
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

The inductive bias of deep learning: Connecting
weights and functions

Guillermo ORTIZ JIMENEZ

Thèse n° 9898

2023

Présentée le 5 décembre 2023

Prof. A. M. Alahi, président du jury
Prof. P. Frossard, directeur de thèse
Prof. F. Yang, rapporteuse
Dr W. Brendel, rapporteur
Prof. M. Wyart, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de traitement des signaux 4
Programme doctoral en génie électrique

«Dans la vie, rien n’est à craindre, tout est à comprendre.

C’est maintenant le moment de comprendre davantage,

afin de craindre moins. »

Nothing in life is to be feared, it is only to be understood.

Now is the time to understand more,

so that we may fear less.

— Maria Salomea Skłodowska-Curie

i

Acknowledgements

In aworld that tends to glorify solo achievements, it is crucial to recognize that science ismore of a

joint act than a solo performance. While our culture might put a spotlight on standout moments

of brilliance, genuine progress comes from the combined endeavor of thousands of contributors

who, through their incremental, and sometimes random, steps shape the trajectory of science.

This thesis is not just part ofmy personal story; it is the outcome of a collaborative effort involving

fantastic individuals who offered support, shared their knowledge, taughtme, and influenced this

journey. I want to sincerely thank all those who played a pivotal role in shaping this research, ac-

knowledging that the intellect and support of many have been fundamental to writing this thesis.

First of all, I am profoundly grateful to Pascal Frossard, my PhD advisor, for his unwavering

trust and belief in me right from the beginning. At a time when I was navigating a challenging

period, Pascal welcomed me into his lab and gave me the time and space to grow as a researcher.

He saw potential in me when I had little proof to offer and I will always be thankful to him for

this. Throughout my entire PhD journey, Pascal has been a constant pillar of support, cheering

me on every step of the way and lifting me up when the outcomes were not as good as expected.

I also want thank my PhD committee — Alexandre Alahi, Wieland Brendel, Matthieu Wyart,

and Fanny Yang. Their insightful feedback and friendly discussions during the defense made me

feel truly valued as a researcher and emphasized the sense of community in my academic journey.

A special thank you goes to Philip Torr for his warm welcome at the University of Oxford

duringmy visit. From the beginning, Phil treatedme as one of his students and acted as a fantastic

mentorwhoplaced significant value onmy contributions and cared aboutmy career. Thewarmth

and openness of the entire Torr Vision group made me feel like a welcomed member, and this

experience was key in broadening my research horizons and perspectives.

I want to express my sincere gratitude to Efi, Rodolphe, and the entire Google Research team

inZürich for being such fantastic hosts duringmy internship. Efi andRodolphe, in particular, are

excellent mentors, and guided me through the intricacies of conducting research in an industry

setting. Their insights enriched my understanding of the field but also played a crucial role in

preparing me for the next steps in my career.

I especially want to acknowledge the invaluable contributions of all my co-authors who liter-

ally wrote this thesis with me. In this regard, I want to express my special thanks to Alessandro,

iii

Acknowledgements

Apostolos, Gizem,Mark and Pau—my co-first authors?—whose shared responsibility and ded-

ication have been instrumental in shaping the research presented here. I want to emphasize that

I do not like to do research alone, and their collaborative spirit has not only made the scientific

aspects of this thesis stronger but has also made the entire journey more enjoyable. Beyond the

professional collaboration, these co-first authors have become friends, and I am grateful for the

positive impact they have had in my life.

As we grow older and advance in our careers, we tend to forget the importance that our early

mentors had in guiding us to where we are. In my case, I want to truly thank Jesús, Norbert,

Sundeep and Geert for their mentorship, generosity and support that eventually led me to EPFL

and to become the researcher I am today.

Having seniormentors is important, but sometimes equally important is to have colleagues and

friends that teach you and inspire you. For this reason, I cannot express how lucky I feel for having

met and worked with Apostolos and Seyed. I will always be in debt for all their unconditional

help when I started my PhD. Their curiosity, intelligence and passion genuinely inspired me to

do research, and I am very confident when I say that this thesis would not exist without them.

I also want to sincerely thank all the past and present members of LTS4, EPFL friends and my

many wonderful students. Doing a PhD during a global pandemic is tough, but having amazing

officemates like these made it feel almost like an easy task. It has been a real pleasure to be part

of this group and I hope that that the fantastic social and collaborative spirit of the lab continues

in the future. My gratitude extends to our amazing secretary Anne, whose relentless work and

positivity makes such a big difference in our PhD lives.

To all my friends from Lausanne, Madrid, Oxford, Zürich, and beyond: Thank you for always

being there, and for making life so fun! Regardless of where we end up, I will always cherish our

moments together and I hope that our friendship lasts for many years to come.

My sincerest gratitude goes to my family. You are the true reason that I am here. Your love

and encouragement have and will always take me wherever I go, and I feel extremely grateful for

having you all by my side.

Finally, there is one person that deserves my biggest acknowledgment, and I cannot thank her

enough for her support, her patience, her brilliance or her love. Berta, my life is so much better

thanks to you. I just hope that I can give you at least a fraction of what you always give to me.

A todos vosotros, ¡muchas gracias!

Lausanne, 14 November 2023 Guillermo Ortiz Jiménez

iv

Abstract

Years of a fierce competition have naturally selected the fittest deep learning algorithms. Yet, al-

though these models work well in practice, we still lack a proper characterization of why they do

so. This poses serious questions about the robustness, trust, and fairness of modern AI systems.

This thesis contributes to bridge this gap by advancing the empirical and theoretical understand-

ing of deep learning, with a specific emphasis on understanding the intricate relationship between

weight space and function space and how this shapes the inductive bias.

Our investigation starts with the simplest possible learning scenario: learning linearly separable

hypotheses. Despite its simplicity, our analysis reveals that most networks have a nuanced induc-

tive bias on these tasks that depends on the direction of separability. Specifically, we show that

this bias can be encapsulated in an ordered sequence of vectors, the neural anisotropy directions

(NADs), which encode the preference of the network to separate the training data in a given di-

rection. The NADs can be obtained by randomly sampling the weight space. This does not only

establish a strong connection between the functional landscape and the directional bias of each

architecture but also offers a new lens for examining inductive biases in deep learning.

We then turn our attention to modelling the inductive bias towards a more generalized set of

hypotheses. Todo so, we explore the applicability of the neural tangent kernel (NTK) as an analyt-

ical tool to approximate the functional landscape. Our research shows thatNTK approximations

can indeed gauge the relative learning complexities across numerous tasks, evenwhen they cannot

predict absolute network performance. This approximationworks best when the learned weights

lie close to the initialization. This provides a nuanced understanding of the NTK’s ability in cap-

turing inductive bias, laying the groundwork for its application in our subsequent investigations

The thesis then explores two critical issues in the deep learning research. First, we scrutinize

implicit neural representations (INRs) and their ability to encode richmultimedia signals. Draw-

ing inspirations on harmonic analysis and our earlier findings, we show that the NTK’s eigen-

functions act as dictionary atoms whose inner product with the target signal determines the final

reconstruction performance. INRs, which use sinusoidal embeddings to encode the input, can

modulate the NTK so that its eigenfunctions constitute a meaningful basis. This insight has the

potential to accelerate the development of principled algorithms in INRs, offering new avenues

for architectural improvements and design.

v

Abstract

Second, we offer an extensive study of the conditions required for direct model editing in the

weight space. Our analysis introduces the concept of weight disentanglement as the crucial factor

enabling task-specific adjustments via task arithmetic. This property emerges during pre-training

and is evident when distinct weight space directions govern separate, localized input regions of

the function space. Significantly, we find that linearizingmodels by fine-tuning them in their tan-

gent space enhances weight disentanglement, leading to performance improvements across edi-

tion benchmarks and models.

In summary, our work unveils fresh insights into the fundamental links between weight space

and function space, proposing a general framework for approximating inductive biases in deep

learning, and bringing us one step closer to creating AI systems we can trust.

Keywords: Deep learning science, inductive bias, generalization, neural anisotropy directions,

neural tangent kernel, implicit neural representations, model edition, task arithmetic, weight in-

terpolations.

vi

Resumé

Des années de compétition pour obtenir les meilleurs résultats ont naturellement sélectionné les

meilleures algorithmes d’apprentissage profond. Cependant, bien que ces modèles fonctionnent

très bien en pratique, nous ne disposons toujours pas d’une compréhension appropriée des rai-

sons pour lesquelles ils sont si performants. Cette thèse contribue à pallier ce vide en développant

la compréhension empirique et théorique de l’apprentissage profond, en étudiant la relation com-

plexe entre l’espace des poids et l’espace des fonctions et la façon dont elle façonne le biais inductif.

Notre étude commence par le scénario d’apprentissage le plus simple possible : l’apprentissage

d’hypothèses linéairement séparables. Malgré cette simplicité, notre analyse révèle que la plupart

des réseauxontunbiais inductif complexe vers ces tâchesqui dépendde la directionde séparabilité.

Plus précisément, nous montrons que ce biais peut être encapsulé dans une séquence ordonnée

de vecteurs, les directions d’anisotropie neuronale (DAN), qui encodent la préférence du réseau

à séparer les données dans une direction determinée. Les DANs peuvent être obtenues par un

sampling aléatoire de l’espace des poids, ce qui permet d’établir un lien entre le profil fonctionnel

et le biais directionnel de chaque architecture.

Nous nous intéressons ensuite à la modélisation du biais inductif vers un ensemble généralisé

d’hypothèses. Pour ce faire, nous explorons l’applicabilité du noyau neuronal tangent (NNT) en

tant qu’outil permettant d’approximer le profil fonctionnel. Nous montrons que ces approxima-

tions peuvent en effet évaluer les complexités d’apprentissage relatives dans de nombreuses tâches,

même si elles ne peuvent pas prédire leur performance absolue. Cela permet une compréhension

nuancée de la capacité duNNT à capturer le biais inductif, tout en révélant également des aspects

dynamiques clés à propos de la dynamique du noyau.

La thèse explore ensuite deux questions cruciales dans la recherche sur l’apprentissage profond.

Tout d’abord, nous examinons les représentations neuronales implicites (RNI) et leur capacité à

encoder des signauxmultimédia riches. En nous inspirant de l’analyse harmonique et de nos résul-

tats antérieurs, nousmontronsque les fonctionspropres duNNTagissent comme les atomesd’un

dictionnaire dont le produit scalaire avec le signal objectif détermine la performance de la recons-

truction finale. Les RNIs, qui utilisent des signaux sinusoïdaux pour coder leur entrée, peuvent

moduler le NNT de manière à ce que ses fonctions propres constituent une base significative.

vii

Resumé

Deuxièmement, nous proposons une étude des conditions requises pour l’édition directe de

modèles dans l’espace de poids. Pour ce faire, nous introudisons le concept de démêlage des poids

comme le facteur crucial permettant des ajustements précis. Cette propriété apparaît au cours du

pré-entraînement et est évidente lorsque des directions distinctes de l’espace des poids régissent

des régions localisées et séparées dans l’espace des fonctions. De plus, nous constatons que la linéa-

risation desmodèles améliore la séparation des poids, ce qui conduit à des améliorationsmarquées

des performances dans de nombreux benchmarks.

En résumé, notre travail dévoile de nouvelles perspectives sur les liens fondamentaux entre l’es-

pace des poids et l’espace des fonctions en apprentissage profond, et propose un cadre général pour

l’étude approximative des biais inductifs des réseaux neuronaux dans de nombreux scénarios.

Mots clefs : Science de l’apprentissage profond, biais inductif, généralisation, directions d’ani-

sotropie neuronale, noyau neuronal tangent, representations neuronales implicites, édition de

modèles, interpolation des poids

viii

Contents

Acknowledgements iii

Abstract (English / Français) v

1 Introduction 1

1.1 Understanding modern deep learning . 1

1.2 A tale of inductive bias . 2

1.3 Weight space and function space connections 3

1.4 Thesis outline and list of contributions . 4

2 Background 7

2.1 Deep learning theory . 7

2.1.1 Rethinking statistical learning theory 7

2.1.2 Implicit bias and double descent . 9

2.1.3 Neural kernels . 11

2.2 Deep learning science . 12

2.2.1 Inductive bias and generalization . 13

2.2.2 Loss landscapes and weight space . 14

2.2.3 Underspecification . 17

2.3 Modern deep learning practice . 18

2.3.1 Pre-training and scale . 18

2.3.2 Modern architectures . 19

2.3.3 Model editing . 22

2.4 Summary . 23

3 A simple inductive bias hidden in random weights 25

3.1 Introduction . 25

3.2 Directional inductive bias . 27

3.2.1 Anisotropic loss of information . 29

3.2.2 Anisotropic conditioning of the optimization landscape 29

ix

Contents

3.3 Neural anisotropy directions . 31

3.3.1 Analytic computation of NADs . 33

3.3.2 Numerical estimation of NADs . 34

3.3.3 NADs capture inductive bias . 35

3.4 NADs beyond linearly separable datasets . 37

3.4.1 NADs define the order of selection of features 37

3.4.2 NADs are necessary for generalization 38

3.4.3 NADs and underspecification . 39

3.5 Conclusion . 40

4 Approximating inductive bias in the tangent space 43

4.1 Introduction . 43

4.2 Preliminaries . 45

4.3 Linearized models can approximate inductive bias for deep networks 47

4.3.1 Learning NTK eigenfunctions . 48

4.3.2 Learning linear predictors . 49

4.4 Sources of the non-linear (dis)advantage . 52

4.4.1 The non-linear advantage depends on the sample size 52

4.4.2 The kernel rotates in a single axis . 53

4.4.3 Kernel rotation improves speed of convergence, but can hurt generaliza-

tion . 56

4.5 Conclusion . 58

5 Understanding the spectral bias of implicit neural representations 59

5.1 Introduction . 59

5.2 Expressive power of INRs . 62

5.3 Failure modes of INRs . 65

5.3.1 Imperfect recovery . 65

5.3.2 Aliasing . 67

5.4 Inductive bias of INRs . 69

5.4.1 Meta-learning as dictionary learning 71

5.5 Conclusion . 73

6 The functional landscape of task arithmetic and the tangent space 75

6.1 Introduction . 75

6.2 Problem statement . 77

6.3 Task arithmetic is not a consequence of linear fine-tuning 78

x

Contents

6.4 Weight disentanglement . 81

6.5 Enhancing task arithmetic via linearization 84

6.6 Towards understanding task arithmetic . 87

6.6.1 Eigenfunction localization . 87

6.6.2 Weight disentanglement emerges during pre-training 90

6.7 Conclusion . 91

7 Conclusion 93

7.1 Summary . 93

7.2 Future directions . 95

A An inductive bias hidden in random weights 99

A.1 Experiments on linearly separable datasets . 99

A.1.1 General training setup . 99

A.1.2 Experiments on DFT basis . 99

A.1.3 Further experiments with NADs . 101

A.2 Deferred proofs . 102

A.2.1 Proof of Proposition 3.1 . 102

A.2.2 Proof of Proposition 3.2 . 103

A.2.3 Proof of Proposition 3.3 . 106

A.3 Analytic NAD examples . 107

A.4 NADs of CNNs . 110

A.4.1 NADs obtained through the gradient covariance 110

A.4.2 NADs obtained through the mixed second derivative 115

A.5 Details of experiments on CIFAR10 . 119

B Approximating inductive bias in the tangent space 121

B.1 General training setup . 121

B.2 NTK computation details . 121

B.3 Additional results . 123

C Understanding the spectral bias of implicit neural representations 125

C.1 Deferred proofs . 125

C.1.1 Proof of Theorem 5.1 . 125

C.1.2 Three-layer SIREN example . 132

C.2 Imperfect recovery . 134

C.3 Aliasing . 134

xi

Contents

C.4 NTK eigenfunctions as dictionary atoms . 134

C.4.1 Estimation of eigenfunctions of the NTK 134

C.4.2 Training details . 135

C.4.3 Experiments on additional networks 136

C.5 Meta-learning experiment . 136

C.5.1 Experimental details . 136

C.5.2 Experiments with an additional meta-learning algorithm 137

C.5.3 Experiments on additional networks 137

D The functional landscape of task arithmetic and the tangent space 139

D.1 Experimental details . 139

D.2 Implementation aspects of linearized models 140

D.3 Further experimental results . 142

D.3.1 Fine-tuning accuracies . 142

D.3.2 Task arithmetic with a convolutional architecture 144

D.3.3 Weight disentanglement in other architectures and modalities 144

D.3.4 Further experiments with randomly-initialized networks 145

Bibliography 147

Curriculum Vitae 175

xii

1 Introduction

“They told me computers could only do arithmetic.”

— Grace Brewster Hopper

In the ever-expanding landscapeof technology and innovation,artificial intelligence (AI) stands

as one of the most transformative forces of our time. Deep learning, a subfield of AI, has revo-

lutionized industries, delivering unparalleled results in fields ranging from healthcare to software

engineering and autonomous driving. However, the remarkable performance of deep learning

models hides an underlying complexity that we are only beginning to unravel.

While modern deep learning algorithms continue to achieve state-of-the-art results, the lack

of a concrete understanding of why they work so effectively poses challenges and questions that

extend beyond mere academic curiosity. Concerns related to robustness, trust, and fairness have

arisen, casting a shadow on the otherwise bright landscape of AI advancements.

This thesis embarks on a journey to explore the enigmatic realms of deep learning, delving into

the intricate relationship between theweight space – the space that contains the network’s parame-

ters – and the function space – the set of functions that a network can represent. This connection is

key to characterize deep learning’s inductive bias – the set of assumptions that themodelmakes to

generalize from training data to unseen instances – and forms the core of the generalization phe-

nomenon that both fascinates and eludes researchers. Understanding this inductive bias, thus,

holds the potential to unravel the strengths and weaknesses of contemporary AI systems.

1.1 Understanding modern deep learning

The evolution of deep learning has been nothing short of extraordinary. Emerging from the foun-

dations of simple perceptrons in the late 1950s [214], deep learning has undergone significant

transformations in the last decades. Innovations in architectures like convolutional neural net-

works (CNNs) [128], recurrent neural networks (RNNs) [100], and the more recent transform-

ers [245] have catalyzed progress across domains. These advances have not only enabled the analy-

sis of complex, high-dimensional data but also facilitated the creation of versatile models, capable

1

Chapter 1. Introduction

of addressing a broad array of challenges across various applications such as image classification,

natural language processing and multimedia representations.

Scale and computational requirements have empowered these technological leaps. Modern

deep learningmodels, characterized by an ever-increasing number of parameters andmassive data,

necessitate vast computational resources. This trend has concentrated power within a few entities

capable of handling this computational overhead. As a result, the rise of large pre-trained models

and the ability to edit them has emerged as a vital aspect to ensure broader access and control.

Along with this, the surprising emergence of abilities such as zero-shot classification [199] or in-

context learning [201] has further spotlighted the capabilities and the mysteries of these models.

This emphasis on large-scale models has streamlined methodologies across diverse applications,

with end-to-end training via gradient descent as a common thread.

However, the impressive accomplishments of deep learning mask an underlying enigma: De-

spite the empirical success and widespread adoption of these algorithms, a cohesive and rigorous

understanding of why they work so effectively remains elusive. This gap in understanding is not

merely theoretical curiosity; it carries tangible implications that impact the pace of innovation

and the trust we place in these algorithms. Examples of these knowledge gaps are abundant. Sit-

uations where models fail without clear reason or adversarial examples that confuse even high-

performing models emphasize our incomplete understanding [186]. These gaps in knowledge

necessitate deeper theoretical insights, a need that this thesis aims to address by exploring the nu-

anced realm of inductive biases and the complex interplay between weight space and function

space in neural networks.

1.2 A tale of inductive bias

Human intelligence is characterized by its ability to make predictions about the future based on

experiences from the past. This is known as inductive reasoning and it is the main aspiration of

modern AI research. Learning from limited training data, however, is an outstanding challenge.

There are normally numerous models that can perfectly explain the observed data, but usually

only a handful of them are able to generalize to unseen instances.

Tofind thesemodels, amachine learning algorithmneeds to exploit its so called inductive bias: a

set of a priori assumptions about the world that allows it to find the solutions that are more likely

to generalize [19, 162]. Examples of such biases include translation invariance in CNNs [128]

or permutation invariance in graph neural networks [29]. However, more implicit biases have

also been reported, such as the spectral bias – preference for low-frequency functions [205] –

or compositionality bias – preference to learn complex functions as the composition of simpler

ones [165]. In deep learning, the inductive bias of neural networks is responsible for the exciting

2

1.3 Weight space and function space connections

results that have recently revolutionized AI. Years of a fierce competition towards the best results

havenaturally selected the fittest deep learningmethods; but, although these algorithmsworkwell

in practice, we still lack a proper characterization of why they do so. This poses serious questions

about the robustness, trust, and fairness of modern AI systems; while it hinders its application to

new domains. One of the primary goals of this thesis, therefore, is to develop methodologies to

systematically identify and manipulate neural networks’ inductive biases.

Thesis objective 1

Developing tools to identify and manipulate the inductive bias of deep neural networks.

However, the task of dissecting andunderstanding the inductive biaseswithin a neural network

is far from straightforward. Multiple inductive biases often co-exist; while architecture, data, and

optimization all play a role in shaping the inductive bias. In this thesis, we posit that a nuanced un-

derstanding of the relationship between weight space and function space is pivotal for advancing

such efforts. This relationship serves as the fabric in which multiple inductive biases are inter-

woven, and decoding it can shed light on the underlying mechanisms that drive neural network

behavior. As the thesis progresses, we will introduce new tools and methodologies for probing

andmanipulating these biases with greater accuracy, aiming to ultimately bridge the gap between

theoretical insights and empirical achievements in deep learning.

1.3 Weight space and function space connections

Mathematically, a neural network is a function f : X×Θ→ Ymapping inputsx ∈ X ⊆ Rd to

outputs y ∈ Y ⊆ Rc, parameterized by a set of weights θ ∈ Θ ⊆ Rm. Within this framework,

the weight space Θ and the function space F play a pivotal role. The weight space comprises all

possible configurations of the neural network’s parameters such that each pointθ ∈ Θ represents

a unique setting of the network’s weights. Conversely, the function space encompasses the set of

all functions that the neural network can represent: For a given input space X and output space

Y , the functional landscape consists of all mappings f(θ) : X → Y that can be realized by some

weight configuration θ ∈ Θ.

The understanding of how changes withinΘ translate to corresponding alterations withinF
is central to discerning the neural network’s inductive bias. Every movement in the weight space,

such as along the optimization trajectory, leads to changes in themapped function; and particular

training may favor some changes more than others. Yet, comprehending the complex geometry

of the functional landscape is a formidable challenge. The highly non-linear nature of neural net-

works, coupled with the intricacy of their multi-layered architecture, defies conventional mathe-

3

Chapter 1. Introduction

matical analysis. The loss landscape is fraught with non-convexities, high-dimensional complex-

ities, and various minima, pushing the boundaries of our current mathematical capabilities [261,

262]. These complexities demand empirical methodologies that extend beyond mere theoretical

analysis [168] and its development is another main objective of this thesis:

Thesis objective 2

Empirically characterizing how the connections between weights and functions affect a

network’s learning capabilities.

This thesis rises to this challenge in part by adopting a dual strategy: First, we study controlled

scenarios with carefully designed synthetic tasks on real-world networks to peel away layers of

complexity and isolate essential phenomena. Second, we employ local linearization techniques to

approximate themappingbetweenweights and functions around specific initializations. Byprob-

ing and testing the limits of this approximation over multiple settings we advance our empirical

understanding of the dynamics of deep learning and its capabilities. We uncover hidden inductive

biases on modern architectures that permit to discover new ways to enhance their performance.

Overall, this thesis unveils fresh insights into the functional landscape of deep learning, paving

the way towards the development of a general framework to study the inductive bias of neural

networks in many scenarios.

1.4 Thesis outline and list of contributions

Chapter 2 sets the scene for the rest of the thesis, offering an overview of the field of deep learning

science and contemporary deep learning practices. It covers the theories, concepts, and notions

essential to understanding the research that follows, as well as the related work.

In Chapter 3, we initiate our investigation by analyzing the simplest possible learning setting:

learning linearly separable hypotheses. This examination proves to be an insightful starting point.

Surprisingly, we show that, depending on the direction of the discriminative features, many state-

of-the-art deep neural networks can only solve a handful of these tasks. This observation will lead

us to the introduction of the concept neural anisotropy directions (NADs): an ordered sequence

of vectors that encapsulates the directional inductive bias of an architecture, and encodes the pref-

erence of a network to separate the input data based on some particular features. Interestingly, the

NADs can be found by exploiting only the functional biases present at initialization, acting as a

signature of the functional landscape of a given architecture. Finally, we show that the impor-

tance of NADs is not limited to linearly separable tasks, and that they determine the selection of

discriminative features on many image classification settings.

4

1.4 Thesis outline and list of contributions

Building on this foundation, Chapter 4 serves as an extension towards more generic learning

settings. Specifically, it explores the use of local linearization techniques, i.e., the neural tangent

kernel (NTK) theory [64, 110], in order to approximate the inductive bias of a model with respect

to any learning task. To test the applicability of such an approximation method, we conduct

a systematic analysis comparing the performance of different architectures with their linearized

versions on several problems with the same data support, but different labels. Doing so, we show

that linearized approximations can indeed rank the learning complexity of certain tasks for neu-

ral networks, even if they cannot predict their absolute performance. That is, we can use kernel

proxies to approximate inductive bias, at least in a small area around initialization. For example,

we show that the NTK at initialization can be used to identify NADs. As an additional observa-

tion, we note that neural networks do not always outperform their kernel approximations, as it

has previously been conjectured [64]. Instead we find that the performance gap heavily depends

on architecture, dataset size and training task; and it is a reflection of a new type of inductive bias

responsible for the evolution of the NTK during training.

These initial chapters provide a set of novel tools to reason about inductive bias and the func-

tional landscape in the rest of the thesis. In subsequent chapters, therefore, we use these new

analytic tools to explore important open questions in deep learning research.

Chapter 5 delves into the first of these questions, probing the mechanisms employed by im-

plicit neural representations (INRs) [229, 237] to overcome the spectral bias and create efficient

encodings of richmultimedia signals. We reveal that the structure of INRs allows them to express

signals with exponential frequency support, growing only linearly with depth. Expanding on our

previous NTKmethods, and utilizing tools of harmonic analysis we explore the inductive bias of

INRs and show that the eigenfunctions of their NTK can be seen as dictionary atoms that de-

termine reconstruction performance. Furthermore, we explore how certain pre-training schemes

can modulate their NTK, transforming its eigenfunctions into a meaningful basis.

In Chapter 6 we pivot to another critical issue in deep learning: the manipulation and edition

of large pre-trained models. While the subject matter shifts, our analytical lens remains constant,

aswe also use local linearization techniques and systematic evaluations to understandwhich prop-

erties of the function space permit the effective edition of large-pretrained models directly in the

weight space. With a focus on weight interpolation techniques [104], this chapter presents a com-

prehensive study of model edition in large pre-trained models, revealing that weight disentangle-

ment – and not an approximate linear behavior – is the crucial factor that makes weight interpo-

lations effective. This newly discovered property arises during pre-training and manifests when

distinct directions in theweight space govern separate, localized regions in the function space asso-

ciated with the tasks. Notably, we show that fine-tuningmodels in their tangent space by lineariz-

ing them amplifies weight disentanglement. This leads to substantial performance improvements

5

Chapter 1. Introduction

across multiple edition benchmarks and diverse models. Building on these findings, we provide

theoretical and empirical analyses of theNTK of these models and establish a compelling link be-

tween weight disentanglement and the spatial localization of the NTK eigenfunctions. Overall,

this chapter uncovers novel insights into the fundamental mechanisms of weight interpolation

techniques and offers a more effective approach to edit pre-trained models through linearization.

Finally, in Chapter 7, we reflect on our discoveries, their impact, limitations, and potential

avenues of future work. Our findings shed light on the fundamental links between weight space

and function space, unveiling fresh insights and methodologies. This understanding brings us

closer to creating AI systems that are not only powerful but also trustworthy, emphasizing the

importance of deep learning science in AI research.

List of contributions This thesis is mainly based on the following research articles:

• G. Ortiz-Jiménez?, A. Modas?, S. Moosavi-Dezfooli, P. Frossard. “Neural Anisotropy

Directions”. In: Advances in Neural Information Processing Systems (NeurIPS). 2020

• G. Ortiz-Jiménez, S. Moosavi-Dezfooli, P. Frossard. “What can linearized neural net-

works actually say about generalization?”. In: Advances in Neural Information Processing

Systems (NeurIPS). 2021

• G. Yüce?,G. Ortiz-Jiménez?, B. Besbinar, P. Frossard. “A structured dictionary perspec-

tive on implicit neural representations”. In: IEEEConference on Computer Vision and Pat-

ter Recognition. 2022

• G. Ortiz-Jiménez?, A. Favero?, P. Frossard. “Task arithmetic in the tangent space: Im-

proved editing of pre-trained models”. In: Advances in Neural Information Processing Sys-

tems (NeurIPS). 2023 (Oral)

?The authors contributed equally.

6

2 Background

„Denk nicht, sondern schau!“

Don’t think, but look!

— Ludwig Wittgenstein

In this chapter, we will establish the foundational context of our investigation into the induc-

tive bias and functional landscape of deep learning. Structured in three main sections – (i) deep

learning theory, (ii) deep learning science and (iii) modern deep learning practice – this chapter is

designed to equip readers with the critical theoretical and empirical insights necessary for under-

standing the intricate questions addressed in subsequent chapters. We will navigate through the

classical theories of statistical learning, explore empirical phenomena that challenge these theories,

and examine the current practices that reflect these complexities.

2.1 Deep learning theory

Deep learning theory encompasses the mathematical frameworks focused on understanding gen-

eralization, approximation and optimization in deep learning. In this section, our objective is

to provide a brief summary of these frameworks, starting with the formalization of the learning

problem in classical statistical learning theories. Despite the foundational role of these theories,

we will expose their inadequacies in accounting for the distinct generalization behavior observed

in deep learning. This emphasizes the need for novel theoretical perspectives. We will then pro-

ceed to survey the most promising attempts to develop a contemporary theory of generalization

in deep learning, evaluating their potential contributions and limitations.

2.1.1 Rethinking statistical learning theory

Statistical learning theory is the classical framework used to study generalization inmachine learn-

ing. In this formalism, the objective is to approximate, or learn, a target function f? : X → Y
with a function, or hypothesis, f : X → Y drawn from a hypothesis space F , using a finite set of

7

Chapter 2. Background

samples S(f?) = {(xν , f
?(xν))}ν∈[n] drawn i.i.d. from a data distribution µ. Here, X ⊆ Rd

andY ⊆ Rc denote the input and output spaces, respectively.

The quality of this approximation is measured by the expected riskR(f):

R(f) = Ex∼µ[L(f(x), f?(x))], (2.1)

whereL : Y ×Y → R denotes a loss function, such as the classification errorL(y, ŷ) = 1(y 6=
ŷ). The empirical risk R̂(f), computed on the finite sample S(f?), serves as an estimate for the

expected risk, i.e.,

R̂(f) =
1

n

n∑
ν=1

L(f(xν), f
?(xν)). (2.2)

Training, therefore, amounts to the optimization of the empirical risk, i.e.,

minimize
f∈F

R̂(f), (2.3)

with the hope of minimizing the expected risk. The optimization method we use to solve Equa-

tion (2.3) is called the learning algorithm, andwhen these two quantities do not deviatemuch for

the learned hypothesis, we say that this hypothesis generalizes.

Theprincipal contributionof statistical learning theory is theprovisionof generalizationbounds,

which give guarantees on the expected risk based on the empirical risk achieved by a learning al-

gorithm. Most generalization bounds take the form

R(f) ≤ R̂(f) +O

√

ComplexityF (f,S(f
?))

n

. (2.4)

In these bounds, ComplexityF (f,S(f
?)) is a complexity measure of the selected hypothesis f ,

such as VC-dimension [244] or Rademacher complexity [18]. This term encapsulates the induc-

tive bias of the learning algorithm and it reflects the assumptions that the algorithm makes to

constrain the hypothesis spaceF , thereby controlling how f generalizes from S(f?).

The inductive bias, therefore, can be thought of as a lens through which different target func-

tions f? are viewed by the learning algorithm. If f? aligns well with the algorithm’s inductive bias

– embodied in its choice ofF and optimization algorithm– the term in the generalization bound

becomes smaller, leading to more effective generalization. Conversely, if f? misaligns with the in-

ductive bias, the term in the boundmay inflate, making effective generalizationmore challenging.

In classical generalization bounds, the complexitymeasure is typically chosen to be finite for all

f ∈ F and it tends to increase as the hypothesis space becomesmore flexible, allowing for a greater

8

2.1 Deep learning theory

variety of functions to be fit. Importantly, if the hypothesis class is so expansive that it can fit any

set of labels, the complexity measure tends to grow unbounded, rendering the bound vacuous.

This vacuity becomes especially relevant in the context of neural networks. Indeed, their pow-

erful capacity allows them to approximate virtually any function, and this flexibility comes at the

cost of an inflated complexity term in the generalization bounds, which makes these bounds im-

practical to understand generalization in deep learning, motivating the need for new theoretical

frameworks that can effectively capture the nuances of deep learning generalization [167, 261, 262].

2.1.2 Implicit bias and double descent

In the classical view of generalization, effective learning is only possible if we restrict the capacity

of the hypothesis class F . However, this is at odds with our ability to solve Equation (2.3) for

which more expressive function classes are always preferred. To strike the right balance, explicit

regularization plays a pivotal role, as it allows to use very large hypothesis classes while having

control on the complexity of the learned hypothesis. That is, if instead of solving Equation (2.3)

during training, we solve

minimize
f∈F

R̂(f) + λ · Regularization(f). (2.5)

The regularization term in the objective function serves as a direct way to control the complexity

of the selected hypothesis f , as long as it is a good proxy ofComplexityF (f,S(f
?)). In this sense,

the main ethos in classical statistical learning theory has always been to find the “sweet spot” in

regularization strength that balances bias and variance, allowing for optimal generalization perfor-

mance. This is commonly visualized as a single “U-shaped” curve, where both underfitting and

overfitting regimes exist on either side of this optimal point (see Figure 2.1).

However, this classical understanding is challenged by the phenomenon of double descent [21,

72, 169, 233]. Double descent describes a peculiar behavior in the generalization error curve: as we

move from an underparameterized regime into an overparameterized one – where the model has

enough parameters to perfectly interpolate the training data – a second descent in the generaliza-

tion error often occurs (see Figure 2.1). This defies traditional wisdom but can be theoretically

accounted for by what is termed implicit regularization. This term refers to the phenomenon

where the specific optimization algorithm – commonly some variant of gradient descent – intro-

duces its own form of regularization implicitly, i.e., it implicitly solves

minimize
f∈F

ImplicitReg(f) (2.6)

subject to R̂(f) = 0.

9

Chapter 2. Background

Figure 2.1:Conceptual sketch of the double descent phenomenon. Training vs validation error of the
learned hypothesis f as we grow the capacity of the hypothesis class F . The underparameterized regime
denotes the settings in which F is not expressive enough to perfectly interpolate the training data. Here,
the validation error is governed by the classical bias-variance tradeoff and the strength of the explicit regular-
ization. In the overparameterized regime,F contains hypothesis that can perfectly interpolate the training
data and the decrease in validation error is due to the effect of the implicit bias of the learning algorihtm.

Notably, this implicit formof bias onlymanifests in overparameterized regimeswhere the hypoth-

esis spaceF is large enough to fit the data perfectly.

The idea of interpolating data while maintaining generalization is not entirely new and was

previously explored in kernel theory [22]. Specifically, in kernel theory the objective was always to

find an interpolator that alsomet certain smoothness constraints [222]. The difference here is that

kernelmethodsmade this smoothness explicit through the design of the kernel and regularization.

Remarkably, neural networks seem to have the ideal implicit regularization for the semantic

taskswe train them in, which naturally raises the question ofwhat kind of implicit bias is at play in

deep learning architectures [174]. Research efforts have tried to build this understanding from the

ground up, beginning with the simplest learning scenarios. The implicit bias of gradient descent

for linear classifiers has been extensively studied [85, 86, 166, 232], and there have been attempts to

extend these findings to more complex neural network architectures [39, 40, 178, 220]. However,

these efforts have been limited to relatively simple scenarios – typically no more than two-layer

fully connected networks tackling rudimentary classification tasks – due to the complexities of the

mathematical formulations involved. These settings are far removed from the practical and com-

plex environments where deep learning algorithms typically excel. Thus, while we have started to

10

2.1 Deep learning theory

scratch the surface, a comprehensive understanding of the implicit biases guiding deep learning

in practice remains an open question which purely theoretical studies may not be able to address.

2.1.3 Neural kernels

Instead of studying simple toymodels, an alternative line of research has focused on findingmath-

ematical tractability by studying networks with an infinite width. This idea is akin to thermody-

namic limits in statistical physics, where systems are often easier to understand when considered

as infinite ensembles of particles. Under these conditions, neural networks exhibit an elegant cor-

respondence with kernel predictors, offering a promising new lens to understand deep learning.

Let us consider a fully-connected neural network that computes

z(0) = x, (2.7)

z(`) = h

(
1
√
F`

W (`)z(`−1) + b(`)

)
for ` = 1, . . . , L− 1,

f(x;θ) = W (L)z(L−1) + b(L),

where W (`) ∈ RF`×F`−1 and b(`) ∈ RF` , represent the weights and biases of the `-th layer,

respectively, – collected for all layers in θ ∈ Rm to simplify notation – and h : R → R is

a point-wise non-linear activation function. At initialization, all parameters are initialized i.i.d.

from N (0, 1). The infinite-width regime is attained when F` → ∞ for ` = 1, . . . , L − 1.

Importantly, note that the initialization of the weights has to be scaled appropriately by a factor

1/
√
F` to ensure that the limit does not diverge [7, 110]. From now on, and to simplify the no-

tation we will make a slight abuse of notation and use f(θ) to denote the network’s function

f(·;θ) : X → Y represented by the weights θ, where we will distinguish this notation from the

evaluation of a generic function f(x) from the context.

Jacot et al. [110] showed that in the infinite-width limit the network’s function f(θ) behaves as

a kernelized predictor throughout training. In fact, f(θ) and its first-order Taylor decomposition

around the initialization θ0 ∈ Θ become identical, i.e.,

f(x;θ) = f(x;θ0) + (θ − θ0)
>∇θf(x;θ0), (2.8)

Here ∇θf(x;θ0) ∈ Rm denotes the Jacobian of the network with respect to the parameters

evaluated at θ0.

The appeal of NTK theory comes from the fact that in the infinite-width limit the mapping

between weights and functions induced by the network is linear, and the function the network

11

Chapter 2. Background

represents lives in a reproducing kernel Hilbert space (RKHS) given by the neural tangent kernel

(NTK), defined as

kNTK(x,x
′) = ∇θf(x;θ0)

>∇θf(x
′;θ0). (2.9)

Remarkably,whenoptimizing a convex losswith gradient descent,kNTK remains constant through-

out training [110], which allows to use the powerful mathematical machinery derived for kernel

methods [222] in the context of neural networks. For instance, one can show [18] that, with high

probability,

R(f) ≤ R̂(f) +O

√
‖f‖2kNTK

Ex∼µ[kNTK(x,x)]

n

, (2.10)

where ‖f‖2kNTK
denotes the RKHS norm of the predictor, which for positive definite kernels can

be computed as

‖f‖2kNTK
=

∞∑
ρ=1

1

λρ
(Ex∼µ[φρ(x)f(x)])

2. (2.11)

Here, the couples ((λρ, φρ))ρ∈N denote the eigenvalue-eigenfunctionpairs, in order of decreasing

eigenvalues, of the Mercer’s decomposition of the kernel, i.e.,

kNTK(x,x
′) =

∞∑
ρ=1

λρφρ(x)φρ(x
′). (2.12)

We can then see that the complexity measure implicitly minimized by infinitely wide networks is

the RKHS norm, which fully captures their inductive bias.

While the elegance ofNTK theory provides a compelling framework for understanding neural

networks in the infinite-width limit, it has serious limitations to describe the behavior of real-

world, finite-width networks. Most notably, the NTK theory predicts that the parameters of a

neural network will only move infinitesimally during training and that the network will not learn

to extract new features after training [40]. Meanwhile, the main practical appeal of neural net-

works over kernel methods is their ability to learn adaptable representations to the data which al-

lows them to improve their sample complexity [5, 79, 147]. Thus, whileNTK remains an essential

theoretical tool, its practical relevance for finite architectures is an area of ongoing investigation.

2.2 Deep learning science

In this section, we shift our review from the purely theoretical frameworks in deep learning theory

to the growing field of deep learning science [168]. Motivated by the empirical methods of natural

sciences, this field recognizes the limitations of purely theoretical approaches and promotes em-

12

2.2 Deep learning science

pirical methods for understanding deep learning. Specifically, deep learning science views neural

networks as computational black boxes thatmerit empirical study and hypothesis-driven research.

This stance is essential for examiningwhatwe calldeep learning phenomena–observable behaviors

not yet fully explained by theory. The research in this thesis aligns with this empirical approach,

aiming to provide a more detailed understanding of these phenomena.

This empirical perspective complements rather than replaces traditional theoretical approaches.

It equips us with the tools needed to deeply examine areas like inductive biases, functional land-

scapes, and optimization dynamics – topics where theoretical models have fallen short. In a man-

ner similar to empirical physics, deep learning science aims to buildmodels and identify phenom-

ena that clarify observed behaviors and inform future theoretical research.

In the subsections that follow, we delve into these issues further. First, we consider studies that

have pinpointed various inductive biases in neural networks. Next, we review the investigations

on the characteristics of the functional landscape navigated during neural network optimization.

Andfinally, we explore howmodel underspecification and insufficientunderstandingof inductive

biases contribute to reliability and trust issues in the practical use of deep learning.

2.2.1 Inductive bias and generalization

Asmentioned in Section 2.1.2, the main mystery surrounding deep learning is which complexity

measure regulates generalization. With the proliferation of data derived from various training

scenarios, it has become increasingly feasible to turn to data-driven methods and meta-studies to

address this question.

One illustrative example is the study by Jiang et al. [113], which carried out a large-scale exami-

nation of generalizationwithinCNNs. This study delved intomore than 40proposed complexity

measures fromprior literature. Surprisingly, the investigation showed thatmost norm-basedmea-

sures, whichwere theoretically proposed to predict generalization, failed to fulfill this expectation.

In contrast, flatness around the optimizationminimumappeared to correlatewellwith generaliza-

tion performance [99, 116]. This shift in focus led to the development of new algorithms that aim

to decrease sharpness during the optimization process as a method to improve generalization [63,

255]. Despite their positive results, the sharpness conjecture has been challenged in later studies

that have questioned the claimed correlation between flatness and generalization [6]. In this sense,

we do not currently know of a single complexitymeasure that fully correlates with generalization.

Parallel to these studies, other research efforts, including contributions from this thesis, have

proposed to algorithmically identify tasks in which a model can and cannot generalize as a way

to probe inductive bias [9, 187, 188]. Task discovery provides a direct view of the factors affecting

generalizationby systematically evaluating theperformanceof anetworkondifferent tasks. Mean-

while, another strand of research takes a more heuristic approach, exploring different complexity

13

Chapter 2. Background

measures derived from human intuition and meticulous observation. For example, it has been

reported that most architectures exhibit a spectral bias toward low-frequency functions, suggest-

ing that they may be geared towards finding simple patterns in the data that generalize well [205].

Similarly, CNNs seem to rely more on textural patterns than image shape [76], and self-attention

has a bias towards low-rank features and sparsity [51, 247].

Yet another avenue of research dissects the intricacies of the learning dynamics themselves. This

is crucial as optimization and generalization are inherently interlinked in the neural network train-

ing process [171, 262]. Unpacking the sequence in which a model learns from different training

samples can reveal much about its inductive biases [14, 146, 219, 241]. This deep-dive into the

learning process has seen important applications in addressing the robustness of neural networks

to label noise [13, 137, 184].

Finally, a crucial aspect of ongoing research aims to understand the type of representations

that neural networks learn. Interestingly, studies show both striking similarities and specific dif-

ferences in the learned features of different architectures [122, 176, 177, 203]. Moreover, different

layers of the network have varying degrees of specialization which affects the ability to reuse their

features for transfer learning [173, 204]. The notion of feature disentanglement –where ideal rep-

resentations are assumed to separate distinct data variation factors along different directions in the

feature space – is key in these problems [2, 23, 96]. Indeed, the less disentangled a feature space is

the harder it is to use it on a different task. Notably, the natural tendency of training is to erase

such disentanglement at the final layer of a network [192].

2.2.2 Loss landscapes and weight space

The studyof the loss landscape serves as a cornerstone in characterizing the inductive bias of neural

networks. Mathematically, a loss landscape is a scalar field, acting as a summary of the functional

landscape by associating each weight configuration to a loss value. The optimization dynamics

within this landscape fundamentally shape a network’s learning behavior, thereby defining its in-

ductive bias. In this subsection,we review landmark and recent contributions in this domain. Our

focus ranges from understanding optimum connectivity to exploring overparameterization and

dissecting the dynamic differences between non-linear networks and their linear approximations.

A deluge of optima

One of the earliest geometric features scrutinized in the neural network loss landscape is the prop-

erties of the different optima. Given the non-convex nature of neural networks, multiple min-

ima—often global—are commonplace, each with distinct characteristics affecting generalization,

robustness, and other performancemetrics. Understanding the properties of these disparatemin-

ima and the connectivity between them is essential for several reasons.

14

2.2 Deep learning science

θ
(0)
0

θ∗(0)

θ
(1)
0

θ∗(1)

θ
(2)
0

θ∗(2)

θ
(3)
0

θ∗(3)

θ
(4)
0

θ∗(4)

Connected
flat minima

Sharp
minimum

Figure 2.2: Geometry of the loss landscape according to deep learning science. Illustration of the
loss landscape according to different empirical studies. The loss landscape contains multiple minima of
different flatness, and most optimizers favour the flat ones over the sharp ones. Different minima can be
connected through a non-linear path of low loss and different minima basins have different properties.

Not all minima are created equal; the concept of “good” and “bad” minima has been thor-

oughly explored [83, 133, 138]. Sharp minima have been generally associated with poor general-

ization due to their sensitivity to perturbations in the weight space [116]. In contrast, flat minima

are often linked to better generalization as they correspond to larger volumes in the parameter

space, allowing for more robust responses to variations in the data [99] (see Figure 2.2). However,

as we mentioned in Section 2.2.1, recent works have casted doubt on this geometric intuition [6].

The advent of deep neural network ensembles also reveals intriguing facets of the functional

landscape of deep learning [126]. An ensemble of networks evaluated at different minima can re-

sult in a model with superior generalization and robustness capabilities. This is attributable to

functional diversity in the prediction errors of this minima [4, 144].

Initially, the non-convex nature of the loss landscape seemed to suggest that connectingminima

directly in theweight spacewould be impossible. However, research has found that low-loss, non-

linear paths do exist between different minima [54, 69, 189] (see Figure 2.2). Further scrutiny has

shown that minima that share parts of their optimization paths can become linearly connected,

known as linear mode connectivity [66, 114, 161]. This phenomenon is particularly prominent

in the fine-tuning regime[252], and it has also found applications in the development of better

training algorithms that explicitly exploit this connectivity [49, 109, 251].

15

Chapter 2. Background

Equivalence under permutations adds another layer of complexity to this landscape [3, 58, 227].

The high degree of symmetry in neural networks, especially with respect to weight matrices, leads

tomultiple, equivalent solutions that are permutations of eachother. These functionally identical

but weight-space-different minima complicate the understanding of the optimization trajectory.

Weight redundancy and overparameterization

Neural networks are massively overparameterized, challenging traditional machine learning ax-

ioms that equate a higher number of parameters with overfitting. Instead, an abundance of pa-

rameters has been shown to facilitate both optimization and generalization. This paradoxical ad-

vantage opens the door to a variety of investigations aiming to understand the underlying me-

chanics and limits of such redundancy in neural architectures.

The Lottery Ticket Hypothesis provides a plausible explanation, proposing that overparameter-

ized networks harbor smaller, “winning” subnetworks that surface through pruning [65]. Subse-

quent studies on pruning techniques demonstrate that these optimal subnetworks, when prop-

erly initialized, can rival the performance of the original overparameterized models [25].

Despite the apparent redundancy in overparameterized neural networks, recent studies show

that these networks often operate effectively in a much lower-dimensional subspace. Techniques

like training in randomly oriented subspaces have been employed to estimate the intrinsic dimen-

sion of the objective landscape, finding that many problems may actually require far fewer pa-

rameters than the size of the native parameter space [127, 132]. Building on this intuition, many

parameter-efficient fine-tuning techniques had arisen [101, 102, 131, 135], drastically reducing the

number of trainable parameters necessary to fine-tune large pre-trained models.

Linear vs non-linear dynamics

While the NTK fully captures the training dynamics and inductive bias of infinitely wide net-

works, at finite widths the first-order Taylor decomposition of a network provides only a very

loose approximation. That is

f(x;θ) ≈ flin(x;θ) = f(x;θ0) + (θ − θ0)
>∇θf(x;θ0), (2.13)

where flin : X ×Θ→ Y is the best linear approximation of f around θ0, but a really poor one

when ‖θ−θ0‖ is large. The nice thing about flin, though, is that it simplifies the local functional

landscape of a network into a linear one, making it easier to study its local geometry.

In practice, however, the dynamics of f and flin diverge rapidly, making the linear approxi-

mation increasingly inaccurate as training progresses [64, 73]. Moreover, the performance of f is

usually much better than the one of flin on most tasks, in what is often referred to as the non-

16

2.2 Deep learning science

linear advantage. Given this advantage and the rapid divergence of dynamics, research focus has

intensified on understanding the differences between the functional landscape of f and flin.

A key distinction is the evolution of the Jacobian ∇θf(x;θt), and consequently the NTK,

during training. Unlike in the infinite-width case where the NTK remains constant, in finite-

width networks, the NTK evolves as the weights θt change with time t, offering more complex

dynamics [64]. Researchers have delved into this evolving behavior to gain insights intoneural net-

works’ training and generalization properties. For example, studies show that the evolving NTK

tends to align more closely with target functions as training progresses [16, 121, 191]. Though

this is generally considered beneficial for generalization, we will see in Chapter 4 this evolution is

governed by its own inductive bias and may hurt generalization for certain tasks.

In addition to theoretical understanding, several studies have applied linearizedmodels forprac-

tical purposes, such as predicting fine-tuning generalization [48] and training speed [260], as well

as enhancing calibration [145] and few-shot performance [8]. In this thesis, we will also make ex-

tensive use of linearized models and the NTK framework, aiming to advance our understanding

of their strengths andweaknesses. By exploringwhat these tools can and cannot capture, we aspire

to provide new insights into the dynamics and generalization properties of neural networks.

2.2.3 Underspecification

Modern neural networks are brittle. Not only in the adversarially robust sense, but also when

tested under slightly different conditions than the ones used to validate their original performance

[77, 92, 238]. In fact, despite great advances in the validationperformance of neural networks, their

lack of robustness to semantically meaningless distribution shifts remains, to this date, one of the

greatest challenges in deep learning.

Arguably, themain reason for this slowprogress lies in the fact thatwedonot knowhow tohan-

dle the underspecification of most machine learning pipelines, i.e., it is often possible to achieve

the same performance in a held-out validation set using radically different predictors [46]. This

renders the question of which of these predictors do neural networks select extremely important,

making the task of characterizing the inductive bias of deep learning one of the most important

endeavours in deep learning.

The quest to characterize these inductive biases has spawned substantial research, particularly

focusing onhowandwhenneural networks’ generalizationmechanisms diverge fromhuman cog-

nition [75, 77]. Identifying the shortcuts that neural networksmay adopt in lieu of human-like rea-

soning is central to this line of inquiry [28, 74]. This theme is especially relevant in the context of

adversarial robustness [186],where a prevailing hypothesis posits that adversarial examples emerge

from learning feature that are inconsistent with human perception [107, 112].

17

Chapter 2. Background

Out-of-distribution (OOD) generalization is another key challenge related to underspecifica-

tion. Neural networks frequently underperform when exposed to semantically meaningless dis-

tribution shifts, with only a limited set of techniques showing efficacy in improving robustness

OOD [120, 159, 208, 238]. A surge of research efforts has consequently aimed crafting techniques

to bolster OOD resilience and analyze inductive bias in this context [59, 160, 164, 215].

2.3 Modern deep learning practice

In recent years, twomajor trends have reshaped theworldof deep learning: a dramatic upscalingof

model architectures and the widespread adoption of pre-training paradigms. These shifts are not

mere incremental advancements but represent transformative changes that have redefinedwhat is

conceivable in the realm of machine learning. Driven by the surge of unsupervised learning tech-

niques and the enormous volumes of readily available data, pre-training has emerged as an almost

ubiquitous first step in the lifecycle of models, setting the stage for subsequent edition and adap-

tation. At the same time, the convergence of diverse data modalities under unified architectures

shows how the field is consolidating around flexible and powerful models. This section explores

these key developments, explaining their impact on current practices and the field at large.

2.3.1 Pre-training and scale

Pre-training has long been a fundamental component of deep learning pipelines, initially serving

to initialize models on curated datasets before task-specific fine-tuning. However, the advent of

unsupervised techniques like next-token prediction and contrastive learning methods have sig-

nificantly expanded the scope of pre-training [34, 88, 199, 200]. A major shift over the past five

years highlights this evolution: ImageNet-1k [47], previously the gold standard dataset used for

pre-training, is now one of the myriad of tasks employed to gauge the fine-tuning capabilities of

different pre-training schemes [88, 199].

Concurrent with these developments are empirical observations referred to as scaling laws,

which have become an invaluable guide in model development. These laws suggest that model

performance across a variety of tasks improves as the model size increases [94, 95, 115, 257]. In-

triguingly, these enlarged models not only perform better but also demonstrate a nuanced form

of generalization that is often absent in their smaller counterparts. As models grow, a fascinating

set of emergent behaviors becomes apparent, most notably in the form of zero-shot learning [199],

where models make accurate inferences without any fine-tuning, and in-context learning [201],

where the model adapts to new tasks by just showing it examples of the task at its input. Yet,

the computational burden of these larger models cannot be overlooked. Strategies such as model

parallelism and sparsity are key to manage these extensive computational requirements [226].

18

2.3 Modern deep learning practice

Asdeep learning continues to scale up, a formof natural selection appears to be at play, favoring

techniques that are both simple and scalable. For example, the rise of diffusion models [98, 231]

over generative adversarial networks (GANs) [84] serves as a compelling illustration. WhileGANs

offer powerful capabilities, they involve a complex interplay between generator and discriminator

that makes their multi-level training dynamics very complicated. Diffusion models, on the other

hand, offer a streamlined end-to-end training recipe and are compatible with simple gradient-

basedminimization. They have, therefore, naturally risen to prominence as their favorable scaling

properties allows them to be trained on more amounts of data [207, 216].

This unintentional but consistent gravitation towards scalable methods is not merely a prac-

tical curiosity. It raises intriguing questions that are directly relevant to the overarching theme

of this thesis: understanding the inductive biases and generalization properties of deep learning

algorithms. The success of “simple” techniques across diverse tasks and architectures suggests the

tantalizing possibility that there may exist unified, elegant principles that govern the behavior of

deep learning systems.

2.3.2 Modern architectures

The last half-decade has marked a significant evolution in the design philosophies of neural net-

work architectures. As models grow larger and datasets more extensive, the field has observed a

counterintuitive but compelling drift towards removing hard-coded inductive biases from archi-

tectures. Historically, much of the research focus was on engineering architectures to encapsulate

different symmetries, such as shift invariance in CNNs and permutation equivariance in graph

neural networks [29]. However, a compelling hypothesis has emerged: architectures with fewer

engineered inductive biases may be better suited for leveraging large-scale data for intricate, data-

dependent feature learning.

This trend transcends domain-specific applications. Now, computer vision, natural language

processing, and even audioprocessing increasingly rely on similar transformer architectures. More-

over, multimodal networks like Gato or the Perceiver are based on transformers and can process

text, image, and audio data within a single unified model [111, 209].

Attentionmechanisms have become a pivotal part of this architectural revolution [245]. Unlike

convolutions, which employ fixed, localized filters, attention mechanisms allow for a more flexi-

ble, data-driven way of relating input elements. Specifically, attention promotes the learning of

functions dependent on sparse relationships between elements. This design choice departs from

the engineered spatial inductive biases traditionally ingrained in CNNs, questioning the need for

such hard-coded heuristics when abundant data is available [44].

The Vision Transformer (ViT) exemplifies this shift towards less engineered architectures in

large-data regimes [53]. Comprising aminimalist set of elements –multi-head self-attention [245],

19

Chapter 2. Background

layer normalization [10], residual connections [89], and smooth activation functions [93] – ViTs

have successfully rivaledor even surpassed theperformanceofhighly-engineeredCNNs likeResNets

or DenseNets [89, 103, 125]when pre-trained onmassive amounts of data. Intriguingly, replacing

the self-attentionmoduleswith fully connectedor convolutional layers, as seen inMLP-Mixers [240,

243] and ConvMixers, does not substantially degrade performance. This suggests that the atten-

tion mechanism may not be the key of ViT’s success. Rather, it is the harmonious integration of

its modular components that proves crucial. Recent advancements like ConvNeXts extend this

concept, showing that harmonious, modular design principles can yield even higher performance

on vision benchmarks [139].

This shift towards generalized modular architectures raises fundamental questions central to

the thesis. It forces reconsideration of the minimal inductive biases necessary for high perfor-

mance and how such architectural decisions influence the model’s optimization landscape, and

hence its generalization capabilities. We will now delve into two seminal sets of architectures that

play a pivotal role in later chapters of this thesis

Vision and language architectures

One of the most significant advancements in recent deep learning practice has been the rise of

models that effectively integrate vision and language tasks. These architectures are particularly

noteworthy for their ability to utilize uncurated datasets for training and deploy open-vocabulary

classifiers at inference time. By forgoing the necessity of a fixed, hand-labeled set of classes, such

models invite an unprecedented degree of flexibility and adaptability.

CLIP (Contrastive Language–Image Pretraining) stands as a key implementation of this ap-

proach [199]. It employs two separate encoders: an image encoder fimg : Ximg → Z and a text

encoder ftxt : Xtxt → Z , both of which map their respective inputs into a shared latent embed-

ding spaceZ . The model’s training regimen involves a contrastive loss, formally defined as:

Lcontrastive = − log

(
exp
(
sim
(
fimg(ximg), ftxt(xtxt)

)
/τ
)∑

x̃txt∈Xtxt
exp
(
sim
(
fimg(ximg), ftxt(x̃txt)

)
/τ
)), (2.14)

where sim(a, b) = a>b/(‖a‖‖b‖) denotes cosine similarity and τ > 0 is a temperature param-

eter. By training in this manner, CLIP allows for broad task adaptability. Its shared embedding

space enables a variety of vision and language tasks to be solved in a zero-shot or few-shot fashion,

as long as the tasks can be textually described or parameterized.

The philosophy behind CLIP aligns with a broader paradigm shift towards pretraining mod-

els that are both general and easily adaptable. Such models not only bridge multiple modalities

20

2.3 Modern deep learning practice

but also possess a functional landscape that accommodates extensive fine-tuning and multi-task

adaptation. These landscape properties will be a core focus of Chapter 6 in this thesis.

Implicit neural representations

Implicit neural representations (INRs) are another important family of architectures studied in

this thesis. Continuing the trend of converging modalities, INRs fuse the world of signal pro-

cessing into deep learning. In particular, INRs solve the problem of encoding multimedia signals

such as images, audio, or video using neural networks and differentiable optimization.

Mathematically, the goal of an INR is to encode a continuous target signal f? : X → Y repre-

senting themapping between input coordinatesr ∈ X such as pixels, i.e.,X = [0, 1]2, and signal

values f?(r) ∈ Y such asRGB colors, i.e.,Y = [0, 1]3, using a neural network f : X ×Θ→ Y .

This is achieved minimizing a distortion measure, like mean-squared error, during training using

some form of (stochastic) gradient descent.

The continuous parameterization of INRs allows to store signals at a constantmemory cost re-

gardless of the spatial resolution, whichmakes INRs standout for reconstructing high-dimension-

al signals, such as videos or 3D scenes [37, 56, 157, 158, 193, 230, 239]. Themain challenge for INRs,

though, is to reconstruct thehigh frequencydetails ofmostmultimedia signals, e.g., textures in im-

ages. Classical neural network architectures are well-known for their strong spectral bias towards

lower frequencies [205], and this has made them traditionally useless for implicit representation

tasks. Recently, however, few works [229, 237] have come up with different solutions to circum-

vent the spectral bias of neural networks, allowing faster convergence and greater fidelity of INRs.

The twomajor INR architectures are Fourier feature networks (FFNs) [237] and sinusoidal rep-

resentation networks (SIRENs) [229]. Both employ the form

f(r;θ) = MLP(γ(r);θ), (2.15)

where MLP : Z ×Θ → Y is a multi-layer perceptron parameterized by θ, Z ⊆ RT is a latent

feature space, and γ : X → Z is a fixed or learnable non-linear encoding function mapping

vectors r to the latent feature spaceZ .

In FFNs, γ(r) = sin(Ωr + φ) with fixed parametersΩ ∈ RT×d andφ ∈ RT . Specifically,

Tancik et al. [237] showed that initializingΩi,j ∼ N (0, σ2) with random Fourier features [206]

can modulate the spectral bias of an FFN, with larger values of σ biasing these networks towards

higher frequencies. Alternative deterministic initializations, commonly used for neural rendering

algorithms [158], can be considered special cases of these networks, where the frequencies in Ω

are normally taken to be powers of 2 and the frequencies inφ alternate between {0, π/2}.

21

Chapter 2. Background

On the other hand, SIRENs use γ(r) = sin
(
ω0(W

(0)r + b(0))
)
, with learnable parameters

W (0) ∈ RT×d and b(0) ∈ RT . Besides, SIRENs also use sinusoidal activation functions as the

non-linearities of the MLP. Analogously to Tancik et al. [237], Sitzmann et al. [229] also showed

that, by rescaling the parameters at initialization of a SIRENby a constant factorω0 > 0, they can

alsomodulate the spectral bias; with largerω0 biasing these networks towards higher frequencies.

Despite the ample empirical evidence that shows that these architectures are effective at repre-

senting natural images or other visual signals, there is little theoretical understanding of how they

do so. To showcase the applicability of the insights in this thesis, in Chapter 5, therefore, we will

delve onto the intricacies of INRs’ designs and explain, under a unified theoretical framework,

how sinusoidal encodings can modulate the inductive bias of INRs.

2.3.3 Model editing

While large pre-trained models come pre-equipped with a rich set of features, they are not uni-

versally optimal across all tasks and conditions. Indeed, to enhance their performance on down-

stream tasks [104, 105, 265], align them with human preferences [80, 143, 190, 212], and increase

their robustness [186, 218, 253], they often necessitate further editing.

However, these editing methods come with their own sets of challenges and trade-offs. For in-

stance, fine-tuning across multiple tasks often demands significant computational resources and

can lead to overfitting on specific tasks at the expense of others. The reliance on human feedback

for alignment poses questions on scalability and objectivity [190, 217]. Furthermore, task-specific

improvements sometimes lead to the model losing its ability to generalize well to unseen tasks,

a phenomenon known as catastrophic forgetting [67, 155]. Therefore, task-specific performance

boosts may inadvertently result in the degradation of zero-shot accuracy [253].

Recent innovations inweight interpolation techniques, often referred to as task arithmetic[104],

provide an alternative approach that is both cost-effective and scalable. Several studies have shown

that interpolating between a model’s fine-tuned weights and its pre-trained initialization can lead

to improvedperformance on single tasks, even surpassing their fine-tuning accuracies [66, 109, 154,

253]. Similarly, in the multi-task setting, averaging the parameters of multiple fine-tuned models

has been proposed to produce superior multi-task models [104, 105, 134, 252] that avoid catas-

trophic forgetting [67, 155] and evenprovide abetter startingpoint for subsequentfine-tuning [41,

50]. Interestingly, the benefits of weight ensembles and interpolations extend to models trained

from scratch, as long as they are properly aligned before merging [3, 227]. This phenomenon has

been observed to enhance downstream performance, further emphasizing the potential of weight

interpolation and task arithmetic techniques to edit pre-trained models.

The advent of task arithmetic poses intriguing questions. For one, it opens up efficient path-

ways formodel editingwithout requiring an overhaul of the existing architecture or extensive fine-

22

2.4 Summary

tuning, thus mitigating some of the trade-offs discussed earlier. Moreover, the empirical success

of these weight interpolation techniques prompts deeper questions about the representational

capacity of neural network weights and how they encapsulate functional behaviors. Answering

these questions by understanding what are the properties of the functional landscape that make

them possible will be the main focus of Chapter 6.

2.4 Summary

In this chapter, we have established the foundational context for the upcoming investigations of

this thesis into the inductive bias and the functional landscape of deep learning. Beginning with

deep learning theory, wehave delved into the statistical learning framework formalizing the notion

of generalization and learning. We have highlighted the limitations of classical learning theories

in comprehensively accounting for the generalization behavior observed in deep learning, under-

scoring the need for novel theoretical perspectives. We have also reviewed the main theoretical

attempts at doing so, emphasizing their shortcomings when explaining most practical deep learn-

ing phenomena.

Shifting to the realmofdeep learning science,wehave embraced an empirical perspective rooted

in the traditions of natural sciences. This approach recognizes the constraints of purely theoretical

methods and champions empirical approaches to analyze deep learning phenomena. By regarding

neural networks as computational black boxes meriting empirical scrutiny and hypothesis-driven

research, we have reviewed valuable insights into areas such as inductive biases, functional land-

scapes, and optimization dynamics of deep learning – domains where theoretical models encoun-

tered limitations.

Finally, we have examined the state of modern deep learning practice, a domain marked by

transformative shifts characterized by the upscaling of model architectures and widespread adop-

tion of pre-training paradigms. These developments have reshaped the landscape of machine

learning in recent years, emphasizing the need for adaptability in the face of expanding data vol-

umes and computational capabilities. This section provided a crucial perspective on how contem-

porary practices have redefined the boundaries of what is achievable in the field of deep learning

and what are its main open questions.

23

3 A simple inductive bias hidden in

random weights

“In all affairs it’s a healthy thing now and then to hang a question mark

on the things you have long taken for granted.”

— Bertrand Russell

3.1 Introduction

Understanding inductive bias in deep learning is a complex endeavor that involves predicting how

well a model will perform on new data based on its architecture, learning algorithm, and specific

training task. However, these components – architecture, optimization and data – do not operate

in isolation and interact to form a complex inductive bias that governs themodel’s behavior. This

interaction creates a high-dimensional, convoluted design space that is difficult to analyze.

To gain targeted insights into this complex issue, this chapter employs a bottom-up approach,

narrowing the focus to themost elementary learning problem– classifying linearly separable data.

Although overparameterizedMLPs can provably learn linearly separable distribution [30],we ob-

serve that even in this naive context many deep neural networks with more complex architectures

exhibit a nuanced inductive bias. Indeed,most of these architectures can only generalizewellwhen

the discriminative information of the data is alignedwith certain directions of the input space. We

call this simple bias the directional inductive bias of an architecture.

Thedirectional inductivebias of several state-of-the-artCNNs is illustrated inFigure 3.1,where

we plot the test accuracy of these architectures when trained to classify a set of linearly separa-

ble distributions with a single discriminative feature lying in the direction of some Fourier basis

vector. Remarkably, even the gigantic DenseNet [103] only generalizes to a few of these distribu-

tions, despite common belief that, due to their superior capacity, such networks can learn most

The content of this chapter has been partially published in:

• G. Ortiz-Jiménez?, A. Modas?, S. Moosavi-Dezfooli and P. Frossard. “Neural Anisotropy Directions”.
In: Advances in Neural Information Processing Systems (NeurIPS). 2020

• G. Ortiz-Jiménez, I. Salazar-Reque, A.Modas, S.Moosavi-Dezfooli and P. Frossard. “A neural anistropic
view of underspecification in deep learning”. In: RobustMLWorkshop at ICLR. 2021

25

Chapter 3. A simple inductive bias hidden in random weights

Figure 3.1:Directional inductive bias of different architectures. Eachpixel represents the test accuracy
achieved on a linearly separable task (with 10, 000 training samples) with a single discriminative feature
alignedwith a basis element of the 2D-DFT.Weuse the standard 2D-DFTconvention andplace the dataset
with lower discriminative frequencies at the center of the image, and the higher ones extending radially to
the corners. All networks (except LeNet) achieve nearly 100% train accuracy.

functions efficiently. Yet, even a simple logistic regression eclipses their performance on a simple

linearly separable task.

In this chapter, we aim to explain why this happens, and to understand why some linearly sep-

arable distributions are easier to classify than others. Through this “elementary” setting, we shine

a spotlight on how even subtle architecture choices can drastically shape the network’s general-

ization capabilities, providing a lens through whichmore complex, multi-faceted inductive biases

can later be examined. Todo so, we introduce the concept ofneural anisotropy directions (NADs):

an ordered sequence of vectors that characterizes the directional bias of an architecture by ranking

its preference to separate the data in a particular direction of the input space.

In general, though, quantifying the preference of a complex network to separate data in certain

directions is not straightforward. Yet, in this chapter, we will show that measuring the perfor-

mance of a network on different versions of a linearly separable dataset can reveal its directional

inductive bias. Moreover, wewill provide an efficient computationalmethod to fully characterize

this bias without training, as the NADs of an architecture can be found by exploiting the func-

tional biases present at initialization. In this sense, we will see that the NADs act as a summary of

the connections between weight space and function space in a given architecture. Finally, we will

reveal that NADs allow a network to prioritize certain discriminating features of a dataset, and

hence act as important regulators of generalization.

The main contributions of this chapter can be summarized as follows:

• We characterize the directional inductive bias of state-of-the-art CNNs, and explain how

pooling layers are a major source for this bias.

• More generally, we introduce a new efficient method to identify the NADs of a given ar-

chitecture using only information available at initialization.

• Finally, we show that the importance ofNADs is not limited to linearly separable tasks, and

that they partially determine the selection of discriminative features of CNNs.

26

3.2 Directional inductive bias

Overall, this chapter lays the groundwork for future scrutiny of advanced inductive biases and

sets themethodological tone for the rest of the thesis. By rigorously defining directional inductive

bias and offering methods for its measurement, we bridge connections between weight space and

function space, setting the stage for more complex investigations in upcoming chapters.

3.2 Directional inductive bias

We start our investigation by showing that the test accuracy on different versions of a linearly

separable distribution can reveal the directional inductive bias of a network towards specific di-

rections. In this sense, let µ(v) be a linearly separable distribution parameterized by a unit vector

v ∈ Sd−1, such that any sample (x, y) ∼ µ(v) satisfies

x = εyv +w withw ∼ N (0, σ2(I − vv>)) and y ∼ U({−1,+1}), (3.1)

where it is important to note that the noisew is orthogonal to the directionv. Despiteµ(v)being

linearly separable based onv, note that if ε� σ the noisewill dominate the energy of the samples,

making it hard for a classifier to identify the generalizing information in a finite-sample dataset.

A schematic illustration of this kind of linearly separable distributions is given in Figure 3.2.

Figure 3.2: Illustration of the parameters of a linearly
separable distribution µ(v).

In practice, it is not feasible to test the per-

formance of a classifier on all possible versions

of µ(v). Nevertheless, one can at least choose

a spanning basis of Rd, from where a set of

possible directions {vi}i∈[d] can be picked.

Informally speaking, if a direction is aligned

with the inductive bias of the network under

study, then its performance onµ(v)would be

very good. Otherwise, it would be bad.

We validate our hypothesis on common

CNNs used for image classification with a

32×32 single-channel input. Unless stated otherwise, for eachdataset under studyweuse10, 000

samples for training and 10, 000 samples for testing and use ε = 1. The value of σ is chosen de-

pending on the experiment to guarantee a smooth transition between settings with good and bad

accuracy. We use the two-dimensional discrete Fourier basis (2D-DFT) – which offers a good

representation of the features in standard vision datasets [183, 248, 258] – to generate the selected

vectors. However, recall that the DFT F : Cd → Cd is a complex linear operator acting in the

complex plane. For this reason, the basis obtained from transforming the canonical basis through

the DFT – i.e., v` = F(e`), where e` is a canonical basis element – is a complex basis. In this

27

Chapter 3. A simple inductive bias hidden in random weights

work we are interested in dealing with real signals, and as such we need to modify this basis such

that it is an orthonormal basis of the real space Rd. We can do that by leveraging the conjugate

symmetry of the DFT of real signals leading to 512 different datasets for each architecture1.

The difference in performance on these datasets underlines the strong bias of these networks

towards certain frequency directions. As seen in Figure 3.1 the test accuracy of theCNNsonµ(v)

heavily depends on the alignment of v with certain Fourier vectors. Moreover, beyond test accu-

racy, we also observe that the bias can also be identified during training, as it takes much longer to

converge for some data distributions than others, evenwhen they have little noise (see Figure 3.3).

This is, the directional inductive bias also plays a role in optimization.

Figure 3.3: Training iterations required to achieve a
small training loss on different µ(vi) aligned with
some Fourier basis vectors.

Figure 3.4: Test accuracies on different µ(vi)
alignedwith some Fourier basis vectorswhen re-
moving all pooling layers.

Finally, we highlight the diversity of patterns in Figures 3.1 and 3.3. Although all CNNs seem

to have a strong directional bias, the directions they are biased to are not the same. CNNs are

composed of many modules, and their interconnection can shape the inductive bias of the net-

work in complex ways, which may explain these differences. In particular, as seen in Figure 3.4,

if we remove pooling from these networks (with fully connected layers properly adjusted) their

performance on different frequencies is equalized. Pooling has previously been shown to mod-

ulate the inductive bias of CNNs in the spatial domain [263]; however, it seems that it does so

in the spectral domain, as well. This also confirms that the overfitting of these models on this

naïve distribution cannot simply be due to their high complexity, as removing pooling technically

increases their capacity, and yet their test accuracy improves. As we will now see, a layer in the

architecture can shape the bias in two main ways: by causing an anisotropic loss of information,

or by anisotropically conditioning the optimization landscape. In what follows we describe each

of them and illustrate their effect through the example of a linear pooling layer.

1The exact details of these experiments including the dataset procedure and training protocol, as well as more experi-
ments with similar findings can be found in Appendix A.1. The code to reproduce the experiments of this chapter
can be found at https://github.com/LTS4/neural-anisotropy-directions.

28

https://github.com/LTS4/neural-anisotropy-directions

3.2 Directional inductive bias

3.2.1 Anisotropic loss of information

We refer to an anisotropic loss of information as the result of any transformation that harms gen-

eralization in specific directions, e.g., by injecting noise with an anisotropic variance. Under these

circumstances, any information in the noisy directions will not be visible to the network.

Let x̂ = F(x) denote the Fourier transformof an input vectorx entering a linear pooling layer

(e.g., average pooling)with a subsampling factorS. Without loss of generality, let (x, y) ∼ µ(v`)

with v` = F−1(e`). Then, the Fourier transform of the output of the pooling layer satisfies ẑ =

A(m̂�x̂)whereA ∈ RM×d represents an aliasingmatrix such thatA = 1√
S

[
IM · · · IM

]
withM = dd/Se. Here,m̂�x̂ is the representation in the spectral domainof the convolutionof

a prefilter m̂, e.g., average filtering, with the input signal. Expanding this expression, the spectral

coefficients of the output of pooling become

ẑ[t] =
1
√
S

S−1∑
k=0

m̂Jk ·M + tKd x̂Jk ·M + tKd, (3.2)

where x̂JiKd represents the (imod d)-th entry of x̂. The following proposition expresses the best

achievable performance of any classifier on the distribution of the output of pooling.

Proposition 3.1 (Bayes optimal classification accuracy after pooling). After pooling, the best achiev-
able test classification accuracy on the distribution of samples drawn from µ(v`) can be written as

1−Q

(√
2ε

2σ
γ(`)

)
with γ2(`) =

|m̂[`]|2 · S∑S−1
k=1 |m̂J`+ k ·MKd|2

, (3.3)

andQ(·) representing the tail distribution function of the standard normal distribution.

Proof. The proofmostly involves algebraicmanipulations of complexGaussian random variables

and the computation of Gaussian integrals. See Appendix A.2.1 for details.

The intuition behind this proposition lies in Equation (3.2). Note that after pooling the dis-

criminative information appears only at position J`KM and that its signal-to-noise ratio γ(`) is

completely characterized by `. For this reason, we say that pooling acts as an anisotropic lossy

information channel (see Figure 3.5a).

3.2.2 Anisotropic conditioning of the optimization landscape

Even if there is no information loss, the dependency of the optimization landscape on the dis-

criminative direction can cause a network to show some bias towards the solutions that are better

29

Chapter 3. A simple inductive bias hidden in random weights

(a) Optimal performance after an average pooling layer. (b) Training loss of the linear model of pooling.

Figure 3.5:Effects of pooling on the directional bias. (Left) Example of anisotropic loss of information
on an average pooling layer. (Right) Example of anisotropic conditioning of the loss landscape on a deep
linear network with an average pooling layer.

conditioned. This phenomenon can happen even on simple architectures. Hence, we illustrate it

by studying an idealized deep linear model of the behaviour of pooling in the spectral domain.

In particular, we study the network f(x;θ,φ) = θ>A(m�φ�x). In this model,φ plays

the role of the spectral response of a long stack of convolutional layers, m the spectral response

of the pooling prefilter, and θ the parameters of a fully connected layer at the output.

For the sake of simplicity, we assume that the data followsx = εye` +w with isotropic noise

w ∼ N (0, σ2Id). Note that for these datasets, the best achievable performance of this network

is independent of the position of the discriminative feature `. Indeed, when the filterφ takes the

optimal valueφ[`] = 1/m[`] andφ[t] = 0 for all t 6= `, the aliasing effect ofA can be ignored.

We study the landscapewhen optimizing a quadratic loss: L(θ,φ;x, y) = (y−f(x;θ,φ))2.
The following proposition describes the statistics of the geometry of this loss landscape.

Proposition 3.2 (Average curvature of the loss landscape). Assuming that the training parame-

ters are distributed according to θ ∼ N (0, σ2
θIM) andφ ∼ N (0, σ2

φId), the average Hessian of

the loss with respect to the weights satisfies

Eθ,φ∇2L(θ,φ;x, y) =

[
Hφ 0

0 Hθ

]
, (3.4)

with

Hφ = 2ε2m2[`]σ2
θ diag(e`)︸ ︷︷ ︸

signal

+2σ2σ2
θ diag(m2)︸ ︷︷ ︸
noise

(3.5)

Hθ = 2ε2m2[`]σ2
φ diag

(
e′J`KM

)
︸ ︷︷ ︸

signal

+2σ2σ2
φA diag(m2)︸ ︷︷ ︸

noise

, (3.6)

30

3.3 Neural anisotropy directions

where e` ∈ Rd and e′` ∈ RM represent the `-th canonical basis vectors inRd andRM , respectively.

Proof. The proof simply involves computing the Hessian. See Appendix A.2.2 for details.

The curvature of the loss landscape can be decomposed into two terms: the curvature intro-

duced by the discriminative signal, and the curvature introduced by the non-discriminative noise.

A quantity that will control the speed of convergence of SGDwill be the ratio between the curva-

ture of the signal component and the curvature of the noise ζ(`) = ε2m2[`]/σ2 max(m2) [78].

Intuitively, if ζ(`) � 1, a small enough learning rate will quickly optimize the network in the

direction of the optimal solution, avoiding big gradient oscillations caused by the curvature in the

noise directions. On the contrary, if ζ(`) . 1, the speed of convergence will be much slower (see

Figures 3.3 and 3.5b).

3.3 Neural anisotropy directions

The choice of the Fourier basis so far was almost arbitrary, and there is no reason to suspect that

it should capture the full directional inductive bias of any neural network. In order to to address

the more general case we introduce the concept of neural anisotropy directions (NADs):

Definition 1 (Neural anisotropy directions). The neural anisotropy directions (NADs) of a spe-

cific architecture are the ordered set of orthonormal vectors (ui)i∈[d] which rank the preference of a

network to separate the data in a particular direction of the input space.

As defined, the NADs fully characterize the directional bias of an architecture, but it is clear

that trying to identify them by measuring the performance of a neural network on many linearly

separable datasets parameterized by a random v would be extremely inefficient. Indeed, as shown

in Figure 3.6, the performance ofmostCNNs on datasets separable on a randomdirection is close

to trivial. It is therefore critical that we find another way to compute NADs without training.

Towards developing this identification procedure, we will study the behavior of a given ar-

chitecture when it tries to solve a very simple discriminative task: classifying two data samples,

(x,+1) and (x+ v,−1). We call them a discriminative dipole. Remarkably, studying this sim-

ple problem is enough to identify the NADs.

In general, given a discriminative dipole and a network f : X × Θ → R, parameterized

by a set of weights θ ∈ Θ ⊆ Rm, we say that f(θ) has a high confidence in discriminating

the dipole if it scores high on a metric q(v;θ) = g(|f(x;θ)− f(x+ v;θ)|), where g(t;θ)

can be any increasing function on t ≥ 0, e.g., g(t;θ) = t2. In practice, we can approximate

q(v;θ) ≈ g
(
|v>∇xf(x;θ)|

)
using a first-order Taylor expansion of f(x+ v;θ) around x.

31

Chapter 3. A simple inductive bias hidden in random weights

0 50 100 150 200 250

Random basis element

58

59

60

61

62

63

T
es

t
ac

cu
ra

cy

(a) LeNet

0 50 100 150 200 250

Random basis element

52

53

54

55

56

T
es

t
ac

cu
ra

cy

(b) ResNet-18

Figure 3.6: Performance on random directions. Test accuracy of a LeNet (left) and a ResNet-18 (right)
trained on different training versions of µ(v)where each v is an orthogonal random directioon.

As shown in Figure 3.3, the directional bias can be identified based on the speed of convergence

of a training algorithm. In the case of the dipole metric, this speed will depend on the size of

‖∇θq(v;θ)‖2. In expectation, this magnitude can be bounded by the following proposition.

Proposition 3.3. Let g be any increasing function on t > 0 with |g′(t)| ≤ α|t| + β, where

α, β ≥ 0. We can bound the average norm of the gradient∇θq(x;θ) as

Eθ‖∇θq(v;θ)‖2 ≤α2
√
Eθ|v>∇xf(x;θ)|2

√
Eθ‖∇2

θ,xf(x;θ)v‖22

+ β Eθ‖∇2
θ,xf(x;θ)v‖2. (3.7)

Proof. Weprove a slightlymore general version of this proposition inAppendixA.2.3. The proof

follows naturally from the assumed structure of the loss.

The right-hand sideofEquation (3.7)upperboundsEθ‖∇θq(v;θ)‖2, and itsmagnitudewith

respect to v is controlled by the eigenvectors of Eθ∇xf(x;θ)∇xf(x;θ)
> and the expected

right singular vectors of∇2
θ,xf(x;θ). We expect therefore that the NADs of an architecture are

tightly linked to these vectors, although note that the eigenvectors and singular vectors of these

matrices need not coincide, in general. However, as we will see in practice, these bases are sur-

prisingly aligned for most networks, suggesting that the structure of these vectors is commonly

rooted on some fundamental property of the architecture. Besides, although it could be argued

that the bound in Equation (3.7) is merely an artifact of the choice of dipole metric, we offer an

alternative interpretation below. Specifically, we examine the connection between the gradient

covariance, the mixed second derivative and NADs.

On the one hand,∇2
θ,xf(x;θ) can be interpreted as a magnitude that controls the network’s

tendency to create a decision boundary along a given direction. Specifically, its right singular val-

32

3.3 Neural anisotropy directions

ues quantify the inclination of a network to align∇xf(x;θ) with a discriminative direction v.

On the other hand, the eigenvalues of Eθ∇xf(x;θ)∇xf(x;θ)
> bound the a priori difficulty

of finding a solution that discriminates in a given direction. Specifically, in the quadratic case

g(t) = t2, we can estimate the volume of solutions in the weight space that achieve at least a

certain dipole metric η, i.e., P(q(v;θ) ≥ η). An approximate upper bound to this volume using

Markov’s inequality depends solely on the gradient covariance:

P(q(v;θ) ≥ η) ≈ P
((

v>∇xf(x;θ)
)2
≥ η

)
≤

v>(Eθ∇xf(x;θ)∇xf(x;θ)
>)v

η
.

(3.8)

Intuitively, if the quadratic form is very low, the space of solutions achieving a certain q(v;θ) is

small. That is, it becomes more challenging for a network to find solutions that optimize q(v;θ)

when the discriminative direction of the dipole aligns with the eigenvectors associated with small

eigenvalues of the gradient covariance.

Finally, note that the proposed eigendecomposition of the gradient covariance bares similarities

with the techniques used to study neural networks in themean-field regime [196, 197, 221]. These

works study the effect of initialization and non-linearities on the Jacobian of inifinitely-wide net-

works to understand their trainability. In contrast, we analyze the properties of finite-size architec-

tures and investigate the directionality of the singular vectors to explain the role ofNADs in gener-

alization. Analyzing the connections ofNADswith theseworkswill be subject of future research.

3.3.1 Analytic computation of NADs

To get a better intuition of how the gradient covariance and mixed second derivate can capture

the directional inductive bias of an architecture we now proceed to the analytical computation of

some of these quantities in some simple architectureswherewe already understand the directional

inductive bias. We defer the proofs – involving algebraic manipulations and solving Gaussian in-

tegrals – to Appendix A.3. In these examples we assume the parameters are normally distributed.

Deep linear network with average pooling

Aswehave seen in Section 3.2.2, a deep linear networkwith an average pooling layerf(x;θ,φ) =

θ>A(m�φ�x)has a directional inductive biaswhich is directlymodulated by the squared pre-

filterm2. That is, given two basis vectors e` and e′` such thatm2[`] > m2[`′], all other condi-

tions being equal, the model will converge faster on µ(e`) than µ(e
′
`). Interestingly, the gradient

covariance of this architecture also exhibits the same anisotropy. Indeed, one can show that

Eθ,φ∇xf(x;θ,φ)∇xf(x;θ,φ)
> = σ2

φσ
2
θ diag(m2), (3.9)

33

Chapter 3. A simple inductive bias hidden in random weights

and see directly that the eigenvectors of the gradient covariance are the canonical basis elements of

Rd, sorted according to the entries of the pre-filterm2. Interestingly, a parallel observation holds

for the expected right singular vectors of the mixed second derivative as well:

Eθ,φ∇2
(θ,φ),xf(x;θ,φ)

>∇2
(θ,φ),xf(x;θ,φ) =

(
σ2
θ +

σ2
φ

S

)
diag(m2). (3.10)

Linear network

As seen in Figure 3.1, a linear network f(x;θ) = θ>x does not have any directional inductive

bias, i.e., all linearly separable datasets µ(v) are equally hard to learn. Again, we see that the gra-

dient covariance of this network reflects this lack of bias as it is proportional to an identity matrix

Eθ∇xf(x;θ)∇xf(x;θ)
> = σ2

θI. (3.11)

Single-hidden layer neural network

Experimentally, one can see that a single-hidden layer network f(x;θ,Φ) = θ> ReLU
(
Φ>x

)
with a ReLU non-linearity has no directional bias2. This is also visible in its gradient covariance

Eθ,Φ∇xf(x;θ,Φ)∇xf(x;θ,Φ)> =
σ2
θσ

2
Φ

2
I, (3.12)

where we observe that the covariance is proportional to an identitymatrix, and it is thus isotropic.

3.3.2 Numerical estimation of NADs

Formost deep networks, however, it is not tractable to analytically compute these spectral decom-

positions in closed form. However, we can apply Monte-Carlo sampling to estimate them. For

instance, Algorithm 1 details the exact procedure we use to estimate NADs using the structure of

their gradient covariance.

Aswementioned above, thebases derived fromthemixedderivative and the gradient covariance

are surprisingly very similar in most networks. Nevertheless, we observe that the approximation

of NADs through the eigendecomposition of the gradient covariance is numerically more stable.

Indeed, formost randomly initialized networks, the norm of the second derivative with respect to

the weights and input is very small, rendering the numerical singular value decomposition of the

second derivative very unstable. Meanwhile, the gradient covariance only requires information

about first order gradients and these are orders of magnitudes larger than the second derivatives.

2The directional inductive bias of MLPs is tested in Appendix A.1.3

34

3.3 Neural anisotropy directions

Figure 3.7: NADs of CNNs. First three NADs of state-of-the-art CNNs in computer vision (more in
Appendix A.4). Top row shows NADs in pixel space and bottom row their energy in the Fourier domain.

For this reason, in all our experimentsweuse the eigenvectors of the gradient covariance as approx-

imations of the NADs of a given architecture, and defer the evaluation of the estimation through

the mixed derivative to Appendix A.4.2.

Figure 3.7 shows a few examples ofNADs fromseveralCNNs and illustrates their diversity. Re-

markably, even though the supports of the energy in the Fourier domain of the first fewNADs are

included in thehigh accuracy regions of Figure 3.1, not allNADs are sparse in the spectral domain.

Inparticular, theNADsof aResNet-18 look like combsof spikes in theFourier domain. Similarly,

the NADs do not follow a uniform ordering from low to high frequencies (cf. DenseNet-121 in

Figure 3.7). This suggests that each CNN may rely on a unique set of features to discriminate

between different classes in the training data. Analyzing how the exact construction of each ar-

chitecture modulates the NADs of a network is out of the scope of this thesis, but we believe this

is an area of exciting future research.

Algorithm 1 NAD discovery through gradient covariance

Require: Network f , parameter distribution µθ , evaluation sample x, Monte-Carlo trials T .

1: G ← ∅ .Gradient samples

2: for t = 1, . . . , T do
3: Draw θ ∼ µθ

4: G ← G ∪∇xf(x;θ)
5: end for
6: {(ui, λi)}di=1 ← PCA(G) . Perform eigendecomposition

7: return {ui}di=1

3.3.3 NADs capture inductive bias

The previous computations, both analytical and numerical, show that most CNNs exhibit a

clear functional anisotropy at initialization that can be captured by sampling at random from

the weight space. Moreover, they show that this bias is unique to each architecture, where the

NADs can be viewed as a signature of this anisotropy. However, showing that there is indeed a

35

Chapter 3. A simple inductive bias hidden in random weights

Figure 3.8: NADs and accuracy. Normalized covariance eigenvalues (green) and test accuracies of
common state-of-the-art CNNs trained on µ(v) parameterized by the NADs (brown).

bias at initialization does not directly show this bias is preserved throughout optimization, and it

remains to be seen if the NADs also capture the inductive bias of these architectures.

To show this, we replicate the experiments of Section 3.2, but this time using the NADs to

parameterize the linearly separable distributions. In Figure 3.8 we can see that the performance of

these architecturesmonotonically decreases for higherNADs – recall that in the Fourier basis (see

Figure 3.1) thiswas not the case – andnote that the decay follows the same shape as the eigenvalues

of the gradient covariance. We see this as clear evidence that NADs capture the directional induc-

tive bias on this architectures as the alignment of the discriminative directionwith the first NADs

is a very clear predictor of their generalization performance. That is the alignmentwith theNADs

is a network-dependent complexity measure on linearly separable tasks (cf. Equation (2.4)).

0 200 400 600 800 1000

NAD Index

50

60

70

80

90

100

T
es

t
ac

cu
ra

cy

100

1000

5000

20000

50000

100000

(a) LeNet

0 200 400 600 800 1000

NAD Index

50

60

70

80

90

100

T
es

t
ac

cu
ra

cy

100

1000

5000

20000

50000

100000

(b) ResNet-18

Figure 3.9:NADs and sample complexity. Generalization vs. number of training samples for twoCNNs
trained using different training sets drawn from µ(v). Directions v taken from the NAD sequence.

Observe that for the networks with lower rank of their gradient covariance (see Figure 3.8),

i.e., with a faster decay on its eigenvalues, the drop in accuracy happens at earlier indices and it is

much more pronounced. In this sense, the ResNet-18 and DenseNet-121 that perform best on

visiondatasets such as ImageNet, ironically are theoneswith the stronger bias on linearly separable

datasets. Further illustration of the relationship betweenNAD alignment and generalization can

be seen in terms of sample complexity. As shown in Figure 3.9, it is clear that less training data is

36

3.4 NADs beyond linearly separable datasets

0 100 200 300 400 500 600 700

Iterations

0

200

400

600

800

1000

NA
D

 I
nd

ex

10−4

10−3

10−2

10−1

100

(a) LeNet

0 100 200 300 400 500 600 700

Iterations

0

50

100

150

200

250

N
A

D
 In

de
x

10−5

10−4

10−3

10−2

10−1

100

(b) ResNet-18

Figure 3.10:NADs and optimization. Training loss per batch of different networks trained using differ-
ent training sets drawn from µ(v). Directions v taken from the NAD sequence.

required to generalize on the lowerNADsof the network. On the contrary, whenv is alignedwith

higher NADs, more data is required for the network to “ignore” the noisy features and find the

generalizing solution. In fact, as clearly observed for the case of ResNet-18, given a large amount

of training samples (considering the simplicity of the task) the network can eventually generalize

perfectly, regardless the position of the direction v.

NADs seem to also have an effect in optimization. To show this, we track the training loss of

a LeNet and a ResNet-18 when trained on different µ(v) parameterized by the NAD sequence.

Figure 3.10 shows these results. As expected, even if in all cases these networks achieve almost

a 100% test accuracy, the effect of NADs is clearly visible during optimization. This is, it takes

much longer for these networks to converge to small training losses when the discriminative in-

formation of the dataset is alignedwith the laterNADs as opposed to the first ones. This is similar

to the phenomenon described in Figure 3.5b where we identified a similar behavior with respect

to the Fourier basis.

3.4 NADs beyond linearly separable datasets

Finally, we provide a deeper exploration to show the role thatNADsplay in generalization beyond

linearly separable settings.

3.4.1 NADs define the order of selection of features

We first show that NADs play a significant role in the order in which different discriminative

features are learned by a neural network. Specifically, we see that information on the latter NADs

is fitted after the information on the first NADs. In order to show this, we borrow concepts from

the data poisoning literature [224] as a way to probe the order in which features are selected by

a given network. In particular, we do this by modifying all images in the CIFAR-10 training set

37

Chapter 3. A simple inductive bias hidden in random weights

Figure 3.11: Accuracy on CIFAR-10 of a ResNet-18
when trained on multiple versions of poisoned data with
a carrier (ε = 0.05) at different NAD indices.

Figure 3.12: Test accuracies of state-of-
the-artCNNson the standardCIFAR-10
dataset and its flipped version.

to include a highly discriminative feature (carrier) aligned with a certain NAD. We repeat this

experiment for multiple NADs and measure the test accuracy on the original CIFAR-10 test set.

An easy way to introduce a poisonous carrier on a sample is to substitute its content on a

given direction by ±ε. CIFAR-10 has 10 classes and three color channels. Therefore, we can

use two consecutive NADs applied on the different channels to encode a carrier that can poison

this dataset. Note that, for any ε > 0, this small modification on the training set renders the train-

ing set linearly separable using only the poisonous features. But, a classifier that only uses these

features will not be able to generalize to the unpoisoned CIFAR-10 test set.

Figure 3.11 shows the result of this experiment when the carriers are placed at the ith and (i+

1)th NADs. For carriers placed at the first NADs the test accuracy is very low, showing that the

network ignores most generalizing features. On the other hand, when the carrier is placed at the

end of the sequence, where the extra feature is harder to learn (cf. Figure 3.8), the network can

almost perfectly generalize.

A possible explanation of this behavior could be that during training, among all possible sepa-

rating solutions, a network converges to the one that can discriminate the training data using the

lowest NAD indices, i.e., using features spanned by the first NADs. In this sense, when a carrier

is placed at a givenNAD index, the network can only identify those generalizing features spanned

by the NADs before the carrier, and ignores all those after it.

3.4.2 NADs are necessary for generalization

To further support the previous explanation, we investigate the role ofNADs as filters of discrim-

inating solutions. In particular, we test the possible positive synergies arising from the alignment

of NADs with the generalizing features of the training set. Specifically, we train multiple CNNs

using the same hyperparameters on two representations of CIFAR-10: the original representa-

tion, and a new one in which we flip the representation of the data in the NAD basis. That is, for

every samplex in the training and test sets we computex′ = U flip(U>x), whereU represents

38

3.4 NADs beyond linearly separable datasets

Figure 3.13:NADs and underspecification. Out-of-distribution performance of an MLP, a LeNet, and
a ResNet-18 on different versions of the underspecified concatenation of binary CIFAR10 and a linearly
separable dataset with a discriminative feature aligned with a certain NAD. Plots show average over three
different random seeds.

a matrix with NAD vectors as its columns. Note that applying this transformation equates to a

linear rotation of the input space and has no impact on the information of the data distribution.

In fact, training on both representations yields approximately 0% training error.

Figure 3.12 shows the result of these experiments where we see that the performance of the net-

works trained on the flipped datasets is significantly lower than those on the original CIFAR-10.

As demonstrated by the low accuracies on the flipped datasets, misaligning the inductive bias of

these architectures with the datasets makes them prone to overfit to non-generalizing and spuri-

ous “noise”. We see this effect as a supporting evidence that through the years the community has

managed to impose the right inductive biases in deep neural architectures to classify the standard

vision benchmarks efficiently.

3.4.3 NADs and underspecification

As NADs seem to regulate an important inductive bias in deep learning, we propose a final ex-

periment to falsify an important hypothesis in the field of underspecification (see Section 2.2.3),

i.e., that neural networks are biased towards “simpler geometric solutions”. This simplicity bias

has been conjectured to be themain reason for the unreliability of neural networks to distribution

shifts [170, 225], and it is based on the assumption that given twoways to separate the training data

– one linearly and one non-linearly – modern neural networks will always prefer the linear one.

In order to test the hypothesis, we create an underspecified dataset by concatenating data from

a binary version of CIFAR-10 – one label for the first five classes, and another one for the rest –

with an extra channel distributed according toµ(v) so that the labels between the two datasets are

consistent. Note that this construction is fully underspecified as the network can achieve optimal

accuracy by using any of the channels independently. In fact, if the simplicity bias fully explained

the inductive bias of deep learning, then any neural network would prefer to solve this task by

constructing only a linear boundary to separate the information in the linearly separable channel.

39

Chapter 3. A simple inductive bias hidden in random weights

This seems to be the case for an MLP which always prefers to solve this task using the linearly

rather than the non-linearly separable channel. However, this is not the case for the twoCNNs in

our experiments. We test this by measuring the test performance of several networks on different

versions of this concatenation on test data with only CIFAR-10 information present and the lin-

early separable channel zeroed out and viceversa. If the network achieves good test performance

on these out-of-distribution datasets, then it means that it is using the features of that dataset.

Figure 3.13 shows the results of this evaluation where we see that indeed, whenever v is aligned

with the first NADs, the CNNs only fit the information in the µ(v) channel – as predicted by

the simplicity bias. However, whenever v is aligned with the higher NADs, the networks prefer

to use only the CIFAR-10 data, despite this solution having worse test accuracy and, arguably, a

much higher geomteric complexity than solving µ(v).

On the other hand, even if one could always solve this dataset by fitting the information in all

channels simultaneously, it seems that CNNs cannot do so. Instead, they seem to be able to either

solve the task using the information in the linearly separable channel, or in the CIFAR-10 chan-

nels, exclusively. This again depends on the alignment of v with the NADs. Understanding why

this sudden change happens, and how the architectural inductive bias mediates the choice of fea-

tures of the network, is another important avenue for future studies in the fairness and robustness

of these systems.

3.5 Conclusion

In this chapter, we have analyzed a new type of model-driven inductive bias that controls gen-

eralization in deep neural networks: the directional inductive bias. By introducing the concept

of neural anisotropy directions (NADs), we have demonstrated that architectures codify their di-

rectional bias through an orthonormal sequence of vectors. The NADs are fundamental for our

understanding of howCNNsprioritize discriminative features during learning. Through the lens

of the functional biases present at initialization, we have drawn a directmap betweenweight space

and function space in these networks and devised a computationally efficient method to identify

NADs through random sampling of network weights.

Methodologically, we have introduced our main approach to validate whether an observed

quantity is an actual complexity metric that regulates generalization: By varying this metric con-

tinuously across datasetswhile keeping the training procedure constant, we can establish its role in

generalization. Specifically, if a network’s performance declinesmonotonicallywith an increase in

this metric, it means the observed quantity is a good proxy for inductive bias. In this chapter, this

method has proven instrumental in validating that the alignment between discriminative direc-

40

3.5 Conclusion

tions andNADs effectively captures directional inductive bias, and it will serve as the cornerstone

for the analyses in subsequent chapters.

While the empirical focus of this chapter has been linearly separable tasks, we have also shown

that the utility of NADs extends beyond this narrow scope. They are integral components of a

CNNs’ inductive bias and influence feature selection across a broader range of tasks. This finding

is particularly important for enhancing robustness in underspecified settings and provides a new

perspective to study a network’s behavior under distribution shifts.

As we progress in this thesis, the insights in this chapter will inform our exploration of more

complex inductive biases, as well as deeper analysis of the connections between the weight space

and function space.

41

4 Approximating inductive bias in the

tangent space

“Nothing is so painful to the human mind as a great and sudden change.”

— Mary Wollstonecraft Shelley

4.1 Introduction

Our preceding chapter offered significant insights into the inductive bias of neural networks for

linearly separable tasks. However, in most real contexts, the target functions of interest are often

non-linearly separable and more complex than the models we have previously examined. Conse-

quently, we need to expand our theoretical toolkit to gain a more nuanced understanding of the

general inductive bias of deep learning.

Traditional top-down theoretical attempts, however, have fallen short, largely due to the intri-

cate, non-linear relationships betweenweights and functions [262]. Nevertheless, a growing body

of work has started to explore the use of linear approximations to analyze deep networks, leading

to the neural tangent kernel (NTK) framework [110]. Recall from Section 2.1.3 that the NTK

framework is based on the observation that for certain initialization schemes, the infinite-width

limit of many neural architectures can be exactly characterized using kernel tools [7, 110]. This

reduces key questions in deep learning theory to the study of linear methods and convex func-

tional analysis, for which a rich set of theories exist [222]. This intuitive approach has been proved

to be very fertile, leading to important results in generalization and optimization of very wide

networks [7, 24, 55, 130, 136, 266].

TheNTK theory, however, can only fully describe certain infinitely wide neural networks, and

for the narrow architectures used in practice, it only provides a first-order approximation of their

training dynamics (see Figure 4.1). Despite these limitations, the intuitiveness of theNTK,which

allows to use a powerful set of theoretical tools to exploit it, has led to a rapid increase in the

amount of research that successfully leverages the NTK in applications, such as predicting gen-

eralization [48] and training speed [260], explaining certain inductive biases [12, 70, 163, 237] or

designing new classifiers [8, 145].

The content of this chapter has been partially published in:

• G. Ortiz-Jiménez, S. Moosavi-Dezfooli and P. Frossard. “What can linearized neural networks actually
say about generalization?”. In: Advances in Neural Information Processing Systems (NeurIPS). 2021

43

Chapter 4. Approximating inductive bias in the tangent space

Figure 4.1: Conceptual illustration of the NTK approximation. The empirical NTK defines a linear
function space tangentK to the non-linear function spaceF defined by the network. In the limit of infi-
nite width, the neural network space loses its curvature and coincides with the tangent space. Training a
linearized network restricts the optimization trajectory to lie in the tangent space.

Recent reports, however, have started questioning the effectiveness of this approach, as one

can find multiple examples in which kernel methods are provably outperformed by neural net-

works [5, 79, 147]. Most importantly, it has been observed empirically that linearized models –

computed using a first-order Taylor expansion around the initialization of a neural network –

performmuch worse than the networks they approximate on standard image recognition bench-

marks [64]; a phenomenon that has been coined as the non-linear advantage. However, it has also

been observed that, if one linearizes the network at a later stage of training, the non-linear advan-

tage is greatly reduced. The reasons behind this phenomenon are poorly understood, yet they are

key to explain the success of deep learning.

Building from these observations, we delve deeper into the source of the non-linear advantage,

trying to understand why previous work could successfully leverage the NTK in some applica-

tions. In particular, we shed new light on the question: When can the NTK approximation be

used to predict generalization, and what does it actually say about it? We propose, for the first

time, to empirically study this problem from the perspective of the characteristics of the training

labels. To that end, we conduct a systematic analysis comparing the performance of different neu-

ral network architectures with their kernelized versions, on several problems with the same data

support, but different labels. Doing so, we identify the alignment of the target function with the

NTK as a key quantity governing important aspects of generalization in deep learning. Namely,

one can rank the learning complexity of solving certain tasks with deep networks according to

their kernel alignment, and thus locally approximate their inductive bias.

We, then, study the evolution of the alignment during training to see its influence on the induc-

tive bias. Prior work had shown that, during optimization, deep networks significantly increase

their alignment with the target function, and this had been strongly conjectured to be positive

for generalization [16, 121, 191]. In contrast, in this work, we offer a more nuanced view of this

44

4.2 Preliminaries

phenomenon, and show that it does not always have a positive effect for generalization. In fact,

we provide multiple concrete examples where deep networks exhibit a non-linear disadvantage

compared to their kernel approximations.

The main contributions of this chapter are:

• We show that the alignment with the empirical NTK at initialization can provide a good

measure of relative learning complexity in deep learning for a diverse set of tasks.

• We use this fact to shed new light on the directional inductive bias of most CNNs, as we

show this alignment can be used to identify NADs (see Chapter 3).

• Moreover, we identify a set of non-trivial tasks in which neural networks perform worse

than their linearized approximations, and show this is due to their non-linear dynamics.

• We, hence, provide a fine-grained analysis of the evolution of the kernel during training,

and show that the NTK rotates mostly in a single axis. This mechanism is responsible for

the rapid convergence of neural networks to the training labels, but interestingly we find

that it can sometimes hurt generalization, depending on the target task.

Overall, these empirical findings are an important step forward in our understanding of deep

learning. They pave theway for new research avenues based on newly observed phenomena, while

they also provides a fresh perspective to understand how to use theNTKapproximation in several

applications. Indeed, in the chapters that followwewill make extensive use of the tools developed

in this chapter to navigate the function space of different neural networks and discover new in-

sights on their behavior.

4.2 Preliminaries

Recall from Section 2.1.3 that in a small neighborhood around the weight initialization θ0 ∈ Θ,

a neural network can be approximated using a first-order Taylor expansion (see Figure 4.1)

f(x;θ) ≈ flin(x;θ0) = f(x;θ0) + (θ − θ0)
>∇θf(x;θ0), (4.1)

where∇θf(x;θ0) ∈ Rm denotes the Jacobian of the network with respect to the parameters

evaluated at θ0. Here, the model flin : X ×Θ→ Y represents a linearized networkwhichmaps

weight vectors to functions living in a reproducible kernel Hilbert space (RKHS)K ⊆ L2(Rd),

determined by the empirical NTK [130] at θ0, i.e.,

kNTK(x,x
′;θ0) = ∇θf(x;θ0),∇θf(x

′;θ0) (4.2)

45

Chapter 4. Approximating inductive bias in the tangent space

Unless stated otherwise, we will generally drop the dependency on θ0 and use kNTK to refer to

the NTK at initialization.

In most contexts, the NTK evolves during training by following the trajectory of the network

Jacobian∇θf(θt) : X → Θ × Y ; but for some infinitely-wide networks it remains constant

throughout training [110]. In this regime, the inductive bias of a neural network is fully captured

by the RKHS norm of the target function

‖f?‖2kNTK
=

∞∑
ρ=1

1

λρ
(Ex∼µ[φρ(x)f

?(x)])2, (4.3)

where the couples ((λρ, φρ))ρ∈N denote the eigenvalue-eigenfunction pairs, in order of decreas-

ing eigenvalues, of theMercer’s decomposition of the kernel (see Section 2.1.3). This means that,

in kernel regimes, the target functions with the lower RKHS norm – or equivalently, the func-

tionswhose projectionon the eigenfunctions of the kernel ismostly concentrated along the largest

eigenvalues – are the easiest to learn.

EstimatingEquation (4.3) inpractice, however, is challenging as it requires access to the smallest

eigenvalues of the kernel. However, one can use the following proposition to compute a more

tractable bound of the RKHS norm, which shows that a high target-kernel alignment is a good

proxy for a small RKHS norm.

Theorem 4.1 (Kernel alignment). Let α(f?) denote the kernel alignment of the target f? ∈ K
with a kernel k defined as

α(f?) = Ex,x′∼µ

[
f?(x)k(x,x′)f?(x′)

]
. (4.4)

The following equation bounds the kernel norm in terms of the kernel alignment

‖f?‖2k ≥ ‖f?‖42/α(f?). (4.5)

Moreover, for the NTK, the alignment can be computed in closed form as

α(f?;θ0) = ‖Ex∼µ[f
?(x)∇θf(x;θ0)]‖22. (4.6)

Proof. Given Mercer’s decomposition of k, the alignment of f? with k can also be written

α(f?) = Ex,x′∼µ

 ∞∑
ρ=1

λρφρ(x)φρ(x
′)f?(x)f?(x′)

 =
∞∑
ρ=1

λρ(Ex∼µ[φρ(x)f
?(x)])2.

(4.7)

46

4.3 Linearized models can approximate inductive bias for deep networks

This expression can be related to Equation (4.3) using Cauchy-Schwarz inequality to obtain√√√√ ∞∑
ρ=1

1

λρ
(Ex[φρ(x)f?(x)])2

√√√√ ∞∑
ρ=1

λρ(Ex[φρ(x)f?(x)])2 ≥
∞∑
ρ=1

(Ex[φρ(x)f
?(x)])2

(4.8)

‖f?‖k
√
α(f?) ≥ ‖f?‖22. (4.9)

On the other hand, in the case of the NTK

α(f?;θ0) = Ex,x′∼µ

[
f?(x)f?(x′)∇θf(x;θ0)>∇θf(x

′;θ0)
]

= Ex∼µ

[
f?(x)∇θf(x;θ0)>

]
Ex′∼µ

[
f?(x′)∇θf(x

′;θ0)
]

= ‖Ex∼µ[f
?(x)∇θf(x;θ0)]‖22. (4.10)

At this point, it is important to highlight that inmost practical applicationswe donot dealwith

infinitely-wide networks, and hence the RKHS norm can only be regarded as a complexitymetric

for linearized models, i.e., flin. Furthermore, from now on, we will interchangeably use the terms

NTK and empirical NTK to simply refer to the finite-width kernels derived from Equation (4.1).

Similarly, as it is commonly done in the kernel literature, we will use the eigenvectors of the Gram

matrix to approximate the values of the eigenfunctionsφρ(x)over a finite dataset. Wewill also use

the terms eigenvector and eigenfunction interchangeably. In particular, we will use Φ ∈ Rn×n

to denote the matrix containing the ρ-th Gram eigenvector φρ ∈ Rn in its ρ-th row, where the

rows are ordered according to the vector of decreasing eigenvaluesλ ∈ Rn
+.

4.3 Linearized models can approximate inductive bias for

deep networks

Agrowing body of work is using the linear approximation of neural networks as kernel predictors

to analyze and build novel algorithms. Meanwhile, recent reports, both theoretical and empirical,

have started to question if the NTK approximation can really tell anything useful about gener-

alization for finite-width networks. For this reason, in this section, we try to demystify some of

these confusions and aim to shed light on the question: What can the empirical NTK actually

predict about generalization?

To that end, we conduct a systematic study with different neural networks and their linearized

approximations given by Equation (4.1), which we train to solve a structured array of predictive

47

Chapter 4. Approximating inductive bias in the tangent space

0 250 500 750 1000

Eigenfunction index

70.0%

80.0%

90.0%

100.0%
Accuracy MLP

0 250 500 750 1000

Eigenfunction index

80.0%

90.0%

100.0%

Accuracy LeNet

0 250 500 750 1000

Eigenfunction index

60.0%

80.0%

100.0%

Accuracy ResNet18

Neural network Linearized model Accuracy of NN on binary CIFAR10

Figure 4.2: Learning complexity agreement between linearized and non-linear networks. Valida-
tion accuracy of different neural network architectures and their linearizations when trained on binarized
eigenfunctions of the NTK at initialization, i.e., x 7→ sign(φρ(x)). As a baseline, we also provide the
accuracies on CIFAR2 (see Section 4.4).

taskswith different complexity. Our results indicate that formany problems the linearmodels and

the deep networks do agree in the way they order the complexity of learning certain tasks, even if

their performance on the same problems can greatly differ. This explains why the NTK approxi-

mation can be used in applications where the main goal is to just predict the relative difficulty of

different tasks.

4.3.1 Learning NTK eigenfunctions

In kernel theory, the sample and optimization complexity required to learn a given function is

normally boundedby its kernel norm [222],which intuitivelymeasures the alignment of the target

function with the eigenfunctions of the kernel. The eigenfunctions themselves, thus, represent

a natural set of target functions with increasingly high learning complexity – according to the

increasing value of their associated eigenvalues – for kernel methods. Since our goal is to find if

the kernel approximation can indeed predict generalization for neural networks, we evaluate the

performance of these networks when learning the eigenfunctions of their NTKs.

Inparticular, we generate a sequence of datasets constructedusing the standardCIFAR10 [124]

samples, which we label using different binarized versions of the NTK eigenfunctions. That is,

to every sample x in CIFAR10 we assign it the label sign(φρ(x)), where φρ represents the ρ-th

eigenfunction of the NTK at initialization (see Section 4.2). In this construction, the choice of

CIFAR10 as supporting distribution makes our experiments close to real settings which might

be conditioned by low dimensional structures in the data manifold [79, 191]; while the choice of

eigenfunctions as targets guarantees a progressive increase in complexity, at least, for the linearized

networks. Specifically, for φρ the alignment is given by α(φρ) = λρ.

We train different neural network architectures – selected to cover the spectrum of small to

large models [89, 128, 214] – and their linearized models given by Equation (4.1). Unless stated

otherwise, we always use the same standard training procedure consisting of the use of stochastic

48

4.3 Linearized models can approximate inductive bias for deep networks

0 250 500 750 1000

Eigenfunction index

0

10

20

30

Epoch Convergence time

0 250 500 750 1000

Eigenfunction index

0

20

40

60
`2 dist. Params `2 dist.

0 250 500 750 1000

Eigenfunction index

0.00

0.05

0.10

0.15

cos. dist. Params cosine dist.

Figure 4.3:Kernel alignment approximately predicts training speed. Correlation of different training
metrics with the index of the eigenfunction the network is trained on. Plots show the number of training
iterations taken by the network to achieve a 0.01 training loss, and the `2 and cosine distances between ini-
tialization and final parameters for a ResNet18 trained on the eigenfunctions of the NTK at initialization.

gradient descent (SGD) to optimize a logistic loss, with a decaying learning rate starting at 0.05

and momentum set to 0.9. The values of our metrics are reported after 100 epochs of training1.

Figure 4.2 summarizes the main results of our experiments2. Here, we can see how the vali-

dation accuracy of networks trained to predict targets aligned with (φρ)ρ∈N progressively drops

with decreasing eigenvalues for both linearizedmodels – as predicted by the theory – as well as for

neural networks. Similarly, Figure 4.3 shows how the training dynamics of these networks also

correlate with eigenfunction index. Specifically, we see that networks take more time to fit eigen-

functions associated to smaller eigenvalues, and travel larger distances in theweight space to do so.

Overall, our observations reveal that sorting tasks based on their alignment with the NTK is a

good predictor of learning complexity both for linearized and non-linear networks. Interestingly,

however, we can also observe large performance gaps between the models. Indeed, even if the

networks and the kernels agree on which eigenfunctions are harder to learn, the kernels perform

comparatively much better. This differs fromwhat was previously observed for other tasks [5, 64,

79, 147], and highlights that the existence of a non-linear advantage is not always certain.

4.3.2 Learning linear predictors

TheNTK eigenfunctions are one example of a canonical set of tasks with increasing hardness for

kernelmethods, whose learning complexity for neural networks follows the sameorder. However,

could there be more examples? And, are the previously observed correlations useful to predict

other generalization phenomena? In order, to answer these questions, we propose to analyze the

set of linearly separable tasks from Chapter 3, as we saw these represent a function class with a

wide range of learning complexities among its elements. In particular, we know that is possible to

1The code to reproduce the experiments in this chapter can be found at https://github.com/gortizji/
linearized-networks.

2Results with equivalent findings for other training schemes and datasets can be found in Appendix B.3.

49

https://github.com/gortizji/linearized-networks
https://github.com/gortizji/linearized-networks

Chapter 4. Approximating inductive bias in the tangent space

rank the complexity for a neural network to learn different linearly separable tasks based only on

its neural anisotropy directions (NADs).

In Chapter 3, we provided several heuristic methods to compute the NADs of a neural net-

work. However, we now provide a new, more principled, interpretation of the NADs, showing

one can also obtain this sequence using a kernel approximation. To that end, we will make use of

the following proposition.

Theorem 4.2. Letu ∈ Sd−1 be a unitary vector that parameterizes a linear predictorx 7→ u>x,

and let x ∼ N (0, I). The alignment of x 7→ u>x with kNTK is given by

α(x 7→ u>x;θ0) =
∥∥Ex

[
∇2

x,θf(x;θ0)
]
u
∥∥2
2
, (4.11)

where∇2
x,θf(x;θ0) denotes the mixed second derivative with respect the weights and input.

Proof. Plugging the definition of a linear predictor on the expression of the alignment for the

NTK (see Theorem 4.1) we get

α(x 7→ u>x;θ0) =
∥∥∥Ex

[
∇θf(x;θ0)x

>u
]∥∥∥2

2
, (4.12)

which using Stein’s lemma becomes

α(x 7→ u>x;θ0) =
∥∥Ex

[
∇2

θ,xf(x;θ0)u
]∥∥2

2
. (4.13)

Theorem 4.2 gives an alternative method to compute NADs. Indeed, in the kernel regime, the

NADs are simply the right singular vectors of the matrix of mixed-derivativesEx∇2
x,θfθ0(x) of

thenetwork3. Note however, that this interpretation is just basedon an approximation, andhence

there is no explicit guarantee that these NADs will capture the direcional inductive bias of deep

networks. Our experiments show otherwise, as they reveal that CNNs actually rank the learning

complexity of different linear predictors in a way compatible with Theorem 4.2.

Indeed, as shown in Figure 4.4, when trained to classify a set of linearly separable datasets,

aligned with the NTK-predicted NADs (see Figure 4.5), CNNs perform better on those predic-

tors with a higher kernel alignment (i.e., corresponding to the first NADs) than on those with a

lower one (i.e., later NADs). The fact that NADs of non-linear networks can be explained using

kernel theory constitutes another clear example that theory derived from a naïve linear expan-

sion of a neural network can sometimes capture important trends in the inductive bias of deep

3All predictors have the sameL2 norm. Hence, their alignment is inversely proportional to their kernel norm.

50

4.3 Linearized models can approximate inductive bias for deep networks

0 250 500 750

NAD index

60%

80%

100%

Accuracy

0 250 500 750

NAD index

60%

80%

100%

Accuracy

0 250 500 750 1000

NAD index

10−6

10−3

100
α(gvj)

LeNet

ResNet18

Figure 4.4: Kernel alignment can predict directional inductive bias (Left) Performance comparison
of different neural network architectures with their linearizations when learning linear target functions
aligned with increasing NADs, i.e., x 7→ sign(u>x). (Right) Predicted value of the alignment of the
predictors with kNTK, i.e., α(x 7→ u>x;θ0).

Figure 4.5: Example of NADs obtained with NTK approximation. First 10 NADs computed using
Theorem 4.2 of a randomly initialized LeNet and a ResNet18. As in Chapter 3, we show both the spatial
domain (light images) and the magnitude of the Fourier domain (dark images) for each NAD.

networks; even when we observe a clear performance gap between linear and non-linear models.

Surprisingly, neural networks exhibit a strong non-linear advantage on these tasks, even though

these NADs were explicitly constructed to be well-aligned with the linear models.

On the other hand, the fact that the empirical NTK of standard networks presents such strong

directional bias is remarkable on its own, as it reveals important structure of the underlying ar-

chitectures. Interestingly, recent theoretical studies [52] have found that the standard rotational

invariance assumption in kernel theory [222] might be too restrictive to explain generalization in

many settings. Hence, showing that the kernels of neural networks have a strong rotational vari-

ance, clearly strengthens the link between the study of these kernels and deep learning theory.

51

Chapter 4. Approximating inductive bias in the tangent space

Overall, our results explain why previous heuristics that used the NTK to rank the complexity

of learning certain tasks [48, 237, 260] were successful in doing so. Specifically, by systematically

evaluating the performance of neural networks on tasks of increasing complexity for their lin-

earized approximations, we have observed that the non-linear dynamics on these networks do not

change the way in which they sort the complexity of these problems. However, we should not

forget that the differences in performance between the neural networks and their approximation

are very significant and whether they favor or not neural networks depends on the task.

4.4 Sources of the non-linear (dis)advantage

In this section, we study in more detail the mechanisms that separate neural networks from their

linear approximations and that lead to their significant performance differences. Specifically, we

will show that there are important nuances involved in the comparison of linear and non-linear

models, which depend on number of training samples, architecture and target task.

To shed more light on these complex relations, we will conduct a fine-grained analysis of the

dynamics of neural networks and study the evolution of their empirical NTK. We will show that

the kernel dynamics can explain why neural networks converge much faster than kernel methods,

even though this rapid adaptation can sometimes be imperfect and lead the networks to overfit.

4.4.1 The non-linear advantage depends on the sample size

As we have seen, there exist multiple problems in which neural networks perform significantly

better than their linearized approximations (see Section 4.3.2), but also others where they do not

(see Section 4.3.1). We now show, however, that the magnitude of these differences is influenced

by the size of the training set.

We can illustrate this phenomenon by training several neural networks to predict the semantic

labels of an image dataset. In particular, and for consistencywith the previous two-class examples,

we deal with a binary version of CIFAR10, as in Section 3.4.3, and assign label+1 to all samples

from the first five classes in the dataset, and label−1 to the rest. Wewill refer to this dataset as CI-

FAR2. Indeed, as seen in Figure 4.6, some neural networks exhibit a large non-linear advantage on

this task, but this advantage mostly appears when training on larger datasets. This phenomenon

suggests that the inductive bias that boosts neural networks’ performance depends on scale.

One can intuitively understand this behavior by analyzing the distance traveled by the parame-

ters during optimization (see bottom row of Figure 4.6). Indeed, for smaller training set sizes the

networks can find solutions that fit the training data closer to their initialization more easily. As

a result, the error incurred by the linear approximation in these cases is smaller. This can explain

why there are no significant performance gaps between NTK-based models and neural networks

52

4.4 Sources of the non-linear (dis)advantage

103 104

60.0%

65.0%

Accuracy MLP

103 104

60.0%

70.0%

Accuracy LeNet

103 104

60.0%

70.0%

80.0%

Accuracy ResNet18

103 104

Number training samples

0

2000

4000

6000

`2 dist.

103 104

Number training samples

0

2000

4000

`2 dist.

103 104

Number training samples

0

1000

2000

`2 dist.

Neural network Linearized model

Figure 4.6: Non-linear advantage depends on sample size. Comparison of test accuracy (top) and
parameter distance to initialization (bottom) between neural networks and their linear approximations
trained on CIFAR2 with different training set sizes. Plots show average over five different random seeds
and when the test accuracy has saturated.

for small-data [8], and it also highlights the strength of the linear approximation in this regime.

Note that the linearized and non-linear models achieve their maximum test accuracy in roughly

the same number of epochs regardless of the training set size. This contrasts with the dynamics

of the training loss, for which the linear models take significantly more iterations to perfectly fit

the training data than non-linear ones. In this sense, the results of Figure 4.6 present a snapshot

taken when both networks approximately achieve their maximum generalization performance.

4.4.2 The kernel rotates in a single axis

So far we havemostly analyzed results dealing with linear expansions around the weight initializa-

tion θ0. However, recent empirical studies have argued that linearizing at later stages of training

induces smaller approximation errors [64], suggesting that the NTK dynamics can better explain

the final training behavior of a neural network. To the best of our knowledge this phenomenon

is still poorly understood, mostly because it hinges on understanding the non-linear dynamics of

deep networks. We now show, however, that understanding the way the spectrum of the NTK

evolves during training can provide important insights into these dynamics.

To that end,wefirst analyze the evolutionof the principal components of the empiricalNTK in

relation to the target function. Specifically, letΦt denote thematrix of firstK eigenvectors of the

Gram matrix of kNTK(θt) obtained by linearizing the network after t epochs of training, and let

y ∈ Rn be the vector of training labels. In Section 4.3.1, we have seen that both neural networks

and their linear approximations perform better on targets aligned with the first eigenfunctions of

53

Chapter 4. Approximating inductive bias in the tangent space

0 50 100 150 200
Epoch

40%

60%

80%

Energy conc.

Figure 4.7: Energy concentration of
10, 000 CIFAR2 training labels on the
first K = 50 eigenvectors of the kernel
Gram matricesΦt of a LeNet.

0 500 1000
Eigenfunction index

102

104

α0 (φi) Initialization

0 500 1000
Eigenfunction index

106

107

108

α100 (φi) Epoch 100

Figure 4.8: Alignment of the eigenfunctions of theNTK at ini-
tialization for a LeNet with the NTKs computed at the begin-
ning (left) and at the end of 100 epochs of training (right) to
predict the 500th eigenfunction at initialization.

kNTK(θ0). We propose, therefore, to track the energy concentration ‖Φty‖2/‖y‖2 of the labels

onto the first eigenfunctions with the aim to identify a significant transformation of the principal

eigenspace span(Φt).

Figure 4.7 shows the result of this procedure applied to a LeNet trained to classify CIFAR2.

Strikingly, the amount of energy of the target function that is concentrated on theK = 50 first

eigenfunctions of the NTK significantly grows during training. This is a heavily non-linear phe-

nomenon – by definition the linearized models have a fixed kernel – and it hinges on a dynamical

realignment of kNTK(θt) during training. That is, training a neural network rotates kNTK(θt)

in a way that increases ‖Φty‖2/‖y‖2. Indeed, as shown in Table 4.1 all networks trained on

CIFAR2 experience an increase in the energy concentration at the end of training.

Table 4.1: Energy concentration on topK = 50 eigenvectors of the NTK Gram matrices at initialization
kNTK(θ0) and in the last epoch of training kNTK(θ200) computed on 12, 000 training samples.

MLP LeNet ResNet18

Energy conc. (init) 26.0% 25.8% 22.7%

Energy conc. (end) 63.6% 83.0% 96.7%

Test accuracy (CIFAR2) 67.6% 75.0% 81.4%

Prior work has also observed a similar phenomenon, albeit in a more restricted experimental

setup: These observations have been confirmed only in a few datasets, and required the use of

minibatches to approximate the alignment of the NTK to track the evolution of a small portion

of the eigenspace [16, 121, 191]. However, we now show that that the kernel rotation is prevalent

across training setups, and that it can also be observed when training to solve other problems.

In fact, a more fine-grained inspection reveals that the kernel rotation mostly happens in a single

functional axis. It maximizes the alignment of kNTK(θt) with the target function f?, i.e., αt =

54

4.4 Sources of the non-linear (dis)advantage

0 500 1000
Eigenfunction index

106

107

108

α100 (φi) Train on φ20

0 500 1000
Eigenfunction index

106

107

108

α100 (φi) Train on φ100

0 500 1000
Eigenfunction index

106

107

108

α100 (φi) Train on φ800

Figure 4.9: Alignment of the eigenfunctions of the NTK of a randomly initialized MLP with the NTK
computed after training to predict different initialization eigenfunctions.

0 500 1000
Eigenfunction index

107

109

α100 (φi) Train on φ20

0 500 1000
Eigenfunction index

106

107

108

α100 (φi) Train on φ100

0 500 1000
Eigenfunction index

106

107

108

α100 (φi) Train on φ800

Figure 4.10: Alignment of the eigenfunctions of the NTK of a randomly initialized LeNet with the NTK
computed after training to predict different initialization eigenfunctions.

α(f?;θt), but does not greatly affect the rest of the spectrum. Indeed, we can see how during

training αt grows significantly more for the target than for any other function.

This is clearly illustrated in Figure 4.8, where we compare α0 and α100 for the first 1, 000

eigenfunctions of kNTK(θ0), (φρ)
1,000
ρ=1 , when training to predict and arbitrary eigenfunction4

x 7→ sign(φ500(x)). Strikingly, we can see that after training to predict φ500, α(φ500) increases

muchmore thanα(φρ) for any other eigenfunctionφρ. In fact, the relative alignment between all

other eigenfunctions does not change much. Note, however, that the absolute values of all align-

ments have also grown, a phenomenon which is due to a general increase in the Jacobian norm

Ex‖∇θf(x;θt)‖2 during training. Finally, as we can see in Figures 4.9 and 4.10 the increase in

alignment is a general phenomenon which can also be observed when training on other eigen-

functions and for multiple networks. Interestingly, the alignment increase is more pronounced

for the eigenfunctions corresponding to the lowest eigenvalues. This suggests that the strength

of the kernel rotation may have an anisotropic component. Understanding this implicit bias is

another exciting avene for future work.

These results show that there is great potential in using linear approximations to investigate

important deep learning phenomena involving pretrained networks as in [48, 145]. Indeed, as

4Recall that α0(φρ) = λρ.

55

Chapter 4. Approximating inductive bias in the tangent space

0 20 40 60 80 100

Epochs

0.00

0.25

0.50

0.75

1.00
Train loss

Linearized model (pretrained) - Acc. 57.8%

Neural network - Acc. 64.7%

Linearized model (init) - Acc. 92.8%

Figure 4.11:NTK adaptation improves training speed but can hurt generalization. (Left) Evolution
of training loss while learning x 7→ sign(φ400(x)) for a ResNet18 and two linearized models based on
kNTK(θ0) and kNTK(θ100) of the ResNet18. (Right) Test accuracy on x 7→ sign(φ400(x)).

αt(f
?) is higher at the end of training, it can be expected that a linear expansion at this late stage

will be able to capture the inductive bias needed tofine-tuneon targets similar tof?. The intuition

behind this lies in the geometry of the NTK RKHSK. Note that inK [222],

‖flin(θ)‖kNTK
= ‖θ − θ0‖2, (4.14)

and recall that, as indicated by Theorem 4.1, target functions with small ‖f?‖kNTK
also have high

α(f?). This means that in K those tasks with a high α(f?) are indeed represented by weights

closer to the origin of the linearization, which thus makes the approximation error of the lin-

earization smaller for these targets as observed in [64].

4.4.3 Kernel rotation improves speed of convergence, but can hurt

generalization

The rotationofkNTK(θt)during training is an importantmechanism that explainswhy the kernel

dynamics can better capture the behavior of non-linear networks at the end of training. However,

it is also fundamental in explaining the ability of neural networks to quickly fit the training data.

Specifically, it is important to highlight the stark contrast, at a dynamical level, between linear

models and neural networks. Indeed, we have consistently observed across our experiments that

neural networks converge much faster to near-zero training loss than their linear approximations.

We can explain the influence of the rotation of theNTKon this phenomenon through a simple

experiment. In particular, we train three different models to predict another arbitrary eigenfunc-

tion x 7→ sign(φ400(x)): (i) a ResNet18, (ii) its linearization around initialization, and (iii) an

unbiased linearization around the solution of the ResNet18 θ?, i.e.,

flin-unbiased(x;θ) = (θ − θ0)
>∇θf(x;θ

?). (4.15)

56

4.4 Sources of the non-linear (dis)advantage

0 20 40

Pretraining epoch

80.0%

90.0%

MLP

0 20 40

Pretraining epoch

80.0%

85.0%

90.0%

LeNet

0 20 40

Pretraining epoch

60.0%

70.0%

80.0%

90.0%

ResNet18

Linearized model Neural network

Figure 4.12: The NTK rotates in the first epochs. Performance of linearized networks with kernels
extracted after different epochs of pretraining of a non-linear network learning x 7→ sign(φ400(x)). The
dashed line represents the performance of fully non-linear training on the same task, and the value at epoch
0 corresponds to the linearized model at initialization.

Figure 4.11 compares the dynamics of these models, revealing that the neural network indeed

converges much faster than its linear approximation. We see, however, that the kernelized model

constructed using the pretrainedNTKof the network has also a faster convergence. We conclude,

therefore, that, since the difference between the two linear models only lies on the kernel they

use, it is indeed the transformation of the kernel through the non-linear dynamics of the neural

network that makes these models converge so quickly. Note, however, that the rapid adaptation

of kNTK(θt) to the training labels can have heavy toll in generalization, i.e., the model based on

the pretrained kernel converges much faster than the randomly initialized one, but has a much

lower test accuracy (comparable to the one of the neural network).

The dynamics of the kernel rotation are very fast, and we observe that the NTK overfits to

the training labels in just a few iterations. Figure 4.12 illustrates this process, where we see that

the performance of the linearized models with kernels extracted after a few epochs of non-linear

pretraining decays very rapidly. This observation is analogous to the one presented by Fort et

al. [64], although in the opposite direction. Indeed, instead of showing that pretraining can greatly

improve the performance of the linarized networks, Figure 4.12 shows that when the training task

does not abide by the inductive bias of the network, pretraining can rapidly degrade the linear

network performance. On the other hand, on CIFAR2 (see Section 4.4.1) the kernel rotation

does greatly improve test accuracy for some models.

The fact that the non-linear dynamics can both boost and hurt generalization highlights that

the kernel rotation is subject to its own form of inductive bias. In this sense, we believe that ex-

plaining the non-trivial coupling between the kernel rotation, alignment, and training dynamics is

an important avenue for future research, which will allow us to better understand deep networks.

57

Chapter 4. Approximating inductive bias in the tangent space

4.5 Conclusion

In this chapter, we have presented a systematic study comparing the behavior of neural networks

and their linear approximations on different tasks. Previous studies had shown that there exist

tasks that neural networks can solve but kernels cannot [5, 64, 79, 147]. Our work complements

those results, and provides examples of tasks where kernels perform better than neural networks

(see Section 4.3.1). We see this result as an importantmilestone for deep learning theory, as it shifts

the focus of our research from asking “why are non-linear networks better than kernel methods?”

to “what is special about our standard taskswhichmakes neural networks adapt sowell to them?”.

Moving forward, knowing which tasks a neural network can and cannot solve efficiently will be

fundamental to explain their inductive bias [250].

Our findings complement the work of Fort et al. [64] who also compared empirically neural

networks and their linear approximations, but on a single training task. In thiswork, we have built

from these observations and studied these models on a more diverse set of problems. Doing so,

we have shown that the alignment with the empirical NTK can approximately predict the induc-

tive bias of non-linear networks towards certain tasks, despite it being agnostic to the non-linear

(dis)advantages. In this sense, wehave revealed that important factors such as sample size, architec-

ture, or target task can greatly influence the gap between kernelized models and neural networks.

On the other hand, our dynamical study of the kernel rotation complements the work of Ko-

pitkov& Indelman [121], Paccolat et al. [191] andBaratin et al. [16],who also oberved a dynamical

alignment of the NTK with the training task, and provides new important insights for future re-

search. For example, the fact that the kernel rotates in a single axis, and that its tendency to overfit

is accurately predicted by the NTK eigenfunctions can aid in the development of new models of

training. Moreover, it opens the door to new algorithmic developments that could slow down the

kernel rotation and potentially reduce overfitting on many tasks.

Finally, this chapter has underscored the utility of linear approximations in elucidating the in-

ductive bias of neural networks. Specifically, we have shown that the spectral decomposition of

the NTK can reveal functional directions characterized by varying learning complexities. While

this approach does not capture the full inductive bias of deep learning, it offers valuable localized

insights that are applicable in scenarios like fine-tuning. In the next chapters, we will leverage this

framework to dissect the function space of diverse neural networks across various applications,

thereby enriching our understanding of their inductive biases.

58

5 Understanding the spectral bias of

implicit neural representations

«Le véritable voyage de découverte ne consiste pas à chercher de nouveaux paysages,

mais à avoir de nouveaux yeux. »

The real voyage of discovery consists not in seeking new lands

but in seeing with new eyes.

— Marcel Proust

5.1 Introduction

In the previous chapters, we have taken a scientific approach to examine the inductive bias of

generic neural network architectures. This examination was facilitated through controlled exper-

iments on an array of synthetic tasks, which allowed us to characterize these biases by exploring

the interplay between weight and function spaces near initialization. Armed with these insights,

this chapter shifts its focus towards more practical settings, and investigates a pressing issue in

modern deep learning research: overcoming the spectral bias [205]. This question has recently

garnered increased attention, particularly as implicit neural representations (INRs) are emerging

as compelling alternatives to classical, discretized multimedia signal representations [229, 237].

Diverging from traditional signal encoding methods, INRs parameterize the continuous map-

ping between coordinates and signal values using neural networks. This allows for an efficient and

compact representation of signals that can be easily integrated intomodern differentiable learning

pipelines. The recent success of INRs in many applications, such as surface representation [229],

volume rendering [152, 158, 194, 234] or generative modelling [33, 57] can be largely attributed to

the development of newperiodic representations that can circumvent the spectral bias of standard

neural networks. Indeed, there is ample evidence that the use of periodic representations [119, 158,

230, 237] can mitigate the bias of standard architectures towards low frequencies [205].

The content of this chapter has been partially published in:

• G. Yüce?, G. Ortiz-Jiménez?, B. Besbinar and P. Frossard. “A structured dictionary perspective on im-
plicit neural representations”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2022

59

Chapter 5. Understanding the spectral bias of implicit neural representations

Implicit Neural Representations

Signal Dictionary

NTK eigenfunctions

Input
coordinates

Figure 5.1:Conceptual illustrationof ourmain theoretical contributions: (i) Each layer of an INR increases
the frequency support of the representation by splitting a signal into higher order harmonics. (ii) INRs can
be interpreted as signal dictionaries whose atoms are the eigenfunctions of their NTK at initialization.

Nevertheless, even if INRshave becomewidely adopted in practice, the theoretical understand-

ing of their principles and properties is rather limited. For example, there is no clear criterion to

select between different INR families, their parameters are mostly based on heuristics, and their

limitations are notwell understood. These shortcomings are slowing down further research devel-

opments. In this chapter, we thus take a stepback and focusonunderstanding themechanismsbe-

hind the success ofmodern INRs, but also their failuremodes, in order to developmore informed

design strategies. Weprovide a unified perspectivewith the aim to answer the following questions:

1. What is the expressive power of INRs?

2. How does initialization affect their inductive bias?

Specifically, we first leverage results from harmonic analysis and deep learning theory, and we

discover that the expressive power of most INRs is equivalent to that of a structured signal dictio-

nary whose atoms are integer harmonics of the frequencies that define their initial inputmapping

(see Figure 5.1). This unifies many INR architectures under a single perspective, and can serve to

understand them better and mitigate some of their common problems.

Then, we delve deeper on the inductive bias of INRs. We build upon the foundational work

in [237], and exploit our results from Chapter 4 to develop a new unifying framework to anal-

yse the inductive bias of any INR architecture in terms of its empirical neural tangent kernel

(NTK) [110]. In particular, we reveal the existence of a close analogy between the eigenfunctions

60

5.1 Introduction

of the empiricalNTK and the atoms of a signal dictionary, and show that the difficulty of learning

a signalwith an INR is intimately connected tohowefficiently it canbe encodedby this dictionary.

Finally, we use our novel perspective to explain the role of meta-learning in improving the per-

formance of INRs. INRs are known to be notoriously inefficient, requiring long training times,

and a large sample exposure to achieve good results, especially in 3D settings [68, 90, 210]. How-

ever, recent works have shown that using meta-learning algorithms to initialize INRs can greatly

improve their speed of convergence and sample complexity [228, 236]. In this chapter, we show

that meta-learning works as a dictionary learning algorithm, transforming the NTK of an INR

into a rich signal dictionarywhose atoms are formed by combinations of the examples seen during

meta-training. This increases the representation efficiency of the target signals by the NTK, thus

improving performance and training speed.

In summary, the main contributions of this chapter are:

• We give a unified perspective to analyze the expressive power and inductive bias of INRs.

• We show that the frequency support of INRs grows exponentially with depth, as each layer

splits its input into higher order harmonics, demonstrating their efficiency in representing

wide spectrum signals.

• Weuse this theory to explain the twomain failures of INRs: imperfect recovery and aliasing.

• We show that the inductive bias of INRs can be characterized by the ability of their empir-

ical NTKs to encode different target signals efficiently.

• Finally, we discover thatmeta-learning greatly increases the encoding efficiency of theNTK

by constructing a rich signal dictionary by combining different meta-training tasks.

We believe that our findings can impact the future research in INRs and their applications, and

contribute to speeding up the development of new principled algorithms in the field. It gives a

fresh perspective to understand and alleviate the drawbacks of the current architectures, as well

as new intuitions to design better INR algorithms. Moreover, our analysis on the effect of meta-

learning on the NTK expands upon the observations of Chapter 4 and provides further insights

into different deep learning dynamics and the feature learning regime1.

1The code to reproduce the experiments in this chapter can be found at https://github.com/gortizji/inr_
dictionaries.

61

https://github.com/gortizji/inr_dictionaries
https://github.com/gortizji/inr_dictionaries

Chapter 5. Understanding the spectral bias of implicit neural representations

5.2 Expressive power of INRs

Recall from Section 2.3.2 that an INR is a neural network f : X ×Θ → Y , used to represent

the mapping between input coordinates r ∈ X , e.g., pixels, and values f?(r) ∈ Y , e.g., RGB

colors, of a multimedia signal f? : X → Y such as an image, audio recording, or a video. In this

regard, most INR architectures follow the structure

z(0) = γ(r), (5.1)

z(`) = h(`)
(
W (`)z(`−1) + b(`)

)
, ` = 1, . . . , L− 1

f(r;θ) = W (L)z(L−1) + b(L),

where W (`) ∈ RF`−1×F` and b(`) ∈ RF` , represent the weights and biases, respectively, – col-

lected for all layers in θ to simplify notation – and h(`) : R → R the activation function of

the `-th layer of an MLP; while γ : X → RT is a fixed-encoding function that maps the input

coordinates r ∈ X to a higher T -dimensional space. Generally,

γ(r) = sin(Ωr + φ), (5.2)

andX ⊆ Rd is a low-dimensional coordinate space with 0 < d ≤ 6. The twomain INR families

are Fourier feature networks (FFNs) [237] and sinusoidal representation networks (SIRENs) [229]

which only differ in that FFNs use ReLUs and SIRENs use sinusoids as activation functions.

Our goal is to provide an integrated analysis of the expressive power of INRs. To that end,

and to simplify our derivations, we will restrict ourselves to polynomial activation functions, i.e.,

non-linearities of the form h(x) =
∑K

k=0 αkx
k. Note that this is a very mild assumption, as all

analytic activation functions, e.g., sinusoids, can be approximated using polynomials with a naïve

Taylor expansion; and that even the non-differentiableReLUs can be effectively approximated us-

ing Chebyshev polynomials [156]. Note, also, that the sequence of coefficients of the polynomial

expansion of most activation functions used in practice decays very rapidly [156].

Now, without loss of generality, let d = 1 and consider what happens when a single-frequency

mapping, i.e., γ(r) = ejωr, goes through such a polynomial activation: The output of the acti-

vation consists of a linear combination of the integer harmonics of the input frequency, i.e.,

h(γ(r)) = h
(
ejωr

)
=

K∑
k=0

αke
jkωr. (5.3)

This harmonic expansion is precisely the mechanism that controls the frequency representation

in INRs. More generally, the mapping γ(r) acts as a collection of single frequency basis, whose

62

5.2 Expressive power of INRs

spectral support is expanded after each non-linear activation into a collection of higher order har-

monics. This particular structure is shared among all FFNs and SIRENs and it gives rise to the

following result regarding their expressive power, i.e., the class of functions that canbe represented

with these architectures.

Theorem 5.1. Let f : X ×Θ → Y be an INR of the form of Equation (5.1) with h(`)(z) =∑K
k=0 αkz

k for ` > 1. Furthermore, letΩ = [Ω0, . . . ,ΩT−1]
> ∈ RT×d and φ ∈ RT denote

the matrix of frequencies and vector of phases, respectively, used to map the input coordinate r ∈ Rd

to γ(r) = sin(Ωr + φ). This architecture can only represent functions of the form

f(r;θ) =
∑

ω′∈H(Ω)

cω′ sin (〈ω′, r〉+ φw′), (5.4)

where

H(Ω) ⊆

{
T−1∑
t=0

stΩt

∣∣∣∣∣ st ∈ Z ∧
T−1∑
t=0

|st| ≤ KL−1

}
. (5.5)

Proof. The proof follows by induction. See details in Appendix C.1.1.

Theorem 5.1 shows that the expressive power of FFNs and SIRENs is restricted to functions

that can be expressed as a linear combination of certain harmonics of the feature mapping γ(r).

That is, these architectures have the same expressive power as a structured signal dictionary whose

atoms are sinusoids with frequencies equal to sums and differences of the integer harmonics of

the mapping frequencies2. Interestingly, an analogous result was also proven for the multiplica-

tive filter networks (MFNs) [60], a proof-of-concept architecture based on a multiplicative con-

nection between layers instead of the usual compositional structure of MLPs. In particular, it

can be shown that MFNs, although very different in structure, are also only able to express linear

combinations of certain harmonics of their sinusoidal filters [60], whichmeans that they have the

same expressive power as FFNs and SIRENs.

Besides this unification, Theorem 5.1 also highlights that the way all these architectures encode

different signals is very similar. Indeed, instead of representing a signal by directly learning the

coefficients of the linear combination,whichwould require to storeO(TKL) coefficients cω′ ; the

multilayer structure of all INRs imposes a certain low rank structure over the coefficients – akin to

the sparsity assumption in classical dictionaries [242]–which can greatly save onmemory as it only

requires to storeO(T 2L) parameters. This is better understood through an illustrative example.

2We will refer to these components as the harmonics of γ(r).

63

Chapter 5. Understanding the spectral bias of implicit neural representations

Example. Let f be a three-layer SIREN defined as

f(r;θ) = w(2)> sin
(
W (1) sin(Ωr)

)
, (5.6)

whereΩ ∈ RT ,W (1) ∈ RF×T , andw(2) ∈ RF . The output of this network can equivalently be

represented as

f(r;θ) =
F−1∑
m=0

∞∑
s1,...,sT=−∞

cm,s1,...,sT sin

(
T−1∑
t=0

stωtr

)
, (5.7)

where

cm,s1,...,sT =

(
T−1∏
t=0

Jst

(
W

(1)
m,t

))
w(2)
m , (5.8)

and Js denotes the Bessel function of first kind of order s.

Proof. The proof is based on the expression of the sinusoid as

sinx = Im(exp jx), (5.9)

where Im : C→ R denotes the imaginary part operator and j =
√
−1; and the Fourier series

exp(jβ sin(x)) =

∞∑
n=−∞

Jn(β) exp(jnx). (5.10)

For the details, see Appendix C.1.2.

β

Jn(β)

n = 0

n = 1

n = 2

n = 3

Figure 5.2: Bessel functions of the first kind. The
envelope of Jn(β) decreases monotonically with β.

As we can see, the harmonic expansion in-

troduced by the nested sinusoids of this sim-

ple SIRENcan be developed into a signal with

a very large bandwidth. Indeed, the few coef-

ficients of this network are enough to repre-

sent a signal supported by an infinite number

of frequency harmonics.

On the other hand, note that composing

sinusoids is a common operation in commu-

nication theory as it defines the basis of fre-

quency modulation (FM) technology [198].

Interestingly, drawing analogies between FM

signals and SIRENs is a good source of inspiration to intuitively understand how these networks

64

5.3 Failure modes of INRs

modulate their spectral bias: Recall that for FM signals, such as sin(β sin(ω0r)), the parameter β

controls the bandwidth of the modulation, which is generally limited by the decreasing nature of

the Bessel coefficients Jn(β) in n. Increasing β has the effect of expanding the spectral support

of the modulation, as the arguments of the Bessel functions increase (see Figure 5.2).

The analogous phenomenon can be observed in Equation (5.7) for this simple SIREN, but

can be extended to more general architectures. In general, we see that due to the decreasing na-

ture of the Bessel functions Jst(W
(1)
m,t), the high order harmonics in Equation (5.7) tend to have

smaller weights than the lower ones. This specific parameterization acts as an implicit bias mech-

anism, which focuses most of the energy of the output signal in a narrow band around the input

frequenciesΩ. Nevertheless, we can also see that increasing the scale of the coefficients in the in-

ner layer, e.g., W (1), makes the coefficients of higher order terms in Equation (5.8) larger, thus

increasing the power of the higher order harmonics, and allowing the network to learn a wider

range of frequencies.

The fact that all modern INRs encode information in a similar way can explain why all these

architectures are as powerful, in practice. However, it may also explain why they all suffer from

the same failure modes. In Section 5.3, we study these in more detail.

5.3 Failure modes of INRs

We now move on to study of the main failure modes of INRs. In particular, we will see how the

specific harmonic expansion from Theorem 5.1 can sometimes lead to very recognizable artifacts

in the learned reconstructions. Specifically, imperfect signal recovery and aliasing.

5.3.1 Imperfect recovery

One of the main consequences of Theorem 5.1 is that the set of frequencies that define the base

embedding γ(r) completely determines the frequency support of the reconstruction f(r;θ). In

this sense, it is fundamental to guarantee that the setH(Ω)permits toproperly cover the spectrum

of f?(r). When this is not the case, the reconstructed representations can exhibit severe artifacts

in the spatial domain stemming from an incorrect choice of fundamental frequencies determined

by the INR mapping in Equation (5.1).

Let us illustrate this phenomenon for FFNs, but note that other types of architectures, such as

SIRENs, also can suffer from spatial artifacts3. To that end, let us take the extreme case of an FFN

f : R2 ×Θ→ R3, with a deterministic single frequency Fourier encoding

γ(r) = [sin(2πf0r), cos(2πf0r)]
>, (5.11)

3We replicate our experiments for other networks in the Appendix.

65

Chapter 5. Understanding the spectral bias of implicit neural representations

G
ro

u
n
d
T
ru

th
Si
n
gl
e
fr
eq

u
en

cy
m

ap
p
in

g
(f

0
=

0
.5

)
(f

0
=

1
)

200

100

0

100

200

F
F
N

(σ
=

1
0
)

Figure 5.3: Imperfect recovery in INRs. Left: Image reconstruction with different mappings of the
input coordinates. Right: Magnitude of the DFT of the reconstruction. The FFN uses random Fourier
encodings, and the single frequency mappings corresponds to Equation (5.11).

reconstructing an image f? : [−1, 1]2 → [0, 1]3, from samples in a grid of 512× 512 pixels. In

our experiments, we use an FFNwith three hidden layers of dimension256. We train this network

using Adam [118] for 2000 iterations with a learning rate of 10−4. Now, note that, in light of

Theorem 5.1, this network can only represent signals with a frequency support inH(Ω) ⊆ {2k ·
πf0|k ∈ Z}, i.e., , containing only even multiples of πf0. This means that if we choose f0 = 1,

the discrete Fourier transform (DFT) of the reconstruction will only have non-zero coefficients at

frequencies corresponding to 2k ·2π/N , for k = 0, . . . , b(N −1)/2c. This frequency covering

is certainly not enough to completely represent images, as it misses all odd multiples of 2π/N .

As shown in Figure 5.3, reconstructing an image with such network produces severe artifacts.

The learned representation with f0 = 1 is highly distorted. That is, we see multiple displaced

versions of the target image imposed over each other. The nature of this artifact is much more

clear when we inspect the DFT of the reconstruction, which is supported on a perfect grid in the

spectral domain, missing all the values of the spectrum at the odd coefficients.

Strikingly, settingf0 = 0.5 is enough to completely get ridof this typeof artifact. Indeed,when

f = 0.5 the setH(Ω) ⊆ {πk|k ∈ Z}, whichmeans that theDFTof the reconstruction canhave

energy in all spectral coefficients. Nonetheless, we also observe that the resulting image is quite

blurry. As we will see, this is due to the fast decay of the polynomial coefficients in Equation (5.3)

66

5.3 Failure modes of INRs

for most activation functions, including ReLUs [156], which causes the weights of the high fre-

quency harmonics in Equation (5.4) to be very small. This phenomenon can be greatly alleviated,

however, by increasing the frequency cover of the initial mapping γ(r) = sin(Ωr + φ) and

samplingΩ ∈ RD×T usingΩi,j ∼ N (0, σ2). Indeed, using a large T with a large σ can reduce

the probability of having a limited representation of the frequency spectrum of the target signal.

Nevertheless, as we will see in Section 5.3.2, setting σ too large can introduce other problems.

5.3.2 Aliasing

It has been empirically shown that INRs with high fundamental frequencies in γ(r) converge

faster, and achieve higher performances in the training set [229, 237]; even for targets with high

frequency details. Nevertheless, it has also been reported that initializing these frequencies too

high leads to poor performance outside the exact support of the training set, and produces aliasing

artifacts [17]. To the best of our knowledge, this behavior is still poorly understood.

Theorem 5.1 can, however, shed new light on this phenomenon. To that end, it is useful to

see INRs as digital-to-analog converters (DAC), since INRs do little more than reconstruct a con-

tinuous signal from a set of discrete training samples. Classical sampling theory [179] guarantees

that one can reconstruct a bandlimited signal from its samples provided the sampling frequency

is above the Nyquist rate. Nevertheless, it also states that without this prior knowledge, the prob-

lemof reconstructing a continuous signal from its samples is, in general, ill-posed – there aremany

continuous functions that can lead to the exact same samples. Since INRs do not have an explicit

knowledge of the bandwidth of the target, only their implicit bias can determinewhich of all these

functions they reconstruct.

When the implicit bias does not match the nature of the signals, this can lead to reconstruc-

tion artifacts. Take for instance the problem of reconstructing a single-frequency signal f?(r) =

sin(2π · 23r) using a SIREN with

γ(r) = sin
(
ω0

(
W (0)r + b(0)

))
, (5.12)

as in Sitzmann et al. [229], where ω0 = 300 rad/s, trained on 128 evenly spaced samples in the

range [0, 1], i.e., , sampled with a frequency of fs = 128 Hz. As we can see in Figure 5.4, the

discrete-time Fourier transform of the reconstruction at the training points perfectly matches the

target signal, i.e., , the training loss is zero. Surprisingly, though, if one reconstructs the signal on

a finer grid, e.g., fs = 256Hz, which contains coordinates not seen during training, one can see

that the spectrumof the reconstruction has an additional peak at 105Hz that is not present in the

target signal. That is, the implicit bias of the network has “chosen” to reconstruct the signal using

67

Chapter 5. Understanding the spectral bias of implicit neural representations

w
0
=

3
0
0

50 0 50
100

0

f (Hz)

Magnitude Spectrum (dB)
f = 23f = 23

100 0 100

0
20
40

f (Hz)

Magnitude Spectrum (dB)
f = 23f = 23

f = 105f = 105

w
0
=

3
0

50 0 50

50

0

50

f (Hz)

Magnitude Spectrum (dB)

f = 23f = 23

100 0 100
30
0

30

f (Hz)

Magnitude Spectrum (dB)
f = 23f = 23

f (r)
g(r)

Sampling frequency fs = 128 Sampling frequency fs = 256

Figure 5.4: Aliasing in INRs. Magnitude of the spectrum of f?(r) = sin(2π · 23r) and its SIREN
reconstruction trained at fs = 128Hz. Top row showsω0 = 300, and bottom rowω0 = 30. On the left
the signals are sampled at fs = 128Hz and on the right at fs = 256Hz.

an aliased higher frequency component, as it had no way to discard this feasible solution. Inter-

estingly, if one initializes the SIREN using ω0 = 30 rad/s, instead, this aliased copy disappears.

Theorem 5.1 gives the key to understand this behaviour. Specifically, note that most non-

linearities used in INRs, e.g., ReLU or sin, can be effectively approximated by polynomials of

small order, or with rapidly decaying coefficients. As a result, even if the frequency support of the

INRs can include harmonics of very high frequencies, theoretically, those components tend to

be weighted with much smaller coefficients in practice. Increasing the value of the fundamental

frequencies does help to include higher frequency components without relying in very high order

harmonics. However, it does so, at the cost of introducing high frequency components with large

weights in Equation (5.4), thus increasing the chances of yielding aliased reconstructions.

Reconstructing signals at low sampling rates makes the aliased high frequency components

in Equation (5.4) indistinguishable from lower frequency components. As we have seen this

phenomenon stems from the underspecification [46] of the reconstruction of the reconstruction

problem in INRs, which can yield aliasing artifacts when testing at higher sampling rates. Solving

this issues is crucial in application where a certain degree of generalization is required from the

INRs. Applications such as super-resolution [36, 117] or scene reconstruction [229] cannot rely

on pure overfitting, and require INRs to generalize outside of their training support. Overall, we

hope that our new insights can support the design of a new generation of INR architectures and

algorithms that can mitigate this underspecification.

68

5.4 Inductive bias of INRs

1.0

Figure 5.5: Energy concentration captures the inductive bias of INRs. Average energy concentration
of 100 validation images from CelebA on subspaces spanned by the eigenfunctions of the empirical NTK
associated to eigenvalues greater than a given threshold. The legend shows the average test PSNR after
training to reconstruct those images from 50% randomly selected pixels.

5.4 Inductive bias of INRs

All our results, so far, have only dealt with expressive power, i.e., , the type of functions that can

be represented by INRs. However, even if a network can express a signal, it does not mean that it

can learn to represent it efficiently. MLPs, for instance, are widely known to be universal function

approximators [45], but still they have a hard time learning to high frequency functions [205]. To

the best of our knowledge, the inductive bias of INRs is a largely unexplored topic. Besides the

fact that INRs can circumvent the spectral bias [229, 237], little is known of how different design

choices influence the learnability of different signals.

In what follows, we will try to narrow this knowledge gap, as we leverage the results from pre-

vious chapters to shed new light on the inductive bias of INRs, and how their initialization has

a crucial role on what they learn. Specifically, recall from Chapter 4 that, at least locally around

a give initialization, the kernel alignment with the empirical NTK kNTK(θ0) approximately cap-

tures the inductive bias of learning a target function f?. Specifically, we have seen that, for many

target functions of interest, the complexity of learning f? grows monotonically with

α(f?;θ0) =

∞∑
ρ=1

λρ|〈φρ, f
?〉|2, (5.13)

where 〈φρ, f
?〉 = Er[φρ(r)f

?(r)], and ((λρ, φρ))ρ∈N denote the eigenvalue, eigenfunction

pairs of the kernel given by its Mercer’s decomposition. That is, those targets that are more con-

centrated in the span of the eigenfunctions associated with the largest eigenvalues of the kernel

are easier to learn.

69

Chapter 5. Understanding the spectral bias of implicit neural representations

ReLU

FFN
(σ = 1)

FFN
(σ = 10)

SIREN
(ω0 = 5)

SIREN
(ω0 = 30)

SIREN
(ω0 = 100)

Learned
init.

1

Figure 5.6:NTK eigenfunctions are meaningful dictionary atoms atoms. First eigenfunctions of the
empirical NTK of different INRs at initialization. The first six architectures are initialized as described in
Section 2.3.2. The learned initialization row shows the eigenfunctions of a SIREN initialized after meta-
learning on 1, 000 training images from CelebA following the procedure described by Tancik et al. [236].

The fact that the empirical NTK can approximately capture learnability in deep learning leads

to a new interpretation of INRs: we can view INRs as signal dictionaries whose atoms are given

by the eigenfunctions of the NTK at initialization. In this view, the study of the inductive bias of

an INR is equivalent to the study of the representation capabilities of its NTK dictionary, in the

sense that the functions that can be efficiently encoded by this dictionary are the ones that will be

easier to learn.

The simplicity of this analogy allows us to investigate phenomena that appear complex oth-

erwise. For example, we can use this perspective to constructively characterize the effect of the

parameter ω0 in the inductive bias of a SIREN, and compare different networks, or initializa-

tions. To that end, we measure the average energy concentration4 of n = 100 validation images

{f?
ν }nν=1 from theCelebA dataset [140] on the span of the eigenfunctions of theNTK associated

to eigenvalues greater than a given treshold, i.e., ,

E(λ) =
1

n

n∑
ν=1

∑
λρ/λ1≥λ

|〈φρ, f
?
ν 〉|

2

|〈f?
ν , f

?
ν 〉|

2. (5.14)

This metric is intimately connected to the kernel alignment in Equation (5.13), and it can give us

a convenient perspective of the region of the NTK spectrum that will represent an image. The

results of this procedure applied to different networks are shown in Figure 5.5. Remarkably, for

very low values of ω0, most of the energy of these images is concentrated on the eigenfuctions

corresponding to small eigenvalues. However, as we increase ω0, the energy concentration gets

more skewed towards the eigenfunctions associated with large eigenvalues. Interestingly, after

some point (ω0 > 40), the energy profile starts receding to the right, again.

4Details of the experiments can be found in the Appendix.

70

5.4 Inductive bias of INRs

Comparing the energy profiles with the generalization performance of these networks, we ob-

serve a clear pattern: themore energy is concentrated on the eigenfunctions associated with larger

eigenvalues, thebetter the test peak signal-to-noise ratio (PSNR).Tounderstand this phenomenon,

we can inspect the eigenfunctions of the NTK. As it is shown in Figure 5.6, the eigenfunctions

of the SIRENs with larger ω0 have higher frequency content. This means that increasing ω0 can

have a positive effect in generalization as it yields a dictionary that better spans the medium-high

frequency spectrum of natural images. Increasing ω0 too much, on the other hand, yields atoms

with an overly high frequency content that cannot span the space of natural images efficiently,

which explains their poor reconstruction performance of these networks. Similarly, Figure 5.7

shows the evolution of the average training and test curves for each of these networks where we

can see, the networks with a better energy concentration in Figure 5.5 are the networks that train

faster, and reach the best test performances.

2 4 6 8 10
iterations

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

PS
NR

ReLU-MLP
SIREN-5
SIREN-10
SIREN-20
SIREN-40
SIREN-60
SIREN-80
SIREN-100
SIREN-30-Meta

(a) Test

2 4 6 8 10
iterations

10

15

20

25

30

PS
NR

ReLU-MLP
SIREN-5
SIREN-10
SIREN-20
SIREN-40
SIREN-60
SIREN-80
SIREN-100
SIREN-30-Meta

(b) Training

Figure 5.7: Speed of reconstruction depends on energy concentration. Evolution of the reconstruc-
tion performance (average PSNR) of different representations for the first 10 training iterations when
trained on 100 validation images from CelebA dataset.

Overall, we see how interpreting learnability as encoding efficiency of the NTK dictionary is a

powerful analogy that can explain diverse phenomena, and lets us study under a single framework

all sorts of INR questions, including those which might not be readily understood from The-

orem 5.1. This is a very powerful tool that we further exploit in Section 5.4.1 to provide novel

insights on the role of meta-learning in INRs.

5.4.1 Meta-learning as dictionary learning

Priorworkhas shown that a correct initialization is key to ensure a goodperformance for INRs [229,

237]. In this sense, recent studies [228, 236] have shown that the use of learned initialization, such

as the ones obtained frommeta-learning algorithms [62], can significantly boost the performance

of INRs. Indeed, initializing with meta-learned weights is one of the most effective remedies

against the slow speed of convergence, and high sample complexity of INRs. However, while

there has been recently great progress in understanding traditional forms of deep learning, the

71

Chapter 5. Understanding the spectral bias of implicit neural representations

10 510 410 310 210 1100
0.0

0.2

0.4

0.6

0.8

1.0
Energy concentration ()

Random 18.53
5 iter 17.15
50 iter 16.50
5000 iter 13.50
Meta 23.06

Figure 5.8: Single-task pre-training hurts fine-tuning performance Average energy concentration of
100 validation images from CelebA on subspaces spanned by the eigenfunctions of the empirical NTK
associated to eigenvalues greater than a given threshold. The legend shows the average test PSNR after
training to reconstruct those images from 50% randomly selected pixels. The number of iterations specify
those of pretraining on the single task.

role of meta-learning on the inductive bias of deep neural networks remains largely overlooked.

Interestingly, we now show how using the connections between INRs and signal dictionaries can

help us understand meta-learning in general.

To do so, we follow the same experimental protocol as in Section 5.4, where instead of com-

puting the eigenfunctions of the NTK at a random initialization point, we linearize the INRs at

the meta-learned weights, after pre-training on 1, 000 training images from CelebA using model

agnostic meta-learning (MAML) [62, 236].

As it is shown in Figure 5.5, the meta-learned weights yield an eigenstructure that concentrates

most of the energy of the target images on a subspace spanned by the eigenfunctions of the NTK

with the largest eigenvalues, with almost no energy concentrated on the eigenfunctions corre-

sponding to smaller eigenvalues. Therefore, training this INR starting from the meta-learned

weights, results in a very fast speed of convergence and superior generalization capacity.

As it happened with the role of ω0 in Section 5.4, visually inspecting the eigenfunctions of

the NTK can help to build an intuition around this phenomenon. In this regard, recall that the

CelebA dataset consists of a collection of face images. Strikingly, as illustrated in Figure 5.6, the

first eigenfunctions of the meta-learned NTK also look like faces. Clearly, meta-learning has re-

shaped the NTK so that the eigenfunctions have a large correlation with the target images.

To the best of our knowledge, we are the first to report the NTK reshaping behavior of meta-

learning, which cannot be obviously explained by first order approximation theories (cf. Sec-

tion 2.1.3). This result is remarkable for deep learning theory, as it helps us undertand the high-

order dynamics of the NTK during training, which remains one of the main open questions of

the field. In Chapter 4, we – and other works slightly before us [16, 121, 191] – observed that

standard training procedures change the first few eigenfunctions of the NTK so that they look

72

5.5 Conclusion

like the target task, but our observations in Figures 5.5 and 5.6 go one step further, and show that

meta-learning has the potential to reshape a much larger space of the NTK dictionary by com-

bining many tasks together, thus increasing the capacity of the NTK to efficiently encode a full

meta-distribution of signals. In comparison, pre-training on a single image significantly reduces

the capacity of theNTK to compress new signals. Indeed, as we can see in Figure 5.8, themore we

pretrain the networks to reconstruct a specific training image, the more the energy profile of the

validation set shifts to the smallest eigenvalues of the pretrained kernel, i.e., the learned dictionary

has a worse compression performance than the randomly initialized NTK.

All in all, we believe that that drawing parallels between classical dictionary learning [242] and

meta-learning can be a strong abstractionwhich can simplify the complexity of this problem, thus

leading to a promising avenue for future research. Delving deeper in this connectionwill not only

improve our understanding of meta-learning as a whole, but it can also provide new insights for

the design of more efficient INRs by leveraging data to construct richer dictionaries.

5.5 Conclusion

In this chapter, we have analyzed the expressive power and inductive bias of modern INRs from

a unified perspective. We have shown that the expressive power of a large class of INRs with sinu-

soidal encodings is given by the space of linear combinations of the integer harmonics of their in-

put mapping. This allows INRs to encode signals with an exponentially large frequency support

using a few coefficients, but also causes them to suffer from imperfect signal recovery or aliasing.

Building on previous chapters, we have seen that the inductive bias of INRs is captured by the

ability of the empirical NTK to encode signals efficiently. Moreover, we have revealed that meta-

learning can modify the NTK by increasing this encoding efficieny and thus giving us important

insights on the functional landscape of INRs.

Similar to our work, Fathony et al. [60] studied the expressive power of INRs, but their results

only apply to their proposed multiplicative filter network architecture. Zheng et al. [264], on the

other hand, studied the trade-off between the rank and distance-preserving properties of different

activation functions on INRs. Most notably, however, Tancik et al. [237] showed that precoding

the input of an infinitely wideReLU-networkwith randomFourier features [206] is equivalent to

using a tunable shift-invariant kernel method. This gives a static intuition of how randomly ini-

tialized FFNs circumvent the spectral bias [205]. The insights in our chapter go one step further,

and build upon our results in Chapter 4 to extend this NTK analysis to finite networks with arbi-

trary weights and activations, e.g., meta-learned SIRENs. This allows us to investigate dynamical

aspects of INRs such as the role of pre-training.

73

Chapter 5. Understanding the spectral bias of implicit neural representations

Interestingly, Kopitkov & Indelman [121] also used the visualization of the eigenfunctions of

the NTK during training to understand other high-order training effects, such as the increase of

alignment of the NTK with the target signal [16, 121, 187, 191]. Our experiments use a similar

approach to show the complex dictionary learning behaviour ofMAML [62] in the NTK, which

to the best of our knowledge is the first time this has been reported in the literature.

Connected to Theorem 5.1, other works have also used a similar harmonic expansion to ana-

lyze certain effects in deep learning, such as the increase in roughness of the loss landscape with

respect to the weights for deeper layers [156], or how skip-connections can avoid shattered gra-

dients [15]. We note that most of our work draws inspirations from the classical signal process-

ing literature [179]. Some of our derivations are intimately connected to standard techniques in

communications [198], and most of our analogies are founded on the field of signal representa-

tion [149] and dictionary design [242]. Moving forward, delving deeper on these connections will

be a fruitful avenue for future work.

Finally, it is important to note that our numerous new insights should be readily extensible to

higher dimensional settings, although most of our practical results were performed using one or

two-dimensional signals. In this sense, designing methods to visualize the eigenfunctions of the

NTK in higher dimensions would clearly help to develop better intuitions about the inductive

bias of neural networks.

74

6 The functional landscape of task

arithmetic and the tangent space

«L’imperfezione ha da sempre consentito continue mutazione di quel meraviglioso

e quanto mai imperfetto meccanismo che è il cervello dell’uomo.»

Imperfection has always allowed for continuous mutation of the wonderful

and imperfect mechanism that is the human brain.

— Rita Levi-Montalcini

6.1 Introduction

With the insights into the functional landscape of implicit neural representations developed in the

previous chapter, we now pivot to another critical problem in deep learning: the manipulation

and editionof large pre-trainedmodels. While the subject of study changes, our analytical lenswill

remain constant, as we will also use local linearization techniques and systematic evaluations to

understandwhich properties of the function space enable the effective edition of large-pretrained

models.

Pre-trained models play a pivotal role in contemporary machine learning systems as they show

remarkable general capabilities and zero-shot performance [201]. However, tomake themusable in

downstream tasks they normally require further editing (see Section 2.3.3). Recent innovations in

weight interpolation techniques are offering an alternative cost-effective and scalable model edit-

ing approach to classical joint fine-tuning methods. Generally known as task arithmetic [104],

these techniques act directly on themodel weights to produce functional changes. The success of

these methods hinges on the observation that arithmetic operations between fine-tuned weights

often produce analogous functional behaviors [104]. For example, summing the relative weight

components of a model between pre-training and fine-tuning on two separate tasks results in a

new multi-task model with improved performance on both tasks. Similarly, subtracting a task’s

weights can lead to the model forgetting that task.

The content of this chapter has been partially published in:

• G. Ortiz-Jiménez?, A. Favero? and P. Frossard. “Task arithmetic in the tangent space: Improved editing
of pre-trained models”. In: Advances in Neural Information Processing Systems (NeurIPS). 2023 (Oral)

75

Chapter 6. The functional landscape of task arithmetic and the tangent space

Figure 6.1: Illustration of weight disentanglement, where distinct directions in the weight space,
τt, are associated with spatially localized areas of the function space, Dt. This enables a model, f , to
manipulate the disjoint parts of the input space independently by adding linear combinations of those
weight directions to a pre-trained checkpoint θ0.

Despite these advancements, the understanding of task arithmetic’s underlying principles and

the general effectiveness of task arithmetic remains limited. Specifically, it is unclear which char-

acteristics of the function space of large pre-trained models permit straightforward weight-space

arithmetic to yield semanticallymeaningful changes in themodels’ behavior. This knowledge gap

can undermine the adoption of these techniques, as it erodes their trustworthiness in real-world

applications. In addition, reducing this gap could help us improve them even further.

To address these challenges, we present here a systematic study of task arithmetic in large pre-

trained models with a special emphasis on contrastively pre-trained vision-language transformers

(i.e., CLIP [199]). We offer novel insights into its underlying mechanisms and introduce new

approaches to enhance the performance of models edited through these techniques. Specifically,

we probe the hypothesis presented byWortsman et al. [253] that task arithmetic is possible thanks

to the fact that models inherently operate in a linear regime, where their behavior is dictated by

the finite-width neural tangent kernel (NTK) [40, 110].

Our study reveals that linearized CLIP models exhibit significantly improved task arithmetic

performance with respect to their nonlinear counterparts (see Tables 6.1 and 6.2), but also that

the NTK cannot fully account for the task arithmetic abilities of pre-trained non-linear models.

Indeed, we show that the sole requirement for task arithmetic is actually weight disentanglement,

where distinct directions in weight space correspond to changes of the network in disjoint spa-

tial regions1 (see Figure 6.1). This enables a model to perform task arithmetic by independently

manipulating these weight directions.

Notably, we show that fine-tuning models in their tangent space by linearizing them amplifies

weight disentanglement, leading to substantial performance improvements across multiple task

arithmetic benchmarks and models. However, although weight disentanglement is stronger in

1Throughout the chapter, we use the term spatial to refer to the input space.

76

6.2 Problem statement

the tangent space, it is also present in non-linear models. We demonstrate that weight disentan-

glement of semantically meaningful tasks is an emergent property of pre-training, as it is absent

at random initialization.

In particular, the main contributions of this chapter can be summarized as:

• We formalize the notion of task arithmetic introducedby Ilharco et al. [104] as Property 6.1,

allowing us to reason quantitatively about it.

• We show that task arithmetic in non-linear models cannot be explained by their NTK, and

introduce the concept of weight disentanglement as the necessary condition to enable it.

• We propose to linearize models as a way to enhance weight disentanglement and improve

task arithmetic. Doing so, we achieve up to5.8pointsmore and13.1points less in accuracy

on task addition and task negation, respectively, on several vision-language benchmarks.

• Employing kernel theory, we link weight disentanglement in linearized models to spatial

localization of the kernel eigenfunctions and validate this prediction numerically in pre-

trained transformer models.

• Finally, we show that weight disentanglement is an emergent property of pre-training.

In summary, this chapter deepens our understanding of the relationship between weight and

function spaces by focusing on the foundations of task arithmetic. These findings do not only

push the envelope for scalable and reliable model manipulation but also echo the overarching

theme of this thesis: the intricate relationships between weight space and function space are keys

to understanding deep learning. By exploring the impacts of linearization in this context, we add

another layer of granularity to these relationships, emphasizing their role in model edition.

6.2 Problem statement

The first step to build a profound understanding of weight interpolation techniques is to for-

malize the notion of task arithmetic. To that end, let f : X × Θ → Y be a neural network

taking inputs x ∈ X and parameterized by a set of weights θ ∈ Θ. We will assume X ⊆ Rd,

Θ ⊆ Rm and Y ⊆ Rc. Consider T tasks, with every task t consisting of a triplet (Dt, µt, f
?
t)

whereDt ⊆ X is a data support (e.g., ImageNet [47] images), µt an input distribution such that

supp(µt) = Dt, and f
?
t : Dt → Y a target function (e.g., labels). In practice, each task is identi-

fied with a training set {(xν , f
?
t (xν))}ν∈[nt] with x ∼ µt, that is used to fine-tune the models

starting from the pre-trained weights θ0 and obtain the fine-tuned weights θ?
t .

77

Chapter 6. The functional landscape of task arithmetic and the tangent space

Wedefine the task vector of task t to be the difference between thefine-tuned and thepre-trained

weights, i.e., τt = θ?
t −θ0. The following property formalizes the notion of task arithmetic intro-

duced by Ilharco et al. [104], who observed that the accuracies of pre-trained models on different

datasets can be modified independently through the addition or removal of task vectors.

Property 6.1 (Task arithmetic). Consider a set of task vectors T = {τt}t∈[T] with associated non-

intersecting task supportsD = {Dt ⊂ X}t∈[T], i.e., ∀t, t′, if t 6= t′ thenDt ∩Dt′ = ∅. We say a

network f satisfies the task arithmetic property around θ0 with respect to T andD if

f

(
x;θ0 +

T∑
t=1

αt τt

)
=

f(x;θ0 + αt τt) x ∈ Dt

f(x;θ0) x /∈
⋃T

t=1Dt

(6.1)

with (α1, . . . , αT) ∈ A ⊆ RT .

In short, a model satisfies Property 6.1 if adding τt does not modify the output of the model

outside of Dt. At this stage, it is important to note that this definition does not say anything

intentionally about the performance of a model on the different tasks as it is concerned only with

the ability of themodel to retain its accuracy– goodor bad–on each task independently. This fact

will be important later on when we discuss the functional properties that allow task arithmetic.

6.3 Task arithmetic is not a consequence of linear

fine-tuning

The main objective of this chapter is to understand the conditions that enable task arithmetic in

deep neural networks. Previous studies hypothesized that task arithmetic results fromfine-tuning

in the linear regime [104, 252, 253], as linear weight combinations correspond to similar output

function combinations. However, we will now demonstrate that CLIP models do not fine-tune

in the linear regime and we therefore need other ways to explain task arithmetic.

In general, if a pre-trained network f(θ0) demonstrates kernel behavior during fine-tuning –

i.e., fine-tuning occurs in the linear regime – the following property must be satisfied [148]:

Property 6.2 (Post-hoc linearization). The change in the network output after training can be ap-
proximatedby its first-orderTaylor expansion, i.e., f(x;θ?)−f(x;θ0) ≈ (θ?−θ0)>∇θf(x;θ0).

In simple terms, the approximation of the network in the tangent space around initialization

must hold after fine-tuning. To test this, we evaluate the performance of the post-hoc linearized

78

6.3 Task arithmetic is not a consequence of linear fine-tuning

50 60 70 80 90 100
Post-hoc linearization accuracy (%)

50

60

70

80

90

100

N
on

-l
in

ea
r

fin
e-

tu
n

in
g

ac
cu

ra
cy

(%
)

Non-linear
advantage

ViT-B/32

ViT-B/16

ViT-L/14

Figure 6.2: Non-linear advantage. Single-task accuracies of non-linearly fine-tuned models f(θ?) and
their post-hoc linearization flin(θ

?). Markers represent different ViTs.

version of f , flin. That is, we apply the fine-tuned task vectors τ = θ?− θ0 to the linear approx-

imation of f at θ0, i.e.,

flin(x;θ0 + τ) = f(x;θ0) + τ>∇θf(x;θ0), (6.2)

and we check whether flin(θ
?) performs similarly to f(θ?)2.

The results in Figure 6.2 indicate that CLIP models do not exhibit a kernel behavior. Specifi-

cally, we fine-tune (FT) several CLIP pre-trainedVisionTransformers (ViTs) [53] of different sizes

following the same setup as Ilharco et al. [104] on 8 tasks3: Cars [123], DTD [43], SUN397 [256],

EuroSAT [91], GTSRB [235], MNIST [129], SVHN [172] and RESISC45 [38]. We observe that

the single-task performance of flin(θ
?) is significantly lower than that of f(θ?) for ViTs of all

sizes. This non-linear advantage [64] is a clear sign that fine-tuning has not happened in a linear

regime as expected by Wortsman et al. [253].

Yet, this observation is not enough to rule out that task arithmetic can be explained by lineariz-

ing the network function. Indeed, even if the non-linear components are important for single-task

performance, they might not be used during task arithmetic, which is the objective of this study.

That is, the projection of f onto the tangent space could be the only useful component.

We now show this is also not the case, as doing task arithmetic with the non-linearly fine-tuned

task vectors over flin significantly decreases performance. To show this, we employ the benchmark

proposed in [104] to evaluate the task arithmetic ability of a pre-trained model, which consists of

the 8 tasks described before and two sub-benchmarks:

2The code to reproduce our experiments can be found at https://github.com/gortizji/tangent_task_
arithmetic.

3We repeat these experiments using CLIP pre-trained CNNs with identical findings in Appendix D.3.2.

79

https://github.com/gortizji/tangent_task_arithmetic
https://github.com/gortizji/tangent_task_arithmetic

Chapter 6. The functional landscape of task arithmetic and the tangent space

Table 6.1: Task addition. Average absolute (%) and normalized accuracies (%) of different CLIP ViTs
edited by adding the sum of the task vectors of 8 tasks. We report results for the non-linear and linearized
models of Sections 6.3 and 6.5 normalizing performance by their single-task accuracies.

Method
ViT-B/32 ViT-B/16 ViT-L/14

Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑)

Pre-trained f(θ0) 48.4 – 55.2 – 64.4 –

Non-lin. FT f(θ0 + τ) 71.4 76.5 75.5 80.0 85.1 88.8

Post-hoc lin. flin(θ0 + τ) 57.1 81.9 65.0 85.2 75.2 90.0

Linear. FT flin(θ0 + τlin) 76.5 85.4 81.3 86.0 88.5 93.5

Table 6.2: Task negation. Minimum accuracy (%) of different CLIP ViTs edited by negating a task
vector from a target task while retaining 95% of their performance on the control task. We report average
performances over eight tasks on non-linear and linearized models as introduced in Sections 6.3 and 6.5.

Method
ViT-B/32 ViT-B/16 ViT-L/14

Targ. (↓) Cont. (↑) Targ. (↓) Cont. (↑) Targ. (↓) Cont. (↑)

Pre-trained f(θ0) 48.4 63.4 55.2 68.3 64.4 75.5

Non-lin. FT f(θ0 − τ) 24.0 60.7 19.2 64.6 18.0 72.5
Post-hoc lin. flin(θ0 − τ) 14.8 60.3 10.8 64.8 12.1 71.8

Linear. FT flin(θ0 − τlin) 10.9 60.8 11.3 64.8 7.9 72.5

• Task addition: The sum of the task vectors τ =
∑

t τt is added to a pre-trained check-

point to produce a multi-task model. The success of this benchmark is measured in terms

of the maximum average accuracy over the different tasks. Results are shown in Table 6.1.

• Task negation: A task vector is subtracted from the pre-trained checkpoint to forget a task

while retaining performance on a control task (ImageNet). The success of this benchmark

is measured in terms of the maximum drop in accuracy on the forgetting task that retains

theperformanceon the control task. Results are averagedover tasks and shown inTable 6.2.

To obtain the task vectors, we use the fine-tunedweights of the different ViTs from before, and

use a single mixing coefficient α = α1 = · · · = αT optimized separately for the non-linear and

post-hoc linearized models to ensure a fair comparison. We provide all details of this experiment

in Appendix D.1.

The results in Table 6.1 confirm that task arithmetic in CLIP models does not stem from the

combination of their linear components only. Specifically, we observe a significant drop in ab-

solute task addition accuracy in the post-hoc linearized models compared to the non-linear ones.

80

6.4 Weight disentanglement

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SUN397

SVHN

20
40

60
80

ViT-B/32

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SUN397

SVHN

20
40

60
80

100

ViT-B/16

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SUN397

SVHN

20
40

60
80

100

ViT-L/14

Non-linear FT Linear FT Post-hoc linearization Zero-shot

Figure 6.3: Task addition performance. Absolute accuracy (%) of each task after performing task addi-
tion with different linear/non-linear strategies and over different CLIP ViT models.

This decrease in performance is consistent across tasks (see Figure 6.3) and highlights that task

arithmetic in non-linear models leverages the non-linear components of f , as well.

Although these results reject the linear hypothesis, it is still remarkable that the post-hoc lin-

earized models do better at task negation than the non-linear ones (see Table 6.2). Furthermore,

even in task addition (see Table 6.1) they achieve higher normalized accuracies, where

Normalized accuracy =
1

T

T∑
t=1

acc
x∼µt

[f(x;θ0 +
∑

t′ τt′)]

acc
x∼µt

[f(x;θ0 + τt)]
. (6.3)

Indeed, as we formalize in Section 6.4, this observation suggests that linearized models are more

consistent with Property 6.1. In Section 6.5, we will use this fact to enhance task arithmetic.

6.4 Weight disentanglement

If the linear regime is not necessary to explain task arithmetic, what are the necessary conditions

that allow it? In this section,we argue that the only necessary condition to perform task arithmetic

with amodel f is that themodel isweight disentangledwith respect to the set of fine-tuning tasks.

Property 6.3 (Weight disentanglement). A parametric function f : X × Θ → Y is weight

disentangled with respect to a set of task vectors T = {τt}t∈[T] and the corresponding supports

D = {Dt}t∈[T] if

f

(
x;θ0 +

T∑
t=1

αtτt

)
=

T∑
t=1

gt(x;αtτt) + g0(x), (6.4)

where gt(x;αtτt) = 0 for x /∈ Dt and t = 1, . . . , T , and g0(x) = 0 for x ∈
⋃

t∈[T]Dt.

81

Chapter 6. The functional landscape of task arithmetic and the tangent space

-3.0 -1.0 1.0 3.0
α1

-3.0

-1.0

1.0

3.0

α
2

θ0

τ1

τ2

N
o
n

-l
in

e
a
r

F
T

EuroSAT - SVHN

-3.0 -1.0 1.0 3.0
α1

-3.0

-1.0

1.0

3.0

α
2

θ0

τ1

τ2

DTD - SUN397

-3.0 -1.0 1.0 3.0
α1

-3.0

-1.0

1.0

3.0

α
2

θ0

τ1

τ2

Cars - RESISC45

-3.0 -1.0 1.0 3.0
α1

-3.0

-1.0

1.0

3.0

α
2

θ0

τ1

τ2

P
o
st

-h
o
c

li
n

e
a
r.

-3.0 -1.0 1.0 3.0
α1

-3.0

-1.0

1.0

3.0

α
2

θ0

τ1

τ2

-3.0 -1.0 1.0 3.0
α1

-3.0

-1.0

1.0

3.0

α
2

θ0

τ1

τ2

0%

100%

ξ(α1, α2)

0%

100%

Figure 6.4: Visualization of weight disentanglement. The heatmaps show the disentanglement error
ξ(α1, α2) of a non-linear CLIP ViT-B/32 (top) and its post-hoc linearization (bottom) on different
example task pairs. The light regions denote areas of the weight space where weight disentanglement is
stronger. The red box delimits the search space used to compute the best α in all our experiments.

In essence, this definition captures the idea that the function f can be decomposed as a sum of

spatially-localized components, i.e., vanishing outside a spatial region, whose functional variation

is entirely captured by each τt (see Figure 6.1). Moreover, it is trivial to see that satisfying weight

disentanglement is equivalent to satisfying Property 6.1 on task arithmetic as one can alwayswrite

Equation (6.1) as

f

(
x;θ0 +

T∑
t=1

αtτt

)
=

T∑
t=1

f(x;θ0 + αtτt)1(x ∈ Dt) + f(x;θ0)1

x /∈
⋃
t∈[T]

Dt

,

(6.5)

and identify gt(x;αtτt) = f(x;θ0 + αtτt)1(x ∈ Dt) and g0(x) = f(x;θ0)1(x /∈ Dt). It

is important to highlight, however, that this additive decomposition does not imply linearity, as

the local functions {gt}t∈[T] are not required to be linear with respect to the parameters.

Furthermore, note that weight disentanglement, as Property 6.1, is a property of the predictors

and it is not related to the performance on the different tasks. That is, amodel could beweight dis-

entangledwith respect to a set of task vectors and still performpoorly on a task, e.g., if f(θ0+ατ)

does not generalize for some α. More generally, we can visualize the level of weight disentangle-

82

6.4 Weight disentanglement

ment of a model bymeasuring its discrepancy with Equation (6.4). To do so, given two tasks, one

can check the disentanglement error of a model,

ξ(α1, α2) =

2∑
t=1

Ex∼µt [dist(f(x;θ0 + αtτt), f(x;θ0 + α1τ1 + α2τ2))], (6.6)

where dist denotes any distance metric between output vectors. As we are dealing with classifica-

tion tasks, here we use the prediction error dist(y1, y2) = 1(y1 6= y2) as the distance metric. In

general, the smaller the value of ξ(α1, α2) the more weight disentangled a model is at (α1, α2).

Figure 6.4 displays the disentanglement error of a CLIP ViT-B/32 model concerning several

task vector pairs4. We observe that the CLIP model exhibits a minimal disentanglement error

within a small region surrounding θ0, which enables task arithmetic. However, for α1, α2 > 1,

the error increases, indicating a high degree of interaction between tasks. This explains why task

arithmetic performs better in a small neighborhood of θ0 – task arithmetic is more effective when

fine-tuning with small learning rates and few training steps [104] – with the optimal value of α

typically being less than 1.

Comparing the disentanglement error of the non-linear models and their post-hoc lineariza-

tion reveals an interesting finding: linearized models exhibit greater disentanglement than their

non-linear counterparts. This is evident from the more extensive regions with low disentangle-

ment errors in Figure 6.4 (bottom). This explains why the post-hoc linearized models achieve

higher normalized accuracies via task addition (cf. Table 6.1) andmanage to forget more through

task negation (cf. Table 6.2). Paradoxically, however, although the greater disentanglement of

linearized models allows them to retain more of their relative performance when edited with task

arithmetic, they still performworse in absolute terms due to the great advantage of the non-linear

models in single-task accuracy (cf. Figure 6.2). This suggests that closing the single-task perfor-

mance gap between linearized and non-linear models could be a way to enhance task arithmetic.

We leverage this idea in the next section.

Finally, we note that weight disentanglement can also explain the increase performance of task

arithmetic with model scale. As we see in Figure 6.5, the size of the areas with a low disentan-

glement error grows with model scale. One plausible explanation for this is that larger models

inherently induce a stronger kernel behavior during fine-tuning. Namely, since the models have

more parameters, each parameter has to change less to fit the training examples. As a result, they

tend to stay closer to the NTK approximation, closing the gap with linearized models and taking

benefit of the better weight disentanglement of the models lying in the tangent space.

4We replicate the same experiment using CLIP CNNs and pre-trained large language models (LLMs) with identical
findings in Appendix D.3.3.

83

Chapter 6. The functional landscape of task arithmetic and the tangent space

Task Arithmetic in the Tangent Space:
Improved Editing of Pre-Trained Models

Author Response
1. Task Arithmetic with a Convolutional Architecture

Table R.1: Task addition of 8 tasks with CNN. We use the same setup as for the experiments in
the main text substituting the ViT models with a CLIP ConvNeXt pre-trained on LAION-400M.

Method ConvNeXt
Abs. (↑) Norm. (↑)

Pre-trained f(· ; θ0) 57.5 –

Non-lin. FT f(· ; θ0 + τ) 79.1 83.6
Linear. FT flin(· ; θ0 + τlin) 81.1 85.7

2. Weight Disentanglement in Other Architectures and Modalities

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

ConvNeXt, Cars - RESISC45

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

Lin. ConvNeXt, Cars - RESISC45

0%

100%
(1, 2)

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

T5-Base, imbd - qasc

0%

100%
(1, 2)

Figure R.1: Visualization of weight disentanglement. The heatmap shows the disentanglement
error ξ(α1, α2) of a non-linearly and linearly fine-tuned ConvNeXt on a pair of vision tasks (two
left panels) and a T5-Base model fine-tuned on a pair of NLP tasks (right panel).

3. Weight Disentanglement and Model Scale

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2
0

1

2

No
n-

lin
ea

r F
T

ViT-B-32, DTD - SUN397

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

ViT-B-16, DTD - SUN397

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

ViT-L-14, DTD - SUN397

0%

100%

(1, 2)

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

Lin
ea

riz
ed

 F
T

ViT-B-32, DTD - SUN397

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

ViT-B-16, DTD - SUN397

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

ViT-L-14, DTD - SUN397

0%

100%

(1, 2)

Figure R.2: Visualization of weight disentanglement. The heatmaps show the disentanglement
error ξ(α1, α2) of non-linear CLIP ViT models of different sizes and their linearization.

Figure 6.5: Weight disentanglement and model scale. The heatmaps show the disentanglement
error ξ(α1, α2) of different non-linear CLIP ViTs (top) and their post-hoc linearizations (bottom) on
DTD and SUN397. The light regions denote areas of the weight space where weight disentanglement is
stronger. The red box delimits the search space used to compute the best α in all our experiments.

6.5 Enhancing task arithmetic via linearization

We have seen that linearized models are more weight disentangled than non-linear ones. How-

ever, post-hoc linearization degrades single-task performance. We now demonstrate that enforc-

ing models to fine-tune in the tangent space to their pre-trained initialization significantly im-

proves task arithmetic by reducing the single-task accuracy gap.

Specifically, rather than applying the non-linearly fine-tuned task vectors τ = θ? − θ0 to flin,

as in Section 6.3, we propose to directly obtain the task vectors through explicit fine-tuning in

the tangent space as illustrated in Figure 6.6. That is, given a model f , we directly fine-tune its

linear approximation flin around θ0 [64]. The fine-tuning process can follow the same protocols

used before but with the network parameterization dictated by Equation (6.2). Due to the linear

connection between the weight-space and function-space defined in Equation (6.2), fine-tuning

flin is essentially the same as training a kernel predictor with kernel kNTK . As a result, we obtain

the fine-tuned weights θ?
lin of the linearized model for each task, which allows us to construct the

corresponding task vector τlin = θ?
lin − θ0. We provide further details in Appendix D.2.

84

6.5 Enhancing task arithmetic via linearization

Figure 6.6: Conceptual illustration of the different approaches to edit a pretrained model f(θ0).
HereN represents the space of neural network functions f , non-linearly parameterized by θ ∈ Θ; andK
its tangent space, given by the space of linearized functions flin.

Moreover, as the consideredmodels donot inherently exhibit linear fine-tuning (see Section6.3),

this approach yields significantly different results compared to post-hoc linearization, i.e.,

flin(θ0 + τlin) 6= flin(θ0 + τ). (6.7)

60 70 80 90 100
Linearized fine-tuning accuracy (%)

60

70

80

90

100

N
on

-l
in

ea
r

fin
e-

tu
n

in
g

ac
cu

ra
cy

(%
)

Non-linear
advantage

ViT-B/32

ViT-B/16

ViT-L/14

Figure 6.7: Single-task accuracies of non-linearly FT
models f(θ?) vs linearly FT models flin(θ

?
lin).

In particular, although both models share the

same kernel kNTK(x, x′), the task vectors

τlin have been explicitly optimized to maxi-

mize the performance of such linearized mod-

els. Consequently, by construction, linearized

fine-tuning outperforms post-hoc lineariza-

tion. Indeed, in Figure 6.7, we observe that

linearized fine-tuning significantly reduces the

non-linear advantage of non-linear models, as

in most cases the performance of flin(θ0 +

τlin) is very similar to the one of f(θ0 + τ)

(cf. Figure 6.2).

Remarkably, as we show in Figure 6.8, this

increase in single-task performance does not compromiseweight disentanglement, which remains

as high as for the post-hoc linearized models in Figure 6.4. As a result, linear fine-tuning al-

lows for improved task arithmetic compared to standard non-linear fine-tuning. In particular,

Tables 6.1 and 6.2 in their last rows show that linearized fine-tuned models significantly outper-

form their non-linear counterparts and achieve state-of-the-art results on the task addition and

negation benchmarks [104]. The linearized fine-tuned models achieve higher multi-task accura-

85

Chapter 6. The functional landscape of task arithmetic and the tangent space

-3.0 -1.0 1.0 3.0
α1

-3.0

-1.0

1.0

3.0

α
2

θ0

τ1

τ2
L

in
e
a
ri

ze
d

F
T

EuroSAT - SVHN

-3.0 -1.0 1.0 3.0
α1

-3.0

-1.0

1.0

3.0

α
2

θ0

τ1

τ2

DTD - SUN397

-3.0 -1.0 1.0 3.0
α1

-3.0

-1.0

1.0

3.0

α
2

θ0

τ1

τ2

Cars - RESISC45

0%

100%

ξ(α1, α2)

Figure 6.8: Visualization of weight disentanglement on linearly fine-tuned models. The heatmaps
show thedisentanglement error ξ(α1, α2)of aViT-B/32 linearly fine-tunedondifferent example taskpairs.
The light regions denote areas of the weight space where weight disentanglement is stronger. The red box
delimits the search space used to compute α in our experiments.

cies through task addition (up to 5.8pointsmore), consistently outperforming non-linearmodels

(see Figure 6.3); and can forget more through task negation (up to 13.1 points more) while main-

taining a similar level of accuracy on the control task. Additionally, we observe that the advantage

of the linearized models over the non-linear ones is higher for the smaller ViT-B/32 and progres-

sively diminishes as the model size increases up to ViT-L/14.

Computational complexity In general, thanks to the efficiency of the Jacobian-vector prod-

uct implementations inmost deep learning frameworks [175], training and inference in linearized

neural networks only require anO(1) increase in computational costs with respect to their non-

linear counterparts. Jacobian-vector products can be computed efficiently, at the same marginal

cost as a forward pass, using forward-mode automatic differentiation rules [20]. This means that

doing inference with a linearized model usually takes around two or three times more than with

its non-linear counterpart, as for every intermediate operation in the forward pass, its derivative

also needs to be computed and evaluated.

Training the linearized models using the backpropagation algorithm, on the other hand, re-

quires another backward pass for every forward pass to compute the gradients. In this regard,

the computational cost of obtaining the gradient with respect to the trainable parameters of the

linearizedmodels∇θflin(x;θ) is also roughly twice the cost of obtaining the gradient of its non-

linear counterparts∇θf(x;θ). Similarly, as the forward-mode differentiation required to com-

pute the forward pass also depends on the values of the derivatives at this step, the final memory

footprint of training with the linearized models is also double than the one of training the non-

linear ones. Overall, the superiority of task arithmetic of linearized models can make this tech-

nique appealing for practical applications. Identifying the right trade-offs between computational

cost and performance, as well as faster linearization techniques, is an exciting avenue of work.

86

6.6 Towards understanding task arithmetic

6.6 Towards understanding task arithmetic

We conclude by providing further fundamental insights that can aid our understanding of task

arithmetic. In particular, we ask whether any kernel can satisfy Property 6.1, and we establish a

connection between task arithmetic and the spectral properties of the NTK. Then, we argue that

weight disentanglement and task arithmetic are emergent properties of pre-training.

6.6.1 Eigenfunction localization

Generally, a kernel k admits a decomposition in terms of a family of eigenfunction-eigenvalue

pairs {(φρ, λρ)}ρ∈N; which implies that k can only represent functions of the form f?(x) =∑∞
ρ=1 cρφρ(x) with a finite kernel norm, i.e., ‖f?‖2H =

∑∞
ρ=1

c2ρ/λρ < +∞. Specifically, the

coefficients {cρ}ρ∈N constitute a representation of the function f? in the kernel basis.

ConsiderT tasks {f?
t }t∈[T] supported in their respective non-intersecting domains {Dt}t∈[T].

Furthermore, let {φρ}ρ∈N be an orthogonal basis of eigenfunctions that diagonalizes the kernel

on the union of allDt’s. The following proposition provides a sufficient condition on the repre-

sentation of the tasks in this basis to ensure the task arithmetic property:

Proposition 6.1. Let {f?
t }t∈[T] be a set of task functions belonging to the RKHS of a kernel

k, whose coefficients in the kernel eigenbasis are {(c?t,ρ)ρ∈N}t∈[T]. If ∀ t, ρ, either c?t,ρ = 0 or

supp(φρ) ⊆ Dt, then thek has the taskarithmetic propertywith respect to{f?
t }t∈[T] and{Dt}t∈[T].

Proof. The task arithmetic property requires that ∀t′ ∈ [T], ∀x ∈ Dt′ ,
∑

t∈[T] f
?
t (x) =

f?
t′(x). Representing the task functions in the kernel basis, we have

∀t′ ∈ [T], ∀x ∈ Dt′ ,
∑
t∈[T]

∑
ρ∈N

c?t,ρφρ(x) =
∑
ρ∈N

c?t′,ρφρ(x). (6.8)

This condition can be rewritten as

∫
Dt′

 ∑
t∈[T], t 6=t′

∑
ρ∈N

c?t,ρφρ(x)

2

dx = 0. (6.9)

If, for each t, the eigenfunctions corresponding to non-zero coefficients are supported within

a subset of Dt and all domains Dt’s are disjoint, then all the summands inside the integral in

Equation (6.9) become zero insideDt′ , and thus the proof is complete.

Intuitively, Proposition 6.1 says that if, for each task t, there exists a subset of localized eigen-

functions that completely represent f?
t then the kernel k will be able to perform task arithmetic.

87

Chapter 6. The functional landscape of task arithmetic and the tangent space

0

1

x ∈ RESISC45 x ∈ Cars

Eloc(x) =
∑
ρ

φ2
ρ(x)

0

1

x ∈ DTD x ∈ SUN397

Eloc(x) =
∑
ρ

φ2
ρ(x)

0

1

x ∈ MNIST x ∈ EuroSAT

Eloc(x) =
∑
ρ

φ2
ρ(x)

Figure 6.9: Eigenfunction localization. Estimated support of the eigenfunctions of the NTK of a ViT-
B/32 CLIP model trained on different datasets. The plot shows the sum of the local energy of the eigen-
functions over a random subset of the training and control supports.

Indeed, if each task is represented with eigenfunctions that vanish outside the spatial region iden-

tified by the task support, the functions corresponding to different tasks do not interfere. Based

onProposition 6.1, it is natural to examinewhether theNTKofCLIPmodels displays eigenfunc-

tions localized in each task domain and if it represents the different tasks using these functions.

According to the representer theoremof kernels [222], after linear fine-tuning on task twith a train-

ing set{(xν , f
?
t (xν))}ν∈[nt] andxν ∼ µt, theCLIP’s predictor evaluated at a newpointx ∈ X

can be expressed as a linear combination of its kernel kNTK evaluated onx and the training data,

i.e., flin(x) = f(x;θ0) +
∑

ν∈[nt]
βν kNTK(xν , x).

To explorewhetherCLIPmodels use localized eigenfunctions for task arithmetic, we diagonal-

ize thematrix (KNTK)ij = kNTK(xi, xj)withxi ∈ Dt, i.e., the task onwhichwe trained, and

xj ∈ Dt∪Dt′ , whereDt′ is the support of a control task. If the eigenfunctions used to represent

f?(x) are localized, then the power of the eigenvectors of KNTK must be concentrated in the

points belonging to the dataset used for training. To measure this concentration, we introduce

the local energy

Eloc(x) =
∑
ρ

φ2
ρ(x), (6.10)

which sums the power of all the eigenfunctions φρ at a given point x.

In Figure 6.9, we plot this metric for a ViT-B/32 CLIP model trained on several datasets using

different datasets as control. Notably, the local energy of the eigenfunctions that the predictors

use to represent the tasks is significantly higher for points belonging to the training datasets. This

confirms the presence of eigenfunctions localized across the different data domains and the fact

that task arithmetic occurs thanks to the use of those. Indeed, thanks to this localization, CLIP

models can effectively separate the representation of different tasks and carry out task-specific op-

erations without interference. We believe that further investigation into this intriguing localiza-

tion phenomenon holds the potential to deepen our understanding of these models.

88

6.6 Towards understanding task arithmetic

Remark. Whilewehave shown that localized eigenfunctions canplay a crucial role in task arith-

metic, it is important to note that they are not always necessary. In fact, the task arithmetic prop-

erty can hold even if the eigenfunctions used to represent a single task cancel outside the corre-

sponding domain. Indeed, although eigenfunctions are linearly independent on the union of the

domains, they are not necessarily linearly independent when evaluated on a single domain and,

in general, can cancel out. However, if the eigenfunctions maintain their linear independence

on each of the domains, i.e., they are locally linear independent, then the existence of localized

eigenfunctions becomes a necessary condition for task arithmetic. This means that if the eigen-

functions are locally linearly independent and not localized, task arithmetic is not possible. The

followin proposition formalizes this concept.

Proposition 6.2. Suppose that the task functions {f?
t }t∈[T] belong to theRKHS of the kernelk and

their coefficients in the kernel eigenbasis are {(c?t,ρ)ρ∈N}t∈[T]. Furthermore, let the kernel eigen-

functions be either zero or linearly independent over each domain Dt. The kernel k has the task

arithmetic property with respect to {f?
t }t∈[T] and {Dt}t∈[T] if and only if ∀ t, ρ, either c?t,ρ = 0 or

supp(φρ) ⊆ Dt.

Proof. The initial steps of the proofs follow those of the previous proposition. In particular, let’s

consider the integral in Equation (6.9). Due to the linear independence of the non-zero kernel

eigenfunctions on Dt′ , for this integral to be zero, we have only two possibilities: either i) all

coefficients {(c?t,ρ)ρ∈N}t∈[T], t 6=t′ must be zero or ii) the eigenfunctions corresponding to non-

zero coefficient c?t,ρ (t 6= t′) must be zero in Dt′ . Since the proposition is valid for any set of

functions, condition i) is not feasible. Therefore, condition ii) must hold. Furthermore, since

Equation (6.9) is valid ∀t′ ∈ [T], it follows that the eigenfunctions used to represent each task t′

are zero inDt′ =
⋃

t∈[T], t 6=t′ Dt. Consequently, these eigenfunctions are only supported inDt′

or a subset thereof.

In order to understand the implications of this proposition, it is useful to examine simple data

geometries and architectures for which the NTK can be analytically diagonalized. For instance,

when data is uniformly distributed on a ring or a torus, the NTK of fully-connected and con-

volutional neural networks at initialization can be diagonalized with the Fourier series [31, 61,

71, 213]. Fourier atoms are linearly independent on any interval [42] and not localized. Conse-

quently, according to Proposition 6.2, these architectures cannot perform task arithmetic within

such settings. This straightforward calculation aligns with the observation that task arithmetic

generally emerges as a property of pre-training and is not inherently present at initialization, as we

numerically demonstrated for CLIP models in Section 6.6.2.

89

Chapter 6. The functional landscape of task arithmetic and the tangent space

Table 6.3: Task addition from random initialization. We use the same setup as for the experiments in
Table 6.1 but with task vectors obtained from fine-tuning randomly initialized ViTs. Results compare the
average single-task accuracy (%) after fine-tuning and the multi-task accuracy (%) via task addition.

Method
ViT-B/32 ViT-B/16 ViT-L/14

Sing. (↑) Multi (↑) Sing. (↑) Multi (↑) Sing. (↑) Multi (↑)

Random init f(θrd
0) 5.3 – 4.8 – 5.2 –

Non-lin. FT f(θrd
0 + τ rd) 48.5 5.5 40.6 4.5 18.0 4.8

Linear. FT flin(θ
rd
0 + τ rd

lin) 27.8 3.8 24.7 4.0 24.8 6.1

6.6.2 Weight disentanglement emerges during pre-training

Task arithmetic is not exclusive to CLIP models. In fact, task arithmetic can also be performed

on pre-trained text transformers [104, 252], such as GPT-2 [201] or T5 [202] and CNNs [105] as

we also show in Appendices D.3.2 and D.3.3. However, it is still unclear if the origin of weight

disentanglement comes from pre-training, or if it is a general property of deep networks.

To investigate this, we replicate our task addition experiments but employ randomly initialized

ViTs instead of pre-trained ones. Table 6.3 reveals that task arithmetic is not achievable on ran-

domly initializedViTs. Indeed, adding task vectors obtained froma random initializationθrd
0 does

not result in significant improvements inmulti-task accuracyover randomchance. This holds true

for both non-linear task vectors, τ rd, and linearized ones, τ rd
lin . In Figure 6.10, we further corrobo-

rate these findings by computing the disentanglement error and the NTK spectrum of randomly

initialized models, showing that randomly initialized models are not weight disentangled.

-3.0 -1.0 1.0 3.0
-3.0

-1.0

1.0

3.0

θ0

τ1

τ2

R
a
n

d
o
m

in
it

EuroSAT - SVHN

-3.0 -1.0 1.0 3.0
-3.0

-1.0

1.0

3.0

θ0

τ1

τ2

DTD - SUN397

-3.0 -1.0 1.0 3.0
-3.0

-1.0

1.0

3.0

θ0

τ1

τ2

Cars - RESISC45

0%

100%

ξ(α1, α2)

Figure 6.10: Visualization of weight disentanglement from random initialization. The heatmaps
show the disentanglement error ξ(α1, α2) of a ViT-B/32 fine-tuned from a random initialization non-
linearly on different example task pairs. The light regions denote areas of the weight space where weight
disentanglement is stronger. The red box delimits the search space used to compute α in our experiments.

In Figure 6.11, we extend this analysis to study the effect of pre-training in eigenfunction local-

ization. Interestingly, we observe a non-trivial but considerably poorer degree of eigenfunction lo-

90

6.7 Conclusion

0

1

x ∈ RESISC45 x ∈ Cars

Eloc(x) =
∑
ρ

φ2
ρ(x)

0

1

x ∈ DTD x ∈ SUN397

Eloc(x) =
∑
ρ

φ2
ρ(x)

0

1

x ∈ MNIST x ∈ EuroSAT

Eloc(x) =
∑
ρ

φ2
ρ(x)

Figure 6.11: Eigenfunction localization. Estimated support of the eigenfunctions of the NTK of a ran-
domly initializedViT-B/32model trained on different datasets. The plot shows the sumof the local energy
of the eigenfunctions over a random subset of the training and control supports

calization in the randomly initializedmodels than on the pre-trained ones. This observation aligns

with the finding that randomly-initialized linearized models cannot perform task arithmetic.

Therefore, we conclude that task arithmetic is a property acquired during pre-training. This

observation goes beyond the traditional representation learning viewof pre-training, emphasizing

that pre-training not only leads to semantically disentangled feature representations but also to

the disentanglement of the weights that govern the output on those semantic sets. Investigating

the pre-training dynamics that give rise to such disentanglement is another interesting avenue for

future research.

6.7 Conclusion

In this chapter, we conducted a thorough analysis of task arithmetic in deep neural networks,

delving into its fundamental mechanisms and enhancing its performance. Our findings demon-

strate that linearized models, governed by the NTK, outperform their non-linear counterparts in

task arithmetic, thus providing a more effective approach for model editing. Crucially, we reveal

that weight disentanglement plays a vital role in the success of task arithmetic, as distinct direc-

tions inweight space correspond to localized areas in the function space; and that it is an emergent

property of pre-training.

The notion of feature disentanglement lies at the heart of representation learning, where ideal

representations are assumed to separate distinct data variation factors along different directions in

the feature space [2, 23, 96]. A multitude of approaches in generative modeling [35, 97, 211] and

self-supervised learning [11, 34, 141, 199] strive to achieve this goal. Our investigation, however,

explores a distinct aspect: weight disentanglement within the framework of task arithmetic. De-

parting from the static perspective of feature disentanglement, weight disentanglement connects

weight space and function space transitions, thereby enriching our understanding of disentangle-

ment in neural networks from a functional standpoint. Several studies have previously attempted

91

Chapter 6. The functional landscape of task arithmetic and the tangent space

to exploit a similar notion by inducing the learning of task-specific subnetworks within a larger

network [87, 102, 150, 151, 153, 249, 254]. To the best of our knowledge, our work is the first to

demonstrate the natural emergence of such phenomena in specific semantically meaningful tasks

during CLIP pre-training.

A fascinating open question consists in understanding howweight disentanglement arises dur-

ing pre-training and finding algorithms that enhance it. Another exciting research direction is in-

vestigating the potential of tangent spaces for editing other pre-trained models. In this sense, de-

veloping more efficient linearized models would be a significant leap forward in this field. These

advancements could pave the way for novel approaches to model editing and deepen our under-

standing of the intricate relationship between weight space and function space in deep learning.

92

7 Conclusion

«Sólo el misterio nos hace vivir. Sólo el misterio»

Only mystery makes us live. Only mystery.

— Federico García Lorca

7.1 Summary

In this thesis, we conducted a comprehensive investigation to understand the inductive bias of

deep learning by examining the relationship between their weight space and function space. Us-

ing rigorous empirical analyses and targeted approximations, we developed a novel conceptual

framework to characterize the functional landscape of deep neural networks and illuminate their

inductive bias. This analytical lens offered the foundation for tackling open questions in deep

learning research, such as the encoding capabilities of implicit neural representations and the con-

ditions for direct model editing in the weight space.

Our investigation began with the study of the simplest possible learning scenario – the induc-

tive bias of complex neural network architectures with respect to the set of linearly separable hy-

potheses. In doing so, we introduced the concept of neural anisotropy directions (NADs) and

unearthed a model-driven inductive bias that guides howCNNs learn linearly separable distribu-

tions. Importantly, we showed thatNADs are notmere architectural artifacts; they actively shape

feature selection and are central to our understanding of howCNNs learn beyond linearly separa-

ble settings. A pivotal insight came by analyzing the functional bias of randomly initialized neural

networks: Doing so not only yielded a tractable method for computingNADs, but also provided

empirical evidence that the functional landscape of neural networks encodes valuable clues about

their inductive bias. Overall, ourmethodology offered a blueprint to validate different complexity

metrics that may govern generalization.

Building on this groundwork, we delved into the use of linear approximations as an analytical

tool to understand inductive biases. Most notably, we showed that the relative alignment of dif-

ferent tasks with the empirical NTK at initialization can predict the inductive bias of non-linear

networks on those tasks, although it cannot predict their absolute performance. The quality of

93

Chapter 7. Conclusion

this approximation depends on the distance traveled by the network during training, and it is

stronger for tasks whose optimum weights lie near initialization. In this regard, the NTK ap-

proximation proves particularly insightful to analyze fine-tuning regimes, where weight shifts are

minor and localized around initialization. Additionally, we unveiled key dynamical aspects of the

kernel rotation during training, offering explanations to overfitting behaviors in certain scenar-

ios. Collectively, these insights firmly established the NTK as a valuable tool for investigating the

inductive bias and functional landscape of neural networks near initialization.

Our research then branched into two pivotal areas in contemporary deep learning research.

The first was an in-depth analysis of implicit neural representations (INRs) and their ability to

encode high-frequency and richmultimedia signals. Using harmonic analysis and our earlier find-

ings, we discovered how INRs can overcome the spectral bias. Specifically, we demonstrated that

the expressive power of INRs depends on their capability to form linear combinations of integer

harmonics based on their input sinusoidal mapping. This enables efficient encoding of signals

with a wide frequency range but also leads to challenges like aliasing and imperfect signal recov-

ery. Extending our earlier insights, we then found that the inductive bias of INRs is closely related

to the empirical NTK’s efficiency in encoding signals. Notably, meta-learning methods can ad-

just this efficiency by reshaping theNTK’s eigenfunctions, providing a tailored basis for encoding

specific signals. This offered new insights into the dynamics of meta-learning algorithms comple-

menting our previous description of the kernel rotation.

The second focal area involved an exhaustive study of weight interpolation techniques for edit-

ing large pre-trained models and their functional landscape. We carried out an in-depth analysis

of task arithmetic in deep neural networks and investigated what properties of their functional

landscape enable these editing techniques. In this regard, we found that weight disentanglement,

and not linearity, is the key for the success of task arithmetic. Weight disentanglement naturally

arises during pre-training and pertains to the phenomenonwhere distinct directions in theweight

space govern disjoint, localized regions of the input space. This allows for independent manipu-

lation of these regions via task arithmetic. Intriguingly, we observed that fine-tuning models in

their tangent space via linearization augments weight disentanglement, resulting in performance

improvements in task arithmeticwhen employing linearizedmodels. Overall, these advancements

offered new insights into the core structure of the functional landscape of large pre-trained mod-

els, while providing a more effective method to edit models using NTK approximations.

In summary, this thesis unveilednovel andprofound insights into the interplaybetweenweights

and functions in deep learning, offering a new set of tools and a conceptual framework to study

the inductive bias of neural networks across diverse scenarios. Our research has substantially ad-

vanced our understanding of deep learning, bringing us closer to the ultimate goal of developing

AI systems we can trust.

94

7.2 Future directions

7.2 Future directions

We finally outline promising avenues for future research: extending our understanding of induc-

tive bias, further exploring the phenomena of weight disentanglement and the structure of task

vectors; and advancing our techniques for model editing.

Characterizing inductive bias for natural tasks. While the empirical NTK has proved to

be a very useful tool for characterizing the inductive bias of different neural networks, its appli-

cability remains confined to tasks whose optima lie near initialization. As detailed in Chapter 4,

the NTK-based alignment metrics fall short in capturing the generalization capabilities of CNNs

in semantically rich image recognition tasks, where weight trajectories deviate substantially from

their initial weights during training. Consequently, a significant gap remains in our understand-

ing of how to quantify inductive bias during end-to-end training on “natural” tasks.

A promising direction for future research lies in devising effective generalization proxies tai-

lored to these more complex scenarios. An inspirational pathway may stem from the methodol-

ogy employed to identify NADs in Chapter 3. Here, we randomly sampled weights to analyze

the functional bias of a random ensemble by computing the alignment of a linearly separable

target with the stochastic process induced by diverse initializations. Indeed, such alignment has

previously been shown to be necessary for effective learning using gradient descent in specific toy

settings [1]. A remaining open question is whether this initial alignment can also serve as a rela-

tive ranking metric across different tasks in real-world applications. While Chapter 3 confirmed

this empirically for linearly separable tasks, the generalizability of this finding to more complex,

naturally occurring tasks remains an area of research worth exploring.

Understanding the effect of pre-training in the functional landscape. Another compelling

area for investigation is the influence of pre-training on the functional landscape of neural net-

works, particularly focusing on weight disentanglement. As we saw in Chapter 6, weight dis-

entanglement is ubiquitous in large pre-trained models, but the mechanisms driving networks

towards it remain unknown. Our work on the dynamical behavior of the NTK during training

(see Chapter 4) and the reshaping capacity of meta-learning (see Chapter 5) on its eigenfunctions

provides an initial groundwork for exploring this issue. However, a comprehensive framework

that unifies these elements with weight disentanglement is still missing.

To address this gap, future research should aim to dissect the underpinnings of weight disen-

tanglement in pre-trained models through systematic disentanglement error measurements. By

probing the influence of architecture, loss functions, data diversity, and model scale on weight

disentanglement, wewould aspire to identify the simplest training settings that lead toweight dis-

entanglement. This will serve as a precursor to formulating predictive scaling laws specific to this

95

Chapter 7. Conclusion

phenomenon, analogous to existing laws for other network phenomena. Our initial evidence sug-

gests thatmodel scale, in particular,may exhibit a strong correlationwithweight disentanglement,

yet this claim necessitates further empirical validation in other settings. Unraveling the mecha-

nisms that produce weight disentanglement could lead to targeted regularization techniques en-

gineered to optimize this property. This would allow more resource-efficient model edition and

fine-tuning schemes. Overall, such an investigation would represent a significant advancement in

our ability to characterize andmanipulate the connection between the weight space and function

space of neural networks.

Analyzing the structure of task vectors. Additionally, understanding how specific weight

directions influence different parts of the input remains a high-priority question. Given that dis-

tinct layers often serve specialized functions, from feature extraction todecision-making, it is plau-

sible that some layers are more weight disentangled than others. Current theories suggest that the

alignment between task vectors captures task similarities [104], but this conjecture has not been

meticulously tested yet. By examining the sparsity pattern of these vectors, we could reveal poten-

tial structure in the intrinsic geometry of theweight space and its relation tomodel’s performance.

One fascinating possibility is that task vectorsmight live in a low-dimensional region of theweight

space, yielding a parsimonious representation of the tasks within the weight space of the network.

Such anobservation could shedmore light on the connectionbetweenweight and function spaces

in deep learning, addressing open questions about their relationship and its influence on the net-

works’ behavior [32, 176]. Moreover, if this hypothesis holds, it could significantly inform task-

specific subnetwork identification, leading to more parameter-efficient fine-tuning methods and

improved model editing procedures with important ramifications in robustness and privacy.

Our current techniques to identify task vectors require to fine-tune models on thousands of

data points, and, research has revealed that this identification is unreliable when the finetuning

yields minimal performance improments on the fine-tuning task [104]. These impediments ob-

struct the practical application of task arithmetic methods when the modifications are delineated

by a handful of samples, thereby preventing the realization ofmicro-editions. The implications of

facilitating AI micro-editions are both profound and thrilling. It could allow for the refinement

of models by supplying a few counter-examples to identified spurious correlations, or augment

their knowledge of a specific subject based on a few demonstrative samples. Importantly, micro-

editions could form the bedrock for applying task arithmetic techniques to embed the right to

forget within our systems, enabling the erasure of particular information about a citizen or fact

held by an AI system, based on minimal available information.

96

7.2 Future directions

Linearization techniques for model editing. Finally, another exciting research direction lies

in investigating further theuse of linearization techniques to edit large pre-trainedmodels. Our re-

sults inChapter 6 suggest that the tangent space of thesemodels is more weight disentangled than

the non-linearly parameterized space in which they live. Neural tangent spaces, being instances

of reproducing kernelHilbert spaces, also offermathematical tractability for theoretical investiga-

tions. In this sense, developingmore efficient linearizedmodelswouldoffernovel paths to connect

effective editing techniqueswith strongmathematical guarantees; all, while deepeninig our under-

standing of the intricate relationship between weight space and function space in deep learning.

Overall, we can see that the journey is far from over even if this thesis has made important

strides inunderstanding the fundamental properties of deep learningmodels. Continued research

in these areas is essential for the engineering of AI systems that meet high standards of reliability,

interpretability, and robustness. AsAI becomesmore integrated into everyday life, understanding

its inner workings will become a social imperative. Our duty as researchers is to provide tools

to society to audit and comprehend these systems, thereby enabling an informed social dialogue

about their application.

97

A An inductive bias hidden in random

weights

A.1 Experiments on linearly separable datasets

A.1.1 General training setup

Regarding the setup and parameters for training the networks used for the experiments of Sec-

tions 3.2 and 3.3.2: they were all trained for 20 epochs, on batches of size 128, minimizing a

cross-entropy loss using SGDwith a linearly decaying learning rate (max lr. 0.5) and without any

explicit regularization.

We note that we did not perform any extensive hyperparameter tuning to arrive at this con-

figuration. In fact, we empirically observed that such parameters were good enough to reveal the

quantities of interest (i.e., directional inductive bias) and did not tune them further. In general, all

of our observations are relative in the sense that we do not focus on the exact values, e.g., test accu-

racy or training iterations (except reaching almost zero training loss), but their relative differences

for different distributions.

A.1.2 Experiments on DFT basis

Basis generation

Recall that the DFT F : CD → Cd is a complex linear operator acting in the complex plane.

For this reason, the basis obtained from transforming the canonical basis through the DFT, i.e.,

vi = F(ei) is a complex basis. In this work we are interested in dealing with real signals, and as

such we need to modify this basis such that it is an orthonormal basis of the real spaceRd.

We can do that by leveraging the conjugate symmetry of the DFT of real signals. Let x ∈ Rd

with Fourier transform x̂ = F(x) ∈ Cd. Then,

x̂JtKd = x̂?J−tKd, (A.1)

where x̂? represents the complex conjugate of x̂. Thismeans that, for real signals, half of theDFT

is redundant, and one can use only bd/2c+ 1 complex coefficients to represent a real signal. We

99

Chapter A. An inductive bias hidden in random weights

are interested in obtaining a basis of Rd which is sparse in the Fourier domain. However, note

that for any index t, 〈F−1(et),F
−1(jet)〉 = 0, with j =

√
−1. For this reason, we can create a

basis ofRd using bd/2c+1 real coefficients and bd/2c imaginary coefficients by exploiting their

conjugate symmetries, i.e.,

vRe
i =

1
√
2
F−1

(
eJiKd + eJ−iKd

)
i = 0, . . . , bd/2c (A.2)

vIm
i =

1
√
2
F−1

(
jeJiKd − jeJ−iKd

)
i = 1, . . . , bd/2c (A.3)

Fortunately, most numerical linear algebra libraries avoid the need to keep track of these sym-

metries and include some routine to directly compute the Fourier transform and its inverse on real

signals (RFFT). This is especially useful on bidimensional signals, like images, where the RFFT

of a signal has d × bd/2c + 1 complex coefficients. Nevertheless, despite the redundancies, it

is a common convention in the image processing community to plot the full Fourier spectrum

of an image including positive and negative frequencies (indices). In our plots, we follow this

convention, and artificially create the symmetries on the negative indices to ease readability1.

All the results that we have shown so far using the DFT basis show only the results for the di-

rections obtained frommanipulating the real coefficients. Nevertheless, the results do not change

in nature when one repeats them on the imaginary elements as well. We provide Figure A.1 as a

validation of this, where we repeated the same experiment as in Figure 3.1 but using the directions

parameterized by the imaginary coefficients, i.e., vIm
i . Note that, because the number of basis vec-

tors parameterized by the imaginary coefficients is smaller, there are four gaps in FigureA.1. These

are just artefacts of the visualization, as these distributions do not exist in reality.

Figure A.1: Imaginary part of DFT

1For more information about the properties of the 2D-DFT, we refer the reader to [82].

100

A.1 Experiments on linearly separable datasets

Different noise levels

Figure A.2 illustrates the test accuracies of various architectures under different noise levels σ.

Regardless the noise level, a logistic regression can always perfectly generalize to the test data. On

the contrary, LeNet seems to fail to generalize to a few distributions even in the absence of noise,

while the noisier the data the more its performance degrades. The other architectures exhibit

similar behaviour: they properly generalize when there is no noise, while their performance drops

as the noise level increases. Finally, note that ResNet-18 seems to be slightly more robust to noise

compared to the other CNNs (cf. Figure A.2b with σ = 1).

(a) Test accuracies for σ = 0.

(b) Test accuracies for σ = 1.

(c) Test accuracies for σ = 3.

Figure A.2: Test accuracies using different training sets drawn from D(v) (ε = 1, with 10, 000 training
samples and 10, 000 test samples) for different levels of σ. Directions v taken from the basis elements of
the 2D-DFT. Each pixel corresponds to a linearly separable dataset.

A.1.3 Further experiments with NADs

We now provide some further experiments using the NADs of some common neural network

architectures. In particular, we give two additional experiments on the performance of a VGG11,

and a multilayer perceptron (MLP) with 3 hidden layers with 500 neurons each, on a sequence

of linearly separable datasets aligned with its NADs. As we can see in Figure A.3, the VGG11

behaves very similarly to the other CNNs (see Figure 3.8), only being able to generalize to a few

101

Chapter A. An inductive bias hidden in random weights

distributions, whereas theMLP can always perfectly generalize to the test distribution. Note also,

that the eigenvalue decay on the MLP is much less pronounced. In fact, we believe that this is

only a result of the finite set of gradient samples used to perform its eigendecomposition, and

we conjecture that in the limit of infinite samples the eigenvalue distribution of the MLP will be

completely flat (as we formally proved for the single hidden layer network of Section 3.3.1).

Figure A.3: (Green) Normalized covariance eigenvalues and (brown) test accuracies of a MLP and a
VGG11 trained on linearly separable distributions parameterized by their NADs. (σ = 3, ε = 1)

A.2 Deferred proofs

A.2.1 Proof of Proposition 3.1

Wegivehere theproof ofProposition3.1 stating theBayes optimal classification accuracy achieved

on a linearly separable distribution transformed through a linear pooling layer. We restate the

theorem to ease readability.

Proposition (Bayes optimal classification accuracy after pooling). The best achievable accuracy

on the distribution of (z, y) can be written as

1−Q

(
ε

2σ
γ(`)

)
with γ2(`) =

S|m̂[`]|2∑S−1
k=1 |m̂J`+ k ·MKd|2

, (A.4)

andQ(·) representing the tail distribution function of the standard normal distribution.

Proof. Without loss of generality, let (x, y) be a random sample with y ∼ U{−1, 1} and whose

Fourier transform satisfies

x̂ = εye` + ŵ with ŵ ∼ CN (0, diag(σ2)), (A.5)

whereCN (0, diag(σ)2)denotes a circularly symmetric complexGaussiandistributionwith com-

plex covariance diag(σ2).

102

A.2 Deferred proofs

Because all entries of x̂ are uncorrelated, the best accuracy on the distribution of (x, y), αopt,

would be the same as that of the distribution of (R(x̂[`]), y). That is:

R(x̂[`])|y = +1 ∼ N (ε,σ2[`]/2) (A.6)

R(x̂[`])|y = −1 ∼ N (−ε,σ2[`]/2) (A.7)

Hence,

αopt = 1−Q

(√
2ε

2σ[`]

)
. (A.8)

Nevertheless, we are interested on the accuracy on the distribution of (z, y), when (x, y) ∼
D(v`)with v` = F(e`), whose spectrum satisfies

ẑ = εym̂[`]e′J`KM + diag(m̂)ŵ (A.9)

withe′J`KM ∈ CM the (`modM)th canonical basis vector ofRM , anddiag(m̂)ŵ ∼ CN (0, diag(ξ))

with

ξ2J`KM =
σ2

S

S−1∑
k=1

|m̂J`+ k ·MKd|2. (A.10)

Again, the only signal component is at ẑJ`KM . Hence, if we write

γ2(`) =
S|m̂[`]|2∑S−1

k=1 |m̂J`+ k ·MKd|2
, (A.11)

and finally the accuracy of the Bayes optimal classifier on the distribution of (z, y) can be explic-

itly described by

α(`) = 1−Q

(√
2ε|m̂[`]|
2ξJ`KM

)
= 1−Q

(√
2ε

2σ
γ(`)

)
. (A.12)

A.2.2 Proof of Proposition 3.2

We detail here the proof of Proposition 3.2 describing the average curvature of the loss landscape

for the deep linear network f(x;θ,φ) = θ>A(m � φ � x) when optimizing the quadratic

lossL(θ,φ;x, y) = (y − f(x;θ,φ))2.

103

Chapter A. An inductive bias hidden in random weights

Proposition (Average curvature of the loss landscape). Assuming that the training parameters

are distributed according to θ ∼ N (0, σ2
θIM) andφ ∼ N (0, σ2

φID), the average Hessian of the

loss with respect to the weights satisfies

Eθ,φ∇2L(θ,φ;x, y) =

[
Hφ 0

0 Hθ

]
, (A.13)

with

Hφ = 2ε2m2[`]σ2
θ diag(e`)︸ ︷︷ ︸

signal

+2σ2σ2
θ diag(m2)︸ ︷︷ ︸
noise

(A.14)

Hθ = 2ε2m2[`]σ2
φ diag

(
e′J`KM

)
︸ ︷︷ ︸

signal

+2σ2σ2
φA diag(m2)︸ ︷︷ ︸

noise

, (A.15)

where e` ∈ Rd and e′` ∈ RM represent the `-th canonical basis vectors inRd andRM , respectively.

Proof. Let us start by computing the gradients for a generic loss L(θ,φ;x, y) = J(z, y) with

z = f(x;θ,φ)

∇θL(θ,φ;x, y) = J ′(z, y)A(φ�m� x) (A.16)

∇φL(θ,φ;x, y) = J ′(z, y)(A>θ)� (m� x). (A.17)

Therefore, the second derivatives are

∇2
θL(θ,φ;x, y) = J ′′(z, y)A(φ�m� x)(A(φ�m� x))> (A.18)

∇2
φL(θ,φ;x, y) = J ′′(z, y)(A>θ)� (m� x)((A>θ)� (m� x))> (A.19)

∇2
θ,φL(θ,φ;x, y) = J ′′(z, y)((A>θ)� (m� x))(A(φ�m� x))>+

+ J ′(z, y)A diag(x�m) (A.20)

∇2
φ,θL(θ,φ;x, y) = J ′′(z, y)A(φ�m� x)((A>θ)� (m� x))>+

+ J ′(z, y) diag(x�m)A> (A.21)

104

A.2 Deferred proofs

Hence, the Hessian

∇2L(x;θ,φ; y) = J ′′(z, y)

[
A(φ�m� x)

(A>θ)� (m� x)

][
A(φ�m� x)

(A>θ)� (m� x)

]>

+ J ′(z, y)

[
0 A diag(x�m)

diag(x�m)A> 0

]

= J ′′(z, y)

[
A diag(φ�m)

diag(A>θ �m)

]
xx>

[
A diag(φ�m)

diag(A>θ �m)

]>

+ J ′(z, y)

[
0 A diag(x�m)

diag(x�m)A> 0

]
(A.22)

When we optimize a square loss, J ′′(z, y) = 2 and J ′(z, y) = 2(z − y). Thus,

∇2L(x;θ,φ; y) = 2

[
A diag(φ�m)

diag(A>θ �m)

]
xx>

[
A diag(φ�m)

diag(A>θ �m)

]>

+ 2(z − y)

[
0 A diag(x�m)

diag(x�m)A> 0

]
︸ ︷︷ ︸

R

. (A.23)

Let e` ∈ RD and e′` ∈ RM be the `th canonical basis vectors of RD and RM , respectively.

Taking the expectation over the data we get

E(x,y)∇2L(x;θ,φ; y) = 2

[
A diag(φ�m)

diag(A>θ �m)

]
(ε2 diag(e`) + σ2ID)

[
A diag(φ�m)

diag(A>θ �m)

]>
+ E(x,y)R. (A.24)

Here, the first summand can be decomposed into a signal and a noise component. The signal

component is

S =

[
A diag(φ�m)

diag(A>θ �m)

]
ε2 diag(e`)

[
A diag(φ�m)

diag(A>θ �m)

]>

= ε2

[
φ[`]m[`] diag(e′J`KM)

θJ`KMm[`] diag(e`)

][
A diag(φ�m)

diag(A>θ �m)

]>

= ε2m2[`]

[
φ2[`] diag(e′J`KM) θJ`KMφ[`]e′J`KMe>`

θJ`KMφ[`]e`e
′>
J`KM

θ2J`KM diag(e`)

]
. (A.25)

105

Chapter A. An inductive bias hidden in random weights

The noise component is

N = σ2

[
A diag(φ�m)

diag(A>θ �m)

][
A diag(φ�m)

diag(A>θ �m)

]>

= σ2

[
A diag(φ2 �m2) A diag(φ�m)(diag(A>θ �m))>

(diag(A>θ �m))(A diag(φ�m))> diag(A>θ2 �m2)

]
.

(A.26)

Taking the expectation over the parameters

Eθ,φS = ε2m2[`]

[
σ2
φ diag(e′J`KM) 0

0 σ2
θ diag(e`)

]
, (A.27)

Eθ,φN = σ2

[
Aσ2

φ diag(m2) 0

0 σ2
θ diag(m2)

]
, (A.28)

and sinceEθz = Eφz = 0, andEy = 0, we haveER = 0.

Overall, the expectation is

Eθ,φ∇2L(x;θ,φ; y) =

[
Hφ 0

0 Hθ

]
(A.29)

with

Hφ = 2ε2m2[`]σ2
φ diag(e`) + 2σ2σ2

φ diag(m2), (A.30)

Hθ = 2ε2m2[`]σ2
θ diag(e′J`KM) + 2σ2σ2

θA diag(m2) (A.31)

A.2.3 Proof of Proposition 3.3

We prove Proposition 3.3 under a slightly more general setting than in the text.

Proposition. Let g : [0,∞] → [0,∞] be an increasing function with polynomially bounded

first-order derivative, i.e., |g′(t)| ≤ ωn(|t|), where ωn : R→ R is an n-order polynomial.

The expected value of ‖∇θq(v;θ)‖ is bounded by

E‖∇θq(v;θ)‖ ≤
√

Eω2
n(|v>∇xf(x;θ)|)

√
E‖∇2

θ,xf(x;θ)v‖2 (A.32)

106

A.3 Analytic NAD examples

Proof. Using the polynomial bound on the derivative of g and using Cauchy-Schwarz inequality

we can bound the expected norm of∇θq(v;θ) as

E‖∇θq(v;θ)‖ = E|g′
(∣∣∣v>∇xf(x;θ)

∣∣∣)|‖∇2
θ,xf(x;θ)v‖

≤ Eωn

(∣∣∣v>∇xf(x;θ)
∣∣∣)‖∇2

θ,xf(x;θ)v‖

≤
√

Eω2
n(|v>∇xf(x;θ)|)

√
E‖∇2

θ,xf(x;θ)v‖2 (A.33)

We see that this bound depends on the spectral decomposition of the moments of∇xf(x;θ)

up to order 2n, e.g., its covariance E∇xf(x;θ)∇xf(x;θ)
>, and the expected right singular

vectors of the mixed second derivative ∇2
θ,xf(x;θ). In the case of the text ωn(t) = αt + β.

Hence, n = 1 and the bound only depends on the gradient covariance and second derivative.

A.3 Analytic NAD examples

We now provide the derivations for the analytic NAD computations introduced in Section 3.3.1,

assuming that the parameters at initialization of these networks are normally distributed.

Deep linear network with average pooling

Recall the definition of the architecture of a deep linear network with an average pooling layer

f(x;θ,φ) = θ>A(m�φ�x). We will now compute its NADs based on the eigendecompo-

sition of its gradient covariance and singular value decomposition of its mixed second derivative.

We start with the gradient covariance borrowing the computations from Appendix A.2.2:

Eθ∇xf(x;θ,φ)∇xf(x;θ,φ)
> = Eθ,φ[(A

>θ)� (φ�m)][(φ> �m>)� (θ>A)]

= Eφφφ
> � EθA

>θθ>A�mm>

= σ2
φσ

2
θ

(
I �A>A�mm>

)
= σ2

φσ
2
θ diag

(
m2
)
. (A.34)

Similarly, the mixed second derivatives for this model are

∇2
θ,xf(x;θ,φ) = diag(φ�m)AT (A.35)

∇2
φ,xf(x;θ,φ) = diag

(
(ATθ)�m

)
(A.36)

107

Chapter A. An inductive bias hidden in random weights

which can be combined in

∇2
(θ,φ),xf(x,θ,φ) =

[
diag

(
(ATθ)�m

)
A diag(φ�m)

]
. (A.37)

We can extract its right singular vectors from the eigendecomposition of

E∇2
(θ,φ),xf(x;θ,φ)

>∇2
(θ,φ),xf(x;θ,φ) = E

[
diag

(
(A>θ)2 �m2

)]
+ E

[
diag(φ�m)A>A diag(φ�m)

]
=

= σ2
θ diag(m2) +

σ2
φ

S
diag(m2)

=

(
σ2
θ +

σ2
φ

S

)
diag(m2). (A.38)

Linear network

A linear network does not have any directional inductive bias. To see that we can compute its

gradient covariance

Eθ∇xf(x;θ)∇xf(x;θ)
> = Eθθθ

> = σ2
θI. (A.39)

Because the eigendecomposition of I is isotropic, we can see that a linear network has no direc-

tional bias.

Single-hidden layer neural network

Let f(x;θ,Φ) = θ> ReLU
(
Φ>x

)
be a single hidden layer neural network with no bias and a

ReLU non-linearity. Its gradient satisfies

∇xf(x;θ,Φ) = Φ diag
(
ReLU′

(
Φ>x

))
θ, (A.40)

where the derivative of the ReLU non-linearity is the indicator function ReLU′(u) = 1u�0.

Hence,

E∇xf(x;θ,Φ)∇>
xf(x;θ,Φ) = E

[
Φ diag

(
ReLU′

(
Φ>x

))
θθ> diag

(
ReLU′

(
Φ>x

))
Φ>
]
=

= σ2
θE
[
Φ diag

(
ReLU′

(
Φ>x

))
diag

(
ReLU′

(
Φ>x

))
Φ>
]
=

= σ2
θE
[
Φ diag

(
1Φ>x�0

)
Φ>
]

108

A.3 Analytic NAD examples

This expectation can be computed analytically. In particular note that

E
[
Φ diag

(
1Φ>x�0

)
Φ>
]
[i, j] =

d∑
k=1

E
[
Φ[i, k]Φ[j, k]1Φ[i,:]>x≥0

]
.

Therefore, if i 6= j

E
[
Φ[i, k]Φ[j, k]1Φ[i,:]>x≥0

]
= EΦ[i,k]

[
EΦ[j,k]

[
Φ[i, k]Φ[j, k]1Φ[i,:]>x≥0

∣∣∣Φ[i, k]
]
= 0.

On the other hand, when i = j,

E
[
Φ diag

(
1Φ>x�0

)
Φ>
]
[i, i] =

D∑
k=1

E
[
Φ2[i, k]1Φ[i,:]>x≥0

]
= E

[
‖Φ[i, :]‖21Φ[i,:]>x≥0

]
.

Let p(w) denote the probability density function of a Gaussian random vectorw ∼ N (0, σ2I)

andU ∈ SO(d) and orthonormalmatrix such thatx′ = U>xwithx′[1] = ‖x‖ andx′[i] = 0

for i = 2, . . . , d. Then,

〈w,x〉 ≥ 0⇔ 〈Uw,x〉 ≥ 0〉 ⇔ 〈w,U>x〉 ≥ 0⇔ w[1]‖x‖2 ≥ 0⇔ w[1] ≥ 0.

Using this equivalence, we can compute the expectation

E
[
‖w‖21w>x≥0

]
=

∫
Rd

1w>x≥0‖w‖2p(w)dw =

∫
RD

1w[1]≥0‖w‖2p(w)dw =

=

∫
Rd

1w[1]≥0w
2[1]p(w)dw +

d∑
i=2

∫
RD

1w[1]≥0w
2[i]p(w)dw =

=

∫ +∞

0
w2[1]

1
√
2πσ2

e−
w2[1]

2σ2 dw[1]+

+
d− 1

2

∫ +∞

−∞
w2[2]

1
√
2πσ2

e−
w2[2]

2σ2 dw[2] =

=
1

2
σ2 +

d− 1

2
σ2 =

d

2
σ2.

109

Chapter A. An inductive bias hidden in random weights

Plugging this into the expressions of the gradient covariance we get

E∇xff(x;θ,Φ)∇>
xf(x;θ,Φ) = σ2

θE
[
Φ diag

(
1Φ>x�0

)
Φ>
]
=

= σ2
θE
[
‖Φ[i, :]‖21Φ[i,:]>x≥0

]
I =

=
d

2
σ2
θσ

2
ΦI.

A.4 NADs of CNNs

As highlighted in Section 3.3.2, we can use two algorithms to identify the NADs of an architec-

ture without training. Surprisingly, both algorithms yield very similar results, but the algorithm

based on the eigendecomposition of the gradient covariance is numericallymuchmore stable. We

show now additional examples of NADs computed using each of these algorithms as well as the

algorithmic details of the mixed second derivative identification method.

A.4.1 NADs obtained through the gradient covariance

The followingfigures showexamples of theNADsof aLeNet,VGG-11,ResNet-18 andDenseNet121

computed using the eigendecomposition of the gradient covariance.

110

A.4 NADs of CNNs

LeNet

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure A.4: NADs of LeNet obtained through eigendecomposition of gradient covariance

111

Chapter A. An inductive bias hidden in random weights

VGG11

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure A.5: NADs of VGG16 obtained through eigendecomposition of gradient covariance

112

A.4 NADs of CNNs

ResNet-18

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure A.6: NADs of ResNet-18 obtained through eigendecomposition of gradient covariance

113

Chapter A. An inductive bias hidden in random weights

DenseNet-121

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure A.7: NADs of DenseNet-121 obtained through eigendecomposition of gradient covariance

114

A.4 NADs of CNNs

A.4.2 NADs obtained through the mixed second derivative

The second way we can identify the NADs without training is using the expected right singu-

lar vectors of the mixed second derivative, ∇2
x,θf(x;θ). However, note that the mixed second

derivative has a number of entries equal to the product of the weight and input dimensionalities,

which can amount to more than a trillion elements. This makes it impossible to store this object

in any common computational platform, andhencewe can only estimate its singular vectors using

power iteration methods [81]. Specifically, these methods estimate the spectral decomposition of

a linear operator by sequentially alternating between the application of the linear operator on a

vector and its adjoint.

Algorithm 2 NAD discovery through mixed second derivative

Require: Network architecture f , parameter distribution µθ , evaluation sample x, number of

Monte-Carlo samples T , and finite-difference scale h.
1: procedureDVP(F , v) .Computes∇2

x,θf(x;θ)v
2: for fθ ∈ F do
3: p← 0

4: p← p+
∇θf(x+ hv;θ)−∇θf(x− hv;θ)

2h
5: end for
6: return p/T
7: end procedure

8: procedureADVP(F , v′) .Computes v′>∇2
x,θf(x;θ)

9: for fθ ∈ F do
10: p← 0
11: p← p+∇x

(
v′>∇θf(x;θ)

)
12: end for
13: return p/T
14: end procedure

15: F ← ∅ . Function samples

16: for t = 1, . . . , T do
17: Draw θ ∼ µθ

18: F ← F ∪ f(θ)
19: end for

20: {(ui, σi)} ← PowerIteration(DVP,ADVP) . SVD through power iterations

21: return {ui}Di=1

Consequently, we just need an efficient way to compute∇2
x,θf(x;θ)v and v′>∇2

x,θf(x;θ)

for any v and v′ to be able to compute the SVD. Algorithm 2 details these procedures. As we can

115

Chapter A. An inductive bias hidden in random weights

see, in our algorithms we use a finite difference approximation to compute the directional input

derivative of∇θf(x;θ). We found this helps for stability of the results.

In the next figures, we show the results of the application of these algorithm to a LeNet, VGG-

10 and ResNet-18. However, due to the high computational complexity of Algorithm 2 on large

networks, we do not show them for the larger DenseNet-121. At this stage, it is important to

highlight that the results of Algorithm 2 are much noisier than those of Algorithm 1 (as seen in

the resultingNADs depicted in Appendix A.4.1 andAppendix A.4). We believe this is due to the

bad conditioning of Algorithm 2 due to the small magnitude of the second derivatives and the

use of a power iteration method in Algorithm 2 with respect to the exact eigendecomposition in

Algorithm 1. Nevertheless, looking at the shape (especially in the spectral domain) of the first few

NADs obtained with both algorithms we can see that they are indeed very aligned.

116

A.4 NADs of CNNs

LeNet

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure A.8: NADs of LeNet obtained through SVD of mixed second derivative

117

Chapter A. An inductive bias hidden in random weights

VGG11

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure A.9: NADs of VGG16 obtained through SVD of mixed second derivative

118

A.5 Details of experiments on CIFAR10

ResNet-18

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure A.10: NADs of ResNet-18 obtained through SVD of mixed second derivative

A.5 Details of experiments on CIFAR10

All our experiments on CIFAR-10 use networks trained for 50 epochs using SGDwith a linearly

decaying learning rate with maximum value 0.21, fixed momentum 0.9 and a weight decay of

5 × 10−4. Again, our objective is not to obtain the best achievable performance, but to show

relative differences with respect to NADs for a fixed training setup. Hence, the hyperparameters

of these networks were not optimized in any way during this work. Instead they were selected

119

Chapter A. An inductive bias hidden in random weights

from a set of best practices from theDAWNBench submissions that have been empirically shown

to give a good trade-off in terms of convergence speed and performance.

We finish this section with a detailed description of the poisoning experiment. In particular,

recall that, in the binary class setting, i.e., y ∈ {−1,+1} an easy way to introduce a poisonous

carrier on a sample x is to substitute the information on that sample in a given direction by εy.

However, this means that, for a given direction u, we can only allocate at most two classes. A

simple extension to the multi-class case, i.e., y ∈ {1, . . . , L}, uses therefore dL/2e directions to
poison all samples.

CIFAR-10 has L = 10 classes, but also, its samples contain information spread alongK = 3

color channels. The NADs that we computed in Sec. 3.3.2 were computed for single-channel

inputs. Hence, we need to extend them towork in theK-channel case. Let {ui}Di=1 be theNADs

of a deep neural network for a single channel input. The NADs of the same architecture withK

input channels are {ui ⊗ e′k, i = 1, . . . , D, k = 1, . . . ,K}, where e′k represents the kth

canonical basis vector ofRK .

All in all, using these extensions to the simple setting, we can easily poison CIFAR-10. Given

a carrier NAD index i, for each sample xj ∈ RDK in the training set with associated label yj

we can modify it such that it satisfies xT
j (ui ⊗ e′byj/2c) = ε(2JyjK2 − 1). Note that, for any

ε > 0, this small modification on the training set renders each class linearly separable from the

others using only the poisonous features. However a classifier that uses these features will not be

able to generalize to the unpoisoned test set.

120

B Approximating inductive bias in the

tangent space

B.1 General training setup

As mentioned in the main text, all our models are trained using the same scheme which was se-

lected without any hyperparameter tuning, besides ensuring a good performance on CIFAR2 for

the neural networks. Namely, we train using stochastic gradient descent (SGD) to optimize a bi-

nary cross-entropy loss, with a decaying learning rate starting at 0.05 and momentum set to 0.9.

Furthermore, we use a batch size of 128 and train for a 100 epochs. This is enough to obtain

close-to-zero training losses for the neural networks, and converge to a stable test accuracy in the

case of the linearized models1. In fact, in the experiments involving CIFAR2, we train all models

for 200 epochs to allow further optimization of the linearized models. Nevertheless, even then,

the neural networks perform significantly better than their linear approximations on this dataset.

In terms of models, all our experiments use the same three models: A multilayer perceptron

(MLP)with twohidden layers of100neurons each, the standardLeNet5 fromLeCun et al. [128],

and the standard ResNet18 [89]. We used a single V100 GPU to train all models, resulting in

training times which oscillated between 5 minutes for the MLP, to around 40 minutes for the

ResNet18.

B.2 NTK computation details

We now provide a few details regarding the computation of different quantities involving neural

tangent kernels and linearized neural networks. In particular, in our experiments we make exten-

sive use of the neural_tangents [175] library written in JAX [27], which provides utilities to

compute the empirical NTK or construct linearized neural networks efficiently.

Eigendecompositions As it is common in the kernel literature, in this work, we use the eigen-

vectors of the kernel Gram matrix to approximate the eigenfunctions of the NTK. Specifically,

1Note that the linearized models converge significantly slower than the neural networks.

121

Chapter B. Approximating inductive bias in the tangent space

unless stated otherwise, in all our experiments we compute the Gram matrix of the NTK at ini-

tialization using the 60, 000 samples of the CIFAR10 dataset, which include both training and

test samples. To that end we use the empirical_kernel_fn from neural_tangents which

allows to compute this matrix using a batch implementation. Note that this operation is compu-

tationally intense, scaling quadratically with the number of samples, but also quadratically with

the number of classes. For instance, in the single-output setting of our experiments2, it takes up

to 32 hours to compute the Gram matrix of the full CIFAR10 dataset for a ResNet18 using 4

V100 GPUs with 32Gb of RAM each. The computation for the LeNet and the MLP take only

20 and 3 minutes, respectively, due to their much smaller sizes.

Linearization Using neural_tangents, training and evaluating a linear approximation of

any neural network is trivial. In fact, the library already comes with a function linearizewhich

allows to obtain a fully trainablemodel from any differentiable JAX function. Thus, in our exper-

iments, we treat all linearized models as standard neural networks and use the same optimization

code to train them. In the case of theResNet18 network, which includes batch normalization lay-

ers [108],we fix the batch normalization parameters to their initialization values when performing

the linearization. This effectively deactivates batch normalization for the linear approximations.

Note that Fort et al. [64] also compared neural networks with batch normalization to their linear

approximations without it.

Alignment Obtaining the full eigendecomposition of the NTKGrammatrix is computation-

ally intense and only provides an approximation of the true eigenfunctions. However, in some

cases it is possible to compute some of the spectral properties of the NTK in a more direct way,

thus circumventing the need to compute the Gram matrix. This is for example the case for the

target alignmentα(f?), which using the formula in Theorem 4.1 can be computed directly using

a weighted average of the Jacobian. This is precisely the way in which we computed α(φρ) for

different eigenfunctions (φρ)
1000
ρ=1 in Section 4.4.2.

Binarization In most of our experiments we do not work directly with the eigenfunctions of

the NTK, but rather with their binarized versions, i.e., sign(φρ(x)). Neverheless, we would like

to highlight that this transformation has little effect on the direction of the targets: In such high-

dimensional setting, the binarized and normal eigenvectors have an inner product of approxi-

mately 0.78, while the average inner product between random vectors is of the order of 10−4.

2Note that the binary cross-entropy loss can be computed using a single output logit.

122

B.3 Additional results

B.3 Additional results

In Section 4.3.1, we saw that neural networks and their linear approximations share the way in

which they rank the complexity of learning different NTK eigenfunctions. However, this experi-

ments were performed using a single training setup, and a single data distribution. For this reason,

we now provide two sets of experiments which highlight the generality of the previous results.

On the one hand, we repeated the experiment in Section 4.3.1. using a different training strat-

egy, replacing SGD with the popular Adam [118] optimization algorithm. As we can see in Fig-

ure B.1 the main findings of Section 4.3.1. also transfer to this training setup. In particular, we

see that the performance of all models progressively decays with increasing eigenfunction index,

and that the linearized models have a clear linear advantage over the non-linear neural networks.

0 250 500 750

Eigenfunction index

70.0%

80.0%

90.0%

100.0%
Accuracy MLP

0 250 500 750

Eigenfunction index

80.0%

90.0%

100.0%

Accuracy LeNet

0 250 500 750

Eigenfunction index

60.0%

80.0%

100.0%

Accuracy ResNet18

Neural network Linearized model Accuracy of NN on binary CIFAR10

Figure B.1: Validation accuracy of different neural network architectures and their linearizations when
trained on binarized eigenfunctions of the NTK at initialization, i.e., x 7→ sign(φρ(x)) using Adam.

On the other hand, we also repeated the same experiments changing the underlying data distri-

bution, and instead of using the CIFAR10 samples, we used theMNIST [129] digits. The results

in Figure B.2 show again the same tendency.3 However, we now see, that for the LeNet, the accu-

racy curves of the neural network and the linearized model cross around φ500, highlighting that

the existence of a linear or non-linear advantage greatly depends on the target task.

0 250 500 750

Eigenfunction index

90.0%

100.0%

Accuracy MLP

0 250 500 750

Eigenfunction index

80.0%

100.0%

Accuracy LeNet

Neural network Linearized model

Figure B.2: Validation accuracy of different neural networks and their linearizations when trained on
binarized eigenfunctions of the NTK at initialization, i.e., x 7→ sign(φρ(x)) computed over MNIST.

3Note that the MNIST dataset has more samples than CIFAR10 (i.e., 70, 000 samples), and hence, due to the
quadratic complexity of the Grammatrix computation, we decided to not perform this experiment on ResNet18.

123

Chapter B. Approximating inductive bias in the tangent space

Convergence speed of other networks

We also provide the collection of training metrics of theMLP (see Figure B.3) and the LeNet (see

Figure B.4) trained on the different eigenfunctions of kNTK(θ0). Again, as was the case for the

ResNet18, we see that training is “harder” for the eigenfunctions corresponding to the smaller

eigenvalues, as the time to reach a low training loss, and the distance to the weight initialization

grow with eigenfunction index.

0 250 500 750 1000

Eigenfunction index

0

25

50

75

Epoch Convergence time

0 250 500 750 1000

Eigenfunction index

20

40

`2 dist. Params `2 dist.

0 250 500 750 1000

Eigenfunction index

0.2

0.4

0.6

cos. dist. Params cosine dist.

Figure B.3: Correlation of different training metrics with the index of the eigenfunction the network is
trained on. figs/ntk show the number of training iterations taken by the network to achieve a 0.01 training
loss, and the `2 and cosine distances between initialization and final parameters for a MLP trained on the
binarized eigenfunctions of the NTK at initialization.

0 250 500 750 1000

Eigenfunction index

0

20

40

Epoch Convergence time

0 250 500 750 1000

Eigenfunction index

0.0

2.5

5.0

7.5

`2 dist. Params `2 dist.

0 250 500 750 1000

Eigenfunction index

0.0

0.2

0.4

0.6

cos. dist. Params cosine dist.

Figure B.4: Correlation of different training metrics with the index of the eigenfunction the network is
trained on. figs/ntk show the number of training iterations taken by the network to achieve a 0.01 training
loss, and the `2 and cosine distances between initialization and final parameters for a LeNet trained on the
binarized eigenfunctions of the NTK at initialization.

124

C Understanding the spectral bias of

implicit neural representations

C.1 Deferred proofs

C.1.1 Proof of Theorem 5.1

We provide here the proof of Theorem 5.1 which gives an explicit expression to the expressive

power of INRs. However, before we delve deeper in this proof wewill prove a few useful lemmas.

Preliminary lemmas

Lemma C.1. Let {ω(1)
k ∈ RD}k∈K and {ω(2)

j ∈ RD}j∈J , and {φ(1)
k ∈ R}k∈K and {φ(2)

j ∈
R}j∈J be two collections of frequency vectors and scalar phases, respectively, indexed by the sets

K,J ⊆ N. Furthermore, let {β(1)
k ∈ R}k∈K and {β(2)

j ∈ R}j∈J be two sets of scalar coeffi-

cients and r ∈ RD . Then,(∑
k∈K

β
(1)
k cos

(〈
ω

(1)
k , r

〉
+ φ

(1)
k

))∑
j∈J

β
(2)
j cos

(〈
ω

(2)
j , r

〉
+ φ

(2)
j

) =
∑
ω′∈D

β̃ω′ cos(
〈
ω′, r

〉
+ φ̃ω′)

(C.1)

where

D
({

ω
(1)
k

}
k∈K

,
{
ω

(2)
j

}
j∈J

)
=

{
ω′ = ω

(1)
k ± ω

(2)
j

∣∣∣∣∣k ∈ K, j ∈ J
}

(C.2)

for some

{
φ̃ω′ ∈ R

∣∣∣∣∣ω′ ∈ D

}
,

{
β̃ω′ ∈ R

∣∣∣∣∣ω′ ∈ D

}
.

125

Chapter C. Understanding the spectral bias of implicit neural representations

Proof.

(∑
k∈K

β
(1)
k cos

(〈
ω

(1)
k , r

〉
+ φ

(1)
k

))∑
j∈J

β
(2)
j cos

(〈
ω

(2)
j , r

〉
+ φ

(2)
j

)
=
∑
k∈K

∑
j∈J

β
(1)
k β

(2)
j cos

(〈
ω

(1)
k , r

〉
+ φ

(1)
k

)
cos
(〈

ω
(2)
j , r

〉
+ φ

(2)
j

)
=
∑
k∈K

∑
j∈J

β
(1)
k β

(2)
j

1

2

(
cos
(〈

ω
(1)
k , r

〉
+
〈
ω

(2)
j , r

〉
+ φ

(1)
k + φ

(2)
j

)
+ cos

(〈
ω

(1)
k , r

〉
−
〈
ω

(2)
j , r

〉
+ φ

(1)
k − φ

(2)
j

))
=
∑
k∈K

∑
j∈J

β
(1)
k β

(2)
j

1

2

(
cos
(〈

ω
(1)
k + ω

(2)
j , r

〉
+ φ

(1)
k + φ

(2)
j

)
+ cos

(〈
ω

(1)
k − ω

(2)
j , r

〉
+ φ

(1)
k − φ

(2)
j

))
=
∑
ω′∈D

β̃ω′ cos(
〈
ω′, r

〉
+ φ̃ω′) (C.3)

Lemma C.2. Let {ωj ∈ RD}j∈J and {φj ∈ R}j∈J be a collection of frequency vectors and

scalar phases, respectively, indexed by the setJ ⊆ N. Furthermore, {βj ∈ R}j∈J be a set of scalar

coefficients, and let k ∈ N Then,∑
j∈J

βj cos(〈ωj , r〉+ φj)

k

=
∑

ω′∈Hk

β̃ω′ cos(
〈
ω′, r

〉
+ φ̃ω′) (C.4)

where

Hk

(
{ωj}j∈J

)
⊆ H̃k

(
{ωj}j∈J

)
:=

ω′ =
∑
j∈J

cjωj

∣∣∣∣∣cj ∈ Z ∧
∑
j∈J
|cj | ≤ k

 (C.5)

Note that we will often use the notationHk and H̃k instead of explicitly writing the depen-

dence on the set
(
{ωj}j∈J

)
when it is clear from the context.

Proof. The statement trivially holds for k = 1. Assume it also holds for k, then

126

C.1 Deferred proofs

∑
j∈J

βj cos(〈ωj , r〉+ φj)

k+1

=

∑
j∈J

βj cos(〈ωj , r〉+ φj)

k∑
j∈J

βj cos(〈ωj , r〉+ φj)

(C.6)

=

 ∑
ω′∈Hk

β̃ω′ cos(
〈
ω′, r

〉
+ φ̃ω′)

∑
j∈J

βj cos(〈ωj , r〉+ φj)

(C.7)

=
∑

ω′∈D
{
Hk,{ωj}j∈J

}β′
ω′ cos(

〈
ω′, r

〉
+ φ′

ω′) (C.8)

=
∑

ω′∈Hk+1

β′
ω′ cos(

〈
ω′, r

〉
+ φ′

ω′) (C.9)

(C.10)

where Equation (C.7) holds by assumption and Equation (C.8) holds because of the previous

lemma. Moreover we have

Hk+1 = D
{
Hk, {ωi}i∈J

}
=

{
ω′ = ωh ± ωi

∣∣∣∣∣ωh ∈ Hk, i ∈ J

}
(C.11)

⊆

ω′ =
∑
j∈J

cjωj ± ωi

∣∣∣∣∣cj ∈ Z ∧
∑
j∈J
|cj | ≤ k, i ∈ J

(C.12)

⊆

ω′ =
∑
j∈J

cjωj

∣∣∣∣∣cj ∈ Z ∧
∑
j∈J
|cj | ≤ k + 1

 (C.13)

(C.14)

So Equation (C.4) holds for k+1 as well. Then by induction Equation (C.4) holds ∀k ∈ N.

Main proof

Recall that we are interested in understanding the expressive power of INR architectures that can

be decomposed into a mapping function γ : Rd → RT followed by a multilayer perceptron

(MLP), with weightsW (`) ∈ RF`−1×F` , bias b(`) ∈ RF` , and activation function ρ(`) : R →

127

Chapter C. Understanding the spectral bias of implicit neural representations

R, applied elementwise; at each layer ` = 1, . . . , L− 1. That is, if we denote by z(`) each layers

post activation, most INR architectures compute

z(0) = γ(r),

z(`) = ρ(`)
(
W (`)z(`−1) + b(`)

)
, ` = 1, . . . , L− 1 (C.15)

f(r;θ) = W (L)z(L−1) + b(L).

Based on this architecture we can prove the following theorem.

Theorem. Let f : Rd × Θ → R be an INR of the form of Equation (C.15) with ρ(`)(z) =∑K
k=0 αkz

k for ` > 1. Furthermore, letΩ = [Ω0, . . . ,ΩT−1]
> ∈ RT×d and φ ∈ RT denote

the matrix of frequencies and vector of phases, respectively, used to map the input coordinate r ∈ Rd

to γ(r) = sin(Ωr + φ). This architecture can only represent functions of the form

fθ(r) =
∑

ω′∈H(Ω)

cω′ sin (〈ω′, r〉+ φω′), (C.16)

where

H(Ω) ⊆

{
ω′ =

T−1∑
t=0

stΩt

∣∣∣∣∣ st ∈ Z ∧
T−1∑
t=0

|st| ≤ KL−1

}
. (C.17)

Proof. We will prove the statement by induction. To that end, let us denote the preactivation

vector at each layer as v(`), i.e., z(`) = ρ(`)
(
v(`)
)
. We will first derive the expressions for the base

case.

Base case Consider the preactivation of a node at the first layer of the neural network for any

mapping of the form in Equation (C.15). Then

v
(1)
j = W

(1)
j γ(r) =

T−1∑
t=0

btj cos (〈Ωt, r〉+ φtj) (C.18)

with some btj ∈ R and φtj ∈ R depending on the first layer weights connected to that node.

Also note that interchanging sines with cosines only affects the phase terms.

128

C.1 Deferred proofs

Therefore, using the result of Lemma C.2, and after applying the activation function, the out-

put of each node at the first layer is given by

z
(1)
j = ρ(1)

(
v
(1)
j

)
=

K∑
k=0

αk

(
v
(1)
j

)k
=

K∑
k=0

αk

(
T−1∑
t=0

btj cos (〈Ωt, r〉+ φtj)

)k

(C.19)

=
K∑
k=0

αk

∑
ω′

k∈Hk

βω′
k
cos(

〈
ω′
k, r
〉
+ φω′

k
) (C.20)

=
∑

ωk∈H′
K

β̃ωk
cos(〈ωk, r〉+ φ̃ωk

) (C.21)

whereH′
K :=

K⋃
j=1
Hj and we use the definitions ofHk and H̃k in Lemma C.2. Therefore, since

∀kHk ⊆ H̃k by construction, and ∀j ≤ kHj ⊆ H̃k; then it holds thatH′
K ⊆ H̃K , i.e., ,

H′
K ⊆ H̃K =

{
ω′ =

T−1∑
t=0

stΩt

∣∣∣∣∣ st ∈ Z ∧
T−1∑
t=0

|st| ≤ K

}
. (C.22)

Induction step Assume the output of the nodes at layer ` satisfy the following expression:

z
(`)
j =

∑
ω′∈H(`)(Ω)

cω′,j sin (
〈
ω′, r

〉
+ φω′,j) (C.23)

where

H(`) ⊆ H̃K` =

{
ω′ =

T−1∑
t=0

stΩt

∣∣∣∣∣ st ∈ Z ∧
T−1∑
t=0

|st| ≤ K`

}
. (C.24)

Then, the preactivation of any node at the (`+ 1)th layer can be expressed as:

v
(`+1)
j =

∑
ω′∈H(`)(Ω)

bω′,j sin (
〈
ω′, r

〉
+ φ̃ω′,j) (C.25)

since the sum of cosines with the same frequency only result in a cosine with the same frequency

but with a modified phase and amplitude. Hence, after applying the activation function the out-

put of the jth node at the (`+ 1)th layer can be written as:

z
(`+1)
j = ρ(`+1)

(
v
(`+1)
j

)
=

K∑
k=0

αk

(
v
(`+1)
j

)k
=

K∑
k=0

αk

 ∑
ω′∈H(`)(Ω)

bω′,j sin (
〈
ω′, r

〉
+ φ̃ω′,j)

k

(C.26)

129

Chapter C. Understanding the spectral bias of implicit neural representations

Let us inspect the term
(∑

ω′∈H(`)(Ω) bω′,j sin (〈ω′, r〉+ φ̃ω′,j)
)k

. Instead of directly apply-

ing Lemma C.2, we will leverage the fact that all the frequenciesω′ ∈ H(`) share a similar struc-

ture. More precisely, they all can be represented as a sum of the frequencies in the setΩ. To that

end, let us show the following intermediate result: ∑
ω′∈H(`)(Ω)

bω′,j sin (
〈
ω′, r

〉
+ φ̃ω′,j)

k

=
∑

ω′∈H(`)
k (Ω)

b̃ω′,j sin (
〈
ω′, r

〉
+

˜̃
φω′,j) (C.27)

whereH(`)
k ⊆ H̃kK` . The base case k = 1 holds trivially. Now assume Equation (C.27) holds

for k, then ∑
ω′∈H(`)(Ω)

bω′,j sin (
〈
ω′, r

〉
+ φ̃ω′,j)

k+1

=

 ∑
ω′∈H(`)(Ω)

bω′,j sin (
〈
ω′, r

〉
+ φ̃ω′,j)

k

·

(C.28)

·

 ∑
ω′∈H(`)(Ω)

bω′,j sin (
〈
ω′, r

〉
+ φ̃ω′,j)

=

 ∑
ω′∈H(`)

k (Ω)

b̃ω′,j sin (
〈
ω′, r

〉
+

˜̃
φω′,j)

·
(C.29)

·

 ∑
ω′∈H(`)(Ω)

bω′,j sin (
〈
ω′, r

〉
+ φ̃ω′,j)

=

∑
ω′∈D

{
H(`)

k ,H(`)
} ˜̃bω′,j sin (

〈
ω′, r

〉
+

˜̃̃
φω′,j)

(C.30)

130

C.1 Deferred proofs

where the last equality holds because of Lemma C.2 and we have:

D
{
H(`)

k ,H(`)
}
=

{
ω1 ± ω2

∣∣∣∣∣ω1 ∈ H(`)
k ,ω2 ∈ H(`)

}
(C.31)

⊆

{
ω1 ± ω2

∣∣∣∣∣ω1 ∈ H̃kK` ,ω2 ∈ H̃K`

}
(C.32)

=

{
T−1∑
t=0

s
(1)
t Ωt ±

T−1∑
t=0

s
(2)
t Ωt

∣∣∣∣∣
T−1∑
t=0

|s(1)t | ≤ kK`,
T−1∑
t=0

|s(2)t | ≤ K`

}
(C.33)

=

{
T−1∑
t=0

(
s
(1)
t ± s

(2)
t

)
Ωt

∣∣∣∣∣
T−1∑
t=0

|s(1)t | ≤ kK`,

T−1∑
t=0

|s(2)t | ≤ K`

}
(C.34)

⊆

{
T−1∑
t=0

s′tΩt

∣∣∣∣∣
T−1∑
t=0

|s′t| ≤ (k + 1)K`

}
= H̃(k+1)K` (C.35)

(C.36)

where the last line follows from triangle inequality. This proves our intermediate result in Equa-

tion (C.27).

Now, let us use this result to complete the proof of the inductive step. In particular, we can

now write Equation (C.26) as

z
(`+1)
j =

K∑
k=0

αk

∑
ω′∈H(`)

k (Ω)

b̃ω′,j,k sin (
〈
ω′, r

〉
+

˜̃
φω′,j,k) (C.37)

=
∑

ω′∈H(`+1)(Ω)

cω′,j sin (
〈
ω′, r

〉
+ φω′,j) (C.38)

where H(`+1) :=
K⋃
k=1

H(`)
k ⊆

K⋃
k=1

H̃kK` ⊆ H̃KK` = H̃K`+1 . This sequence of inclusions

concludes the proof.

131

Chapter C. Understanding the spectral bias of implicit neural representations

C.1.2 Three-layer SIREN example

Example. Let f be a three-layer SIREN defined as 1

f(r;θ) = w(2)> sin
(
W (1) sin(Ωr)

)
, (C.39)

where r ∈ R, Ω ∈ RT , W (1) ∈ RF×T , and w(2) ∈ RF . The output of this network can

equivalently be represented as

ff (r;θ) =
F−1∑
m=0

∞∑
s1,...,sT=−∞

cm,s1,...,sT sin

((
T−1∑
t=0

stωt

)
r

)
, (C.40)

where ω>
t ∈ RD denotes the tth row ofΩ,

cm,s1,...,sT =

(
T−1∏
t=0

Jst

(
W

(1)
m,t

))
w(2)
m , (C.41)

and Js denotes the Bessel function of first kind of order s.

Proof. As we have discussed before, the first layer in SIREN plays the role of the frequency map-

ping, i.e.,

z(0) = sin
(
W (0)r

)
= sin(Ωr). (C.42)

Hence the input of a node at the next layer is a linear combination of sinusoids at mapping fre-

quencies. The output of a node at second layer can be written as:

1Note that we have omitted the bias terms to simplify the notation. These biases only change the phase terms in the
sinusoids of the sum.

132

C.1 Deferred proofs

z(1)m = sin
(
W (1)

m,: sin(Ωr)
)

(C.43)

= sin

(
T−1∑
t=0

W
(1)
m,t sin(ωtr)

)
(C.44)

= Im

{
exp

(
j

(
T−1∑
t=0

W
(1)
m,t sin(ωtr)

))}
(C.45)

= Im

{
T−1∏
t=0

exp
(
jW

(1)
m,t sin(ωtr)

)}
(C.46)

= Im

{
T−1∏
t=0

∞∑
st=−∞

Jst(W
(1)
m,t) exp (jstωtr)

}
(C.47)

= Im

∞∑

s0=−∞
. . .

∞∑
sT−1=−∞

T−1∏
t=0

Jst(W
(1)
m,t) exp (jstωtr)

 (C.48)

=

∞∑
s1,...,sT=−∞

Im

{
T−1∏
t=0

Jst(W
(1)
m,t) exp (jstωtr)

}
(C.49)

=
∞∑

s1,...,sT=−∞
Im

{(
T−1∏
t=0

Jst(W
(1)
m,t)

)
exp

(
j
T−1∑
t=0

stωtr

)}
(C.50)

=

∞∑
s1,...,sT=−∞

(
T−1∏
t=0

Jst(W
(1)
m,t)

)
Im

{
exp

(
j

T−1∑
t=0

stωtr

)}
(C.51)

=
∞∑

s1,...,sT=−∞

(
T−1∏
t=0

Jst(W
(1)
m,t)

)
sin

(
T−1∑
t=0

stωtr

)
(C.52)

whereJn(·) represents theBessel functionof the first kindof ordern andEquation (C.47) follows

from the Fourier series expansion of exp(jβ sin(ω0x)):

exp(jβ sin(ω0x)) =
∞∑

n=−∞
Jn(β) exp (jnω0x). (C.53)

133

Chapter C. Understanding the spectral bias of implicit neural representations

Therefore, the output of the neural network can be written as:

f(r;θ) =

F−1∑
m=0

w(2)
m z(1)m =

F−1∑
m=0

w(2)
m

∞∑
s1,...,sT=−∞

(
T−1∏
t=0

Jst(W
(1)
m,t)

)
sin

(
T−1∑
t=0

stωtr

)
(C.54)

=
F−1∑
m=0

∞∑
s1,...,sT=−∞

w(2)
m

(
T−1∏
t=0

Jst(W
(1)
m,t)

)
sin

(
T−1∑
t=0

stωtr

)
(C.55)

C.2 Imperfect recovery

We further demonstrate the imperfect recovery phenomenon with INRs for different networks

and configurations. In fig. C.1, we present the results for SIREN [229], where the first layer of

the form z(0) = sin
(
ω0(W

(0)r + b(0))
)
can be considered as the input mapping γ(r). For a

fair comparison with FFNs and to better illustrate the strong dependence of the learned repre-

sentation on the chosenmapping, we do not perform any updates on the parameters of the initial

layer, i.e., ,W (0) andb(0), during training. The initialization of these parameters ensures a similar

mapping to that of FFN presented in Figure 2 of the main text, i.e., two single frequency map-

pings with frequencies f0 = 1 and f0 = 0.5 followed by a rich mapping. As for the rest of the

architecture, we use the same number of layers and training strategy. As you can see in fig. C.1,

initializing the SIRENwith this γ(r) results also in a setH(Ω) ⊆ {2πk|k ∈ Z}, which leads to

a very imperfect recovery with the reconstruction looking aliased in the spatial domain.

C.3 Aliasing

C.4 NTK eigenfunctions as dictionary atoms

C.4.1 Estimation of eigenfunctions of the NTK

As in previous chapters we use the eigenvectors of the kernel Gram matrix to approximate the

eigenfunctions of the NTK. Specifically, unless stated otherwise, in all our experiments we com-

pute the Gram matrix of the NTK at any θ0 using as samples the coordinates of all the pixels

of an image, laid out on a grid of fixed resolution (64 × 64). That is, we compute a Gram

matrix of size 642 × 642. To that end, we use the empirical_kernel_fn function from the

neural_tangents library [175] which allows to compute this matrix using a batch implemen-

134

C.4 NTK eigenfunctions as dictionary atoms

(a) SIREN (ω0 = 1)
W (0) = I

(b) SIREN (ω0 = 1)
W (0) = 0.5 × I

(c) SIREN (ω0 = 30)
W (0) ∈ R256×2

(d) Ground Truth

Figure C.1:Top row: Image reconstruction with SIREN [229] for different configurations. Middle row:
Magnitude of the DFT of the reconstruction. Bottom row: The center crop of size 32 × 32 from the
magnitude of the DFT of the reconstruction.

tation. Note that this operation can be computationally intense, scaling quadratically with the

number of samples, but also quadratically with the number of outputs. For this reason, we de-

cided to use INRswith a single output andwork onlywith grayscale images. The results, however,

are easily extensible to the multi-output setting.

Once we have the Gram matrix, we can perform its eigendecomposition and use the resulting

eigenvectors to approximate the values of the eigenfunctions φρ(r) at the pixel coordinates. The

inner products 〈φρ, f
?
ν 〉 are then easily approximated as

〈φρ, f
?
ν 〉 ≈

642∑
i=1

φρ(ri)f
?
ν (ri). (C.56)

C.4.2 Training details

In Section 5.4, we compare the generalization performance of several SIRENs (four hidden lay-

ers with dimension 256 followed by the output layer of dimension 1) with different initialization

strategies. To that end, we train each of these networks to reconstruct 100 validation images from

the CelebA dataset using half of the pixels of the images for training. The training pixel locations

are random, but we use the same across all validation images. Generalization performance, is then

135

Chapter C. Understanding the spectral bias of implicit neural representations

tested using the remaining half of the pixels. To be consistent with the empirical protocol pro-

posed by Tancik et al. [236], we use full batch Adam [118] with a learning rate of 10−4 for the

randomly initialized weights and use full batch gradient descent with learning rate 10−2 for the

meta learned weights, which they reported to be the optimal choice of optimizers and learning

rates for each individual case.

C.4.3 Experiments on additional networks

For completeness, we also provide the results of these experiments using FFNs (a sinusoidal map-

ping of size 256 followed by three hidden layers with dimension 256 followed by the output layer

of dimension 1), instead of SIRENs in Figure C.2. Again, we observe that those networks which

have an energy profile more concentrated on the largest eigenvalues perform much better.

10 510 410 310 210 1100
0.0

0.2

0.4

0.6

0.8

1.0
Energy concentration ()

ReLU-MLP 9.13
FFN-01 12.24
FFN-05 11.53
FFN-1 11.76
FFN-5 10.31
FFN-10 10.23
FFN-1 - Meta 17.31

Figure C.2: Average energy concentration of 100 validation images fromCelebA on subspaces spanned by
the eigenfunctions of the empirical NTK associated to eigenvalues greater than a given threshold. Legend
shows the average test PSNR after training to reconstruct those images from 50% randomly selected pixels
for 3 iterations. The value following FFN specifies the σ parameter of the given network.

C.5 Meta-learning experiment

C.5.1 Experimental details

Our meta-learning experiments consist of two phases: A first pre-training phase, in which we use

MAML, to meta-learn a good initialization from 5, 000 training images from CelebA using a

learning rate of 10−5 as indicated in [236] and 5000meta-iterations. In our experiments, we use

a SIREN with four hidden layers with dimension 256 followed by the output layer of dimension

1, randomly initialized prior to meta-learning using ω0 = 30. After pretraining, we finetune

the networks starting at the meta-learned weights using the training protocol described in Ap-

pendix C.4.2.

136

C.5 Meta-learning experiment

Toestimate the eigenfunctions of theNTKat themeta-learnedweightsweuse the experimental

setting described in Appendix C.5.1.

C.5.2 Experiments with an additional meta-learning algorithm

We repeat the same experiments by replacing the meta-learning algorithm with Reptile. Fig-

ure C.3 shows the resulting energy concentration plot and ?? shows the eigenfunctions of the

NTK at the meta-learned weights using Reptile. As we can see, the results agree completely with

those found using MAML. This suggests that the reshaping effect of meta-learning on the NTK

is a general phenomenon, which might be induced using multiple algorithms.

Figure C.3: Average energy concentration of 100 validation images fromCelebA on subspaces spanned by
the eigenfunctions of the empirical NTK associated to eigenvalues greater than a given threshold. Legend
shows the average test PSNR after training to reconstruct those images from 50% randomly selected pixels.
The meta-learned weights are computed using Reptile.

C.5.3 Experiments on additional networks

For completeness, we also provide the results of these experiments using an FFN (a sinusoidal

mapping of size 256 followed by three hidden layers with dimension 256 followed by the output

layer of dimension 1) instead of a SIREN. Prior to meta-learning the input mapping is initialized

using σ = 1. Figure C.2 shows these additional results, where we see that meta-learning does

also improve the energy concentration of the validation images on the principal eigenspace of the

NTK for the FFNs. Performance does also improve significantly in this case.

137

D The functional landscape of task

arithmetic and the tangent space

D.1 Experimental details

All our experiments were performed using the same hardware consisting of four V100 NVIDIA

GPUswith 32GBofmemory each and canbe reproduced in less than 350GPUhours. The details

of each experiment are the following.

Fine-tuning. All the fine-tuning experiments follow the same training protocol specified in Il-

harco et al. [104] with minor modifications to the training code to use linearized models when

needed. In particular, we fine-tune all datasets starting from the same CLIP pre-trained check-

point downloaded from the open_clip repository [106]. We fine-tune for 2, 000 iterations with

a batch size of 128, learning rate of 10−5 and a cosine annealing learning rate schedule with 200

warm-up steps and the AdamW optimizer [142]. As introduced in [105], during fine-tuning, we

freeze the weights of the classification layer obtained by encoding a standard set of zero-shot tem-

plate prompts for each dataset. Freezing this layer does not harm accuracy and ensures that no

additional learnable parameters are introduced during fine-tuning [105]. We use this exact same

protocol to fine-tune the non-linear and linearized models and do not perform any form of hy-

perparameter search in our experiments.

Tuning ofα in task arithmetic benchmarks. As Ilharco et al. [104]weuse a single coefficient

α to tune the size of the task vectors used to modify the pre-trained models. This is equivalent to

setting α = α1 = . . . αT in eq. (6.1). Both in the task addition and task negation benchmarks,

after fine-tuning, we evaluate different scaling coefficients α ∈ {0.0, 0.05, 0.1, . . . , 1.0} and

choose the value that achieves the highest target metric on a small held-out proportion of the

training set as specified in [104]. Namely, maximum normalized average accuracy, and minimum

target accuracy on each dataset that still retains at least 95% of the accuracy of the pre-trained

model on the control task; for task addition and negation, respectively. The tuning of α is done

independently for non-linear FT, linearized FT, and post-hoc linearization.

139

Chapter D. The functional landscape of task arithmetic and the tangent space

Disentanglement error. To produce the weight disentanglement visualizations of Figure 6.4

we compute the value of ξ(α1, α2) on a 20×20 grid of equispaced values in [−3, 3]×[−3, 3]. To
estimate the disentanglement error, we use a random subset of 2, 048 test points for each dataset.

NTK eigenfunction estimation. We use the finite-width NTK implementation from the

functorch sublibraryofPyTorch [195] to compute theKNTK matrices described inSection6.6.1.

In particular, we use a random subset of 200 training points for each dataset and compute the sin-

gular value decomposition (SVD) ofKNTK to estimate the entries of φρ on each dataset. As de-

scribed in Bordelon et al. [26], and to avoid a highmemory footprint, we estimate a different set of

singular vectors for each output class, equivalent to estimating one kernelmatrix per output logit.

Figure 6.9 shows the values of Eloc(x) for each class with a different line. However, there is little

variability of the NTK among classes, and hence all curves appear superimposed in the figure.

D.2 Implementation aspects of linearized models

Creating linearized models of a neural network is very simple using the functorch sublibrary of

PyTorch. Specifically, using the fast Jacobian-vector implementation of this library, we can easily

create a customclass that takes anynn.Module as input andgenerates a trainable linearized version

of it around its initialization. We give a simple example of this inListing 1, wherewe see that the re-

sulting LinearizedModel can be directly used in any training script as any other neural network.

In our experiments, we linearize the ViT image encoder of CLIP as the text encoder is frozen in

our experiments. In this regard, during training and inference, as it is common in standard CLIP

models [199], we normalize the output of the linearized image encoder prior to performing the

inner product with the text embeddings. This normalization does not change the classification

decision during inference, but it has a rescaling effect on the loss that can influence training dy-

namics. In our fine-tuning experiments, we found this standard normalization technique has a

clearly positive effect in single-task accuracy both for the non-linear and linearized models.

140

D.2 Implementation aspects of linearized models

Listing 1 Basic PyTorch code to linearize a model.

1 import copy

2 import torch.nn as nn

3 from functorch import jvp, make_functional_with_buffers

4

5 class LinearizedModel(nn.Module):

6 """ Creates a linearized version of any nn.Module.

7

8 The linearized version of a model is a proper PyTorch model and can be

9 trained as any other nn.Module.

10

11 Args:

12 init_model (nn.Module): The model to linearize. Its parameters are

13 used to initialized the linearized model.

14 """

15 def __init__(self, init_model):

16 # Convert models to functional form.

17 func, params0, buffers0 = make_functional_with_buffers(init_model)

18

19 # Store parameters and forward function.

20 self.func0 = lambda params, x: func(params, buffers0, x)

21 self.params0 = params0 # Initialization parameters.

22 self.params = copy.deepcopy(params0) # Trainable parameters.

23

24 # Freeze initial parameters and unfreeze current parameters.

25 for p0 in self.params0: p0.requires_grad = False

26 for p in self.params: p.requires_grad = True

27

28 def __call__(self, x):

29 # Compute linearized model output.

30 dparams = [p - p0 for p, p0 in zip(self.params, self.params0)]

31 out, dp = jvp(self.func0, (self.params0,), (dparams,))

32 return out + dp

141

Chapter D. The functional landscape of task arithmetic and the tangent space

D.3 Further experimental results

We now present additional experiments that expand the findings discussed in the main text.

D.3.1 Fine-tuning accuracies

In Figure D.1, we report the single-task accuracies achieved by different CLIPmodels before fine-

tuning (referred to as zero-shot), after fine-tuning with different dynamics (referred to as non-

linear FT and linear FT), and after linearizing the non-linearly fine-tuned models (post-hoc lin-

earization).

These results demonstrate that non-linear fine-tuning consistently achieves the highest accu-

racy, indicating a non-linear advantage. However, an interesting observation is that the gap be-

tween non-linear, linear, and post-hoc linearized models diminishes as the model size increases.

This trend can be explained by the fact that larger models, which are more over-parameterized,

inherently induce a stronger kernel behavior during fine-tuning. As a result. they tend to stay

closer to the NTK approximation, closing the gap with linearized models.

142

D.3 Further experimental results

Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
0

20

40

60

80

100

Single-task accuracy (%)

Non-linear FT Linear FT Post-hoc linear. Zero-shot

(a) ViT-B/32

Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
0

20

40

60

80

100

Single-task accuracy (%)

Non-linear FT Linear FT Post-hoc linear. Zero-shot

(b) ViT-B/16

Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
0

20

40

60

80

100

Single-task accuracy (%)

Non-linear FT Linear FT Post-hoc linear. Zero-shot

(c) ViT-L/14

Figure D.1: Single-task accuracies (CLIP).Accuracy of different models obtained using different strate-
gies on each of the tasks.

143

Chapter D. The functional landscape of task arithmetic and the tangent space

Task Arithmetic in the Tangent Space:
Improved Editing of Pre-Trained Models

Author Response
1. Task Arithmetic with a Convolutional Architecture

Table R.1: Task addition of 8 tasks with CNN. We use the same setup as for the experiments in
the main text substituting the ViT models with a CLIP ConvNeXt pre-trained on LAION-400M.

Method ConvNeXt
Abs. (↑) Norm. (↑)

Pre-trained f(· ; θ0) 57.5 –

Non-lin. FT f(· ; θ0 + τ) 79.1 83.6
Linear. FT flin(· ; θ0 + τlin) 81.1 85.7

2. Weight Disentanglement in Other Architectures and Modalities

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

ConvNeXt, Cars - RESISC45

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

Lin. ConvNeXt, Cars - RESISC45

0%

100%
(1, 2)

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

T5-Base, imbd - qasc

0%

100%
(1, 2)

Figure R.1: Visualization of weight disentanglement. The heatmap shows the disentanglement
error ξ(α1, α2) of a non-linearly and linearly fine-tuned ConvNeXt on a pair of vision tasks (two
left panels) and a T5-Base model fine-tuned on a pair of NLP tasks (right panel).

3. Weight Disentanglement and Model Scale

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

No
n-

lin
ea

r F
T

ViT-B-32, DTD - SUN397

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

ViT-B-16, DTD - SUN397

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

ViT-L-14, DTD - SUN397

0%

100%

(1, 2)

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

Lin
ea

riz
ed

 F
T

ViT-B-32, DTD - SUN397

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

ViT-B-16, DTD - SUN397

-3.0 -1.0 1.0 3.0
1

-3.0

-1.0

1.0

3.0

2

0
1

2

ViT-L-14, DTD - SUN397

0%

100%

(1, 2)

Figure R.2: Visualization of weight disentanglement. The heatmaps show the disentanglement
error ξ(α1, α2) of non-linear CLIP ViT models of different sizes and their linearization.

Figure D.2:Visualization of weight disentanglement for other modalities and tasks. The heatmaps
show thedisentanglement ξ(α1, α2)of anon-linearly and linearly fine-tunedConvNeXtonapair of vision
tasks (two left panels) and a T5-Base model fine-tuned on a pair of NLP tasks (right panel).

D.3.2 Task arithmetic with a convolutional architecture

We replicate our task addition experiments using a convolutional architecture rather than a ViT.

Specificallly, we finetune a ConvNeXt [139] pre-trained on LAION-400M using CLIP [223] on

the 8 tasks from our task addition benchmark. Remarkably we see that also for this architecture

linearized fine-tuning improves task arithmetic performance (see Table D.1).

Table D.1: Task addition with a CNN. Average absolute (%) and normalized accuracies (%) of a CLIP
ConvNeXt edited by adding the sum of the task vectors of 8 tasks. We report results for the non-linear
and linearized models of Sections 6.3 and 6.5 normalizing performance by their single-task accuracies.

Method
ConvNeXt

Abs. (↑) Norm. (↑)

Random init f(θrd
0) 57.5 –

Non-lin. FT f(θrd
0 + τ rd) 79.1 83.6

Linear. FT flin(θ
rd
0 + τ rd

lin) 81.1 85.7

D.3.3 Weight disentanglement in other architectures and modalities

To substantiate the generality of weight disentanglement, we conducted a new experiment on a

pre-trained T5-Base model from Hugging Face, fine-tuned on two benchmark NLP tasks (sen-

timent analysis on movie reviews and question answering). The results, illustrated in the right

panel in Figure D.2, show a notable region around the pre-trained checkpoint characterized by

low disentanglement error. This finding echoes the ability of T5 to perform task arithmetic as

demonstrated in Ilharco et al. [104], thereby reinforcing the robustness of our conclusions.

144

D.3 Further experimental results

D.3.4 Further experiments with randomly-initialized networks

We conclude by showing, in Figure D.3, the absolute single-task accuracy achieved by different

CLIPViTmodels thatwerefine-tuned froma random initialization. Both thebasemodels achieve

non-trivial or moderate accuracy on the majority of benchmark tasks, using both non-linear and

linearized fine-tuning dynamics.

These findings reinforce the intuition that non-pretrained models are not failing in task arith-

metic due to their inability to learn the task initially. Instead, as argued earlier, the primary reason

for the failure of non-pre-trainedmodels in task arithmetic is their lack ofweight disentanglement.

Interestingly, the performance of the randomly-initialized largemodel is generally poorer com-

pared to the base models. This observation can be attributed to the models’ tendency to overfit

the training data, which is more likely to occur when a model has larger capacity.

145

Chapter D. The functional landscape of task arithmetic and the tangent space

Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
0

20

40

60

80

Single-task accuracy (%)

Non-linear FT Linear FT Random init

(a) ViT-B/32

Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
0

20

40

60

80

Single-task accuracy (%)

Non-linear FT Linear FT Random init

(b) ViT-B/16

Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
0

20

40

60

80

Single-task accuracy (%)

Non-linear FT Linear FT Random init

(c) ViT-L/14

Figure D.3: Single-task accuracies (random init). Accuracy of differentmodels obtained using different
strategies on each of the tasks.
146

Bibliography

1. Emmanuel Abbe, Elisabetta Cornacchia, JanHązła, andChristopherMarquis. “An initial

alignment between neural network and target is needed for gradient descent to learn”. In:

International Conference onMachine Learning (ICML). 2022 (page 95).

2. AlessandroAchille and Stefano Soatto. “Emergence of Invariance andDisentanglement in

Deep Representations”. Journal of Machine Learning Research (JMLR), 2018 (pages 14,

91).

3. Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. “Git Re-Basin: Merg-

ing Models modulo Permutation Symmetries”. In: International Conference on Learning

Representations (ICLR). 2023 (pages 16, 22).

4. Zeyuan Allen-Zhu and Yuanzhi Li. “Towards understanding ensemble, knowledge dis-

tillation and self-distillation in deep learning”. In: International Conference on Machine

Learning (ICML). 2023 (page 15).

5. Zeyuan Allen-Zhu and Yuanzhi Li. “What Can ResNet Learn Efficiently, Going Beyond

Kernels?” In:Advances inNeural InformationProcessing Systems (NeurIPS). 2019 (pages 12,

44, 49, 58).

6. MaksymAndriushchenko, FrancescoCroce,MaximilianMüller,MatthiasHein, andNico-

las Flammarion. “AModern Look at the Relationship between Sharpness andGeneraliza-

tion”. In: International Conference onMachine Learning (ICML). 2023 (pages 13, 15).

7. Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong

Wang. “OnExactComputationwith an InfinitelyWideNeuralNet”. In:Advances inNeu-

ral Information Processing Systems (NeurIPS). 2019 (pages 11, 43).

8. SanjeevArora, Simon S.Du,ZhiyuanLi,RuslanSalakhutdinov,RuosongWang, andDingli

Yu. “Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks”. In: Inter-

national Conference on Learning Representations (ICLR). 2020 (pages 17, 43, 53).

147

Bibliography

9. Andrei Atanov, Andrei Filatov, Teresa Yeo, Ajay Sohmshetty, and Amir Zamir. “Task Dis-

covery: Finding the Tasks that Neural Networks Generalize on”. In: Advances in Neural

Information Processing Systems (NeurIPS). 2022 (page 13).

10. JimmyLei Ba, JamieRyan Kiros, and Geoffrey EHinton. “Layer Normalization”. In:Ad-

vances in NIPS 2016 Deep Learning Symposium. 2016 (page 20).

11. Philip Bachman, R.Devon Hjelm, and William Buchwalter. “Learning Representations

by Maximizing Mutual Information Across Views”. In: Advances in Neural Information

Processing Systems (NeurIPS). 2019 (page 91).

12. Gregor Bachmann, Seyed-Mohsen Moosavi-Dezfooli, and Thomas Hofmann. “Uniform

Convergence, Adversarial Spheres and a Simple Remedy”. In: International Conference on

Machine Learning (ICML). 2021 (page 43).

13. Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang Niu, and

Tongliang Liu. “Understanding and Improving Early Stopping for Learning with Noisy

Labels”. In:Advances inNeural InformationProcessing Systems (NeurIPS). 2021 (page 14).

14. Robert J. N.Baldock,HartmutMaennel, andBehnamNeyshabur. “DeepLearningThrough

the Lens of Example Difficulty”. In: Advances in Neural Information Processing Systems

(NeurIPS). 2021 (page 14).

15. David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, KurtWan-Duo Ma, and Brian

McWilliams. “The shattered gradients problem: If resnets are the answer, then what is the

question?” In: International Conference onMachine Learning (ICML). 2017 (page 74).

16. Aristide Baratin, ThomasGeorge,César Laurent,R.DevonHjelm,GuillaumeLajoie, Pas-

cal Vincent, and SimonLacoste -Julien. “ImplicitRegularization viaNeural FeatureAlign-

ment”. In: International Conference on Artificial Intelligence and Statistics (AISTATS).

2021 (pages 17, 44, 54, 58, 72, 74).

17. JonathanT. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-

Brualla, andPratul P. Srinivasan. “Mip-NeRF:AMultiscaleRepresentation forAnti-Aliasing

Neural Radiance Fields”. In: IEEE International Conference on Computer Vision (ICCV).

2021 (page 67).

18. Peter L. Bartlett and Shahar Mendelson. “Rademacher and Gaussian Complexities: Risk

Bounds andStructuralResults”. In:ComputationalLearningTheory (COLT). 2001 (pages 8,

12).

148

Bibliography

19. PeterW. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius

Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan

Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl,

AshishVaswani,KelseyAllen,CharlesNash,VictoriaLangston,ChrisDyer,NicolasHeess,

DaanWierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pas-

canu. “Relational Inductive Biases, Deep Learning, andGraphNetworks”.ArXiv e-prints,

2018. arXiv: 1806.01261 (page 2).

20. AtilimGunes Baydin, BarakA. Pearlmutter, AlexeyAndreyevich Radul, and JeffreyMark

Siskind. “Automatic Differentiation in Machine Learning: a Survey”. Journal ofMachine

Learning Research (JMLR), 2017 (page 86).

21. Mikhail Belkin,DanielHsu, SiyuanMa, andSoumikMandal. “Reconcilingmodernmachine-

learningpractice and the classical bias–variance trade-off”.Proceedings of theNationalAcademy

of Sciences (PNAS), 2019 (page 9).

22. Mikhail Belkin, Siyuan Ma, and Soumik Mandal. “To Understand Deep Learning We

Need to Understand Kernel Learning”. In: International Conferenece on Machine learn-

ing (ICML). 2018 (page 10).

23. Yoshua Bengio, AaronC.Courville, and Pascal Vincent. “Representation Learning: ARe-

view and New Perspectives”. IEEE Transactions on Pattern Analysis andMachine Intelli-

gence (TPAMI), 2013 (pages 14, 91).

24. Alberto Bietti and Julien Mairal. “On the Inductive Bias of Neural Tangent Kernels”. In:

Advances in Neural Information Processing Systems (NeurIPS). 2019 (page 43).

25. DavisBlalock, Jose Javier GonzalezOrtiz, JonathanFrankle, and JohnGuttag. “What is the

State ofNeuralNetworkPruning?” In:Conference onMachineLearningSystems (MLSys).

2020 (page 16).

26. Blake Bordelon,AbdulkadirCanatar, andCengiz Pehlevan. “SpectrumDependent Learn-

ing Curves in Kernel Regression and Wide Neural Networks”. In: International Confer-

ence onMachine Learning (ICML). 2020 (page 140).

27. James Bradbury, Roy Frostig, Peter Hawkins,Matthew James Johnson, Chris Leary, Dou-

gal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne,

andQiaoZhang. JAX: composable transformations ofPython+NumPyprograms.Version0.2.5.

2018 (page 121).

149

https://arxiv.org/abs/1806.01261

Bibliography

28. WielandBrendel andMatthias Bethge. “ApproximatingCNNswithBag-of-local-Features

models works surprisingly well on ImageNet”. In: International Conference on Learning

Representations (ICLR). 2019 (page 17).

29. MichaelM. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric Deep

Learning:Grids,Groups,Graphs,Geodesics, andGauges. 2021. arXiv:2104.13478 (pages 2,

19).

30. Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. “SGD Learns

Over-parameterized Networks that Provably Generalize on Linearly Separable Data”. In:

International Conference on Learning Representations (ICLR). 2018 (page 25).

31. Francesco Cagnetta, Alessandro Favero, and Matthieu Wyart. “What can be learnt with

wide convolutional neural networks?” In: International Conference onMachine Learning

(ICML). 2023 (page 89).

32. Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, Michael Petrov, Ludwig Schu-

bert,ChelseaVoss,BenEgan, andSweeKiatLim. “Thread:Circuits”.Distill, 2020 (page96).

33. Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. “pi-

GAN: Periodic implicit generative adversarial networks for 3D-aware image synthesis”. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021 (page 59).

34. Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. “A Simple

Framework for Contrastive Learning of Visual Representations”. In: International Con-

ference onMachine Learning (ICML). 2020 (pages 18, 91).

35. Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.

“InfoGAN: Interpretable Representation Learning by Information Maximizing Genera-

tive Adversarial Nets”. In: Advances in Neural Information Processing Systems (NeurIPS).

2016 (page 91).

36. Yinbo Chen, Sifei Liu, and Xiaolong Wang. “Learning continuous image representation

with local implicit image function”. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2021 (page 68).

37. ZhiqinChen andHaoZhang. “Learning implicit fields for generative shapemodeling”. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019 (page 21).

150

https://arxiv.org/abs/2104.13478

Bibliography

38. GongCheng, JunweiHan, andXiaoqiang Lu. “Remote sensing image scene classification:

Benchmark and state of the art”. Proceedings of the IEEE, 2017 (page 79).

39. Lenaic Chizat and Francis Bach. “Implicit bias of gradient descent for wide two-layer neu-

ral networks trained with the logistic loss”. In: Conference on Learning Theory (COLT).

2020 (page 10).

40. LenaicChizat, EdouardOyallon, and Francis Bach. “On lazy training in differentiable pro-

gramming”.Advances inNeural InformationProcessing Systems (NeurIPS), 2019 (pages 10,

12, 76).

41. LeshemChoshen, EladVenezian,NoamSlonim, andYoavKatz. “Fusing finetunedmodels

for better pretraining”. ArXiv e-prints, 2022. arXiv: 2204.03044 (page 22).

42. Ole Christensen and Khadija L Christensen. “Linear independence and series expansions

in function spaces”. The AmericanMathematicalMonthly, 2006 (page 89).

43. MirceaCimpoi, SubhransuMaji, IasonasKokkinos, SammyMohamed, andAndreaVedaldi.

“Describing textures in the wild”. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2014 (page 79).

44. Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. “On the Relationship be-

tween Self-Attention and Convolutional Layers”. In: International Conference on Learn-

ing Representations (ICLR). 2020 (page 19).

45. George Cybenko. “Approximation by superpositions of a sigmoidal function”. Mathe-

matics of control, signals and systems 2:4, 1989 (page 69).

46. AlexanderD’Amour,KatherineHeller,DanMoldovan,BenAdlam,BabakAlipanahi,Alex

Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, MatthewD Hoffman, et al.

“Underspecificationpresents challenges for credibility inmodernmachine learning”.ArXiv

e-prints, 2020. arXiv: 2011.03395 (pages 17, 68).

47. Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “ImageNet: A large-

scale hierarchical image database”. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2009 (pages 18, 77).

48. Aditya Deshpande, Alessandro Achille, Avinash Ravichandran, Hao Li, Luca Zancato,

Charless C. Fowlkes,RahulBhotika, StefanoSoatto, andPietroPerona. “A linearized frame-

151

https://arxiv.org/abs/2204.03044
https://arxiv.org/abs/2011.03395

Bibliography

work and a new benchmark for model selection for fine-tuning”. ArXiv e-prints, 2021.

arXiv: 2102.00084 (pages 17, 43, 52, 55).

49. Nikolaos Dimitriadis, Pascal Frossard, and François Fleuret. “Pareto Manifold Learning:

Tackling multiple tasks via ensembles of single-task models”. In: International Conference

onMachine Learning (ICML). 2023 (page 15).

50. Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem

Choshen. “ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning”.

In:AnnualMeeting of theAssociation forComputationalLinguistics (ACL). 2023 (page22).

51. YiheDong, Jean-BaptisteCordonnier, andAndreasLoukas. “Attention is not all youneed:

pure attention loses rank doubly exponentially with depth”. In: International Conference

onMachine Learning (ICML). 2021 (page 14).

52. KonstantinDonhauser,MingqiWu, and FannyYang. “How rotational invariance of com-

mon kernels prevents generalization in high dimensions”. In: International Conference on

Machine Learning (ICML). 2021 (page 51).

53. AlexeyDosovitskiy, Lucas Beyer, AlexanderKolesnikov,DirkWeissenborn,XiaohuaZhai,

ThomasUnterthiner,MostafaDehghani,MatthiasMinderer,GeorgHeigold, SylvainGelly,

Jakob Uszkoreit, and Neil Houlsby. “An Image is Worth 16x16 Words: Transformers for

Image Recognition at Scale”. In: International Conference on Learning Representations

(ICLR). 2021 (pages 19, 79).

54. Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. “Essentially

no barriers in neural network energy landscape”. In: International Conference onMachine

Learning (ICML). 2018 (page 15).

55. Simon S. Du, JasonD. Lee, Haochuan Li, LiweiWang, andXiyu Zhai. “Gradient Descent

Finds Global Minima of Deep Neural Networks”. In: International Conferenece on Ma-

chine learning (ICML). 2019 (page 43).

56. Emilien Dupont, Adam Golinski, Milad Alizadeh, YeeWhye Teh, and Arnaud Doucet.

“COIN: COmpression with Implicit Neural representations”. In: Neural Compression:

From Information Theory to Applications ICLRW. 2021 (page 21).

57. EmilienDupont, YeeWhyeTeh, andArnaudDoucet. “Generativemodels as distributions

of functions”. In: International Conference on Artificial Intelligence and Statistics (AIS-

TATS). 2021 (page 59).

152

https://arxiv.org/abs/2102.00084

Bibliography

58. Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. “The role of per-

mutation invariance in linear mode connectivity of neural networks”. In: International

Conference on Learning Representations (ICLR). 2022 (page 16).

59. AlexFang,Gabriel Ilharco,MitchellWortsman,YuhaoWan,Vaishaal Shankar,AchalDave,

and Ludwig Schmidt. “Data Determines Distributional Robustness in Contrastive Lan-

guage ImagePre-training (CLIP)”. In: InternationalConference onMachineLearning (ICML).

2022 (page 18).

60. Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. “Multiplicative Fil-

ter Networks”. In: International Conference on Learning Representations (ICLR). 2021

(pages 63, 73).

61. Alessandro Favero, Francesco Cagnetta, and Matthieu Wyart. “Locality defeats the curse

of dimensionality in convolutional teacher-student scenarios”. In:Advances in Neural In-

formation Processing Systems (NeurIPS). 2021 (page 89).

62. Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for fast

adaptationofdeepnetworks”. In: InternationalConference onMachineLearning (ICML).

2017 (pages 71, 72, 74).

63. Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. “Sharpness-aware

Minimization for Efficiently Improving Generalization”. In: International Conference on

Learning Representations (ICLR). 2021 (page 13).

64. Stanislav Fort, Gintare KarolinaDziugaite,Mansheej Paul, SepidehKharaghani, DanielM

Roy, and Surya Ganguli. “Deep learning versus kernel learning: an empirical study of loss

landscape geometry and the time evolution of the neural tangent kernel”. In: Advances in

Neural Information Processing Systems (NeurIPS). 2020 (pages 5, 16, 17, 44, 49, 53, 56–

58, 79, 84, 122).

65. Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis: Finding Sparse,

Trainable Neural Networks”. In: International Conference on Learning Representations

(ICLR). 2019 (page 16).

66. Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. “Linear

mode connectivity and the lottery ticket hypothesis”. In: International Conference onMa-

chine Learning (ICML). 2020 (pages 15, 22).

153

Bibliography

67. RobertM French. “Catastrophic forgetting in connectionist networks”. Trends in Cogni-

tive Sciences, 1999 (page 22).

68. Stephan J.Garbin,MarekKowalski,MatthewJohnson, Jamie Shotton, and JulienValentin.

“FastNeRF: High-Fidelity Neural Rendering at 200FPS”. In: IEEE International Confer-

ence on Computer Vision (ICCV). 2021 (page 61).

69. Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and AndrewGor-

donWilson. “Loss surfaces,mode connectivity, and fast ensembling of dnns”. In:Advances

in Neural Information Processing Systems (NeurIPS). 2018 (page 15).

70. Thomas Gebhart, Udit Saxena, and Paul Schrater. “A Unified Paths Perspective for Prun-

ing at Initialization”. ArXiv e-prints, 2021. arXiv: 2101.10552 (page 43).

71. AmnonGeifman,Meirav Galun, David Jacobs, and Basri Ronen. “On the spectral bias of

convolutional neural tangent and gaussian process kernels”.Advances in Neural Informa-

tion Processing Systems (NeurIPS), 2022 (page 89).

72. MarioGeiger, Arthur Jacot, Stefano Spigler, FranckGabriel, Levent Sagun, Stéphane d’As-

coli, Giulio Biroli, Clément Hongler, and Matthieu Wyart. “Scaling description of gener-

alization with number of parameters in deep learning”. Journal of Statistical Mechanics:

Theory and Experiment, 2020 (page 9).

73. Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. “Disentangling feature

and lazy training in deep neural networks”. Journal of Statistical Mechanics: Theory and

Experiment, 2020 (page 16).

74. RobertGeirhos, Jörn-Henrik Jacobsen,ClaudioMichaelis,RichardZemel,WielandBren-

del,MatthiasBethge, andFelix A.Wichmann. “Shortcut learning indeepneural networks”.

NatureMachine Intelligence, 2020 (page 17).

75. RobertGeirhos,KantharajuNarayanappa,BenjaminMitzkus,TizianThieringer,Matthias

Bethge, Felix A. Wichmann, and Wieland Brendel. “Partial success in closing the gap be-

tween human andmachine vision”. In:Advances inNeural Information Processing Systems

(NeurIPS). 2021 (page 17).

76. RobertGeirhos, PatriciaRubisch,ClaudioMichaelis,MatthiasBethge, Felix AWichmann,

and Wieland Brendel. “ImageNet-trained CNNs are biased towards texture; increasing

shape bias improves accuracy and robustness”. In: International Conference on Learning

Representations (ICLR). 2019 (page 14).

154

https://arxiv.org/abs/2101.10552

Bibliography

77. RobertGeirhos,Carlos RMedinaTemme, JonasRauber,HeikoHSch ütt,MatthiasBethge,

and Felix A Wichmann. “Generalisation in humans and deep neural networks”. In: Ad-

vances in Neural Information Processing Systems (NeurIPS). 2018 (page 17).

78. Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. “An Investigation into Neural Net

Optimization via Hessian Eigenvalue Density”. In: International Conference on Machine

Learning (ICML). 2019 (page 31).

79. BehroozGhorbani, SongMei, TheodorMisiakiewicz, andAndreaMontanari. “WhenDo

Neural Networks Outperform Kernel Methods?” In: Advances in Neural Information

Processing Systems (NeurIPS). 2020 (pages 12, 44, 48, 49, 58).

80. Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds,

Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, Lucy Campbell-

Gillingham, JonathanUesato, Po-SenHuang,RamonaComanescu, FanYang,Abigail See,

SumanthDathathri, RoryGreig, Charlie Chen,Doug Fritz, Jaume Sanchez Elias, Richard

Green, Sona Mokra, Nicholas Fernando, Boxi Wu, Rachel Foley, Susannah Young, Ia-

son Gabriel, William Isaac, JohnMellor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne

Hendricks, and Geoffrey Irving. Improving alignment of dialogue agents via targeted hu-

man judgements. 2022 (page 22).

81. GeneH. Golub andCharles F. Van Loan.Matrix Computations (3rd Ed.) JohnsHopkins

University Press, USA, 1996 (page 115).

82. Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (4th Ed.) Pearson,

2017 (page 100).

83. Ian J Goodfellow,Oriol Vinyals, andAndrewMSaxe. “Qualitatively characterizing neural

network optimization problems”. In: International Conference on Learnint Representa-

tions (ICLR). 2015 (page 15).

84. Ian J. Goodfellow, Jean Pouget-Abadie,MehdiMirza, BingXu,DavidWarde-Farley, Sher-

jil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Networks”. In:

Advances in Neural Information Processing Systems (NeurIPS). 2014 (page 19).

85. Suriya Gunasekar, JasonD. Lee, Daniel Soudry, and Nathan Srebro. “Characterizing Im-

plicit Bias inTermsofOptimizationGeometry”. In: InternationalConferenece onMachine

learning (ICML). 2018 (page 10).

155

Bibliography

86. Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. “Surprises in

high-dimensional ridgeless least squares interpolation”.Annals of Statistics, 2022 (page10).

87. MartonHavasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji

Lakshminarayanan, AndrewMingbo Dai, and Dustin Tran. “Training independent sub-

networks for robust prediction”. In: InternationalConference onLearningRepresentations

(ICLR). 2021 (page 92).

88. KaimingHe,XinleiChen, SainingXie,YanghaoLi, PiotrDollár, andRossGirshick. “Masked

AutoencodersAre ScalableVisionLearners”. In: IEEEConference onComputerVision and

Pattern Recognition (CVPR). 2022 (page 18).

89. KaimingHe,XiangyuZhang, ShaoqingRen, and Jian Sun. “Deep residual learning for im-

age recognition”. In: IEEEConference onComputerVisionandPatternRecognition (CVPR).

2016 (pages 20, 48, 121).

90. Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, JonathanT Barron, and Paul De-

bevec. “Baking Neural Radiance Fields for Real-Time View Synthesis”. In: IEEE Inter-

national Conference on Computer Vision (ICCV). 2021 (page 61).

91. Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. “EuroSAT: A

novel dataset anddeep learning benchmark for landuse and land cover classification”. Jour-

nal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019 (page 79).

92. DanHendrycks and Thomas Dietterich. “Benchmarking Neural Network Robustness to

CommonCorruptions andPerturbations”. In: InternationalConference onLearningRep-

resentations (ICLR). 2019 (page 17).

93. Dan Hendrycks and Kevin Gimpel. “Bridging Nonlinearities and Stochastic Regularizers

with Gaussian Error Linear Units”. ArXiv e-prints, 2016. arXiv: 1606.08415 (page 20).

94. Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson,

Heewoo Jun, TomB Brown, Prafulla Dhariwal, Scott Gray, et al. “Scaling laws for autore-

gressive generative modeling”. ArXiv e-prints, 2020. arXiv: 2010.14701 (page 18).

95. DannyHernandez, JaredKaplan, TomHenighan, and SamMcCandlish. “Scaling laws for

transfer”. ArXiv e-prints, 2021. arXiv: 2102.01293 (page 18).

156

https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2010.14701
https://arxiv.org/abs/2102.01293

Bibliography

96. IrinaHiggins,DavidAmos,DavidPfau, SebastienRacaniere, LoicMatthey,Danilo J.Rezende,

andAlexander Lerchner. “Towards aDefinition ofDisentangledRepresentations”.ArXiv

e-prints, 2018. arXiv: 1812.02230 (pages 14, 91).

97. IrinaHiggins,LoicMatthey,ArkaPal,ChristopherBurgess,XavierGlorot,MatthewBotvinick,

Shakir Mohamed, and Alexander Lerchner. “beta-VAE: Learning Basic Visual Concepts

with a Constrained Variational Framework”. In: International Conference on Learning

Representations (ICLR). 2017 (page 91).

98. Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Probabilistic Models”.

In: Advances in Neural Information Processing Systems (NeurIPS). 2020 (page 19).

99. SeppHochreiter and JürgenSchmidhuber. “Flatminima”.Neural computation, 1997 (pages 13,

15).

100. SeppHochreiter and Jürgen Schmidhuber. “Long Short-TermMemory”.Neural Compu-

tation, 1997 (page 1).

101. NeilHoulsby, AndreiGiurgiu, Stanislaw Jastrzebski, BrunaMorrone,Quentin de Larous-

silhe, Andrea Gesmundo,Mona Attariyan, and Sylvain Gelly. “Parameter-Efficient Trans-

fer Learning for NLP”. In: International Conference onMachine Learning (ICML). 2019

(page 16).

102. Edward J. Hu, Yelong Shen, Phillip Wallis, ZeyuanAllen- Zhu, Yuanzhi Li, Shean Wang,

LuWang, andWeizhuChen. “LoRA:Low-RankAdaptation of Large LanguageModels”.

In: International Conference on Learning Representations (ICLR). 2022 (pages 16, 92).

103. Gao Huang, Zhuang Liu, Laurens VanDerMaaten, and KilianQ. Weinberger. “Densely

Connected Convolutional Networks”. In: IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR). 2017 (pages 20, 25).

104. Gabriel Ilharco, MarcoTúlio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig

Schmidt, Hannaneh Hajishirzi, and Ali Farhadi. “Editing models with task arithmetic”.

In: International Conference on Learning Representations (ICLR). 2023 (pages 5, 22, 75,

77–79, 83, 85, 90, 96, 139, 144).

105. Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Ha-

jishirzi, Simon Kornblith, Ali Farhadi, and Ludwig Schmidt. “Patching open-vocabulary

models by interpolating weights”. In: Advances in Neural Information Processing Systems

(NeurIPS). 2022 (pages 22, 90, 139).

157

https://arxiv.org/abs/1812.02230

Bibliography

106. Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini,

Rohan Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Han-

nanehHajishirzi,Ali Farhadi, andLudwigSchmidt.OpenCLIP.Version0.1. 2021 (page139).

107. Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and

AleksanderMadry. “Adversarial ExamplesAreNotBugs,TheyAreFeatures”. In:Advances

in Neural Information Processing Systems (NeurIPS). 2019 (page 17).

108. Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift”. In: International Conference onMachine

Learning (ICML). 2015 (page 122).

109. Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and AndrewGor-

donWilson. “Averagingweights leads towider optima and better generalization”. In:Con-

ference on Uncertainty in Artificial Intelligence (UAI). 2018 (pages 15, 22).

110. Arthur Jacot, Franck Gabriel, and Clement Hongler. “Neural Tangent Kernel: Conver-

gence and Generalization in Neural Networks”. In: Advances in Neural Information Pro-

cessing Systems (NeurIPS). 2018 (pages 5, 11, 12, 43, 46, 60, 76).

111. Andrew Jaegle, Felix Gimeno, AndrewBrock, AndrewZisserman,Oriol Vinyals, and Joao

Carreira. “Perceiver: General Perception with Iterative Attention”. In: International Con-

ference onMachine Learning (ICML). 2021 (page 19).

112. Saumya Jetley, Nicholas A. Lord, and PhilipH.S. Torr. “With Friends Like These, Who

Needs Adversaries?” In: Advances in Neural Information Processing Systems (NeurIPS).

2018 (page 17).

113. Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio.

“Fantastic Generalization Measures and Where to Find Them”. In: International Confer-

ence on Learning Representations (ICLR). 2020 (page 13).

114. Jeevesh Juneja, Rachit Bansal, Kyunghyun Cho, Jo ão Sedoc, and Naomi Saphra. “Linear

ConnectivityRevealsGeneralization Strategies”. In: InternationalConference onLearning

Representations (ICLR). 2023 (page 15).

115. Jared Kaplan, SamMcCandlish, TomHenighan, TomB Brown, Benjamin Chess, Rewon

Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. “Scaling laws for neural

language models”. ArXiv e-prints, 2020. arXiv: 2001.08361 (page 18).

158

https://arxiv.org/abs/2001.08361

Bibliography

116. Nitish ShirishKeskar,DheevatsaMudigere, JorgeNocedal,Mikhail Smelyanskiy, andPingTak Pe-

ter Tang. “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp

Minima”. In: InternationalConference onLearningRepresentations (ICLR). 2017 (pages 13,

15).

117. Jaechang Kim, Yunjoo Lee, Seunghoon Hong, and Jungseul Ok. “Learning Continuous

Representation of Audio for Arbitrary Scale Super Resolution”. In: IEEE Conference in

Acoustics, Speech and Signal Processing (ICASSP). 2021 (page 68).

118. Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:

International Conference on Learning Representations (ICLR). 2015 (pages 66, 123, 136).

119. SylwesterKlocek,ŁukaszMaziarka,MaciejWołczyk, JacekTabor, JakubNowak, andMarek

Śmieja. “Hypernetwork functional image representation”. In: International Conference on

Artificial Neural Networks (ICANN). 2019 (page 59).

120. PangWei Koh, Shiori Sagawa, Henrik Marklund, SangMichael Xie, Marvin Zhang, Ak-

shay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao,

Tony Lee, Etienne David, Ian Stavness, Wei Guo, BertonA. Earnshaw, Imran S. Haque,

Sara Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn,

and Percy Liang. “WILDS: ABenchmark of in-the-WildDistribution Shifts”. In: Interna-

tional Conference onMachine Learning (ICML). 2021 (page 18).

121. Dmitry Kopitkov and Vadim Indelman. “Neural spectrum alignment: Empirical study”.

In: International Conference on Artificial Neural Networks (ICANN). 2020 (pages 17, 44,

54, 58, 72, 74).

122. Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. “Similar-

ity of neural network representations revisited”. In: International Conference onMachine

Learning (ICML). 2019 (page 14).

123. Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. “3D Object representations for

fine-grained categorization”. In: International Conference on Computer VisionWorkshops

(ICCVw). 2013 (page 79).

124. Alex Krizhevsky, GeoffreyHinton, et al. Learningmultiple layers of features from tiny im-

ages. 2009 (page 48).

159

Bibliography

125. AlexKrizhevsky, Ilya Sutskever, andGeoffrey EHinton. “Imagenet classificationwithdeep

convolutional neural networks”. In: Advances in Neural Information Processing Systems

(NeurIPS). 2012 (page 20).

126. Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and Scalable

Predictive Uncertainty Estimation using Deep Ensembles”. In: Advances in Neural Infor-

mation Processing Systems (NeurIPS). 2017 (page 15).

127. BrettW Larsen, Stanislav Fort, Nic Becker, and Surya Ganguli. “How many degrees of

freedomdoweneed to train deepnetworks: a loss landscape perspective”. In: International

Conference on Learning Representations (ICLR). 2022 (page 16).

128. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-Based Learning Applied to

Document Recognition”. Proceedings of the IEEE, 1998 (pages 1, 2, 48, 121).

129. Yann LeCun. TheMNIST database of handwritten digits. 1998 (pages 79, 123).

130. Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha

Sohl-Dickstein, and Jeffrey Pennington. “Wide neural networks of any depth evolve as lin-

earmodels under gradient descent”. In:Advances inNeural InformationProcessing Systems

(NeurIPS). 2019 (pages 43, 45).

131. Brian Lester, Rami Al-Rfou, and Noah Constant. “The Power of Scale for Parameter-

Efficient Prompt Tuning”. In: Conference on Empirical Methods in Natural Language

Processing (EMNLP). 2021 (page 16).

132. Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. “Measuring the intrin-

sic dimension of objective landscapes”. In: International Conference on Learning Repre-

sentations (ICLR). 2018 (page 16).

133. Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. “Visualizing

the loss landscape of neural nets”. In: Advances in Neural Information Processing Systems

(NeurIPS). 2018 (page 15).

134. MargaretLi, SuchinGururangan,TimDettmers,MikeLewis,TimAlthoff,NoahASmith,

and Luke Zettlemoyer. “Branch-Train-Merge: Embarrassingly Parallel Training of Expert

Language Models”. ArXiv e-prints, 2022. arXiv: 2208.03306 (page 22).

160

https://arxiv.org/abs/2208.03306

Bibliography

135. Xiang LisaLi andPercyLiang. “Prefix-Tuning:OptimizingContinuousPrompts forGen-

eration”. In: AnnualMeeting of the Association for Computational Linguistics and the In-

ternational JointConference onNaturalLanguageProcessing (ACL/IJCNLP). 2021 (page16).

136. Chaoyue Liu, Libin Zhu, and Mikhail Belkin. “On the linearity of large non-linear mod-

els: when and why the tangent kernel is constant”. In: Advances in Neural Information

Processing Systems (NeurIPS). 2020 (page 43).

137. Sheng Liu, JonathanNiles-Weed,Narges Razavian, andCarlos Fernandez-Granda. “Early-

LearningRegularization PreventsMemorization ofNoisy Labels”. In:Advances inNeural

Information Processing Systems (NeurIPS). 2020 (page 14).

138. Shengchao Liu, Dimitris Papailiopoulos, and Dimitris Achlioptas. “Bad Global Minima

Exist and SGDCanReachThem”. In:Advances inNeural Information Processing Systems

(NeurIPS). 2021 (page 15).

139. Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and

Saining Xie. “A ConvNet for the 2020s”. In: IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 2022 (pages 20, 144).

140. Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep Learning Face Attributes

in theWild”. In: IEEEInternationalConference onComputerVision (ICCV). 2015 (page70).

141. Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar R ätsch, Sylvain Gelly, Bernhard

Schölkopf, and Olivier Bachem. “Challenging Common Assumptions in the Unsuper-

vised Learning of Disentangled Representations”. In: International Conference on Ma-

chine Learning (ICML). 2019 (page 91).

142. Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization”. In: Inter-

national Conference on Learning Representations (ICLR). 2019 (page 139).

143. Ximing Lu, Sean Welleck, Liwei Jiang, Jack Hessel, Lianhui Qin, Peter West, Prithviraj

Ammanabrolu, andYejinChoi. “QUARK:ControllableTextGenerationwithReinforced

Unlearning”. In:Advances inNeural InformationProcessing Systems (NeurIPS). 2022 (page22).

144. Ekdeep SinghLubana,Eric JBigelow,Robert PDick,DavidKrueger, andHidenoriTanaka.

“Mechanisticmode connectivity”. In: InternationalConference onMachineLearning (ICML).

2023 (page 15).

161

Bibliography

145. Wesley Maddox, Shuai Tang, PabloG. Moreno, AndrewGordon Wilson, and Andreas

Damianou. “Fast Adaptation with Linearized Neural Networks”. In: International Con-

ference on Artificial Intelligence and Statistics (AISTATS). 2021 (pages 17, 43, 55).

146. HartmutMaennel, IbrahimM. Alabdulmohsin, IlyaO. Tolstikhin, Robert J. N. Baldock,

Olivier Bousquet, Sylvain Gelly, and Daniel Keysers. “What Do Neural Networks Learn

WhenTrainedWithRandomLabels?” In:Advances inNeural Information Processing Sys-

tems (NeurIPS). 2020 (page 14).

147. Eran Malach, Pritish Kamath, Emmanuel Abbe, and Nathan Srebro. “Quantifying the

Benefit of UsingDifferentiable Learning over Tangent Kernels”. In: International Confer-

ence onMachine Learning (ICML). 2021 (pages 12, 44, 49, 58).

148. SadhikaMalladi,AlexanderWettig,Dingli Yu,DanqiChen, andSanjeevArora. “AKernel-

Based View of Language Model Fine-Tuning”. In: International Conference on Machine

Learning (ICML). 2023 (page 78).

149. Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999 (page 74).

150. ArunMallya,DillonDavis, and Svetlana Lazebnik. “Piggyback:Adapting a single network

to multiple tasks by learning to mask weights”. In: European Conference on Computer Vi-

sion (ECCV). 2018 (page 92).

151. Arun Mallya and Svetlana Lazebnik. “Packnet: Adding multiple tasks to a single network

by iterative pruning”. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2018 (page 92).

152. Ricardo Martin-Brualla, Noha Radwan, Mehdi S.M. Sajjadi, JonathanT. Barron, Alexey

Dosovitskiy, and Daniel Duckworth. “NeRF in theWild: Neural Radiance Fields for Un-

constrained Photo Collections”. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2021 (page 59).

153. Nicolas Y.Masse, GregoryD.Grant, andDavid J. Freedman. “Alleviating catastrophic for-

getting using context-dependent gating and synaptic stabilization”. Proceedings of the Na-

tional Academy of Science (PNAS), 2018 (page 92).

154. MichaelMatena andColinRaffel. “MergingModels with Fisher-WeightedAveraging”. In:

Advances in Neural Information Processing Systems (NeurIPS). 2021 (page 22).

162

Bibliography

155. Michael McCloskey and Neal J Cohen. “Catastrophic interference in connectionist net-

works: The sequential learning problem”. In: Psychology of Learning andMotivation. El-

sevier, 1989 (page 22).

156. ChristianH.X. Ali Mehmeti-Göpel, David Hartmann, and Michael Wand. “Ringing Re-

LUs: Harmonic Distortion Analysis of Nonlinear Feedforward Networks”. In: Interna-

tional Conference on Learning Representations (ICLR). 2021 (pages 62, 67, 74).

157. Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas

Geiger. “Occupancy networks: Learning 3d reconstruction in function space”. In: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2019 (page 21).

158. BenMildenhall, Pratul P. Srinivasan,MatthewTancik, JonathanT.Barron,RaviRamamoor-

thi, and Ren Ng. “NeRF: Representing Scenes as Neural Radiance Fields for View Syn-

thesis”. In: European Conference on Computer Vision (ECCV). 2020 (pages 21, 59).

159. John Miller, Karl Krauth, Benjamin Recht, and Ludwig Schmidt. “The effect of natural

distribution shift on question answering models”. In: International Conference on Ma-

chine Learning (ICML). 2020 (page 18).

160. John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, PangWei Koh, Vaishaal

Shankar, Percy Liang, Yair Carmon, and Ludwig Schmidt. “Accuracy on the Line: on the

Strong Correlation Between Out-of-Distribution and In-Distribution Generalization”.

In: International Conference onMachine Learning (ICML). Vol. 139. 2021 (page 18).

161. Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan

Ghasemzadeh. “Linear mode connectivity in multitask and continual learning”. In: In-

ternational Conference on Learning Representations (ICLR). 2021 (page 15).

162. TomMMitchell.TheNeed for Biases in Learning Generalizations. Technical report. Rut-

gers University, 1980 (page 2).

163. Hossein Mobahi, Mehrdad Farajtabar, and Peter L Bartlett. “Self-Distillation Amplifies

Regularization in Hilbert Space”. In: Advances in Neural Information Processing Systems

(NeurIPS). 2020 (page 43).

164. ApostolosModas,RahulRade,GuillermoOrtiz-Jimenez, Seyed-MohsenMoosavi-Dezfooli,

and Pascal Frossard. “PRIME: A few primitives can boost robustness to common corrup-

tions ”. In: European Conference on Computer Vision (ECCV). 2022 (page 18).

163

Bibliography

165. GuidoMontúfar,RazvanPascanu,KyunghyunCho, andYoshuaBengio. “On thenumber

of linear regions of deep neural networks”. In:Advances in Neural Information Processing

Systems (NeurIPS). 2014 (page 2).

166. Edward Moroshko, Blake E. Woodworth, Suriya Gunasekar, JasonD. Lee, Nati Srebro,

and Daniel Soudry. “Implicit Bias in Deep Linear Classification: Initialization Scale vs

Training Accuracy”. In: Advances in Neural Information Processing Systems (NeurIPS).

2020 (page 10).

167. Vaishnavh Nagarajan and J. Zico Kolter. “Uniform convergence may be unable to explain

generalization in deep learning”. In: Advances in Neural Information Processing Systems

(NeurIPS). 2019 (page 9).

168. PreetumNakkiran andMikhail Belkin. “IncentivizingEmpirical Science inMachineLearn-

ing: Problems and Proposals”. In: ML Evaluation Standards Workshop at ICLR 2022.

2022 (pages 4, 12).

169. PreetumNakkiran,GalKaplun,YaminiBansal,TristanYang,BoazBarak, and Ilya Sutskever.

“Deep Double Descent: Where Bigger Models and More Data Hurt”. In: International

Conference on Learning Representations (ICLR). 2019 (page 9).

170. Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L. Edelman,

Fred Zhang, and Boaz Barak. “SGD on Neural Networks Learns Functions of Increas-

ing Complexity”. In:Advances inNeural Information Processing Systems (NeurIPS). 2019

(page 39).

171. PreetumNakkiran, BehnamNeyshabur, andHanie Sedghi. “The Deep Bootstrap Frame-

work:GoodOnline Learners areGoodOfflineGeneralizers”. In: International Conference

on Learning Representations (ICLR). 2021 (page 14).

172. Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and AndrewY Ng.

“Reading digits in natural images with unsupervised feature learning”. In: Advances in

Neural Information Processing Systems (NeurIPS)Workshops. 2011 (page 79).

173. Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. “What is being transferred in

transfer learning?” In:Advances inNeural InformationProcessing Systems (NeurIPS). 2020

(page 14).

164

Bibliography

174. Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. “In Search of the Real Induc-

tive Bias: On the Role of Implicit Regularization in Deep Learning”. In: International

Conference on Learning Representations (ICLR) -Workshop Track. 2015 (page 10).

175. RomanNovak, Jascha Sohl-Dickstein, and Samuel S Schoenholz. “Fast finite width neural

tangent kernel”. In: InternationalConference onMachineLearning (ICML). 2022 (pages 86,

121, 134).

176. Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature Visualization”.Dis-

till, 2017 (pages 14, 96).

177. Chris Olah, Arvind Satyanarayan, Ian Johnson, ShanCarter, Ludwig Schubert, Katherine

Ye, and Alexander Mordvintsev. “The Building Blocks of Interpretability”. Distill, 2018

(page 14).

178. Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. “A function space view

of bounded norm infinite width relu nets: The multivariate case”. In: International Con-

ference on Learning Representations (ICLR). 2019 (page 10).

179. AlanV. Oppenheim.Discrete-time signal processing. Pearson, 1999 (pages 67, 74).

180. Guillermo Ortiz-Jimenez, Mireille El Gheche, Effrosyni Simou, Hermina Petric Maretic,

and Pascal Frossard. “Forward-backward splitting for optimal tranport based problems”.

In: IEEE Conference in Acoustics, Speech and Signal Processing (ICASSP). 2020.

181. Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. “Task arithmetic in the

tangent space: Improved editing of pre-trained models”. In:Advances in Neural Informa-

tion Processing Systems (NeurIPS). 2023.

182. GuillermoOrtiz-Jimenez, ApostolosModas, Seyed-MohsenMoosavi, and Pascal Frossard.

“Neural Anisotropy Directions”. In: Advances in Neural Information Processing Systems

(NeurIPS). 2020.

183. Guillermo Ortiz-Jimenez, Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pas-

cal Frossard. “Holdme tight! Influence of discriminative features on deep network bound-

aries”. In: Advances in Neural Information Processing Systems (NeurIPS). 2020 (page 27).

184. GuillermoOrtiz-Jiménez,MarkCollier,AnantNawalgaria,Alexanderd’Amour, JesseBerent,

Rodolphe Jennatton, and Effrosyni Kokiopoulou. “When does privileged information ex-

165

Bibliography

plain away label noise?” In: International Conference inMachine Learning (ICML). 2023

(page 14).

185. GuillermoOrtiz-Jiménez, Paude Jorge,Amartya Sanyal,AdelBibi, PuneetDokania, Pascal

Frossard, Gregory Rogez, and Philip Torr. “Catastrophic overfitting can be induced with

discriminativenon-robust features”.Transactions onMachineLearningResearch (TMLR),

2023.

186. Guillermo Ortiz-Jiménez, Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pas-

cal Frossard. “Optimism in the Face of Adversity: Understanding and Improving Deep

Learning Through Adversarial Robustness”. Proceedings of the IEEE, 2021 (pages 2, 17,

22).

187. Guillermo Ortiz-Jiménez, Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pas-

cal Frossard. “What can linearized neural networks actually say about generalization?” In:

Advances in Neural Information Processing Systems (NeurIPS). 2021 (pages 13, 74).

188. GuillermoOrtiz-Jiménez, Itamar-FrancoSalazar-Reque,ApostolosModas, Seyed-Mohsen

Moosavi-Dezfooli, and P. Frossard. “A neural anisotropic view of underspecification in

deep learning”. In:RobustMLWorkshop at ICLR. 2021 (page 13).

189. Johannes vonOswald,ChristianHenning, JoãoSacramento, andBenjamin F.Grewe. “Con-

tinual learning with hypernetworks”. In: International Conference on Learning Represen-

tations (ICLR). 2020 (page 15).

190. LongOuyang, JeffWu,Xu Jiang,DiogoAlmeida,Carroll LWainwright, PamelaMishkin,

ChongZhang, SandhiniAgarwal,Katarina Slama,AlexRay, et al. “Training languagemod-

els to follow instructions with human feedback”. In:Advances inNeural Information Pro-

cessing Systems (NeurIPS). 2022 (page 22).

191. Jonas Paccolat, Leonardo Petrini, Mario Geiger, Kevin Tyloo, and Matthieu Wyart. “Ge-

ometric Compression of Invariant Manifolds in Neural Nets”. Journal of Statistical Me-

chanics: Theory and Experiment 4, 2021. issn: 1742-5468 (pages 17, 44, 48, 54, 58, 72,

74).

192. Vardan Papyan, X. Y. Han, and David L. Donoho. “Prevalence of neural collapse during

the terminal phase of deep learning training”. Proceedings of the National Academy of Sci-

ence (PNAS), 2020 (page 14).

166

Bibliography

193. Jeong JoonPark, Peter Florence, JulianStraub,RichardNewcombe, andStevenLovegrove.

“DeepSDF: Learning continuous signed distance functions for shape representation”. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019 (page 21).

194. KeunhongPark,UtkarshSinha, JonathanTBarron, SofienBouaziz,Dan BGoldman, StevenM

Seitz, and RicardoMartin-Brualla. “Nerfies: Deformable neural radiance fields”. In: IEEE

International Conference on Computer Vision (ICCV). 2021 (page 59).

195. AdamPaszke, SamGross, FranciscoMassa,AdamLerer, JamesBradbury,GregoryChanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “PyTorch: An imper-

ative style, high-performance deep learning library”. In: Advances in Neural Information

Processing Systems (NeurIPS). 2019 (page 140).

196. Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. “The Emergence of Spec-

tralUniversality inDeepNetworks”. In: International Conference onArtificial Intelligence

and Statistics (AISTATS). 2018, pp. 1924–1932 (page 33).

197. Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli.

“Exponential expressivity in deep neural networks through transient chaos”. In:Advances

in Neural Information Processing Systems 29 (NeurIPS). 2016, pp. 3360–3368 (page 33).

198. JohnG. Proakis and Masoud Salehi. Fundamentals of Communication Systems. Pearson

Education Limited, 2014 (pages 64, 74).

199. Alec Radford, JongWook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini

Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger,

and Ilya Sutskever. “Learning Transferable Visual Models FromNatural Language Super-

vision”. In: International Conference on Machine Learning (ICML). 2021 (pages 2, 18,

20, 76, 91, 140).

200. Alec Radford and Karthik Narasimhan. Improving Language Understanding by Genera-

tive Pre-Training. 2018 (page 18).

201. Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.

LanguageModels are UnsupervisedMultitask Learners. 2019 (pages 2, 18, 75, 90).

202. ColinRaffel,NoamShazeer,AdamRoberts,KatherineLee, SharanNarang,MichaelMatena,

Yanqi Zhou, Wei Li, and Peter J. Liu. “Exploring the Limits of Transfer Learning with a

Unified Text-to-Text Transformer”. Journal ofMachine Learning Research (JMLR), 2020

(page 90).

167

Bibliography

203. M Raghu, T Unterthiner, S Kornblith, C Zhang, and A Dosovitskiy. “Do vision trans-

formers see like convolutional neural networks?” In:Advances inNeural Information Pro-

cessing Systems (NeurIPS). 2022 (page 14).

204. Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. “Transfusion: Under-

standing transfer learning for medical imaging”. In: Advances in Neural Information Pro-

cessing Systems (NeurIPS). 2019 (page 14).

205. Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Ham-

precht, Yoshua Bengio, and Aaron Courville. “On the Spectral Bias of Neural Networks”.

In: International Conference onMachine Learning (ICML). 2019 (pages 2, 14, 21, 59, 69,

73).

206. Ali Rahimi and Benjamin Recht. “Random Features for Large-Scale Kernel Machines”.

In: Advances in Neural Information Processing Systems (NeurIPS). 2008 (pages 21, 73).

207. Aditya Ramesh, Prafulla Dhariwal, AlexNichol, CaseyChu, andMarkChen. “Hierarchi-

cal Text-Conditional Image Generation with CLIP Latents”. ArXiv e-prints, 2022. arXiv:

2204.06125 (page 19).

208. BenjaminRecht,RebeccaRoelofs, Ludwig Schmidt, andVaishaal Shankar. “Do ImageNet

Classifiers Generalize to ImageNet?” In: International Conference on Machine Learning

(ICML). 2019 (page 18).

209. ScottReed,KonradZolna,EmilioParisotto, SergioGomezColmenarejo,AlexanderNovikov,

Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg,

Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia

Hadsell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. “A Generalist Agent”.

Transactions onMachine Learning Research (TMLR), 2022 (page 19).

210. Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. “KiloNeRF: Speeding up

Neural Radiance Fields with Thousands of Tiny MLPs”. In: IEEE International Confer-

ence on Computer Vision (ICCV). 2021 (page 61).

211. Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic Backpropa-

gation andApproximate Inference inDeepGenerativeModels”. In: International Confer-

ence onMachine Learning (ICML). 2014 (page 91).

168

https://arxiv.org/abs/2204.06125

Bibliography

212. MarcoTulioRibeiro andScottLundberg. “AdaptiveTesting andDebuggingofNLPMod-

els”. In: Annual Meeting of the Association for Computational Linguistics (ACL). 2022

(page 22).

213. Basri Ronen, David Jacobs, Yoni Kasten, and Shira Kritchman. “The convergence rate of

neural networks for learned functions of different frequencies”. In: Advances in Neural

Information Processing Systems (NeurIPS). 2019 (page 89).

214. F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage and Or-

ganization in The Brain”. Psychological Review, 1958 (pages 1, 48).

215. Shiori Sagawa, Aditi Raghunathan, PangWei Koh, and Percy Liang. “An investigation of

why overparameterization exacerbates spurious correlations”. In: International Conference

onMachine Learning (ICML). 2020 (page 18).

216. Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton,

SeyedKamyar Seyed Ghasemipour, BurcuKaragol Ayan, S. SaraMahdavi, RaphaGontijo

Lopes, Tim Salimans, JonathanHo, David J Fleet, andMohammadNorouzi. “Photoreal-

istic Text-to-Image Diffusion Models with Deep Language Understanding”. In:Advances

in Neural Information Processing Systems (NeurIPS). 2022 (page 19).

217. Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, and Tatsunori

Hashimoto. “Whose Opinions Do Language Models Reflect?” In: International Confer-

ence onMachine Learning (ICML). 2023 (page 22).

218. Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, David Bau, Antonio Torralba,

and AleksanderMadry. “Editing a classifier by rewriting its prediction rules”. In:Advances

in Neural Information Processing Systems (NeurIPS). 2021 (page 22).

219. Amartya Sanyal, Puneet K Dokania, Varun Kanade, and PhilipHS Torr. “How benign

is benign overfitting?” In: International Conference on Learning Representations (ICLR).

2021 (page 14).

220. Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. “How do infinite width

boundednormnetworks look in function space?” In:Conference onLearningTheory (COLT).

2019 (page 10).

221. Samuel S. Schoenholz, JustinGilmer, SuryaGanguli, and Jascha Sohl-Dickstein. “Deep In-

formationPropagation”. In: InternationalConference onLearningRepresentations (ICLR).

2017 (page 33).

169

Bibliography

222. Bernhard Schölkopf andAlexander Johannes Smola. Learning with Kernels: support vector

machines, regularization, optimization, and beyond. Adaptive computation and machine

learning series. MIT Press, 2002 (pages 10, 12, 43, 48, 51, 56, 88).

223. Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clay-

tonMullis, Aarush Katta, TheoCoombes, Jenia Jitsev, and Aran Komatsuzaki. “LAION-

400m: Open dataset of clip-filtered 400 million image-text pairs”. ArXiv e-prints, 2021.

arXiv: 2111.02114 (page 144).

224. Ali Shafahi, W.Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor

Dumitras, and Tom Goldstein. “Poison Frogs! Targeted Clean-Label Poisoning Attacks

on Neural Networks”. In: Advances in Neural Information Processing Systems (NeurIPS).

2018, pp. 6103–6113 (page 37).

225. Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netra-

palli. “The Pitfalls of Simplicity Bias in Neural Networks”. In: Advances in Neural Infor-

mation Processing Systems (NeurIPS). 2020 (page 39).

226. Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and

BryanCatanzaro. “Megatron-LM:TrainingMulti-BillionParameterLanguageModelsUs-

ing Model Parallelism”. ArXiv e-prints, 2019. arXiv: 1909.08053 (page 18).

227. Sidak Pal Singh andMartin Jaggi. “Model Fusion via Optimal Transport”. In:Advances in

Neural Information Processing Systems (NeurIPS). 2020 (pages 16, 22).

228. Vincent Sitzmann, Eric R Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein.

“Metasdf:Meta-learning signeddistance functions”.arXiv preprint arXiv:2006.09662, 2020

(pages 61, 71).

229. Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wet-

zstein. “ImplicitNeuralRepresentationswithPeriodicActivationFunctions”. In:Advances

inNeural Information Processing Systems (NeurIPS). 2020 (pages 5, 21, 22, 59, 62, 67–69,

71, 134, 135).

230. Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. “Scene representation net-

works:Continuous3D-structure-awareneural scene representations”. In:Advances inNeu-

ral Information Processing Systems (NeurIPS). 2019 (pages 21, 59).

170

https://arxiv.org/abs/2111.02114
https://arxiv.org/abs/1909.08053

Bibliography

231. Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. “Deep

Unsupervised Learning usingNonequilibriumThermodynamics”. In: International Con-

ference onMachine Learning (ICML). 2015 (page 19).

232. Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, and Nathan Srebro. “The Implicit Bias

of Gradient Descent on Separable Data”. In: International Conference on Learning Repre-

sentations (ICLR). 2018 (page 10).

233. StefanoSpigler,MarioGeiger, Stéphaned’Ascoli, Levent Sagun,GiulioBiroli, andMatthieu

Wyart. “A jamming transition from under- to over-parametrization affects generalization

in deep learning”. Journal of Physics A:Mathematical and Theoretical, 2019 (page 9).

234. Pratul P Srinivasan, BoyangDeng,XiumingZhang,MatthewTancik, BenMildenhall, and

JonathanT Barron. “Nerv: Neural reflectance and visibility fields for relighting and view

synthesis”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2021 (page 59).

235. Johannes Stallkamp,Marc Schlipsing, Jan Salmen, andChristian Igel. “TheGerman traffic

sign recognition benchmark: a multi-class classification competition”. In: International

Joint Conference on Neural Networks (IJCNN). 2011 (page 79).

236. MatthewTancik,BenMildenhall,TerranceWang,Divi Schmidt, Pratul P. Srinivasan, Jonathan

Barron, and Ren Ng. “Learned Initializations for Optimizing Coordinate-Based Neural

Representations”. In: IEEEConference onComputerVisionandPatternRecognition (CVPR).

2021 (pages 61, 70–72, 136).

237. MatthewTancik, Pratul P. Srinivasan, BenMildenhall, Sara Fridovich-Keil,NithinRagha-

van, Utkarsh Singhal, Ravi Ramamoorthi, JonathanT. Barron, andRenNg. “Fourier Fea-

tures LetNetworks LearnHigh Frequency Functions in LowDimensional Domains”. In:

Advances in Neural Information Processing Systems (NeurIPS). 2020 (pages 5, 21, 22, 43,

52, 59, 60, 62, 67, 69, 71, 73).

238. Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Lud-

wig Schmidt. “Measuring Robustness to Natural Distribution Shifts in Image Classifica-

tion”. In: Advances in Neural Information Processing Systems (NeurIPS). 2020 (pages 17,

18).

239. A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, Z. Xu, T. Simon, M. Nießner, E.

Tretschk, L. Liu, B. Mildenhall, P. Srinivasan, R. Pandey, S. Orts-Escolano, S. Fanello, M.

171

Bibliography

Guo,G.Wetzstein, J.-Y. Zhu,C.Theobalt,M.Agrawala,D. BGoldman, andM.Zollhöfer.

“Advances in Neural Rendering”. In: ACM SIGGRAPH Courses. 2021 (page 21).

240. Ilya Tolstikhin,Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas

Unterthiner, Jessica Yung,Andreas Steiner,Daniel Keysers, JakobUszkoreit,Mario Lucic,

andAlexeyDosovitskiy. “MLP-Mixer: An all-MLPArchitecture for Vision”. In:Advances

in Neural Information Processing Systems (NeurIPS). 2021 (page 20).

241. Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua

Bengio, andGeoffrey J.Gordon. “AnEmpirical Study of Example Forgetting duringDeep

NeuralNetworkLearning”. In: InternationalConference onLearningRepresentations (ICLR).

2019 (page 14).

242. Ivana Tošić and Pascal Frossard. “Dictionary learning”. IEEE Signal ProcessingMagazine,

2011 (pages 63, 73, 74).

243. Asher Trockman and J. Zico Kolter. “Patches are all you need?” Transactions onMachine

Learning Research (TMLR), 2023 (page 20).

244. V.N. Vapnik and A. Ya. Chervonenkis. “On the Uniform Convergence of Relative Fre-

quencies of Events to Their Probabilities”. Theory of Probability & Its Applications, 1971

(page 8).

245. AshishVaswani,NoamShazeer,Niki Parmar, JakobUszkoreit, Llion Jones,AidanNGomez,

Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”.Advances inNeural Infor-

mation Processing Systems (NeurIPS), 2017 (pages 1, 19).

246. Clement Vignac, Guillermo Ortiz-Jimenez, and Pascal Frossard. “On the choice of graph

neural network architectures”. In: IEEEConference in Acoustics, Speech and Signal Process-

ing (ICASSP). 2020.

247. Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. “Analyzing

Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be

Pruned”. In:AnnualMeeting of the Assocation for Computational Linguistics (ACL). 2019

(page 14).

248. Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P. Xing. “High Frequency Component

Helps Explain the Generalization of Convolutional Neural Networks”. In: IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR). 2019 (page 27).

172

Bibliography

249. Yeming Wen, Dustin Tran, and Jimmy Ba. “BatchEnsemble: an Alternative Approach to

Efficient Ensemble andLifelongLearning”. In: International Conference onLearningRep-

resentations (ICLR). 2020 (page 92).

250. DavidH. Wolpert. “The Lack of A Priori Distinctions Between Learning Algorithms”.

Neural Computation, 1996 (page 58).

251. Mitchell Wortsman, Maxwell C Horton, Carlos Guestrin, Ali Farhadi, and Mohammad

Rastegari. “Learning Neural Network Subspaces”. In: International Conference on Ma-

chine Learning (ICML). 2021 (page 15).

252. MitchellWortsman,Gabriel Ilharco, Samir YitzhakGadre,RebeccaRoelofs,RaphaelGontijo-

Lopes, Ari SMorcos, HongseokNamkoong, Ali Farhadi, Yair Carmon, SimonKornblith,

et al. “Model soups: averaging weights of multiple fine-tuned models improves accuracy

without increasing inference time”. In: International Conference on Machine Learning

(ICML). 2022 (pages 15, 22, 78, 90).

253. Mitchell Wortsman, Gabriel Ilharco, Mike Li, JongWook Kim, Hannaneh Hajishirzi, Ali

Farhadi, Hongseok Namkoong, and Ludwig Schmidt. “Robust fine-tuning of zero-shot

models”. In: IEEEConference on Computer Vision and Pattern Recognition (CVPR). 2022

(pages 22, 76, 78, 79).

254. MitchellWortsman,VivekRamanujan,Rosanne Liu,AniruddhaKembhavi,Mohammad

Rastegari, Jason Yosinski, andAli Farhadi. “Supermasks in superposition”. In:Advances in

Neural Information Processing Systems (NeurIPS). 2020 (page 92).

255. DongxianWu, Shu-taoXia, andYisenWang. “AdversarialWeight PerturbationHelpsRo-

bust Generalization”. In: Advances in Neural Information Processing Systems (NeurIPS).

2020 (page 13).

256. Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. “Sun

database: Exploring a large collection of scene categories”. International Journal of Com-

puter Vision (IJCV), 2016 (page 79).

257. GeYang, Edward J.Hu, IgorBabuschkin, SzymonSidor,XiaodongLiu,David Farhi,Nick

Ryder, JakubPachocki,WeizhuChen, and JianfengGao. “TuningLargeNeuralNetworks

via Zero-Shot Hyperparameter Transfer”. In: Advances in Neural Information Processing

Systems (NeurIPS). 2021 (page 18).

173

Bibliography

258. Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, EkinD. Cubuk, and Justin Gilmer.

“A Fourier Perspective on Model Robustness in Computer Vision”. In:Advances in Neu-

ral Information Processing Systems (NeurIPS). 2019, pp. 13255–13265 (page 27).

259. Gizem Yüce, GuillermoOrtiz-Jiménez, Beril Besbinar, and Pascal Frossard. “A Structured

DictionaryPerspective on ImplicitNeuralRepresentations”. In: IEEEConference onCom-

puter Vision and Pattern Recognition (CVPR). 2022.

260. Luca Zancato, Alessandro Achille, Avinash Ravichandran, Rahul Bhotika, and Stefano

Soatto. “Predicting Training Time Without Training”. In: Advances in Neural Informa-

tion Processing Systems (NeurIPS). 2020 (pages 17, 43, 52).

261. ChiyuanZhang, SamyBengio,MoritzHardt, BenjaminRecht, andOriolVinyals. “Under-

standing Deep Learning (Still) Requires Rethinking Generalization”. Communications of

ACM, 2021 (pages 4, 9).

262. ChiyuanZhang, SamyBengio,MoritzHardt, BenjaminRecht, andOriolVinyals. “Under-

standingdeep learning requires rethinking generalization”. In: InternationalConference on

Learning Representations (ICLR). 2017 (pages 4, 9, 14, 43).

263. Richard Zhang. “Making Convolutional Networks Shift-Invariant Again”. In: Interna-

tional Conference on Machine Learning (ICML). 2019 (page 28).

264. Jianqiao Zheng, Sameera Ramasinghe, and Simon Lucey. “Rethinking positional encod-

ing”. ArXiv e-prints, 2021. arXiv: 2107.02561 (page 73).

265. Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu,

Hui Xiong, and Qing He. “A comprehensive survey on transfer learning”. Proceedings of

the IEEE, 2020 (page 22).

266. Difan Zou and Quanquan Gu. “An Improved Analysis of Training Over-parameterized

DeepNeuralNetworks”. In:Advances inNeural InformationProcessing Systems (NeurIPS).

2019 (page 43).

174

https://arxiv.org/abs/2107.02561

Guillermo
Ortiz-Jiménez

About me
I am a PhD student at EPFL working under the supervision of Prof. Pascal Frossard and co-supervised
by Prof. Philip Torr in the context of the ELLIS PhD programme. My research focuses on the empirical
understanding of AI systems and their robustness. I am particularly interested in making large pre-trained
models more reliable and trustworthy.

Education
Nov 2018 - Oct. 2023 PhD. Machine Learning (ELLIS PhD)
 Ecole Polytechnique Fédérale de Lausanne, EPFL (Switzerland)

Sep 2016 - Aug 2018 MSc. Electrical Engineering (Best graduate)
 Delft University of Technology, TU Delft (Netherlands)

Sep 2011 - Jun 2015 BSc. Telecommunications Engineering (Best graduate)
 Universidad Politécnica de Madrid, UPM (Spain)

Research experience
Doctoral assistant at EPFL
Nov 2018 - Oct 2023 Lausanne, Switzerland

Studying the inductive bias of deep learning and the structure of its functional landscape. My research
provides insights to improve out-of-distribution generalization, adversarial defenses, and improving the
downstream performance of large pre-trained networks.

Research Intern at Google Research
Jul 2022 - Oct 2022 Zürich, Switzerland

Conducted research on the ability of privileged information in improving the resilience of deep neural
networks to label noise.

Visiting researcher at University of Oxford
Jan 2022 - Jun 2022 Oxford, United Kingdom

Conducted research on the robustness of neural networks as part of the ELLIS PhD program under the
supervision of Prof. Philip Torr.

Research Intern at Philips Healthcare Research
Jul 2017 - Oct 2017 Hamburg, Germany

Research on deep learning algorithms for representation learning and medical image reconstruction of
fetal ultrasounds and CT scans.

@gortizji
gortizji.github.io
Spain

guillermo.ortizjimenez@epfl.ch
es.linkedin.com/in/gortizji/en
gortizji

Grants & Awards
2023 TMLR expert reviewer at TMLR 2023
2022 Best reviewer award at ICLR 2022
2022 ELLIS Society PhD programme
2021 Best reviewer award at NeurIPS 2021
2018 National Award for Excellence in Academic Performance by Government of Spain
2018 Best graduate by TU Delft (~1000 students)
2016 “La Caixa” Postgraduate Fellowship by La Caixa Foundation (~45,000$)
2015 Best graduate by Universidad Politecnica de Madrid (~800 students)
Other competitive grants (~18,000$)

PhD contributions
• GOJ*, A. Favero*, and P. Frossard. Task Arithmetic in the Tangent Space: Improved Editing of Pre-

trained Models. NeurIPS 2023 (Oral)

• GOJ*, P. de Jorge*, A. Sanyal, A. Bibi, P. Dokania, P. Frossard, G. Rogez and P. Torr. Catastrophic Over-
fitting Can Be Induced with Discriminative Non-robust Features. TMLR 2023

• GOJ*, M. Collier*, A. Nawalgaria, A. d’Amour, J. Berent, R. Jenatton and E. Kokiopoulou. When Does
Privileged Information Explain Away Label Noise? ICML 2023.

• G. Yüce*, GOJ*, S.M. Moosavi-Dezfooli and P. Frossard. A Structured Dictionary Perspective on
Implicit Neural Representations. CVPR 2022.

• A. Modas*, R. Rade*, GOJ, S.M. Moosavi-Dezfooli and P. Frossard. PRIME: A Few Primitives Can
Boost Robustness to Common Corruptions. ECCV 2022.

• GOJ, S.M. Moosavi-Dezfooli and P. Frossard. What Can Linearized Neural Networks Actually Say
About Generalization? NeurIPS 2021.

• GOJ, A. Modas, S.M. Moosavi-Dezfooli and P. Frossard. Optimism in the Face of Adversity: Under-
standing and Improving Deep Learning through Adversarial Robustness. Proc. of the IEEE. 2021.

• GOJ*, A. Modas*, S.M. Moosavi-Dezfooli and P. Frossard. Neural Anisotropy Directions. NeurIPS 2020.

• GOJ*, A. Modas*, S.M. Moosavi-Dezfooli and P. Frossard. Hold Me tight! Influence of Discriminative
Features on Deep Network Boundaries. NeurIPS 2020.

• GOJ, M. El Gheche, E. Simou, H.P. Maretic and P. Frossard. Forward-backward splitting for optimal
transport based problems. ICASSP 2020.

• C. Vignac, GOJ and P. Frossard. On the choice of graph neural network architectures. ICASSP 2020

Software skills
DL frameworks: PyTorch, JAX, Tensorflow
Languages: Python, C, Matlab, Javascript, Java
Misc: Unix, git, docker, vim

Languages
Spanish:
German:
Dutch:

English:
French:

Teaching experience
• Supervision of many student projects and thesis.
• Machine learning.
• Fundamentals of inference and learning.
• A network tour of data science.

Personal interests
Climbing, running, hiking, skiing, cooking and
photography.

Community service
Reviewer in NeurIPS, ICLR, ICML, CVPR, ICCV,
ECCV, TMLR and IEEE TPAMI.

	Acknowledgements
	Abstract (English / Français)
	Introduction
	Understanding modern deep learning
	A tale of inductive bias
	Weight space and function space connections
	Thesis outline and list of contributions

	Background
	Deep learning theory
	Rethinking statistical learning theory
	Implicit bias and double descent
	Neural kernels

	Deep learning science
	Inductive bias and generalization
	Loss landscapes and weight space
	Underspecification

	Modern deep learning practice
	Pre-training and scale
	Modern architectures
	Model editing

	Summary

	A simple inductive bias hidden in random weights
	Introduction
	Directional inductive bias
	Anisotropic loss of information
	Anisotropic conditioning of the optimization landscape

	Neural anisotropy directions
	Analytic computation of NADs
	Numerical estimation of NADs
	NADs capture inductive bias

	NADs beyond linearly separable datasets
	NADs define the order of selection of features
	NADs are necessary for generalization
	NADs and underspecification

	Conclusion

	Approximating inductive bias in the tangent space
	Introduction
	Preliminaries
	Linearized models can approximate inductive bias for deep networks
	Learning NTK eigenfunctions
	Learning linear predictors

	Sources of the non-linear (dis)advantage
	The non-linear advantage depends on the sample size
	The kernel rotates in a single axis
	Kernel rotation improves speed of convergence, but can hurt generalization

	Conclusion

	Understanding the spectral bias of implicit neural representations
	Introduction
	Expressive power of INRs
	Failure modes of INRs
	Imperfect recovery
	Aliasing

	Inductive bias of INRs
	Meta-learning as dictionary learning

	Conclusion

	The functional landscape of task arithmetic and the tangent space
	Introduction
	Problem statement
	Task arithmetic is not a consequence of linear fine-tuning
	Weight disentanglement
	Enhancing task arithmetic via linearization
	Towards understanding task arithmetic
	Eigenfunction localization
	Weight disentanglement emerges during pre-training

	Conclusion

	Conclusion
	Summary
	Future directions

	An inductive bias hidden in random weights
	Experiments on linearly separable datasets
	General training setup
	Experiments on DFT basis
	Further experiments with NADs

	Deferred proofs
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.3

	Analytic NAD examples
	NADs of CNNs
	NADs obtained through the gradient covariance
	NADs obtained through the mixed second derivative

	Details of experiments on CIFAR10

	Approximating inductive bias in the tangent space
	General training setup
	NTK computation details
	Additional results

	Understanding the spectral bias of implicit neural representations
	Deferred proofs
	Proof of thm:expressive
	Three-layer SIREN example

	Imperfect recovery
	Aliasing
	NTK eigenfunctions as dictionary atoms
	Estimation of eigenfunctions of the NTK
	Training details
	Experiments on additional networks

	Meta-learning experiment
	Experimental details
	Experiments with an additional meta-learning algorithm
	Experiments on additional networks

	The functional landscape of task arithmetic and the tangent space
	Experimental details
	Implementation aspects of linearized models
	Further experimental results
	Fine-tuning accuracies
	Task arithmetic with a convolutional architecture
	Weight disentanglement in other architectures and modalities
	Further experiments with randomly-initialized networks

	Bibliography
	Curriculum Vitae

