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Abstract

Gyrotrons are a class of high-power vacuum-electronics microwave sources, which are envisioned
to play an important role in the domain of magnetically confined fusion plasmas. Indeed, only
gyrotrons are capable of producing continuous electromagnetic waves at sufficient power (more
than 1 MW) and in the frequency range (~ 100 GHz) matching to one of the highest frequency
collective normal modes of a magnetized plasma: electron cyclotron waves. The use of millimetre
waves at the highest normal mode frequency has the added potential to very locally deposit energy
and eventually control instabilities of a fusion plasma, as well as heating it.

The impressive advances in the gyrotron R&D in the past decades makes the electron cyclotron
heating system be today the reference and most promising auxiliary heating system in a future
fusion power plant. Despite this success, the gyrotron complexity is such that some gyrotron
components still deserve some R&D. One of the key components is the electron gun, where
an annular electron beam is formed and accelerated in a region with externally applied crossed
electric and magnetic fields. For some gyrotrons, high-voltage arcing events, as well as significant
leaking currents, have been observed in the gun region and are believed to be associated to the
formation of trapped secondary electrons clouds, i.e. not belonging to the main electron beam.
These arcing events are disruptive and prevent the reliable operation of the device. Despite the
very high-vacuum level inside the tube, it is hypothesized that trapped electron clouds are formed
by ionization of the residual neutral gas and are locally confined in regions where the combination
of the externally applied electric and magnetic field form a Penning-like structure also called a
potential well. These clouds are categorized as annular nonneutral plasmas, but are in an exotic
parameter regime where limited literature exists. This is due to their high electron density, strong
externally driven azimuthal flow, non-negligible electron neutral collisions, strong dependence
on the confining electrodes geometries and the fact that they form without a controlled external
electron source.

The theoretical study of the formation, evolution and possible equilibrium of these electron
clouds in the unexplored parameter range is the main motivation of this work. For this a new 2D
(axial-radial) particle-in-cell code, called FENNECS, has been developed which is capable of
simulating the real electron gun geometry while keeping structured grids, by using a novel finite
element method based on weighted extended b-splines. This method reduces the numerical costs
and avoids the cumbersome meshing step, thus facilitating the implementation of new geometries.
FENNECS also includes: electron-neutral collisions and secondary electron emissions caused by
fast ions colliding with the electrodes, which allows the simulation of the self-consistent formation
and dynamics of the clouds in the gun. This code is then verified using manufactured solutions



Abstract

and physical systems with analytical solutions, which leads to the first simulations of trapped
electron clouds formation, based on first principles, in gyrotron electron guns.

In a second step, FENNECS is used to study the conditions of cloud formation in a simplified
geometry, and guiding the derivation of a OD analytical fluid model describing the trapped electron
clouds quasi steady-state. This allows the derivation of analytical scaling laws for the maximum
trapped cloud density and corresponding leaking current, as a function of the applied external
parameters, which can produce fast estimates. In addition, this shows that the electrons are lost
from the cloud due to a radial drifts imposed by collisional drag forces caused by electron-neutral
collisions. Furthermore, FENNECS is successfully validated using experimental measurements
obtained with a gyrotron suffering from problematic leaking currents, which allows the first
simulation of trapped electron clouds spontaneously forming in a realistic gyrotron gun geometry,
and shows that not all potential wells are problematic, thus supporting the relaxation of the "no
potential-well” design criteria currently used in gyrotron gun design.

The code is finally used to support the design of a new experiment, called T-REX, which is
planned to study experimentally the trapping of electron clouds in conditions similar to the ones
present in gyrotron electron guns, with dedicated and more precise diagnostics than what is
physically possible in gyrotrons. FENNECS simulations led to the design of three electrode
configurations and to the selection of the experimental diagnostics.

Furthermore, the trapped electron clouds are annular and highly susceptible to fast (compared to
the cloud build-up time-scales) azimuthal ”Kelvin-Helmoltz-like” instabilities, called diocotron
instabilities, which cannot be simulated in FENNECS due to its assumed azimuthal symmetry. A
finite difference eigenvalue solver is used to study the linear stability of the clouds to diocotron
normal modes, assuming an electron cloud of infinite longitudinal extent along an homogeneous
magnetic field and using the radial density profiles of clouds obtained from FENNECS simulations.
These simulations indicate that this instability will develop in electron clouds trapped in gyrotron
electron guns, but that the instability should depend on the externally applied bias. This result
opens the door to exploring further this instability in the context of gyrotrons.

Keywords— Gyrotron, Nonneutral plasmas, Particle-in-cell, Finite Element Method, Confinement,
Diocotron.
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Résumé

Les gyrotrons sont une classe de sources micro-ondes électroniques sous vide de haute puissance, qui
devraient jouer un role important dans le domaine des plasmas de fusion confinés par champ magnétiques.
En effet, seuls les gyrotrons sont capables de produire des ondes électromagnétiques continues a une
puissance suffisante (plus de 1 MW) et dans la gamme de fréquences (~ 100 GHz) correspondant a I’un
des modes normaux collectifs de plus haute fréquence d’un plasma magnétisé : les ondes cyclotroniques
électroniques. L’ utilisation d’ondes millimétriques a la fréquence du mode normal le plus élevé a le potentiel
supplémentaire de déposer tres localement de I’énergie et éventuellement de contrdler les instabilités d’un
plasma de fusion, ainsi que de le chauffer.

Les progres impressionnants de R&D sur les gyrotrons au cours des dernieres décennies font que le systeme
de chauffage électron-cyclotron est considéré aujourd’hui comme le systeme de chauffage auxiliaire de
référence et le plus prometteur dans une future centrale a fusion. Malgré ce succes, la complexité du
gyrotron est telle que certains de ses composants peuvent bénéficier de plus de R&D. L’un des composants
clés est le canon a électrons, ou un faisceau annulaire d’électrons est formé et accéléré dans une région ot
des champs électriques et magnétiques croisés sont imposés de maniere externe. Pour certains gyrotrons, des
arcs électriques a haute tension, ainsi que des courants de fuite importants, ont été observés dans la région
du canon et ont été associés a la formation de nuages d’électrons secondaires piégés qui n’appartiennent pas
au faisceau d’électrons principal. Ces arcs électriques sont perturbateurs et empéchent le fonctionnement
fiable de I’appareil. Malgré le niveau de vide trés élevé a I’intérieur du tube, il est supposé que les nuages
d’électrons piégés sont formés par I’ionisation du gaz neutre résiduel, et sont localement confinés dans
des régions ou la combinaison du champ électrique et du champ magnétique externe forme une structure
de type Penning aussi appelée puit de potentiel. Ces nuages sont classés dans la catégorie des plasmas
annulaires non neutres, mais se trouvent dans un régime de parametres exotiques pour lequel la littérature
est limitée. Cela est dfi a leur forte densité d’électrons, a I’'importance du flux azimutal induit par les
champs externes, aux collisions non négligeables entre électrons et neutres, aux effets importants de la
géométrie des électrodes de confinement et au fait que les nuages se forment en 1’absence d’une source
controlée d’électrons.

L’étude théorique de la formation, de 1’évolution et de 1’équilibre éventuel de ces nuages d’électrons dans
la gamme de parametres inexplorée est la principale motivation de ce travail. Pour ce faire, un nouveau
code 2D (axial-radial) de type “particle-in-cell”, appelé FENNECS, a été développé. Il est capable de
simuler la géométrie réelle du canon a électrons tout en conservant des grilles structurées pour résoudre
I’équation de Poisson en utilisant une nouvelle méthode d’éléments finis basée sur des b-splines étendues et
pondérées. Cette méthode réduit le colit numérique et évite 1’étape fastidieuse du maillage, facilitant ainsi
la mise en oeuvre de nouvelles géométries. FENNECS inclut également : les collisions électron-neutre
et les émissions d’électrons secondaires causées par la collision d’ions rapides sur les électrodes, ce qui
permet la simulation de la formation et la dynamique autoconsistantes des nuages dans le canon. Ce code
est ensuite vérifié a ’aide de solutions fabriquées et de systeémes physiques ayant des solutions analytiques.
Ceci conduit a la premiére simulation, basée sur des principes premiers, de nuages d’électrons piégés dans
un canon a électron.

iii



Résumé

Dans un deuxieme temps, FENNECS est utilisé pour étudier les conditions de formation des nuages, dans
une géométrie simplifiée, et pour dériver un modele fluide analytique OD décrivant les nuages d’électrons
piégés en quasi équilibre. Cela permet de dériver des lois d’échelle analytiques pour la densité maximale
du nuage piégé et le courant généré, en fonction de parametres expérimentaux imposés. FENNECS est
également validé a I’aide de mesures expérimentales obtenues avec un gyrotron souffrant de problemes
de courant indésirables a haute tension. Ces simulations constituent la premicre simulation de formation
cohérente de nuages d’électrons piégés dans une géométrie réaliste de canon a électrons de gyrotron, et
montrent que tous les puits de potentiel ne sont pas problématiques, ce qui permet d’assouplir les criteres
de conception des futurs canons a électrons de gyrotron.

Le code est finalement utilisé pour soutenir la conception d’une nouvelle expérience, appelée T-REX,
congue pour étudier expérimentalement le piégeage des nuages d’électrons dans des conditions similaires a
celles présentes dans les canons a électrons de gyrotrons, avec des diagnostics dédiés, plus précis que ce
qui est physiquement possible dans les gyrotrons. Des simulations par FENNECS ont conduit au choix des
diagnostiques expérimentaux et au choix de trois géométries pour les électrodes.

De plus, du fait que les nuages d’électrons piégés sont annulaires et donc tres sensibles aux instabilités
azimutales rapides (par rapport aux échelles de temps de formation des nuages), de type Kelvin-Helmholtz,
appelées instabilités diocotron. Celles-ci ne peuvent pas étre simulées dans FENNECS en raison de la
symétrie azimutale imposée dans le code. Un solveur aux valeurs propres basé sur les différences finies est
utilisé pour étudier la stabilité linéaire des nuages aux modes normaux diocotron, en supposant un nuage
d’électrons d’extension longitudinale infinie le long d’un champ magnétique homogene et en utilisant
les profils de densité radiale des nuages d’équilibre, obtenus a partir de simulations FENNECS. Ces
simulations indiquent que 1’instabilité diocotron se développera dans les nuages d’électrons piégés dans les
canons a électrons du gyrotron, mais que cette instabilité devrait dépendre du biais externe. Ce résultat
ouvre la porte vers une exploration plus approfondie de cette instabilité dans le contexte des gyrotrons.

Mots-clés— Gyrotron, Plasmas non-neutres, Particle-in-cell, Méthode d’éléments finis, Confinement,
Diocotron.
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| Introduction

1.1 Magnetically confined fusion research

With the rise in world population and the industrialization of developing countries, the need for abundant
and clean energy has become a worldwide problem. This is particularly relevant as our current main energy
source, fossil fuels, has both catastrophic effects on the earth climate and a limited availability, and the
current alternatives each present their own challenges. In the group of renewable energies, wind and solar
electricity production is inherently intermittent and necessitates the development and construction of costly
storage solutions, while hydroelectric production is reaching its maximum power in western countries and
geothermal energy poses some geological risks. The nuclear fission reactors remain the best available
technological solution to the energy crisis thus far. However, they pose the problem of long-term storage of
the nuclear waste, and can affect a wide area and a large population in case of a major nuclear accident. To
address these challenges, a potential clean, safe, and reliable energy source is the nuclear fusion reaction,
which is also the energy source of the Sun.

The fusion reaction is done by combining two light elements in order to form one heavier element and
release energy in the process. During this process, the mass of the fusion products is lower than its
reactants, causing the release of large amounts of energy (several MeV per reaction) in the form of kinetic
energy of its products. In the case of nuclear fusion for energy production, the reactants are a deuterium
and a tritium atom, two isotopes of hydrogen, and the products are a helium atom and a neutron,

D+T — He +n+ (17.6 MeV). (1.1)

This is the reaction envisaged for a fusion power plant because it maximizes the fusion cross-section (see
Figure 1.1) which maximizes the reachable reaction rate. For this reaction to occur, the two light elements
must possess a sufficient kinetic energy to overcome the strong Coulomb repulsion that exists between
the two positively charged nuclei. For the matter to have average kinetic energies maximizing the fusion
collision cross-sections (of the order of 10 keV), the temperature of the D-T fuel must reach approximately
100 million degrees Kelvin. At these temperatures the matter is fully ionized and is in the plasma state.

On Earth, reaching these high temperatures is challenging and necessitates a confinement of the plasma to
keep it isolated from its environment. In addition, to reach a net positive fusion power balance, the plasma
needs to be confined with a sufficient temperature, density, and energy confinement time defined by the
Lawson criterion [1]. The energy confinement time is the characteristic time over which the energy of the
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Figure 1.1: Fusion cross-section as a function of the ion temperature for a thermalized plasma.

plasma is lost. One of the most promising confinement schemes is based on magnetic confinement, in
which the plasma’s charged particles are confined by closed helically wound magnetic field lines forming
a toroidal magnetic cage. The current two main solutions to generate such magnetic configurations are
the tokamak and the stellarator. In a tokamak, as represented in Figure 1.2, the toroidal magnetic field
is generated using external coils and the main poloidal magnetic field is self-generated by the toroidal
plasma current. Here, the terms poloidal and toroidal directions refer to the short and long paths around
the torus respectively (see Figure 1.2). External poloidal field coils can also be used to modify the poloidal
magnetic field, thus allowing the shaping and control of the plasma cross-section and of the magnetic
field lines. This configuration is used for example at EPFL in the Tokamak a Configuration Variable
(TCV) experiment [2] and will be used for the future International Thermonuclear Experimental Reactor
(ITER) [3]. In a stellarator, the magnetic field is fully generated using external coils. This has some
interesting stability properties for the plasma, as no toroidal plasma current is necessary. However, the
complex shape of the coils needed to produce the external magnetic field is challenging from an engineering
perspective. This configuration is currently used in the Wendelstein 7-X experiment [4]. Both the TCV
and Wendelstein 7-X configurations are shown in Figure 1.3.

To reach the high temperatures necessary for a net fusion power, Ohmic heating, which heats the plasma by
inducing a current in the torus and using the plasma resistivity to transform electric energy into heat, is not
sufficient in tokamaks. This is due to the fact that the plasma resistivity decreases with its temperature.
Similarly, this technique is not desired in stellarators as the presence of a plasma current can lead to the same
problematic instabilities present in tokamaks and defeats the purpose of using a stellarator. To alleviate
this problem, several methods have been devised such as Neutral Beam Heating (NBH), Ion Cyclotron
Resonance Heating (ICRH), Lower Hybrid and Electron Cyclotron Resonance Heating (ECRH) [3, 6-8].
The ECRH uses high power microwaves to heat the electrons in the plasma and, because of its wave
frequency range, has the advantage of allowing the use of wave-guides to transport the wave from the source
to the tokamak or the stellarator, therefore reducing the physical footprint of the heating device close to the
machine [9]. To heat the electrons, a high power microwave is launched into the plasma with a frequency

2
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Figure 1.2: Schematic of a tokamak representing the generation of the confining magnetic
fields [5].
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Figure 1.4: Schematic of a gyrotron oscillator with its main components. The electron beam is
represented in yellow and the wave is shown in red. Courtesy of Jean-Philippe Hogge.

equal to the local electron cyclotron frequency Q.. = eB/m,, or one of its harmonics, of the region of
plasma that needs to be heated. Here e is the electron charge, B is the local magnetic field amplitude
and m, is the electron mass. This energy transfer from the wave to the plasma will only happen at the
position where the wave frequency w; f is equal to a harmonic of .., which allows for localized heating
or current drive of the plasma and can be used to control or suppress problematic plasma instabilities [6,
10]. However, depending on the mode of injection of the electromagnetic wave (X or O-mode [11]), the
magnetic field amplitude or the plasma density along the path of the wave, a cut-off region can be reached
where the wave is reflected [6, 11]. This can be very problematic as the plasma is then not heated and
the rf power can be dissipated on parts of the tokamak vacuum-vessel that are not designed to withstand
such a load. However, wave frequencies that are above the cut-off frequencies can reach the interaction
region. This motivates the use of microwaves at harmonics of Q... Only one type of coherent rf source
is currently capable of reaching the frequency (in excess of 100 GHz) at MW-Ievel in continuous mode
needed for fusion applications. This device is called a gyrotron and is the main motivation for the studies
presented in this thesis [12-15].

1.2 The gyrotron oscillator

Gyrotrons are a class of coherent electromagnetic wave sources operating at frequencies in the range of a
few GHz to THz and at power between 0.1 and 2 MW [12, 13]. They can operate both in pulsed modes
or in continuous wave (CW) with overall power efficiencies between 30% and 50%. These devices are

4
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Figure 1.5: Schematic of a cylindrical gyrotron cavity with the annular electron beam in red
traversing the cavity axially. The spirals show the Larmor motion of the electrons. The electron
Larmor radius is increased for readability, but it is usually two orders of magnitude smaller than
the cavity radius (see Figure 1.7).

y

part of the vacuum-electronics microwave sources and exploit the electron cyclotron maser instability
(ECMI) [16] to excite the wave. An example of such a device is represented in Figure 1.4.

This instability can appear when a strongly magnetized and weakly relativistic annular electron beam
passes through a cylindrical cavity (see Figure 1.5) and interacts with the electromagnetic modes supported
by the cavity. Due to thermal noise, all these modes are present in the cavity at extremely low intensities
and can serve as a seed for the ECMI. Depending on the relative phase between the electron cyclotron
motion and the wave, electrons are either accelerated or decelerated by the wave. Due to their weakly
relativistic energy, this will in turn change their respective relativistic cylcotron frequency Q. /y causing
the accelerated electrons to rotate slower as y increases and the decelerated electrons to rotate faster as y
decreases. Here, y = 1/4/1 — v2/c? is the Lorentz relativistic factor of the electron, with v the electron
velocity and ¢ the speed of light in vacuum. Due to this interaction, most of the electrons will obtain
a similar gyrophase, which is the azimuthal phase of their cyclotron motion, in what is called a phase
bunching [16]. As seen in Figure 1.6, this process will generate electron bunches on the Larmor circle, and
these bunches will rotate at a frequency close to the cyclotron frequency of the electrons.

Once a bunch is formed, collective interactions and effective energy exchange can develop between the
beam and the wave, depending on the relative phase between them. Three cases can be distinguished. First,
if the bunch is exactly in phase with the wave, no net energy transfer happen between the wave and the
beam as half of the electrons are accelerated, and the other half is decelerated. As with individual electrons,
if the bunch phase is greater than the wave phase, the bunch remains in the accelerated region and a net
energy is transferred from the wave to the beam. This configuration happens when the frequency of the
wave w, ¢ is slightly smaller than the cyclotron frequency or its harmonics. Inversely, if the bunch phase is
smaller than the wave phase, the bunch remains in the decelerated region and statistically more electrons
are decelerated, leading to a net energy transfer from the beam to the wave. This configuration happens
when the frequency of the wave w, ¢ is slightly larger than the cyclotron frequency or its harmonics, and is
the basis of electromagnetic wave excitation in gyrotron cavities. For this instability to occur, the angular
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Figure 1.6: Process of bunching of the electrons (red dots) due to the ECMI viewed at three
moments in time, in the reference frame of the electric field rotating at the frequency w, . In this
frame the electric field is always in the x direction. The blue circle highlights the initial Larmor
trajectory with radius r;. Top: The electrons are initially rotating at their cyclotron frequency
Q. = w, ¢ with uniform distribution in the gyrophase and form a bunch at y = 0. No net energy
transfer is achieved. Bottom: The electrons are initially rotating at their cyclotron frequency
Qce < w,y with uniform distribution in the gyrophase and form a bunch in the decelerating
region. A net energy transfer is achieved from the beam to the wave.
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Figure 1.7: Left: Amplitude of the electric field profile of the TE»7 6,1 nominal mode of the
dual-frequency gyrotron operated at TCV [17]. The black circle highlights the position of the
annular electron beam, of radius Ry, used to excite this mode. Right: a) b) Amplitude and
phase of the electric field profile of the TCV dual-frequency gyrotron nominal mode at 128 GHz
obtained with the spectral code TWANGlinspec [18]. ¢) Wall radius (blue), beam radius (black)
and normalized magnetic field amplitude (red) in the region around the cavity. The blue shaded
region highlights the axial extent of the cavity. Plots courtesy of Jérémy Genoud

frequency of the wave w;+ must match the relativistic cyclotron frequency of the beam Q.. /y with

ch

Wrf =~

(1.2)

In a gyrotron, the electric field of the wave is purely perpendicular to the cavity axis (E, = 0), which is
called a Transverse Electric (TE) mode. The TE modes are designated by their TE,, ,, , number where m
is the azimuthal mode number, p is the radial wave number and g is the longitudinal wave number. An
example of a TEy¢ 7,1 mode, used for the dual-frequency gyrotron of TCV [17], is represented in Figure 1.7.

1.2.1 The gyrotron components

To create the right conditions for the ECMI to develop and to transfer enough power to the wave, the
gyrotron needs several components presented in the sketch of Figure 1.8, and in more details in Figures 1.4
and 1.9.

Starting from the bottom, there is first a Magnetron Injection Gun (MIG), which produces an annular
electron beam of typically 3 MW at 40 A, 75 — 80 kV accelerating bias, and which will be the main focus
of this thesis. It is composed of an annular cathode (emitter ring), biased negatively, generating electrons
through thermionic emissions, and one or two accelerating electrodes set at higher potentials to impose
an accelerating radial and axial electric field. The two electrodes configuration is called a diode gun,
and the three electrodes configuration is a triode. An example of a triode configuration is represented in
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Figure 1.8: Simplified schematic of a gyrotron oscillator. The electron beam is indicated with
orange lines and the rf wave trajectory is indicated with black arrows. The beam-wave interaction
happens in the cavity represented in red. The electron gun region, which is the part of interest for
this thesis, is delimited in blue.




1.3 The problem of trapped electrons in gyrotron electron guns

Figure 1.9, and, using the design of this figure, a diode configuration would have the same potential for the
body and the anode (see Figure 1.4). The electrode geometries and the amplitude of the applied voltages
characterize the beam energy y and the pitch-angle a = v, /v, which is the ratio of the electrons’ velocity
perpendicular and parallel to the magnetic field. The pitch-angle needs to be maximized to increase the
energy transfer to the wave, as only the perpendicular kinetic energy is available for the interaction, but
needs to remain sufficiently low to prevent reflection of electrons towards the gun due to magnetic mirror
effects (see Figure 1.9). The advantage of the triode gun is that changing individually the applied voltages
on the anode, cathode, and body allows the separate control of @ and y, while in the diode gun these two
quantities are co-dependent and modified simultaneously by a change of applied potentials.

After generation, the electron beam is accelerated by the electrodes along the magnetic field lines, generated
by a set of superconducting coils, from a region of low magnetic field (~ 0.2 T), close to the gun, to a
region of high magnetic field (3 — 7 T) in the cavity (see Figure 1.9). This increase of magnetic field
amplitude will cause a compression of the beam, and a conversion of the electrons’ kinetic energy from
parallel to perpendicular, due to the conservation of magnetic moment of the electrons.

In the cavity, the beam-wave interaction takes place, inducing a large transfer of beam perpendicular kinetic
energy to the wave. By properties of the TE modes, the amplitude of the electric field is non-uniform
and, in the transverse plane, a localized ring exists where the electric field envelope is maximum (see
Figure 1.7). To maximize the beam-wave interaction, the annular electron beam must be radially located
on this same region of high electric field amplitude. Since the magnetic field in the cavity is imposed by
the excited wave frequency and the electrons’ y, and the electrons follow the magnetic field lines from
the cathode to the cavity, the beam radius can only be controlled by the annular cathode radius and the
magnetic field amplitude at the cathode which imposes constraints on the gun design.

After interaction with the wave, the beam follows the magnetic field lines and is collected at the top of the
gyrotron in what is called a collector. The excited wave leaving the cavity is first converted from the TE
mode of the cavity to a quasi Gaussian mode by a mode converter called the "launcher”. This wave is then
reflected by a set of mirrors and exits through a diamond window, where it can be guided by wave-guides
or mirrors toward the target.

1.3 The problem of trapped electrons in gyrotron electron guns

Gyrotrons are technically challenging because they combine several advanced domains of engineering,
which are high-power rf devices, ultra-high vacuum, mm-wave propagation, supra-conducting magnets,
continuous operation, low-temperature, high-temperature and extreme heat deposition density. Each of
these topics bring their own complexity and need to cohabit to allow the production of one gyrotron. Most
of the gyrotron components presented in this section necessitated long development and still need R&D. In
this thesis, we will focus on one component: the electron gun, which produces the main electron beam of
the gyrotron, and is represented at the bottom of Figure 1.8.

In some gyrotron electron guns, problematic currents (i.e. not associated to the main electron beam) have
been measured between the cathode and anode of the MIG. At large amplitudes, these currents have caused
damage to the electrodes or other parts of the gun [19]. Even at low amplitudes, these currents need to be
sustained by a polarizing power supply (PS), either anode or body PS, that is generating the accelerating
electric field for the main beam, and which is distinct from the Main High Voltage Power Supply (MHVPS)
that produces the main electron beam (see Figure 1.9). Typically, exceeding a critical current as low as a
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Figure 1.9: Electrical schematic of the TH1510 bi-frequency gyrotron used at TCV with the
4 individual power supplies powering the gyrotron. This gyrotron uses a triode configuration.
APS (light blue) is the anode power supply, which biases the anode w.r.t. the cathode potential.
FPS (green) is the filament power supply, which heats the emitter ring to permit thermionic
emission. MHVPS (red) is the main high voltage power supply, which imposes the negative
cathode potential w.r.t. ground and provides the beam current. BPS (pink) is the body power
supply, which imposes the body positive potential w.r.t. ground. The casing of the gyrotron,
vacuum vessel, and the collector (dark blue) are set to ground. In addition, the amplitude of the
axial magnetic field B, on the symmetry axis is represented on the right. Schematic courtesy of
Ugo Siravo.
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Figure 1.10: Schematic of the electron gun used in the first prototype of the European 170GHz
2MW coaxial gyrotron developed for ITER [23, 24]. This geometry was subject to both potential
well and magnetic mirror trapping in different regions of the gun. The gray parts denote an
electrode and orange denotes an insulator. The yellow surface highlights the emitter ring, where
the main electron beam is produced. The dashed lines show the magnetic field lines and the green
arrows show the electric field direction. The red boxes highlight the regions of trapping.

few tens of mA will cause the polarizing PS to switch itself off to protect its internal components, and,
therefore, prevent the gyrotron operation [20]. In addition, these currents combined with the high biases
imposed between the electrodes (~ 100 kV) cause an important localized power deposition on the electrode
surface, which could cause outgassing in the vacuum vessel and hamper the tube functioning.

These detrimental currents have been linked to the trapping of electrons not belonging to the main electron
beam, in the electron gun region, either by electrostatic potential wells (described in more detail in section
1.3.1) or by magnetic mirror traps generated by the strong axial variation of magnetic field amplitude [21].
An example of a MIG suffering from both types of trapping is shown in Figure 1.10 as an illustration. This
example considers a diode coaxial gun, but both types of trapping also occur in conventional diode and
triode guns. First, an initial population forms in the trapping region, either by ionization of the vacuum
vessel background gas by background radiation, or by electrons generated by field-emission [22] on the
electrode surfaces. This initial trapped population will then gain, by the effect of the externally applied
electric field, sufficient kinetic energy to ionize the residual neutral gas (RNG) present in the vacuum
vessel. This can lead to the build-up of a cloud with significant space-charge that can modify the local
electric field. This can both perturb the energy and pitch-angle properties of the main electron beam, and
modify the trapping potential of the cloud, leading to the constant release of electrons generated by the
trapped population, and to the collection of an electronic current on parts of the gyrotron.

1.3.1 Potential well trapping

Potential wells can be formed in MIG guns by the combination of externally applied electric and magnetic
fields, and have some analogy to the ones used in Penning traps [25]. As can be seen in Figure 1.11, this
kind of trapping can happen if a magnetic field line crosses the same electric equipotential line twice.
In this case, the projection of the electric field on the magnetic field line changes sign between the two
cross-points and a potential well is formed that can trap either positively or negatively charged particles
depending on the electric field direction. In the example of Figure 1.11, negatively charged particles would
remain trapped, while positively charged particles would be repelled. As a result, such a potential well
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Figure 1.11: Left: Schematic of the trapping mechanism in potential wells. In this case, a
magnetized electron is moving along the blue magnetic field line and is subjected to a trapping
non-uniform electric field. Right: Example of electric potential as seen by a particle travelling
along a magnetic field line. The maximum potential well depth Uy, is defined for a specific
magnetic field line as the difference between the local maxima of electric potential energy U,
and the highest local minimum U,,,;,, along the magnetic field line coordinate s.

could lead to the formation of a nonneutral plasma.

In negative charge trapping potential wells, the well depth Uy (), at the magnetic field line coordinate s,
is defined on each field line by computing the difference between the normalized local electric potential
energy in electronvolts, U(s) = e¢(s), and the highest reachable minimum on each side along the same
magnetic field line coordinate U,,;,, = min(U(s)) [21, 26]. Here ¢ is the electric potential, and reachable
is understood in the sense that the magnetic field line is not intersecting a wall, and a particle travelling
along the field line would therefore not be captured. This definition translates mathematically to

Uwet1 (s) = U(s) = Upin- (1.3)

The maximum depth is Uy = Uj,ax — Upmin as represented in Figure 1.11. This definition reverses the
maximum and minimum for positive charge potential wells. However, as this work focuses on electron
cloud trapping, potential wells will only be defined for negatively charged particles trapping, and a
potential well will be present if the value of the electric potential along a magnetic field line presents
a local maximum. We remark that the values of Uy, for a given magnetic field configuration, result
from a combination of the externally imposed electric field as well as that generated by the space-charge.
Furthermore, the equilibrium charge density depends on the potential well properties. The equilibrium
potential well can therefore only be known by solving a complex non-linear set of equations. However, in
vacuum the potential well depends only on the magnetic field topology and on the electrodes geometries.
This allows for a given magnetic field configuration to define a normalized potential well depth depending
on the applied bias. An example of a potential well is given in Figure 1.12 for the geometry of Figure 1.10
using the nominal magnetic field of this gyrotron. In this configuration, a deep potential well is formed
with a maximum depth U, = 30keV for an applied bias between the cathode and the anode of A¢ = 90kV.
In gyrotron guns, the potential wells typically occupy volumes of the order of hundreds of cm?® with depths
ranging from 1 keV to tens of keV.
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Figure 1.12: Potential well in vacuum for the geometry of the electron gun used in the first
prototype of the European 170 GHz 2 MW coaxial gyrotron developed for ITER [23, 24] at
the nominal magnetic field configuration (see Figure 1.10). The Cathode is set at a potential
Ocarhode = —90kV and the other electrodes are set at ground. A potential well of depth
Uy = 30keV is formed. The black dashed-dotted lines represent the magnetic field lines, and the
yellow surface highlights the emitter ring, where the main electron beam is produced.

1.3.2 Magnetic mirror trapping

Depending on the electrons’ initial pitch-angle and on the ratio of magnetic field amplitude between the
gun and the cavity, some electrons can be reflected towards the gun by the effect of magnetic mirror before
entering the cavity. These reflected electrons will become confined by the electric potential close to the
gun and the magnetic mirror in the direction of the cavity [27, 28]. This trapping mechanism is due to the
combined conservation of the adiabatic invariant u = ymevi /2B and the electron kinetic energy, causing
the increase of v, and the decrease of v for an increasing magnetic field amplitude [29]. For this reason,
this kind of trapping is also called adiabatic trapping.

In this type of trapping, electrons can escape due to a change of pitch-angle not induced by magnetic
effects. This can be induced for example by electron-neutral collisions, or by axial acceleration caused by
the space-charge generated electric field. If the losses are towards the cavity, the secondary electrons are
simply collected in the collector with a limited effect. However, electrons can also be released towards
the cathode and hit the electrode surface with energies up to the order of a few keV and free secondary
electrons at the impact point [27]. The release of secondary electrons is usually not on the emitter ring
surface and the energy and pitch-angle parameters of these secondary electrons is typically compatible
with magnetic trapping, leading to an increase of the number of trapped electrons. The accumulation of
trapped electrons modifies the local electric field close to the emitter ring, which perturbs the properties of
the main electron beam (pitch angle and beam current), and can reduce the interaction efficiency in the
cavity [21].

1.3.3 Current solutions

To avoid the formation of electron clouds in potential wells, the current solution is to avoid the formation
of any potential well at the nominal electric and magnetic field configuration of the gyrotron. This is done
by carefully adapting the electrode geometry of the gun [20, 21, 30]. However, this process is challenging
from an engineering point of view as local changes, as small as a few millimetres, in the geometry or
magnetic field topology can create deep potential wells with a depth of the order of several keV [30]. This
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sensitivity to small geometric changes is illustrated in chapter 4. In addition, this criterion comes last in
the design requirements of the gun, as the conditions of electric and magnetic field amplitude and direction
in the gun must first be set to ensure the correct beam parameters at the entrance of the cavity.

Concerning the magnetic mirror trapping, the secondary electron emission on the cathode can be mitigated
using materials with lower electronic yield around the emitter ring. In addition, the cathode geometry can
be adapted to favour a normal incidence of the reflected electrons on the cathode surface, thus reducing
the secondary electron yield. In some cases, the anode geometry has also been modified, with limited
success [31], to capture the reflected electrons in what is called a Halo shield [21], thus preventing the
build-up of the electron cloud.

1.3.4 Open questions

Experimental results in MIGs have shown that in some cases a deep potential well (several keV) could be
present while no problematic currents were measured [30]. These results highlight the lack of understanding
in electron cloud formation in gyrotron electron guns. The physical process of formation of these nonneutral
plasmas is not yet well understood, no satisfactory model exists to predict the cloud density and the
resulting current, and the oscillatory behaviour of the collected currents remains to be explained. While
the existing knowledge on nonneutral plasmas is broad [32], in particular at low temperature and low
densities, there remain unexplored nonneutral plasma regimes. This is for example the case for high-density
nonneutral plasmas subjected to large externally imposed flows and subjected to electron-neutral collisions.
Furthermore, laboratory nonneutral plasmas are usually created using an external electron source (e.g.
Penning traps, main beam of the gyrotron, magnetrons...), and not formed self-consistently due to ionization
of the neutral gas, which significantly alters the dynamic of the electron cloud formation. Nonneutral
plasmas formed self-consistently by neutral ionization can typically occur in gyrotron electron guns,
therefore a deeper study of such configurations would also represent a deeper understanding of more exotic,
unexplored nonneutral plasma regimes.

1.4 Nonneutral plasmas

Contrary to fusion plasmas formed by a combination of positive and negative particles, and where quasi-
neutrality is ensured, nonneutral plasmas possess a strong charge imbalance and are typically composed of
only one type of charges. These plasmas can appear in astrophysics, for example in the magnetosphere of
pulsars [33], or on earth in the study of elementary particle physics [34-36], in particle accelerators [32],
or in rf sources such as the gyrotron [16, 19]. Even if nonneutral plasmas possess by definition strong
non-neutrality and produce important space-charge effects, they exhibit the same properties of Debye
shielding and long-range collective behaviours [32] as neutral plasmas. Regarding the Debye shielding, the
main difference between the neutral and nonneutral plasmas is in the amplitude of the average electric field.
Indeed, in a neutral plasma at equilibrium, the average electric field is zero due to quasi-neutrality, while in
a nonneutral plasma at equilibrium, the average space-charge effects induce an important zeroth order
electric field not screened by the response of the nonneutral plasma.

Because of the non-neutrality causing strong Coulomb repulsion between the charged particles, the plasma
particles can only be trapped either by rf fields, or by a combination of static electric and magnetic fields [25,
32]. The most common trapping configuration, called the Penning trap and represented in Figure 1.13,
consists of a cylindrical vessel, subjected to an axial magnetic field, and two biased end electrodes
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Figure 1.13: Schematic of a Penning trap, where a nonneutral electron plasma in the middle
(dark blue) is radially trapped by the axial magnetic field (green) and axially trapped by the axial
electric field (red) [41].

generating an axially confining electric field. Nonneutral plasmas in Penning traps exhibit extraordinary
stability to electrostatic modes [37], allowing the storage of charged particles for long time periods ranging
from hours to days [38]. Indeed, the conservation of energy and canonical angular momentum in these
plasmas establishes a constraint on the mean-square radius of the plasma, for cylindrical plasmas in the
absence of asymmetries and collisions with neutrals [39, 40]. This means that the percentage of lost
particles can be bound to small values by controlling the magnetic field amplitude and the vacuum vessel
radius. This result is however only valid for cylindrical plasmas trapped in cylindrical geometries. Indeed,
an annular plasma trapped in a coaxial geometry, as is the case in MIGs, could have some of the particles
drifting inwards and some drifting outward, conserving the same mean-square radius of the plasma and
leading to the collection of the particles on the inner and outer electrodes.

In Penning traps, to ensure that the equilibrium state exists over very long time-scales [42], many dedicated
theoretical and experimental studies have been carried out to avoid disruptive instabilities such as the
azimuthal diocotron instability [43-53] and, to a lesser extent, axial resonant space-charge effects [25].
The confining electric potential along the magnetic field lines, which is imposed externally, is generally of
the order of tens of V and the trapped plasma densities are low with a Brillouin ratio f = wa, / Q% < 1,
where w,, = v¢?n/(eym) is the plasma frequency and €. is the cyclotron frequency [25]. Here, g is the
trapped particle charge and m its mass, n is the plasma density, and €y is the vacuum permittivity. In most
laboratory nonneutral plasmas, the cloud temperature is initially determined by the mechanisms of electron
generation and injection, and the cloud is often further cooled to temperatures of the order of a few eV,
through cylcotron radiation cooling [54], to reduce the electron neutral collision cross-sections and increase
the confinement time, or cooled to extremely low temperatures (a few K) to study quantum effects [25].

1.4.1 The rigid rotor equilibria [32]

To illustrate the type of equilibrium reached by nonneutral plasmas in Penning traps, an ideal nonneutral
plasma configuration is presented in this section. This example considers an infinitely long pure electron
plasma column of density ng confined radially by a uniform axial magnetic field B = Byé, as represented
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Figure 1.14: Left: Plasma column configuration considered for the rigid rotor equilibrium. Right:
Equilibrium azimuthal angular velocity for a fluid element of the rigid rotor equilibrium as a
function of the Brillouin ratio.

in Figure 1.14. The plasma is considered at equilibrium using a cold fluid description in cylindrical
coordinates (r, 8, z). For this configuration, the radial density is defined as

0<r=<ryp,
n(ry=1"0 "= (14)
0 r>rp,

with r, the radial dimension of the column. This electron cloud generates a radial electric field due to the
space-charge

me 2
wyr 0Zr<ry
_ ) 2q. " Ppe - - ’
E(r) = {m; , r2 (1.5)
2qew1’e7 r>rp,

with m, the electron mass, g, the electron charge, wp. = \/qzno /(eom.) the electron plasma frequency.
At equilibrium, the radial force balance on an electron fluid element is expressed as a balance between the
outward centrifugal and electric forces and the inward magnetic force:

meuy(r)
———— +q.E(r) + qeua(r)Bo =0, (1.6)

with u g (r) the azimuthal fluid velocity. Using the expression for the radial electric field (1.5) in (1.6) leads
to the expression of the two equilibrium fluid azimuthal angular velocities

S H

, (1.7)

Ug 1 20)%73
w, = — =
r

which is represented in Figure 1.14. The value of w, is independent of r, therefore the azimuthal motion of
the column corresponds to a rigid rotation around the axis of symmetry. In the case w, = w;, the column
rotates at a slow angular velocity close to the E x B velocity. On the contrary, in the case w, = w}, the
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plasma rotates at a fast angular velocity close to the cyclotron frequency Q... In addition, this result shows
that, for an equilibrium to exist, the ratio f; = Zw%e / Qge < 1. For f;, = 1, defined as the Brillouin density
limit, the slow and fast rotation frequencies are equal with w} = w; = Q.. /2. This case is reached for a
critical electron density 7, crir = 4.9 X 10" m=3 T2, Indeed, if f» > 1 the space-charge force, combined
with the centrifugal force, are too important to be compensated by the magnetic force, and the electrons are
lost radially. Experimentally, equilibria with both w} and w; could be formed for several values of f;,
and showed a good agreement between the experimental measurement and the analytical prediction of
(1.7) [55].

The configuration considered in this section is relatively simple and is used as an introduction to the
concept of nonneutral plasma. However, it is not sufficient to study the problem of trapped electrons in
gyrotron MIGs as the trapping geometries are more complicated and other effects, such as electron-neutral
collisions or ion induced electron emission are not considered. Taking into account these effects will
generally require numerical modelling and more complex governing equations.

1.5 Goals of the thesis

The main goal of this thesis is to investigate the problem of electron cloud trapping in MIGs due to the
potential well mechanism and to increase our understanding of the conditions of their formation. This
is motivated by the fact that producing a design that avoids the existence of any potential well is very
challenging. In addition, some experimental results have shown that some potential wells, under conditions
still to be determined, can be present in MIGs and not cause detrimental current [30]. To this end, the
thesis focuses on studying electron clouds trapped by electrostatic potential wells in coaxial geometries,
and subjected to large externally imposed radial electric fields and azimuthal flows. The ultimate goal
of this study would be to derive new relaxed design criteria for future gyrotron electron guns that could
be applied in the vacuum configuration and would not need long and costly simulations to determine the
risk of electron trapping. This thesis also aims at advancing the fundamental understanding of exotic,
unexplored nonneutral plasma regimes, namely high-density, strong externally imposed azimuthal flows,
non-negligible ionizing electron-neutral collisions, and annular shape, through numerical simulations and
analytical models.

Since the gyrotron is a complex and sealed device, it is difficult to measure experimentally and understand
the behaviour of trapped electrons in the electron gun region. For this reason, two parallel methods for
studying this problem, are pursued. The first one is the use of first principle numerical simulations, allowing
for detailed diagnostics of the clouds and the study of the trapped electrons’ distribution function. To this
end, it is necessary to develop a new particle-in-cell code, called FENNECS (Finite Element NonNeutral
Electron Cloud Simulator), capable of simulating the complex electrode geometry of MIGs and the electron
neutral collisions. The necessity of a new code is supported by the fact that available codes lack the capacity
of either simulating the exact electron gun geometry, simulating electron-neutral collisions or simulating
the dynamics of the cloud (see Chapter 2). In addition, the combination of large regions of vacuum in the
gun and complex electrodes’ geometries prompts the use of a novel numerical method, based on weighted
extended b-splines (web-splines [56]), to impose the geometry in the simulations. This code also considers
the self-consistent electron cloud build-up due to ionization of the RNG and the collision of the released
ions with the electrodes, generating ion induced electron emission. With this newly developed numerical
tool, the conditions of trapping and loss mechanisms are studied in simplified and realistic geometries.
This allows, in a second step, to derive simple scaling laws relating the electron cloud properties and gun
operational parameters. FENNECS is validated against experimental measurements and will be used,
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during the design process of future gyrotron electron guns, to predict the onset of detrimental currents.
The second method of study, is experimental and motivates the design, construction, and operation of
a new experiment called T-REX. The experimental part of this project is led by Francesco Romano, a
post-doctoral fellow at SPC, but the design and diagnostic device selection is supported by FENNECS
simulations.

In line with the first method, analytical modelling is also used to supplement the numerical modelling
and increase our understanding of the underlying mechanisms of cloud formation, electron losses and
equilibrium conditions. To this end, a OD fluid model is derived that is capable of producing fast estimates
of the trapped electron density and of the resulting leaking currents, using only externally imposed
operational parameters. This model is also capable of reproducing and explaining simple scaling laws, that
have been observed in numerical simulations, for the key quantities in terms of the operational parameters.

1.6 Thesis outline

Chapter 2 focuses on the numerical code FENNECS mentioned in the previous section, and used to study
the electron cloud trapping. In this chapter, the novel numerical method used to define the electrodes
geometry and the Monte-Carlo algorithms used to simulate the different interactions of the electrons with
the RNG or the electrodes are presented. Verification cases are shown to support the robustness and
accuracy of the code. Finally, the parallelization methods of the code are described, and numerical scaling
and parallelization efficiency results are given.

Chapter 3 considers the self-consistent formation of an electron cloud in a simplified coaxial geometry
retaining the critical components of a gyrotron electron gun. Namely, the large, mostly axial magnetic field,
and the large radial electric field. The electron source and loss mechanisms are identified, and the cloud
formation is modelled as a balance between the RNG ionization and losses due to radial drifts caused by
collisional drags. The results of parametric scans on the external parameters (applied bias, magnetic field
amplitude, RNG pressure and type) are presented and used to derive analytical scaling laws between the
electron cloud density and resulting current, and the external control parameters. Finally, a semi-analytical
model is presented, that is capable of predicting the order of magnitude of the electron cloud density and
the collected current in a range of external parameters.

Chapter 4 presents simulations results in realistic MIG geometries. In this chapter, the refurbished MIG
geometry of the GT170 170 GHz 2MW coaxial gyrotron designed for ITER [23] is used. In this geometry,
results of simulations with various magnetic field configurations and applied gun biases are presented
and compared to experimental results. This serves as a validation of the numerical model implemented
in FENNECS. In addition, the importance and consequence of including ion induced electron emission
on the electrode surfaces is discussed by comparing simulations with and without this effect. Finally, a
quantitative validation of FENNECS is attempted in the prototype geometry of the GT170 electron gun.

Chapter 5 is dedicated to results of simulations using the electrode geometries considered for the TRapped
Electron eXperiment (T-REX) being built at the Swiss Plasma Center. These simulations are used to guide
the design of the T-REX electrode geometries and show the relevance of this experiment to study the
problem of electron clouds trapped in MIGs. Simulations are also presented that investigate the effects of
(i) non-ideal power supply to impose the confining bias and (ii) ion induced electron emission (IIEE).

Chapter 6 considers the linear stability of nonneutral plasmas in ring clouds to diocotron normal modes. To
this end, a linearized fluid model used to characterize the diocotron stability is presented and implemented

18



1.6 Thesis outline

in a spectral code, in order to study realistic electron clouds. This study is done in the GT170 prototype
geometry and considers the diocotron stability of the electron cloud during its formation. This work is
motivated by the fact that annular electron clouds are highly susceptible to the diocotron instability [32],
which is azimuthal in nature and cannot be simulated with the 2D (axial-radial) FENNECS code. This
investigation also indicates that the diocotron instability is bias dependent and should develop in MIGs
configurations. This result opens the door to exploring further this instability.

Chapter 7 summarizes the main results presented in this thesis and presents the conclusions of this work.
In addition, possible extensions and future use cases for the code FENNECS will be discussed, as well as
possible future steps for the study of trapped electrons in MIGs.

In the appendices, the derivation of the self-consistent electric field for an annular electron cloud of
infinite length confined in a biased coaxial geometry is first presented. This derivation is used in the
semi-analytic model described in Chapter 3. Then an equilibrium nonneutral plasma is presented, where we
demonstrate that high densities (f; > 1) can be achieved. The algebraic development and finite difference
implementation of a more general electrostatic eigenvalue equation to study diocotron normal modes is
presented in the third appendix [57]. This equation has the benefit of relaxing the low plasma density
assumption used in Chapter 6, but the numerical implementation could not be verified to sufficient accuracy.
The last appendix presents a list of the input parameters to FENNECS and can be used in combination
with chapter 2 as a preliminary user manual for FENNECS.
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4 The particle-in-cell code FENNECS

To understand the conditions of formation and evolution of trapped electron clouds in gyrotron electron
guns, a particle-in-cell code called FENNECS (Finite Element NonNeutral Electron Cloud Simulator)
has been developed and is the subject of this chapter. Current codes considering neutral and nonneutral
plasma discharges are either proprietary (LSP [58], MAGIC [59]), or are limited to simple electrode
geometries (NINJA [60]) due to the method used to solve the Poisson equation. In the domain of gyrotrons,
electron gun simulations are carried out with codes capable of simulating the complex geometry of the gun.
However, the most common codes such as EGUN [61], ESRAY [62], DAPHNE [63] or ARIADNE++ [64]
do not consider electron-neutral collisions and assume a beam-optics framework, that only simulates
equilibrium, and can therefore not simulate the fast electrostatic modes that can arise in high density
electron clouds. Another candidate, the WARP [65-67] code, is both capable of simulating electron-neutral
collisions and the complex electrodes geometries used in gyrotron electron guns. However, due to the finite
difference method on staggered grids used to solve Poisson’s equation, simulations of complex geometries
require potentially costly grid refinements.

The 2D electrostatic axisymmetric particle-in-cell code FENNECS presented in this chapter considers
a novel Finite Element Method (FEM) that allows the exact definition of the electrodes geometry and
somewhat decouples the grid definition and the geometry of interest when solving for the electrostatic
potential. This method has been successfully used in several domains of physics, for example to solve
elastic deformation problems [56], electromagnetic wave propagation in wave-guides [68], or the stationary
Stokes problem [69], and is used here for the first time in plasma physics, to the best of our knowledge [70,
71]. The code is also capable of simulating electron-neutral collisions, considering elastic and inelastic
(ionization) collisions, and resolves the fast timescale associated with plasma waves and electron cyclotron
motion. This is of great importance for simulating high-density trapped electron clouds for which the
Brillouin ratio is close to one. The magnetic fields generated by the electron clouds are neglected in
front of the strong externally applied magnetic field that is assumed to dominate the dynamics. This code
has already been successfully used to study the self-consistent formation of trapped electron clouds in
gyrotron electron guns and to derive scaling laws for the electron cloud density and resulting current as a
function of external parameters [26]. In the same context, FENNECS was successfully validated against
experimental measurements [72]. The code is currently used to study gyrotron electron guns. However,
the governing equations are sufficiently general that it could be used in the domain of Penning traps [25],
or be easily adapted to study cathodic arcs [73]. In addition, the code and its dependencies will soon be
open-source, which facilitates its modification, enables further improvements, and simplifies the beginning
of new collaborations. The code and the list of its dependencies are stored in a git repository that can be
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accessed at https://c4science.ch/source/fennecs/.

2.1 Physical model

2.1.1 Governing equations

FENNECS is an axisymmetric 2D3V electrostatic particle-in-cell code that solves the Boltzmann-Poisson
system for an electron distribution function f (7, v, ) and the electrostatic potential ¢ (7, ) with the addition
of electron-neutral collision operators. The neutral gas is considered as a background gas of uniform
density n, and at room temperature 7,, = 300 K. For each simulation, only one neutral gas species is
considered, and it is assumed that n,, does not change in time. The gas species is a control parameter of the
code, and, in this thesis, the considered gases are Ne, H,, Ar and He to allow different comparisons with
experiment and to understand the effect of a change in species. In the current model, only elastic and single
ionization collisions are considered with their respective collision cross-sections 0|, and ;.. This choice
is supported by the fact that, due to the large radial electric field in gyrotron electron guns, the newly formed
ions are lost on a timescale Tjon,105s Much smaller than the second ionization collision timescale. Similarly,
due to the large electron kinetic energies (more than several hundred eV), the collision time-scales for
excitation of the neutral gas are at least one order of magnitude larger than both the elastic and single
ionization time-scales and are therefore neglected [26, 74]. In elastic and ionization collisions, we assume
anisotropic scattering cross-sections using a screened-Coulomb scattering cross-section [75]. For an
ionization event, the remaining kinetic energy after collision (initial kinetic energy minus the ionization

energy) is split between the freed and the incoming electron using a double differential cross-section

9 Tio,sec o Tio,sca
900, for the energy of the secondary electron, and a second double differential cross-section 555 E,

for the energy of the scattered electron. This energy splitting assumes that the energy transferred to the
ion is negligible due to the large mass difference between electrons and ions. The double differential
cross-sections depend on the solid scattering angle €2 and the incoming electron energy E,, [76]. They are
defined such that, in ionization events, the total energy is conserved E), = Ej, + Egca + Egec. Here, Ej, is
the first ionization energy of the neutral gas, E, is the energy of the scattered electron and E is the
energy of the secondary electron.

The magnetic field Eg’“ is imposed externally, and the magnetic field generated by the electron cloud is
neglected. Perfectly absorbing boundary conditions for the particles are used at the electrodes, thereby
representing a loss term L,,,;;. In addition, a volumetric seed source Sseq can be imposed, and electron
emission due to ions impacting the electrode surfaces can be simulated, introducing a surface source Sygg.
In this case, the Boltzmann equation becomes
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2.1 Physical model

Here, Q is the solid scattering angle; v’ is an integration variable for all the electron velocities that are
scattered by a solid angle Q to v [77]; Ej = me|v)?/2 is the electron kinetic energy at velocity v. On
the right-hand side, the first term accounts for the scattering by elastic collisions [77], the second term
describes the emission of secondary electrons by ionization, the third term accounts for the scattering of
incoming electrons during an ionization collision and the fourth term describes the electrons removed
from the distribution by ionization [78]. If the right-hand side is integrated over v, its first term will be 0
and the second, third and fourth term will combine to an ionization source term n.n, < oj,v >r. Here,
n is the local electron density, and <> ¢ denotes the average over the distribution function. The electric
potential ¢ is solved self-consistently using Poisson’s equation

Vo =-L=2 / F(.5.0)d% 2.2)
€ €0

and the charge density p, and considering the boundary conditions imposed by the electrodes. At the

electrodes, in addition to fixed potentials imposed by ideal power supplies, the resistive and capacitive

effects of a non-ideal power supply can be simulated (see Section 2.2.7).

2.1.2 Normalizations

To improve the numerical precision of the code, all the physical quantities are normalized by physical
constants relevant to the problem. To this end, four reference quantities are used: By, an input parameter
usually set to the maximum amplitude of the magnetic field in the simulation domain; c, the speed of light
in vacuum; e, the electron charge; and m,, the electron mass. The time is normalized by the inverse of the
cyclotron frequency ty = 1/Q.. = m,/eBy, velocities are normalized by vy = ¢, lengths are normalized
by rn = vn/tN, the magnetic field is given in units of By = By, and the electric potential and fields are
respectively normalized by ¢ = Byvoyry and Exy = vy By .

2.1.3 Geometries of interest

As FENNECS is a 2D axisymmetric code, it is capable of simulating geometries with an azimuthal
symmetry. Namely, in cylindrical coordinates (r, 8, z) all fields can depend on r and z but not on 6.
For coaxial gyrotron electron guns, the typical geometry of interest, as represented in Figure 2.1, is
composed of an inner cathode and an outer cylindrical anode described by an arbitrary radial profile r(z).
However, the code is more flexible in the definition of the electrodes and multiple concentric electrode
rings can be defined. Similarly, regions where only the outer electrode is present are also possible. This
is important to simulate all types of gyrotron electron guns, but can also be useful to study nonneutral
plasmas in other physical settings. In addition, independent potentials can be applied to each simulated
electrode. Furthermore, the particles are subjected to an axisymmetric external magnetic field with both
radial and axial components. In the configurations typical of gyrotron guns, the electron clouds usually
have an annular shape (see Figure 2.1) confined axially by magnetic mirrors, due to the electrons large
perpendicular velocity, or by electrostatic potential wells imposed externally [21, 26]. However, cylindrical
clouds (clouds extending to r = 0) can also be simulated.

23



Chapter 2. The particle-in-cell code FENNECS

Outer electrode

Inner electrode

Electron cloud

X[

Figure 2.1: Typical geometry of interest used in FENNECS. The yellow ring represents an
example of an electron plasma cloud. The gray/black parts are the electrodes on which a fixed
potential can be applied. The red dotted-dashed line highlights the axis of symmetry.

2.1.4 Timescale separation

Typical electron clouds trapped in gyrotron electron guns are subject to physical phenomena happening on
various time-scales. These can span up to ten orders of magnitude, between the fast electron cyclotron
motion at Q.., and the slow ionization collision frequency fi, and effective elastic collision frequency for
momentum exchange fy, as illustrated in Figure 2.2. In between these slow ( fio, fa) and fast (Qc., wpe)
scales lies typically an intermediate scale fj = v)/L, namely the electron bounce frequency in a trap of
length L along the magnetic field lines, and with average velocity v parallel to the magnetic field line. The
length L can be either the potential well dimension along the magnetic field line or the distance between
the two cusp points in a magnetic mirror configuration (see Section 1.3). This large timescale separation
prevents the complete simulation of all the timescales due to the numerical cost of the task. However,
as fio = n, < ojov > and fy = n, < o > are linearly proportional to n,, the collision timescales can
be shortened by considering, in the simulations, an increased neutral gas density 7, simu = @n phys
compared to the physical density of interest [26, 72]. This factor @ > 1 must be selected such that a
sufficient timescale separation is kept between the slow and fast timescales, namely such that fi,, fu < fj.
Assuming that the dynamics is dominated by the slow timescales, the simulation characteristic times (e.g.
the particle losses or cloud oscillations) can then be rescaled to the physical timescales using the same
parameter «. For simulating realistic gyrotron configurations, « is chosen to be of the order of & ~ 10%.
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Figure 2.2: Relevant timescales for electron clouds of interest simulated by FENNECS. fi, and fy
are the ionization collision frequency and the effective elastic collision frequency for momentum
exchange; fj| = v) /L is the electron bounce frequency in the trap of length L along the magnetic
field lines; w . is the electron plasma frequency; €2.. is the electron cyclotron frequency. The
blue shaded area indicates the range of possible time scales for n, ~ 10"* — 10'"m~3 and
n, ~ 1013 = 10""m=3. The red line gives Q.. for B=0.3T.

2.2 Numerical methods

To solve the Boltzmann equation (2.1) and the Poisson equation (2.2), the particle-in-cell (PIC) method is
employed. The distribution function f is sampled using a finite number of macro-particles i at position 7;
with velocity U; and each representing N; electrons, such that

FEB1) =) Nio(F = 7)o (5 - T). 2.3)

Here §(X) is the Dirac delta function. This representation of the particles has been chosen to reduce the
number of computations necessary to calculate the right-hand side of Poisson’s equation, to facilitate the
particles removal at the boundaries, and to facilitate the parallelization of the code. On the other hand, this
choice forces the use of a relatively large number of macro-particles in order to minimize numerical noise.

Starting from an initial distribution of macro-particles, the code performs the following steps to advance in
time the particles and the fields according to the Boltzmann-Poisson system described in equations (2.1)
and (2.2). At each time-step, the code:

1. Localizes each particle in the geometry and calculates its FEM cell index. Removes the particles
that are outside the vacuum region. In Message Passing Interface (MPI) parallelism, the particles
that are leaving or entering the local domain simulated by each process are exchanged between the
neighbouring processes.

2. Runs the Monte Carlo collision routine for each particle and scatter/reduce their velocity vector
accordingly, and adds the freed electrons due to ionization of the neutral gas (Sec. 2.2.8).

3. Injects the new particles according to the seed source distribution function (Sec. 2.2.10).

4. Computes the new applied bias according to the collected current on the electrodes when the
non-ideal power supply module is activated (Sec. 2.2.7).

5. Computes the right-hand side of Poisson’s equation by looping on all the macro-particles (Sec. 2.2.4).
6. Solves Poisson’s equation (Sec. 2.2.4).

7. Computes for each particle the value of E and B at their position and advances in time their velocity
(Sec.2.2.5 and 2.2.2).

8. Saves on file the requested diagnostic quantities (particles positions and velocities, electric field
evaluated on the grid, moments of the distribution function evaluated on the grid...) (Sec. 2.3).

25



Chapter 2. The particle-in-cell code FENNECS

9. Advances in time the particles positions (Sec. 2.2.1).

10. Restarts the cycle.

2.2.1 Particle trajectory: Boris algorithm

To advance in time the macro-particle positions and velocities, according to the left-hand side of Boltzmann
equation (2.1), the Boris algorithm is used [79]. This method was selected for its simplicity and reliability,
and for its capability of integrating both classical and relativistic trajectories with very little change in
the code. This allows the user of FENNECS to select at run-time if the classical or relativistic Newton’s
equation is solved during the simulations, by means of an input flag.

The Boris algorithm is a second order in time (O (A#?)) explicit integrator based on a leap-frog scheme,
meaning that the particles positions and velocities are never known at the same time-step. Instead, the
positions are known at times ¢; and the velocities are known at times t;,1/> = t; + At/2. This is important
to take into account during the initialization of the particles and when calculating diagnostics quantities as
a naive evaluation will lead to a reduced accuracy of O (At). To advance in time the velocities at position
7y from T, a2 att — At/2 10 Upinr/2 at t + At/2, the algorithm

1. accelerates the velocity by half the electric field to v_,
2. rotates the velocity due to the magnetic field force to vy,

3. accelerates the velocity by half the electric field to Dy4a; /2.

To solve the relativistic Newton equation, the new variable i = y7 is used, with y = (1 — v?/c2)~"/2 the
Lorentz relativistic factor. This gives in equation form:

. o At -
U_ =Ur_A2 T Cé_Et(’”t)’ (2.4)
m
W =id_+i_Xf, (2.5)
Uy =i_+i X5, (2.6)
. . At 5
UriAr)2 = Ut + Z—Et("t)- 2.7)
m

Here used has been made of the two rotation vectors

q§(7z) At

= , 2.8
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2f
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ST 29

with g the macro-particle charge, m its mass and y; = (1 — v /c?)~ /2. The classical Newton equation is
recovered if y = 1 is imposed numerically. The particles’ position is finally advanced with:

Prear = Froar + A15t+At/2~ (2.10)
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2.2.2 Magnetic field

The magnetic field is imposed externally, assuming azimuthal symmetry. It is also assumed that the
external magnetic field amplitude is large enough so that the contribution from the electron cloud current
can be neglected. It can be defined either using an analytical magnetic field vector potential that, e.g.,
approximates a magnetic mirror close to the magnetic axis, as described in Sec.2.4.2, or it can be calculated
on a grid using standard Biot-Savart solvers and be used as an input for the simulations. The magnetic
field is then interpolated using third order b-splines to the FEM solver grid points. Finally, at the particle
position, the magnetic field is computed using linear interpolation from the FEM grid points values to
reduce the computational cost of the evaluation. The need for b-spline interpolation comes from the fact
that the Biot-Savart solver is currently run using an external code and does not necessarily guarantee that
the grid points of this solver correspond to the grid-points of the FEM solver, especially when the FEM
grid needs to be adapted, or the simulation domain needs to be changed. This induces some imprecision
on the value of the magnetic field that remains acceptable if the Biot-Savart solver grid is sufficiently fine.
However, there are plans to include the magnetic field solver directly in FENNECS to avoid the b-spline
interpolation step.

2.2.3 The b-spline basis functions

As b-splines are used extensively in FENNECS, we present in this section a few of their properties and a
method to generate a b-spline basis. b-splines are piecewise basis polynomials with compact support, that
are used in some FEM and can be used to smoothly interpolate data with freedom in the C™ continuity.
Here m is the degree of the b-spline basis considered.

A spline basis of degree m is defined on a finite interval [a, b] divided into N, sub-intervals with:
a=rg<ri<ry..<ryn, =b, (2.11)

where the intervals do not need to be uniform. The control points 7y, also called knots, and spline degree m
define unequivocally the spline basis. The /th spline of degree m on this interval can be defined using the
recurrence relation of de Boor [80] starting from the constant spline

1 ifrp<x< ,
Poy={ TS 2.12)
0 otherwise,

and calculating the spline of higher order with

by = ——L B+ (1 B

l+m —

) b (x). (2.13)

Tl4m+1 — Ti+1

It can be observed from this definition that if N, intervals are defined, a spline basis of degree m will be
formed of N, + m orthogonal basis functions. Examples of basis of degree 1, 2 and 3 on the interval [0, 1]
with N, =5 are represented on Figure 2.3.

The b-splines have several useful properties that are relevant for FEM and interpolation:

* Positivity and local support: b;" is positive on (ry, ri+m+1) and vanishes outside this interval,

* Smoothness: b}" is m — 1 times continuously differentiable with discontinuities of the mth derivative
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at the break points ry, .., 7j4m+1,
* They form a partition of unity: 3, b}"(x) = 1 Vx € [a, b],
* The derivative of a spline of degree m is a weighted sum of splines of degree m — 1,

 For a basis of degree m, only m + 1 b-splines are non-zero on the interval [ry, ri41].

Basis of degree m=1

X
Basis of degree m=2

PO O >
0 0.2 0.4 0.6 0.8

X
Basis of degree m=3

Splines

Splines
o
o O1 —

1
5 ><-\
0
0 0.2 0.4 0.6 0.8 1
X

Figure 2.3: B-spline basis of degrees 1, 2 and 3 defined with N, = 5 intervals on [0, 1]. The
knots are highlighted by the vertical gray lines and the red dots. Each basis spline b}" is coloured
individually.

With these properties, they can be used to approximate functions by assigning scalar or vector coefficients
u; to each b-spline. If p(x) is a polynomial of degree m on [a, b], a b-spline basis of degree > m can
represent it exactly by calculating the correct coefficients u;, and p(x) can be rewritten as

p(x) = Z b} (x). (2.14)

l

b-splines basis can also be used to define curves in n-dimensions by changing the coefficients from scalar
to vectors i; = (u7,1, U 2, ..., U1,n). Similarly, one can define multivariate b-splines, for example bivariate
b-splines are generated by defining two orthogonal spline spaces b (x) on [ay, b1] and b}*(y) on [az, b].
The bivariate functions are then interpolated by defining u;; coefficients such that

pe,y) = > > ub ()b (). (2.15)
k1
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In this representation, the splines order of the two splines basis do not need to be equal, and the coefficients
ujk can also be multidimensional to be able to define e.g. surfaces in 3D. In the rest of this chapter, the
notations will be simplified by generalizing the concept of 1D splines to ND splines, imposing the same
degree on all directions and noting the multivariate spline basis with b;". This can be done for the 2D case
by going from a double index (/, k) to a linear index i = (I — 1) N, + k. For brevity, this index i will be
renamed /.

2.2.4 Poisson: Web-spline method

The Poisson equation, for a scalar field ¢ and a source term Q, is solved on the domain D, closed by
boundaries 0D, using a FEM based on bivariate b-splines of any order [71, 81, 82]. Dirichlet boundary
conditions are imposed on boundaries 0 D; and Neumann boundary conditions are imposed on boundaries
0Dy such that:

-V2¢=QinD, ¢ =g; on dD;, V.xd =0ondDy, (2.16)

where V,; denotes the normal derivative perpendicular to dD. To define these boundary conditions
on curved surfaces, the web-spline method is used for the first time in plasma physics, to the authors’
knowledge. This chapter will be limited to the description of the method and of the points necessary for
the implementation. Details regarding the numerical stability and accuracy of the method can be found in
references [70, 71].

To derive a variational formulation, the electric potential ¢ is first rewritten to eliminate the inhomogeneous
boundary conditions by setting
¢p=u+g, (2.17)

with u a function that vanishes on dD; and g an extension of the Dirichlet boundary conditions g; to all
D. g can be set to any smooth function such that g(X) = g;(X) VX € dD;. The Poisson equation is then
multiplied by a test function ¢ and integrated over D leading to the weak formulation:

/ VuvVy =/(Q¢ —VEvy). (2.18)
D D

To construct the Ritz-Galerkin approximation of the solution, the function ¢ is taken to be a set of n;, basis
polynomials ¥;" of degree m with compact support on mesh cells of D, and the solution is approximated

by a function ¢, = uj, + & such that
np

up = Zulqjlm (2-19)
=1

To ensure by construction that the Dirichlet boundary conditions are respected, the basis functions ¥} are
defined such that they are 0 on dD;. Solving the Ritz-Galerkin approximation of the solution then reduces
to solving a system of linear equations for the coefficients u;:

«—> -

A u=2, (2.20)
L d

with A a matrix with coefficients

A = / VeV, 2.21)
D
and 1 a vector with coefficients
A= / Qv - VgV, (2.22)
D
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One can define a set of basis functions ¥;" using weighted b-splines by defining a smooth geometric weight
function w such that w(X) = 0 Vx € dD;, and w is positive inside the domain D/dD; and negative outside
D. In this case: V" = wb;’fh, with b;'fh the n-variate tensor product of b-spline of degree m, with grid
width A, and support (I1, ..., 1;)h + [0,m + 1]"h. Since the grid is regular (4 is the same for all b-splines
of the basis), the index A will be neglected for the rest of this chapter. The weighted b-spline (wb-spline)
method is known to show bad numerical convergence as the grid width is reduced due to a strong, sudden
and unpredictable increase of the condition number of the Ritz-Galerkin matrix ? [70] (see Figure 2.4).
This problem comes from the effect of boundary b-splines whose intersection between their support and
the simulation domain becomes small. To alleviate this problem, Hollig and co-authors [70] combined

boundary and inner b-splines to form a new basis called the web-spline basis.
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Figure 2.4: Evolution of the Ritz-Galerkin matrix condition number for weighted b-splines (red)
and web-splines (green) as a function of the grid width 4 for the Poisson problem solved on the
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