
Journal of Computational and Applied Mathematics 441 (2024) 115667

A
0
(

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

On the number of regions of piecewise linear neural networks✩

Alexis Goujon ∗, Arian Etemadi, Michael Unser
Biomedical Imaging Group, École polytechnique fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne, Switzerland

A R T I C L E I N F O

Keywords:
Deep learning
Expressivity
Activation functions
Continuous and piecewise-linear functions
Splines
Convex partitions

A B S T R A C T

Many feedforward neural networks (NNs) generate continuous and piecewise-linear (CPWL)
mappings. Specifically, they partition the input domain into regions on which the mapping
is affine. The number of these so-called linear regions offers a natural metric to characterize
the expressiveness of CPWL NNs. The precise determination of this quantity is often out of
reach in practice, and bounds have been proposed for specific architectures, including for
ReLU and Maxout NNs. In this work, we generalize these bounds to NNs with arbitrary and
possibly multivariate CPWL activation functions. We first provide upper and lower bounds on
the maximal number of linear regions of a CPWL NN given its depth, width, and the number
of linear regions of its activation functions. Our results rely on the combinatorial structure
of convex partitions and confirm the distinctive role of depth which, on its own, is able to
exponentially increase the number of regions. We then introduce a complementary stochastic
framework to estimate the average number of linear regions produced by a CPWL NN. Under
reasonable assumptions, the expected density of linear regions along any 1D path is bounded
by the product of depth, width, and a measure of activation complexity (up to a scaling factor).
This yields an identical role to the three sources of expressiveness: no exponential growth with
depth is observed anymore.

1. Introduction

The ability to train deep parametric models has enabled dramatic advances in a wide variety of fields, ranging from computer
vision to natural-language processing [1,2]. Many popular deep models belong to the family of feedforward neural networks (NNs),
for which the input–output mapping takes the form1

𝐱 ↦ (𝝈𝐿◦𝒇𝜽𝐿◦𝝈𝐿−1◦⋯◦𝝈2◦𝒇𝜽2◦𝝈1◦𝒇𝜽1 )(𝐱), (1)

where 𝐿 is the number of layers of the NN (referred to as the depth of the NN), 𝒇𝜽𝑘 ∶R
𝑑𝑘 → R𝑑𝑘+1 is an affine function parameterized

by 𝜽𝑘, and 𝝈𝑘 is a non-affine activation function. One of the most widespread activation functions in deep learning is the rectified
linear unit ReLU(𝑥) = max(𝑥, 0) [3–5]. With this choice, the mapping is a composition of continuous and piecewise-linear (CPWL)
functions, which yields a map that is CPWL too [6]. Remarkably, the reverse also holds true: any CPWL function R𝑑 → R can be
parameterized by a ReLU NN with at most ⌈log2(𝑑 + 1)⌉ hidden layers [7]. The family of NNs generating CPWL functions (referred
to as CPWL NNs in the sequel) is broad. It benefits from a large choice of effective activation functions that includes ReLU [5],
leaky ReLU [4], PReLU [8], CReLU [9], Maxout [10], linear splines [11,12], GroupSort [13], Householder [14] as well as other
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components such as convolutional layers, max- and average-pooling, skip connections [15], and batch normalization [16](once
the model is trained). While the depth of the architecture is instrumental to overcome the curse of dimensionality [17–19], it
concurrently deters our understanding of the parameterization when compared to simpler models [20].

The observation that a ReLU NN produces a CPWL function sheds light on its behavior. In effect, a ReLU NN partitions the
nput domain into affine regions [21,22]. The characteristics of the regions are therefore fundamental to grasp the structure of the
earnt mapping and there exist different approaches to define them [23,24]. The regions can be described as polyhedrons or union
f polyhedrons, which results from the continuity and the piecewise-affine property of the mapping. In the case of ReLU NNs, it
s common to define activation regions, which are sets of points that fire the same group of neurons. On each activation region,
he mapping is affine and these sets are convex [25]. Unfortunately, the linear regions in deep NNs are only indirectly specified.

hile they can be locally described [26] their global delimitation becomes computationally less and less tractable as the dimension
ncreases, which compromises the interpretability of deep NNs. Yet, it is entangled with their ability to overcome the curse of
imensionality.

The successive compositions inherent in deep models prevent us from attributing a specific role to each parameter. The size and
he expressiveness of the function space  generated by a given architecture  is consequently remotely connected to the number

of trainable parameters. With their remarkable structure, CPWL NNs benefit from another meaningful descriptor: the distribution
of counts of regions of all the mappings that the architecture can produce. Two approaches have been proposed to give a better
understanding of this descriptor.

• Upper and lower bound the maximum number of regions of the CPWL mappings generated by a given architecture. The first bounds,
given in [6], showed that the maximum number of regions that can be produced by ReLU NNs increases exponentially with
their depth. This revealed that deep models have the ability to generate much more complex functions than shallow ones
do. The bounds for ReLU NNs have since been refined, for example in [27] and then in [28], and also extended to other
NN architectures. For instance, [29] specifies bounds for the maximum number of regions of convolutional NNs (CNNs). It is
shown that CNNs produce more regions per parameter than fully connected NNs do. For Maxout NNs, bounds can be derived
directly from the ones on ReLU NNs [6,27]. However, this approach usually yields loose bounds, as recently shown in [30].
The derivation of sharp bounds for Maxout NNs, as proposed in [30], requires to take into account the specificities of the
Maxout unit, and it was handled via the use of tropical geometry.
The available bounds show that the maximum number of regions in ReLU and Maxout NNs increases exponentially with their
depth. It suggests that deep models have the ability to generate more complex functions than shallow ones do [6,7,27,28,30].

• Upper bound the average number of regions of the mappings generated by ReLU and Maxout NNs. The available bound for ReLU NNs
depends on the number of neurons, regardless of whether the NN is deep or wide, and depth does not produce exponentially
more regions on average [25,31]. In other words, this behavior drastically differs from the maximum number of regions. This
new perspective was then recently extended to Maxout NNs, with a similar qualitative conclusion [32].

The existing toolbox of CPWL NNs is broad and likely not complete yet, as hinted by recent works on the MaxMin or more
enerally GroupSort activation function, in the field of Lipschitz-constrained NNs [13,33], or with the Piecewise Linear Unit
PWLU) [34]. Previous studies on the count of linear regions have provided insights on some specific CPWL NNs only, mostly
eLU and Maxout NNs. Their qualitative outcomes turn out to hold true for CPWL NNs in general. We intend to prove this claim
ith quantitative results in this paper. We want to improve the understanding of the role of the three main ways to increase the
xpressiveness of CPWL NNs (Fig. 1), namely,

• depth, which is the number of composed CPWL functions;
• width, which relates the input and output dimensions of the composed CPWL layers;
• activation complexity, the rationale there being that the expressiveness of a CPWL NN can be heightened by increasing the

complexity of its activation functions. This strategy is used with both univariate and multivariate activation functions, and it
gave rise to deepspline, Maxout, GroupSort, and PWLU NNs for example. In the remainder of the paper, the complexity of an
activation will refer to its number of linear regions. For example, a rank-𝑘 Maxout unit has a complexity of 𝑘 (see Fig. 6 for
visual examples).

Our contributions are as follows.

(i) Generalization of the notion of arrangement of hyperplanes to arrangement of convex partitions with analogous tight bounds
on the number of regions.

(ii) Determination of precise bounds on the maximal number of linear convex regions generated by the primary operations of the
space of CPWL functions (sum, vectorization, and composition). The compositional upper and lower bound grow exponentially
with depth and polynomially with the width and the activation complexity.

(iii) Demonstration that, under reasonable assumptions, the expected number of regions along a 1D path for random CPWL NNs
is at most linear with the product of the depth, the width, and the activation complexity (up to an independent factor), which
yields equivalent roles to the three descriptors in terms of expressiveness.

The paper is organized as follows: In Section 2, we present the relevant mathematical concepts. In Section 3, we bound from below
and from above the maximal number of regions produced by CPWL NNs and, in Section 4, we present a stochastic framework to
quantify the average expressiveness of CPWL NNs with random parameters.
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Fig. 1. The three sources of complexity of CPWL NNs.

Fig. 2. An R2 → R CPWL function and its corresponding partition of the input space.

2. Mathematical preliminaries

2.1. CPWL functions

Definition 1. A function 𝒇 ∶R𝑑 → R𝑑′ is continuous and piecewise-linear (CPWL) if it is continuous and if there exists a set
{𝒇𝑘 ∶ 𝑘 ∈ {1,… , 𝐾}} of affine functions and closed subsets (𝛺𝑘)𝐾𝑘=1 of R𝑑 with nonempty and pairwise disjoint interiors such that
∪𝐾
𝑘=1𝛺𝑘 = R𝑑 and 𝒇

|𝛺𝑘
= 𝒇𝑘 on 𝛺𝑘. The 𝒇𝑘 are called the affine pieces of 𝒇 , and the 𝛺𝑘 the corresponding projection regions.

An example of a CPWL function and of its partition is given in Fig. 2. The 𝑘th component of a vector-valued CPWL function 𝒇𝓁 ,
which is necessarily CPWL as well, will be denoted by 𝑓𝓁,𝑘. The space of CPWL functions has the following remarkable properties:

• it is closed under compatible compositions;
• it is closed under compatible linear combinations;
• it is closed under compatible vectorization.

Since the function 𝐱 ↦ max(𝐱) = max(𝑥1,… , 𝑥𝑑 ) is CPWL (with 𝑑 regions), the space of CPWL functions is also closed under
max-pooling.

2.2. Regions of CPWL functions and convex partitions

The term linear region is frequently used in an ambiguous way and may refer to different mathematical definitions. In the sequel,
we shortly present some relevant definitions and discuss them in the context of CPWL NNs.
3
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Fig. 3. Convex and projection regions of the CPWL function (𝑥, 𝑦) ↦ ReLU(min(𝑥 + 1,−𝑥 + 1)).

2.2.1. Projection regions
We recall that a polyhedron is the intersection of finitely many half-spaces, and that a polytope is a bounded polyhedron. The

subsets 𝛺𝑘 in Definition 1 are commonly referred to as projection regions [23,24]. The affine pieces of different projection regions
are distinct and, since the overall function is continuous, the common points of two neighboring regions lie in a hyperplane. This
implies that the 𝛺𝑘 are polyhedrons or unions of polyhedrons. These projection regions might, however, not be connected (Fig. 3).

2.2.2. Convex regions
It is usually preferred to work with (connected) convex regions because of their simpler geometrical structure. We now precisely

define convex linear regions of CPWL functions.

Definition 2 (Convex Partitions of R𝑑 , Adapted From [35]). Let 𝑛 and 𝑑 be two positive integers. A convex partition of R𝑑 is a
collection 𝛱 = (𝑃1, 𝑃2,… , 𝑃𝑛) of convex and closed subsets of R𝑑 with nonempty and pairwise-disjoint interiors so that the union
⋃𝑛

𝑘=1 𝑃𝑘 = R𝑑 . Each of the sets 𝑃𝑘 is called a region of 𝛱 . Convex partitions with 𝑛 regions are called 𝑛-partitions.

Definition 3 (Linear Convex Partition). A convex partition 𝛱 of R𝑑 is said to be a linear convex partition of a CPWL function
𝒇 ∶R𝑑 → R𝑑′ if 𝒇 is affine on each region of 𝛱 .

The existence of a linear convex partition is guaranteed for any CPWL function but not its unicity. This motivates Definition 4,
which gives a precise meaning to the number of convex linear regions for CPWL functions.

Definition 4 (Number of Convex Linear Regions). The number 𝜅𝒇 of convex linear regions of 𝒇 is defined as the minimal cardinality
of all linear convex partitions of 𝒇 .

A special instance of the linear convex regions for scalar-valued CPWL functions are the uniquely-ordered regions. Each of these
regions has the same ordering of the values of the affine pieces 𝑓𝑘 of 𝑓 in all its points [24]. Uniquely-ordered regions are used to
build the lattice representation of a CPWL function [23] and are tightly connected to the GroupSort activation function [13].

2.2.3. Projection vs. convex linear regions
In the remainder of the paper we shall keep in mind the following connections between projection and convex linear regions.

• Projection regions can always be partitioned into convex regions so that any upper bound on the number of convex regions
also applies to the number of projection regions. Conversely, the number of convex regions can also be upper bounded by the
number of projection regions (Proposition 1).

• The majority of commonly used parameterizations have typically convex projection regions. The local parameterization with
hat basis functions produces simplicial linear splines whose natural regions are simplices [20] and, therefore, are convex. Other
known linear expansions, such as the generalized hinging-hyperplanes model [36], use nonlocal CPWL basis functions that
partition the input domain into convex regions. The generated function will produce projection regions that are convex for all
sets of parameters except for some specific values that are usually encountered with zero probability in a learning framework.
The convex regions are also naturally adapted to compositional models such as ReLU and Maxout NNs as explained it [31].

Proposition 1. Let 𝒇 ∶R𝑑 → R𝑑′ be a CPWL function with 𝜌 projection regions. The number 𝜅 of linear convex regions of 𝒇 is no larger
than the number of convex regions formed by the arrangement of 𝜌(𝜌 − 1)∕2 hyperplanes

𝜌 ≤ 𝜅 ≤

{

2𝜌(𝜌−1)∕2, 𝜌(𝜌 − 1)∕2 ≤ 𝑑
∑𝑑

𝑘=0
(𝜌(𝜌−1)∕2

𝑘

)

, otherwise.
(2)

The proof of Proposition 1 is given in Appendix A.
4
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2.2.4. Useful properties of convex partitions
We now give a series of lemmas on convex partitions that are used in the proofs of Section 3. The proofs are given in Appendix A.
For convenience, we extend the definition of convex partitions of R𝑑 to convex partitions of affine subspaces of R𝑑 . In particular,

a convex partition of an affine subspace 𝐸 of R𝑑 consists of convex and closed subsets of 𝐸 of dimension dim(𝐸) whose pairwise
intersection is of dimension smaller than dim(𝐸) and whose union is 𝐸.

Lemma 1 (Projection of a Convex Partition). Let 𝐸 be an affine subspace of R𝑑 and 𝛱 an 𝑛-partition of R𝑑 . Then, there exists a convex
partition 𝛱𝐸 of 𝐸 in R𝑑 with no more than 𝑛 regions such that, for 𝑃𝐸 ∈ 𝛱𝐸 , there is 𝑃 ∈ 𝛱 with 𝑃𝐸 ⊂ 𝑃 .

Lemma 2 (Preimage of a Convex Partition Under Affine Maps). Let 𝒇 ∶R𝑑 → R𝑑′ be an affine function and 𝛱 be an 𝑁-partition of the
affine space 𝒇 (R𝑑 ) in R𝑑′ . Then, 𝒇−1(𝛱) = {𝒇−1(𝑃 )∶𝑃 ∈ 𝛱} is an 𝑁-partition of R𝑑 .

Lemma 3. Let (𝒇𝓁)𝓁∈[𝐿] be a collection of affine functions with 𝒇𝓁 ∶ R𝑑𝓁 → R𝑑𝓁+1 . Then,

dim((𝒇𝐿◦⋯◦𝒇 1)(R𝑑1 )) ≤ min (𝑑1,… , 𝑑𝐿+1). (3)

2.3. Arrangement of convex partitions

The known results on the number of convex regions of ReLU NNs are built upon the theory of hyperplane arrangements. In
combinatorial geometry, an arrangement of hyperplanes refers to a set of hyperplanes. It is known that the number of connected
regions formed by an arrangement of 𝑁 hyperplanes in R𝑑 is at most ∑min(𝑑,𝑁)

𝑘=0
(𝑁
𝑘

)

[37]. This bound is reached when the hyperplanes
are in general position: any collection of 𝑘 of them intersect in a (𝑑 − 𝑘)-dimensional plane for 1 ≤ 𝑘 ≤ 𝑑 and have an empty
ntersection for 𝑘 > 𝑑. Although this positioning seems very specific, it is qualified as ‘‘general’’ because it almost surely happens
hen the hyperplanes are randomly generated (with a ‘‘reasonable’’ notion of randomness). When it comes to the study of generic
PWL NNs, the concept of arrangement of hyperplanes lacks precision since only a small fraction of all convex partitions can be
een as arrangement of hyperplanes. We thus introduce the notion of arrangement of convex partitions (Definition 5 and Fig. 4)
s a generalization, which will prove to be necessary to find the precise bounds given in Section 3. Note that, in the case of an
rrangement of 𝑁 hyperplanes, our terminology differs. Instead of considering the hyperplanes, we rather consider the 𝑁 2-partitions
hey form, which consist of pairs of closed half-spaces separated by the hyperplanes.

efinition 5 (Arrangement of Convex Partitions). Let (𝛱𝑘)𝑘∈[𝑁] be a collection of 𝑁 convex partitions, with 𝛱𝑘 = (𝑃 𝑘
1 ,… , 𝑃 𝑘

𝑛𝑘
),

or 𝑘 ∈ [𝑁]. The arrangement (𝛱1,… ,𝛱𝑁 ) of these partitions is the convex partition whose regions are the 𝐴𝑚1 ,…,𝑚𝑁
that have

onempty interiors, where

𝐴𝑚1 ,…,𝑚𝑁
=

𝑁
⋂

𝑘=1
𝑃 𝑘
𝑚𝑘
,

or (𝑚1,… , 𝑚𝑁 ) ∈ {1,… , 𝑛1} ×⋯ × {1,… , 𝑛𝑁}.

. Maximum number of regions produced by CPWL NNs

In this section, we characterize the largest number of regions that can be generated by simple operations with CPWL functions,
ncluding sums, vectorizations, and compositions. In particular, we strictly generalize the known upper and lower bounds on the
umber of regions of ReLU NNs [27] and Maxout NNs [30] to NNs activated by generic CPWL activation functions.

.1. Upper bound on the number of regions of arrangements

Operations with CPWL functions imply arrangement of convex partitions, either explicitly, for sums and vectorizations, or
mplicitly, for compositions. It is straightforward to see that an arrangement (𝛱1,… ,𝛱𝑁 ) of 𝑁 convex partitions 𝛱1,… ,𝛱𝑁 of
R𝑑 with 𝑛1,… , 𝑛𝑁 regions cannot yield more than 𝑛1𝑛2 ⋯ 𝑛𝑁 regions. This naive bound is a polynomial of degree 𝑁 in 𝑛1,… , 𝑛𝑁 . In
dimension 𝑑 = 1 one can, however, check that the bound is not sharp: the number of regions is no more than 1+(𝑛1−1)+⋯+(𝑛𝑁−1).
More generally, the number of regions of the arrangement is bounded by a polynomial in the cardinality of the partitions 𝑛1,… , 𝑛𝑁
of degree min(𝑑,𝑁) (Theorem 1), which highlights the role played by the dimension of the ambient space.

Theorem 1 (Arrangements’ Upper Bound). The maximum cardinality 𝛽𝑑 (𝑛1,… , 𝑛𝑁 ) of the arrangement (𝛱1,… ,𝛱𝑁 ) of 𝑁 convex
partitions 𝛱1,… ,𝛱𝑁 of R𝑑 with cardinality 𝑛1,… , 𝑛𝑁 is a polynomial in 𝑛1,… , 𝑛𝑁 of degree min(𝑑,𝑁). It is given by

𝛽𝑑 (𝑛1,… , 𝑛𝑁 ) = 1 +
min(𝑑,𝑁)
∑

𝑘=1

∑

1≤𝓁1<⋯<𝓁𝑘≤𝑁

𝑘
∏

𝑞=1
(𝑛𝓁𝑞 − 1). (4)

Moreover, this bound satisfies

𝛽𝑑 (𝑛1,… , 𝑛𝑁 ) =
∏𝑁

𝑘=1 𝑛𝑘, if 𝑁 ≤ 𝑑

𝛽𝑑 (𝑛 ,… , 𝑛 ) ≤
(

1 +
∑𝑁 (𝑛 − 1)

)𝑑
≤
(

∑𝑁 𝑛
)𝑑

, otherwise.
(5)
5

1 𝑁 𝑘=1 𝑘 𝑘=1 𝑘
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Fig. 4. Arrangement of two convex partitions of R2.

Fig. 5. Arrangement of two convex partitions with 3 regions each. While in 2D the maximal number of regions is 3 × 3 = 9, this cannot be reached in 1D, for
hich the maximum is 5.

The expression of the bound in Theorem 1 is based on a broad result of discrete geometry [38]. We then relied on Za-
lavsky’s Theorem [37] and Whitney’s formula to construct a specific arrangement of convex partitions for any set of parameters
, 𝑁, 𝑛1,… , 𝑛𝑁 ∈ N∖{0} that achieves the bound. The proof of Theorem 1 is given in Appendix A. We now discuss the result and its
mplications.

• Theorem 1 is a generalization of the hyperplane-arrangement bound. Indeed, let us consider the number of regions generated
by an arrangement of 𝑁 hyperplanes: each hyperplane defines a 2-partition of R𝑑 and the bound yields 𝛽𝑑 (2,… , 2) =
1 +

∑min(𝑑,𝑁)
𝑘=1

∑

1≤𝓁1<⋯<𝓁𝑘≤𝑁 1 = 1 +
∑min(𝑑,𝑁)

𝑘=1
(𝑁
𝑘

)

=
∑min(𝑑,𝑁)

𝑘=0
(𝑁
𝑘

)

, which is known to be exactly the number of convex regions
generated by an arrangement of 𝑁 hyperplanes in general position [37].

• The naive upper bound can be rewritten as ∏𝑁
𝑘=1 𝑛𝑘 =

∏𝑁
𝑘=1((𝑛𝑘 − 1) + 1) = 1 +

∑𝑁
𝑘=1

∑

1≤𝓁1<⋯<𝓁𝑘≤𝑁 (𝑛𝓁1 − 1)⋯ (𝑛𝓁𝑘 − 1). This
shows that when 𝑁 ≤ 𝑑, the naive bound is optimal. By contrast, when 𝑁 > 𝑑, the dimension enforces the existence of one
or more empty intersections between regions of different partitions. This is illustrated in Fig. 5 with a simple example.

• For partitions with the same number 𝑛 of regions, we introduce the simpler notation 𝛽𝑑𝑁 (𝑛) ∶= 𝛽𝑑 (𝑛,… , 𝑛) = 1 +
∑min(𝑑,𝑁)

𝑘=1
∑

1≤𝓁1<⋯<𝓁𝑘≤𝑁 (𝑛 − 1)𝑘 =
∑min(𝑑,𝑁)

𝑘=1
(𝑁
𝑘

)

(𝑛 − 1)𝑘 ≤ min(𝑛𝑁 , (1 +𝑁(𝑛 − 1))𝑑 ).
• The bound is reached when the partitions 𝛱𝑘 are made of the regions of the arrangement of (𝑛𝑘 − 1) distinct parallel

hyperplanes, where the hyperplanes are in general position when only one per partition is selected (more detailed in the
proof in Appendix A).
6
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Fig. 6. Partition and complexity of some CPWL components.

Remark 1. After the disclosure of our work on arXiv, we became aware of [30], which contains highly relevant results on the
complexity of Maxout NNs. From Theorem 1, we can directly recover the sharp bound on the number of regions of a shallow
Maxout NN recently given in [30, Theorem 3.7]. Regarding the converse, i.e. inferring Theorem 1 from [30, Theorem 3.7], we
believe that it could perhaps be done but it is not immediate. Indeed, [30, Theorem 3.7] is specific to convex partitions that are the
linear partitions of the maximum of affine functions, i.e. only specific CPWL functions. Note that the proofs in [30] rely on tropical
geometry, which gives an overall perspective very different from ours.

3.2. Single hidden-layer: Bound for the sum and vectorization operations

The sum and vectorization of CPWL functions both yield the same bound on the number of linear convex regions. We now give
a novel optimal bound in Proposition 2. The proof is given in Appendix A.

Proposition 2. Let 𝑓1,… , 𝑓𝑁 ∶R𝑑 → R be CPWL functions with 𝜅1,… , 𝜅𝑁 convex linear regions. The number of convex linear regions
of the sum (𝑓1 +⋯+𝑓𝑁 ) and of the vector-valued function (𝑓1,… , 𝑓𝑁 ) can be bounded by a polynomial in 𝜅1,… , 𝜅𝑁 of degree min(𝑑,𝑁),
namely

𝜅𝑓1+⋯+𝑓𝑁 ≤ 𝛽𝑑 (𝜅1,… , 𝜅𝑁 ), (6)

𝜅(𝑓1 ,…,𝑓𝑁 ) ≤ 𝛽𝑑 (𝜅1,… , 𝜅𝑁 ), (7)

and these bounds are sharp.

Remark 2. Bounds similar to the ones given in Proposition 2 have recently been derived for one hidden-layer Maxout NNs [30].
The latter work is a specific instance of our setting, in which the CPWL functions considered are the maximum of a finite set of
affine functions.

As an illustration of Proposition 2 and Theorem 1, we give some direct implications on the number of regions of some building
blocks of CPWL NNs before going deeper.

Ridge functions. Consider the ridge expansion 𝑓𝑅 ∶ 𝐱 ↦
∑𝑁

𝑘=1 𝜆𝑘ReLU(𝐰
𝑇
𝑘 𝐱 + 𝑏𝑘), where 𝐰𝑘 ∈ R𝑑 and 𝑏𝑘 ∈ R. The number 𝜅Ridge of

linear convex regions of 𝑓𝑅 is upper-bounded as

𝜅Ridge ≤ 𝛽𝑑𝑁 (2) =
min(𝑑,𝑁)
∑

𝑘=0

(

𝑁
𝑘

)

≤ min(2𝑁 , (𝑁 + 1)𝑑 ), (8)

and the bound is tight.

Max-pooling. The 𝑘th component of the max-pooling operation 𝒇mp ∶R𝑑 → R𝑑′ takes the form 𝒇𝑘
mp(𝑥1,… , 𝑥𝑑 ) = max𝑝∈𝐼𝑘 (𝑥𝑝), where

𝐼𝑘 is a set of chosen cardinality 𝑁 of ‘‘neighboring’’ coordinate indices. The number 𝜅mp of convex linear regions of the max-pooling
operation is upper-bounded as

𝜅mp ≤ 𝛽𝑑𝑑′ (𝑁) =
min(𝑑,𝑑′)
∑

(

𝑑′
)

(𝑁 − 1)𝑘. (9)
7

𝑘=0 𝑘
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Generalized Hinging Hyperplanes (GHH). Consider the GHH expansion R𝑑 → R 𝑓𝐺 =
∑𝑁

𝑘=1 𝜖𝑘 max(𝑓𝑘
1 ,… , 𝑓𝑘

𝑑+1), where 𝑓𝑘
𝑝 are affine

unctions and 𝜖𝑘 = ±1 [36]. The number 𝜅GHH of convex linear regions of 𝑓𝐺 is upper-bounded as

𝜅GHH ≤ 𝛽𝑑𝑁 (𝑑 + 1) =
min(𝑑,𝑁)
∑

𝑘=0

(

𝑁
𝑘

)

𝑑𝑘 ≤ min
(

(𝑑 + 1)𝑁 , (𝑁𝑑 + 1)𝑑
)

. (10)

roupSort layer. The sort operation takes as input a vector 𝐱 ∈ R𝑑 and simply sorts its components. For any permutation 𝜎 of
he set {1,… , 𝑑}, we define the uniquely-ordered region 𝑃𝜎 = {𝐱 ∈ R𝑑 ∶ 𝑥𝜎(1) ≤ ⋯ ≤ 𝑥𝜎(𝑑)}, where 𝑥𝑘 is the 𝑘th component of 𝐱.
hese regions are convex as intersections of half-spaces and the sort operation agrees on them with distinct affine functions, namely,
ermutations. We infer that the sort operation has exactly 𝑑! linear convex regions and the same number of projection regions.

The GroupSort activation was recently introduced and shown to be beneficial in the context of Lipschitz-constrained learn-
ng [13]. It generalizes the minmax and sort activations: it splits the pre-activation into a chosen number 𝑛𝑔 of groups of size 𝑔𝑠
with 𝑛𝑔𝑔𝑠 = 𝑑), sorts each pre-activation of each group in ascending order, and outputs the combined sorted groups. Each group
roduces 𝑔𝑠! linear convex regions which are invariant along the coordinates that are not in the group. We infer the number of
inear convex regions of the GroupSort activation to be 𝜅GS = (𝑔𝑠!)

𝑛𝑔 , which can be bounded as

(𝑔𝑠∕2)𝑑∕2 ≤ 𝜅GS ≤ (𝑔𝑔𝑠𝑠 )𝑛𝑔 = 𝑔𝑑𝑠 , (11)

here we have used the known inequalities (𝑛∕2)𝑛∕2 ≤ 𝑛! ≤ 𝑛𝑛. The bounds support the intuition that larger group sizes generate
ore regions than smaller ones. Note, however, that they simultaneously increase the computational complexity of the layer.

WLU. The PWLU [34] is a learnable CPWL activation function with control points placed on a grid and with fixed linear regions
namely simplices whose vertices are control points). In its 2D version, a PWLU 𝜑PWLU ∶R2 → R with 𝑀2 control points has 2(𝑀−1)2

inear regions that are triangles, see Fig. 6 for an illustration with 𝑀 = 4, and see [34, Figure 5] for a more generic representation
f PWLUs. Consider the one-hidden layer R𝑑 → R PWLU NN 𝑓PWLU(𝐱) =

∑𝑁
𝑘=1 𝜑

𝑘
PWLU(𝐖𝑘𝐱) with 2D PWLU activations 𝜑𝑘

PWLU with
2 control points and corresponding weight matrices 𝐖𝑘 ∈ R2×𝑑 . The number 𝜅PWLU of convex linear regions of this PWLU NN is

pper-bounded as

𝜅PWLU ≤ 𝛽𝑑𝑁
(

2(𝑀 − 1)2
)

=
min(𝑑,𝑁)
∑

𝑘=1

(

𝑁
𝑘

)

(2(𝑀 − 1)2 − 1)𝑘 (12)

≤ min((2(𝑀 − 1)2)𝑁 , (1 +𝑁(2(𝑀 − 1)2 − 1))𝑑 ) (13)

≤ min((2𝑀2)𝑁 , (1 +𝑁(2𝑀2))𝑑 ). (14)

ur framework also allows one to derive bounds for NNs activated with higher dimensional PWLUs, but we are not aware of their
se in practice.

.3. Multiple hidden-layers: Compositional bounds

The architecture of a CPWL NN R𝑑1 → R𝑑𝐿+1 is specified by its depth 𝐿, its layer dimensions (𝑑1,… , 𝑑𝐿+1), and its activation
omplexity 𝜅𝓁,𝑘 at each node (𝓁, 𝑘), which is naturally depicted by the number of linear convex regions of the 𝑘th component of the
th composed function (Fig. 6). Theorem 2 below yields precise bounds on the maximal number of convex linear regions of any
PWL NN. It is complemented by Corollary 1 which tackles the following question: given a CPWL NN with fixed input and output
imensions, how is the maximal number of regions related to depth, width, and activation complexities? Our results confirm and
eneralize the following qualitative intuitions:

• (i) depth can exponentially increase the complexity of the generated function;
• (ii) width and activation complexity, on the contrary, can only increase the number of linear convex regions of the generated

function polynomially;
• (iii) layers with small dimensions reduce the maximal number of regions produced by the NN, especially if they are located

toward the input of the NN. This bottleneck effect stems from the upper bound given in Theorem 1.

ote that (i) is well known and was first proven in [6], (ii) is in agreement with the recent results in [30] obtained for the particular
nstance of Maxout NNs, and (iii) was observed for ReLU NNs in [27,39].

heorem 2. The maximal number 𝜅max of convex linear regions of a CPWL NN with depth 𝐿, layer dimensions (𝑑1,… , 𝑑𝐿+1), and
ctivation complexities 𝜅𝓁,𝑘 for 𝑘 = 1,… , 𝑑𝓁+1 and 𝓁 = 1,… , 𝐿, is bounded as

𝐿
∏

𝓁=1
𝛼min(𝑑1 ,…,𝑑𝐿+1)(𝜅𝓁,1,… , 𝜅𝓁,𝑑𝓁+1 ) ≤ 𝜅max ≤

𝐿
∏

𝓁=1
𝛽min(𝑑1 ,…,𝑑𝓁 )(𝜅𝓁,1,… , 𝜅𝓁,𝑑𝓁+1 ), (15)

here 𝛽 ⋅(⋅) is the upper bound on the number of regions of an arrangement of convex partitions (Theorem 1) and where

𝛼min(𝑑1 ,…,𝑑𝐿+1)(𝜅𝓁,1,… , 𝜅𝓁,𝑑𝓁+1 ) = max
𝜏∈

min(𝑑1 ,…,𝑑𝐿+1)
∏ ∑

𝜅𝓁,𝑘. (16)
8

𝑑𝓁 𝑟=1 𝑘∈𝜏−1({𝑟})
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There, 𝑑𝓁 denotes the set of all mappings from {𝑘 ∈ N∶ 1 ≤ 𝑘 ≤ 𝑑𝓁+1} to {𝑘 ∈ N∶ 1 ≤ 𝑘 ≤ min(𝑑1,… , 𝑑𝐿+1)}, and 𝜏−1({𝑟}) denotes the
preimage of {𝑟} under 𝜏.

Corollary 1. The maximal number 𝜅max of convex linear regions of a CPWL NN with 𝐿 layers, layer dimensions (𝑑in,𝑊 ,… ,𝑊 , 𝑑out ),
with 𝑑in,𝑊 , 𝑑out ∈ N∖{0} and 𝑊 ≥ 𝑑in, where each component of the composed functions has 𝜅 linear convex regions is bounded as

(𝜅 ⌊𝑊 ∕𝑑∗⌋)𝐿𝑑
∗ ≤ 𝜅max ≤ (𝜅𝑊 )𝐿𝑑in , (17)

where 𝑑∗ = min(𝑑in, 𝑑out ).

Corollary 2. The bounds given in Theorem 2 and Corollary 1 also apply to the maximal number of projection regions of a CPWL NN
and, equivalently, to its maximal number of distinct affine pieces.

The proofs of Theorem 2 and of its corollaries can be found in Appendix A.4.

3.4. Application to some popular CPWL NNs

In the sequel, we consider the CPWL NN 𝒇𝐿◦⋯◦𝒇 1 where 𝒇𝓁 ∶R𝑑𝓁 → R𝑑𝓁+1 . We now apply Theorem 2 to bound the maximal
number of convex linear regions produced by the most popular architectures. Note that the lower bound given in Theorem 2 only
applies to CPWL NNs with pointwise activation functions. This includes ReLU and, more generally, deepspline NNs. The reason is
that the lower bound of Theorem 2 was found by building a deepspline NN.

ReLU/PReLU/Leaky ReLU NNs. In a ReLU NN, the 𝑘th component 𝑓𝓁,𝑘 of 𝒇𝓁 takes the form 𝑓𝓁,𝑘 ∶ 𝐱 ↦ ReLU(𝐰𝓁,𝑘𝐱 + 𝑏𝓁,𝑘) and has
two convex linear regions (half-spaces). Theorem 2 then yields

𝜅ReLU ≤
𝐿
∏

𝓁=1

min(𝑑1 ,…,𝑑𝓁 )
∑

𝑘=0

(

𝑑𝓁+1
𝑘

)

, (18)

which is the bound proposed in [6]. However, it is not the tightest upper bound known [27]. The reason is that the ReLU function
is only a very specific instance of 1D CPWL functions with 2 linear regions: the image of the half real line (−∞, 0] by the ReLU
function is only the singleton {0}. This reduces the apparent dimension of the problem for any region that would not fire all neurons.
This observation was exploited in [27] to get a better estimate. In that sense, (18) is better tailored to PReLU and Leaky ReLU NNs,
which have activations with two nonzero slope regions.

Deepspline NN. Deepspline NNs have learnable pointwise 1D CPWL activation functions [11,12,40]. Given activation functions with
(𝜅 − 1) knots (at most 𝜅 linear convex regions), the number of linear convex regions of the NN is bounded as

𝜅Deepspline ≤
𝐿
∏

𝓁=1

min(𝑑1 ,…,𝑑𝓁 )
∑

𝑘=0

(

𝑑𝓁+1
𝑘

)

(𝜅 − 1)𝑘. (19)

Maxout NN. In a Maxout NN with 𝜅 units, the 𝑘th component 𝑓𝑘
𝓁 of 𝒇𝓁 takes the form 𝑓𝑘

𝓁 ∶ 𝐱 ↦ max(ℎ1𝓁,𝑘,… , ℎ𝜅𝓁,𝑘), where ℎ1𝓁,𝑘,… , ℎ𝜅𝓁,𝑘
are learnable affine functions [10]. Theorem 2 yields that

𝜅Maxout ≤
𝐿
∏

𝓁=1

min(𝑑1 ,…,𝑑𝓁 )
∑

𝑘=0

(

𝑑𝓁+1
𝑘

)

(𝜅 − 1)𝑘. (20)

This bound is an improvement over [27]. In their work they plug 𝑑𝓁 = 𝑑 for 𝓁 = 1,… , 𝐿 and obtain the bound 2
𝜅(𝜅−1)

2 𝑑𝐿, to be
compared to 𝜅𝑑𝐿 for (20).

GroupSort NNs. To bound the number of linear convex regions of a GroupSort NN [13] with the same group size 𝑔𝑠 in each layer,
we consider for each composition the arrangement of 𝑑𝓁+1∕𝑔𝑠 convex partitions (one per group) with 𝑔𝑠! regions each and obtain
hat

𝜅GroupSort ≤
𝐿
∏

𝓁=1

min(𝑑1 ,…,𝑑𝓁 )
∑

𝑘=0

(

𝑑∕𝑔𝑠
𝑘

)

(𝑔𝑠! − 1)𝑘. (21)

These bounds provide an intuition of the role of the hyperparameters of CPWL NNs in terms of expressiveness. For instance, the
number of units in Maxout NNs plays a role in the bound that is analogous to that of the number of knots of the activation
functions in deepspline NNs. However, these two architectures do not induce the same implementation complexity. To increase
the activation complexity by one unit, Maxout requires the inclusion of an additional learnable multidimensional affine function,
whereas deepspline simply requires the insertion of one more knot to a 1D CPWL function.

While it is tempting to compare architectures on the sole basis of their expressiveness, it can be very delicate to draw generic
practical conclusions from this comparison. The final choice of an architecture is guided by a tradeoff between expressiveness,
computation complexity, memory usage, and ability to learn over the functional space. For instance, an increase in the group size
of a GroupSort activation function increases the expressiveness with no additional parameters, but usually small group sizes are
9

favored to keep the computational impact limited.
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Fig. 7. Linear region-splitting process for a CPWL NN with absolute-value activation function and randomly generated parameters. The figure shows the linear
regions of the mapping after 𝑘 activation layers, for 𝑘 = 0,… , 9. From one layer to the next, the regions are partitioned into smaller pieces. The number of
linear regions is indicated in parentheses and suggests that the splitting process saturates with depth. The regions were numerically identified by evaluating the
Jacobian of the mapping on a very fine grid.

4. Expected number of regions produced by CPWL NNs along 1D paths

In Section 3, we found that depth increases the expressiveness of the model exponentially when the corresponding metric is the
maximal number of regions. However, the compositions that achieve the lower bound of Theorem 2 could be very specific and hard
to reach in practice.

The composition (𝒇 2◦𝒇 1) of two CPWL functions results in the partitioning of each linear region of 𝒇 1 into smaller linear pieces.
The successive compositions (𝒇𝓁◦⋯◦𝒇 1) have regions that are obtained from splitting of the regions of the previous compositions
(Fig. 7). As such, we expect the image of each region of the composition to shrink when depth increases, at least for compositions
with reasonable gradients magnitude (∼1). The extent of the split should therefore depend on the depth of the composition. The
more there are regions produced by the first compositions, the fewer splits each region will undergo after the next compositions.
This intuition rules out an exponential growth of the average number of regions with 𝓁. This effect has already been revealed for
ReLU NNs in [25] and recently extended to Maxout NNs in [32]. We now aim to prove that it is universal to NNs with any type of
CPWL activations under reasonable assumptions.

Throughout this section, we consider CPWL functions 𝒇𝜽 parameterized by random parameters 𝜽. We shall specify the
parameterization and characteristics of the underlying stochastic model whenever needed. The natural extension of Section 3 is
to estimate the expected number of regions of compositions of randomly generated CPWL functions. This task seems unfortunately
very complex as it mixes stochasticity and combinatorial geometry. It would involve an overly heavy framework with the risk to
lose focus on the high-level intuition. Instead, we propose a simpler but closely related metric: the expected density of regions along
1D paths. This quantity is valuable in practice since it gives the expected number of linear regions that are found in-between two
locations of the input space that are 1 unit distance apart. In addition, the inverse of the density gives a rough measure of the
average size of a linear region along one direction.

4.1. Knot density

The characterization of the density of linear regions of CPWL NNs along one-dimensional paths requires the introduction of some
mathematical concepts.
10
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Fig. 8. Example of a 1D CPWL path 𝜸 ∶R → R2. The value of the characteristic function 𝝋𝜸
𝒇 along 𝜸 is given as a 4D vector and allow one to identify the 3

knots along 𝜸.

1D CPWL path. 1D CPWL path denotes in the sequel any CPWL mapping 𝜸 ∶𝑆 → R𝑑 on a closed segment 𝑆 = [𝑎, 𝑏] (𝑎, 𝑏 ∈ R) with
finitely many knots. This path will serve to ‘‘navigate’’ within the input domain of CPWL NNs for counting the linear regions. The
length of 𝜸 is computed as Len(𝜸) ∶= ∫𝑡∈𝑆 ‖

d𝜸
d𝑡 ‖2d𝑡. Note that 𝜸 is a parameterization of what is often referred to as a polygonal chain.

n this Section we only study the density of linear regions along CPWL paths because of their simplicity and connections with CPWL
Ns, e.g. the composition of a CPWL path and a CPWL NN is again a CPWL path. This choice is, however, not very restrictive since
PWL paths can approximate any continuous path arbitrarily close.

not density along a path. Given a 1D CPWL path, the goal is to characterize the complexity of a CPWL NN along it. Informally,
he number of knots of a CPWL NN along the path is the number of times the path crosses regions. This intuitive definition is
nfortunately not sufficiently precise since it does not specify how to count knots when some nonzero-length portion of the path
is contained in a face of a linear region, see in Fig. 8 for an example. To avoid any ambiguity, we introduce the characteristic

unction

𝝋𝜸
𝒇 ∶R → R𝐾 (22)

𝑡 ↦ (1𝛺1
(𝜸(𝑡)),… ,1𝛺𝐾

(𝜸(𝑡))) (23)

of a CPWL 𝒇 along 𝜸, where the sets 𝛺𝑘 are the projection regions of 𝒇 and 1𝛺𝑘
(𝛾(𝑡)) = 1 if 𝜸(𝑡) ∈ 𝛺𝑘 and 1𝛺𝑘

(𝛾(𝑡)) = 0 otherwise.
Since 𝜸 is continuous with finitely many knots, and since the projection regions are unions of polyhedrons, 𝜑𝜸

𝒇 is a binary function
with finitely many jumps, see Fig. 8. Note that 𝝋𝜸

𝒇 uniquely identifies the supporting affine function active at location 𝜸(𝑡). Hence,
in practice, the knowledge of 𝒇 (𝜸(𝑡)) and ∇𝒇 (𝜸(𝑡)), which is computable in any deep-learning library, suffice to identify 𝜑𝜸

𝒇 (𝑡).

Definition 6 (Knot Density Along 1D CPWL Curves). Let 𝒇 ∶ R𝑑 → R𝑑′ be a CPWL function, 𝜸 a 1D CPWL path, and 𝝋𝜸
𝒇

the characteristic function of 𝒇 along 𝜸. The number kt𝜸𝒇 of knots of 𝒇 along 𝜸 is the number of discontinuous points of the
piecewise-constant function 𝜑𝜸

𝒇 . The knot density 𝜆𝜸𝒇 of 𝒇 along 𝜸 is defined as

𝜆𝜸𝒇 = kt𝜸𝒇∕Len(𝜸), (24)

where Len(𝜸) is the length of 𝜸.

We stress that alternative definitions of the knot density that correspond to the same informal intuition are possible, but they
ould differ when the path 𝜸 follows the boundaries of some projection regions. In the sequel, this will not matter since, in any

reasonable stochastic framework, the path does not follow some boundaries almost surely.
The knot density along a path is subadditive for the sum and vectorization of CPWL functions, and can be bounded for the

composition of CPWL functions, see Propositions 3 and 4 and Appendix B for the corresponding proofs.

Proposition 3. Let 𝜸 ∶𝑆 → R𝑑 be a 1D CPWL path on the segment 𝑆 ⊂ R and let 𝒇 1 ∶R𝑑 → R𝑑′ and 𝒇 2 ∶R𝑑 → R𝑑′ be two CPWL
unctions. The knot density along 𝜸 of either the sum 𝒇 1 + 𝒇 2 or of the vectorized function (𝒇 1,𝒇 2) is bounded as

𝜆𝜸𝒇1+𝒇2
≤ 𝜆𝜸𝒇1

+ 𝜆𝜸𝒇2
, (25)

𝜆𝜸(𝒇1 ,𝒇2)
≤ 𝜆𝜸𝒇1

+ 𝜆𝜸𝒇2
, (26)

here 𝜆𝜸 and 𝜆𝜸 are the knot density of 𝒇 and 𝒇 along 𝜸, respectively.
11
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Proposition 4. Let 𝜸 ∶𝑆 → R𝑑1 be a 1D CPWL path on 𝑆 ⊂ R and let 𝒇 1 ∶R𝑑1 → R𝑑2 and 𝒇 2 ∶R𝑑1 → R𝑑2 be two CPWL functions.
Then, the knot density of 𝒇 2◦𝒇 1 on 𝜸 is bounded as

𝜆𝜸𝒇2◦𝒇1
≤ 𝜆𝜸𝒇1

+
(

Len(𝒇 1◦𝜸)
Len(𝜸)

)

𝜆𝒇1◦𝜸
𝒇2

, (27)

here 𝜆𝜸1 is the knot density of 𝒇 1 along 𝜸 and 𝜆𝜸2 the one of 𝒇 2 along 𝒇 1◦𝜸.

4.2. Knot density of CPWL layers

The goal of this subsection is to show that the knot density is well behaved for classical CPWL NN layers, which justifies the
assumption (𝑖) of Theorem 3 and Corollary 3. The proofs can be found in Appendix C.

roposition 5 (Knot Density - ReLU). Let (𝒘, 𝑏) ∈ R𝑑 ×R be independent random variables with bounded probability density functions 𝜌𝑏
or b and 𝜌𝑤 for the components of 𝒘, which are i.i.d. Then, the expected knot density of the ReLU CPWL component 𝐱 ↦ ReLU(𝒘𝑇 𝐱 + 𝑏)
long any 1D CPWL path 𝜸 is bounded as

E
[

𝜆𝜸ReLU
]

≤
√

E[𝑤2
1] sup𝑡∈R

𝜌𝑏(𝑡). (28)

In particular, when 𝑏 and the components of 𝒘 are normally distributed with zero mean and standard deviation 𝜎𝑏 and 𝜎𝑤, respectively, the
following tighter bound holds true

E
[

𝜆𝜸ReLU
]

≤
𝜎𝑤
𝜋𝜎𝑏

. (29)

When the ReLU activation function is replaced by a 1D CPWL function with a given number 𝐾 of knots, we conjecture that the
ounds can simply be multiplied by 𝐾.

roposition 6 (Knot Density - Maxout). Let ((𝑤𝑘1,… , 𝑤𝑘𝑑 ), 𝑏𝑘) ∈ R𝑑 ×R for 𝑘 = 1,… , 𝐾 be independent random variables with bounded
probability density functions 𝜌𝑏 for any 𝑏𝑘 and 𝜌𝑤 for all components 𝑤𝑘𝑙 of 𝒘𝑘, which are i.i.d. over both 𝑘 ∈ [𝐾] and 𝑙 ∈ [𝑑]. Then, the
expected knot density of the rank 𝐾 Maxout unit 𝑓 ∶ 𝐱 ↦ max𝑘=1,…,𝐾 (𝒘𝑇

𝑘 𝐱 + 𝑏𝑘) along any 1D CPWL path 𝜸 is bounded as

E
[

𝜆𝜸Maxout
]

≤
√

2
(

𝐾
2

)

𝜎𝑤 sup
𝑡∈R

𝜌𝑏(𝑡), (30)

where 𝜎𝑤 is the standard deviation of any 𝑤𝑘𝑙. In particular, when 𝑏𝑘 and 𝑤𝑘𝑙 are normally distributed with zero mean and standard
deviation 𝜎𝑏 and 𝜎𝑤, respectively, a tighter bound holds true, according to

E
[

𝜆𝜸Maxout
]

≤
√

2
(

𝐾
2

)

𝜎𝑤
𝜋𝜎𝑏

. (31)

The bounds provided in Proposition 6 grow quadratically in terms of the number of Maxout units; we conjecture the existence
of a tighter linear bound.

Proposition 7 (Knot Density - Groupsort). Let (𝒘𝑘, 𝑏𝑘) be as in Proposition 6. Then, the expected knot density 𝜆𝜸𝒇 of the GroupSort layer
𝒇 ∶R𝑑 → R𝑑 ∶ 𝐱 ↦ GS𝑛𝑔 ,𝑔𝑠 (𝑾 𝐱), where GS𝑛𝑔 ,𝑔𝑠 is the GroupSort activation with 𝑛𝑔 groups of size 𝑔𝑠, is bounded along any 1D CPWL path
𝜸 as

E
[

𝜆𝜸GroupSort
]

≤
√

2
2

𝑑(𝑔𝑠 − 1)𝜎𝑤 sup
𝑡∈R

𝜌𝑏(𝑡), (32)

where 𝜎𝑤 is the standard deviation of any 𝑤𝑘,𝑙. In particular, when 𝑏𝑘 and 𝑤𝑘𝑙 are normally distributed with zero mean and standard
deviation 𝜎𝑏 and 𝜎𝑤, respectively, a tighter bound can be given as

E
[

𝜆𝜸GroupSort
]

≤
√

2
2

𝑑(𝑔𝑠 − 1)
𝜎𝑤
𝜋𝜎𝑏

. (33)

For ReLU and Maxout layers with multidimensional outputs, the bounds given in Propositions 5 and 6 are simply multiplied by
the output dimension (see Proposition 3). We note that all bounds proposed take the form (𝜅𝑊 𝜎𝑤 sup𝑡∈R 𝜌𝑏(𝑡)), where the prefactor
𝜅 only depends on the activation function and 𝑊 is the number of outputs of the layer. The learnable parameters are typically
initialized by sampling a uniform or normal distribution with the same characteristics for the biases and the weights of a same layer.
In this case, although the characteristics of the distribution usually depend on the input and output dimensions of the layer [8], the
quantity 𝜎𝑤 sup𝑡∈R 𝜌𝑏(𝑡) is determined only by the distribution: normal or uniform (since, for these distributions, the supremum of
the probability density function is proportional to the standard deviation). All in all, it should be reminded that

• the expected knot density is well defined for learnable CPWL layers;
• with standard initialization methods, it is reasonable to assume that the expected knot density of the components of a CPWL

layer depends neither on its width nor on the total depth of the NN (at least at initialization stage).
12
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It is tempting to take advantage of the previous results to adjust the distributions of the weights and biases at initialization in the
hope to increase the upper bound and, possibly, the knot density of a NN. The effect is, however, subtle: for instance, if one narrows
the distribution of the biases, the bound increases as sup𝑡∈R 𝜌𝑏(𝑡) increases. While this may increase the average knot density at some
pecific locations, it will inevitably decrease it elsewhere.

.3. Bounds on the expected knot density of CPWL NNs

In Theorem 3 and Corollary 3, we introduce two different settings to bound the expected knot density of CPWL NNs. Theorem 3
ighlights the role played by the gradients of the composed layers: larger gradients allow for a more intense splitting process within
he composition and should lead to a greater knot density. With Corollary 3, we propose a more practical analysis: given a learning
ask that dictates the input and output dimensions, how does the expected density of linear regions along 1D curves relate to the
epth, width, and activation complexity of the CPWL NN? In accordance with the intuition given in Fig. 7, depth cannot provide
xponentially more linear regions on average. This key result relies mainly on the assumption (𝑖𝑖), which is discussed in Section 4.3.1.

The directional derivative of the function 𝒇 in the direction 𝐮 is denoted by 𝐷𝐮{𝒇}, and the proofs of the results proposed in
his section can be found in Appendix D.

heorem 3. Let 𝒇𝜽1 ,… ,𝒇𝜽𝐿 , with 𝒇𝜽𝓁 ∶R
𝑊 → R𝑊 , be CPWL functions parameterized by the independent and identically distributed

andom variables 𝜽1,… ,𝜽𝐿. Suppose that there exist 𝜆0, 𝐷0 ∈ R such that

(i) for any 1D CPWL path 𝜸, E[𝜆𝜸𝑓𝜽𝓁 ,𝑘
] ≤ 𝜆0, where 𝑓𝜽𝓁 ,𝑘 is the 𝑘th component of 𝒇𝜽𝓁 (bounded expected knot density of the components);

(ii) for any 𝐱,𝐮 ∈ R𝑊 with ‖𝐮‖2 = 1, E[𝐷𝐮{𝒇𝜽}(𝐱)] ≤ 𝐷0 (bounded expected directional derivative).

hen, on any 1D CPWL path 𝜸, the expected knot density of the CPWL NN is bounded as

E[𝜆𝜸𝒇𝜽𝐿 ◦⋯◦𝒇𝜽1
] ≤

⎧

⎪

⎨

⎪

⎩

𝜆0 𝑊
(

1−𝐷𝐿
0

1−𝐷0

)

, 𝐷0 ≠ 1

𝜆0 𝑊𝐿, 𝐷0 = 1.
(34)

Corollary 3. Let 𝒇𝜽1 ,… ,𝒇𝜽𝐿 , with 𝒇𝜽𝓁 ∶R
𝑑𝓁 → R𝑑𝓁+1 , be CPWL functions parameterized by the independent and identically distributed

andom variables 𝜽1,… ,𝜽𝐿 and 𝑑2 = ⋯ = 𝑑𝐿 = 𝑊 > 𝑑𝐿+1. Suppose that there exist 𝜆0, 𝐷0 ∈ R such that

(i) for any 1D CPWL path 𝜸, E[𝜆𝜸𝑓𝜽𝓁 ,𝑘
] ≤ 𝜆0, where 𝑓𝜽𝓁 ,𝑘 is the 𝑘th component of 𝒇𝜽𝓁 (bounded expected knot density of the components),

(ii) for any 𝐱,𝐮 ∈ R𝑑 with ‖𝐮‖2 = 1, E[𝐷𝐮{𝒇𝜽𝓁◦⋯◦𝒇𝜽1}(𝐱)] ≤ 𝐷0, for 1 ≤ 𝓁 ≤ 𝐿 (bounded expected directional derivative within the
composition).

hen, on any 1D CPWL path 𝜸, the expected knot density of the CPWL NN is bounded as

E[𝜆𝜸𝒇𝜽𝐿 ◦⋯◦𝒇𝜽1
] ≤ 𝐷∗

0(𝜆0 𝑊𝐿), (35)

where 𝐷∗
0 = max(𝐷0, 1).

The proof of Theorem 3 relies on Lemma 4. In the bound presented in this lemma, the expected value is evaluated before taking
he supremum, whilst a switch of the order of the operators would yield a much looser bound.

emma 4. Let 𝜸 ∶𝑆 → R𝑑 be a 1D CPWL path and 𝒇𝜽 ∶R𝑑 → R𝑑′ a CPWL function parameterized by the random variable 𝜽 such that,
for any 𝐱,𝐮 ∈ R𝑑 , 𝒇𝜽 is differentiable at 𝐱 in direction 𝐮 with probability 1. Then, the expected length of the 1D CPWL path 𝒇𝜽◦𝜸 ∶𝑆 → R𝑑′

is bounded as

E[Len(𝒇𝜽◦𝜸)] ≤ Len(𝜸) sup
𝐱,𝐮∈R𝑑
‖𝐮‖2=1

E[‖𝐷𝐮{𝒇𝜽}(𝐱)‖2]. (36)

4.3.1. Discussion of the compositional bounds
Our approach relies on the independence of the randomly generated CPWL functions. It usually holds at initialization stage, but

it is not true anymore in the learning stage. While this can be regarded as a limitation, it is a legitimate and convenient way to
explore and depict the whole function space that a given architecture gives access to.

Assumption (𝑖) of Theorem 3 and its corollary (bounded expected knot density of the learnable CPWL components) have been
discussed in details in Section 4.2, where it was remarked that it is reasonable to assume that 𝜆0 is independent of 𝑊 and 𝐿.

Theorem 3 and Corollary 3 differ on Assumption (𝑖𝑖) (well behaved gradients). While the assumption of the theorem seems more
natural at first sight (gradient controlled for each layer), the one of the corollary is closer to practical observations. Assumption
(𝑖𝑖) of Corollary 3 was invoked to bound the expected length of the image of any finite-length 1D CPWL path, independently of
the depth of the composition. While early works suggested that this expected length grows exponentially with depth [41], it was
recently shown otherwise in a more realistic setup, both theoretically and experimentally [42]. For instance, for ReLU NNs, with the
usual 2/fan-in weight variance, depth typically does not affect the expected length [42]. More generally, a control of the magnitude
13
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of the directional derivatives that is independent of the depth is highly desirable in the learning stage for a stable back-propagation
algorithm [8] and, in the inference stage, to produce robust models [43]. In short, it is also reasonable to assume that the parameter
𝐷0 depends neither on 𝑊 nor on 𝐿.

The previous discussion suggests a simple and important bound on the density of regions of CPWL NNs. It attributes an identical
role to the three sources of complexity, namely depth, width, and activation complexity.

The quality of the proposed bounds seems to be completely determined by the tightness of the bounds in Assumptions (𝑖) and (𝑖𝑖).
ased on the proofs of Theorem 3 and Corollary 3, we believe that the compositional bounds are sharp provided that the expected
not density is uniform (i.e., the same for any 1D CPWL curve) and that the expected norm of the directional derivative is uniform
nd isotropic within the NN.

. Conclusion

In this work, we have investigated the role of depth, width, and activation complexity in the expressiveness of CPWL NNs.
y invoking results from combinatorial geometry, we have found that depth has a predominant role over width and activation
omplexity: it is the only descriptor able to increase the number of linear regions exponentially. However, this exponential growth
s only observed for the maximal number of regions. Indeed, when exploring the whole function space produced by a given CPWL
N, we have found that, on average, the number of regions along a line is bounded by a quantity that only depends on the product
f the three descriptors. In that perspective, the three complexity parameters have an identical role: no exponential behavior with
epth is observed anymore.

The ability to train deeper and deeper NNs has led to major improvements in machine learning. However, depth comes at a
rice in applications where the NN needs to be stable, for instance by constraining its global Lipschitz constant. In such settings, we
herefore believe that complex learnable activations should always be regarded as a valuable opportunity to increase substantially
he expressiveness of the model without resorting to deeper NNs [44,45].
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ppendix A. Proofs for Section 3

.1. Number of convex vs. projection regions

roof of Proposition 1. The first inequality follows from the fact that there cannot be fewer linear convex regions than affine
ieces. Consider two neighboring projection regions 𝛺𝑘 and 𝛺𝑝 of 𝒇 , where 1 ≤ 𝑘 < 𝑝 ≤ 𝜌, with corresponding affine pieces

𝒇𝑘 ∶ 𝐱 ↦ 𝐖𝑇
𝑘 𝐱 + 𝐛𝑘 and 𝒇 𝑝 ∶ 𝐱 ↦ 𝐖𝑇

𝑝 𝐱 + 𝐛𝑝, where 𝐖𝑘,𝐖𝑝 ∈ R𝑑′×𝑑 and 𝐛𝑘,𝐛𝑝 ∈ R𝑑′ . Since 𝒇 is continuous, any 𝐱 ∈ 𝛺𝑘 ∩ 𝛺𝑝
satisfies that (𝐖𝑘 − 𝐖𝑝)𝑇 𝐱 + (𝐛𝑘 − 𝐛𝑝) = 0. The set of all boundary points of 𝒇 is therefore included in ∪1≤𝑘<𝑝≤𝜌𝐻𝑘𝑝, where
𝐻𝑘𝑝 = {𝐱 ∈ R𝑑 ∶ (𝐖𝑘 −𝐖𝑝)𝑇 𝐱+ (𝐛𝑘 − 𝐛𝑝) = 0} is an affine subspace of dimension at most (𝑑 − 1) since 𝑘 ≠ 𝑝. The arrangement of the
𝜌(𝜌− 1)∕2 hyperplanes 𝐻𝑘𝑞 with 𝑘 ≠ 𝑝 ∈ [𝜌] yields convex regions on which 𝒇 is affine since these regions do not contain boundary
points. The number of such regions is, therefore, an upper bound on the number of convex regions of 𝒇 . It is known from [37] that
the number of convex regions formed by an arrangement of 𝑁 hyperplanes in R𝑑 is at most ∑min(𝑑,𝑁)

𝑘=0
(𝑁
𝑘

)

. Hence, for 𝜌(𝜌−1)∕2 > 𝑑,
we directly reach the announced result. Otherwise, the bound yields ∑𝜌(𝜌−1)∕2

𝑘=0
(𝜌(𝜌−1)∕2

𝑘

)

= 2𝜌(𝜌−1)∕2. □

Proof of Lemma 1. Let 𝑒 = dim(𝐸). The natural candidate for 𝛱𝐸 is the partition

𝛱 ′ =
{

𝑃 ′ ∶𝑃 ′ = 𝑃 ∩ 𝐸, 𝑃 ∈ 𝛱, and Int𝑃 ′ ≠ ∅
}

, (A.1)

which is unfortunately not necessarily a proper convex partition. Indeed, if 𝐸 contains an 𝑒-face of a region, then some elements
of 𝛱 ′ will not have disjoint interiors. Since the regions of 𝛱 are polyhedrons, there exist a given number 𝑛𝐻 of distinct boundary
hyperplanes 𝐻𝑝 = {𝐱 ∈ R𝑑 ∶ 𝐚𝑇𝑝 𝐱+ 𝑏𝑝 = 0} and such that for each 𝑃𝑘 ∈ 𝛱 , there exists a subset 𝐼𝑘 ⊂ [𝑛𝐻 ] and 𝜖𝑘,𝑝 ∈ {−1, 1} for 𝑝 ∈ 𝐼𝑘
such that

𝑃𝑘 = {𝐱 ∈ R𝑑 ∶ 𝜖𝑘,𝑝(𝐚𝑇𝑝 𝐱 + 𝑏𝑝) ≥ 0 ∀𝑝 ∈ 𝐼𝑘}. (A.2)

We now consider a mapping 𝜙 that assigns to each hyperplane 𝐻𝑝 a unique region 𝜙(𝑝) such that 𝑝 ∈ 𝐼𝜙(𝑝). We can now define 𝑛
new pairwise-disjoint convex regions as

𝑃 ′
𝑘 =

{

𝐱 ∈ R𝑑 ∶
𝜖𝑘,𝑝(𝐚𝑇𝑝 𝐱 + 𝑏𝑝) ≥ 0 for 𝑝 ∈ [𝑛𝑘] and 𝜙(𝑝) = 𝑘

𝑇

}

. (A.3)
14

𝜖𝑘,𝑝(𝐚𝑝 𝐱 + 𝑏𝑝) > 0 for 𝑝 ∈ [𝑛𝑘] and 𝜙(𝑝) ≠ 𝑘
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It is clear that ∪𝑛
𝑘=1𝑃

′
𝑘 = R𝑑 . From these new regions, one can eventually build the proper convex partition

𝛱𝐸 =
{

𝑃𝐸 = 𝑃 ′
𝑘 ∩ 𝐸 ∶ 𝑘 ∈ [𝑛] and Int𝑃𝐸 ≠ ∅

}

. (A.4)

By construction, all regions of 𝛱𝐸 are closed with nonempty interiors; their union covers 𝐸. Let 𝑃𝐸,1 = 𝑃 ′
𝑘1

∩ 𝐸 and 𝑃𝐸,2 = 𝑃 ′
𝑘2

∩ 𝐸
e two (nonempty) regions of 𝛱𝐸 . We have that Int(𝑃𝐸,1) ∩ Int(𝑃𝐸,2) = Int(𝑃𝐸,1 ∩ 𝑃𝐸,2) = Int(𝑃 ′

𝑘1
∩ 𝑃 ′

𝑘2
∩ 𝐸) = ∅ for 𝑘1 ≠ 𝑘2. We,

herefore, proved that 𝛱𝐸 is a convex partition of 𝐸; it has at most 𝑛 regions and is such that, for any 𝑃𝐸 ∈ 𝛱𝐸 , there is 𝑃 ∈ 𝛱
ith 𝑃𝐸 ⊂ 𝑃 . □

roof of Lemma 2. Let 𝑃 ∈ 𝛱 . Recall that 𝑃 is a closed and convex subset of the affine space 𝒇 (R𝑑 ) with dimension dim(𝒇 (R𝑑 )).
e first prove that 𝒇−1(𝑃 ) meets the requirements to form a convex partition of R𝑑 .

• The continuity of 𝒇 implies that 𝒇−1(𝑃 ) is closed.
• The function 𝒇 is written as 𝒇 ∶ 𝐱 ↦ 𝐀𝐱 + 𝐛 with 𝐀 ∈ R𝑑′×𝑑 and 𝐛 ∈ R𝑑′ . For 𝐱, 𝐲 ∈ 𝒇−1(𝑃 ) and 𝛽 ∈ [0, 1], we have that
𝒇 (𝛽𝐱 + (1 − 𝛽)𝐲) = 𝐀(𝛽𝐱 + (1 − 𝛽)𝐲) + 𝐛 = 𝛽𝒇 (𝐱) + (1 − 𝛽)𝒇 (𝐲) ∈ 𝑃 since 𝑃 is convex. Therefore, 𝒇−1(𝑃 ) is also convex.

• We have that ∪𝑃∈𝛱𝒇−1(𝑃 ) = 𝒇−1(∪𝑃∈𝛱𝑃 ) = 𝒇−1(𝒇 (R𝑑 )) = R𝑑 .
• For two distinct regions 𝑃1, 𝑃2 ∈ 𝛱 , we have that 𝒇−1(𝑃1) ∩ 𝒇−1(𝑃2) = 𝒇−1(𝑃1 ∩ 𝑃2). Since 𝑃1 and 𝑃2 are distinct regions of 𝛱 ,
dim(𝑃1 ∩ 𝑃2) < dim(𝒇 (R𝑑 )), which implies that dim(𝒇−1(𝑃1) ∩ 𝒇−1(𝑃2)) < 𝑑 and proves that 𝑃1 and 𝑃2 have disjoint interiors.

• We decompose the input space as the direct sum R𝑑 = ker(𝐀)⊕𝑈 . Note that 𝒇 (𝑈 ) = 𝒇 (R𝑑 ). It is clear that, for any 𝐱 ∈ 𝒇−1(𝑃 )
and 𝐲 ∈ ker(𝐀), we have that 𝐱 + 𝐲 ∈ 𝒇−1(𝑃 ), which implies that dim(Proj𝑈 (𝒇−1(𝑃 ))) = ker(𝐀). In addition, we use the fact
that 𝒇 restricted to 𝑈 has full rank and write dim(Projker(𝐀)(𝒇−1(𝑃 ))) = dim(𝑃 ) = dim(𝒇 (R𝑑 )). All in all, we have proved that
dim(𝒇−1(𝑃 )) = 𝑑, which implies that the regions of 𝒇−1(𝛱) have nonempty interiors. □

Proof of Lemma 3. The result stems from the fact that the rank of a product of matrices is bounded by the smallest rank of these
matrices. □

A.2. Upper bound on the number of regions of arrangements

Proof of Theorem 1. First, we prove that the expression given in the theorem is an upper bound. To that end, we need to
formalize our problem with the notion of abstract simplicial complex so as to focus solely on the combinatorial structure of the
task and be compliant with the formalism of [38]. Let 𝛱∗

𝑘 = {int(𝑃 )∶𝑃 ∈ 𝛱𝑘}, where int(𝑃 ) denotes the interior of 𝑃 in R𝑑 , and let
 = ∪𝑁

𝑘=1{𝑃
∗ ∶𝑃 ∗ ∈ 𝛱∗

𝑘} be the set that contains the elements of the 𝑁 sets 𝛱∗
𝑘 . The nerve K of  is defined as

K = {𝑋 ⊂  ∶ ∩𝑋 ≠ ∅}. (A.5)

In simple words, K is made of all the nonempty intersections of sets in any of the 𝛱∗
𝑘 . The nerve of an open covering is an abstract

simplicial complex which, therefore, applies to K since  is an open covering of R𝑑 . This more simply follows from the definition
of an abstract simplicial complex: it is a family of sets that is closed under taking subsets. In the sequel, we need K to be a 𝑑-
representable simplicial complex, which is granted because it is the nerve of a finite family of convex sets in R𝑑 (more details in [38]).
In our problem, the faces of dimension 0 of the complex, also known as vertices, are the elements of  . More generally, a face of K
of dimension 𝑝 is a nonempty intersection of 𝑝+1 elements of  . Each set 𝛱∗

𝑘 induces a sub-complex K[𝛱∗
𝑘 ] = {𝑋 ⊂ 𝛱∗

𝑘 ∶ ∩𝑋 ≠ ∅} of
K. The dimension of this sub-complex, which is the largest dimension of its faces, is 0 because the elements of 𝛱∗

𝑘 are disjoint. We
note that the interior of the regions of the arrangement of the convex partitions are (𝑁 +1)-faces of the abstract simplicial complex
K, which are also called 𝟏-colorful faces, where 𝟏 = (1,… , 1) ∈ R𝑁 specifies that each region of the arrangement is built from one
region per partition. We are therefore looking to bound the number 𝑓𝟏(K) of 𝟏-colorful faces of the complex K. Since we have now
fully translated our problem into the framework of [38], we can apply [38, Theorem 10] to  . The parameter 𝐫 = (𝑟1,… , 𝑟𝑁 ) can
be chosen so that dim(K[𝛱∗

𝑘 ]) ≤ (𝑟𝑘 − 1). Therefore, we simply choose 𝐫 = 𝟏 and obtain that

𝛽𝑑 (𝑛1,… , 𝑛𝑁 ) = 𝑓𝟏(K) ≤ 𝑝𝟏(𝐧, 𝑑, 𝟏), (A.6)

where

𝑝𝐤(𝐧, 𝑑, 𝐫) =
∑

𝓁=(𝓁1 ,…,𝓁𝑁 )∈𝐿𝐤(𝑑)

𝑁
∏

𝑖=1

(

𝑛𝑖 − 𝑟𝑖
𝓁𝑖

)(

𝑟𝑖
𝑘𝑖 − 𝓁𝑖

)

(A.7)

and

𝐿𝐤(𝑑) = {𝓁 = (𝓁1,…𝓁𝑁 ) ∈ N𝑁 ∶𝓁1 +⋯ + 𝓁𝑁 ≤ 𝑑 and 𝓁𝑖 ≤ 𝑘𝑖 for 𝑖 ∈ [𝑁]}. (A.8)

In our problem, 𝐤 = 𝟏 and

𝐿𝟏(𝑑) = {𝓁 = (𝓁1,…𝓁𝑁 ) ∈ N𝑁 ∶𝓁1 +⋯ + 𝓁𝑁 ≤ 𝑑 and 𝓁𝑖 ∈ {0, 1} for 𝑖 ∈ [𝑁]}. (A.9)

With 𝐫 = 𝟏, we have that

𝛽𝑑 (𝑛1,… , 𝑛𝑁 ) ≤ 𝑝𝟏(𝐧, 𝑑, 𝟏) =
∑

𝑁
∏

(

𝑛𝑖 − 1
𝓁

)(

1
1 − 𝓁

)

15

𝓁=(𝓁1 ,…,𝓁𝑁 )∈𝐿𝟏(𝑑) 𝑖=1 𝑖 𝑖
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=
∑

𝓁=(𝓁1 ,…,𝓁𝑁 )∈𝐿𝟏(𝑑)

𝑁
∏

𝑖=1

(

𝑛𝑖 − 1
𝓁𝑖

)

=
𝑑
∑

𝑘=0

∑

𝓁1 ,…,𝓁𝑁∈{0,1}
𝓁1+⋯+𝓁𝑁=𝑘

𝑁
∏

𝑖=1

(

𝑛𝑖 − 1
𝓁𝑖

)

=
𝑑
∑

𝑘=0

∑

𝓁1 ,…,𝓁𝑁∈{0,1}
𝓁1+⋯+𝓁𝑁=𝑘

𝑁
∏

𝑖=1
𝓁𝑖=1

(

𝑛𝑖 − 1
𝓁𝑖

) 𝑁
∏

𝑖=1
𝓁𝑖=0

(

𝑛𝑖 − 𝑟𝑖
𝓁𝑖

)

=
𝑑
∑

𝑘=0

∑

𝓁1 ,…,𝓁𝑁∈{0,1}
𝓁1+⋯+𝓁𝑁=𝑘

𝑁
∏

𝑖=1
𝓁𝑖=1

(𝑛𝑖 − 1)

= 1 +
𝑑
∑

𝑘=1

∑

1≤𝓁1<⋯<𝓁𝑘≤𝑁

𝑘
∏

𝑖=1
(𝑛𝓁𝑖 − 1), (A.10)

hich proves that the bound given in the Theorem holds true.
Now we show that this upper bound is sharp. To that end, consider that each partition 𝛱𝑘 is made of the regions of the

rrangement of the (𝑛𝑘 − 1) distinct parallel hyperplanes 𝐻𝑘
𝑞 for 𝑞 = 1,… , (𝑛𝑘 − 1) so that the hyperplanes are in general position

hen only one per partition is selected. Recall that 𝑁 hyperplanes are in general position if any collection of 𝑘 of them intersect
n a (𝑑 − 𝑘)-dimensional plane for 1 ≤ 𝑘 ≤ 𝑑 and have empty intersection for 𝑘 > 𝑑. The number of regions of the arrangement
(𝛱1,… ,𝛱𝑁 ) is exactly the number of regions of the arrangement of all the hyperplanes 𝐻𝑘

𝑞 for 𝑞 = 1,… , (𝑛𝑘 −1) and 𝑘 = 1,… , 𝑁 .
ollowing Zavalasky’s Theorem, the number of regions can be computed by

#() = (−1)𝑑𝜒(−1), (A.11)

where 𝜒 is the characteristic polynomial of the arrangement. There is no need here to define the characteristic polynomial in detail
since Whitney’s formula provides a direct way to evaluate it as

𝜒(−1) =
∑

⊂
∩𝐻∈𝐻≠∅

(−1)#(−1)dim(∩𝐻∈𝐻). (A.12)

The subsets  ⊂  that have a nonempty intersection can be written as  = {𝐻𝑘1
𝑞𝑘1

,… ,𝐻
𝑘𝑝
𝑞𝑘𝑝

} with 1 ≤ 𝑘1 < ⋯ < 𝑘𝑝 ≤ 𝑁 , 𝑞𝑘𝑖 ∈ [𝑛𝑘𝑖−1]
where 𝑖 = 1,… , 𝑝 and 0 ≤ 𝑝 ≤ 𝑑. This holds because, for 𝑞 ≠ 𝑞′, 𝐻𝑘

𝑞 ∩𝐻
𝑘
𝑞′ = ∅. Note that, by convention, the set  = ∅ is also considered

in the sum. Because of the particular choice of the hyperplanes, for a given 𝑝,  is the nonempty intersection of 𝑝 hyperplanes and
there are ∑

1≤𝓁1<⋯<𝓁𝑝≤𝑁
∏𝑝

𝑖=1(𝑛𝓁𝑖 −1) such subsets of . The intersection of the elements of  has dimension (𝑑 − 𝑝) (recall that the
hyperplanes of  are in general position). All in all, we have that

#() = (−1)𝑑
∑

⊂∶
∩𝐻∈𝐻≠∅

(−1)#(−1)dim(∩𝐻∈𝐻)

= 1 + (−1)𝑑
𝑑
∑

𝑘=1

∑

1≤𝓁1<⋯<𝓁𝑘≤𝑁
(−1)𝑘(−1)𝑑−𝑘

𝑘
∏

𝑖=1
(𝑛𝓁𝑖 − 1)

= 1 +
𝑑
∑

𝑘=1

∑

1≤𝓁1<⋯<𝓁𝑘≤𝑁

𝑘
∏

𝑖=1
(𝑛𝓁𝑖 − 1), (A.13)

hich is the upper bound given in the theorem.
When 𝑁 ≤ 𝑑, we readily check that the bound is giving 𝑛1 ⋯ 𝑛𝑁 . To prove the second additional bound for 𝑁 > 𝑑 given in the

heorem, we invoke the binomial theorem and remark that
(

1 +
𝑁
∑

𝑝=1
(𝑛𝑝 − 1)

)𝑑

= 1 +
𝑑
∑

𝑘=1

(

𝑑
𝑘

)

( 𝑁
∑

𝑝=1
(𝑛𝑝 − 1)

)𝑘

= 1 +
𝑑
∑

𝑘=1

(

𝑑
𝑘

)

∑

1≤𝓁1 ,…,𝓁𝑘≤𝑁

𝑘
∏

𝑖=1
(𝑛𝓁𝑖 − 1)

≥ 1 +
𝑑
∑

𝑘=1

∑

1≤𝓁1 ,…,𝓁𝑘≤𝑁

𝑘
∏

𝑖=1
(𝑛𝓁𝑖 − 1)

≥ 1 +
𝑑
∑

𝑘=1

∑

1≤𝓁1<⋯<𝓁𝑘≤𝑁

𝑘
∏

𝑖=1
(𝑛𝓁𝑖 − 1). □ (A.14)

.3. Sum and vectorization

roof of Proposition 2. Let 𝛱𝑘 be a linear convex partition of 𝑓𝑘 for 𝑘 = 1,… , 𝑁 . On each region of the arrangement (𝛱1,… ,𝛱𝑁 ),
16

he 𝑓𝑘 are affine, and so is their sum and their vectorization. This implies that (𝛱1,… ,𝛱𝑁 ) is a linear convex partition of both
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the sum and the vectorization of the scalar-valued CPWL functions, which shows that 𝛽𝑑 (𝜅1,… , 𝜅𝑁 ) is a valid upper bound on the
umber of convex linear regions.

We now prove that the bounds are sharp. First, consider 𝑁 convex partitions 𝛱𝑘 where each 𝛱𝑘 is made of the regions of the
rrangement of (𝜅𝑘 −1) distinct parallel hyperplanes 𝐻𝑝

𝑘 = {𝐱 ∈ R𝑑 ∶𝐰𝑇
𝑘 𝐱 = 𝑏𝑝𝑘}, 𝑝 = 1,… , (𝜅𝑘 −1), and such that the hyperplanes are

in general position when only one per partition is selected. In such a way, the arrangement (𝛱1,… ,𝛱𝑁 ) has exactly 𝛽𝑑 (𝜅1,… , 𝜅𝑁 )
convex regions (see proof of Theorem 1). Second, for each partition, we consider a CPWL function 𝜑𝑘 ∶R → R with knots (𝑏𝑝𝑘)

𝜅𝑘−1
𝑝=1

nd 𝜅𝑘 distinct affine pieces (𝜑𝑝
𝑘)

𝜅𝑘
𝑝=1. In the sequel, the affine pieces are written 𝜑𝑝

𝑘 ∶ 𝑥 → 𝑎𝑝𝑘𝑥+ 𝑐𝑝𝑘. The function 𝑓𝑘 ∶ 𝐱 ↦ 𝜑(𝐰𝑇
𝑘 𝐱) has

xactly 𝑛𝑘 linear convex regions and 𝛱𝑘 is a linear convex partition of it. The construction implies that (𝛱1,… ,𝛱𝑁 ) is a linear
onvex partition of both (𝑓1 +⋯+𝑓𝑁 ) and (𝑓1,… , 𝑓𝑁 ). Because the affine pieces of each 𝜑𝑘 are distinct, the vector-valued function
𝑓1,… , 𝑓𝑁 ) will agree with distinct affine pieces on each region of (𝛱1,… ,𝛱𝑁 ), which proves that this partition has the minimal
umber of linear convex regions. This yields CPWL functions such that 𝜅(𝑓1 ,…,𝑓𝑁 ) = 𝛽𝑑 (𝜅1,… , 𝜅𝑁 ). On the contrary, in the case of
he sum (𝑓1 +⋯ + 𝑓𝑁 ), there is on the contrary no guarantee that (𝛱1,… ,𝛱𝑁 ) is a partition with the minimal number of linear
onvex regions. To ensure that the regions of this partition have different affine pieces, it is sufficient to choose the pieces (𝜑𝑝

𝑘) such

hat ∑𝑁
𝑘=1 𝜑

𝑝1𝑘
𝑘 (𝐰𝑇

𝑘 ⋅) ≠
∑𝑁

𝑘=1 𝜑
𝑝2𝑘
𝑘 (𝐰𝑇

𝑘 ⋅) for any 1 ≤ 𝑝1𝑘, 𝑝
2
𝑘 ≤ 𝜅𝑘 and (𝑝11,… , 𝑝1𝑁 ) ≠ (𝑝21,… , 𝑝2𝑁 ). An explicit choice is 𝑎𝑝𝑘 = 𝑝𝑚𝑘−1 with

= max(𝜅𝑘). The biases 𝑏𝑝𝑘 are then set such that 𝜑𝑝
𝑘 is continuous. In such a way, the slope of ∑𝑁

𝑘=1 𝜑
𝑝𝑘
𝑘 (𝐰𝑇

𝑘 ⋅) is ∑𝑁
𝑘=1 𝑝𝑘𝑚

𝑘. This
umber can be represented in base 𝑚 as ‘‘(𝑝𝑁 ⋯ 𝑝1)𝑚’’, which shows that it is uniquely related to the choice of indices (𝑝𝑘). Although
his choice seems very specific, a random choice of the slopes would also satisfy the condition almost surely. We have therefore
ound a collection of CPWL functions whose sum has exactly 𝛽𝑑 (𝜅1,… , 𝜅𝑁 ) linear convex regions. □

.4. Compositional bounds

roof of Theorem 2. We use the notation 𝑚𝓁 = min(𝑑1,… , 𝑑𝓁) and 𝑭 𝓁 = 𝒇𝓁◦⋯◦𝒇 1. First, we prove by induction the validity of
he proposed upper bound. The initial step is given by Proposition 2. Now suppose that the result holds for 𝑭 𝓁−1 with 𝓁 − 1 > 0.
et 𝛺 be a linear convex region of 𝑭 𝓁−1 and let 𝒈𝛺 be the corresponding affine function. The affine space 𝒈𝛺(R𝑑1 ) ⊂ R𝑑𝓁 is of
imension at most min(𝑑1,… , 𝑑𝓁) (Lemma 3). Each linear convex partition 𝛱𝓁,𝑘 of the components of 𝒇𝓁 yields a convex partition
′
𝓁,𝑘 of the affine subspace 𝒈𝛺(R𝑑1 ) with no more than 𝜅𝓁,𝑘 regions on which 𝑓𝓁,𝑘 is affine (Lemma 1). The arrangement of the

artitions 𝛱 ′
𝓁,1,… ,𝛱 ′

𝓁,𝑑𝓁+1
results in a convex partition of 𝒈𝛺(R𝑑1 ) with no more than 𝛽𝑚𝓁 (𝜅𝓁,1,… , 𝜅𝓁,𝑑𝓁+1) regions (Theorem 1).

emma 2 shows that 𝒈−1𝛺 ((𝛱 ′
𝓁,1,… ,𝛱 ′

𝓁,𝑑𝓁+1
)) is a convex partition of R𝑑1 with 𝑭 𝓁 affine on each of its sets. In short, each linear

onvex region of 𝑭 𝓁−1 is partitioned into no more than 𝛽𝑚𝓁 (𝜅𝓁,1,… , 𝜅𝓁,𝑑𝓁+1 ) linear convex regions, which concludes the first part of
he proof.

Second, we propose a construction inspired from [6] to derive the lower bound given on the maximal number of regions. Let
he sawtooth function sw𝑝 of order 𝑝 be the unique 1D CPWL function with knots located at 𝑘∕𝑝 for 𝑘 = 1,… , (𝑝 − 1) that satisfies
sw𝑝(𝑘∕𝑝) =

1
2 (1 − (−1)𝑘) for 𝑘 = 0,… , 𝑝. The key properties of the sawtooth function of order 𝑝 that will prove useful in the sequel

are

• it has 𝑝 projection regions that are also convex linear regions;
• it can be decomposed as

sw𝑝 ∶ 𝑥 ↦
𝑝
∑

𝑘=1
𝜑𝑘,𝑝, (A.15)

where 𝜑𝑘,𝑝 = 𝑝(𝑥 + 2(−1)𝑝|𝑥 − 𝑘∕𝑝|) is a CPWL function with 2 projection regions;
• the composition of sawtooth functions is a sawtooth function whose order is the product of the orders of the composed

functions, as in

sw𝑝◦sw𝑞 = sw𝑝𝑞 , (A.16)

for 𝑝, 𝑞 ∈ N.

The strategy is now to build a CPWL NN which mimics a given NN with independent sawtooth components. Let 𝐞𝑑,𝑘 be the
𝑘th element of the canonical basis of R𝑑 , 𝑑∗ = min(𝑑𝓁) and 𝜏𝓁 ∶ {1,… , 𝑑𝓁+1} → {1,… , 𝑑∗} for 𝓁 = 1,… , 𝐿. Consider the
dimension-reduction linear operator 𝒖𝓁 ∶R𝑑𝓁 → R𝑑∗ associated to 𝜏𝓁−1, which is defined on the canonical basis by

𝒖𝓁 ∶ 𝐞𝑑𝓁 ,𝑘 ↦ 𝐞𝑑∗ ,𝜏𝓁−1(𝑘), (A.17)

for 𝓁 = 2,… , 𝐿 and

𝒖1(𝐞𝑑𝓁 ,𝑘) =
{

𝑒𝑑∗ ,𝑘, 𝑘 ≤ 𝑑∗

0, otherwise.
(A.18)

Similarly, let 𝒗𝓁 ∶R𝑑∗ → R𝑑𝓁+1 be the dimension-augmentation linear operator

𝒗𝓁 ∶ 𝐞𝑑∗ ,𝑘 ↦
∑

−1

𝐞𝑑𝓁+1 ,𝑞 , (A.19)
17

𝑞∈𝜏
𝓁

({𝑘})
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for 𝓁 = 1,… , 𝐿.
We now define the nonlinear pointwise function 𝝓𝓁 ∶ R𝑑𝓁+1 → R𝑑𝓁+1 . For 𝑟 ∈ {1,… , 𝑑∗} let 𝑝𝓁,𝑟 =

∑

𝑘∈𝜏−1
𝓁

({𝑟}) 𝜅𝓁,𝑘 and

{𝐽𝓁,𝜏𝓁 ,𝑖}
|𝜏−1
𝓁

({𝑟})|
𝑖=1 be a partition of the set {1,… , 𝑝𝓁,𝑟}, where the cardinality of the subsets is in one-to-one correspondence with

{𝜅𝓁,𝑞}𝑞∈𝜏−1
𝓁

({𝑟}). In this way, we assign to each 𝑘 ∈ {1,… , 𝑑𝓁 + 1} a set of indices 𝐽𝓁,𝜏𝓁 ,𝑖𝑘 that allows us to define the 𝑘th component
of 𝝓𝓁 as

𝜙𝓁,𝑘 =
∑

𝑗∈𝐽𝓁,𝜏𝓁 ,𝑖𝑘

𝜑
|𝜏−1
𝓁

({𝜏𝓁 (𝑘)})|,𝑗
. (A.20)

This ensures that
∑

𝑘∈𝜏−1
𝓁

({𝑟})

𝜙𝓁,𝑘 = sw𝑝𝓁,𝑟 . (A.21)

From the pointwise property of 𝝓, we deduce that, for any 𝑡1,… , 𝑡𝑑∗ ∈ R,

(𝒖𝓁+1◦𝝓◦𝒗𝓁)

( 𝑑∗
∑

𝑟=1
𝑡𝑟𝐞𝑑∗ ,𝑟

)

= (𝒖𝓁+1◦𝝓)
⎛

⎜

⎜

⎝

𝑑∗
∑

𝑟=1

∑

𝑘∈𝜏−1
𝓁

({𝑟})

𝑡𝑟𝐞𝑑𝓁 ,𝑘
⎞

⎟

⎟

⎠

= 𝒖𝓁+1
⎛

⎜

⎜

⎝

𝑑∗
∑

𝑟=1

∑

𝑘∈𝜏−1
𝓁

({𝑟})

𝜙𝓁,𝑘(𝑡𝑟)𝐞𝑑𝓁 ,𝑘
⎞

⎟

⎟

⎠

=
𝑑∗
∑

𝑟=1

∑

𝑘∈𝜏−1
𝓁

({𝑟})

𝜙𝓁,𝑘(𝑡𝑟)𝒖𝓁+1(𝐞𝑑𝓁 ,𝑘)

=
𝑑∗
∑

𝑟=1

∑

𝑘∈𝜏−1
𝓁

({𝑟})

𝜙𝓁,𝑘(𝑡𝑟)𝐞𝑑∗ ,𝜏𝓁 (𝑘)

=
𝑑∗
∑

𝑟=1

⎛

⎜

⎜

⎝

∑

𝑘∈𝜏−1
𝓁

({𝑟})

𝜙𝓁,𝑘(𝑡𝑟)
⎞

⎟

⎟

⎠

𝐞𝑑∗ ,𝑟

=
𝑑∗
∑

𝑟=1
sw𝑝𝓁,𝑟 (𝑡𝑟)𝐞𝑑∗ ,𝑟, (A.22)

which means that 𝒖𝓁+1◦𝝓◦𝒗𝓁 is a pointwise multivariate function with 1D sawtooth components of order 𝑝𝓁,𝑟 for 𝑟 = 1,… , 𝑑∗. We
denote it by 𝐬𝐰𝐩𝓁 with 𝐩𝓁 = (𝑝𝓁,1,… , 𝑝𝓁,𝑑∗ ). The function 𝒇𝓁 of the NN is chosen to be 𝒇𝓁 = 𝝓𝓁◦𝒗𝓁◦𝒖𝓁 . Each component 𝑓𝓁,𝑘 can be
written in the form of 𝑓𝓁,𝑘 ∶ 𝐱 ↦ 𝜙𝓁,𝑘(𝐰𝑇

𝓁,𝑘𝐱) with 𝐰𝓁,𝑘 =
∑

𝑞∈𝜏−1
𝓁−1({𝜏𝓁 (𝑘)})

𝐞𝑑𝓁 ,𝑞 . This shows that 𝑓𝓁,𝑘 has the same number of projection
regions as 𝜙𝓁,𝑘 (𝜅𝓁,𝑘) whenever 𝐰𝓁,𝑘 ≠ 𝟎.

All in all, we have that

𝒇𝐿◦𝒇𝐿−1◦⋯◦𝒇 2◦𝒇 1 = (𝝓𝐿◦𝒗𝐿◦𝒖𝐿)◦(𝝓𝐿−1◦𝒗𝐿−1◦𝒖𝐿−1)◦⋯◦(𝝓2◦𝒗2◦𝒖2)◦(𝝓1◦𝒗1◦𝒖1)
= 𝝓𝐿◦𝒗𝐿◦(𝒖𝐿◦𝝓𝐿−1◦𝒗𝐿−1)◦(𝒖𝐿−1◦⋯◦𝝓2◦𝒗2)◦(𝒖2◦𝝓1◦𝒗1)◦𝒖1
= 𝝓𝐿◦𝒗𝐿◦𝐬𝐰𝐩𝐿−1◦⋯◦𝐬𝐰𝐩1◦𝒖1. (A.23)

We now note that there are no fewer projection regions of 𝒇𝐿◦𝒇𝐿−1◦⋯◦𝒇 2◦𝒇 1 than the number of projection regions of 𝒉 =
𝒖𝐿+1◦𝒇𝐿◦⋯◦𝒇 1 because 𝒖𝐿+1 is a linear mapping. In addition,

𝒖𝐿+1◦𝒇𝐿◦⋯◦𝒇 1 = 𝐬𝐰𝐩𝐿◦⋯◦𝐬𝐰𝐩1◦𝒖1

= 𝐬𝐰𝐪◦𝒖1, (A.24)

where 𝐪 = (𝑞1,… , 𝑞𝑑∗ ) and 𝑞𝑟 =
∏𝐿

𝓁=1 𝑝𝓁,𝑟. The properties of the sawtooth functions and the special form of 𝒖1 yields the projection
regions for 𝒉 as

{𝐱 ∈ R𝑑1 ∶ for 𝑟 = 1,… , 𝑑∗,

⎧

⎪

⎨

⎪

⎩

−∞ < 𝑥𝑟 ≤ 1∕𝑞𝑟, 𝑖𝑟 = 0
1 − 1∕𝑞𝑟 ≤ 𝑥𝑟 < +∞, 𝑖𝑟 = 𝑞𝑟 − 1
𝑖𝑟∕𝑞𝑟 ≤ 𝑥𝑟 ≤ (𝑖𝑟 + 1)∕𝑞𝑟, otherwise

}, (A.25)

where 𝑖𝑟 = 0,… , (𝑞𝑟 − 1) for 𝑟 = 1,… , 𝑑∗. In summary, the number of projection regions of the constructed CPWL NN is at least
𝑑∗
∏

𝑟=1
𝑞𝑟 =

𝐿
∏

𝓁=1

𝑑∗
∏

𝑟=1
𝑝𝓁,𝑟 =

𝐿
∏

𝓁=1

𝑑∗
∏

𝑟=1

∑

𝑘∈𝜏−1
𝓁

({𝑟})

𝜅𝓁,𝑘. (A.26)

The conclusion is reached by noticing that the reasoning does not depend on any property of the mappings 𝜏𝓁 : one can therefore
18

pick the ones that yield the largest lower bound. □
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Proof of Corollary 1. To get the upper bound, we combine Theorem 2 and the simplified version of the bound given in Theorem 1
ith the assumption that 𝑊 ≥ 𝑑in ≥ 𝑑∗ ∶= min(𝑑in, 𝑑out ). To get the lower bound, we have to compute

𝛼𝑑
∗
(𝜅𝓁,1,… , 𝜅𝓁,𝑑𝓁+1 ) = max

𝜏∈𝑑𝓁

𝑑∗
∏

𝑟=1

∑

𝑘∈𝜏−1({𝑟})

𝜅𝓁,𝑘. (A.27)

We lower-bound this quantity by selecting an arbitrary mapping 𝜏 ∶ [𝑊 ] → [𝑑∗] such that, for 𝑟 ∈ [𝑑∗], the cardinality of 𝜏−1({𝑟}) is
at least ⌊𝑊 ∕𝑑∗⌋. In this way, we obtain that

𝛼𝑑
∗
(𝜅𝓁,1,… , 𝜅𝓁,𝑑𝓁+1 ) ≥ (𝜅 ⌊𝑊 ∕𝑑∗⌋)𝑑

∗ (A.28)

or 𝓁 = 1,… , 𝐿 and reach the given lower bound. □

roof of Corollary 2. The upper bound is a direct consequence of Proposition 1: the number of convex linear regions is never
maller than the number of projection regions. The CPWL NN built to provide the lower bound of Theorem 2 had exactly as many
rojection regions as convex linear regions, hence justifying the lower bound. □

ppendix B. Proofs for the knot density of the sum, vectorization, and composition of CPWL functions

roof of Proposition 3. Consider two CPWL functions 𝒇 1,𝒇 2 with characteristic functions 𝝋𝜸
1 and 𝝋𝜸

2 along 𝜸 and projection regions
𝛺1

𝑘)
𝐾1
𝑘=1 and (𝛺2

𝑘)
𝐾2
𝑘=1. Let 𝝋𝜸

(1,2) denote the characteristic function of (𝒇 1,𝒇 2) and 𝝋𝜸
1+2 the one of 𝒇 1 + 𝒇 2 along 𝜸. Consider a subset

𝑅 ⊂ 𝑆 on which 𝝋𝜸
1 and 𝝋𝜸

2 are continuous. Following the definition of the characteristic function, any projection region 𝛺 of 𝒇 1 or
of 𝒇 2 either entirely contains 𝜸(𝑅) or does not intersect with it; otherwise, 𝝋𝜸

1 or 𝝋𝜸
2 would not be continuous on 𝑅. Any projection

egion 𝛺(1,2) of (𝒇 1,𝒇 2) is a nonempty intersection of the form 𝛺1
𝑝 ∩ 𝛺2

𝑞 , with 𝑝 ∈ [𝐾1] and 𝑞 ∈ [𝐾2]. Since the regions 𝛺1
𝑝 and 𝛺2

𝑞
either entirely contain 𝜸(𝑅) or do not intersect with it, the same holds true for 𝛺(1,2), which implies that 𝝋𝜸

(1,2) must be continuous on
𝑅. The same argument holds true for 𝝋𝜸

(1+2), the only difference being that the projection regions of 𝒇 1 +𝒇 2 are unions of nonempty
ubsets of the form 𝛺1

𝑝 ∩ 𝛺2
𝑞 , which also has the same implications. So, on the one hand, we proved that, where 𝝋1 and 𝝋2 are

continuous, 𝝋1+2 and 𝝋(1,2) are also continuous. On the other hand, the number of points where either 𝝋1 or 𝝋2 is discontinuous is
no greater than the number of points where 𝝋1 and 𝝋2 are discontinuous, which concludes the proof. □

Proof of Proposition 4. Consider the characteristic function 𝝋𝜸
𝒇1

of 𝒇 1 on 𝜸 and 𝝋𝒇1◦𝜸
𝒇2

of 𝒇 2 on 𝒇 1◦𝜸. Moreover, consider a subset
𝑅 ⊂ 𝑆 on which both 𝝋𝜸

𝒇1
and 𝝋𝒇1◦𝜸

𝒇2
are continuous. The projection regions of 𝒇 1 and 𝒇 2 are denoted by (𝛺1

𝑘)
𝐾1
𝑘=1 and (𝛺2

𝑘)
𝐾2
𝑘=1. On

any region 𝛬𝑝,𝑞 = 𝛺1
𝑝 ∩ 𝒇−1

1 (𝛺2
𝑞 ), the function 𝒇 2◦𝒇 1 is affine, meaning that each projection region of 𝒇 2◦𝒇 1 is a union of some of

the regions 𝛬𝑝,𝑞 . Each region 𝛺1
𝑝 either entirely contains the subset 𝜸(𝑅) or does not intersect with it; otherwise, 𝝋𝜸

𝒇1
would not be

continuous on 𝑅. We now remark that 𝝋𝒇1◦𝜸
𝒇2

(𝑡) = (1𝛺2
1
(𝒇 1◦𝜸(𝑡)),… ,1𝛺2

𝐾2
(𝒇 1◦𝜸(𝑡))) = (1𝒇−1

1 (𝛺2
1 )
(𝜸(𝑡)),… ,1𝒇−1

1 (𝛺2
𝐾2

)(𝜸(𝑡))), which means

that each region 𝒇−1
1 (𝛺2

𝑞 ) either entirely contains the subset 𝜸(𝑅) or does not intersect with it since, otherwise, 𝝋𝒇1◦𝜸
𝒇2

would not
be continuous on 𝑅. We therefore have that each region 𝛬𝑝,𝑞 either entirely contains the subset 𝜸(𝑅) or does not intersect with it.
Consequently, the same holds true for union of regions 𝛬𝑝,𝑞 and, as a result, for the projection regions of 𝒇 2◦𝒇 1. This shows that,
where 𝝋𝜸

𝒇1
and 𝝋𝒇1◦𝜸

𝒇2
are continuous, 𝝋𝜸

𝒇2◦𝒇1
is also continuous. In short, the number of points of discontinuities of 𝝋𝜸

𝒇2◦𝒇1
is no

greater than the number of points of discontinuity of either 𝝋𝜸
𝒇1

or 𝝋𝒇1◦𝜸
𝒇2

, which concludes the proof. □

Appendix C. Proof of the bounds on the knot density of classical CPWL components

Proof of Proposition 5. First, we prove the result when 𝜸 parameterizes a linear segment. Let 𝐱0,𝐮 ∈ R𝑑 with ‖𝐮‖2 = 1 and
𝜸 ∶ 𝑡 ↦ 𝐱0 + 𝑡𝐮 for 𝑡 ∈ 𝑆, where 𝑆 = [0, |𝑆|] ⊂ R is a segment. The first step is to compute the probability P(kt𝜸𝑓 = 1) that 𝑓 has a
knot along 𝜸. The hyperplane {𝐱 ∈ R𝑑 ∶𝒘𝑇 𝐱 + 𝑏 = 0} intersects the line {𝐱0 + 𝑡𝐮∶ 𝑡 ∈ R} for 𝑡0 such that 𝒘𝑇 (𝐱0 + 𝑡0𝐮) + 𝑏 = 0 or,
equivalently, 𝑏 = (−𝒘𝑇 (𝐱0+𝑡0𝐮)). In order to have a knot along 𝜸

|𝑆 , 𝑡0 has to lie in 𝑆. For a given 𝒘, this implies that 𝑏 should be in an
interval of length |𝑆 ∥ 𝒘𝑇 𝐮|, more precisely [−𝒘𝑇 𝐱0, |𝑆|𝒘𝑇 𝐮−𝒘𝑇 𝐱0] if 𝒘𝑇 𝐮 < 0 and [|𝑆|𝒘𝑇 𝐮−𝒘𝑇 𝐱0,−𝒘𝑇 𝐱0] otherwise. Therefore,
P(kt𝜸𝑓 = 1|𝒘) ≤ sup𝑡∈R 𝜌𝑏(𝑡)|𝑆 ∥ 𝒘𝑇 𝐮|. From the independence of the random variables and from the fact that kt𝜸𝑓 = 0 or kt𝜸𝑓 = 1 almost

surely, we infer that E[𝜆𝜸|𝑆𝑓 ] ≤ sup𝑡∈R 𝜌𝑏(𝑡)E[|𝒘𝑇 𝐮|] ≤ sup𝑡∈R 𝜌𝑏(𝑡)
√

E[|𝒘𝑇 𝐮|2] = sup𝑡∈R 𝜌𝑏(𝑡)
√

𝐮𝑇E[𝒘𝒘𝑇 ]𝐮 ≤ sup𝑡∈R 𝜌𝑏(𝑡)
√

E[𝑤2]. In
he last step, the assumption that the random variables 𝑤𝑘 are i.i.d. has allowed us to infer that E[𝒘𝒘𝑇 ] = E[𝑤2]𝐈, where 𝐈 ∈ R𝑑×𝑑

is the identity matrix.
If 𝑏 is normally distributed with standard deviation 𝜎𝑏, then sup𝑡∈R 𝜌𝑏(𝑡) = (𝜎𝑏

√

2𝜋)−1. In addition, suppose that the components
𝑤𝑘 are independent and normally distributed with standard deviation 𝜎𝑤. The random variable 𝒘𝑇 𝐮 is also normally distributed
with standard deviation 𝜎𝑤 (since ‖𝐮‖2 = 1). We can now compute explicitly E[|𝒘𝑇 𝐮|] = 𝜎𝑤

√

2∕
√

𝜋 based on the properties of
half-normal distributions.

The result is extended to any polygonal chain through the linearity of the expectation operator and by application of the result
to the finitely many pieces of the polygonal chain. □
19
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Proof of Proposition 6. A knot of 𝑓 along a line 𝜸 must lie on a hyperplane 𝐻𝑝,𝑞 = {𝐱∶ (𝒘𝑝−𝒘𝑞)𝑇 𝐱+(𝑏𝑝−𝑏𝑞) = 0} with 1 ≤ 𝑝 < 𝑞 ≤ 𝐾,
since elsewhere the Maxout unit is affine. Therefore, the expected knot density is bounded as

E
[

𝜆𝜸Maxout
]

≤ 1
|𝑆|

E

[

∑

1≤𝑝<𝑞≤𝐾
(𝜸(𝑆) ∩𝐻𝑝,𝑞 ≠ ∅)

]

= 1
|𝑆|

∑

1≤𝑝<𝑞≤𝐾
E
[

(𝜸(𝑆) ∩𝐻𝑝,𝑞 ≠ ∅)
]

≤ 1
|𝑆|

∑

1≤𝑝<𝑞≤𝐾

√

E
[

(𝑤𝑝 −𝑤𝑞)2
]

sup
𝑡∈R

𝜌𝑏(𝑡)

= 1
|𝑆|

∑

1≤𝑝<𝑞≤𝐾

√

2𝜎𝑤 sup
𝑡∈R

𝜌𝑏(𝑡)

= 1
|𝑆|

√

2
(

𝐾
2

)

𝜎𝑤 sup
𝑡∈R

𝜌𝑏(𝑡), (C.1)

where we have taken advantage of the results derived in the proof of Proposition 5 to bound the probability that a randomly
generated hyperplane intersects a segment of length |𝑆|, along with the independence of the random variables. We also notate
(𝐴 ≠ ∅) to encode the variable that takes the value 0 if 𝐴 = ∅ and 1 otherwise. When the random variables are normally distributed,
the reasoning is similar to the one in the proof of Proposition 5. □

Proof of Proposition 7. A knot of 𝑓 along a line 𝜸 must lie on a hyperplane 𝐻𝑝,𝑞 = {𝐱∶ (𝒘𝑝 − 𝒘𝑞)𝑇 𝐱 + (𝑏𝑝 − 𝑏𝑞) = 0}, where
1 ≤ 𝑝 < 𝑞 ≤ 𝐾 and where 𝑝, 𝑞 belong to the same sorting group, since elsewhere the GroupSort layer is affine. One can now follow
the same steps as those in the proof of Proposition 6 with 𝑛𝑔

(𝑔𝑠
2

)

= 𝑛𝑔𝑔𝑠(𝑔𝑠 − 1)∕2 = 𝑑(𝑔𝑠 − 1)∕2 hyperplanes. □

ppendix D. Proofs of the bounds on the expected knot density of CPWL NNs

roof of Lemma 4. In what follows, the technical developments originate from the fact that 𝒇𝜽 is not differentiable everywhere.
he function 𝒇𝜽◦𝜸 is the composition of two CPWL functions, hence it is CPWL and, therefore, differentiable for almost every 𝑡 ∈ 𝑆.

Note, however, that we cannot assert that the Jacobian of 𝒇𝜽 is well defined at 𝜸(𝑡) for almost every 𝑡 ∈ 𝑆. Indeed, whenever 𝜸
ollows the boundary of two projection regions of 𝒇𝜽, the Jacobian of 𝒇𝜽 along 𝜸 becomes ill-posed. This is why the notion of
irectional derivative is better suited. The characteristic function 𝝋𝜸

𝒇𝜽
of 𝒇𝜽 along 𝜸 is piecewise-constant on 𝑆: We can partition 𝑆

nto finitely many convex regions where 𝝋𝜸
𝒇𝜽

is constant. Let 𝑃 ⊂ 𝑆 denote one of these regions and let 𝑄 ⊂ 𝑆 be a linear convex
egion of 𝜸. Following the definition of the characteristic function, there exists a projection region 𝛺 of 𝒇𝜽 such that 𝜸(int(𝑃 ∩𝑄))

either lies entirely in the interior of 𝛺, or entirely on its boundary. In the first case, 𝒇𝜽 is differentiable in 𝜸(int(𝑃 ∩𝑄)) and we have
that (𝒇𝜽◦𝜸)′(𝑡) = 𝐽𝒇𝜽

(𝜸(𝑡))𝜸′(𝑡) = 𝐷𝜸′(𝑡){𝒇𝜽}(𝜸(𝑡)) for 𝑡 ∈ int(𝑃 ∩ 𝑄). In the second case, 𝜸 is differentiable on int(𝑃 ∩ 𝑄) as well, but
the Jacobian of 𝒇𝜽 is undefined. Fortunately, the directional derivative of 𝒇𝜽 is well defined along 𝜸(𝑡) since, for any 𝑡 ∈ int(𝑃 ∩𝑄),
there exists 𝜖 > 0 such that 𝜏 ↦ 𝒇 𝜃(𝜸(𝑡) + 𝜏𝜸′(𝑡)) is affine on (−𝜖, 𝜖). All in all, the relation (𝒇𝜽◦𝜸)′(𝑡) = 𝐷𝜸′(𝑡){𝒇𝜽}(𝜸(𝑡)) is well defined
for any 𝑡 ∈ int(𝑃 ∩𝑄) and, more generally, for almost any 𝑡 ∈ 𝑆 because of the properties of 𝑃 and 𝑄. We can now write that

E
[

Len(𝒇𝜽◦𝜸)
]

= E
[

∫𝑡∈𝑆
‖

‖

(𝒇𝜽◦𝜸)′(𝑡)‖‖2 d𝑡
]

= E
[

∫𝑡∈𝑆
‖

‖

‖

𝐷𝜸′(𝑡){𝒇𝜽}(𝜸(𝑡))
‖

‖

‖2
d𝑡
]

= ∫𝑡∈𝑆
E
[

‖

‖

‖

𝐷𝜸′(𝑡){𝒇𝜽}(𝜸(𝑡))
‖

‖

‖2

]

d𝑡

≤ sup
𝐱,𝐮∈R𝑑
‖𝐮‖2=1

E[‖𝐷𝐮{𝒇𝜽}(𝐱)‖2]∫𝑡∈𝑆
‖

‖

𝜸′(𝑡)‖
‖2 d𝑡

= Len(𝜸) sup
𝐱,𝐮∈R𝑑
‖𝐮‖2=1

E[‖𝐷𝐮{𝒇𝜽}(𝐱)‖2], (D.1)

where we have used Tonelli’s theorem to interchange the expectation and the integral. □

Proof of Theorem 3. Let 𝑭 𝓁 = 𝒇𝜽𝓁◦⋯◦𝒇𝜽1 . With Proposition 4, we have that

E
[

kt𝜸𝑭 𝓁

]

= E
[

kt𝜸𝒇𝜽𝓁 ◦𝑭𝐿−1

]

≤ E
[

kt𝑭 𝓁−1◦𝜸
𝒇𝜽𝓁

]

+ E
[

kt𝜸𝑭 𝓁−1

]

. (D.2)

We now apply the law of the iterated expectation to obtain that

E
[

kt𝑭 𝓁−1◦𝜸
]

= E𝜽 ,…,𝜽

[

E𝜽

[

kt𝑭 𝓁−1◦𝜸
|𝜽1,… ,𝜽𝓁−1

]]
20

𝒇𝜽𝓁 1 𝓁−1 𝓁 𝒇𝜽𝓁
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≤ E𝜽1 ,…,𝜽𝓁−1
[

𝑑𝜆0Len(𝑭 𝓁−1◦𝜸)
]

, (D.3)

here the inequality follows from the first assumption of the theorem, the application of Proposition 3, and requires the
ndependence of the random variables. We can now apply Lemma 4 recursively to 𝑭 𝓁 and invoke the second assumption of the
heorem to infer that

E
[

kt𝑭 𝓁−1◦𝜸
𝒇𝜽𝓁

]

≤ 𝑑𝜆0Len(𝜸)𝐷𝓁−1
0 . (D.4)

All in all, we just proved that

E
[

kt𝜸𝑭 𝓁

]

≤ E
[

kt𝜸𝑭 𝓁−1

]

+ 𝑑𝜆0Len(𝜸)𝐷𝓁−1
0 , (D.5)

which reads in term of linear densities as

E
[

𝜆𝜸𝑭 𝓁

]

≤ E
[

𝜆𝜸𝑭 𝓁−1

]

+ 𝑑𝜆0𝐷
𝓁−1
0 . (D.6)

his recurrence relation directly yields the announced bound. □

roof of Corollary 3. The proof is similar to the proof of Theorem 2 except that, with the different second assumption, the quantity
𝜽1 ,…,𝜽𝓁−1 [Len(𝑭 𝓁−1◦𝜸)] can be bounded by 𝐷0Len(𝜸) (Lemma 4). In the end the recurrence relation (D.6) is changed into

E
[

𝜆𝜸𝑭 𝓁

]

≤ E
[

𝜆𝜸𝑭 𝓁−1

]

+𝐷0𝜆0 𝑊 . □ (D.7)
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