementary mechanisms to achieve unex-

pected mechanical properties [141, 142, 149–160]. Flexible metamaterials also have a long and

varied history; a potential starting point lies in the 1950s. This root starts with an artist, Ron

Resch, pictured in Fig.1.7(a) with one of his periodic flexible origami. Resch explored many

such flexible geometric structures, in two and three dimensions, predating their re-invention

in physics sometimes by decades.

A more conventional starting point could be the introduction of auxetic materials by Roderic

Lakes [161]. The defining feature of auxetic materials [162–165] is their negative Poisson’s

ratio, an adimensional number that measures the amount of lateral extension in medium

upon compression. In standard elastic media, Poisson’s ratio lies in the ν ∈ [0,0.5] range;

this corresponds to the positive lateral extension depicted in Fig.1.7(b). Auxetic materials,

on the other hand, behave as shown in Fig.1.7(c): they lose volume as we compress them.

Such behaviour typically relies on a complex inner structure, with empty pores closing as the

material is compressed. The archetypal auxetic geometry, originally introduced in mineralogy

[166–168] to model displacive phase transitions in perovskites, is depicted in Fig.1.7(d). It

was later claimed by the auxetic community because of its extreme Poisson’s ratio of ν=−1;

the underlying mechanism is depicted in Fig.1.7(e). Because of the relative rotation of the

rigid squares that constitute the material, this structure is called the counter-rotating squares

geometry.

These developments also connected with a tradition of continuum elasticity theories. Graeme

Milton, for instance, investigated various extreme corners of the parameter space of elastic

moduli [169–171] and introduced the notion of pentamode material [172, 173]. More un-

usual elasticity theories were also put to contribution, such as the elasticity theory of the

Cosserat brothers [174–176] or micropolar theory [127, 177–179]. In these theories, local

rotational degrees of freedom are taken into account; this is a necessary ingredient to properly

homogeneise some types of flexible metamaterials.

Auxeticity then trickled towards fine-grained deformation control, naturally leading to the

design of more complex shape-morphing behaviours [180–188]. Combinatorial methods [141,

189–194] provide powerful tools to design such shape-morphing structures. To cite two other

developments, hierarchies of mesoscale structures were introduced in flexible metamaterials

[2, 195–198], and various avatars of topology were uncovered [199–204]. Here, we only hastily

summarised the zoology of flexible metamaterials; it is as flourishing as in the wave context of

the previous section.

Let us stop our journey through the literature here to take a good look at the horizon and

summarise our objectives. Motivated by the limitations of phononic crystals and locally-

resonant metamaterials, but also by the extraordinary properties they manage to achieve

within these confines, we seek a new class of wave material architectures. The initial impetus

was given when we realised that the trailblazing shifted cones of IWMs only required a zero-

mode with nonzero-wavevector, which we knew where to find within the realm of planar
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elasticity.

This entry point was the counter-rotating squares mechanism. Indeed, in the idealised limit

of Fig.1.7(de), the counter-rotating squares metamaterial folds as an ideal mechanism. If

the hinges bend for a negligible energetic cost, this mode effectively constitutes an elastic

zero-mode. Examples of such mechanism-based zero-modes abound in flexible metama-

terials. However, most of them are part of extensively-scaling families of zero-modes; the

metamaterials that host them are very floppy, like the flexible origami surface held by Resch

in Fig.1.7(a). The counter-rotating squares geometry is different: it only has a single, global

degree of freedom. Furthermore, this zero-mode is nontrivially periodic: the deformations in

neighbouring unit cells are exactly opposite, picking up a phase of π.

The counter-rotating squares mode fits all the requirements of a nonlocal resonance. There-

fore, the first thing we will do is to try generalising the principles that underlie this deformation

mode. In Ch.2, we introduce a graphical design method to systematically create geometries

hosting such zero-modes. In particular, this method allows us to design structures that host

a finite number of zero-modes, providing a path to multifunctional flexible metamaterials.

We call such geometries oligomodal. We then adopt a wave viewpoint in Ch.3, in which we

confirm that these zero-modes induce anomalous dispersion cones and explore the associ-

ated consequences on wave propagation. Ch.4 is dedicated to experimental validation, with

experiments on 3D-printed samples demonstrating oligomodality, multifunctional mechanics

and above all a nonlocally-resonant vibration spectrum. In Ch.5, we take a deeper dive in

the various ways in which gaps arise in nonlocally-resonant metamaterials. The core of the

research presented in Chapters 2 to 4, as well as part of Ch.5, was reported in Refs.[141] and

[142]. Here, we reworked this material in depth, by streamlining our methods and finding new

interconnections.

In Ch.5, we also briefly touch upon aspects of non-hermitian time evolution, the subject of a

covid side project described in Ref.[205]. We did not fully include it in the thesis for the sake

of thematic unity. As for Chapters 6 and 7, they consist in entirely new material, which may

form the basis of future articles. Ch.6 is dedicated to the motley crew of zero-modes arising in

oligomodal metamaterials that do not take the form of a Bloch wave, thus allowing them to

escape the preceding analysis. Finally, we move on to 3D elasticity in Ch.7; we leverage this

platform to investigate the interplay of nonlocal resonances with symmetries.

12



2 Kinematic Graphs

“The stuff with arrows is not clear.”

— An honest referee

In the introduction, we saw that the classical flexible metamaterial based on the counter-

rotating squares mechanism seemed to host a single zero-mode meeting the criteria of a

nonlocal resonance. In the present chapter, we place this isolated example in a wider con-

ceptual context and develop tools to design planar mechanisms with similar kinematics. In

particular, we will introduce mechanical tilings that host several nonlocal resonances simulta-

neously. To that end, we introduce a graph-based method to design flexible metamaterials

with various numbers of zero-energy modes. As a starting point to introduce our method, we

note that zero-modes cannot involve changes in elastic energy, because the resulting restoring

forces would ultimately lead to finite-frequency oscillations.

This consideration motivates us to model our flexible material as a mechanical linkage, i.e. as

a collection of infinitely rigid bars connected by friction-less hinges. In Fig.2.1(a), we give an

example of an amorphous planar linkage, with no particular symmetry. Our goal is to design

linkages with interesting deformation modes, which we will later promote to zero-energy

modes of a mechanical metamaterial. We will treat these dynamical aspects from Ch.3 onward,

progressively replacing ideal linkages with spring-mass models and then realistic 3D-printable

geometries. In this chapter, however, we start by focusing on the purely kinematic aspects of

the problem.

In general, this is a difficult problem, involving strong geometric nonlinearities and compat-

ibility conditions between the deformations of neighbouring regions. We tackle it step by

step, starting by counting degrees of freedom (henceforth DOFs) and highlighting relevant

substructures in the mechanical network. After hinges and bars themselves, the most basic

conceptual units are triangles, such as the one shown in Fig.2.1(b). A rigid triangle in two

dimensions can move in three ways: we can translate it in two independent directions and

rigidly rotate it. Actually, all linkages exhibit these three DOFs, even the whole mechanical

13
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(a) (b) (c)

(d)

(e)

Figure 2.1: Kinematic degrees of freedom in a truss-hinge network. (a) aperiodic metamaterial,
with perfect hinges depicted as white disks and rigid bars depicted as black lines. (b) Close-ups
on interesting substructures of the mechanical network, providing examples of: (c) the rigidity
of triangles, highlighted in blue, (d) the single degree of freedom associated with four-bar
mechanisms, and (e) the states of self-stress associated with redundant constraints. In (e),
tensile and compressive stresses are represented in blue and yellow, respectively.

network. What distinguishes triangles, and rigid bodies in general, is that they only have these

three degrees of freedom. We can formalise this observation as follows: each hinge of the

triangle can move in two independent directions, yielding a total of six DOFs, while each

bar adds a single constraint, reducing the total to three DOFs. These are precisely the three

aforementioned DOFs. Truss networks that consist exclusively of such triangles, such as the

one depicted in Fig.2.1(c), are statically determinate; they do not exhibit internal degrees of

freedom. In the remainder of the thesis, we will draw such rigid domains as coloured areas

instead of triangulated trusses.

Things get more interesting as we move on to the second close-up of Fig.2.1(b), which depicts

a four-bar linkage. We can count the degrees of freedom again: the hinges contribute eight

DOFs in total. On the other hand, each rigid bar provides a constraint on the allowed motions,

yielding four constraints. We are therefore left with four zero-modes: two independent

translations, a rotation and, most interestingly, a nontrivial folding mechanism, depicted

in Fig.2.1(d). This observation could encourage us, following Maxwell’s footsteps [206], to

introduce the following count:
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Nm +3 = 2N − c, (2.1)

where Nm is the number of internal degrees of freedom, N the number of hinges and c the

number of constraints. As an example, adding a diagonal bar in the linkage raises the value

of c to five, yielding Nm = 0. We fall back to a triangulated truss, as in Fig.2.1(c), in which

only global rigid motions are allowed. Adding a bar on the remaining diagonal means trouble

for Eq.(2.1). Indeed, this makes the system over-determined and introduces a so-called state

of self-stress. Such a state is depicted in Fig.2.1(e); it exhibits a nontrivial stress distribution

on the bars, but the forces on the hinges sum to zero. Calladine [207] improved Maxwell’s

criterion to account for this subtlety,

Nm −Nss +3 = 2N − c. (2.2)

The term Nss is the number of states of self-stress, which correspond to redundant constraints.

The presence of such states means that we cannot simply add degrees of freedom and subtract

bar constraints. The spatial location of constraints matters. In particular, this implies that two

metamaterials with the same number of hinges and bars do not necessarily host the same

number of zero-modes. In other words, local mechanisms can be incompatible; the resulting

mechanical frustration then prevents global deformations of the metamaterial.

A second difficulty lies in the highly nonlinear nature of linkage kinematics: in Fig.2.2(a), we

follow the motion of a simple four-bar mechanism by tracing the path followed by the middle

point of a bar. The resulting trajectory, drawn in red, is highly nontrivial. Keeping track of such

kinematics for every single local DOF in the truss is a daunting task. Luckily, since we will

ultimately be concerned with small-scale deformations and linear waves in metamaterials,

we can use a simplifying assumption: motions will be restricted to slight deviations from the

initial configuration of the mechanism. This will also allow us to represent local DOFs as

directed graphs, which has the added advantage of simplifying the mechanical frustration

issue: the problem becomes a combinatorial search of compatible local deformations.

2.1 Taming local mechanisms with the area law

To that end, we start by replacing each bar in the linkage with a complex number zk , as shown

in Fig.2.2(b). The argument and modulus of zk respectively encode the angle and length of the

bar. We then seek to describe small variations αk of the internal angles φ̃k =φk +αk , under

the condition that the linkage remains closed. This will allow us to abstract the mechanisms

as directed graphs of the type represented in Fig.2.2(c), where each hinge is represented as

a white disk, henceforth known as a hinge node. As for the central black disk, it represents a
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Figure 2.2: Linearising the kinematics of a four-bar mechanism. (a) Tracing the trajectory of
the middle point of a bar in a single-DOF mechanism to visualise nonlinear kinematics. (b)
Reference configuration around which we linearise the mechanism. (c) Equivalent directed-
graph representation of the linear kinematics. (d) Area law for the arrow weights in the vertex
representation, with colours corresponding to arrows in panel (c).

kinematic node; it encodes the relationship between the αk . Positive αk are represented as

arrows going from the hinge node to the kinematic node, whereas negative αk are represented

with arrows going in the opposite direction. As a useful mnemonic for this convention, we note

that the arrows point in the directions in which one should push to actuate the mechanism.

The lengths of the bars and the initial configuration only play a role in determining the relative

weights of the arrows, which we will now compute. Marking all deformed quantities with a

tilde, the closure condition can be written as
∑n

k=1 z̃k = 0, which in turn implies

0 =
n∑

k=1
z̃k =

n∑
k=1

|z̃k |e i θ̃k =
n∑

k=1
|zk |e i (θ̃1+(k−1)π−∑k−1

j=1 φ̃ j ) =
n∑

k=1
|zk |e i (θ1+(k−1)π−∑k−1

j=1 φ j−∑k−1
j=1 α j )

=
n∑

k=1
zk e−i

∑k−1
j=1 α j ≈

n∑
k=1

zk (1− i
k−1∑
j=1

α j ) =−i
n∑

k=1

k−1∑
j=1

zkα j . (2.3)

In the last step, we used the fact that the initial configuration is also closed. Choosing n = 4

and defining the infinitesimal-angle vectors α⃗ := (α1,α2,α3,α4)T yields the matrix equation

 1 1 1 1

Re(z4 + z3 + z2) Re(z4 + z3) Re(z4) 0

Im(z4 + z3 + z2) Im(z4 + z3) Im(z4) 0

 α⃗= 0, (2.4)

in which we also used the constraint
∑n

k=1αk = 0, which reflects the fact that the sum of angles

in a polygon only depends on the number of its sides. Applying row reduction, we find the
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(b) (d) (f) (h) (j)

(a) (c) (e) (g) (i)

Figure 2.3: Some examples of arrow rules. Four-bar mechanisms are depicted on the top row.
Hinges are depicted as white dots, while bars are represented by grey dashed lines when in
the reference configuration and solid black lines when in the deformed configuration. The
corresponding arrow rules are depicted on the bottom row, again with hinge vertices as white
dots and with kinematic vertices as black dots. The cases considered are (a) four bars of equal
length, (c) two opposing bars that are parallel and of unequal length, (e) the limiting case of
a triangular frame, (g) three co-linear hinges and finally (i) a more generic mechanism with
hinges sitting on a square grid.

kernel of this matrix, namely

α⃗=


α1

α2

α3

α4

= ϵ


z3 × z4

z4 × (z2 + z3)

z2 × (z3 + z4)

z3 × z2

= ϵ


z3 × z4

−z4 × (z4 + z1)

−z2 × (z2 + z1)

z3 × z2

= ϵ


z3 × z4

−z4 × z1

z1 × z2

−z2 × z3

=: ϵ


+A3

−A4

+A1

−A2

 , (2.5)

where ϵ ∈ R is a small parameterI. This formula has a nice geometric interpretation: for an

infinitesimal deformation of a four-bar mechanism, the small angular variation αk at a given

hinge is directly proportional to the area spanned by the two bars attached at the opposing

corner, Ak+2, as highlighted in Fig.2.2(cd). We will call this the area law. The sign of the angular

deformation is always opposite for neighbouring corners.

2.1.1 Kinematic graphs of four-bar linkages

This graphical representation is best understood by going through various examples and

limiting cases; as a start, consider the case of a mechanism with bars of equal length, such as

the one shown in Fig.2.3(a). Taking the square as our initial configuration, we see that all the

internal triangles have the same area, hence yielding equal arrow weights. We can therefore

abstract the deformation of Fig.2.3(a) as the directed graph of Fig.2.3(b). Interestingly, the high

IAs for the cross products, they are defined as w × z := [Re(w) Im(z)−Re(z) Im(w)]/2.
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symmetry of this linkage means that the triangles retain equal areas even at large deformations,

meaning that the graph description remains valid in the nonlinear regime.

In Fig.2.3(c), we consider a slightly less symmetric case, namely that of a trapezoidal mecha-

nism. Using Cavalier’s rule to determine the relative areas of the internal triangles, we obtain

the directed graph of Fig.2.3(d). The hinges with obtuse angles are subject to larger angu-

lar deformations, with a factor determined by the ratio of the opposing parallel bars of the

trapezoidal mechanism, here equal to two. Note that we use the convenient convention of

representing the arrow weight through the number of depicted arrows.

Pushing the arrow ratio further, we get to the limiting case of a triangular truss, shown in

Fig.2.3(e) in which we expect very little to happen. Indeed, the directed graph in this case tends

to the limit of Fig.2.3(f), in which the bottom hinges feel no deformation whatsoever, since

the opposing triangles have a vanishing area. As for the top hinges, they can still experience

relative motion, but they are so close to each other that it hardly matters. Moving forward, we

consider another special case, in which one of the triangles also has vanishing area, but this

time because the linkage of Fig.2.3(g) has three aligned hinges. Since we set the central hinge

in this alignment at one third of the total distance, we again get convenient integer arrow

weights, which we represent with multiple arrows in Fig.2.3(h).

The convenience of this representation leads us to ask the following question: when can the

arrow weights be represented by integers ? The answer, proven in Appendix A, is that this is the

case if and only if the hinges can be made to sit on the nodes of a Bravais lattice. This makes it

particularly convenient to draw potential unit cells on graph paper; determining the arrow

weights then boils down to counting squares on the grid to determine the areas of the relevant

triangles. For instance, consider the quadrilateral in Fig.2.3(i), which exhibits no particular

symmetry besides the lattice condition we evoked. Its directed graph representation, shown

in Fig.2.3(j), indeed only involves integer weights.

2.1.2 Combining elementary kinematic graphs

Inspecting the amorphous mechanical network of Fig.2.1(a), we notice that our restriction to

four-bar linkages is a rather strong one. Large cyclic linkages could be involved in mechanism-

based metamaterials. We now explain how to decompose the possible deformations of an

arbitrary cyclic linkage into single degrees of freedom. By cyclic linkage, we mean a planar

mechanism in which the bars and hinges form the sides and corners of a polygon. Applying

the mode count of Eq.(2.2) yields Nm = 2N −N −3 = N −3. In the case of the heptagon drawn

in Fig.2.4(a), we therefore expect to be able to decompose general deformations - such as the

one of Fig.2.4(b) - into four DOFs. In order to extract these DOFs, we only actuate four hinges

at a time, allowing us to use the area law on an equivalent quadrilateral linkage. In Fig.2.4(c),

we always leave the three top hinges free to move, while fixing three of the bottom hinges. The

free bottom hinge is indicated with a blue line. Measuring the areas of the inner triangles in

these equivalent linkages, we obtain the arrow rules of Fig.2.4(d), in which we coloured some
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(b)(a)

(d)

(c)
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Figure 2.4: Decomposing the kinematics of an arbitrary cyclic linkage into combinatorial
degrees of freedom. (a) Cyclic linkage with seven hinges in a reference configuration. (b)
Generic deformation of the linkage. (c) Equivalent single-DOF mechanisms obtained by
fixing three hinges, represented as grey squares. The areas relevant to compute arrow weights
are coloured in yellow and blue. (d) Corresponding graph representations, with the edges
corresponding to the above areas coloured accordingly.

of the edges to indicate their correspondance with an inner triangle. By construction, three

of the bottom edges carry no arrow. Because we secretly drew the mechanism on a lattice,

the arrow weights are again integers. General deformations can then be obtained as linear

combination of these four arrow configurations.

To practice a bit before studying full-blown mechanical tilings, we study the kinematics of

a composite mechanism involving several cyclic linkages, shown in Fig.2.5(a). To do so, we

need a way to combine local graphs together. This is easily achieved by concatenating the

graphs of neighbouring linkages at their shared hinges. We then introduce a small angular

deformation at the top hinge of our composite mechanism, represented as an orange arrow

in Fig.2.5(d). In Fig.2.5(e-j), we propagate the deformation on the graph through the arrow

rules at kinematic nodes and hinges nodes. The arrow rule at hinge nodes is much simpler

than at kinematic nodes: the only constraint is that the number of incoming and outgoing
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2.5: Simplifying the kinematics of a composite unit cell to an equivalent vertex. (a)
Unit cell in its undeformed state, with hinges as white disks and rigid parts in solid blue. (b)
Superimposed graph in solid black, with hinge vertices in white and kinematic vertices in black.
(c) The same graph by itself. (d) Fixing an incoming arrow on the top edge, depicted in orange.
(e) Three further edges are determined by a kinematic vertex. (f) Hinge vertices with two edges
are determined by arrow conservation and can be erased, as done in (g). (hi) Propagating
the arrows further along kinematic edges, until all edges are fixed in a self-consistent manner
(j). (k) Simplifying the vertex representation to a single kinematic vertex with six edges. (l)
Real-space representation of the mechanism.

arrows must be equal. We will refer to this rule as arrow conservation. Because the sum of

internal angles in a polygon is invariant under mechanical deformations, we note that arrow

conservation is also valid at kinematic vertices.

This is highly reminiscent of the ice rule invoked in the vertex models of statistical physics,

which were the original inspiration of our graphical method. Vertex models were introduced

to count micro-configurations of the hydrogen bonds in ice, in order to estimate its residual

entropy [208–210]. In this context, the arrow conservation constraint encodes local charge

balance: each bond between water molecules must involve a single proton, drawn as a

arrow in the vertex model. This essential discreteness is reflected in the set of allowed arrow

configurations; vertex models are even named after the number of different vertices they allow,

with the most famous example being the six-vertex model. Our kinematic graphs differ starkly

in this regard, because they allow for an infinite number of local arrow configurations. The

adaptation of some of the combinatorial methods that apply to statistical vertex models to the

less constrained case of kinematic graphs certainly provides an interesting challenge.

Arrow conservation makes hinge nodes with two edges particularly trivial: we can erase such

nodes and directly connect the adjacent kinematic nodes with a single edge. We make use

of this in Fig.2.5(g). Finally, since the whole graph was determined by fixing a single arrow,

we can replace it with an equivalent six-legged kinematic vertex, shown in Fig.2.5(k). This

furnishes an abstract representation of the zero-mode represented in Fig.2.5(l) that captures

the deformation of the external shape of the mechanism. This additional simplification

comes at the cost of forgetting about the internal kinematics of the mechanism, which are
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anyway irrelevant to understanding whether it is kinematically compatible with neighbouring

mechanical elements.

(a)

(b) (c)

(d) (e)

Figure 2.6: Kinematic graphs of a bimodal linkage. (a) Pentagonal linkage in the reference
configuration. Hinges are represented by white disks and bars by solid blue lines. (b) Fixing
the hinge in the top corner reveals a symmetric arrow rule, represented with solid black
lines. (c) Representation of this DOF in the original structure. The reference configuration
is represented with dashed lines, whereas the deformed configuration is represented with
solid lines. (d) Fixing the top-right corner reveals a second DOF; we represent its effect on the
original linkage in (e).

(a) (b) (c) (d)

Figure 2.7: Localized modes and their extensive scaling. (a) Plurimodal metamaterial geometry
in an undeformed state. Hinges are represented by white disks and bars by solid black lines.
Rigid triangles are coloured in blue, with varying saturation to make it easier to determine
the orientation of the unit cells. (b) Corresponding directed graph representation, with a
compatible arrow configuration localized to two rows. (c) Real space representation of the
localized mode. (d) Number of zero-modes as a function of system size in yellow.

2.2 Mechanical tilings and zero-mode scaling

Having tamed local kinematic complexity with these graphical tools, we can turn to the second

difficulty we discussed: frustration effects in mechanical networks. To explore these effects,

we tile the plane with the unit cell of Fig.2.6(a). Since it relies on a pentagonal linkage, it hosts

two DOFs, which can again be obtained by successively fixing two different hinges, as shown

in Fig.2.6(bd). This yields the two arrow rules depicted in Fig.2.6(ce). By construction, plane
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tilings relying on this bimodal unit cell have the same number of hinges and bars, and hence

the same modal count. However, additional states of self-stress can arise, making room for

further zero-modes. We start with a tiling that exhibits a large number of zero-modes and

states of self-stress, shown in Fig.2.7(a). Note that we set the hinges on a Lieb lattice and

simply change the orientation of the pentagonal linkage depending on the cell’s position. The

graph representation of this tiling is depicted in Fig.2.7(b). Playing the same arrow-fixing

game as before, we note that one arrow needs to be constrained on every second row to

fully fix the arrow content in the bulk. This is most easily visualised with the help of the

arrow configuration of Fig.2.7(b), which is fully compatible with the arrow rules and remains

localised on two rows. The corresponding real-space deformation is depicted on Fig.2.7(c).

Such modes often arise in flexible metamaterials, as in early works by Guest and Hutchinson

[211, 212]. In compressive experiments on foams [213–215], localized lines of deformation also

occur regularly: we will call them line modes. Such modes make for a rather floppy material,

since they allow each row to move independently. Their local character also implies that they

scale extensively: in Fig.2.7(d), we plot the total number of zero modes Nm in a square N ×N

tiling as a function of N . Here, the scaling is linear, because of the 1D extension of the zero-

modes. If they were instead localized in both directions, the number of zero-modes would

instead scale quadratically in N . Such metamaterials, with a polynomially-scaling number of

modes, will be termed plurimodal. To validate these combinatorial insights, we also carried

a brute-force computation of the mode scaling with a more traditional compatiblity matrix

approach. The compatibility matrix C lets us compute the bond extension b⃗ =C u⃗ induced

by infinitesimal displacement vector u⃗. Displacement vectors corresponding to zero-modes

must fall in the kernel of C , since by definition they stretch no bond. To obtain the bond

stretching induced by the displacement, we compute the distance between the two end nodes

as

b12 = |⃗r2+ u⃗2− r⃗1− u⃗1|−|⃗r2− r⃗1| =
√

|⃗r2 − r⃗1|2 −2(⃗r2 − r⃗1) · (u⃗2 − u⃗1)+|u⃗2 − u⃗1|2−|⃗r2− r⃗1|

≈ |⃗r2 − r⃗1|− (⃗r2 − r⃗1) · (u⃗2 − u⃗1)

|⃗r2 − r⃗1|
− |⃗r2 − r⃗1|

= r2x − r1x

|⃗r2 − r⃗1|
u1x + r1x − r2x

|⃗r2 − r⃗1|
u2x +

r2y − r1y

|⃗r2 − r⃗1|
u1y +

r1y − r2y

|⃗r2 − r⃗1|
u2y , (2.6)

where r⃗i denotes the initial position of node i and u⃗i its displacement. Doing this for each

bond, we obtain a matrix equation relating b⃗ and u⃗. To give a concrete example, the compati-

bility matrix of a square four-bar linkage can be written as
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C =


1 0 −1 0 0 0 0 0

0 0 0 1 0 −1 0 0

0 0 0 0 −1 0 1 0

0 1 0 0 0 0 0 −1

 . (2.7)

The kernel of this matrix is four-dimensional; from earlier discussions, we know that a

basis consisting of two rigid translations, a rotation and a nontrivial mechanism can be

picked. For instance, the displacement vector u⃗ = (u1x ,u1y ,u2x ,u2y ,u3x ,u3y ,u4x ,u4y )T =
(−1,−1,−1,1,1,1,1,−1) lies in the kernel of C and involves a nontrivial folding motion, namely

the one depicted in Fig.2.3(a). When more degrees of freedom are present, we cannot easily

pick an illuminating basis, but the zero-mode count still corresponds to the dimension of the

kernel. This provides an alternative path to obtain the zero-mode scaling of Fig.2.7(d), by nu-

merically computing compatibility matrix kernels for finite N ×N tilings. Every mode-scaling

plot shown in the remainder of the thesis was cross-checked using this method.

(a) (b) (c) (d)

Figure 2.8: The counter-rotating squares mechanism. (a) Unimodal metamaterial geometry
in an undeformed state. Note that the rigid elements composed of three triangles effectively
behave as the virtual square drawn in pink. (b) Corresponding directed graph representation,
with a compatible arrow configuration spreading on the entire graph uniformly. (c) Real space
representation of the counterrotating squares mechanism. (d) Number of zero-modes as a
function of system size in yellow, with previous mode scalings in blue.

In the above description of plurimodal structures, we passed over an important mode, which is

present in every tiling of our pentagonal unit cell. To discuss it, we consider a highly frustrated

configuration, represented in Fig.2.8(a). In this configuration, all the cells have a diagonal edge

ending in a static set of triangles, which prevents it from being actuated. We can therefore

erase all such edges to obtain the graph of Fig.2.8(b). Another way to see this is to consider

that this geometry is kinematically equivalent to the counter-rotating squares geometry, as

evidenced by the pink outline in Fig.2.8(a). Fixing an arrow anywhere on the graph is then

sufficient to fully determine its arrow content; the metamaterial has a single zero mode. We

depict the associated deformation in Fig.2.8(c). This mode is precisely the counter-rotating

squares mode of Fig.1.7(e). In terms of mechanical properties, such geometries, which we

might term unimodal, is more well-behaved than plurimodal ones. We contrast their mode-
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(a) (b) (c) (d)

Figure 2.9: An oligomodal metamaterial. (a) Oligomodal metamaterial geometry in an un-
deformed state. (b) Corresponding directed graph representation, with a compatible arrow
configuration spreading on the entire graph non-uniformly. The other three DOFs can be
obtained by successive rotations of π/2. (c) Real space representation of this additional zero-
mode. (d) Number of zero-modes as a function of system size in yellow, with previous mode
scalings in blue.

scaling behaviours in Fig.2.8(d). We will see in the next chapter that the unimodal geometry

also opens the way to very unusual wave physics. The central objective of the design method

introduced in this chapter is to go beyond this isolated example of global zero-mode to create

other geometries with an intensive number of zero modes, which we will call oligomodal.

Crucially, we will show that such geometries can exhibit more that one global zero mode.

The first example of such a geometry is depicted in Fig.2.9(a). Playing our combinatorial

arrow game again, we see that fixing arrows on four edges is necessary to fully determine

the arrow content of the graph. One such arrow configuration is depicted in Fig.2.9(b), while

the three others can be obtained by rotating it by steps of π/2. As for the counterrotating

squares mode, it can be obtained as a linear combination of these four zero-modes. In contrast

with the counterrotating squares case, the deformation pattern of Fig.2.9(bc) does not fill the

plane uniformly; instead, the amount of deformation increases linearly along one diagonal

and remains constant along the other diagonal. We will discuss the impact of this peculiar

behaviour on the vibration spectrum in Chapter 6, and also address the tension between the

linear increase and the small-angles assumption in Chapter 4. In mechanical terms, such

structures are extremely interesting, because of their ability to deform into multiple global

shapes without being entirely floppy. In Fig.2.9(d), we contrast the various scaling behaviours

observed up to now, as well as an average over random tilings. It turns out that most tilings

quickly become frustrated, only allowing for the counterrotating squares modes, which must

be present by design. On the other hand, most periodic tilings host an extensive number of

modes (See Appendix). Oligomodal geometries therefore reach a fine equilibrium between

frustration and mechanical floppiness by exhibiting a finite number of global deformation

modes.

To close the chapter, we consider one last class of tilings: nonrandom aperiodic tilings. Qua-

sicrystals provide a famous example of order without periodicity [216–219]. In Fig.2.10(ab), we
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.10: Quasicrystalline geometry with logarithmically scaling number of mechanisms.
(a-d) First four iterations of the fractal substitution rule. (e-g) Graph representation of the fifth
iteration of the substitution rule, with three zero-modes associated to increasingly finer spatial
scales. The actuated edges are drawn in a darker shade to emphasise their spatial patterns. (h)
Number of zero modes as a function of system size in yellow, with previous mode scalings in
blue.

show a fractal substitution rule, in which a square unit-cell is substituted with four smaller

copies placed in various orientations. Applying this substitution rule iteratively, as shown in

Fig.2.10(cd), yields a quasicrystalline tiling. Interestingly, when analysed in the vertex model

formalism, this tiling is shown to host a limited number of zero-modes, at finer and finer spa-

tial scales. These modes are shown in Fig.2.10(e-g). A new mode is introduced every time we

apply the fractal substitution rule. This has the effect of doubling the system size, which leads

to a logarithmically scaling number of zero modes, as shown in Fig.2.10(h). Quasicrystal order

therefore offers an intriguing intermediate case between oligomodality and plurimodality.

In this chapter, we introduced a visual design method for flexible metamaterials based on

directed graphs, turning a complex kinematic problem into a combinatorial game. We then

leveraged this method to classify mechanical metamaterials based on the scaling behaviour

of their zero-mode content. When too many constraints are present, the material is rigid: it

does not host nontrivial zero-modes. This is the case of most elastic media. The opposing

limit in which there are too few constraints leads to the plurimodal class. Metamaterials in

this class are quite floppy: they can accommodate a wide set of deformations. Most flexible

metamaterials belong to this class.

Most interestingly, we uncovered the existence of an intermediate scaling class, the oligomodal

class. Oligomodal metamaterials host a number of global zero-modes that does not increase
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with system size. Such metamaterials walk a fine line between controlled behaviour and

floppiness. These characteristics are promising for our quest of elastic nonlocal resonances,

because the latter also rely on a limited number of global degrees of freedom. In the following

chapter, we will make this connection concrete and use it to design nonlocally-resonant

metamaterials.
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“Bon ça veut rien dire, mais je trouve que ça sonne bien.”

— B. Apffel, citing R. Loth

As promised, we will now leverage the graphical method developed in the previous chapter to

design the low-frequency spectrum of flexible metamaterials. Our ambition in this chapter is

to describe the spectral signatures of nonlocal resonances, as well as their impact on wave

propagation. To that end, we relax our assumption of infinitely rigid bars, turning to dynamical

models. We will focus on a subclass of oligomodal geometries which host zero-energy Bloch

waves with nonzero wave-vectors, i.e. nonolocal resonances. Crucially, we will see that this

particular class of metamaterials fulfills our hopes: it exhibits anomalous dispersion cones,

like interlaced wire media.

In Sec.3.1, we introduce a minimal 1D model of anomalous cones, which we use to investigate

some of their 1D properties. Then, in Sec.3.2, we introduce a 2D oligomodal geometry hosting

two anomalous cones, which we use in Sec.3.3 to investigate the essentially 2D phenomenon

of negative refraction, demonstrating that nonlocally-resonant metamaterials are not subject

to the same limitations as phononic crystals and locally-resonant metamaterials. Finally, we

conclude the chapter with Sec.3.4, in which we discuss three more examples of nonlocally-

resonant metamaterials designed with our graphical method. We use these examples to show

that the location and number of anomalous cones is controlled by our kinematic-graph theory.

3.1 Anomalous cone in a one-dimensional chain.

As a warm-up, we will first consider a minimal 1D model inspired by the counter-rotating

squares mechanism. We start by considering a single column of the counter-rotating squares

metamaterial, depicted in Fig.3.1(a). A kinematic graph analysis (Fig.3.1(b)) reveals that this 1D

chain hosts a single nontrivial mechanism, like its parent structure. We then seek to simplify it

further, to obtain a model that exhibits the essential properties of interest while remaining
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Figure 3.1: Minimal 1D model exhibiting a single anomalous cone. (a) 1D version of the
counter-rotating squares metamaterial, with hinges as white dots and rigid bars as black
lines. Rigid triangles are highlighted in blue. (b) Graph description of the single nontrivial
zero-mode of this chain. (c) Real-space representation of this zero-mode. (d) An even simpler
chain with only two hinges per unit cell (highlighted in yellow). (e) Vibrational spectrum of
the chain in (d), with hinges replaced by point masses and rigid bars replaced by springs. The
solid lines correspond to modes that are symmetric under reflection accross the x axis, wheras
the dashed lines correspond to antisymmetric modes. (f) Real-space representation of the
kL =π zero-mode lying at the edge of the Brillouin zone.

analytically tractable. The geometry of this minimal chain, which involves only two point

masses per unit cell, is depicted in Fig.3.1(d). It relies on an inverted four-bar mechanism

which captures the essence of the counter-rotating squares mode with a unit cell of even lower

complexity. It is apparent both from the graph of Fig.3.1(b) and from the real deformation of

Fig.3.1(c) that the displacement pattern within neighbouring cells is reversed, picking up a

phase of π. We therefore expect the frequency associated to Bloch waves whose wavenumber

approaches π/L to tend to zero.

In order to investigate this prediction, we need a way to model finite frequency vibrations

in our metamaterials. A straightforward approach is to promote one of the main characters

of the last chapter, namely the rigid bar, to a spring of finite stiffness. We also confer more

gravitas to the hinge by making it massive. Other choices of mass repartition will be made

as we refine our models to get closer to realistic geometries, but this massive-hinge Ansatz

has the benefit of fully capturing the zero-frequency content of the spectrum, which does not

depend on mass repartition, for a low cost in complexity.

In this setting, the zero-modes studied in Ch.2 simply correspond to motions of the point

masses (collected in a displacement vector u⃗) that do not stretch any spring. In Eq.(2.7), we

already introduced a compatibility matrix C to compute the bar extension vector b⃗ from

the displacement vector u⃗, taking us halfway to the vibration spectrum. We keep going and

compute the tensions t⃗ by applying Hooke’s law, multiplying b⃗ with a diagonal stiffness matrix

K . Then, we apply the equilibrium matrix Q, which restitutes the directions in which the
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forces apply. The resulting matrix is the dynamical matrix, noted D,

M ¨⃗u = f⃗ =−Qt⃗ =−QK b⃗ =−QKC u⃗ =−Du⃗. (3.1)

In the following, unless otherwise specified, we will set all the masses and the spring stiffnesses

equal to one, meaning M = K = 1. This choice has no impact whatsoever on the zero-frequency

content of the spectrum, so we elect to keep things as simple as possible for as long as we

can. We also leverage a convenient relation [200] between the compatibility and equilibrium

matrices, namely Q =C T . This implies that the dynamical matrix simply becomes D =C T C .

To give a concrete example, we apply this approach to our 1D chain model. Collecting the

displacements of the two point masses as u⃗ = (u1x ,u1y ,u2x ,u2y )T and noting that there are

four bars, we can then write the compatibility matrix as a four-by-four matrix acting on u⃗,

C =


1−e−i kL 0 0 0

0 0 1−e−i kL 0
1p
2

1p
2

− e−i kLp
2

− e−i kLp
2

− e−i kLp
2

e−i kLp
2

1p
2

− 1p
2

 , (3.2)

which we obtained by computing the euclidean distance between the ends of each bond, and

then linearising these expressions for small displacements, as in Ch.2. Note that we also made

use of Bloch’s theorem by assuming that the displacement of neighbouring unit cells in our

infinite chain are related by a phase e i kL . The symmetries of this chain go beyond translation

symmetry; for instance, it is also invariant under reflections across the x-axis, reflections

across the y-axis and π rotations around the originI. We will discuss the consequences of such

symmetries in Ch.7 in detail; for now, we only leverage a particularly convenient aspect of

symmetry to simplify our discussion of the band structure. Consider in particular the reflection

across the x-axis, denoted as Mx ; since it commutes with both the dynamical matrix and the

translation operator, we can go over to a basis of displacements that are either symmetric or

antisymmetric under this reflection using the matrix

P = 1p
2


1 −1

1 1

1 1

−1 1

 . (3.3)

IIn fact, if we include all such operations, including the ones centered around symmetry points away from the
origin, they form the frieze group p2mm.
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One can directly verify that the new basis vectors are eigenvectors of Mx ; they are given by

∣∣∣∣→→
〉
=


1/
p

2

0

1/
p

2

0


∣∣∣∣↑↓

〉
=


0

1/
p

2

0

−1/
p

2


∣∣∣∣←→

〉
=


−1/

p
2

0

1/
p

2

0


∣∣∣∣↑↑

〉
=


0

1/
p

2

0

1/
p

2

 (3.4)

in the original basis. In the new basis, the chain symmetries become manifest and the dynam-

ical matrix takes on a block-diagonal form,

Dchai n = P T C T C P

=
(
DS

DA

)
=


3−3cos(kL) −i sin(kL)

i sin(kL) 1+cos(kL)

3−cos(kL) i sin(kL)

−i sin(kL) 1−cos(kL)

 , (3.5)

where the subscripts S and A denote the symmetric and antisymmetric sectors. Diagonalising

Dchai n(k), we obtain the vibration spectrum of our chain, which is depicted in Fig.3.1(e).

Focusing on the lowest bands, we note that two dispersion cones are present at the Γ pointII;

they correspond to the longitudinal and transverse waves present in planar continuum elastic-

ity. Since these two bands intersect the zero-frequency axis, it must be possible to interpret

the associated modes in terms of the zero-modes discussed in Ch.2. Indeed, in the infinite-

wavelength limit reached at Γ, longitudinal waves turn into a rigid translation along the chain

axis, whereas transverse waves turn into a rigid translation perpendicular to the chain axis.

In fact, we can even interpret these rigid-body modes as Goldstone modes of the translation

symmetry broken by the crystalline arrangement. In other words, the position of the crystal

relative to the origin is arbitrary: the Goldstone mode of translation allows one to connect

distinct symmetry-breaking choices with one another at no energetic cost. The rotational

zero-mode hides in the spectrum in a subtler way, which we will discuss in Chapter 6. These

account for the three rigid zero-modes that any planar elastic medium holds.

More strikingly, an additional zero-energy mode appears at the edge of the Brillouin zone.

It intersects the zero-frequency axis at a single location, which is consistent with the graph

representation of the zero-mode shown in Fig.3.1(b). There, the orientation of the arrows is

reversed between neighbouring cells, meaning that we expect a zero-mode at kL =π. By our

definition in Ch.1, this zero-mode constitutes a nonlocal resonance; it should be associated to

IIΓ is a commonly used name for the point at which k = 0. Other high-symmetry points of the Brillouin zone are
similarly labeled, we point the unfamiliar reader to Ref.[220] for an introduction.
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Figure 3.2: Sending pulses through a nonlocally-resonant chain. (a) A six-site version of the
elastic chain, with point masses as white dots and springs as black lines. (b) The spatial Fourier
transform A(k) of our sum of wave-packets is represented in yellow, with the first band of
the spectrum superimposed as a black line. (c) Displacement uy as a function of position
at t = 120, with the position of an arbitrary peak singled out with a pink dot. (d) Space-time
diagram of uy ; the relative sign of phase and group velocity determines the orientation of the
phase fronts. The trajectory of the pink dot is represented as a pink line. (e) Displacement uy

as a function of position at t = 180.

a shifted dispersion cone. In Fig.3.1(e), we observe precisely such a shifted cone at the edge of

the Brillouin zone. As for the nonlocal resonance, it is depicted in Fig.3.1(f).

We call such shifted dispersion cones anomalous cones. In the remainder of the chapter, we

will explore their wave physics using several increasingly more realistic examples. Already in

the toy model, we note that anomalous cones are associated to a large domain of negative

group velocity. Taking a derivative of the analytical expression for the anomalous band

ω=
√

2−cos(kL)−
√

3cos(kL)2 −4cos(kL)+2 (3.6)

with respect to k, we find that the threshold between positive and negative group velocity

lies at kL = arccos
(
2/3−p

10/6
)≈ 0.45π. The eigenmodes associated to this branch transition

from being purely longitudinal at k = 0 to purely anomalous at k =π/L, as seen in

u⃗ = i sin(kL)

∣∣∣∣→→
〉
+ [

1−2cos(kL)+
√

3cos(kL)2 −4cos(kL)+2
]∣∣∣∣↑↓

〉
. (3.7)
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Figure 3.3: The spectral signature of line modes. (a) Kagome metamaterial, with point masses
as white disks and springs as black lines. Spring triangles, which become rigid for ω= 0, are
highlighted in blue. The unit cell of the network is indicated with a red line. (b) A zero-energy
line mode, with rotated triangles shown in yellow. (c) First band of the corresponding vibration
spectrum, exhibiting lines of zeroes in directions perpendicular to the line modes.

The presence of anomalous cones has several interesting physical consequences; our minimal

model of nonlocally-resonant chain (Fig.3.2(a)) already allows us to probe their impact on

pulse propagation. We set up two pulses by summing up the Bloch eigenmodes of Eq.(3.7),

with the wave-vector content depicted in Fig.3.2(b). Note that it consists of two gaussian

wavepackets with the same temporal frequency content, both lying on the longitudinal-

anomalous band. The corresponding displacement field, shown in Fig.3.2(c), is then simply

advanced in time by evolving each Bloch eigenmode harmonically, with ω given by Eq.(3.6).

As shown in the space-time diagram of Fig.3.2(d), the interval separating the two gaussian

pulses increases with time, on account of their differing group velocities.

Should the anomalous pulse not move backwards, due to its negative group velocity ? It does

not, because we selected the right-moving solution, as apparent in Fig.3.2(b). This choice is

justified by causality: power should flow away fromt the source. The effect of the negative sign

is then simply that the right-moving solution is composed of left-moving phase components;

the phase and group velocities have opposite signs. This is made clear in the space-time

diagram of Fig.3.2(d). There, the standard pulse moves at the same speed as its internal peaks,

on account of the largely linear dispersion relationIII. In contrast, the phase components of

the anomalous pulse slope in a direction opposite to its propagation. This can also be seen

by comparing the individual time-slices of Fig.3.2(ce), where we tracked the position of an

internal phase peak with a pink dot, which shows its backward movement.

Illustrating other features associated to negative group velocity will require us to go over to

a two-dimensional setting. We briefly take this opportunity to consider what happens to

another class of zero-modes, namely the line modes described in Fig.2.7. To do so, we consider

IIIA slight dispersion-induced broadening of the wavepackets is also visible; it would become more important as
we move on to higher center frequencies. This ultimately leads to an interesting merging of the anomalous and
standard solution into a single wavepacket with vanishing group velocity. The associated quadratic dispersion
then means that the propagation process becomes diffusive rather than wave-like. In this situation, care must be
exerted in the choice of the right-moving and left-moving parts of the spectrum, particularly if we want to describe
the situation at an interface with a standard elastic chain.
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the example of the Kagome lattice (Fig3.3(a)) studied in Ref. [152, 200, 211], which incidentally

also corresponds to the paper folding held by Resch in Fig.1.7. Its ability to comply to various

bending conditions, demonstrated in Fig.1.7(a), hints at plurimodality. A kinematic graph

analysis indeed confirms the presence of line modes whose number scales linearly with the

perimeter of the metamaterial. This places the Kagome geometry within the plurimodal class

described in Fig.2.7. The deformation pattern associated to such a line mode is highlighted

in yellow in Fig.3.3(b). Writing the dynamical matrix associated to the unit cell isolated with

a pink line in Fig.3.3(a), we can obtain the spectrum associated with this Kagome lattice,

already reported in several references [200, 221]. We show the lowest band of the spectrum in

Fig.3.3(c) over the first Brillouin zone. The most outstanding features in this picture are clearly

the zero-frequency lines crossing the Γ point. Their emergence in plurimodal structures

can be understood as follows: since each row is free to move independently, any periodic

pattern of row deformations can be realised. This means in particular that any k-vector

pointing in the direction perpendicular to these rows is admissible as a zero-mode. Therefore,

a zero-frequency line appears along this direction in the first band.

Such plurimodal geometries are discussed extensively in other parts of the litterature, and they

host a plethora of interesting physics, in spite (or maybe because) of their general floppiness.

Instead of the negative branches we discussed with the help of a 1D elastic chain, they provide

directions of zero group velocity. We however note an intriguing possibility here: if one

could find plurimodal geometries that somehow exclude the formation of long-wavelength

zero-energy deformations, the associated zero-mode lines would not pass through the Γ

point and could potentially be perpendicular to the lines of Fig.3.3(c). Such zero-mode lines

could conceivably even take on the form of zero-mode rings encircling the Γ point. This in

turn would lead to negative-index wave physics. In this thesis, we consider another path:

oligomodal geometries and their associated anomalous cones.

3.2 Multiple cones in an oligomodal metamaterial.

Catching two birds with one stone, we now consider a two-dimensional oligomodal structure;

this will allow us to show that several anomalous cones can coexist if the structure holds more

than one nonlocal resonance. It will also allow us to probe two-dimensional effects such as

negative refraction.

This metamaterial is based on the unimodal hexagonal cell first described in Fig.2.5. Covering

the plane with this cell, we obtain the geometry depicted in Fig.3.4(a). As a first step, we

apply the combinatorial method of Ch.2 to identify the zero-modes in the tiling. In the

graph representation of the metamaterial, shown in Fig.3.4(b), we used the equivalent six-

legged kinematic node derived in Fig.2.5(k). We can already note that this graph has a novel

feature compared to the other tilings considered up to now; indeed, every external hinge

node (represented by white disks) is shared between three cells. Since such nodes are only

constrained by arrow conservation, this provides a new type of kinematic degree of freedom.
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(a) (b) (c) (d) (e)

(f) (g) (i)(h)

Frequency (a.u.)0 1
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Figure 3.4: Multiple anomalous cones in a two-dimensional nonlocally-resonant metamaterial.
(a) Geometry based on the composite cell of Fig.2.5(a), omitting the hinge disks for clarity.
The blue diamonds represent rigid areas and the black lines rigid bars. (b) Equivalent graph
representation, with hinge nodes as white disks and kinematic nodes as black disks. A single
arrow, represented in orange, was fixed as a boundary condition. This determines five further
edges through an arrow rule, which we draw in black. Undetermined edges are drawn in grey.
(c) Same graph with a second arrow fixed arbitrarily. In (d), we see that this adds enough
constraints to determine the arrow pattern of a neighbouring cell. (e) Cascading constraints
lead to coherently decorate all the edges with arrows. (f) Associated real-space deformation
pattern. (g) Unit-cell of a spring-mass model for this metamaterial. (h) Band structure of the
spring-mass model along high-symmetry lines. (i) Frequency of the first band over the first
Brillouin zone.
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Let us explore the associated combinatorial game: in Fig.3.4(b), we draw an arbitrary arrow,

represented in orange. This then determines the arrow content of five further edges through

the arrow rule of the kinematic grey node. Because of the three-edge freedom of the hinge

nodes, constrained arrow propagation stops there. We try to kick-start it a second time, by

fixing an additional edge in Fig.3.4(c). This determines five more edges; in particular, two

hinge nodes are shared between the arrow-filled cells. Since these hinge nodes now only have

a single edge whose arrow content was not fixed, the arrow conservation constraint becomes

sufficient for arrow propagation. We can therefore fix one more cell through its kinematic node,

as shown in Fig.3.4(d). The arrow-drawing process then starts cascading, because additional

hinge nodes now have two fixed edges; the arrow content of the entire graph is determined

(Fig.3.4(e)). Since we needed to fix two arrows and obtained a directed graph without internal

contradictions, we can conclude that the metamaterial hosts two nontrivial zero-modes. The

real-space deformation associated to one of these modes is represented in Fig.3.4(f). We

note that a triangular pattern of undeformed cells emerges, with the second mode simply

corresponding to a shifted pattern of undeformed cells. Of course, as long as the resulting

mode respects the assumption of infinitesimal deformations, any linear combination of these

two modes is also admissible.

The spatial periodicity of these zero-modes is particularly interesting: like their undeformed

counterparts, the deformed cells also arrange themselves on triangular lattices. One of these

sets only contains cells that tend to acquire the shape of an upward-pointing triangle, whereas

the other set contains cells with the exactly opposite internal deformation state. In other words,

the upper arrow of one of the deformed cell sets points down, whereas the upper arrows of

the other cell set point up. Since the overall mode repeats itself every third cell, this kinematic

graph analysis predicts the presence of two zero-modes in the spectrum, one located at the K

point and the other at the K ′ point. To verify whether this prediction holds and to see how

a finite number of zero modes influences the spectrum, we compute the dynamical matrix

associated to the unit cell of Fig.3.4(g), finding

Dh =



12 −4 −4Υ −1 −p3 −Υ p
3Υ −Λ −p3Λ −Λ p

3Λ
12 −p3 −3

p
3Υ −3Υ −p3Λ −3Λ

p
3Λ −3Λ

−4 10 −4 −1 −p3 −Λ p
3Λ
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p

3Λ −3Λ
−4Ῡ −4 10 −1

p
3 −Λ −p3Λ

6
p

3 −3 −p3Λ −3Λ
−1 −p3 7

p
3 −4 −1 −p3 −Υ p

3Υ
−p3 −3

p
3 9 −p3 −3
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3Υ −3Υ

−1 −p3 −1
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3 −4 12 −4 −1
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
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Figure 3.5: Comparison between spring-mass and FEM spectra. (a) Geometry of the unit cell
used in the FEM simulation. Brown areas correspond to a rigid material, and pink ones to
a very soft material. (b) Grey dots were obtained by FEM, while the superimposed coloured
curve was obtained with a spring-mass model.

(3.8)

where we definedΛ := e−3i
(
kx+

p
3ky

)
andΥ := e−6i kx for readability. The spectrum of this matrix

along high symmetry lines is shown in Fig.3.4(h), while the full first band is represented in

Fig.3.4(i). As predicted, it presents two standard cones at the origin, as well as two anomalous

cones, one at K and one at K ′. How much can we trust this result ? Does it also hold for realistic

geometries ? After all, we used many simplifying assumptions along the way. Let us recall a few

of these: we considered mass and stiffness matrices equal to the identity, and we concentrated

the mass precisely on the hinges. Even more importantly, we implicitely assumed hinges of

vanishing width, which is of course not possible in practice. To address these potential issues,

we now turn to full-wave simulations using the finite-element method (FEM), which will allow

us to simulate more realistic systems.

In these simulations, the springs and masses give way to continuous elastic domains, yielding

the unit cell depicted in Fig.3.5(a). The mass is no longer concentrated on the hinges, and the

hinges can no longer be point-like. To mimic the behaviour of the ideal hinges we employed

up to now, we construct them out of a soft material, with a Young’s modulus of 12 MPa and

a density of 1190 kg /m3. With this choice, we anticipate the fact that the 3D-printed hinges

of Sec.4.2 consist of thermoplastic polyurethane (TPU). We also equip them with a geometry

that favours bending over stretching, depicted in the inset of Fig.3.5(a). As for the rigid bars

of our kinematic models, they become elastic domains with a higher Young’s modulus of

E = 3500 Mpa, as well as a geometry that disfavours bending. The rationale here is simply

to make the central part of these beam-like domains wider, to make the energetic cost of

bending higher. For these rigid regions, the values E = 3500 MPa and ρ = 1240 kg /m3 were

chosen to approximate the elastic constants of polyactic acid (PLA), also in anticipation of

36



Anomalous Dispersion Cones Chapter 3

3D-printing. Enforcing Floquet-Bloch boundary conditions between opposing edges of the

unit-cell, we then conduct an eigenfrequency FEM study (in COMSOL) in which we sweep

the Bloch wave-vector along high-symmetry lines of the first Brillouin zone. The resulting

eigenfrequencies are shown as grey points in Fig.3.5(b). The superimposed coloured lines

come from the spring-mass model.

Given their widely different stiffness and mass distributions, the two approaches agree sur-

prisingly well in their low-frequency spectrum. For instance, the longitudinal (light colour)

waves and the transverse (dark colour) waves in the spring-mass model fall on top of their

FEM counterparts over a large range IV. The colour-coding of the spring-mass spectrum refers

to the average inner product of the normalised displacement and the wavevector, providing a

measure of mode transversality. Now is a good time to remember that until Ch.7, we only con-

sider the in-plane displacement sector: out-of-plane motion is decoupled by the 2D character

of the considered geometries. When we talk about transverse waves, we do so with a purely

two-dimensional notion of transversality.

Using this transversality measure reveals that the anomalous-cone modes are neither purely

transverse nor longitudinal, but they hybridise with the transverse modes. A notable differ-

ence is the mass gap that opens up at the K point in the FEM simulation; this is simply the

consequence of the non-ideality of the hinges in this model. These more realistic hinges ask

for a toll in terms of elastic energy, which is reflected by this gap at the basis of the anomalous

cone. It is then a matter of hinge design, in terms of geometry and choice of materials, to lower

this cost as needed. A bigger discrepancy occurs in the upper part of the spectrum: there, the

internal springs and the rigid elements stretch appreciably, and the differences in internal

structure between the two models start to matter. At these higher frequencies, we leave the

realm of low-frequency modes controlled by the kinematic graph theory to enter a regime

dominated by the internal mass and stiffness structure and local resonances.

3.3 Broadband negative refraction

With the realistic geometry of Fig.3.5(a) at our disposal, we can start probing an essentially

two-dimensional property of anomalous cones, namely broadband negative refraction. As

shown in Fig.3.6(a), we set up a metamaterial domain comprising 29×42 = 1218 unit cells of

the type depicted in Fig.3.5(a) next to an isotropic elastic domain. The latter domain is filled

with an elastomer-like compound with density ρ = 1020kg /m3, and Young’s modulus E = 0.26

MPa. Next, we surround the domains with partially matched layers, shown in Fig.3.6(b), and

impose a monochromatic gaussian beam with f = 48 Hz boundary condition in the bottom

left corner. The resulting frequency domain study yields the field distribution of Fig.3.6(a), in

IVA potential explanation for this unexpected agreement is that the ratio between the two speeds of sound is
controlled by Poisson’s ratio, which is in turn determined by the essentially identical kinematics of the two media.
To fully hold water, this explanation should be generalized to account for the fact that anisotropic elastic media
can have up to six independent elastic constants in 2D. It might even be necessary to consider Cosserat elasticity,
given that internal elements rotate as we press.
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Figure 3.6: (a) Negative refraction of a Gaussian beam. The left domain is defined as an
isotropic elastic medium, whereas the right one is a large array of the unit cell of Fig.3.5(a). The
Gaussian beam is imposed as a boundary condition of the bottom left corner. (b) Additional
domains used to define partially-matched layers. The field of view depicted in (a) is shown as
a pink rectangle.

which a negatively-refracted beam is clearly apparent.

To back our claims of broad bandwidth, which are for now based on the large frequency

range over which negative group velocity is present, we conduct additional studies at different

frequencies. In order to be able to exclude the positively-refracted longitudinal and transverse

waves, we use a trick and pin the center of the unit cell to an idealised motionless background,

thereby forbidding global translation modes. This procedure leaves the anomalous cone in

place, as shown in Fig.3.7(a), allowing us to unambiguously assign any low-frequency wave

that crossed an appreciable length of our metamaterial to the anomalous cone. The setup of

this series of numerical experiments is depicted in Fig.3.7(c): a slanted metamaterial slab is

inserted between two domains of an isotropic elastic medium, which in turn are surrounded

by perfectly-matched layers. We impose a monochromatic gaussian beam on the left edge

(Fig.3.7(b)), and sweep over frequency.

The beam incoming from the left is refracted at the two metamaterial interfaces, with the

beam exiting through the right edge shown in Fig.3.7(d). We then estimate the center of

this outgoing beam and plot it for various frequencies in Fig.3.7(e). The only way in which

the center position can fall below the dashed line is by being negatively refracted twice. For

reference, we repeat the whole process for an elastic locally-resonant metamaterial taken

from the negative refraction literature [75], whose band structure is shown in Fig.3.7(f). The

corresponding unit-cell geometry, shown as an inset in the same panel, relies on heavy local

inclusions that act as the hidden mass mechanism of Fig.1.4(d) to provide effective negative

density. The chirality of the couplings connecting this mass to the surrounding matrix provides
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Figure 3.7: Bandwidth of negative refraction for nonlocally-resonant and locally-resonant
approaches. (a) Band structure of pinned metamaterial (solid lines) with the unpinned version
for reference (grey dashed lines). The negative refraction region for the chosen isotropic
material is highlighted in green. (b) Shape of a gaussian beam incoming from the left. (c)
Kinetic energy density in an FEM simulation of an istropic medium with density ρ = 1300
kg /m3 and Young’s modulus E = 11 MPa. (d) Shape of the outgoing beam. (e) Beam center as
a function of frequency, with the threshold between negative and positive refraction indicated
with a brown dashed line. (f-j) Equivalent panels for a locally-resonant metamaterial, with the
negative refraction range indicated in pink and zoomed in in the inset of (j).
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Table 3.1: Effective range of negative refraction for various choices of elastic constants of the
interfaced isotropic medium.

E [MPa] 18 13 11 10 8 6 5
ρ [kg /m3] 793 1133 1300 1473 1813 2266 2946

∆ω/ωc (adim.) 69% 51% 48% 38% 32% 21% 18%

the second ingredient required in doubly-negative metamaterials, namely negative stiffness.

The central mass has density ρ = 8950kg /m3, Young’s modulus E = 211 GPa and Poisson’s ratio

ν= 0.49. The surrounding matrix consists of idealised PLA, while the material that connects

the internal mass to the surrounding matrix uses the same idealised TPU as the hinges of our

nonlocally-resonant metamaterial. We also selected the same width for the locally-resonant

and nonlocally-resonant metamaterial slabs.

Comparing the results of these two series of simulations confirms what we expected from the

respective band structures of these two metamaterials, namely that our nonlocally-resonant

metamaterial exhibits negative refraction over a much larger bandwidth of 48%, compared

to the 0.33% of the locally-resonant metamaterial. In the nonlocally-resonant case, other

effects start to take over as the limiting factor for negative refraction bandwidth. Indeed, we

conducted the same study while varying the elastic constants of the isotropic medium and

collected the results in Table 3.1. This shows that the interfaced isotropic medium matters

and that the effective negative refraction range does not cover the entire frequency range over

which the anomalous cone extends. In our original example, the effective range of negative

refraction is highlighted in green over the band structure of Fig.3.7(a). The entire anomalous

cone can lead to negative refraction behaviour when interfaced with an appropriate isotropic

medium; the choice of the latter simply shifts the effective range of negative refraction. Com-

paring the outgoing beams of Fig.3.7(d) and Fig.3.7(i), it is apparent that the locally-resonant

metamaterial also leads to a higher distortion of the beam profile; we surmise that this is

related to its having larger unit-cells.

3.4 Anomalous cones on a field trip in k-space

The highly symmetrical geometries we considered above hosted anomalous cones at the

corners of their first Brillouin zones. Must anomalous cones always sit in the corner ? In

this section, we prove the opposite with additional examples of anomalous cones at other

locations of k-space. We then discuss an inverse design method to shift anomalous cones at

target positions.

We begin with another bimodal geometry, whose kinematic graph is shown in Fig.3.8(a), with

the corresponding zero-mode shown in Fig.3.8(b). Note that we show a deformed configu-

ration in this figure, with the reference geometry only containing symmetrical, undeformed

rosettes like the one in the upper right corner. As earlier, we can deduce the bimodality of
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(b)(a) (c)

Figure 3.8: Oligomodal geometry with anomalous cones at Γ and M . (a) Graph representation
showing that two zero-modes are present. (b) Corresponding real-space deformation. (c)
Associated spectrum along high-symmetry lines of the Brillouin zone, computed using a
spring-mass model with the unit cell shown in the inset.

the metamaterial from a kinematic graph analysis: fixing two arrows, shown in orange in

Fig.3.8(a), is enough to attain a coherent arrow configuration covering the entire plane. We

can extract more information from these kinematic graphs: we encourage the reader to try

drawing an arrow configuration in which the four-legged kinematic nodes carry no arrow,

which we will call configuration Γ. In another compatible configuration, which we will call M,

the four-legged kinematic nodes have twice as many arrows per edge than their eight-legged

counterparts. As a hint, note that the configuration shown in Fig.3.8(a) is neither the Γ nor the

M configuration, but a linear combination of the two.

Our choice of names for these arrow configurations is not innocent: indeed, the M arrow

pattern repeats itself every second unit cell in both directions, which corresponds exactly with

the Bloch wavevector at the M point. As for the Γ arrow pattern, it has a periodicity of a single

unit cell, meaning that the inter-cell phase is zero. This is compatible with the Γ point. The

kinematic graph analysis therefore predicts two anomalous cones, one at the corner of the first

Brillouin zone and the other at its center. The band structure shown in Fig.3.8(c), which we

obtained from a spring-mass model, confirms this insight: anomalous cones can also occur at

other symmetric points of the Brillouin zone.

Can we go away from symmetry points ? In Fig.3.9(a), we show another oligomodal tiling.

One of the associated arrow configurations, shown in Fig.3.9(b), has a periodicity compatible

with the wavevector k⃗L = (0,2π/3)T . Computing the spectrum confirms the presence of an

anomalous cone at this location, as can be seen in the first band depicted in Fig.3.9(c). This

time, we have eight independent modes: two at K and K ′, and six along the symmetry lines

connecting Γ to the M points. This time, we broke free from symmetric points but stayed on a

symmetry line.

In the last example of this chapter, we modify the geometry given in Fig.3.8 to shift the M-

point anomalous cone to a non-symmetric target location, here k⃗t ar g = (3π/4,π/2)T . The

computational details of this inverse design procedure are presented in Appendix B; here,
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(a) (b) (c) K

M

Figure 3.9: A geometry exhibiting anomalous cones away from the points of highest symmetry.
(a) Idealised mechanism, with rigid bars in black, hinges as white disks and rigid domains in
blue. The pink quadrilateral corresponds to a possible choice of unit cell. (b) Corresponding
kinematic graph, with the edges associated to the unit cell highlighted in pink. (c) Isofrequency
contours of the first band over the first Brillouin zone.

Figure 3.10: Moving an anomalous cone to an arbitrary location in k-space. (a) Initial oligo-
modal geometry. (b) Graph representation of corresponding zero-mode. (c) Modified ge-
ometry and (d) representation of one of the associated mechanical degrees of freedom. (e)
Isofrequency contours of the first band over the first Brillouin zone, with critical points indi-
cated in green.
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we present the logical flow of the inverse design process. This inverse design method works

as follows: in order to have an anomalous cone at the desired k-space location, we need a

kinematic node whose arrow-drawing rule is compatible with the specified Floquet-Bloch

boundary conditions, which must also apply at the graph level. Concretely, instead of the

original arrow rule of Fig.3.10(a), we need the arrow rule of of Fig.3.10(b)V. Having found

this abstract graph representation from the Bloch condition, we still need to find a concrete

geometry whith the same arrow rule.

We start from the initial geometry of Fig.3.10(c) and allow ourselves to modify internal geomet-

ric parameters of the unit cell. We need to modify at least two, since our hope is to move the

anomalous cone within a two-dimensional k-space. Using the area law and kinematic graph

rules exposed in Ch.2, we can then compute the arrow rule as a function of the free geometric

parameters. So far, so good, but there is a slight problem with this approach, relating to the

states of self-stress that muddled the Maxwell count of the zero-modes in Eq.(2.2). Indeed,

the high symmetry of the initial geometry (Fig.3.10(a)) makes some of the bar constraints

redundant; a naïve Maxwell count would deduce that no zero-modes are present. However,

symmetry-induced states of self-stress (such as the one depicted in Fig.2.1(d)) appear, correct-

ing the modal count and allowing zero-modes to exist. Generic modifications of the internal

geometry of the cell then frustrate the mechanism, removing both the states of self-stress and

the zero-modes. In Ch.5, we will discuss the spectral signature of such frustrated mechanisms,

among other gap-related topics.

We therefore remove some rigid links, to relax the constraints and avoid mechanical frustration.

One way to to this is depicted in Fig.3.10(d); note this crescent-shaped unit cell has irregular

internal angles between its central bars. These angles are the free geometric parameters used

in the inverse design procedure. We can then conduct the final step of the procedure: we

invert the map between the geometric parameters and the arrow weights, which allows us to

compute internal angles compatible with the arrow weights of Fig.3.10(b). Remembering that

these weights were in turn determined through the Floquet-Bloch boundary condition, the

resulting geometry should host an anomalous cone at the target location. To confirm this, we

compute the spectrum associated to a spring-mass model with the same geometry. Plotting

equifrequency contours of the lowest branch of the spectrum over the first Brillouin zone

(Fig.3.10(e)) indeed reveals an anomalous cone at the desired location of k-space. Naturally,

its time-reversed twin at −k⃗t ar g must also be present VI.

In this chapter, we used our kinematic graph theory to design flexible metamaterials that

host nonlocal resonances. We demonstrated that such nonlocal resonances are associated to

anomalous dispersion cones, and explored the unusual physical effects associated to these

cones with a combination of spring-mass models and full-wave simulations. Finally, we

VNote that for a generic choice of Bloch wavevector, the required arrows no longer come in integer numbers; we
would need to write these non-integer weights next to the arrows to keep track.

VIWe note in passing that the critical points respect the Poincaré-Hopf theorem on a torus: there are Nmi n = 3
minima, Nmax = 2 maxima and Nsad = 5 saddle points, which indeed yields Nmi n +Nmax −Nsad = 0.
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provided several examples of anomalous cones at increasingly less symmetrical locations,

culminating in an inverse design method that allows us to move cones around in k-space by

deforming geometries in a rational way.
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4 Experimental Validation

“I am never content until I have constructed a mechanical model of the subject

I am studying. If I succeed in making one, I understand; otherwise I do not.”

— William Thomson (Lord Kelvin).

Our dynamical models and full-wave simulations in Ch.3 brought the sudoku-like drawings

of Ch.2 a few steps closer to reality. Here, we go further and dip our metaphorical toes

in the experimental pool. We begin by experimentally validating the presence of global

deformation modes in 3D-printed flexible metamaterials by means of uniaxial compression

experiments. In these experiments, we consider a bimodal geometry and a quasicrystalline

one. We then discuss the possibility to use oligomodal metamaterials to achieve mechanical

multifunctionality, illustrating it with a material whose Poisson’s ratio can switch from positive

to negative under varying strain rate.

Having confirmed that the kinematic underpinnings of our theory are reasonable, we will

then turn to its dynamical aspects. In the second part of this chapter, we seek to confirm the

presence of the anomalous cones predicted by our kinematic graph theory. To that end, we

conduct vibration experiments on a 3D-printed nonlocally-resonant metamaterial. We scan

this 3D-printed sample with a laser Doppler vibrometer and process the measured velocity

fields to obtain experimental equifrequency contours, which indeed indicate the presence of

the anomalous dispersion cones predicted by our kinematic graphs and subsequent spring-

mass models.

4.1 Actuating soft modes through uniaxial compression

We now seek to implement the idealised geometries of Ch.2 in practice. As we discussed previ-

ously in the context of FEM simulations, realistic oligomodal metamaterials require hinges of

finite size. The design of these hinges is crucial; they should provide close approximationsI of

IConsult [222] for the impact that non-ideal hinges have on flexible metamaterials.
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(a) (b) (c) (d) (e)

5 cm

90°

R0.3 mm
1

12 mm 

Figure 4.1: 3D-printing oligomodal metamaterials. (a) Geometry of the building blocks,
with details of the flexible hinges in the inset. The dark areas are 3D-printed with a soft
viscoelastic resin (Stratasys Agilus 30), whereas the lighter areas are printed with a rigid
material (Stratasys VeroWhitePlus). (b) Shape of the abstract hinge node we seek to implement,
with two mechanical degrees of freedom. (c) Corresponding ideal geometry. (d) 3D-printed
implementation with the blocks depicted in (a). (e) Complete 3D-printed oligomodal tiling.

the idealised hinges employed in the kinematic graph theory. The two main design require-

ments are that these hinges should bend for a minimal cost in elastic energy, while also not

stretching easily in either direction. In Fig.4.1(a), we present such a hinge design. It relies on a

combination of two materials to achieve low bending energy: a soft material (Stratasys Agilus

30) is inserted between more rigid domains (Stratasys VeroWhitePlus). Stretching motions are

made more costly by adding lateral tapering of the soft material.

Using these hinge elements, we then seek to implement the abstract kinematic graphs of

Fig.4.1(b) in a 3D-printed unit-cell. Such a cell is represented in Fig.4.1(d); it indeed admits

bending motions that closely match those of our idealised unit cell, represented in Fig.4.1(c).

We then 3D-print a 16×16 cells metamaterial using a Stratasys Objet500 Connex3 3D printer.

The result is shown in Fig.4.1(e). For this first realisation of an oligomodal metamaterial, we

experiment with a slightly frustrated variant of the quadrimodal structure shown in Fig.2.9.

This variant hosts two global zero-modes instead of four. In the quadrimodal version depicted

in Fig.2.9, two sets of hourglass-shaped elements are visible, with differing orientations. Com-

pare this with Fig.4.1(e), wherein only one hourglass orientation remains. Frustrating the

motion of one of these sets of mechanical elements reduces the zero-mode count from four to

two.

Having successfully manufactured our metamaterial sample, we place it vertically between

two laser-cut Plexiglas textured boundaries, with indenters spaced by two lattice constants.

We then compress the sample uniaxially using an Instron 5943 with a 500-N load cell. The

resulting deformation mode depends on whether the textured boundaries are aligned or
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Figure 4.2: Textured compression revealing the two independent soft modes, with the indenta-
tion points indicated by white arrows. (a) Counter-rotating squares mode, with its alternating
elliptic pores. (b) A nontrivial second zero mode, with two domains of opposite pore polarisa-
tion separated by a neutral layer.

anti-aligned; indeed, for an even number of cells, anti-aligned indenters correspond to the

kinematic graph of Fig.2.8(c). On the other hand, aligned indenters favor the kinematic graph

of Fig.2.9(c).

To obtain quantitative results, we film the compression process with a 3858×2748 monochrome

CMOS camera (Basler acA3800-14um), equipped with a 75 mm lens (Fuji-non). This results

in a spatial resolution of 0.07 mm. The filmed deformation patterns, shown in Fig.4.2, are

then quantified using a Python image processing library (OpenCV). First, we fit an ellipse

to every pore. Then, we extract the associated ellipticities to construct a measure of pore

polarisation,Ω := (−1)nx+ny f cos2φ [223]. Ωmeasures the alignment of every ellipse with the

counter-rotating squares pattern, in which pores alternate between two opposite elliptici-

ties. In Fig.4.2(a), we see that anti-aligned textured compression leads to a good agreement

with the predicted counter-rotating squares pattern. In Fig.4.2(b), the aligned textured in-

denters instead favour the second soft-mode of the metamaterial, leading to two domains

with opposing pore polarisations separated by a low-deformation diagonal layer. For large

deformations, a geometric nonlinearity kicks in, and the profile saturates at a constant value,

leading to counter-rotating squares domains separated by a linear-gradient region in which

the kinematic graph analysis remains valid.

We then turn to another intriguing geometry, namely the quasicrystalline one of Fig.2.10. We

3D-print and characterise it with the methods described above. In order to make the mode

hierarchy predicted by kinematic graph theory visible, we simply change the orientation of

the sample by 45◦ and laser-cut a different set of Plexiglas indenters, corresponding to the

white arrows of Fig.4.3. Again, the observed deformations are consistent with the predictions

of kinematic graph theory: compare Figures 2.10 and 4.3. The two compression experiments

we discussed above confirm that the two new zero-mode scaling classes we uncovered in Ch.2,
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Figure 4.3: Textured compression confirming the presence of three soft modes at different
spatial scales in a 16×16 quasicrystalline flexible metamaterial, with the indentation points
and directions indicated by white arrows. (a) The largest-scale cross mode. (b) An intermediate-
scale mode. (c) The counter-rotating squares mode.

namely the logarithmic and oligomodal classes, can be realised in practice.

From a mechanical perspective, such oligomodal geometries provide an interesting middle-

ground between controlled motion and floppiness. The presence of a limited number of

global deformation patterns could be leveraged to achieve mechanical multifunctionality.

One strategy towards this goal is to turn the unavoidable actuation cost of real hinges to our

advantage. We can start by identifiying a subset of the hinges that is actuated to a lesser degree

(ideally not at all) in one of the modes. We might call these hinges the discriminant hinges. In

the structure of Fig.4.1(e), these would be the hourglass hinges, which are not actuated at all

in the counter-rotating squares mode. In this mode, the hourglasses behave as rigid squares.

Our design path to multifunctionality is then to make the actuation cost of discriminant

hinges dependent on some external property: this could be a magnetic field, temperature,

basically any external condition in which we want our material to behave differently. Multiple

studies sought to create metamaterials with reconfigurable properties [224–227]. Oligomodal

geometries could prove to be a useful tool in that line of research, by more finely constraining

the set of global DOFs among which reconfiguration takes place.

To validate this design strategy, my collaborator D. Dykstra and I decided to use the strain rate

as a mode-selection parameter. To selectively actuate the discriminant hinges and therefore

choose the deformation mode, we set out to leverage the strain-rate dependency of viscoelas-

ticity [223, 228, 229]. To properly model the mechanical responses of viscoleastic materials,

Hooke’s law must be extended by including viscous elements governed by the equation σ= ηϵ̇.

After learning from our mistakes in some common initial experiments, David conducted

a definitive series of simulations and experiments validating this approach to mechanical

multifunctionality, which I report in here in Fig.4.4 as a further vindication of kinematic graph

design. The manufacturing step required three different materials: as shown in Fig.4.4(a), the

rigid elements (Stratasys VeroWhitePlus) and viscoelastic hinges (Stratasys Agilus 30) were 3D-

printed simultaneously with a Stratasys Objet500 Connex3 3D printer. The discriminant hinges
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Figure 4.4: Mode selection by strain rate (Experiment by D. Dykstra). (a) 61-cell oligomodal
metamaterial obtained by a combination of 3D-printing and resin curing. (b) Detail of the
hinge geometry, with the different materials labeled. (c) Slow uniaxial compression (with
ϵ= 0.056 and ϵ̇= 9.3·10−6 Hz) with a non-textured surface, with the pore polarisationΩ colored.
(d) Evolution of the average pore polarisationΩ as a function of strain ϵ, with experimental
results in orange and numerical results in blue. The average is taken over all the pores at a
given strain value. The shaded areas indicate the variance of pore polarisation. (ef) Same
experiment at a faster strain rate (ϵ̇= 0.11 Hz).

added later, by curing an elastic rubber (Zermack Elite Double 32). David then conducted

uniaxial compression experiments in an Instron 5943 testing device, without using a textured

indenter.

A slow compression at strain rate ϵ̇= 9.3 ·10−6 Hz resulted in the domination of the counter-

rotating squares mode, as shown in Fig.4.4(c). Probing this qualitatively with the average pore

polarisation <Ω > resulted in Fig.4.4(d), which indicates that alignment with the counter-

rotating squares pattern dominates. In this situation, the metamaterial behaves as an auxetic,

since its lateral dimension decreases as we compress it: we have ν< 0.

Repeating the experiment at a faster rate of ϵ̇ = yielded the results of Fig.4.4(ef), which are

dominated by the second zero-mode of the kinematic graph theory (note that the geometry

has been turned by 45◦ in these experiments). This is also reflected in the vanishing average

pore polarisation. Indeed, we have <Ω>= 0 when the second mode dominates, because the

two domains of opposing polarities compensate each other. Crucially, the presence of a zero-

deformation band in the center prevents auxetic behaviour. Non-ideal hinge deformations

take over as the dominant Poisson’s ratio mechanism, and we reach a positive Poisson’s

ratio. Hence, we can effectively switch the sign of Poisson’s ratio based on strain-rate, which
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constitutes a form of mechanical multifunctionality enabled by oligomodality.

In this section, we saw that current 3D-printing technology allows us to build oligomodal

metamaterials with hinges flexible enough to observe the kinematic DOFs discussed at length

in Ch.2. We demonstrated that our kinematic graph theory correctly predicted the deforma-

tion patterns in an oligomodal metamaterial and the hierachical deformation patterns of a

quasicrystalline geometry. We also introduced a design path towards mechanical multifunc-

tionality, in which the sparsity of global DOFs that characterises oligomodal geometries is

leveraged to obtain well-defined but still reconfigurable mechanical responses. Concretely, we

could use strain-rate to selectively actuate different modes, which were in turn associated to

different Poisson’s ratios. In other words, we could select the sign of Poisson’s ratio depending

on how fast we compressed our oligomodal metamaterial.

Figure 4.5: 3D-printed nonlocally-resonant metamaterial. (a) Detail of the hinge geometry
as seen from an in-plane and an out-of-plane direction. Orange sections are printed with a
soft material (TPU) whereas the brown sections are printed using a rigid material (PLA). (b)
3/4 view of the unit cell. (c) Corresponding abstract DOF. (d) The same DOF on an idealised
geometry. (ef) Actual 3D-printed cell, seen from above and below. (g) Complete 61-cell 3D-
printed sample.

4.2 Catching nonlocal resonances through vibrometry

We now feel confident enough to try capturing some anomalous cones in the wild. For this

endeavour to be successful, we again need a good hinge design; we use another variant of

tapered soft hinge (orange), shown from the side and the top Fig.4.5(a). In the side view, we

note that we used a layered design to increase the contact surface with the rigid material

(beige). This choice was made to increase adhesion between the two materials. In Fig.4.5(b),

we show the full unit-cell, which slightly differs from the one employed in the numerical

simulations of Ch.3 with the introduction of a central, freely-rotating hub element replacing

the six-legged central hinge. This helps in limiting the mechanical degrees of freedom of

the cell to the ideal case represented in graph form in Fig.4.5(c) and in mechanism form in

Fig.4.5(d). We then 3D-print a 61-cell sample using a dual-extruder 3D-printer (Raise3D Pro2).
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Figures 4.5(e) and (f) show close-up top and bottom view of a single unit cell. The white

elements were printed using a rigid polyactic acid (Raise3D PLA), with a Young’s modulus of

E = 2636±330 Mpa (value provided by manufacturer). As for the orange elements in the hinges,

they were printed using a much softer elastic filament, namely a thermoplastic polyurethane

(NinjaFlex TPU) with a Young’s modulus of E = 12 MPa (value provided by manufacturer). In

Fig.4.5(e), a small triangular patch of retroreflective tape is also visible. Three such patches

were added to every unit cell to help with the signal-to-noise ratio of the laser vibrometry

measurements.

The full 61-cell lattice is shown in Fig.4.5(g). Because the dimensions of the printing bed of

the Raise3D Pro2 are 30×30cm, we had to assemble three diamond-shaped 20-cell patches

manually. The assembly points all lie within rigid elements. We aligned the PLA faces that

had to be joined by inserting small metallic wires as guides, which allowed the sample to hold

together. Droplets of epoxy resin were then inserted between the faces. The epoxy filled the

small interstitial space between the PLA faces by capillarity; after it cured, we sanded down

potential excess to limit the amount of additional mass.

(a) (e)

(c)

(d)

(b)

(f)

vu
vc

vd

Figure 4.6: Experimental setup of the laser vibrometry measurement. (a) 61-cell 3D-printed
metamaterial sample. (b) Bars holding the sample in a vertical position. (c) Shaker (3B),
attached to a cell on the edge. (d) Amplifier (Newtons4th LPA01) feeding the vibrometer signal
to the shaker. (e) Scanning laser vibrometer (Polytec PSV 500) placed at a grazing angle of 26◦.
(f) Locations of the three velocity measurement points on the unit cell.

For the ensuing vibrometry experiments, we used the setup pictured in Fig.4.6. The metama-

terial sample (Fig.4.6(a)) was held vertically by introducing metallic bars through two pores

and then securing a rigid element to the bar of Fig.4.6(b) with a zip tie. The scanning laser

vibrometer (Polytec PSV 500, Fig.4.6(e)) was placed next to the sample, with a line of sight

almost parallel to the sample, in order to measure in-plane velocities. This line of sight formed

a grazing angle of 26◦ with the plane of the metamaterial, in order to be still be able to scan

the surface of the sample. Vibrations in the sample were excited with a shaker (Fig.4.6(c))

placed directly underneath and rigidly fastened to a rigid part of the metamaterial. The input

signal was provided to the shaker by the vibrometer, with an intermediate amplifier stage

(Newtons4th LPA01, Fig.4.6(d)). This signal consisted in pseudorandom noise involving 1250

frequency lines between 10 Hz and 1250 Hz. We defined 183 scanning points, i.e. three per
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unit cell, positioned on retroreflective patches at the locations indicated in Fig.4.6(f).
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Figure 4.7: FFT of experimentally obtained |α|2 (blue colours) with superimposed theoretical
isofrequency contours of the first band (orange lines) at (a) 106 Hz, (b) 304 Hz, (c) 509 Hz, (d)
729 Hz, (e) 806 Hz and (f) 888 Hz. The boundaries of the first Brillouin zone are indicated with
a dotted green line, with some symmetry points labeled.

These three velocities allow us to construct a proxy measuring the degree of actuation of the

internal mechanism of each cell, α := 2vc −vu −vd . For three equal velocities, the mechanism

is not actuated and we have α= 2× v − v − v = 0. If the cell is rigidly rotating, we also have

α= 2×0−v+v = 0. The only remaining possibility is that the central patch moves out of phase

with the upper and lower patch, meaning that α indeed constitutes a proxy of cell mechanism

actuationII. We therefore obtain 61 data points representing mechanism actuation accross

the lattice at each measured frequency. In order to excite a large variety of k-vectors, we then

repeated the experiment for multiple attachment points of the shaker. Padding the resulting

image with zeroes and conducting a 2D fast Fourier transform (FFT) yields the blue density

maps depicted in Fig.4.7, on which we superimposed the isofrequency contours predicted by

the spring-mass model of Eq.(3.8), which we now discuss.

In Fig.4.7(ab), we observe a clear concentration of energy at the K and K ′ points at 106 and 304

Hz, as expected from the dynamical models and graph prediction. As in the FEM simulations, a

mass gap is present: for frequencies below 106 Hz, energy does not accumulate at the Brillouin

zone corners.

IIThe two remaining independent degrees of freedom could similarly be captured in a translation and a rotation
proxy.

52



Experimental Validation Chapter 4

Going up in frequency, we consider the f = 509 Hz isofrequency contours presented in

Fig.4.7(c). There, we see the anomalous cones opening up into triangular contours. The same

anisotropy is present in our simple spring-mass model. If we keep going, we reach a point (at

f = 729 Hz) at which the anomalous cones merge with the central transverse cone, as shown

in Fig.4.7(d). In terms of negative-index relative bandwidth, we note in passing that this yields

∆ω/ωc = 149%, a number higher than any point we collected in our state-of-the-art of Fig.1.5.

Past that point, we get the elliptical contours that characterise the higher-frequency parts

of the first dispersion branch of our nonlocally-resonant metamaterial. This can be seen in

4.7(e), where elliptical contours progressively enclose the M points of the Brillouin zone. In

Fig.4.7(f), in f = 888 Hz, the energy finally accumulates onto the M points; we reached the top

of the transverse-anomalous branch.

The agreement between the spring-mass contours and the experimental results remains

surprisingly good up until the upper end of the anomalous branch, given the wildly different

internal structures of the ideal and real versions of our nonlocally-resonant metamaterial. It is

consistent with the presence of anomalous cones in the vibration spectrum of our 3D-printed

metamaterial, in line with the simulation results discussed in Ch3. As was the case with FEM

simulations, the main difference between the spring-mass model and the experimental results

consists in the emergence of a mass-gap: the band accumulates at the K points at a finite

frequency of 106 Hz. The ubiquity of these small gaps practically imposes the theme of the

next chapter, which will be dedicated to gaps in nonlocally-resonant metamaterials and the

various ways in which they can arise.
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“Und wenn du lange in einen Abgrund blickst, blickt der Abgrund auch in dich hinein.”

— F. Nietzsche

“And when you gaze into a gap for too long, the gap also gazes into you.”

— Own translation

In the previous chapters, we got acquainted with anomalous cones and their peculiar physical

properties. We also gained confidence in their physical relevance, on the basis of full-wave

simulations and experimental data. The next logical step to deepen our understanding of these

objects is to follow an age-old scientific methodology; in this chapter, we break anomalous

cones apart.

In Sec.5.1, we do so by introducing additional couplings that either frustrate or favour the

nonlocal resonance. Such couplings respectively induce mass gaps and momentum gaps at

the basis of the anomalous cone. In Sec.5.2, we frustrate the nonlocal resonance even earlier, at

the kinematic graph level. Finally, in Sec.5.3, we investigate the upper ends of the anomalous

cones, by looking at their hybridisation properties and the resulting higher-frequency band-

gaps. In doing so, we also learn how to deform anomalous cones.

5.1 Gaps induced by additional couplings

In the full-wave simulations of Ch.3 and the 3D-printed samples of Ch.4, we saw that intro-

ducing realistic hinge geometries led to the emergence of mass gaps at the basis of anomalous

cones. The shape of the hinge and the materials composing it determine the energetic cost

associated with its actuation, which in turn determine the height of the mass gap. Here, we

model this phenomenon by inserting additional springs that frustrate the mechanism; in

our minimal chain model, the vertical grey springs depicted in Fig.5.1(a) play this role. As

shown with yellow arrows in Fig.5.1(b), these springs induce restoring forces that oppose

the zero-mode; accordingly, this zero-mode becomes a soft mode. The original anomalous
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(a) (c)

(b)

3

Figure 5.1: Anomalous cones as mass-gap to momentum-gap transition. (a) Minimal chain
model with an additional weak springs lifting the zero mode. (b) Corresponding spectrum,
with asymmetric branches as dashed lines and symmetric branches as solid lines. The black
lines correspond to a model without the frustrating spring. The yellow line corresponds to a
frustrating spring with positive stiffness, whereas the blue lines correspond to an instability-
inducing negative stiffness. (c) Representation of the zero-mode at the edge of the Brillouin
zone, with the restoring forces induced by a positive spring in yellow and the instability-driving
forces of a negative spring in blue.

cone, drawn in black in Fig.5.1(c), becomes gapped, yielding the yellow curve instead. The

symmetrical sector of the dynamical matrix is now given by

DS(φ) =
(

3−cos
(
φ

) −i sin
(
φ

)
i sin

(
φ

)
1+cos

(
φ

)+2ζ

)
, (5.1)

where ζ denotes the stiffness of the additional frustration spring. Since DS becomes diagonal

at ζ = 0, it is immediately apparent that the height of the mass-gap is simply proportional

to ζ. This provides a first hint of connection to the roton concept: by frustrating nonlocal

resonances, one can get roton-like dispersions of any depth. However, the underlying mecha-

nism is quite different: the long-range couplings that are central to the roton metamaterial

approach require three spatial dimensions, so they cannot be realised in a planar setting. We

need to wait until the introduction of elastic IWMs in Ch.7 to pursue the connection of rotons

and nonlocal resonances further.

We can also reverse the logic and consider a perturbation that favours the mechanism, in

the form of springs with negative stiffness ζ < 0. This could arise through other physical

phenomena present in the system, for instance through an electromagnetic instability. Al-
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ternatively, such active elements could be introduced by design, following the logic of active

media [230–233]. Temporarily straying from our main narrative, we now provide a few bib-

liographical leads to readers that would like to pursue that research line. Active media were

first motivated by considerations rooted in non-hermitian quantum mechanics [234–239],

following a realisation that the hermiticity axiom was not necessary to obtain real spectra.

Instead, a certain balance between gain and loss elements is required. Subsequent studies

clarified the interplay of gain and loss with causality, locality [240–243] and nonreciprocity

[244–247]. As it matured, this subfield also started exploring its interactions with other wave

phenomena, such as negative refraction [232, 248] and topological edge states [249, 250]. The

most recent avatars of active media arguably consist in continuum field theories that forgo

energy conservation [251–253]. Such theories include odd viscosity and odd elasticity, which

provide tools to describe a large variety of situations ranging from the motion of starling flocks

to elastic media with active inclusions, like the negative-stiffness springs of Figures 5.1 and

5.2.

Such active springs induce forces that favour the zero-mode, shown as blue arrows in Fig.5.1(b);

the anomalous cone breaks down in a different way, shown as a blue curve in Fig.5.1(c). The

cone is now replaced by another type of gap typical of active and time-modulated media,

namely a momentum gap. In this case, a range of wavevectors centered around the basis of

the original anomalous cone are no longer associated to propagating oscillatory eigenmodes.

There, the frequency becomes purely imaginary; the associated modes have a fixed spatial

profile whose amplitude grows or decays exponentially in time. Modes are also no longer

exactly orthogonal.

At the edge of the momentum gap, these two eigenmodes even collapse in a type of non-

hermitian degeneracy known as an exceptional point. Solving |DS(φ)| = 0 yields the condition

cos
(
φ

)=−3ζ−1I. Inserting this in Eq.(5.1), we get

DS,0 :=DS(arccos(−1−3ζ)) =
(

9ζ+6
√

9ζ+6
√
ζ

−√
9ζ+6

√
ζ −ζ

)
. (5.2)

To see the exceptional point, let us go over to a first-order formulation of the dynamics by

defining v⃗ = ∂t u⃗ and rewriting the equation of motion as

∂t

(
u⃗

v⃗

)
= H

(
u⃗

v⃗

)
:=

(
1

−DS,0

)(
u⃗

v⃗

)
. (5.3)

This extended dynamical matrix is not diagonalisable! Indeed, it has the eigenvalue zero

IIn particular, this implies that for small φ, the width of the momentum gap scales as
√
ζ.
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with an algebraic multiplicity of two, but a geometric multiplicity of one. We can see this

explicitly by building the associated Jordan chain: first, note that the zero-mode is given

by u⃗0 := (
√
ζ,−√

9ζ+6). This directly provides an eigenvector q⃗0 = (u⃗0 ,⃗ 0)T of H such that

H q⃗0 = 0. As an extended eigenvector, we can then pick p⃗0 = (⃗0, u⃗0)T , which satisfies H p⃗0 = q⃗0.

We will refer to the subspace spanned by this Jordan chain as the zero-mode sector. Since

H has two other distinct nonzero eigenvalues, our Jordan chain stops there: the zero-mode

sector is two-dimensional, but contains a single eigenmode.

This particular type of degeneracy, in which the eigenvectors collapse as well, is known as an

exceptional point. Temporal evolution at such points has interesting features: restricting our

analysis to the zero-mode sector and going over to the Jordan basis, we can easily compute

the time evolution operator as

HJ =
(

0 1

0 0

)
→UJ (t ) = eHJ t = 1+HJ t , (5.4)

since H 2
J = 0. At this point, the time evolution operator exhibits a slower growth than within

the momentum gap. This peculiar growth takes the form of a linear dependency on time: we

have UJ (t )q⃗0 = q⃗0 and UJ (t )p⃗0 = p⃗0 + q⃗0t . This means that any velocity fluctuation within the

zero-mode sector will produce a linearly-growing displacement that aligns with the zero-mode

u⃗0. If one starts actuating this zero-mode, no restoring force is there to make it spontaneously

come back. Modes in the immediate vicinity of the exceptional point behave in a very similar

manner, since their modes are also far from being orthogonalII.

Expanding our discussion to two dimensions, we equip the auxetic metamaterial of Fig.1.7(e)

with negative springs favouring the nonlocal resonance. The spring locations and result-

ing first band are shown in Fig.5.2(a) and Fig.5.2(b-f), respectively. In the latter panels, we

observe the emergence of instability pockets with purely imaginary spectrum around the

wave-vectors favoured by the negative springs. Like in the one-dimensional case, the edges of

these imaginary-frequency pockets consist of exceptional points. As we increase the value of

the negative stiffness, more and more wave-vectors are drawn into these islands of instability.

At the threshold ζ= 1, they connect, as seen in Fig.5.2(d). At this threshold, two lines of excep-

tional points cross at a single point. If we keep increasing the negative stiffness, the central

domain of stability keeps shrinking, eventually reaching the four-lobed shape of Fig.5.2(f) at

ζ=p
2. We can clearly see from these last panels that increase in negative stiffness has the

IIA more detailed exposition of non-hermitian time evolution is presented in another paper [205], which we did
not include in this thesis for the sake of thematic unity. In a twist of irony, we realised only after writing the thesis
that all zero-modes are associated to an exceptional point in the first-order dynamics. Indeed, the above analysis
does not depend on the particular form of u⃗0, nor on the introduction of active elements in the system. It only
requires u⃗0 to be in the kernel of the dynamical matrix. In particular, it means that nonlocal resonances are also
subject to exceptional point dynamics in the absence of active elements. This makes them a potential platform to
explore the interplay of non-hermiticity and temporal modulation theoretically investigated in [205].
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Figure 5.2: Emergence of momentum gaps in the counter-rotating squares metamaterial. (a)
Counter-rotating squares mode, with additional negative-stiffness springs depicted as blue
lines. (b) Lowest band of the spectrum in the passive case of ζ = 0. (c) Lowest band after
the introduction of negative-stiffness springs, with ζ= 1/2. Instability pockets, in which the
frequency becomes imaginary, appear in blue. (d) Lowest band at ζ= 1. (e) Lowest band at
ζ= 4/3. (f) Lowest band at ζ=p

2.

unexpected side effect of increasing the dispersion anisotropy at the Γ point.

To conclude this short detour in the realm of active media, we note that the unstable growth

behaviours we discussed above would in practice be stopped at amplitudes where the stabil-

ising nonlinearities become relevant. In the most extreme case, the material fully folds and

stays in a new configuration. One could also envision stabilising the metamaterial using the

approach of passive PT-symmetric systems, in which the imaginary part of the spectrum is

shifted to become purely negative through the introduction of a global damping term. Finally,

for realistic geometries, we have seen that anomalous cones are typically gapped. In that

context, active elements do not immediately destabilise the system: they start by closing the

potentially unwanted mass gaps. This could prove useful in regimes in which improving the

hinge design starts hitting diminishing returns.
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5.2 Gaps induced at the kinematic graph level

Recall that in Sec.3.4, we introduced an inverse design method that allowed us to shift the

reference wavevector of an anomalous cone around by deforming the internal mechanism

of the unit-cell. In doing so, we took care to not frustrate this mechanism. Indeed, such

frustrations open mass gaps similarly to the additional springs we introduced in Section

5.1, by removing zero modes altogether. We also carefully selected arrow weights that were

compatible with Floquet-Bloch boundary conditions. We did so to ensure the emergence of

an anomalous cone at the target wavevector, but as a corollary, this choice guaranteed that

our local arrow rule would allow for at least one coherent global zero-mode. What happens if

we forgo this step, and simply consider a generic local arrow rule ?

(c)(a) (b)

Figure 5.3: Deformed local arrow rule that no longer leads to a global zero-mode. (b) Geom-
etry whose undeformed version hosts a zero-mode with k⃗ = 0⃗. (b) Attempting to draw the
associated kinematic graph immediately leads to a contradiction. (c) A mass-gap arises in the
band structure associated to this deformed geometry.

The geometry of Fig.5.3(a) is a deformed version of the one we introduced in Fig.3.8. First,

we filled the four-bar linkages between the octagonal units with rigid elements, to simplify

the kinematic graph and keep only the zero-mode located at Γ. Then, we rotated six of the

central bars in the unit-cell mechanism, in a way that yields the new arrow rule depicted on

the top-left cell of Fig.5.3(b). While the original arrow rule, with its equal arrow weights, led

to a coherent covering of the kinematic graph, we see in Fig.5.3(b) that the new rule leads to

an immediate contradiction. This particular deformation still allows unit cells to individually

host nontrivial mechanisms, but our kinematic graph analysis shows that these mechanisms

are not compatible with each other and hence that the geometry does not admit any nontrivial

zero-mode. This, in turn, leads to the emergence of a mass-gap at the basis of the anomalous

cone, as seen in Fig.5.3(c). The effect of our unit-cell deformation appears very similar to the

effect of a frustrating spring. The only difference lies in the root cause of the frustration; the

height of the gap is now controlled by combinatorial frustration instead of being proportional

to the stiffness of a frustrating spring.

This does not mean that local arrow-rules incompatible with Floquet-Bloch boundary con-

ditions inevitably lead to mechanical frustration. To see this, let us use a geometry closely
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Figure 5.4: Edge states from anomalous cones. (a) Gapped band structure corresponding to
the deformed unit-cell of panel (b). (b) Ribbon configuration with Floquet-Bloch boundary
condition between the top (indicated in green) and bottom masses. (c) Corresponding graph
representation, clarifying the mechanism behind the exponentially decaying spatial profile.
(d) Band structure of a ribbon comprising 40 unit cells, with bulk states in grey and states
localized to the left edge in red.

related to Fig.5.3(a): we simply free the four-bar linkages again and rotate the octagons by 45◦.

The local mechanism is preserved by this procedure. In Fig.5.4(a), we see that this again leads

to a gapped spectrum; the rotated local arrow rule is still not compatible with Floquet-Bloch

boundary conditions. Hence, a mass-gap opens at the basis of the anomalous cone, as in the

previous case. This, however, does not imply the total absence of global zero-modes. After all,

we still have a local arrow rule at our disposal and should leave it the benefit of the doubt as to

whether it can produce a non-contradictory global arrow covering. In fact, such a coherent

global arrow configuration can be reached; it is drawn on a four-cell ribbon in Fig.5.4(c). Note

that instead of picking up a Bloch phase, the arrow patterns carried by neighbouring cells are

multiplied by a real number as we go from right to left. In the top-down direction, we still

simply pick up a Bloch phase of −1. The resulting arrow configuration corresponds to a spatial

pattern that decays exponentially along one direction and oscillates along the other. Such an

edge-localized mode is not directly visible in a band structure with purely real wavevector

components. To confirm its presence, we compute the spectrum of a ribbon like the one

of Fig.5.4(b), albeit with 40 cells along the horizontal direction instead of four. The top and

bottom masses in the ribbon are related with a Floquet-Bloch boundary condition, reflecting

our expectation of oscillatory behaviour along that direction.

The resulting spectrum is depicted in Fig.5.4(d), with a colour-coding corresponding to the

degree of edge localisation of the modes. The bulk modes, represented as solid black lines,

behave as expected from the band structure, with a mass-gap at the edge of the Brillouin zone.

Additionally, the edge states predicted from the directed-graph approach leave a ghost imprint

(solid red lines) of the former anomalous coneIII.

IIIThese edge states can probably be understood within the topological paradigm of Kane and Lubensky, which
they applied to the Kagome lattice in [199, 200]. This approach ties nicely with Ch.2 by interpreting the Maxwell-
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5.3 Higher-frequency gaps and hybridisation

In this last section, we consider gaps that open directly above the first band. A necessary

condition for such gaps to arise is the hybridisation of the lowest dispersion branches. Anoma-

lous cones provide more hybridisation opportunities: for instance, we saw in Fig.3.5(b) that

the cone associated to transverse waves connected with the anomalous cones at the corners

of the first Brillouin zone, thereby opening a partial band-gap in which only longitudinal

elastic waves are allowed. Similarly, the anomalous cones at Γ and M in Fig.3.8(c) respectively

hybridised with the longitudinal and transverse cones, thereby opening a complete band-gap.

On this basis, one could be tempted to conjecture a connection between anomalous cones at

the edge of the Brillouin zone and transverse waves, also motivated by the lower frequencies

associated to the latter, which might make such an hybridisation more likely.

However, the 1D chain model of Fig.5.1 immediately dispels such conjectures by providing

a counter-example in which an anomalous cone sitting in the corner of the Brillouin zone

hybridises with longitudinal waves. This can be explained by using the symmetry decomposi-

tion of Eq.(3.5); since longitudinal and anomalous waves are both invariant under reflections

across the chain axis, they both belong to the symmetric sector. They are therefore both

decoupled from transverse waves, which belong to the antisymmetric sector.

(a) (b) (c)

Figure 5.5: Spectra of pre-twisted isograph geometries, with the unit-cells shown in insets.
(a) Folded spectrum of an untwisted unit-cell, for reference. (b) Band-gap opened by achiral
pre-twisting. (c) Band-gap and slow anomalous sound associated to chiral pre-twisting.

Could we learn something about hybridisation by looking at the kinematic graphs instead

? After all, they encode the spatial profiles of our zero-modes; this could conceivably deter-

mine their hybridisation behaviour. To test this hypothesis, we use a family of nonlocally-

resonant metamaterials that share the same kinematic graphs -we call such geometries iso-

graph geometries- and compare their band structures. To find such an isograph family, we

leverage the fact that the mode depicted in Fig.3.4 is a fully nonlinear mechanism. This means

that we can push the mechanism beyond the small-angles approximation that underlies kine-

matic graph theory. To see this, we first note that every elementary linkage in the mechanical

network has four hinges of equal size. This implies that in every possible deformation state,

these elementary linkages are symmetrical under reflections across their diagonals. In particu-

Calladine count from Eq.(2.2) as an index theorem.
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lar, the triangles used in the area law (Eq.(2.5)) must all have the same area. As a consequence,

the arrow rule remains valid after we actuate the zero-modes, and we can keep going to larger

angular deformations.

A complementary point of view is to explicitely parametrise the allowed configurations of the

metamaterial with two angles, without linearising the underlying trigonometric equations.

Any member of this two-parameter family of nonlocally-resonant metamaterials then shares

the same kinematic graph description by the area law argument presented earlier. In Fig.5.5,

we take three different configurations within that family and compute the associated band

structures. Because these new configurations are less symmetrical than the original one, a

larger unit cell is required in order to still be able to tile the plane periodically. To provide a

reference point, we start by re-computing the band structure of the original configuration

with this larger unit cell, which yields the spectrum shown in Fig.5.5(a). We note that the two

anomalous cones, previously located at the K and K ′ points, now join the two standard cones

at the Γ point. This band folding is simply a change in our mathematical description, since

the underlying physical system remains strictly identicalIV.

Having cleared this point, we can now consider twisted geometries. Since their kinematic

graphs are identical, our theory predicts that their zero-frequency content should be un-

changed. As for the shape of the bands, all bets are off. For the non-chiral configuration of

Fig.5.5(b), we observe a surprising result: one cone lifts off and we are left with three cones

and a full band-gap. Considering a chiral pre-twisted configuration instead, we obtain the

spectrum of Fig.5.5(c), which also exhibits a full band-gap. Another striking feature is the very

low speed of sound associated to anomalous waves (the lowest of the three cones). In the

unit cell shown in the inset of Fig.5.5(c), three almost entirely folded four-bar mechanisms

stand out. If they become entirely folded, the anomalous cone flattens all the way to zero. The

resulting flat band means that a zero-mode can be assigned to any wave-vector; we fell back

in an extreme locally-resonant situation.

The large differences between these three isograph metamaterials indicates that the kinematic

graph is also not enough to determine how the lowest band hybridise. The simplicity of

kinematic graph theory is a double-edged sword; while it provides a powerful design tool for

nonlocally-resonant metamaterial design, its minimal character also means that it really only

fixes the zero-frequency content of the spectrum. Additional dynamical ingredients are then

required to sift through the resulting isograph families of nonlocally-resonant metamaterials:

IVThis raises some apparent paradoxes. For instance, negative group velocity is absent in the folded spectrum.
To resolve this tension, note that when a gaussian beam impinges on an interface with the nonlocally-resonant
metamaterial, the refracted beam must be expressed in a Bloch wave basis instead of a plane-wave basis. In
other words, the refracted beam splits in many components which differ by an integer multiple of the reciprocal
lattice vector parallel to the interface. In general, this expansion is dominated by the non-shifted beam, whose
behaviour is well described by the dispersion relation in the first Brillouin zone. In our present folded case, a
shifted term dominates the Bloch-wave expansion, leading to negative refraction without negative group velocity.
Much as in the case of Berry curvature, this example shows that the information contained in the spatially-periodic
component of Bloch waves can largely impact wave propagation, and that one cannot in general rely solely on
band structure considerations.
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the spatial repartition of mass and stiffness matters.
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Figure 5.6: Probing the pre-twisting band gaps with an FEM transmission simulation. (a)
Simulated geometry, with continuous boundary condition between the bottom and top edges
and perfectly-matched layers on left and right edges (not shown). (b) Resulting transmission
as a function of pre-twisting angle, with the edges of the theoretical band-gap shown in pink.

In order to gain confidence in the peculiar way in which full band-gaps opened in Fig.5.5(bc),

we conclude this section with a series of FEM simulations. The simulation setup is depicted

in Fig.5.6(a): we placed a six-cell layer of pre-twisted nonlocally-resonant metamaterial be-

tween two isotropic elastic domains, with periodic boundary conditions between the top

and bottom edge. Additional perfectly-matched layers (not shown) were placed on the left

and right sides to absorb outbound waves. Finally, we imposed a harmonic displacement on

the left edge and measured the displacement amplitude at the point indicated by an orange

arrow. Sweeping over a range of frequencies and a range of pre-twisting angles resulted in

the displacement amplitudes shown in Fig.5.6(b), with a full band-gap opening close to the

critical angle predicted by the spring-mass model. This FEM study therefore confirms the

predictions of the spring-mass models and also demonstrates that a thin layer of nonlocally-

resonant metamaterial is sufficient to provide insulation from vibrations. From an application

perspective, isograph families of nonlocally-resonant metamaterials provide an interesting

design landscape in which physical properties such as the speed of sound and the width of

band-gaps can be finely tuned.

As this chapter comes to an end, let us also recall what we did in the first two sections. We

started by adopting a new point of view on nonlocal resonances. Indeed, through the intro-

duction of frustrating springs, we could interpret anomalous cones as intermediaries between

mass gaps and momentum gaps. In the process, we noticed an ideal nonlocal resonance

behaves as an exceptional point in terms of temporal evolution. Then, we considered the

effects of frustrations on the kinematic graph level, uncovering the presence of edge states

under certain conditions. This indicates that coherent graphs coverings that do not take on the

shape of Bloch waves exist, i.e. global zero-modes that do not fit our definition of a nonlocal

resonance. In the next chapter, we will study such modes and their spectral signatures.
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“Using a term like nonlinear science is like referring to

the bulk of zoology as the study of non-elephant animals.”

— S. Ulam

Some readers might be wondering about a tangle of loose ends left over from Chapters 2, 3 and

4, which we now seek to tidy up. Indeed, as we developed our theory of nonlocal resonances,

we encountered various examples of oligomodal geometries whose zero modes do not qualify

as nonlocally-resonant. Instead, in these structures, the additional zero-modes exhibited

power-law spatial profiles. This class of oligomodal metamaterials does not host anomalous

cones; this naturally leads us to wonder where these peculiar non-Bloch modes hide within

the spectrum.

6.1 The quadratic spectral signature of the elusive rotational zero-

mode.

In our discussion of elastic zero modes in Ch.2, we noted that three global zero modes were

always present in two-dimensional structures. In Ch.3, we then interpreted two of these

modes, namely the rigid translations, as Goldstone modes of the broken translation symmetry.

The global rotation, on the other hand, is still missing from our wave picture; it cannot be

interpreted as a Bloch mode. We also encountered other non-Bloch modes in Ch.2 and Ch.4,

for instance the two-domain deformation profile of Fig.4.2. In this section, we will incorporate

these mysterious modes in the wave picture and identify their spectral signatures.

Consider the two branches emerging from the Γ point in Fig.3.1. They are very reminiscent of

Lamb waves in a plateI, with a symmetric linear branch and an asymmetric quadratic branch.

We compute the eigenmodes of the latter using Eq.(3.5), yielding the following displacement

IThe analogy can be explained by interpreting elastic chains of nonzero height as discretised cross-sections of
finite-width plates.
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(b)(a)
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Figure 6.1: Quadratic spectral signature of a non-Bloch zero-mode in an elastic chain. (a) Rigid
rotation zero-mode, with the displacement shown in red. (b) Corresponding spectrum, with a
dashed red line depicting a reference parabola.
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where we assumed nφ≤ Nφ<< 1, requiring the chain to have a finite number of sites N . The

mode’s frequency is equal to ωA−(φ) ≈φ2/2; as a consequence, the mode superposition
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is a zero-energy state of the chain, to first order in φ. As for the elusive rotational rigid mode of

the chain, it can be expressed as
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φ

) )(
n

±1
2

)
−

(
n

±1
2

)

≈
(

−φ
φ

)(
n

±1
2

)
= φ

(
∓1

2

n

)
, (6.3)

where the ± superscript denotes the top and bottom masses. In the symmetrised basis, this
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yields

ψ⃗R (n,φ) ≈φ
∣∣∣∣⟲⟲⟲n

〉
:= nφ

∣∣∣∣↑↑
〉
− φ

2

∣∣∣∣←→
〉
≈ ψ⃗A−(n,φ)− ψ⃗A−(n,0) (6.4)

The reason for which the rotational zero-mode seemed absent of the spectrum is because it is

non-Bloch in nature: we need a superposition of two modes infinitesimally close to φ= 0 to

express it. The zero-energy character of this mode then puts a constraint on the spectrum, in-

ducing the quadratic dispersion associated to the asymmetric waves. This argument might be

generalisable to Lamb waves. In this context, we surmise that the existence of zero-frequency

rigid rotations around axes lying in the plane of the plate implies that asymmetric Lamb waves

must have a slowly-growing spectrum in the vicinity of k⃗ = 0.

6.2 Power-law mode profiles in oligomodal geometries.

u

(b)(a)

y

x

Figure 6.2: Cubic spectral signature of a non-Bloch zero-mode in an elastic chain. (a) Non-
trivial zero-mode in a unimodal elastic chain, with the displacement shown in blue. (b)
Corresponding spectrum, with a reference cubic curve drawn as a dashed blue line.

This line of argument generalises to elastic chains with additional non-Bloch zero-modes

besides the rotational one. As an example, we consider the chain depicted in Fig.6.2(a). It is

based on the same inverted four-bar mechanism as the chain of Fig.6.1(a), simply rotated by

π/2. In order to limit the number of available zero-modes to one and therfore make the chain

oligomodal, a stretched copy of the mechanism is added to connect next-nearest neighbours.

The resulting global zero-mode, which is depicted in Fig.6.1, also cannot be written as a Bloch

wave. Indeed, the displacement patterns grows monotonously away from the chain center.

We note in passing that the displaced masses lie on two concentric circles. In the following

discussion, we will call this the “flexion mode”.

In order to uncover the spectral signature of this zero-mode, we leverage the simplicity of the
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chain to investigate its dynamical matrix analytically. In the Mx -antisymmetrised sector, the

dynamical matrix of this chain has the form

DA =
(

5cos
(
φ

)+8cos
(
2φ

)+13 i sin
(
φ

)
(8cos

(
φ

)+5)

−i sin
(
φ

)
(8cos

(
φ

)+5) 2sin
(
φ
2

)2
(4cos

(
φ

)+9)

)
. (6.5)

Diagonalising DA yields the following dispersion for the transverse branch,

ωA−(φ) =
√

3cos
(
2φ

)+10−
√

75cos
(
φ

)+30cos
(
2φ

)+5cos
(
3φ

)+ 9

2
cos

(
4φ

)+ 109

2

≈
√

5

52
φ3 +O (φ4), (6.6)

which shows that the band is indeed cubic near φ= 0, as we could have guessed from the full

band structure shown in Fig6.2(b). The eigenmode associated to this cubic branch is given by

u⃗A−(φ) = sin
(
φ

)
(8cos

(
φ

)+5)

13φ

∣∣∣∣↑↑
〉

+
i (

√
75cos

(
φ

)+30cos
(
2φ

)+5cos
(
3φ

)+ 9
2 cos

(
4φ

)+ 109
2 −3−5(cos

(
φ

)+cos
(
2φ

)
))

13φ

∣∣∣∣←→
〉

≈ [1− 37

78
φ2]

∣∣∣∣↑↑
〉
+ iφ

2

∣∣∣∣←→
〉
+O (φ3). (6.7)

Expanding the mode profile in vicinity of φ= 0 yields

e i nφu⃗A− = e i nφ[ f (φ)

∣∣∣∣←→
〉
+ g (φ)

∣∣∣∣↑↑
〉

]

= (
∞∑

m=0

(i nφ)m

m!
)[

∞∑
m=0

αmφ
2m+1

∣∣∣∣←→
〉
+

∞∑
m=0

βmφ
2m

∣∣∣∣↑↑
〉

]

= [α0φ+ i nα0φ
2]

∣∣∣∣←→
〉
+ [β0 + i nβ0φ+ (β1 − n2

2
β0)φ2]

∣∣∣∣↑↑
〉
+O (φ3)

= (1+ 37

78
φ2)

∣∣∣∣↑↑
〉
+ iφ

∣∣∣∣⟲⟲⟲n
〉
−φ2

[
n

2

∣∣∣∣←→
〉
+ n2

2

∣∣∣∣↑↑
〉]

+O (φ3). (6.8)
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Since the frequency now scales like ω∼φ3, we can access terms of order φ2 for a negligible

energetic cost. As we can see in the last line Eq.(6.8), there are now three accessible modes,

namely the transverse mode

∣∣∣∣↑↑
〉

, the rotation mode

∣∣∣∣⟲⟲⟲n
〉

and a mystery mode highlighted in

blue, which encouragingly contains a term quadratic in the site index n. This clearly evokes

the shape of the nontrivial flexion mode. Does the strategy that we applied to the rigid rotation

zero-mode also work in this case ? To make sure, we need to compare the third term of Eq.(6.8)

to the exact nonlinear formulation of the flexion mode. The displacements corresponding to

this flexion mode are givenII by

u⃗+
n =

(
Re[(z(θ)− i )

∑n−1
m=0 e i mθ)−n]

Im[(z(θ)− i )
∑n−1

m=0 e i mθ)−n]

)
u⃗−

n =
(

Re[(z(θ)− i e iθ)
∑n−1

m=0 e i mθ)−n]

Im[(z(θ)− i e iθ)
∑n−1

m=0 e i mθ)−n]

)
. (6.9)

where z(θ) = i /2(1+e iθ)+1/2
√

6e iθ−e2iθ−1. Expanding these expressions with the angle θ

as a small parameter, and symmetrising the displacement basis with respect to Mx , we get

u⃗n ≈ θ
[

n

2

∣∣∣∣←→
〉
+ n2

2

∣∣∣∣↑↑
〉]

+O (θ2). (6.10)

Upon the identification θ = −φ2, we retrieve precisely the third term in the expansion of

Eq.(6.8), thereby confirming the connection between a quadratic spatial profile and a cubic

dispersion. More generally, spatial dependencies of the order nm can only arise at the order

φm and beyond. Therefore, the existence of a non-Bloch zero-mode with a power-law spatial

profile seems to imply the existence of a dispersion branch with a higher power law depen-

dency, in order to be able to express this zero-mode as a linear combination of Bloch waves

with negligible energy in the immediate vicinity of φ= 0.

This connection also holds in a two-dimensional setting. Recall the modes discussed in

Sec.4.1; they had a distinct non-Bloch profile. As a reminder, see Fig.6.3(a), in which we can

observe a stark gradient in the deformation magnitude along direction (i ). In the limit of

small deformations, this gradient consists in a linear profile. Because the associated kinematic

graphs, described in Fig.2.9, are not compatible with Floquet-Bloch boundary conditions, we

do not expect these modes to induce anomalous cones. Instead, computing the spectrum of

the associated spring-mass model reveals the same quadratic signature, shown in Fig.6.3(b).

Note that the wave-vectors in Fig.6.3(b) point in direction (i ). As for the neutral direction (i i ), it

is associated to a linear dispersion, as shown in Fig.6.3(c). This dispersion anisotropy is clearly

visible in the isofrequency contours of Fig.6.3(d). This clearly indicates that the quadratic

spectral signature is again associated to a linear mode profile. The connection between power-

IIIt is convenient to treat such problems by writing vectors in the plane as complex numbers.
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Figure 6.3: Quadratic spectral signature of a non-Bloch 2D zero-mode with linearly growing
profile. (a) Experimental mode profile from Fig.4.2(b), with two directions of interest indicated
with yellow arrows. (b) Corresponding band structure along direction (i), that is along the
linear growth direction. (c) Band structure along direction (ii), with a mostly periodic variation.
(d) Isofrequency contours of the first band in the vicinity of Γ.

law mode profiles and power-law spectral signatures is therefore clearly present in higher

dimensions as well.

6.3 Concluding remarks.

In this chapter, we solved two mysteries. The first consisted in the incomplete correspondence

between standard elastic waves and global rigid modes, in which the rotation mode was not

assigned to a wave. It turns out that this rigid rotation mode, which corresponds to a linear

displacement profile in the small-angle limit, manifests itself in the spectrum through as

a quadratic dispersion. Encouraged by this success, we then applied the same method to
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two cases of global, but non-Bloch, zero-modes. Continued success in these cases seems to

indicate a general connection between non-Bloch, power-law spatial profiles and power-law

dispersions. The slow growth of frequency associated to such dispersions in the vicinity of

k = 0 allowed us to express the mysterious non-Bloch zero-modes as linear superpositions of

modes close enough to k = 0 to have effectively vanishing frequency.

Of course, the analytical arguments we used to uncover this relationship were a bit cavalier.

For one thing, we reasoned in terms of Bloch waves while implicitly using a N -site chain with

open boundary conditions. Additional care might be required to make this line of thought

fully rigorous, but we expect the underlying ideas to be correct. We note in passing that we also

considered another type of non-Bloch modes, for which the Bloch description fails because

the geometry that supports them lacks periodic order. For completeness, we briefly discuss

this quasicrystalline case in Appendix C.

The conceptual tools we developed to solve these problems will prove useful in the next

chapter, by allowing us to correctly assign wave types to various dispersion branches in

complex three-dimensional metamaterials. In the process, we will also develop other helpful

tools to treat these intricate situations, by formalising symmetry considerations.
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7 The Role of Symmetry

“Tyger Tyger, burning bright,

In the forests of the night;

What immortal hand or eye,

Dare frame thy fearful symmetry?”

— W. Blake

In the preceding chapters, symmetry was often lurking in the shadows; we mostly used it to

pick convenient bases for our analytical models and to distinguish various types of waves. In

this chapter, we want to address symmetry more directly and make it an integral part of our

design process. In order to access the richer realm of three-dimensional symmetries, we will

also consider another design path for elastic nonlocal resonances, distinct from the kinematic

graph approach.

7.1 Space group redux

As usual, we start this chapter in company of our old friend, the 1D elastic chain. In this

section, we will use this minimal model to refresh a few notions in the representation theory

of space groups, before applying this theory to higher-dimensional cases in the remainder of

the chapter. Besides the concrete application of these concepts to our toy model, none of the

results presented in this section are new; rigorous in-depth expositions of group theory can be

found in Ref. [220].

When we say that a geometric object has a certain symmetry, what we mean is that there

exists an isometryI that leaves it invariant. In crystals, these isometries consist of translations

along Bravais-lattice vectors, as well as a series of rotations, reflections and glide symmetries.

These isometries form a group: indeed, the identity is always an isometry, and the inverse

of a given isometry is also an isometry. Furthermore, successive applications of isometries

IA transformation that preserves distances.
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on the symmetric object leave it invariant, and this isometry composition is associative. The

resulting group of symmetries is called the space group of the crystal; we will denote it as S.

To leverage this algebraic structure, we first need some elements of finite group theory. The

action of an element g of a group G on some vector space V , for instance the space of dis-

placements u⃗ of a collection of point masses, can be represented with a matrix ρ(g ). We say

that these matrices form a representation of the group if and only if they preserve the group

structure, in the sense that ρ(g )ρ(h) = ρ(g h). Note that the map ρ : G → GL(V ) is only an

homomorphism, meaning that two distinct group elements can be mapped to the same matrix

ρ. An extreme example is the trivial representation, admitted by any group, which is simply

defined as ρ(g ) = 1 for every group element.

Any representation can be decomposed into elementary blocks called irreducible represen-

tations (irreps) in the following sense: one can find a basis Pi r r in which all matrices ρ(g )

become block-diagonal simultaneously,

Pi r rρ(g )P−1
i r r =



ρ1(g )

ρ2(g )

ρ2(g )

ρ3(g )
. . .

 , (7.1)

where the subscripts denote different irreps. The decomposition is essentially unique, and no

blocks smaller than the irrep ones can be found. Note that in this decomposition, each irrep

can show up more than once, or not at all; here, the second irrep ρ2(g ) appears twice.

This group machinery becomes extremely useful as we start considering dynamical aspects.

Indeed, all symmetry operations must commute with the dynamical matrix: [D,ρ(g )] = 0. As

a corollary of Schur’s lemma, only multiples of the identity can commute with every matrix of

an irrep. This means in particular that D must take on the form

Di r r =



ω2
11n1

α21n2 β21n2

γ21n2 δ21n2

ω2
31n3

. . .

 (7.2)

in the irrep basis to satisfy the commutation relation II. Note that the blocks associated to an

IIIn this expression, 1ni denotes an ni ×ni identity matrix, and the greek letters are complex numbers.
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irrep that appears only once in the decomposition must be multiples of the identity, while

irreps that appear with a certain multiplicity d leave a little bit more freedom to the form of

the dynamical matrix.

This has two major physical consequences. First, it implies that every eigenmode can be

assigned to an irrep. In particular, this allows us to infer how this mode transforms when

we apply an isometry g : we just have to let the associated ρi r r (g ) act on the mode. If the

irrep is one-dimensional, as in the 1D chain example we will consider shortly, this symmetry

operation simply amounts to multiplying the mode by a scalar.

The second consequence relates to the case in which the irrep has a dimension ni r r > 1.

In this case, we can infer from the shape of D in Eq.(7.2) that ni r r modes share the same

eigenvalue, yielding a spectral degeneracy. Because of the irreducibility of the representation

associated to this sector, perturbations must break the symmetry to lift this degeneracy; it is

symmetry-protected. We will explore this case using more complex geometries in Sec.7.3.

These considerations look promising, but how can we apply them to infinitely-extended crys-

tals and their equally infinite space groups? One potential starting point is to note that these

infinities are rooted in the presence of translations. This suggests the following strategy: we

begin by somehow separating the translation content of S from the other symmetries. We then

treat the infinity problem in this restricted setting and construct irreducible representations of

S from there.

The first step of our strategy is most easily achieved with so-called symmorphicIII space groups,

which can be expressed as a semi-direct product S = P ⋉T involving the point group P and

the translation group T . For concreteness, consider the case of our minimal spring-mass

chain: it has the largest group of symmetries that a chain in the plane can haveIV, namely

S = p2mm V. As discussed in Ch.3, this group is generated by translations along the chain

axis, a reflection across the chain axis and a reflection perpendicular to the chain axis; in the

semi-direct product, we have P = {1, Mx , My ,Rπ} = D2 ∼Z2 ×Z2.

Having isolated T as a normal subgroup of S, we need a trick to make our finite group consid-

erations applicable. Instead of considering an infinite crystal, we consider a N -sites chain with

periodic boundary conditions, with the idea of later letting N tend to infinity. In this setting, T

is isomorphic to the cyclic group CN ; it consists of N translations. The abelian group CN admits

N one-dimensional irreps. We can write the mth such irrep as ρm(tn) = e iφm n = e i km Ln , where

the intercell phase can now only take on the discretised values φm = m 2π
N with m ∈ {1, . . . , N }.

This is actually the content of Bloch’s theorem ! Since [D, tn] = 0, we can apply Schur’s lemma

and go over to the irrep basis. There, the large dynamical matrix of the N -site chain splits in N

IIINon-symmorphic space groups, which we will not use in this thesis, contain some symmetry elements that
combine a point operation with a translation without also containing both of the latter. A prototypical example is
the glide symmetry of footprints in the sand.

IVIn this context, S is called a frieze group.
VUnder the International Union of Crystallography convention.
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Table 7.1: Character table of the D2 point group. Each column corresponds to an irreducible
representation, and each row to a conjugacy class. Each irrep is labeled by two states that
transform under it.

u⃗+
S u⃗−

S u⃗+
A u⃗−

A
u⃗Z u⃗T u⃗L u⃗S

1 1 1 1 1
My 1 1 -1 -1
Mx 1 -1 1 -1
Rπ 1 -1 -1 1

blocks, each associated to a particular irrep of the translation group T VI. As promised, we also

learn something about the shape of the modes, namely that a mode in the mth sector must

pick up a phase of e iφm n under the translation tn . In other words, the modes must take on the

shape of Bloch waves, with Bloch wavenumbers km .

The power of the space group approach starts to become apparent; it implies Bloch’s theorem

as a special case. To unleash its full potential, we need to construct irreps for the whole of S,

instead of its normal subgroup T . To do so, we introduce a so-called "little group" L(e iφm )

associated to each translation irrep. L(e iφm ) is a subgroup of S that leaves φm fixed. In the

symmorphic case, it can be expressed as L(e iφm ) = Pφm ⋉T , where Pφm consists of the point-

group operations that leave φm unchanged. Concretely, in our 1D chain example, we have to

consider three cases. First, we tackle the case of a generic φm ; exactly two point operations

leave it unchanged, yielding Pφm = {1, Mx }. The remaining point operations also leave the

two special values φm = 0,π invariant, yielding P0 = Pπ = P . With this, we constructed a little

group for every wavenumber.

The symmorphic character of S then again comes to our aid to construct irreps of L(e iφm ):

they are simply given by ρL(g ) =ρL(p; tn) =ρPφ
(p)e iφm n . With this, we reduced the problem

to finding the irreps ρP of the point group. This is a standard exercise of finite group theory.

Concretely, in our p2mm example, we need to find the irreps of the dihedral group D2. First,

we note that its four elements {1, Mx , My ,Rπ} each belong to a distinct conjugacy class. Con-

sequently, there are four irreps in total. Since
∑4

i=1 n2
i = |D2| = 4 must hold, we can deduce

that these irreps are all one-dimensional. In particular, this means that the irrep matrices are

simply equal to their characters. We then only need to construct the character table of D2,

which is easily achieved using the orthogonality relations between the characters of different

irreps and some general properties of character tables. The result is shown in Table 7.1.

Finally, we are in a position to construct the irreps of the space group from those of the little

groups. For generic wavenumbersφm/L, the construction of an irrep requires the introduction

VINote that each translation irrep enters the decomposition with a multiplicity corresponding to the number of
DOFs in the unit cell. Consequently, the corresponding block of the dynamical matrix is not constrained to be a
multiple of identity; this is the group-theoretical justification of the reduced, wavevector-dependent shape of the
dynamical matrices we heavily used in previous chapters.
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of the concept of a star of wavevectors, namely a set of wavevectors related by point group

operations. In our 1D chain case, the star consists of {−φm ,φm}, which are exchanged by the

operations {My ,Rπ}. Concretely, we can build the irreps using the combinations u⃗±
A,S(φ) =

u⃗A,S(φ)± u⃗A,S(−φ), where the subscript A,S indicates whether the state is antisymmetric

under the action of Mx . This accounts for the effect of the nontrivial Pφm restricted point

group, which we already leveraged in Eq.(3.5). As for the ± superscript, it indicates whether

we consider a symmetric or antisymmetric combination of modes evaluated on the star of

φm ; to see how a given combination transforms under the action of a particular space group

isometry, multiply it by the entry of Table 7.1 corresponding to the underlying point operation

and then by the translation irrep e iφm n .

At the special point φ= 0 and φ= π, no need for starsVII; to obtain an irrep of p2mm there,

simply pick a column of Table 7.1 and multiply it by the appropriate translation irrep, namely

e i 0n = 1 or e iπn = (−1)n . We can use this to learn more about the symmetry of the modes at

these special points.

We start with φ = π and go over to the irrep basis; this diagonalises the dynamical matrix,

assigning every branch to a particular 1D irrep. In Table 7.1, the irrep names were chosen to

reflect this fact. From this table, we learn how each mode atφ=π transforms under isometries:

the zero-mode u⃗Z is invariant under every point group operation, the transverse u⃗T picks up

a minus sign under Mx and Rπ, the longitudinal u⃗L picks up a minus sign under My and Rπ,

and finally the in-plane sheared wave u⃗S picks up a minus sign under Mx and My . Naturally,

all of these modes also pick up a minus sign if the full isometry involves a translation by an

odd number of sites, since φ=π.

The same reasoning holds at φ= 0, with two slight twists. First, the four irreps are not assigned

to the same bands: the bands that were anomalous and longitudinal at φ = π switch their

point-group irreps at φ= 0. As for the two other wave types, they stay on the same branch, but

both acquire mixed type in the intervening wavenumbers. Second, the associated eigenvalues

are now degenerate. Here, we must distinguish two different situations. As discussed in

Ch.3 and Ch.6, the zero-frequency degeneracy involving transverse and longitudinal waves

arises from the broken translation symmetry and is unavoidable for freely moving crystals.

The higher-frequency degeneracy between the two other wave types, on the other hand,

constitutes a so-called accidental degeneracy. It has nothing to do with the space group; as we

can see in Fig.5.1(b), this degeneracy is actually lifted by the introduction of the frustrating

spring, which does not break the spatial symmetries of the chain.

The sieve of group theory allowed us to sift through the spectrum and examine the elementary

grains that compose it one by one, illuminating their symmetrical features. Our 1D chain

example was unusually nice, in the sense the unit cell was so small that we could bring

eigenmodes in one-to-one correspondance with space-group irreps. In general, we can still

VIIFor more complex Brillouin zones, points with smaller stars are labeled with capital letters, such as Γ or K ,
because of these symmetry properties.
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assign eigenmodes or stars of eigenmodes to irreps, but a given space-group irrep may appear

in the spectrum more than once or not at all; the spectrum splits into sectors labeled by the

irreps of S.

This exercise in representation theory, while conceptually satisfying, mostly consisted in

describing a model we already understood well using a different language. It also provided

group-theoretical underpinnings to the band-structure tools we heavily used in the preceding

chapters. In Secs.7.2 and 7.3, we will show that this group-theoretical point of view also

constitutes a strong addition to our design toolbox for nonlocally-resonant metamaterials.

In particular, the accidental degeneracy observed at the k = 0 in our chain model must be

contrasted with the symmetry-protected degeneracies we will discuss in Sec.7.3, which arise

when higher-dimensional irreps show up in the decomposition. Frieze groups are not large

enough to carry such irreps; we need bigger space groups to investigate symmetry-protected

degeneracies.

7.2 Weakly coupled elastic IWMs

Three-dimensional geometries would be very helpful to construct interesting spectral de-

generacies in nonlocally-resonant metamaterials. Indeed, point groups in lower dimensions

are quite restricted in terms of irreps, with 2D irreps only timidly appearing in two spatial

dimensions. To obtain a larger variety of irreps and their associated spectral degeneracies, we

would therefore like to move on to three spatial dimensions. However, a nontrivial extension of

the kinematic graph approach to three dimensions seems far from obvious, mostly because of

the non-planar character of hinge motions in this setting. For this reason and also in order to

extend our toolbox of nonlocally-resonant mechanisms, we introduce an alternative approach

to zero-modes.

It simply consists in taking the interlaced wire media described in Fig.1.6 and treating them

elastically instead of electromagnetically. To warm up, we first consider the one-dimensional

case of two interlaced twisting rods, with the unit-cell shown in Fig.7.1(a). In order to ensure

mechanical stability, we also introduced a small spring connecting the two disconnected giant

components (GCs), as seen in Fig.7.1(b). To compute the associated band structure, we set up

a FEM eigenfrequency simulation with Floquet-Bloch boundary conditions and sweep over

the Bloch wavenumber. The resulting band structure is shown in Fig.7.1VIII.

To analyse this spectrum, let us first imagine the situation in the absence of the stabilising

spring. At ω= 0, we can think of the two GCs as being perfectly rigid bodies. Therefore, each

GC carries six zero-modes: three translations and three rotations. Considering a twisting GC

in isolation, for instance by ignoring the yellow GC in Fig.7.1(d-f), the zero-modes can be

interpreted as follows. The translation along the chain axis, shown in Fig.7.1(d), corresponds

to an infinite-wavelength longitudinal wave. As for the two translations perpendicular to

VIIINote that this structure retains a continous screw symmetry, which should also put strong constraints on the
modes.
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Figure 7.1: Nonlocal resonances in a weakly-coupled twisted elastic chain. (a) Geometry of
the unit cell, colored to highlight the two independent giant components. (b) Top view of the
unit cell, with the coupling spring in the center. (c) Associated band structure, with the bands
labeled according to the nature of the associated waves: L for longitudinal, T for transverse and
R for torsional. (def) Zero-modes of the chain: (d) translation along the chain direction, which
gives rise to longitudinal waves; (e) remaining translations and their associated rotations,
which give rise to quadratically dispersive transverse waves; (f) rotation around the chain axis,
giving rise to torsional waves.

the chain axis, shown in Fig.7.1(e), they can be interpreted as infinite-wavelength transverse

waves. As discussed in Ch.6, these transverse waves have a quadratic dispersion relation,

which allows us to also express two rotations as sums of Bloch modes in the vicinity of the Γ

point. Finally, the rotation around the chain axis gives rise to a fourth dispersion branch, that

of torsion waves.

Keeping these four bands in mind, we stop ignoring the second GC, which carries the same

six zero-modes. The key to include it in the spectrum is to note that the blue and yellow GCs

can either move in-phase or out-of-phase, with the latter case shown in Fig.7.1(d-f). Their

in-phase motion yields the same four branches as in the single-GC case, as seen near the Γ

point in Fig.7.1(c). As for the out-of-phase motion, it simply produces a copy of these four

bands at the edge of the Brillouin zone. The presence of the small coupling spring becomes

relevant again at this stage of the analysis. Indeed, much like the realistic hinges in Ch.3, the

coupling spring induces mass-gaps at the basis of these four anomalous dispersion branches,

as seen in the vicinity of kL =π in Fig.7.1(c).

7.3 Permuting giant components with isometries

The idea of an elastic IWM easily generalises to higher dimensions; in a sense, these structures

even require at least three spatial dimensions to achieve nontrivial interlacing patterns. Indeed,

while the unit-cell of the chain only repeated along one direction, the geometry itself was

three-dimensional; anything less makes it impossible to permute GCs without crossing. In this
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section, we will investigate a truly three-dimensional crystal and adopt a symmetry viewpoint

in our design process. The key idea is to consider that symmetry operations that leave the

geometry invariant may still lead to a permutation of the GCs. For instance, a rotation of π

around the axis of the twisted chain of Fig.7.1 exchanges the position of the blue and yellow

GC. Interpreting the GCs as a vector space on which the symmetries act then naturally leads

to representations of the group of symmetries of the IWM.

triv⊕E

T2

T1

T1

E

(c)(a)

(f)

(b)

(d)

(e)

R

�

X

M

alt

triv⊕E

Figure 7.2: Nonlocal resonances in an interlaced 3D elastic metamaterial. (a) Geometry of the
unit cell, with elements colored to highlight the six independent giant components. (b) Side
view of the unit cell. (c) 2×2×2 crystal demonstrating the nontrivial interlacing of the giant
components. (d) Flattened surface of the unit cell, with only the four central points of each
face retained to clarify the interlacing pattern. (e) Cubic Brillouin zone, with a high-symmetry
path depicted in pink. (f) Phononic spectrum along the aforementioned high-symmetry
path. Spectral degeneracies at the Γ and R points are labeled according to the irreducible
representation that protect them.

Concretely, we consider the symmorphic space group P432 = O ⋉T , whose point group O

consists of the 24 rotations that leave a cube invariant. The first step in creating an elastic

IWM with this symmetry is to insert a single solid domain into a cubic unit cell, for instance

one of the light blue domains in Fig.7.2(ab). Then, we symmetrize the unit cell by applying the
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operator
∑

g∈O ρx y z (g ) to this domain, where ρx y z is the representation of O acting on R3 IX.

In this case, this yields the 12 domainsX depicted in Fig.7.2(ab). As we start filling space with

this unit cell to create a 3D crystal, such as the one shown in Fig.7.2(c), the 12 local domains

connect with each other in such a way that only six disconnected GCs remain. Each colour in

Fig.7.2(a-d) correspond to a different GC. Note in particular that the positions of the GCs on

opposing faces of the unit cell are exchanged: this is made apparent in Fig.7.2(d), where we

show the development of the cube faces on a net. There, we highlight the positions at which

the GCs cross each face with colours.

The next step is to understand how the GCs are permuted under the action of the point group

O; this furnishes a six-dimensional representation of O, which we will denote by ρ6. In terms

of design, this is promising: we need enough GCs to have a large representation of the point

group. If we only had obtained one or two GCs after the symmetrisation and tiling steps,

we would already know that no interesting irrep can arise, and would select another initial

domain for the whole design procedure.

In order to decompose the six-dimensional GC-swapping representationρ6 into irreps of O, we

only need one representative from each conjugacy class of O. Let us list these conjugacy classes

explicitely, and then evaluate the trace of a ρ6(g ) matrix for a representative of each class. We

will thus obtain a character vector χ⃗(ρ6) that we will use to find an irrep decomposition.

The first class has a single element: it consists in doing nothing. The associated character

is laziness given by χ(ρ6(1)) = Tr (16) = 6. The second class consists of six elements, namely

rotations by π around a line connecting the midpoints of two diametrically opposed edges of

the cube. As a representative of this class, we pick the rotation that leaves the initial light blue

domain invariant. If we denote the initial GC vector as (      )T , this rotation is given by

the matrix

ρ6(↶↶↶| ) =



1

1

1

1

1

1


⇐⇒ ρ6(↶↶↶| )



 
 
 
 
 
 


=



 
 
 
 
 
 


, (7.3)

which yields χ(ρ6(↶↶↶| )) = 2. The third conjugacy class consists of three rotations by π around

axes normal to the faces: picking the blue face as a representative gives us the matrix

IXρx y z simply contains the 24 appropriate 3×3 rotation matrices.
XNot 24, because the initial domain was already invariant under a rotation by π around a line connecting the

midpoints of two opposing edges of the cube.
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ρ6( ↶↶ ↶□) =



1

1

1

1

1

1


⇐⇒ ρ6( ↶↶ ↶□)



 
 
 
 
 
 


=



 
 
 
 
 
 


, (7.4)

also leading to χ(ρ6( ↶↶ ↶□)) = 2. In the fourth conjugacy class, we find eight rotations by ±2π/3

around the four main diagonals of the cube. Picking a representative corner yields the matrix

ρ6( ↶↶ ↶�) =



1

1

1

1

1

1


⇐⇒ ρ6( ↶↶ ↶�)



 
 
 
 
 
 


=



 
 
 
 
 
 


, (7.5)

this time leading to a character of χ(ρ6( ↶↶ ↶�)) = 0. Finally, the last 6 elements of the group are

rotations by ±π/2 around the three axes normal to the faces; picking the blue face again, we

get

ρ6( ↰↰ ↰□) =



1

1

1

1

1

1


⇐⇒ ρ6( ↰↰ ↰□)



 
 
 
 
 
 


=



 
 
 
 
 
 


, (7.6)

which also leads to a character of χ(ρ6( ↰↰ ↰□)) = 0. Collecting these characters in a single vector,

we obtain

χ⃗(ρ6) = (6,2,2,0,0)T = χ⃗(tr i v)+ χ⃗(E)+ χ⃗(T1). (7.7)

where we decomposed the character vector χ⃗(ρ6) as a sum of column vectors from the charac-

ter table of the O cubic point group, given in Tab.7.2. This, in turn, allows us to deduce the
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Table 7.2: Character table of the O cubic point group. Each column corresponds to an irre-
ducible representation, and each row to a conjugacy class. The first column lists the number
of elements within the conjugacy class.

triv alt E T1 T2

1 1 1 2 3 3
↶↶↶| 1 -1 0 1 -1

↶↶ ↶□ 1 1 2 -1 -1

↶↶ ↶� 1 1 -1 0 0

↰↰ ↰□ 1 -1 0 -1 1

irrep decomposition ρ6 = tr i v ⊕E ⊕T1. If we were in an electromagnetic setting, we could

stop our point-group analysis right here, and skip directly to the band structure aspects of

the design process, because each GC carries a single scalar electric potential which does not

transform under the point group operation. In our present elastic setting, however, we have

to carry on a bit longer to account for the vectorial nature of the displacement field u⃗, which

transforms nontrivially under the action of O.

We leave it to the reader to follow the procedure outlined above to prove that ρx y z = tr i v ⊕E .

Since, like the axes, the displacement field also transforms under ρx y z , we can deduce that the

18 independent displacement components carried by our six GCs transform under the repre-

sentation ρ6 ⊗ρx y z = (tr i v ⊕E ⊕T1)⊗ (tr i v ⊕E ). We can easily compute the character vector

associated to this representation using the relation χ(ρ6(g )⊗ρx y z (g )) =χ(ρ6(g ))χ(ρx y z (g )),

which we can again express as a sum of character vectors of the irreps, found in Tab.7.2. We

can then deduce that the ρ6 ⊗ρx y z admits the irrep decomposition

ρ6 ⊗ρx y z = (tr i v ⊕E ⊕T1)⊗ (tr i v ⊕E) = 2(tr i v ⊕E)⊕T2 ⊕al t ⊕2T1 ⊕E . (7.8)

What is this decomposition good for ? Well, it contains several higher-dimensional irreps of O,

which should impact the irreps of the full space group P432 and therefore show up in the band

structure as symmetry-protected spectral degeneracies. To see them clearly, we introduce

a coupling spring between two GCs and symmetrise it with the operator
∑

g∈O ρx y z (g ), to

preserve the P432 symmetry. We do so at a location that fully connects the GCs as a result. As

discussed in Sec.7.2, this should give rise to mass-gaps, giving finite frequencies to 15 out of

the 18 zero-modes present in the decoupled system. The remaining three modes correspond

to the three DOFs of continuum elasticity.

To obtain the corresponding band structure, we then set up an eigenfrequency FEM simulation

in COMSOL with Floquet-Bloch boundary conditions between opposing faces of the unit cell.

We then sweep the wavevector over the high-symmetry path shown in Fig.7.2(e), which results

in the band structure depicted in Fig.7.2(f). There, we see six gapped bands at the Γ point and
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nine at the R point. As promised, these bands exhibit symmetry-protected degeneracies, which

are labeled with the relevant irreps of the O group. In particular, there are irrep-protected

threefold spectral degeneracies both at the Γ point and at the R point.

As discussed in Sec.7.1, the irreps also teach us something about the symmetries of the

associated modes. Forming mental pictures of the action of each irrep helps in understanding

these modal symmetries better. Let us consider the al t irrep as our first example. Imagine

the biggest tetrahedron that can be inscribed in a cube. Then, consider its dual, which is also

inscribed in the cube. The permutations of these two tetrahedra under the action of group

elements furnish a two-dimensional representation of O. Restricting the underlying vector

space to its antisymmetric sector, we get a geometrical object that transforms under the al t

irrep, namely an antisymmetric sum of the two tetrahedra. The displacement profile of the

non-degenerate mode at the R point transforms in the same way !

Similarly, since that the modes at tr i v ⊕E degeneracies transform like orthonormal axes,

we can remove the symmetric sector from the axes vector space to obtain an explicit 2D

vector space of geometrical objects that transforms under E , spanned by antisymmetric

combinations of two axes. We can keep playing the same game for the other irreps, for

instance by noting that the main diagonals of the cube transform as tr i v ⊕T2 and removing

the symmetric sector. This provides the seed for a mental picture of how the deformation

modes that occur at each spectral degeneracy transform under the action of O.

A more precise algebraic approach, which does not depend on geometric intuitionXI, consists

in explicitly finding the irrep basis transformation which block-diagonalises ρ6 ⊗ρx y z . This

tells us precisely which displacement profiles are associated to each irrep. We could then also

analyse these displacement profiles to assign the irrep-protected spectral degeneracies to the

proper wavevectors before explicitly computing the band structure.

To add one last instrument in our design toolbox, we want to emphasise the connection

between the location of the coupling spring, the modal profiles, and the height of the mass

gaps. Leveraging our knowledge of the modal profiles is indeed the key to open mass gaps

in a controlled way: in the same spirit as the discriminant hinges of Ch.4, a well-positioned

spring can preferentially frustrate the modes associated to a particular irrep, hence opening a

larger mass gap for these branches. Doing this with enough precision, we could potentially lift

most irrep degeneracies to higher frequencies, keeping only a degeneracy of interest in the

low-frequency spectrum.

XI“Algebra is the offer made by the devil to the mathematician. The devil says: ‘I will give you this powerful machine,
it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this
marvellous machine.’ ” (M. Atiyah)
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7.4 Conclusion

As we have seen in Sec.7.1, symmetry considerations make many aspects of wave physics

in crystals conceptually clearer. For one thing, they contain Bloch’s theorem as a special

case, and extend its logic to other isometries preserving the crystal. On a practical level, this

approach also allows us to write dynamical equations in a particularly nice basis, in which

the displacements are decoupled into symmetrical subsectors. Concretely, it made it much

easier to analytically treat symmetric chain models, like the one given in Eq.(3.5). Given the

high symmetry of the underlying geometry, it would certainly also make a matrix like the one

given in Eq.(3.8) much more tractable. Another selling point is that representation theory is

particularly easy to apply to the case of elastic IWMs.

Indeed, one of the most salient features of our design process for high-symmetry elastic

IWMs is that we did not need to consider the symmetries and commutation properties of a

differential operator explicitly, unlike in Sec.7.1. Instead, we leveraged our a priori knowledge

of the zero-modes carried by the GCs to directly study the relevant representation of the

point-group O. The symmetry protection provided by the irreps then ensured that the spectral

degeneracies survived the promotion of zero-modes to soft modes.

However elegant it may seem, this approach remains a design tool and comes with limitations.

For one thing, in the preceding analysis, we hid rotational zero-modes under the carpet. As

discussed in Ch.6, the rotation DOFs have a spatial profile incompatible with a pure Bloch

mode shape. It would be interesting to uncover their spectral signature, in particular in the

continuum elasticity limit, for which tricks from Ch.6 do not seem to work as is.

A second issue with the symmetry approach is that space-group symmetries are rather easily

broken in practiceXII. This means trouble for the degeneracies they protect. Like the kinematic

graph method we introduced in Ch.2, we should take symmetry aspects with a grain of salt:

compromise and imperfections will necessarily come up in the manufacturing process and

break the strict applicability of the method. Starting the design process with kinematic graphs

or symmetry provides powerful mental pictures on which we can anchor second-order effects

like mass gaps and symmetry-breaking. Keeping this in mind, one can use these design tools

to produce architected media in which waves propagate in unusual and wonderful ways.

XIIOne could even say that they are spontaneously broken in some cases.
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“La mer jusqu’à l’approche de ses limites est une chose simple qui se répète flot par flot.

Mais les choses les plus simples dans la nature ne s’abordent pas sans y mettre beaucoup de

formes, faire beaucoup de façons, les choses les plus épaisses sans subir quelque amenuisement.

C’est pourquoi l’homme, et par rancune aussi contre leur immensité qui l’assomme, se précipite

aux bords ou à l’intersection des grandes choses pour les définir”

— F. Ponge

8.1 What we explored

In this section, we summarise and discuss our research findings.

8.1.1 A design pathway based on nonlocal resonances

In this thesis, we introduced a third design path to control elastic waves in architected media,

distinct from phononic crystals and locally-resonant metamaterials, which we discussed

in Ch.1. The central concept of our method consists in designing nonlocal resonances, i.e.

zero-frequency modes with non-zero wave-vectors. Nonlocal resonances heavily impact wave

propagation by introducing anomalous dispersion cones in the spectrum.

In Ch.2, we introduced kinematic graphs, a convenient, visual design tool for zero-energy

modes in elastic metamaterials. Under the same small-displacements assumption as linear

elasticity theory, kinematic graphs distillate the search for global degrees of freedom into a

minimal combinatorial problem. Using this tool, we identified various classes of zero-mode

scaling in flexible metamaterials, and then zeroed in on the oligomodal class. This class of

elastic metamaterials, which we introduced in [141], is characterised as hosting a fixed number

of global deformation modes that does not scale with system size.

Inspired by IWMs, we then added a Bloch-wave requirement on the modes hosted by oligo-
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modal geometries, thereby defining the notion of nonlocal resonance. We explored the wave

physics of these objects in Ch.3 using dynamical models and full-wave simulations. There,

we emphasised the negative-index properties of anomalous cones and introduced an inverse

design method to move such cones at arbitrary locations in k-space.

Finally, we completed our first design cycle in Ch.4, wherein we reported compression and

vibration experiments that we performed to anchor oligomodal geometries and nonlocally-

resonant metamaterials in reality. In the process, we made a small detour to discuss a more

mechanical perspective on oligomodality, which can also be leveraged to achieve complex

shape-morphing properties and mechanical multifunctionality.

8.1.2 A map of boundaries

Having established our core concept, we started charting out its boundaries, both on the

practical and theoretical level.

First, we contextualised the various nonlocally-resonant structures we studied along the way

within the landscape of architected media we explored in Ch.1. To do this, we updated the

state-of-the-art of Fig.1.5 by including our own designs, a process that resulted in Fig.8.1. As

discussed in the introduction, the traditional designs form a continuum, with an inherent

trade-off between bandwidth and subwavelengthness. Nonlocally-resonant metamaterials,

colour-coded in violet, clearly escape this limitation. They are able to do so because their

working principle does not rely on a collection of somewhat isolated local units, but rather on

the entire material acting in concert.

With the benefit of hindsight, we were able to uncover the signatures of nonlocal resonances

in a few elastic architected media from the existing literature, even though only one of them

directly tackled negative-index properties. The latter is a rotator metamaterial studied in

Ref.[221], in which a wave perspective on the counter-rotating squares mechanism is adopted.

This explicit wave treatment allowed us to include this study as a data point in Fig.8.1, within

the nonlocally-resonant group. As for the two other studies, they are focused on other physical

properties but exhibit clear signatures of nonlocal resonance.

The first study [34] aims to create wide band gaps using crystals of cubically-packed and

densely-packed spheres, with hinge-type connections. The associated band structures clearly

exhibit anomalous cones, but the authors do not discuss them. Instead, they attribute the

width of their band gaps to an interplay of the Bragg and local-resonance mechanisms. In line

with our discussion in Sec.5.3, we surmise that the hybridisation of standard dispersion cones

with anomalous ones also plays a central role in the formation of these wide gaps.

The second study is dedicated to studying the topology of square Maxwell frames [202]. There,

the authors clearly identify zero-frequency energy modes with nontrivial wave vectors which

fit our definition of nonlocal resonance. Interpreting the associated spectral features as Weyl

points, they go on to define topological charges and associated edge states, albeit also without
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Figure 8.1: Negative index bandwidth versus subwavelength ratio k/k0 for nonlocally-resonant
metamaterials (violet), phononic crystals (grey), labyrinthine crystals (green), Lamb waves
(yellow), locally-resonant metamaterials (blue) and roton metamaterials (pink). The upper
edge of the plot corresponds to the theoretical maximum of relative bandwidth, namely
∆ω/ωc = 2. The point corresponding to the experimental band structure obtained in Sec.4.2 is
indicated with an arrow.

discussing wave propagation aspects. This framework seems ideal to assign a topological

charge to the edge states we uncovered in Sec.5.2 on the basis of kinematic graph arguments.

Coming back to the nonlocally-resonant structures introduced in this thesis, we note that

we only included full-wave simulations and experiments among the violet data points of

Fig.8.1. Our rationale is that a theoretical, non-gapped anomalous cone would simply reach

the absolute maxima of both relative bandwith of the negative-index band and subwavelength

ratio. In practice, the only factor that limits these metrics is the height of the mass-gap that

opens at the basis of the anomalous cone, as discussed in Ch.5. This mass gap is directly

related to the non-ideality of the hinges; if required, it can be reduced by optimising hinge

design. Such an optimisation process would certainly hit a hard minimum at some point,

even if the precise nature of this mininum is unclear for now. It is certainly influenced by

technological aspects, such as manufacturing constraints, which are subject to an extremely

fast-paced evolution. If this were still insufficient for a particular purpose, one could consider

the inclusion of active elements, which compensate the residual mass gaps with negative

stiffness.

We pursued our quest with more conceptual boundaries, relaxing some defining character-

istics of nonlocal resonances and studying the resulting edge cases. In Ch.5, this approach

produced a weird counterpart to the tip-blunting mass gaps, namely momentum gaps opening

around nonlocal resonances. Left unchecked, such gaps correspond to exponential-growth

instabilities. The boundary of such a momentum gap consists of so-called exceptional points;

studying the marginally unstable temporal evolution at these points led us to realise that
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nonlocal resonances also exhibit exceptional-point dynamics.

Next, we progressively relaxed our Bloch wave requirement at the kinematic graph level. We

did so by studying geometries whose local arrow rules were close to yielding coherent plane

coverings: this combinatorial frustration also had the effect of opening mass gaps at the basis

of anomalous cones. In most cases, this meant that the nonlocal resonance acquired a finite

frequency. This, however, is not a necessary consequence of the mass-gap opening: some

perturbed arrow-rules instead lead to the apparition of edge states. They simply disappear

from the band structure, but retain their zero-frequency character.

Such states are still continuously related to Bloch waves, in the sense that we can interpret

them as Bloch waves with complex-valued wavevectors. This is to be expected, since we

obtained them as perturbations of nonlocal resonances. In Ch.6, we took a more radical step

and considered the fate of oligomodal geometries whose zero-modes did not fit the Bloch

wave requirement at all. There, we uncovered a power-law spectral signature associated to

power-law displacement profiles. Interestingly, this approach also seems applicable beyond

the confines of nonlocally-resonant metamaterials, for instance by providing a rotation-based

interpretation of the quadratic dispersion of asymmetric Lamb waves. These power-law

signatures proved useful to properly count and interpret waves in the elastic IWMs that we

treated in Ch.7.

Finally, we introduced and studied elastic IWMs to better understand the interplay of symme-

try with nonlocal resonances, having realised that representation theory applies very naturally

to elastic IWMs. Indeed, the action of a given symmetry operation is easily represented as

a permutation in the space of GCs. This also had the added benefit of allowing us to study

elastic nonlocal resonances in a three-dimensional setting.

These studies on elastic IWMs are also included within the nonlocally-resonant group of

Fig.8.1. Removing coupling between GCs altogether provides a practical path to ideal anoma-

lous cones, with their associated marginal instabilities. The resulting secular growth would

however quickly be stopped in its tracks by a nonlinear term taking the form of a hard-sphere

interaction, preventing GCs from crossing each other. In plain terms, interlaced GCs would

be free to move with respect to each other only until the amplitude of motion became large

enough for them to rattle.

8.2 Hic sunt dracones

We now provide an outlook on future work and discuss connections to other lines of research,

increasingly further away from the subject at hand, before wrapping the thesis up with some

general remarks.
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8.2.1 Metamaterials with roton-like dispersion and gapped elastic IWMs are two
faces of the same coin

The overlap of the pink and violet domains in Fig.8.1 suggests a connection between nonlocal

resonances and roton-like dispersion relations; we are now in a position to discuss it in more

detail. In the roton-like approach, one builds in long-range interactions within a standard

crystal. This produces a roton-like dip in the dispersion, which yields negative index physics.

Such an approach could be characterised as “top-down”.

Our concept, like its IWM precusors, goes the other way around. Using kinematic graphs or

electrostatics, we ensure the presence of a nonlocal resonance and then design the material

around this requirement. Then, as seen in Ch.5, we can introduce mass gaps of varying height.

This approach has a more “bottom-up” nature.

This abstract correspondence breaks down as we consider the physical mechanisms underly-

ing electromagnetic IWMs, roton-hosting metamaterials and our planar flexible metamaterials.

In particular, roton-hosting metamaterials rely on explicit long-range couplings that require

three spatial dimensions. In contrast, the purely planar nature of our metamaterials demon-

strates that such long-range couplings are not a logical necessity to obtain nonlocally-resonant

behaviour.

To push the “top-down”/“bottom-up” correspondence further, one needs to turn to the elastic

IWMs we introduced in Ch.7. Indeed, the correspondence also holds at the level of the un-

derlying physics for this class of nonlocally-resonant metamaterials. To see the “top-down”

correspondence, consider the limit in which the nontrivial long-range couplings largely dom-

inate the short range ones. What we’re left with is essentially an elastic IWM, containing

disconnected GCs that are held together by strong long-range couplings. In the opposite,

“bottom-up” direction, we can take an elastic IWM and weakly couple its GCs, as we did in

Ch.7. By increasing this GC coupling, we can make increase the mass gap and therefore make

the dispersion more roton-like.

8.2.2 Continuum theories for nonlocally-resonant metamaterials

In this thesis, we reported our efforts on microstructural design, and did not pursue effective

continuum descriptions. The interesting question of obtaining an effective continuum model

of nonlocally-resonant metamaterials remains open. Standard long-wavelength elasticity

is certainly inadequate, since it would fail to capture anomalous cones. On top of that, the

presence of internal rotating elements probably indicates a need for nonstandard continuum

elasticity theories, such as Cosserat or micropolar elasticity.

Looking at minimal anomalous dispersions like Eq.(3.6) suggests that higher-derivative terms

need to be included in any effective theory that hopes to treat standard and anomalous waves

simultaneously. We made a minimal phenomenological attempt by extending a 1D wave

equation with spatial derivatives of up to fourth order. Making a plane-wave Ansatz then
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yields a dispersion relation with encouraging features. For instance, by varying the weights

of the various spatial terms, one can get a zero-frequency solution with nonzero wavevector.

This amounts to solving the equation ω(k)2 = 0 and enforcing degenerate roots. Two distinct

real roots lead to a momentum gap and a pair of conjugate complex roots leads to a mass gap.

A proper treatment of this problem necessitates a form of homogenisation; in that regard,

the presence of two competing lengthscales of equal importance – the standard-elastic and

anomalous lengthscales – is intriguing.

8.2.3 Entering the nonlinear regime

One of the earliest obstacles we faced, namely the geometric nonlinearity we encountered in

Fig.2.2, actually constitutes a great advantage of the elastic platform compared to say acoustics

or microwaves. Indeed, we can easily enter the nonlinear regime through the gate of geometric

nonlinearities, a feat much harder to achieve in other physical platforms. We now report

a slight foray in the nonlinear regime, to motivate further research in that direction. Some

studies [254–258] have started exploring this regime, uncovering transition waves and soliton

behaviour, among a wealth of other nonlinear phenomena. We propose a different entry

point in the nonlinear regime: it is based on a defining characteristic of nonlocally-resonant

metamaterials, namely the finite number of global mechanical DOFs they host.
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Figure 8.2: Poincaré section of a 2-DOF nonlinear hamiltonian model. (a) Patch of metamate-
rial modelled, with the generalised coordinates α and β indicated in red. (b) corresponding
Poincaré section, with the reference surface defined through vanishing generalised momenta.

This suggests an alternative way to include dynamics, without relaxing the rigid-bar assump-

tion of kinematic graph theory. We can instead associate a generalised coordinate to each

global zero-mode, for instance the two angles highlighted in red in Fig.8.2(a). We then write

down a Hamiltonian for the finite patch of Fig.8.2(a), assigning torsional elastic energy to

the hinges to get some restoring forces. Integrating the resulting equations of motion with a

fourth-order Runge-Kutta scheme then yields the Poincaré section depicted in Fig.8.2(b). The

92



Discussion and Outlook Chapter 8

intercepting surface in this section was defined by making both generalised momenta vanish.

The results are typical of Hamiltonian chaos. Indeed for small angles, one sees a somewhat

regular foliation of the phase space, while outer regions are ripe with hyperbolic points and

irregular orbits.

This preliminary distributed-pendulum study raises interesting questions. For instance, does

this chaotic behaviour qualitatively survive relaxing the rigidity assumptions ? How would

chaos manifest itself on the wave level ? If chaos does survive, is it connected to the oligo-

modality of the underlying geometry ? Other nonlinear effects would certainly enter the fray,

and one should keep an open mind for phenomena that we did not anticipate, irrespective of

our entry point in that fascinating realm.

8.2.4 Potential connections to condensed-matter physics

Ideal, non-gapped nonlocal resonances are marginally unstable, as discussed in Sec.5.1. This

suggests a path towards extreme negative-index behaviour induced at the atomic scale. Indeed,

one could search for materials close to a single-DOF structural instability through databases

and existing literature. The concept of nonlocal resonance then suggests that such a material

should support additional negative-index waves on top of the standard waves of continuum

elasticity, which may open the way to highly miniaturised negative-index devices. But instead

of asking ourselves what condensed-matter physics can do for us, we should maybe think

about what we can do for condensed-matter physics.

Indeed, an intriguing idea has been put forward in the context of high-temperature supra-

conductivity [259–261], connecting a phonon-softening phenomenon with an increase of

the critical temperature. Concretely, in [259], the authors add a gaussian dip in the phonon

dispersion “manually” at a nonzero wavevector, and then use Migdal-Eliashberg theory to

predict that this leads to increased electron–phonon coupling and higher critical temperature.

While they mention the formation of charge-density waves as a potential driver of phonon

softening, their theoretical treatment remains agnostic as to the phenomenon causing the

phonon softening.

In particular, their effective approach does not provide a concrete underlying microstructure.

This is a long shot, but our theory could provide an unusual designer-like vantage point

on such questions, providing tools to create nonlocally-resonant microstructures instead of

adding dispersion minima manually.

8.3 Conclusion

In this thesis, we systematically studied the peculiar physics associated to nonlocal resonances,

uncovering a vast landscape of wave phenomena that are not subject to the same limitations

as traditional architected wave media.
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The concept of nonlocal resonance has the potential to unify interlaced wire media, extreme

roton dispersions and oligomodal metamaterials by identifying their common abstract core.

This name emphasises the essential ingredient that underlies anomalous dispersion cones,

namely a delocalised low energy mode with a nontrivial wavevector.
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A Proof of lattice-integer relation

We start by proving that if the nodes of a four-bar linkage sit on a Bravais lattice, the resulting

arrow weights can be written as integers. Let v⃗ , w⃗ ∈ R2 be the basis vector of said lattice.

Then, the i th bar in the linkage can be written in the form z⃗i = ni v⃗ +mi w⃗ , where ni ,mi ∈Z.

As a consequence of the area law, we know that any arrow weight α, up to a sign, can be

written in the form α= z⃗i × z⃗ j . Inserting the lattice condition, this yields α= z⃗i × z⃗ j = (ni v⃗ +
mi w⃗)×(n j v⃗+m j w⃗) = (ni m j −mi n j )v⃗×w⃗ . Dividing all arrow weights by the area of the lattice

unit-cell, we get α/(v⃗ × w⃗) = ni m j −mi n j ∈Z.

We now prove the converse: if the arrow weights are integer numbers, the nodes must sit

on a Bravais lattice. To see this, define v⃗ := z⃗1/(⃗z1 × z⃗2), w⃗ := z⃗1/(⃗z1 × z⃗2), n := z⃗3 × z⃗2, m :=
z⃗2 × z⃗1 + z⃗4 × z⃗1 and p := z⃗1 × z⃗2. Without loss of generality, we can rescale the dimensions of

the linkage uniformly such that the triangle areas are integer numbers, by hypothesis and

application of the area law. This implies m,n, p ∈Z. We then note that z⃗1 = pv⃗ and z⃗2 = pw⃗ .

We also have

z⃗3 = (⃗z1 × z⃗2)⃗z3

z⃗1 × z⃗2
= −(⃗z2 × z⃗3)⃗z1 − (⃗z3 × z⃗1)⃗z2

z⃗1 × z⃗2
=− z⃗2 × z⃗3

z⃗1 × z⃗2
z⃗1+ z⃗1 × z⃗3 + z⃗1 × z⃗2

z⃗1 × z⃗2
z⃗2− z⃗1 × z⃗2

z⃗1 × z⃗2
z⃗2

= z⃗2 × z⃗3

z⃗1 × z⃗2
z⃗1 − z⃗1 × z⃗4

z⃗1 × z⃗2
z⃗2 − z⃗1 × z⃗2

z⃗1 × z⃗2
z⃗2 = nv⃗ +mw⃗

so the vector joining any pair of hinges can be expressed as a linear combination of v⃗ and w⃗ ,

thus completing the proof that arrow weights can be expressed as integer numbers if and only

if the hinges can be placed on a Bravais lattice. ■
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B Details of the inverse design method

This appendix is directly lifted from the Supplementary Material of [142], up to slight format-

ting changes.

(c) (d)
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Figure B.1: (a) Geometry of inversely-designed unit cell, with the tuning angles indicated in
green. Connections depicted with dashed lines will later be removed. (b) Vertex model of the
unit cell mechanism for generic tuning angles. The incompatibility of the constitutive linkages
is indicated with a red line. (c) Unit cell in the metamaterial, with frustrating connections
removed and neighboring unit cells depicted in reduced opacity. (b) Corresponding arrow
weights on a directed graph, with a5 =−(

p
2−1)ζ+ξ−a3, a6 =−(

p
2+1)ξ−a4, a7 = (

p
2−

1)ζ−ξ−a2 and a8 = (
p

2+1)ξ−a1.

The inverse design procedure described in the main text allows us to tune the unit cell geome-

try to induce a prescribed shift of the anomalous cone to an arbitrary position in k-space. We

now provide the computational details of this procedure, applied to the case of the octagonal

unit cell shown in Fig.3.8(b). We know that this graph exhibits an anomalous cone at the M

point, and our goal is to move it to a controlled location. To obtain the necessary degrees

of freedom, we allow two geometric parameters to vary, namely the two angles θ2 and θ3

indicated in Fig.B.1(a). In Fig.B.1(b), we see that trying to propagate arrows on the graph of

this modified unit cell typically leads to incompatible configurations (red zigzag line). The

mechanism becomes frustrated as we lift the octagonal symmetry, which was making some

of the link constraints redundant. In order to compensate for this increase in the number of

effective constraints, we remove four links from the unit cell (the dashed ones in Fig.B.1(a)).
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We then consider the compatibility of the unit cell-mechanism with neighboring cells within

the crystal, which are depicted in Fig.B.1(c). They must deform together following the Floquet-

Bloch boundary conditions, which we enforce by considering arrow conservation at hinges on

the unit-cell boundary. For instance, consider the hinge highlighted in red in Fig.B.1(d), where

three edges meet. There, the sum of arrows is given by a4 + e i ky L a7 + e i kx L+i ky Lζ+η= 0. We

collect all such arrow-conservation equations in the matrix



0 −1 0 cos
(
k̃x

)
cos

(
k̃x

) −sin
(
k̃x

) −1 0 1 0

0 0 0 sin
(
k̃x

)
sin

(
k̃x

)
cos

(
k̃x

)
0 −1 0 1

−1 0 cos
(
k̃x

)
0 cos(κ̃) −sin(κ̃)

p
2+1 0 −p2−1 0

0 0 sin
(
k̃x

)
0 sin(κ̃) cos(κ̃) 0

p
2+1 0 −p2−1

0 cos
(
k̃y

)
0 −1 −cos(κ̃) sin(κ̃) −p2−1 0 0 0

0 sin
(
k̃y

)
0 0 −sin(κ̃) −cos(κ̃) 0 −p2−1 0 0

cos
(
k̃y

)
0 −1 0 −cos

(
k̃y

)
sin

(
k̃y

)
1 0 cos

(
k̃x

)+p2−1 sin
(
k̃x

)
sin

(
k̃y

)
0 0 0 −sin

(
k̃y

) −cos
(
k̃y

)
0 1 −sin

(
k̃x

)
cos

(
k̃x

)+p2−1



where the variables k̃x := ky L, k̃y := ky L and κ̃ := k̃x + k̃y correspond to the components of the

wavevector at which we want to create an anomalous cone. The components of the vectors

upon which this matrix acts correspond to arrow weights in the vertex model. Our objective is

to find the kernel of this matrix, which by design corresponds to abstract sample-spanning

mechanisms with the spatial periodicities of the target Bloch wave. As an example, the arrow

configuration depicted in Fig.3(d) of the main text was obtained in this way. Such vectors have

the form

(
a1 a2 a3 a4 R(η) I(η) R(ξ) I(ξ) R(ζ) I(ζ)

)
, (B.1)

where the components are assigned as in Fig.B.1(d). Note that the ai parameters must have

the same complex phase, since they move in concert; we can therefore set them all to be real

and only consider the relative phases that may be picked up by the arrow weights η, ξ and

ζ. Having found two such vectors (our matrix has two more columns than rows), the second

step of the method begins; we need to find geometric parameters that produce arrow rules

compatible with the null vectors we identified. For the particular class of deformations we

chose, only a1, a2, a3 and a4 depend on the geometric parameters. Since the norm of the

arrow vector is arbitrary, we can normalize three of these arrow weights with respect to the

first and obtain

 a2(w)/a1(w)

a3(w)/a1(w)

a4(w)/a1(w)

=

 sin
(
π
8

)
(−csc(θ2))sec

(
θ3 + π

8

)
sin(θ2 −θ3)

−cos
(
θ2 + π

8

)
csc(θ2)sin

(
θ3 + π

4

)
sec

(
θ3 + π

8

)√p
2+2cos

(
θ2 + π

8

)
csc(θ2)cos

(
π
8 −θ3

)
sec

(
θ3 + π

8

)
 ,
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in which the parameter w encodes the linear combination of the two null vectors we found in

the kernel of the boundary-condition matrix. This system can then be numerically solved for

w , θ2 and θ3, yielding a geometry with the desired nonlocal resonance. This can be verified by

removing the scaffolding and directly computing the band structure for this inversely-designed

geometry, as we did in the main text.
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C Fractal spectrum in quasicrystals

In the main body of this thesis, we covered the dynamical behaviour of three out of the four

zero-mode scaling classes uncovered in Ch.2. Indeed, we treated the oligomodal case at length

in Chapters 3 and 6, and briefly touched upon the plurimodal case in Fig.3.3. As mentioned

there, the latter class is covered extensively in other parts of the flexible metamaterials litera-

ture. Regarding the more generic rigid class, we mentioned that it can be treated with standard

continuum elasticity at low frequencies, noting that the origin of the resulting transverse and

longitudinal waves can be traced back to the rigid translation modes of the medium.

(a) (b)

O

B A

Figure C.1: Spectrum of a quasicrystalline oligomodal metamaterial with 32×32 cells. (a) Spa-
tial FFT of a low-frequency mode, with a high-symmetry path indicated in red. (b) Normalized
spectrum along the high-symmetry path, confirming the presence of multiple anomalous
cones.

For completeness, we now discuss wave propagation in a structure belonging to the fourth

class, which is characterised by its logarithmically-scaling number of zero-modes. The absence

of periodic order that characterises members of that class prevents us from applying band

structure theory. In the absence of this tool, we fall back to the study of finite systems and

consider a 32×32 version of the quasicrystal depicted in Fig.2.10. We diagonalise the associated

dynamical matrix and apply a spatial FFT to the resulting mode profiles. This results in the
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spectrum depicted in Fig.C.1.

Several sets of dispersion cones appear. Like the underlying modes, these cones appear at

different scales. This is particularly striking in Fig.C.1, where some nested cone structures

are apparent. To push the analysis further, a potential angle of attack would be to interpret

the fractal substitution rule as a symmetry operation, allowing us to apply group theory. This

might improve our understanding of such spectra, and also potentially allow us to study

infinite structures instead of finite metamaterial patches.
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