
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Deep Learning for 3D Surface Modelling and
Reconstruction

Benoît Alain René GUILLARD

Thèse n° 10 386

2023

Présentée le 8 décembre 2023

Dr M. Rajman, président du jury
Prof. P. Fua, directeur de thèse
Prof. P. Koehl, rapporteur
Prof. V. Lepetit, rapporteur
Prof. M. Pauly, rapporteur

Faculté informatique et communications
Laboratoire de vision par ordinateur
Programme doctoral en informatique et communications

Acknowledgements

I express my deepest gratitude to my thesis advisor, Professor Pascal Fua, who guided me onto

the path of this interesting topic, taught me how to navigate the intricacies of the academic

world, and provided the perfect balance of guidance and independence throughout my PhD

journey.

I would also like to extend my thanks to the members of the jury, Professor Mark Pauly,

Professor Vincent Lepetit, Professor Patrice Koehl, and the committee president Dr. Martin

Rajman, for dedicating their time and effort to reviewing and evaluating this thesis.

I am also indebted to other mentors at different research institutions: Sai Vemprala at Microsoft

Research, Berta Bescos Torcal at Meta Reality Labs, and Marc Habermann at MPI Informatik.

They taught me valuable lessons on conducting research beyond CVLab and helped navigate

unfamiliar environments.

A special acknowledgement goes to Edoardo Remelli, who not only set me on the right course

and initiated my progress but also became a valuable collaborator. More broadly, I would

like to express my gratitude to my colleagues at CVLab for their collaboration and engaging

conversations, which have contributed to the development of my research and foster a positive

working environment.

My heartfelt thanks go to my amazing friends in Lausanne and beyond, in Lyon, Paris, London,

and New York. Their presence has made these four years exceptionally enjoyable and has

made time pass by in the blink of an eye.

Charlotte deserves my eternal gratitude for bringing joy and fun into my life and, at times,

reminding me to take a break from my GPUs.

Finally, I am deeply grateful to my beloved parents for their unwavering support and invaluable

advice.

Lausanne, October 4, 2023 Benoît Guillard

i

Abstract

In recent years, there has been a significant revolution in the field of deep learning, which

has demonstrated its effectiveness in automatically capturing intricate patterns from large

datasets. However, the majority of these successes in Computer Vision have been observed in

the domain of 2D images. To extend these achievements to 3D applications, the development

of appropriate tools and components is essential. The primary focus of this thesis is to explore

the generation of 3D shapes using neural networks. To accomplish this, we propose the devel-

opment of novel tools and algorithms specifically tailored for this purpose. These tools and

algorithms are then applied to address concrete problems, including the reconstruction of 3D

surfaces from images or sparse inputs, optimization with respect to physical quantities, and

intuitive user editing of the generated shapes.

Firstly, we address the problem of reconstructing 3D shapes from 2D input images. To tackle

this challenge, we propose a novel hybrid 3D shape representation that combines both voxels

and 2D atlases. This representation leverages the benefits of both components: the coarse grid

structure enables the principled lifting of 2D features to 3D using backprojection and 3D con-

volutions, which are well-suited for existing neural network architectures, while the 2D atlases

provide the capability to model finer surface details. The resulting reconstruction pipeline

learns a shape prior that encompasses entire object categories and achieves state-of-the-art

performance on both synthetic and real images. Moreover, this approach naturally extends to

the multiview scenario, allowing for robust reconstruction from multiple viewpoints.

Then, we introduce a novel approach for parameterizing watertight surfaces using deep

implicit shapes. In this method, a deep neural network is employed to regress either a signed

distance function or an occupancy field, which is subsequently meshed using readily avail-

able techniques. By restoring end-to-end differentiability, we demonstrate the effectiveness

of this approach in generating a data-driven mesh parameterization that can dynamically

modify its topology and generate smooth surfaces. Serving as a fully differentiable prior, this

parameterization enables shape recovery from sparse observations using gradient descent and

facilitates shape optimization based on desired physical behaviors. Additionally, we integrate

this parameterization into a sketching interface, allowing for shape reconstruction and editing

from simple line drawings. This intuitive user experience offers a novel approach to shape

design that proves resilient to diverse sketching styles.

iii

Abstract

Finally, we extend the previous approach to handle open surfaces. By proposing an extension

of a classical meshing procedure, we are able to reconstruct open surfaces using unsigned

distance functions. Once again, we restore end-to-end differentiability, resulting in a robust

shape parameterization. This parameterization is used for modeling garments on human

bodies, and integrated into a draping pipeline that leverages the efficiency of neural networks.

Thanks to its full differentiability, we can seamlessly recover and edit garments based on real

observations.

Keywords: 3D deep learning, shape reconstruction, surface generation, data driven shape

priors, implicit representations.

iv

Résumé

Ces dernières années, il y a eu une révolution significative dans le domaine de l’apprentissage

profond, qui a démontré son efficacité pour capturer automatiquement des motifs complexes

à partir de grandes bases de données. Cependant, la majorité de ces succès en Vision par

Ordinateur ont été observés dans le domaine des images 2D. Afin d’étendre ces réalisations

aux applications 3D, il est essentiel de développer des outils et des composants appropriés.

L’objectif principal de cette thèse est d’explorer la génération de formes 3D à l’aide de réseaux

neuronaux. Nous proposons le développement de nouveaux outils et algorithmes spécifique-

ment adaptés à cette fin. Ces outils et algorithmes sont ensuite appliqués pour résoudre des

problèmes concrets, tels que la reconstruction de surfaces 3D à partir d’images ou d’observa-

tions partielles, l’optimisation par rapport à des quantités physiques, et l’édition intuitive des

formes générées par les utilisateurs.

Tout d’abord, nous abordons le problème de la reconstruction de formes 3D à partir d’images

2D. Pour relever ce défi, nous proposons une nouvelle représentation hybride de formes en 3D

qui combine à la fois des voxels et des atlas 2D. Cette représentation exploite les avantages des

deux composants : la structure en grille permet de transférer de manière rigoureuse les caracté-

ristiques 2D vers la 3D en utilisant la rétroprojection et les convolutions 3D, qui sont adaptées

aux architectures de réseaux neuronaux existantes, tandis que les atlas 2D permettent de mo-

déliser les détails de surface plus fins. Le résultat est un algorithme de reconstruction qui a une

connaissance de la forme d’objets courants, englobe des catégories d’objets entières et atteint

des performances poussées sur des images synthétiques et réelles. De plus, cette approche

s’étend naturellement au scénario multi-vues, permettant une reconstruction robuste à partir

de plusieurs points de vue.

Ensuite, nous introduisons une nouvelle approche pour la paramétrisation de surfaces fermées

en utilisant des formes implicites profondes. Dans cette méthode, un réseau neuronal profond

est utilisé pour prédire soit une fonction de distance signée, soit un champ d’occupation, qui

est ensuite maillé à l’aide de techniques déjà disponibles. En restaurant la différentiabilité de

bout en bout, nous démontrons l’efficacité de cette approche pour générer une paramétrisa-

tion de maillages 3D qui est basée sur les données, capable de modifier dynamiquement sa

topologie et de générer des surfaces lisses. En tant qu’a priori entièrement différentiable, cette

paramétrisation permet de récupérer des formes à partir d’observations éparses en utilisant

la descente de gradient, et facilite l’optimisation de formes en fonction des comportements

v

Résumé

physiques souhaités. De plus, nous intégrons cette paramétrisation dans une interface de

dessin, permettant la reconstruction et la modification de formes à partir de simples coups de

crayons. Cette expérience utilisateur intuitive offre une approche novatrice pour la conception

de formes qui se révèle résiliente face à divers styles de dessin.

Enfin, nous étendons l’approche précédente pour prendre en compte les surfaces ouvertes.

En proposant une extension d’une procédure de maillage classique, nous sommes en mesure

de reconstruire des surfaces ouvertes à l’aide de fonctions de distance non signées. Une fois de

plus, nous restaurons la différentiabilité de bout en bout, ce qui aboutit à une paramétrisation

robuste de la forme. Cette paramétrisation est utilisée pour modéliser des vêtements sur

des corps humains et intégrée dans un pipeline d’habillage qui tire parti de l’efficacité des

réseaux neuronaux. Grâce à sa différentiabilité, nous pouvons obtenir et modifier facilement

des vêtements à partir d’observations comme des images.

Mots-clés : apprentissage profond pour la 3D, reconstruction de formes, generation de surface,

a prior de formes à partir de données, représentations implicites.

vi

Contents

Acknowledgements i

Abstract (English/Français) iii

1 Introduction 1

1.1 Setting and Problem Definitions . 2

1.1.1 Single View Reconstruction . 2

1.1.2 Shape Parameterization . 3

1.2 Contributions . 4

1.2.1 Hybrid Shape Decoder: Voxel Grid and 2D Atlases 4

1.2.2 Implicit Surfaces as Differentiable Watertight Mesh Parameterization . . 4

1.2.3 Unsigned Distance Fields for Parameterizing and Meshing Open Surfaces 6

1.3 Outline . 6

2 Background 9

2.1 Meshes . 9

2.2 3D Voxel Grids . 9

2.3 Point Clouds . 10

2.4 Implicit Representations . 10

2.4.1 Deep Signed Distances and Occupancies 10

2.4.2 Triangulating an Implicit Field . 11

2.4.3 Differentiability . 11

2.4.4 Open Surfaces . 12

3 UCLID-Net: Single View Reconstruction in Object Space 13

3.1 Introduction . 13

3.2 Related Work: Image Feature Extraction . 14

3.3 Method . 15

3.3.1 Back-Projecting Feature and Depth Maps 16

3.3.2 Hybrid Shape Decoder . 17

3.3.3 Implementation Details . 19

3.4 Experiments . 19

3.4.1 Experimental Setup . 19

3.4.2 Comparative Results . 20

vii

Contents

3.4.3 From Single- to Multi-View Reconstruction 22

3.4.4 Ablation Study . 22

3.5 Conclusion . 23

4 DeepMesh: Differentiable Iso-Surface Extraction 25

4.1 Introduction . 25

4.2 Related Work: Converting Implicit Functions to Surface Meshes 27

4.2.1 Emulating Iso-Surface Extraction . 28

4.2.2 Writing Objective Functions in terms of Implicit Fields 28

4.3 Method . 28

4.3.1 Deep Implicit Field Representation . 29

4.3.2 Differentiable Iso-Surface Extraction . 30

4.4 Experiments . 34

4.4.1 Differentiable Topology Changes . 35

4.4.2 Single view 3D Reconstruction . 36

4.4.3 Aerodynamic Shape Optimization . 41

4.4.4 Structural Shape Optimization . 44

4.4.5 Scene Reconstruction . 45

4.4.6 End-to-End Training . 46

4.4.7 Execution Speed . 48

4.5 Conclusion . 48

5 Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches 51

5.1 Introduction . 51

5.2 Related Work: 3D Reconstruction from Sketches 53

5.3 Method . 54

5.3.1 Formalization . 54

5.3.2 Using Differential Rendering . 55

5.3.3 Minimizing the 2D Chamfer Distance . 55

5.3.4 Using a Partial Sketch . 56

5.4 Experiments . 57

5.4.1 Datasets . 57

5.4.2 Metrics . 59

5.4.3 Choosing the Best Method . 59

5.4.4 Comparison against State-of-the-Art Methods 61

5.4.5 Interactive 3D editing . 62

5.5 Conclusion . 62

6 MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field Networks 65

6.1 Introduction . 65

6.2 Related Work: Triangulating Implicit Non-Watertight Surfaces 67

6.3 Method . 67

6.3.1 From UDF to Triangulated Mesh . 68

viii

Contents

6.3.2 Differentiating through Iso-Surface Extraction 70

6.4 Experiments . 72

6.4.1 Network and Metrics . 72

6.4.2 Mesh Quality and Triangulation Speed . 73

6.4.3 Using Differentiability to Fit Sparse Data 75

6.4.4 Differentiable Topology Change . 77

6.4.5 Generalization to other UDF Networks . 78

6.4.6 Limitations . 79

6.5 Conclusion . 80

7 DrapeNet: Garment Generation and Self-Supervised Draping 81

7.1 Introduction . 81

7.2 Related Work: Draping Garments over 3D Bodies 83

7.3 Method . 84

7.3.1 Garment Generative Network . 85

7.3.2 Garment Draping Network . 86

7.4 Experiments . 90

7.4.1 Settings, Datasets and Metrics . 90

7.4.2 Garment Paramerization . 90

7.4.3 Garment Draping . 91

7.4.4 Fitting Observations . 95

7.5 Conclusion . 97

8 Conclusions 99

8.1 Summary . 99

8.2 Limitations and Future work . 101

A Appendix 103

A.1 Supplementary material for UCLID-Net . 103

A.1.1 Metrics . 103

A.1.2 Network details . 105

A.1.3 Per-category results on ShapeNet . 107

A.2 Supplementary material for DeepMesh . 109

A.2.1 Non-differentiability of Marching Cubes 109

A.2.2 Meshing an occupancy field . 110

A.2.3 Failure Case: Vanishing Surface . 110

A.2.4 Comparing against Deep Marching Cubes 111

A.2.5 Single view 3D Reconstruction . 112

A.2.6 Aerodynamic Shape Optimization . 114

A.3 Supplementary material for Sketch2Mesh . 121

A.3.1 External Contours . 121

A.3.2 Comparison of the two Refinement Approaches 122

A.4 Supplementary material for MeshUDF . 126

ix

Contents

A.4.1 Network Training . 126

A.4.2 Metrics . 126

A.4.3 Differentiating through Iso-Surface Extraction 128

A.4.4 Meshing approximate or real UDFs . 130

A.4.5 Ablation study: pseudo-sign and breadth-first exploration 131

A.4.6 Optimization from random initial latent codes 134

A.4.7 Additional results . 135

A.5 Supplementary material for DrapeNet . 137

A.5.1 Network Architectures and Training . 137

A.5.2 Loss Terms and Ablation Studies . 139

A.5.3 Additional Results . 143

A.5.4 Human Evaluation . 148

Bibliography 165

Curriculum Vitae 167

x

1 Introduction

Deep learning is a subfield of machine learning that focuses on the development of algorithms

inspired by the structure and function of the human brain’s neural networks. It involves train-

ing artificial neural networks with multiple layers (hence the term "deep") to learn and extract

meaningful representations and patterns from complex data. These algorithms leverage large

amounts of data to iteratively improve their performance during a process known as training,

where the network adjusts its internal parameters to minimize the difference between pre-

dicted outputs and expected ones. These networks excel at automatically learning hierarchical

representations of data.

Deep learning has recently garnered considerable attention and achieved remarkable success

in various domains, including computer vision, natural language processing, and speech

recognition. Although early implementations and theories of deep neural networks have been

available for decades, deep learning did not experience significant success until recent years.

This success can be attributed to several key factors:

1. The availability of large-scale datasets. Deep learning models rely on extensive amounts

of data for training, making the curation and distribution of datasets crucial.

2. Hardware acceleration with GPUs. The use of graphics processing units (GPUs) for par-

allelizing operations has greatly accelerated the computational speed of deep learning,

during both training and inference stages.

3. The existence of standard building blocks, network architectures, and best practices.

Essential components such as optimizers (e.g., Adam), layers (e.g., normalization, con-

volutions, attention), and training paradigms (e.g., GANs, VAEs, diffusion) were first

established and shared by the research community, and have now become widely

adopted and are readily available in deep learning libraries such as TensorFlow, JAX, and

PyTorch.

In this thesis, we focus on and contribute to the latter point, specifically for generating 3D

surfaces with neural networks, and propose new representations and algorithms for this use

1

Chapter 1. Introduction

case. Indeed, deep learning has exhibited remarkable advancements in the generation of

text (e.g., ChatGPT), sound (e.g., Magenta), and image (e.g., Dalle). These advancements

have been made possible due to the availability of relevant components tailored for these

modalities. However, in the case of 3D modalities, while components for ingesting 3D data

with neural networks, such as point clouds or meshes, exist, there is no definitive solution for

generating 3D surfaces. This is the primary focus of our thesis: exploring 3D representations

and neural network building blocks specifically designed for generating 3D shape represen-

tations, also known as shape decoders. We aim to propose new representations, investigate

their advantages, address the challenges they present, and demonstrate their utility in various

applications.

Advancing the field of computer vision serves as a fundamental motivation for developing

the ability to model 3D shapes with neural networks. Computer vision aims to comprehend,

interpret, and reconstruct visual information using algorithms. By enabling machines to "see"

and interpret visual data in a manner similar to human vision, we can extract 3D scenes from

2D images. As humans, we possess the innate capacity to understand the 3D geometry of our

surroundings and interpret shapes, allowing us to mentally reconstruct 3D representations

from a single image of a common object. Furthermore, we can visualize occluded regions

and form a holistic perception with high confidence for most usual objects. Taking a broader

perspective, 3D representations are essential for developing intelligent systems capable of

accurately modeling and interacting with the real world. Since our physical environment is

inherently 3D, we, as humans, serve as prime examples of perception and planning systems

that construct mental 3D representations of our surroundings.

Enabling neural networks to generate 3D shapes serves another important objective: harness-

ing them as potent tools for the creation of digital 3D assets. By integrating these networks

into software systems, they can offer intuitive methods for generating content across various

domains, including video games, industrial prototypes, and digital characters. Deep learning

presents a promising avenue for enhancing the ideation process in these fields. By providing a

novel and robust approach to parameterizing 3D surfaces, neural networks can streamline

complex interactive design pipelines. This enables explicit control over surface deformations

(such as an elongated rear end on a car), while preserving the essential characteristics that

define the objects (e.g., four wheels, mirrors...). Additionally, this approach facilitates the

concurrent optimization of physical performance factors (such as ensuring aerodynamic

efficiency and lightweight construction in automotive design).

1.1 Setting and Problem Definitions

1.1.1 Single View Reconstruction

Single view reconstruction (SVR), also referred to as single image 3D reconstruction or monoc-

ular 3D reconstruction, is the process of extracting 3D information about a scene or object

2

1.1. Setting and Problem Definitions

from a single 2D image. It involves estimating the underlying 3D structure, shape, and spatial

arrangement of the scene or object using solely the visual information present in the single

image. The objective is to infer the geometric properties of the 3D scene, thereby creating

a plausible 3D representation. Single view reconstruction goes beyond monocular depth or

normal estimation by reconstructing the geometry of occluded regions as well.

The task of single view reconstruction is highly challenging due to the need to exploit various

cues such as perspective, shading, texture, and object priors to estimate the 3D properties

from a single 2D projection. It inherently suffers from ambiguity and thus requires to rely

on learned priors for appearance, shading, scale, and shape. Consequently, it serves as an

ideal use case for employing neural networks, as demonstrated in this thesis. Single View

Reconstruction is also commonly used to evaluate and compare deep learning approaches to

represent shapes [CXG+16b, TDB15, TDB16, TRR+19, GMJ19, XWC+19].

Analogous to human vision, our interaction with and observation of everyday objects con-

tribute to developing an understanding of their geometry. We also generalize beyond specific

object instances, and learn an understanding for common object categories as a whole. These

interactions parallel the training process of artificial neural networks. Subsequently, we can

naturally reconstruct a comprehensive mental 3D image of an object from a single 2D view, or

at least a probable approximation.

In this thesis, we present examples of single view reconstruction using neural networks applied

to RGB images of known object categories such as cars, chairs, and garments. Additionally, we

explore the reconstruction from sketches as another 2D modality.

1.1.2 Shape Parameterization

To effectively represent and manipulate a prior over a shape category, it is customary to em-

ploy a shape parameterization that relies on a compact set of low-dimensional descriptors

capturing the specific geometric properties and characteristics of the shape. The objective

is to find expressive representations that efficiently capture the shape variations and inher-

ent properties of the objects of interest. Shape parameterization methods can take various

forms, depending on the specific application and requirements. These methods may involve

representing shapes using key points [SP86, KKM10], curves [Pie91, LW94], surface patches,

or other geometric primitives. The associated parameters within these representations can

describe diverse aspects of the shape, including its position, orientation, scale, curvature, and

other geometric properties.

In this thesis, we propose the use of neural networks for parameterizing classes of shapes

that share common characteristics and geometrical attributes. A key requirement for our

approach is differentiability to facilitate gradient-based optimization. Additionally, network-

based parameterizations possess the advantageous property of being data-driven [BWS+18,

BV99], as opposed to handcrafted [RTTP17, UB18], thereby leveraging the power of learned

3

Chapter 1. Introduction

representations from data.

1.2 Contributions

The main objective of this thesis is to propose 3D shape representations that are compatible

with deep learning, and integrate them in shape decoder networks. We explore their bene-

fits, solve some of the challenges they pose, and demonstrate their usefulness for different

applications. We introduce below our main contributions.

1.2.1 Hybrid Shape Decoder: Voxel Grid and 2D Atlases

Most deep learning-based single-view reconstruction approaches commonly employ encoder-

decoder architectures, and rarely preserve the Euclidean structure of the 3D space objects exist

in. In Chapter 3, we present a novel approach that addresses this limitation by constructing a

geometry-preserving 3-dimensional latent space. This enables the network to simultaneously

learn global shape regularities and local reasoning in the object coordinate space, resulting in

enhanced performance.

Our proposed method uses a hybrid representation, consisting of a voxel grid combined

with refined patch primitives known as 2D atlases within each voxel. While the voxel grid

only provides a coarse representation, it nevertheless facilitates the efficient localization of

predicted surfaces. This allows us to incorporate localized image and depth cues into our

latent space, which significantly improves single-view reconstruction.

We demonstrate both on ShapeNet synthetic images, which are often used for benchmarking

purposes, and on real-world images that our approach outperforms existing ones. Further-

more, the single-view pipeline naturally extends to multi-view reconstruction, which we also

show.

This chapter is based on the conference paper [GRF20]:

B. Guillard, E. Remelli, and P. Fua, UCLID-Net: Single View Reconstruction in Object Space,

at NeurIPS, 2020.

The corresponding source code is available at:

https://github.com/cvlab-epfl/UCLID-Net

1.2.2 Implicit Surfaces as Differentiable Watertight Mesh Parameterization

The hybrid representation introduced above is highly effective for the task of single view

reconstruction. However, it generates 3D surfaces that consist of disconnected components,

with one patch assigned to each surface voxel. This characteristic significantly limits the

usability of these surfaces in downstream applications. To remove this limitation, we turn our

4

https://github.com/cvlab-epfl/UCLID-Net

1.2. Contributions

attention to implicit shape representations.

In an implicit representation, surfaces are modeled as the level set of neural networks trained

to regress signed distance fields (SDFs) or occupancy, as proposed in [PFS+19, MON+19].

Extracting an explicit surface from this implicit representation with Marching Cubes [LLVT03]

or Dual Contouring [JLSW02] yields smooth watertight meshes. However, this meshing step

disrupts end-to-end differentiability, and the resulting mesh vertices are not differentiable

with respect to the neural network parameters.

In Chapter 4 we solve this by introducing gradients for mesh vertices with respect to the neural

network parameters. This is achieved by examining how perturbations in the implicit field

affect local surface geometry. Consequently, we develop a data-driven and differentiable mesh

parameterization that is based on implicit surfaces. It can represent watertight surfaces with

arbitrary topologies for a given shape category. This parameterization serves as a prior for

fitting sparse observations, such as 2D silhouettes, through gradient descent, enabling the

recovery of 3D shapes.

In Chapter 5 we leverage this parameterization to explore the reconstruction and edition

of 3D shapes from sketches and individual pen strokes, and explain why this task poses

different challenges compared to RGB images. We demonstrate how the underlying implicit

and differentiable shape parameterization allows to build a simple pipeline that is robust to

different sketching styles. It uses a render-and-compare approach that we propose, which

considers the outer contours of sketches. Furthermore, we showcase the versatility of this

pipeline for interactive shape editing using basic pen strokes, offering an intuitive approach

to 3D content creation.

These chapters are based on the conference papers [RLR+20, GRYF21], and the preprint

[GRL+22] which is under review at TPAMI as a journal extension of [RLR+20]:

E. Remelli, A. Lukoianov, S. Richter, B. Guillard, T. Bagautdinov, P. Baque, and P. Fua,

MeshSDF: Differentiable Iso-Surface Extraction, at NeurIPS, 2020.

B. Guillard, E. Remelli, A. Lukoianov, P. Yvernay, S. Richter, T. Bagautdinov, P. Baque,

and P. Fua, DeepMesh: Differentiable Iso-Surface Extraction, arXiv Preprint 2022,

B. Guillard∗, E. Remelli∗, P. Yvernay, and P. Fua, Sketch2mesh: Reconstructing and Editing

3D Shapes from Sketches, at ICCV, 2021.

The corresponding source code is available at:

https://github.com/cvlab-epfl/MeshSDF

https://github.com/cvlab-epfl/sketch2mesh

5

https://github.com/cvlab-epfl/MeshSDF
https://github.com/cvlab-epfl/sketch2mesh

Chapter 1. Introduction

1.2.3 Unsigned Distance Fields for Parameterizing and Meshing Open Surfaces

Occupancy fields and signed distance functions are effective for modeling watertight surfaces

that separate the 3D space into two regions: inside and outside. However, these methods

are limited when it comes to representing open surfaces. In such cases, unsigned distance

fields (UDFs) offer a suitable alternative. UDFs are characterized by being positive everywhere,

providing distance information from any point in space to the surface of interest, which

corresponds to the 0-level set. By leveraging UDFs, open surfaces can be effectively and

accurately represented within the implicit modeling framework.

Prior research [CMPM20, ZWLS21] has proposed using neural networks to regress unsigned

distance fields (UDFs), following a similar approach as with signed distance fields (SDFs).

However, these approaches face challenges when it comes to efficiently and effectively mesh-

ing UDFs. In some cases, they resort to reconstructing point clouds or employ slow meshing

techniques, because available meshing techniques of implicit fields involve distinguishing

inner and outer regions. In Chapter 6, we address this issue by introducing an extension

of the marching cubes algorithm specifically designed for meshing UDFs. Our approach

involves identifying surface elements through the analysis of spatial gradient orientations.

Furthermore, we ensure differentiability of the resulting mesh vertices with respect to the

network parameters, similar to the watertight mesh parameterization discussed earlier. This

enables the learning of a parameterization for open surface meshes such as garments, but

also enhances the representation of generic meshes with inner components. Moreover, it

simplifies their preprocessing since they do not need to be made watertight.

In Chapter 7, we leverage the proposed technique to model garments, and we learn to simulate

their draping onto different body shapes using an additional neural network. This integration

results in a garment draping pipeline that is characterized by its speed, visually appealing

results, differentiability, and requires little supervision to train.

These chapters are based on the conference papers [GSF22, LLG+23]:

B. Guillard, F. Stella, and P. Fua, MeshUDF: Fast and Differentiable Meshing of Unsigned

Distance Field Networks, at ECCV, 2022.

L. De Luigi∗, R. Li∗, B. Guillard, M. Salzmann, and P. Fua, DrapeNet: Generating Gar-

ments and Draping them with Self-Supervision, at CVPR, 2023.

The corresponding source code is available at:

https://github.com/cvlab-epfl/MeshUDF

https://github.com/liren2515/DrapeNet

1.3 Outline

The remainder of the thesis is organized as follows.

6

https://github.com/cvlab-epfl/MeshUDF
https://github.com/liren2515/DrapeNet

1.3. Outline

In Chapter 2, we present a concise review of the prominent 3D surface representations,

focusing particularly on their utilization in deep learning and shape generation. We explore

how existing approaches use neural networks to generate point clouds, voxel grids, deformed

template meshes, and implicit fields as means to represent 3D surfaces, and examine their

individual strengths and limitations.

Then, our main technical contributions are introduced in the following chapters:

• In Chapter 3 we introduce our new neural network architecture generating a hybrid

representation incorporating voxel grids and local surface patches samples as point

clouds, and demonstrate its competitive performance on the single view reconstruction

task.

• In Chapter 4 we turn to implicit representations of 3D shapes with neural networks, and

propose a theoretically sound way to differentiate through iso-surface extraction.

• In Chapter 5 we exploit it for reconstructing and editing 3D shapes from sketches. We

propose a simple render-and-compare approach that considers the outer contours of

sketches, and show it is robust to different sketching styles.

• In Chapter 6 we present a novel method for meshing unsigned distance fields, thereby

extending deep implicit representations to open surfaces.

• In Chapter 7 we exploit it to train a garment parameterization network in a draping

pipeline that is fast, realistic, and requires little supervision to train.

Finally, in Chapter 8 we conclude by summarizing our work and its limitations, and briefly

propose future research avenues.

7

2 Background

In this chapter, we introduce existing 3D surface representations and explain how they can

be used in the context of deep learning. Of particular interest to us is the generation of 3D

surfaces with neural networks, called shape decoders.

2.1 Meshes

Among existing 3D surface representations, meshes made of vertices and faces are one of

the most popular and versatile types, and they are the de facto standard representation

for most applications. Many early surface-modeling methods focused on deforming pre-

existing templates based on such meshes that were either limited by design to a fixed topol-

ogy [Fua96, SF09] or required ad hoc heuristics that do not generalize well [MT99]. Further-

more, because meshes can have variable numbers of vertices and facets, it is challenging

to make this representation suitable to deep learning architectures. A standard approach

has therefore been to use graph convolutions or fully connected networks to deform a pre-

defined template [MBM+17, WZL+18]. Hence, it is limited to a fixed topology by design.

Moreover, displacing vertices separately can lead to invalid meshes with self intersections,

flipped faces, or rough surfaces, and regularizing the deformations is thus necessary but not

trivial [WKF21, WGFB22].

A promising alternative [GFK+18] is to use a union of surface patches instead, which can

handle arbitrary topologies. However, this method does not offer any guarantee that patches

stitch together correctly and, in practice, yields non-watertight surfaces.

2.2 3D Voxel Grids

Voxel grids provide a straightforward extension of rasterized 2D images into the 3D domain,

where each cell in a dense 3D grid represents a voxel (volume element) instead of a pixel

(picture element). Many processing techniques of 2D image arrays, including deep learning

9

Chapter 2. Background

methods, can be applied to voxel grids by incorporating an additional dimension. For instance,

pioneering deep Shape Volume Regression (SVR) models achieved success by employing 3D

convolutions to regress voxelized shapes [CXG+16a]. This restricts them to coarse resolutions

because of their cubic computational and memory cost. This drawback can be mitigated using

local subdivision schemes [HTM17, TDB17]. MarrNet [WWX+17] and Pix3D [SWZ+18] regress

voxelized shapes as well but also incorporate depth, normal, and silhouette predictions as

intermediate representations.

To combine the strengths of voxel and mesh representations, Mesh R-CNN [GMJ19] uses a

hybrid shape decoder that first regresses coarse voxels, which are then refined into mesh

vertices using graph convolutions. In Chapter 3, our approach is in the same spirit with two

key differences. First, our coarse occupancy grid is used to instantiate folding patches and to

sample 3D surface points in the AtlasNet [GFK+18] manner. However, unlike in AtlasNet, the

locations of the sampled 3D points and the folding creating them are tightly coupled. Second,

we regress shapes in object space, thus leveraging stronger object priors.

2.3 Point Clouds

A more lightweight representation of 3D surfaces consists in storing a set of 3D coordinates, or

point clouds. From a single input image, PSGN [FSG17] regresses sparse scalar values with

a neural network, directly interpreted as 3D coordinates of a point cloud with fixed size and

mild continuity. AtlasNet [GFK+18] and FoldingNet [YFST18] introduce a per-patch surface

parameterization, which can be sampled as a point cloud from a set of learned parametric

surfaces. One limitation, however, is that the patches it produces sometimes overlap each

other or collapse during training [BPG+19].

Despite being lightweight, point clouds lack connectivity information, and by default do not

include surface normals. This makes them harder to manipulate for downstream tasks, hence

many methods focus on reconstructing meshes from point clouds [PJL+21, KBH06, BMR+99].

2.4 Implicit Representations

2.4.1 Deep Signed Distances and Occupancies

Another alternative is to use an implicit representation, where a 3D surface is described by the

zero crossings of a volumetric function Ψ :R3 →R [Set99] whose values can be adjusted. The

strength of this implicit representation is that the zero-crossing surface can change topology

without explicit re-parameterization. Until recently, its main drawback was thought to be

that working with volumes stored as dense 3D grids, instead of surfaces, massively increased

the computational burden. This changed dramatically in 2019 with the introduction of con-

tinuous deep implicit-fields. They represent 3D shapes as level sets of deep fully connected

networks that map 3D coordinates to a signed distance function [PFS+19] (SDF) or an occu-

10

2.4. Implicit Representations

pancy field [MON+19, CZ19]. This mapping yields a continuous shape representation that is

lightweight but not limited in resolution. This representation has been successfully used for

single-view reconstruction [MON+19, CZ19, XWC+19] and 3D shape completion [CAP20].

Signed distance and occupancy fields have case-specific benefits. For the applications we

consider in this thesis, SDFs appear to represent more accurate surfaces. Occupancy fields

are however more suited to union operations in the implicit domain, since the minimum of 2

occupancy fields yields a valid occupancy. This property can be useful for combining shape

primitives in Constructive Solid Geometry (CSG) applications [FGF+05], but does not always

hold for SDFs. Similarly, computing ground truth SDF values of a mesh with internal surface

elements yields a false zero-level set with no change of sign, and this source of inaccuracy is

removed when using occupancy.

2.4.2 Triangulating an Implicit Field

Shapes are represented implicitly using Signed Distance Fields (SDFs) or occupancy fields,

where a specific level set of the field (e.g., 0 for SDFs and conventionally 0.5 for occupancy

fields) defines the shape. To obtain an explicit 3D mesh representation, the field needs to be

triangulated. To this effect, marching cubes was originally proposed in [LC87] and refined

in [Che95, LB03, LLVT03, DK91] to triangulate one isosurface of a 3D scalar field. It marches

sequentially across cubic grid cells and if field values at neighboring corners are on different

sides of the target level set, triangular facets are created according to a manually defined lookup

table. Vertices of these triangle facets are adjusted by linear interpolation over the field values.

Since then, newer methods have been developed such as dual methods [JLSW02]. They are

better at triangulating surfaces with sharp edges at the expense of increased complexity and

requiring a richer input. Hence, due to its simplicity and flexibility, along with the availability

of efficient implementations, the original algorithm of [LLVT03] remains in wide use [MON+19,

PFS+19, PNM+20, HAESB20, XWC+19]. More recently, [CZ21, CTFZ22] proposed a data driven

approach at improving sharp features reconstructed by these algorithms.

2.4.3 Differentiability

For applications requiring explicit surface parameterizations, the non-differentiability of

standard approaches to iso-surface extraction [LC87] remained an obstacle to exploiting the

advantages of implicit representations. [LDG18] proposed a probabilistic approach for allow-

ing backpropagation, yet it is confined to low resolutions because of its memory requirements.

In Chapter 4, we overcome this and introduce a differentiable way to produce explicit surface

mesh representations from deep SDFs or occupancies. We show that, by reasoning about how

implicit-field perturbations affect local surface geometry, one can differentiate the 3D location

of surface samples with respect to the underlying deep implicit-field. This insight results in an

end-to-end differentiable architecture that takes as input a compact latent vector and outputs

a 3D watertight mesh. In other words, it enables the use of implicit fields as data-driven and

11

Chapter 2. Background

differentiable mesh parameterizations. We use it in Chapter 5 and couple it with sketch-based

deformations.

Other methods [NMOG20, YKM+20] propose a solution to differentiate through iso-surface

extraction, but they are specifically tailored to differentiable rasterization or rendering. By

contrast, our method for implicit differentiation is agnostic to the downstream task. Our

expression is similar to the one of [SS11], which formulates surface derivative with respect to

time instead of latent vectors. However, our derivation clarifies the underlying assumptions,

namely that the vertices move towards their closest neighbors when the surface deforms

infinitesimally.

2.4.4 Open Surfaces

SDFs and occupancy field can only represent watertight surfaces. Thus, to represent open

surfaces, such as clothes, it is possible to use inflated SDFs surrounding them. However, this

entails a loss in accuracy and there has been a recent push to replace SDFs by unsigned distance

functions (UDFs) [CMPM20, ZWLS21, VKS+21]. One difficulty in so doing was that Marching

Cubes was not designed with UDFs in mind, and obtaining explicit surfaces from these UDFs

was therefore non-trivial. Other works augment signed distance fields with covariant fields to

encode open surface garments [SOTC22, BRB+19]. More straightforwardly, we address this in

Chapter 6 by modifying the Marching Cubes algorithm to operate with UDFs. We also derive

gradients for this new mesh extraction procedure, despite surface normals having ambiguous

orientations.

12

3 UCLID-Net: Single View Reconstruc-
tion in Object Space

This chapter is based on the conference paper [GRF20]:

B. Guillard, E. Remelli, and P. Fua, UCLID-Net: Single View Reconstruction in Object Space,

at NeurIPS, 2020.

3.1 Introduction

Most state-of-the-art deep geometric learning Single-View Reconstruction approaches (SVR)

rely on encoder-decoder architectures that output either explicit shape parametrizations

[GMJ19, GFK+18, WZL+18] or implicit representations [MON+19, XWC+19, CZ19]. However,

the representations they learn rarely preserve the Euclidean structure of the 3D space objects

exist in, and rather rely on a global vector embedding of the input image at a semantic level. In

this paper, we show that building a geometry preserving 3-dimensional representation helps

the network concurrently learn global shape regularities and local reasoning in the object

coordinate space and, as a result, boosts performance. This corroborates the observation

that choosing the right coordinate frame for the output of a deep network matters a great

deal [TRR+19].

In our work, we use camera projection matrices to explicitly link camera- and object-centric co-

ordinate frames. This allows us to reason about geometry and learn object priors in a common

3D coordinate system. More specifically, we use regressed camera pose information to back-

project 2D feature maps to 3D feature grids at several scales. This is achieved within our novel

architecture that comprises a 2D image encoder and a 3D shape decoder. They feature symmet-

rical downsampling and upsampling parts and communicate through multi-scale skip connec-

tions, as in the U-Net architecture [RFB15]. However, unlike in other approaches, the bottle-

neck is made of 3D feature grids and we use back-projection layers [JGZ+17, IBLM19, STH+19]

to lift 2D feature maps to 3D grids. As a result, feature localization from the input view is

preserved. In other words, our feature embedding has a Euclidean structure and is aligned

with object coordinate frame. Fig. 3.1 depicts this process. In reference to its characteristics,

we dub our architecture UCLID-Net.

13

Chapter 3. UCLID-Net: Single View Reconstruction in Object Space

Earlier attempts at passing 2D features to a shape decoder via local feature extraction [WZL+18,

XWC+19] enabled spatial information to flow to the decoder in a non semantic manner,

often with limited impact on the final result. In these approaches, the same local feature is

attributed to all points lying along a camera ray. By contrast, UCLID-Net uses 3D convolutions

to volumetrically process local features before passing them to the local shape decoders. This

allows them to make different contributions at different places along camera rays. To further

promote geometrical reasoning, it never computes a global vector encoding of the input image.

Instead, it relies on localized feature grids, either 2D in the image plane or 3D in object space.

Finally, the geometric nature of the 3D feature grids enables us to exploit estimated depth

maps and further boost reconstruction performance.

We demonstrate both on ShapeNet synthetic images, which are often used for benchmarking

purposes, and on real-world images that our approach outperforms state-of-the-art ones. Our

contribution is therefore a demonstration that creating a Euclidean preserving latent space

provides a clear benefit for single-image reconstruction and a practical approach to taking

advantage of it. Finally, the single-view pipeline naturally extends to multi-view reconstruction,

which we also provide an example for.

3.2 Related Work: Image Feature Extraction

Most recent SVR methods rely on a 2D-CNN to create an image description that is then passed

to a 3D shape decoder that generates a 3D output. What differentiates them is the nature

of their output which is strongly related to the structure of their shape decoder, as already

discussed. They also differ in their approach to local feature extraction, which we briefly

describe below.

Most SVR methods discussed above rely on a vectorized embedding passing from image

encoder to shape decoder. This embedding typically ignores image feature localization and

produces a global image descriptor. As shown in [TRR+19], such approaches are therefore

prone to behaving like classifiers that simply retrieve shapes from a learned catalog. Hence,

no true geometric reasoning occurs and recognition occurs at the scale of whole objects while

ignoring fine details.

There have been several attempts at preserving feature localization from the input image

by passing local vectors from 2D feature maps of the image encoder to the shape decoder.

In [WZL+18, GMJ19], features from the 2D plane are propagated to the mesh convolution

network that operates in the camera space. In DISN [XWC+19], features from the 2D plane are

extracted and serve as local inputs to a SDF regressor, directly in object space. Unfortunately,

features extracted in this manner do not incorporate any notion of depth and local shape

regressors get the same input all along a camera ray. As a result and as shown in Fig. 3.2, DISN

can reconstruct shapes with the correct outline when projected in the original viewpoint but

that are nevertheless incorrect. In practice, this occurs when the network relies on both global

and local features, but not when it relies on global features only. In other words, it seems

14

3.3. Method

cam P

depth D

Concatenation Back-projection

Volumetric
feature grid

3D CNN
outputs

I F1

F2

........

GF2

GD2

H2

H0

ℒBCE ℒCD

GF1

GD1

H1

Voxelized
depth map

Figure 3.1 – UCLID-Net. Given input image I , a CNN encoder estimates 2D feature maps Fs for
scales s from 1 to S while pre-trained CNNs regress a depth map D and a camera pose P . P is used
to backproject the feature maps Fs to object aligned 3D feature grids GFs for 1 ≤ s ≤ S without using
depth information. In parallel, S corresponding voxelized depth grids GD

s are built from D and P
without using feature information. A 3D CNN then aggregates feature and depth grids from the lowest
to the highest resolution into outputs HS , . . . , H0 of increasing resolutions. From H0, fully connected
layers regress a coarse voxel shape, which is then refined into a point cloud using local patch foldings.
Supervision comes in the form of binary cross-entropy on the coarse output and Chamfer distance on
the final 3D point cloud.

that local features allow the network to take an undesirable shortcut by making silhouette

recovery excessively easy, especially when the background is uniform. The depth constraint

is too weakly enforced by the latent space, and must be carried out by the fully connected

network regressing signed distance value. By contrast, our approach avoids this pitfall, as

shown in Fig. 3.2(f). This is allowed by two key differences: (i) the shape decoder relies on

3D convolutions to handle global spatial arrangement based on backprojected 2D features,

before fully connected networks locally regress shape parts, and (ii) predicted depth maps are

made available as inputs to the shape decoder.

3.3 Method

At the heart of UCLID-Net is a representation that preserves the Euclidean structure of the

3D world in which the shape we want to reconstruct lives. To encode the input image into it

and then decode it into a 3D shape, we use the architecture depicted by Fig. 3.1. A CNN image

15

Chapter 3. UCLID-Net: Single View Reconstruction in Object Space

(a) (b) (c) (d) (e) (f)

Figure 3.2 – (a) Input photograph from Pix3D [SWZ+18]. (b) Ground truth shape seen from a
different viewpoint. (c,d) DISN [XWC+19] reconstruction seen from the viewpoints of (a) and
(b), respectively. (e,f) Our reconstruction seen from the viewpoints of (a) and (b), respectively.
For DISN, local feature extraction makes it easy to recover the silhouette in (c) but fails to
deliver the required depth information. Our approach avoids this pitfall.

encoder computes feature maps at S different scales while auxiliary ones produce a depth

map estimate D and a camera projection model P :R3 →R2. P allows us to back-project image

feature onto the 3D space along camera rays and D to localize the features at the probable

location of the surface on each of these ray. The 2D feature maps and depth maps are back-

projected to 3D grids that serve as input to the shape decoder, as shown by Fig. 3.3. This yields

a coarse voxelized shape that is then refined into a point cloud. If estimates of either the pose

P or the depth map D happen to be available a priori, we can use them instead of regressing

them. We will show in the results section that this provides a small performance boost when

they are accurate but not a very large one because our predictions tend to be good enough for

our purposes, that is, lifting the features to the 3D grids.

The back-projection mechanism we use is depicted by Fig. 3.3. It is similar to the one

of [JGZ+17, IBLM19, STH+19] and has a major weakness when used for single view reconstruc-

tion. All voxels along a camera ray receive the same feature information, which can result in

failures such as the one depicted by Fig. 3.2 if passed as is to local shape decoders. To remedy

this, we concatenate feature grids with voxelized depth maps. The result is then processed

as a whole using 3D convolutions before being passed to local decoders. In the remainder of

this section, we first introduce the basic back-projection mechanism, and then describe how

our shape decoder fuses feature grids with depth information using a 3D CNN before locally

regressing shapes.

3.3.1 Back-Projecting Feature and Depth Maps

We align all objects in the dataset to be canonically oriented within each class, centered at the

origin, and scaled to fill bounding box [−1,1]3. Given such a 3D object, a CNN produces a 2D

feature map F ∈R f ×H×W for input image I . Using P , the camera projection used to render it

into image I ∈R3×H×W , we back-project F into object space as follows.

As in [JGZ+17, IBLM19], we subdivide bounding box [−1,1]3 into GF ∈ R f ×N×N×N , a regular

16

3.3. Method

GF

P

F

Figure 3.3 – Backprojecting 2D features maps to 3D grids. Rays are cast from camera P
through 2D feature map F to fill 3D grid GF . It is applied to 2D feature maps from the image
encoder to provide object space aligned 3D feature grids as inputs to the shape decoder

3D grid. Each voxel (x, y, z) contains the f -dimensional feature vector

GF
x y z = F {P

x

y

z

} , (3.1)

where {·} denotes bilinear interpolation on the 2D feature map. As illustrated by Fig. 3.3,

back-projecting can be understood as illuminating a grid of voxels with light rays that are cast

by the camera and pass through the 2D feature map. This preserves geometric structure of the

surface and 2D features are positioned consistently in 3D space.

In practice, we back-project 2D feature maps (F1, . . . ,FS) of decreasing spatial resolutions,

which yield 3D feature grids (GF1 , . . . ,GFS) of decreasing sizes (N1, . . . , NS). We linearly scale

the projected coordinates to account for decreasing resolution.

We process depth maps in a different manner to exploit the available depth value at each pixel.

Given a 2D depth map D ∈RH×W+ of an object seen from camera with projection matrix P , we

first back-project the depth map to the corresponding 3D point cloud in object space. This

point cloud is used to populate binary occupancy grids such as the one depicted by Fig. 3.4(a).

As for feature maps, we use this mechanism to produce a set of binary depth grids (GD
1 , . . . ,GD

S)

of decreasing sizes (N1, . . . , NS).

3.3.2 Hybrid Shape Decoder

The feature grids discussed above contain learned features but lack an explicit notion of

depth. The values in its voxels are the same along a camera ray. By contrast, the depth grids

structurally carry depth information in a binary occupancy grid but without any explicit

feature information. One approach to merging these two kinds of information would be to

clamp projected features using depth. However, this is not optimal for two reasons. First, the

depth maps can be imprecise and the decoder should learn to correct for that. Second, it

can be advantageous to push feature information not only to the visible part of the surfaces

17

Chapter 3. UCLID-Net: Single View Reconstruction in Object Space

(a) (b)

Figure 3.4 – (a) Back-projecting depth maps. Input depth map and back-projected depth
grid seen from two different view points. (b) Outputs of the occ and f old MLPs introduced
in Section 3.3.2. One is an occupancy grid and the other a cloud of 3D points generated by
individually folding patches. The points are colored according to which patch generated them.

but also to their occluded ones. Instead, we devised a shape decoder that takes as input the

pairs of feature and depth grids at different scales {(GF1 ,GD
1) ..., (GFS ,GD

S)} we introduced in

Section. 3.3.1 and outputs a point cloud.

Our decoder uses residual layers that rely on regular 3D convolutions and transposed ones to

aggregate the input pairs in a bottom-up manner. We denote by l ayers the layer at scale s,

and concat concatenation along the feature dimension of same size 3D grids. l ayers takes

as input a feature grid of size Ns and outputs a grid Hs−1 of size Ns−1. If Ns−1 > Ns , l ayers

performs upsampling, otherwise if Ns−1 = Ns , the resolution remains unchanged. At the

lowest scale, l ayerS constructs its output from feature grid GFS and depth grid GD
S as

HS−1 = l ayerS(concat (GFS ,GD
S)) . (3.2)

At subsequent scales 1 ≤ s < S, the output of the previous layer is also used and we write

Hs−1 = l ayers(concat (GFs ,GD
s , Hs)) . (3.3)

The 3D convolutions ensure that voxels in the final feature grid H0 can receive information

emanating from different lines of sight and are therefore key to addressing the limitations of

methods that only rely on local feature extraction [XWC+19]. H0 is passed to two downstream

Multi Layer Perceptrons (MLPs), we will refer to as occ and f ol d . occ returns a coarse surface

occupancy grid. Within each voxel predicted to be occupied, f old creates one local patch

that refines the prediction of occ and recovers high-frequency details in the manner of Atlas-

Net [GFK+18]. Both MLPs process each voxel of H0 independently. Fig. 3.4(b) depicts their

output in a specific case. We describe them in more detail in the appendix.

Let Õ = occ(H0) be the occupancy grid generated by occ and

X̃ = ⋃
x y z

Õx y z>τ


x

y

z

+ f old(u, v |(H0)x y z) | (u, v) ∈Λ

 (3.4)

18

3.4. Experiments

be the union of the point clouds generated by f old in each individual H0 voxel in which the

occupancy is above a threshold τ. As in [GFK+18, YFST18], f old continuously maps a discrete

set of 2D parameters Λ⊂ [0,1]2 to 3D points in space, which makes it possible to sample it

at any resolution. During the training, we minimize a weighted sum of the cross-entropy

between Õ and the ground-truth surface occupancy and of the Chamfer-L2 distance between

X̃ and a point cloud sampling of the ground-truth 3D model.

3.3.3 Implementation Details

In practice, our UCLID-Net architecture has S = 4 scales with grid sizes N1 = N2 = 28, N3 =
14, N4 = 7. The image encoder is a ResNet18 [HZRS16], in which we replaced the batch

normalization layers by instance normalization ones [UVL16]. Feature map Fs is the output

of the s-th residual layer. The shape decoder mirrors the encoder, but in the 3D domain. It

uses residual blocks, with transposed convolutions to increase resolution when required. Last

feature grid H0 of the decoder has spatial resolution N0 = 28, with 40 feature channels. The

8 first features serve as input to occ, and the last 32 to f ol d . occ is made of a single fully

connected layer while f ol d comprises 7 and performs two successive folds as in [YFST18].

The network is implemented in Pytorch, and trained for 150 epochs using the Adam optimizer,

with initial learning rate 10−3, decreased to 10−4 after 100 epochs.

We take the camera to be a simple pinhole one with fixed intrinsic parameters and train a CNN

to regress rotation and translation from RGB images. Its architecture and training are similar

to what is described in [XWC+19] except we replaced its VGG-16 backbone by a ResNet18. To

regress depth maps from images, we train another off-the-shelf CNN with a feature pyramid

architecture [Che18]. These auxiliary networks are trained independently from the main

UCLID-Net, but using the same training samples.

3.4 Experiments

3.4.1 Experimental Setup

Datasets. Given the difficulty of annotation, there are relatively few 3D datasets for geometric

deep learning. We use the following two:

ShapeNet Core [CFG+15] features 38000 shapes belonging 13 object categories. Within

each category objects are aligned with each other and we rescale them to fit into a [−1,1]3

bounding box. For training and validation purposes, we use the RGB renderings from 36

viewpoints provided in DISN [XWC+19] with more variation and higher resolution than those

of [CXG+16a]. We use the same testing and training splits but re-generated the depth maps

because the provided ones are clipped along the z-axis.

PIX3D [SWZ+18] is a collection of pairs of real images of furniture with ground truth 3D

models and pose annotations. With 395 3D shapes and 10,069 images, it contains far less

19

Chapter 3. UCLID-Net: Single View Reconstruction in Object Space

Figure 3.5 – ShapeNet objects reconstructed by UCLID-Net. Top row: Input view. Bottom
row: Final point cloud. The points are colored according to the patch that generated them.

samples than ShapeNet. We therefore use it for validation only, on approximately 2.5k images

of chairs.

Baselines and Metrics. We test our UCLID-Net against several state-of-the-art approaches:

AtlasNet [GFK+18] provides a set of 25 patches sampled as a point cloud, Pixel2Mesh [WZL+18]

regresses a mesh with fixed topology, Mesh R-CNN [GMJ19] a mesh with varying topological

structure, and DISN [XWC+19] uses an implicit shape representation in the form of a signed

distance function. For Pixel2Mesh, we use the improved reimplementation from [GMJ19] with

a deeper backbone, which we refer to as Pixel2Mesh+. All methods are retrained on the dataset

described above, each according to their original training procedures.

We report our results and those of the baselines in terms of five separate metrics, Chamfer

L1 and L2 Distances (CD–L1, CD–L2), Earth Mover’s Distance (EMD), shell-IoU (sIoU), and

average F-Score for a distance threshold of 5% (F@5%), which we describe in more detail in

the appendix.

3.4.2 Comparative Results

ShapeNet. In Fig. 3.5, we provide qualitative UCLID-Net reconstruction results. In Tab. 3.6(a),

we compare it quantitatively against our baselines. UCLID-Net outperforms all other methods.

We provide the results in aggregate and refer the interested reader to the appendix for per-

category results. As in [XWC+19], all metrics are computed on shapes scaled to fit a unit radius

sphere, and CD–L2 and EMD values are scaled by 103 and 102, respectively. Note that these

results were obtained using the depth maps and camera poses regressed by our auxiliary

regressors. In other words, the input was only the image. We will see in the ablation study

below that they can be further improved by supplying the ground-truth depth maps, which

points towards a potential for further performance gains by using a more sophisticated depth

regressor than the one we currently use.

20

3.4. Experiments

Method CD-L2 (↓) EMD (↓) sIoU (↑) F@5% (↑)

AtlasNet 13.0 8.0 15 89.3
Pixel2Mesh+ 7.0 3.8 30 95.0
Mesh R-CNN 9.0 4.7 24 92.5
DISN 9.7 2.6 30 90.7
Ours 6.3 2.5 37 96.2

Method CD-L1 (↓) EMD (↓)

Pix3D 11.9 11.8
AtlasNet 12.5 12.8
Pixel2Mesh+ 10.0 12.3
Mesh R-CNN 10.8 13.7
DISN 10.4 11.7
Ours 7.5 8.7

(ShapeNet) (Pix3D)

Figure 3.6 – Comparative results. For ShapeNet, we re-train and re-evaluate all methods. For
Pix3D, lines 1-2 are duplicated from [SWZ+18], while lines 3-6 depict our own evaluation using
the same protocol. The up and down arrows next to the metric indicate whether a higher or
lower value is better.

Figure 3.7 – Reconstructions on Pix3D photographs: from left to right, twice: input, DISN,
ours.

21

Chapter 3. UCLID-Net: Single View Reconstruction in Object Space

(a) (b) (c) (d) (e)

Figure 3.8 – Two-views reconstruction. (a,b) Two input images of the same chair from
ShapeNet. (c) Reconstruction using only the first one. (d) Reconstruction using only the
second one. (e) Improved reconstruction using both images.

Pix3D. In Fig. 3.7, we provide qualitative UCLID-Net reconstruction results. In Tab. 3.6(b),

we compare it quantitatively against our baselines. We conform to the evaluation protocol

of [SWZ+18] and report the Chamfer-L1 distance (CD–L1) and EMD on point clouds of size

1024. The CD–L1 and EMD values are scaled by 102. UCLID-Net again outperforms all other

methods. The only difference with the ShapeNet case is that both DISN and UCLID-Net

used the available camera models whereas none of the other methods leverages camera

information.

3.4.3 From Single- to Multi-View Reconstruction

A further strength of UCLID-Net is that its internal feature representations make it suitable for

multi-view reconstruction. Given depth and feature grids provided by the image encoder from

multiple views of the same object, their simple point-wise addition at each scale enables us to

combine them in a spatially relevant manner. For input views a and b, the encoder produces

feature/depth grids collections {(GF1
a ,GD

1,a) ..., (GFS
a ,GD

S,a)} and {(GF1

b ,GD
1,b) ..., (GFS

b ,GD
S,b)}. In this

setting, we feed {(GF1
a +GF1

b ,GD
1,a +GD

1,b) ..., (GFS
a +GFS

b ,GD
S,a +GD

S,b)} to the shape decoder and

let it merge details from both views. For best results, the decoder is fine-tuned to account

for the change in magnitude of its inputs. As can be seen in Fig. 3.8, this delivers better

reconstructions than those obtained from each view independently.

3.4.4 Ablation Study

To quantify the impact of regressing camera poses and depth maps, we conducted an ablation

study on the ShapeNet car category. In Fig. 3.9(a), we report CD-L2 and EMD for different

network configurations. Here, CAR is trained and evaluated on the cars subset, with inferred

depth maps and camera poses. CAM is trained and evaluated with inferred depth maps, but

ground truth camera poses. CAD is trained and evaluated with ground truth camera poses

and depth maps. Finally, ALL is trained on 13 object categories with inferred depth maps and

cameras as it was in all the experiments above, but evaluated on cars only.

Using ground truth data annotation for depth and pose improves reconstruction quality. The

22

3.5. Conclusion

Method CD-L2 (↓) EMD (↓)

CAR 4.08 2.23
CAM 3.83 2.16
CAD 3.80 2.14
ALL 4.03 2.23

(a) (b)

Figure 3.9 – (a) Ablation study: comparative results on a single object category. (b) Failure
mode. From left-to-right: input view, reconstruction seen from the back-right, seen from the
back-left. The visible armrest is correctly carved. The other one (occluded in the input) is
mistakenly reconstructed as solid.

margin is not significant, which indicates that the regressed poses and depth maps are mostly

good enough. Nevertheless, our pipeline is versatile enough to take advantage of additional

information, such as depth map from a laser scanner or an accurate camera model obtained

using classic photogrammetry techniques, when it is available. Note also that ALL marginally

gets better performance than CAR. Training the network on multiple classes does not degrade

performance when evaluated on a single class. In fact, having other categories in the training

set increases the overall data volume, which seems to be beneficial.

In Fig. 3.9(b), we present an interesting failure case. The visible armrest is correctly carved out

while the occluded one is reconstructed as being solid. While incorrect, this result indicates

that UCLID-Net has the ability to reason locally and does not simply retrieve a shape from the

training database, as described in [TRR+19].

3.5 Conclusion

We have shown that building intermediate representations that preserve the Euclidean struc-

ture of the 3D objects we try to model is beneficial. It enables us to outperform state-of-the-art

approaches to single view reconstruction. We have also investigated the use of multiple-

views for which our representations are also well suited. In future work, we will extend our

approach to handle video sequences for which camera poses can be regressed using either

SLAM-type methods or learning-based ones. We expect that the benefits we have observed in

the single-view case will carry over and allow full scene reconstruction.

23

4 DeepMesh: Differentiable Iso-Surface
Extraction

This chapter is based on the preprint [GRL+22]:

B. Guillard, E. Remelli, A. Lukoianov, P. Yvernay, S. Richter, T. Bagautdinov, P. Baque, and P.

Fua, Deepmesh: Differentiable Iso-Surface Extraction, arXiv Preprint 2022,

which is under review at TPAMI as a journal extension of the conference paper [RLR+20]:

E. Remelli, A. Lukoianov, S. Richter, B. Guillard, T. Bagautdinov, P. Baque, and P. Fua,

Meshsdf: Differentiable Iso-Surface Extraction, at NeurIPS, 2020.

4.1 Introduction

Geometric Deep Learning has recently witnessed a breakthrough with the advent of Deep

Implicit Fields (DIFs) [PFS+19, MON+19, CZ19]. These enable detailed modeling of watertight

surfaces without relying on a 3D Euclidean grid or meshes with fixed topology, resulting in a

learnable surface parameterization that is not limited in resolution.

However, a number of important applications require explicit surface representations, such as

triangulated meshes or 3D point clouds. Computational Fluid Dynamics (CFD) simulations

and the associated learning-based surrogate methods used for shape design in many engi-

neering fields [BRFF18, UB18] are a good example of this where 3D meshes serve as boundary

conditions for the Navier-Stokes equations. Similarly, many advanced physically-based ren-

dering engines require surface meshes to model the complex interactions of light and physical

surfaces efficiently [NDVZJ19, PJH16].

Making explicit representations benefit from the power of deep implicit fields requires con-

verting the implicit surface parameterization to an explicit one, which typically relies on one of

the many variants of the Marching Cubes algorithm [LC87, NY06]. However, these approaches

are not fully differentiable [LDG18]. This makes it difficult to use continuous deep implicit

fields to parameterize explicit surface meshes.

The non-differentiability of Marching Cubes has been addressed by learning differentiable

approximations of it [LDG18, WRKF20]. These techniques, however, remain limited to low-

25

Chapter 4. DeepMesh: Differentiable Iso-Surface Extraction

Image DeepMesh Raw
Silhouette refinement Target silhouette

DeepMesh Refined

DeepMesh Raw Drag minimization DeepMesh Refined

(a)

(b)

(c)

Raw

Point cloud
fitting

Refined Raw

Point cloud
fitting

Refined

Figure 4.1 – DeepMesh. (a) We condition our representation on an input image and output an
initial 3D mesh, which we refine via differentiable rasterization [KUH18], thereby exploiting
DeepMesh’s end-to-end differentiability. (b) We use our parameterization as a powerful
regularizer for aerodynamic optimization tasks. Here, we start from an initial car shape and
refine it to minimize pressure drag. (c) We use the end-to-end differentiability of iso-surface
extraction to improve the occupancy field fitted to a sparse point cloud of a whole scene by
an off-the-shelf network, Convolutional Occupancy Network (CON) [PNM+20]. In these two
examples, the raw output of [PNM+20] is shown on the left and the refined version on the
right. The errors are shown in red and are smaller after refinement.

resolution meshes [LDG18] or fixed topologies [WRKF20]. An alternative approach is to

reformulate downstream tasks, such as differentiable rendering [JJHZ20, LWL19] or surface

reconstruction [MPJ+19], directly in terms of implicit functions, so that explicit surface repre-

sentations are no longer needed. However, doing so is not easy and may even not be possible

for more complex tasks, such as solving CFD optimization problems.

By contrast, we show that it is possible to use implicit functions, be they signed distance

functions or occupancy maps, to produce explicit surface representations while preserving

differentiability. Our key insight is that 3D surface samples can be differentiated with respect

to the underlying deep implicit field. We prove this formally by reasoning about how implicit

field perturbations impact 3D surface geometry locally. Specifically, we derive a closed-form

expression for the derivative of a surface sample with respect to the underlying implicit field,

which is independent of the method used to compute the isosurface. This lets us extract

the explicit surface using a non-differentiable algorithm, such as Marching Cubes, and then

perform the backward pass through the extracted surface samples. This yields an end-to-end

differentiable surface parameterization that can describe arbitrary topology and is not limited

in resolution. We will refer to our approach as DeepMesh. We first introduced it in a conference

paper [RLR+20] that focused on the 0-isosurface of signed distance functions. We extend it

here to isosurface of generic implicit functions, such as occupancy fields by harnessing simple

26

4.2. Related Work: Converting Implicit Functions to Surface Meshes

multivariate calculus tools.

We showcase the power and versatility of DeepMesh in several applications.

1. Given a model trained to map latent vectors to SDFs, we use our approach to triangulate

the SDF fields and write image-based losses that yield improved 3D reconstructions

from single images, as shown in Fig. 4.1(a).

2. Similarly, we use the surface triangulations to compute the aerodynamic properties of

3D shapes and refine them, as shown in Fig. 4.1(b).

3. We use our paradigm in conjunction with DIF-based methods to improve their perfor-

mance in a plug-and-play fashion by adding loss terms that can be computed on the

meshes. This highlights the importance to be able to handle both SDFs and occupancy

grids.

4. We demonstrate that we can use our approach not only to better exploit the results of

pre-trained networks but to actually train them better.

In all these cases, our end-to-end differentiable parameterization gives us an edge over state-

of-the art algorithms. Note, however, that our approach relies on latent variable models

to capture priors applicable to entire object categories, unlike some of the recent multi-

view approaches [WLL+21, MPT+20] that return extremely detailed models but at the cost of

overfitting for a single 3D scene. In a way, we trade off extreme reconstruction accuracy for

generality.

In short, our core contribution is a theoretically well-grounded and computationally efficient

way to differentiate through iso-surface extraction. This enables us to harness the full power

of neural implicit fields to define an end-to-end differentiable surface mesh parameterization

that allows topology changes.

4.2 Related Work: Converting Implicit Functions to Surface Meshes

The Marching Cube (MC) algorithm [LC87, NY06] is a popular way to convert implicit func-

tions to surface meshes. The algorithm proceeds by sampling the field on a discrete 3D grid,

detecting zero-crossing of the field along grid edges, and building a surface mesh using a

lookup table. Unfortunately, the process of determining the position of vertices on grid edges

involves linear interpolation, which does not allow for topology changes through backpropa-

gation [LDG18], as illustrated in Fig. 4.2(a). Because this is a central motivation for this work,

we provide a more detailed analysis of this shortcoming in the appendix. In what follows,

we discuss two classes of methods that tackle the non-differentiability issue. The first one

emulates iso-surface extraction with deep neural networks, while the second one avoids the

need for mesh representations by formulating objectives directly in the implicit domain.

27

Chapter 4. DeepMesh: Differentiable Iso-Surface Extraction

4.2.1 Emulating Iso-Surface Extraction

In [LDG18] Deep Marching Cubes maps voxelized point clouds to a probabilistic topology

distribution and vertex locations defined over a discrete 3D Euclidean grid through a 3D CNN.

While this allows changes to surface topology through backpropagation, the probabilistic

modeling requires keeping track of all possible topologies at the same time, which, in practice,

limits resulting surfaces to low resolutions. Voxel2mesh [WRKF20] deforms a mesh primi-

tive and adaptively increases its resolution. While this makes it possible to represent high

resolution meshes, it prevents changes of topology.

4.2.2 Writing Objective Functions in terms of Implicit Fields

In [MPJ+19], variational analysis is used to re-formulate standard surface mesh priors, such as

those that enforce smoothness, in terms of implicit fields. Although elegant, this technique

requires carrying out complex derivations for each new loss function and can only operate on

an Euclidean grid of fixed resolution. The differentiable renderers of [JJHZ20] and [LZP+20]

rely on sphere tracing and operate directly in terms of implicit fields. Unfortunately, since it is

computationally intractable to densely sample the underlying volume, these approaches either

define implicit fields over a low-resolution Euclidean grid [JJHZ20] or rely on heuristics to ac-

celerate ray-tracing [LZP+20], while reducing accuracy. 3D volume sampling efficiency can be

improved by introducing a sparse set of anchor points when performing ray-tracing [LWL19].

However, this requires reformulating standard surface mesh regularizers in terms of implicit

fields using computationally intensive finite differences. Furthermore, these approaches are

tailored to differentiable rendering, and are not directly applicable to different settings that

require explicit surface modeling, such as computational fluid dynamics. This also applies

to [NMOG20, YKM+20] that use implicit differentiation for implicit surface rendering. Both

can be seen as special cases of the gradients we derive where surface points only move along

the viewing direction.

4.3 Method

Tasks such as Single view 3D Reconstruction (SVR) [KTEM18, HF20] or shape design in the

context of CFD [BRFF18] are commonly performed by deforming the shape of a 3D surface

mesh M = (V ,F), where V = {v1,v2, ...} denotes vertex positions inR3 and F facets, to minimize

a task-specific loss function Ltask(M). Ltask can be, e.g., an image-based loss defined on the

output of a differentiable renderer for SVR or a measure of aerodynamic performance for CFD.

To perform surface mesh optimization robustly, a common practice is to rely on

low-dimensional parameterizations that are either learned [BV99, PFS+19, BWS+18] or hand-

crafted [BRFF18, UB18, RTTP17]. In that setting, a differentiable function maps a

low-dimensional set of parameters z to vertex coordinates V , implying a fixed topology. Al-

lowing changes of topology, an implicit surface representation would pose a compelling

28

4.3. Method

si > 0

s j < 0

p
px = si

si−s j

{M(c0, ·) = 0}

{M(c, ·) = 0}

p0 = p∗(c0)

n

p∗(c)

(a) (b)

Figure 4.2 – Marching Cubes differentiation vs Iso-surface differentiation. (a) Marching
Cubes determines the position px of a vertex p along an edge via linear interpolation. This
does not allow for effective back-propagation when topology changes because its behavior
is degenerate when si = s j as shown in [LDG18]. (b) Instead, we adopt a continuous model
expressed in terms of how implicit function perturbations locally impact surface geometry.
Here, we depict the geometric relation between implicit parameter perturbation c0 ,→ c and

local surface change p0 ,→ p∗(c), which we exploit to compute ∂p∗(c)
∂c even when the topology

changes.

alternative but conversely require a differentiable conversion to explicit representations in

order to backpropagate gradients of Ltask.

In the remainder of this section, we first recapitulate neural implicit surface representations

that underpin our approach. We then introduce our main contribution, a differentiable

approach to computing surface samples and updating their 3D coordinates to optimize Ltask.

Finally, we present DeepMesh, a fully differentiable surface mesh parameterization that can

represent arbitrary topologies.

4.3.1 Deep Implicit Field Representation

In this work, we represent a generic watertight surface S implicitly by a function s : R3 → R.

Typical choices for s include the Signed Distance Function (SDF) where s(x) is d(x,S) if x is

outside S and −d(x,S) if it is inside, where d is the Euclidean distance; and Occupancy Maps

with s(x) = 1 inside and s(x) = 0 outside.

Given a dataset of watertight surfaces D, such as ShapeNet [CFG+15], we train a Multi-Layer

Perceptron (MLP) fΘ as in [PPV19] to approximate s over such set of surfaces D by minimizing

Limp({zS}S∈D ,Θ) =Ldata({zS}S∈D ,Θ)+λreg
∑

S∈D

‖zS‖2
2 , (4.1)

where zS ∈ RZ is the Z -dimensional encoding of surface S, Θ denotes network parameters,

Ldata is a data term that measures how similar fΘ is to the ground-truth function s corre-

sponding to each sample surface, and λreg is a weight term balancing the contribution of

reconstruction and regularization in the overall loss.

29

Chapter 4. DeepMesh: Differentiable Iso-Surface Extraction

In practice when s is a signed distance, we take Ldata to be the L1 loss

Ldata =
∑

S∈D

1

|XS |
∑

x∈XS

| fΘ(zS ,x)− s(x)| , (4.2)

where XS denotes sample 3D points on the surface S and around it. When s is an occupancy

map, we take Ldata to be the binary cross entropy loss

Ldata =− ∑
S∈D

1

|XS |
∑

x∈XS

s(x) log(fΘ(zS ,x)) (4.3)

+ (1− s(x)) log(1− fΘ(zS ,x)) .

Once trained, s is approximated by fΘ which is by construction continuous and differentiable

almost everywhere for all standard activation functions (ReLU, sigmoid, tanh...). Consequently,

S can be taken to be a level-set of {x ∈R3, fΘ(zS ,x) =α}, when α is zero for SDFs and typically

0.5 for occupancy grids. Since fΘ is defined up to a constant, we will refer to zero-crossings in

the rest of the paper for simplicity.

4.3.2 Differentiable Iso-Surface Extraction

Once the weightsΘ of Eq. 4.1 have been learned, fΘ maps a latent vector z to a signed distance

or occupancy field and the surface of interest is its zero level set. Recall that our goal is to

minimize the objective function Ltask introduced at the beginning of this section. As it takes as

input a mesh defined in terms of its vertices and facets, evaluating it and its derivatives requires

a differentiable conversion from an implicit field to a set of vertices and facets, something

that Marching Cubes does not provide, as depicted by Fig. 4.2(a). More formally, we need to

evaluate

∂Ltask

∂c
= ∑

x∈V

∂Ltask

∂x

∂x

∂c
, (4.4)

where the x are mesh vertices and therefore on the surface. c stands for either the latent z

vector if we wish to optimize Ltask with respect to z only or for the concatenation of the latent

vector and the network weights [z|Θ] if we wish to optimize with respect to both the latent

vectors and the network weights. Note that we compute ∂Ltask/∂c by summing over the mesh

vertices but we could use any other sampling of the surface.

Differentiating the Loss Function

In this work, we take inspiration from classical functional analysis [AJT02] and reason about

the continuous zero-crossing of the implicit function s rather than focusing on how vertex

coordinates depend on the implicit field fΘ when sampled by the marching cubes algorithm.

To this end, we prove below that

30

4.3. Method

Theorem 1 If the gradient of fΘ at point x located on the surface does not vanish, then
∂x
∂c =− n

‖n‖2
∂ fΘ(z,x)

∂c where n =∇ fΘ(x) is the normal to the surface at x.

Injecting this expression of ∂x/∂c into Eq. 4.4 yields

∂Ltask

∂c
=− ∑

x∈V

∂Ltask

∂x

∇ fΘ∥∥∇ fΘ
∥∥2

∂ fΘ
∂c

. (4.5)

Note that when s is an SDF, ‖∇s‖ = 1 and therefore ‖∇ fΘ‖ ≈ 1. The ‖∇ fΘ‖ term from Eq. 4.5

can then be ignored, which is consistent with the result we presented in [RLR+20].

Proof of Theorem 1. We start by stating the Implicit Function Theorem (IFT), which we later

use in our proof.

Theorem 2 (Implicit Function Theorem - IFT) Let F : Rm ×Rn → Rn and c0 ∈ Rm ,p0 ∈ Rn

such that:

1. F (c0,p0) = 0 ;

2. F is continuously differentiable in a neighborhood of (c0,p0) ;

3. the partial Jacobian ∂p F (c0,p0) ∈Rn×n is non-singular.

Then there exists a unique differentiable function p∗ :Rm →Rn such that:

1. p0 = p∗(c0) ;

2. F (c, p∗(c)) = 0 for all c in the above mentioned neighborhood of c0 ;

3. ∂p∗(c0) =−[
∂p F (c0,p0)

]−1
∂c F (c0,p0), that is, a matrix in Rn×m .

Intuitively, p∗ returns the solutions of a system of n equations—the n output values of F —with

n unknowns. For our purposes, c ∈Rm can be either the shape code and the network weights

jointly or the shape code only, as discussed above.

To apply the IFT to our problem, let us rewrite fΘ as a function M : Rm ×R3 → R that maps

c ∈ Rm and a point in p ∈ R3 to a scalar value M(c,p) ∈ R. The IFT does not directly apply to

M because it operates from Rm ×R3 into R instead of into R3. Hence, we must add two more

dimensions to the output space of M .

To this end, let c0 ∈ Rm ; p0 ∈ R3 such that M(c0,p0) = 0, meaning that p0 is on the implicit

surface defined by parameter c0; and u ∈R3 and v ∈R3 such that (u,v) is a basis of the tangent

plane to the surface {M(c0, ·) = 0} at p0. Let n = ∂p M(c0,p0) be the normal vector to the surface

31

Chapter 4. DeepMesh: Differentiable Iso-Surface Extraction

at p0. This lets us define the function F :Rm ×R3 →R3 as

F (c,p) 7→
(

M(c,p)
(p−p0)·u
(p−p0)·v

)
, (4.6)

By construction, we have n ·u = n ·v = 0 and F (c0,p0) = 0.

Note that the first value of the F (c,p) vector is zero when the point p is on the surface defined

by c while the other two are equal to zero when (p−p0) is perpendicular to the surface defined

by c0. By zeroing all three, p∗ returns a point p that is on the surface for c 6= c0 and such that

(p−p0) is perpendicular to the surface. A geometric interpretation is that p0 is the point on

the surface defined by c0 that is the closest to p∗(c). This is illustrated on Fig. 4.2(b).

Given the IFT applied to F , there is a mapping p∗ :Rm →R3 such that

1. p0 = p∗(c0) ;

2. F (c, p∗(c)) =
(

0
0
0

)
for all c in a neighborhood of c0 .

3. ∂p∗(c0) =−[
∂p F (c0,p0)

]−1
∂c F (c0,p0).

We have

∂c F (c0,p0) =
(
∂c M(c0,p0)

0
0

)
∈R3×m , (4.7)

∂p F (c0,p0) =
(

n
u
v

)
∈R3×3 (4.8)

Given that the last two rows of ∂c F (c0,p0) are zero, to compute ∂p∗(c0) according to the IFT,

we only need to evaluate the first column of
[
∂p F (c0,p0)

]−1. As the two last rows of ∂p F (c0,p0)

are u and v that are unit vectors such that u ·v = n ·u = n ·v = 0, that first column has to be

n/‖n‖2. Hence, we have

∂p∗(c0) =−[
∂p F (c0,p0)

]−1
∂c F (c0,p0) , (4.9)

=− n

‖n‖2 ∂c F (c0,p0) ∈R3×m .

Recall that p∗ maps a code c in the neighborhood of c0 to a 3D point such that

M(c, p∗(c)) = fΘ(p∗(c),z) = 0. In other words, p0 = p∗(c0) is a point on the implicit surface

defined by fΘ when c = c0 and we have

∂p0

∂c
=− n

‖n‖2 ∂c F (c0,p0) , (4.10)

=− n

‖n‖2

∂ fΘ(z,p0)

∂c
(4.11)

32

4.3. Method

here c either stands for the latent vector z or the concatenation of the latent vector and the

network weights [z|Θ]. �

In the above proof, the Implicit Function Theorem requires additional constraints to be

introduced for the gradients to be well defined. Enforcing those of Eq. 4.6 results in points

being mapped to their closest neighbor on the infinitesimally deformed surface. Our gradients

stem from this choice.

Forward and Backward Passes

Algorithm 1 DeepMesh Forward

1: input: latent code z, DIF weights Θ
2: output: surface mesh M = (V ,F)
3: assemble coarse 3D grid G
4: sample field on grid S = fΘ(z,G)
5: while G has not reached target resolution:
6: Gs = split(G)
7: S = S + fΘ(z,Gs)
8: G = G + Gs

9: extract iso-surface (V ,F) = MC(S)
10: Return M = (V ,F)

Algorithm 2 DeepMesh Backward

1: input: upstream gradient ∂L
∂v for v ∈V

2: output: downstream gradient ∂L
∂c

3: ∂L
∂ fΘ

(v) =−∂L
∂v

n
‖n‖2 for v ∈V

4: extra pass on samples ∂ fΘ
∂c (z,v)

5: Return ∂L
∂c =∑

v∈V
∂L
∂ fΘ

(v)∂ fΘ
∂c (v)

Recall that the goal of our forward pass is to extract surface mesh M = (V ,F) from an underly-

ing neural implicit field fΘ. Because sampling a DIF on a dense Euclidean Grid is computa-

tionally intensive, we use a hierarchical approach to reduce the total number of evaluations

during the forward and backward passes summarized by Algorithms 1 and 2.

We start by evaluating fΘ on a low resolution grid, and then iteratively subdivide each voxel and

re-evaluate the DIF only where needed until we reach a desired grid resolution, as in [MON+19,

VKS+21]. When our DIF is a signed distance function, we subdivide voxels if the field absolute

value on any of the voxel corners {| fΘ(xi)|}8
i=1 is smaller than the voxel diagonal

p
2∆x, where

∆x denotes voxel size. When it is an occupancy map, we only split voxels when the occupancy

map does not have the same value at all corners. For this to work well, we have to start from

a grid that roughly captures the object topology to make hierarchical iso-surface extraction

converge. In practice, we have found that starting with a 323 grid is enough.

33

Chapter 4. DeepMesh: Differentiable Iso-Surface Extraction

optimization iterations

(a) surface-to-surface distance

(b) image-to-image distance

initialization target

S T

Figure 4.3 – Topology-Variant Parameterization. We minimize (a) a surface-to-surface or (b)
an image-to-image distance with respect to the latent vector z to transform an initial shape into
a target one that has a different genus. This demonstrates that we can backpropagate gradient
information from mesh vertices to latent vector while modifying surface mesh topology.
During the optimization of z, it traverses parts of the latent space that do not correspond to
smooth or semantically valid output shapes, but it eventually reaches the target.

In this way, we can quickly obtain a high resolution DIF grid without needless computation far

away from the surface. Once the grid has been assembled, we use a GPU-accelerated marching

cubes algorithm [Yat20] to extract the vertices and vertex normals needed to perform the

backward pass. The backward pass then performs the computation of Eq. 4.5. This requires

computing the values of fΘ(z,v) and its derivatives ∂ fΘ
∂c (z,v) at the newly found vertices v. We

show that the resulting overhead is small in the results section.

In Algorithm 2, we use the mesh normals n instead of the normalized field gradients ∇ fΘ
‖∇ fΘ‖2

of Eq. 4.5. Preliminary experiments revealed that computing mesh normals is more compu-

tationally efficient compared to backpropagating through the network to obtain ∇ fΘ using

automatic differentiation. We observed an average angle difference of less than 1.5◦ between

n and ∇ fΘ, and no discernible difference in behavior when using the former as a substitute for

the latter.

4.4 Experiments

We first use synthetic examples to show that, unlike marching cubes, our approach allows

for differentiable topology changes. We then demonstrate that we can exploit surface mesh

differentiability to outperform state-of-the-art approaches on three very different tasks, Single

view 3D Reconstruction, Aerodynamic Shape Optimization, Structural Shape Optimization,

and Full Scene 3D Reconstruction from Scans. In these experiments, we use Theorem 1 with

c = z, that is, we only optimize with respect to shape codes while keeping the network weights

fixed. In the final subsection, we discuss an application in which we take c =Θ, that is, we

optimize with respect to the network weights.

34

4.4. Experiments

4.4.1 Differentiable Topology Changes

In the experiment depicted by Fig. 4.3 we train two separate networks fΘ1 and fΘ2 that imple-

ment the approximate implicit field of Eq. 4.1. fΘ1 is a deep occupancy network trained to

minimize the loss of Eq. 4.3 on two models of a cow and a rubber duck. They are of genus 0

and 1, respectively. fΘ2 is a deep signed distance function network trained to minimize the

loss of Eq. 4.2 on four different articles of clothing, a t-shirt, a pair of pants, a dress, and a

sweater. Note that the clothes are represented as open surface meshes without inside/out-

side regions. Hence, they are not watertight surfaces. To nevertheless represent them using

a signed distance function, we first compute unsigned distances to the surfaces, subtract

a small ε = 0.01 value and treat the result as a signed distance function. This amounts to

representing the garments as watertight thin surfaces of thickness 2ε. This approximation

allows us to use signed distances to represent garments, instead of having to resort to more

advanced techniques to model them as single layer meshes with unsigned distance fields

[ZWLS21, GSF22, CMPM20, LLL+22].

In short, fΘ1 associates to a latent vector z an implicit field fΘ1 (z) that represent a cow, a duck,

or a mix of the two, while fΘ2 associates to z a garment representation that can be a mixture of

the four it was trained on.

End-to-end Differentiability

In Fig. 4.3, we start from a shape S and find a vector z so that fΘx (z) with x ∈ {1,2} approximates

S as well as possible. We then use the pipeline of Sec. 4.3.2 to minimize a differentiable

objective function of z so that fΘx (z) becomes an approximation of a different surface T . In

the following experiments we only optimize the latent vector z, while the network parameters

Θx are frozen and act as a learned shape parameterization.

When using fΘ1 , we take the differentiable objective function to be minimized to be the

chamfer distance between the current surface C and the target surface T

Ltask1(C ,T) = min
c∈C

d(c,T)+min
t∈T

d(C , t) , (4.12)

where d is the point-to-surface distance in 3D. When using fΘ2 , we take it to be

Ltask2(C ,T) = ‖DR(C)−DR(T)‖1 , (4.13)

where DR is the output of a differentiable rasterizer [KUH18] rendering binary silhouettes. In

other words, Ltask1 is the surface-to-surface distance while Ltask2 is the image-to-image L1

distance between the two rendered surfaces.

In both cases, the left shape smoothly turns into the right one, and changes its genus to do

so. Note that even though we rely on a deep implicit field to represent our topology-changing

surfaces, unlike in [MPJ+19, JJHZ20, LZP+20, LWL19], we did not have to reformulate the loss

35

Chapter 4. DeepMesh: Differentiable Iso-Surface Extraction

functions in terms of implicit surfaces.

Comparison to Implicit Field Differentiable Rendering

Recent advances in differentiable rendering [JJHZ20, LZP+20, VSJ22] have shown that is possi-

ble to render continuous SDFs differentiably by carefully designing a differentiable version

of the sphere tracing algorithm. By contrast, we simply use DeepMesh’s end-to-end differ-

entiability to exploit an off-the-shelf differentiable rasterizer of meshes to achieve the same

result.

To highlight the advantages of doing so, we take fΘ1 , initialize the latent code z to the one of

the cow, and then minimize the silhouette distance Ltask2 with respect to the duck. In Tab. 4.1

we compare our approach to [LZP+20]. Sphere tracing requires to query the network along

each camera ray in a sequential fashion, resulting in longer computational time with respect to

our approach, which projects surface triangles to image space and rasterizes them in parallel.

Furthermore, our approach requires fewer function evaluation, as we do not need to sample

densely the volume around the zero-crossing of the field.

Method 103 · l2 silhouette distance ↓ # network queries ↓ run time [s] ↓

Sphere Tracing [LZP+20] 5.97 898k 1.24
DeepMesh 4.63 266k 0.29

Table 4.1 – Comparison to Implicit Field Differentiable Rendering. To fit a 2D silhouette,
rendering the implicit field with sphere tracing [LZP+20] (most efficient settings, 5122 pixel
renderings) is slower and less effective than extracting an explicit mesh with our method
and rendering it with an off-the-shelf mesh rasterizer [KUH18] (isosurface at 2563, 5122 pixel
renderings).

Iso-Surface Extraction Method

Our gradients are independent of the meshing procedure and mesh structure to which we

apply them. This is demonstrated in Fig. 4.4 by repeating the optimization of the latent

code z to minimize the surface-to-surface distance Ltask1 of Eq. 4.12 using three different

approaches to extracting 3D meshes from iso-surfaces: Marching cubes [LLVT03], marching

tetrahedra [DK91] and dual contouring [JLSW02]. These methods yield different meshes, but

the underlying 3D surfaces they represent after optimization are almost identical. For practical

purposes and for all other experiments, we use marching cubes due to the availability of

efficient implementations [Yat20] that can easily interface with PyTorch [PGC+17].

4.4.2 Single view 3D Reconstruction

Single view 3D Reconstruction (SVR) has emerged as a standardized benchmark to evaluate 3D

shape representations [CXG+16a, FSG17, GFK+18, WZL+18, CZ19, MON+19, PKS+18, GMJ19,

36

4.4. Experiments

M
ar

ch
in

g
Cu

be
s

M
ar

ch
in

g
Te

t.
Du

al
 C

on
to

ur
in

g

Figure 4.4 – Different surface extraction methods yield the same surface-to-surface optimiza-
tion as in Fig. 4.3(a), and our gradients can be used equally well with Marching Cubes (top),
Marching Tetrahedra (middle) or Dual Contouring (bottom).

RR18, XWC+19, TRR+19]. We demonstrate that it is straightforward to apply our approach

to this task on two standard datasets, ShapeNet [CFG+15] and Pix3D [XJX+18], and improve

standard architecture with a refinement step that performs analysis by synthesis, a procedure

also called render-and-compare.

Differentiable Meshes for SVR.

As in [MON+19, CZ19], we condition our deep implicit field architecture on the input images

via a residual image encoder [HZRS16], which maps input images to latent code vectors z.

These latent codes are then used to condition the architecture of Sec. 4.3.1 and compute the

value of deep implicit function fΘ. Finally, we minimize Limp (Eq. 4.1) wrt. Θ on a training

set of image-surface pairs generated on the ShapeNet Core [CFG+15] dataset for the cars

and chairs object classes. Each object class is split into 1210 training and 112 testing shapes,

each of which is paired with the renderings provided in [XWC+19]. 3D supervision points

are generated according to the procedure of [PFS+19]. To showcase that our differentiability

results work with any implicit representation, we train networks that output either signed

distance fields or occupancy fields. To this end, we minimize the loss functions Eqs. 4.2 and 4.3,

respectively.

We begin by using the differentiable nature of our mesh representation to refine the output of

an encoder, as depicted by the top row of Fig. 4.1. As in many standard methods, we use our

encoder to predict an initial latent code z. Then, unlike in standard methods, we refine the

predicted shape M , that is, given the camera pose associated to the image and the current

37

Chapter 4. DeepMesh: Differentiable Iso-Surface Extraction

Metric Model Refine car chair

CHD ·104 ↓

None 3.02 11.18
Occ. DR 2.86 (↓ 5.3%) 10.92 (↓ 2.3%)

CHD 2.65 (↓ 12.3%) 10.35 (↓ 7.4%)
None 2.96 9.07

SDF DR 2.73 (↓ 7.8%) 8.83 (↓ 2.6%)
CHD 2.56 (↓ 13.5%) 8.22 (↓ 9.4%)

NC % ↑

None 92.17 77.26
Occ. DR 92.07 (↓ 0.1%) 78.98 (↑ 2.2%)

CHD 92.36 (↑ 0.2%) 78.49 (↑ 1.6%)
None 92.29 78.74

SDF DR 92.22 (↓ 0.1%) 80.02 (↑ 1.6%)
CHD 92.56 (↑ 0.3%) 80.17 (↑ 1.8%)

Table 4.2 – SVR ablation study on ShapeNet Core. We exploit end-to-end differentiability
to perform image-based refinement using either occupancy maps (Model=Occ.) or signed
distance functions (Model=SDF). We report 3D Chamfer distance (Metric=CHD) and normal
consistency (Metric=NC) for raw reconstructions (Refine=None), refinement via differentiable
rendering (Refine=DR) and contour matching (Refine=CHD).

value of z, we project the reconstructed mesh back to the image plane so that the projection

matches the object silhouette S in the image as well as possible. To this end, we define the

task-specific loss function Lt ask to be minimized, as discussed in Section 4.3, in one of two

ways:

Ltask3 = ‖DRsilhouette(M (z))−T ‖1 , (4.14)

Ltask4 =
∑

a∈A
min
b∈B

‖a −b‖2 + ∑
b∈B

min
a∈A

‖a −b‖2 . (4.15)

In Eq. 4.14, T denotes the silhouette of the target surface and DRsilhouette is the differentiable

rasterizer of [KUH18] that produces a binary mask from the mesh generated by the latent

vector z. In Eq. 4.15, A ⊂ [−1,1]2 denotes the 2D coordinates of T ’s external contour while

B ⊂ [−1,1]2 denotes those of the external contour of M (z). We refer the reader to [GRYF21]

and the next chapter of this thesis for more details on this objective function. Note that, unlike

that of Ltask3, the computation of Ltask4 does not require a differentiable rasterizer.

Recall that we can use either signed distance functions or occupancy fields to model objects.

To compare these two approaches, we ran 400 gradient descent iterations using Adam [KB15b]

to minimize either Ltask3 or Ltask4 with respect to z. This yields four possible combinations

of model and loss function and we report their respective performance in Tab. 4.2. They are

expressed in terms of two metrics:

• The 3D Chamfer distance for 10000 points on the reconstructed and ground truth

surfaces, in the original ShapeNet Core scaling. The lower, the better.

• A normal consistency score in image space computed by averaging cosine similarities

38

4.4. Experiments

0 100 200 300 400

2

4

6

C
H

D
:

C
ar

s

0 100 200 300 400
Iterations

5

10

15

20

C
H

D
:

C
h

ai
rs

Figure 4.5 – CHD improvement over the 400 refinement iterations of DeepMesh for cars (top)
and chairs (bottom), grouped by quartile in the initial CHD value (from orange = worse 25%
of initial shapes, to blue = top 25%). Here DeepMesh uses an SDF and refines the contour
matching.

between reconstructed and ground truth rendered normal maps from 8 regularly spaced

viewpoints. The higher, the better.

We have four configurations in total: an SDF or Occupancy network, with refinement using

Ltask3 (DR) or Ltask4 (CHD). All four configurations deliver an improvement in terms of both

metrics compared to using the trained network in a simple feed-forward manner. However,

the combination of using a signed distance field and minimizing the 2D chamfer distance

of Ltask4 delivers the largest one. We will therefore refer to it as DeepMesh and use it in the

remainder of this section, unless otherwise specified.

In Fig. 4.5 we show the Chamfer distance changing over the 400 refinement iterations of

DeepMesh on both car and chair categories. We group the test shapes into quartiles according

to their initial Chamfer distance with their corresponding ground truth mesh, and compute

the average of each quartile. The Chamfer distance is mostly improved for shapes that have a

high initial reconstruction error. For the 3 quartiles that have the best initial reconstruction

accuracy, the CHD decrease is smaller and mostly takes place during the first iterations.

Although the decrease is small for the first quartile, there still is an improvement from 1.27 to

1.24 for cars, and from 2.65 to 2.35 for chairs. We hypothesize that signed distance networks

perform better due to the 3D supervision points being generated according to the procedure

of [PFS+19], which might favor SDF networks over Occupancies.

Comparative Results on ShapeNet

In Tab. 4.3, we compare our approach against state-of-the-art reconstruction approaches

of watertight meshes: Generating surface meshes with fixed topology [WZL+18], generat-

ing meshes from voxelized intermediate representations [GMJ19], and representing surface

meshes using signed distance functions [XWC+19]. We used the standard train/test splits and

renderings described above for all benchmarked methods.

DeepMesh (raw) refers to reconstructions obtained using our encoder-decoder architecture

based on signed distance fields but without refinement, which is similar to those of [MON+19,

CZ19], without any further refinement, whereas DeepMesh incorporates the final refinement

39

Chapter 4. DeepMesh: Differentiable Iso-Surface Extraction

Metric Method car chair

CHD ·104 ↓

Mesh R-CNN [GMJ19] 4.55 11.13
Pixel2Mesh [WZL+18] 4.72 12.19

DISN [XWC+19] 3.59 8.77
DeepMesh (raw) 2.96 9.07

DeepMesh 2.56 8.22

NC % ↑

Mesh R-CNN [GMJ19] 89.09 74.82
Pixel2Mesh [WZL+18] 89.00 72.21

DISN [XWC+19] 91.73 78.58
DeepMesh (raw) 92.29 78.74

DeepMesh 92.56 80.17

Table 4.3 – SVR comparative results on ShapeNet Core. Exploiting end-to-end differentiabil-
ity to perform image-based refinement allows us to outperform state-of-the-art methods in
terms of both 3D Chamfer distance (CHD) and normal consistency (NC).

Metric DISN [XWC+19] DeepMesh (raw) DeepMesh

CHD ·103 ↓ 5.150 4.850 4.063(↓ 16.3%)
NC % ↑ 56.94 62.76 64.28 (↑ 2.4 %)

Table 4.4 – SVR comparative results on Pix3D Chairs. Our full approach outperforms our
best competitor in all metrics on real images.

that the differentiability of our approach allows. DeepMesh (raw) performs comparably to the

other methods whereas DeepMesh does consistently better. In other words, the improvement

can be ascribed to the refinement stage as opposed to differences in network architecture. We

provide additional results and describe failure modes in the appendix.

Comparative results on Pix3D.

Whereas ShapeNet contains only rendered images, Pix3D [XJX+18] is a test dataset that com-

prises real images paired to 3D models. Here, we focus on the chair object category and discard

truncated images to create a test set of 2530 images. We use it to compare our method with our

best competitor [XWC+19] according to Tab. 4.3. To this end, we use the same networks as for

ShapeNet, that is, we do not fine-tune the models on Pix3D images. Instead, we train them only

on synthetic chair renderings so as to encourage the learning of stronger shape priors. Testing

these networks on real images introduces a large domain gap because synthetic renderings do

not account for complex lighting effects or variations in camera intrinsic parameters.

We report our results in Tab. 4.4 and in Fig. 4.6. Interestingly, in this more challenging setting

using real-world images, our simple baseline DeepMesh (raw) already performs on par with

more sophisticated methods that use camera information [XWC+19]. As for ShapeNet, our

full model DeepMesh outperforms all other approaches.

40

4.4. Experiments

Image Pixel2Mesh [WZL+18] DISN [XWC+19] DeepMesh(raw) DeepMesh

Figure 4.6 – Comparative results for SVR on Pix3D. We compare our refined predictions to
runner-up approaches for the experiment in Tab. 4.4. DeepMesh can represent arbitrary
topology as well as learn strong shape priors, resulting in reconstructions that are consistent
even when observed from view-points different from the input one. For more results see
Appendix.

4.4.3 Aerodynamic Shape Optimization

Computational Fluid Dynamics (CFD) plays a central role in designing cars, airplanes and

many other machines. It typically involves approximating the solution of the Navier-Stokes

41

Chapter 4. DeepMesh: Differentiable Iso-Surface Extraction

equations using numerical methods. Because this is computationally demanding, surrogate

methods [TK11, XLY+17, BRFF18, UB18] have been developed to infer physically relevant

quantities, such as pressure fields, drag, and lift directly from 3D surface meshes without per-

forming actual physical simulations. This makes it possible to optimize these quantities with

respect to the 3D shape using gradient-based methods and at a much lower computational

cost.

In practice, the space of all possible shapes is immense, and directly optimizing the vertices of

a template car would result in invalid meshes. Therefore, for the optimization to work well,

one has to parameterize the space of possible shape deformations, which acts as a strong

regularizer. In [BRFF18, UB18] hand-crafted surface parameterizations were introduced.

It was effective but not generic and had the potential to significantly restrict the space of

possible designs. We show here that we can use DeepMesh to improve upon hand-crafted

parameterizations.

Experimental Setup.

We started with the ShapeNet car split by automatic deletion of all the internal car parts

[SSB13] and then manually selected N = 1400 shapes suitable for CFD simulation. For each

surface Mi we ran OpenFoam [JJT+07] to predict a pressure field pi exerted by air traveling

at 15 meters per second towards the car. The resulting training set {Mi , pi }N
i=1 was then used

to train a Mesh Convolutional Neural Network [FLWM18] gβ to predict the pressure field

p = gβ(M), as in [BRFF18]. We use {Mi }N
i=1 to also learn the representation of Sec. 4.3.1 and

train the network that implements fΘ of Eq. 4.1. As in Section 4.4.2, we train both an occupancy

network and signed-distance network, which we dub DeepMesh-OCC and DeepMesh-SDF,

respectively.

The shapes are deformed to minimize the aerodynamic objective function

Ltask5(M) =
Ï

M
gβnx dM +Lconstraint(M)+Lreg(M) , (4.16)

where nx denotes the projection of surface normals along airflow direction, the integral

term approximates drag given the predicted pressure field [MOHR13], Lconstraint is a loss

that forces the result to preserve space the engine and the passenger compartment, and

Lreg is a regularization term that prevents z from moving too far away from known shapes.

Lconstraint and Lreg are described in more detail in the appendix. Ltask5 is formulated as

a global optimization, and does not explicitly encourage the optimized shape to adhere to

the initial one. However, because of the complex landscape of the latent space, different

initializations converge to different shapes, as visualized in the supplementary material.

42

4.4. Experiments

DeepMesh-SDF

PolyCube

FreeForm

pmax0pmi n

0.597

0.852

0.889

optimized shapeinitial shape

Figure 4.7 – Drag minimization. Starting from an initial shape (left column), Ltask is mini-
mized using three different parameterizations: FreeForm (top), PolyCube (middle), and our
DeepMesh (bottom). The middle column depicts the optimization process and the relative
improvements in terms of Ltask. The final result is shown in the right column. FreeForm and
PolyCube lack a semantic prior, resulting in implausible details such as sheared wheels (or-
ange inset). By contrast, DeepMesh not only enforces such priors but can also effect topology
changes (blue inset).

Parameterization None Scaling FreeForm [BRFF18] PolyCube [UB18] DeepMesh-SDF DeepMesh-OCC

Degrees of Freedom ∼ 100k 3 21 ∼ 332 256 256
Simulated L %

task ↓ not converged 0.931±0.014 0.844±0.171 0.841±0.203 0.675±0.167 0.721±0.154

Table 4.5 – CFD-driven optimization.We minimize drag on car shapes comparing different
surface parameterizations. Numbers in the table (avg ± std) denote relative improvement
of the objective function L %

task = Ltask/L t=0
task for the optimized shape, as obtained by CFD

simulation in OpenFoam.

Comparative Results.

We compare our surface parameterizations to several baselines: (1) vertex-wise optimization,

that is, optimizing the objective with respect to each vertex; (2) scaling the surface along its 3

principal axis; (3) using the FreeForm parameterization of [BRFF18], which extends scaling to

higher order terms as well as periodical ones and (4) the PolyCube parameterization of [UB18]

that deforms a 3D surface by moving a pre-defined set of control points.

We report quantitative results for the minimization of the objective function of Eq. 4.16 for

a subset of 8 randomly chosen cars in Table 4.5, and show qualitative ones in Fig. 4.7. Not

only does our method deliver lower drag values than the others but, unlike them, it allows

for topology changes and produces semantically correct surfaces as shown in Fig. 4.7(c). We

provide additional results in the appendix. As can be seen in Table 4.2, DeepMesh-SDF slightly

outperforms DeepMesh-OCC. We conjecture this is due to our sampling strategy, which follows

closely the one of [PFS+19] and might therefore favor SDF networks.

43

Chapter 4. DeepMesh: Differentiable Iso-Surface Extraction

(a)

(b)

(c)

initial shape
optimized shape

Figure 4.8 – Stress minimization. (a) Beams are attached to a wall on their left side and bear a
constant load on their right side. They are all of the same length, but have variable thickness,
height, and number of randomly positioned holes. (b,c) Starting from two initial beams,
we use our DeepMesh parameterization and minimize both mechanical stresses—shown as
colors—and volume. This allows for changing their topology and results in plausible beams.

4.4.4 Structural Shape Optimization

We investigated another application of DeepMesh as a data-driven parameterization for opti-

mizing physical attributes of 3D surfaces which can change their topology. More specifically,

we considered the optimization of cantilever beams with respect to two conflicting objectives,

minimizing the stress under load while minimizing their volume, and thus their weight.

We procedurally generated N = 7000 3D beams of fixed length, but with variable width and

height, and a random number—between 0 and 10—of circular holes, as shown in Fig. 4.8(a).

For each resulting surface Mi , we used the finite element solver FINO [Sea16] to compute its

stress si when a load of 1000 Newtons is attached to its right side. As for aerodynamic shape

optimization, the resulting training set {Mi , si }N
i=1 was then used to train a Mesh Convolutional

Neural Network [FLWM18] gβ to predict the stress field on the surface s = gβ(M). We also use

our training set to learn the latent vector representation of Sec. 4.3.1 and train the network

that implements fΘ of Eq. 4.1 and represents the beams’ shapes in terms of a signed distance

function.

As in the case of aerodynamic shape optimization case, shapes can then be deformed to

minimize the objective function

Ltask6(M) =
Ï

M
gβdM +λLvolume(M)+Lreg(M) , (4.17)

with respect to the latent vector representing them. Here, the integral term approximates

the mean stress on the surface given the predictions of the network gβ, Lvolume is a loss

encouraging the beams to have a small volume, λ is a scalar balancing the two objectives, and

Lreg is the regularization term of Eq. 4.16. Lvolume penalizes low SDF values on a regular 3D

grid G of query points. We write it as

Lvolume(M) = ∑
x∈G

− fΘ(z,x) ,

44

4.4. Experiments

Original Optimized
CHD ↓ 0.954 0.529
IoU ↑ 81.67 % 88.74 %

Table 4.6 – Refining reconstructed scenes from ConvOccNet.

Raw Refined

Figure 4.9 – Refining CON [PNM+20] scenes. Using our differentiable surface extraction, we
can refine CON features so that the output mesh better matches the input scene point cloud.
This fixes artefacts on the table, and reconstructs finer details on the wardrobe from the scene
in Fig. 4.1(c - left). Chamfer error are shown in red, and reduced after refinement.

which decreases with the volume of M .

Fig. 4.8(b,c) shows two such optimization, starting from two different initial latent codes. In

both cases, holes that are weakening the beams are removed, and the beams undergo drastic

topology changes. The optimized shapes have smaller volumes, with a single large opening

between the upper and lower parts of the structure.

4.4.5 Scene Reconstruction

In the examples of Section 4.4.2 and 4.4.3, we had access to code and training data that enabled

us to compare the performance of SDFs and occupancy grids and found out experimentally

that the former tend to perform better. However, there are situations in which we only have

access to a network that produces occupancy fields without any easy way to transform it into

one that produces SDFs. In this section, we show that the ability of our method to handle not

only SDFs but also occupancy fields is valuable.

We use the pretrained scene reconstruction network of [PNM+20] that regresses an occupancy

45

Chapter 4. DeepMesh: Differentiable Iso-Surface Extraction

Metric Category DeepSDF DeepMesh

CHD ·104 (↓)
Chairs 2.75 2.56 (↓ 6.9 %)
Lamps 8.12 7.59 (↓ 6.5 %)

NC (↑)
Chairs 80.9 81.9 (↑ 1.2 %)
Lamps 73.9 75.1 (↑ 1.6 %)

Table 4.7 – End-to-end training. We exploit end-to-end-differentiability to fine-tune pre-
trained DeepSDF networks in order to minimize directly surface-to-surface (Chamfer) distance.
This improves Chamfer distance (CHD) and normal consistency (NC) on the testset.

field from sparse point clouds describing indoor scenes. We use 10k points as in the original

paper. A point cloud P is first encoded into a set of feature vectors of size 32. These are stored

over a 3D feature grid G ∈ R32×32×32×32 and in three projected 2D feature planes P1,P2,P3 ∈
R128×128×32, all aligned with the input point cloud. These features are linearly interpolated in

space and decoded into occupancy values. We transform the resulting occupancy field into a

differentiable mesh Mz using our framework, where z = [G|P1|P2|P3] is the concatenation of

the feature grids.

Using the differentiability of the mesh, we minimize with respect to z the single-sided Chamfer

distance

Ltask6 =
∑

p∈P
min
a∈Mz

‖a −b‖2 , (4.18)

between the reconstructed mesh and P , where a ∈ Mz represents 10k points sampled over the

mesh.

In Tab. 4.6 we compute the average Chamfer distance and Intersection over Union (IoU)

[PNM+20] with the ground truth meshes for the 2 provided test scenes. The improvements

are substantial, as can be seen in Fig. 4.1(c) and Fig. 4.9.

4.4.6 End-to-End Training

In all previous examples, we considered a pre-trained network fΘ and optimized with respect

to the latent variables it takes as input. We now demonstrate that our differentiable isosurface

extraction scheme can also be used to train fΘ and to backpropagate gradients to the network

weights Θ. In other words, we consider the setting where c =Θ in Theorem 1 and show how it

can be used to improve the performance of a DeepSDF network.

Let us therefore assume that the network fΘ implements DeepSDF, as described in [PFS+19].

In the original paper, Θ along with the latent representations are learned by minimizing the

implicit loss function Limp of Eq. 4.1 and its accuracy is assessed in terms of the chamfer

46

4.4. Experiments

DeepSDF DeepMesh

Figure 4.10 – Learning network weights by minimizing the Chamfer loss. DeepSDF is
trained by minimizing errors on predicted SDF values, which can result in thin components
being poorly reconstructed. DeepMesh is trained by also minimizing Chamfer distances,
which penalizes such mistakes. The resulting network reconstructs thin structures better.

distance between target shapes and reconstructed ones. It can be written as

Lchamfer =
∑

p∈P
min
q∈Q

‖p−q‖2
2 +

∑
q∈Q

min
p∈P

‖p−q‖2
2 , (4.19)

where P and Q denote surface samples, 10K in our implementation. Computing Lchamfer

requires triangulating, which can be done differentiably in our framework. This gives us the

option to train fΘ not only by minimizing Lchamfer, as in the original method, but by minimizing

Limp +Lchamfer. In other words, we can optimize directly with respect to a relevant metric.

In practice, we first minimize Limp to learn a first version of Θ and of the latent vectors z of

Eq. 4.1. As described in [PFS+19], this yields a network that we will refer to as DeepSDF. We

then freeze the latent vectors and minimize Limp +Lchamfer with respect to Θ. This yields

a second network that we will refer to as DeepMesh. We do this for the chairs and lamps

categories of ShapeNet [CFG+15]. For chairs, we use the same data split and samples as in

Sec. 4.4.2. We apply the same pre-processing steps to lamps, remove duplicates from the

original dataset, and use 1100 training shapes and 106 testing shapes.

We compare DeepSDF and DeepMesh qualitatively in Fig. 4.10 and quantitatively in Tab. 4.7,

where we report metrics on the test sets by fitting latent codes to SDF samples of unseen

shapes. Minimizing Lchamfer delivers a substantial boost. This is especially true for lamps

because they feature thin structures for which even a small error in the predicted SDF values

can result in a substantial surface misalignment.

One limitation of our approach is that we cannot use it to train a network from scratch because

our gradient computation is only valid at the iso-surface. To ensure the field remains a valid

implicit representation (e.g. signed distance) throughout the entire volume, regularization

is necessary - an issue we explore further in the appendix. In this specific scenario, where

47

Chapter 4. DeepMesh: Differentiable Iso-Surface Extraction

In the implicit domain
Operation Time

Forward: compute fields values for 8192 points 4 ms.
Backward: from fields values to latent code 8 ms.

With an explicit mesh
Operation Time

Forward, naive: create mesh with dense grid + CPU
marching cubes

785 ms.

Forward, optimized: create mesh with sparse grid + GPU
marching cubes

29 ms.

Backward: from mesh vertices to latent code 6 ms.

Table 4.8 – Execution speed for forward and backward passes, either directly in the implicit
domain or with our method providing an explicit mesh. For using a mesh, we list runtimes of
a naive and an optimized implementation of isosurface extraction.

volumetric supervision is available, we simply initialize the network using Limp and retain this

term during the fine-tuning phase. An alternative approach involves initializing the signed

distance function with that of a sphere [MCR22].

4.4.7 Execution Speed

We now turn to measuring the execution speed of our method and the overhead it incurs over

a simple supervision of implicit fields values. In Tab. 4.8, we compare forward and backward

times for losses either on the field’s values (Ld at a of Eq. 4.2) or through isosurface extraction

(Lchamfer of Eq. 4.19). The network is a DeepSDF with 8 layers of size 512, and we report

average times over the testing chairs of ShapeNet. For Ld at a we apply it on the default amout

of 8192 points per batch. For Lchamfer we run isosurface extraction at resolution 1283. The

machine we run this test on uses an NVidia V100 GPU with an Intel Xeon Gold 6240 CPU.

A naive isosurface extraction is 2 orders of magnitude slower than simply computing SDF

values. However, with the coarse-to-fine strategy presented in Sec. 4.3.2, the overhead is

reasonable and allows for efficient training. Note also that the backwards pass of our method

is slightly faster than with direct supervision of SDF values. This is because we backpropagate

from the surface points only, instead of samples over the entire volume.

4.5 Conclusion

We have introduced DeepMesh, a new approach to extracting 3D surface meshes from continu-

ous deep implicit fields while preserving end-to-end differentiability. This makes it possible to

combine powerful implicit models with objective functions requiring explicit representations

such as surface meshes.

48

4.5. Conclusion

DeepMesh has the potential to become a powerful Computer Assisted Design tool because

allowing differential topology changes of explicit surface parameterizations opens the door to

new applications. In future work, we will further extend our paradigm to Unsigned Distance

Functions to handle open surfaces without having to thicken them, as we did here. We also

plan to exploit Generative Adversarial Networks operating on surface meshes [CBZ+19] to

increase the level of realism of the surfaces we generate. Furthermore, our method still requires

3D supervision on the field at training time. In the future, we plan to address this with recent

approaches that allow learning implicit representations from raw data [AL20a].

49

5 Sketch2Mesh: Reconstructing and
Editing 3D Shapes from Sketches

This chapter is based on the conference paper [GRYF21]:

B. Guillard∗, E. Remelli∗, P. Yvernay, and P. Fua, Sketch2mesh: Reconstructing and Editing

3D Shapes from Sketches, at ICCV, 2021.

5.1 Introduction

Reconstructing 3D shapes from hand-drawn sketches has the potential to revolutionize the

way designers, industrial engineers, and artists interact with Computer Aided Design (CAD)

systems. Not only would it address the industrial need to digitize vast amounts of legacy

models, an insurmountable task, but it would allow practitioners to interact with shapes by

drawing in 2D, which is natural to them, instead of having to sculpt 3D shapes produced by

cumbersome 3D scanners.

Current deep learning approaches [LGK+17, DAI+18, ZGZS20, ZQG+20] that regress 3D point

clouds and volumetric grids from 2D sketches have shown promise despite being trained

(a) Reconstructing (b) Editing

Figure 5.1 – Sketch2Mesh. We propose a pipeline for reconstructing and editing 3D shapes
from line drawings. We train an encoder/decoder architecture to regress surface meshes from
synthetic sketches. Our network learns a compact representation of 3D shapes that is suitable
for downstream optimization: (a) When presented with sketches drawn in a style different
from that of the training ones– for example a real drawing – aligning the projected external
contours to the input sketch bridges the domain gap. (b) The same formulation can be used
to enable unexperienced users to edit reconstructed shapes via simple 2D pen strokes.

51

Chapter 5. Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches

on synthetic data, but yield coarse 3D surface representations that are cumbersome to edit.

Furthermore, they require multi-view sketches for effective reconstruction [DAI+18] or are

restricted to a fixed set of views [LGK+17].

Meanwhile Single View Reconstruction (SVR) approaches have progressed rapidly thanks to

the introduction of new shape representations [GFK+18, PFS+19, MON+19, RLR+20] along

with novel architectures [WZL+18, GMJ19, GRF20, XWC+19] that exploit image-plane feature

pooling to align reconstructions to input images. Hence, it can seem like a natural idea to also

use them for reconstruction from sketches. Unfortunately, as we will show, the sparse nature

of sketch images makes it difficult for state-of-the-art SVR networks relying on local feature

pooling from the image plane to perform well. This difficulty is compounded by the fact that

different people sketch differently, which introduces a great deal of variability in the training

process and makes generalization problematic. Furthermore, these architectures do not learn

a compact representation of 3D shapes, which makes the learned models unsuitable for down

stream applications requiring a strong shape prior, such as shape editing.

To overcome these challenges, we train an encoder/decoder architecture [RLR+20] to produce

a 3D mesh estimate given an input line drawing. This yields a compact latent representation

that acts as an information bottleneck. At inference time, given a previously unseen camera-

calibrated sketch, we compute the corresponding latent vector and refine its components to

make the projected 3D shape it parameterizes match the sketch as well as possible. In effect,

this compensates for the style difference between the input sketch and those that were used

for training purposes. We propose and investigate two different ways to do this:

1. Sketch2Mesh/Render. We use a state-of-the-art image translation technique [IZZE17]

trained to synthesize foreground/background images from sketches and then use the

resulting images as targets for differentiable rasterization [RLT+20, RLR+20, PFAK20].

2. Sketch2Mesh/Chamfer. We directly optimize the position of the 3D shape’s projected

contours to make them coincide with those of the input sketch by minimizing a 2D

Chamfer distance.

Remarkably, Sketch2Mesh/Chamfer, even though simpler, works as well or better than

Sketch2Mesh/Render. The former exploits only external object contours for refinement pur-

poses, which helps with generalization because most graphics designers draw these external

contours in a similar way. It also makes it unnecessary the auxiliary network that turns sketches

into foreground/background images.

A further strength of Sketch2Mesh/Chamfer is that it does not require backpropagation from

a full rasterized image but only from sparse contours. Hence, it is naturally applicable for

local refinement given a camera-calibrated partial sketch. And, unlike earlier work [NSACO05,

KHR02, KG07] on shape editing from local pen strokes it allows us to take into account a strong

shape prior by relying on the latent vector, ensuring that shapes can be edited robustly with

sparse 2D pen strokes.

52

5.2. Related Work: 3D Reconstruction from Sketches

5.2 Related Work: 3D Reconstruction from Sketches

Reconstructing 3D models from line drawings has also been an active research area for many

decades. Early attempts tackled the inherent ambiguity of this inverse problem by either as-

suming that the drawn lines represent specific shape features [MM89, IMT06] or by constrain-

ing the class of 3D shapes that can be handled [LF92, LS96, CSMS13, JHR+15]. More recently

inflatable surface models [DSC+20] demonstrated easy animation of the reconstructed shapes,

but still constrain the artist to draw from a side view of the object and are limited to a fixed

topology. The emergence of deep learning has given rise to models [LGK+17, DAI+18, JFD20]

that can be far more expressive and have therefore boosted both the performance and gener-

alization of algorithms that parse sketches into 3D shapes. Given an input sketch, [LGK+17]

regress depth and normal maps from 12 viewpoints, and fuse them to obtain a dense point

cloud from which a surface mesh is extracted. Their pipeline, however, must be trained for

each input sketch viewpoint, making it incompatible with a free viewpoint sketching interface.

In [DAI+18], a 3D convolutional network trained on a catalog of simple shape primitives

regresses occupancy grids from sketches. In addition to the limited output resolution, a refine-

ment strategy based on sketches from multiple views is needed for effective reconstruction.

[JFD20] jointly projects 3D shapes and their front, side and top views occluding contours in

the embedding space of a VAE. Their pipeline is trained on a single sketch style (occluding

contours) and outputs volumetric grids. At inference time it retrieves the closest embedding

code that was seen during training, thus limiting its generalization capabilities.

Single View Reconstruction. Recently, Single View Reconstruction (SVR) from RGB images

has also experienced tremendous progresses thanks to both the introduction of new shape

representations discussed above and to he introduction of new SVR architectures [WZL+18,

GMJ19, GRF20, XWC+19] relying on image-plane feature pooling to align reconstructions to

input images. Unfortunately, many of these methods rely on feature pooling and therefore lack

a compact latent representation that can be used for downstream applications that require

strong shape priors, such as refinement or editing. However, there are SVR methods that

feature compact surface representations and we discuss below those that leverage either

differentiable rendering or contours, as we do.

Refinement using differentiable rendering. Recent work [RLT+20, RLR+20, PFAK20] has

shown that 2D buffers -such as silhouettes or depth maps- can be used to refine 3D re-

constructions produced by encoder/decoder architectures and thus allow networks trained

on synthetic RGB renders to yield accurate reconstruction on real world images. These ap-

proaches rely on either estimating 2D buffers from input images — using state-of-the-art

segmentation/depth estimation networks trained on large-scale real world datasets [LMB+14]

— or acquiring the additional information through specific sensors. Applying refinement

techniques to line-drawings would require to use an auxiliary network to infer occupancy

masks from input sketches. However we found that such networks struggle at generalizing

to different sketching styles. This is due to the lack of diversified large-scale line-drawings

datasets [GSH+19], and makes refinement through differentiable rasterization less effective,

53

Chapter 5. Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches

𝑆!"

"𝐹

𝑆#"

(a) (b) (c)

Figure 5.2 – External contours in 2D and 3D. (a) The external contours of the projected mesh
are shown in orange. They form the S2D set of Eq. 5.4. (b) The corresponding 3D points on the
mesh are also overlaid in orange. They form the S3D set of Eq. 5.3. (c) We filter the original
sketch to keep only the external contours, which will be matched against S2D .

or in some cases detrimental.

Refinement by matching Silhouettes. Silhouettes have long been used to track articulated

and rigid objects by modeling them using volumetric primitives whose occluding contours

can be computed given a pose estimate. The quality of these contours can then be evalu-

ated using either the chamfer distance to image edges [GD95] or more sophisticated mea-

sures [ST03, AT04]. Other approaches to exploiting external contours rely on minimizing the

distance between the 3D model and the lines of sights defined by these contours [ISF07]. Our

approach follows this tradition but combines silhouette alignment to a far more powerful

latent representation.

5.3 Method

5.3.1 Formalization

Let C ∈ {0,1}H×W be a binary image representing a sketch and let Λ : R3 → R2 denote the

function that projects 3D points into that image. By convention, C[i , j] is 0 if it is marked by a

pen stroke, and C[i , j] = 1 otherwise.

We learn an encoder E and a decoder D such that D ◦E (C) yields a mesh MΘ = (VΘ,FΘ).

Θ = E (C) is the latent vector that parameterizes our shapes. VΘ and FΘ represent the 3D

vertices and facets. In practice, we use the MeshSDF encoding/decoding network architecture

of [RLR+20]. In general, MΘ represents a 3D shape whose projection Λ(MΘ) only roughly

matches the sketch C. Hence, our subsequent goal is to refine Θ so as to improve the match.

We can achieve this in of two ways. We can turn the sketch into a foreground/background

image and use differentiable rasterization to ensure that the projection of MΘ matches that

image. Alternatively, we can minimize the 2D Chamfer distance between the sketch and the

projection. We describe both alternatives below.

54

5.3. Method

5.3.2 Using Differential Rendering

In this method that we dubbed Sketch2Mesh/Render, we train an image translation tech-
nique [IZZE17] to synthesize foreground/background images from sketches. We denote as
M ∈ {0,1}H×W this foreground/background image estimated from the input sketch C. On the
other hand, we use the differentiable rasterizer [RRN+20] RF /B to render a foreground/back-
ground mask M̃ =RF /B

Λ (MΘ) of the projection of MΘ by Λ. In M̃, a pixel value is 1 if it projects
to the surface of the mesh MΘ, and 0 otherwise. Finally, we refine MΘ shape by minimizing

LF /B = ∥∥M−M̃
∥∥2

, (5.1)

the L2 difference between M and M̃ with respect to Θ.

While conceptually straightforward, this approach is in fact quite complex because it depends

on two off-the-shelf but complex pieces of software, the rasterizer [RRN+20] and image-

translator [IZZE17], one of which has to be trained properly. We now turn to a simpler tech-

nique that can be implemented from scratch and does not rely on an auxiliary neural network.

5.3.3 Minimizing the 2D Chamfer Distance

The simpler Sketch2Mesh/Chamfer approach involves directly finding those 3D mesh points

that project to the contour of the foreground image and then minimizing the Chamfer distance

between this contour and the sketch.

Finding External Contours in 2D and 3D

To identify surface points on MΘ that project to exterior contour pixels, we first use Λ to

project the whole mesh onto a H ×W binary image F̃ in which all pixels are one except those

belonging to external contours, such as those shown in orange in Fig. 5.2(a). Then, for each

zero-valued pixel p in F̃, we look for a 3D point P on one of the mesh facets that projects to it,

that is, a point that is visible and such that Λ(P) = p. In theory, this can be done by finding to

which facet p belongs and then computing the intersection between the line of sight and the

plane defined by that facet. In practice, we use Pytorch3d [RRN+20] which provides us with

the facet number along with the barycentric coordinates of P within that facet. Hence, we

write

P =α1V1 +α2V2 +α3V3 , (5.2)

with V1, V1 and V3 are the vertices of the fact to which P belongs andα1+α2+α3 = 1. Since the

coordinates of the three vertices are differentiable functions of Θ, so are those of P. Repeating

this operation for all external contour points yields a set of 3D points S3D such that

∀P ∈ S3D F̃[Λ(P)] = 0 , (5.3)

55

Chapter 5. Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches

along with a corresponding set of 2D projections

S2D = {Λ(P)|P ∈ S3D } . (5.4)

Fig. 5.2(b) depicts such a set.

Objective function

To exploit the target sketch C, we first filter it to only preserve external contours. To this end,

we shoot rays from the 4 image borders and only retain the first black pixels hit by a ray, as

shown in Fig. 5.2(c). This yields a filtered sketch F ∈ {0,1}H×W . As before, F[p] = 0 for pixels p

belonging to external contour and F[p] = 1 for others. The ray-shooting algorithm we use is

described in details in the appendix.

Our goal being for F, the filtered sketch, and F̃, the external contours of the projected trian-

gulation introduced in the previous subsection, to match as well as possible, we write the

objective function to be minimized as the bidirectional 2D Chamfer loss

LC D = ∑
u∈S2D

min
v|F[v]=0

‖u−v‖2 + ∑
v|F[v]=0

min
u∈S2D

‖u−v‖2 . (5.5)

The coordinates of the 3D vertices in S3D are differentiable with respect to Θ. Since Λ is

differentiable, so are their 2D projections in S2D and LC D as whole.

5.3.4 Using a Partial Sketch

Minimizing the 2D Chamfer distance between external contours as described above does not

require the input sketch to depict the shape in its entirety. This enables us to take advantage

of partial sketches made of a single stroke. In this case, we can simply take the filtered sketch F

introduced above to be the sketch itself. But we must ensure that parts of the surface which

project far away from the sketch remain unchanged. The rationale for this is that the initial

shape should be preserved except where modifications are specified. To this end, we regularize

the refinement procedure as follows.

Given the initial value Θ0 of the latent vector we want to refine along with differentiable raster-

izers [RRN+20] RN and RF /B that return the normal maps NΘ and foreground/background

mask MΘ given mesh MΘ, respectively, we minimize

Lpar ti al =LC D +∥∥1t ◦ (MΘ−MΘ0)
∥∥2 +∥∥1t ◦ (NΘ−NΘ0)

∥∥2

where LC D is the Chamfer distance of Eq. 5.5, 1t is a mask that is zero within a distance t of

the sketch and one further away, and ◦ is the element wise product. In other words, the parts

of the surface that project near to the sketch should match it and the others should keep their

original normals and boundaries.

56

5.4. Experiments

input Pix2Vox MeshRCNN DISN Sketch2Mesh

Figure 5.3 – Robustness to changes in sketch style. Given a Suggestive sketch
(top), a SketchFD one (middle), or a hand-drawn one (bottom), Sketch2Mesh—unlike
Pix2Vox [DAI+18], MeshRCNN [GMJ19], and DISN [XWC+19]—yields reconstructions that
are similar to each other and close to the ground-truth.

Crucially, this is something that could not be done using the approach of Section 5.3.2, which

requires complete sketches. This comes at the cost of having to use a differential renderer,

unlike the approach of Section 5.3.2. But this still does not require a trained network for image

translation, which makes it easy to deploy.

5.4 Experiments

5.4.1 Datasets

Publicly available large-scale line-drawings datasets with associated 3D models are rare. We

therefore test our approach on two datasets, one for chairs that is available [ZQG+20] and

another for cars that we created ourselves. To further test, and crucially, to train our approach,

we used 3D models from the well-established ShapeNet [CFG+15] to render 2D sketches.

Rendered Car and Chair Sketches. We use the car and chair categories from

ShapeNet [CFG+15] both for training and testing. We adopt the same train/test splits as

in [RLR+20]. For cars we use 1311 training samples and 113 test samples. The equivalent num-

bers are 5268 and 127 for chairs. For each object and corresponding 3D mesh, we randomly

sample 16 azimuth and elevation angles. The cameras point at the object centroid while their

distance to it and their focal lengths are kept fixed. To demonstrate robustness to sketching

style, we generate two different 256×256 binary sketches for each viewpoint, as shown in

the top two rows a Fig. 5.3. We will refer to them as Suggestive and SketchFD sketches, as

described below.

57

Chapter 5. Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches

(a) (b)

Figure 5.4 – Data acquisition interface. (a) To guide unexperienced users and limit imprecision, we
display the normal map as seen from a specific viewpoint. (b) The user can use a pen to draw freely on
the resulting image.

Suggestive. We use the companion software of [DFRS03] to render sketches displaying

that contain both occluding and suggestive contours. Suggestive contours are lines drawn on

visible parts of the surface where a true occluding contour would first appear given a minimal

viewpoint change. They are designed to emulate real line drawings in which lines other lines

than the occluding contours are drawn to increase expressivity.

SketchFD. We also use the older rendering approach of [ST90]. We run an edge detector

over the normal and depth maps of the rendered object. Edges in the depth map correspond

to depth discontinuities while edges in the normal map correspond to sharp ridges and

valleys. This yields synthetic sketches that, although conveying the same information, look

very different from the ones on [DFRS03], as can be seen on the left of Fig. 5.3.

Hand-Drawn Car Sketches We asked 5 students with no prior experience in 3D design to draw

by-hand the 113 cars from the ShapeNet test set. To this end, we developed the sketching

interface depicted by Fig. 5.4 that runs on a standard tablet. The participants drew over normal

maps rendered from the selected viewpoint so as to provide them guidance and ensure they

all drew a similar car and used a known perspective. However, they were free to make the pen

strokes they wanted. Hence, this dataset thus exhibits natural variations of style. To allow for

comparison with results on the rendered sketches, we used the same viewpoint, which we

will use to demonstrate that style change by itself is an obstacle to generalization for many

methods.

Hand-Drawn Chair Sketches We use 177 chair sketches from the ProSketch dataset [ZQG+20].

The chairs are seen from the front, profile, or a 45°azimuth view, as shown in Fig. 5.5. These

viewpoints do not match the randomly selected ones we used for training, which makes this

dataset especially challenging. Sample sketches and reconstructions are shown in Fig. 5.5

58

5.4. Experiments

Figure 5.5 – ProSketch. Input hand-drawn chair sketches [ZQG+20] and Sketch2Mesh recon-
structions.

5.4.2 Metrics

As reconstruction metric, we use a 3D Chamfer loss (CD-l2, the lower the better). It is computed

by sampling N = 10000 points on the reconstructed mesh to form a first point cloud C1 and N

on the ground truth mesh to form a second point cloud C2. We then compute

CD-l2 = 1
N

∑
x∈C1

min
y∈y

∥∥x − y
∥∥2 + 1

N

∑
y∈C2

min
x∈x

∥∥y −x
∥∥2 .

We also report a normal consistency measure (NC, the higher the better), by taking the average

pixel-wise dot product between normal maps of the reconstructed shape and the ground truth

one.

5.4.3 Choosing the Best Method

Metric Method Cars, test drawing style:
Suggestive SketchFD Hand-drawn

CD-l2 ·103 ↓
Initial 1.613 4.658 6.818

Sketch2Mesh/Render 1.400 4.253 5.752
Sketch2Mesh/Chamfer 1.420 3.132 4.395

Normal Consistency ↑
Initial 91.14 84.73 81.40

Sketch2Mesh/Render 92.41 86.18 83.88
Sketch2Mesh/Chamfer 92.20 87.00 84.75

Chairs, test drawing style:
Suggestive SketchFD Hand-drawn

8.572 15.691 18.752
7.471 12.865 17.519
7.180 12.248 13.787
80.86 72.83 61.17
83.99 75.37 65.23
82.61 76.27 67.67

Table 5.1 – Reconstruction metrics when using the encoding/decoding network trained on
Suggestive synthetic sketches of cars (left) and of chairs (right), and tested on all 3 datasets. We
show initial results before refinement and then using our two refinement methods. Note that
Sketch2Mesh/Chamfer does better than Sketch2Mesh/Render on the styles it has not been trained
for, indicating a greater robustness to style changes.

Recall from the method section, that we have proposed two variants of our approach to refining

our 3D meshes. Sketch2Mesh/Render operates by turning the sketch into a foreground/back-

ground image and minimizing the distance between that image and the mesh projection while

Sketch2Mesh/Chamfer deforms the mesh to minimize the 2D Chamfer distance between the

external contours of its projection and those of the sketch.

59

Chapter 5. Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches

input reconstruction iter = 0 iter = 250 refined ground truth

Sketch2Mesh/Render

Sketch2Mesh/Chamfer

(b)

(a)

input reconstruction

iter = 0 iter = 250 refined

Figure 5.6 – Mesh refinement. (a) Comparison of Sketch2Mesh/Chamfer (top) and Sketch2Mesh/Render
(bottom). Sketch2Mesh/Chamfer handles thin components such as the legs of the chair better because it
leverages sparse information. We examine this in more detail in the appendix. (b) Sketch2Mesh/Chamfer
results on challenging line drawings of a chairs and a car. We show the iterations from the initial mesh
produced by the network that takes the sketch as input, which is then progressively refined.

Once the latent representation has been learned on either Suggestive or SketchFD contours,

Sketch2Mesh/Chamfer can be used without any further training. By contrast,

Sketch2Mesh/Render requires an image translation network to predict foreground/background

masks from sketches. Here, we use the one of [IZZE17] with a UNet [RFB15] as its generator

and in the LSGAN setting [MLX+16]. We train four separate instances of it on ShapeNet , one

for each shape category (cars and chairs) and for each sketch rendering style (Suggestive
and SketchFD).

This being done, we can compare Sketch2Mesh/Render against Sketch2Mesh/Chamfer on the

test sets for both categories of object and the three categories of drawing we use, Suggestive,

SketchFD, and Hand Drawn. We show qualitative results in Figs. 5.5 and 5.6. We report quan-

titative results in Tab. 5.1 for models trained on Suggestive contours. Similar results on

SketchFD contours are presented in the appendix. Overall, both Sketch2Mesh/Render and

Sketch2Mesh/Chamfer improve the initial metrics but

Sketch2Mesh/Chamfer appears to be more robust to style changes. In other words,

Sketch2Mesh/Render overfits to the style it is trained on and does not do as well as

Sketch2Mesh/Chamfer when tested on a different one. Adding this to the fact that

Sketch2Mesh/Chamfer, unlike Sketch2Mesh/Render, does not require to train an auxiliary

network clearly makes it the better approach. We will therefore use it in the remainder of the

paper except otherwise noted and will refer to it as Sketch2Mesh for brevity.

60

5.4. Experiments

5.4.4 Comparison against State-of-the-Art Methods

Training Drawing Style: Suggestive
Metric Method Test Drawing Style

Suggestive SketchFD Hand-drawn

CD-l 2 ·103 ↓
Pix2Vox [DAI+18] 2.336 6.237 8.599

MeshRCNN [GMJ19] 3.491 6.923 7.849
DISN [XWC+19] 1.529 7.764 10.396

Sketch2Mesh 1.420 3.132 4.396

Normal Consistency ↑
Pix2Vox [DAI+18] 89.07 80.49 76.70

MeshRCNN [GMJ19] 84.19 79.93 77.91
DISN [XWC+19] 92.15 79.51 72.52

Sketch2Mesh 92.20 87.00 84.74

Training Drawing Style: SketchFD

CD-l 2 ·103 ↓
Pix2Vox [GFK+18] 3.529 2.475 3.146

MeshRCNN [GMJ19] 3.117 3.596 4.829
DISN [XWC+19] 4.036 1.573 3.763

Sketch2Mesh 2.419 1.516 2.047

Normal Consistency ↑
Pix2Vox [GFK+18] 87.11 89.21 86.27

MeshRCNN [GMJ19] 83.22 82.81 80.83
DISN [XWC+19] 86.34 91.30 87.66

Sketch2Mesh 91.23 92.09 91.03

Table 5.2 – Comparative results on Cars: we compare our method to existing baselines, when
trained on 2 styles of sketches: Suggestive (top) or SketchFD (bottom), and tested on both
Suggestive, SketchFD, and Hand-drawn. Our method outperforms others in all scenarios.

We now compare Sketch2Mesh against state-of-the-art methods that produce watertight

meshes as we do. To this end, we train the architecture of [DAI+18] that regresses volumetric

grids from sketches, which we dub Pix2Vox. We also compare to recent SVR method that rely

on perceptual feature pooling from the image plane DISN [XWC+19] and MeshRCNN [GMJ19].

For a fair comparison, we use them in conjunction with the same image encoder as we do,

ResNet18 [HZRS16].

We show qualitative results in Fig. 5.3. We report quantitative results on ShapeNet Cars and

Chairs in Tables 5.2 and 5.3 when the latent representation have been learned either on

Suggestive or SketchFD contours. On cars, Sketch2Mesh clearly outperforms the other

methods. On chairs, MeshRCNN is very competitive, especially in terms of CD-l2. But, as

shown in Fig. 5.7, the meshes it produces are hardly usable, even though we uses the Pretty

setup of the algorithm that attempts to regularize them. This is a well known phenomenon re-

ported by its authors themselves. By contrast, our meshes can directly be used for downstream

applications, without further preprocessing.

For completeness, we note that a very recent paper [ZGZS20] also advocates using fore-

ground/background masks to improve 3D reconstruction from sketches. However, instead of

refining the mesh produced by a network using such as a mesh as done by Sketch2Mesh/Render,

it recommends feeding the mask as an additional input to the network that produces the

initial 3D shape. In Tab. 5.4, we compare this approach to ours when the network is trained

using the SketchFD sketches on cars and tested on Suggestive. Both Sketch2Mesh/Render

61

Chapter 5. Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches

Training Drawing Style: Suggestive
Metric Method Test Drawing Style

Suggestive SketchFD Hand-drawn

CD-l 2 ·103 ↓
Pix2Vox [DAI+18] 22.953 33.46 62.132

MeshRCNN [GMJ19] 6.775 10.718 19.055
DISN [XWC+19] 7.045 18.104 23.282

Sketch2Mesh 7.180 12.248 13.787

Normal Consistency ↑
Pix2Vox [GFK+18] 73.01 64.28 40.12

MeshRCNN [GMJ19] 76.91 72.77 58.03
DISN [XWC+19] 80.44 54.10 51.81

Sketch2Mesh 82.61 76.27 67.67

Training Drawing Style: SketchFD

CD-l 2 ·103 ↓
Pix2Vox [GFK+18] 34.759 22.690 46.687

MeshRCNN [GMJ19] 9.530 5.812 16.620
DISN [XWC+19] 13.059 8.628 18.104

Sketch2Mesh 9.524 6.737 12.585

Normal Consistency ↑
Pix2Vox [GFK+18] 65.97 72.52 52.96

MeshRCNN [GMJ19] 77.62 84.75 69.76
DISN [XWC+19] 73.39 80.21 62.58

Sketch2Mesh 81.00 83.10 70.39

Table 5.3 – Comparative results on Chairs: we compare our method to existing baselines,
when trained on 2 styles of sketches: Suggestive (top) or SketchFD (bottom), and tested
on both Suggestive, SketchFD, and Hand-drawn. Our method outperforms others in all
scenarios, except some cases where MeshRCNN achieves better metrics. However, as shown
in Fig. 5.7, the meshes produced by MeshRCNN are hardly usable.

and Sketch2Mesh/Chamfer outperform it.

5.4.5 Interactive 3D editing

An important feature of Sketch2Mesh is that is can exploit sketches made of a single stroke

to refine previously obtained shapes as discussed in Section 5.3.4, as shown in Fig. 5.8. To

showcase the interactivity of our approach we built a web based user interface. The user may

draw a sketch with the mouse or a touch enabled device and submit it to Sketch2Mesh. Then,

successive partial sketches can also be input and matched by the optimizer.

5.5 Conclusion

We have proposed an approach to deriving 3D shapes from sketches that relies on an en-

coder/decoder architecture to compute a latent surface representation of the sketch. It can in

turn be refined to match the external contours of the sketch. It handles sketches drawn in a

style it was not specifically trained for and outperforms state-of-the-art methods. Furthermore,

it allows for interactive refinements by specifying partial 2D contours the object’s projection

must match, provided that perspective camera parameters are associated to the sketch. This

can be achieved easily on a tablet using a stylus-based interface to draw.

62

5.5. Conclusion

(a) (b) (c) (d)

Figure 5.7 – Comparison with MeshRCNN: (a) Input sketch (b) Ground truth shape, (c)
Sketch2Mesh reconstruction, with CD-l2=1.98, (d) MeshRCNN reconstruction, with CD-
l2=1.91. The flipped facets are shown in red. Despite having a slightly higher CD-l2, our
reconstruction is far more usable for further processing and, arguably, resembles the ground
truth more than the MeshRCNN one.

Method Metric
CD-l 2 ·103 ↓ NC ↑

MeshSDF [RLR+20] 3.231 89.67
MeshSDF [RLR+20] + mask 3.124 90.05

Sketch2Mesh/Render 2.538 90.92
Sketch2Mesh/Chamfer 2.419 91.23

Table 5.4 – Comparison with the approach of [ZGZS20]: conditioning the reconstruction network on
object silhouettes (+ mask) improves metrics, but our refinement approaches are more effective.

(a) Input sketch (b) Reconstructing (c) Editing

Figure 5.8 – Interactive reconstruction & editing. We developed an interface where the user can draw
an initial sketch (a) to obtain its 3D reconstruction (b). One can then manipulate the object in 3D and
draw one or more desired modifications (c). 3D surfaces are then optimized to match each constraint,
solving the optimization problem of Section 5.3.4. The strong prior learned by our model allows to
preserve global properties such as symmetry despite users provide sparse 2D strokes in input.

We can see two natural improvements to our work. One is linked to the learned priors in our

parametrization. Although the priors are usually good at preserving global shape properties

such as symmetry, they can be either too constraining or not enough when for partial refine-

ments. We would like some priors to actually be constraints—the wheels of the cars must be

63

Chapter 5. Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches

round and cannot touch the wheel wells and the feet of the chairs must all have the same

length, for example—in addition to those imposed by 2D sketches so that our technique can

be turned into a full-fledged tool for Computer Assisted Design. Another research direction

would be to incorporate interior lines in our refinement process. This is also an interesting

challenge since we don’t want to sacrifice the generalization ability this simple technique

allowed us to achieve.

64

6 MeshUDF: Fast and Differentiable
Meshing of Unsigned Distance Field
Networks

This chapter is based on the conference paper [GSF22]:

B. Guillard, F. Stella, and P. Fua, MeshUDF: Fast and Differentiable Meshing of Unsigned

Distance Field Networks, at ECCV, 2022.

6.1 Introduction

In recent years, deep implicit surfaces [PFS+19, MON+19, CZ19] have emerged as a powerful

tool to represent and manipulate watertight surfaces. Furthermore, for applications that

require an explicit 3D mesh, such as sophisticated rendering including complex physical

properties [NDVZJ19] or optimizing physical performance [BRFF18], they can be used to

parameterize explicit 3D meshes whose topology can change while preserving differentiabil-

ity [AHY+19, RLR+20, GRL+22].

However, these approaches can only handle watertight surfaces. Because common 3D datasets

such as ShapeNet [CFG+15] contain non-watertight meshes, one needs to preprocess them

to create a watertight outer shell [PFS+19, XWC+19]. This is time consuming and ignores

potentially useful inner components, such as seats in a car. An alternative is to rely on network

initialization or regularization techniques to directly learn from raw data [AL20a, AL20b] but

this significantly slows down the training procedure.

This therefore leaves open the problem of modeling non-watertight surfaces implictly. It has

been shown in [CMPM20, ZWLS21, VKS+21, CPA+21] that occupancy fields and signed dis-

tance functions (SDFs) could be replaced by unsigned ones (UDFs) for this purpose. However,

unlike for SDFs, there are no fast algorithms to directly mesh UDFs. Hence, these methods

rely on a two-step process that first extracts a dense point cloud that can then be triangu-

lated using slow standard techniques [BMR+99]. Alternatively, non-watertight surfaces can

be represented as watertight thin ones surrounding them [CPA+21, GRL+22, VKS+21]. This

amounts to meshing the ε iso-surface of an UDF using marching cubes [LC87], for ε being a

small strictly positive scalar. Unfortunately, that degrades reconstruction accuracy because

65

Chapter 6. MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field
Networks

(a) (b) (c) (d)

Figure 6.1 – Meshing the UDF of a garment. We present front and top views. (a) Inflating shapes to
turn open surfaces into watertight ones [VKS+21, CPA+21, GRL+22] inherently reduces accuracy by
making the surface thicker, as shown in top view. (b) Triangulating a cloud of 3D points collapsed on
the 0-level set [CMPM20] is time-consuming and tends to produce rough surfaces. (c) Directly meshing
the UDF using our approach is more accurate and less likely to produce artifacts. In addition, it makes
the iso-surface extraction process differentiable. (d) We mesh the UDF of a shirt and display it on a
human body. The three insets represent the ground truth shirt, the reconstruction with our method,
and the inflation approach, respectively. Our approach—in the upper right inset—produces fewer
artifacts and no penetrations with the body.

the thin surfaces cannot be infinitely so, as ε cannot be arbitrarily small. Furthermore, some

applications such as draping simulation [LCT18, TWL+18, GCP+22] require surfaces to be

single-faced and cannot be used in conjunction with this approach.

In this paper, we first show that marching cubes can be extended to UDFs by reasoning on

their gradients. When neighboring gradients face in opposite directions, this is evidence that a

surface element should be inserted between them. We rely on this to replace the sign flips on

which the traditional marching cube algorithm depends and introduce a new approach that

exploits the gradients instead. This yields vertices and facets. When the UDF is parameterized

by latent vectors, we then show that the 3D position of these vertices can be differentiated

with respect to the latent vectors. This enables us to fit the output of pre-trained networks to

sparse observations, such as 3D points on the surface of a target object or silhouettes of that

object.

In short, our contribution is a new approach to meshing UDFs and parameterizing 3D meshes

to model non-watertight surfaces whose topology can change while preserving differentiability,

which is something that had only been achieved for watertight surfaces before. We use it in

conjunction with a learned shape prior to optimize fitting to partial observations via gradient

descent.

We demonstrate it achieves better reconstruction accuracy than current deep-learning based

66

6.2. Related Work: Triangulating Implicit Non-Watertight Surfaces

approaches to handling non-watertight surfaces, in a fraction of the computation time, as

illustrated by Fig. 6.1.

6.2 Related Work: Triangulating Implicit Non-Watertight Surfaces

Unfortunately, neither the original marching cubes algorithm nor any of its recent improve-

ments are designed to handle non-watertight surfaces. One way around this is to surround the

target surface with a thin watertight one [CPA+21, GRL+22, VKS+21], as shown in Fig. 6.1(a).

One can think of the process as inflating a watertight surface around the original one. Marching

cubes can then be used to triangulate the inflated surface, but the result will be some distance

away from the target surface, resulting in a loss of accuracy. Another approach is to sample

the minimum level set of an UDF field, as in NDF [CMPM20] and AnchorUDF [ZWLS21]. This

is done by projecting randomly initialized points on the surface using gradient descent. To

ensure full coverage, points are re-sampled and perturbed during the process. This produces

a cloud, but not a triangulated mesh with information about the connectivity of neighboring

points. Then the ball-pivoting method [BMR+99], which connects neighboring points one

triplet at a time, is used to mesh the cloud, as shown in Fig. 6.1(b). It is slow and inherently

sequential.

6.3 Method

We now present our core contribution, a fast and differentiable approach to extracting triangu-

lated isosurfaces from unsigned distance fields produced by a neural network. Let us consider

a network that implements a function

φ :RC ×R3 →R+ , (6.1)

z,x 7→ s ,

where z ∈ RC is a parameter vector; x is a 3D point; s is the Euclidean distance to a surface.

Depending on the application, z can either represent only a latent code that parameterizes

the surface or be the concatenation of such a code and the network parameters.

In Sec. 6.3.1, we propose an approach to creating a triangulated mesh M = (V ,F) with vertices

V and facets F from the 0-level set of the scalar field φ(z, ·). Note that it could also apply to

non-learned UDFs, as shown in the appendix. In Sec. 6.3.2, we show how to make the vertex

coordinates differentiable with respect to z. This allows refinement of shape codes or network

parameters with losses directly defined on the mesh.

67

Chapter 6. MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field
Networks

6.3.1 From UDF to Triangulated Mesh

Surface Detection within Cells

As in standard marching cubes [LC87], we first sample a discrete regular grid G in the region

of interest, typically [−1,1]3. At each location xi ∈G we compute

ui =φ(z,xi) , gi =∇xφ(z,xi) ,

where ui is the unsigned distance to the implicit surface at location xi , and gi ∈ R3 is the

gradient computed using backpropagation.

Given a cubic cell and its 8 corners, let (u1, ...,u8), (x1, ...,x8), and (g1, ...,g8) be the above values

in each one. Since all ui are positive, a surface traversing a cell does not produce a sign flip

as it does when using an SDF. However, when corners xi and x j lie on opposite sides of the

0-level set surface, their corresponding vectors gi and g j should have opposite orientations,

provided the surface is sufficiently smooth within the cell. Hence, we define a pseudo-signed

distance

si = sgn(g1 ·gi)ui , (6.2)

where x1 is one of the cell corners that we refer to as the anchor. x1 is assigned a positive

pseudo-signed distance and corners where the gradient direction is opposite to that at x1 a

negative one. When there is at least one negative si , we use marching cubes’ disjunction cases

and vertex interpolation to reconstruct a triangulated surface in the cell.

Computing pseudo-signs in this way is simple but has two shortcomings. First, it treats each

cell independently, which may cause inconsistencies in the reconstructed facets orientations.

Second, especially when using learned UDF fields that can be noisy [VKS+21], the above

smoothness assumption may not hold within the cells. This typically results in holes in the

reconstructed meshes.

To mitigate the first problem, our algorithm starts by exploring the 3D grid until it finds a

cell with at least one negative pseudo-sign. It then uses it as the starting point for a breadth-

first exploration of the surface. Values computed at any cell corner are stored and never

recomputed, which ensures that the normal directions and interpolated vertices are consistent

in adjacent cells. The process is repeated to find other non-connected surfaces, if any. To

mitigate the second problem we developed a more sophisticated method to assign a sign to

each cell corner. We do so as described above for the root cell of our breadth-first search,

but we use the voting scheme depicted by Fig. 6.2 for the subsequent ones. Voting is used to

aggregate information from neighboring nodes to estimate pseudo-sign more robustly. Each

corner xi of a cell under consideration receives votes from all adjacent grid points xk that have

already been assigned a pseudo-sign, based on the relative directions of their gradients and

the pseudo-sign of xk . Since gradients locally point towards the greatest ascent direction, if

68

6.3. Method

+

_ _

_ +

_

_

(a) (b)

Figure 6.2 – Voting. (a) Corner xi of cell c has 3 neighbors that already have a pseudo-sign and
vote. (b) The projections of gi and gk1 on the edge connecting the two neighbors face each
other. Thus xk1 votes for xi having the same sign as itself (-). The other two neighbors vote for
− as well given the result of computing Eq. 6.3.

(a) (b)

Figure 6.3 – Removing artifacts. (a) Given the blue 0-level surface, the red cell has gradients
in opposing directions and yields an undesirable face. We prune these by evaluating the UDF
on reconstructed faces. (b) Initially reconstructed borders are uneven (top). We smooth them
during post-processing (bottom).

the projections of gi and gk along the edge connecting xi and xk face each other, there is no

surface between them and the vote is in favor of them having the same sign: vi k = sgn(sk).

Otherwise, the vote depends on gradient directions, and we take it to be

vi k = (gi ·gk)sgn(sk) (6.3)

because the more the gradients are aligned, the more confident we are about the two points

being on the same side of the surface or not, depending on the sign of the dot product. The

sign of the sum of the votes is assigned to the corner.

If one of the xk is zero-valued its vote does not contribute to the scheme, but it means that

there is a clear surface crossing. This can happen when meshing learned UDF fields at higher

resolutions, because their 0-level set can have a non-negligible volume. Thus, the first non-

69

Chapter 6. MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field
Networks

zero grid point along its direction takes its place in the voting scheme, provided that it has

already been explored. To further increase the reliability of these estimates, grid points with

many disagreeing votes are put into a lower priority queue to be considered later, when more

nearby grid points have been evaluated and can help produce a more consistent sign estimate.

In practice, we only perform these computations within cells whose average UDF values of

(u1, ...,u8) are small. Others can be ignored, thus saving computation time and filtering bad

cell candidates which have opposing gradients but lie far from the surface.

Global Surface Triangulation

The facets that the above approach yields are experimentally consistent almost everywhere, ex-

cept for a few them, which we describe below and can easily remove in a post-processing stage.

Note that the gradients we derive in Sec. 6.3.2 do not require backpropagation through the

iso-surface extraction. Hence, this post-processing step does not compromise differentiability.

Removing Spurious Facets. As shown in Fig. 6.3 (a), facets that do not correspond to any part

of the surfaces can be created in cells with gradients pointing in opposite directions without

intersecting the 0-level set. This typically happens near surface borders because our approach

tends to slightly extend them, or around areas with poorly approximated gradients far from

the surface in the case of learned UDF fields. Such facets can be detected by re-evaluating the

distance field on all vertices. If the distance field for one vertex of a face is greater than half the

side-length of a cubic cell, it is then eliminated.

Smoothing Borders. Since marching cubes was designed to reconstruct watertight surfaces,

it cannot handle surface borders. As a result, they appear slightly jagged on initial recon-

structions. To mitigate this, we apply laplacian smoothing on the edges belonging to a single

triangle. This smoothes borders and qualitatively improves reconstructions, as shown in

Fig. 6.3 (b).

6.3.2 Differentiating through Iso-Surface Extraction

Let v ∈ R3 be a point on a facet reconstructed using the method of Sec. 6.3.1. Even though

differentiating v directly through marching cubes is not possible [LDG18, RLR+20], it was

shown that if φ were an SDF instead of an UDF, derivatives could be obtained by reasoning

about surface inflation and deflation [AHY+19, RLR+20]. Unfortunately, for an UDF, there is

no "in" or "out" and its derivative is undefined on the surface itself. Hence, this method does

not directly apply. Here we extend it so that it does, first for points strictly within the surface,

and then for points along its boundary.

70

6.3. Method

n

v−

v

v+

α

=0

>0

>0
(a) (b)

v′

v

Figure 6.4 – Isosurface deformation: (a) with v on the 0-level set, we surround it with v+ and
v− at a distance α ; (b) In case the UDF decreases at v+ and increases at v−, v moves to v′.

v vo

o
α

v′ v

=0

>0

(a) (b)

Figure 6.5 – Isosurface shrinkage or extension: (a) with v on the border of the 0-level set, we
place vo at a distance α in the direction of o ; (b) If the UDF increases at vo , v moves to v′.

Derivatives within the Surface. Let us assume that v ∈R3 lies within a facet where the surface

normal n is unambiguously defined up to its orientation. Let us pick a small scalar value α> 0

and consider

v+ = v+αn and v− = v−αn ,

the two closest points to v on the α-level set on both sides of the 0-level set. For α small

enough, the outward oriented normals at these two points are close to being n and −n. We

can therefore use the formulation of [AHY+19, RLR+20] to write

∂v+
∂z

≈−n
∂φ

∂z
(z,v+) and

∂v−
∂z

≈ n
∂φ

∂z
(z,v−) . (6.4)

Since v = 1
2 (v−+v+), Eq. 6.4, yields

∂v

∂z
≈ n

2

[
∂φ

∂z
(z,v−αn)− ∂φ

∂z
(z,v+αn)

]
. (6.5)

We provide a more formal proof and discuss the validity of the approximation in appendix.

Note that using n′ = −n instead of n yields the same result. Intuitively, this amounts to

surrounding the 0-level set with α-margins where UDF values can be increased on one side

and decreased on the other, which allows local deformations perpendicular to the surface.

Fig. 6.4 (a) depicts the arrangement of v, v+ and v− around the surface. The derivative of

Eq. 6.5 implies that infinitesimally increasing the UDF value at v− and decreasing it at v+
would push v in the direction of n, as shown in Fig. 6.4 (b), and conversely. In practice, we use

71

Chapter 6. MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field
Networks

α= 10−2 in all our experiments.

Derivatives at the Surface Boundaries. Let us now assume that v sits on the edge of a bound-

ary facet. Mapping it to v+ and v− and using the derivatives of Eq. 6.5 would mean that all

deformations are perpendicular to that facet. Thus, it does not permit shrinking or expanding

of the surface during shape optimization. In this setting, there is a whole family of closest

points to v in the α-level set; they lay on a semicircle with radius α. To allow for shrinkage

and expansion, we map v to the semicircle point along o, a vector perpendicular to the edge,

pointing outwards, and within the plane defined by the facet. Hence, we consider the point vo

which is the closest to v on the α-level set in the direction of o:

vo = v+αo (6.6)

For α small enough, the outward oriented normal at vo is o and we again use the formulation

of [AHY+19, RLR+20] and Eq. 6.6 to write

∂vo

∂z
=−o

∂φ

∂z
(z,vo) and

∂v

∂z
=−o

∂φ

∂z
(z,v+αo) , (6.7)

which we use for all points v on border edges. As shown in Fig. 6.5, this implies that increasing

the UDF value at vo would push v inwards and make the surface shrink. Conversely, decreasing

it extends the surface in the direction of o.

6.4 Experiments

We demonstrate our ability to mesh UDFs created by deep neural networks. To this end, we

first train a deep network to map latent vectors to UDFs representing different garments,

that is, complex open surfaces with many different topologies. We then show that, given this

network, our approach can be used to effectively triangulate these garments and to model

previously unseen ones. Finally, we plug our triangulation scheme into existing UDF networks

and show that it is a straightforward operation. Finally, the benefit of the border gradients of

Sec. 6.3.2 is evaluated. The voting scheme proposed in Sec. 6.3.1 is ablated in appendix.

6.4.1 Network and Metrics

Our approach is designed to triangulate the output of networks that have been trained to

produce UDF fields. To demonstrate this, we use an auto-encoding approach [PFS+19] with

direct supervision on UDF samples on the MGN dataset [BTTPM19] to train a network φθ
that maps latent vectors of dimension 128 to UDFs that represent garments. These UDFs can

in turn be triangulated using our algorithm to produce meshes such as those of Fig. 6.1. We

provide details of this training procedure in the appendix. The MGN dataset comprises 328

meshes. We use 300 to train φθ and the remaining 28 for testing.

72

6.4. Experiments

Garments, φθ network Cars, NDF network [CMPM20]
BP Inflation Ours BP Inflation Ours

CHD (↓) 1.62 3.00 1.51 6.84 11.24 6.63
IC (%, ↑) 92.51 88.48 92.80 90.50 87.09 90.87
NC (%, ↑) 89.50 94.16 95.50 61.50 73.19 70.38
Time (↓) 16.5s + 3000s 1.0 sec. 1.2 sec. 24.7s + 8400s 4.8 sec. 7.1 sec.

Table 6.1 – Comparing UDF meshing methods. Average Chamfer (CHD), image consistency (IC),
normal consistency (NC) and processing time for 300 garments (left) and 300 ShapeNet cars (right). We
use a single UDF network in each case and only change the meshing procedure. For BP, we decompose
the time into sampling and meshing times.

For comparison purposes, we also use the publicly available pre-trained network of

NDF [CMPM20] that regresses UDF from sparse input point clouds. It was trained on raw

ShapeNet [CFG+15] meshes, without pre-processing to remove inner components make them

watertight or consistently orient facets.

To compare the meshes we obtain to the ground-truth ones, we evaluate the following three

metrics:

• The Chamfer distance (CHD) measures the proximity of 3D points sampled from the

surfaces, the lower the better.

• The Image consistency (IC) is the product of IoU and cosine similarity of 2D renderings

of normal maps from 8 viewpoints, the higher the better.

• The Normal consistency (NC) quantifies the agreement of surface normals in 3D space,

the higher the better.

We also describe them in more detail in the appendix.

6.4.2 Mesh Quality and Triangulation Speed

Fig. 6.1 was created by triangulating a UDF produced byφθ using either our meshing procedure

(Ours) or one of two baselines:

• BP. It applies the ball-pivoting method [BMR+99] implemented in [CCC+08] on a dense

surface sampling of 900k points, as originally proposed in [CMPM20] and also used

in [ZWLS21]. Surface points are obtained by gradient descent on the UDF field.

• Inflation [GRL+22, VKS+21, CPA+21]. It uses standard marching cubes to mesh the

ε-isolevel of the field, with ε> 0.

In Tab. 6.1 (left), we report metrics on the 300 UDF fields φθ(zi , ·) for which we have latent

codes resulting from the above-mentioned training. Inflation and Ours both use a grid size

of 1283 over the [−1,1]3 bounding box, and we set Inflation’s ε to be 55% of marching cubes’

73

Chapter 6. MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field
Networks

Figure 6.6 – Using our approach to triangulate the outputs of NDF [CMPM20] (left) and Ancho-
rUDF [ZWLS21] (right). In both cases, we display the input to the network (a point cloud in one case
and a color image in the other), the dense cloud of points that is the final output of these methods, and
a triangulation of the UDF they compute generated using our method.

64 128 256 512
Grid resolution

2

4

6

C
H

D

1.66

1.51 1.51 1.53

6.99

3.00
2.00 1.76

Ours

Inflation

Figure 6.7 – CHD as a function of grid resolution. between reconstructed and ground truth meshes,
averaged over the 300 training garments of MGN. Ours yields constantly accurate meshes, Inflation
deforms the shapes at low resolutions.

step size. In Tab. 6.1 (right) we also report metrics for the pretrained NDF network [CMPM20]

tested on 300 ShapeNet cars, in which case we increase Inflation and Ours resolution to 1923

to account for more detailed shapes. An example is shown in Fig. 6.6. The experiments were

run on a NVidia V100 GPU with an Intel Xeon 6240 CPU.

As shown on the left of Table. 6.1, Ours is slightly more accurate than NDF in terms of all

three metrics, while being orders of magnitude faster. Inflation is even faster—this reflects the

overhead our modified marching cube algorithm imposes—but far less accurate. To show that

this result is not specific to garments, we repeated the same experiment on 300 cars from the

ShapeNet dataset and report the results on the right side of Table. 6.1. The pattern is the same

except for NC, which is slightly better for Inflation. We conjecture this to be a byproduct of the

smoothing provided by Inflation, which is clearly visible in Fig. 6.1(a,c).

To demonstrate that these results do not depend on the specific marching cube grid resolution

we chose, we repeated the experiment for grid resolutions ranging from 64 to 512 and plot the

average CHD as a function of resolution in Fig. 6.7. It remains stable over the whole range.

For comparison purposes, we also repeated the experiment with Inflation. Each time we

increase the resolution, we take the ε value that defines the iso-surface to be triangulated to be

10% greater than half the grid-size, as shown in Fig. 6.8. At very high resolution, the accuracy of

74

6.4. Experiments

s

2ε 2ε

Figure 6.8 – Choosing ε for Inflation. when meshing a UDF’s ε iso-level with standard marching
cubes, the value of ε is lower bounded by half the step size s. Left: 2ε< s yields many large holes. Right:
2ε≥ s yields a watertight mesh.

Init. LPC ,mesh LPC ,U DF L̃PC ,U DF

CHD (↓) 20.45 3.54 4.54 4.69
IC (%,↑) 69.54 84.84 82.80 82.31
NC (%,↑) 74.54 86.85 80.68 86.35

(a) (b) (c) (d)

Table 6.2 – Fitting to sparse point clouds. The table shows average Chamfer (CHD), image consistency
(IC), and normal consistency (NC) wrt. ground truth test garments. We report metrics for un-optimized
latent codes (Init.), after optimizing (LPC ,mesh) using our method, and optimizing either LPC ,U DF or
L̃PC ,U DF in the implicit domain. (a) A sparsely sampled ground truth mesh. (b) Mesh reconstructed
by mimimizing LPC ,mesh , (c) LPC ,U DF , (d) L̃PC ,U DF .

Inflation approaches Ours but that also comes at a high-computational cost because operating

on 512×512×512 cubes instead of 128×128×128 ones is much slower, even when using

multi-resolution techniques.

6.4.3 Using Differentiability to Fit Sparse Data

Given the trained network φθ and latent codes for training shapes from Sec. 6.4.2, we now turn

to recovering latent codes for the remaining 28 test garments. For each test garment G j , given

the UDF representing it, this would be a simple matter of minimizing the mean square error

between it and the field φθ(z, ·) with respect to z, which does not require triangulating. We

therefore consider the more challenging and more realistic cases where we are only given eiter

small set of 3D points P j —in practice we use 200 points—or silhouettes and have to find a

latent vector that generates the UDF that best approximates them.

75

Chapter 6. MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field
Networks

Fitting to 3D points.

One way to do this is to remain in the implicit domain and to minimize one of the two loss

functions

LPC ,U DF (P j ,z) = 1
|P j |

∑
p∈P j

|φθ(z, p)| , (6.8)

L̃PC ,U DF (P j ,z) =LPC ,U DF (P j ,z)+ 1
|A|

∑
a∈A

|φθ(z, a)−min
p∈P j

∥∥a −p
∥∥

2 | ,

where A is a set of randomly sampled points. Minimizing LPC ,U DF means that the given P j

points must be on the zero-level surface of the UDF. Minimizing L̃PC ,U DF means that, in addi-

tion, the predicted UDF evaluated at points of A must match the approximated UDF computed

from P j . Since the latter is sparse, L̃PC ,U DF only provides an approximate supervision.

An alternative is to use our approach to triangulate the UDFs and minimize the loss function

LPC ,mesh(P j ,z) = 1
|P j |

∑
p∈P j

min
a∈Mz

∥∥a −p
∥∥

2 , (6.9)

where a ∈ Mz means sampling 10k points a on the triangulate surface of Mz. Minimizing

LPC ,mesh means that the chamfer distance between the triangulated surfaces and the sam-

ple points should be small. Crucially, the results of Sec. 6.3.2 guarantee that LPC ,mesh is

differentiable with respect to z, which makes minimization practical.

We tried minimizing the three loss functions defined above. In each case we started the

minimization from a randomly chosen latent vector for a garment of the same type as the

one we are trying to model, which corresponds to a realistic scenario if the initial estimate is

provided by an upstream network. We report our results in Tab. 6.2. Minimizing LPC ,mesh

clearly yields the best results, which highlights the usefulness of being able to triangulate and

to differentiate the result.

Fitting to Silhouettes.

We now turn to the problem of fitting garments to rasterized binary silhouettes. Each test

garment j is rendered into a front-facing binary silhouette S j ∈ {0,1}256×256. Given S j only, our

goal is to find the latent code z j that best encodes j . To this end, we minimize

Lsi l h,mesh(S j ,z) = L1(r end(Mz),S j) , (6.10)

where r end is a differentiable renderer [KUH18] that produces a binary image of the UDF

triangulation Mz and L1(·) is the L1 distance. Once again, the differentiability of Mz with

respect to z is key to making this minimization practical.

In theory, instead of rendering a triangulation, we could have used an UDF differential renderer.

Unfortunately, we are not aware of any. Approaches such as that of [LZP+20] rely on finding

76

6.4. Experiments

Init. Lsi l h,mesh Lsi l h,U DF

CHD 20.45 9.68 12.74
IC 69.54 79.90 74.46
NC 74.54 81.37 80.70

(a) (b) (c)

Table 6.3 – Fitting to silhouettes. Average Chamfer (CHD), image consistency (IC), and normal
consistency (NC) wrt. ground truth test garments. We report metrics for un-optimized latent codes
(Init.), using our method to minimize (Lsi l h,mesh), and by minimizing (Lsi l h,U DF) in the implicit
domain. (a) Mesh reconstructed by minimizing Lsi lh,mesh . (b,c) Superposition of a target silhouette
(light gray) and of the reconstructions (dark gray) by minimizing Lsi lh,U DF or Lsi l h,mesh . Black denotes
perfect alignment and shows that the Lsi lh,U DF mesh is much better aligned.

sign changes and only work with SDFs. In contrast, CSP-Net [VKS+21] can render UDFs

without meshing them but is not differentiable.

To provide a baseline, we re-implemented SMPLicit’s strategy [CPA+21] for fitting a binary

silhouette by directly supervising UDF values. We sample a set of points P ⊂ [−1,1]3, and

project each p ∈ P to S j using the front-facing camera c to get its projected value sp . If sp = 1,

point p falls within the target silhouette, otherwise it falls into the background. SMPLicit’s

authors advocate optimizing z by summing

Lsi l h,U DF (S j ,z) =
 |φθ(z, p)−dmax | if sp = 0

min
p̄ s.t. c(p̄)=c(p)

|φθ(z, p̄)| if sp = 1 . (6.11)

on p ∈ P . That is, points projecting outside the silhouette (sp = 0) should have a UDF value

equal to the clamping value dmax . For points projecting inside the silhouette, along a camera

ray we only consider p̄, the closest point to the current garment surface estimate and its

predicted UDF value should be close to 0.

We report our results in Tab. 6.3. Minimizing Lsi lh,mesh yields the best results, which highlights

the benefits of pairing our method with a differentiable mesh renderer.

Ablation Study.

We re-ran the optimizations without the border derivative term of Eq. 6.7, that is, by computing

the derivatives everywhere using the expression of Eq. 6.5. As can be seen in Tab. 6.4, this

reduces performance and confirms the importance of allowing for shrinkage and expansion

of the garments.

6.4.4 Differentiable Topology Change

A key feature of all implicit surface representations is that they can represent surfaces whose

topology can change. As shown in Fig. 6.9, our approach allows us to take advantage of this

77

Chapter 6. MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field
Networks

Fitting Metric
Gradients:

normals
Gradients:

normals + border

Point cloud,
LPC ,mesh

CHD 3.75 3.54
NC 84.28 84.84
IC 86.71 86.76

Silhouette,
Lsi lh,mesh

CHD 10.45 9.68
IC 78.84 79.90
NC 80.86 81.37

Table 6.4 – Ablation Study. Average Chamfer (CHD), image consistency (IC), and normal consistency
(NC) for test garments using either our full approach to computing gradients (normals + border) vs.
computing the gradients everywhere using only the formula of Eq. 6.5. (normals).

(a) (b) (c)

Figure 6.9 – Optimization with a change in topology: (a) Starting mesh associated to the
initial latent code z = zst ar t ; (b) Optimizing z with gradient descent by applying a 3D Chamfer
loss between the reconstructed mesh and a target shape shown in (c). During optimization,
the latent code takes values that do not correspond to valid garments, hence the tears in our
triangulations. Nevertheless, it eventually converges to the desired shape.

while simultaneously creating a mesh whose vertices have associated spatial derivatives. To

create this example, we started from a latent code for a pair of pants and optimized with

respect to it to create a new surface that approximates a sweater by minimizing the CHD loss

of Eq. 6.9 over 10k 3D points on that sweater. The topology changes that occur on the mesh

representing the deforming shape do not create any difficulties.

6.4.5 Generalization to other UDF Networks

To show that our meshing procedure is applicable as-is to other UDF-based methods, we use

it downstream of publicly available pre-trained networks. In Fig. 6.6 (bottom) we mesh the

outputs of the garment reconstruction network of AnchorUDF [ZWLS21]. In Fig. 6.6 (top)

we apply it to the point cloud completion pipeline of NDF [CMPM20]. Both these methods

output dense point clouds surface, which must then be meshed using the time-costly ball

pivoting algorithm. Instead, our method can directly mesh the UDF and does so in a fraction

of the time while preserving differentiability. That makes the whole algorithm suitable for

inclusion into an end-to-end differentiable pipeline.

78

6.4. Experiments

6.4.6 Limitations

Reliance on learned UDF fields. The proposed method can mesh the zero-surface of an un-

signed distance field. In practice however, UDF fields are approximated with neural networks,

and we find it difficult to learn a sharp 0-valued surface for networks with small capacities.

It can for example happen that the approximate UDF field is not reaching zero, or that the

zero surface thickens and becomes a volume, or that the gradients are not approximated well

enough. In such cases, artifacts such as single-cell holes can appear when using our method

at a high resolution. Note that applying our method to a real UDF would not exhibit such

issues. By comparison however, applying marching cubes on an approximate and poorly

learned SDF is more robust since it only requires the field to be continuous and to have a zero

crossing to produce artifact-free surfaces. UDF networks could be made more accurate by

using additional loss terms [GYH+20] or an adaptive training procedure [DZW+20], but this

research direction is orthogonal to the method proposed in this paper.

Training limitations. Similarly to [RLR+20] for SDFs, since the proposed gradients rely on the

field being an UDF, they cannot be used to train a neural network from scratch. This would

require network initialization or regularization strategies to ensure it regresses valid UDF

fields, a topic we see as an interesting research direction.

Limitations of marching cubes. After locally detecting surface crossings via the pseudo-sign

computation, we rely on standard marching cubes for meshing an open surface, which implies

the need of a high resolution grid to detect high frequency details, and cubic scalability

over grid resolution. Moreover, marching cubes was designed to handle watertight surfaces,

and as a consequence some topological cases are missing, for example at surface borders

or intersections. This could be remedied by detecting and handling such new cases with

additional disjunctions.

Normal orientations. The breadth-first exploration of the surface makes the orientation of

adjacent facets consistent with each other. However, non-orientable surfaces such as Möbius-

strips would intrisically produce juncture points with inconsistent orientations when two

different branches of the exploration reach each other. In such points, our method can produce

holes. Similarly, marching cubes has geometric guarantees on the topology of reconstructed

meshes, but this is not true for the proposed method since there is no concept of inside and

outside in UDFs.

Sequential processing. Our strategy for obtaining consistent facet orientations and avoiding

undesirable holes in the surface relies on a procedure that is sequential by nature. As they

stand, the breadth-first exploration coupled with the voting mechanism are not amenable to

parallelization. This limitation constrains the acceleration and optimization of our algorithm.

79

Chapter 6. MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field
Networks

6.5 Conclusion

We have shown that deep-implicit non-watertight surfaces expressed in terms of unsigned

distance functions could be effectively and differentiably triangulated. This provides an

explicit parameterization of such surfaces that can be integrated in end-to-end differentiable

pipelines, while retaining all the strengths of implicit representations, mainly that a network

can accurately represent shapes with different topologies (jeans, sweater...) from the same

latent space. In future work, we will explore how it can be used to jointly optimize the pose

and clothes of people wearing loose attire.

80

7 DrapeNet: Garment Generation and
Self-Supervised Draping

This chapter is based on the conference paper [LLG+23]:

L. De Luigi∗, R. Li∗, B. Guillard, M. Salzmann, and P. Fua, DrapeNet: Generating Garments

and Draping them with Self-Supervision, at CVPR, 2023.

7.1 Introduction

Draping digital garments over differently-shaped bodies in random poses has been exten-

sively studied due to its many applications such as fashion design, moviemaking, video

gaming, virtual try-on and, nowadays, virtual and augmented reality. Physics-based simula-

tion (PBS) [BW98, LBK17, P+95, Pro97, TTN+13, VSC01, Zel05, Nvi18a, Sof18, Nvi18b, Des18,

SZZ+18] can produce outstanding results, but at a high computational cost.

Recent years have witnessed the emergence of deep neural networks aiming to achieve the

quality of PBS draping while being much faster, easily differentiable, and offering new speed vs.

accuracy tradeoffs [GCS+19, GCP+22, MYR+20, PLPM20, SOC19, SLL20, TBTPM20, VSGC20,

WCPM18]. These networks are often trained to produce garments that resemble ground-

truth ones. While effective, this requires building training datasets, consisting of ground-

truth meshes obtained either from computationally expensive simulations [NSO12] or using

complex 3D scanning setups [PMPHB17]. Moreover, to generalize to unseen garments and

poses, these supervised approaches require training databases encompassing a great variety

of samples depicting many combinations of garments, bodies and poses.

The recent PBNS and SNUG approaches [SOC22, BME21] address this by casting the physical

models adopted in PBS into constraints used for self-supervision of deep learning models.

This makes it possible to train the network on a multitude of body shapes and poses without

ground-truth draped garments. Instead, the predicted garments are constrained to obey

physics-based rules. However, both PBNS and SNUG, require training a separate network

for each garment. They rely on mesh templates for garment representation and feature one

output per mesh vertex. Thus, they cannot handle meshes with different topologies, even for

81

Chapter 7. DrapeNet: Garment Generation and Self-Supervised Draping

Drape unseen garments Recover 3D models from…

…images …3D scans

initial longer sleeves shorter opened longer trousers

Edit garments

Figure 7.1 – Overview of DrapeNet. Our network can drape garments over bodies of different
shapes in various poses. To minimize the required amount of supervision, our draping
network is trained with physics-based self-supervision and generalizes to multiple garments
by being conditioned on latent codes. These can be manipulated to edit specific features
of the corresponding garments. Being fully differentiable, our pipeline makes it possible to
recover 3D models of garments and bodies from observations such as images and 3D scans.

the same garment. This makes them very specialized and limits their applicability to large

garment collections as a new network must be trained for each new clothing item.

In this work, we introduce DrapeNet, an approach that also relies on physics-based constraints

to provide self-supervision but can handle generic garments by conditioning a single draping

network with a latent code describing the garment to be draped. We achieve this by coupling

the draping network with a garment generative network, composed of an encoder and a

decoder. The encoder is trained to compress input garments into compact latent codes that

are used as input condition for the draping network. The decoder, instead, reconstructs a 3D

garment model from its latent code, thus allowing us to sample and edit new garments from

the learned latent space.

Specifically, we model the output of the garment decoder as an unsigned distance function

(UDF), which were demonstrated [GSF22] to yield better accuracy and fewer interpenetrations

than the inflated signed distance functions often used for this purpose [CPA+21, LGRF22].

Moreover, UDFs can be triangulated in a differentiable way [GSF22] to produce explicit sur-

faces that can easily be post-processed, making our pipeline fully differentiable. Hence,

DrapeNet can not only drape garments over given body shapes but can also perform gradient-

based optimization to fit garments, along with body shapes and poses, to partial observations

of clothed people, such as images or 3D scans.

82

7.2. Related Work: Draping Garments over 3D Bodies

Our contributions are as follows:

• We introduce a single garment draping network conditioned on a latent code to handle

generic garments from a large collection (e.g. top or bottom garments);

• By exploiting physics-based self-supervision, our pipeline only requires a few hundred

garment meshes in a canonical pose for training;

• Our framework enables the fast draping of new garments with high fidelity, as well as

the sampling and editing of new garments from the learned latent space;

• Being fully differentiable, our method can be used to recover accurate 3D models of

clothed people from images and 3D scans.

7.2 Related Work: Draping Garments over 3D Bodies

Two main classes of methods coexist, physics-based algorithms [BW98, LHT+21, LLK19,

NSO12, NPO13, SZZ+18] that produce high-quality drapings but at a high computational

cost, and data-driven approaches that are faster but often at the cost of realism.

Among the latter, template-based approaches [BME21, BTTPM19, JZH+20, PLPM20, STOC21,

SOC22, TBTPM20, PMJ+22] are dominant. Each garment is modeled by a specific triangulated

mesh and a draping function is learned for each one. In other words, they do not generalize.

There are however a number of exceptions. In [GCP+22, BMTE21] the mesh is replaced by

3D point clouds that can represent generic garments. This enables deforming garments with

arbitrary topology and geometric complexity, by estimating the deformation separately for

each point. [ZMGL21] goes further and allows differentiable changes in garment topology

by sampling a fixed number of points from the body mesh. Unfortunately, this point cloud

representation severely limits possible downstream applications.

In recent approaches [CPA+21, LGRF22], a space of garments is learned with clothing items

modeled as inflated SDFs and one single shared network to predict their deformations as a

3D displacement field. This makes deployment in real-world scenarios easier and allows the

reconstruction of garments from images and 3D scans. However, the inflated SDF scheme

reduces realism and precludes post-processing using standard physics-based simulators or

other cloth-specific downstream applications. Furthermore, both models are fully supervised

and require a dataset of draped garments whose collection is extremely time-consuming.

Alleviating the need for costly ground-truth draped garments is tackled in [SOC22, BME21],

by introducing physics-based losses to train draping networks in a self-supervised manner.

The approach of [SOC22] relies on a mass spring model to enforce the physical consistency of

static garments deformed by different body poses. The method of [BME21] also accounts for

variable body shapes and dynamic effects; furthermore, it incorporates a more realistic and

83

Chapter 7. DrapeNet: Garment Generation and Self-Supervised Draping

Intersection
Solver

Garment generative network Garment draping network

Garment
latent code

ℒ!"#$ +ℒ%&'!

3D queries
𝑥 ∈ ℝ(×* Body shape and

pose (𝛽, 𝜃)

𝑧

𝑧$+,

Ga
rm

en
t

En
co

de
r

𝑧!"#

+

+

U
DF

De
co

de
r

MeshUDF

Garment
UDF

𝑧$"!

𝑧-+$

Garment Decoder
SUPERVISED

SELF-SUPERVISED

𝛥𝑥, 𝛥𝑥!"#

Δ𝑥$% Skinning - 𝒲

ℒ%!&'() + ℒ$*)+(),
+ ℒ,&'-(!. + ℒ/"00(%(")

ℒ%!&'() + ℒ$*)+(),
+ ℒ,&'-(!. + ℒ/"00(%(")

+ ℒ#() + ℒ0'.*&

To
p

Di
sp

la
ce

m
en

ts
Bo

tto
m

Di
sp

la
ce

m
en

ts

𝛥𝑥, 𝛥𝑥!"#

Figure 7.2 – Overview of our framework. Left: Garment generative network, trained to embed
garments into compact latent codes and predict their unsigned distance field (UDF) from such
vectors. UDFs are then meshed using [GSF22]. Right: Garment draping network, conditioned
on the latent codes of the generative network. It is trained in a self-supervised way to predict
the displacements∆x and∆xref to be applied to the vertices of given garments, before skinning
them according to body shape and pose (β, θ) with the predicted blending weights W . It
includes an Intersection Solver module to prevent intersection between top and bottom
garments.

expressive material model. Both methods, however, require training one network per garment,

a limitation we remove.

7.3 Method

We aim to realistically deform and drape generic garments over human bodies of various

shapes and poses. To this end, we introduce the DrapeNet framework, presented in Fig. 7.2.

It comprises a generative network shown on the left and a draping network shown on the

right. Only the first is trained in a supervised manner, but using only static unposed garments

meshes. This is key to avoiding having to run physics-based simulations to generate ground-

truth data. Furthermore, we condition the draping network on latent vectors representing

the input garments, which allows us to use the same network for very different garments,

something that competing methods [BME21, SOC22] cannot do.

The generative network is a decoder trained using an encoder that turns a garment into

a latent code z that can then be decoded to an Unsigned Distance Function (UDF), from

which a triangulated mesh can be extracted in a differentiable manner [GSF22]. The UDF

representation allows us to accurately represent open surfaces and the many openings that

garments typically feature. Since the top and bottom garments – shirts and trousers – have

different patterns, we train one generative model for each. Both networks have the same

architecture but different weights.

The resulting garment generative network is only trained to output garments in a canonical

84

7.3. Method

shape, pose, and size that fit a neutral SMPL [LMR+15] body. Draping the resulting garments

to bodies in non-canonical poses is then entrusted to a draping network, again one for the

top and one for the bottom. As in [BME21, SOC22, LGRF22], this network predicts vertex

displacements w.r.t. the neutral position. The deformed garment is then skinned onto the

articulated body model. To enable generalization to different tops and bottoms, we condition

the draping process on the garment latent codes of the generative network, shown as ztop and

zbot in Fig. 7.2.

We use a small database of static unposed garments loosely aligned with bodies in the canon-

ical position to train the two garment generating networks. This being done, we exploit

physics-based constraints to train in a fully self-supervised manner the top and bottom drap-

ing networks for realism, without interpenetrations with the body and between the garments

themselves.

7.3.1 Garment Generative Network

To encode garments into latent codes that can then be decoded into UDFs, we rely on a point

cloud encoder that embeds points sampled from the unposed garment surface into a compact

vector. This lets us obtain latent codes for previously unseen garments in a single inference

pass from points sampled from its surface. This can be done given any arbitrary surface

triangulation. Hence, it gives us the flexibility to operate on any given garment mesh.

We use DGCNN [WSL+19] as the encoder. It first propagates the features of points within the

same local region at multiple scales and then aggregates them into a single global embedding

by max pooling. We pair it with a decoder that takes as input a latent vector, along with a point

in 3D space, and returns its (unsigned) distance to the garment. The decoder is a multi-layer

perceptron (MLP) that relies on Conditional Batch Normalization [VSM+17] for conditioning

on the input latent vector.

We train the encoder and the decoder by encouraging them to jointly predict distances that are

small near the training garments’ surface and large elsewhere. Because the algorithm we use

to compute triangulated meshes from the predicted distances [GSF22] relies on the gradient

vectors of the UDF field, we also want these gradients to be as accurate as possible [AL20b,

ZWLS21]. We therefore minimize the loss

Lg ar m = Ldi st +λg Lg r ad , (7.1)

where Ldi st encodes our distance requirements, Lg r ad the gradient ones, and λg is a weight

balancing their influence.

More formally, at training time and given a mini-batch comprising B garments, we sample

a fixed number P of points from the surface of each one. For each resulting point cloud pi

85

Chapter 7. DrapeNet: Garment Generation and Self-Supervised Draping

(1≤i ≤B), we use the garment encoder EG to compute the latent code

zi = EG (pi) (7.2)

and use it as input to the decoder DG . It predicts an UDF field supervised with Eq. (7.1), whose

terms we define below.

Distance Loss. Having experimented with many different formulations of this loss, we found

the following one both simple and effective. Given N points {xi j } j≤N sampled from the

space surrounding the i -th garment, we pick a distance threshold δ, clip all the ground-truth

distance values {yi j } to it, and linearly normalize the clipped values to the range [0,1]. This

yields normalized ground-truth values ȳi j = min(yi j ,δ)/δ. Similarly, we pass the output of the

final layer of DG through a sigmoid function σ(·) to produce a prediction in the same range for

point xi j

ỹi j =σ(DG (xi j ,zi)) . (7.3)

Finally, we take the loss to be

Ldi st = BCE
[

(ȳi j)i≤B
j≤N , (ỹi j)i≤B

j≤N

]
, (7.4)

where BCE[·, ·] stands for binary cross-entropy. As observed in [DZW+20], the sampling

strategy used for points xi j strongly impacts training effectiveness. We describe ours in the

appendix. In our experiments, we set δ= 0.1, being the top and bottom garments normalized

respectively into the upper and lower halves of the [−1,1]3 cube.

Gradient Loss. Given the same sample points as before, we take the gradient loss to be

Lg r ad = 1

B N

∑
i , j

∥∥gi j − ĝi j
∥∥2

2 , (7.5)

where gi j = ∇x yi j ∈ R3 is the ground-truth gradient of the i -th garment’s UDF at xi j and

ĝi j =∇xDG (xi j ,zi) the one of the predicted UDF, computed by backpropagation.

7.3.2 Garment Draping Network

We describe our approach to draping generic garments as opposed to specific ones and our

self-supervised scheme. We assume that all garments are made of a single common fabric

material, and we drape them in a quasi-static manner.

86

7.3. Method

Draping Generic Garments

We rely on SMPL [LMR+15] to parameterize the body in terms of shape (β) and pose (θ)

parameters. It uses Linear Blend Skinning to deform a body template. Since garments generally

follow the pose of the underlying body, we extend the SMPL skinning procedure to the 3D

volume around the body for garment draping. Given a point x ∈R3 in the garment space, its

position D(x,β,θ,z) after draping becomes

D(x,β,θ,z) =W (x(β,θ,z),β,θ,W (x)) , (7.6)

x(β,θ,z) = x+∆x(x,β)+∆xref(x,β,θ,z) ,

∆xref(x,β,θ,z) =B(β,θ) ·M (x,z) ,

where W (·) is the SMPL skinning function, applied with blending weights W (x), over the point

displaced by ∆x(x,β) and ∆xref(x,β,θ,z). W (x) and ∆x(x,β) are computed as in [STOC21,

LGRF22]. However, they only give an initial deformation for garments that roughly fits the

underlying body. To refine it, we introduce a new term, ∆xref(x,β,θ,z). It is a deformation

field conditioned on body parameters β and θ, and on the garment latent code z from the

generative network. Following the linear decomposition of displacements in SMPL, it is the

composition of an embedding B(β,θ) ∈RNB of body parameters and a displacement matrix

M (x,z) ∈RNB×3 conditioned on z. Being conditioned on the latent code z, ∆xref can deform

different garments differently, unlike the methods of [BME21, SOC22]. The number of vertices

does not need to be fixed, since displacements are predicted separately for each vertex.

Since we have distinct encodings for the top and bottom garments, for each one we train two

MLPs (B, M) to predict ∆xref. The other MLPs for W (·) and ∆x(·) are shared.

Self-Supervised Training

We first learn the weights of W (·) and ∆x(·) as in [STOC21, LGRF22], which does not require

any annotation or simulation data but only the blending weights and shape displacements

of SMPL. We then train our deformation fields ∆xref in a fully self-supervised fashion by

minimizing the physics-based losses introduced below. In this way, we completely eliminate

the huge cost that extensive simulations would entail.

Top Garments. For upper body garments – shirts, t-shirts, vests, tank tops, etc. – the deforma-

tion field is trained using the loss from [SOC22], expressed as

Ltop =Lstr ai n +Lbend +Lg r avi t y +Lcol , (7.7)

where Lstr ai n is the membrane strain energy of the deformed garment, Lbend the bending

energy caused by the folding of adjacent faces, Lg r avi t y the gravitational potential energy, and

Lcol a penalty for collisions between body and garment. Unlike in [SOC22], we only consider

87

Chapter 7. DrapeNet: Garment Generation and Self-Supervised Draping

the quasi-static state after draping, that is, without acceleration.

Bottom Garments. Due to gravity, bottom garments, such as trousers, would drop onto the

floors if we used only the loss terms of Eq. (7.7). We thus introduce an extra loss term to

constrain the deformation of vertices around the waist and hips. The loss becomes

Lbot tom =Lstr ai n +Lbend +Lg r avi t y +Lcol +Lpi n ,

Lpi n = ∑
v∈V

|∆xy |2 +λ(|∆xx |2 +|∆xz |2) , (7.8)

where V is the set of garment vertices whose closest body vertices are located in the region

of the waist and hips. See the appendix for details. The terms ∆xx , ∆xy and ∆xz are the

deformations along the X, Y and Z axes, respectively. λ is a positive value smaller than 1 that

penalizes deformations along the vertical direction (Y axis) and produces natural deformations

along the other directions.

Top-Bottom Intersection. To ensure that the top and bottom garments do not intersect with

each other when we drape them on the same body, we define a loss LI S that ensures that

when the top and the bottom garments overlap, the bottom garment vertices are closer to

the body mesh than the top ones, which prevents them from intersecting – this is arbitrary,

and the following could be formulated the other way around. To this end, we introduce an

Intersection Solver (IS) network. It predicts a displacement correction ∆xI S , added only when

draping bottom garments as

x̃(ztop ,zbot) = x(zbot) +∆xI S(x,ztop ,zbot) , (7.9)

where we omit the dependency of x̃, x and ∆xI S on the body parameters (β,θ) for simplicity.

ztop and zbot are the latent codes of the top and bottom garments, and x(zbot) is the input point

displaced according to Eq. (7.6). The skinning function of Eq. (7.6) is then applied to x̃(ztop ,zbot)

for draping. ∆xI S(·) is implemented as a simple MLP and trained with

LI S =Lbot tom +Ll ayer , (7.10)

where Ll ayer is a loss whose minimization requires the top and bottom garments to be

separated from each other. We formulate it as

Ll ayer =
∑

vB∈C
max(dbot (vB)−γdtop (vB),0) , (7.11)

where C is the set of body vertices covered by both the top and bottom garments, dtop (·) and

dbot (·) the distance to the top and the bottom garments respectively, and γ a positive value

smaller than 1 (more details in the appendix).

88

7.4. Experiments

Sampling and draping new garments

Draping generic garments

Fitting garments to observations

Bottom garments

latent sp
ace

Top garments

latent sp
ace

𝑧!"##"$

𝑧#"%

𝑧#"%

𝑧!"##"$

(𝛽, 𝜃)

G
ar

m
en

t
En

co
de

r

Dr
ap

in
g

N
et

w
or

k

Dr
ap

in
g

N
et

w
or

k

G
ar

m
en

t
De

co
de

r
Dr

ap
in

g
N

et
w

or
k

G
ar

m
en

t
De

co
de

r

backpropagation

Figure 7.3 – Overview of DrapeNet applications. Top: New garments can be sampled from
the latent spaces of the generative networks, and deformed by the draping networks to fit to a
given body. Center: The garment encoders and the draping networks form a general purpose
framework to drape any garment with a single forward pass. Bottom: Being a differentiable
parametric model, our framework can reconstruct 3D garments by fitting observations such
as images or 3D scans. The red boxes indicate the parameters optimized in this process.

89

Chapter 7. DrapeNet: Garment Generation and Self-Supervised Draping

7.4 Experiments

We first describe our experimental setup and test DrapeNet for the different purposes depicted

by Fig. 7.3. They include reconstructing different kinds of garments and editing them by

manipulating their latent codes. We then gauge the draping network both qualitatively and

quantitatively. Finally, we use DrapeNet to reconstruct garments from images and 3D scans.

7.4.1 Settings, Datasets and Metrics

Datasets. Both our generative and draping networks are trained with garments from

CLOTH3D [BME20], a synthetic dataset that contains over 7K sequences of animated 3D

humans parametrized used the SMPL model and wearing different garments. Each sequence

comprises up to 300 frames and features garments coming from different templates. For

training, we randomly selected 600 top garments (t-shirts, shirts, tank tops, etc.) and 300

bottom garments (both long and short trousers). Neither for the generative nor for the draping

networks did we use the simulated deformations of the selected garments. Instead, we trained

the networks using only garment meshes on average body shapes in T-pose. By contrast, for

testing purposes, we selected random clothing items – 30 for top garments and 30 bottom

ones – and considered whole simulated sequences.

Training. We train two different models for top and bottom garments, both for the generative

and for the draping parts of our framework. First, the generative models are trained on

the 600/300 neutral garments Then, with the generative networks weights frozen, we train

the draping networks by following [SOC22]: body poses θ are sampled randomly from the

AMASS [MGT+19] dataset, and shapes β uniformly from [−3,3]10 at each step. The other

hyperparameters are given in the appendix.

Metrics. We report the Euclidean distance (ED), interpenetration ratio between body and

garment (B2G), and intersection between top and bottom garments (G2G). ED is computed

between corresponding vertices of the considered meshes. B2G is the area ratio between

the garment faces inside the body and the whole surface as in [LGRF22]. Since CLOTH3D

exclusively features pairs of top/bottom garments with the bottom one closer to the body,

G2G is computed by detecting faces of the bottom garment that are outside of the top one,

and taking the area ratio between those and the overall bottom garment surface.

7.4.2 Garment Paramerization

We first test the encoding-decoding scheme of Section 7.3.1.

90

7.4. Experiments

GT
Pr
ed
ic
te
d

TA
RG

ET
RE
SU

LT

Figure 7.4 – Generative network: reconstruction of unseen garments in neutral pose/shape.
The latent codes are obtained with the garment encoder, then decoded into open surface
meshes.

Encoding-Decoding Previously Unseen Garments. The generative network of Fig. 7.2 is de-

signed to project garments into a latent space and to reconstruct them from the resulting latent

vectors. In Fig. 7.4, we visualize reconstructed previously-unseen garments from CLOTH3D.

The reconstructions are faithful to the input garments, including fine-grained details such as

the shirt collar on the left or the shoulder straps of the tank top.

Semantic Manipulation of Latent Codes. Our framework enables us to edit a garment by

manipulating its latent code. For the resulting edits to have a semantic meaning, we assigned

binary labels corresponding to features of interest to 100 training garments. For instance, we

labeled garments as having “short sleeves” (label = 0) or “long sleeves” (label = 1). Then, we

fit a linear logistic regressor to the garment latent codes. After training, the regressor weights

indicate which dimensions of the latent space control the feature of interest. To this end, we

first apply min-max normalization to the absolute weight values and then zero out the ones

below a certain threshold, empirically set to 0.5. The remaining non-zero weights indicate

which dimensions of the latent codes should be increased or decreased to edit the studied

feature. To create Fig. 7.5, we applied this simple procedure to control the sleeve length and

the front opening for top garments along with the length for bottom garments. As can be seen

from the figure, our latent representations give us the ability to edit a specific garment feature

while leaving other aspects of the garment geometry unchanged.

7.4.3 Garment Draping

We now turn to the evaluation of the draping network and compare its performance to those

of DeePSD [BMTE21] or DIG [LGRF22], two fully supervised learning methods trained on

CLOTH3D. DeePSD takes the point cloud of the garment mesh as input and predicts blending

weights and pose displacements for each point; DIG drapes garments with a learned skinning

91

Chapter 7. DrapeNet: Garment Generation and Self-Supervised Draping

Sl
ee
ve

le
ng
th - +

Fr
on

t
op

en
in
g

- +

Le
ng
th - +

Figure 7.5 – Garment editing. The latent codes produced by the garment encoder can be
manipulated to edit specific features of the corresponding garments, without altering the
overall geometry.

DeePSD DIG Ours

ED-top (mm) 28.1 29.6 47.9
ED-bottom (mm) 18.3 20.0 27.3

B2G-top (%) ↓ 7.2 1.8 0.9
B2G-bottom (%) ↓ 3.4 0.8 0.3

G2G (%) ↓ 2.0 4.0 0.5

Table 7.1 – Draping unseen garment meshes. Comparison between DeePSD, DIG and our
method, for top and bottom garments: Euclidean distance (ED), intersections with the body
(B2G) and between garments (G2G) as ratio of intersection areas.

field that can be applied to generic 3D points, but is similar for all garments. We chose those

because, like DrapeNet, they both can deform garments of arbitrary geometry and topology.

Draping Unseen Meshes. We drape previously unseen garments on different bodies in random

poses. We first encode the garments and use the resulting latent codes to condition the draping

network, whose inference takes ∼5ms.

We provide qualitative results in Fig. 7.6 and report quantitative ones in Table 7.1. Despite

being completely self-supervised, DrapeNet delivers the lowest ratio of body-garment inter-

penetrations (B2G) for both top and bottom garments and the least intersections between

them (G2G).

However, DrapeNet also yields higher ED values, which makes sense because there is more

than one way to satisfy the physical constraints and to achieve realism. Hence, in the absence

of explicit supervision, there is no reason for the answer picked by DrapeNet to be exactly

92

7.4. Experiments

DeePSD
29.0mm

DIG
10.4mm

Ours
50.0mmGT

Figure 7.6 – Comparison between DeePSD, DIG and our method. Ours is more realistic
despite having the highest Euclidean distance (ED) error (left), and has less intersection
between garments (right). Left also shows that ∆xref is necessary for realistic deformations.

0 10 20 30 40 50 60

None
DeePSD

DIG
Ours

% of selections
None

DeePSD
DIG
Ours 53.58%

28.01%
9.90%
8.51%

Figure 7.7 – Human evaluation of draping results. When shown draping results of our
method, DIG and DeePSD, evaluators selected ours as the most realistic one in more than half
of the cases. None refers to the case when they had no clear preference.

93

Chapter 7. DrapeNet: Garment Generation and Self-Supervised Draping

(a) (b) (c) (d)

Figure 7.8 – Switching input latent codes of the draping network. Draping the same shirt by
conditioning the draping network with (a) the corresponding latent code, (b) the code of an
open vest, (c) of a t-shirt and (d) of a tank top. Gray meshes in dashed boxed are the garments
corresponding to the input latent codes.

the same as the one picked by the simulator. In fact, as argued in [BME21] and illustrated by

Fig. 7.6, which is representative in terms of ED, a low ED value does not necessarily correspond

to a realistic draping. To confirm this, we conducted a human evaluation study by sharing

a link to a website on friends groupchats. We gave no further instructions or details besides

those given on the site and reproduced in the appendix. The website displays 3 drapings

of the same garment over the same posed body, one computed using our method and the

others using the other two. The users were asked to select which one of the three seemed

more realistic and more pleasant, with a fourth potential response being “none of them". We

obtained feedback from 187 different people. A total of 1258 individual examples were rated

and we collected 3738 user opinions. In other words, each user expressed 20 opinions on

average. The chart in Fig. 7.7 shows that our method was selected more than 50% of the times,

with a large gap over the second best, DIG [LGRF22], selected less than 30% of the time. This

result confirms that DrapeNet can drape garments with better perceptual quality than the

competing methods.

Ablation Study. In Fig. 7.8, we show what happens when the draping network is conditioned

with a latent code of a garment that does not match the input one. This creates unnatural

deformations on the front when using the code of a shirt with a front opening to deform a

shirt without an opening. Similarly, the sleeves penetrate the arms when conditioning with

the code of a short sleeves shirt. This demonstrates that the draping network truly exploits the

latent codes to predict garment-dependent deformation fields.

In Fig. 7.6 left we show that removing our novel displacement term∆xref(·) from Eq. (7.6) leads

to unrealistic results.

We also ablate the influence of our Intersection Solver and observe that G2G increases from

0.5% to 1.1% without it. This demonstrates the effectiveness of this component at reducing

collisions between top and bottom garments.

94

7.4. Experiments

Input SMPLicit ClothWild DIGOurs (raw) Ours (post ref.)

Input SMPLicit ClothWild DIGOurs (raw) Ours (post ref.)

Figure 7.9 – Recovering garments and bodies from images. From left to right we show the in-
put image and the 3D models recovered with our method (without and with post-refinement),
and competitors methods: SMPLicit [CPA+21], ClothWild [MNSL22], DIG [LGRF22].

7.4.4 Fitting Observations

Since our method is end-to-end differentiable, it can be used to reconstruct 3D models of

people and their garments from partial observations, such as 2D images and 3D scans.

Fitting Images. Given an image of a clothed person, we use the algorithm of [YRSJ21, YSW+20]

to get initial estimates for the body parameters (β,θ) and a segmentation mask S. Then,

starting with the mean of the learned codes z, we reconstruct a mesh for the body and its

garments by minimizing

L(β,θ,z) = LIoU(R(D(G,β,θ,z),SMPL(β,θ)), S) ,

G = MeshUDF(DG (z)) ,
(7.12)

w.r.t. z, β and θ, where LIoU is the IoU loss [LZK+21] in pixel space penalizing discrepancies

between 2D masks, R(·) is a differentiable mesh renderer [RRN+20], and G is the set of vertices

of the garment mesh reconstructed with our garment decoder using z. D(·) and SMPL(·) are

95

Chapter 7. DrapeNet: Garment Generation and Self-Supervised Draping

Front BackRaw Post Refinement Post RefinementRaw

Figure 7.10 – Recovering garments and bodies from 3D scans. We show 3D models recovered
with our method from scans of the SIZER dataset [TBTPM20]. Raw indicates the model
recovered with Eq. (7.13) from the 3D scan. Post Refinement refers to the models further
refined with the physics-based losses.

the garment and body skinning functions defined in Eq. (7.6) and in [LMR+15], respectively.

To ensure pose plausibility, θ is constrained by an adversarial pose prior [DRC+22].

For the sake of simplicity, Eq. (7.12) formulates the reconstruction of a single garment G. In

practice, we extend this formulation to both the top and the bottom garments shown in the

target image. Fig. 7.9 depicts the results of minimizing this loss. It outperforms the state-of-

the-art methods SMPLicit [CPA+21], ClothWild [MNSL22] and DIG [LGRF22]. The garments

we recover follow the ones in the input image with higher fidelity and visual quality, without

interpenetration between the body and the garments or between the two garments.

After this optimization, we can further refine the result by minimizing the physics-based

objectives of Eq. (7.7) w.r.t. the per-vertex displacements of the reconstructed garments, as

opposed to w.r.t. the latent vectors. We describe this procedure in the appendix. As shown

in the third column of Fig. 7.9, this further boosts the realism of the reconstructed garments.

Note that this refinement is feasible thanks to the open surface representation allowed by our

UDF model. Applying these physically inspired losses to an inflated garment, as produced by

SMPLicit, ClothWild and DIG, yields poor results with many self-intersections, as shown in

the appendix.

Fitting 3D scans. Given a 3D scan of a clothed person and segmentation information, we

apply a strategy similar to the one presented above and minimize

L(β,θ,z) = d(D(G,β,θ,z), SG)+ ~d(SMPL(β,θ), SB), (7.13)

96

7.5. Conclusion

w.r.t. z, β and θ, where SG and SB denote the segmented garment and body scan points, and

d(a,b) and ~d(a,b) are the bidirectional and the one-directional Chamfer distance from b to

a. Similarly to Eq. (7.12), we apply Eq. (7.13) to recover both the top and bottom garments.

Fig. 7.10 shows our fitting results for some scans of the SIZER dataset [TBTPM20]. The recov-

ered 3D models closely match the input scans. Moreover, we can also apply a post-refinement

procedure similar to the one described above, by minimizing both the physics-based losses

from Eq. (7.7) and the Chamfer distance to the input scan w.r.t. the 3D coordinates of the ver-

tices of the reconstructed models. This leads to even more realistic results, with fine wrinkles

aligning to the input scans.

7.5 Conclusion

We have shown that physics-based self-supervision can be leveraged to learn a single parame-

terization for many different garments to be draped on human bodies in arbitrary poses. Our

approach relies on UDFs to represent garment surfaces and on a displacement field to drape

them, which enables us to handle a continuous manifold of garments without restrictions on

their topology. Our whole pipeline is differentiable, which makes it suitable for solving inverse

problems and for modeling clothed people from image data.

Future work will focus on modeling dynamic poses instead of only static ones. This is of

particular relevance for loose clothes, where our reliance on the SMPL skinning prior should

be relaxed. Moreover, we will investigate replacing our current global latent code by a set of

local ones to yield finer-grained control both for garment editing and draping.

97

8 Conclusions

8.1 Summary

We have introduced three key technical innovations in this work:

1. a hybrid shape decoder that combines a voxel-based representation with 2D atlases,

2. a differentiable parameterization of watertight meshes using deep implicit surfaces,

3. an extension of this approach to handle open surfaces through a novel meshing proce-

dure.

These foundational components enable the exploration of novel applications for generating

3D surfaces using neural networks. We have demonstrated their effectiveness and versatility

in various contexts, including single view reconstruction from images and sketches, as well

as gradient-based optimization tasks. Our experiments encompassed reconstruction and

manipulation of 3D surfaces from synthetic and real images of common objects and garments,

as well as sketches.

Our hybrid representation provides a systematic and principled approach to elevate 2D fea-

tures to 3D, which has proven advantageous for single and multi view reconstruction. However,

using the multiple patches it produces in downstream applications remains challenging, and

the fusion of voxels and atlases lacks generalizability to other 3D applications. Nonetheless,

the concept of structuring 3D space with a grid as support for other primitives was used in

more recent applications [RBS+22, HCJS20, MESK22] and remains a valid approach.

Implicit shape representations with SDFs and Occupancy fields address this problem by

yielding smooth watertight meshes that lend themselves well to a great variety of applications

and downstream tasks. The structure of this thesis therefore aligns with a prevalent trend in

the research community, where implicit shape representations have gained significant traction

over the past four years. These implicit representations have demonstrated their superiority in

99

Chapter 8. Conclusions

terms of performance, simplicity, generality, and robustness compared to explicitly deforming

mesh templates or atlases. The success of implicit representations has been allowed by

their utilization of smooth multi-layer perceptrons, which readily facilitates gradient descent

and enables the construction of high-dimensional features. One notable application that

gained significant popularity is the representation of 5D radiance fields through overfitting

a single scene [MPT+20], which differs from the focus of this thesis. We ourselves have

embraced this shift towards implicit representations, transitioning from the utilization of

explicit representations like our own hybrid shape decoder, to predominantly employing

purely implicit surfaces, particularly signed distance functions (SDFs). This shift aligns with

the broader trend of embracing implicit representations within the research community.

The data-driven watertight mesh parameterization we introduced next thus offers increased

versatility, as we demonstrated on with a wide range of applications. Within the same frame-

work, we employed it for single view reconstruction in a conventional feed-forward manner, as

well as for refining initial reconstructions and tackling various other tasks, including physical

shape optimization and fitting sparse observations such as 3D point clouds or sketches. This

approach gained significant attention and has since sparked further research and subsequent

developments.

Unsigned Distance Fields (UDFs) offer an even greater level of generality as they can effec-

tively model both open and closed surfaces, alleviating the need for watertight shapes and

simplifying data pre-processing. Notably, our contribution lies in the introduction of a dif-

ferentiable meshing procedure, thus enhancing the practicality of UDFs. While our primary

demonstration focuses on a data-driven parameterization for garments, it is important to

note that our meshing procedure finds utility beyond latent models. Specifically, it extends

to the meshing of generic UDF fields, such as entire implicit scenes stored as augmented

radiance fields [LLL+22]. However, it is important to acknowledge that UDFs present inherent

challenges. They are more intricate to train and mesh compared to their signed distance func-

tion (SDF) counterparts, rendering them relatively less robust and established in comparison.

Additionally, due to their relative novelty, UDFs remain less mature and less prevalent within

the field. Furthermore, while our main application of UDFs has been focused on garment

parameterization, it is worth noting that they contend with other specific parameterization

approaches for such specialized cases [LGF23, KL21].

Furthermore, this thesis has underscored the great potential of the render and compare ap-

proach, a technique also known as analysis by synthesis, that we employed by combining

differentiable rendering with data-driven shape priors. The efficacy of this iterative refinement

process has been extensively demonstrated across multiple applications discussed in Chap-

ters 4 to 7. Through this approach, the precise fitting of sparse observations has been achieved,

yielding results that surpass those obtained with simple feed-forward neural networks. Of

particular significance is the application of the render and compare approach to interactive

shape editing, as presented in Chapter 5. This practical implementation further exemplifies

the versatility and potential of this technique in facilitating intuitive user interactions. In

100

8.2. Limitations and Future work

summary, the render and compare approach serves as a powerful tool for enhancing shape

refinement, enabling the accurate alignment of sparse observations, and maximizing the

potential of data-driven shape priors across various applications explored in this thesis.

8.2 Limitations and Future work

One limitation of our image and sketch fitting approaches is their focus solely on silhouettes

and external contours, disregarding other visual cues like shading and color. Addressing

this limitation in the future could involve learning a prior for surface appearance. However,

we identify two challenges in doing so. Firstly, it would necessitate the development of a

representation and model that jointly learns shape and appearance. This is non-trivial as

appearance is inherently a 2D surface property, while shapes are typically represented as 3D

volumetric fields. Secondly, such models would require careful consideration to ensure robust

generalization. By contrast, considering only binary silhouettes reduces domain gaps and

facilitates robust generalization.

Another limitation of the render and compare strategy is its reliance on known camera param-

eters, which we assume to be known in most cases. For instance, in our sketching interface

developed in Chapter 5, proper initialization to an example shape is required to orient the

drawing space. As a result, it is not applicable to non-oriented sketches. A potential solution

to address this limitation would involve jointly regressing both the 3D shape and its pose.

Furthermore, although our shape decoders have shown promising results, there is still room for

improvement in terms of the quality of the generated meshes. Currently, the generated meshes

may exhibit discernible differences compared to handcrafted ones, in terms of fine details,

surface regularity, or connectivity of the different shape components. Initial experiments with

an adversarial training paradigm did not yield any noticeable improvement in this regard. One

potential approach to enhance the level of detail is to deviate slightly from a global model

that is conditioned on a single latent code and instead adopt local latent codes to model

different parts of the shape. However, achieving this while maintaining the ability to fit sparse

observations with large occlusions poses a challenge. To address this, we envision the use of

an attention model that allows the local codes to attend to other regions, thereby capturing a

global prior.

Deep implicit shape representations can benefit from further improvements in the learning

process, particularly for Uniform Distance Fields (UDFs) that are susceptible to artifacts due

to the localization of the surface at a singularity of the field. Currently, our latent models

require pre-processing of meshes and the generation of supervision samples throughout the

entire 3D space, even though the level set of interest is confined to a 2D manifold within

the ambient 3D space. The selection of optimal supervision samples for implicit networks

remains an underexplored area of research [DZW+20]. An alternative approach that could

hold promise is the utilization of active learning methods to effectively identify and select the

most informative supervision samples. This avenue warrants further investigation to enhance

101

Chapter 8. Conclusions

the learning process and address the challenges associated with training deep implicit shape

representations.

102

A Appendix

A.1 Supplementary material for UCLID-Net

A.1.1 Metrics

This subsection defines the metrics and loss functions used in the corresponding chapter.

Chamfer-L1

The Chamfer-L1 (CD–L1) pseudo distance dC D1 between point clouds X = {
xi |1 ≤ i ≤ N , xi ∈R3

}
and Y = {

y j |1 ≤ j ≤ M , y j ∈R3
}

is the following:

dC D1 (X ,Y) = 1

|X | ·
∑

x∈X
miny∈Y

∥∥x − y
∥∥

2 +
1

|Y | ·
∑

y∈Y
minx∈X

∥∥x − y
∥∥

2 , (A.1)

where ‖.‖2 is the Euclidean distance. We use CD–L1 as a validation metric on the Pix3D

dataset, according to the original procedure. It is applied on shapes normalized to bounding

box [−0.5,0.5]3, and sampled with 1024 points.

Chamfer-L2

The Chamfer-L2 (CD–L2) pseudo distance dC D2 between point clouds X and Y is the following:

dC D2 (X ,Y) = 1

|X | ·
∑

x∈X
miny∈Y

∥∥x − y
∥∥2

2 +
1

|Y | ·
∑

y∈Y
minx∈X

∥∥x − y
∥∥2

2 (A.2)

i.e. CD–L2 is the average of the squares of closest neighbors matching distances. We use CD–L2

as a validation metric on the ShapeNet dataset. It is applied on shapes normalized to unit

radius sphere, and sampled with 2048 points.

103

Appendix A. Appendix

Earth Mover’s distance

The Earth Mover’s Distance (EMD) is a distance that can be used to compare point clouds as

well. It is defined as

dE MD (X ,Y) = mi n
T∈℘(N ,M)

∑
1≤i≤N ,1≤ j≤M

Ti , j ×
∥∥xi − y j

∥∥
2 (A.3)

where ℘(N , M) is the set of all possible uniform transport plans from a point cloud of N points

to one of M points, i.e. ℘(N , M) is the set of all N ×M matrices with real coefficients larger

than or equal to 0, such that the sum of each line equals 1/N and the sum of each column

equals 1/M .

The high computational cost of EMD implies that it is mostly used for validation only, and

in an approximated form. On ShapeNet, we use the implementation from [Qi18] on point

clouds normalized to unit radius sphere, and sampled with 2048 points. On Pix3D, we use the

implementation from [Sun18] on point clouds normalized to bounding box [−0.5,0.5]3, and

sampled with 1024 points.

F-score

The F-Score is introduced in [TRR+19], as an evaluation of distance between two object

surfaces sampled as point clouds. Given a ground truth and a reconstructed surface, the

F-Score at a given threshold distance d is the harmonic mean of precision and recall, with:

• precision being the percentage of reconstructed points lying within distance d to a

point of the ground truth;

• recall being the percentage of ground truth points lying within distance d to a point of

the reconstructed surface.

We use the F-Score as a validation metric on the ShapeNet dataset. It is applied on shapes

normalized to unit radius sphere, and sampled with 10000 points. The distance threshold is

fixed at 5% side-length of bounding box [−1,1]3, i.e. d = 0.1 .

Shell Intersection over Union

We introduce shell-Intersection over Union (sIoU). It is the intersection over union computed

on voxelized surfaces, obtained as the binary occupancy grids of reconstructed and ground

truth shapes. As opposed to volumetric-IoU which is dominated by the interior parts of the

objects, sIoU accounts only for the overlap between object surfaces instead of volumes.

We use the sIoU as a validation metric on the ShapeNet dataset. The occupancy grid divides

the [−1,1]3 bounding box at resolution 50×50×50, and is populated by shapes normalized to

104

A.1. Supplementary material for UCLID-Net

unit radius sphere.

A.1.2 Network details

We here present some details of the architecture and training procedure for UCLID-Net. We

will make our entire code base publicly available.

3D CNN UCLID-Net uses S = 4 scales, and feature map Fs is the output of the s-th residual

layer of the ResNet18 [HZRS16] encoder, passed through a 2D convolution with kernel size 1

to reduce its feature channel dimension before being back-projected. In the 3D CNN, l ayer4,

l ayer3, and l ayer2 are composed of 3D convolutional blocks, mirroring the composition of a

residual layer in the ResNet18 image encoder, with:

• 2D convolutions replaced by 3D convolutions;

• 2D downsampling layers replaced by 3D transposed convolutions.

Final l ayer1 is a single 3D convolution. Each concat operation repeats depth grids twice along

their single binary feature dimension before concatenating them to feature grids. Tab. A.1

summarizes the size of feature maps and grids appearing on Fig. 3.1.

Local shape regressors The last feature grid H0 produced byt the 3D CNN is passed to two

downstream Multi Layer Perceptrons (MLPs). First, a coarse voxel shape is predicted by MLP

occ. Then, within each predicted occupied voxel, a local patch is folded in the manner of

AtlasNet [GFK+18], by MLP f ol d . Both MLPs locally process each voxel of H0 independently.

First, MLP occ outputs a surface occupancy grid Õ such that

Õx y z = occ((H0)x y z) (A.4)

at every voxel location (x, y, z). Õ is compared against ground truth occupancy grid O using

binary cross-entropy:

LBC E (Õ,O) =− ∑
x y z

[
Ox y z · log (Õx y z)+ (1−Ox y z) · log (1−Õx y z)

]
(A.5)

LBC E provides supervision for training the 2D image encoder convolutions, the 3D decoder

convolutions and MLP occ.

Then f old , the second MLP learns a 2D parametrization of 3D surfaces within voxels whose

predicted occupancy is larger than a threshold τ. As in [GFK+18, YFST18], such learned

parametrization is physically explained by folding a flat sheet of paper (or a patch) in space. It

continuously maps a discrete set of 2D parameters (u, v) ∈Λ to 3D points in space. A patch

105

Appendix A. Appendix

Nature Name Spatial resolution Number of features

input image I 224×224 3

2D feature maps

F1 56×56 30
F2 28×28 30
F3 14×14 30
F4 7×7 290

2D feature grids

GF1 28×28×28 30
GF2 28×28×28 30
GF3 14×14×14 30
GF4 7×7×7 290

3D depth grids

GD
1 28×28×28

1 (binary)
GD

2 28×28×28
GD

3 14×14×14
GD

4 7×7×7

3D CNN outputs

H0 28×28×28 40
H1 28×28×28 73
H2 28×28×28 73
H3 14×14×14 146

Table A.1 – UCLID-Net architecture: tensor sizes, names according to Fig. 3.1 in the main
chapter.

can be sampled at arbitrary resolution. In our case, we use a single MLP whose input is locally

conditioned on the value of (H0)x y z . The predicted point cloud X̃ is defined as the union of all

point samples over all folded patches:

X̃ = ⋃
x y z

Õx y z>τ


x

y

z

+ f old(u, v |(H0)x y z) | (u, v) ∈Λ

 (A.6)

Notice that 3D points are expressed relatively to the coordinate of their voxel. As a result,

we can explicitly restrict the spatial extent of a patch to the voxel it belongs to. We use the

Chamfer-L2 pseudo-distance to compare X̃ to a ground truth point cloud sampling of the

shape X : LC D (X̃ , X) = dC D2 (X̃ , X).

LC D provides supervision for training the 2D image encoder convolutions, the 3D decoder

convolutions and MLP f old . The total loss function is a weighted combination of the two

losses LBC E and LC D . Practically, for training each patch of X̃ is sampled with |Λ| = 10

uniformly sampled parameters, and X is composed of 5000 points.

Pre-training UCLID-Net is first trained for one epoch using the occupancy loss LBC E only.

106

A.1. Supplementary material for UCLID-Net

Normalization layers In the ResNet18 that serves as our image encoder, we replace the batch-

normalization layers by instance normalization ones. We empirically found out this provides

greater stability during training, and improves final performance.

Regressing depth maps We slightly adapt the off-the-shelf network architecture used for

regressing depth maps [Che18]. We modify the backbone CNN to be a ResNet18 with instance

normalization layers. Additionally, we perform less down-sampling by removing the initial

pooling layer. As a result the input size is 224×224 and the output size is 112×112.

Regressing cameras We similarly adapt the off-the-shelf network architecture used for re-

gressing cameras in [XWC+19]: the backbone VGG is replaced by a ResNet18 with instance

normalization layers.

A.1.3 Per-category results on ShapeNet

We here report per-category validation metrics for UCLID-Net and baseline methods: Atlas-

Net [GFK+18] (AN), Pixel2Mesh+[WZL+18] (P2M+), Mesh R-CNN [GMJ19] (MRC), DISN [XWC+19]

and UCLID-Net (ours).

Tab. A.2 reports Chamfer-L2 validation metric, Tab. A.3 the Earth Mover’s Distance, Tab. A.4 the

Shell Intersection over Union and Tab. A.5 the F-Score at 5% distance threshold (ie. d = 0.1).

category

method

p
la

n
e

b
en

ch

b
ox ca

r

ch
ai

r

d
is

p
la

y

la
m

p

sp
ea

ke
r

ri
fl

e

so
fa

ta
b

le

p
h

o
n

e

b
o

at mean

AN 10.6 15.0 30.7 10.0 11.6 17.3 17.0 22.0 6.4 11.9 12.3 12.2 10.7 13.0
P2M+ 11.0 4.6 6.8 5.3 6.1 8.0 11.4 10.3 4.3 6.5 6.3 5.0 7.2 7.0
MRC 12.1 7.5 9.7 6.5 8.9 9.3 14.0 13.5 5.7 7.7 8.1 6.9 8.6 9.0
DISN 6.3 6.6 11.3 5.3 9.6 8.6 23.6 14.5 4.4 6.0 12.5 5.2 7.8 9.7
Ours 5.3 4.2 7.4 4.1 4.7 6.9 10.9 13.8 5.8 5.7 6.9 6.0 5.0 6.3

Table A.2 – Chamfer-L2 Distance (CD, ×103) for single view reconstructions on ShapeNet
Core, with various methods, computed on shapes scaled to fit unit radius sphere, sampled
with 2048 points. The lower the better.

107

Appendix A. Appendix

category

method
p

la
n

e

b
en

ch

b
ox ca

r

ch
ai

r

d
is

p
la

y

la
m

p

sp
ea

ke
r

ri
fl

e

so
fa

ta
b

le

p
h

o
n

e

b
o

at mean

AN 6.3 7.9 9.5 8.3 7.8 8.8 9.8 10.2 6.6 8.2 7.8 9.9 7.1 8.0
P2M+ 4.4 3.2 3.4 3.4 3.7 3.7 5.5 4.2 3.5 3.4 3.8 2.7 3.4 3.8
MRC 5.0 4.1 5.1 4.1 4.7 4.9 5.6 5.7 4.1 4.6 4.5 4.6 4.2 4.7
DISN 2.2 2.3 3.2 2.4 2.8 2.5 3.9 3.1 1.9 2.3 2.9 1.9 2.3 2.6
Ours 2.5 2.2 3.0 2.2 2.3 2.5 3.2 3.4 2.0 2.4 2.7 2.2 2.2 2.5

Table A.3 – Earth Mover’s Distance (EMD, ×102) for single view reconstructions on ShapeNet
Core, with various methods, computed on shapes scaled to fit unit radius sphere, sampled
with 2048 points. The lower the better.

category

method

p
la

n
e

b
en

ch

b
ox ca

r

ch
ai

r

d
is

p
la

y

la
m

p

sp
ea

ke
r

ri
fl

e

so
fa

ta
b

le

p
h

o
n

e

b
o

at mean

AN 20 13 7 16 13 12 14 8 28 11 15 14 17 15
P2M+ 31 34 23 26 28 28 28 20 42 24 33 35 34 30
MRC 24 26 18 22 21 23 21 16 33 19 27 28 27 24
DISN 40 33 20 31 25 33 21 19 60 29 25 44 34 30
Ours 41 41 29 34 36 33 37 24 51 31 38 43 37 37

Table A.4 – Shell-Intersection over Union (IoU, %) for single view reconstructions on
ShapeNet Core, with various methods, computed on voxelized surfaces scaled to fit unit
radius sphere. The higher the better.

category

method

p
la

n
e

b
en

ch

b
ox ca

r

ch
ai

r

d
is

p
la

y

la
m

p

sp
ea

ke
r

ri
fl

e

so
fa

ta
b

le

p
h

o
n

e

b
o

at mean

AN 91.2 85.9 73.8 94.4 90.5 84.3 81.4 79.7 95.6 91.1 90.8 90.4 90.3 89.3
P2M+ 90.3 97.1 96.0 97.9 95.7 93.1 90.2 91.3 96.8 96.5 95.8 97.6 94.4 95.0
MRC 88.4 93.3 92.1 96.4 92.0 91.4 85.8 88.3 94.9 95.0 93.9 95.9 92.8 92.5
DISN 94.4 94.3 88.8 96.2 90.2 91.8 77.9 85.4 96.3 95.7 86.6 96.4 93.0 90.7
Ours 96.1 97.5 94.3 98.5 97.4 95.8 92.7 90.6 98.0 97.0 95.5 96.4 97.1 96.2

Table A.5 – F-Score (%) at threshold d = 0.1 for single view reconstructions on ShapeNet Core,
with various methods, computed on shapes scaled to fit unit radius sphere, sampled with
10000 points. The higher the better.

108

A.2. Supplementary material for DeepMesh

A.2 Supplementary material for DeepMesh

In this supplementary material, we first remind the reader of why Marching Cubes is not

differentiable. We also provide additional details about our experiments on single view 3D

reconstruction and drag minimization.

si ≥ 0

s j < 0

v
x = si

si−s j
(a) (b) si − s j

x

Figure A.1 – Marching cubes differentiation. (a) Marching Cubes determines the relative
position x of a vertex v along an edge via linear interpolation. This does not allow for effective
back-propagation when topology changes because of a singularity when si = s j . (b) We plot x,
relative vertex position along an edge. Note the infinite discontinuity for si = s j .

A.2.1 Non-differentiability of Marching Cubes

The Marching Cubes (MC) algorithm [LC87] extracts the zero level set of an implicit field

and represents it explicitly as a set of triangles. As discussed in the related work section,

it comprises the following steps: (1) sampling the implicit field on a discrete 3D grid, (2)

detecting zero-crossing of the field along grid edges, (3) assembling surface topology, that is,

the number of triangles within each cell and how they are connected, using a lookup table

and (4) estimating the vertex location of each triangle by performing linear interpolation on

the sampled implicit field. These steps can be understood as topology estimation followed by

determination of surface geometry.

More formally, let S = {si } ∈ RN×N×N be an implicit field sampled over a discrete Euclidean

grid G3D ∈ RN×N×N×3, where N denotes the resolution along each dimension. Within each

voxel, surface topology is determined based on the sign of si at its 8 corners. This yields

28 = 256 possible surface topologies within each voxel. Once they have been assembled into a

consistent surface, vertices are created when the implicit field changes sign along one of the

edges of the voxel. In such cases, the vertex location v is determined by linear interpolation.

Let x ∈ [0,1] denote the vertex relative location along an edge (Gi ,G j), where Gi and G j are

grid corners such that s j < 0 and si ≥ 0. This implies that, if x = 0, then v = Gi and conversely

if x = 1 then v = G j . In the MC algorithm, x is is determined as the zero crossing of the

interpolant of si , s j , that is,

x = si

si − s j
, (A.7)

109

Appendix A. Appendix

(a) (b)

Figure A.2 – Marching Cubes on an occupancy field. (a) running Marching Cubes on the
occupancy field predicted by fΘ yields artefacts. (b) Using an inverse sigmoid function to
amplify the predicted occupancy values yields smoother shapes.

as shown in Fig. A.1(a). The vertex location is then taken to be

v = Gi +x(G j −Gi). (A.8)

Unfortunately, this function is discontinuous for si = s j , as illustrated in Fig A.1(b). Because of

this, we cannot swap the signs of si and s j during backpropagation. This prevents topology

changes while differentiating, as discussed in [LDG18].

A.2.2 Meshing an occupancy field

As shown in Fig. A.2(a), marching cubes is not well-suited for meshing occupancy fields. Its

linear interpolation step is designed to approximate vertex locations in case the sampled field is

a signed distance function and does not perform well when predicted values are close to binary.

Previous work applies mesh smoothing in a post-processing step to mitigate this [MON+19].

We empirically found that amplifying the predicted occupancy values provides a simple

but efficient approximation of the linear regime of a signed distance function. As shown

in Fig. A.2(b), applying an inverse sigmoid function within the Marching Cubes sampling

loop yields smoother shapes at a negligible cost. Hence, this is what we do when meshing

occupancy fields.

A.2.3 Failure Case: Vanishing Surface

As explained in the main chapter, end-to-end training cannot be done from scratch, because

our gradients require the implicit field to already represent a valid surface. Here, we examine

another failure case that arises when training end-to-end with unsufficient regularization.

We start with the network fΘ1 of Sec 4.4.1, which was initially trained to represent a toy cow

and a rubber duck, and initialize the latent code z to that of the cow. We then jointly optimize

the code z and network weights Θ1 to conform to a new shape, the Stanford bunny B. We do

so by using our gradients and applying a surface to surface distance directly on the output

110

A.2. Supplementary material for DeepMesh

No surface
to extract

Initial mesh Target meshBest result

Optimization steps 𝑖
𝑖 = 0 𝑖 = 695 𝑖 = 696 𝑖 = 697𝑖 = 500𝑖 = 100

Figure A.3 – Limitation of end-to-end training: In the absence of regularization, optimizing
the network weights Θ and latent code z using our gradients for an extended number of
iterations to fit an unseen shape can lead to divergence in the optimization process.

mesh M , with no other form of regularization or supervision of the implicit field. We minimize

Ltask1(MΘ1 (z)) = min
m∈M

d(m,B)+min
b∈B

d(M ,b) . (A.9)

with respect to z and Θ1 with Adam [KB15a] for 800 steps, where d is the point-to-surface

distance in 3D.

Figure A.3 illustrates that we achieve a reasonable fit of the bunny within 500 iterations.

However, following this point, degenerate surfaces emerge and eventually disappear entirely.

In this case, fitting an useen shape with a weak prior turned the field into an invalid signed

distance, and failed. To avoid this issue, regularization techniques can be employed, including:

• early stopping (Fig. A.3 for i = 500) ;

• initializing the network weights to some valid implicit field by pretraining on a dataset

and keeping them frozen (as in Sec. 4.4.1 to 4.4.5), or initializing the network weights to

match a 3D sphere (as in [MCR22]) ;

• simultaneously supervising both the implicit field and the mesh surface, as in Sec. 4.4.6 ;

• adding consistency terms for the implicit field, such an eikonal regularization on the

gradients (as in [AL20a]).

A.2.4 Comparing against Deep Marching Cubes

Deep Marching Cubes (DMC) [LDG18] is designed to convert point clouds into a surface mesh

probability distribution. It can handle topological changes but is limited to low resolution

surfaces for the reasons discussed in the related work section. In Fig. A.4, we compare our

approach to DMC. We fit both representations to the rubber duck/cow dataset we introduced

in the experiments section. We use a latent space of size 2 and report our results in terms of

the CHD metric. As reported in the original paper, we found DMC to be unable to handle grids

larger than 323 because it has to keep track of all possible mesh topologies defined within

111

Appendix A. Appendix

DMC@323

1.87

Ours@323

1.84

Ours@2563

1.80

ground
truth DMC@323

1.98

Ours@323

1.94

Ours@2563

1.90

ground
truth

Figure A.4 – Comparison to Deep Marching Cubes considering a latent space of size 2. The
metric we report is the Chamfer distance (CHD·102(↓)), evaluated on 5000 samples for unit
sphere normalized shapes.

Input

ResNet18 MLP
z

x

Prediction

Reproj

Silhouette

Ltask

Input
silhouette

Figure A.5 – Shilouette-driven refinement. At inference time, given an input image, we
exploit the differentiability of DeepMesh to refine the predicted surface so that to match
input silhouette in image space through Differentiable Rasterization [KUH18] or contour
matching [GRYF21].

the grid. By contrast, deep implicit fields are not resolution limited. Hence, they can better

capture high frequency details.

A.2.5 Single view 3D Reconstruction

We first provide additional details on the Single view 3D Reconstruction pipeline presented

in the main chapter. Then, for each experimental evaluation of the main chapter, we first

introduce metrics in details, and then provide additional qualitative results.

Architecture

Fig A.5 depicts our full pipeline. As in earlier work [MON+19, CZ19], we condition our deep

implicit field architecture on the input images via a residual image encoder [HZRS16], which

maps input images to latent code vectors z. Specifically, our encoder consists of a ResNet18 net-

work, where we replace batch-normalization layers with instance normalization ones [UVL16]

so that to make harder for the network to use color cues to guide reconstruction. These

latent codes are then used to condition the signed distance function Multi-Layer Perceptron

(MLP) architecture of the main manuscript, consisting of 8 Perceptrons as well as residual

connections, similarly to [PFS+19]. We train this architecture, which we dub DeepMesh (raw),

by minimizing Limp (Eq.1 on the main manuscript) wrt. Θ on a training set of image-surface

112

A.2. Supplementary material for DeepMesh

Figure A.6 – Normal consistency score: we render target (top row) and reconstructed shapes
(bottom row) normal maps from 8 fixed viewpoints, and take the average of pixelwise cosine
similarity to compute an image based normal consistency score.

pairs.

At inference time, we exploit end-to-end differentiability to refine predictions as depicted in

Fig A.5.

Evaluation on ShapeNet.

Recent work [TRR+19] has pointed out that for a typical shape in the ShapeNet test set, there

is a very similar shape in the training set. To mitigate this, we carry our evaluations on new

train/test splits which we design by subsampling the original datasets and rejecting shapes

that have normal consistency above 98% for chairs and 96.8% for cars. Finally, we use the

renderings provided in [XWC+19] for all the comparisons we report.

We use the following SVR metrics for evaluation purposes:

• Chamfer l2 pseudo-distance: Common evaluation metric for measuring the distance

between two uniformly sampled clouds of points P,Q, defined as

CHD(P,Q) = ∑
p∈P

min
q∈Q

‖p−q‖2
2 +

∑
q∈Q

min
p∈P

‖p−q‖2
2. (A.10)

We evaluate this metric by sampling 2048 points from reconstructed and target shape,

which are re-scaled to fit into a unit-radius sphere.

• Normal Consistency: We render normal maps for both the target and reconstructed

shapes under 8 viewpoints, corresponding to the 8 vertices of a side 2 cube with cameras

looking at its center. As depicted on Fig. A.6, we get 8 pairs of normal maps that we

denote (ni , ñi) with 1 ≤ i ≤ 8. Our normal consistency score is the average over these 8

pairs of images of the pixelwise cosine similarity between the reconstructed and target

normal maps. With ni ∩ ñi being the set of non-background pixel coordinates in both

113

Appendix A. Appendix

ni and ñi , we have

NC = 1

8

i=8∑
i=1

1

|ni ∩ ñi |
∑

(u,v)∈ni∩ñi

ni [u, v] · ñi [u, v]

‖ni [u, v]‖‖ñi [u, v]‖ . (A.11)

Additional Qualitative Results

We provide additional qualitative comparative results for ShapeNet in Fig. A.7. Fig A.8 depicts

failure cases, which we take to be samples for which the refinement does not bring any

improvement. These can mostly be attributed to topological errors made by the refinement

process. In future work, we will therefore introduce loss functions that favor topological

accuracy [MMNKF18, OKC+21].

A.2.6 Aerodynamic Shape Optimization

Here we provide more details on how we performed the aerodynamic optimization experi-

ments presented in the main manuscript. The overall pipeline for the optimisation process is

depicted in Fig. A.9, and additional optimization results are shown in Fig. A.12.

Dataset

As described in the main manuscript, we consider the car split of the ShapeNet [CFG+15]

dataset for this experiment. Since aerodynamic simulators typically require high quality

surface triangulations to perform CFD simulations reliably, we (1) follow [SSB13] and automat-

ically remove internal part of each mesh as well as re-triangulate surfaces and (2) manually

filter out corrupted surfaces. After that, we train a DeepSDF auto-decoder on the obtained

data split and, using this model, we reconstruct the whole dataset from the learned parame-

terization. The last step is needed so that to provide fair initial conditions for each method

of the comparison in Tab. 3 of the main manuscript, that is to allow all approaches to begin

optimization from identical meshes.

We obtain ground truth pressure values for each car shape with OpenFoam [JJT+07], setting

an inflow velocity of 15 meters per second and airflow density equal 1.18. Each simulation was

run for at most 5000 time steps and took approximately 20 minutes to converge. Some result

of the CFD simulations are depicted in the top row of Fig. A.10.

We will make both the cleaned car split of ShapeNet and the simulated pressure values publicly

available.

114

A.2. Supplementary material for DeepMesh

Image Pixel2Mesh [WZL+18] DISN [XWC+19] DeepMesh(raw) DeepMesh

Figure A.7 – Comparative results for SVR on ShapeNet.

CFD prediction

We train a Mesh Convolutional Neural Network to regress pressure values given an input sur-

face mesh, and then compute aerodynamic drag by integrating the regressed field. Specifically,

we used the dense branch of the architecture proposed in [BRFF18] and replaced Geodesic

Convolutions [MBM+17] by Spline ones [FLWM18] for efficiency. The predicted and simulated

pressure values are compared in Fig. A.10.

115

Appendix A. Appendix

Image Pixel2Mesh [WZL+18] DISN [XWC+19] DeepMesh(raw) DeepMesh

Figure A.8 – Failure cases for SVR on Pix3D. Reconstruction refinement based on L1 silhouette
distance or chamfer matching fails to capture fine topological details for challenging samples.

Implementation Details

In this section we provide the details needed to implement the baselines parameterizations

presented in the main manuscript.

• Vertex-wise optimization In this baseline, we optimize surface geometry by flowing

gradients directly into surface mesh vertices, that is without using a low-dimensional

parameterization. In our experiments, we have found this strategy to produce unrealistic

designs akin to adversarial attacks that, although are minimizing the drag predicted by

the network, result in CFD simulations that do not convergence. This confirms the need

of using a low-dimensional parameterization to regularize optimization.

• Scaling We apply a function fCx ,Cy ,Cz (V) = (CxVx ,CyVy ,CzVz)T to each vertex of the

initial shape. Here Ci are 3 parameters describing how to scale vertex coordinates along

the corresponding axis. As we may see from the Tab. 3 of the main manuscript, such a

simple parameterization already allows to improve our metric of interest.

• FreeForm Freeform deformation is a very popular class of approaches in engineering

optimization. A variant of this parameterization was introduced in [BRFF18], where it

led to good design performances. In our experiments we are using the parameterization

described in [BRFF18] with only a small modification: to enforce the car left and right

sides to be symmetrical we square sinuses in the corresponding terms. We also add

l2-norm of the parameterization vector to the loss as a regularization.

• PolyCube Inspired by [UB18] we create a grid of control points to change the mesh. The

grid size is 8×8×8 and it is aligned to have 20% width padding along each axis. The

displacement of each control point is limited to the size of each grid cell, by applying

t anh. During the optimization we shift each control point depending on the gradient it

has and then tri-linearly interpolate the displacement to corresponding vertices. Finally,

we enforce the displacement field to be regular by using Gaussian Smoothing (σ= 1,

116

A.2. Supplementary material for DeepMesh

Grid Points

Predicted SDF Reconstructed Mesh

DeepMesh Gradient (Theorem 1)

Ltask

Figure A.9 – Aerodynamic optimization pipeline. We encode a shape we want to optimize
using DeepSDF (denoted as SDF block on the figure) and obtain latent code z. Then we start
our iterative process. First, we assemble an Euclidean grid and predict SDF values for each
node of the grid. On this grid we run the Marching Cubes algorithm (MC) to extract a surface
mesh. We then run the obtained shape through a Mesh CNN (CFD) to predict pressure field
from which we compute drag as our objective function. Using the proposed algorithm we
obtain gradients of the objective w.r.t. latent code z and do an optimization step. The loop is
repeated until convergence.

kernel size = 3). This results in a parameterization that allows for deformations that are

very similar to the one of [UB18].

Additional Regularization for DeepMesh

As mentioned in the results section, to prevent the surface from collapsing to a point, we add

the set of soft-constraints depicted by Fig. A.11 to preserve space for the driver and engine

and define a loss term Lconstraint. To avoid generating unrealistic designs, we also introduce

an additional regularization term Lreg that prevents z from straying to far away from known

designs. We take it to be

Lreg =α
∑

z′∈Zk

||z−z′||22
|Zk |

, (A.12)

where Zk = z0,z1, . . . ,zk denote the k closest latent vectors to z from the training set. In our

experiments we set k = 10, α = 0.2. Minimizing Lreg limits exploration of the latent space,

thus guaranteeing more robust and realistic optimization outcomes.

In our aerodynamics optimization experiments, different initial shapes yield different final

ones. We speculate that this behavior is due to the presence of local minima in the latent space

of MeshSDF, even though we use the Adam optimizer [KB15b] , which is known for its ability

117

Appendix A. Appendix

Si
m

u
la

te
d

P
re

d
ic

te
d

Figure A.10 – Simulated and predicted pressure fields. Pressure fields for different shape
simulated with OpenFoam (top) and predicted by a Convolutional Neural Network (bottom).

to escape some of them. We are planning to address this problem more thoroughly in future.

118

A.2. Supplementary material for DeepMesh

Initial Shape Vertex-vise Scaling

FreeForm PolyCube DeepMesh

Figure A.11 – Preserving space for the driver and engine. We define a loss function Lconstraint

that forces the reconstructed shape to contain the red spheres. The spheres are shown overlaid
on the initial shape and then on the various results. Because the constraints are soft, they can
be slightly violated.

119

Appendix A. Appendix

Figure A.12 – DeepMesh aerodynamic optimizations.

120

A.3. Supplementary material for Sketch2Mesh

A.3 Supplementary material for Sketch2Mesh

A.3.1 External Contours

Our 2D Chamfer refinement objective for matching external contours requires an estima-

tion of these contours. We here describe the simple algorithms we use to get them for the

reconstructed mesh, and for the full input sketch.

External Contours of Reconstructed Shapes

(a) (b) (c) (d)

Figure A.13 – External contours of reconstructed shape: (a) Initially reconstructed shape (b)
Rendered foreground/background mask, (c) Flood-filling (b) from one image corner, and per-
forming 1 pixel dilation of the flood-filled background (d) Taking the pixel-wise multiplication
of (b) and (c) yields an exterior contour image, in which internal holes are ignored (the armrest
for example here).

Given mesh MΘ and projectionΛ, we render a H ×W foreground/background mask. Then we

flood fill the background, starting from one image corner, and apply morphological dilation to

the result. As depicted on Fig. A.13, taking the pixel-wise multiplication of this dilated flood

filled background with the original foreground/background mask yields an external contour

that ignores inner holes. We use this image for F̃ in Section 5.3.3.

External Contours of Input Sketches

Given an input sketch, we cannot apply the above method since line drawings might not be

watertight. Instead, we apply an image-space only algorithm that extracts external contours,

which can then be matched against the ones of the initial reconstruction.

As pictured in Fig. 5.2(c), we propose to do this by shooting rays from the image borders, at

multiple angles, and only preserve the first encountered stroke for each ray. For the ease of

implementation, in practice we shoot rays that are perpendicular to the image borders, but

rotate the input image of ± {0,10,20,30,35,40,45} degrees and aggregate the resulting pixels at

each angle. This is depicted in Fig. A.14.

To achieve a relative invariance to pen size (free choice in our interface), we extract both the

entry and exit pixels of the first pen stroke a ray encounters. In case the average distance over

121

Appendix A. Appendix

Input Ray shooting Output

Figure A.14 – External contours of input sketch: We rotate the input sketch at various angles
and shoot vertical and horizontal rays to only keep the first encountered pen stroke (red pixels).
These pixels obtained at different rotation angles are then aggregated to yield the full external
contour (shown in red on the last panel, superposed to the sketch).

the whole image between the entry and exit pixels is greater than a threshold, we heuristically

consider the line as thick and only keep the exit pixels - this corresponds to the inner shell of

the external contour. Otherwise, we consider the line as thin, and keep the entry pixel.

A.3.2 Comparison of the two Refinement Approaches

Training on SketchFD

Metric Method Cars, test drawing style:
Suggestive SketchFD Hand-drawn

CD-l2 ·103 ↓
Initial 3.231 1.815 2.534

Sketch2Mesh/Render 2.538 1.515 2.054
Sketch2Mesh/Chamfer 2.419 1.516 2.047

Normal Consistency ↑
Initial 89.67 90.94 89.06

Sketch2Mesh/Render 90.92 92.34 91.02
Sketch2Mesh/Chamfer 91.23 92.09 91.03

Chairs, test drawing style:
Suggestive SketchFD Hand-drawn

12.290 7.770 17.395
10.761 6.517 16.091
9.524 6.737 12.585
76.76 80.49 63.11
80.39 84.43 68.67
81.00 83.10 70.49

Table A.6 – Cars and Chairs. Reconstruction metrics when using the encoding/decoding net-
work trained on SketchFD synthetic sketches of cars and of chairs, and tested on all 3 datasets.
We show initial results before refinement and then using our two refinement methods. Note that
Sketch2Mesh/Chamfer does better than Sketch2Mesh/Render on the styles it has not been trained for,
indicating a greater robustness to style changes.

In the main paper, in Sec. 5.4.3 we present a comparison of Sketch2Mesh/Render and

Sketch2Mesh/Chamfer approaches when applied on networks trained on Suggestive syn-

thetic sketches, and tested on all 3 datasets. In Tab. A.6 we present the same comparison,

but this time for encoder/decoder pairs trained on SketchFD. Again, Sketch2Mesh/Chamfer

appears to be more robust to style change and performs better than Sketch2Mesh/Render on

datasets the latter has not been trained on.

Gradients and Sensitivity to Thin Components

In Fig. A.15, we demonstrate how Sketch2Mesh/Chamfer is more sensitive to thin shape com-

ponents such as chair legs. Indeed, removing a thin component only affects LF /B of a few

122

A.3. Supplementary material for Sketch2Mesh

pixels, whereas LC D takes into account the distance and spatial extent of the deformation.

Differentiable Rasterization Hyperparameters

In Figure A.16, we show that the the choice of hyper-parameters in the differentiable rendering

process can deeply influence the refinement behavior of Sketch2Mesh/Render, particularly

when the predicted binary masks are not accurate. Specifically, we investigate the importance

of parameter faces_per_pixel, controlling how many triangles are used for backpropaga-

tion within each pixel: using a higher number of triangles will result in smoother gradients, as

binary mask information is back-propagated to more faces. As depicted in Figure A.16 this is

particularly beneficial when predicted binary masks are not accurate or noisy, and results in

more accurate reconstructions. In practice, we set faces_per_pixel=25 in our experiments.

123

Appendix A. Appendix

Iterations

Iterations

Iterations

Iterations

input reconstruction Sketch2Mesh/
Render

Sketch2Mesh/
Chamfer

input reconstruction Sketch2Mesh/
Render

Sketch2Mesh/
Chamfer

Figure A.15 – Refinement. Sketch2Mesh/Chamfer is more sensitive to thin shape components
such as chair legs with respect to Sketch2Mesh/Render : this is due to the nature of the loss,
penalizing chamfer distance between silhouettes, rather than per-pixel discrepancies. Best
seen digitally, zoomed in.

124

A.3. Supplementary material for Sketch2Mesh

Iterations

Iterations

Iterations

Iterations

input predicted
silhouette

faces_per_pixel=5
gradients at

iter = 0
shape at

iter = 500

faces_per_pixel=25
gradients at

iter = 0
shape at

iter = 500

input predicted
silhouette

faces_per_pixel=5
gradients at

iter = 0
shape at

iter = 500

faces_per_pixel=25
gradients at

iter = 0
shape at

iter = 500

Figure A.16 – Silhouette Alignment. We compare different settings of pytorch3D [RRN+20]
on two human-drawn car samples. Surface gradients are shown in color (green = intrusion
along the surface normal, purple = extrusion).When considering a lower number of triangles
for backpropagation of the rasterization process, gradients are more influenced by erroneous
silhouette predictions, making refinement less effective (top) or even detrimental (bottom).
Best seen digitally, zoomed in.

125

Appendix A. Appendix

A.4 Supplementary material for MeshUDF

In Sec. A.4.1 we describe the procedure used to train the UDF network φθ on MGN garments.

In Sec. A.4.2 we explain the metrics used in the experiment section of the corresponding

chapter. In Sec. A.4.3 we explain in more details the gradients introduced in the main paper.

In Sec. A.4.4 we show experimental evidence that artifacts appearing at high resolution are

caused by the UDF field being approximated. In Sec. A.4.5 we demonstrate the benefits of

the voting scheme for establishing pseudo-signs. In Sec. A.4.6, we show the fitting to sparse

pointclouds of Sec. 6.4.3 can be initialized from random latent codes.

A.4.1 Network Training

We train one auto-decoder [PFS+19] network φθ to approximate the UDF field of a garment

collection. We use the dataset from MGN [BTTPM19] consisting of 328 meshes from which we

keep 300 instances for training and 28 for testing.

To generate UDF supervision sample points and values, meshes are scaled to fit a sphere of

radius 0.8, and for each mesh i we generate N training samples (pi , j ,di , j) ∈ R3 ×R+ where

di , j is the minimum between dmax and the distance from 3D point pi , j to the i -th shape. We

clamp UDF values at dmax = 0.1 to avoid wasting the network’s capacity on learning a precise

field away from the surface as in [PFS+19, CMPM20]. We pick N = 30000 and sample 6000

points uniformly on the surface, 12000 within a distance 0.05, 8000 within a distance 0.3 and

4000 within the bounding box of side length 2. As opposed to SDF values, unsigned distances

di , j can be computed directly from raw triangle soups with standard software [Daw], and do

not require any pre-processing of the meshes.

φθ is implemented by a 9-layer MLP with 512 hidden dimensions and ReLU activation func-

tions. It uses Fourier positional encoding of fifth order on the 3D coordinate inputs [SMB+20].

We jointly optimize the network’s weights θ with one latent vector embedding zi ∈ R128 per

training shape i by minimizing the L1 loss between the predicted and target UDF values, with

a regularization of strength λ= 10−4 on the norm of the latent codes. With T as the training

set, the full loss is

L = 1

|T | ·N

∑
i∈T

[
N∑

j=1

∣∣φθ(zi ,pi , j)−di , j
∣∣+λ‖zi‖2

]

and is minimized using Adam [KB15b] for 2000 epochs.

A.4.2 Metrics

Given a reconstructed mesh M̃ and a set A of points on its surface, along with a ground-truth

mesh M and a set B of points on its surface, we compute the following metrics:

126

A.4. Supplementary material for MeshUDF

• Chamfer distance. We take it to be

CHD(M̃ , M) = 1

|A|
∑

a∈A
min
b∈B

‖a −b‖2 (A.13)

+ 1

|B |
∑

b∈B
min
a∈A

‖a −b‖2 ,

the sum of the average distance of each point in A to B and the average distance of each

point in B to A.

• Image consistency. Let K be a set of 8 cameras located at the vertices of a cuboid

encompassing the garments looking at its centroid. For each k ∈ K we render the

corresponding binary silhouette Sk ∈ {0,1}256×256 (respectively S̃k) and normal map

Nk ∈R256×256×3 (resp. Ñk) of mesh M (resp. M̃). Then we define the image consistency

between M̃ and M as

IC(M̃ , M) = 1
|K |

∑
k∈K

IoU(S̃k ,Sk)∗COS(Ñk , Nk) , (A.14)

where IoU is the intersection-over-union of two binary silhouettes and COS is the

average cosine-similarity between two normal maps. Both can be written as

IoU(S̃,S) =
H∑

u=1

W∑
v=1

S̃u,v Su,v (A.15)

·
[

H∑
u=1

W∑
v=1

max(S̃u,v +Su,v ,1)

]−1

, (A.16)

COS(Ñ , N) = 1
HW

H∑
u=1

W∑
v=1

Ñu,v ·Nu,v∥∥Ñu,v
∥∥∥∥Nu,v

∥∥ ,

with H and W the image height and width, Su,v ∈ {0,1} the binary pixel value at coordi-

nate (u, v) of S and Nu,v ∈R3 the color pixel value at coordinate (u, v) of N .

• Normal consistency. We take it to be

NC(M̃ , M)= 1
|A|

∑
a∈A

∣∣∣∣cos[ñ(a),n(argmin
b∈B

‖a −b‖2)]

∣∣∣∣
+ 1

|B |
∑

b∈B

∣∣∣∣cos[n(b), ñ(argmin
a∈A

‖a −b‖2)]

∣∣∣∣ , (A.17)

the average unsigned cosine-similarity between the normals of pairs of closest point in

A and B , where ñ(x) denotes the normal at point x.

127

Appendix A. Appendix

n
v+

v

v−

α

Sα

S

Figure A.17 – Iso-surface differentiation: S is the minimum-level set of UDF φ(z, ·) and Sα its
α-level set (α> 0). By using already established differentiability results on v+ ∈ Sα and v− ∈ Sα,
we derive new derivatives for v ∈ S.

A.4.3 Differentiating through Iso-Surface Extraction

In Sec. 6.3.2, we derived gradients for surface points with respect to the latent code z. We here

expand on the underlying assumptions and justify our choices.

Using the α-isolevel. Let α> 0 be a small scalar and z ∈ RC a latent code parametrizing the

UDF field φ(z, ·). We consider v ∈R3, a surface point lying within a facet of the mesh Mz, and n

its surface normal –defined up to its orientation. v lies on the 0-level set of the field, and we

choose to formulate it as the following linear combination

v = 1
2 (v−+v+) , (A.18)

where

v+ = v+αn and v− = v−αn .

The arrangement of v, v+ and v− is depicted in Fig. A.17.

Both v+ and v− are at a distance α from v. Assuming such points to belong to the α-level set,

the outwards pointing normal of v+ on the α-level set is n, and the one of v− is −n, and we can

use [AHY+19, RLR+20] to write

∂v+
∂z

=−n
∂φ

∂z
(z,v+) and

∂v−
∂z

= n
∂φ

∂z
(z,v−) . (A.19)

and differentiating the mapping of Eq. A.18 –which we consider as fixed– yields

∂v

∂z
= n

2

[
∂φ

∂z
(z,v−αn)− ∂φ

∂z
(z,v+αn)

]
. (A.20)

128

A.4. Supplementary material for MeshUDF

o
v vo

α

S

Sα

Figure A.18 – Iso-surface differentiation at borders: S is the minimum-level set of UDF φ(z, ·)
and Sα its α-level set (α> 0). By using already established differentiability results on vo ∈ Sα,
we derive a new derivative for v ∈ S.

Approximate gradients. In practice however, v+ and v− are not guaranteed to lie on the α-

level set, but can be on a β-level set with β<α, in which case their normals differ from n and

−n. For our assumption to hold, v needs to be the closest point to v+ on the 0-level set, and

similarly for v−, which is true when α is small compared to the surface curvature. We thus use

Eqs. A.19, A.20 as approximations only.

Eq. A.20 is only flawed for points with high curvature, and still holds true for most of the points

lying on unwrinkled regions of the surface. Since gradients backpropagated to the latent code

are averaged over the entire surface (as in [MESK22]), a minority of them being noisy is not an

issue. Sec. 6.4.3 empirically shows that using α= 0.01 works in practice for a wide range of

shapes.

Uniqueness of the mapping. Eq. A.18 is an arbitrary choice of a mapping. It is not unique,

and one could instead pair v to other points on the α-level set, leading to a different result in

Eq. A.20. We deliberately chose the 2 closest points to naturally surround v with its closest

neighbors.

Minimizing a downstream loss. Eq. A.20 can be used to minimize downstream loss functions

directly defined on mesh vertices with gradient descent. Given such a loss function L , we use

the chain rule to write

∂L

∂z
= ∑

(v,n)∈Mz

∂L

∂v

n

2

[
∂φ

∂z
(z,v−αn)− ∂φ

∂z
(z,v+αn)

]
.

We rely on the field being an UDF and move its zero level set. This is in practice enforced

by freezing the network weights, which is thus acting as a strong prior on the field, and only

optimize the latent code.

The case of border points. Border points do not only have 2 closest neighbors on the α-level

set, but an entire semicircle as depicted in blue on Fig. A.18. In this case, we pair v with the

129

Appendix A. Appendix

Figure A.19 – Outwards pointing vectors: for border vertices we define outwards pointing
vectors o to construct derivatives allowing the surface to shrink or extend along them.

outmost point on the α-level set with

v = vo −αo , (A.21)

and follow the same reasoning as above. We consider o as a mapping direction, and thus

locally fixed.

Constructing the o vectors. Fig. A.19 depicts the outwards pointing vectors o for one recon-

structed garment. They are computed as follows. Let v be a vertex lying on the border, n be

the normal vector of the facet it belongs to, and e be the border edge it is on. We take o to be

o =ω n×e

‖n×e‖ with ω=±1 , (A.22)

the unit vector colinear to the cross product of n and e. This way, o is both in the tangent plane

of the surface and perpendicular to the border. We choose the sign ω to orient o outwards. We

write

ω= argmax
{−1,1}

u(v+ω n×e

‖n×e‖) , (A.23)

that is, we evaluate the UDF in both directions and pick the one that yields the highest value.

A.4.4 Meshing approximate or real UDFs

In Sec. 6.4.6 and Fig. 6.7 of the main chapter, we mention artifacts of our meshing procedure

when applied to approximate UDFs and at a high resolution. This is depicted in Fig. A.20(b),

where meshing a UDF represented by a shallow network (4 layers) with a grid resolution of

130

A.4. Supplementary material for MeshUDF

(a) (b) (c)

Figure A.20 – Meshing UDFs: (a) Ground truth mesh; (b) Our meshing procedure applied to a
shallow UDF neural network yields staircase artifacts at a very high resolution (512); (c) Our
method applied to the exact UDF at the same resolution reconstructs a smooth surface.

u1g1
u2 g2

u3
g3u4g4

s1=u1

s2=-u2

s3=-u3

s4=u4

s1
s1−s2

(a) (b) (c)

Figure A.21 – Detecting surface crossings: (a) all corners of the grid’s cell are annotated with
unsigned distance values ui and gradients gi ; (b) we locally approximate signed distances with
si=sgn(g1 ·gi)ui ; (c) marching cubes processes these pseudo-signed distances and produces
a surface element accordingly.

512 yields a mesh that is not smooth.

We hypothesized that this is due to the 0-level set of the field being slightly inflated into a

volume, with many grid locations evaluating to a 0 distance near the surface. This impedes

Marching Cube’s interpolation step and produces this staircase artifact. To validate this

hypothesis, in Fig. A.20(c) we apply our meshing procedure to the exact UDF grid, numerically

computed from the ground truth mesh of Fig. A.20(a). This results in a smooth surface, thus

indicating that the staircase artifact is indeed a consequence of meshing approximate UDFs.

A.4.5 Ablation study: pseudo-sign and breadth-first exploration

In Sec. 6.3 we described a way to locally compute the pseudo-signed distance using gradient

orientations (PSD), that is described in more details in Fig. A.21. The PSD method has two

shortcomings. First, the choice of the anchor corner implies that the anchor will have a

positive pseudo-sign, and thus choosing a different anchor might invert all the signs of the

cell. Since the choice is arbitrary, adjacent cells might have opposing sign choices: they will

131

Appendix A. Appendix

produce meaningful facets, but with opposing orientations. This can be partially fixed in a

post-processing step that scans the mesh trying to consistently reorient the facets, but this

proved to be a time-consuming operation, and it does not always find a consistent orientation.

Second, if the surface in the cell or in the immediate proximity is not smooth enough, the

gradients of the field can have ambiguous orientations (i.e. they do not clearly oppose each

other, for example at a 45◦ angle). In this setting, two different anchors can produce different

pseudo-signs for the corners of the cell, and thus nearby cells that use a different anchor can

assign different pseudo-signs to the same corner. This inconsistency creates an unwanted

hole in the mesh and happens especially with learned UDF fields, which have noisy gradients.

The breadth-first exploration (BFE) method with a voting scheme that we propose has the

purpose of improving these shortcomings: produce consistent normal orientations in adjacent

facets and increase the robustness of the method on learned UDF fields with noisy gradients.

The first objective is reached thanks to the breadth-first exploration itself, which is imple-

mented using queues: following the surface makes it possible to store values of previously

computed pseudo-signs, ensuring that corners have the same pseudo-sign in adjacent cells.

This also reduces the number of dot products required to complete the meshing procedure,

since corners are only computed once instead of being recomputed in every cell. However,

simply plugging the pseudo-signed distance computation in this breadth-first exploration can

cause even more artifacts due to anchor choice, as they can propagate in nearby cells since

the cells are not treated independently anymore.

To solve this problem and at the same time address the second objective, we use the voting

scheme described in Sec. 6.3. This voting scheme has been experimentally inferred by looking

at artifacts of the previous procedure, and has three motivations. First, it avoids an explicit

and arbitrary anchor choice, which is the main cause of inconsistencies, and it increases the

robustness by making multiple neighbors vote for a single corner. Second, it prevents votes

to be computed along diagonals in a cell, because the underlying interpolation algorithm

of marching cubes does not create vertices along cell diagonals. Third, it prevents gradients

facing each other along an edge to vote for having an opposing sign –when they indicate a

local maximum of the field instead.

Moreover, we notice that in corners with possible ambiguities the absolute value of the sum

of received votes will be low. Some neighbors will vote positively and some others negatively,

and the weight itself of the votes can be low when gradients are not clearly facing or opposing

each other. We detect these cases that get a sum of votes below a threshold, fixed to cos(π/4),

and we put them into a separate queue with a lower priority, to be re-evaluated later. The

threshold has been set by noticing that, in a single-vote scenario, gradients at a [45◦,135◦]

angle have a high ambiguity, since a 45◦ variation in the angle would flip the sign of their

dot product. This queue is explored when the main exploration is over, thus increasing the

number of neighbors that can vote and making the sign decision more robust. We also employ

a third queue, which is explored with the lowest priority, that contains cells with multiple

non-adjacent facets. These cells can potentially start the exploration of a non-contiguous

132

A.4. Supplementary material for MeshUDF

(a) 64 (b) 128 (c) 256 (d) 512

Figure A.22 – Comparing qualitative results of PSD and BFE. Each of the 4 columns corresponds to
a meshing resolution, as indicated in the labels. In each column, top row left is the result of PSD, top
row right is the result of BFE. Center and bottom rows show an above view of the same mesh, with holes
colored in black. The two bigger holes correspond to the legs. Center row is PSD, bottom row is BFE.

surface, and are thus explored at the very end.

To validate this algorithm, we compare BFE with the simple application of PSD using the same

garment network and dataset described in Sec. 6.4.2 (and Tab. 6.1 left), at different resolutions.

The post-processing steps (Fig. 6.3) applied to the two methods are the same except for the

parameters used. Since PSD produces slightly less precise borders, we apply a coarser filtering

of spurious facets and remove those whose UDF value is larger than 1/6 of the side-length of a

cubic cell instead of half. In PSD we also apply 5 steps of laplacian smoothing on the borders

instead of 1 for BFE.

In Fig A.22 we see that BFE produces consistent facets orientations, while PSD does not.

Moreover, one can notice small holes in the garments reconstructed with PSD (center row),

which tend to increase in number and decrease in dimension as the resolution increases,

whereas BFE is able to close most of them (bottom row), proving to be more robust. Tab. A.7

shows that the BFE method produces meshes with a slightly lower Chamfer distance, except

at resolution 64. Since the size of the holes produced by PSD is very small, they do not

significatively impact the CHD of this method. They however produce artifacts that are

detrimental to the quality of the reconstructed mesh. To have a quantitative measure of this,

given a ground-truth mesh M and a reconstructed mesh M̃ , we define the number of excess

133

Appendix A. Appendix

Resolution 64 128 256 512
Meshing procedure PSD BFE PSD BFE PSD BFE PSD BFE

CHD (↓) 1.63 1.66 1.51 1.51 1.52 1.51 1.61 1.53
EH (↓) 21 1.6 153 7.8 1566 38 11526 478

Time (↓) 0.35s 0.24s 1.4s 1.2s 10.0s 9.1s 105s 69s

Table A.7 – Comparing UDF meshing methods: pseudo sign (PSD) versus breadth-first ex-
ploration with voting strategy (BFE). Average Chamfer distance (CHD), average number of
excess holes (EH) and average processing time on 300 garments. We use a single UDF network
and only change the meshing procedure.

holes as:

E H(M̃ , M) = ||H̃ |− |H || , (A.24)

where H and H̃ are the sets of holes of M and M̃ , computed as closed loops of edges that

belong to a single triangle. This amounts to computing the number of holes in excess that are

in M̃ compared to M , or vice versa.

Tab. A.7 shows that BFE has a consistent advantage over PSD in this metric across all tested

resolutions. In both methods, the EH tends to increase with resolution, as the limits of the

learned field are approached and the gradients become noisier. The same experiment with

a network trained on only 4 garments yields better results on such garments, with the BFE

producing no excess holes at all 64-512 resolutions, and PSD producing a similar amount to

that shown in the table.

Finally, the BFE method is also slightly faster than PSD. This is mainly due to the reduced

number of dot products computed. In PSD we compute 8 dot products per cell –which

amounts to an average of 4 dot products per corner, since every corner belongs to 4 different

cells. In BFE each corner receives votes from a maximum of 6 neighbours with existing

pseudo-signs. Since the exploration starts from one cell and proceeds breadth-first, for the

vast majority of corners only a smaller number of neighbours will actually vote, decreasing the

total number of dot products.

A.4.6 Optimization from random initial latent codes

In Tab. A.8 we reproduce the experiment from Sec. 6.4.3 and fit latent codes using sparse point

clouds, but start from random latent codes instead of codes from a similar semantic class. This

shows that the latter is not even a requirement because, despite starting from much worse

initializations, our approach still succeeds better than direct supervision on the UDF values.

Starting with latent codes of the same object category remains a plausible scenario because

such codes could be provided by a regressor.

134

A.4. Supplementary material for MeshUDF

Initialization: same class Initialization: random
Init. LPC ,mesh LPC ,U DF L̃PC ,U DF Init. LPC ,mesh LPC ,U DF L̃PC ,U DF

CHD (↓) 20.45 3.54 4.54 4.69 129.51 3.64 4.59 4.60
IC (%,↑) 69.54 84.84 82.80 82.31 49.08 84.70 83.22 82.94
NC (%,↑) 74.54 86.85 80.68 86.35 56.74 86.96 84.20 86.62

Table A.8 – Fitting to sparse point clouds, with different latent code initializations: either from a
code of the same garment type (left), or from a random code (right). The table shows average Chamfer
(CHD), image consistency (IC), and normal consistency (NC) wrt. ground truth test garments. We
report metrics for un-optimized latent codes (Init.), after optimizing (LPC ,mesh) using our method,
and optimizing either LPC ,U DF or L̃PC ,U DF in the implicit domain.

A.4.7 Additional results

In Fig. A.23 we show additional results of our method applied to mesh the UDF regressed from

NDF [CMPM20] from sparse input point clouds. In Fig. A.24, we mesh the UDF predicted by

AnchorUDF [ZWLS21] from input images.

135

Appendix A. Appendix

Figure A.23 – Using our approach to triangulate the outputs of NDF [CMPM20]. For 8 exam-
ples we display the input to the network (a sparse point cloud), a mesh of the predicted UDF
mesh reconstructed by the ball pivoting method in more than 2 hours, and a triangulation of
the UDF generated using our method in less than 10 seconds.

Figure A.24 – Using our approach to triangulate the outputs of AnchorUDF [ZWLS21], For 4 exam-
ples we display the input to the network (a color image), a point cloud of the predicted UDF as originally
provided by this network, and a triangulation of the UDF generated using our method.

136

A.5. Supplementary material for DrapeNet

A.5 Supplementary material for DrapeNet

In this appendix we first provide more details about our networks and their architectures

in Appendix A.5.1. In Appendix A.5.2 we expand on the choice and formulations of some

loss terms we use. Importantly, in Appendix A.5.2 we explain the physics-based refinement

procedure used in the main chapter, and show that modelling garments as open surfaces is

necessary for it. Then in Appendix A.5.3 we report additional quantitative and qualitative

results of our pipeline and the runtime of its components. Finally, in Appendix A.5.4 we

describe how human ratings were collected.

A.5.1 Network Architectures and Training

Garment Generative Network

Garment Encoder To encode a given garment into a compact latent code, we first sample P

points from its surface and then we feed them to a DGCNN [WSL+19] encoder.The input point

cloud is processed by four edge convolution layers, which project the input 3D points into

features with increasing dimensionality – i.e.,, 64, 64, 128 and finally 256.

Each edge convolution layer works as follows. For each input point, the features from its K

neighbours are collected and used to prepare a matrix with K rows. Each row is the concate-

nation of two vectors: fi − f0 and f0, fi and f0 being respectively the feature vector of the i -th

neighbour and the feature vector of the considered point. Each row of the resulting matrix is

then transformed independently to the desired output dimension. The output feature vector

for the considered point is finally obtained by applying max pooling along the rows of the

produced matrix.

The original DGCNN implementation recomputes the neighborhoods in each edge convolu-

tion layer, using the distance between the feature vectors as metric. This can be explained by

the original purposes of DGCNN, i.e.,, point cloud classification and part segmentation. Since

we are interested in encoding the geometric details of the input point cloud, we compute

neighborhoods only once based on the euclidean distance of the points in the 3D space and

reuse this information in every edge convolution layer. We set K = 16 in our experiments.

The feature vectors from the four edge convolutions are then concatenated to form a single

vector with 512 elements, that is fed to a final linear layer paired with batch normalization and

leaky ReLU. Such layer projects the 512 sized vectors into the final desired dimension, which is

32 in our case. The final latent code is obtained by compressing the feature matrix with shape

P ×32 along the first dimension with max pooling.

Garment Decoder The garment generative network features an implicit decoder that can

predict the unsigned distance field of a garment starting from its latent code. More specifically,

the decoder is a coordinate-based MLP that takes as inputs the garment latent code and a 3D

137

Appendix A. Appendix

query. Using the latent code as condition, the decoder predicts the unsigned distance from

the query to the garment surface.

Our UDF decoder is inspired by [MON+19]. The input 3D query is first mapped to a higher

dimensional space (R63) with the positional encoding proposed in [MPT+20], which is known

to improve the capability of the network to approximate high frequency functions. The

encoded query is then mapped with a linear layer to R512 and then goes through 5 residual

blocks. The output of each block is computed as fout = fi n +∆f, where fi n is the input vector

and ∆f is a residual term predicted by two consecutive linear layers starting from fi n . The size

of the feature vector is 512 across the whole sequence of residual blocks. The output of the last

block is mapped to the scalar output out ∈R with a final linear layer.

All the linear layers but the output one are paired with Conditional Batch Normalization (CBN)

[VSM+17] and ReLU activation function. CBN is used to condition the MLP with the input

latent code z. In more details, each CBN module applies standard batch normalization [IS15] to

the input vectors, with the difference that the parameters of the final affine transformation are

not learned during the training but are instead predicted at each inference step by dedicated

linear layers starting from z.

Finally, recall that our generative network is trained with the binary cross-entropy loss. Thus,

the output of the decoder must be converted to the corresponding UDF value by first applying

the sigmoid function and then scaling the result with the UDF clipping distance δ, which we

set to 0.1 in our experiments. Such procedure is indeed the dual of the one applied on the

UDF ground-truth labels during training to normalize them in the range [0,1].

Surface Sampling We sample supervision points with a probability inversely proportional to

the distance to the surface: 30% of the points are sampled directly on the input surface, 30%

are sampled by adding gaussian noise with ε variance to surface points, 30% are obtained with

gaussian noise with 3ε variance, and the remaining 10% are gathered by sampling uniformly

the bounding box in which the garment is contained. Since in our experiments, the top and

bottom garments are normalized respectively into the upper and lower halves of the [−1,1]3

cube, we set ε= 0.003.

Draping Network

The networks W (x) ∈R24 and ∆x(x,β) ∈R3 that predict blending weights and coarse displace-

ments are implemented by a 9-layer multilayer perceptron (MLP) with a skip connection

from the input layer to the middle. Each layer has 256 nodes except the middle and the

last ones. ReLU is used as the activation function. The body-parameter-embedding module

B(β,θ) ∈ R128 and the displacement-matrix module M (x,z) ∈ R128×3 for ∆xref are imple-

mented by a 5-layer MLP with LeakyReLU activation in-between. Each layer has 512 nodes

except the last one. ∆xI S uses the same architecture as ∆xref.

138

A.5. Supplementary material for DrapeNet

BCE Loss L1 Loss L2 Loss

N
o

gr
ad

ie
nt

s
su

pe
rv

is
io

n
W

ith
 g

ra
di

en
ts

su
pe

rv
is

io
n

Figure A.25 – Comparison between different loss functions for the garment generative net-
work. We present the same garment reconstructed by our generative network after being
trained for 48 hours with six different alternatives of loss functions.

Training Hyperparameters

The generative models (top/bottom ones) are trained on the 600/300 neutral garments for

4000 epochs, using mini-batches of size B = 4. Each item of the mini-batch contains an input

point cloud with P = 10,000 points and N = 20,000 random UDF 3D queries. The dimension

of the latent codes is set to 32 for both top and bottom garments, and we set λg = 0.1 in

Lg ar m =Ldi st +λg Lg r ad . (A.25)

The draping networks are trained for 250K iterations with mini-batches of size 18, where each

item is composed of the vertices of one garment paired with one body shape and pose. We set

λ= 0.1 for Lpi n and γ= 0.5 for Ll ayer .

Both the generative and the draping networks are trained with Adam optimizer [KB15b] and

learning rates set to 0.0001 and 0.001 respectively.

A.5.2 Loss Terms and Ablation Studies

Lg ar m for Garment Reconstruction

We report here an ablation study that we conducted to determine the best formulation for

Lg ar m , the loss function presented in Eq. (7.1) of the main chapter, that we use to train our

garment generative network.

In particular, we consider three variants for Ldi st , the term of the supervision signal that

guides the network to predict accurate values for the garments UDF. In addition to the binary

139

Appendix A. Appendix

cross-entropy loss (BCE) presented in Eq. (7.4) of the main chapter, we study the possibility

of using more traditional regression losses, such as L1 and L2 losses. Adopting the notation

introduced in Section 7.3.1 of the main chapter, the L1 loss is defined as 1
B N

∑
i , j |mi n(yi j ,δ)−

ỹi j |, while the L2 loss is computed as 1
B N

∑
i , j (mi n(yi j ,δ)− ỹi j)2.

On top of the three variants for Ldi st , we also consider for each one the possibility of removing

the gradients supervision from Lg ar m , i.e.„ setting λg = 0.

We trained our generative network for 48 hours with the resulting six loss function variants

and then compared the quality of the garments reconstructed with the garment decoder.

Fig. A.25 presents a significant example of what we observed on the test set. Without gradients

supervision (top row of the figure), none of the considered loss functions (BCE, L1 or L2) can

guide the network to predict smooth surfaces without artifacts or holes. Adding the gradients

supervision (bottom row) induces a strong regularization on the predicted distance fields,

helping the network to predict surfaces without holes in most of the cases. However, using the

L1 loss leads to rough surfaces, as one can observe in the center column of the bottom row

of the figure. The BCE and the L2 losses (first and third columns of the bottom row), instead,

produce smooth surfaces that are pleasant to see. We finally opted for the BCE loss over the L2

loss, since the network trained with the latter occasionally predicts surfaces with small holes,

as in the example shown in the figure.

Lpi n for Bottom Garments

Figure A.26 – Body region (marked in cyan) used to compute Lpi n .

To determine V , the set of bottom garment vertices that need to be constrained by Lpi n , we

first find the closest body vertex vB for each bottom garment vertex v . If vB locates in the body

trunk (cyan region as shown in Fig. A.26), v is added to V .

In Fig. A.27, we show the draping results of bottom garments by using different values for

λ in Lpi n . When λ equals 0 or 1, the deformations along the X and Z axes are not natural

because no constraints or too strong constraints are applied, while it is not the case when

140

A.5. Supplementary material for DrapeNet

𝜆 = 0 𝜆 = 0.1𝜆 = 1

Figure A.27 – Comparison between different values forλ of Lpi n . To restrict the deformation
mainly along the vertical direction (Y axis) and produce natural deformations along other
directions, λ has to be a positive value smaller than 1. We use λ= 0.1 for our training.

λ= 0.1, which is our setting.

Ll ayer for Top-bottom Intersection

To determine C , the set of body vertices covered by both the top and bottom garments, we

first subdivide the SMPL body mesh for a higher resolution, and then we compute Ctop the set

of closest body vertices for the given top garment, and Cbot tom the set of closest body vertices

for the bottom. C is derived as the intersection of Ctop and Cbot tom .

In Fig. A.28 we compare the results of models trained without and with Ll ayer . We can observe

that without Ll ayer , the top tank can intersect with the bottom trousers, while it is not the

case when using Ll ayer . This indicates the efficacy of Ll ayer to avoid intersections between

garments.

Physics-based Refinement

After recovering the draped garment GD from images by the optimization of Eq. (7.12) of the

main chapter, we can apply the physics-based objectives of Eq. (7.7) (main chapter) to increase

its level of realism
L(∆G) =Lstr ai n(GD +∆G)+Lbend (GD +∆G)

+Lg r avi t y (GD +∆G)+Lcol (GD +∆G) ,
(A.26)

141

Appendix A. Appendix

w/o ℒ𝑙𝑎𝑦𝑒𝑟 w/ ℒ𝑙𝑎𝑦𝑒𝑟

Figure A.28 – Comparison: draping without and with Ll ayer . Without it, the top and bottom
garments intersect with each other.

where ∆G is the per-vertex-displacement initialized to zero. For the recovery from 3D scans,

we apply the following optimization which minimizes both the above physics-based objectives

and the Chamfer Distance d(·) to the input scan SG

L(∆G) =Lstr ai n(GD +∆G)+Lbend (GD +∆G)

+Lg r avi t y (GD +∆G)+Lcol (GD +∆G)

+d(GD +∆G, SG) .

(A.27)

This refinement procedure is only applicable to open surface meshes, and our UDF model is

thus key to enabling it. Applying Eq. (A.26) or Eq. (A.27) to an inflated garment (as recovered by

SMPLicit [CPA+21], ClothWild [MNSL22] and DIG [LGRF22]) indeed yields poor results with

many self-intersections as illustrated in Fig. A.29. This is because inflated garments modelled

as SDFs have a non-zero thickness, with distinct inner and outer surfaces whose interactions

are not taken into account in this fabric model. The physics model we apply on garment

meshes indeed considers collisions of the garment with the body, but not with itself, which is

what happens with the inner and outer surfaces in Fig. A.29. Adding a physics term to prevent

self intersections would not be trivial, and is related to the complex task of untangling layered

garments [SOTC22, BRB+19].

Note that this is also the case for most garment draping softwares [NSO12, NPO13, PNJO14,

TWL+18, GCP+22] to expect single layer garments. Modeling garment with UDFs is thus a key

feature of our pipeline for its integration in downstream tasks.

Both the optimizations of Eqs. (7.12) and (7.13) of the main chapter and Eqs. (A.26) and (A.27)

142

A.5. Supplementary material for DrapeNet

are done with Adam [FSG17] but with different learning rates set to 0.01 and 0.001 respectively.

The watertight mesh
reconstructed by SDF.

The mesh refined by
physics-based objectives.

Figure A.29 – Applying post-refinement procedure to watertight mesh. Left: the watertight
mesh reconstructed by DIG [LGRF22]. Right: the same mesh after being refined with physics-
based objectives (Eq. (A.26)). Physics-based refinement is not compatible with inflated gar-
ment meshes, and leads to many self-intersections.

A.5.3 Additional Results

Garment Encoder/Decoder

Additional Qualitative Results Fig. A.30 and Fig. A.31 show the encoding-decoding capabili-

ties of our garment generative network for top and bottom test garments, respectively. The

ground-truth garments are passed through the garment encoder, which produces a compact

latent code for each clothing item. Then, our garment decoder reconstructs the input gar-

ments surface from the latent codes. It is possible to notice how the output garments closely

match the input ones, both in terms of geometry and topology.

Latent Space Optimization (LSO). After training the garment generative network, we obtain

a latent space that allows us to sample a garment latent code and to feed it to the implicit

decoder to reconstruct the explicit surface. We study here the possibility of exploring the

garment latent space by the means of LSO. To do that, given a target 2D silhouette or a sparse

3D point cloud of a garment, we optimize with gradient descent a latent code – initialized

to the training codes average – so that the frozen decoder conditioned on it can produce a

garment which fits the target image or point cloud.

143

Appendix A. Appendix

G
T

G
T

G
T

PR
ED

PR
ED

PR
ED

Figure A.30 – Generative network: reconstruction of unseen garments in neutral
pose/shape (top garments). Latent codes for unseen garments can be obtained with our
garment encoder. These codes are then used by the garment decoder to reconstruct open
surface meshes. Input garments are colored in purple, while the reconstructed meshes are
colored in gray.

G
T

G
T

PR
ED

PR
ED

Figure A.31 – Generative network: reconstruction of unseen garments in neutral
pose/shape (bottom garments). Latent codes for unseen garments can be obtained with
our garment encoder. These codes are then used by the garment decoder to reconstruct open
surface meshes. Input garments are colored in dark gray, while the reconstructed meshes are
colored in light gray.

144

A.5. Supplementary material for DrapeNet

TA
RG

ET
RE
SU

LT
TA
RG

ET
RE
SU

LT

Figure A.32 – Generative network: latent space optimization (top garments). After training,
we can explore the latent space learned by the garment generative network with gradient
descent, to recover target garments from 2D silhouettes (top) or 3D point clouds (bottom).

TA
RG

ET
RE
SU

LT
TA
RG

ET
RE
SU

LT

Figure A.33 – Generative network: latent space optimization (bottom garments). After train-
ing, we can explore the latent space learned by the garment generative network with gradient
descent, to recover garments from 2D silhouettes (top) or 3D point clouds (bottom).

145

Appendix A. Appendix

Figure A.34 – Additional results: draping garments of different topologies over bodies in
various shapes and poses with our method.

Given the silhouette S of a target garment, we can retrieve its latent code z by minimizing

L(z) = LIoU(R(G),S) ,

G = MeshUDF(DG (·,z)) ,
(A.28)

where LIoU is the IoU loss [LZK+21] in pixel space measuring the difference between 2D

silhouettes , R(·) is a differentiable silhouette renderer for meshes [RRN+20], and G is the

garment mesh reconstructed with our garment decoder using z.

In the case of a target garment provided as a point cloud P , the garment latent code z can be

obtained by minimizing
L(z) = d(ps(G),P) ,

G = MeshUDF(DG (·,z)) ,
(A.29)

where d(a,b) is the Chamfer distance [FSG17] between point clouds a and b, and ps(·) repre-

sents a differentiable procedure to sample points from a given mesh [RRN+20].

In both cases, we run the optimization for 1000 steps, with Adam optimizer [KB15b] and

learning rate set to 0.01.

In Fig. A.32 and Fig. A.33 we present some results of the LSO procedures here described,

showing that the latent space learned by the garment generative network can be explored

effectively with gradient descent to recover the codes associated with the target garments.

146

A.5. Supplementary material for DrapeNet

Ours
ED=56.1mm

DIG
ED=12.9mm

DeePSD
ED=20.2mm

GT

Figure A.35 – Comparison between DeePSD, DIG and our method. Our result is more realistic
than the others despite having the highest Euclidean distance (ED) error.

Draping Network

Additional Qualitative Results In Fig. A.34 we show additional qualitative results of garment

draping produced by our method, where the garment meshes are generated by our UDF model.

It can be seen that our method can realistically drape garments with different topologies over

bodies of various shapes and poses.

Euclidean Distance is not a Good Metric In Fig. A.35, we show an example of bottom garment

where our result is more realistic than the competitors DeePSD [BMTE21] and DIG [LGRF22]

despite having the highest Euclidean distance. This demonstrates again that Euclidean dis-

tance is not able to measure the draping quality, as discussed in the main chapter.

Quantitative Evaluation in Physics-based Energy In Table A.9, we report the physics-based

energy of Strain, Bending and Gravity as proposed by [SOC22] on test garment meshes when

draped by DeePSD, DIG and our method. These energy terms are used as training losses for

our garment network (Eqs. (7.7) and (7.8) of the main chapter). For the gravitational potential

energy, we choose the lowest body vertex as the 0 level. Generally, our results have the lowest

energies, especially for the Strain component. Since DeePSD and DIG do not apply constraints

on mesh faces, their results exhibit much higher Strain energy. This indicates that our method

can produce results that have more realistic physical properties.

147

Appendix A. Appendix

Top Strain ↓ Bending ↓ Gravity ↓ Total ↓
DeePSD 7.22 0.01 0.98 8.21

DIG 6.32 0.01 1.05 7.38

Ours 0.43 0.01 1.05 1.81

Bottom Strain ↓ Bending ↓ Gravity ↓ Total ↓
DeePSD 8.46 0.02 0.90 9.38

DIG 7.48 0.01 0.90 8.39

Ours 0.41 0.01 0.86 1.28

Table A.9 – Draping unseen garment meshes. Quantitative comparison in physics-based
energy between DeePSD, DIG and our method. “Strain”, “Bending” and “Gravity“ denote the
membrane strain energy, the bending energy and the gravitational potential energy, respec-
tively.

Inference Times

We report inference times for the components of our framework, computed on an NVIDIA

Tesla V100 GPU. The garment encoder, which needs to be run only once for each garment,

takes ∼25 milliseconds. The decoder takes ∼2 seconds to reconstruct an explicit garment mesh

from a given latent code, including the modified Marching Cubes from [GSF22] at resolution

2563.

The draping network takes ∼5 ms to deform a garment mesh composed of 5K vertices. Since it

is formulated in an implicit manner and is queried at each vertex, its inference time increases

to ∼8 ms for a mesh with 8K vertices, or ∼53 ms with 100K vertices.

Fitting SMPLicit [CPA+21] to 3D Scans

In Fig. A.36 we show results of fitting the concurrent approach SMPLicit [CPA+21] to 3D

scans of the SIZER dataset [TBTPM20]. We can observe that they are not as realistic as ours

shown in Fig. 7.10 of the main chapter. Since we have no access to their code and not enough

information for a re-implementation, we directly extracted this figure from [CPA+21].

A.5.4 Human Evaluation

In Fig. A.37 we show the interface and instructions that were presented to the 187 respondents

of our survey. These evaluators were volunteers with various backgrounds from the authors

respective social circles, which were purposely not given any further detail or instruction. We

collected collected 3738 user opinions in total, each user expressing 20 opinions on average.

148

A.5. Supplementary material for DrapeNet

Figure A.36 – Recovered garments of SMPLicit from 3D scans. Figures are extracted from
[CPA+21].

149

Appendix A. Appendix

Figure A.37 – Interface of our qualitative survey. The garment is draped with our method,
DIG, and DeePSD, in a random order.

150

Bibliography

[AHY+19] M. Atzmon, N. Haim, L. Yariv, O. Israelov, H. Maron, and Y. Lipman. Controlling

Neural Level Sets. In NeurIPS, 2019.

[AJT02] Grégoire Allaire, François Jouve, and Anca-Maria Toader. A Level-Set Method for

Shape Optimization. Comptes Rendus Mathématiques, 334(12):1125–1130, 2002.

[AL20a] M. Atzmon and Y. Lipman. SAL: Sign Agnostic Learning of Shapes from Raw

Data. In CVPR, 2020.

[AL20b] M. Atzmon and Y. Lipman. SALD: Sign Agnostic Learning with Derivatives. In

ICLR, 2020.

[AT04] A. Agarwal and B. Triggs. 3D Human Pose from Silhouettes by Relevance Vector

Regression. In CVPR, 2004.

[BME20] H. Bertiche, M. Madadi, and S. Escalera. CLOTH3D: Clothed 3D Humans. In

ECCV, pages 344–359, 2020.

[BME21] H. Bertiche, M. Madadi, and S. Escalera. PBNS: Physically Based Neural Simula-

tion for Unsupervised Garment Pose Space Deformation. ACM Transactions on

Graphics, 2021.

[BMR+99] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The Ball-

Pivoting Algorithm for Surface Reconstruction. IEEE Transactions on Visualiza-

tion and Computer Graphics, 5(4):349–359, 1999.

[BMTE21] H. Bertiche, M. Madadi, E. Tylson, and S. Escalera. DeePSD: Automatic Deep

Skinning and Pose Space Deformation for 3D Garment Animation. In ICCV,

2021.

[BPG+19] J. Bednarík, S. Parashar, E. Gundogdu, M. Salzmann, and P. Fua. Shape recon-

struction by learning differentiable surface representations. arXiv Preprint,

abs/1911.11227, 2019.

[BRB+19] T. Buffet, D. Rohmer, L. Barthe, L. Boissieux, and M-P. Cani. Implicit untangling:

A robust solution for modeling layered clothing. ACM Transactions on Graphics,

38(4):1–12, 2019.

151

Bibliography

[BRFF18] P. Baqué, E. Remelli, F. Fleuret, and P. Fua. Geodesic Convolutional Shape

Optimization. In International Conference on Machine Learning, 2018.

[BTTPM19] B. L. Bhatnagar, G. Tiwari, C. Theobalt, and G. Pons-Moll. Multi-Garment Net:

Learning to Dress 3D People from Images. In ICCV, 2019.

[BV99] V. Blanz and T. Vetter. A Morphable Model for the Synthesis of 3D Faces. In ACM

SIGGRAPH, pages 187–194, August 1999.

[BW98] D. Baraff and A. Witkin. Large Steps in Cloth Simulation. In ACM SIGGRAPH,

pages 43–54, 1998.

[BWS+18] T. Bagautdinov, C. Wu, J. Saragih, P. Fua, and Y. Sheikh. Modeling Facial Geometry

Using Compositional VAEs. In CVPR, 2018.

[CAP20] J. Chibane, T. Alldieck, and G. Pons-Moll. Implicit Functions in Feature Space

for 3D Shape Reconstruction and Completion. In CVPR, 2020.

[CBZ+19] S. Cheng, M. Bronstein, Y. Zhou, I. Kotsia, M. Pantic, and S. Zafeiriou. Meshgan:

Non-Linear 3D Morphable Models of Faces. In arXiv Preprint, 2019.

[CCC+08] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia.

Meshlab: An Open-Source Mesh Processing Tool. In Eurographics Italian Chap-

ter Conference, 2008.

[CFG+15] A. Chang, T. Funkhouser, L. G., P. Hanrahan, Q. Huang, Z. Li, S. Savarese,

M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. Shapenet: An Information-Rich

3D Model Repository. In arXiv Preprint, 2015.

[Che95] E. V. Chernyaev. Marching Cubes 33: Construction of Topologically Correct

Isosurfaces. In Institute for High Energy Physics, Moscow, Russia, Report CN/95-

17, 1995.

[Che18] Haofeng Chen. Single image depth estimation with feature pyramid network.

https://github.com/xanderchf/MonoDepth-FPN-PyTorch, 2018.

[CMPM20] J. Chibane, A. Mir, and G. Pons-Moll. Neural Unsigned Distance Fields for

Implicit Function Learning. In NeurIPS, 2020.

[CPA+21] E. Corona, A. Pumarola, G. Alenya, G. Pons-Moll, and F. Moreno-Noguer. Sm-

plicit: Topology-Aware Generative Model for Clothed People. In CVPR, 2021.

[CSMS13] Frederic Cordier, Hyewon Seo, Mahmoud Melkemi, and Nickolas S Sapidis.

Inferring mirror symmetric 3d shapes from sketches. Computer-Aided Design,

45(2):301–311, 2013.

[CTFZ22] Z. Chen, A. Tagliasacchi, T. Funkhouser, and H. Zhang. Neural Dual Contouring.

In arXiv Preprint, 2022.

152

https://github.com/xanderchf/MonoDepth-FPN-PyTorch

Bibliography

[CXG+16a] C. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3D-R2n2: A Unified Approach

for Single and Multi-View 3D Object Reconstruction. In ECCV, pages 628–644,

2016.

[CXG+16b] C. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3DR2N2: A Unified Approach

for Single and Multi-View 3D Object Reconstruction. In ECCV, 2016.

[CZ19] Z. Chen and H. Zhang. Learning Implicit Fields for Generative Shape Modeling.

In CVPR, 2019.

[CZ21] Z. Chen and H. Zhang. Neural Marching Cubes. In ACM Transactions on Graphics

(Special Issue of SIGGRAPH Asia), 2021.

[DAI+18] J. Delanoy, M. Aubry, P. Isola, A. Efros, and A. Bousseau. 3D Sketching Using Multi-

View Deep Volumetric Prediction. ACM on Computer Graphics and Interactive

Techniques, 1(1):1–22, 2018.

[Daw] Dawson-Haggerty et al. trimesh.

[Des18] M. Designer, 2018. https://www.marvelousdesigner.com.

[DFRS03] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella. Suggestive Contours

for Conveying Shape. ACM SIGGRAPH, 22(3):848–855, July 2003.

[DK91] Akio Doi and Akio Koide. An Efficient Method of Triangulating Equivalued

Surfaces by Using Tetrahedral Cells. Transactions on Information and Systems,

74(1):214–224, 1991.

[DRC+22] A. Davydov, A. Remizova, V. Constantin, S. Honari, M. Salzmann, and P. Fua.

Adversarial Parametric Pose Prior. In CVPR, 2022.

[DSC+20] M. Dvorožňák, D. Sỳkora, C. Curtis, B. Curless, O. Sorkine-Hornung, and

D. Salesin. Monster Mash: A Single-View Approach to Casual 3D Modeling

and Animation. ACM Transactions on Graphics, 2020.

[DZW+20] Y. Duan, H. Zhu, H. Wang, L. Yi, R. Nevatia, and L. J. Guibas. Curriculum

DeepSDF. In ECCV, 2020.

[FGF+05] Yohan D Fougerolle, Andrei Gribok, Sebti Foufou, Frédéric Truchetet, and

Mongi A Abidi. Boolean Operations with Implicit and Parametric Represen-

tation of Primitives using R-Functions. TVCG, 2005.

[FLWM18] M. Fey, J. E. Lenssen, F. Weichert, and H. Müller. Splinecnn: Fast Geometric

Deep Learning with Continuous B-Spline Kernels. In CVPR, 2018.

[FSG17] H. Fan, H. Su, and L. Guibas. A Point Set Generation Network for 3D Object

Reconstruction from a Single Image. In CVPR, 2017.

153

https://www.marvelousdesigner.com

Bibliography

[Fua96] P. Fua. Model-Based Optimization: Accurate and Consistent Site Modeling. In

ISPRS, July 1996.

[GCP+22] E. Gundogdu, V. Constantin, S. Parashar, A. Seifoddini, M. Dang, M. Salzmann,

and P. Fua. Garnet++: Improving Fast and Accurate Static 3D Cloth Draping by

Curvature Loss. PAMI, 22(1):181–195, 2022.

[GCS+19] E. Gundogdu, V. Constantin, A. Seifoddini, M. Dang, M. Salzmann, and P. Fua.

Garnet: A Two-Stream Network for Fast and Accurate 3D Cloth Draping. In ICCV,

2019.

[GD95] D.M. Gavrila and L.S. Davis. 3D Model-Based Tracking of Human Upper Body

Movement: A Multi-View Approach. In IEEE International Symposium on Com-

puter Vision, pages 253–258, November 1995.

[GFK+18] T. Groueix, M. Fisher, V. Kim, B. Russell, and M. Aubry. Atlasnet: A Papier-Mâché

Approach to Learning 3D Surface Generation. In CVPR, 2018.

[GMJ19] G. Gkioxari, J. Malik, and J. Johnson. Mesh R-CNN. In ICCV, 2019.

[GRF20] B. Guillard, E. Remelli, and P. Fua. UCLID-Net: Single View Reconstruction in

Object Space. In NeurIPS, 2020.

[GRL+22] B. Guillard, E. Remelli, A. Lukoianov, S. Richter, T. Bagautdinov, P. Baque, and

P. Fua. Deepmesh: Differentiable Iso-Surface Extraction. In arXiv Preprint, 2022.

[GRYF21] B. Guillard, E. Remelli, P. Yvernay, and P. Fua. Sketch2mesh: Reconstructing and

Editing 3D Shapes from Sketches. In ICCV, 2021.

[GSF22] B. Guillard, F. Stella, and P. Fua. MeshUDF: Fast and Differentiable Meshing of

Unsigned Distance Field Networks. In ECCV, 2022.

[GSH+19] Y. Gryaditskaya, M. Sypesteyn, J.W. Hoftijzer, S.C. Pont, F. Durand, and

A. Bousseau. Opensketch: A Richly-Annotated Dataset of Product Design

Sketches. In ACM Transactions on Graphics, 2019.

[GYH+20] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman. Implicit Geometric

Regularization for Learning Shapes. In ICML, 2020.

[HAESB20] Z. Hao, H. Averbuch-Elor, N. Snavely, and S. Belongie. DualSDF: Semantic Shape

Manipulation Using a Two-Level Representation. In CVPR, pages 7631–7641,

2020.

[HCJS20] Tong He, John Collomosse, Hailin Jin, and Stefano Soatto. Geo-pifu: Geome-

try and pixel aligned implicit functions for single-view human reconstruction.

NeurIPS, 2020.

154

Bibliography

[HF20] P. Henderson and V. Ferrari. Learning Single-Image 3D Reconstruction by Gen-

erative Modelling of Shape, Pose and Shading. IJCV, 128(4):835–854, 2020.

[HTM17] Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hierarchical surface

prediction for 3d object reconstruction. In International Conference on 3D Vision,

pages 412–420. IEEE, 2017.

[HZRS16] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recogni-

tion. In CVPR, pages 770–778, 2016.

[IBLM19] Karim Iskakov, Egor Burkov, Victor Lempitsky, and Yury Malkov. Learnable

triangulation of human pose. In ICCV, pages 7718–7727, 2019.

[IMT06] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A Sketching Interface for 3D

Freeform Design. In ACM SIGGRAPH 2006 Courses, 2006.

[IS15] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Train-

ing by Reducing Internal Covariate Shift. In International Conference on Machine

Learning, 2015.

[ISF07] S. Ilić, M. Salzmann, and P. Fua. Implicit Meshes for Effective Silhouette Han-

dling. IJCV, 72(7), 2007.

[IZZE17] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-To-Image Translation with

Conditional Adversarial Networks. In CVPR, pages 1125–1134, 2017.

[JFD20] A. Jin, Q. Fu, and Z. Deng. Contour-Based 3D Modeling through Joint Embedding

of Shapes and Contours. In Symposium on Interactive 3D Graphics and Games,

2020.

[JGZ+17] Mengqi Ji, Juergen Gall, Haitian Zheng, Yebin Liu, and Lu Fang. Surfacenet:

An end-to-end 3d neural network for multiview stereopsis. In ICCV, pages

2307–2315, 2017.

[JHR+15] Amaury Jung, Stefanie Hahmann, Damien Rohmer, Antoine Begault, Laurence

Boissieux, and Marie-Paule Cani. Sketching folds: Developable surfaces from

non-planar silhouettes. Acm Transactions on Graphics (TOG), 34(5):1–12, 2015.

[JJHZ20] Y. Jiang, D. Ji, Z. Han, and M. Zwicker. Sdfdiff: Differentiable Rendering of Signed

Distance Fields for 3D Shape Optimization. In Conference on Computer Vision

and Pattern Recognition, 2020.

[JJT+07] Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, et al. OpenFOAM: A C++

Library for Complex Physics Simulations. In International workshop on coupled

methods in numerical dynamics, 2007.

[JLSW02] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual Contouring of Hermite Data. In

SIGGRAPH, 2002.

155

Bibliography

[JZH+20] B. Jiang, J. Zhang, Y. Hong, J. Luo, L. Liu, and H. Bao. Bcnet: Learning body and

cloth shape from a single image. In ECCV, 2020.

[KB15a] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimisation. In Interna-

tional Conference on Learning Representations, 2015.

[KB15b] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Interna-

tional Conference on Learning Representations, 2015.

[KBH06] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson Surface Reconstruction. In

Eurographics Symposium on Geometry processing, pages 61–70, 2006.

[KG07] Y. Kho and M. Garland. Sketching Mesh Deformations. In ACM SIGGRAPH

courses, 2007.

[KHR02] O. Karpenko, J. F. Hughes, and R. Raskar. Free-Form Ssketching with Variational

Implicit Surfaces. Computer Graphics Forum, 2002.

[KKM10] Gaetan Kenway, Graeme Kennedy, and Joaquim R. R. A. Martins. A cad-free

approach to high-fidelity aerostructural optimization. In 13th AIAA/ISSMO

Multidisciplinary Analysis Optimization Conference, 2010.

[KL21] M. Korosteleva and S. Lee. Generating Datasets of 3D Garments with Sewing

Patterns. In Advances in Neural Information Processing Systems, 2021.

[KTEM18] A. Kanazawa, S. Tulsiani, A. Efros, and J. Malik. Learning Category-Specific Mesh

Reconstruction from Image Collections. In CVPR, 2018.

[KUH18] H. Kato, Y. Ushiku, and T. Harada. Neural 3D Mesh Renderer. In CVPR, 2018.

[LB03] A. Lopes and K. Brodlie. Improving the Robustness and Accuracy of the Marching

Cubes Algorithm for Isosurfacing. In TVCG, 2003.

[LBK17] T. Liu, S. Bouaziz, and L. Kavan. Quasi-newton methods for real-time simulation

of hyperelastic materials. ACM Transactions on Graphics, 2017.

[LC87] W.E. Lorensen and H.E. Cline. Marching Cubes: A High Resolution 3D Surface

Construction Algorithm. In ACM SIGGRAPH, pages 163–169, 1987.

[LCT18] Z. Lahner, D. Cremers, and T. Tung. Deepwrinkles: Accurate and Realistic

Clothing Modeling. In European Conference on Computer Vision, September

2018.

[LDG18] Y. Liao, S. Donné, and A. Geiger. Deep Marching Cubes: Learning Explicit Surface

Representations. In Conference on Computer Vision and Pattern Recognition,

pages 2916–2925, 2018.

[LF92] Y. G. Leclerc and M. Fischler. An Optimization-Based Approach to the Interpre-

tation of Single Line Drawings as 3D Wire Frames. IJCV, 9(2):113–136, 1992.

156

Bibliography

[LGF23] Ren Li, Benoît Guillard, and Pascal Fua. ISP: Multi-Layered Garment Draping

with Implicit Sewing Patterns. arXiv Preprint, 2023.

[LGK+17] Z. Lun, M. Gadelha, E. Kalogerakis, S. Maji, and R. Wang. 3D Shape Reconstruc-

tion from Sketches via Multi-View Convolutional Networks. In International

Conference on 3D Vision, pages 67–77, 2017.

[LGRF22] R. Li, B. Guillard, E. Remelli, and P. Fua. DIG: Draping Implicit Garment over the

Human Body. In ACCV, 2022.

[LHT+21] Y. Li, M. Habermann, B. Thomaszewski, S. Coros, T. Beeler, and C. Theobalt.

Deep physics-aware inference of cloth deformation for monocular human per-

formance capture. In International Conference on 3D Vision, 2021.

[LLG+23] Luca De Luigi, Ren Li, Benoît Guillard, Mathieu Salzmann, and Pascal Fua.

DrapeNet: Generating Garments and Draping them with Self-Supervision. In

CVPR, 2023.

[LLK19] J. Liang, M. Lin, and V. Koltun. Differentiable Cloth Simulation for Inverse

Problems. In Advances in Neural Information Processing Systems, 2019.

[LLL+22] Xiaoxiao Long, Cheng Lin, Lingjie Liu, Yuan Liu, Peng Wang, Christian Theobalt,

Taku Komura, and Wenping Wang. NeuralUDF: Learning Unsigned Distance

Fields for Multi-view Reconstruction of Surfaces with Arbitrary Topologies. In

CVPR, 2022.

[LLVT03] T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares. Efficient Implementation of

Marching Cubes’ Cases with Topological Guarantees. In Journal of Graphics

Tools, 2003.

[LMB+14] T-.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C.L.

Zitnick. Microsoft COCO: Common Objects in Context. In ECCV, pages 740–755,

2014.

[LMR+15] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M.J. Black. SMPL: A

Skinned Multi-Person Linear Model. ACM SIGGRAPH Asia, 34(6), 2015.

[LS96] H. Lipson and M. Shpitalni. Optimization-Based Reconstruction of a 3D Object

from a Single Freehand Line Drawing. Computer-Aided Design, 28(8):651–663,

1996.

[LW94] H.J. Lamousin and W.N. Waggenspack. Nurbs-Based Free-Form Deformations.

Computer Graphics and Applications, 16(14):59–65, 1994.

[LWL19] S. Liu, S. A. W.Chen, and H. Li. Learning to Infer Implicit Surfaces Without 3D

Supervision. In NeurIPS, 2019.

157

Bibliography

[LZK+21] R. Li, M. Zheng, S. Karanam, T. Chen, and Z. Wu. Everybody Is Unique: Towards

Unbiased Human Mesh Recovery. In BMVC, 2021.

[LZP+20] S. Liu, Y. Zhang, S. Peng, B. Shi, M. Pollefeys, and Z. Cui. Dist: Rendering Deep

Implicit Signed Distance Function with Differentiable Sphere Tracing. In CVPR,

2020.

[MBM+17] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein.

Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs.

In Conference on Computer Vision and Pattern Recognition, pages 5425–5434,

2017.

[MCR22] I. Mehta, M. Chandraker, and R. Ramamoorthi. A Level Set Theory for Neural

Implicit Evolution under Explicit Flows. In ECCV, 2022.

[MESK22] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant

neural graphics primitives with a multiresolution hash encoding. ACM Trans.

Graph., 2022.

[MGT+19] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. J. Black. AMASS:

Archive of Motion Capture as Surface Shapes. In ICCV, pages 5442–5451, 2019.

[MLX+16] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, and Zhen Wang. Multi-

class generative adversarial networks with the l2 loss function. arXiv preprint

arXiv:1611.04076, 2016.

[MM89] J. Malik and D. Maydan. Recovering Three-Dimensional Shape from a Single

Image of Curved Objects. PAMI, 11(6):555–566, 1989.

[MMNKF18] A. Mosińska, P. Marquez-Neila, M. Kozinski, and P. Fua. Beyond the Pixel-Wise

Loss for Topology-Aware Delineation. In CVPR, pages 3136–3145, 2018.

[MNSL22] G. Moon, H. Nam, T. Shiratori, and K.M. Lee. 3d clothed human reconstruction

in the wild. In ECCV, 2022.

[MOHR13] B.R. Munson, T.H. Okiishi, W.W. Huebsch, and A.P. Rothmayer. Fluid Mechanics.

Wiley Singapore, 2013.

[MON+19] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy

Networks: Learning 3D Reconstruction in Function Space. In CVPR, pages

4460–4470, 2019.

[MPJ+19] M. Michalkiewicz, J.K. Pontes, D. Jack, M. Baktashmotlagh, and A.P. Eriksson.

Implicit Surface Representations as Layers in Neural Networks. In ICCV, 2019.

[MPT+20] Ben Mildenhall, S. P. P., M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. NeRF:

Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV,

2020.

158

Bibliography

[MT99] T. Mcinerney and D. Terzopoulos. Topology Adaptive Deformable Surfaces for

Medical Image Volume Segmentation. TMI, 18(10):840–850, 1999.

[MYR+20] Q. Ma, J. Yang, A. Ranjan, S. Pujades, G. Pons-Moll, S. Tang, and M. J. Black.

Learning to Dress 3D People in Generative Clothing. In CVPR, 2020.

[NDVZJ19] M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob. Mitsuba 2: A Retargetable

Forward and Inverse Renderer. ACM Transactions on Graphics, 38(6):1–17, 2019.

[NMOG20] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. Differentiable Volumetric

Rendering: Learning Implicit 3D Representations Without 3D Supervision. In

CVPR, 2020.

[NPO13] R. Narain, T. Pfaff, and J.F. O’Brien. Folding and crumpling adaptive sheets. ACM

Transactions on Graphics, 2013.

[NSACO05] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or. A Sketch-Based Interface for

Detail-Preserving Mesh Editing. In ACM SIGGRAPH, 2005.

[NSO12] R. Narain, A. Samii, and J.F. O’brien. Adaptive anisotropic remeshing for cloth

simulation. ACM Transactions on Graphics, 2012.

[Nvi18a] Nvidia. Nvcloth, 2018.

[Nvi18b] Nvidia. NVIDIA Flex, 2018. https://developer.nvidia.com/flex.

[NY06] T.S. Newman and H. Yi. A Survey of the Marching Cubes Algorithm. Computers

& Graphics, 30(5):854–879, 2006.

[OKC+21] D. Oner, M. Koziński, L. Citraro, N. C. Dadap, A. G. Konings, and P. Fua. Promoting

Connectivity of Network-Like Structures by Enforcing Region Separation. PAMI,

44(9):5401–5413, 2021.

[P+95] Xavier Provot et al. Deformation constraints in a mass-spring model to describe

rigid cloth behaviour. In Graphics interface, 1995.

[PFAK20] O. Poursaeed, M. Fisher, N. Aigerman, and V.G. Kim. Coupling Explicit and

Implicit Surface Representations for Generative 3D Modeling. In ECCV, pages

667–683, 2020.

[PFS+19] J. J. Park, P. Florence, J. Straub, R. A. Newcombe, and S. Lovegrove. Deepsdf:

Learning Continuous Signed Distance Functions for Shape Representation. In

CVPR, 2019.

[PGC+17] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. Devito, Z. Lin, A. Desmai-

son, L. Antiga, and A. Lerer. Automatic Differentiation in Pytorch. In NeurIPS,

2017.

159

https://developer.nvidia.com/flex

Bibliography

[Pie91] L. Piegl. On NURBS: A Survey. Computer Graphics and Applications, 11:55–71,

1991.

[PJH16] M. Pharr, W. Jakob, and G. Humphreys. Physically Based Rendering: from Theory

to Implementation. Morgan Kaufmann, 2016.

[PJL+21] S. Peng, C. Jiang, Y. Liao, M. Niemeyer, M. Pollefeys, and A. Geiger. Shape as

Points: A Differentiable Poisson Solver. In NeurIPS, 2021.

[PKS+18] J. K. Pontes, C. Kong, S. Sridharan, S. Lucey, A. Eriksson, and C. Fookes. Im-

age2mesh: A Learning Framework for Single Image 3D Reconstruction. In ACCV,

2018.

[PLPM20] C. Patel, Z. Liao, and G. Pons-Moll. Tailornet: Predicting clothing in 3d as a

function of human pose, shape and garment style. In CVPR, 2020.

[PMJ+22] X. Pan, J. Mai, X. Jiang, D. Tang, J. Li, T. Shao, K. Zhou, X. Jin, and D. Manocha. Pre-

dicting loose-fitting garment deformations using bone-driven motion networks.

In ACM SIGGRAPH, 2022.

[PMPHB17] G. Pons-Moll, S. Pujades, S. Hu, and M.J. Black. Clothcap: Seamless 4D Clothing

Capture and Retargeting. ACM SIGGRAPH, 36(4):731–7315, July 2017.

[PNJO14] T. Pfaff, R. Narain, J.M. De Joya, and J.F. O’Brien. Adaptive tearing and cracking

of thin sheets. ACM Transactions on Graphics, 33(4):1–9, 2014.

[PNM+20] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger. Convolutional

Occupancy Networks. In ECCV, pages 523–540, 2020.

[PPV19] K. Park, T. Patten, and M. Vincze. Pix2pose: Pixel-Wise Coordinate Regression of

Objects for 6D Pose Estimation. In ICCV, 2019.

[Pro97] X. Provot. Collision and Self-Collision Handling in Cloth Model Dedicated to

Design Garments. In Computer Animation and Simulation, 1997.

[Qi18] Charles R. Qi. Autoencoder for point clouds. https://github.com/charlesq34/

pointnet-autoencoder, 2018.

[RBS+22] Edoardo Remelli, Timur Bagautdinov, Shunsuke Saito, Chenglei Wu, Tomas

Simon, Shih-En Wei, Kaiwen Guo, Zhe Cao, Fabian Prada, Jason Saragih, et al.

Drivable volumetric avatars using texel-aligned features. In SIGGRAPH, 2022.

[RFB15] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for

Biomedical Image Segmentation. In Conference on Medical Image Computing

and Computer Assisted Intervention, pages 234–241, 2015.

[RLR+20] E. Remelli, A. Lukoianov, S. Richter, B. Guillard, T. Bagautdinov, P. Baque, and

P. Fua. Meshsdf: Differentiable Iso-Surface Extraction. In NeurIPS, 2020.

160

https://github.com/charlesq34/pointnet-autoencoder
https://github.com/charlesq34/pointnet-autoencoder

Bibliography

[RLT+20] M. Runz, K. Li, M. Tang, L. Ma, C. Kong, T. Schmidt, I. Reid, L. Agapito, J. Straub,

S. Lovegrove, and R. Newcombe. Frodo: from Detections to 3D Objects. In CVPR,

June 2020.

[RR18] S. Richter and S. Roth. Matryoshka Networks: Predicting 3D Geometry via

Nested Shape Layers. In CVPR, 2018.

[RRN+20] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo,

Justin Johnson, and Georgia Gkioxari. Accelerating 3d deep learning with py-

torch3d. ACM SIGGRAPH Asia, 2020.

[RTTP17] E. Remelli, A. Tkach, A. Tagliasacchi, and M. Pauly. Low-Dimensionality Calibra-

tion through Local Anisotropic Scaling for Robust Hand Model Personalization.

In ICCV, 2017.

[Sea16] Seamplex. Fino, a free finite element solver, 2016.

[Set99] J. A. Sethian. Level Set Methods and Fast Marching Methods Evolving Interfaces

in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials

Science. Cambridge University Press, 1999.

[SF09] M. Salzmann and P. Fua. Reconstructing Sharply Folding Surfaces: A Convex

Formulation. In CVPR, June 2009.

[SLL20] Y. Shen, J. Liang, and M.C. Lin. Gan-based garment generation using sewing

pattern images. In ECCV, 2020.

[SMB+20] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit Neural

Representations with Periodic Activation Functions. In NeurIPS, 2020.

[SOC19] I. Santesteban, M. A. Otaduy, and D. Casas. Learning-Based Animation of Cloth-

ing for Virtual Try-On. Computer Graphics Forum (Proc. of Eurographics), 33(2),

2019.

[SOC22] I. Santesteban, M.A. Otaduy, and D. Casas. SNUG: Self-Supervised Neural Dy-

namic Garments. In Conference on Computer Vision and Pattern Recognition,

2022.

[Sof18] Optitext Fashion Design Software, 2018. https://optitex.com/.

[SOTC22] I. Santesteban, M.A. Otaduy, N. Thuerey, and D. Casas. Ulnef: Untangled lay-

ered neural fields for mix-and-match virtual try-on. In Advances in Neural

Information Processing Systems, 2022.

[SP86] T.W. Sederberg and S.R. Parry. Free-Form Deformation of Solid Geometric

Models. ACM SIGGRAPH, 20(4), 1986.

161

https://optitex.com/

Bibliography

[SS11] J. Stam and R. Schmidt. On the Velocity of an Implicit Surface. ACM Transactions

on Graphics, 30(3):1–7, 2011.

[SSB13] F. S. Sin, D. Schroeder, and J. Barbič. Vega: Non-Linear FEM Deformable Object

Simulator. In CGF, 2013.

[ST90] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-d

shapes. In Proceedings of the 17th annual conference on Computer graphics and

interactive techniques, 1990.

[ST03] C. Sminchisescu and B. Triggs. Kinematic Jump Processes for Monocular 3D

Human Tracking. In CVPR, 2003.

[STH+19] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and M. Zollhofer. Deep-

voxels: Learning Persistent 3D Feature Embeddings. In CVPR, pages 2437–2446,

2019.

[STOC21] I. Santesteban, N. Thuerey, M. A. Otaduy, and D. Casas. Self-Supervised Collision

Handling via Generative 3D Garment Models for Virtual Try-On. In Conference

on Computer Vision and Pattern Recognition, 2021.

[Sun18] Xingyuan Sun. Pix3d: Dataset and methods for single-image 3d shape modeling.

https://github.com/xingyuansun/pix3d, 2018.

[SWZ+18] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang,

Tianfan Xue, Joshua B Tenenbaum, and William T Freeman. Pix3d: Dataset and

methods for single-image 3d shape modeling. In CVPR, pages 2974–2983, 2018.

[SZZ+18] Tongkui Su, Yan Zhang, Yu Zhou, Yao Yu, and Sidan Du. GPU-based Real-time

Cloth Simulation for Virtual Try-on. In Pacific Conference on Computer Graphics

and Applications, 2018.

[TBTPM20] G. Tiwari, B. L. Bhatnagar, T. Tung, and G. Pons-Moll. Sizer: A Dataset and Model

for Parsing 3D Clothing and Learning Size Sensitive 3D Clothing. In European

Conference on Computer Vision, 2020.

[TDB15] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Single-View to Multi-View: Recon-

structing Unseen Views with a Convolutional Network. CoRR abs/1511.06702,

1:2, 2015.

[TDB16] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-View 3D Models from Single

Images with a Convolutional Network. In ECCV, pages 322–337, 2016.

[TDB17] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree Generating Networks: Ef-

ficient Convolutional Architectures for High-Resolution 3D Outputs. In ICCV,

2017.

162

https://github.com/xingyuansun/pix3d

Bibliography

[TK11] D. Toal and A.J. Keane. Efficient Multipoint Aerodynamic Design Optimization

via Cokriging. Journal of Aircraft, 48(5):1685–1695, 2011.

[TRR+19] M. Tatarchenko, S. Richter, R. Ranftl, Z. Li, V. Koltun, and T. Brox. What Do

Single-View 3D Reconstruction Networks Learn? In CVPR, pages 3405–3414,

2019.

[TTN+13] M. Tang, R. Tong, R. Narain, C. Meng, and D. Manocha. A GPU-based streaming

algorithm for high-resolution cloth simulation. In Computer Graphics Forum,

2013.

[TWL+18] M. Tang, T. Wang, Z. Liu, R. Tong, and D. Manocha. I-Cloth: Incremental Collision

Handling for Gpu-Based Interactive Cloth Simulation. In TOG, 2018.

[UB18] N. Umetani and B. Bickel. Learning Three-Dimensional Flow for Interactive

Aerodynamic Design. ACM Transactions on Graphics, 37(4):89, 2018.

[UVL16] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance Normalization: The Missing

Ingredient for Fast Stylization. In arXiv Preprint, 2016.

[VKS+21] R. Venkatesh, T. Karmali, S. Sharma, A. Ghosh, R. V. Babu, L. A. Jeni, and M. Singh.

Deep Implicit Surface Point Prediction Networks. In ICCV, 2021.

[VSC01] T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast cloth animation on walking

avatars. In Computer Graphics Forum, 2001.

[VSGC20] R. Vidaurre, I. Santesteban, E. Garces, and D. Casas. Fully Convolutional Graph

Neural Networks for Parametric Virtual Try-On. In Computer Graphics Forum,

2020.

[VSJ22] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. Differentiable Signed Dis-

tance Function Rendering. TOG, 2022.

[VSM+17] H. De Vries, F. Strub, J. Mary, H. Larochelle, O. Pietquin, and A.C. Courville. Mod-

ulating Early Visual Processing by Language. In Advances in Neural Information

Processing Systems, 2017.

[WCPM18] T. Y. Wang, D. Ceylan, J. Popovic, and N. J. Mitra. Learning a Shared Shape Space

for Multimodal Garment Design. In ACM SIGGRAPH Asia, 2018.

[WGFB22] Zhen Wei, Benoît Guillard, Pascal Fua, and Michaël Bauerheim. Latent represen-

tation of cfd meshes and application to 2d airfoil aerodynamics. In AIAA Journal,

2022.

[WKF21] U. Wickramasinghe, G. Knott, and P. Fua. Deep Active Surface Models. In

Conference on Computer Vision and Pattern Recognition, 2021.

163

Bibliography

[WLL+21] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang. Neus: Learning

Neural Implicit Surfaces by Volume Rendering for Multi-View Reconstruction.

In NeurIPS, 2021.

[WRKF20] U. Wickramasinghe, E. Remelli, G. Knott, and P. Fua. Voxel2mesh: 3D Mesh

Model Generation from Volumetric Data. In Conference on Medical Image Com-

puting and Computer Assisted Intervention, 2020.

[WSL+19] Y. Wang, Y. Sun, Z. Liu, S. Sarma, M. Bronstein, and J.M. Solomon. Dynamic

Graph CNN for Learning on Point Clouds. In TOG, 2019.

[WWX+17] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman, and Josh

Tenenbaum. Marrnet: 3d shape reconstruction via 2.5 d sketches. In NeurIPS,

pages 540–550, 2017.

[WZL+18] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y. Jiang. Pixel2mesh: Generating 3D

Mesh Models from Single RGB Images. In ECCV, 2018.

[XJX+18] S. Xingyuan, W. Jiajun, Z. Xiuming, Z. Zhoutong, Z. Chengkai, X. Tianfan, J.B.

Tenenbaum, and W.T. Freeman. Pix3D: Dataset and Methods for Single-Image

3D Shape Modeling. In CVPR, 2018.

[XLY+17] G. Xu, X. Liang, S. Yao, D. Chen, and Z. Li. Multi-Objective Aerodynamic Opti-

mization of the Streamlined Shape of High-Speed Trains Based on the Kriging

Model. PloS one, 12(1):1–14, 01 2017.

[XWC+19] Q. Xu, W. Wang, D. Ceylan, R. Mech, and U. Neumann. DISN: Deep Implicit

Surface Network for High-Quality Single-View 3D Reconstruction. In NeurIPS,

2019.

[Yat20] Tatsuya Yatagawa. mcubes_pytorch: PyTorch Implementation for Marching

Cubes. 2020.

[YFST18] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: Point Cloud Auto-Encoder via

Deep Grid Deformation. In CVPR, 2018.

[YKM+20] L. Yariv, Y. Kasten, D. Moran, M. Galun, M. Atzmon, B. Ronen, and Y. Lipman.

Multiview Neural Surface Reconstruction by Disentangling Geometry and Ap-

pearance. In NeurIPS, 2020.

[YRSJ21] Yu Y. Rong, T. Shiratori, and H. Joo. Frankmocap: Fast monocular 3d hand and

body motion capture by regression and integration. In ICCVW, 2021.

[YSW+20] L. Yang, Q. Song, Z. Wang, M. Hu, C. Liu, X. Xin, W. Jia, and S. Xu. Renovating

parsing R-CNN for accurate multiple human parsing. In ECCV, 2020.

[Zel05] C. Zeller. Cloth simulation on the gpu. In ACM SIGGRAPH, 2005.

164

Bibliography

[ZGZS20] Y. Zhong, Y. Gryaditskaya, H. Zhang, and Y.-Z. Song. Deep Sketch-Based Mod-

elling: Tips and Tricks. In International Conference on 3D Vision, 2020.

[ZMGL21] I. Zakharkin, K. Mazur, A. Grigorev, and V. Lempitsky. Point-based modeling of

human clothing. In ICCV, 2021.

[ZQG+20] Y. Zhong, Y. Qi, Y. Gryaditskaya, H. Zhang, and Y.-Z. Song. Towards Practical

Sketch-Based 3D Shape Generation: The Role of Professional Sketches. In IEEE

Transactions on Circuits and Systems for Video Technology, 2020.

[ZWLS21] F. Zhao, W. Wang, S. Liao, and L. Shao. Learning Anchored Unsigned Distance

Functions with Gradient Direction Alignment for Single-View Garment Recon-

struction. In ICCV, 2021.

165

BENOÎT GUILLARD
Final year PhD Student in Computer Vision and Deep Learning
@ benoit.guillard@epfl.ch ! 0041.78.848.33.42 ⌂	Lausanne, SWITZERLAND

EDUCATION

2019-present EPFL, CVLab, Lausanne, Switzerland
PhD student working with Pr. Pascal Fua on 3D deep learning for surface reconstruction.

2018-2019 Imperial College, London, United Kingdom
MSc in Advanced Computing, graduated with distinction, ranked 1st of my cohort.

2015-2018 École Polytechnique, Palaiseau, France
MSc, Applied Maths & Computer Science in Image, Computer Vision, Learning. 3.89/4 GPA.

PROFESSIONAL EXPERIENCES

Summer 2022 Research Intern, Meta Reality Labs, Zürich, Switzerland
• Deep learning based reconstruction of 3D garments from images.

Summer 2021 Research Intern, Microsoft Research, Autonomous Systems (Redmond WA / remote)
• Deep learning based sensor simulation for LiDAR data, presented at the IROS2022 conference.

Summer 2019 Research Project, Imperial College, London, under the supervision of Pr. Paul Kelly
• Ultra-low power and high-throughput analog vision systems, for CNN inference: achieved 96.9%

accuracy on MNIST classification, at 2260 fps, using only 0.7 mJ per frame.

Summer 2018 Research Intern in Computational Photography, DxO (DxOMark sister company), Paris
• Raw camera sensor data processing on GPU, using deep learning for noisy image restoration.

Summer 2017 Data Analyst Intern, start-up company EZsolution, Ho Chi Minh city, Vietnam
• Designed and delivered a marketing leads’ scoring based on machine learning.
• Trained sales representatives to use it.

2016-2017 Scientific group project, in collaboration with EDF, France’s first energy provider
• Led a 6 students team throughout the 8 months project.
• High dimension systems to predict thermal exchanges in a building, based on weather conditions.

2015-2016 Junior Officer in the French Air Force, France
• Designed a fault detection alert for very large communication systems.
• Collaborated with Superior Officers to promote it.

SCIENTIFIC PUBLICATIONS

DrapeNet: Generating Garments and Draping them with Self-Supervision, Li, de Luigi et al., CVPR 2023
MeshUDF: Fast and Differentiable Meshing of UDF Networks, Guillard et al., ECCV 2022
Learning to Simulate Realistic LiDARs, Guillard et al., IROS 2022
Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches, Guillard et al., ICCV 2021
MeshSDF: Differentiable Iso-Surface Extraction, Remelli et al., NeurIPS 2020
UCLID-Net: Single View Reconstruction in Object Space, Guillard et al., NeurIPS 2020

LANGUAGES AND SKILLS

Speaking: French (native language), English (fluent, TOEFL: 113, GRE: 162/169/4), German (basic)
Programming: mainly: Python with Pytorch (and OpenCV + Tensorflow basics)

+ notions of: C++, Prolog, Caml, Java, PHP, PIC assembly

ACTIVITIES AND INTERESTS

Photography: Analog and digital hobbyist photographer, former beta-tester for a medium-sized company
designing leading-edge cameras and image processing software.

AWARDS

2022 – Best reviewer award: CVPR & NeurIPS, leading Computer Vision & Machine Learning conferences.
2019 – Two Winton Capital prizes at Imperial: Research Project Prize & best MSc Student of my program.
2018 – Ranked 4th at Huawei’s UK Artificial Intelligence Students Challenge on image denoising.

167

	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Setting and Problem Definitions
	Single View Reconstruction
	Shape Parameterization

	Contributions
	Hybrid Shape Decoder: Voxel Grid and 2D Atlases
	Implicit Surfaces as Differentiable Watertight Mesh Parameterization
	Unsigned Distance Fields for Parameterizing and Meshing Open Surfaces

	Outline

	Background
	Meshes
	3D Voxel Grids
	Point Clouds
	Implicit Representations
	Deep Signed Distances and Occupancies
	Triangulating an Implicit Field
	Differentiability
	Open Surfaces

	UCLID-Net: Single View Reconstruction in Object Space
	Introduction
	Related Work: Image Feature Extraction
	Method
	Back-Projecting Feature and Depth Maps
	Hybrid Shape Decoder
	Implementation Details

	Experiments
	Experimental Setup
	Comparative Results
	From Single- to Multi-View Reconstruction
	Ablation Study

	Conclusion

	DeepMesh: Differentiable Iso-Surface Extraction
	Introduction
	Related Work: Converting Implicit Functions to Surface Meshes
	Emulating Iso-Surface Extraction
	Writing Objective Functions in terms of Implicit Fields

	Method
	Deep Implicit Field Representation
	Differentiable Iso-Surface Extraction

	Experiments
	Differentiable Topology Changes
	Single view 3D Reconstruction
	Aerodynamic Shape Optimization
	Structural Shape Optimization
	Scene Reconstruction
	End-to-End Training
	Execution Speed

	Conclusion

	Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches
	Introduction
	Related Work: 3D Reconstruction from Sketches
	Method
	Formalization
	Using Differential Rendering
	Minimizing the 2D Chamfer Distance
	Using a Partial Sketch

	Experiments
	Datasets
	Metrics
	Choosing the Best Method
	Comparison against State-of-the-Art Methods
	Interactive 3D editing

	Conclusion

	MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field Networks
	Introduction
	Related Work: Triangulating Implicit Non-Watertight Surfaces
	Method
	From UDF to Triangulated Mesh
	Differentiating through Iso-Surface Extraction

	Experiments
	Network and Metrics
	Mesh Quality and Triangulation Speed
	Using Differentiability to Fit Sparse Data
	Differentiable Topology Change
	Generalization to other UDF Networks
	Limitations

	Conclusion

	DrapeNet: Garment Generation and Self-Supervised Draping
	Introduction
	Related Work: Draping Garments over 3D Bodies
	Method
	Garment Generative Network
	Garment Draping Network

	Experiments
	Settings, Datasets and Metrics
	Garment Paramerization
	Garment Draping
	Fitting Observations

	Conclusion

	Conclusions
	Summary
	Limitations and Future work

	Appendix
	Supplementary material for UCLID-Net
	Metrics
	Network details
	Per-category results on ShapeNet

	Supplementary material for DeepMesh
	Non-differentiability of Marching Cubes
	Meshing an occupancy field
	Failure Case: Vanishing Surface
	Comparing against Deep Marching Cubes
	Single view 3D Reconstruction
	Aerodynamic Shape Optimization

	Supplementary material for Sketch2Mesh
	External Contours
	Comparison of the two Refinement Approaches

	Supplementary material for MeshUDF
	Network Training
	Metrics
	Differentiating through Iso-Surface Extraction
	Meshing approximate or real UDFs
	Ablation study: pseudo-sign and breadth-first exploration
	Optimization from random initial latent codes
	Additional results

	Supplementary material for DrapeNet
	Network Architectures and Training
	Loss Terms and Ablation Studies
	Additional Results
	Human Evaluation

	Bibliography
	Curriculum Vitae

