
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

A theory of memory consolidation and synaptic 
pruning in cortical circuits

Georgios IATROPOULOS

Thèse n° 10 094

2023

Présentée le 13 décembre 2023

Prof. C. Petersen, président du jury
Prof. H. Markram, Prof. W. Gerstner, directeurs de thèse
Prof. C. Clopath, rapporteuse
Prof. W. Senn, rapporteur
Prof. A. Mathis, rapporteur

Faculté des sciences de la vie
Projet Bluebrain
Programme doctoral en neurosciences 





i

Acknowledgements

The work presented in this thesis is the product of a four-year collaboration between the Blue
Brain Project (BBP) and the Laboratory of Computational Neuroscience (LCN) at EPFL.
I would therefore like to begin by expressing my gratitude for the technical and financial
support that has been made available to me through the BBP and by my thesis director
Prof. Henry Markram, who has has allowed to me to independently pursue my research
interests. I am equally grateful to my co-director Prof. Wulfram Gerstner, for taking on a
supervisory role and providing me with a place in his lab, together with feedback on my ideas
and my writing throughout the doctoral studies.

I would like to thank my colleagues at the BBP Connectomics Group and the LCN for all
their encouraging and helpful comments on my work, and for creating a welcoming working
environment with lively discussions on science and society.

At the BBP: Dr. James Isbister, András Ecker, Sirio Bolaños Puchet, Dr. Giuseppe Chindemi,
Dr. Michael Reimann, Daniela Egas Santander, Joseph Tharayil, Dr. Max Nolte.

At the LCN: Dr. Valentin Schmutz, Sophia Becker, Louis Pezon, Flavio Martinelli, Alireza
Modirshanechi, Christos Sourmpis, Dr. Bernd Illing, Dr. Martin Barry, Dr. Berfin Şimşek,
Shuqi Wang, Dr. Chiara Gastaldi, Dr. Guillaume Bellec.

I would like to especially thank Dr. Johanni Brea, a senior scientist and lecturer at the
LCN, for being almost like a second supervisor, and whose expertise, encouragement, and
assistance has been invaluable.

Finally, I express my deepest gratitude to the people whose patient support, more than
anything else, has been essential for the completion of this thesis, namely my family: my
mother Lambrini Theodossiou, my father Fotios Iatropoulos, and my brother Terry Vassiliadis.





iii

Abstract

Over the course of a lifetime, the human brain acquires an astonishing amount of semantic
knowledge and autobiographical memories, often with an imprinting strong enough to allow
detailed information to be recalled many years after the initial learning experience took place.
The formation of such long-lasting memories is known to primarily involve cortex, where
it is accompanied by a wave of synaptic growth, pruning, and fine-tuning that stretches
across several nights of sleep. This process, broadly referred to as consolidation, gradually
stabilizes labile information and moves it into permanent storage. It has a profound impact
on connectivity and cognitive function, especially during development. Though extensively
studied in terms of behavior and neuroanatomy, it is still unclear how this interplay between
structural adaptation and long-term memory consolidation can be explained from a theoretical
and computational perspective.

In this thesis, we take a top-down approach to develop a mathematical model of consolidation
and pruning within the context of recurrent neural networks, by combining recent techniques
from the fields of optimization, machine learning, and statistics. The first part of the
thesis treats the problem of maximally noise-robust memory without synaptic resource
constraints. Using kernel methods, we derive a compact description of networks with optimal
weight configuration. This unifies many of the classical memory models under a common
mathematical framework, and formalizes the relationship between active dendritic processing
on the single-neuron level, and the storage capacity of the circuit as a whole.

In the second part of the thesis, we treat the problem of maximal memory robustness under
conditions of sparse connectivity. We combine our unconstrained model with an implicit
regularization, by endowing the network with bi- and tri-partite synapses, instead of the usual
scalar weights. This allows us to derive a simple synaptic learning rule that simultaneously
consolidates memories and prunes weights, while incorporating memory replay, multiplicative
homeostatic scaling, and weight-dependent plasticity. We also use the synapse model to
derive scaling properties of intrinsic synaptic noise, which we test in a meta-analysis of
experimental data on dendritic spine dynamics.

In the concluding sections, we briefly discuss the implication of our results with regards
to current memory-inspired machine learning methods, the function of sleep, and the
environmental effects on structural plasticity in development.

Keywords: artificial neural networks, attractor networks, Hopfield networks, Hebbian
learning, associative learning, kernel machines, support vector machines, REM sleep, dot-
product attention, fractional norm, pyramidal cells, declarative memory, connectome, engram.
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Résumé

Au cours d’une vie, le cerveau humain acquiert une quantité étonnante de connaissances
sémantiques et de souvenirs autobiographiques, souvent avec une empreinte suffisamment
forte pour que des informations détaillées puissent être rappelées de nombreuses années
après l’expérience d’apprentissage initiale. La formation de ces souvenirs durables implique
principalement le cortex, où elle s’accompagne d’une vague de croissance synaptique,
d’élagage et de réglage fin qui s’étend sur plusieurs nuits de sommeil. Ce processus,
généralement appelé consolidation, stabilise progressivement les informations labiles et a
un impact profond sur la connectivité et les fonctions cognitives, en particulier au cours
du développement. Bien qu’elle ait été largement étudiée en termes de comportement et
de neuroanatomie, la manière dont cette interaction entre l’adaptation structurelle et la
consolidation peut être expliquée d’un point de vue théorique n’est toujours pas claire.

Dans cette thèse, nous adoptons une approche descendante pour développer un modèle
mathématique de consolidation et d’élagage dans le contexte des réseaux neuronaux ré-
currents, en combinant des techniques récentes issues des domaines de l’optimisation et
de l’apprentissage automatique. La première partie de la thèse traite le problème de la
mémoire maximalement robuste au bruit sans contraintes de ressources synaptiques. En
utilisant des méthodes de noyau, nous dérivons une description compacte des réseaux avec
une configuration optimale des poids. Cela permet d’unifier de nombreux modèles de mé-
moire classiques dans un cadre mathématique commun et de formaliser la relation entre le
traitement dendritique et la capacité de stockage.

Dans la deuxième partie de la thèse, nous traitons le problème de la robustesse maximale
de la mémoire dans des conditions de connectivité éparse. Nous combinons notre modèle
sans contrainte avec une régularisation implicite, en utilisant des synapses bi- et tripartites,
au lieu des poids scalaires habituels. Cela nous permet de dériver une règle d’apprentissage
synaptique qui consolide les mémoires et élague les poids, tout en incorporant le rejeu de
mémoire, l’échelonnement homéostatique multiplicatif et la plasticité dépendante du poids.
Nous utilisons également le modèle de synapse pour dériver des propriétés d’échelle du bruit
synaptique intrinsèque, que nous testons dans une méta-analyse de données expérimentales
sur la dynamique des épines dendritiques.

Mots clés: réseaux de neurones artificiels, réseaux d’attracteurs, réseaux Hopfield, règle
de Hebb, apprentissage associatif, astuce du noyau, machines à vecteur de support, sommeil
paradoxal, cellules pyramidales, mémoire déclarative, connectome, engramme.
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Chapter 1

Introduction

Some 2400 years ago, in what could perhaps be considered to be one of history’s earliest
recorded attempts at modeling the brain, Socrates famously argued that the memory of a
human can be likened to a block of wax (Plato, 1990, sec. 191-195). Whenever an external
stimulus is strongly perceived, it imprints a pattern into the wax, like the seal on a letter,
and a memory is formed. When the same stimulus is encountered again at a later occasion,
the perception is fitted to the imprint in the wax, and recognition takes place. This analogy
was also used to explain how some people can posses a lot of knowledge and be wise, while
others easily make errors of judgment. In wise people, Socrates explained, the block of
wax is large and can be imprinted many times, without any risk that overlap occurs. The
wax is clean and of good consistency, which allows each imprint to be deep and distinct.
Conversely, in ignorant people, the block is small and the imprints easily become crowded
and obscured. The wax might also be too soft, too hard, or impure, causing the imprints to
become blurry, shallow, or distorted. This, Socrates concluded, is ultimately what produces
misunderstanding and false recollection of past events.

Even though this conceptual model may seem old-fashioned and elementary to a modern
audience, it is strikingly similar to the way in which neuroscientists have been thinking
about the mechanisms of memory and learning for the past 70 years. While current models
of the brain are dominated by concepts from digital information technology, with the
wax tablet having been replaced by magnetic spin lattices and computer hard-drives, the
biological processes that underlie the formation, retrieval, and forgetting of memories are still
understood in terms of imprinting and matching of patterns in a malleable substance. The
question, therefore, of exactly how memorization and recall is implemented in real neuronal
circuits remains an active area of research to this day.

The gap between our theoretical understanding of memory and learning, and the current
state of knowledge in neurobiology and -physiology, has become particularly pronounced in
the modern era of experimental neuroscience, spanning roughly the last 20-30 years. During
this time, the development of new microscopy and nanoscopy techniques (see, e.g., Holtmaat
et al., 2009; Berning et al., 2012) has produced a wealth of new data on the dynamics of
not only large populations of neurons, but also individual synapses, in living animals. One
of the most important insights to come out of these studies has been the fact that the
synaptic configuration of cortical circuits is remarkably volatile over time. Indeed, while the
shape and arborization of entire dendrites and axons is relatively stable, synaptic boutons
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and dendritic spines undergo a constant process of formation and retraction (Holtmaat &
Svoboda, 2009). This turnover is modulated both by the cycle of wakefulness and sleep (e.g.,
Xu et al., 2009; Chen et al., 2015) as well as by the stage of development (Petanjek et al.,
2011). Even existing synapses are inherently unreliable, and display a substantial degree
of activity-independent size fluctuations (Kasai et al., 2021). How should this constant
rewiring and remodeling of the brain be incorporated into current connectionist models of
learning and memory?

In order to begin answering this question, we will first provide a brief review of previous
work on memory modeling with neural networks. This will be followed by a short summary
of the experimental literature on synaptic structural plasticity. Finally, with the historical
background in mind, we will define a set of mathematical problems regarding memory
consolidation and structural plasticity, which will form the basis of the next two chapters.
We conclude by summarizing the results and contributions of the thesis.

1.1 A brief history of memory modeling

The consensus among today’s neuroscientists is that the primary physical correlate (and
cause) of learning in nervous systems is synaptic plasticity. The general idea, however, that
information storage is expressed in the modification of neural connections can be traced
back at least to the late 19th century and the work by Santiago Ramón y Cajal (Yuste,
2015). In fact, the term engram, which is commonly used today to refer to essentially any
physical change in the brain induced by learning, was coined in the early years of the 20th
century by one of Cajal’s contemporaries, Richard Semon, who posited that such imprints
generally are dormant but can be awakened, in a retrieval process, by partial cues (Josselyn
et al., 2017).

Despite the prescience of these early ideas, the question of how, exactly, brain activity can
produce memorization and recall, and how this is underpinned by alterations in physiology,
remained debated by psychologists and biologists until the middle of the 20th century.
The contention between hypotheses centered on neural activity vis-à-vis neural structure,
was finally reconciled by the theory of cell assembly formation, which today is credited to
Donald Hebb (1949, pp. 60-66).1 Hebb postulated that memory activation entails two,
mutually reinforcing, neurophysiological components: First, the perception of a stimulus
is reflected in the transient reverberation of neural activity, which, if allowed to continue
long enough, induces a lasting structural change by strengthening the synaptic connections
between the underlying co-active neurons (i.e., the assembly), thus making them more likely
to reverberate and awaken the memory of the stimulus in the future. The strengthening of
connections, Hebb specified, could be accomplished both by the formation of new synaptic
“knobs”, as well as by the enlargement of existing ones.

1Note, however, that a very similar theory had been published a year earlier by Konorski (1948) to explain
the learning of conditioned reflexes (see review by Zieliński, 2006).
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First-generation network models. The theory of cell assemblies and synaptic plasticity
found fertile ground in the nascent field of artificial intelligence, and, in particular, con-
nectionism. As a predecessor of what we today refer to as artificial neural networks and
deep learning, the foundational idea of this discipline was to model cognition and behavior
as a function of interconnected simple, binary units, called perceptrons, that collectively
operate much like a switchboard or a transistor circuit (see, e.g., Rosenblatt, 1962, ch. 3,
and references therein). It was soon understood that these models also could be interpreted
in terms of magnetic spin lattices, which suggested that the reverberating activity that
underlies memory recall could be an emergent phenomenon, where neurons mutually activate
each other and self-organize into stable patterns of activity (Amari, 1972; Nakano, 1972),
analogously to how long-range correlations or symmetry breaks appear in Ising models (Little,
1974; Hopfield, 1982). Each memory could, in the terminology of dynamical systems, be
described as an attractor in the state space of the network.

Studies of attractor networks in the 1980s and 90s resulted in a series of influential pub-
lications, which today are considered classics in the field of memory modeling. These
were partly enabled by a set of new mathematical techniques borrowed from statistical
physics, which made it possible to characterize the optimal storage properties of recurrent
networks, both without constraints (Cover, 1965; Venkatesh, 1986; Gardner, 1987a), but
also with brain-inspired parameter restrictions, such as sparse activity (Gardner, 1988), binary
connections (Krauth & Mézard, 1989), discrete connections (Gutfreund & Stein, 1990;
Baldassi et al., 2016), sign-constrained connections (Amit et al., 1989; Kanter & Eisenstein,
1990; Nadal, 1990; Viswanathan, 1993), pruned connections (Gardner, 1989; Bouten et al.,
1990), and higher-order connections (Lee et al., 1986; Peretto & Niez, 1986; Abbott &
Arian, 1987; Gardner, 1987b).2 Many of these results were obtained using mean-field theory
under a synaptic weight scaling of O(1/

√
N). In chapter 2, we propose a new way of

understanding this family of models, using a general, normative framework based on optimal
storage robustness.

Second-generation network models. The interest in attractor networks was revived
in the middle of the 2000s by a new wave of theoretical findings, this time obtained by
analyzing networks with an O(1/N) scaling (for an early example, see Köhler & Widmaier,
1991). This variant was shown to be particularly interesting as a normative model of not
only memory function, but also of cortical anatomy. At optimal storage, these attractor
networks display a very sparse overall connection probability (Brunel et al., 2004) with
realistic differences between excitatory and inhibitory neurons (Chapeton et al., 2012), as
well as an over-representation of bi-directional connections (Brunel, 2016) and higher-order
connection motifs (Brunel, 2016; Zhang et al., 2019); all in agreement with experimental
data (Song et al., 2005; Perin et al., 2011).

By and large, the conclusion drawn from these results has been that long-term memory
in adult neocortex operates as an attractor network at optimal storage. This, however,
has raised the question of how a neural circuit can reach such a state of optimality and,

2We show in chapter 2 that higher-order connections can be interpreted as models of synaptic cross-talk
and non-linear dendritic integration.
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in particular, how a synaptic plasticity mechanism would be capable of endowing a circuit
with optimal memory storage. A satisfactory solution to this problem is still lacking. The
correlational, one-shot learning rules that were explored in the early literature (Amari, 1972;
Kohonen, 1972; Nakano, 1972; Hopfield, 1982; Tsodyks & Feigel’man, 1988) have a
sub-optimal performance (Amit et al., 1985; McEliece et al., 1987; Amari, 1989), and the
iterative rules that have been derived with optimization methods (e.g., Gardner, 1988; Frieß
et al., 1998; Alemi et al., 2015; Sacramento et al., 2015) require plasticity mechanisms
that, in general, are either biologically implausible, incompatible with homeostatic plasticity
mechanisms (Turrigiano, 2008), or inconsistent with synaptic dynamics (Yasumatsu et al.,
2008; Loewenstein et al., 2011). We propose a solution to this problem in chapter 3.

Third-generation network models. Over the past six to seven years, the remarkable
success of transformers (Vaswani et al., 2017) and related attention-based deep learning
applications has sparked a renewed interest in memory network research. The result has
been a new generation of models, variably referred to as dense associative memory (Krotov
& Hopfield, 2016, 2020), modern Hopfield networks (Ramsauer et al., 2021; Millidge
et al., 2022), or key-value memory networks (Sukhbaatar et al., 2015; Tyulmankov et al.,
2021). The derivation of these models still relies on energy minimization, but requires a
new formulation of the Hamiltonian, which substantially enhances storage capacity (see, e.g.
Demircigil et al., 2017). In chapter 2, however, we show that the third- and first-generation
models belong to the same family, and can be obtained by maximizing the same robustness-
based objective, albeit with different neuron models; while first-generation networks consist
of neurons that only perform linear integration, third-generation neurons are non-linear, and
contain an added “dendritic” compartment.

In spite of this recent progress in memory modeling, the development of brain-inspired
learning rules with structural synaptic change, such as pruning, appears to be particularly
challenging, and has generally received less attention by the theoretical community than
problems regarding functional and homeostatic plasticity. Moreover, the few models that
have been published have predominantly been phenomenological, without an algorithmic
basis or performance guarantees (e.g., Levy, 2004; Knoblauch et al., 2014; Gallinaro et al.,
2022). This is partly a consequence of the fact that experimental tools for observing and
quantifying synaptic rewiring have, until recently, been unavailable. We briefly review this
literature in the next section.

1.2 A primer on synaptic structural plasticity

While it has long been possible to measure the functional strength of synaptic connections
using electrophysiological techniques, direct observation of the dynamics of synaptic anatomy
and structure has only been possible since the beginning of the 2000s and the advent of
live tissue imaging at spatial resolutions of single micrometers. The effort to quantify
structural plasticity properties have been further complicated by the fact that the stability of
an individual synapse is a latent variable that has to be inferred from population statistics,
by measuring, for example, synaptic lifetime, density, or rate of formation and retraction



Introduction 5

(Loewenstein et al., 2015). This typically requires experimental setups capable of tracking
large numbers of synapses over time periods spanning several hours to multiple days.

Early experiments. The earliest observations of synaptic structural plasticity in cortex
were done in post-mortem studies, by estimating the synaptic density in fixed brain samples
taken from rodents and cats that were reared in environments enriched in or deprived of
stimuli (Valverde, 1967; Fifková, 1968; Globus et al., 1973; Parnavelas et al., 1973; Cragg,
1975; Turner & Greenough, 1985). Previous studies had inferred macroscopic effects of
structural plasticity from measurements of either cortical weight (Rosenzweig et al., 1962;
Bennett et al., 1964) or thickness (Diamond et al., 1967). The conclusion was that sensory
enrichment generally enhanced synaptogenesis and caused an elevated synaptic density,
presumably to accommodate the additional learning and information processing required
to navigate complex environments. These findings, in combination with the discovery of
electrically induced synaptic potentiation (Bliss & Lømo, 1973), served as the first pieces of
evidence in support of the idea that sensory experiences could leave lasting neurophysiological
and neuroanatomical traces in the brain.

Rewiring over years. Modifications of connectivity are not only regulated by experience
but also by the ontogenetic stage of an animal. In a series of experiments during the 1970s
and 80s, synaptic density was measured at different ages in rodents (Aghajanian & Bloom,
1967; Feldman & Dowd, 1975), cats (Winfield, 1981; O’Kusky, 1985), monkeys (O’Kusky
& Colonnier, 1982; Rakic et al., 1986), and humans (Huttenlocher, 1979; Huttenlocher
et al., 1982). These studies resulted in what is today a broadly accepted understanding
of the brain’s innate ability to modulate the turnover of synapses throughout development.
In early infancy, synaptogenesis is dramatically ramped up, causing the density of synapses
to quickly reach a maximum. During adolescence, the rate of synapse elimination slightly
outbalances the rate of formation (Zuo et al., 2005a), causing synapse density to slowly
decrease and plateau in adulthood (Petanjek et al., 2011).

Rewiring over days. By the late 1990s, the recent development of two-photon fluorescence
microscopy enabled experimentalists to image dendritic spines in vivo over timescales of
several days. This technique, combined with serial electron microscopy and three-dimensional
reconstruction, have established most of what is currently known about the synaptic lifecycle.3

Presynaptic activity, mediated by glutamate release, promotes the growth of both dendritic
spines (Maletic-Savatic et al., 1999) and entire connections (Le Bé & Markram, 2006) on
the postsynaptic neuron. New spines do not initially form synapses (Knott et al., 2006;
Nägerl et al., 2007). This structure is added later, in an activity-dependent maturation
process (De Roo et al., 2008), preferentially onto already existing axonal boutons (Knott
et al., 2006), which also undergo structural changes, though they tend to be more stable
than spines (De Paola et al., 2006; Majewska et al., 2006; Qiao et al., 2016). Spino- and
synaptogenesis is reversible, as stimuli that induce functional long-term depression eventually
cause spine retraction and elimination (Nägerl et al., 2004; Hayama et al., 2013; Oh et al.,
2013; Wiegert & Oertner, 2013).

3We focus here primarily on excitatory neurons and, in particular, cortical pyramidal cells.
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Experiential modulation of dendritic spine stability and turnover has been demonstrated in
experiments involving both sensory deprivation (Lendvai et al., 2000; Trachtenberg et al.,
2002; Zuo et al., 2005b; Holtmaat et al., 2006) and active task-learning (Xu et al., 2009;
Yang et al., 2009; Chen et al., 2015). The link between spine dynamics and learning is, in
fact, not only correlational but also causal; for example, spine formation in motor cortex is
directly necessary for the acquisition of new motor skills (Hayashi-Takagi et al., 2015). Both
experience-driven spine formation and elimination occurs to a larger extent during sleep4

than during wakefulness (Yang et al., 2014; Chen et al., 2015; Li et al., 2017; Zhou et al.,
2020). These types of studies have concluded that novel sensory input promotes rewiring of
neural circuits by destabilizing old, existing, dendritic spines and stabilizing new ones.

Statistics of dendritic spine turnover have successfully been reproduced in simulations of
multi-synaptic connections (Fauth et al., 2015; Deger et al., 2018). Although this work is
based on phenomenological modeling, it has demonstrated that flexible synaptic motility can
serve a computational purpose, by allowing a network to quickly learn new information and
maintain it for long periods of time, in spite of internal noise. A second set of theoretical
studies have suggested that dendritic rewiring could be a way for the brain to implement
Bayesian inference and particle filtering (Kappel et al., 2015; Hiratani & Fukai, 2018). This
work, however, is based on normative assumptions and has not been corroborated with
experimental data.

The model presented in chapter 3 differs from past work in that it focuses on whole connec-
tions and exclusively on the problem of optimal pruning, in a single bout of consolidation.
Moreover, we refrain from modeling dendritic spine turnover, due to this being a relatively
slow process. Instead, we focus on structural modifications in existing spines over shorter
time-scales, and the phenomenon of intrinsic synaptic noise.

Intrinsic synaptic noise. Over the last decade, experiments involving the observation of
exceptionally large numbers of individual dendritic spines have revealed yet another interesting
aspect about structural plasticity. The size of a spine exhibits constant, state-dependent
fluctuations, even over such small time windows as 10 minutes. (Yasumatsu et al., 2008;
Loewenstein et al., 2011; Statman et al., 2014; Ishii et al., 2018). Surprisingly, these
fluctuations have been found to only partially be caused by neural activity. Instead, they are,
to a large extent, driven by internal, activity-independent noise sources, and can be seen
to persist even as all glutamatergic transmission has been completely silenced (Yasumatsu
et al., 2008; Minerbi et al., 2009; Kaufman et al., 2012; Fisher-Lavie & Ziv, 2013; Hazan
& Ziv, 2020). This structural volatility is directly reflective of a functional volatility, given
that most morphological metrics of spine size, such as spine head volume, head area, and
post-synaptic density size, are strongly correlated with each other (Arellano et al., 2007)
and highly predictive of synaptic conductance (Holler et al., 2021).

Most theoretical work on this topic has taken a descriptive approach, whereby synaptic
change is assumed to behave as a random walk with additive and multiplicative components
(Yasumatsu et al., 2008; Loewenstein et al., 2011; Statman et al., 2014; Hazan & Ziv,

4Specifically REM-sleep.
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2020; Dorkenwald et al., 2022). These noise sources are, in turn, assumed to be caused by
a mixture of different plasticity mechanisms that are governed by the dynamics of ongoing
neural activity (Zheng et al., 2013). This view has primarily been motivated by the seemingly
linear relationship between spine size and fluctuation amplitude (Loewenstein et al., 2011;
Statman et al., 2014), as well as by the ubiquity of log-normal distributions that has been
found for various proxies of synaptic strength (Song et al., 2005; Loewenstein et al., 2011;
Dorkenwald et al., 2022). In chapter 3, we contest this description of structural fluctuations,
and propose a different way of modeling internal synaptic noise.

1.3 Scope and terminology

As this thesis is based solely on theoretical and computational work, it employs a neuroscien-
tific terminology that is somewhat simpler and more abstract than that typically found in
the experimental literature. We therefore clarify some of our definitions below.

First, while we make a distinction between a synapse and an entire inter-neuronal connection
when reviewing biological data, we use these terms synonymously in theoretical discussions,
as we do not include multi-synaptic connections in any of the models.

Second, we use the term synaptic plasticity in its broadest sense, encompassing all processes
that alter the functional state of a synapse, whether it be through anatomical, biochemical,
or biophysical means. Synaptic plasticity is divided into two different subcategories, based
on the form of expression: functional plasticity, meaning long-term potentiation (LTP) and
depression (LTD) in the efficacy of existing synapses, and structural plasticity, which we will
use to refer to purely anatomical synaptic changes, and, in particular, synaptic formation
and retraction. Note, therefore, that we will also use the term structural plasticity, for lack
of a better phrase, when discussing changes in dendritic spine anatomy, even if no formation
or pruning occurs.

The term consolidation will be used to refer to any general process that, following initial
memory encoding, strengthens or stabilizes a memory trace or engram through additional
plasticity. Although the term consolidation sometimes is used to refer to optimal memory
encoding and decay across multiple sessions or datasets, for example in the context of
continual, sequential, or lifelong learning, this definition is not related to our work, as we
only treat the problem of consolidating a single set of memories, over, at most, a single day.

In terms of the temporal specification of memory, we restrict our work to long-term memory
and plasticity. Transient learning processes, such as short-term plasticity and working memory,
are outside the scope of the thesis.

When modeling circuits of neurons, we will typically be working with recurrent artificial neural
networks with binary activation functions. Although we never explicitly specify the type or
modality of the information stored in these models, they are perhaps best understood as
models of declarative memory, and, in particular, visual or semantic memory, where each
pattern of neural activity represents the embedding of an image, symbol, word, or linguistic
morpheme. It is, with this interpretation in mind, easier to intuitively grasp notions such as
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pattern similarity, completion, and distortion, as well as memory strength and vividness.

1.4 Summary of the thesis

The work presented in the next two chapters is centered on the following questions:

i. What does it mean to optimally encode or consolidate a memory, and how can we
mathematically define this concept within a neural network framework?

ii. How can we mathematically formalize the concept of synaptic pruning within the
context of memory encoding and consolidation?

iii. Can we derive a biologically plausible synaptic learning rule for consolidating memory
and/or pruning synapses in a neural network?

iv. What is the relationship between consolidation, synaptic pruning, homeostatic scaling,
and multiplicative synaptic plasticity, and is there some way of reconciling these
seemingly disparate aspects of memory formation and learning?

Chapter 2. The first question is treated in chapter 2 and our work on kernel memory
networks. We begin our analysis by considering each individual neuron in a neural network as
a classifier endowed with a kernel function that pre-processes and transforms the synaptic
input before it reaches the neuron. Within this mathematical framework, we define the
problem of optimal storage, or consolidation, as the maximization of the signal-to-noise
ratio of all associations learned by each neuron (Fig. 1.1, blue boxes).

Using well-established theoretical results from the literature on kernel methods, we are able
to derive closed-form solutions for the optimal weights and state-update rules for both
hetero- and auto-associative networks. Interestingly, we find that this family of models,
which we term kernel memory networks, generalize many well-known memory models, such
as classical and modern Hopfield networks, as well as the Kanerva network (also known as
the sparse distributed memory). Our kernel-based approach offers a simple and intuitive
understanding of how the classical Hopfield learning rule produces sub-optimal storage, and
why non-linear Hamiltonians and higher-order synaptic interactions enhance the capacity.
We are also able to extend and generalize previous results on iterative learning rules and
derive closed-form solutions for Kanerva networks of very large size.

In the second half of the chapter, we apply the kernel-based approach to the case of
continuous patterns, and design a simple example of an attractor network with exponential
storage capacity. We compare this to a particular variant of the modern Hopfield network
which is closely related to the attention mechanism in transformers.

Finally, we comment on the biological relevance of our results by highlighting fact that
kernel classifiers generalize many previously published two-stage neuron models with separate,
non-linear dendritic and somatic processing.
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Figure 1.1: An overview of the thesis organized according to David Marr’s three levels of analysis.
The results in chapter 2 (blue boxes) are primarily closed-form solutions, with biological interpretations
focusing on dendritic processing. The solutions in chapter 3 (green boxes) cannot be expressed in
closed form; instead, we analyze iterative synaptic learning rules and dendritic spine dynamics. SVM
stands for support vector machine. Pyramidal cell reconstruction adapted from Chen et al. (2003).

The main contributions of this work are two-fold. First, from the perspective of neuroscience
and memory modeling, we derive a general, compact expression for the structure of optimal
hetero- and auto-associative memory networks based on a simple, intuitive definition of
engram strength. This directly establishes a link between neuron models with non-linear
dendrites and the storage capacity of a memory circuit. It also demonstrates that most
models of memory and active dendritic processing fundamentally belong to a single class,
and that they differ only with respect to two properties: model complexity, which depends on
the dendritic function, and model precision, which is determined by the level of fine-tuning
of the synaptic weights.

Secondly, from a machine learning perspective, we clarify the mathematical commonalities
between kernel methods, memory network models, and their relation to the dot-product
attention mechanism. We also demonstrate that memory networks can be derived from first
principles, out of an assumption of optimal storage, without the need to assign a Hamiltonian
to the system.

Chapter 3. The results on kernel memory networks naturally set the stage for chapter 3,
where we tackle questions (ii), (iii), and (iv). In order to extend our previous definition of
consolidation to also include synaptic pruning, we regularize the optimization problem of
maximizing memory SNR so that the solution becomes sparse. To achieve this without the
need to invoke unrealistic weight scaling or manual thresholding, we employ a recently devel-
oped machine learning method for implicit regularization. By reparameterizing each synaptic
weight as a product of multiple sub-synaptic components, we are able to derive a synaptic
learning rule that performs sparse consolidation in a way that naturally incorporates features
like memory replay, multiplicative homeostatic scaling, and state-dependent homosynaptic
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plasticity (Fig. 1.1, green boxes).

An important property of our learning rule is that intrinsic synaptic noise scales sub-linearly
with the weight. To test this prediction, we perform a meta-analysis of several published
datasets on the volatility of dendritic spines and find that spine size fluctuations, indeed,
scale sublinearly with size.

Our simulations of consolidated attractor networks at different levels of sparsity indicate
that there exists a trade-off between memory robustness and synaptic pruning, and suggests
that an optimal compromise can be found when each synapse consists of only two to
three plasticity expression sites. This configuration maximizes the amount of retrievable
information per synapse. In the second half of the chapter, we demonstrate how such an
optimum can be reached in a cortical circuit by implementing our learning rule in a network
that encodes and consolidates memory across wakefulness and sleep. We compare the
results of our sleep-based consolidation algorithm with human behavioral data and discuss
its merits relative other theories on the function of sleep.

The most significant contribution of this work is arguably the idea of leveraging the internal
complexity of synapses to implicitly bias a consolidation algorithm to find sparse solutions.
The learning rule that emerges from our derivation naturally reconciles the seemingly
contradictory notions of sparsification with multiplicative plasticity and homeostatic scaling.
Our approach is also compatible with other models of internal synaptic machinery, such as
the tagging-and-capture model and the cascade model for optimal memory decay.

A noteworthy implication of our definition of pruning is the fact that it predicts that synaptic
density changes over the course of development in a way that, we argue, better explains the
dependence on environmental enrichment, compared to previous models. We discuss this
point in greater detail towards the end of the chapter.

From the perspective of statistical physics and the classical literature on attractor networks,
it is important to note that kernel memory networks, which are finite-sized networks at
maximal robustness, have a correspondence, in the mean-field limit, to saturated networks
with a weight scaling of O(1/

√
N). They are therefore, historically speaking, first-generation

memory models. In contrast, the optimally pruned networks can be described, somewhat
informally, as corresponding to saturation in the mean-field limit under the scaling O(1/Nq),
where q ≥ 1

2 . As such, these models subsume the O(1/N) case, and can therefore be seen
as generalized second-generation models.

Thesis structure. The writing style in chapters 2 and 3 is oriented to different audiences.
Chapter 2 is based on a manuscript published in a machine learning journal, and is therefore
more focused on mathematical results, with biological interpretations being secondary.
Chapter 3, on the other hand, is an adaptation of a manuscript currently being prepared for
submission to a neuroscience journal. The main text therefore contains fewer equations,
and instead focuses on key concepts, simulation results, and analysis of experimental data.
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Chapter 2

Kernel memory networks: a unifying
framework

This chapter is based on the following article:

“Kernel memory networks: A unifying framework for memory modeling”
Georgios Iatropoulos, Johanni Brea∗, Wulfram Gerstner∗

Advances in Neural Information Processing Systems 35 (2022)

Abstract. We consider the problem of training a neural network to store a set of patterns
with maximal noise robustness. A solution, in terms of optimal weights and state update
rules, is derived by training each individual neuron to perform either kernel classification
or interpolation with a minimum weight norm. By applying this method to feed-forward
and recurrent networks, we derive optimal models, termed kernel memory networks, that
include, as special cases, many of the hetero- and auto-associative memory models that have
been proposed over the past years, such as modern Hopfield networks and Kanerva’s sparse
distributed memory. We modify Kanerva’s model and demonstrate a simple way to design a
kernel memory network that can store an exponential number of continuous-valued patterns
with a finite basin of attraction. The framework of kernel memory networks offers a simple
and intuitive way to understand the storage capacity of previous memory models, and allows
for new biological interpretations in terms of dendritic non-linearities and synaptic cross-talk.

Author contributions. GI created the model and produced the theoretical results. JB
assisted in writing the proofs. GI and JB performed the simulations. GI, JB, and WG wrote
the article.

∗JB and WG were co-senior authors.
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ETH Board of the Swiss Federal Institutes of Technology, to the Blue Brain Project, a
research center of the École Polytechnique Fédérale de Lausanne (EPFL).

https://proceedings.neurips.cc/paper_files/paper/2022/hash/e55d081280e79e714debf2902e18eb69-Abstract-Conference.html
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2.1 Introduction

Although the classical work on attractor neural networks reached its peak in the late 1980’s,
with the publication of a number of seminal works (e.g., Hopfield, 1982; Amit et al., 1985;
Gardner, 1987a, 1988), recent years have seen a renewed interest in the topic, motivated
by the popularity of the attention mechanism (Vaswani et al., 2017), external memory-
augmented neural networks (Graves et al., 2014; Weston et al., 2015), as well as a new
generation of energy-based attractor networks models, termed modern Hopfield networks
(MHNs), capable of vastly increased memory storage (Krotov & Hopfield, 2016; Demircigil
et al., 2017). Recent efforts to understand the theoretical foundation of the attention
mechanism have, in fact, shown that it can be linked to Hopfield networks (Krotov &
Hopfield, 2020; Ramsauer et al., 2021), but also to Kanerva’s sparse distributed memory
(SDM) (Kanerva, 1988; Bricken & Pehlevan, 2021), and to the field of kernel machines (Tsai
et al., 2019; Wright & Gonzalez, 2021). The last connection is particularly intriguing, in light
of the many theoretical commonalities between neural networks and kernel methods (Neal,
1996; Williams, 1996; Cho & Saul, 2009; Jacot et al., 2018; Chen & Xu, 2020). Overall,
these results suggest that a unified view can offer new insights into memory modeling and
new tools for leveraging memory in machine learning.

In this work, we aim to clarify some of the overlap between the fields of memory modeling and
statistical learning, by integrating and formalizing a set of theoretical connections between
Hopfield networks, the SDM, kernel machines, and neuron models with non-linear dendritic
processing.

2.1.1 Our contributions

First, we derive a set of normative kernel-based models that describe the general mathematical
structure of feed-forward (i.e., hetero-associative) and recurrent (i.e., auto-associative)
memory networks that can perform error-free recall of a given set of patterns with maximal
robustness to noise.

Second, we show that the normative models include, as special cases, the classical and
modern Hopfield network, as well as the SDM.

Third, we derive a simple attractor network model for storing an exponential number of
continuous-valued patterns with a finite basin of attraction. We discuss its similarity to
attention.

Finally, we explain how classifiers with non-linear kernels can be interpreted as general forms
of neuron models with non-linear dendritic activation functions and synaptic cross-talk.

2.1.2 Related work

Our work is primarily related to the studies by Casali et al. (2006), Krotov & Hopfield (2016,
2020), Bricken & Pehlevan (2021), Ramsauer et al. (2021), and Millidge et al. (2022).
While MHNs are extensively analyzed by Krotov & Hopfield (2016, 2020), Ramsauer et al.
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(2021), and Millidge et al. (2022), the approach is energy-based and makes no statements
about the relation between MHNs and kernel methods; a brief comment by Ramsauer et al.
(2021) mentions some similarity to SVMs, but this is not further explained. The work by
Bricken & Pehlevan (2021) focuses on the SDM and its connection to attention. It observes
that the classical Hopfield network is a special case of the SDM, but no further generalization
is made, and kernel methods are not mentioned. In our work, we place MHNs and the SDM
in a broader theoretical context by showing that both models are special suboptimal cases of
a family of memory networks that can be derived with a normative kernel-based approach.

2.2 Background

Consider the following simple model of hetero-associative memory: a single-layer feed-
forward network consisting of a single output neuron connected to Nin inputs with the
weights w ∈ RNφ . The output sout ∈ {±1} is given by

sout = sgn
[
w⊤φ(sin)− θ

]
(2.1)

where sin is the input vector (also called query), θ the threshold, and φ a function that
maps the “raw” input to a Nφ-dimensional feature space, where typically Nφ ≫ Nin. Suppose
that we are given a set of M input-output patterns {ξµin, ξ

µ
out}Mµ=1, in which every entry ξ

is randomly drawn from {±1} with sparseness f := P(ξ=1). In order for the neuron to
store the patterns in a way that maximizes the amount of noise it can tolerate while still
being able to recall all patterns without errors, one needs to find the weights that produce
the output ξµout in response to the input ξµin, ∀µ, and that maximize the smallest Euclidean
distance between the inputs and the neuron’s decision boundary. Using Gardner’s formalism
(Gardner, 1987a, 1988), this problem can be expressed as

argmax
w

κ s. t. ξµout
(
w⊤φ(ξµin)− θ

)
≥ κ, ∀µ

∥w∥2 = w̄
(2.2)

where w̄ > 0 is a constant. This is equivalent to solving

min
w
∥w∥2 s. t. ξµout

(
w⊤φ(ξµin)− θ

)
≥ 1, ∀µ (2.3)

which can be directly identified as the support vector machine (SVM) problem for separable
data (Cortes & Vapnik, 1995). The solution to Eq. 2.3 can today be found in any textbook
on basic machine learning methods, and yields an optimal output rule that can be written in
a feature and kernel form

sout = sgn

[
M∑
µ

αµξµoutφ(ξ
µ
in)
⊤φ(sin)− θ

]
(feature form) (2.4)

= sgn

[
M∑
µ

αµξµoutK(ξ
µ
in, sin)− θ

]
(kernel form) (2.5)
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where we, in the latter expression, have used the “kernel-trick” K(xi , xj) = φ(xi)⊤φ(xj).
The solution depends on the Lagrange coefficients αµ ≥ 0, many of which are typically zero.
Patterns with αµ > 0 are called support vectors.

2.3 Kernel memory networks for binary patterns

2.3.1 Hetero-associative memory as a feed-forward SVM network

We begin by considering a hetero-associative memory network with an arbitrary number
Nout output neurons, whose combined state we denote sout. In order for the network as a
whole to be able to tolerate a maximal level of noise and still successfully recall its stored
memories, we solve Eq. 2.3 for each neuron independently. As each neuron can have a
different classification boundary along with a different set of support vectors, its weights
will, in general, be characterized by an independent set of M Lagrange coefficients. To
simplify the notation, we represent these coefficients αµi , across neurons i and patterns
µ, as entries in the matrix A, where (A)iµ = α

µ
i . We also combine all thresholds in the

vector θ = (θ1, . . . , θNout), and all input and output patterns as columns in the matrices
Xin = (ξ

1
in, . . . , ξ

M
in ) and Xout = (ξ1out, . . . , ξ

M
out). Finally, we assume that all neurons have the

same feature map, so that φi = φ, ∀i (see Fig. 2.1). All functions are applied column-wise
when the argument is a matrix, for example φ(Xin) = (φ(ξ1in), . . . ,φ(ξ

M
in )). The optimal

response of the network can now be compactly summarized as follows.

Property 1 (Robust hetero-associative memory network). A single-layer hetero-associative
memory network trained to recall the patterns Xout in response to the inputs Xin with
maximal noise robustness, has an optimal output rule that can be written as

sout = sgn
[
(A⊙ Xout)φ(Xin)⊤φ(sin)− θ

]
(feature form) (2.6)

= sgn [(A⊙ Xout)K(Xin, sin)− θ] (kernel form) (2.7)

where ⊙ denotes the Hadamard product.

2.3.2 Auto-associative memory as a recurrent SVM network

The hetero-associative network can be made auto-associative by setting Nout = Nin and
Xout = Xin. The network is now effectively recurrent, as each neuron can serve both as
an input and output simultaneously (see Fig. 2.1). Consider a recurrent network with N
neurons, whose state at time point t is denoted s(t) ∈ {±1}N , and whose dynamics evolve
according to the update rule

s
(t+1)
i = sgn

[
w⊤i φ(s

(t))− θi
]

(2.8)

where wi ∈ RNφ is the weight vector to neuron i = 1, . . . , N. In order to make the patterns
{ξµ}Mµ=1 fixed points of the network dynamics, we train each neuron i independently on
every pattern µ to, again, produce the response ξµi when the rest of the network is initialized
in ξµ. Moreover, we maximize the amount of noise that can be tolerated by the network
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Figure 2.1: Graphical representation of (A1-A2) the feed-forward SVM network, (A3) the SDM,
(B1-B2) the recurrent SVM network, and (C) an SVM mapped to the anatomy of a pyramidal cell
(see Sec. 2.5). Circles represent neurons, while boxes represent the input transformation by the
feature map φ, which can be dependent (A1, B1) or independent (A2, B2) of neuron index i .

while maintaining error-free recall by maximizing the smallest Euclidean distance between
each neuron’s decision boundary and its inputs. This maximizes the size of the attractor
basins (Forrest, 1988; Kepler & Abbott, 1988). The problem of training the entire network
is, in this way, transformed into the problem of training N separate classifiers according to

min
wi
∥wi∥2 s. t. ξµi

(
w⊤i φ(ξ

µ)− θi
)
≥ 1, ∀µ, i . (2.9)

The solution can be obtained by slightly modifying Property 1, and is stated below.

Property 2.1 (Robust auto-associative memory). A recurrent auto-associative memory
network trained to recall the patterns X with maximal noise robustness has an optimal
synchronous update rule that can be written as

s(t+1) = sgn
[
(A⊙ X)φ(X)⊤φ(s(t))− θ

]
(feature form) (2.10)

= sgn
[
(A⊙ X)K(X, s(t))− θ

]
(kernel form) (2.11)

Remark. With a linear feature map φ(x) = x, the optimal update is reduced to

s(t+1) = sgn
[
(A⊙ X)X⊤s(t) − θ

]
(2.12)

where (A⊙ X)X⊤ can be identified as the general form of the optimal weight matrix.
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The solution described by Property 2.1 does not, in general, prohibit a neuron from having
self-connections. Applying this constraint yields the following result.

Property 2.2 (Robust auto-associative memory without self-connections). A recurrent
auto-associative memory network without self-connections, with the inner-product kernel
K(xi , xj) = k(x

⊤
i xj), that has been trained to recall the patterns X with maximal noise

robustness, has an optimal asynchronous update rule that can be written in the kernel form

s
(t+1)
i = sgn

 M∑
µ

αµi ξ
µ
i k

 N∑
j ̸=i
ξµj s

(t)
j

− θi
 . (2.13)

Storage capacity. An intuition for the storage capacity scaling of the hetero- and auto-
associative memory networks can be gained by observing that the network as a whole will be
able to successfully recall patterns as long as each neuron is able to correctly classify its inputs
(or is very unlikely to produce an error). The capacity of the network can thereby be derived
from the capacity of each individual neuron. It is well-known that a linear binary classifier can
learn to correctly discriminate a maximum of Mmax ≈ 2DVC random patterns, where DVC is
the Vapnik-Chervonenkis dimension of the classifier (Cover, 1965; Gardner, 1987a; MacKay,
2003, ch. 40). For a neuron with N inputs and a linear feature map φ(x) = x, this results in
DVC = N and, thus, the capacity Mmax ≈ 2N. Suppose, on the other hand, that the kernel
is a homogeneous polynomial of degree p, so that K(xi , xj) = (x⊤i xj)

p. In this case, φ will
contain all monomials of degree p composed of the entries in x. As there are O(Np) unique
p-degree monomials (see Appendix A2.1.1), the input dimensionality andMmax will be O(Np).
For the exponential kernel, which we can write as K(xi , xj) = exp(x⊤i xj) =

∑∞
p=0(x

⊤
i xj)

p/p!,

the dimensionality of φ will be
∑N
p=0

(
N
p

)
= 2N , which yields Mmax ∼ O(eN).

Special cases. In the following sections, we will show that many of the models of hetero-
and auto-associative memory that have been proposed in the past are special cases of the
solutions in Properties 1, 2.1, and 2.2, characterized by specific choices of A, φ, and K.

2.3.3 The Kanerva network is a feed-forward SVM network

The Kanerva network (Kanerva, 1988), originally referred to as the sparse distributed memory
(SDM), is one of the most famous examples of a hetero-associative memory model. It has
lately received much attention in the context of generative memory models (Wu et al., 2018)
and attention layers in transformers (Bricken & Pehlevan, 2021).

The SDM consists of a register of Nφ memory slots, each associated with an address
zi ∈ {±1}Nin , i = 1, . . . , Nφ. All addresses are listed as rows in the matrix Z = (z1, . . . , zNφ)

⊤.
The content of each slot is represented by an Nout-dimensional vector, initialized at zero.
Suppose that we wish to store the M patterns Xout = (ξ1out, . . . , ξ

M
out) in the addresses

Xin = (ξ
1
in, . . . , ξ

M
in ), where all entries are random and bipolar. The basic idea of the SDM

is to write the data to, and later read it from, multiple memory slots at once (hence the
distributed storage); this ensures a degree of noise-robustness. In mathematical terms, the
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read-out of the SDM provided with a query sin, is given by

sout = sgn
[
XoutΘ(ZXin − b)⊤Θ(Zsin − b)

]
(2.14)

where Θ the Heaviside function with bias b = Nin− 2r , and r is a parameter that determines
the precision of the writing and reading process. Upon comparing Eqs. 2.14 and 2.6, the
SDM can be directly identified as a special case of a suboptimal feed-forward SVM network
in the feature form, with A = 1, θ = 0, and the feature map φSDM(x) = Θ(Zx− b). When
viewed as a kernel method, the function of the SDM is to store the dense addresses Xin as
sparse high-dimensional representations φSDM, to make it easier to later determine the slots
closest to a query sin, and retrieve the relevant data.

Capacity. As the SDM is linear in φSDM, with DVC ≈ Nφ, it follows from the analysis in
Sec. 2.3.2 that one should expect the capacity to scale as Mmax ∼ O(Nφ). Moreover, one
should expect a proportionality constant ∼0.1, since the SDM is suboptimal relative to the
feed-forward SVM network, analogously to how the classical Hopfield network is suboptimal
relative to the recurrent SVM network (see Sec. 2.3.4). This is consistent with earlier proofs
(Keeler, 1988; Chou, 1989).

Kernel of an infinite SDM. In practice, an SDM with a large number of memory slots Nφ
requires calculations involving a large address matrix Z. This can be avoided by applying the
kernel-trick to Eq. 2.14 in the limit Nφ →∞, which allows for the output to be computed
with

sout = sgn [XoutKSDM(Xin, sin)] (2.15)

where we have defined the kernel as

KSDM(xi , xj) = lim
Nφ→∞

φSDM(xi)
⊤φSDM(xj)

Nφ
(2.16)

in order to ensure convergence. In this section, we will derive this kernel for two different
variants of the SDM and demonstrate that both are translation-invariant. It is interesting to
note here that φSDM is equivalent to a single-layer neural network with Nφ neurons, weights
Z, and bias b. This means that KSDM is equivalent to the kernel of an infinitely wide neural
network (Neal, 1996; Williams, 1996; Cho & Saul, 2009).

We begin by noticing that φSDM(x) has a geometrical interpretation (Keeler, 1988; Bricken
& Pehlevan, 2021). It is a binary vector that indicates those memory addresses in Z that
differ by at most r bits compared to x. For any two bipolar vectors z and x, the bit-wise
difference can be computed as 12 |z− x| =

1
4∥z− x∥

2
2. This means that φSDM(x) indicates

all addresses that lie within a sphere centered at x with radius 2
√
r . Consequently, the inner

product φSDM(xi)⊤φSDM(xj) is the number of addresses located in the overlapping volume
of two spheres centered at xi and xj . Although an exact calculation of this quantity can be
found in the literature (Kanerva, 1988; Bricken & Pehlevan, 2021), its connection to the
SDM kernel has, to the best of our knowledge, not previously been made. We therefore
modify the previously published expression with a normalization factor 1/2Nin and state the
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following property.

Property 3.1 (Kernel of an infinite SDM on the hypercube). In the limit Nφ → ∞, the
kernel of an SDM with Nφ memory slots, whose addresses are randomly drawn from {±1}Nin ,
is given by

KSDM(xi , xj) =
1

2Nin

Nin−∆∑
i=Nin−r−⌊∆2⌋

∆−(Nin−r−i)∑
j=[Nin−r−i ]+

(
Nin − ∆
i

)
·
(
∆

j

)
(2.17)

where r is the bit-wise error threshold and ∆ is the bit-wise difference between xi and xj ,
given by ∆ = 1

2 |xi − xj | =
1
4∥xi − xj∥

2
2.

The SDM can also be implemented with continuous addresses, randomly placed on a unit
hypersphere of (Nin − 1) dimensions, denoted SNin−1. The vector φSDM(x) now indicates
all addresses that lie within a hyperspherical cap centered at x with an angle arccos(b)
between its central axis and the rim. The inner product φSDM(xi)⊤φSDM(xj) is the number
of addresses located in the overlapping area of two spherical caps centered at xi and xj . A
calculation of this quantity can, again, be found in the literature (Bricken & Pehlevan, 2021),
but has not previously been connected to the kernel of an SDM. We simplify the previously
published result and also derive a closed-form approximation, valid for highly sparse φSDM
(see Appendix A2.2 for details). The results are summarized below.

Property 3.2 (Kernel of an infinite SDM on the hypersphere). In the limit Nφ →∞, the
kernel of an SDM with Nφ memory slots, whose addresses are randomly drawn from SNin−1,
is given by

KSDM(xi , xj) =
Nin − 2
2π

∫ αb
αx

sin(ϕ)Nin−2B

[
1−
tan2(αx)

tan2(ϕ)
;
Nin − 2
2
,
1

2

]
dϕ (2.18)

where αx = 1
2 arccos(x

⊤
i xj), αb = arccos(b), and B is the incomplete Beta function. In

the highly sparse regime, when 0.9 ≲ b < 1 and 1
Nφ
∥φSDM∥0 ≪ 1, the kernel can be

approximated with

KSDM(xi , xj) ≈
b̂Nin−1

2π
B

[
1−

(
∆

b̂

)2
;
Nin
2
,
1

2

]
(2.19)

where ∆ = 1
2∥xi − xj∥2 and b̂ = sin(arccos(b)).

In conclusion, an infinitely large SDM with sparse internal representations φSDM, can be
represented as a suboptimal case of a feed-forward SVM network with a translation-invariant
kernel.

2.3.4 The Hopfield network is a recurrent SVM network

The Hopfield network (Hopfield, 1982) is, arguably, the most well-known model of auto-
associative memory. In its modern form (Krotov & Hopfield, 2016), it is a recurrent network
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of N neurons with the state s(t), whose dynamics are governed by the energy

E = −
M∑
µ

F

(
N∑
i

ξµi s
(t)
i

)
(2.20)

and state update rule

s
(t+1)
i = sgn

 M∑
µ

ξµi F
′

 N∑
j ̸=i
ξµj s

(t)
j

 (2.21)

where F is a smooth function, typically a sigmoid, polynomial, or exponential. This “gen-
eralized” Hopfield model has a long history (see, e.g., Hintzman, 1984; Lee et al., 1986;
Abbott & Arian, 1987; Gardner, 1987b) but has received renewed attention in recent years
under the name modern Hopfield network (MHN) or dense associative memory (Krotov
& Hopfield, 2016; Demircigil et al., 2017). By comparing Eq. 2.21 with Eq. 2.13, the
state update of the MHN can be identified as a special case of a suboptimal recurrent SVM
network in the kernel form, with k = F ′, A = 1, and θ = 0 (since f = 0.5). With a linear
F ′(x) = x , the MHN reduces to the classical Hopfield network, which is a special case of
the recurrent SVM network with the linear kernel k(x⊤i xj) = x

⊤
i xj .

Capacity. The storage capacity of the MHN has been shown to depend on the shape of
F ′. In the linear case, the capacity is famously limited to ∼0.1N patterns, depending on the
precision of retrieval (Amit et al., 1985; McEliece et al., 1987). If, on the other hand, F ′ is
polynomial with degree p, the capacity scales as Mmax ∼ O(Np) (Krotov & Hopfield, 2016),
while an exponential F ′ endows the network with a capacity Mmax ∼ O(eN) (Demircigil
et al., 2017). From the perspective of the kernel memory framework, this scaling directly
follows from the analysis in Sec. 2.3.2 with k = F ′.

In the regime of low errors, the kernel memory framework can also be used to derive a more
precise capacity scaling for the classical Hopfield network. We first note that any one-shot
learning rule that implies A > 0 is equivalent to an SVM network where every stored pattern
is a support vector. Such a heuristic is only likely to be close to the optimal solution and
perform well in large networks with very few patterns, as high-dimensional linear SVMs
trained on few patterns are highly likely to find solutions where all patterns are support
vectors; this effect has been termed support vector proliferation (Ardeshir et al., 2021).
Restricting the network to this regime limits the capacity to Mmax ∼ O( N

2 logN ), consistent
with the result by McEliece et al. (1987) (see Appendix A2.1.2).

Iterative learning rules. The problem of iteratively training MHNs with biologically plausible
online learning rules has recently been studied (Tyulmankov et al., 2021), with a resulting
storage capacity ranging from ∼0.16N to ∼N, depending on the exact implementation. The
aim, in general, of such studies is to find a learning rule capable of producing a capacity
close to the theoretical maximum ∼2N. For this purpose, the perspective of kernel memory
networks can be particularly helpful, as many of the algorithms that have been developed
over the past two decades to optimize SVMs can be utilized for MHNs as well. For example,
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a network formulated in the feature form can be trained with the stochastic batch perceptron
rule (Krauth & Mezard, 1987; Cotter et al., 2012), the passive aggressive rules (Crammer
et al., 2006), the minnorm rule (Bansal et al., 2018), as well as with likelihood maximization
applied to logistic regression (Soudry et al., 2018; Nacson et al., 2019; Ji et al., 2021).
In the kernel form, two of the most well-known online algorithms for training linear and
non-linear SVMs are the Adatron (Anlauf & Biehl, 1989) and the Kernel-Adatron (Frieß
et al., 1998). A performance comparison between iterative learning and the modern Hopfield
learning rule can be found in Appendix A2.3.

Generalization. Viewing the MHN as a recurrent network of SVMs can also facilitate
a more intuitive understanding of its ability to generalize, when used as a conventional
classifier. In this setting, one designates a subset of the neurons as input units, and the
remaining neurons as outputs. Given a set of input-output associations, one optimizes the
memory patterns ξµ using, for example, gradient descent. Such an experiment was performed
by Krotov & Hopfield (2016) on the MNIST data set, using a polynomial non-linearity
F (x) = xp. Results showed that the test error first improved as p increased from 2 to 3,
but later deteriorated for high degrees, like p = 20. While it may be difficult to explain this
behavior within an energy-based framework, it is entirely expected when viewed from the
SVM perspective: a kernel of low polynomial degree has too few degrees of freedom to fit
the classification boundary in the training set, causing underfitting, while a polynomial of
too high degree grants the model too much flexibility, which results in overfitting.

The pseudoinverse learning rule. The coefficients in A are, in general, computed nu-
merically, and cannot be written in closed form. However, in the special case when Eq.
2.9 is underdetermined, meaning M < Nφ, a closed-form (but suboptimal) solution can be
obtained using the least-squares SVM method (Suykens & Vandewalle, 1999). The result is
a generalized form of the pseudoinverse learning rule (Personnaz et al., 1986). See Appendix
A2.4 for details.

2.4 Kernel memory networks for continuous patterns

2.4.1 Auto-associative memory as a recurrent interpolation network

So far, we have considered memory models designed to store only bipolar patterns. We
now relax this constraint and allow patterns to be continuous-valued. We first observe that
any set of patterns X ∈ RN×M can be made fixed points of the dynamics by training each
neuron i to interpolate ξµi when the rest of the network is initialized in ξµ, for every pattern
µ. Assuming that the model is equipped with a kernel that allows for each fixed point to
also be attracting, we can ensure that a lower bounding estimate of the size of the attractor
basin is maximized by finding the interpolation with minimum weight norm (see Appendix
A2.5.1 for proof). These results are summarized below.

Property 4 (Robust auto-associative memory with continuous patterns). Suppose that
the dynamics of a recurrent auto-associative memory network evolve according to the
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synchronous update rule
s(t+1) = XK†K(X, s(t)) (2.22)

where K = K(X,X) = φ(X)⊤φ(X) is the kernel matrix and K† its Moore-Penrose pseudoin-
verse, where K† = K−1 if φ(X) is full column rank. Then, the dynamics of the network is
guaranteed to have the fixed points X. Moreover, if the points are attracting, Eq. 2.22
maximizes a lower bound of the attractor basin sizes.

2.4.2 A recurrent interpolation network with exponential capacity

Memory models for continuous data (e.g., Hopfield, 1984; Koiran, 1994; Nowicki &
Siegelmann, 2010) have generally received less attention than their binary counterparts.
Recently, however, Ramsauer et al. (2021) proposed an energy-based model capable of
storing an exponential number of continuous-valued patterns (we will refer to this model as
the softmax network). While the structure of this model is similar to Eq. 2.22, it cannot be
analyzed within the framework of Property 4, as it involves a kernel that is neither symmetric
nor positive-definite (Wright & Gonzalez, 2021).

Nonetheless, we will in this section demonstrate that it is possible to use conventional kernel
methods to design an attractor network with exponential capacity for continuous patterns.
We utilize the properties of the SDM by using a translation-invariant kernel with a fixed
spatial scale r . For the sake of simplicity, we choose the exponential power kernel (EPK)

KEPK(xi , xj) = exp

[
−
(
1

r
∥xi − xj∥2

)β]
(2.23)

where β, r > 0. These parameters determine the shape of the attractor basin that surrounds
each pattern. While r roughly sets the radius of attraction, β represents an inverse
temperature which changes the steepness of the boundary of the attractor basin. Moreover,
as long as the patterns are unique, the kernel matrix is invertible and we have K†EPK = K

−1
EPK

(Micchelli, 1986).

We will now analyze the noise robustness and storage capacity of this model. To make the
analysis tractable, we will operate in the regime of low temperatures, meaning the limit
β →∞. We first establish the following three properties.

Property 5.1 (EPK network at zero temperature). Given a set of unique patterns {ξµ}Mµ=1
with minµ,ν ̸=µ∥ξµ− ξν∥2 > r , the state update rule for the EPK network at β →∞ reduces
to

s(t+1) = XΘ(r − ∥X− s(t)∥2) (2.24)

where Θ(·) is the Heaviside function with Θ(0) = e−1 (see Appendix A2.5.2).

Remark. In geometrical terms, Property 5.1 states that the boundary of the basin of
attraction surrounding each pattern becomes a sharp (N − 1)-dimensional hypersphere with
radius r in the limit β →∞. For lower, finite β, the spherical boundary becomes increasingly
fuzzy. From the perspective of an energy landscape, each pattern lies in an N-dimensional
energy minimum with infinitely steep walls when β → ∞. As β is lowered, the barriers



22 Kernel memory networks

become progressively smoother.

Property 5.2 (Convergence in one step). Given a set of unique patterns {ξµ}Mµ=1 with
minµ,ν ̸=µ∥ξµ − ξν∥2 > 2r , the EPK network at β →∞, initialized at s(0) = ξµ + ∆ξ, will
converge to ξµ in one step if ∥∆ξ∥2 < r .

Property 5.3 (No spurious attractors). Given a set of unique patterns {ξµ}Mµ=1 with
minµ,ν ̸=µ∥ξµ−ξν∥2 > 2r and ∄µ : ∥ξµ∥2 = r/(1−e−1), the only attractors of the dynamics
of the EPK network at β →∞ are the points {ξµ}Mµ=1, together with 0 if ∄µ : ∥ξµ∥2 ≤ r .

Remark. Properties 5.2 and 5.3 can be shown to be true simply by inserting the expression
s(0) = ξµ + ∆ξ in Eq. 2.24. Assuming no overlaps between the basins of attraction, a
quick calculation shows that s(1) = ξµ if ∥∆ξ∥2 < r . If, on the other hand, the network is
initialized such that ∥s(0) − ξµ∥2 > r , ∀µ, one always obtains s(2) = ξ0, where ξ0 is either
0 or the pattern closest to 0. In other words, the network recalls a pattern only if the
initialization is close enough to it. If located far from all patterns, the network assumes an
“agnostic” state, represented either by the origin or the pattern closest to the origin (if the
origin happens to be located within a basin of attraction).

In the following two properties, we evaluate how the radius of attraction r determines the
maximum input noise tolerance and storage capacity.

Property 6 (Robustness to white noise). Assume that we are given a set of unique patterns
ξ1, . . . , ξM ∼ N (0, IN) withminµ,ν ̸=µ∥ξµ−ξν∥2 > 2r , and that the EPK network is initialized
in a distorted pattern s(0) = ξµ+ ϵ, where ϵ ∼ N (0, σ2IN). Then, at β →∞, the maximum
noise variance σ2max with which ξµ can be recovered in at least 50% of trials is

σ2max = r
2/N . (2.25)

Property 7 (Exponential storage capacity). At β → ∞, and for N ≫ 1, the average
maximum number of patterns sampled from N (0, IN) that the EPK network can store and
recall without errors is lower-bounded according to

Mmax ≥
√
2
√
πN(1− 2σ2max) exp

[
N(1− 2σ2max)2

8

]
(2.26)

where σ2max is the maximum white noise variance tolerated by the network.

Remark. Proofs can be found in Appendix A2.5.2. Note that Property 7 is valid in the range
σ2max ≲ 1/2. While the bounds are fairly tight at the upper end of the range, they become
loose when σ2max → 0. In this limit, which is equivalent to r → 0, the storage capacity
tends to infinity, as the risk of interference between patterns vanishes when their radius of
attraction becomes infinitesimal.

Comparison to the softmax network. If patterns are randomly placed on a hypersphere
instead of being normally distributed, the state update rule in Eq. 2.24 reduces to the
form s(t+1) = XΘ(X⊤s(t) − θ), where θ is a fixed threshold. While the capacity remains
exponential (see Appendix A2.5.3), the basin of attraction surrounding each pattern now
forms a spherical cap instead of a ball.
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We can compare this to the softmax network at zero temperature, given by s(t+1) =
limβ→∞X softmax(βX

⊤s(t)) = X argmax(X⊤s(t)). This model differs from the EPK only
in a replacement of Θ with argmax. This changes the shape of the attractor basins from
spherical caps to Voronoi cells, which parcellate the entire surface of the hypersphere
into a Voronoi diagram (see Fig. 2.2). The boundary of each basin is now no longer
radially symmetric around a pattern, but instead extends as far as possible in all directions.
Consequently, at β → ∞, the softmax network has larger attractor basins and always
converges to one of the stored patterns, regardless of the initialization point (assuming this
is not precisely on a boundary). In contrast, the EPK network may converge to the origin
if initialized far from all patterns. This can be interpreted as an agnostic response, which
indicates that the model cannot associate the input query with any of its stored patterns.

2.5 Discussion

Biological interpretation. Kernel memory networks can be mapped to the anatomical
properties of biological neurons. Consider an individual neuron in the feature form of the
recurrent network (Eq. 2.10). The state of neighboring neurons s is first transformed through
φ(s) and thereafter projected to the neuron through the weight matrix (A⊙X)φ(X)⊤. When
the kernel is polynomial of degree p, so that K(xi , xj) = (x⊤i xj + 1)

p, the transformation
φ(s) consists of all elements in s and their cross-terms, up to degree p. The input to each
neuron, in other words, consists of the states of all other neurons, as well as all possible
combinations of their multiplicative interactions. This neuron model can be viewed as a
generalized form of, for example, the multiconnected neuron (Peretto & Niez, 1986), the
clusteron (Mel, 1991), or the sigma-pi unit (Rumelhart & McClelland, 1986, p. 73). These
are all perceptrons that include multiplicative input interactions as a means to model synaptic
cross-talk and cluster-sensitivity on non-linear dendrites (Polsky et al., 2004) (see Fig. 2.1).

In the kernel form (Eq. 2.11), each neuron is, again, implicitly comprised of a two-stage
process, whereby the raw input s is first transformed through the function K(X, s) and then
projected through the weight matrix A⊙X. For any inner-product kernel K = k(x⊤i xj), this
representation can be directly identified as a two-layer neural network, where the hidden
layer is defined by the weights X and the activation function k . This interpretation of the
recurrent network was recently proposed by Krotov & Hopfield (2016, 2020) and discussed
in relation to hippocampal-cortical interactions involved in memory storage and recall; it is
particularly reminiscent of the hippocampal indexing theory (Teyler & Rudy, 2007; Barry &
Maguire, 2019).

However, the kernel form can also be viewed as a network in which each individual neuron is
a generalized form of the two-layered pyramidal cell model (Poirazi & Mel, 2001; Poirazi
et al., 2003). This was originally proposed as an abstract neuron model augmented with
non-linear dendritic processing (Major et al., 2013). It should be noted, however, that the
idea of interpreting kernel methods as neural networks has a longer history, and has been
extensively analyzed in the case of, for example, radial basis functions (Poggio & Girosi,
1990a,b). For further details, see Appendix A2.6.
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Figure 2.2: Plot of random patterns
on S2 together with attractor basins
at β → ∞. Dots represent patterns
(M = 17) while thick and thin red lines
correspond to the boundaries of the at-
tractor basins according to the EPK net-
work and the softmax network, respec-
tively. The radius of the circular bound-
aries has been set to half the minimum
pairwise distance between the patterns.

Summary. We have shown that conventional kernel methods can be used to derive the
weights for hetero- and auto-associative memory networks storing binary or continuous-valued
patterns with maximal noise tolerance. The result is a family of optimal memory models,
which we call kernel memory networks, which includes the SDM and MHN as special cases.
This unifying framework facilitates an intuitive understanding of the storage capacity of
memory models and offers new ways to biologically interpret these in terms of non-linear
dendritic integration. This work formalizes the links between kernel methods, attractor
networks, and models of dendritic processing.

Future work. A unifying theoretical framework for memory modeling can be useful for
the development of both improved bio-plausible memory models and for machine learning
applications. First, recognizing that there exists algorithms for training optimally noise-
robust classifiers and adapting these to biological constraints can aid in the development of
normative synaptic three-factor learning rules (Gerstner et al., 2018).

Second, the theoretical link between neuron models, kernel functions, and storage capacity
enables one to fit kernel memory networks to neurophysiological data and to analyze the
computational properties of biophysically informed memory models.

Finally, our unifying framework reveals that most memory models differ only in the choice
of the kernel (model complexity) and the Lagrange parameters (model precision). This
categorization simplifies the tailoring of memory models to specific applications, and allows
for the design of models whose properties fundamentally can depart from classical networks,
by, for example, choosing kernels not associated with a reproducing kernel Hilbert space.
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Appendix

A2.1 Derivation of storage capacity scaling

A2.1.1 Optimal storage: The scaling of effective input dimensionality

Suppose that the kernel is a homogeneous polynomial of degree p ≪ N, meaning K(xi , xj) =
(x⊤i xj)

p. This implies that the associated feature map φ(x) contains all monomials of degree
p composed of the entries in x. Moreover, given that each entry xi is ±1, each monomial in
φ can be written as an interaction term of the form xp11 x

p2
2 · · · x

pN
N , where pi ∈ {0, 1} and∑N

i pi ≤ p (i.e., no factor xi has an exponent higher than 1 and the sum of exponents is
≤ p). The reason for this is that

xnii =

{
1 , if ni even

xi , if ni odd .
(A2.1)

The number of unique interaction terms of precisely degree p (the highest degree) is
(
N
p

)
.

As the binomial coefficient is known to be bounded according to(
N

p

)p
≤
(
N

p

)
≤
(
Ne

p

)p
(A2.2)

we obtain
(
N
p

)
∼ O(Np), for p fixed. Thus, the effective dimensionality of φ scales like

O(Np).

For the exponential kernel K(xi , xj) = exp(x⊤i xj) =
∑∞
p=0(x

⊤
i xj)

p/p!, we first note that the
monomials in φ now will be interaction terms of all degrees p = 0, . . . , N. No monomial of
degree p > N will be possible. The total number of unique interaction terms will therefore
be

N∑
p=0

(
N

p

)
= 2N = eN log 2 (A2.3)

where the first equality can be found in Boros & Moll (2004, p. 14). This gives us an
effective dimensionality of φ that scales like O(eN).

A2.1.2 One-shot storage: The scaling of the support vector proliferation
regime

As shown recently by Ardeshir et al. (2021), support vector proliferation for an SVM trained
on M random patterns drawn uniformly from {±1}N occurs in the regime N ≳ 2M logM.
Solving for M gives us the scaling

M ≲
N

2W0(
N
2 )

(A2.4)
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where W0 is the principal branch of the Lambert function. The largest number of patterns
that can be stored in this regime is thus

Mmax ≈
N

2W0(
N
2 )
. (A2.5)

Using the property W0(x) = log x − log log x + o(1), we can write

W0

(
N

2

)
∼ O(logN) (A2.6)

which yields

Mmax ∼ O
(
N

2 logN

)
. (A2.7)

A2.2 Kernel of an infinite SDM on the hypersphere

A2.2.1 Derivation of Eq. 2.18.

We follow the same steps as Bricken & Pehlevan (2021), with additional simplifications
towards the end. As stated in the main text, we seek to calculate the overlapping area of
two hyperspherical caps. A formula for this is provided by Lee & Kim (2014), and can be
written as

A∩ = A▽(R,αmin, α2) + A▽(R,αv − αmin, α1) (A2.8)

where

A▽(R,αmin, α2) =
π
Nin−1
2

Γ(Nin−12 )
RNin−1

∫ α2
αmin

sin(ϕ)Nin−2I
1− tan

2(αmin)

tan2(ϕ)

[
Nin − 2
2
,
1

2

]
dϕ (A2.9)

where R is the radius, I is the regularized incomplete Beta function, and

α1 = α2 = arccos(b) (A2.10)

αv = arccos(x
⊤
i xj) (A2.11)

αmin = arctan

(
cos(α1)

cos(α2) sin(αv )
−

1

tan(αv )

)
(A2.12)

R = 1 . (A2.13)

We insert Eq. A2.10 in A2.12 and obtain

αmin = arctan

(
1

sin(αv )
−
cos(αv )

sin(αv )

)
= arctan

(
tan
(αv
2

))
=
αv
2

(A2.14)

where we have used tan(α/2) = (1 − cos(α))/ sin(α). Eq. A2.14 also follows from the
symmetry of the problem. This result yields

A∩ = A▽(R,αmin, α2) + A▽(R,αv − αmin, α1) = 2A▽(R,αmin, α1) . (A2.15)
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We rewrite the regularized incomplete Beta function as

I
1− tan

2(αmin)

tan2(ϕ)

[
Nin − 2
2
,
1

2

]
=

Γ(Nin−12 )

Γ(Nin−22 )Γ(
1
2)
B

[
1−
tan2(αmin)

tan2(ϕ)
;
Nin − 2
2
,
1

2

]
(A2.16)

where B is the incomplete Beta function. The area of an (Nin − 1)-dimensional hypersphere
is

A◦ =
2π

Nin
2

Γ(Nin2 )
RNin−1 . (A2.17)

We insert Eq. A2.16 in A2.9 and use the result in Eq. A2.15. Using the notation αb = α1
and αx = αmin, and the identities

Γ(Nin2 )

Γ(Nin−22 )
=
Nin − 2
2
, Γ

(
1

2

)
=
√
π , (A2.18)

the ratio between the overlapping area of the hyperspherical caps and the complete are of
the hypersphere can now be calculated as

A∩
A◦
=
Nin − 2
2π

∫ αb
αx

sin(ϕ)Nin−2B

[
1−
tan2(αx)

tan2(ϕ)
;
Nin − 2
2
,
1

2

]
dϕ . (A2.19)

A2.2.2 Derivation of Eq. 2.19.

For a large bias b ≳ 0.9, which is equivalent to a small angle αb = arccos(b), the hyper-
spherical caps surrounding xi and xj will be very small in relation to the whole hypersphere.
In this case, we can neglect the curvature of the hyperspherical surface and project the area
of the hyperspherical cap to the plane that cuts through the rims of the cap. This projection
is a (Nin − 1)-dimensional hyperball (we will refer to it as a mini-ball). In three dimensions,
for example, the projection of a spherical cap to the plane constitutes a disk, which is a
2-dimensional ball. The radius of each mini-ball is

b̂ = sin(arccos(b)) (A2.20)

and the half-distance between the centers of the mini-balls is

∆ =
1

2
∥xi − xj∥2 . (A2.21)

We estimate the overlapping area of the hyperspherical caps by calculating the overlapping
volume of the mini-balls in (Nin − 1) dimensions. The overlapping volume of two hyperballs
has been computed by Li (2011) and is

V∩ =
π
Nin−1
2

Γ(Nin+12 )
b̂Nin−1I

1−
(
∆
b̂

)2
[
Nin
2
,
1

2

]
. (A2.22)
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A B

Figure A2.1: Plot of the kernel of an infinite SDM on the hypersphere, KSDM(xi , xj), as a function
of (A) the angle between xi and xj , and (B) the bias b. Solid lines represent the exact solution in
Eq. A2.19, and dashed lines the approximation in Eq. A2.24. Parameter values: (A) Nin = 50; (B)
arccos(x⊤i xj) = arccos(b).

We rewrite the regularized incomplete Beta function as

I
1−

(
∆
2b̂

)2
[
Nin
2
,
1

2

]
=
Γ(Nin+12 )

Γ(Nin2 )Γ(
1
2)
B

[
1−

(
∆

b̂

)2
;
Nin
2
,
1

2

]
(A2.23)

and insert Eq. A2.23 in A2.22. The ratio between the overlapping area of the hyperspherical
caps and the complete area of the hypersphere can now be estimated as

A∩
A◦
≈
V∩
A◦
=
b̂Nin−1

2π
B

[
1−

(
∆

b̂

)2
;
Nin
2
,
1

2

]
. (A2.24)

A comparison of the exact solution in Eq. A2.19 and the approximation in Eq. A2.24 can
be seen in Fig. A2.1.

A2.3 Iterative learning in an SVM network

We will in this section compare the noise tolerance of a single neuron in an SVM network
when trained with an iterative learning rule, and when configured according to the MHN.
First, we choose to equip the neuron with the feature map φpairs(x), which consists of all
unique pairs of cross-terms xixj , i ̸= j . This yields a storage capacity scaling of O(N2), and
we therefore parameterize the storage load as M/N2. We train the weights of the neuron
either with the stochastic batch perceptron rule (Cotter et al., 2012) or with the one-shot
learning rule of the MHN, which is obtained by setting αµ = 1, ∀µ, in Eq. 2.4, that is

w =

M∑
µ

ξµoutφ(ξ
µ
in) . (A2.25)
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Figure A2.2: Plot of the noise tolerance γ (mean ± s.e.m. over 20 simulations) as a function
of the storage load for a single SVM neuron with N = 102 inputs, trained with the stochastic
batch perceptron (SBP) and the modern Hopfield rule. The SBP uses the feature map φpairs,
while the modern Hopfield rule is applied to both φpairs and φpoly2, corresponding to the kernel
K(xi , xj) = (x

⊤
i xj)

2. SBP hyperparameters: learning rate = 10−5, iterations = 20M.

Finally, we quantify the noise tolerance as the smallest Euclidean distance between the
neuron’s decision boundary and the patterns {ξµin}

M
µ=1. This is equivalent to the minimum

classification margin, defined as

γ = min
µ

ξµout(w
⊤ξµin)

∥w∥2
. (A2.26)

We are only interested in the performance regime where all patterns are correctly recalled
(i.e., correctly classified). This means that we only compare positive margins, since a
negative margin indicates that there is one or more patterns that no longer can be correctly
recalled. The results are plotted in Fig. A2.2, and demonstrate that the margin for the
MHN quickly drops with increasing load, while the iterative learning rule achieves a margin
close to the theoretical optimum derived by Gardner (1988). Moreover, as the maximum
storage capacity Mmax of each learning rule can be found at the intersection between the
margin curve and the line γ = 0, the capacity of the online rule can be estimated to ∼0.7N2,
which is more than an order of magnitude higher than that of the MHN, which is ∼0.05N2.

A2.4 Generalized pseudoinverse rule

When the network is linear and underdetermined, meaning M < N, we can make sure that
all patterns are attractors by modeling each neuron as a least-squares SVM (Suykens &
Vandewalle, 1999) instead of a conventional SVM, so that the weights satisfy

min
w
∥wi∥2 s. t. w⊤i ξ

µ = ξµi , ∀µ, i . (A2.27)
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This is a minimum-norm interpolation problem, and yields the solution

s(t+1) = sgn
[
XK†X⊤s(t)

]
= sgn

[
XX†s(t)

]
(A2.28)

where K = X⊤X is the kernel matrix and K† its Moore-Penrose pseudoinverse, and where
we have used the property K†X⊤ = (X⊤X)†X⊤ = X†. This is the pseudoinverse learning
rule (Personnaz et al., 1986).

The derivation can be extended to MHNs by performing interpolation on the feature map
φ(ξµ). Assuming that the problem is still underdetermined, so that M < Nφ, we aim to find
the weights

min
w
∥wi∥2 s. t. w⊤i φ(ξ

µ) = ξµi , ∀µ, i (A2.29)

which, analogously to the linear case, produces the optimal state update

s(t+1) = sgn
[
XK†K(X, s(t))

]
(A2.30)

where K = K(X,X) = φ(X)⊤φ(X). This can, again, be simplified to

s(t+1) = sgn
[
Xφ(X)†φ(s(t))

]
(A2.31)

where we can identify the weight matrixW = Xφ(X)†. This is the generalized pseudoinverse
learning rule. Note that, if the feature-expanded patterns {φ(ξµ)}Mµ=1 are linearly independent,
the kernel matrix is invertible and we have K† = K−1.

A2.5 The kernel memory network for continuous patterns

A2.5.1 Minimum norm interpolation and attractor basin size

Proof of Property 4 (Robust auto-associative memory with continuous patterns). In the
most general variant of this setting, each neuron i is modeled as a linear regressor with a
neuron-specific feature map φi and a state si which is updated according to

s
(t+1)
i = w⊤i φi(s

(t)) . (A2.32)

All patterns X are guaranteed to be fixed points of the dynamics by finding the weights that
satisfy

ξµi = w
⊤
i φi(ξ

µ), ∀µ, i . (A2.33)

In order for each pattern to also be an attractor, the weights must satisfy the additional
constraint

∥Js∥2
∣∣∣
s(t)=ξµ

< 1, ∀µ (A2.34)

where Js is the Jacobian of the state update rule with respect to the input s(t). The meaning
of Eq. A2.34 is that the spectral norm of the Jacobian must be less than 1 when evaluated
at each pattern. The reason for this is that the update rule, which computes s(t+1) as a
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function of s(t) (either synchronously or asynchronously) is continuously differentiable with
respect to s(t) and therefore satisfies the mean value inequality, so that∥∥∥s(t+1)1 − s(t+1)2

∥∥∥
2
≤ Ĵs

∥∥∥s(t)1 − s(t)2 ∥∥∥
2

(A2.35)

where Ĵs is an upper bound of the spectral norm, meaning

∥Js∥2 ≤ Ĵs . (A2.36)

If Ĵs < 1 at a pattern ξµ, it is also possible to find a neighborhood around ξµ where Ĵs < 1
holds as well, due to the continuity of the state update rule. Given this, the Banach fixed
point theorem ensures that the state update rule is a contractive map in a region surrounding
ξµ and, equivalently, that ξµ is a stable attractor (Radhakrishnan et al., 2020). While the
complete basin of attraction of ξµ might be difficult to compute exactly, we can define a
subset of the basin as the set of points Sµ in the open neighborhood of ξµ satisfying

Sµ = {s(t) : ∥Js∥2 < 1} . (A2.37)

Given that the spectral norm of the Jacobian is upper-bounded by the Frobenius norm, that
is

∥Js∥2 ≤ ∥Js∥F , (A2.38)

we can obtain a lower bound of the extent of the basin of attraction with the set

Ŝµ = {s(t) : ∥Js∥F < 1} . (A2.39)

We can write Js as
Js =W · Jφ (A2.40)

where

W =


w⊤1 0 · · · 0

0 w⊤2 · · · 0
...

...
. . .

...
0 0 · · · w⊤N

 , Jφ =


Jφ1
Jφ2
...
JφN

 (A2.41)

and where Jφi is the Jacobian of φi(s(t)) with respect to s(t). This gives us

∥Js∥F = ∥W · Jφ∥F ≤ ∥W∥F · ∥Jφ∥F (A2.42)

where the last expression is given by the Cauchy-Schwartz inequality. Since ∥Jφ∥F depends
only on the kernel, which is fixed, the right-hand side of Eq. A2.42 can only be minimized
by finding a set of weights that minimize ∥W∥F . By first rewriting this norm as

∥W∥2F =
N∑
i

∥wi∥22 (A2.43)



32 Kernel memory networks

we see that its minimum is obtained by minimizing ∥wi∥2, ∀i . Combining this requirement
with Eq. A2.33 is equivalent to performing a minimum norm interpolation, that is

min
wi
∥wi∥2 s. t. ξµi = w

⊤
i φi(ξ

µ), ∀µ, i . (A2.44)

If we now assume, as in the binary case, that all neurons use the same feature map, so that
φi = φ, ∀i , the solution can be compactly written as in Eq. 2.22. This maximizes a lower
bound of the attractor basin size, as defined by Sµ, for each pattern ξµ. □

A2.5.2 Normally distributed patterns

Proof of Property 5.1 (EPK network at zero temperature). Using the notation ∆ =
∥ξµ − ξν∥2, we have that

lim
β→∞

(
∆

r

)β
=


0 , ∆ < r

1 , ∆ = r

∞ , ∆ > r

(A2.45)

from which it follows that

lim
β→∞

exp

[
−
(
∆

r

)β]
=


1 , ∆ < r

e−1 , ∆ = r

0 , ∆ > r

(A2.46)

which is equivalent to Θ(r − ∆) with Θ(0) = e−1. We combine this with the assumption
that the patterns are unique and that minµ,ν ̸=µ∥ξµ − ξν∥2 > r and obtain

lim
β→∞

KEPK(ξ
µ, ξν) = Θ(r − ∥ξµ − ξν∥2) =

{
1 , µ = ν

0 , µ ̸= ν
(A2.47)

which can be written compactly as

lim
β→∞

KEPK = IM . (A2.48)

It directly follows that
lim
β→∞

K−1EPK = I
−1
M = IM (A2.49)

and, therefore,

lim
β→∞

XK−1EPKKEPK(X, s
(t)) = XΘ(r2 − ∥X− s(t)∥22) . (A2.50)

□

Proof of Property 6 (Robustness to white noise). With s(0) = ξµ + ϵ, we have

∥ξµ − s(0)∥22 = ∥ϵ∥22 = ∥σϵ0∥22 = σ2∥ϵ0∥22 (A2.51)
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where ϵ0 ∼ N (0, IN), from which it follows that ∥ϵ0∥22 is a random variable with a χ2(N)
distribution. According to the central limit theorem, we also have

lim
N→∞

∥ϵ0∥22 − N√
2N

∼ N (0, 1) (A2.52)

where we have used the fact that each term in ∥ϵ0∥22 is χ2(1)-distributed, and has mean 1
and variance 2. We will therefore make the approximation ∥ϵ0∥22 ∼ N (N, 2N) for large N.
This gives us

σ2∥ϵ0∥22 ∼ N (σ2N, 2σ4N) . (A2.53)

The original pattern ξµ will only be recovered if r2 − ∥ξµ − s(0)∥22 ≥ 0, which is satisfied in
at least 50% of trials if r2 ≥ σ2N. The maximum variance with which this type of recovery
still holds is thus

σ2max = r
2/N . (A2.54)

□

Proof of Property 7 (Exponential storage capacity). In the limit β →∞, the boundary of
the basin of attraction surrounding each pattern is sharp. In this setting, we are guaranteed
that each pattern can be recalled without errors as long as mini ,j ̸=i∥ξi − ξj∥2 > 2r . We will
therefore estimate the storage capacity by calculating the number of patterns, on average,
that can be loaded into the network before at least two attractor basins overlap and the
condition above is violated (see Fig. A2.3).

We begin by observing that for two random patterns ξi , ξj ∼ N (0, IN), we have

1

2
∥ξi − ξj∥22 ∼ χ2(N) (A2.55)

which, using the central limit theorem as in Eq. A2.52, can be approximated as N (N, 2N)
for large N, thereby yielding

∥ξi − ξj∥22 ∼ N (2N, 8N) . (A2.56)

We now assume that the squared Euclidean distance between each pair of patterns ξi , ξj in
a set of M given patterns {ξµ}Mµ=1 is an independent sample of a random variable, denoted
∆2, which is distributed as in Eq. A2.56. This is, of course, an approximation which neglects
that the pairwise distances between any set of points are inter-dependent. Nonetheless,
for relatively large N and M, the approximation accurately describes the empirical distance
distribution.

Relying on this assumption, the process of drawing M random patterns becomes equivalent
to drawing M(M − 1)/2 unique pairwise distances ∆2 from the distance distribution. The
probability of drawing a sample ∆2 ≤ 4r2 can be calculated using the cumulative distribution
function for the standard normal distribution, given by Φ(x) = 1

2 erfc(−x), according to

P(∆2 ≤ 4r2) =
1

2
erfc

(
N − 2r2

2
√
N

)
. (A2.57)
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Figure A2.3: Plot of the storage capacity of the EPK network at β →∞ with normally distributed
patterns. Dots represent means (± s.e.m.) over 1000 simulations, in which the capacity is determined
by the number of patterns sampled until one of the pairwise distances is smaller than 2r . The
standard error is too small to be visible. Lines correspond to the bound in Eq. A2.63. Note that the
plot is log-linear, so the linear increase indicates that Mmax scales exponentially in N.

The average number of samples of ∆2 one needs to draw before a sample satisfies ∆2 ≤ 4r2

is given by P(∆2 ≤ 4r2)−1. This determines the maximum number of patterns that the
network, on average, can store, according to

Mmax(Mmax − 1)
2

=
1

P(∆2 ≤ 4r2) . (A2.58)

We combine this expression with the approximation Mmax(Mmax − 1) ≈ M2max (which holds
for large Mmax) and Eq. A2.57, and obtain

Mmax = 2erfc

(
N − 2r2

2
√
N

)−1/2
. (A2.59)

We now parameterize the radius r in terms of the largest tolerable noise amplitude, according
to Eq. A2.54. This gives us

Mmax = 2erfc

(√
N(1− 2σ2max)

2

)−1/2
. (A2.60)

Given that the erfc function can be well approximated using the asymptotic expansion

erfc(x) ≈
e−x

2

√
πx

∞∑
n=0

(−1)n
(2n − 1)!!
(2x2)n

(A2.61)
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for large arguments x , we can obtain a tight lower bound of erfc−1 as long as N is large and
σ2max ≲ 1/2 with the inverse zeroth order expansion, thereby obtaining

erfc(x)−1 ≥
√
πxex

2

. (A2.62)

We insert Eq. A2.62 in A2.60 and finally obtain

Mmax ≥
√
2
√
πN(1− 2σ2max) exp

[
N(1− 2σ2max)2

8

]
. (A2.63)

□

A2.5.3 Patterns on the hypersphere

Property 8 (Storage capacity: patterns on the hypersphere). At β → ∞, the average
maximum number of patterns that the EPK network can store and recall without errors is
lower-bounded by

Mmax ≥
√√
8πN(1− 2r2) exp

[
N(1− 2r2)2

4

]
(A2.64)

when each pattern is randomly drawn from SN−1.

Proof. We begin by observing that for two random patterns ξi , ξj ∈ SN−1, we have

∥ξµ − ξν∥22 = 2(1− ξµ⊤ξν) . (A2.65)

The probability distribution for the inner product ω = ξµ⊤ξν has been derived by Tony Cai
& Jiang (2012), and is

ω ∼
1√
π

Γ(N2 )

Γ(N−12 )
(1− ω2)

N−3
2 (A2.66)

which, for large N, can be approximated as

ω ∼ N (0,
1

N
) . (A2.67)

We use Eq. A2.67 in A2.65 and obtain

∆2 ∼ N (2,
4

N
) . (A2.68)

The probability of placing a pair of random points on SN−1 with ∆2 ≤ 4r2 is thus

P(∆2 ≤ 4r2) =
1

2
erfc

(√
N(1− 2r2)√

2

)
. (A2.69)

The average number of samples of ∆2 one needs to draw before a sample satisfies ∆2 ≤ 4r2

is given by P(∆2 ≤ 4r2)−1, and the maximum number of patterns that the network, on
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average, can store, is therefore

Mmax = 2erfc

(√
N(1− 2r2)√

2

)−1/2
. (A2.70)

We use the lower bound in Eq. A2.62 in A2.70 and finally obtain

Mmax ≥
√√
8πN(1− 2r2) exp

[
N(1− 2r2)2

4

]
. (A2.71)

□

A2.5.4 Patterns on the hypercube

Property 9.1 (Robustness to flipped bits). Assume that we are given a set of unique patterns
ξ1, . . . , ξM ∈ {±1}N with minµ,ν ̸=µ∥ξµ− ξν∥2 > 2r , and that the EPK network is initialized
in a distorted pattern s(0) = ξµ ⊙ ϵ, where ϵ ∈ {±1}N , with P(ϵi = −1) = ρ,∀i . Then, at
β →∞, the maximum bit-wise error probability ρmax with which ξµ can be recovered in at
least 50% of trials is

ρmax = r
2/4N . (A2.72)

Proof. With s(0) = ξµ ⊙ ϵ, we have

∥ξµ − s(0)∥22 = ∥2ϵB∥22 = 4∥ϵB∥22 (A2.73)

where ϵB ∈ {0, 1}N , with each entry being a random variable distributed as (ϵB)i ∼
Bernoulli(ρ). This implies that ∥ϵB∥22 ∼ Binomial(N, ρ), which can be approximated as
N (ρN, ρ(1− ρ)N) for large N. This gives

4∥ϵB∥22 ∼ N (4ρN, 16ρ(1− ρ)N) . (A2.74)

Again, the original pattern ξµ will only be recovered if r2−∥ξµ−s(0)∥22 ≥ 0, which is satisfied
in at least 50% of trials if r2 ≥ 4ρN. The maximum bit-wise error probability with which
this type of recovery still holds is thus

ρmax = r
2/4N . (A2.75)

□

Remark. In Eq. A2.54, σ roughly quantifies the maximum noise fluctuation around a pattern
that is tolerable with a given radius r , while still being able to recover the pattern in a
majority of trials. In the case of Eq. A2.75, ρ instead quantifies the maximum tolerable
bit-wise error probability.

Property 9.2 (Storage capacity: patterns on the hypercube). At β → ∞, the average
maximum number of bipolar patterns with sparseness f that the EPK network can store and



Kernel memory networks 37

recall without errors is lower-bounded by

Mmax ≥ 2
(

πN

2f̃ (1− f̃ )

)1/4 (
f̃ − 4ρmax

)1/2
exp

[
N(f̃ − 4ρmax)2

4f̃ (1− f̃ )

]
(A2.76)

where f̃ = 2f (1− f ) and ρmax is the maximum bit-wise error probability tolerated by the
network.

Proof. This proof is, again, a slightly modified variant of the proof of Property 7. First,
we observe that for two random patterns ξµ, ξν ∈ {±1}N with sparseness f , so that
P(xµ,νi =1) = f , it is true that

1

4
∥ξµ − ξν∥22 ∼ Binomial(N, f̃ ) (A2.77)

where f̃ = 2f (1− f ) denotes the probability that ξµ and ξν differ at any given entry. For
large N, we can again approximate Binomial(N, f̃ ) with N (f̃ N, f̃ (1− f̃ )N), which gives us

∥ξµ − ξν∥22 ∼ N (4f̃ N, 16f̃ (1− f̃ )N) . (A2.78)

We use this to compute the upper bound of the probability of drawing a distance ∆2 which
satisfies ∆2 ≤ 4r2, as in Eq. A2.57. The result is

P(∆2 ≤ 4r2) =
1

2
erfc

 f̃ N − r2√
2f̃ (1− f̃ )N

 . (A2.79)

Following the same derivations used to produce Eqs. A2.58 and A2.59, we arrive at

Mmax = 2erfc

 f̃ N − r2√
2f̃ (1− f̃ )N

−1/2 . (A2.80)

As before, we parameterize the radius r in terms of the maximum tolerable bit-wise error
probability according to Eq. A2.75 and yield

Mmax = 2erfc

√N(f̃ − 4ρmax)√
2f̃ (1− f̃ )

−1/2 . (A2.81)

We finally replace erfc with the lower bound in Eq. A2.62. This is valid for large N and
when ρ ≲ f̃ /4. We obtain

Mmax ≥ 2
(

πN

2f̃ (1− f̃ )

)1/4 (
f̃ − 4ρmax

)1/2
exp

[
N(f̃ − 4ρmax)2

4f̃ (1− f̃ )

]
. (A2.82)

□
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A2.6 Comparison to neuron models with active dendrites

To demonstrate how single neurons in kernel memory networks are generalizations of abstract
neuron models with active dendrites, we begin by considering a neuron in the feature form
(Eq. 2.6). We will here use the Heaviside activation function with threshold θ, denoted Θθ,
instead of sgn, and assume that patterns and states are in {0, 1}N , where N is the number
of inputs. This, however, does not change the fundamental properties of our model, as
SVMs can be formulated for binary data with minor modifications. Assuming a polynomial
feature map φ of degree p, the feature vector will consist of all possible monomials of degree
≤ p composed of the states of its input neurons. Setting, for example, p = 2 gives us

φ(x) = (1,
√
2x1, . . . ,

√
2xN ,√

2x1x2, . . . ,
√
2x1xN ,

√
2x2x3, . . . ,

√
2xN−1xN ,

x21 , . . . , x
2
N) .

(A2.83)

Case (i): By limiting the feature map to only include a subset of all terms, our model is
reduced to the 2-degree sigma-pi unit (Rumelhart & McClelland, 1986, p. 73), which can
be written as

sout = Θθ

∑
i

wi
∏
j∈Ci

sin,j

 (A2.84)

where wi is the weight of cluster i , which consists of a product of all inputs sin,j whose indices
j are contained in the set Ci . From a neurophysiological perspective, each product represents
the cross-talk between a set of synapses. By including such multiplicative interactions,
synapses can both gate and amplify each other, to generate supra-linear input currents.

Case (ii): If we now further constrain this model to include only a subset of the cross-terms
xixj , i ̸= j , and parameterize each cross-term weight as wi j = wiwj , our neuron model is
reduced to the clusteron (Mel, 1991), which can be written as

sout = Θθ

 N∑
i

∑
j∈Ci

wiwjsin,isin,j


= Θθ

 N∑
i

wisin,i

∑
j∈Ci

wjsin,j


(A2.85)

where Ci now is the set describing all inputs j that input i should be paired with.

Case (iii): We now consider a neuron in the kernel form (Eq. 2.7) with an inner-product
kernel K(xi , xj) = k(x⊤i xj). By setting ξµout = 1, ∀µ, and assuming binary inputs, our model
is reduced to

sout = Θθ

[
M∑
µ

αµk

(
N∑
i

ξµin,isin,i

)]
(A2.86)
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which is equivalent to the pyramidal cell as a two-layer neural network, as defined by Poirazi
et al. (2003). According to the original interpretation, this neuron model is comprised of M
subunits, which can represent, for example, separate parts of a dendritic tree. All subunits
receive the inputs and produce separate outputs which are all summed in the soma. Each
subunit µ is characterized by the input weights ξµin (which serves as a mask), the output
weight αµ (which determines how strongly the subunit influences the response at the soma),
and the activation function k .
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Chapter 3

Optimal memory consolidation and
pruning

This chapter is based on the following manuscript:

“Optimal memory consolidation and compression with
multiplicative synaptic plasticity and pruning”
Georgios Iatropoulos, Johanni Brea, Wulfram Gerstner
In preparation.

Abstract. During learning of a new task, cortical circuits exhibit brief synaptic growth,
followed by a longer process of sleep-based synaptic pruning that preserves a sparse cortical
connectivity. It remains unclear, however, what computational purpose pruning serves in
long-term memory, and how to incorporate this into existing mathematical models of synaptic
plasticity. Here, we propose a normative account of memory consolidation and pruning
by deriving a synaptic learning rule that stores memories with maximal noise-tolerance
and minimal connection density in a recurrent neural network. The model reproduces
several features of learning from the wake-sleep cycle, such as structured memory replay,
multiplicative hetero- and homosynaptic plasticity, synaptic cross-talk, as well as simultaneous
plasticity expression in multiple sub-cellular components. Finally, the model predicts that
intrinsic synaptic noise scales sublinearly with synaptic strength. This is confirmed by a
meta-analysis of multiple published datasets on synaptic volatility.

Author contributions. GI created the model, performed the simulations, and analyzed the
data. JB assisted in the data analysis and theoretical derivations. GI, JB, and WG wrote
the article.
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3.1 Introduction

Following a decades-long history of brain imaging studies and cognitive testing in healthy
humans and patients with brain lesions, it is today generally accepted that long-term memories
are stored in a distributed network of neurons primarily located in temporal cortex (Squire
et al., 2004, 2015; Tonegawa et al., 2015; Roy et al., 2022). Anatomical studies of this
brain region have demonstrated a high degree of local recurrent connectivity, both among
pyramidal cells and inhibitory neurons (Thomson & Lamy, 2007; Harris & Shepherd, 2015).
As a result of these findings, the attractor network framework has become a popular choice
for modeling long-term memory (Hopfield, 1982; Khona & Fiete, 2022). The fundamental
idea of this approach is to represent local cortical circuitry by a recurrent neural network,
in which each memory corresponds to a distinct pattern of neural activity that acts as an
attractor of the network’s dynamics.

The process of imprinting a memory is modeled with a synaptic learning rule that configures
the connections so as to transform activity patterns into stable attractors. At optimal
configuration, the network’s storage and noise robustness is maximized. This state has
been extensively characterized in theoretical studies (Gardner, 1988; Köhler & Widmaier,
1991; Brunel et al., 2004; Chapeton et al., 2012; Brunel, 2016; Zhang et al., 2019) and has
been proposed as an organizing principle for modeling cortical connectivity (Chapeton et al.,
2012; Brunel, 2016; Zhang et al., 2019). However, the question of how a biological synaptic
learning rule could induce such optimal synaptic configuration in cortex remains unanswered.

Past work on synaptic plasticity modeling has predominantly been phenomenological and
based on the dependence of long-term potentiation (LTP) and depression (LTD) on, for
example, cellular calcium concentration (Shouval et al., 2002; Graupner & Brunel, 2012),
membrane voltage (Clopath et al., 2010), or spike timing (Morrison et al., 2008; Markram
et al., 2011). While there exist plasticity models derived from assumptions of optimal storage,
these are either problematic to implement biologically (Personnaz et al., 1986; Anlauf &
Biehl, 1989) or require unrealistic network configurations, such as maximal connection density
(Tsodyks & Feigel’man, 1988; Amari, 1989). The latter point is noteworthy; although the
large number of axonal-dendritic appositions observed in cortical circuits suggests a high
potential connectivity (Kalisman et al., 2005), electrophysiology has demonstrated that
functional connectivity is, in fact, very sparse (Thomson & Lamy, 2007; Lefort et al., 2009).
Moreover, cortical connections are dynamic and change in an experience-dependent way over
hours and days (Trachtenberg et al., 2002; Holtmaat et al., 2005; Le Bé & Markram, 2006).
Shortly following the learning of a new task, recruited neurons exhibit a rapid growth of new
dendritic spines (Xu et al., 2009; Chen et al., 2015). Over the course of subsequent days,
only a subset of these are selected for maturation, while the rest retract. This process of
consolidating new memory traces and pruning excess connectivity has been found to occur
primarily during sleep (Chen et al., 2015; Li et al., 2017; Zhou et al., 2020).

Over the span of a lifetime, cortical connectivity sparsens (Petanjek et al., 2011) and
transitions from being comprised of mainly small and weak spines (filopodia) in infancy, to
large and mature spines in adulthood (Grutzendler et al., 2002; Zuo et al., 2005a). Moreover,
adult animals that have been reared in enriched environments end up with a higher density
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of cortical connections compared to stimulus-deprived ones (Globus et al., 1973; Turner &
Greenough, 1985).

These dynamics are typically neglected in attractor network models, which often assume
a fixed connectivity. Although activity-dependent cortical rewiring has been modeled phe-
nomenologically (Butz & van Ooyen, 2013; Zheng et al., 2013; Fauth et al., 2015; Deger
et al., 2018; Gallinaro et al., 2022), a mathematically principled way to incorporate structural
changes in task-driven plasticity models is still lacking.

In a series of recent theoretical studies, it has been shown that sparse structured connectivity
can be induced in optimal attractor networks by imposing an appropriate weight scaling
(Chapeton et al., 2012; Brunel, 2016). This, however, has proven challenging to implement
in synaptic learning rules, as it typically requires additive weight regularization (Sacramento
et al., 2015), weight thresholding (Chechik et al., 1998; Scholl et al., 2021) or gradient
thresholding (Alemi et al., 2015). Such constraints imply that the synapse model would need
to be fine-tuned to each specific storage problem, and also stands in contrast to experimental
data demonstrating that homeostatic plasticity is multiplicative (Turrigiano, 2008).

Here, we reconcile many of the discrepancies between plasticity models and experimental
data by taking a normative approach to long-term memory modeling. We derive a synaptic
learning rule that solves the optimization problem of storing memories with maximal noise
tolerance. Crucially, by representing the synaptic strength as a product of multiple internal
components, the learning rule implicitly finds sparse forms of storage, thus eliminating any
need for manual weight tuning or thresholding. Additionally, features such as prioritized
replay of new memories, multiplicative hetero- and homosynaptic plasticity, and synaptic
cross-talk naturally emerge from the derivation.

By evaluating optimal attractor networks across a range of weight sparsities, we demonstrate
that there exists a trade-off between the noise robustness of memories and their efficiency in
terms of synaptic resource use, as predicted from fundamental information theory. We find
that an optimal level of pruning is achieved when each synapse contains only a small number
of plasticity expression sites (∼2-3 internal components), at which point the amount of
retrievable information stored per synapse is maximized. Our model also predicts that intrinsic
noise fluctuations should scale sublinearly with synaptic weight, which we corroborate in a new
analysis of multiple published datasets on synaptic fluctuations. We finally offer predictions
regarding the synaptic and cognitive properties of sleep-based memory consolidation that
can guide future experimental studies.

3.2 Results

3.2.1 Memory consolidation as sparse optimization

To focus our analysis on the conceptual and computational aspects of long-term memory
consolidation, we consider the simplest representation of a local circuit of cortical pyramidal
cells, namely a recurrent network of N excitatory binary neurons in discrete time (Fig. 3.1a).
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Figure 3.1: General model schematics. (a) Diagram of the circuit together with the synapse model
(in box). The circuit is constituted of binary, excitatory neurons (gray) that are recurrently connected
with non-negative connection weights, and receive inhibitory input from a single, common source
(blue). Each recurrent weight (see box) is a product of multiple factors that represent the efficacy of
sub-synaptic components (e.g., receptor concentration and scaffolding protein content). Note that
no mathematical distinction is made between basal or apical inputs, and we only include them in the
illustration as an interpretation of external and recurrent currents, respectively. (b) Illustration of
input dynamics during idleness and noise-robust recall (pink areas) in a single neuron. Consolidation
maximizes the signal-to-noise ratio of the current, where the signal is the smallest current deflection
during recall (i.e., only the second deflection).

At each point in time t, each neuron i = 1, . . . , N is characterized by an output state si(t),
which signifies if the neuron is active (si = 1) or inactive (si = 0). Biologically, these states
can be seen as representing brief intervals of elevated or suppressed firing (Cossart et al.,
2003). A neuron assumes the active state only if the sum of its input currents reaches a
positive value. The total input current, in turn, is comprised of four terms, according to

Ii(t) =

N∑
j=1

wi jsj(t − 1) + Istim,i(t)− I(slow)inh,i (t)− I
(fast)
inh (t) (3.1)

where the first term represents the excitatory synaptic input from all other neurons in the
network, with wi j ≥ 0 denoting the connection strength from neuron j to i . This can be
seen as a representation of cortical top-down input, as anatomical data has demonstrated
that recurrent connections carrying associative information among pyramidal cells primarily
project to dendritic spines in the apical dendritic tree (Larkum, 2013). During training,
each neuron receives a second excitatory current Istim,i , which represents a stimulus-driven,
bottom-up input originating from preceding areas in the cortical processing stream. Finally,
each neuron receives the inhibitory currents I(slow)inh,i and I(fast)inh , which regulate the balance
between excitatory and inhibitory inputs on slow and fast time scales, respectively, and ensure
that the total output activity in the network is stable over time (see Methods).

In our mathematical analysis of the storage properties of the network, we concentrate solely
on the recurrent connections wi j . This is motivated by experimental work suggesting that
recall of long-term memory primarily relies on top-down projections among pyramidal cells.
As such, both Istim and Iinh serve only as auxiliary parameters, for the purpose of training
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and stabilizing the network, respectively.

Over the course of one day of simulated learning, the network is trained to store M memories.
Each memory corresponds to a random pattern of active and inactive neurons, where the
desired activity of neuron i in pattern µ = 1, . . . ,M is described by the binary variable ξµi .
The probability of a neuron being active in a pattern is given by the activity level 0 < f ≤ 0.5.

We assume that the goal of memory consolidation is to tune the excitatory connections
of each neuron so as to maximize the noise-robustness with which stored memories are
recalled. The robustness of a single neuron i at the moment of recall can be quantified
as the deflection of its input current from the activation threshold. Over a set of multiple
patterns, we define the neural robustness as the smallest deflection across the whole set
(Fig. 3.1b), and denote this ∆Imin,i (see Methods). To make this metric independent of the
parameterization of our neuron model, we transform it from a current to a distance in the
space of neural activity, by normalizing with a scaled sum of the input weights. The result is
a generalized error margin

Kq,i =
∆Imin,i

(
∑
j w
q
ij )
1/q

(3.2)

where q is a positive scaling factor that determines which type of distance metric that is
used to measure the margin. Index i will be omitted to simplify the notation.

We now define our goal in mathematical terms as finding the weights that store all memories
as stable attractors in a way that maximizes Kq. The characteristics of such a solution
critically depends on q, which acts as a regularizer of the optimization. For example,
maximizing Kq=2 is equivalent to maximizing the signal-to-noise ratio (SNR) of the input
current (see Methods). Although this solution produces optimal noise robustness (Kepler &
Abbott, 1988; Krauth et al., 1988) and can be found with conventional machine learning
techniques, it is highly non-sparse, since the solution exhibits a large number of small weights
(Amit et al., 1989). This is undesirable for three reasons. First, a dense connectivity would
imply a prohibitively high cost on metabolic energy, given that synapse maintenance is a
primary source of energy consumption in the brain (Harris et al., 2012). Second, without
any pruning, all available connections are used at once, which prevents any recycling of
synaptic resources for continual learning of memories across separate training sessions.
Finally, a dense connectivity between excitatory neurons directly disagrees with anatomical
data (Thomson & Lamy, 2007; Lefort et al., 2009; see Introduction).

For q < 2, the normalization factor in Kq becomes more influenced by small weights at the
expense of large ones. This implicitly forces the optimal connectivity to sparsen, in order for
Kq to be maximized.

3.2.2 Learning with complex synapses and memory replay

How should a learning rule be constructed to maximize Kq in a way that is consistent with
empirical observations of synaptic dynamics? To answer this, we first note that empirical
synaptic strength, as measured in the postsynaptic potential or current, is an aggregate



46 Optimal consolidation and pruning

quantity that is determined by the interaction of several protein complexes that combine to
form the internal structure of a synapse (Nishiyama & Yasuda, 2015). During induction of
long-term potentiation or depression, structural and chemical changes cascade throughout
this molecular interaction network, causing the concentration and configuration of each
component to be altered over the course of seconds to minutes. This ultimately results in
an increase or decrease in the combined functional strength of a synapse.

We model this internal synaptic structure by expressing each weight wi j as the product of z
internal components ui jk , where k = 1, . . . , z , so that wi j ∝ ui j1 · ui j2 · · · ui jz (Fig. 3.1c).
Each variable u can be seen as the relative concentration (or efficacy) of a collection of one
or more subcellular building-blocks that are necessary to form a functional connection. In
addition, all components are assumed to be linked to each other in a signaling cascade of
the type proposed by Benna & Fusi (2016). To simplify the analysis, we further assume
that the dynamics of the internal signaling evolves over a timescale that is much shorter
than the behavioral timescale that governs stimulus encounters and learning in the entire
neural circuit. The internal components can therefore be assumed to be in equilibrium, so
that ui j1 = ui j2 = . . . = ui j . This yields the final synapse model

wi j ∝ uzi j , (3.3)

where the proportionality constant will be set to one.

The maximization of the robustness Kq can now be implemented by modifying the internal
synaptic factors u instead of the entire weight w , by letting the network carry out the
following three-step consolidation algorithm:

(0) Few-shot learning: Prior to consolidation, we assume that each stimulus pattern
already has been stored as a stable attractor, albeit with sub-optimal robustness. This
can, for example, have been the result of one- or few-shot learning, during which the
network has been subjected to each pattern during a period of high learning rate (this
step is outside the scope of this study and will not be further elaborated).

(i) Replay and tagging: Each memory pattern is presented to the network as a brief cue,
so that it is successfully recalled. Over the course of a single replay cycle, each neuron
i separately identifies the pattern µ⋆i that generates the smallest current deflection.
Weights that receive presynaptic input during that pattern are tagged, with an LTD-tag
if the deflection is hyperpolarizing or with an LTP-tag if the deflection is depolarizing.

(ii) Weight update: At the end of a replay cycle, tagged weights have their internal
components updated according to

∆ui j ∝ uz−1i j (3.4)

where the update is positive if the weights have been tagged for LTP, and negative for
LTD.

(iii) Weight normalization: All synaptic components in neuron i are divided by a factor
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proportional to (
∑
j u
2
i j)
1/2.

Steps (i)-(iii) are repeated until convergence has been reached. Note, however, that with a
slow enough learning rate, the algorithm is stable and can be repeated indefinitely, without
risking that weights grow unrealistically large. The end results, for any chosen z = 1, 2, 3, . . .,
is a maximization of Kq with q = 2/z for each individual neuron (see Appendix A3.1). In
other words, applying the consolidation algorithm with a high number of synaptic components
is equivalent to maximizing Kq with a small q, and leads to increased sparsification.

It is important to highlight the fact that the above algorithm is not phenomenological, but
entirely derived from normative assumptions. This is equally true for the reparameterization
of the weights, which originates from a of well-established machine learning technique for
implicitly biasing gradient-based optimization to find sparse solutions (Hoff, 2017; Amid &
Warmuth, 2020) (see Methods). An important property of this approach is that it ensures
that the weight normalization in step (iii) always is multiplicative, even as the learning rule
prunes connections.

In continuous time, the dynamics of the complete weights wi j throughout the consolidation
process can be described compactly with the differential equation

dwi j
dt
∝

(
1−

∑
j w
2/z
ij

const.

)
wi j︸ ︷︷ ︸

heterosynaptic

± ηξ
µ⋆i
j w

2(1− 1
z
)

i j︸ ︷︷ ︸
homosynaptic

(3.5)

where η is a learning rate and ξ
µ⋆i
j a binary tagging variable that is active only for those weights

that have been flagged for consolidation during memory replay. This formulation further
demonstrates that the process of weight consolidation comprises two distinct processes: a
homosynaptic part that is active only when a weight has been tagged in memory replay, and a
heterosynaptic process that always is active and functions as a homeostatic mechanism that
prevents inputs from growing too large. The hoterosynaptic term reproduces and generalizes
previously studied homeostatic plasticity models (Toyoizumi et al., 2014) (see Appendix
A3.2).

3.2.3 Multiplicative synapses produce optimal storage efficiency

We first characterized the connectivity and storage properties of attractor networks trained
to maximize Kq for different values of q. We numerically optimized a recurrent network
of N = 1000 neurons to store M binary patterns with activity level f . The storage load
α = M/N ranged from roughly 8% to 70% of the maximal load αc , while the activity level
f was set to 50%, 10%, 5%, 3% or 1%. The weight sparsity of the solution was varied by
choosing z = 1, 2, 3 or 4, which corresponds to q = 2, 1, 23 and 12 .

We quantified storage robustness by computing the average SNR across all neurons (Fig.
3.2a), and by testing the network’s ability to successfully retrieve patterns after being
presented with distorted cues (Suppl. Figs. A3.1 and A3.2). Distortions were randomly
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Figure 3.2: Attractor networks at dense and sparse optimality. (a) Average SNR (left) and weight
density ρ (right) as a function of storage load for pattern activities f =0.5 (top), f =0.1 (middle),
and f = 0.05 (bottom). Circles indicate mean over at least 8 independent simulations (SEM is
smaller than markers and omitted). Dashed lines represent theoretical solutions. The gray area
marks the mean ± SEM for ρ as estimated from 124 datasets on cortical connection probability in
mice, rats, cats, and ferrets (Zhang et al., 2019). (b) All networks organized in a two-dimensional
space according to robustness and sparsity. The pink region represents the optimal trade-off between
the two quantities, as estimated by theory. (c) The efficiency, averaged over all storage loads and
distortion levels (mean ± SD). This is highest at z=2 for all f < 0.5.
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introduced in each pattern by independently flipping bits in such as way so that the new,
corrupted pattern retained the same activity level as the original pattern (see Methods).
We found that networks with z = 1 had the highest SNR and, consequently, could tolerate
the highest level of noise before memory recall collapsed. This result agreed well with the
theoretically predicted maximum SNR (Gardner, 1988) and was expected given that an
optimization with z = 1 directly maximizes the SNR. However, the most robust solution
also had the highest connection density ρ (Fig. 3.2a). As z was increased, the solution
became increasingly sparse, at the expense of the SNR and noise tolerance, which also
decreased. Thus, optimal storage with sparse connectivity resulted in a decrease in the size
of the attractor basins, and a deteriorated ability to successfully recall memories from noisy
cues. Notably, however, only networks with z ≥ 2 exhibited connection densities comparable
to those measured in cortex (Fig. 3.2a, gray area), which suggests that memory robustness
alone is an insufficient principle to model cortical long-term memory.

In order to quantify the trade-off between robustness and synaptic resource use, we computed
how much retrievable information each network was able to store per functional connection
as

Q = −
α̂

ρ
[f log2(f ) + (1− f ) log2(1− f )] (3.6)

where α̂ is the storage load that can be retrieved during testing. We refer to this quantity as
the efficiency : a network with higher Q is capable of recalling more information using fewer
connections, which, in turn, indicates that its storage is more compressed and efficient. In
the noise-free setting (results not shown), a higher z implicitly forces the network to become
sparser and thereby more efficient. While networks with z ≤ 2 cannot exceed 2 bits/synapse,
which is obtained only when storage is saturated, this limit can, in fact, be surpassed with
z > 2. The consequence, however, of each connection carrying more information is that
every erroneous bit in the input has a more disruptive effect on error-correction and pattern
retrieval, thus causing a deteriorated robustness.

To estimate the efficiency in a noisy setting, we tested how many of the stored pattern each
network could successfully retrieve after being provided with distorted cues. We computed
the efficiency averaged across a range of distortion levels. The results are presented for
each network, at each load, in a two-dimensional space (Fig. 3.2b) according to the network
robustness (SNR/SNRmax) and connection density. In this representation, one can see that
networks with z = 1 consistently produce highly robust, yet highly dense, configurations,
which cause the efficiently to be relatively low. As z increases, networks find progressively
sparse, but less robust solutions to the consolidation problem. However, the combination of
robustness and sparsity that is theoretically predicted to produce maximal robustness is only
reached with moderately pruned networks (i.e., z = 2, 3), suggesting that these networks are
more efficient. To verify this, we computed the average efficiency across all storage loads
and distortion levels (Fig. 3.2c). For all levels of pattern activity f , the efficiency grand
average was consistently highest for networks with z = 2 or 3. The same result was obtained
in tests with isotropic noise (Suppl. Fig. A3.3). In other words, intermediately pruned
networks were, on average, able to maintain a higher amount of recallable information per
synapse compared to both denser and sparser networks, across the same range of storage
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loads and pattern activity levels.

These results are best explained within the framework of information theory. The process of
cuing an attractor network with a distorted memory and synchronously updating it once can
be likened to the transmission of a binary message through a noisy channel (Fig. 3.2e). The
receiver, in this case, is the same network in the next time step, which sees the previous
neural outputs and attempts to decode and error-correct them in order to retrieve the original
message. The noisy-channel theorem states that any such system should exhibit a trade-off
between its ability to correct errors and the compression of information in the message. This
is indeed what we find, as the network with the highest number of connections also is the
most robust.

From a biological perspective, the case z = 2 is particularly noteworthy. In Eq. 3.5,
this value yields a purely multiplicative learning rule, with a homeostatic component that
preserves a constant average connection weight. In a network with stable neural activity,
this homeostatic rule is precisely equivalent to a regulation of the average input current (see
Appendix A3.2). Our results demonstrate that a satisfactory degree of synaptic pruning
can be achieved with a multiplicative plasticity model that incorporates biologically plausible
homeostatic scaling.

3.2.4 Simultaneous consolidation and pruning with multiplicative synapses in
sleep

In order to implement the consolidation algorithm in section 3.2.2 in a circuit with both
excitatory and inhibitory realistic connections, it remains necessary to determine how the
inhibitory current I(slow)inh can be optimized in a biologically plausible way. Deriving a learning

rule for I(slow)inh directly from the maximization of Kq is problematic, as the result implies
anti-Hebbian inhibitory plasticity, which is incompatible with experimental data (Hennequin
et al., 2017).

In the specific case z = 2, this issue can be resolved by rewriting the combination of
homeostatic and inhibitory plasticity in a way that allows for optimization of excitatory
weights with a fixed level of inhibition (see Appendix A3.7). The resulting learning algorithm
is identical to the one stated in section 3.2.2, except for the following modification of the
last two steps:

(ii) & (iii) Weight update with z = 2: All weight components are updated according to

∆ui j ∝ (ηhet + ηhomξ
µ⋆i
j )ui j (3.7)

where ηhet is a low, heterosynaptic learning rate and ηhom is an added (homosynaptic)
learning rate that is active only if a weight is tagged. The change is positive if weights are
tagged for LTP, and negative for LTD.

It is worth reiterating that this learning rule is not phenomenological, but directly emerges
from gradient-based maximization. There are three important features that should be
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Figure 3.3: Schematic of consolidation over a day with multiplicative plasticity. (a) In wakefulness,
few-shot learning occurs by clamping the network with an external stimulus, determining if the
stimulus is novel, and updating the recurrent weights. (b) In sleep, replay tags the most novel
pattern for LTP/LTD, and weights are updated at the end of the replay cycle. (c) In wakefulness,
LTP outweighs LTD, while, in sleep, LTP and LTD is balanced (red curves). For inhibition, updates
are carried out at every step to maintain desired network activity during wakefulness. During sleep,
inhibition is fixed (blue curves).

highlighted. First, this reformulation can only be done with the weight reparameterization
using z = 2, as it critically relies on multiplicative weight updates.

Second, this reformulation requires neither explicit inhibitory plasticity nor explicit weight
scaling. The magnitude of the weights is, instead, regulated implicitly by the fixed I(slow)inh .
This is particularly practical for modeling sleep-based memory consolidation and pruning.
During sleep, cortical neurons alternate between dramatically different states of activity,
which are believed to be caused by a rapid replay of memories occurring as part of the
consolidation process. Modeling inhibitory plasticity under these conditions would normally
be problematic, since a consistent read-out of neural activity would be hampered by the
sudden shifts between qualitatively different network states. With the model in Eq. 3.7, this
complication is avoided altogether.

Third, Eq. 3.7 predicts that plasticity during consolidation is expressed in all connections,
and with the same sign; the weight change is, however, stronger is connections that were
active during tagging than in those that were silent. This can be interpreted as a form of
plasticity diffusion or cross-talk, whereby LTP- or LTD-triggering molecules spread from
tagged connections, through the dendrites, and induce attenuated forms of heterosynaptic
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LTP or LTD in neighboring connections. It is also consistent with experimental evidence
showing that calcium spikes in the dendritic arbors of pyramidal cells are significantly amplified
and spread-out during sleep (Li et al., 2017).

To demonstrate how the learning rules in Eqs. 3.5 and 3.7 can be incorporated in a single,
self-consistent model of memory formation and consolidation over the course of a day, we
simulated how a network of N = 1000 neurons with z = 2 can learn to optimally store
M = 300 patterns in two separate phases. In the first phase, representing wakefulness (Fig.
3.3a), the network performed self-supervised few-shot learning, while actively being regulated
by homeostatic scaling, inhibitory plasticity, and fast inhibitory feedback. Each pattern µ
was presented to the network in the form of a strong excitatory input current Istim that
depolarized neurons that needed to be active (ξµi = 1), while the stabilizing effect of the

fast inhibitory feedback current I(fast)inh immediately hyperpolarized neurons that needed to be

silent (ξµi = 0). In the following time step, I(fast)inh either dropped to zero, indicating that the
pattern was a stable attractor, or remained non-zero, which indicated that the pattern had
not yet been correctly stored. The novelty of a pattern could in this way be read out directly
from I(fast)inh . Weights were updated homo- and heterosynaptically if the novelty signal was
triggered; otherwise, only homeostatic scaling was performed. Furthermore, only one u-factor
per weight was allowed to change during wakefulness, while the other one was kept fixed.
Tonic inhibition, represented by I(slow)inh , was also updated with a Hebbian, inhibitory plasticity
rule so that the average input current was properly balanced (see Methods). Patterns were
presented in a randomized order until the novelty signal stopped being triggered, at which
point all patterns had been correctly encoded by the network.

In the second phase, representing sleep (Fig. 3.3b), the network performed memory
consolidation and pruning. Homeostatic scaling was inactivated, and the tonic inhibitory
current I(slow)inh was kept fixed (Fig. 3.3c). Memory replay was carried out by cuing and
recalling every stored pattern in the network. In each replay cycle, every neuron i individually
tagged the input that was least robust, i.e., most novel. At the end of the cycle, weights
were updated according to Eq. 3.7, with ξ

µ⋆i
j being the tagged pattern. Both u-factors were

now allowed to change.

Figure 3.4 demonstrates two simulation examples, with low (M = 200) and high (M = 350)
storage load. During wakefulness, few-shot learning rapidly encoded all patterns as stable
attractors, albeit in a suboptimal manner. Only 20 to 40 presentations per pattern were
needed until novelty stopped being triggered and all patterns could be recalled without
errors (Fig. 3.4a), but the SNR was on average low. During sleep, however, consolidation
quickly improved the SNR by more than an order of magnitude (Fig. 3.4b), while synaptic
connections were pruned by decaying to zero at an exponential rate, resulting in a substantial
increase in network efficiency. The effect of pruning was also detectable in the slight
dominance of LTD over LTP during sleep-based plasticity (Fig. 3.4b, inset). The connection
density finally converged to values close to the theoretical predictions.

The processes of consolidation and pruning were not entirely concurrent, but could largely be
separated into two qualitatively distinct phases (Fig. 3.4b, light and dark blue backgrounds).
In the first epochs of sleep, minor weight adjustments quickly produced a near-maximal SNR,
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Figure 3.4: Simulated consolidation over a single day with multiplicative plasticity. (a) Pattern
novelty and recall error for high load (α=0.35) and low load (α=0.20), during wakeful learning
(yellow background). (b) Plots of SNR, efficiency, connection density, and individual weights, during
sleep-based consolidation (blue background; the two phases of consolidation are indicated by shade).
Dashed and dotted lines are theoretical results for maximum SNR (for any q), and minimum ρ
(for q=1), respectively. Inset: ratio of LTP to LTD. (c) Left: Weight distribution at formation
(epochs=0), before sleep, and after sleep (survived and pruned), for the high load simulation. Right:
Volume distribution of new, pruned, and old dendritic spines in experimental data. (d) Pruning
fraction in simulation (left) and experimental data (right) as a function of weight (left) and spine
volume (right). (e) SNR-change after, compared to before, consolidation, in simulations (left; each
circle is a pattern) and in humans (left; each points is a subject). Behavioral data has been slightly
jittered for clarity. (f) Simulated SNR-change at the end of sleep for different loads.
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without much pruning occurring. The effect of pruning was only visible at a later stage, after
unimportant weights had been sufficiently depressed, or removed, and remaining weights
had been further potentiated. At this point, the weight configuration started approaching a
sparse solution and the SNR dropped from the maximum.

The distributions of pre-sleep connections and pruned connections closely overlapped each
other (Fig. 3.4c, left), while the small number of connections that survived sleep were, on
average, stronger. We compared this with the experimental data from Loewenstein et al.
(2011, 2015) and found similar results (Fig. 3.4c, right; more details in Methods). The
distribution of dendritic spine volume for young spines (age ≤ sampling interval ∆t) closely
matched that for pruned spines, while old spines (age > ∆t) generally were larger.

An analysis of the fate of individual connections (Fig. 3.4d, left) revealed that the probability
of pruning gradually decreased as a function of connection strength, which, again, agreed
with the experimental data (Fig. 3.4d, right). Connections that at the beginning of sleep
had a strength close to initialization were completely pruned, while most of those that had
been potentiated survived. Notably, we found that the shape of the pruning curve depended
on the storage load, so that consolidation of fewer patterns caused a higher fraction of
strong weights to be pruned. This adjustment was automatically imposed by the learning
algorithm, without any need for external tuning. The additional pruning was also reflected
in the LTP to LTD imbalance, which was larger when consolidating fewer patterns.

3.2.5 Preferential consolidation of weakly encoded memories in sleep

Behavioral studies on sleep-based consolidation in humans have demonstrated that memories
with weak initial encoding are strengthened to a higher degree, and thus benefit more, from
sleep (Schapiro et al., 2018; Denis et al., 2020). To evaluate if this effect was reproduced
by our consolidation model, we compared the SNR improvement of each memory over the
course of sleep, relative to the initial value. We found a significant negative correlation
(Fig. 3.4e, left), indicating that memories that were weakly encoded before sleep had been
strengthened more after sleep. This is caused by a ceiling effect: as the consolidation
algorithm pushes the SNR of each memory close to the maximal limit, memories that start
with a low SNR will inevitably exhibit a larger improvement than those starting with a high
SNR.

To quantitatively compare these results with behavioral data, we re-analyzed three large,
published datasets on sleep-based consolidation of declarative memory (Fenn & Hambrick,
2012, 2015; Ashton & Cairney, 2021). In each study, humans were tasked with learning 40
word-pair associations, and their recall performance was tested closely before and after a
12 h-interval of sleep or wakefulness. We applied the framework of signal detection theory
and modeled the memory trace strength in each subject as a latent continuous variable
that, at encoding time, is perturbed by normally distributed noise (Mickes et al., 2009). At
test time, the model posits that only traces stronger than a subject-specific threshold can
be recalled. We estimated the trace SNR in each subject (denoted SNR∗) as the distance
between the recall threshold and the inferred average trace strength (see Methods). This
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allowed us to compare the SNR∗-improvement in each subject after sleep to the SNR∗ before
sleep. In agreement with our simulations, we found a significant negative correlation (Fig.
3.4e, right), again indicating that a weaker memory encoding prior to sleep was linked to a
larger improvement in encoding after sleep.

Although we found the same effect in the wakefulness condition (Fig. 3.4e, right), the
improvement in SNR∗ was systematically smaller compared to that produced by sleep,
as indicated by the significant downward shift of the regression curve (two-tailed t-test,
P = 2 × 10−6, n = 876; see Methods). This effect could be reproduced by our network
by subjecting it to fewer replay cycles during consolidation (Fig. 3.4e, left). These results
suggest that a consolidation process similar to that occurring during sleep also could takes
place in wakefulness, albeit with reduced efficacy or over a shorter duration.

In addition, our model predicts that a similar upward or downward shift in SNR-improvement
can be produced after full sleep-based consolidation by reducing or increasing, respectively,
the amount of memories that are consolidated (Fig. 3.4f).

3.2.6 Intrinsic synaptic noise scales sublinearly with weight

The learning rule presented above crucially relies on parameterizing each connection weight
wi j as a product of multiple factors ui jk , which represent the efficacies or concentrations
of subsynaptic constituents. We therefore aimed to investigate if such a model can be
tested with experimental measurements of synaptic dynamics. The past two decades of
imaging cortical dendrites has demonstrated that the strength of a synapse is strongly
correlated with its size (Holler et al., 2021), which, in turn, is highly prone to intrinsic
noise; a phenomenon referred to as synaptic volatility (Mongillo et al., 2017; Ziv & Brenner,
2018). How would the addition of intrinsic noise in our model of the synaptic ultrastructure
manifest in measurements of synaptic volatility? To answer this, we first note that intrinsic
noise, as the name implies, is independent of activity-related, homosynaptic plasticity, and
therefore present even when all glutamatergic transmission has been silenced. We assume
that this noise reflects the combined sum of multiple internal noise sources caused by thermal
fluctuations, such as spontaneous chemical reactions, conformational changes, as well as
protein degradation and turnover. We therefore model this with a white noise term ϵsyn,
which is added to each subsynaptic component ui jk . The result, under conditions of blocked
excitatory synaptic transmission, is that each weight fluctuates according to the stochastic
process

dwi j
dt
∝

(
1−

∑
j w
2/z
ij

const.

)
wi j + w

1− 1
z

i j σsynϵsyn , (3.8)

where σsyn is a positive parameter that determines the amplitude of the noise fluctuations,
and ϵsyn is biased Gaussian noise. Hence, our model predicts that the size of intrinsic synaptic
noise, whether potentiating or depressing, should scale as O(w1−

1
z ). For the maximally

robust network, when z = 1, noise is purely additive and uncorrelated to weight strength,
while for sparser networks, when z > 1, noise always scales sublinearly with w . It is only in
the limit z →∞ that the noise term becomes proportional to the weight.
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Figure 3.5: Scaling of synaptic fluctuations. (a) Simulated synaptic volatility of 1000 synapses
governed by the stochastic process in Eq. 3.8 with z = 2 (see also Suppl. Fig. A3.4). (b) Two example
datasets on synaptic strength change plotted as function of initial strength (circles are individual
synapses). A moving average produces straight lines (dark red/blue for potentiation/depression),
indicating a power-law relation. The exponent was estimated by bootstrapped linear regression (see
Methods). (c) Estimated power-law exponents in simulated and experimental synaptic fluctuations
(mean ± SEM). Experiments are grouped into short (∆t=10min – 7 h) and long sampling intervals
(∆t≥48 h), and summarized with a weighted 99% confidence interval. Labels contain a publication
reference and a brief methodological descriptor; complete details are provided in supplementary Tables
A3.4 and A3.5.
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To compare this model with experimental data, we re-analyzed 22 published datasets of
synaptic strength measurements from 9 separate studies (Loewenstein et al., 2011; Kaufman
et al., 2012; Fisher-Lavie & Ziv, 2013; Gala et al., 2017; Ishii et al., 2018; Hazan & Ziv,
2020; Miyamoto et al., 2021; Steffens et al., 2021; Wegner et al., 2022). These publications
span more than a decade of research and employ different measurement techniques, such as
fluorescence microscopy, and super-resolution nanoscopy, both in cultured neurons and in
vivo (see Suppl. Tab. A3.4 and A3.5 for details). Common to all studies, however, is that
they contain measurements of synaptic strength, size, or a proxy of the two, from a large
population of synapses (typically ≳103) that have been individually tracked over extended
periods of time (typically ranging from 24 h to almost 30 d).

In each dataset, we first paired all synaptic strength changes ∆ŵ(t + ∆t) between two
consecutive measurements (at times t and t + ∆t) with the initial strength ŵ(t). We then
separated the data into potentiation (∆ŵ > 0) and depression (∆ŵ < 0) and analyzed the
two cases separately, given that the dependence on initial strength can differ qualitatively
between LTP and LTD (Bi & Poo, 1998). Lastly, in order to reduce the effect of noise and
outliers, we calculated the average absolute change ⟨|∆ŵ |⟩ as a function of initial strength
using a moving average, and we plotted the results in logarithmic scale. The analysis
revealed that, for both potentiation and depression, ⟨|∆ŵ |⟩ had a linear dependence on ŵ in
logarithmic space, indicative of a power-law relation in the original data (i.e., ⟨|∆ŵ |⟩ ∝ ŵ x)
(Fig. 3.5b). The exponent of the power-law, which is equivalent to the slope of the line in
logarithmic space, was obtained with bootstrapped linear regression (see Methods).

In order to validate the analysis above, we also generated synthetic data of synaptic strength
fluctuations by numerically simulating 1,000 independent realisations of Eq. 3.8 (Fig. 3.5a,
see also Suppl. Fig. A3.4). This was analyzed in the same way as the experimental data and
agreed well with theoretical predictions. The results are summarized in Figure 3.5c (circles).

For the datasets with high sampling frequency (i.e., short observational time intervals
∆t = 10min to 7 h) and large samples sizes, synaptic strength fluctuations displayed a
sublinear scaling exponent, with a value of 0.49± 0.02 (99% weighted confidence interval)
for synaptic potentiation and 0.74 ± 0.01 for synaptic depression. These estimates were
remarkably reliable and close to the range predicted by our synaptic noise model in Eq.
3.8 with z = 2, 3, and 4. It should be noted, however, that our model assumes that
activity-dependent synaptic transmission is either negligible or entirely blocked, in order to
make simple and precise predictions; the inclusion of extrinsic synaptic noise would make our
model considerably more complicated. As such, the theoretical results are only approximately
applicable to the experimental measurements, which, in almost all cases, are perturbed by
the presence of extrinsic synaptic noise. The data by Hazan & Ziv (2020) is a notable
exception, as this was acquired during a complete block of glutamatergic transmission. In
this case, the noise scaling coincides almost exactly with the theoretical lines for z = 2 and
3, as we obtain 0.51± 0.01 for potentiation and 0.64± 0.01 for depression (mean ± SEM
over 100 bootstrapped samples).

Datasets with smaller sample sizes or low sampling frequencies generally showed a higher
estimated scaling exponent for synaptic depression, together with a larger error margin. This
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Figure 3.6: Simulations with z=2 and 3 reproduce synaptic fluctuation statistics over time. (a)
The estimated power-law exponent as a function of the sampling interval ∆t in simulations and
experimental data from Loewenstein et al. (2011), Kaufman et al. (2012), Fisher-Lavie & Ziv (2013),
Gala et al. (2017), and Hazan & Ziv (2020) (mean ± SEM). (b) CV over 24 h (mean ± SEM) for
different synaptic weight norms (

∑
ŵ q̂)1/q̂.

was particularly evident in the datasets with very long windows of time between observations
(∆t ≥ 48 h). While the exponent for synaptic potentiation decreased to 0.38 ± 0.04, it
was generally higher than one (1.09± 0.03) for synaptic depression, similarly to previously
reported results from an analysis of this type (Morrison et al., 2007).

The fact that synaptic depression consistently was found to have a larger scaling exponent
than potentiation indicates that internal synaptic noise can be described by a stationary
stochastic process, which predominantly potentiates weak synapses and depresses strong
ones, thereby forcing synapses towards the mean of the strength distribution. This is
consistent with past experimental literature showing that synaptic strength distributions are
unimodal and stable over time.

In order to further analyze the effect of sampling frequency on synaptic noise scaling, we
artificially increased the time window between measurements by sub-sampling the data, and
we plotted the estimated scaling exponent as a function of the new ∆t (Fig. 3.6a). For
synaptic depression, the results within studies mirrored those across studies, as the scaling
exponent tended to increase with larger ∆t, and appeared to converge to values ≳1. For
potentiation, the exponent decreased as a function of ∆t to values ranging between 0 and
0.5. These trends were reproduced in the simulated data, even with different z values. These
results demonstrate that estimates of synaptic noise scaling can be uninformative if the
time between measurements is too long. Given that noise is state-dependent and non-linear,
the total size of the perturbation accumulated by a synapse over long time intervals will
only correspond to a time-averaged weight change. This may occlude the relation between
instantaneous fluctuations and the weight, which can only be observed over short time
windows.
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3.2.7 Estimating homeostatic scaling from intrinsic synaptic noise

Our model of intrinsic synaptic dynamics does not only make predictions about the scaling
of synaptic noise, but also implies qualitatively different forms of synaptic homeostasis. For
a given z , the homeostatic term in Eq. 3.8 ensures that the 2z -th moment of all incoming
weights (i.e. ⟨w2/z ⟩) is stable and close to the prescribed constant. For z = 2, this means
that the term multiplicatively regulates the average weight, while for z = 1 it approximately
regulates the variance. Hence, in the absence of external noise, our model predicts that the
distribution of a neuron’s incoming excitatory weights should exhibit a fixed 2z -th moment,
while other moments are allowed to vary. To test this, we returned to the data collected
during synaptic blocking in the study by Hazan & Ziv (2020). At each measurement, we
calculated the norm ∥ŵ∥q̂ = (

∑
ŵ q̂)1/q̂ separately for each putative neuron, with different

values of q̂. We then computed the coefficient of variance (CV) for each norm over 24 h of
experimental time, in order to quantify how much different moments of the ŵ -distribution
varied over time. The same analysis was applied to the synthetic data generated from the
simulations of Eq. 3.8.

Our simulated results confirmed theoretical predictions (Fig. 3.6b), as we found that the
weight norm with smallest CV coincided with the value used in the homeostatic scaling. For
example, in simulations with z = 2, the weight norm that fluctuated least over time was
∥w∥1. The experimental results were found to closely match the simulation curve with z = 2.
This is consistent with the results in the previous section and lends further support to the
bipartite synapse model. It also suggests that synaptic homeostatic plasticity regulates the
average strength of incoming synapses, even in the absence of any synaptic input current.

3.3 Discussion

We have derived a family of synaptic learning rules that maximize the noise robustness
of attractor memories in recurrent neural networks subject to varying degrees of synaptic
pruning. We propose these learning rules as a general mathematical model of optimal memory
consolidation under synaptic resource constraints. In our definition of optimal consolidation
we assume the following scenario: A recurrent network has first been subjected to brief
but intense sensory-driven stimuli whose neural activity patterns have been imprinted as
stable attractors. However, the encoding is weak and far from optimal, and the purpose of
consolidation is therefore to tune connections so as to maximally strengthen the encoding.
Strength, or noise robustness, is in this context defined as an error margin measured with a
chosen distance metric. In order to maximize the margin in a biologically realistic manner,
our second fundamental assumption states that each synaptic weight can be parameterized
as a product of factors, each quantifying a partial efficacy or potency of the synapse. With
this, we derive a class of learning rules that maximizes memory robustness is a way that
naturally incorporates memory replay, homo- and heterosynaptic plasticity, multiplicative
homeostatic scaling, and rapid, automatic pruning, without thresholding or explicit synaptic
regularization.

A long-standing problem in past theoretical work on synaptic plasticity has been the seeming
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contradiction between experimental studies reporting that cortical connections are sparse
(Thomson & Lamy, 2007; Lefort et al., 2009) and rapidly form and retract (Le Bé & Markram,
2006), while others find that individual synaptic changes are multiplicative (Turrigiano, 2008;
Loewenstein et al., 2011); in the statistics literature, multiplicative learning rules are typically
associated with smooth changes and dense solutions. Our synaptic plasticity model reconciles
these observations, and displays both properties as part of a combined process of consolidation
and pruning.

3.3.1 The robustness-redundancy trade-off

Using the derived synaptic learning rule, we have characterized the optimal storage in
attractor networks under varying degrees of sparsity. It is important to note that this analysis
differs in many ways from previous work on pruning in attractor networks, which typically
has focused on either quenched (Gardner, 1989; Bouten et al., 1990) or annealed removal
(Bouten et al., 1990; Chapeton et al., 2015) of a pre-defined number of connections. In
order for this type of pruning to be implemented, the network would need to know the
appropriate number of weights to remove, prior to the learning of a task; from the standpoint
of biological plausibility, this is problematic. The amount of pruning would also need to be
carefully chosen, as any a priori constraint placed on the connection density that deviates
from the unconstrained optimal solution would cause the storage capacity to deteriorate
(Bouten et al., 1990; Chapeton et al., 2015).

In contrast, we implement the pruning mechanism as a regularized optimization, without
specifying the connection density explicitly. This allows the amount of pruning to be auto-
matically adapted to each set of patterns. Notably, the pre-defined degree of regularization
(determined by z) has no impact on the storage capacity, which always equals that of the
unconstrained network. As long as all patterns are linearly separable, they can be stored
using our learning rule with any positive z .

Regularization does, however, have a detrimental effect on robustness, as our results show
that sparse connectivity leads to low SNR. An explanation using information theory and the
noisy channel theorem is proposed in the main text.

Under the assumption that cortex can be modeled as an attractor network, our results
demonstrate that neither storage robustness nor synaptic sparsity alone is sufficient to form
an organizing principle for cortical circuits, as has previously been suggested (Krieg & Triesch,
2014; Brunel, 2016). Maximizing the former leads to unrealistically dense connectivity,
while optimizing the latter causes noise-tolerance to be so low that memories are practically
irretrievable. We argue, instead, that an optimal compromise is achieved at moderate levels
of pruning, with z = 2 or 3. This maximizes the average storage efficiency, as measured by
the amount of retrievable information per synapse.
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3.3.2 Replay and sleep

In the special case z = 2, we argue that our synaptic learning is particularly suitable as a model
of sleep-based memory consolidation. The learning rule can, in this case, be implemented
using only memory replay, multiplicative weight updates, and synaptic cross-talk, with tonic
inhibition and silenced external input. These conditions match remarkably well with the
neurophysiological signs of sleep in hippocampus and neocortex. During slow-wave sleep
(SWS), external input tends to be attenuated in favor of endogenously generated neural
activity, which is highly structured and displays cyclic periods of elevated spiking followed by
silence (Klinzing et al., 2019). The periods of heightened activity are synchronized across
hippocampus and cortex, and likely reflect a sequential reinstatement of past experiences (Ji
& Wilson, 2007; Schreiner et al., 2021). On the cognitive level, SWS has been shown to be
crucial for declarative memory consolidation (Gais & Born, 2004).

In contrast, the function of rapid eye movement (REM) sleep remains more contested.
Although this sleep stage also displays replay (Louie & Wilson, 2001) and silencing of external
inputs (Aime et al., 2022), is is better characterized by elevated levels of synaptic plasticity,
wide-spread dendritic calcium activity, and pruning (Li et al., 2017; Zhou et al., 2020). This
is believed to support a synaptic stabilization and optimization of memory traces that have
been distributed and consolidated on a systems level during preceding SWS.

In our model of sleep, we do not distinguish between different sleep-stages, but instead
aim to demonstrate how consolidation and pruning can be accomplished with a minimal
number of auxiliary plasticity mechanisms. Nonetheless, it is interesting to note that our
synaptic learning rule inherently produces an optimization trajectory that exhibits two phases.
It first approaches a dense solution, which achieves a near-maximal robustness, without
any noticeable pruning. Later, upon further optimization, the solution sparsifies, at the
expense of robustness, which displays a small drop. These two phases are reminiscent of the
complementary functions of SWS and REM-sleep, and suggests that the biphasic process of
sleep-based consolidation could be explained within a single modeling framework.

While our model of memory replay follows directly from the mathematical derivation of
optimal learning, it has a simple, intuitive interpretation. When a pattern that is completely
new and unrelated to any previous memory is cued to the network, it generally elicits a weak
neural response, which means that the current deflection from the threshold, on average, is
small and often in the wrong direction. The pattern can therefore not be correctly recalled
and has an error margin close to zero. The purpose of replay in our model is for each neuron
to update the synapses of the memory with smallest error margin, that is, the memory that
is perceived as most novel. Memories with a strong encoding, either because they are old or
resemble previously seen patterns, will never undergo synaptic change. This form of replay
is a parsimonious consolidation mechanism that concurrently strengthens the trace of all
memories by only updating the weights of the most labile pattern. Similar prioritization in
replay and consolidation has recently been shown to occur in hippocampus during wakefulness
(Schapiro et al., 2018) and sleep (Denis et al., 2021).

Our consolidation model offers an alternative hypothesis to two previously proposed theories
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Figure 3.7: Schematic of predicted consolidation across lifetime. In previous models (left), robustness
is assumed to be capped. Networks storing many patterns (high env. richness) will end up with
sparser connectivity than those storing few patterns (low env. richness). In the new model (right),
robustness is maximized at each bout of consolidation. Networks with high storage will end up with
denser connectivity than those with low storage.

of sleep-based memory consolidation. The first, which we refer to as the unlearning theory
(Crick & Mitchison, 1983; Hopfield et al., 1983), argues that the function of dream sleep is
to replay and unlearn spurious attractors, in order to indirectly increase the robustness of
desired memories. We, instead, demonstrate that the same goal can be accomplished by
replaying only information that already has been seen, without any need to identify spurious
memories or to invoke reversed plasticity.

The second hypothesis, termed the over-fitted brain (Hoel, 2021), argues that learning in
wakefulness causes the brain to over-fit sensory data, and that the purpose of dream sleep is
to improve generalization by replaying and relearning noisy variants of stored information.
While noise injection can be used to improve robustness in attractor networks (Rubin et al.,
2017), it is mathematically equivalent to directly maximizing the error margin, as done in our
work (see Appendix A3.1). An added benefit of our approach is that it is metabolically more
sparing. Even though it necessitates a structured replay-and-update procedure, it updates
only one pattern per replay cycle, and no noise is needed.

3.3.3 Implications for life-long learning

Over the course of an animal’s development, memories are gradually accumulated and
incorporated into the brain through an interlaced sequence of coarse learning in wakefulness
and consolidation in sleep (see Fig. 3.7 for illustration). In this setting, our consolidation
model predicts that both memory robustness and connectivity would follow a decreasing
trend over long periods of time, given that storage of a larger amount of memories late in
life requires more synapses and implies a smaller average SNR compared to early life, even
under optimal learning conditions (Fig. 3.7, right). By extension, our model predicts that an
animal reared under stimulus deprivation, during which it presumably forms fewer memories,
should exhibit a lower connection density late in life, compared to an animal reared under
control conditions or stimulus enrichment. This, indeed, agrees with experimental results
from the early literature on structural plasticity (Globus et al., 1973; Turner & Greenough,
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1985).

Importantly, our model stands in contrast to a previously proposed model of life-long learning
(Chapeton et al., 2012), which is based on the assumption that memory robustness has
a fixed upper limit, and that the consolidation process instead maximizes the amount
of memories stored with this robustness. While this model also produces a decreasing
connectivity trend across life, it predicts that the connection density should end up higher in
animals that have formed less memories than controls (Fig. 3.7, left).

3.3.4 Biological interpretation of the synapse model

Our consolidation model crucially relies on the representation of each synapse as a product
of multiple subcellular components linked in a signaling cascade. This suggests that the
structural complexity of a synapse could serve a computational and metabolic purpose, by
implicitly biasing cortical connectivity to be sparse, thus lowering energy consumption and
freeing unneeded synaptic resources for future learning. These results are consistent with
and complementary to previous theoretical work on modular synaptic ultrastructure (Lisman,
2017) and synaptic consolidation, which has demonstrated that synapses containing chemical
cascades of fast and slow components can vastly improve memory lifetime (Benna & Fusi,
2016) as well as the energy efficiency of plasticity (Li & van Rossum, 2020).

The result of our meta-analysis, indicating that synaptic strength fluctuations scale roughly
as O(

√
w) over short timescales, not only supports our synapse model with two or three

internal expression sites, but it also confirms previous predictions from computational studies
of biophysically detailed, compartmental synapses (Shouval, 2005; Triesch et al., 2018). It
is important to note that our scaling analysis is concerned only with structural, long-term
synaptic changes, which should not be confused with the inter-spike variability caused by
short-term plasticity, as this also displays O(

√
w) scaling (Loebel et al., 2013).

The particular dynamics of our bipartite synapse model, as implemented in wakefulness and
sleep, is consistent with the tagging-and-capture hypothesis (Redondo & Morris, 2011),
since the plastic u-factor can be interpreted as a tag, while the second u-factor represents a
much slower plasticity process. During wakefulness, only the tag is allowed to change, and
the slow factor remains fixed. This enables the network to quickly memorize patterns without
extensive rewiring. During sleep, when consolidation is assumed to take place, both factors
change, including the slow one. This allows the network to converge to an optimally pruned
weight configuration. This suggests that tagging-and-capture in a multiplicative synapse
can have an additional function, by shifting a network from quick and shallow learning in
wakefulness, to slow but optimal consolidation in sleep.

While we assume in the main text that each u-factor represents a chemical component inside
the post-synaptic neuron or dendritic spine, it is also possible to interpret each factor as part
of an entire pre- and post-synaptic structure. In this case, our finding that z = 2 or 3 factors
per connection is optimal fits particularly well with the binomial synapse model, which is
commonly used in the experimental literature and estimates the average connection strength
as a product of three factors, namely the release probability, the number of synapses per
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connection, and the quantal size.

3.3.5 Predictions and future work

Our model makes two general predictions about the dynamics of consolidation on the neural,
and behavioral level. First, on the behavioral level, we predict that the memory items that
are weakly encoded prior to sleep should display a larger imrovement in the SNR after sleep,
which should translate to a higher success rate in recall tests on the population level. While
we partly confirm this with three large, published datasets, these cover only a part of the
range of initial encodings. Furthermore, we predict that the decreasing trend observed in
these datasets should be shifted down if subjects are required to memorize more information,
and vice versa.

On the neural level, our consolidation model predicts that the balance between LTD and
LTP shifts across wakefulness and sleep. In wakefulness, we suggest that the brain primarily
performs few-shot learning of low-activity patterns. This is known to require LTP to be
stronger than LTD in order to compensate for the higher prevalence of LTD events (Tsodyks
& Feigel’man, 1988), which is in agreement with what tends to be reported in experimental
data (O’Connor et al., 2005). In sleep, on the other hand, our model predicts that only
the weakest pattern in each replay cycle should produce synaptic updates. Consequently,
LTP and LTD should occur equally often, and the amplitudes of LTP and LTD should
therefore be comparable. Although this prediction has not yet been tested directly, it fits with
the experimental finding that the concentration of acetylcholine, a modulator of synaptic
plasticity, is significantly lowered in SWS-mediated consolidation of declarative memory (Gais
& Born, 2004).
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3.4 Methods

3.4.1 Network model

We model a local cortical circuit of pyramidal cells as a recurrent network of N binary neurons.
At time t, the output state si(t) of each neuron i = 1, . . . , N is given by

si(t) = Θ [Itot,i(t)] (3.9)

where Θ is the Heaviside function and Itot,i is the total input current, which is calculated as

Itot,i(t) = Iexc,i(t) + Istim,i(t)− I(slow)inh,i (t)− I
(fast)
inh (t) (3.10)

where all terms, except for I(fast)inh , are non-negative. The first term is the excitatory input,
which is determined by the recurrent connectivity and the previous state of the network
according to

Iexc,i(t) =

N∑
j=1

wi jsj(t − 1) (3.11)

where wi j ≥ 0 denotes the connection strength from neuron j to i . Self-connections are not
allowed, meaning wi i = 0.

The second current term, I(slow)inh,i , is a constant (tonic) inhibitory current, which, effectively,
acts as a threshold. This is neuron-specific and changes slowly, on a time-scale comparable
to that of the excitatory weights (see plasticity rules below). In contrast, the additional
inhibitory term I(fast)inh is global and fast-changing. In each time step, it stabilizes network
activity by allowing only the f N neurons with largest input currents to be active.

In our mathematical analysis below, we use Iinh as a shorthand for I(slow)inh , unless stated
otherwise.

3.4.2 Memory patterns

Each memory pattern consists of a random binary vector ξµi , where i = 1, . . . , N indexes the
neuron, and µ = 1, . . . ,M the memory item. For simulations in section 3.2.3, each element
ξµi is independently assigned one with probability 0 < f < 0.5 and zero with probability 1− f .
The parameter f is the average fraction of active neurons in each pattern, and is therefore
referred to as the pattern activity level.

For wake-sleep simulations, each pattern contains exactly f N ones and (1 − f )N zeros,
although the location of ones and zeros is randomized.

For both types of simulations, the mean and variance of the activity across patterns, for a
neuron i , is given by

Eµ[ξµi ] = f M , Vµ[ξµi ] = f (1− f )M . (3.12)
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However, for the activity across neurons, within a pattern µ, we have

Ei [ξµi ] = f N , Vi [ξµi ] =

{
f (1− f )N , for efficiency simulations

0 , for sleep simulations
(3.13)

This slight difference in pattern types makes it possible to perform recall simulations with
I
(fast)
inh , which allows only f N neurons to be active at a time.

3.4.3 SNR and error margin

When the network has static inhibition and is in a state of idle background activity, we
assume that every neuron randomly activates at each time t with a probability f̃ , where
typically 0 ≤ f̃ ≤ f . Under these conditions, we use the central limit theorem (since N ≫ 1)
to estimate the excitatory input current to a neuron as normally distributed with mean

Et [Iexc,i(t)] = f̃
N∑
j

wi j (3.14)

and variance

Vt [Iexc,i(t)] = f̃ (1− f̃ )
N∑
j

w2i j . (3.15)

A detailed derivation can be found in the Appendix A3.3. At the moment a pattern is recalled
and the network enters a stable attractor, each neuron is either silenced or activated. The
response is determined by a current deflection from the threshold, given by

∆Iµi =

∣∣∣∣∣∣
N∑
j

wi jξ
µ
j − Iinh,i

∣∣∣∣∣∣ (3.16)

which generally exceeds the level of background noise. The level of noise robustness with
which neuron i contributes to the recall process can be quantified with the SNR, where ∆Iµi
is the signal (see Fig. 3.1c). Each pattern is, in this way, characterized by an independent
SNR with respect to each neuron i . To simplify the evaluation, we estimate robustness
across all patterns by computing the smallest SNR that neuron i has during recall. The
signal is now comprised of the smallest current deflection, meaning

Signali = ∆Imin,i = min
µ
∆Iµi , (3.17)

while the noise is the largest fluctuation in the input current. Given that background activity
during recall typically is lower than idle activity, a worst-case scenario is given by Eq. 3.15
with f̃ = f , so that

Noisei =

√√√√f (1− f ) N∑
j

w2i j , (3.18)
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which finally yields

SNRi =
∆Imin,i√

f (1− f )
∑N
j w

2
i j

. (3.19)

In our definition of optimal robustness under sparsifying constraints, we generalize the notion
of SNR and use the error margin

Kq =
∆Imin

(
∑N
j w

q
ij )

1
q

(3.20)

where subscript i has been omitted (see Appendix A3.1 for details). Here, one can directly
see that a maximization of K2 is equivalent to a maximization of SNR.

3.4.4 Theoretical solutions

Details regarding the calculations of theoretical solutions can be found in Appendices A3.4,
A3.5, and A3.6.

3.4.5 Synapse model

For a fixed q, we can maximize Kq by parameterizing each weight wi j as

wi j =

z∏
k

ui jk (3.21)

where z = 2/q (Hoff, 2017) and instead maximize

K(u) =
∆Imin

(
∑N
j

∑z
k u
2
i jk)
1/2
. (3.22)

Since it can be shown that the solution is characterized by u∗i j1 = u
∗
i j2 = . . . = u

∗
i jz , we

simplify the optimization by assuming this structure a priori. In practice, we therefore use
the parameterization

wi j = u
z
i j (3.23)

and we maximize

K(u) =
∆Imin

(
∑N
j u
2
i j)
1/2
. (3.24)

Note that this optimization function is independent of q.

3.4.6 General learning rule

We maximize K(u) using projected gradient ascent. The result is outlined in Algorithm 1,
which, in the limit of small learning rates η → 0, is equivalent to the procedure described in
the main text. In the case z = 1 and without sign-constraints, it is reduced to the iterative
method introduced by Krauth & Mezard (1987).
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Algorithm 1 Sparse Optimal Perceptron

for t = 0, 1, 2, . . . do
µ⋆i ← argminµ (2ξ

µ
i − 1)

(∑
j wi jξ

µ
j − Iinh,i

)
▷ tagging weakest pattern

ûi j ←
[
ui j + η(2ξ

µ⋆i
i − 1)ξ

µ⋆i
j u
z−1
i j

]
+

▷ sign-constrained Hebbian update

ui j ← ûi j/(
∑
j û
2
i j)
1/2 ▷ weight normalization

wi j ← uzi j
Iinh,i ← Iinh,i − ηinh(2ξ

µ⋆i
i − 1) ▷ inhibition update

end for

In the limit of small learning rates, we can also describe the dynamics of ui j in continuous
time with the gradient flow equation

dui j
dt
∝

(
1−

∑
j u
2
i j

const.

)
ui j + η(2ξ

µ⋆i
i − 1)ξ

µ⋆i
j u
z−1
i j . (3.25)

With a change of variables back to wi j , we recover Eq. 3.5. For more details on this
derivation and its relation to previously published homeostatic learning rules, see Appendix
A3.2.

3.4.7 Numerical optimization and evaluation

The results in Figure 3.2 were produced by training networks using Algorithm 1 with a
fixed learning rate. During training, the performance of the network was evaluated with the
average SNR, the error, and the weight density. The average SNR was computed as

⟨SNR⟩ =
1

N

∑
i

SNRi (3.26)

while the error was defined as the average fraction of incorrect bits after one state update,
meaning

E =
1

2NM

N∑
i

M∑
µ

1− (2sµi − 1)(2ξ
µ
i − 1) (3.27)

where

sµi = Θ

 N∑
j

wi jξ
µ
j − Iinh,i

 . (3.28)

The weight density was computed as

ρ =
1

N2

N∑
i ,j

Θ[wi j − w0] (3.29)

where w0 is a threshold used to determine if a weight has been removed. Due to the finite
size of the weight updates and the limits of machine precision, some weights converged to
values close to, but not exactly, zero, such as ∼10−18. The threshold was therefore set to



Optimal consolidation and pruning 69

w0 = 10
−10.

The optimization was considered to have converged once three conditions were satisfied: (i)
E = 0, (ii) ⟨SNR⟩ changed by less than 10−4 over 104 epochs, and (iii) ρ changed by less
than 2 · 10−4 over 104 epochs.

After optimization, noise tolerance was evaluated by initiating the network in a distorted
version of each pattern, updating the network 50 times, and evaluating if the network’s final
state was close to the original pattern. The criterion for closeness was that the error of
the final state was E < 0.1f . This test was performed 20 times per pattern, and the recall
ratio (RR) of the network was computed as the average fraction of patterns that could be
retrieved across all trials. We defined the maximal noise tolerance as the noise level at which
RR fell below 50%.

For a given noise level 0 ≤ p ≤ 2f , we generated distorted patterns by flipping each bit with
probability

pflip =

{
p/2(1− f ) for 0→ 1
p/2f for 1→ 0

. (3.30)

This ensured that the average activity level was kept at f for all distorted patterns (see
Suppl. Fig. A3.5). After updating, the network was deemed close to the original pattern if
the error of the final state was E < 0.1f .

The fraction of retrievable patterns for each noise-level was computed as

α̂(α, p) = α · RR(α, p) (3.31)

where α is the storage load
α = M/N . (3.32)

The largest possible (critical) storage load was denoted αc . We computed the efficiency
Q as the number of bits per synapse that could be retrieved at a given storage load and
noise-level, meaning

Q(α, p) = −
α̂

ρ
[f log2(f ) + (1− f ) log2(1− f )] (3.33)

while the grand average was computed over all storage loads and noise-levels

Efficiency average =
1

αmaxpmax

αmax∫
αmin

pmax∫
0

Q(α, p) dα dp (3.34)

where the integrals were computed numerically using the trapezoidal rule.

3.4.8 Simulating wakefulness and sleep

Our simulation of network dynamics in wakefulness has some similarity to previous models of
familiarity detection and learning (Sohal & Hasselmo, 2000; Alemi et al., 2015). However,
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this aspect of our work is not our main contribution, but rather a simple prototype used to
demonstrate that our general learning rule is consistent with neurophysiological conditions
seen in both wakefulness and sleep.

In wakefulness, the network was simulated with fast and slow inhibition. The network was
clamped to a pattern µ by providing a strong stimulus current

Istim,i = wstimξ
µ
i (3.35)

and performing a single update. Here, wstim is a positive, global weight that determines the
strength of the bottom-up input (see Fig. 3.1a). Next, the stimulus current was released
and a second update was performed. The novelty indicator of the pattern was determined
according to

ξ⋆ =

{
1 if I(fast)inh ̸= 0
0 otherwise

. (3.36)

Finally, the network was updated a third time with Istim active so that si = ξ
µ
i , and the

weights we updated according to

∆ui j1 = ηhet

(
1−

∑
j wi j

const.

)
ui j1 + ηhomξ

⋆(si − f )sjui j2
∆ui j2 = 0

wi j = ui j1 · ui j2

(3.37)

while inhibition was updated according to

∆Iinh,i = ηinh sgn
[
I⋆inh,i − Iinh,i

]
(3.38)

where ηhet, ηhom, and ηinh are the heterosynaptic, homosynaptic, and inhibitory learning
rates. The optimal inhibition at each time is denoted I⋆inh,i and is calculated as

I⋆inh,i = Eexc +
√
2f NVexc erfc−1(2f ) (3.39)

where Eexc and Vexc is the expectation and variance given in Eqs. 3.14 and 3.15. In this
weight parameterization, we kept the two u-factors separate and allowed only one factor
to be plastic while the other remained fixed. Note, however, that these simulations can be
performed with both factors plastic and equal, in which case wi j = u2.

After wakeful learning, the two u-factors were equilibrated by setting ui j1 = ui j2 = ui j =
√
wi j .

In sleep, the network was initialized in each pattern µ by an external cue and updated once.
Since each pattern had been encoded as an attractor, the network remained in the state
si = ξ

µ
i . The input current deflection was now read out in each neuron i according to

∆Ii =

∣∣∣∣∣∣
∑
j

wi jsj − Iinh,i

∣∣∣∣∣∣ (3.40)
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and the weakest pattern was tagged according to

ξ⋆ = argmin
ξ

∆Ii . (3.41)

At the end of each pattern replay cycle, the weights were updated according to

∆ui j = (2ξ
⋆
i − 1)(ηhet + ηhomξ⋆j )ui j . (3.42)

Note that the combination of Eqs. 3.40-3.42 is equivalent to Algorithm 1, but implemented
in a self-supervised fashion (see Appendix A3.7).

The ratio of LTP-to-LTD was calculated as the number of homosynaptic LTP events relative
LTD events, weighted by the fraction of homosynaptic learning rate in LTP relative LTD, so
that

LTP

LTD
=
n
(LTP)
hom

n
(LTD)
hom

η
(LTP)
hom

η
(LTD)
hom

. (3.43)

In wakeful learning, this equals precisely 1.

3.4.9 Simulating synaptic volatility

In simulations of internal synaptic noise, we assumed, as in wakefulness, that one u-factor is
plastic and changes with a fast time constant τfast, while remaining factors are slower and
characterized by the time constant τslow. Each weight was therefore parameterized as

w = ufast · uz−1slow (3.44)

where the fast factor was governed by the stochastic process

τfast
dufast
dt

= ηhet

(
1−

∑
w
2
z

const.

)
ufast + ηϵ

(
kϵ1u

z−1
slow + (1− k)ϵ0

)
(3.45)

and the slow factor by

τslow
duslow
dt

= ηhet

(
1−

∑
w
2
z

const.

)
uslow + (ufast − uslow) . (3.46)

As before, ηhet denotes the heterosynaptic learning rate, while ηϵ scales the amplitude of
the noise fluctuations injected by the two biased gaussian noise terms ϵ1 and ϵ0, where the
first term models activity-dependent noise and the second term internal noise. The relative
strength of the two noise sources is set with 0 ≤ k ≤ 1. The results in Fig. 3.6b were
produced with the values

τfast = 10min , τslow = 5 h (3.47)

and

k =

{
0 for silent model

0.5 for control model
. (3.48)
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However, the outcome is qualitatively the same for time constants much closer to each
other, or even with τslow < τfast. In the latter case, all u-factors are approximately identical,
and the parameterization reduces to w = uz .

The sampling time was set to Tsample = τfast and the total length of the simulation was
Tsim = τfast · 103, which roughly equals 7 d.

3.4.10 Experimental data: Connectivity

The experimental data on connection probability among cortical excitatory cells was taken
from a publicly available compilation of 124 datasets that were included in a meta-analysis
published in Zhang et al. (2019). Each study in the dataset was assigned a weight βi
according to the number of evaluated connections nconn, so that

βi =
n
(i)
conn∑nsets

i n
(i)
conn

. (3.49)

The weighted mean (wM) and standard error of the mean (wSEM) of the connection
probability Pconn was then estimated using

wM =
1

nsets

∑nsets
i βiP

(i)
conn (3.50)

wSEM =
1

nsets − 1

√∑nsets
i βi

(
P
(i)
conn − wM

)2
. (3.51)

3.4.11 Experimental data: Synaptic volatility

We compiled 23 datasets containing synaptic measurements from 9 previously published
studies. In general, each datapoint consisted of a measured proxy of synaptic strength (ŵ)
together with a change in strength (∆ŵ) following a time interval ∆t. Each dataset was
divided into LTD (∆ŵ < 0) and LTP (∆ŵ > 0) events. The average change ⟨∆ŵ⟩ was
estimated as a function of initial strength by filtering the all datapoints in (∆ŵ , ŵ)-space
using a moving average with window size nsyn/20, where nsyn is the sample size.

The scaling exponent was estimated by fitting a line to the estimated mean change ⟨∆ŵ⟩ in
logarithmic space. The mean and standard error of the exponent was estimated by repeating
the averaging and line-fitting with bootstrapping. All datasets were boostrapped 1,000 times,
except the sets from Kaufman et al. (2012), Fisher-Lavie & Ziv (2013), and Hazan & Ziv
(2020), which were boostrapped 100 times due to their exceptionally large sample size.

To summarize all exponent estimates, each one was first assigned a weight according its
inverse variance (squared standard error), meaning

βi =
SEM−2∑nsets
i SEM−2

. (3.52)
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The weighted mean was then calculated with Eq. 3.50 and the weighted standard error with

wSEM =

√
1∑nsets

i SEM−2
. (3.53)

The 99% confidence interval was finally estimated as [wM± 2.58× wSEM].

3.4.12 Experimental data: CV of synapse norm

In order to perform this analysis, we utilized the dendritic spine measurements acquired by
Hazan & Ziv (2020) with blocked glutamatergic transmission and under normal conditions.
Each measurement site in the original data was assumed to represent a separate neuron
(N. Ziv, personal communication). For each neuron i , and at each time point t, we calculated
the q-norm of the reported spine intensities, that is

∥ŵ∥(i ,t)q =
(∑

ŵq
) 1
q

(3.54)

where the notation on the right-hand side has been simplified for readability. A single
CV-value was obtained for each neuron and each norm according to

CV(i)q =

√
V̂t
[
∥ŵ∥(i ,t)q

]
Êt
[
∥ŵ∥(i ,t)q

] . (3.55)

The mean and standard error of the CV was finally computed as

Mean CVq = Êi [CV(i)q ] , SEM CVq =
√
V̂i [CV(i)q ] . (3.56)

The simulated data was analyzed precisely as the experimental data, with the only caveat being
that all simulated weights were treated as belonging to a single neuron. Bootstrapping was
applied to both experimental and simulated data by separately re-sampling the measurements
made in each neuron at each time point 1,000 times.

3.4.13 Experimental data: Synaptic pruning

To analyze the properties of synaptic pruning, we utilized the dataset on dendritic spines by
Loewenstein et al. (2011, 2015). This data contains spine volume measurements over six
sessions, with a sampling interval of ∆t = 4 d (see Table A3.5 for details). Spines where
separated into three categories: (i) Spines that were observed for the first time somewhere
between sessions 2 to 6 were defined as “young” spines. The age of the spines observed
in session 1 can not be determined, and these were therefore left out. (ii) Spines that
disappeared at any time between sessions 2 to 6 were defined as “pruned”. (iii) Spines that
had been observed in at least one directly preceding session were defined as “old”.

To estimate the pruning fraction, we first log-normalized the data by calculating the Z-score
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in logarithmic space, according to

Z(log x) =
log x − E[log x ]√

V[log x ]
. (3.57)

We then binned all spine volumes from sessions 1 to 5, and computed the ratio of pruned
spines relative the total number of spines in each bin. The bins were sized so that there was
approximately an equal number of spines in each one. The spines in session 6 were left out,
as it is unknown how many of these that were pruned.

The simulated pruning fraction was calculated analogously, by comparing the pruned connec-
tions to all connection weights before sleep.

3.4.14 Experimental data: Memory consolidation in sleep

In the behavioral data on memory tests with word-pair associations, we modeled recall
performance according to signal detection theory. We assumed that the trace of each
memory was encoded in a subject according to a subject-specific strength, combined with
normally distributed noise, so that all traces in a subject were approximately normally
distributed after the initial training session. Furthermore, the fraction of memories that
could be recalled correctly at test time were assumed to be those whose trace exceeded a
subject-specific threshold. We estimated the average memory SNR within a subject as the
distance from the average trace strength to the threshold. This is given by

SNR∗ = Φ−1 [Precall + ϵ] (3.58)

where Φ is the normal cumulative distribution function and ϵ is a small corrective term added
to avoid divergence; it is calculated as

ϵ = (1− 2Precall) · 10−16 . (3.59)

We calculated the SNR∗ preceding the wake/sleep interval (denoted SNR∗before), and the
difference

∆SNR∗ = SNR∗after − SNR∗before (3.60)

following the interval. Datapoints further than three standard deviations from the mean
were considered outliers and removed. This was done separately in each dataset.

Comparisons between wake and sleep were done by fitting all data with the linear model

∆SNR∗ = β0 + β1Xcond + β2SNR∗before + β3XcondSNR∗before (3.61)

where the group condition was coded by Xcond according to

Xcond =

{
0 if wake

1 if sleep
. (3.62)
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Significant differences in the intercept and slope between wake and sleep was determined by
a two-tailed t-test of β1 and β3.
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Appendix

A3.1 Derivation of consolidation algorithm

We consider a single binary neuron i with inputs from N other neurons j , and we define the
general problem of optimal consolidation as finding the weights wi j that maximize the error
margin Kq. To express this in mathematical terms, we will represent all incoming weights to
neuron i with the column vector w (subscript i is omitted for clarity). Likewise, the state of
the network will be represented by the vector s(t) and each pattern by ξµ for µ = 1, . . . ,M.
We can now define our optimization problem as

w∗ = argmax
w

Kq (A3.1)

where the error margin can be expressed as

Kq =
∆Imin
∥w∥q

(A3.2)

and the minimal deflection of the input current can be written

∆Imin = min
µ

(
2ξµi − 1

) (
w⊤ξµ − Iinh

)
=(2ξ⋆i − 1)

(
w⊤ξ⋆ − Iinh

)
.

(A3.3)

Assuming that all patterns already are encoded as attractors in the network, the last equation
is equivalent to

∆Imin =
∣∣w⊤ξ⋆ − Iinh∣∣ . (A3.4)

The problem in Eq. A3.1 can be solved in three different ways:

Method (i): The first approach is to fix the norm ∥w∥q, define a minimal deflection
amplitude κ that all patterns must satisfy, and thereafter train the weights to maximize the
number of stored patterns M. This variant of the optimization can be written

w∗ = argmax
w

M s. t. ∆Imin ≥ κ

∥w∥q and κ const.
(A3.5)

This is how optimal memory storage originally was defined in the statistical physics literature
(Gardner, 1988) (see section A3.4 and Suppl. Fig. A3.6), and it forms the basis of recent
work on optimal long-term memory models (Chapeton et al., 2012; Brunel, 2016), where
the inequality constraint is satisfied by directly including κ in the learning rule (Alemi et al.,
2015) or by training on patterns with a fixed amount of noise (Rubin et al., 2017). We
argue, however, that the assumption that cortical circuits have a fixed robustness and only
learn to maximize the number of memories is problematic from a ethological perspective.
It implies that cortical circuitry does not adapt to environmental cognitive pressures, but
instead passively incorporates information when it is encountered without allowing for further
improvement in the encoding.
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Method (ii): The second way to formulate the optimization is to fix the minimal deflection
amplitude κ and the number of patterns M, and instead minimize the norm ∥w∥q. This can
be written as

w∗ = argmin
w

∥w∥q s. t. ∆Imin ≥ κ ,

M and κ const.
(A3.6)

This formulation is also known as the max-margin classifier (or linear support vector machine)
in the machine learning literature (Cortes & Vapnik, 1995). This is more suitable as a model
of cognition and learning than Eq. A3.5, as it produces optimal storage by maximizing the
robustness for any fixed number of patterns M ≤ Mc , instead of the other way around.
However, this model still poses a problem in terms of neurobiological realism, in that the
weight norm needs to be adapted to each specific set of patterns. This is incompatible with
the notion of homeostatic synaptic plasticity, which regulates neural input by preserving the
overall strength of synaptic connections over time (Turrigiano, 2008).

Method (iii): The disadvantages of both previous models can be avoided by solving the
optimization problem as follows: the weights are trained to maximize κ while the norm and
the number of patterns are kept fixed. We express this as

w∗ = argmax
w

κ s. t. ∆Imin ≥ κ ,

M and ∥w∥q const.
(A3.7)

Although this formulation is uncommon in the literature, it was initially treated by Krauth
& Mezard (1987). The significance of this approach is that the network can be subjected
to any homeostatic constraint on the weight norm, while being trained to maximize the
robustness of any number of patterns M ≤ Mc .

We apply the variable change
w = uz , z = 2/q (A3.8)

where the exponent is applied element-wise, and obtain

u∗ = argmax
u

κ s. t. ∆Imin ≥ κ ,

M and ∥u∥2 const.
(A3.9)

This problem can now be directly solved with projected gradient ascent (see Suppl. Fig.
A3.7), which results in the iterative optimization described in Algorithm 1.

A3.2 Derivation of homeostatic scaling laws

An alternative method for solving Eq. A3.9 is to formulate the problem as a loss function
with a penalty for the norm, as in

L = H(∥u∥22)− ∆Imin (A3.10)
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where H is a penalty function. Applying gradient descent to L results in a general learning
rule that, in continuous time, is given by

du

dt
∝ h(∥u∥22)u + η(2ξ⋆i − 1)ξ⋆ ⊙ uz−1 (A3.11)

where h = H′ and ⊙ denotes element-wise multiplication. In the specific case z = 2, a
variable change back to w results in

dw

dt
∝ h(∥w∥1)w + η(2ξ⋆i − 1)ξ⋆ ⊙ w . (A3.12)

Under the assumption that global activity in the network is stable over time, the norm ∥w∥1
is directly proportional to the average excitatory input current, as shown in Eq. 3.14. With
a slight abuse of notation, we can therefore rewrite the above equation as

dw

dt
∝ h(⟨Iexc⟩t)w + η(2ξ⋆i − 1)ξ⋆ ⊙ w . (A3.13)

Case (i): If we choose the penalty function

H(∥u∥22) =
(
const.− ∥u∥22

)2
(A3.14)

we obtain the homeostatic factor

h(⟨Iexc⟩t) = (const.− ⟨Iexc⟩t) (A3.15)

which is equivalent to the homeostatic scaling rule introduced by Renart et al. (2003), albeit
rewritten in terms of the excitatory input current instead of the input firing rate.

Case (ii): If we instead define the penalty as

H(∥u∥22) =
(
1−

∥u∥22
const.

)2
(A3.16)

we retrieve the homeostatic factor

h(⟨Iexc⟩t) =
(
1−
⟨Iexc⟩t
const.

)
(A3.17)

which is equivalent to the homeostatic rule introduced by Toyoizumi et al. (2014).

Case (iii): A third alternative for the penalty function is

H(x) = x log(x)− x , x =
∥u∥22
const.

(A3.18)

which yields the homeostatic factor

h(⟨Iexc⟩t) = log
(

const.
⟨Iexc⟩t

)
. (A3.19)
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This type of homeostatic scaling has, to the best of our knowledge, not been proposed
previously in the literature.

It is important to note that even though all homeostatic rules regulate the average input
current, they do so by monitoring different quantities. In case (i), the rule depends on the
raw current deviation from the set-point, while, in case (ii), it depends on the percentage of
the deviation. In the final case, the homeostatic rule depends only on the ratio of ⟨Iexc⟩t
relative the set-point.

A3.3 Derivation of input current statistics

We consider the setting where the network is in a state of idle background activity. At every
time-step, neurons have a probability f of becoming active, which means that each neural
state si(t) is a Bernoulli random variable with

Et [si(t)] = f , Vt [si(t)] = f (1− f ) . (A3.20)

The mean and variance of the excitatory input current is now given by

Et [Iexc,i(t)] = Et

 N∑
j

wi jsj(t − 1)

 = N∑
j

wi j Et [sj(t − 1)]

= f

N∑
j

wi j = f ∥w∥1

(A3.21)

and

Vt [Iexc,i(t)] = Vt

 N∑
j

wi jsj(t − 1)

 = N∑
j

w2i j Vt [sj(t − 1)]

= f (1− f )
N∑
j

w2i j = f (1− f )∥w∥22

(A3.22)

respectively. This result depends only on the neural activity level across time, meaning
Et [si(t)] and Vt [si(t)], and not on the activity level within the network, that is Ei [si(t)] and
Vi [si(t)].

It is also evident, from this analysis, that a solution to the storage problem in the mean-field
limit N →∞ with a scaling w ∼ O(1/

√
N) corresponds to an L2-regularization, whereas

the scaling w ∼ O(1/N) corresponds to an L1-regularization.

A3.4 Theoretical solution for maximal SNR

As shown in Eq. 3.19, maximizing SNR is achieved by maximizing Kq with q = 2. This,
in turn, can be done by solving Eq. A3.5. At optimality, the relationship between maximal
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SNR and storage load α has been derived by Gardner (1988) and is given by

α(m,κ) =
1

2

12(1 +m)
∞∫

vm−κ√
1−m2

D(x)

(
κ− vm√
1−m2

+ x

)2
dx

+ 1
2(1−m)

∞∫
−vm−κ√
1−m2

D(x)

(
κ+ vm√
1−m2

+ x

)2
dx


−1 (A3.23)

where v is given by the solution to the equation

1
2(1 +m)

∞∫
vm−κ√
1−m2

D(x)

(
κ− vm√
1−m2

+ x

)
dx

= 1
2(1−m)

∞∫
−vm−κ√
1−m2

D(x)

(
κ+ vm√
1−m2

+ x

)
dx

(A3.24)

and where D is the standard normal distribution

D(x) =
exp(−12x

2)
√
2π

. (A3.25)

The pattern magnetization m is related to the activity level f according to

f =
1 +m

2
. (A3.26)

while κ is linked to the SNR according to

SNR =
κ

2
√
f (1− f )

(A3.27)

since the solution is derived for ∥w∥22 = 1. The maximal capacity αc is obtained by solving
Eq. A3.23 with κ = 0. Note that Eqs. A3.23 and A3.27 have both been adjusted with a
factor 12 to account for the fact that we allow only non-negative weights and use patterns
with values 0 or 1, while the original solution was derived for unconstrained weights and
patterns with ±1.

Balanced patterns: In the specific case of balanced patterns (f = 0.5), Eq. A3.23 reduces
to

α(κ) =
1

2

 ∞∫
−κ

D(x)(κ+ x)2 dx

−1 . (A3.28)

For synchronous state updates, the largest tolerable noise level can be written in terms
of the smallest acceptable overlap mmin of the distorted pattern with the original pattern,



Optimal consolidation and pruning 81

according to

pmax(κ) =
1−mmin(κ)

4
. (A3.29)

The smallest acceptable overlap has been derived by Kepler & Abbott (1988) and is
determined by the solution to the equation

mmin(κ) = 2

∞∫
κ

D(x) erf

 x ·mmin√
2(1−m2min)

 dx
+

[
1 + erf

(
κ√
2

)]
erf

 κ ·mmin√
2(1−m2min)

− 1 .
(A3.30)

A3.5 Theoretical solution for maximal pruning

In order to obtain the solution for the lowest possible weight density ρmin, we first define
the more general problem of finding the set of weights that maximize SNR under a fixed
weight density ρ. We do this by adding an additional constraint to Eq. A3.5 with q = 2,
thus yielding

w∗ = argmax
w

M s. t. ∆Imin ≥ κ

∥w∥0 = ρN
∥w∥2 , κ , and ρ const.

(A3.31)

In the case of balanced patterns, this problem has been solved by Bouten et al. (1990).
Analogously to Eq. A3.5, the solution is now described by the storage load as a function of
κ and ρ according to

α(κ, ρ) =
2ρ+ 2√

π
erfc−1(2ρ) · exp

[
− erfc−1(2ρ)2

]
2
∞∫
−κ
D(x)(κ+ x)2 dx

(A3.32)

where both α and ρ have been adjusted with a factor 12 and 2 relative the original solution
to, once again, adjust for sign-constrained weights. Here, we rely on a simple symmetry
argument: The original solution always contains an equal number of positive and negative
weights. Intuitively, one can therefore expect that a sign-constraint would cause precisely
half of the weights to have the wrong sign and to be pruned in the new solution. This has,
indeed, been proven in the case of saturation (α = αc) by Yau (1992) and we conjecture
that the same result applies for all α.

The smallest possible weight density ρmin for each storage load is obtained by computing Eq.
A3.32 with κ = 0. The result can be inserted in Eq. 3.6 to obtain the maximal efficiency

Qmax = −
α

ρmin
[f log2(f ) + (1− f ) log2(1− f )] . (A3.33)

Note that the densest solution is equivalent to the unconstrained solution, since ρ = 0.5
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reduces Eq. A3.32 to Eq. A3.28.

A3.6 Theoretical solution for q=1

The analytical solution to Eq. A3.5 with q = 1 and arbitrary f was first derived by Brunel
et al. (2004). Here, however, we will use the formulation derived by Zhang et al. (2019).
The optimal weight density is given by

ρ = F1(x) (A3.34)

where x is obtained by finding the variables (x, v−, v+, σ) that solve the set of equations

F2(x) =

√
2

σ

F3(x) =
2K21N

σ2(v− + v+)2f (1− f )

f F1(v−) + (1− f )F1(v+)
f F2(v−) + (1− f )F2(v+)

=
−K21N√

2σx(v− + v+)f (1− f )

f F2(v−)− (1− f )F2(v+) = 0

v− + v+ > 0

σ > 0

(A3.35)

and where 
F1(x) =

1
2(1 + erf(x))

F2(x) =
1√
π
e−x

2

+ x(1 + erf(x))

F3(x) = F1(x) + xF2(x)

(A3.36)

The error margin K1 is linked to the storage load according to

α =
2K21N

σ2(v− + v+)2f (1− f )
f F3(v−) + (1− f )F3(v+)
(f F1(v−) + (1− f )F1(v+))2

. (A3.37)

A3.7 Learning rule for q=1 and fixed inhibition

In the specific case q = 1 (z = 2), our general learning rule, as described in discrete time in
Algorithm 1, reduces to:
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Algorithm 2 Sparse Optimal Perceptron (q=1)

for t = 0, 1, 2, . . . do
ξ⋆ ← argminξµ (2ξ

µ
i − 1)

(∑
j wi jξ

µ
j − Iinh,i

)
▷ tagging weakest pattern

ûi j ← ui j
(
1 + η(2ξ⋆i − 1)ξ⋆j

)
▷ Hebbian update

ui j ← ûi j/
∑
j û
2
i j ▷ weight normalization

wi j ← u2i j
Iinh,i ← Iinh,i − ηinh(2ξ⋆i − 1) ▷ inhibition update

end for

For very large networks (N →∞), the norm ∥w∥1 can be implicitly constrained by fixing the
inhibition Iinh,i , since this value sets the scale of the mean excitatory input current (Brunel,
2016). However, if the activity level f is very small, only a tiny fraction of all weights change
in each epoch, and a large number of epochs would consequently be required for ∥w∥1 to
converge to its appropriate value, if the network is initialized far from optimum.

The learning process can be sped up by implicitly changing the inhibition together with the
weights. This can be achieved as follows: After applying the inhibitory change ∆I(t)inh,i =
−ηinh(2ξ⋆i − 1) in the last line in Algorithm 2, we can shift the inhibition back to its original
value by scaling both I(t+1)inh,i and w (t+1) with the factor

1 + ηhet(2ξ
⋆
i − 1) =

I
(t)
inh,i

I
(t+1)
inh,i

=
I
(t)
inh,i

I
(t)
inh,i + ∆I

(t)
inh,i

(A3.38)

where ηhet is a small, positive constant. We combine this additional step with the Hebbian
update in Algorithm 2 and remove the weight normalization as well as the inhibition update,
and rename η to ηhom. The result is the sleep-based learning rule, expressed in algorithmic
terms in as:

Algorithm 3 Sparse Optimal Perceptron (q=1 and Iinh const.)

for t = 0, 1, 2, . . . do
ξ⋆ ← argminξµ (2ξ

µ
i − 1)

(∑
j wi jξ

µ
j − Iinh,i

)
▷ tagging weakest pattern

ui j ← ui j + ui j
(
ηhet + ηhomξ

⋆
j

)
(2ξ⋆i − 1) ▷ Hebbian update with cross-talk

wi j ← u2i j
end for

This implicitly allows Iinh,i and, by extension, ∥w∥1, to converge quickly to the optimal
value, even if f is small. Note that the weight update in Algorithm 3 also should include the
cross-term ηhetηhomξ⋆j ui j , but we omit this due to the fact that ηhetηhom is much smaller
than both ηhet and ηhom individually.
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A3.8 Simulation parameters

Table A3.1: Simulation parameters used to produce the results in Fig. 3.2.

Parameter z = 1 z = 2 z = 3 z = 4

η 10−4 5 · 10−3 7 · 10−3 7 · 10−3
ηinh 10−3 5 · 10−3 7 · 10−3 7 · 10−3
∥u∥22 10 20 50 100

Table A3.2: Simulation parameters used to pro-
duce the results in Figs. 3.5 and 3.6.

Parameter Value

ηhet 10

ηϵ 0.05

E[ϵ0,1] 0.1*

V[ϵ0,1] 1*

∥w∥qq 1000

τfast 1

τslow 30

Tsim 999

Tsample 3

dt 5 · 10−3
* The noise quantities ϵ0,1 are i.i.d. and drawn from a
normal distribution.

Table A3.3: Simulation parameters used to produce the results in Fig. 3.4.

Parameter Wake Sleep1

ηhet 1.582 (1 + 24 · [1− exp(−t/100)]) · 10−3
ηhom 0.0316 (2 + 48 · [1− exp(−t/100)]) · 10−3
ηinh 0.01 –
∥w∥1 100 –

1 Learning rates were increased gradually during sleep with a time constant of 100
epochs, where the epoch is denoted with t.
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A3.9 Synapse metadata

The following two tables contain details on the experimental data used to produce Figs. 3.5
and 3.6.

Table A3.4: Descriptions of the synapse datasets with short sampling intervals (∆t = 10min – 7 h),
ordered roughly by sample size.

Reference Setting ∆t Measure Condition Datapoints1 Weight (%)

Hazan & Ziv (2020)2,4 Rat Ctx
culture

1 h PSD95 FI
silent
ctrl

45 600 (43 890)
39 677 (43 016)

13.6 (12.3)
13.1 (14.3)

Hazan & Ziv (2020)3,4 Rat Ctx
culture

1 h PSD95 FI
silent
ctrl

44 498 (43 676)
39 631 (41 135)

10.6 (15.3)
15.8 (16.9)

Kaufman et al. (2012)
Rat Ctx
culture

30min PSD95 FI ctrl 25 847 (25 845) 25.0 (15.6)

Fisher-Lavie & Ziv (2013)
Mouse Ctx
culture

25min
PSD95 FI
Munc13 FI

ctrl
ctrl

9536 (10 347)
9545 (10 353)

5.8 (7.2)
5.8 (4.7)

Miyamoto et al. (2021)
Mouse MCtx
L2/3 PC
in vivo

7 h
GluA1 FI

SH FI

sleep
wake
sleep
wake

1039 (1270)
346 (405)
1107 (1202)
371 (380)

3.1 (3.9)
1.0 (1.0)
2.3 (2.7)
0.8 (0.7)

Ishii et al. (2018)
Mouse VCtx
L5 PC-ad
in vivo

10min SH FI
WT
Fmr1-KO

238 (237)
714 (719)

0.4 (0.4)
1.6 (2.4)

Wegner et al. (2022)
Mouse VCtx
L5 PC-ad
in vivo

30min
PSD95 area

SH area

EE
ctrl
EE
ctrl

169 (280)
105 (228)
237 (215)
161 (169)

0.3 (1.2)
0.1 (0.9)
0.4 (0.3)
0.2 (0.3)

Abbreviations: Ctx = cortex, ACtx = auditory cortex, BCtx = barrel cortex, MCtx = motor cortex, VCtx = visual
cortex, PC = pyramidal cell, ad = apical dendrite, FI = fluorescence intensity, SH = spine head, ctrl = control, WT =
wild-type, KO = knockout, EE = environmental enrichment.
1 This is the total number of (ŵ ,∆ŵ)-pairs. It is determined both by the number of imaged synapses and the number
of imaging sessions. Values outside parenthesis refer to potentiation (∆ŵ > 0) while those inside refer to depression
(∆ŵ < 0).
2 Smoothened data. See original publication for details.
3 Raw (non-smoothened) data.
4 Weights for smoothened and raw data have been halfed to avoid counting the same data twice.

Table A3.5: Descriptions of the synapse datasets with long sampling intervals (∆t ≥ 48 h), ordered
roughly by sample size. Abbreviations and notation as in Table A3.4.

Reference Setting ∆t Measure Condition Datapoints Weight (%)

Gala et al. (2017)1
Mouse BCtx
L2/3/5
in vivo

96 h Bouton FI ctrl 12 829 (12 773) 72.0 (57.3)

Loewenstein et al. (2011)
Mouse ACtx
L5 PC-ad
in vivo

96 h SH FI ctrl 2459 (2552) 16.5 (31.3)

Ishii et al. (2018)
Mouse VCtx
L5 PC-ad
in vivo

48 h SH FI
WT
Fmr1-KO

350 (404)
417 (461)

4.7 (4.2)
6.0 (6.4)

Steffens et al. (2021)
Mouse MCtx
L5 PC-ad
in vivo

72-96 h SH area ctrl 168 (244) 0.8 (0.8)

1 We included only measurements for which the bouton detection probability was >90%.
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A3.10 Supplementary figures

Figure A3.1: Recall testing in optimal attractor networks. (a) The fraction of memories that can be
successfully retrieved, as a function of balanced and isotropic input noise, for pattern activity levels
f = 0.5 (blues), f = 0.1 (greens), f = 0.05 (oranges), and f = 0.03 (reds). Crosses indicate the
50% capacity level. (b) Error rate after one synchronous update, as a function of input noise.
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Figure A3.2: Additional properties of optimal attractor networks. (a) The highest tolerable noise
level. (b) The distribution of weights. Although it is difficult to produce sparse solutions in the case
z = 1 (darkest lines) due to additive weight updates and a fixed learning rate, we estimated the
sparsity of the solution using the cutoff 10−4 (dashed vertical line).
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Figure A3.3: The efficiency, averaged over all storage loads and distortion levels with isotropic noise
(mean ± SD). This is highest at either z=2 or 3.
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Figure A3.4: Simulated synaptic volatility. Each panel corresponds to a simulation of 1000 synapses
governed by the stochastic process in Eq. 3.8 with different z (color legend can be found in Fig.
3.5a). The sampling time is scaled relative the characteristic time constant of the synapses to
represent 30min of biological time. The dark lines produced by the moving average follow power-laws,
where the exponent (slope) increases with z (left to right panel).
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State update

“Decoder”

W, Iinh
Noise

p = 0.5f

Figure A3.5: The effect of different noise models. (a) Illustration of the idea of how pattern retrieval
from a noisy initialization can be seen a error-correction of a message communicated through a noisy
channel. (b) Demonstration of the effect of balanced and isotropic noise on a binary pattern.
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Figure A3.6: Theoretical and numerical storage optimization. In theoretical calculations of optimal
storage, the load is maximized, with the margin considered fixed. In numerical optimization, the
margin is instead maximized, with the load considered fixed. This is demonstrated both for K2 (left)
and K1 (right).
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Figure A3.7: The effect of tripartite weights on the optimization landscape. (a) The landscape of
the objective function F (w) = −1.5(w1 − 0.55)2 − (w2 − 1.4)2 together with the minima, subject
to certain weight constraints. (b) One step of projected gradient ascent. (c) The landscape of
the objective function F (u3) = −1.5(u31 − 0.55)2 − (u32 − 1.4)2. (d) The downscaling imposed on
weights during gradient descent with different forms of regularization, both without variable change
(left) and with variable change to u (right).
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L2-margin L∞-margin

w 2

𝜉i = 0

𝜉i = 1

𝜉i = 0

𝜉i = 1
w1

w 2

w1

q=2 q=1

Figure A3.8: Geometrical explanation of Kq=1 maximization. (a) Maximization of K2 corresponds
to maximization of the L2-margin. (b) Maximization of K1 corresponds to a maximization of the
L∞-margin (Mangasarian, 1999; Rosset et al., 2003).
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Figure A3.9: Control models for SNR maximization. (a) Comparison, in terms of closeness to
SNRmax, between our consolidation model (z = 1, red line), a learning rule where patterns are
updated in random order (orange line), and the normalized gradient descent algorithm for the
exponential loss (Nacson et al., 2019), which does not require a tagging mechanism (blue lines). All
algorithms use binary patterns, non-negative weights, and weight normalization. (b) The plasticity
rules corresponding to each of the consolidation algorithms.
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Chapter 4

Conclusion

Recurrent attractor neural networks are today the preferred mathematical tools for modeling
local cortical circuits and, in particular, long-term memory. These models have been
extensively studied for more than four decades, due to their intuitive accessibility and
analytical simplicity. In this thesis, we have used the attractor network framework as a
theoretical basis and starting point to answer a set of fundamental questions regarding
learning and memory formation in cortex.

First, we sought to quantify and mathematically formalize the concept of engram consoli-
dation in a neural network. Second, we asked how the process of synaptic pruning can be
framed as a mathematical problem, and if it, in turn, can be linked to consolidation. Provided
the definition of such a problem, our third question was whether or not a network can be
trained to find a solution using a biologically plausible learning rule. Finally, supposing that
the previous three questions can be answered, we asked if it is possible to use a learning rule
for consolidation and pruning to resolve some of the discrepancies between current models
of synaptic plasticity and the synaptic dynamics observed in recent experimental data.

The first question was treated in chapter 2, where we began by defining consolidation as the
maximization of the signal-to-noise ratio of an engram from the perspective of a single neuron.
The closed-form solution to this problem allowed us to compactly describe the structure
of optimally noise-robust hetero- and auto-associative memory networks. Importantly, we
demonstrated that this class of networks generalizes the famous memory models that we
previously referred to as first- and third-generation models, or 1/

√
N-models, such as the

different variants of the Hopfield network and the Kanerva network. This approach is
fundamentally different from the classical energy-based method, and offers a new, simple
perspective on optimal memory encoding, based on the idea of max-margin classification. It
also naturally incorporates a generalization of dendritic processing in the form of a kernel,
thus providing a direct link between storage capacity and neuron complexity.

In chapter 3, we provided an answer to the second question, by framing synaptic pruning as
a regularization, which is implicitly applied to the consolidation process by partitioning each
synapse and representing it as a product of sub-cellular components. This, in turn, allowed
us tackle our third question: we modified the problem of engram consolidation and derived a
learning rule that encodes memories in both a noise-robust and energy-efficient manner, using
a only a small fraction of all available synapses. More importantly, the learning rule offers
a consolidation-based explanation to the function of memory replay, homeostatic scaling,
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and weight-dependent synaptic plasticity, thus serving as a first step towards answering the
fourth and final question of the thesis.

A common thread throughout the results in this thesis has been the significance of neural
and synaptic complexity in learning. While the results in chapter 2 suggest that separate
dendritic compartments with active properties play an important role in enhancing the storage
capacity of cortical circuits, the findings in chapter 3 suggest that the intricate internal
machinery of synaptic connections can serve as a regularization mechanism, which forces
cortical connectivity to be sparse and energy efficient. Although the first conclusion already
has been proposed in past theoretical (Poirazi & Mel, 2001) and experimental studies (Gidon
et al., 2020), the second conclusion is, to the best of our knowledge, novel to the field of
neuroscience, despite being a well-established idea in statistics and machine learning (Hoff,
2017; Amid & Warmuth, 2020; Schwarz et al., 2021).

Our approach to modeling plasticity and consolidation has, at its core, relied on the
normative assumption that cortical anatomy and dynamics can, at least on an abstract level,
be understood in terms of an optimization process that seeks to solve specific cognitive
tasks (Richards et al., 2019). While this methodology requires a mathematical description
of cortical circuits that is heavily simplified, with one- or two-compartment neurons evolving
synchronously in discretized time, the aim of our work has been to disentangle and identify the
necessary mechanisms for efficient consolidation, and form a compact, general understanding
of this process that rests on as few axioms as possible.

There are mainly three directions in which our work can be directly continued. First,
the predictions formulated at the end of chapter 3, regarding sleep, spine dynamics, and
developmental pruning, offer an entry-point to experimentally test the validity of our theory.

Second, our model of structural plasticity makes no statement about the exact nature
of LTP- or LTD-induction in existing synapses, and can therefore be considered to be
complementary to models of functional plasticity. It should therefore be straightforward to
implement our plasticity rule as an added feature in existing large-scale computational models
with anatomically and biophysically detailed neurons, in order to evaluate our conclusions in
more realistic simulations of cortical plasticity (see, e.g., Chindemi et al., 2022).

Third, the generality of our method allows it to be directly applied to other cognitive tasks,
neuron types, or network architectures where one wishes to study the relationship between
function, connectivity, and energy-efficiency from an optimization-based perspective. In fact,
any neural network model, whether it is deterministic or probabilistic, is amenable to this
analysis, as long as the task at hand can be defined in terms of an objective function paired
with a regularization. Situations like this naturally arise, in the deterministic case, when
dealing with conventional constrained maximization or minimization problems, or, in the
case of probabilistic models, when performing variational Bayesian inference. This approach
can be particularly useful in settings that lack sufficient data or prior knowledge to build a
bottom-up model, and where top-down results can narrow down the model search space
and generate hypotheses that initiate the cycle of theorization and experimentation.
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The importance of understanding the link between sparse, parsimonious neural network
models on one hand, and cognitive ability or task performance on the other, has recently
been emphasized both in the neuroscience and the machine learning community. For machine
learning practitioners, the impressive achievements of modern deep learning applications
has come at the price of dramatically increased network sizes. Today, cutting-edge models
comprise billions of parameters, which require substantial amounts of data and computing
resources to be trained. This has generated an entire subfield of research into methods for
sparsifying deep networks and identifying more economical models with comparable levels of
performance (Hoefler et al., 2021).

For neuroscientists, understanding how the sparse, structured connectivity of neocortex
emerges, in terms of a small number of organizing principles or mathematical learning rules,
is considered a key goal of the field. An accurate description of the intrinsic and experience-
dependent dynamics of connections would not only offer valuable insight into cortical function
and the formation of cortical representations, but it would also establish a useful link between
the algorithmic and mechanistic components on the (microscopic) single-synapse level, and
the statistics of connectivity on the (mesoscopic) circuit level. This would be a crucial
first step towards understanding, for example, how numerous neuropsychiatric disorders,
such as schizophrenia, Alzheimer’s disease, autism spectrum disorder, bipolar disorder, and
depression cause abnormal structural plasticity patterns in development and adulthood, and
how this, ultimately, produces cognitive dysfunction (Cochran et al., 2014; Forrest et al.,
2018).
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