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Abstract

Control systems operating in real-world environments often face disturbances arising from
measurement noise and model mismatch. These factors can significantly impact the perfor-
mance and safety of the system. In this thesis, we aim to leverage data to derive near-optimal
solutions to robust control and optimization problems despite the uncertainties.

The first part focuses on data-driven robust optimal control of linear systems for trajectory
tracking under measurement noise. Existing data-driven methods based on behavioral system
theory use historical system trajectories to formulate robust optimal control problems. These
approaches employ regularization terms to avoid overfitting. However, the corresponding
suboptimality bounds are conservative due to the influence of the regularization terms on
prediction error analysis. To overcome this problem, we derive two prediction error bounds
which can be embedded in regularization-free robust control methods. One is attained by
using bootstrap methods when resampling is affordable and the other relies on perturbation
analysis of the behavioral model. These bounds enable the design of open-loop control
inputs and closed-loop controllers to minimize the upper bound for the worst-case cost, while
ensuring robust constraint satisfaction and suboptimality bounds that decrease to zero as
noise diminishes.

The second part of this thesis addresses constrained optimization problems with model
uncertainties. We assume that the objective and constraint functions are not known but can
be queried while all the samples have to be feasible. This setting, called safe zeroth-order
optimization, can be applied to various control problems including optimal power flow
and controller tuning where system models are only partially known and safety (sample
feasibility) is essential. To derive a stationary point, we propose a novel method, SZO-
QQ, that iteratively constructs convex subproblems through local approximations of the
unknown functions. These subproblems are easier to solve than those arising in Bayesian
Optimization. We show that the iterates of SZO-QQ converge to the neighborhood of a
stationary point. We also analyze the sample complexity needed to achieve a certain level
of accuracy and demonstrate that SZO-QQ is more sample-efficient than log-barrier-based
zeroth-order methods. To further enhance sample and computation efficiency, we propose
SZO-LP, a variant of SZO-QQ that solves linear programs in each iteration. Experiments on
an optimal power flow problem in a 30-bus grid highlight the scalability of our algorithms.
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Résumé

Les systèmes d’asservissement fonctionnant dans des environnements réels sont souvent
confrontés à des perturbations dues au bruit de mesures et erreurs de modélisation. Ces
facteurs peuvent avoir un impact significatif sur la performance ainsi que la sécurité. Dans
cette thèse, nous visons à exploiter les données pour dériver des solutions quasi optimales à
des problèmes d’asservissement et d’optimisation robustes, malgré la présence d’incertitudes.

La première partie se concentre sur la commande « data-driven » optimal robuste des
systèmes linéaires pour le suivi de trajectoire en présence de bruit de mesure. Les méthodes
existantes fondées sur la théorie des systèmes comportementaux (« behavioral system
theory ») utilisent des trajectoires historiques du système pour formuler un problème de
commande optimal robuste. Cette approche utilise des termes de régularisation pour éviter
le surapprentissage. Cependant, en faisant l’analyse de l’erreur de prédiction, les garanties de
sous-optimalité sont conservatives en raison de l’influence des termes de régularisation. Pour
surmonter ce problème, nous dérivons deux bornes d’erreur de prédiction qui peuvent être
intégrées dans les méthodes de commande robuste sans régularisation. L’une est obtenue
grâce à des méthodes de « bootstrap » lorsque le rééchantillonnage est peu cher, et l’autre
repose sur l’analyse des perturbations du modèle comportemental. Ces bornes permettent de
concevoir des entrées de commande en boucle ouverte et des régulateurs en boucle fermée
afin de minimiser la borne supérieure du coût le plus défavorable, tout en garantissant la
satisfaction robuste des contraintes et des bornes de sous-optimalité qui diminuent au fur et
à mesure jusqu’à zéro lorsque le bruit disparait.

La seconde partie de cette thèse traite les problèmes d’optimisation sous contrainte avec
incertitudes de modèle. Nous supposons que les fonctions d’objectif et de contrainte ne sont
pas connues, mais peuvent être évaluées alors que tous les échantillons évalués doivent être
faisables. Ce cadre, appelé « safe zeroth-order optimization », peut être appliqué à divers
problèmes d’asservissement, y compris le flux de puissance optimal et le design de régulateurs,
où les modèles des systèmes ne sont que partiellement connus et où la sécurité (faisabilité de
l’échantillon) est essentielle. Pour dériver un point stationnaire, nous proposons une nouvelle
méthode, SZO-QQ, qui construit itérativement des sous-problèmes convexes, par le biais
d’approximations locales des fonctions inconnues. Ces sous-problèmes sont plus faciles à
résoudre que ceux issus de l’optimisation bayésienne. Nous montrons que les itérations de
SZO-QQ convergent vers le voisinage d’un point stationnaire. Nous analysons également
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Résumé

la complexité échantillonnaire nécessaire pour atteindre un certain niveau de précision et
démontrons que SZO-QQ est plus efficace en termes d’échantillonnage que les méthodes
d’ordre zéro utilisant une barrière logarithmique. Pour améliorer l’efficacité échantillonnaire
et de calcul, nous proposons SZO-LP, une variante de SZO-QQ qui résout des programmes
linéaires à chaque itération. Des expériences sur un problème de flux d’énergie optimal dans
un réseau à 30 bus mettent en évidence l’extensibilité de nos algorithmes.
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摘摘摘要要要

运行在实际环境中的控制系统常常面临来自测量噪声和模型误差等不确定性的干扰。这些

因素可能会显著影响系统的性能和安全。在这篇论文中，我们的研究目标是利用数据来得

出鲁棒控制和优化问题的近似最优解，以尽量克服不确定性的影响。

第一部分主要讨论基于数据驱动的线性系统鲁棒控制。目标是在有测量噪声的情况下实

现最优的轨迹跟踪控制。现有的基于系统行为理论（behavioral system theory）的数据驱
动方法使用历史系统轨迹来构造鲁棒控制问题。这些方法通过引入正则化项以避免过度拟

合。然而，由于正则化项对预测误差分析的影响，相应的次优性上界是保守的。为了克服

这个问题，我们提出两种无正则化的鲁棒控制方法，他们使用的预测误差分析有所不同。

第一种方法通过自助抽样（bootstrap）来获得误差上限，前提是使用者可以付出重采样所
需要的资源。第二种方法则依赖于对行为模型的扰动分析。用这两种办法我们可以分别设

计闭环控制器和开环控制输入。这样可以确保鲁棒性约束得到满足以及证明次优性上上界

在一定范围内正比于噪声上界。

论文的第二部分涉及带有模型不确定性的约束优化问题。我们假设目标和约束函数是

未知的，但可以通过在可行域内的采样来获取函数值的信息。这种问题设定属于安全零阶

优化（safe zeroth-order optimization）的范畴。相应的解法可以应用于各种控制问题，包
括对最优功率流（optimal power flow）的求解和对反馈控制器的自动整定。在这类应用场
景中系统模型仅部分已知，而相应的安全性（即要求样本处于可行域内）是至关重要的。

为了找到优化问题的稳态点，我们提出了一种新方法，称为SZO-QQ。这一方法通过对未
知函数的局部估计来构建一系列子问题。这些子问题满足凸性，故比贝叶斯优化中出现的

问题更容易求解。我们证明了在SZO-QQ的迭代过程中，决策变量的值会收敛到稳态点的
附近。我们还给出了实现一定精度所需的样本数量上限，并证明SZO-QQ比基于对数障碍
函数的零阶方法更节约样本。为了进一步提高采样和计算效率，我们提出了SZO-LP。作
为SZO-QQ的一个变体，SZO-LP仅需要在每次迭代过程中求解一个线性规划问题。我们在
一个30节点电网模型上进行试验以解决最优功率流问题。实验结果突出了我们的算法在向
高维问题扩展的性能上相较于已有的方法具有一定优势。
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Introduction

In our modern society, safety-critical engineering systems play a crucial role in shaping the
infrastructure and the functioning of various industries. As these systems become increasingly
complex, conventional model-based control approaches struggle to capture the full dynamics
and behaviors, limiting their effectiveness. In response, contemporary control approaches are
shifting towards data-driven schemes, envisioning unknown black-box systems and learning
control policies from a collection of system input-output data. In this thesis, we mainly look
into data-driven methods for the following two settings.

(i) Optimal control design for linear systems where the system dynamics are unknown;

(ii) Solving optimization problems with unknown objective and constraint functions.

Data-driven methods for both settings face challenges due to uncertainties affecting
system dynamics and the data collection process. This introduction outlines three key
challenges:

(a) Quantifying the impact of uncertainties on the prediction of system behavior is difficult:
Traditional model-based approaches often assume a parametric model to describe system
dynamics, enabling the utilization of various techniques to bound model mismatch
arising from measurement noise [1, Section 7.4]. Consequently, when employing such
models for trajectory prediction, we can estimate prediction errors by leveraging the
model mismatch bounds [2, Chapter 8]. However, data-driven schemes do not rely on
parametric model, making it formidable to apply similar error quantification techniques.

(b) Uncertainties introduce complexities into the process of experimental design: Building
an accurate system representation (in Setting (i)) or a proxy for an unknown function
(in Setting (ii)) requires the data to exhibit sufficient informativeness, which can be
hindered by uncertainties. For instance, in Settiing (i), measurement noise has the
potential to obscure the true system response, necessitating the acquisition of large
datasets to ensure sound decision-making [3]. In Setting (ii), the uncertainties lying in
the function values out of the data set make it hard to determine where to take the
new samples such that we can use them for building decent function proxies.
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Introduction

(c) Derivation and improvement of performance guarantees while ensuring safety under
uncertainties are formidable: The errors in system representations for (i) and function
proxies for (ii) significantly impact the optimality of solutions derived from data-driven
problem formulations. These errors may even lead to violations of the true constraints
governing the system. Should methods be available to address Challenges (a) and (b),
they can be employed to formulate a robust optimization problem that guarantees
constraint satisfaction within the solution. Nonetheless, the quantification of conser-
vatism remains an open question. One can also consider reducing the conservativeness
by collecting more samples. The main challenge of this procedure revolves around
ensuring the feasibility of these additional samples.

In this thesis, we make some attempts to address these challenges by leveraging partial
knowledge of the model structure (e.g., linearity or regularity) to design sampling strategies
for uncertainty quantification and utilize them in safe control and optimization.

Outline of the thesis

Part I: Data-driven Robust Control

The first part focuses on finite-horizon constrained linear-quadratic problems for linear sys-
tems under measurement noise (Setting (i)). These are core problems in control engineering,
finding applications, for example, in voltage control for power systems [4] and vehicle trajec-
tory tracking [5]. We employ the behavioral model as the data-driven system representation,
where any trajectory of a given linear system is expressed as a linear combination of a Hankel
(or Page) matrix’s columns, representing the collected system trajectories. This way, we
can derive a continuous map from data to controller design, which enables a perturbation
analysis (empirical or analytical) for prediction error quantification (see Challenge (a)).
Then, we formulate robust control problems using the derived error bounds. The solutions
are guaranteed to satisfy the ground-truth constraints and suboptimality upper bounds (see
Challenge (c)).

Chapter 1

In this chapter, our goal is to design output-feedback control policies for linear systems
given a set of trajectory data with bounded measurement noise. To achieve this, model-based
methods work when all system states are directly measurable or when measurement noise
follows a known i.i.d. normal distribution [6, 7, 2]. In [8], the authors address this problem
using a data-driven system representation, but their safety constraints only ensure stability
in model-reference control. In applications like racing car trajectory planning and room
temperature control [9], ensuring safety in terms of input-output trajectory constraints is
also crucial.

2
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The gap between existing literature and our objective motivates us to propose the
Behavioral Input-Output Parametrization (BIOP) method. BIOP allows us to synthesize
robust controllers solely based on input-output data and measurement error bounds. This
method is built upon IOP [10], which treats closed-loop transfer matrices from disturbances
to input and output signals as design parameters and exploits their affine relationships. In
BIOP, we only need certain system responses, which can be obtained using state-of-the-art
behavioral estimators, such as the signal matrix model method [11]. We also determine model
mismatch upper bounds, attributed to measurement noise, through a bootstrap procedure.
With this information, we formulate a robust control problem using BIOP to minimize an
upper bound to the worst-case scenario.

To solve this problem, we introduce a quasiconvex relaxation technique and employ a
golden-section search to find the solution. When the uncertainty is sufficiently small, the
synthesized controller is both safe and nearly optimal. In this context, the suboptimality
gap increases linearly with the level of model mismatch. We demonstrate the effectiveness of
our algorithm by testing the suboptimality scaling in a controller synthesis task with varying
model mismatch levels.

The contents of this chapter are based on the following published articles.

• L. Furieri, B. Guo, A. Martin, and G. Ferrari-Trecate, “Near-optimal design of safe
output-feedback controllers from noisy data,” IEEE Transactions on Automatic Control,
vol. 68, no. 5, pp. 2699–2714, 2022.

• L. Furieri, B. Guo, A. Martin, and G. Ferrari-Trecate, “A behavioral input-output
parametrization of control policies with suboptimality guarantees,” in 60th IEEE
Conference on Decision and Control (CDC), pp. 2539–2544, IEEE, 2021.

Chapter 2

To avoid the intermediate steps of system response identification and model mismatch
estimation (which require extensive resampling) needed by the control scheme in Chapter
1, we propose a method to design robust controller by directly using randomly generated
system trajectories. Different from Chapter 1 where data set is given and fixed, here we allow
active design of experiments for data collection. Several recent papers have explored this
setting [14, 15, 16, 17, 18]. However, as far as the author is aware, only one work, [19], offers
rigorous suboptimality and feasibility guarantees in the presence of general bounded noise.
The method in this research relies on tuning of some penalty terms. The corresponding
suboptimality upper bound holds only for certain penalty coefficients which are hard to
characterize in an explicit form. Considering these issues, we would like our robust control
scheme to be independent of penalty tuning and enjoy a conservative suboptimality guarantee
that vanish when the noise decreases to zero (in contrast with that in [19]).

3
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To this aim, we propose a method for experiment design and Page matrix construction to
derive a data-driven representation of Multiple-Input Single-Output (MISO) systems, avoiding
ill-conditioned operations (in response to Challenge (b)). We then conduct perturbation
analysis and formulate an min-max optimization problem for the optimal control task.
The solution to this problem comes with an upper bound on suboptimality concerning the
ground-truth optimum. We also extend our approach to Multiple-Input Multiple-Output
(MIMO) systems while ensuring constraint satisfaction. We provide detailed implementation
insights and report numerical studies demonstrating the method’s applicability, notably in
room temperature control.

The contents of this chapter are based on the following paper:

• B. Guo, Y. Jiang, C. N. Jones, and G. Ferrari-Trecate. “Data-driven robust con-
trol using prediction error bounds based on perturbation analysis”. arXiv preprint
arXiv:2308.14178, 2023.

Part II: Safe Zeroth-Order Optimization

In Part II, we focus on safe zeroth-order methods that solve unmodelled optimization
problems (Setting (ii)) through feasible sampling (i.e., evaluating the unknown functions at a
set of chosen feasible points). The uncertainty lies in the function values outside the sample
set. To deal with Challenge (a), we utilize the Lipschitz and smoothness constants (can be
found empirically) of the unknown functions to derive a range where the unknown function
values might lie. This uncertainty quantification enables design of sampling mechanisms (in
response to Challenge (b)) for gradient estimation with accuracy guarantees. We address
Challenge (c) by constructing local feasible sets and using new samples to further decrease
the objective function.

Chapter 3

Most of existing research on safe zeroth-order optimization assumes known constraints
[21, 22, 23]. To address problems with unknown constraint functions, [24] adopts log-barrier
functions to transfer constrained optimization into the unconstrained counterpart while Safe
Bayesian Optimization [25] relies on global representation of the unknown functions and
formulate subproblems to locate the next sample. However, in [24] the iterate progress
can be extremely small at the proximity of the feasible region boundary, resulting in high
sampling complexity. The non-convexity of the subproblems in [25] leads to a computational
complexity growing exponentially with the problem dimension.

For better computational and sampling efficiency, we propose a novel method, SZO-QQ,
that iteratively computes quadratic approximations of the constraint functions, constructs
local feasible sets, and optimizes over them. The subproblems are convex Quadratically
Constrained Quadratic Programs (QCQP). We prove that this method returns a primal-
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dual pair being η-KKT (a criterion measuring how close a primal-dual pair is to being
KKT) within O(1/η2) iterations. Moreover, we numerically show that our method can
achieve fast convergence compared with some state-of-the-art safe zeroth-order approaches.
The effectiveness of the proposed approach is also illustrated by applying it to nonconvex
optimization problems, including open-loop optimal control and Optimal Power Flow (OPF).
The papers listed next are closely related:

• B. Guo, Y. Jiang, M. Kamgarpour, and G. Ferrari-Trecate, “Safe zeroth-order con-
vex optimization using quadratic local approximations,” in 21st European Control
Conference (ECC), IEEE, 2023, winner of the Best Student Paper Award.

• B. Guo, Y. Jiang, G. Ferrari-Trecate, and M. Kamgarpour, “Safe zeroth-order op-
timization using quadratic local approximations,” arXiv preprint, arXiv:2303.16659,
2023.

Chapter 4

We pursue to improve SZO-QQ by formulating easier-to-solve subproblems and avoiding
too small step sizes resulting from the iterates’ proximity to feasible region boundary.
Therefore, we propose Safe Zeroth-order Optimization using Linear Programs (SZO-LP).
The SZO-LP method solves a linear program in each iteration to find a descent direction
that tends towards the feasible region interior, followed by a step length determination. We
prove that, under mild conditions, the iterates of SZO-LP have an accumulation point that
is also the primal of a KKT pair. We apply SZO-LP to the OPF problem for comparison
with SZO-QQ and other state-of-the-art approaches in terms of computational and sampling
complexity. The following paper is closely related:

• B. Guo, Y. Wang, Y. Jiang, M. Kamgarpour, and G. Ferrari-Trecate, “Safe zeroth-order
optimization using linear programs,” to appear in 62th IEEE Conference on Decision
and Control (CDC), IEEE, 2023.

Other contributions

The following papers were published by the author during his doctoral studies, but the
related results are not treated in details in this thesis due to their being off-topic.

• B. Guo, O. Karaca, S. Azhdari, M. Kamgarpour, and G. Ferrari-Trecate, “Actuator
placement for structural controllability beyond strong connectivity and towards robust-
ness,” in 60th IEEE Conference on Decision and Control (CDC), pp. 5294–5299, IEEE,
2021.
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• B. Guo, O. Karaca, T. Summers, and M. Kamgarpour, “Actuator placement under struc-
tural controllability using forward and reverse greedy algorithms,” IEEE Transactions
on Automatic Control, vol. 66, no. 12, pp. 5845–5860, 2020.

• B. Guo, O. Karaca, T. Summers, and M. Kamgarpour. “Actuator placement for
optimizing network performance under controllability constraints,” in 2019 IEEE 58th
Conference on Decision and Control (CDC), pp. 7140-7147. IEEE, 2019.

• L. Xu, B. Guo, and G. Ferrari-Trecate, “Finite-sample-based spectral radius estimation
and stabilizability test for networked control systems,” in 20th European Control
Conference (ECC), pp. 2087–2092, IEEE, 2022.

• L. Xu, M. S. Turan, B. Guo, and G. Ferrari-Trecate, “Non-conservative design of
robust tracking controllers based on input-output data,” in Learning for Dynamics and
Control, pp. 138–149, PMLR, 2021.

• L. Xu, B. Guo, C. Galimberti, M. Farina, R. Carli, and G. Ferrari-Trecate, “Suboptimal
distributed lqr design for physically coupled systems,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 11032–11037, 2020.
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1 Near-Optimal Design of Safe Output-
Feedback Controllers

1.1 Introduction

Controllers for unknown systems can be designed according to two paradigms. Model-
based methods follow a two-step procedure: first, data are exploited to identify the system
parameters, and then a suitable controller is computed for the estimated model. On the
other hand, model-free methods aim at directly learning an optimal control policy, without
explicitly reconstructing an internal representation of the dynamical system. For a description
of advantages and limitations of both approaches, we refer to [35], among recent surveys.

Given the intricacy of deriving rigorous suboptimality and sample-complexity bounds,
most recent model-based and model-free approaches have focused on basic Linear Quadratic
Regulator (LQR) and Linear Quadratic Gaussian (LQG) control problems as suitable
benchmarks to establish how machine learning can be interfaced to the continuous action
spaces typical of control [3, 36, 37, 38, 39, 40, 41]. For complex control tasks, it is more
challenging to perform a thorough probabilistic analysis. Recent advances include [6, 42] for
constrained and distributed LQR control with direct state measurements, respectively, and
[43] for distributed output-feedback LQG.

Model-based methods may pose a difficulty when it comes to accurately identifying
the state-space model of a large-scale system; this is the case, for instance, for complex
networked systems such as the power grid, brain and traffic networks [44]. A promising
data-driven approach that aims at bypassing a parametric state-space description of the
system dynamics, while still being conceptually simple to implement for the users, hinges
on the behavioral framework [45]. This approacch has gained renewed interest with the
introduction of Data-EnablEd Predictive Control (DeePC) [46, 47, 48], which established
that constrained output reference tracking can be effectively tackled in a Model Predictive
Control (MPC) fashion by plugging adequately generated data into a convex optimization
problem. The work [49] introduces data-driven formulations for some controller design tasks,
and [16] derives stability guarantees for closed-loop control.

9
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In many scenarios, however, exact data are not available. For instance, data can be
corrupted by measurement noise or even by malicious attacks intended at fatally compromising
the safety [50], the quality, and the reliability of the synthesized control policies. It is therefore
essential that data-driven controllers are endowed with robustness guarantees. While some
approaches have been suggested in the behavioral framework, e.g. [47, 51, 11, 52, 18, 53],
it remains fairly unexplored how much noise-corrupted data affect the performance and
the safety of data-driven control systems. Recently, [54, 55] have derived suboptimality
[55] and sample-complexity [54] bounds for LQR through direct behavioral formulations
based on 1) Linear Matrix Inequalities (LMI) and 2) the System Level Synthesis (SLS)
approach, respectively. A limitation is that the internal system states must be measured,
which is unrealistic for several large-scale systems [44]. Furthermore, while [55] proves that
for low-enough noise a high-performing and robustly stabilizing controller can be found, the
corresponding suboptimality growth rate is not explicitly derived.

1.1.1 Contributions

We propose a method for designing safe and near-optimal output-feedback control policies for
linear systems in finite-horizon. Our approach is solely based on noisy data, and we explicitly
characterize the growth rate of the suboptimality as a function of the mismatch between
the true and estimated system. First, we develop a new relaxed optimization problem that
guarantees safety while robustly accounting for noise-corrupted data. Second, we show that
the incurred level of suboptimality converges to zero approximately as a linear function of
the model mismatch incurred during a preliminary identification phase. Hence, upon using a
consistent system estimator, the proposed controller is near-optimal in the limit of available
data growing to infinity. The corresponding analysis differs from that of [37], in that a
feasible solution to the proposed optimization problem must be characterized analytically
while taking the safety constraints into account. In addition to dealing with constraints in an
output-feedback setup — which is the main novelty with respect to [37, 6, 56, 57, 58] — the
effect of the uncertain initial condition x0 must be explicitly tracked in the cost. Indeed, [37]
assumed that x0 = 0 thanks to the considered infinite-horizon setting. On a more general
level, our analysis has been inspired by [6], which combined robust control tools with classical
identification techniques to ensure safety of unknown systems with suboptimality guarantees
when states are fully observed. As we only have access to noisy output measurements, we
exploit an input-output representation of the plant and analyze four different closed-loop
responses to understand how process and output measurement noises impact safety and
performance. In particular, we show a linear growth rate of the suboptimality in terms of
the model mismatch level as compared to the ground-truth constrained output-feedback
controller.
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1.1.2 Structure of this chapter

Assuming knowledge of the underlying dynamics, Section 1.2 reviews the optimal control
problem of interest and its model-based solution. Section 1.3 treats the case where we only
have access to noisy input and output data; we propose an optimal control problem that
ensures safety against bounded model mismatches, and discuss its numerical implementation.
Section 1.4 quantifies the suboptimality incurred by our synthesis procedure as a function
of the model mismatch. We present numerical experiments in Section 1.5 and include the
supporting material in Section 1.6.

1.1.3 Notation of this chapter

We use R and N to denote the sets of real numbers and non-negative integers, respectively.
We use In to denote the identity matrix of size n× n and 0m×n to denote the zero matrix
of size m × n. We write x = vec(x1, . . . , xN ) ∈ RNn to denote the vector obtained by
stacking together the vectors x1, . . . , xN ∈ Rn, and M = blkdiag(M1, . . . ,MN ) to denote
a block-diagonal matrix with M1, . . . ,MN ∈ Rm×n on its diagonal block entries. For

M =
[
MT

1 . . . MT
N

]T
we define the block-Toeplitz matrix

Toepm×n (M)=


M1 0m×n . . . 0m×n

M2 M1 . . . 0m×n

...
...

. . .
...

MN MN−1 . . . M1

 .

More concisely, we will write Toep(·) when the dimensions of the blocks are clear from
the context. The Kronecker product between M ∈ Rm×n and P ∈ Rp×q is denoted as
M ⊗ P ∈ Rmp×nq. For a vector v ∈ Rn and a matrix A ∈ Rm×n we denote as ∥v∥p, ∥A∥p,
their standard p-norm and induced p-norms, respectively. For a row vector x ∈ R1×nwe
define ∥x∥⋆1 =

∑n
i=1 |xi|. The Frobenius norm of a matrix M ∈ Rm×n is denoted by

∥M∥F =
√

Trace(MTM). For a symmetric matrix M , we write M ≻ 0 or M ⪰ 0 if it
is positive definite or positive semidefinite, respectively. We say that x ∼ D(µ,Σ) if the
random variable x ∈ Rn follows a distribution with mean µ ∈ Rn and covariance matrix
Σ ∈ Rn×n,Σ ⪰ 0.

A finite-horizon trajectory of length T is a sequence ω(0), ω(1), . . . , ω(T−1) with ω(t) ∈ Rn

for every t = 0, 1, . . . , T − 1, which can be compactly written as

ω[0,T−1] =
[
ωT(0) ωT(1) . . . ωT(T − 1)

]T
∈ RnT .

When the value of T is clear from the context, we will omit the subscript [0, T − 1]. For a

11
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finite-horizon trajectory ω[0,T−1] we also define the Hankel matrix of depth L as

HL(ω[0,T−1]) =


ω(0) ω(1) . . . ω(T − L)

ω(1) ω(2) . . . ω(T − L+ 1)
...

...
. . .

...
ω(L− 1) ω(L) . . . ω(T − 1)

 .

1.2 Problem Statement: the Model-Based Case

In this section, we review safe output-feedback controller synthesis when the system model is
known. We consider a discrete-time linear system with output observations, whose state-space
representation is given by

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t) + v(t) , (1.1)

where x(t) ∈ Rn is the state of the system and x(0) = x0 for a predefined x0 ∈ Rn, u(t) ∈ Rm

is the control input, y(t) ∈ Rp is the observed output, and v(t) ∈ Rp denotes measurement
noise v(t) ∼ D(0,Σv), with Σv ≻ 0. The system is controlled through a time-varying,
dynamic affine control policy

u(t) =
t∑

k=0

Kt,ky(k) + gt + w(t) , (1.2)

where Kt,k and gt are the linear and affine parts of the policy, respectively, and w(t) ∈ Rm

denotes noise on the input w(t) ∼ D(0,Σw) with Σw ⪰ 0, which acts as process noise.1

Furthermore, we assume that the noise is bounded with

∥w∥∞ ≤ w∞ , ∥v∥∞ ≤ v∞ ,

where w∞, v∞ > 0. We consider the problem of synthesizing a feedback control policy that
minimizes the expected value with respect to the disturbances of a quadratic objective
defined over future input-output trajectories of length N ∈ N:

J2 := Ew,v

[
N−1∑
t=0

(
y(t)TQty(t) + u(t)TRtu(t)

)]
, (1.3)

where Qt ⪰ 0 and Rt ≻ 0 for every t = 0, . . . , N − 1.

The problem is made more challenging by the requirement that inputs and outputs satisfy

1The more general model x(t+ 1) = Ax(t) + Bu(t) + w(t) would make the cost function depend on a
specific realization A,B explicitly [59, Chapter 3]. Instead, the adopted noise model ensures that the cost
only depends on the covariance matrix Σw and the coordinate-free parameter G, thus making our theoretical
bounds meaningful in a data-driven input-output setting.
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the safety constraints [
y(t)

u(t)

]
∈ Γt ⊆ Rp+m , ∀t = 0, . . . , N − 1 , (1.4)

where Γt is a nonempty polytope for every t = 0, . . . , N − 1 defined as

Γt =
{
(y, u) ∈ (Rp,Rm)| F t

yy ≤ bty, F
t
uu ≤ btu

}
, (1.5)

with F t
y ∈ Rs×p, F t

u ∈ Rs×m and bty, b
t
u ∈ Rs for every t = 0, . . . , N − 1. Despite (1.3)

being convex in the input and output trajectories and Γt being polytopic, we highlight that
minimizing (1.3) subject to (1.1), (1.2) and (1.4) is a non-convex problem in the control
policy parameters Kt,k and gt. We refer the interested reader to [60, 61, 62, 63, 10] for
classical and recent methods to overcome the non-convexity problem. For the rest of the
chapter, we assume that there exists a control input (1.2) that complies with (1.4) for all
possible realizations of w(t) and v(t).

Remark 1.1. In this chapter, we analyze a finite-horizon control problem, which represents
one iteration of a receding-horizon MPC implementation. It is therefore appropriate to
compare the proposed approach with a single iteration of open-loop prediction approaches,
such as the DeePC [46, 16]. The main difference is that we perform closed-loop predictions,
i.e., we optimize over feedback policies π(·) such that u(t) = π(y(t), . . . , y(0)), while the
DeePC [46, 16] performs open-loop predictions, i.e., it directly optimizes over input sequences
u(0), u(1), u(N − 1). It is well-known that closed-loop predictions are less conservative.
Indeed, by setting Kt,k = 0 in (1.2) the closed-loop policy reduces to an open-loop one. Most
notably, closed-loop policies may preserve feasibility for significantly longer prediction horizons
[64]. Naturally, the price to pay is an increased computational burden due to the larger
dimensionality of the problem.

1.2.1 Convex design through the IOP

By leveraging tools offered by the framework of the Input-Output Parametrization (IOP)2

[10], one can formulate a convex optimization problem that computes the optimal safe
feedback control policy by searching over the input-output closed-loop responses. The
state-space equations (1.1) provide the following relations between trajectories

x[0,N−1] = PA(:, 0)x0 +PBu[0,N−1] , (1.6)

y[0,N−1] = Cx[0,N−1] + v[0,N−1] , (1.7)

2Similar to [62, 63], the IOP [10] yields a convex representation of input-output closed-loop responses. It
is also numerically stable for the case of infinite-horizon stable plants and for finite-horizon control problems
[65].
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where PA(:, 0) denotes the first block-column of PA and

PA = (I − ZA)−1 , PB = (I − ZA)−1ZB ,

A = IN ⊗A , B = IN ⊗B ,

C = IN ⊗ C , Z =

[
0n×n(N−1) 0n×n

In(N−1) 0n(N−1)×n

]
.

A few comments on the used notation are in order. First, the matrix Z is the block-downshift
operator. Second, from now on we denote G = CPB to highlight that G is a block-
Toeplitz matrix containing the first N components of the impulse response of the plant
G(z) = C(zI −A)−1B. Last, the matrix CPA(:, 0) contains the entries of the observability
matrix CAi for i = 0, . . . , N − 1. We denote the model-based free response of the system as
y0 = CPA(:, 0)x0. The control policy can be rewritten as:

u[0,N−1] = Ky[0,N−1] + g +w[0,N−1] , (1.8)

where K and g are defined as:

K=


K0,0 0m×p . . . 0m×p

K1,0 K1,1
. . . 0m×p

...
...

. . .
...

KN−1,0 KN−1,1 . . . KN−1,N−1

,g=


g0
g1
...

gN−1

. (1.9)

The safety constraints (1.4)-(1.5) take the form

max
∥v∥∞≤v∞, ∥w∥∞≤w∞

Fyy ≤ by , max
∥v∥∞≤v∞,∥w∥∞≤w∞

Fuu ≤ bu , (1.10)

with Fy = blkdiag(F 0
y , . . . , F

N−1
y ), by = vec(b0y, . . . , b

N−1
y ), Fu = blkdiag(F 0

u , . . . , F
N−1
u ),

bu = vec(b0u, . . . , b
N−1
u ), and max(·) to be intended row-wise. By plugging the controller

(1.8) into (1.6)-(1.7), it is easy to derive the relationships[
y

u

]
=

[
Φyy Φyu

Φuy Φuu

][
v + y0

w

]
+

[
Gq

q

]
, (1.11)

where

Φ=

[
Φyy Φyu

Φuy Φuu

]
=

[
(I−GK)−1 (I−GK)−1G

K(I −GK)−1 (I −KG)−1

]
, (1.12)

and q = (I−KG)−1g = Φuug. The parameters (Φyy,Φyu,Φuy,Φuu), where Φyy ∈ RNp×Np,

Φyu ∈ RNp×Nm,Φuy ∈ RNm×Np and Φuu ∈ RNm×Nm, represent the four closed-loop
responses defining the relationship between disturbances and input-output signals, while
q ∈ RNm represents the affine part of the disturbance-feedback control policy [62, 66]. To
achieve a convex reformulation of the control problem under consideration, it is not hard to
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extend the IOP from [10] to account for the safety constraints (1.10) in a convex way. The
result is summarized in the next proposition, whose proof is reported in Section 1.6.2 for
completeness.

Proposition 1.1. Consider the LTI system (1.1) evolving under the control policy (1.8)
within a horizon of length N ∈ N. Then:

i) For any control policy (K,g) that complies with the safety constraints, there exist four
matrices (Φyy,Φyu,Φuy,Φuu) and a vector q such that K = ΦuyΦ

−1
yy , g = Φ−1

uuq, and for
all j = 1, . . . , sN ,

[
I −G

]
Φ =

[
I 0

]
, Φ

[
−G
I

]
=

[
0

I

]
, (1.13)∥∥∥∥∥∥

[
v∞(Fy,jΦyy)

T

w∞(Fy,jΦyu)
T

]T∥∥∥∥∥∥
⋆

1

+Fy,j(Gq+Φyyy0) ≤by,j , (1.14)

∥∥∥∥∥∥
[
v∞(Fu,jΦuy)

T

w∞(Fu,jΦuu)
T

]T∥∥∥∥∥∥
⋆

1

+ Fu,j(q+Φuyy0) ≤ bu,j , (1.15)

Φyy,Φyu,Φuy,Φuu with causal sparsities 3 , (1.16)

where Fy,j ∈ R1×Np, Fu,j ∈ R1×Nm and bu,j ,by,j ∈ R are the j-th row of Fy, Fu and bu,by,
respectively.

ii) For any four matrices (Φyy,Φyu,Φuy,Φuu) complying with (1.13)-(1.16) and any vector
q ∈ RmN , the matrix K = ΦuyΦ

−1
yy is causal as per (1.9) and it yields the closed-loop

responses (Φyy,Φyu,Φuy,Φuu). Moreover, the affine policy (K,g) with g = Φ−1
uuq complies

with the safety constraints.

We remark that the IOP is well-suited to a data-driven output-feedback setup, as all
affine control policies are directly parametrized through the impulse response parameters
G, without requiring an internal state-space representation. This is useful for two reasons.
First, when dealing with unknown systems, the state-space parameters (A,B,C, x0) can
only be estimated up to an unknown change of variable, which may be problematic for
defining the cost and the noise statistics [67]. Second, several large-scale systems feature
a very large number of states, but a comparably small number of inputs and outputs,
that is n >> max(m, p). In such applications, it is advantageous to bypass a state-space
representation and directly deal with G, whose dimensions do not depend on n.

From now on, to simplify the expressions appearing throughout the next sections and

3Specifically, they have the block lower-triangular sparsities resulting as per the expressions (1.12), the
sparsity of K in (1.9) and that of G.
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without any loss of generality4, we let q = g = 0Nm×1, that is, we focus on linear control
policies. We are ready to establish a convex formulation of the optimal control problem
under study.

Proposition 1.2. Consider the LTI system (1.1). The linear control policy that achieves the
minimum of the cost functional (1.3) is given by K = ΦuyΦ

−1
yy , where Φuy,Φyy are optimal

solutions to the following convex optimization problem:

min
Φ

∥∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

][
Φyy Φyu

Φuy Φuu

]Σ 1
2
v 0 y0

0 Σ
1
2
w 0

∥∥∥∥∥∥
2

F

(1.17)

subject to (1.13)− (1.16) ,

where Q = blkdiag(Q0, . . . , QN−1), R = blkdiag(R0, . . . , RN−1), Σv = IN ⊗ Σv, Σw =

IN ⊗ Σw and where (1.14)-(1.15) are evaluated at q = 0.

Proof. We refer to Proposition 2 of [12] for a complete derivation of the cost function. To
conclude the proof, it suffices to notice that the objective function and the safety constraints
(1.14)-(1.15) are convex in Φ.

When the system parameters (A,B,C, x0) are known, a globally optimal solution (Φ⋆
yy,

Φ⋆
yu,Φ

⋆
uy,Φ

⋆
uu) for problem (1.17) can be efficiently computed with off-the-shelf solvers. The

corresponding globally optimal and safe control policy is then recovered as K⋆ = Φ⋆
uy(Φ

⋆
yy)

−1.

The rest of this chapter contains our main contributions. Specifically, we address the
following two questions:

Q1) How can we compute a safe control policy with performance close to that of K⋆, solely
based on libraries of noisy input-output trajectories?

Q2) How steeply does the suboptimality grow with respect to K⋆ as the noise increases?

1.3 The Data-Driven Case: Robustly Safe Controller Synthesis
From Noisy Data

We answer question Q1) by developing a method to synthesize near-optimal safe controllers
from noisy data. The main result of this section is an optimization problem based on
the IOP that tightly approximates the optimal and safe control policy, despite the fact

4One can redefine ỹ =
[
1 yT

]T, v =
[
1 vT

]T, C =

[
01×Nn

C

]
, K =

[
g K

]
and Φ as per (1.12) with

G and K in place of G and K, respectively. Minor modifications to (1.14)-(1.15) are needed as well.

16



1.3 The Data-Driven Case: Robustly Safe Controller Synthesis From Noisy Data

that the noise-corrupted data only yield approximate estimates of the system impulse and
free response. We conclude by offering novel insights on its properties and its numerical
implementation based on convex optimization.

1.3.1 From noise-corrupted data to doubly-robust optimal control

From now on, the dynamics matrices (A,B,C) and the initial state x0 are unknown. Instead,
only the following data are available:

D1 A noisy system trajectory {yh(t), uh(t)}−1
t=−T recorded offline during an experiment.

D2 The cost matrices Qt, Rt, the matrices Σv,Σw, the safety sets Γt, and the bounded
sets W = {w| ∥w∥∞ ≤ w∞} and V = {v| ∥v∥∞ ≤ v∞} where disturbances live.

Our approach exploits the noisy data in D1 to compute approximate system responses
Ĝ and ŷ0 in a preliminary identification step. We work under the following assumption.

Assumption 1.1. Let ∆ = G− Ĝ and δ0 = y0 − ŷ0. There exist ϵ2,G, ϵ∞,G, ϵ2,y, ϵ∞,y > 0

such that,

∥∆∥2 ≤ ϵ2,G, ∥δ0∥2 ≤ ϵ2,y ,

∥∆∥∞ ≤ ϵ∞,G, ∥δ0∥∞ ≤ ϵ∞,y .

Note that, in practice, a meaningful bound on δ0 is only available if A is stable or the time-
horizon is sufficiently short. Let us define ϵ2 = max(ϵ2,G, ϵ2,y) and ϵ∞ = max(ϵ∞,G, ϵ∞,y).
Assumption 1.1 can be fulfilled using different methods over the available data D1; for
instance, one may utilize standard least-squares identification that comes with probabilistic
and non-asymptotic error bounds [7, 68], or more sophisticated stochastic estimators based
on behavioral theory such as maximum-likelihood predictors [11], which also come with
quantifiable error bounds [69]. Our results are independent of the choice of the identification
scheme. A discussion as to how recent behavioral approaches can be used for identification
is reported in Section 1.6.1. These estimators will be used in the numerical examples in
Section 1.5.

After condensing the effect of noise-corrupted data into model mismatch parameters
∆, δ0, we formulate a doubly-robust control problem, that is, a problem where we enforce
constraint satisfaction for 1) all possible model mismatches (∆, δ0), and 2) all possible
disturbances sequences w ∈W and v ∈ V . In particular, define θ = (∆, δ0,w,v) and let

y(K,θ) = ŷ0 + δ0 + (Ĝ+∆)u(K,θ) + v ,

u(K,θ) = Ky(K,θ) +w ,

17
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be the closed-loop trajectories associated with a specific controller K and disturbance and
mismatch realizations θ. Further, define the set of doubly-robust controllers as:

K = {K in (1.9)| (y(K,θ),u(K,θ)) ∈ Γ, ∀θ ∈ E ×W × V} ,

with E = {(∆, δ0)| ∥∆∥p ≤ ϵp, ∥δ0∥p ≤ ϵp, ∀p ∈ {2,∞}}, Γ = Γ0 × Γ1 × · · · × ΓN−1, and
assume that K is not empty. Then, the doubly-robust problem of interest takes the form

min
K∈K

max
(∆,δ0)∈E

√
E
w,v

[y(K,θ)Ty(K,θ)+u(K,θ)Tu(K,θ)] , (1.18)

where we have selected the weights Q, R, Σw, Σv to be identity matrices with appropriate
dimensions. The same assumption is used in the rest of the chapter, in order to facilitate
the derivations. However, we note that all our results can be easily adapted to non-identity
weights. Next, we observe that the doubly-robust optimization problem admits an equivalent
formulation in terms of the closed-loop response parameters.

Proposition 1.3. Letting Φyy = Φ̂yy(I −∆Φ̂uy)
−1, Φyu = Φyy(Ĝ+∆), Φuy = Φ̂uy(I −

∆Φ̂uy)
−1, Φuu = (I − Φ̂uy∆)−1Φ̂uu, the optimization problem (1.18) is equivalent to

min
Φ̂∈Π

max
(∆,δ0)∈E

∥∥∥∥∥∥
[
Φyy Φyu

Φuy Φuu

]I 0 ŷ0 + δ0
0 I 0

∥∥∥∥∥∥
F

, (1.19)

where the set of doubly-robust closed-loop responses Π is

Π = {Φ̂| (1.20)− (1.23), ∀j = 1, . . . , sN, ∀(∆, δ0) ∈ E} ,

with [
I −Ĝ

]
Φ̂ =

[
I 0

]
, Φ̂

[
−Ĝ
I

]
=

[
0

I

]
, (1.20)∥∥∥∥∥

[
v∞ (Fy,jΦyy)

T

w∞ (Fy,jΦyu)
T

]∥∥∥∥∥
1

+(Fy,jΦyy) (ŷ0 + δ0) ≤ by,j , (1.21)∥∥∥∥∥
[
v∞ (Fu,jΦuy)

T

w∞ (Fu,jΦuu)
T

]∥∥∥∥∥
1

+(Fu,jΦuy) (ŷ0+δ0) ≤ bu,j , (1.22)

Φ̂yy,Φ̂yu,Φ̂uy,Φ̂uu with causal sparsities. (1.23)

The proof of Proposition 1.3 can be found in Section 1.6.3. We remark that the closed-loop
responses Φ appearing in (1.19), (1.21) and (1.22) are associated with the true impulse
response, whereas the closed-loop responses Φ̂ appearing in (1.20) and (1.23) are associated
with the estimated impulse response. This is because, while we are interested in minimizing
the cost and satisfying the safety constraints for the real system, we can only parametrize
the closed-loop responses for the identified system.
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The robust optimization problem (1.19) is non-convex in the cost and in the constraints
because Φ is a nonlinear function of the matrix variables Φ̂ and ∆. Therefore, it is challenging
to find a feasible solution, let alone the optimal one. We note that, for the case of open-loop
control policies, one may use constraint-tightening approaches such as those of [70, 71]. In
this chapter, we propose an analysis that compares feedback control policies. Specifically, we
derive suboptimality guarantees with respect to the optimal model-based linear feedback
policy as a function of the model mismatch level.

1.3.2 Proposed relaxation for safe controller synthesis

Our first main result is to derive a relaxation of the intractable problem (1.19) that we can
solve in practice. Our proposed approach is to 1) upper bound the cost function, and 2)
tighten the safety constraints with more tractable expressions. In Section 1.4 we will explicitly
quantify the suboptimality incurred by these approximations. At its core, this methodology
is inspired by that developed in [6] for the state-feedback case without measurement noise.
However, the addition of output-feedback and measurement noise leads to new terms both
in the cost and the safety constraints that are more challenging to analyze.

The following two lemmas establish the basis for our relaxation. Let J(G,K) = (Ew,v[y
Ty

+uTu])
1
2 denote the square root of the cost in (1.3). Lemma 1.1 provides the new expression

which upper bounds J(G,K) and Lemma 1.2 provides a tightened form of the safety
constraints. Their rather lengthy technical proof is reported in the Sections 1.6.4 and 1.6.5,
respectively.

Lemma 1.1. Let Φ̂ denote the closed-loop responses obtained by applying K to Ĝ. Further
assume that

∥∥∥Φ̂uy

∥∥∥
2
≤ γ, where γ ∈ [0, ϵ−1

2 ). Then, we have

J(G,K) ≤ JUB

1− ϵ2γ
(1.24)

where

JUB =

∥∥∥∥∥
[√

1+h(ϵ2, γ, Ĝ)+h(ϵ2, γ, ŷ0)Φ̂yy Φ̂yu Φ̂yyŷ0√
1 + h(ϵ2, γ, ŷ0)Φ̂uy Φ̂uu Φ̂uyŷ0

]∥∥∥∥∥
F

,

and h(ϵ, γ,Y) = ϵ2(2 + γ∥Y∥2)2 + 2ϵ ∥Y∥2 (2 + γ ∥Y∥2).

Lemma 1.1 exploits the upper bound
∥∥∥Φ̂uy

∥∥∥
2
≤ γ to establish an explicit relationship

between J(G,K), the cost obtained by applying a controller K to the real system G, and
J(Ĝ,K), the cost obtained by applying the same controller to the estimated system Ĝ. To
see this, notice that (1.24) can be equivalently rewritten as

J(G,K) ≤

(
J(Ĝ,K)2 + ∥Φ̂yy∥2F (h(ϵ2, γ, Ĝ)+

1− ϵ2γ
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+h(ϵ2, γ, ŷ0)) + ∥Φ̂uy∥2Fh(ϵ2, γ, ŷ0)

) 1
2

1− ϵ2γ
. (1.25)

The expression (1.25) upper bounds the gap between J(G,K) and J(Ĝ,K) as a quantity
that increases with ϵ2 and with the norm of Ĝ, ŷ0, Φ̂. We note that a similar result has
appeared in [37, Proposition 3.2]. However, Lemma 1.1 additionally takes into account how
an uncertain x̂(0) affects the cost through the free response ŷ0. We now derive a tightened -
yet more tractable - expression for the safety constraints (1.21)-(1.22).

Lemma 1.2. Assume
∥∥∥Φ̂uy

∥∥∥
∞
≤ τ , where τ ∈ [0, ϵ−1

∞ ). Then, if for all j = 1, . . . , sN the

closed-loop responses Φ̂ satisfy the tightened safety constraints

f1,j(Φ̂) + f2,j(Φ̂) + f3,j(Φ̂) ≤ by,j , (1.26)

f4,j(Φ̂) + f5,j(Φ̂) + f6,j(Φ̂) ≤ bu,j , (1.27)

where

f1,j(Φ̂) =
v∞

∥∥∥Fy,jΦ̂yy

∥∥∥⋆
1

1− ϵ∞τ
, f4,j(Φ̂) =

v∞

∥∥∥Fu,jΦ̂uy

∥∥∥⋆
1

1− ϵ∞τ
,

f2,j(Φ̂) = w∞

∥∥∥∥∥∥∥


(
Fy,jΦ̂yu

)T
ϵ∞

1+τ∥Ĝ∥∞
1−ϵ∞τ

(
Fy,jΦ̂yy

)T

∥∥∥∥∥∥∥
1

,

f5,j(Φ̂) = w∞

∥∥∥∥∥∥∥


(
Fu,jΦ̂uu

)T
ϵ∞

1+τ∥Ĝ∥∞
1−ϵ∞τ

(
Fu,jΦ̂uy

)T

∥∥∥∥∥∥∥
1

,

f3,j(Φ̂) = Fy,jΦ̂yyŷ0 + ϵ∞

∥∥∥Fy,jΦ̂yy

∥∥∥⋆
1

(
1 + τ ∥ŷ0∥∞
1− ϵ∞τ

)
,

f6,j(Φ̂) = Fu,jΦ̂uyŷ0 + ϵ∞

∥∥∥Fu,jΦ̂uy

∥∥∥⋆
1

(
1 + τ ∥ŷ0∥∞
1− ϵ∞τ

)
,

then Φ̂ satisfies the safety constraints (1.21)-(1.22) for all (∆, δ0) ∈ E.

Lemma 1.2 exploits the upper bound
∥∥∥Φ̂uy

∥∥∥
∞
≤ τ to quantify the worst-case effect of

the disturbances in increasing the values of the inputs and the outputs. In our setup, similar
to [6], the feasible set shrinks in the presence of larger impulse and free response estimation
error ϵ∞. This is because (1.26)-(1.27) are more restrictive, and will eventually become
infeasible for sufficiently large ϵ∞. Instead, the effect of increasing the value of τ is less
intuitive. Indeed, as τ increases, the constraint

∥∥∥Φ̂uy

∥∥∥
∞
≤ τ softens while (1.26)-(1.27)

tighten. It is therefore necessary to explicitly optimize over τ . We are now ready to establish
a relaxation of problem (1.19).
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Theorem 1.1. Consider the following optimization problem:

min
γ∈[0,ϵ−1

2 ),τ∈[0,ϵ−1
∞ )

1

1− ϵ2γ
min
Φ̂

JUB (1.28)

subject to (1.20), (1.23) ,∥∥∥Φ̂uy

∥∥∥
2
≤ γ ,

∥∥∥Φ̂uy

∥∥∥
∞
≤ τ , (1.29)

(1.26)− (1.27), ∀j = 1, . . . , sN ,

where JUB is defined in Lemma 1.1. Then, (1.28) has the following properties:

i) upon fixing any specific values for γ ∈ [0, ϵ−1
2 ) and τ ∈ [0, ϵ−1

∞ ), the optimization problem
is convex in Φ̂,

ii) all of its feasible solutions yield a controller K̂ = Φ̂uyΦ̂
−1
yy complying with the safety

constraints (1.14)-(1.15) for the real system,

iii) its minimal cost upper bounds that of (1.18).

Proof. Lemma 1.1 shows that the cost of (1.28) upper bounds J(G,K) = J(G, Φ̂uyΦ̂
−1
yy ) for

every feasible K. Lemma 1.2 shows that (1.26)-(1.27) imply the doubly-robust constraints
(1.21)-(1.22) for all (∆, δ0) ∈ E. Hence, K̂ = Φ̂uyΦ̂

−1
yy complies with safety constraints

(1.14)-(1.15) for the real system. When γ and τ are fixed, it remains to optimize over Φ̂. The
cost function is convex in Φ̂ and so are the constraints of the inner optimization problem.

Theorem 1.1 shows that problem (1.19), which is non-convex in its matrix variables,
can be approximated as the problem of solving a convex optimization problem5 for each
choice of the scalar variables γ and τ . The ϵ-dependent suboptimality introduced by such
an approximation will be quantified in the next section. The global optimum of (1.28) is
thus determined by exhaustive search over the box (γ, τ) ∈ [0, ϵ−1

2 )× [0, ϵ−1
∞ ), for instance

through gridding, random search [72] or bisection [73]. Gridding over (τ, γ) and solving a
convex optimization problem each time may significantly increase the computational burden
if we are interested in determining a near-optimal solution with very low tolerance. Similarly
to [37], in the next proposition we show that the inner cost function in problem (1.28) can
be made independent of γ by introducing a parameter α ∈ R that acts as an upper bound
to γ. As a result, the overall cost becomes quasiconvex6 in γ, and the globally optimal γ⋆(τ)
for each fixed τ can be found efficiently through golden-section search [75].

5Specifically, a semidefinite program (SDP) due to the presence of quadratic ∥·∥2 constraints.
6A function f : Rn → R is quasiconvex if and only if f(θx1 + (1− θ)x2) ≤ max(f(x1), f(x2)) for every

x1, x2 ∈ Rn and every θ ∈ [0, 1]. We refer to [74] for a comprehensive discussion.
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Proposition 1.4. Fix α ∈ [0, ϵ−1
2 ) and consider the following optimization problem

min
γ∈[0,α],τ∈[0,ϵ−1

∞ )

1

1− ϵ2γ
min
Φ̂

Jα
UB(Φ̂) (1.30)

subject to (1.20), (1.23), (1.26), (1.27), (1.29)

∀j = 1, . . . , sN ,

where Jα
UB(Φ̂) is defined as∥∥∥∥∥

[√
1+h(ϵ2, α, Ĝ)+h(ϵ2, α, ŷ0)Φ̂yy Φ̂yu Φ̂yyŷ0√

1 + h(ϵ2, α, ŷ0)Φ̂uy Φ̂uu Φ̂uyŷ0

]∥∥∥∥∥
F

.

Then, the statements i), ii) and iii) of Theorem 1.1 hold. Furthermore

iv) The cost function of problem (1.30) is quasiconvex in γ.

Proof. Since γ ≤ α, α < ϵ−1
2 , and h(ϵ, γ, ·) is a monotonically increasing function of γ, then

the inequality (1.24) in Lemma 1.1 continues to hold when putting α in place of γ inside the
h(·) functions. The constraints of (1.28) are unaffected. Hence, i), ii) and iii) of Theorem 1.1
continue to hold. It remains to prove iv). Let us fix any value for τ . First, notice that
Jα
UB(Φ̂) is a convex function of Φ̂ and does not depend on γ, and that the feasible set of

the inner minimization in problem (1.30) is convex. Denote as g(γ) the optimal value of the
inner optimization problem. We are left with minimizing the functional g(γ)

1−ϵ2γ
over γ. We

know that g(γ) is convex in γ because it is obtained as the partial minimization of a convex
functional over a convex set [76], and that (1 − ϵ2γ) is concave in γ. Since the ratio of a
non-negative convex function and a positive concave function is quasiconvex, we conclude
that the cost of problem (1.30) is quasiconvex in γ.

In [37], the idea of using the parameter α was relying on a lemma from [77]. Here, we
have derived an alternative self-contained proof that holds also for the case x0 ̸= 0. In
summary, for a fixed α < ϵ−1

2 , for every τ gridding the interval [0, ϵ−1
∞ ] and for γ chosen

according to golden-search, we solve the corresponding instance of the inner optimization
problem in (1.30), which is convex in Φ̂. We also note that an infinite-horizon version of
problem (1.30) can be established by adding a tail variable and adopting a finite-horizon
approximation of stable transfer functions similar to [6].

Last, one may wonder whether the cost function of problem (1.30) is jointly quasiconvex
in γ and τ , as conjectured in [6]. Here, we clarify that this may not be the case, even for
the state-feedback framework of [6]. For instance, similar to the constraints (1.26)-(1.27)
and those of [6], consider the function s : R2 → R defined as s(x, y) = |y|x

(1−x) . Fixing
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Table 1.1: Convexity properties for the proposed reformulations.

QC in γ QC in (τ ,γ) C for fixed (γ, τ)
(1.28) X X ✓
(1.30) ✓ X ✓

x1 = 1, x2 = 0, y1 = −1
2 , y2 =

1
2 , one can verify that

s(θx1 + (1− θ)x2, θy1 + (1− θ)y2) = |0.5− θ| θ

1− θ
,

is not quasiconvex for θ ∈ [0, 1]. Based on this reasoning, the cost of problem (1.30), and
similarly the objective (2.3) in [6], may not be quasiconvex in τ . Hence, exhaustive search
over τ remains the only solution in general. Table 1.1 summarizes the convexity properties
of (1.28) and (1.30).

1.4 Suboptimality Analysis

In this section, we tackle question Q2) in Section 1.2 about performance degradation as a
function of the level of model-mismatch due to noisy data. We denote as K⋆,Φ⋆ the optimal
controller for the real constrained problem (1.17) and corresponding closed-loop responses.
Similarly, we denote as K̂⋆, Φ̂⋆ the optimal controller for the optimization problem (1.30)
and corresponding closed-loop responses. Further, we let J⋆ = J(G,K⋆) and Ĵ = J(G, K̂⋆).
We aim to characterize the relative suboptimality gap Ĵ2−J⋆2

J⋆2 , and specifically we will show
that

Ĵ2 − J⋆2

J⋆2
≤ O (ϵ2) + S̃(ϵ∞, ϵ2) ,

where S̃(ϵ∞, ϵ2) = S(ϵ∞)(1 + O(ϵ2)). Here, S(ϵ∞) quantifies the suboptimality incurred
by tightening the constraints and is such that S(0) = 0. We prove that if ϵ2 and ϵ∞ are
small enough and the optimal controller K⋆ does not activate the safety constraints, then
S(ϵ∞) = 0 and the suboptimality shrinks to 0 linearly fast as ϵ2 converges to 0. Otherwise,
the gap may decrease according to S(ϵ∞), for which we provide a numerical plot in Section 1.5.
In other words, for small estimation errors ϵ2 and ϵ∞, applying controller K̂⋆ (which is
solely computed from noisy data) to the real plant achieves almost optimal closed-loop
performance while guaranteeing compliance with safety constraints. Surprisingly, despite the
additional complexity of output-feedback and output noise, our bound matches the scaling
with respect to ϵ = max(ϵ2, ϵ∞) that has been derived in [6] for the state-feedback case
without measurement noise.

To prove the above statements, we first characterize a feasible solution to problem (1.30),
which we later exploit to establish our suboptimality bound. The proof of Lemma 1.3 and
Theorem 1.2 is reported in the Sections 1.6.6 and 1.6.7, respectively.
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Lemma 1.3 (Feasible solution). Let η = ϵ2
∥∥Φ⋆

uy

∥∥
2

and ζ = ϵ∞
∥∥Φ⋆

uy

∥∥
∞. Assume that

the estimation errors are small enough to guarantee η < 1
5 and ζ < 1

2 , and select α ∈
[
√
2 η
ϵ2(1−η) , ϵ

−1
2 ). Consider the following optimization problem and its optimal solutions Φc:

Φc ∈ argmin
Φ

∥∥∥∥∥
[
Φyy Φyu Φyyy0

Φuy Φuu Φuyy0

]∥∥∥∥∥
F

(1.31)

subject to
[
I −G

]
Φ =

[
I 0

]
, Φ

[
−G
I

]
=

[
0

I

]
,

∥Φuy∥2 ≤
∥∥Φ⋆

uy

∥∥
2
, ∥Φuy∥∞ ≤

∥∥Φ⋆
uy

∥∥
∞ ,

ϕ1,j(Φ) + ϕ2,j(Φ) + ϕ3,j(Φ) ≤ by,j , (1.32)

ϕ4,j(Φ) + ϕ5,j(Φ) + ϕ6,j(Φ) ≤ bu,j , (1.33)

∀j = 1, . . . , sN ,

Φyy,Φyu,Φuy,Φuu with causal sparsities .

where

ϕ1,j(Φ) =
v∞ ∥Fy,jΦyy∥⋆1

1− 2ζ
, ϕ4,j(Φ) =

v∞ ∥Fu,jΦuy∥⋆1
1− 2ζ

,

ϕ2,j(Φ) = w∞

∥∥∥∥∥
[

(Fy,jΦyu)
T

2
ϵ∞+ζ∥Ĝ∥∞

1−2ζ (Fy,jΦyy)
T

]∥∥∥∥∥
1

,

ϕ5,j(Φ) = w∞

∥∥∥∥∥
[

(Fu,jΦuu)
T

2
ϵ∞+ζ∥Ĝ∥∞

1−2ζ (Fu,jΦuy)
T

]∥∥∥∥∥
1

,

ϕ3,j(Φ) = Fy,jΦyyŷ0 + 2
ϵ∞ + ζ ∥ŷ0∥∞

1− 2ζ
∥Fy,jΦyy∥⋆1 ,

ϕ6,j(Φ) = Fu,jΦuyŷ0 + 2
ϵ∞ + ζ ∥ŷ0∥∞

1− 2ζ
∥Fu,jΦuy∥⋆1 .

Then, the following expressions

Φ̃yy = Φc
yy(I+∆Φc

uy)
−1, Φ̃yu = Φc

yy(I+∆Φc
uy)

−1(G−∆),

Φ̃uy = Φc
uy(I +∆Φc

uy)
−1, Φ̃uu = (I +Φc

uy∆)−1Φc
uu,

γ̃ =

√
2η

ϵ2(1− η)
, τ̃ =

ζ

ϵ∞(1− ζ)
, (1.34)

provide a feasible solution to problem (1.30).

The main idea behind Lemma 1.3 is to construct a feasible solution to problem (1.30)
from the set of closed-loop responses generated applying a cautious ground-truth optimal
controller Kc = Φc

uy(Φ
c
yy)

−1 on the estimated system Ĝ. In the absence of safety constraints,
such a feasible solution could directly be established from the ground-truth optimal policy
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K⋆ similar to [37]. In the constrained case, however, one cannot expect the optimal solution
K⋆ to be feasible for Ĝ in (1.30) since (1.26)-(1.27) are more stringent than (1.14)-(1.15).
Hence, in (1.31) we first compute Kc = Φc

uy(Φ
c
yy)

−1 as the optimal linear policy for the
real system G under safety constraints that are more stringent than those of (1.30), and
subsequently define Φ̃ as the closed-loop responses generated applying Kc to Ĝ. In this way,
Φ̃ is guaranteed to be feasible for (1.30), provided that the model mismatch is sufficiently
small.

Clearly, the optimal solution Kc = Φc
uy(Φ

c
yy)

−1 to (1.31) will yield a suboptimal cost
J(G,Kc) ≥ J(G,K⋆). We denote the corresponding suboptimality gap as

S(ϵ∞) =
J(G,Kc)2 − J(G,K⋆)2

J(G,K⋆)2
. (1.35)

Note that, if the estimation error ϵ∞ is too large, the optimization problem (1.31) may
become infeasible. This is expected as the uncertainty level might be incompatible with the
required safety. On the other hand, if the optimal solution to the non-noisy problem (1.17)
does not activate the safety constraints, then the constraints of (1.31) remain inactive for
small enough ϵ∞. In such case we have that S(ϵ∞) = 0.

We are now ready to state the main suboptimality result.

Theorem 1.2. Let η = ϵ2
∥∥Φ⋆

uy

∥∥
2

and ζ = ϵ∞
∥∥Φ⋆

uy

∥∥
∞. Assume that the estimation errors

are small enough to guarantee η < 1
5 and ζ < 1

2 , and select α ∈
[√

2 η
ϵ2(1−η) , 5

∥∥Φ⋆
uy

∥∥
2

]
.

Moreover, assume that ϵ∞ is small enough for the optimization problem (1.31) to be feasible.
Then, when applying the controller K̂⋆ optimizing (1.28) to the true plant G, the relative
error with respect to the true optimal cost is upper bounded as

Ĵ2 − J⋆2

J⋆2
≤ 20η + 4(M c + V c) + 4S(ϵ∞)(1 +M c + V c)

= O
(
ϵ2

(
1 +

∥∥Φ⋆
uy

∥∥
2

)
(1 + ∥G∥2 + ∥y0∥2)

2
)
+ 4S(ϵ∞)(1 +M c + V c) , (1.36)

where

M c = h(ϵ2, α, Ĝ) + h(ϵ2, α, ŷ0) + h(ϵ2,
∥∥Φc

uy

∥∥
2
,G) + h(ϵ2,

∥∥Φc
uy

∥∥
2
,y0) ,

V c = h(ϵ2, α, ŷ0) + h(ϵ2,
∥∥Φc

uy

∥∥
2
,y0) .

We have expressed the suboptimality gap in the form (1.36) to highlight the presence of
two main parts; the first addend scales as O

(
ϵ2

(
1 +

∥∥Φ⋆
uy

∥∥
2

)
(1 + ∥G∥2 + ∥y0∥2)

2
)

and
the second addend S(ϵ∞)(1 + M c + V c) is linked to the suboptimality of the tightened
optimization program (1.31). The most important observation is that the suboptimality
decreases at most linearly with ϵ2 when max (ϵ2, ϵ∞) is small enough. A linear suboptimality
rate in the output-feedback case has first been observed for the unconstrained setup of
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[37]. Recovering a similar suboptimality rate for the general case with constraints is one of
the main novelties of this chapter. Indeed, despite recovering an upper bound that scales
similarly to [37], the corresponding analysis in Section 1.6.7 is significantly complicated by
the fact that the feasible solution used in [37] cannot be exploited anymore. Hence, one might
expect that the suboptimality rate will worsen with respect to the unconstrained case of [37].
Theorem 1.2 shows, however, that the bound does not deteriorate for small-enough model
mismatch levels. Turning our attention to the term S(ϵ∞), we observe through examples (cfr.
Figure 1.2) that S(ϵ∞) sharply transitions from 0 to ∞ as ϵ∞ increases. In practice, this
example suggests that S(ϵ∞) might be interpreted as an indicator function; if S(ϵ∞) ≈ 0,
then ϵ∞ is small enough for the linear suboptimality rate to hold.

Our suboptimality bound (1.36) indicates features of the underlying unknown system
that make it easier to be safely controlled based on noisy data. Notably, the suboptimality
grows quadratically with the norm of the true impulse and free responses. This fact implies
that an unknown unstable system will be more difficult to control for a long horizon. Last,
we note that, surprisingly, our rate in terms of ϵ2 matches that of [6] which was valid
under the assumption of exact state measurements. In other words, our analysis shows that
near-optimality can be ensured in complex data-driven control scenarios that combine hard
safety requirements with noisy output measurements.

1.5 Numerical Experiments

In this section, we demonstrate numerically the effectiveness of the proposed framework
in safely controlling unknown systems. In the experiments, we consider the single-input
single-output unknown LTI system characterized by the matrices

A = ρ

[
1 0.25

0 1

]
, B =

[
0

0.1

]
, C =

[
1 −1

]
, (1.37)

where ρ > 0 corresponds to the spectral radius of A. When ρ < 1, (1.37) is asymptotically
stable, that is, its output converges to the origin at an exponential rate when the input is
equal to 0. When ρ = 1, (1.37) is a marginally stable double-integrator system.

In all the following tests, the cost function is given by (1.3) for appropriate choices of
the weights. The expectation in (1.3) is taken over future input/output disturbances with
covariance matrices Σw = Im and Σv = Ip. We consider bounded disturbances between
−1 and 1, that is, w∞ = v∞ = 1. Hence, each scalar disturbance is randomly chosen from
{−1, 1} with probability 1

2 . For solving optimization problems we use MOSEK [78], called
through MATLAB via YALMIP [79].
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1.5.1 Example: safe controller synthesis from noisy data

In our first test, we synthesize a safe output-feedback controller for system (1.37) with ρ = 1

from noisy data. We assume that x0 = x(1) =
[
6 0

]T
, where we set the initial time at t = 1

rather than t = 0 for compliance with MATLAB’s indexing of vector entries.

The safety constraints are: y(1) ∈ R and

−5.5 ≤ y(t) ≤ 5.5, ∀t = 2, . . . , 12 ,

−100 ≤ u(t) ≤ 100 , ∀t = 1, . . . , 11 ,

for all realizations of noise ∥w∥∞, ∥v∥∞ ≤ 1, while minimizing the cost (1.3) with the weights
Q and R in (1.17) set to the identity.

We first synthesize the optimal controller assuming that the available data are not affected
by noise. To this end, we cast and solve the convex optimization problem (1.40). We verify
that the optimal controller K⋆ yields a cost J(G,K⋆) = 69.88. The green tubes in Figure 1.1
show the regions containing 50 realizations of the optimal closed-loop input and output
trajectories. Due to the high level of noise, we can observe a significant variability in the
trajectory values for different noise realizations. Nonetheless, all trajectories are safe.

We then discuss the case where the available data are affected by noise. In order for
the tightened constraints of (1.30) to be feasible, we consider noisy estimates (Ĝ, ŷ0) with
ϵ = 0.01 and compute a near-optimal solution to the proposed optimization problem (1.28).
As discussed in Section 1.3.2, this can be achieved by 1) extensive or random search over
γ and τ , or 2) extensive search over τ and golden-section search over γ. Even if the first
solution comes without strong theoretical guarantees, extensive search over γ and τ may be
simpler to implement as it avoids the delicate task of tuning the parameter α. Specifically, for
this example we have searched over 100 randomly extracted values of γ and τ in the interval
[0, ϵ−1). A potential improvement to this heuristic could be to use a bisection algorithm, as
proposed in [73] for example.

Proceeding as above, we synthesize a robustly safe controller K̂⋆ yielding a cost of
J(G, K̂⋆) = 140.54. The corresponding suboptimality gap is Ĵ2−J⋆2

J⋆2 = 3.049. In Figure 1.1,
the trajectories and variability levels resulting from K̂⋆ for 50 noise realizations are plotted
in blue. We observe that, since K̂⋆ is synthesized using noise-corrupted data, it leads to
safer, but more conservative trajectories. Indeed, due to uncertainty, higher control effort is
spent to keep the output further from the constraints.

It is informative to inspect the robust suboptimality gap S(ϵ∞) incurred by the tightened
optimization problem (1.31) that we have used in the analysis to characterize a feasible

solution to (1.30). In Figure 1.2, we plot S(ϵ∞) assuming x0 = x(1) =
[
1 0

]T
and

requiring −3 ≤ y(t) ≤ 3 for t = 1, . . . , 7. The example exhibits a fast transition from
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infeasibility for ϵ∞ > 0.118 to near-optimality for ϵ∞ < 0.115. This fact leads to the
following observation: high-performing safe controllers can be synthesized by solving (1.30)
even when the optimization problem (1.31) is infeasible, i.e. S(ϵ∞) = ∞. In such cases
the suboptimality bound (1.36) is not applicable, but a robustly safe controller has been
synthesized nonetheless. This phenomenon is consistent with the numerical examples of [6]
for the state-feedback case.

Figure 1.1: Closed-loop trajectories. The grey region indicates unsafe input and output
values. The green and blue regions contain trajectories for 50 noise realizations obtained
through K⋆ and K̂⋆, respectively. Green and blue lines represent a specific trajectory in
both settings.

1.5.2 Example: suboptimality scaling beyond least-squares estimation

The bound (1.36) in Theorem 1.2 states that a low estimation error level ϵ is crucial in
ensuring safety and near-optimality when controlling unknown systems based on noisy data.
One advantage of the proposed formulation is that it is directly compatible with behavioral
estimation approaches beyond LS identification for the reconstruction of the impulse and
free responses, such as data-enabled Kalman filtering [51] and Signal Matrix Model (SMM)
[11, 80] . In our last test, we drop the constraints for both the input and the outputs thus
putting our focus on 1) validating the linear scaling of the suboptimality gap (1.36), and 2)
showcasing that, for instance, SMM-based estimation [80] may lead to significantly lower
error levels given the same amount of data. We consider the system (1.37) with different

values of ρ ∈ [0.9, 0.93, 0.96, 0.99, 1] and x0 = x(1) =
[
6 0

]T
, over a time-horizon of length

N = 11. The cost function weights in (1.17) are selected as Q(t) = Ip for every t = 1, . . . , 11,
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Figure 1.2: Robust suboptimality gap S(ϵ∞). This quantity can be interpreted as an indicator
as to whether the guarantee (1.36) holds for a given ϵ∞.

Q(12) = 20Ip and R(t) = 0.05 for every t = 1, . . . , 11.

Behavioral estimation: LS vs SMM

For a fixed value of ρ, we gather system trajectories of length 200 time-steps which are
corrupted by input and output Gaussian noise with covariance matrices equal to σI. For each
experiment, we fix the variance σ ≥ 0 and select a random exploration control input u. We
collect 1000 different trajectories for different realizations of the corrupting noise. For each
realization of the trajectories, we compute 1) the LS solution (GLS , gLS) using (1.41) and the
corresponding impulse and free responses G̃LS , ỹ0,LS , and 2) the ML solution (GML, gML)

using (1.42)-(1.43) and the corresponding impulse and free responses G̃ML, ỹ0,ML. For each
estimation, we determine the incurred error levels ϵ2,G, ϵ∞,G, ϵ2,y and ϵ∞,y

7. Last, we record
the 90-th percentile of these values, both for SMM and LS estimation.

In Figure 1.3 we compare the values of ϵ2 and ϵ∞ incurred by both estimation techniques.
We observe that SMM may yield significantly smaller estimation errors than LS identification.
While a full sample-complexity analysis is still unavailable beyond least-squares [3, 7, 54],
these examples showcase an advantage in using more sophisticated estimation techniques for
safe data-driven control.

7Since the real system is unavailable, in practice this can be done using a bootstrap procedure.
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Figure 1.3: Estimation error in function of the corrupting noise. ML estimation through the
SMM yields significantly smaller errors than LS. The green and blue regions indicate the
gap for the 2-norm and ∞-norm, respectively.
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Figure 1.4: Suboptimality gap as a function of ϵ2 (obtained through SMM estimation) for
increasing values of the spectral radius ρ of matrix A (on the left). Suboptimality gap as a
function of ρ for increasing values of σ (on the right).
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Suboptimality scaling

Having exploited ML estimation to construct approximate impulse and free responses and
the corresponding error-levels, we are ready to solve the optimization problem (1.30). Since
constraints are not present in this example, (1.30) can be simplified to the quasiconvex
formulation we have proposed in [12], where the optimization variable τ is not present. The
parameter α is tuned empirically in the interval α ∈ [

√
2 η
ϵ2(1−η) , ϵ

−1
2 ).8

Figure 1.4 shows the suboptimality gap one incurs by applying the controller K̂⋆ obtained
through the proposed approach. On the left, we consider increasing levels of the estimation
error level ϵ2 for each choice of the spectral radius ρ = 0.9, 0.99, 1. On the right, we conversely
consider increasing levels of the spectral radius for each choice of the estimation error level ϵ2.
In both cases, we plot the suboptimality gap Ĵ2−J⋆2

J⋆2 . It can be observed that, consistently
with Theorem 1.2, 1) the gap linearly converges to 0 as ϵ2 converges to 0, and 2) the gap may
grow faster than linearly with the spectral radius ρ as a larger ρ generally leads to larger
∥G∥2. We also observe that larger ρ may lead to higher model mismatch values ϵ. Finally,
we remark that, in finite-horizon, our formulations are valid for unstable systems with ρ > 1.
However, it is inherently challenging to collect trajectories of an unstable system, as the
values to be plugged into the corresponding optimization problems will become too large
to be handled by numerical solvers. For unstable systems in a data-driven scenario, it is
common to assume knowledge of a pre-stabilizing controller [38, 37].

1.6 Appendices

1.6.1 Willems’ lemma and behavioral theory for synthesizing safe con-
trollers

We recall the definition of persistency of excitation and the result known as the Fundamental
Lemma for LTI systems [81].

Definition 1.1. We say that uh
[0,T−1] is persistently exciting (PE) of order L if the Hankel

matrix HL(u
h
[0,T−1]) is full row-rank.

A necessary condition for the matrix HL(u
h
[0,T−1]) to be full row-rank is that it has at

least as many columns as rows. It follows that the input trajectory uh
[0,T−1] must be long

enough to satisfy T ≥ (m+ 1)L− 1.

Lemma 1.4 (Theorem 3.7, [81]). Consider system (1.1). Assume that (A,B) is controllable
and that there is no noise. Let {yh

[0,T−1],u
h
[0,T−1]} be a system trajectory of length T that

has been recorded during a past experiment. Then, if uh
[0,T−1] is PE of order n + L, the

8The value η = ϵ2
∥∥Φ⋆

uy

∥∥
2

is unknown in practice because Φ⋆
uy is unavailable. One can then tune α

according to α < ϵ−1
2 .
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signals y⋆
[0,L−1] ∈ RpL and u⋆

[0,L−1] ∈ RmL are trajectories of (1.1) if and only if there exists
g ∈ RT−L+1 such that [

HL(y
h
[0,T−1])

HL(u
h
[0,T−1])

]
g =

[
y⋆
[0,L−1]

u⋆
[0,L−1]

]
. (1.38)

We proceed by showing how Lemma 1.4 allows one to derive a data-driven formulation
of (1.17) when the data are not noisy. We work under the following assumptions that are
standard in the behavioral framework.

Assumption 1.2. The data-generating LTI system (1.1) is such that (A,B) is controllable
and (A,C) is observable.

Assumption 1.3. The historical input trajectory uh
[0,T̃−1]

is PE of order n+Tini+N , where
Tini ≥ l and l is the smallest integer such that the matrix[

CT (CA)T . . . (CAl−1)T
]T

,

has full row-rank. Note that if Assumption 1.2 holds, then l ≤ n.

Further, we give the following definition.

Definition 1.2. The available data in D1 are further split as follows:

i) a recent system trajectory of length Tini:
{
yr
[0,Tini−1],u

r
[0,Tini−1]

}
, with yr

[0,Tini−1] =

y[−Tini,−1] and ur
[0,Tini−1] = u[−Tini,−1],

ii) a historical system trajectory of length T̃ :
{
yh
[0,T̃−1]

,uh
[0,T̃−1]

}
, with yh

[0,T̃−1]
= y[−Th,−Th+T̃−1]

and uh
[0,T̃−1]

= u[−Th,−Th+T̃−1] for Th ∈ N such that Th ≥ T̃ and T̃ ≤ T .

The historical data are to be used in substitution of the system model, while the recent
data reflect the system initial state x0 ∈ Rn [82]. By exploiting (1.38), one can derive a
constrained version of the BIOP derived in [12] as follows:

Proposition 1.5 (Safe Behavioral IOP ). Consider the LTI system (1.1), whose parameters
(A,B,C, x0) are unknown, and let Assumptions 1.2-1.3 hold. Further assume that the
historical and recent trajectories are not affected by noise. Let (G, g) be any solutions to the
linear system of equationsUp

Yp
Uf

[G g
]
=


0mTini×m ur

[0,Tini−1]

0pTini×m yr
[0,Tini−1][

Im 0m×m(N−1)

]T
0mN×1

, (1.39)
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where

[
Up

Uf

]
= HTini+N (uh

[0,T̃−1]
) and

[
Yp
Yf

]
= HTini+N (yh

[0,T̃−1]
). Then, the optimization

problem (1.17) is equivalent to

min
Φ

∥∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

][
Φyy Φyu

Φuy Φuu

]Σ 1
2
v 0 Yfg

0 Σ
1
2
w 0

∥∥∥∥∥∥
2

F

(1.40)

subject to
[
I −Toep(YfG)

]
Φ =

[
I 0

]
,

Φ

[
−Toep(YfG)

I

]
=

[
0

I

]
,∥∥∥∥∥∥

[
v∞ (Fy,jΦyy)

T

w∞ (Fy,jΦyu)
T

]T∥∥∥∥∥∥
1

+ (Fy,jΦyy)Yfg ≤ by,j ,∥∥∥∥∥∥
[
v∞ (Fu,jΦuy)

T

w∞ (Fu,jΦuu)
T

]T∥∥∥∥∥∥
1

+ (Fu,jΦuy)Yfg ≤ bu,j ,

∀j = 1, . . . , sN ,

Φyy,Φyu,Φuy,Φuu with causal sparsities.

The proof of Proposition 1.5 is analogous to that of Theorem 1 in [12], with the addition
of the safety constraints as per Proposition 1.1. Since the historical and recent data are not
noisy, YfG and Yfg yield the true impulse response matrix G and free response y0 and the
optimal solution of (1.40) recovers the optimal safe controller K⋆ for the real system.

In practice, exact historical and recent data are not available. As per the noise model in
the dynamics (1.1)-(1.2), one may assume that historical and recent trajectories are affected
by additive noise wh(t), wr(t), vh(t), vr(t)9 at all time instants, with zero expected values
and variances Σh

w,Σ
r
w,Σ

h
v ,Σ

r
v respectively. Hence, the matrix on the left-hand-side of (1.39)

becomes full row-rank almost surely, and any solution to (1.39) leads to potentially different
estimates of the system free and impulse responses, which do not necessarily match the exact
ones. This issue is well-known in the behavioral theory literature, and several mitigation
strategies have recently been proposed [46, 47, 49, 11, 51, 80]. For instance, a behavioral LS
estimator akin to the impulse-response identification of [7, 37] is given by

[
GLS gLS

]
=

Ûp

Ŷp

Ûf


+


0mTini×m ur
[0,Tini−1]

0pTini×m yr
[0,Tini−1][

Im 0m×m(N−1)

]T
0mN×1

 , (1.41)

9where “w” and “v” denote input and output noise, respectively, and the apices r and h denote recent
data and historical data, respectively.
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while the ML estimator [11] is computed as

GML =argmin
G

− log

[
p

([
Ξy

YfG

]
| G,Yf

)]
(1.42)

subject to

[
Ûp

Ûf

]
G =

 0mTini×m[
Im 0m×m(N−1)

]T
 ,

gML =argmin
g

− log

[
p

([
ξy
Yfg

]
| g, Yf

)]
(1.43)

subject to

[
Ûp

Ûf

]
g =

[
ur
[0,Tini−1]

0mN×1

]
,

where the residuals Ξy = (Yp − Ŷp)G and ξy = (Yp − Ŷp)g denote the fitting deviation
from the most recent output measurements, and p(a|b) indicates the probability of event a

conditioned to b.

1.6.2 Proof of Proposition 1.1

For the first statement, notice that the controller K achieves the closed-loop responses (1.12).
Now select (Φyy,Φyu,Φuy,Φuu) as[

Φyy Φyu

Φuy Φuu

]
=

[
(I −GK)−1 (I −GK)−1G

K(I −GK)−1 (I −KG)−1

]
, (1.44)

and q = Φuug. Clearly, K = ΦuyΦ
−1
yy and g = Φ−1

uuq, and by plugging the corresponding
expressions, we verify that (1.13) and (1.16) are satisfied. It remains to prove that (1.14)-
(1.15) are satisfied. In (1.10), substitute y and u with their closed-loop expressions (1.11).
It follows that the addends separately depend on w or v. Hence, (1.10) can be rewritten as

max
∥v∥∞≤v∞

(FyΦyy)v + max
∥w∥∞≤w∞

(FyΦyu)w+

+ FyGq+ (FyΦyy)CPA(:, 0)x0 ≤ by , (1.45)

max
∥v∥∞≤v∞

(FuΦuy)v + max
∥w∥∞≤w∞

(FuΦuu)w+

+ Fuq+ (FyΦuy)CPA(:, 0)x0 ≤ bu , (1.46)

where the max(·) is to be intended row-wise. The expressions (1.45)-(1.46) are already
convex in Φ,q. To have a more explicit expression, similar to [6] we utilize the well-known
property that the ∥·∥1 and the ∥·∥∞ vector norms are dual of each other [76], that is
k ∥x∥1 = max∥w∥∞≤k x

Tw. The result follows immediately by inspecting (1.45)-(1.46) and
letting xT be equal to either Fy,jΦyy, Fy,jΦuy, Fy,jΦyu or Fy,jΦuu, and letting k be equal
to either v∞ or w∞.
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For the second statement, it is easy to notice that K is causal by construction because
Φuy and Φyy are block lower-triangular. By selecting the controller K = ΦuyΦ

−1
yy one has

(I −GΦuyΦ
−1
yy )

−1 = (I −GΦuy(I +GΦuy)
−1)−1

= ((I +GΦuy −GΦuy)(I +GΦuy)
−1)−1

= I +GΦuy = Φyy ,

which shows that Φyy is the closed-loop response from v[0,N−1] +CPA(:, 0)x0 to y[0,N−1]

as per (1.12). Similar computations hold for the remaining closed-loop responses. For the
safety constraints, select any Φ and q complying with (1.14)-(1.15). It is easy to verify by
direct computation that, for any w and v, the same input and output trajectories defined at
(1.11) are obtained by letting K = ΦuyΦ

−1
yy and g = Φ−1

uuq in (1.6), (1.7), (1.8). Hence, the
safety constraints are satisfied for any disturbance realization.

1.6.3 Proof of Proposition 1.3

We first prove that K ∈ K =⇒ Φ̂ ∈ Π, where

Φ̂ :=

[
(I − ĜK)−1 (I − ĜK)−1Ĝ

K(I − ĜK)−1 (I −KĜ)−1

]
. (1.47)

Let us fix (∆, δ0) ∈ E . By substitution of Φ̂ inside the blocks of Φ defined in the proposi-

tion statement, one has Φ =

[
(I − (Ĝ+∆)K)−1 (I − (Ĝ+∆)K)−1(Ĝ+∆)

K(I − (Ĝ+∆)K)−1 (I −K(Ĝ+∆))−1

]
. From

(1.11)-(1.12) the closed-loop trajectories obtained by applying K to the system Ĝ+∆ are
given by [

y(K,θ)

u(K,θ)

]
=

[
Φyy Φyu

Φuy Φuu

][
v + ŷ0 + δ0

w

]
.

Proceeding as in the proof of Proposition 1.1, one can show that “(y(K,θ),u(K,θ)) ∈ Γ”
for every θ ∈ E ×W × V is the same as “(1.21)-(1.22)” for every (∆, δ0) ∈ E. Since (1.20)
and (1.23) are verified by construction, the proof is concluded. Further, for any (∆, δ0), the
cost of (1.18) achieved by K is identical to the cost of (1.19) achieved by Φ̂ as proven in
Proposition 1.2.

Next, we show Φ̂ ∈ Π =⇒ K̂ ∈ K, where K̂ := Φ̂uyΦ̂
−1
yy . Using (1.20), one can verify

that
Φyy := Φ̂yy(I −∆Φ̂uy)

−1 = (I − (Ĝ+∆)K̂)−1 ,

and similarly, that all other equalities in (1.47) hold by substituting Φ̂ with Φ and K with
K̂. Then [

y(K̂,θ)

u(K̂,θ)

]
=

[
Φyy Φyu

Φuy Φuu

][
v + ŷ0 + δ0

w

]
.
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But “(1.21)-(1.22)” for every (∆, δ0) ∈ E , which hold by definition, imply that (y(K̂,θ),u(K̂,θ)) ∈
Γ for every θ ∈ E ×W ×V (see the proof of Proposition 1.1). Further, for any (∆, δ0), the
cost of (1.19) achieved by Φ̂ is identical to the cost of (1.18) achieved by K̂ as proven in
Proposition 1.2.

1.6.4 Proof of Lemma 1.1

The objective function in Proposition 1.3 can be written as the square-root of the sum of
the square of the Frobenius norms of each of its six blocks. For the upper-left block, since∥∥∥Φ̂uy

∥∥∥
2
≤ γ < ϵ−1

2 by assumption, we have

∥Φ̂yy(I −∆Φ̂uy)
−1∥F ≤ ∥Φ̂yy∥F

∥∥∥∥∥
∞∑
k=0

(∆Φ̂uy)
k

∥∥∥∥∥
2

≤ ∥Φ̂yy∥F
∞∑
k=0

∥∥∥ϵ2Φ̂uy

∥∥∥k
2
= ∥Φ̂yy∥F

(
1− ϵ2∥Φ̂uy∥2

)−1

,

where the convergence of the series follows from ∆ and Φ̂uy having zero-entries diagonal
blocks by construction. Similarly,

∥Φ̂uy(I −∆Φ̂uy)
−1∥F ≤ ∥Φ̂uy∥F

(
1− ϵ2∥Φ̂uy∥2

)−1

,

∥(I − Φ̂uy∆)−1Φ̂uu∥F ≤ ∥Φ̂uu∥F
(
1− ϵ2∥Φ̂uy∥2

)−1

.

Next, we have

∥Φ̂yy(I −∆Φ̂uy)
−1(Ĝ+∆)∥F

≤∥Φ̂yyĜ∥F+∥Φ̂yy∆∥F+

∥∥∥∥∥Φ̂yy

( ∞∑
k=1

(∆Φ̂uy)
k

)
(Ĝ+∆)

∥∥∥∥∥
F

≤∥Φ̂yu∥F + ϵ2∥Φ̂yy∥F + ∥Φ̂yy∥F
ϵ2∥Φ̂uy∥2(∥Ĝ∥2 + ϵ2)

1− ϵ2∥Φ̂uy∥2

≤∥Φ̂yu∥F + ϵ2∥Φ̂yy∥F (2 + ∥Φ̂uy∥2∥Ĝ∥2)
1− ϵ2∥Φ̂uy∥2

,

and therefore, by developing the squares and using that
∥∥∥Φ̂yyĜ

∥∥∥
F
≤ ∥Φ̂yy∥F ∥Ĝ∥2 we obtain

∥Φ̂yy(I −∆Φ̂uy)
−1(Ĝ+∆)∥2F ≤

(
∥Φ̂yu∥2F + ∥Φ̂yy∥2Fh(ϵ2, γ, Ĝ)

)
(1− ϵ2∥Φ̂uy∥2)2

.

Proceeding analogously, one can also prove that

∥Φ̂yy(I −∆Φ̂uy)
−1(ŷ0 + δ0)∥2F ≤

1

(1− ϵ2∥Φ̂uy∥2)2
(
∥Φ̂yyŷ0∥2F + ∥Φ̂yy∥2Fh(ϵ2, γ, ŷ0)

)
,
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∥Φ̂uy(I −∆Φ̂uy)
−1(ŷ0 + δ0)∥2F ≤

1

(1− ϵ2∥Φ̂uy∥2)2
(
∥Φ̂uyŷ0∥2F + ∥Φ̂uy∥2Fh(ϵ2, γ, ŷ0)

)
.

Therefore, combining the above inequalities we finally conclude that

J(G,K) ≤

(∥∥∥∥∥
[
Φ̂yy Φ̂yu Φ̂yyŷ0

Φ̂uy Φ̂uu Φ̂uyŷ0

]∥∥∥∥∥
2

F

+ ∥Φ̂yy∥2F (h(ϵ2, γ, Ĝ)+

1− ϵ2∥Φ̂uy∥2

+h(ϵ2, γ, ŷ0)) + ∥Φ̂uy∥2Fh(ϵ2, γ, ŷ0)

) 1
2

1− ϵ2∥Φ̂uy∥2
.

1.6.5 Proof of Lemma 1.2

By using the fact that for x ∈ Rn and y ∈ Rm we have that
∥∥∥[xT yT

]∥∥∥
1
=
∥∥xT∥∥

1
+
∥∥yT∥∥

1
,

the left-hand-sides of (1.21)-(1.22) are each made of three addends. The proof hinges
on upper bounding each one of them for a generic (∆, δ0) ∈ E. We report the full
derivations for the most informative of them. Exploiting Holder’s inequality and the relation∥∥∥I −∆Φ̂uy

∥∥∥
∞
≤ 1

1−ϵ∞τ , which can be derived by proceeding as in the proof of Lemma 1.1,
we have

v∞

∥∥∥Fy,jΦ̂yy(I −∆Φ̂uy)
−1
∥∥∥⋆
1
≤ v∞

∥∥∥Fy,jΦ̂yy

∥∥∥⋆
1

∥∥∥(I −∆Φ̂uy)
−1
∥∥∥
∞
≤

v∞

∥∥∥Fy,jΦ̂yy

∥∥∥⋆
1

1− ϵ∞τ
,

which is equal to f1,j(Φ̂). Next, recalling Φ̂yu = Φ̂yyĜ,

w∞

∥∥∥Fy,jΦ̂yy(I −∆Φ̂uy)
−1(Ĝ+∆)

∥∥∥⋆
1

≤ w∞

∥∥∥Fy,jΦ̂yu

∥∥∥⋆
1
+ max

∥w∥∞≤w∞
|Fy,jΦ̂yy∆w|+

+ max
∥w∥∞≤w∞

|Fy,jΦ̂yy∆Φ̂uy(I −∆Φ̂uy)
−1(Ĝ+∆)w|

≤ w∞

∥∥∥Fy,jΦ̂yu

∥∥∥⋆
1
+ w∞ϵ∞

∥∥∥Fy,jΦ̂yy

∥∥∥⋆
1
+

+ w∞ϵ∞

∥∥∥Fy,jΦ̂yy

∥∥∥⋆
1

∥∥∥Φ̂uy(I −∆Φ̂uy)
−1(Ĝ+∆)

∥∥∥
∞

≤ w∞

∥∥∥Fy,jΦ̂yu

∥∥∥⋆
1
+w∞ϵ∞

∥∥∥Fy,jΦ̂yy

∥∥∥⋆
1

1+τ

∥∥∥Ĝ∥∥∥
∞

+ ϵ∞

1− ϵ∞τ


= w∞

∥∥∥Fy,jΦ̂yu

∥∥∥⋆
1
+ w∞ϵ∞

∥∥∥Fy,jΦ̂yy

∥∥∥⋆
1

1 + τ
∥∥∥Ĝ∥∥∥

∞
1− ϵ∞τ


= f2,j(Φ̂) .
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Lastly, remembering that Φ̂uu = I + Φ̂uyĜ and noticing that

(I − Φ̂uy∆)−1Φ̂uu = Φ̂uu + Φ̂uy∆(I − Φ̂uy∆)−1Φ̂uu ,

we have

w∞

∥∥∥Fu,j(I − Φ̂uy∆)−1Φ̂uu

∥∥∥⋆
1

≤ w∞

∥∥∥Fu,jΦ̂uu

∥∥∥⋆
1
+ w∞ϵ∞

∥∥∥Fu,jΦ̂uy

∥∥∥⋆
1

1− ϵ∞

∥∥∥Φ̂uy

∥∥∥
∞

(∥∥∥Ĝ∥∥∥
∞

∥∥∥Φ̂uy

∥∥∥
∞

+ 1
)

≤ w∞

∥∥∥Fu,jΦ̂uu

∥∥∥⋆
1
+ w∞ϵ∞

∥∥∥Fu,jΦ̂uy

∥∥∥⋆
1

1 + τ
∥∥∥Ĝ∥∥∥

∞
1− ϵ∞τ

= f5,j(Φ̂) .

Similar computations allow one to derive the upper bounds for the remaining terms.

1.6.6 Proof of Lemma 1.3

First, it is easy to verify that Φ̃ satisfies the constraints in (1.30); indeed, Φ̃ comprises the
closed-loop responses when we apply Kc to the estimated plant Ĝ. Next, we have∥∥∥Φ̃uy

∥∥∥
2
=
∥∥Φc

uy(I +∆Φc
uy)

−1
∥∥
2

≤
∥∥Φc

uy

∥∥
2

1− ϵ2
∥∥Φc

uy

∥∥
2

≤
√
2

∥∥Φc
uy

∥∥
2

1− ϵ2
∥∥Φc

uy

∥∥
2

≤
√
2

∥∥Φ⋆
uy

∥∥
2

1− ϵ2
∥∥Φ⋆

uy

∥∥
2

=
√
2

η

ϵ2(1− η)
= γ̃ .

Since α ∈ [
√
2 η
ϵ2(1−η) , ϵ

−1
2 ) and η < 1

5 , then γ̃ ≤ α < ϵ−1
2 . Hence γ̃ is feasible. Similarly,∥∥∥Φ̃uy

∥∥∥
∞

=
∥∥Φc

uy(I +∆Φc
uy)

−1
∥∥
∞

≤
∥∥Φc

uy

∥∥
∞

1− ϵ∞
∥∥Φc

uy

∥∥
∞
≤

∥∥Φ⋆
uy

∥∥
∞

1− ϵ∞
∥∥Φ⋆

uy

∥∥
∞

=
ζ

ϵ∞(1− ζ)
= τ̃ .

Since ζ < 1
2 , then τ̃ < ϵ−1

∞ and hence it is a feasible value for τ . It remains to show that
Φ̃ satisfies the safety constraints (1.26)-(1.27). We know that Φc is feasible for (1.31), and
hence ϕ1,j(Φ

c) + ϕ2,j(Φ
c) + ϕ3,j(Φ

c) ≤ by,j and ϕ4,j(Φ
c) + ϕ5,j(Φ

c) + ϕ6,j(Φ
c) ≤ bu,j . We

conclude the proof by showing that fi,j(Φ̃) ≤ ϕi,j(Φ
c) for every i = 1, . . . , 6. We report the

full derivations for the most informative terms.

f1,j(Φ̃) =
v∞

∥∥∥Fy,j

(
Φc

yy −Φc
yy∆Φc

uy

(
I +∆Φc

uy

)−1
)∥∥∥⋆

1

1− ϵ∞τ̃
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≤
v∞
∥∥Fy,jΦ

c
yy

∥∥⋆
1
+

v∞ϵ∞∥Fy,jΦ
c
yy∥⋆1∥Φc

uy∥∞
1−ϵ∞∥Φc

uy∥∞
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≤
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∥∥Fy,jΦ

c
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1
+
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c
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1−ϵ∞∥Φ⋆
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≤
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∥∥Fy,jΦ

c
yy

∥∥⋆
1

1− 2ζ
= ϕ1,j(Φ

c) .

Similarly, it is easy to show that f4,j(Φ̃) ≤ ϕ4,j(Φ
c). Next, recalling (1.34) and observing

that

Φ̃yu = Φc
yu −Φc

yy∆−Φc
yy∆Φc

uy(I +∆Φc
uy)

−1Ĝ ,

Φ̃yy = Φc
yy −Φc

yy∆Φc
uy

(
I +∆Φc

uy

)−1
,

we have

f2,j(Φ̃)

≤ w∞
∥∥Fy,jΦ

c
yy(I +∆Φc

uy)
−1(G−∆)

∥∥⋆
1
+

+ w∞ϵ∞
∥∥Fy,jΦ

c
yy(I +∆Φc

uy)
−1
∥∥⋆
1

1 + τ̃
∥∥∥Ĝ∥∥∥

∞
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≤ w∞
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c
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∥∥⋆
1
+w∞ϵ∞
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c
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1

1+
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∥∥
∞

∥∥∥Ĝ∥∥∥
∞

1− ϵ∞
∥∥Φc

uy

∥∥
∞

+

+ w∞ϵ∞

∥∥Fy,jΦ
c
yy

∥∥⋆
1

(
1+τ̃∥Ĝ∥∞
1−ϵ∞τ̃

)
1− ϵ∞

∥∥Φc
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∥∥
∞

≤ w∞
∥∥Fy,jΦ

c
yu

∥∥⋆
1
+

+ w∞
∥∥Fy,jΦ

c
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∥∥⋆
1

ϵ∞ +
ζ
∥∥∥Ĝ∥∥∥

∞
1− ζ

+
ϵ∞ +

ζ∥Ĝ∥∞
1−ζ(

1− ζ
1−ζ

)
(1− ζ)


= w∞

∥∥Fy,jΦ
c
yu

∥∥⋆
1
+ 2w∞

∥∥Fy,jΦ
c
yy

∥∥⋆
1

(1− ζ)
(
ϵ∞ + ζ

∥∥∥Ĝ∥∥∥
∞

)
1− 2ζ

≤ w∞
∥∥Fy,jΦ

c
yu

∥∥⋆
1
+2w∞

∥∥Fy,jΦ
c
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∥∥⋆
1

(
ϵ∞ + ζ

∥∥∥Ĝ∥∥∥
∞

)
1− 2ζ

≤ ϕ2,j(Φ
c) .

Similarly, f3,j(Φ̃) ≤ ϕ3,j(Φ
c) and f6,j(Φ̃) ≤ ϕ6,j(Φ

c). By only noticing that ∥Φc
uu∥∞ ≤

1 +
∥∥Φc

uy

∥∥
∞

(∥∥∥Ĝ∥∥∥
∞

+ ϵ∞

)
and that (1 + ζ)(1 − 2ζ) ≤ 1 − ζ for every ζ > 0, analogous

computations lead to f5,j(Φ̃) ≤ ϕ5,j(Φ
c).
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1.6.7 Proof of Theorem 1.2

By denoting as Φ̂⋆ the closed-loop responses obtained by applying K̂⋆ to Ĝ, we have by
Lemma 1.1 and by γ ≤ α

J(G, K̂⋆) ≤ 1

1− ϵ2γ⋆

∥∥∥∥∥
[√

1 + h(ϵ2, α, Ĝ) + h(ϵ2, α, ŷ0)Φ̂
⋆
yy Φ̂⋆

yu Φ̂⋆
yyŷ0√

1 + h(ϵ2, α, ŷ0)Φ̂
⋆
uy Φ̂⋆

uu Φ̂⋆
uyŷ0

]∥∥∥∥∥
F

,

where γ⋆ is optimal for (1.30). By Lemma 1.3, under the assumptions on η, ζ, α we have
that (γ̃, τ̃ , Φ̃) belongs to the feasible set of (1.30). Hence, by suboptimality of any feasible
solution:

J(G, K̂⋆) ≤ 1

1− ϵ2γ̃

∥∥∥∥∥
[√

1 + h(ϵ2, α, Ĝ) + h(ϵ2, α, ŷ0)Φ̃yy Φ̃yu Φ̃yyŷ0√
1 + h(ϵ2, α, ŷ0)Φ̃uy Φ̃uu Φ̃uyŷ0

]∥∥∥∥∥
F

.

Using the definition of Φ̃ from Lemma 1.3, we now relate

C̃=

∥∥∥∥∥
[√

1 + h(ϵ2, α, Ĝ) + h(ϵ2, α, ŷ0)Φ̃yy Φ̃yu Φ̃yyŷ0√
1 + h(ϵ2, α, ŷ0)Φ̃uy Φ̃uu Φ̃uyŷ0

]∥∥∥∥∥
F

,

to the optimal cost of problem (1.31). Recalling the expressions of M c and V c, and similarly
to Lemma 1.3,

C̃ =

(∥∥∥∥∥
[
Φ̃yy Φ̃yu Φ̃yyŷ0

Φ̃uy Φ̃uu Φ̃uyŷ0

]∥∥∥∥∥
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h(ϵ2, α, Ĝ)+h(ϵ2, α, ŷ0)
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.

Thus, we have established the chain of inequalities

J(G, K̂⋆)2≤ C̃2

(1− ϵ2γ̃)2
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2
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.

Next, notice that, by definition, we have J(G,Kc)2 = (S(ϵ∞) + 1)J(G,K⋆)2. Recalling that∥∥Φc
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2
≤
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2

and
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∥∥
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2
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5 implies 1− (1 +
√
2)η ≤ 2,

and further noticing that if M,V > 0, then Ma2+V b2 ≤ (M +V )(a2+ b2), we can establish:
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×
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×
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. First,

notice that M c + V c ≤M⋆ + V ⋆, where
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and, similarly, V ⋆ = O
(
ϵ2
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2
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(1 + ∥y0∥2)

2
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.

1.7 Final remarks

In this chapter, we have analyzed how much the model-mismatch due to noisy data can
impact the safety and performance of output-feedback control systems with constraints.
By deriving a suitable problem relaxation, we have proven that, despite the presence of
constraints, the suboptimality of our proposed problem relaxation increases at most linearly
for small model mismatches incurred during system identification.

We notice that our analysis towards the influence of noise is mainly based on the error
upper bounds of the system’s impulse and free response estimation (i.e., Assumption 1.1).
Although we can use highly effective methods (e.g., SMM [11]) for response identification, a
rigorous and efficient scheme for error analysis is still lacking. The bootstrap approach we
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used in Section 1.5.2 usually requires extensive resampling. For now, there does not exist
any guarantee on the number of resamples needed such that the error analysis achieves a
certain accuracy level. Therefore, it is interesting if we can find some data-driven approach
that gives an upper bound for response identification errors.
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2 Robust Data-Driven Control Based
on Perturbation Analysis

2.1 Introduction

The method proposed in Chapter 1 requires impulse and free response identification based on
a given trajectory data set. In this procedure, resampling, which is needed for identification
error analysis, might be time-consuming. Moreover, there exists no finite-sample guarantees
on the bootstrap results. In this chapter, we study active experiment design for data collection
and provide an upper bound to the trajectory prediction error given by a behavioral-model-
based method. By using this result, we can develop an open-loop robust control approach
for the regulation of linear systems under measurement noise.

Several data-driven works approximately solve this problem with performance guarantees
from different perspectives and under different assumptions. The authors of [14] minimize the
worst-case trajectory tracking cost by reformulating the minmax problem into a semidefinite
program through the S-lemma. However, the optimality results in [14] rely on the assumption
that the noise sequence satisfies a cumulative quadratic constraint. Therefore, they do not
hold when, e.g., the entries of the noise sequence are only known to satisfy box constraints,
which is a common scenario in practice (many sensors are subject to bounded noise [83]). To
address this issue, [19] adopts a different reformulation where model mismatch (the difference
between measured recent output and that provided by the behavioral model) penalty is
added to the tracking cost. The involved minmax problem is solvable by robust optimization
techniques and the authors derive a suboptimality gap bound. However, this bound is
conservative in the sense that it does not vanish when the noise decreases to zero.

To develop a control approach that enjoys both a less conservative suboptimality gap
and the guarantee of constraint satisfaction, we leverage perturbation analysis for assessing
the influence of measurement noise on the behavioral-model predictions. Research on
perturbation analysis of data-driven prediction includes [16], [84] and [85]. In [16], the
authors use a cost function similar with the one in [19], aiming to minimize the sum of
the mismatch penalty and the tracking cost. Therefore, the prediction error upper bound
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relies on a variable related to the optimal control task and thus can only be evaluated after
the optimal control problem has been solved. In contrast, the robust fundamental lemma
proposed in [84] gives a prediction error analysis independent of control tasks, but it is
limited to input-state systems and one-step-ahead prediction. The work in [85] extends [84]
by deriving lower bounds for the singular values of the Hankel matrix in the behavioral
model for input-output systems. However, the lower bounds depend on the unknown ground
truth system model.

Targeting the limitation of existing methods, our robust control approach, relying solely
on system input-output data, enjoys robust constraint satisfaction and a suboptimality
bound that vanishes when noise decreases to zero.

2.1.1 Contributions

Our main contributions are the following:

(a) We propose an input generation strategy to collect historical data (in contrast with
given and fixed historical data in Chapter 1) under bounded measurement noise for the
construction of a Page matrix (a variant of Hankel matrix, see [86]). Then, we derive an
error bound of the data-driven predictions, which only relies on noisy data. This bound
is valid when the historical inputs achieve sufficient “persistent-excitation-to-noise ratio”
(rigorously stated in Assumption 2.3) and the observability index (see Definition 2.2) is
identified correctly. The first condition can be satisfied if collecting multiple historical
data sets for averaging the noisy measurements or enlarging the input signals is allowed.
We achieve the second through a data-driven method with correctness guarantee.

(b) For unconstrained regulation of MISO systems, in order to minimize the worst-case
cost, we utilize the new prediction error bound to formulate a minmax problem and
bound the suboptimality gap. The derived bound decreases to zero as the measurement
noise converges to zero. This scheme can be extended to regulation of MIMO systems
and robust constraint satisfaction.

2.1.2 Structure of this chapter

The rest of this chapter is organized as follows: in Section 2.2, we introduce the basics
of data-driven control and formulate the robust control problem. Section 2.3 focuses on
Multiple-Input Single-Output (MISO) systems with no input/output constraints and conducts
perturbation analysis on the noisy behavioral model used for trajectory prediction. The novel
robust control scheme is proposed in Section 2.4 where the associated upper bound to the
worst-case cost derived by using perturbation analysis is minimized and the suboptimality
gap is bounded. We extend our method to the regulation of Multiple-Input Multiple-Output
(MIMO) systems and to robust constraint satisfaction in Section 2.5. Experiments illustrating
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the performance of the proposed approach are shown in Section 2.6.

2.1.3 Notations of this chapter

Given a time-varying vector variable v, we use vt to denote its value at time instant
t, let [t1, t2] = {t1, t1 + 1, ..., t2} and set v[t1,t2] := {vt1 , vt1+1, . . . , vt2}, col(v[t1,t2]) :=[
v⊤t1 v⊤t1+1 . . . v⊤t2

]⊤
. We use ∥x∥i to denote the ℓi norm of x. Moreover, ||x|| is the ℓ2

norm. Given positive semidefinite matrix Q, the term ∥x∥2Q denotes x⊤Qx. For a matrix
M , ||M ||i denotes the matrix i-norm while ||M ||max := maxi,j |mij | and ||M || := ||M ||2. We
also denote σmin(M) as the smallest singular value of M and σmax(M) as the largest. We
use Mi,· to denote the i-th row, M·,i the i-th column and Mi:j,· the submatrix consisting
of the rows of M from the i-th to the j-th. For a given x ∈ R, we use notation ⌊x⌋ to
denote the floor function, i.e., ⌊x⌋ = max{z ∈ Z | z ≤ x}. For y ∈ Rn and r > 0, we
let B(y, r) := {x : ∥x − y∥ ≤ r}. The identity matrix with n rows is denoted as In. The
pseudo-inverse of a matrix H is written as H†.

2.2 Preliminaries and Problem Formulation

2.2.1 Preliminaries: data-driven description of linear systems

This chapter considers the regulation of a discrete-time linear time-invariant (LTI) system
with the following controllable and observable minimal realization,

xt+1 = Axt +But , yt = Cxt +Dut, (2.1)

where ut ∈ Rm, yt ∈ Rp and xt ∈ Rnx . We assume that nx and the system matrices
A,B,C,D are unknown. Instead of identifying the system matrices, we utilize a behavioral
model to characterize the possible trajectories in a horizon of length L. To build this system
representation, we excite the linear system with an input sequence u[1,T ] and collect the
output data y[1,T ], where T > L. The L-Page matrix of u[1,T ] is given by

PL(u[1,T ]) :=


u1 uL+1 · · · ulhL−L+1

u2 uL+2 · · · ulhL−L+2
...

...
. . .

...
uL u2L · · · ulhL,


where lh = ⌊TL⌋ denotes the number of columns [86]. To evaluate whether the input sequence
u[1,T ] along with the resulting outputs is sufficiently informative to uniquely determine
system (2.1), we introduce the following definition analogous to persistent excitation in
system identification.

Definition 2.1 ([86]). For L, T, d ∈ Z+, we say the input sequence u[1,T ] is L-Page exciting
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of order d if the following matrix has full row rank,

PL,d
(
u[1,T ]

)
:=


PL
(
u[1,T−(d−1)L]

)
PL
(
u[L+1,T−(d−2)L]

)
...

PL
(
u[L(d−1)+1,T ]

)

 .

By using the collected input output data (u[1,T ], y[1,T ]), called historical, one might be
able to determine whether another trajectory (ur[1,L], y

r
[1,L]), called recent, is generated by

system (2.1). Rigorously, we have the following result, which is a variant of the well-known
Willem’s Fundamental Lemma [81].

Lemma 2.1 ([86, Theorem 2.1]). For the LTI system described in (2.1), given a T -length
historical trajectory (u[1,T ], y[1,T ]) where u[1,T ] is L-Page exciting of order nx + 1 and the
L-length recent trajectory (ur[1,L], y

r
[1,L]), there exists xr[1,L] with xi ∈ Rnx, 1 ≤ i ≤ L, such

that (xr[1,L], u
r
[1,L], y

r
[1,L]) satisfies (2.1) if and only if there exists a vector g ∈ Rlh such that[

PL
(
u[1,T ]

)
PL
(
y[1,T ]

)] g =

[
col(ur[1,L])

col(yr[1,L])

]
. (2.2)

2.2.2 Problem formulation: robust control under measurement noise

Given the historical data (u[1,T ], y[1,T ]) where u[1,T ] is L-Page exciting of order nx + 1 and
an lp-long initial trajectory (ur[1,lp], y

r
[1,lp]

) with lp < L, we consider the following regulation
problem for the trajectory (ur[1,T ], y

r
[1,T ]) from time lp + 1 to time L:

min
ur
[lp+1,L]

,yr
[lp+1,L]

L−lp∑
i=1

(||urlp+i||2 + ||yrlp+i||2)

s.t. there exists g such that

u[1,T ], y[1,T ], u
r
[1,L], y

r
[1,L] satisfy (2.2).

(2.3)

For convenience, we let lf = L− lp and use the following notations for historical data,

Up =
[
Imlp 0

]
PL
(
u[1,T ]

)
, Uf =

[
0 Imlf

]
PL
(
u[1,T ]

)
,

Yp =
[
Iplp 0

]
PL
(
y[1,T ]

)
, Yf =

[
0 Iplf

]
PL
(
y[1,T ]

) (2.4)

and for recent data,
up = col(ur[1,lp]), uf = col(ur[lp+1,L]),

yp = col(yr[1,lp]), yf = col(yr[lp+1,L]).
(2.5)
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In practice, output measurements are subject to noise. Specifically, for any i ∈ [1, . . . , T ],
j ∈ [1, . . . , lp], there exist noise vectors wi, w

r
j ∈ Rp such that the measurements are

ŷi = yi + wi and ŷrj = yrj + wr
j . We build Ŷp, Ŷf and ŷp from ŷ[1,T ] and ŷr[1,lp] as noisy

counterparts of Yp, Yf and yp. In this chapter, we only consider bounded noise, as stated in
the following assumption.

Assumption 2.1. For the noisy measurements Ŷp, Ŷf , ŷp, corresponding to Yp, Yf , yp, the
following holds,

max{||Ŷp − Yp||max, ||Ŷf − Yf ||max, ||ŷp − yp||∞} ≤ δ,

where δ > 0 is a known constant.

Given a fixed control strategy, different noise realizations lead to different performances.
To attenuate the influence of the uncertainties, we aim to design a robust control scheme
where the worst-case regulation cost is minimized. In general, the worst-case cost is
hard to compute and we will provide an upper bound cworst(uf) to it given the historical
data u[1,T ], ŷ[1,T ] and the recent data up and ŷp. We formulate the robust control problem as

u∗f = argminuf
cworst(uf).

This way, we ensure that the true cost induced by u∗f is less than cworst(u
∗
f ).

In Section 2.4 we propose a formulation of cworst(uf). But before that, in Section 2.3,
by assuming uf is given, we introduce tools of data-driven prediction based on behavioral
models and conduct perturbation analysis, which allows us to estimate the worst-case cost
by using the noisy data. To avoid bulky statements, we only consider the MISO case in
Sections 2.3 and 2.4, while the extension to the MIMO case is presented in Section 2.5.

2.3 Data-Driven Prediction with Perturbation Analysis for
MISO Systems

In this section, we investigate, for MISO systems, a data-driven prediction method that
generates an estimate ŷf for yf based on historical data along with up, ŷp and uf . Specifically,
we propose a method for generating historical data enabling the derivation of an upper
bound for the prediction error. This ingredient is essential for the computation of upper
bounds to worst-case costs in Section 2.4.
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2.3.1 The proposed data-driven prediction scheme

For MISO systems, we adopt the data-driven prediction method used in the framework of
PEM-MPC1 proposed in [87]. Specifically, we look into the following prediction scheme

ĝ(uf) = Ĥ†b̂(uf), ŷf(uf) = Ŷf ĝ(uf), where Ĥ =
[
U⊤
p Ŷ ⊤

p U⊤
f

]⊤
, b̂(uf) =

[
u⊤p ŷ⊤p u⊤f

]⊤
.

(2.6)
We also define the noiseless counterparts of Ĥ, b̂(uf), ĝ(uf), ŷf(uf) in (2.6) as H, b̄(uf), ḡ(uf), ȳf(uf).
One can easily verify that ∥ḡ(uf)∥ = min{∥g∥ : H̄g = b̄(uf) and Yfg = ȳf(uf)}. Before elab-
orating on the historical data collected and the construction of Ĥ in Assumption 2.2, we
introduce the concept of observability index.

Definition 2.2. We say lo is the observability index of the system (2.1) if the lo is the smallest

positive integer l such that the observability matrix O(l) :=
[
C⊤ (CA)⊤ · · · (CAl−1)⊤

]⊤
is full column rank.

Assumption 2.2. Given horizon length L > lo, the historical inputs of the MISO system
(2.1) are generated using the following setting:

x1 = 0, (2.7a)

u[1,L], u[L+1,2L], . . . , u[4L2+1,4L2+L]
i.i.d.∼ Q, (2.7b)

T ≥ 4L2 + L and u[1,T ] is L-Page exciting of order nx + 1, (2.7c)

where Q is a probability distribution such that for x ∈ RmL

if x ∼ Q then for any subspace V ⫋ RmL, P({x ∈ V }) = 0. (2.8)

The Page matrices U = PL
(
u[1,T ]

)
and Ŷ = PL

(
ŷ[1,T ]

)
are split into Up, Uf , Ŷp, Ŷf using

(2.4) with
lp = lo, (2.9)

and Ĥ is built using (2.6).

For identification of lo using data, we refer to Section 2.3.3 and Algorithm 1. Under
Assumption 2.2, we will see in Section 2.3.2 that the noiseless matrix H is almost surely full
row rank. This property is essential for upperbounding the prediction error resulting from
(2.6). The reason is that, if H has a zero singular value, even infinitesimal measurement
noise can result in a huge prediction error due to the use of the pseudoinverse in (2.6).

2.3.2 Perturbation analysis

We show in Theorem 2.1 and Theorem 2.2 that the prediction error resulting from the scheme
(2.6) can be bounded.

1PEM stands for Prediction Error Method .
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Theorem 2.1. Under Assumption 2.2, we have P({H is full row rank}) = 1.

The proof of Theorem 2.1 is given in Section 2.7.2.

Remark 2.1. Theorem 2.1 does not hold for MIMO systems. As a simple example, when
there are two outputs measuring the same quantity, almost surely the noiseless H is not full
row rank.

By utilizing Theorem 2.1, we show in Theorem 2.2 that, when the measurement noise
is sufficiently small (as indicated below), the prediction errors given by the least-square
solution (2.6) can be bounded.

Assumption 2.3. With Ĥ constructed according to Assumption 2.2, we have

δ <
σmin(Ĥ)

2lh
. (2.10)

Remark 2.2. As will be shown later in Theorem 2.2, under Assumption 2.3, an upper
bound for the prediction error is roughly proportional to σmin(Ĥ)−1. Therefore, we can regard
σmin(Ĥ) as a measure of “persistent excitation” and thus (2.10) requires the “persistent-
excitation-to-noise ratio” to be sufficiently large. In [16, Lemma 1], a similar assumption is
made. To satisfy Assumption 2.3, one can decrease the noise magnitude by collecting multiple
historical data sets and using averaging techniques if the entries of the noise sequence are
independent and identically distributed (for details see Remark 2.4). Since from [88, Theorem
4.3] we have

σmin(Ĥ) ≥ σmin(H)− ∥Ĥ −H∥, (2.11)

we can also amplify the historical input signals in (2.7) for obtaining a larger σmin(H) and
hence increasing σmin(Ĥ), since ∥Ĥ −H∥ only depends on the noise sequence (see (2.12)).

Theorem 2.2. We denote ∆g(uf) := g(uf) − ĝ(uf) and ∆yf (uf) := ȳf(uf) − ŷf(uf). If
Assumption 2.3 holds, we have for MISO systems

||∆g(uf)|| ≤ C(uf)δ, where C(uf) = 2σmin(Ĥ)−1(
√
lp + lh||ĝ(uf)||), and

||∆yf (uf)|| ≤ C(uf)||Ŷf ||δ + lh(∥ĝ(uf)∥+ C(uf))δ.

Proof. We let E := Ĥ −H. Due to Assumption 2.1, we have

||E|| ≤ lhδ. (2.12)
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Then the following inequalities hold,

σmin(Ĥ)

2
||ĝ(uf)− ḡ(uf)|| ≤ (σmin(Ĥ)− ||E||)||ĝ(uf)− ḡ(uf)||

≤ σmin(Ĥ − E)||ĝ(uf)− ḡ(uf)||
≤ ||H(ĝ(uf)− ḡ(uf))||

≤ ||Ĥĝ(uf)−Hḡ(uf) + (H − Ĥ)ĝ(uf)||

≤ ||b̂(uf)− b̄(uf)||+ ||E|| · ||ĝ(uf)||
= (
√
lp + lh||ĝ(uf)||)δ,

(2.13)

where the first inequality is due to (2.10) in Assumption 2.3, the second results from (2.11)
and b̂(uf) is defined in (2.6). By simplifying (2.13), we have

||∆g(uf)|| ≤ C(uf)δ.

Based on this inequality, we have

||ŷf(uf)− ȳf(uf)|| = ||Ŷf(ĝ(uf)− ḡ(uf)) + (Ŷf − Yf)ḡ(uf)||

≤ ||Ŷf || · ||ĝ(uf)− ḡ(uf)||+ ||Ŷf − Yf || · ||ḡ(uf)||

≤ ||Ŷf || · ||ĝ(uf)− ḡ(uf)||+
lhδ(||ĝ(uf)||+ ||ḡ(uf)− ĝ(uf)||)

≤ C(uf)||Ŷf ||δ + lh(∥ĝ(uf)∥+ C(uf))δ.

(2.14)

In the literature, similar results on perturbation analysis accounting for measurement
noise can be found in [7] and [89]. However, the associated bounds utilize the unknown true
system model. In the behavioral model framework, [16] also derives a prediction error bound
after solving an optimal control problem. Therefore, the bound is only valid for the optimal
control sequence u∗f determined by the specific problem formulation. In contrast, our upper
bound in Theorem 2.2 can be calculated directly from the noisy data for any given uf . This
feature allows us to formulate in Sections 2.4 and 2.5 a min-max regulation problem where
robust constraint satisfaction can be enforced.

2.3.3 Data-driven identification of lo

We discuss the identification of lo, which is needed in the construction of Ĥ for satisfying
Assumption 2.2. For this aim, we discuss in Proposition 2.1 whether H almost surely has
full rank when Assumption 2.2 does not hold. Based on this result, we propose a method to
identify lo.
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Proposition 2.1. If Assumption 2.2 does not hold because lp < lo, then

P({H is full row rank}) = 1.

Furthermore, if lp > lo, P({H is full row rank}) = 0.

The proof is reported in Section 2.7.3. Theorem 2.1 and Proposition 2.1 say that lo is
the largest value for lp such that the constructed H is full row rank. We notice that the
noise matrix E = Ĥ −H satisfies that ∥E∥ ≤ lhδ

2. Therefore, if H is not full row rank, i.e.,
σmin(H) = 0, we have

σmin(Ĥ) ≤ σmin(H) + σmax(E) ≤ lhδ. (2.15)

By utilizing (2.15), we propose Algorithm 1 for identification of lo and show the correctness
of the derived result in Proposition 2.2.

Proposition 2.2. Under Assumption 2.3, if L > lo, Algorithm 1 returns lo, the true
observability index, almost surely.

Proof. From Assumption 2.3 and (2.15), we know that σmin(Ĥ) ≥ 2lhδ if lp = lo and
σmin(Ĥ) ≤ lhδ if lp > lo. Since Algorithm 1 terminates when σmin(Ĥ) ≤ lhδ is verified, we
only need to show that σmin(Ĥ) > lhδ almost surely if lp < lo.

In the remainder of this proof, we denote with [U⊤
p,k U⊤

f,k]
⊤ and [Ŷ ⊤

p,k Ŷ ⊤
f,k]

⊤ the partitions
of the Page matrices U and Y , respectively, where Up,k has km rows and Yp,k has kp rows.
Correspondingly, we write Ĥk := [U⊤

p,k Ŷ ⊤
p,k U⊤

f,k]
⊤. We notice that Ĥk is a submatrix

consisting of a fraction of Ĥlo ’s rows and Ĥlo is full row rank almost surely (Theorem 2.1).
According to Lemma 2.4 in Section 2.7.4, we have that almost surely σmin(Ĥk) ≥ σmin(Ĥlo) ≥
2lhδ for any k < lo.

Remark 2.3. Hereafter, we describe a heuristic method which can be used as supplement to
Algorithm 1 when Assumption 2.3 is not satisfied. Specifically, in Line 1 of Algorighm 1, after
deriving (u[1,T ], ŷ[1,T ]), we can generate several extra historical trajectories (u(α)[1,T ], y(α)[1,T ])

using the initial state x1 = 0 and the input sequence u(α)[1,T ] = αu[1,T ] for different values
of α. Based on the data, we can construct Page matrices U(α), Y (α). In Lines 4 and 5,
we obtain the submatrices Up(α), Uf(α), Ŷp(α), Ŷf(α) and Ĥ(α). Due to the linearity of the
system and the zero initial state, we have H(α) = αH(1) and thus σmin(H(α)) is proportional
to α if σmin(H(1)) ̸= 0. Therefore, when observing that σmin(Ĥ(α)) increases approximately
proportionally with α, we claim that σmin(H(1)) ̸= 0.

2To show this result, one only needs Cauchy–Schwarz inequality and Assumption 2.1.

51



Chapter 2. Robust Data-Driven Control Based on Perturbation Analysis

Algorithm 1 Data-driven observability index identification for MISO systems
Input: horizon length L for the Page matrices
Output: the system order lo

1: Use (2.7) to generate historical data (u[1,T ], ŷ[1,T ]) to construct Page matrices U =

PL(u[1,T ]) and Ŷ = PL(ŷ[1,T ]).
2: k ← 1,TER = 0
3: while TER = 0 do
4: Partition U = [U⊤

p U⊤
f ]⊤, Ŷ = [Ŷ ⊤

p Ŷ ⊤
f ]⊤ such that Up has km rows (i.e., lp = k)

5: Build Ĥ = [U⊤
p Ŷ ⊤

p U⊤
f ]⊤

6: if σmin(Ĥ) ≤ lhδ then
7: lo ← k − 1, TER← 1
8: end if
9: k ← k + 1

10: end while

2.4 Robust Control for Regulation of MISO Systems with
Suboptimality Guarantees

In this section, we propose a data-driven robust control method for MISO systems, where
we use the prediction error bounds in Theorem 2.2 to calculate cworst(uf), an upperbound to
the regulation cost. To justify that this upperbound is not too conservative, we study the
suboptimality of the derived input sequence and compare it with the optimal input sequence.
The extension to multiple-output systems is provided in Section 2.5.

With the notation ∆ := {∆Yp ,∆Yf
,∆yp}, the robust regulation problem is formulated

as the following bilevel program where the inner problem calculates an upperbound for the
worst-case cost and the outer problem optimizes the input such that the cost upperbound is
minimized,

min
uf

max
∆,g,yf

y⊤f yf + u⊤
f uf (2.16a)

s.t.


Up

Ŷp

Uf

Ŷf

 g +


0

∆Yp

0

∆Yf

 g =


up

ŷp
uf

yf

+


0

∆yp

0

0

 (2.16b)

max
(
||∆Yp

||max, ||∆Yf
||max, ||∆yp

||∞
)
≤ δ (2.16c)

||g − ĝ(uf)||2 ≤ C2(uf)δ
2. (2.16d)

where C(uf) is defined in Theorem 2.2. We use the alternating optimization method in [90]
to solve problem (2.16)(for details see Section 2.6.1). We denote the solution to the outer
problem as ǔf . Given any input sequence uf , we let c̄(uf) be the resulting true regulation cost
and cworst(uf) be the optimal objective value of the inner problem of (2.16). In the following
theorem, we show that cworst(uf) is indeed an upperbound to the true regulation cost.

Theorem 2.3. If Assumptions 2.1, 2.2 and 2.3 hold, for any uf we have cworst(uf) ≥ c̄(uf).
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Guarantees

Proof. The noise realization (∆Yp ,∆Yf
,∆yp) satisfies that

max
(
||∆Yp ||max, ||∆Yf

||max, ||∆yp ||∞
)
≤ δ.

With the vector ḡ(uf) we can reconstruct the noiseless system output, i.e., (Ŷp+∆yp)ḡ(uf) =

yp, (Ŷf + ∆yf )ḡ(uf) = ȳf(uf). Now we see that uf ,∆Yp ,∆Yf
, ∆yp , ḡ(uf), and ȳf(uf) satisfy

(2.16b), (2.16c) and the corresponding regulation cost is c̄(uf). Meanwhile, considering the
error bounds in Theorem 2.2, the constraint (2.16d) is also satisfied. Since cworst(uf) is the
maximum cost in the inner problem of (2.16), we have cworst(uf) ≥ c̄(uf).

In (2.16), the outer problem seeks a uf that minimizes this upperbound. Similar ideas
that minimize a cost upperbound can be found in [89, 13]. To discuss the conservativeness of
this approach, we need to bound the suboptimality of the solution to (2.16) when compared
to the noiseless case. To this aim, we define the tuple Ŷ := (Ŷp, Ŷf , ŷp), consider the control
input sequences

û∗f : = argminuf
∥ŷf(uf)∥2 + ∥uf∥2,

u∗f : = argminuf
∥ȳf(uf)∥2 + ∥uf∥2,

(2.17)

and bound the error ∥û∗f − u∗f ∥ in the following lemma whose proof is given in Section 2.7.5.

Lemma 2.2. Under Assumption 2.1, 2.2 and 2.3, we define the following polynomials in δ,

F1(δ, Ŷ) : = 2lh||Ĥ†||(1 + 4||Ŷp|| · ||Ĥ†||)δ

F2(δ, Ŷ) : = (2||K̂1||+ F1(δ, Ŷ))F1(δ, Ŷ)

F3(δ, Ŷ) : =
√

lp

∥∥∥K̂⊤
2 K̂1

∥∥∥ δ + (∥∥∥b̂(0)∥∥∥+√lpδ
)
F2(δ, Ŷ)

F(δ, Ŷ) : =
∥∥∥(K̂⊤

2 K̂2 + I)−1
∥∥∥F3(δ, Ŷ) +

(∥∥∥K̂⊤
2 K̂1b̂(0)

∥∥∥+ F3(δ, Ŷ)
)
F2(δ, Ŷ),

(2.18)

where K̂1 := ŶfĤ
†, K̂2 := K̂1[0 0 I]⊤ and b̂(uf) is defined in (2.6). Then, by letting

η(δ, Ŷ) = 1 + ||Ĥ†||F(δ,Ŷ)
||ĝ(û∗

f )||
, we have ||û∗f − u∗f || ≤ F(δ, Ŷ) and

||ĝ(u∗f )|| ≤ η(δ, Ŷ)||ĝ(û∗f )||. (2.19)

Recall that cworst(uf) and c̄(uf) are, respectively, the worst-case cost derived by the inner
problem of (2.16) and the resulting true regulation cost when uf is applied, u∗f is the optimal
input for the noiseless case (see (2.17)) and ǔ is the optimal solution to (2.16). In the
following, we compare c̄(ǔf) with c̄(u∗f ) to see how much suboptimality is introduced by
solving (2.16) and applying ǔf .

Theorem 2.4. Let Assumption 2.1, 2.2 and 2.3 hold and define
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C1(δ, Ŷ) : = 2σ−1
min(Ĥ)(

√
lp + η(δ, Ŷ)lh||ĝ(û∗f )||)δ

C2(δ, Ŷ) : = (||Ŷf ||+ lhδ)C1(δ, Ŷ) + η(δ, Ŷ)lh||ĝ(û∗f )||δ

C3(δ, Ŷ) : = 8(C2(δ, Ŷ))2 + 4
∥∥∥Ŷf∥∥∥ · ||ĝ(û∗f )||η(δ, Ŷ)C2(δ, Ŷ).

(2.20)

One has that c̄(ǔf) − c̄(u∗f ) ≤ C3(δ, Ŷ). Morever, the upperbound C3(δ, Ŷ), computable by
using only the noisy measurements, converges in probability to 0 as δ converges to 0.

Proof. We denote (∆̃Yp , ∆̃Yf
, ∆̃yp , g̃(uf)) as the solution to the following optimization problem

max
∆Yp ,∆Yf

,∆yp ,g
g⊤(Ŷf +∆Yf

)⊤(Ŷf +∆Yf
)g + u⊤f uf

s.t.

Up

Ŷp
Uf

 g +

 0

∆Yp

0

 g =

upŷp
u∗f

+

 0

∆yp

0


max

(
||∆Yp ||max, ||∆Yf

||max, ||∆yp ||∞
)
≤ δ

||g − ĝ(uf)||2 ≤ C2(uf)δ2

(2.21)

and also define ỹf(uf) := (Ŷf + ∆̃yf )g̃(uf). Since ||ĝ(u∗f ) − ḡ(u∗f )|| ≤ C(u∗f )δ according to
Theorem 2.2, we have

1

2
σmin(Ĥ)||ĝ(u∗f )− ḡ(u∗f )|| ≤ (

√
lp + lh||ĝ(u∗f )||)δ

≤ (
√
lp + η(δ, Ŷ)lh||ĝ(û∗f )||)δ,

(2.22)

where η(δ, Ŷ) is derived in Lemma 2.2. The inequality (2.22) implies ||ĝ(u∗f ) − ḡ(u∗f )|| ≤
C1(δ, Ŷ). Similarly, we have ||ĝ(u∗f )− g̃(u∗f )|| ≤ C1(δ, Ŷ). Consequently, we can derive

||ŷf(u∗
f )− ȳf(u

∗
f )|| = ||Ŷf(ĝ(u

∗
f )− ḡ(u∗

f ))−∆Yf
ḡ(u∗

f )||

≤ ||Ŷf || · ||ĝ(u∗
f )− ḡ(u∗

f )||+ ||∆Yf
|| · ||ḡ(u∗

f )||

≤ ||Ŷf || · ||ĝ(u∗
f )− ḡ(u∗

f )||+
lhδ(||ĝ(u∗

f )||+ ||ḡ(u∗
f )− ĝ(u∗

f )||)

≤ (||Ŷf ||+ lhδ)C1(δ, Ŷ) + η(δ, Ŷ)lh||ĝ(û∗
f )||δ︸ ︷︷ ︸

C2(δ,Ŷ)

,

(2.23)

||ŷ(u∗f )− ỹ(u∗f )|| ≤ C2(δ, Ŷ) and ||ȳ(u∗f )− ỹ(u∗f )|| ≤ 2C2(δ, Ŷ). Finally, since ǔf is the solution
to the outer problem of (2.16) while u∗f is feasible, cworst(ǔf) ≤ cworst(u

∗
f ) = ||ỹf(u∗f )||2+||u∗f ||2,
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based on which we have

c̄(ǔf)− c̄(u∗f ) ≤ cworst(ǔf)− c̄(u∗f )

≤ cworst(u
∗
f )− c̄(u∗f )

= ∥ỹf(u∗f )∥
2 + ||u∗f ||2 − c̄(u∗f )

≤ ||ȳf(u∗f )||2 + ||u∗f ||2 + ||ỹf(u∗f )− ȳf(u
∗
f )||2 − c̄(u∗f )+

2(||ŷf(u∗f )||+ ||ȳf(u∗f )− ŷf(u
∗
f )||) · ||ỹf(u∗f )− ȳf(u

∗
f )||

≤ 2(η(δ, Ŷ)
∥∥∥Ŷf∥∥∥ · ||ĝ(û∗f )||+ C2(δ, Ŷ)) · 2C2(δ, Ŷ) + 4(C2(δ, Ŷ))2

= 8(C2(δ, Ŷ))2 + 4
∥∥∥Ŷf∥∥∥ · ||ĝ(û∗f )||η(δ, Ŷ)C2(δ, Ŷ)︸ ︷︷ ︸

C3(δ,Ŷ)

.

(2.24)

As δ goes to 0, the noisy measurement Ŷ converges in probability to Y := (Yp, Yf , yp).
Therefore, we see that σ−1

min(Ĥ) converges to in probability to σ−1
min(H), η(δ, Ŷ) to 1 and thus

C3(δ, Ŷ) to 0.

Now, we see that as the measurement noise diminishes, the regulation cost resulting from
the solution to (2.16) decreases to the minimal value. This is different from the suboptimality
bound in [19] where the achieved regulation cost is only shown to be less than twice the
minimal value.

Remark 2.4. If the measurement noise sequence is i.i.d., by sampling the same histor-
ical trajectories for N times to construct Ŷp,i, Ŷf,i, ŷp,i for i = 1, . . . , N (representing in-
stances of Yp, Yf , yp with independent noise realizations) and calculating the average values
Ŷ avg
p = (1/N)

∑N
i=1 Ŷp,i, Ŷ

avg
f = (1/N)

∑N
i=1 Ŷf,i, ŷ

avg
p = (1/N)

∑N
i=1 ŷf,i, we can attenuate

the influence of noise. Specifically, given any ϵ > 0, there exists 0 < δnew(N, ϵ) < δ such that
δnew(N, ϵ) converges to 0 as N goes to infinity and

max{||Ŷ avg
p − Yp||max, ||Ŷ avg

f − Yf ||max, ||ŷavgp − yp||max} ≤ δnew(N, ϵ)

holds with a probability of 1− ϵ. The averaging technique can be used to satisfy Assumption
2.3. Moreover, it allows one to conduct a sampling complexity analysis for the robust
control scheme (2.16) (i.e., upperbounding the number of samples required to achieve a given
suboptimality level), similar with the ones conducted in [89, 32] for model-based schemes.

Remark 2.5. If the formulation (2.16) is extended to solve a trajectory tracking problem
with an objective function ∥yf − yref∥Q + ∥uf∥R with positive semidefinite matrices Q ∈ Rp×p

and R ∈ Rm×m, it is easy to modify Theorem 2.4 for upperbounding the suboptimality gap.
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2.5 Extensions

2.5.1 MIMO systems

According to Remark 2.1, for MIMO systems we cannot bound the prediction error ||ŷ(uf)−
ȳ(uf)|| resulting from the scheme (2.6) and thus cannot analyse the suboptimality of our
robust control framework (2.16). Here, we propose a method where Page matrices are built
seperately for each output.

Suppose we have outputs y1, y2, . . . , yp. For each output yi, we have a MISO sub-system
with minimal realization

xit+1 = Aixit +Biut,

yit = Cixit +Diut,
(2.25)

where the matrices Ai, Bi, Ci, Di are unknown. We build, according to (2.7), the Page
matrices U i

p, U i
f , Ŷ

i
p , Ŷ i

f , Ĥ i along with the recent vectors uip, uif , ŷ
i
p for each i. Similar with

(2.16), we can write the robust control problem as

min
uf

max
∆,g,yf

||uf ||2 +
n∑

i=1

||yif ||2 (2.26a)

s.t. ∀i,


U i
p

Ŷ i
p

U i
f

Ŷ i
f

 gi +


0

∆i
Yp

0

∆i
Yf

 gi =


uip
ŷip
uif
yif

+


0

∆i
yp

0

0

 (2.26b)

max
(
||∆i

Yp
||max, ||∆i

Yf
||max, ||∆i

yp ||∞
)
≤ δ (2.26c)

||gi − ĝi(uf)||2 ≤ (Ci(uf)δ)2, (2.26d)

where Ci(uf) = 2σ−1
min(Ĥ

i)(
√
lip + lih||ĝi(uf)||).

To justify this formulation, we notice that, Theorem 2.3 and 2.4 can be applied to
every sub-system in (2.25). Summing up all the suboptimality bounds, we can get the
suboptimality bound for the whole system. The alternating method in [90] is also applicable
to solve (2.26).

2.5.2 Input and output constraints

Suppose now there are an input constraint uf ∈ U and an output constraint (ȳ1f (uf), . . . , ȳ
p
f (uf)) ∈

Y. The input constraint uf ∈ U can be easily embedded into the outer optimization prob-
lem in (2.16). To ensure satisfaction of the output constraint, we have to consider the
prediction error and regard as infeasible the sequence uf that has the slightest chance of
violating the output constraint. By applying the inequalities in Theorem 2.2 to every
MISO subsystem, we derive the prediction error bound E i(uf , δ) for the i-th output, i.e.,
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∥ŷif(uf)− ȳif(uf)∥ ≤ E i(uf , δ). Therefore, we can guarantee that ȳif(uf) ∈ B(ŷif(uf), E i(uf , δ)).
Let

Yf(uf) := {(y1f , . . . , y
p
f )|y

i
f ∈ B(ŷif(uf), E i(uf , δ)), ∀i}

be the region where the output sequence might lie. Then, we can ensure the satisfaction of
the output constraints by enforcing the input in (2.26) to additionally verify that

Yf(uf) ⊂ Y. (2.27)

We call the optimization problem (2.26) under (2.27) Safe Data-Driven Minmax Control
(SDDMC) . Enforcing (2.27) for general Y can be challenging [91]. However, if

Y = {(ȳ1f , . . . , ȳ
p
f )|y

i
− ≤ ȳif ≤ yi+, ∀i}

is a box constraint, the constraint (2.27) translates to another box constraint, which is for
any i,

yi− + E i(uf , δ) ≤ ŷif(uf) ≤ yi+ − E i(uf , δ). (2.28)

2.6 Numerical Studies

In this section, through numerical experiments, we elaborate on the implementation details,
verify the theoretical results and test the performance of SDDMC.

2.6.1 Trajectory regulation for a SISO system

To begin with, we consider a SISO system with the following system matrices

A = 0.99 ∗

0.7 0.2 0

0.3 0.7 −0.1
0 −0.2 0.8

 , B =

 1

2

1.5

 , C =
[
1 1 1

]
, D = 0. (2.29)

We assume these matrices along with the observability index lo = 3 are unknown to us. We
aim to identify the observability index lo, construct the relevant Page matrices, observe the
trajectory prediction error and then solve a robust control problem.

We collect historical data by exciting the system according to (2.7) with Q = N (0, 4),
L = 8 and T = 160. The i.i.d. measurement noise in the simulation is sampled from the
uniform distribution on [−δ, δ] with δ = 10−3. Algorithm 1 returns the correct observability
index lo = 3. Now we can derive the matrices Up, Uf , Yp, Yf according to Assumption 2.2.
We use (2.6) to predict the future output with a horizon of length 3 following a fixed recent
trajectory. We notice that if Ĥ is constructed using (2.6) and (2.5) with lp = lo = 3, the
prediction error is 1.8× 10−2. If we set lp = 4, the error becomes 1.4× 104. Through this
comparison, we see the important role of observability index identification for the prediction
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scheme (2.6).

We then test our robust control scheme (2.16) on the SISO system (2.29). With lp =

lf = 3 and the recent trajectory (up, yp) where up = [−5.2254, 7.2684,−22.5535]⊤ and
yp = [−1.1242,−23.7291, 13.3406]⊤, we aim to achieve a minimum regulation cost c̄(uf) =

10u⊤f ∗ uf + ȳf(uf)
⊤ȳf(uf). We use the scheme (2.16) to address this regulation problem.

We elaborate on how to solve (2.16). To use the alternating method, we initialize the input
sequence by uf = û∗f (defined in (2.17)). When the input is fixed, the inner maximization
problem of (2.16) is solved through IPOPT [92] using the primal-dual barrier approach,
where the feasible solution (∆Yp ,∆Yf

,∆yp , g) = (0, 0, Ŷpĝ(uf)− ŷp, ĝ(uf)) is set as the initial
point. After deriving (∆̃Yp , ∆̃Yf

, ∆̃yp , g̃), the solution to the inner problem, the outer problem
of (2.16) is simply

min
uf

G̃(∆̃Yp , ∆̃Yf
, ∆̃yp , g̃, uf) :=

∥∥∥∥∥∥∥(Ỹf + ∆̃Yf
)

 Up

Ŷp + ∆̃Yp

Uf


†  up

yp + ∆̃yp

uf


∥∥∥∥∥∥∥+ ∥uf∥2,

where the objective is a quadratic function of uf and the explicit expression of the solution
can be readily computed. With the new input sequence at hand, we can start the next
iteration. We terminate this algorithm when the difference of input sequences derived in
two iterations has a 2-norm less than 10−4. Currently, we do not have any results on the
convergence for this iterative scheme. Empirically, we observe in solving the regulation
problem defined above that at most three iterations are needed before the termination even
when δ increases to 1.

Then, we solve 50 instances of the regulation problem with independent noise realizations.
To evaluate the performance of the control scheme (2.16), we calculate for each instance
the relative suboptimality, defined as c̄(ǔf)−c̄(u∗

f )

c̄(ǔf)
. In Fig. 2.1, we show the mean relative

suboptimality for different δ. We see that the input sequence derived based on (2.16) and the
alternating method achieves a suboptimality gap that decreases to 0 as the noise diminishes,
which coincides with Theorem 2.4. Although we find that with δ > 10−2 Assumption 2.3 is
not satisfied and thus Theorem 2.4 is not valid, the relative suboptimality resulting from the
robust control scheme (2.27) is empirically small even when δ = 1. When the measurement
noise is i.i.d., we can weaken Assumption 2.3 such that Theorem 2.1 and Theorem 2.4 are
valid for larger noise level for a high probability. However, to achieve this, we need to use
random matrix analysis to tighten (2.12), which is out of the scope of this chapter.

2.6.2 Application to a MIMO system with constraints: room temperature
control

We apply SDDMC proposed in Section 2.5.2 to room temperature control. We consider a
small building model taken from [93], where the temperature dynamic is normalized and
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Figure 2.1: Mean relative suboptimality for different δ

linearized at the equilibrium temperature T = 15◦C (which coincides with the outdoor
temperature), with a sampling time of 0.5 hour. The model is described by (2.1), with

A =

 0.8511 0.0541 0.0707

0.1293 0.8635 0.0055

0.0989 0.0032 0.7541

 , B =

 0.07

0.006

0.004

 , C =

[
1 0 0

0 1 0

]
, D = 0.

The three states represent the temperature at different spots while only two of them can be
measured as indicated in the matrix C. Notice that, due to normalization, a state with a
value x translates to (x+15)◦C at the corresponding spot. We assume that, at time t = 0, the
system is at equilibrium. Therefore, the indoor and outdoor temperature is 15◦C. To increase
the indoor temperature to 25◦C and balance between user comfort and energy consumption,
we let the cost function be c̄(uf) = 10u⊤f ∗ uf + (ȳf(uf)− 10 ∗ [1 1]⊤)⊤(ȳf(uf)− 10 ∗ [1 1]⊤)

covering the horizon 0 ≤ t ≤ 4, while enforcing the the first output to be no less than 5 for
t ≥ 1, i.e., the first spot to be at least 20◦C in half an hour after the experiment starts.

We run SDDMC in 50 experiments with independent noise realizations (δ = 0.01). We
show in Fig. 2.2 the trajectory of the first output. We also compare with PEM in [87] where
the prediction given by (2.6) is regarded as the true output. From Fig. 2.2, we observe that
the lower bound 20◦C for the first output is always satisfied if SDDMC is applied while PEM
generates several trajectories with constraint violations. Meanwhile, we also plot the mean
relative suboptimality in Fig. 2.3 for different δ. The suboptimality decreases to 0 when δ

diminishes. A source of suboptimality, when δ gets larger, is the conservative estimate of the
prediction error bound. This is also the main reason why in Fig. 2.2 the output trajectory is
substantially far away from the constraint boundaries. If one can shrink the uncertainty set,
the output trajectory can get closer to the boundary, therefore leading to better optimality.
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Figure 2.2: Trajectory of the first output: SDDMC v.s. PEM (δ = 0.01)

Figure 2.3: Room temperature control: mean relative suboptimality for different δ
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2.7 Appendices

2.7.1 A preliminary lemma for the proof of Theorem 2.1

Lemma 2.3. If the system (2.1) is SISO and Assumption 2.2 holds, we let

W :=


uL+1 · · · u2L
u3L+1 · · · u4L

...
...

...
u2LlL−L+1 · · · u2LlL

 ,

X :=


CxL+1 · · · CAlp−1xL+1

Cx3L+1 · · · CAlp−1x3L+1
...

...
...

Cx2LlL−L+1 · · · CAlp−1x2LlL−L+1

 ,

V :=
[
W X

]
. (2.30)

Then
P({V is full rank}) = 1.

Proof. We first notice that lp = lo ≥ nx, otherwise, for a single-output system, O(lp)
cannot be column full rank. By the Cayley-Hamilton theorem, we know O(lp) has the
same row rank as O(nx). Since O(lp) is full column rank, O(nx) is also. According to
Definition 2.2, l = lp is the smallest such that O(nx) is full row rank and thus lp ≤ nx.
Considering these facts, we conclude that lp = nx. Now we proceed by proving that the
event FX = {X1:lp,· is full row rank} takes place almost surely.

In order to show P(FX ) = 1, we use an induction argument. We first look into the first
row of X . According to the system dynamic (2.1), we have

xL+1 =
[
B AB · · · AL−1B

] [
uL uL−1 · · · u1

]⊤
, X1,· = x⊤L+1O(lp)⊤. (2.31)

Since xL+1 = 0 defines a subspace in RmL where u[1,L] resides, by using (2.8) we have
P{X1,· = 0} = P{xL+1 = 0} = 0. Then, in the following, we show that, for any l < lp,

P{X1:(l+1),· has row full rank|X1:l,· has row full rank} = 1. (2.32)

To this end, we let Θ be the event where the inputs are fixed from t = 1 to t = (2l − 1)L

and suppose Θ ∈ {X1:l,· has row full rank}, then there exists a vector xn ∈ Rlp and xn ̸= 0

such that Xi,·xn = 0 holds for any i ≤ l. If X1:(l+1),· does not have full rank, we have

Xl+1,·xn = 0. (2.33)

61



Chapter 2. Robust Data-Driven Control Based on Perturbation Analysis

By noticing Xl+1,· = x⊤(2l+1)L+1O(lp)
⊤, we can rewrite (2.33) into

x⊤nO(lp)x(2l−1)L+1 + x⊤nO(lp)
[
B · · · A2L−1B

] [
u(2l+1)L · · · u(2l−1)L+1

]⊤
= 0. (2.34)

By noticing that O(lp) is full rank and x⊤nO(lp) ̸= 0, we see x⊤nO(lp)
[
B · · · A2L−1B

]
≠ 0

since
[
B · · · A2L−1B

]
is full row rank. Then, the realizations of u(2l−1)L+1, . . . , u(2l+1)L

avoids (2.34) almost surely due to (2.8). Therefore, the claim (2.32) holds because

P{X1:(l+1),· has row full rank|Θ} = 1.

Due to (2.32), if l < lp and P{X1:l,· has row full rank} = 1, then P{X1:(l+1),· has row full rank} =
1. By induction, we know P{X1:lp,· has row full rank} = 1.

Now, almost surely, the first lp rows of X are linear independent while the last L rows
of W are linear independent. Since the inputs in the (lp + i)-th row of W are independent
of the elements in the (lp + i)-th row of X for 1 ≤ i ≤ L, we can again use the induction
technique to show that the first (lp + i) rows of V are linearly independent almost surely for
1 ≤ i ≤ L. Thus, we have that P({V is full rank}) = 1.

2.7.2 Proof of Theorem 2.1

In this proof, we only consider single-input cases for simplicity since it can be easily adapted
to multiple-input cases. The main idea is to exploit the relationship between H and V in
Lemma 2.3.

We let lL = L + lp and denote H
◦ as the submatrix consisting of the 2, 4, . . . , 2lL-th

columns of H. We notice that for any i, j,

yL(2i−1)+j = CAj−1xL(2i−1)+1 +

j−1∑
k=1

CAkBuL(2i−1)+k. (2.35)

By substituting (2.35) into H
◦ and using elementary row transformation to simplify H

◦, we
see that H

◦ is full row rank if V , defined in (2.30), has full rank. From Lemma 2.3, we have
that P({H is full row rank}) ≥ P({H◦ is full row rank}) ≥ P({V is full rank}) = 1.

2.7.3 Proof of Proposition 2.1

The proof for the case lp < lo is an easy modification of that for Theorem 2.1 and thus
omitted. If lp > lo, we notice that there exist matrices Ai ∈ Rp×p, Fi ∈ Rp×m for 1 ≤ i ≤ lo
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such that the loth-order ARX model

yt =

lo∑
i=1

(Aiyt−i + Fiut−i) (2.36)

describes exactly the system (2.1). Therefore, we almost surely have that the (lop+ 1)-th
row of Yp is a linear combination of the first lop rows of Up and the first lop rows of Yp,
which concludes the proof.

2.7.4 A supporting lemma for Proposition 2.2

Lemma 2.4. Given a full-row-rank matrix A ∈ Rm×n with m < n and a row vector
z ∈ Rm×n, we have that

σmin([A
⊤z⊤]⊤) ≤ σmin(A).

Proof. According to the definition of singular values, we have

σmin([A
⊤z⊤]⊤) = min

v∈Rm+1,∥v∥=1
∥[A⊤z⊤]v∥

≤ min
v∈Rm+1,∥v∥=1,vm+1=0

∥[A⊤z⊤]v∥

≤ min
w∈Rm,∥w∥=1

∥A⊤v∥ = σmin(A)

(2.37)

2.7.5 Proof of Lemma 2.2

By substituting (2.6) to (2.17), we have

û∗f = argmin
uf

(K̂1b̂(0) + K̂2uf)
⊤(K̂1b̂(0) + K̂2uf) + u⊤f uf . (2.38)

The solution is û∗f = −(K̂⊤
2 K̂2 + I)−1K̂⊤

2 K̂1b̂(0). With K1, K2 being the noiseless counter-
parts of K̂1, K̂2 respectively, we have u∗f = −(K⊤

2 K2 + I)−1K
⊤
2 K1b̄(0). In the following, we

aim to bound ||û∗f − u∗f ||.

Firstly, we analyse the influence of noise on K̂1 and K̂2. Due to Assumption 2.3,

σmin(H) ≥ σmin(Ĥ)− ||E|| ≥ 1

2
σmin(Ĥ).

Thus, ||H†|| = σ−1
min(H) ≤ 2σ−1

min(Ĥ). Considering the following conclusion in perturbation
analysis [94],

||H† − Ĥ†|| ≤ 2max{||H†||2, ||Ĥ†||2}||E|| (2.39)
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we have ||H† − Ĥ†|| ≤ 8lh||Ĥ†||2δ and

||K̂1 −K1|| ≤ ||Ŷp|| · ||Ĥ† −H†||+ ||Ŷp − Yp|| · ||H
†||

≤ 8lh||Ŷp|| · ||Ĥ†||2δ + 2lh||Ĥ†||δ

= 2lh||Ĥ†||(1 + 4||Ŷp|| · ||Ĥ†||)δ︸ ︷︷ ︸
F1(δ,Ŷ)

.
(2.40)

Therefore, ||K̂2 −K2|| ≤ F1δ. Similarly we have

max
i=1,2

{
||K̂⊤

2 K̂i −K
⊤
2 Ki||

}
≤ (2||K̂1||+ F1(δ, Ŷ))F1(δ, Ŷ)︸ ︷︷ ︸

F2(δ,Ŷ)

.

Secondly, again following (2.39), we have

(K̂⊤
2 K̂2 + I)−1 − (K

⊤
2 K2 + I)−1 ≤ 2||K̂⊤

2 K̂2 −K
⊤
2 K2||. (2.41)

Through the same technique for deducing (2.40) based on the upperbound of ∥H† − Ĥ†∥,
we utilize (2.41) to conclude that∥∥∥K̂⊤

2 K̂1b̂(0)−K
⊤
2 K1b̄(0)

∥∥∥ ≤√lp

∥∥∥K̂⊤
2 K̂1

∥∥∥ δ + (∥∥∥b̂(0)∥∥∥+√lpδ
)
F2(δ, Ŷ)︸ ︷︷ ︸

F3(δ,Ŷ)

,

∥û∗f − u∗f ∥ ≤
∥∥∥(K̂⊤

2 K̂2 + I)−1
∥∥∥F3(δ, Ŷ) +

(∥∥∥K̂⊤
2 K̂1b̂(0)

∥∥∥+ F3(δ, Ŷ)
)
F2(δ, Ŷ)︸ ︷︷ ︸

F(δ,Ŷ)

and F(δ, Ŷ) converges to 0 as δ goes to 0.

Finally, we have ||ĝ(u∗f )− ĝ(û∗f )|| ≤ ||Ĥ†|| · ||û∗f − u∗f || and then

||ĝ(u∗f )|| ≤ ||ĝ(û∗f )||+ ||Ĥ†||F(δ, Ŷ) = ||ĝ(û∗f )||(1 +
||Ĥ†||F(δ, Ŷ)
||ĝ(û∗f )||

). (2.42)

2.8 Final Remarks

In this chapter, we proposed a method to construct the Page matrices for linear system
trajectory prediction such that the error due to the measurement noise can be bounded using
solely collected data. Based on this error bound, we designed the minmax robust control
scheme such that the suboptimality gap is bounded. This scheme is also extended to solve
regulation problems for MIMO systems with input/output constraints. The experiments
illustrated that with our method of Page matrix construction we can achieve small prediction
error and, by using the proposed robust control method, the suboptimality gap can be small

64



2.8 Final Remarks

for unconstrained optimal control problems. For constrained problems, we saw that the
constraints were respected for different noise realizations.

We observe the conservativeness of our method in the experiment on room temperature
control, which not only leads to suboptimality but also might result in infeasibility. The
conservativeness mainly stems from the small value of σmin(Ĥ), i.e., “insufficient persistent
excitation”. Currently in this chapter, we used randomly generated input sequences. A
possible direction for larger σmin(Ĥ) is experiment design. To the best of the author’s
knowledge, an efficient data-driven method to design system excitations is still open in
the literature. This has to be done through constructing intermediate data-driven system
representations as a guidance for designing new excitations.
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3 Safe Zeroth-Order Optimization Us-
ing Quadratic Local Approximations

3.1 Introduction

Classical techniques for zeroth-order optimization can be classified as direct-search-based
(where a set of points around the current point is searched for a lower value of the objective
function), gradient-descent-based (where the gradients are estimated based on samples),
and proxy-based (where a local model of the objective function around the current point is
built and used for local optimization) [95, Chapter 9]. Examples of these three categories
for unconstrained optimization are, respectively, pattern search methods [21], randomized
stochastic gradient-free methods [96], and trust region methods [97].

In case the explicit formulations of both objective and constraint functions are not
available, the work [98] proposes a proxy-based variant of the Frank-Wolfe algorithm, which
enjoys sample feasibility and convergence towards a neighborhood of the optimal point with
high probability. However, this method only addresses convex objectives and polytopic
constraints. When the unmodelled constraints are nonlinear, one can use two-phase proxi-
based methods [99, 100] where an optimization phase reduces the objective function subject
to relaxed constraints and a restoration phase modifies the result of the first phase to regain
feasibility. A drawback of these approaches is the lack of a guarantee for sample feasibility.

For ensuring sample feasibility, the zeroth-order methods of [25, 101, 102], including
proxy-based SafeOPT and its variants, assume the knowledge of a Lipschitz constant of
the objective and constraint functions, while [103] utilizes the Lipschitz constants of the
gradients of these functions (the so called smoothness constants). With these quantities,
one can build local proxies for the constraint functions and provide a confidence interval
for the true function values. By starting from a feasible point, [25, 102, 103] utilize the
proxies to search for potential minimizers. However, for each search, one may have to use
a global optimization method to solve a non-convex problem, which makes the algorithm
computationally intractable if there are many decision variables.
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Another research direction aimed at the feasibility of the samples is to include barrier
functions in the objective to penalize the proximity to the boundary of the feasible set
[104, 105]. In this category, extremum seeking methods estimate the gradient of the new
objective function by adding sinusoidal perturbations to the decision variables [106]. However,
due to the perturbations, these methods have to adopt a sufficiently large penalty coefficient
to ensure all the samples fall in the feasible region. This strategy sacrifices optimality since
deriving a near-optimal solution requires a small penalty coefficient. In contrast, another
gradient-descent-based algorithm, LB-SGD , proposed in [24] uses log-barrier functions and
ensures the feasibility of the samples despite a small penalty coefficient. After calculating a
descent direction for the cost function with log-barrier penalties, this method exploits the
Lipshcitz and smoothness constants of the constraint functions to build local safe sets for
selecting the step size of the descent. Although LB-SGD comes with a polynomial worst-case
complexity in problem dimension, it might converge slowly, even for convex problems. The
reason is that as the iterates approach the boundary of the feasible set, the log-barrier
function and its derivative become very large, leading to very conservative local feasible sets
and slow progress of the iterates.

Safe zeroth-order optimization has been an increasingly important topic in the learning-
based control community. One application is constrained optimal control problems with
unknown system dynamics. To solve these problems, traditional model-based methods rely
on system identification which might be challenging, for example, when the order of the
ground-truth model is unknown or sufficient excitation required for modeling may lead
to infeasibility. Data-driven methods based on Willems’ lemma [81], such as [46, 11, 13],
provide near-optimal controllers that satisfy safety constraints without requiring system
identification. However, ensuring the feasibility during data collection to implement these
methods remains an open question. An alternative approach to finding feasible solutions
to optimal control problems is to design a safety filter [107]. This filter is activated when
the reachability analysis indicates the possibility of constraint violation. While successful
in practice, it is hard to obtain a convergence guarantee and sample complexity of this
approach for learning an optimal controller. In reinforcement learning, Constrained Policy
Optimization [108] and Learning Control Barrier Functions [109] (model-free) are used to
find the optimal safe controller, but feasibility during training cannot be ensured. Bayesian
Optimization can also be applied to optimal control in a zeroth-order manner. For example,
[110] proposes Violation-Aware Bayesian Optimization to optimize three set points of a vapor
compression system, [111] utilizes SafeOPT to tune a linear control law with two parameters
for quadrotors, and [112] implements the Goal Oriented Safe Exploration algorithm in [101]
to optimize a PID controller with three parameters for a rotational axis drive. Although
these variants of Bayesian Optimization offer guarantees of sample feasibility, they scale
poorly to high-dimensional systems due to the non-convexity of the subproblems and the
need for numerous samples.

Optimal Power Flow (OPF) is an example of large-scale optimization problems that can
benefit from zeroth-order optimization. Its objective is to allocate the active and reactive
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power generation, transmission line flows and voltage levels to minimize costs while satisfying
operational and security constraints such as transmission line capacity and voltage level
limits. In recent years, OPF has gained considerable attention due to the rising demand
for efficient and reliable operation of power systems, as well as the integration of renewable
energy sources and energy storage systems [113]. However, the application of OPF to power
system operation is a significant challenge due to the difficulties in accurately deriving
a system model. Therefore, we consider applying our model-free method to solve OPF
problems.

3.1.1 Contributions

We develop a zeroth-order method for smooth optimization problems with guaranteed sample
feasibility and convergence. The approach is based on designing quadratic local proxies of
the objective and constraint functions and iteratively solving the Quadractially Constrained
Quadratic Programming (QCQP) subproblems. On this algorithm, we have the following
results:

(a) We show in Section 3.4.1 that, under mild assumptions, our safe zeroth-order algorithm
has iterates whose accumulation points are KKT pairs even for non-convex problems.

(b) Besides the asymptotic results in (a), given η > 0, we add termination conditions to
the zeroth-order algorithm and guarantee in Section 3.4.2 that the returned primal-dual
pair is an η-KKT pair (see Definition 3.1) of the optimization problem. We further
show in Section 3.5 that under mild assumptions our algorithm terminates in O( 1

η2
)

iterations and requires O( 1
η2
) samples.

(c) We present in Section 3.6 an example illustrating that our algorithm achieves faster
convergence than state-of-the-art zeroth-order methods that guarantee sample feasibility.
We further apply the algorithm to optimal control and optimal power flow problems,
showing that the results returned by our algorithm are almost identical to those
provided by commercial solvers utilizing the true model.

3.1.2 Structure of this chapter

We introduce the problem formulation in Section 3.2 and propose the algorithm SZO-QQ in
Section 3.3. On the properties of SZO-QQ’s iterates and output, we show asymptotic results
in Section 3.4 and provide complexity analysis in Section 3.5. In Section 3.6, we compare
SZO-QQ with other state-of-the-art zeroth-order methods and apply it to optimal control
and optimal power flow.
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3.1.3 Notations of this chapter

We use ei ∈ Rd to define the i-th standard basis of vector space Rd and ∥ · ∥ to denote
the 2-norm throughout the chapter. Given a vector x ∈ Rd and a scalar ϵ > 0, we write
x = [x(1), . . . , x(d)]⊤, B(x, ϵ) = {y : ∥y − x∥ ≤ ϵ} and SP(x, ϵ) = {y : ∥y − x∥ = ϵ}. We use
Zj
i = {i, i+ 1, . . . , j} to define the set of integers ranging from i to j with i < j. For two

vectors x, y ∈ Rd, we use ⟨x, y⟩ := x⊤y to define the inner product.

3.2 Problem Formulation

We address the constrained optimization problem

min
x∈Rd

f0(x) subject to x ∈ Ω (3.1)

with feasible set Ω := {x ∈ Rd : fi(x) ≤ 0, i ∈ Zm
1 }. We consider the setting where the

continuously differentiable functions fi : Rd → R are not explicitly known but can be queried.
In this chapter, we aim to derive a local optimization algorithm that for any given η > 0

returns an η-approximate KKT pair of (3.1) defined as follows.

Definition 3.1. For η > 0, a pair (x, λ) with x ∈ Ω and λ ∈ Rm
≥0 is an η-approximate

Karush–Kuhn–Tucker (η-KKT for short) pair of the problem (3.1) if

∥∇f0(x) +
m∑
i=1

λ(i)∇fi(x)∥ ≤ η, (3.2a)

|λ(i)fi(x)| ≤ η, i ∈ Zm
1 . (3.2b)

If (x∗, λ∗) ∈ Ω× Rm
≥0 fulfills (3.2) with η = 0, we say that it is a KKT pair.

For any optimization problem with differentiable objective and constraint functions for
which strong duality holds, any pair of primal and dual optimal points must be a KKT
pair. If the optimization problem is furthermore convex, any KKT pair satisfies primal and
dual optimality [76]. The optimization methods that aim to obtain a KKT pair, such as
Newton-Raphson and interior point methods, might converge to a local optimum. Despite
this drawback, these local methods are extensively applied, because local algorithms are
more efficient to implement and KKT pairs are good enough for some applications, such
as machine learning [114], optimal control [115] and optimal power flow [116]. Considering
that, in general, numerical solvers cannot return an exact KKT pair, the concept of η-KKT
pair indicates how close primal and dual solutions are to a KKT pair [117]. According
to [117, Theorem 3.6], under mild assumptions, one can make the η-KKT pair arbitrarily
close (in Euclidean distance) to an KKT pair of (3.1) by decreasing η. In many numerical
optimization methods [118, 119], one can trade off accuracy against efficiency by tuning η.

We assume, without loss of generality, the objective function f0(x) is explicitly known
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and linear. Indeed, when the function f0(x) in (3.1) is not known but can be queried, the
problem in (3.1) can be written as

min
(x,γ)∈Rd+1

γ

subject to f0(x)− γ ≤ 0,

fi(x) ≤ 0, i ∈ Zm
1 ,

where the objective function is now known and linear. Throughout this chapter, we make
the following assumptions on the smoothness of the objective and constraint functions and
the availability of a strictly feasible point.

Assumption 3.1. The functions fi(x), i ∈ Zm
0 are continuously differentiable and we know

constants Li,Mi > 0 such that for any x1, x2 ∈ Rd,

|fi(x1)− fi(x2)| ≤ Li∥x1 − x2∥, (3.3a)

∥∇fi(x1)−∇fi(x2)∥ ≤Mi∥x1 − x2∥. (3.3b)

We also assume that the known Lipschitz and smoothness constants Li and Mi verify that

Li > Li,inf and Mi > Mi,inf , (3.4)

where

Li,inf := inf{Li : (3.3a) holds, ∀x1, x2 ∈ Ω},
Mi,inf := inf{Mi : (3.3b) holds,∀x1, x2 ∈ Ω}.

In the remainder of this chapter, we also define Lmax = maxi≥1 Li and Mmax = maxi≥1Mi.

Remark 3.1. The bounds in (3.3) are utilized in several works on zeroth-order optimization,
e.g., [120, 121]. As it will be clear in the sequel, these bounds allow one to estimate the error of
local approximations of the unknown functions and their derivatives. In practice, it is usually
impossible to obtain Li,inf and Mi,inf , thus we only assume to know the upperbounds Li > Li,inf

and Mi > Mi,inf . In case Li and Mi are not known, we regard them as hyperparameters and
describe how to tune them in Remark 3.3.

Assumption 3.2. There exists a known strictly feasible point x0, i.e., fi(x0) < 0 for all
i ∈ Zm

1 .

Remark 3.2. The existence of a strictly feasible point is called Slater’s Condition and
is commonly assumed in several optimization methods [76]. Moreover, several works on
safe learning [25, 24] assume a strictly feasible point used for initializing the algorithm.
Assumption 3.2 is necessary for designing an algorithm whose iterates remain feasible since
the constraint functions are unknown a priori. Practically, it holds in several applications.
For example, in any robot mission planning, the robot is placed initially at a safe point
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and needs to gradually explore the neighboring regions while ensuring the feasibility of its
trajectory. Similarly, in the optimization of manufacturing processes, often an initial set of
(suboptimal) design parameters satisfying the problem constraints are known [122]. Another
example is frequency control of power grids, where the initial frequency is guaranteed to lie
within certain bounds by suitably regulating the power reserves and loads [116].

Assumption 3.3. There exists β ∈ R such that the sublevel set Pβ = {x ∈ Ω : f0(x) ≤ β}
is bounded and includes the initial feasible point x0.

Under Assumption 3.3, for any iterative algorithm producing non-increasing objective
function values {f0(xk)}k≥0, we ensure the iterates {xk}k≥0 to be within the bounded set
Pβ .

We highlight that Assumptions 1-3 stand throughout this chapter. By exploiting them,
we design in the following section an algorithm that iteratively optimizes f0(x).

3.3 Safe Zeroth-Order Algorithm

Before introducing the iterative algorithm, this section proposes an approach to construct
local feasible sets by using samples around a given strictly feasible point. To do so, we recall
the properties of a gradient estimator constructed through finite differences.

The gradients of the unknown functions {fi}mi=1 can be approximated as

∇νfi (x) :=
d∑

j=1

fi (x+ νej)− fi (x)

ν
ej (3.5)

where ν > 0. From Assumption 3.1, we have the following result about the estimation error

∆ν
i (x) := ∇νfi (x)−∇fi(x).

Lemma 3.1 ([123], Theorem 3.2). Under Assumption 3.1, we have

∥∆ν
i (x)∥2 ≤ αiν, with αi =

√
dMi

2
. (3.6)

3.3.1 Local feasible set construction

Based on (3.5) and (3.6), one can build a local feasible set around a strictly feasible point x0
as follows.

Theorem 3.1. For any strictly feasible point x0, let

l∗0 = min
i∈{1,...,m}

−fi(x0)/Lmax, (3.7)
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and ν∗0 = l∗0/
√
d, where Lmax = maxi≥1 Li. Define

S(0)i (x0) :=
{
x : fi(x0) +∇ν∗0 fi (x0)

⊤ (x− x0) + 2Mi∥x− x0∥2 ≤ 0
}
. (3.8)

Under Assumption 3.1, all the samples needed for computing ∇ν∗0 fi (x0) are feasible and the
set S(0)(x0) :=

⋂m
i=1 S

(0)
i (x0) satisfies S(0)(x0) ⊂ Ω.

For completeness, we include the proof of Theorem 3.1 in Section 3.7.1. By construction,
we see that if x0 is strictly feasible, then x0 belongs to the interior of S(0)(x0) and thus
S(0)(x0) ̸= ∅. Moreover, the set S(0)(x0) is convex since S(0)(x0) = ∩mi=1S

(0)
i (x0) and S(0)i (x0)

is a d-dimensional ball for any i. We call S(0)(x0) a local feasible set around x0.

Remark 3.3. The feasibility of S(0)(x0) is a consequence of Assumption 3.1. Next, we
comment on the missing knowledge of Li and Mi verifying (3.4). In this case, the set
S(0)(x0) built based on the initial guesses, Li and Mi, might not be feasible. When infeasible
samples are generated, one can multiply Li and Mi for i ∈ Zm

1 by β > 1. This way, at most
m+

∑m
i=1max{logβ(Li,inf/Li), logβ(Mi,inf/Mi)} infeasible samples are encountered, where

Li and Mi are the initial guesses. At the same time, one should avoid using a too large
value for Mi, since if Mi ≫ Mi,inf , the approximation used to construct S(0)(x0) can be
very conservative. We refer the readers to Theorem 3.4, for a discussion on the growth of
the complexity of the proposed method with Lmax +Mmax, and Section 3.6, for an example
illustrating the impact of Mmax on the convergence.

One can find in [24] and [25] a different formulation of local feasible sets. In Section 3.7.2,
we compare the two formulations and explain why S(0)(x0) is the less conservative.

3.3.2 The proposed algorithm

The proposed method to solve problem (3.1), called Safe Zeroth-Order Sequential QCQP
(SZO-QQ) , is summarized in Algorithm 2. The idea is to start from a strictly feasible initial
point x0 and iteratively solve (SP1) in Algorithm 2 until two termination conditions are
satisfied. Below, we expand on the main steps of the algorithm.

Providing input data. The input to the Algorithm 2 includes an initial feasible point
x0 (see Assumption 3.2) and three parameters µ, ξ,Λ. We will describe in Section 3.4 the
selection of ξ and Λ to ensure that Algorithm 2 returns an η-KKT pair of (3.1). The impact
of µ on the convergence will be shown in Theorem 3.4.

Building local feasible sets (Line 4). For a strictly feasible xk, we use (3.7) to define
l∗k and let the step size of the finite differences for gradient estimation be

ν∗k = min{
l∗k√
d
,
1

k
,

η

12αmaxmΛ
}. (3.9)
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Algorithm 2 Safe Zeroth-Order Sequential QCQP (SZO-QQ)
Input: µ, ξ,Λ > 0, initial feasible point x0 ∈ Ω
Output: x̃, λ̃, k̃
1: Choose Mi > Mi,inf , for i ∈ Zm

1

2: k ← 0,TER = 0
3: while TER = 0 do
4: Compute S(k)(xk) based on (4.1) and (3.9).
5: Compute the optimal primal and dual solutions (xk+1, λ

◦
k+1) of

min
x∈S(k)(xk)

f0(x) + µ∥x− xk∥2 (SP1)

6: if ∥xk+1 − xk∥ ≤ ξ then
7:

λk+1 ← argmin
λk+1∈Rm

+

∥λk+1∥∞ s.t. (3.10) (SP2)

8: if ∥λk+1∥∞ ≤ 2Λ then
9: x̃← xk+1, λ̃← λk+1, k̃ ← k + 1, TER← 1

10: end if
11: end if
12: k ← k + 1
13: end while

Moreover, we use (4.1) to define S(k)(xk) in (SP1). The bounds ν∗k ≤ 1/k and ν∗k ≤
η/(12αmaxmΛ) in (3.9) are utilized to verify the approximate KKT conditions (3.2) (see
Theorem 3.3).

Solving a subproblem (Line 5). Based on the local feasible set, we formulate the
subproblem (SP1) of Algorithm 2. The regulation term µ∥x− xk∥2 along with 2Mi∥x− xk∥
in S(k)i (xk) prevents too large step sizes. If ∥x− xk∥ is large, the proxies used in (SP1) are
not accurate. The regulation term can also be found in the proximal trust-region method
in [124]. With it, we can ensure that ∥xk+1 − xk∥ converges to 0 (see Proposition 3.1)
and conduct complexity analysis (see Theorem 3.4). Since f0 is assumed, without loss of
generality, to be known and linear (see Section 3.2), (SP1) is a known convex QCQP . We
let (xk+1, λ

◦
k+1) be the optimal primal and dual solutions to (SP1). As shown in the proof of

Theorem 3.1, the bound Mi > Mi,inf from Assumption 3.1 implies that xk+1 ∈ Ω is strictly
feasible. Although xk is strictly feasible for any k, it is possible that the sequence {xk}k≥1

converges to a point on the boundary of Ω.

Checking termination conditions (Line 6-11). We introduce two termination condi-
tions guaranteeing that the pair (x̃, λ̃) returned by Algorithm 2 is an η-KKT pair. The first
one (Line 6) requires that ∥xk+1 − xk∥ is smaller than a given threshold ξ while the second
requires that the solution to the optimization problem (SP2) is small enough (Line 8). The
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constraint of (SP2) is

max

{
δ1(k, λk+1),max{δ(i)2 (k, λk+1) : i ≥ 1}

}
≤ η

2
, (3.10)

where

δ1(k, λk+1) :=

∥∥∥∥∇f0 (xk+1) + 2µ(xk+1 − xk) +
m∑
i=1

λ
(i)
k+1

(
∇ν∗kfi (xk) + 4Mi(xk+1 − xk)

)∥∥∥∥,
δ
(i)
2 (k, λk+1) :=

∣∣∣∣λ(i)
k+1

(
fi(xk) +∇ν∗kfi (xk) (xk+1 − xk) + 2Mi∥xk+1 − xk∥2

)∣∣∣∣. (3.11)

Observe that δ1(k, λk+1) and δ
(i)
2 (k, λk+1) in (3.11) originate from the KKT conditions for

(SP1). Therefore, by solving (SP2) we obtain the smallest-norm vector λk+1 such that
(xk+1, λk+1) is a η/2-KKT pair of (SP1). To solve (SP2), we reformulate it as a convex
QCQP and use λ◦

k+1 as an initial feasible solution. If the two conditions are satisfied at
the (k + 1)-th iteration, then the algorithm outputs in Line 9 are x̃ = xk+1, λ̃ = λk+1 and
k̃ = k + 1.

Algorithm 2 is similar to Sequential QCQP (SQCQP) [125]. In SQCQP, at each iteration,
quadratic proxies for constraint functions are built based on the local gradient vectors and
Hessian matrices. The application of SQCQP to optimal control has received increasing
attention [126, 127], due to the development of efficient solvers for QCQP subproblems
[128]. Different from SQCQP [125], Algorithm 2 can guarantee sample feasibility and does
not require the knowledge of Hessian matrices, which are costly to obtain for zeroth-order
methods. As Hessian matrices are essential for proving the convergence of SQCQP in [125],
we cannot use the same arguments in [125] to show the properties of SZO-QQ’s iterates. In
the following two sections, we state the properties of (x̃, λ̃) and analyze the efficiency of the
algorithm.

3.4 Properties of SZO-QQ’s Iterates and Output

In this section, we aim to show that, for a suitable ξ, the pair (x̃, λ̃) derived in Algorithm 2
is η-KKT. We start by considering the infinite sequence of Algorithm 2’s iterates {xk}k≥1

when the termination conditions in Line 6 and 8 of Algorithm 2 are removed. We show that
the sequence {xk}k≥1 has accumulation points and, for any accumulation point xc, under
mild assumptions, there exists λc ∈ Rm

≥0 such that (xc, λc) is a KKT pair of (3.1). Based on
this result, we then study the activation of the two termination conditions and prove that
they are satisfied within a finite number of iterations. Finally, we show that if ξ is carefully
chosen, the derived pair (x̃, λ̃) is η-KKT.
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3.4.1 On the accumulation points of {xk}k≥1

Proposition 3.1. If the termination conditions are removed, the sequence {xk}k≥1 in
Algorithm 2 has the following properties:

1. the sequence {f0(xk)}k≥1 is non-increasing;

2. {xk}k≥1 has at least one accumulation point xc and {∥xk+1 − xk∥}k≥1 converges to 0;

3. limk→∞ f0(xk) = f0(xc) > −∞.

The proof is provided in Section 3.7.3. It mainly exploits the following inequality,

f0(xk+1) + µ∥xk+1 − xk∥2 ≤ f0(xk), (3.12)

which is due to the optimality of xk+1 for (SP1) in Algorithm 2. The monotonicity of
f0(xk) and the convergence of ∥xk+1 − xk∥ are direct consequences of (3.12). By utilizing
the monotonicity, we have that, for any k ≥ 1, xk belongs to the bounded set Pβ (see
Assumption 3.3 for the definition of Pβ). Due to Bolzano–Weierstrass theorem, there exists
an accumulation point of {xk}k≥1. The continuity of f0(x) gives us Point 3 of Proposition
3.1.

Based on Proposition 3.1, we can show that under Assumption 3.4 below, there exists an
accumulation point of {xk}k≥1 that allows one to build a KKT pair.

Assumption 3.4. There exists an accumulation point xc of {xk}k≥1 such that the Linear
Independent Constraint Qualification (LICQ) holds at xc for (3.1), which is to say the
gradients ∇fi(xc) with i ∈ A(xc) := {i : fi(xc) = 0} are linearly independent.

Assumption 3.4 is widely used in optimization [129]. For example, it is used to prove the
properties of the limit point of the Interior Point Method [95]. With this assumption, if xc is
a local minimizer, then there exists λc ∈ Rm

≥0 such that (xc, λc) is a KKT pair [95, Theorem
12.1], which will be used in the proof of Theorem 3.2.

Theorem 3.2. Let Assumption 3.4 hold, and let xc be an accumulation point of {xk}k≥1

where LICQ is verified. Then, there exists a unique λc ∈ Rm
≥0 such that (xc, λc) is a KKT

pair of the problem (3.1).

We only consider the case where A(xc) is not empty in the proof of Theorem 3.2, provided
in Section 3.7.5. The proof can be easily extended to account for the case where xc is in
the interior of Ω. To show Theorem 3.2, we exploit a preliminary result (Lemma 3.5, stated
and proved in Section 3.7.4) where we construct an auxiliary problem (3.24) and show that
xc is an optimizer to (3.24). We notice that the KKT conditions of (3.24) evaluated at xc
coincide with those of (3.1) evaluated at the same point. Due to LICQ, there exists a unique
λc ∈ R≥0 such that (xc, λc) is a common KKT pair of (3.24) and (3.1) [95, Section 12.3].
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3.4 Properties of SZO-QQ’s Iterates and Output

3.4.2 The output of Algorithm 2 is an η-KKT pair

The result in Theorem 3.2 is asymptotic, but in practice, only finitely many iterations can
be computed. From now on, we take the termination conditions of Algorithm 2 into account
and show that, given any η > 0, by suitably tuning ξ > 0, Algorithm 2 returns an η-KKT
pair. First, we make the following assumption, which allows us to conclude in Proposition
3.2 the finite termination of Algorithm 2.

Assumption 3.5. The KKT pair (xc, λc) in Theorem 3.2 satisfies ∥λc∥∞ < Λ, where Λ > 0

is the input in Algorithm 2.

Assumptions on the bound of the dual variable are adopted in the literature of primal-dual
methods, including [130, 131]. We illustrate Assumption 3.5 in Section 3.7.6 where we show
in an example that Λ is related to the geometric properties of the feasible region.

Remark 3.4. In case it is hard to choose a value of Λ fulfilling Assumption 3.5, we can
replace Λ with γ∥λk+1∥∞, where γ > 1 and λk+1 is the solution to the problem (SP2) in
Algorithm 2, every time the second termination condition (Line 8 in Algorithm 2) is violated.
Note that every time Λ gets updated, it becomes at least 2γ− 1 times larger. Similar updating
rules can also be found in [130]. In this way, we are guaranteed to find Λ that satisfies
Assumption 3.5 after a finite number of iterations. However, we also notice that this updating
mechanism generates a conservative guess for Λ if ∥λk∥∞ ≫ ∥λc∥∞ for some k. In Theorem
3.3, we will set ξ in Algorithm 2 to be proportional to Λ−1 so that the returned pair is an
η-KKT pair. Consequently, a conservative Λ can increase the number of iterations required
by Algorithm 2.

Proposition 3.2. Let Assumptions 3.4 and 3.5 hold, Algorithm 2 terminates in a finite
number of iterations.

According to Proposition 3.1, the first termination condition is satisfied in Algorithm 2
whenever k is sufficiently large. In the proof of Proposition 3.2 (provided in Section 3.7.7),
we show that λk+1 = λc is a feasible solution to (SP2) when xk+1 is close enough to xc.
Thus, for sufficiently large k, the second termination is satisfied since ∥λc∥∞ < Λ .

Recall that Algorithm 2 returns x̃, λ̃ and k̃, which are dependent on the chosen value for
ξ. For a given accuracy indicator η > 0, in the following, we show how to select ξ such that
(x̃, λ̃) is an η-KKT pair.

Theorem 3.3. Let Assumptions 3.4 and 3.5 hold, and let

ξ = h(η) := min

{
η

60Λ
∑m

i=1Mi
,

η

12µ
, 1,

η

4Λ(αmax + 2Lmax + 2Mmax)

}
(3.13)

be satisfied, where µ is a parameter of (SP1), αmax = max1≤i≤m αi and αi is defined in
(3.6). Then the output (x̃, λ̃) of Algorithm 2 is an η-KKT pair of (3.1) .
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The proof of Theorem 3.3 can be found in Section 3.7.8. In summary, to ensure that
the pair (x̃, λ̃) is an η-KKT pair, we need to set ξ in Algoirthm 2 to be h(η) in (3.13) while
selecting Li, Mi and Λ to satisfy Assumptions 3.3 and 3.5 (see Remarks 3.3 and 3.4).

3.5 Complexity Analysis

In this section, we aim to give an upper bound, dependent on η, for the number of Algo-
rithm 2’s iterates. To this purpose, we consider the following assumption, which allows us to
show the convergence of {xk}k≥1 in Lemma 3.2.

Assumption 3.6. The accumulation point xc in Assumption 3.4, which is already known to
be the primal of some KKT pair, is a strict local minimizer, i.e., there exists a neighborhood
N of xc such that f0(x) > f0(xc) for any x ∈ N ∩ Ω \ xc.

If Second-Order Sufficient Condition (SOSC) for optimality [95, Chapter 12.5] is satisfied,
Assumption 3.6 holds. Since this assumption does not rely on the twice differentiability of
the objective and constraint functions, it is more general than SOSC, which is commonly
assumed in the optimization literature [132, 133].

Lemma 3.2. Let Assumption 3.6 holds, {xk}k≥1 converges.

The proof of Lemma 3.2 is in Section 3.7.9. In the rest of this section, we consider
Assumption 3.6. Let xc be the limit point of {xk}k≥1 and note that there exists λc such that
(xc, λc) is a KKT pair. Then we show in Lemma 3.3, with the proof in Section 3.7.10, that
λ◦
k, the optimal dual solution to (SP1), converges to λc.

Lemma 3.3. Let Assumptions 3.4, 3.5 and 3.6 hold, λ◦
k converges to λc.

With Lemma 3.3 and Assumption 3.5, we know that for any η there exists K, independent
of η, such that ∥λk∥∞ ≤ 2Λ for any k ≥ K. Therefore, for sufficiently small η, Algorithm
2 terminates whenever the first termination condition in Line 6 is satisfied. We can now
conclude in Theorem 3.4 on the complexity of Algorithm 2 by analyzing only the first
termination condition. The proof of Theorem 3.4 is in Section 3.7.11.

Theorem 3.4. Let Assumptions 3.4, 3.5 and 3.6 hold, there exists η̄ > 0 such that, for any
η < η̄, Algorithm 2 terminates within K(η) + 1 iterations, where

K(η) = f0(x0)− inf{f0(x) : x ∈ Ω}
µ(h(η))2

,

and µ is the coefficient of the quadratic penalty term in (SP1), and h(η) is defined in (3.13).
Thus, for any 0 < η ≤ 1, Algorithm 2 takes at most O((Mmax + Lmax)

2/η2) iterations to
return (x̃, λ̃), an η-KKT pair of the problem (3.1).
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Discussion: We compare the sample and computation complexity of SZO-QQ with two
other existing safe zeroth-order methods, namely, LB-SGD in [24] and SafeOPT in [111]. We
remind the readers that these methods have different assumptions. Specifically, given the
black-box optimization problem (3.1), SafeOPT assumes that fi(x), i ∈ Zm

i=0, has bounded
norm in a suitable Reproducing Kernel Hilbert Space while both SZO-QQ and LB-SGD
assume the knowledge of the smoothness constants. Regarding sample complexity, SZO-QQ
needs O( 1

η2
) samples under Assumption 3.6 to generate an η-KKT pair while LB-SGD and

SafeOPT require O( 1
η3
) and at least O( 1

η2
) samples1 respectively. We also highlight that the

computational complexity of each iteration of both LB-SGD and SZO-QQ stays fixed while
the computation time required for the Gaussian Process regression involved in each iteration
of SafeOPT increases as the data set gets larger. The high computational cost is one of the
main reasons why SafeOPT scales poorly to high-dimensional problems. Numerical results
comparing the computation time and the number of samples required by these methods are
provided in Section 3.6.1.

In contrast, the Interior Point Method, based on the assumption of fi(x) being twice
continuously differentiable, achieves superlinear convergence [95] by utilizing the true model
of the optimization problem, which translates into at most O(log 1

η ) iterations. The gap
between O( 1

η2
) of SZO-QQ and O(log 1

η ) may be either the price we pay for the lack of the
first-order and second-order information of the objective and constraint functions or due to
the conservative analysis in Theorem 3.4. To see whether there exists a tighter complexity
bound than O( 1

η2
) for Algorithm 2, an analysis on the convergence rate is needed, which is

left as future work.

3.6 Numerical Results

In this section, we present three numerical experiments to test the performance of Algorithm
2. The first is a two-dimensional problem where we compare SZO-QQ with other existing
zeroth-order methods and discuss the impact of parameters. In the remaining two examples,
we apply our method to solve optimal control and optimal power flow problems, which have
more dimensions and constraints. All the numerical experiments have been executed on a
PC with an Intel Core i9 processor.

1In [24, Theorem 8], the authors claim the iterations of LB-SGD needed for obtaining an η-KKT to be
O( 1

η3 ). Since the number of samples stays fixed and does not rely on η in each iteration, the number of
samples required is also O( 1

η3 ). In [25, Theorem 1], O( 1
η2 ) samples are needed in SafeOPT to obtain an

η-suboptimal point. For unconstrained optimization with a strongly convex objective function, there exists
α > 0 such that any η-KKT pair has a αη-suboptimal primal. Therefore, SafeOPT requires at least O( 1

η2 )

samples to obtain an η-KKT pair of (3.1).
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3.6.1 Solving an unknown non-convex QCQP

We evaluate SZO-QQ and compare it with alternative safe zeroth-order methods in the
following non-convex example,

min
x∈R2

f0(x) = 0.1× (x(1))2 + x(2)

subject to f1(x) = 0.5− ∥x+ [0.5 − 0.5]⊤∥2 ≤ 0,

f2(x) = x(2) − 1 ≤ 0,

f3(x) = (x(1))2 − x(2) ≤ 0.

We assume that the functions fi(x), i = 1, 2, 3, are unknown but can be queried. A strictly
feasible initial point x0 = [0.9 0.9]⊤ is given. The unique optimum x∗ = [0 0]⊤ is not strictly
feasible. According to Theorem 3.2, the iterates of SZO-QQ will get close to x∗, which allows
us to see whether SZO-QQ stays safe and whether the convergence is fast when the iterates
are close to the feasible region boundary. The experiment results allow us to discuss the
following three aspects, respectively on the derivation of a 10−2-KKT pair, performance
evaluation, and parameter tuning.

Selection of ξ for deriving a 10−2-KKT pair

To begin, we fix η = 10−2 and aim to derive an η-KKT pair. By setting Λ = 1.5 and Li = 5,
Mi = 3 for any i ≥ 1, we calculate ξ = 1.51× 10−5 according to (3.13). With these values,
SZO-QQ returns in 3.3 seconds an η′-KKT pair with η′ = 9.21× 10−4 < η. We also observe
that ∥λk∥∞ converges to 1 and thus the original guess Λ = 1.5 satisfies Assumption 3.5.
Now we see that we indeed derive an η-KKT pair, which coincides with Theorem 3.3. To
further evaluate the performance of SZO-QQ in terms of how fast the objective function
value decreases, we eliminate the termination conditions in the remainders of Section 3.6.1.

Performance comparison with other methods

We run SZO-QQ with ξ = 0 and compare with LB-SGD [24], Extremum Seeking [106] and
SafeOptSwarm2 [111]. Among these methods, SZO-QQ, LB-SGD, and SafeOpt-Swarm have
theoretical guarantees for sample feasibility (at least with a high probability). Only SZO-QQ
and LB-SGD require Assumption 3.1 on Lipschitz and smoothness constants. For these two
approaches, by trial and error (see Remark 3.3), we choose Li = 5 and Mi = 3 for any i ≥ 1.
The penalty coefficient µ of Algorithm 2 in (SP1) is set to be 0.001. For both LB-SGD and
Extremum Seeking are barrier-function-based, we use the reformulated unconstrained problem
minx flog(x, µlog), where flog(x, µlog) := f0(x)− µlog

∑4
i=1 log(−fi(x)), and µlog = 0.001.

2SafeOptSwarm is a variant of SafeOpt (recall Section 3.1). The former add heuristics to make SafeOpt
in [25] more tractable for higher dimensions.
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Figure 3.1: Objective value as a function of computation time.

In Fig. 3.1, we show the objective function values versus the computation time. During
the experiments, none of the methods violates the constraints. Regarding the convergence to
the minimum, we see that LB-SGD has the most decrease in the objective function value
in the first 1.5 seconds due to the low complexity of each iteration. In these 1.5 seconds,
LB-SGD utilizes 67856 function samples while SZO-QQ only 252. Afterward, SZO-QQ
achieves a better solution. In the first 6 seconds, SZO-QQ shows a clear convergence trend
to the optimum, consistent with Theorem 3.2, while SafeOptSwarm only finishes 6 iterations
and 28 function samples.

LB-SGD slows down when the iterates are close to the boundary of the feasible set (see
Section 3.7.2 for the explanation for this phenomenon). Meanwhile, the slow convergence of
Extremum Seeking is due to its small learning rate. If the learning rate is large, the iterates
might be brought too close to the boundary of the feasible set, and then the perturbation
added by this method would lead to constraint violation. These considerations constitute
the main dilemma in parameter tuning for Extremum Seeking. Meanwhile, exploring the
unknown functions in SafeOptSwarm is based on Gaussian Process (GP) regression models
instead of local perturbations. Since SafeOptSwarm does not exploit the convexity of
the problem, it maintains a safe set and tries to expand it to find the global minimum.
Empirically, this method samples many points close to the boundary of the feasible region,
which is also observed in [101]. These samples along with the computational complexity of
GP regression, are the main reason for the slow convergence of SafeOptSwarm. We also run
LB-SGD and Extremum Seeking with different penalty coefficients µlog to check whether
the slow convergence is due to improper parameter tuning. We see that with larger µlog the
performance of the log-barrier-based methods deteriorates. This is probably because the
optimum of the unconstrained problem flog(x, µlog) deviates more from the optimum as µlog

increases. With smaller µlog, the Extremum Seeking method leads to constraint violation
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while the performance of LB-SGD barely changes.

Impact of the parameters Li and Mi

To show the impact of conservative guesses of Li and Mi, we consider 9 test cases of different
values for the pair (L,M). We use L as the Lipschitz constant for all the objective and
constraint functions and M as the smoothness constant. We illustrate in Figures 3.2 and
3.3 the decrease of the objective function values when SZO-QQ and LB-SGD are applied to
solve the 9 test cases. From the figures, we see that the time required by SZO-QQ to achieve
an objective function value less than 10−2 grows with M . Despite this, across all the cases
SZO-QQ is the first to achieve an objective function value of 10−2. Another observation is
that the performance of SZO-QQ is more sensitive to varying M while LB-SGD is more
sensitive to varying L. This is due to the differences in the local feasible set formulations in
both methods. Indeed, in SZO-QQ the constant Li is only related to the gradient estimation,
and the size of the local feasible set S(k)(·) in (4.1) is mainly decided by Mi, while in LB-SGD
the size of T (k)(·), for any k, is mainly dependent on the Lipschitz constants Li for i ≥ 1.

We also study the case where the initial guesses of Lipschitz and smoothness constants are
wrong, i.e., (3.3) in Assumption 3.1 is violated. With L = 0.2 and M = 0.2, we encounter
an infeasible sample. Then we follow the method in Remark 3.3 to multiply the constants
by 2 every time an infeasible sample is generated. With L = M = 0.8, every sample is
feasible and we derive in 2 seconds an objective function value of 4 × 10−7. In total, we
generate two infeasible samples. Although the setting L = M = 0.8 still fails to satisfy
Assumption 3.1, with these constants, SZO-QQ is able to generate iterates that have a
subsequence converging to a KKT pair. The readers can check that Theorem 3.2 holds even
if the guesses for Lipschitz and smoothness constants do not verify (3.3) in Assumption 3.1
(see the proof of Theorem 3.2 in Section 3.7.5).

Figure 3.2: Objective value as a function of computation time: L0 = 5 fixed and M0 varied
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Figure 3.3: Objective value as a function of computation time: M0 = 3 fixed and L0 varied

3.6.2 Open-loop optimal control with unmodelled disturbance

SZO-QQ can be applied to deterministic optimal control problems with unknown nonlinear
dynamics by using only feasible samples. To illustrate, we consider a nonlinear system with
dynamics xk+1 = Axk +Buk + δ(xk)[1 0]⊤, where xk ∈ R2 for k ≥ 0 and x0 = [1 1]⊤. The
matrices

A =

[
1.1 1

−0.5 1.1

]
, B =

[
1 0

0 1

]
and the expression of the disturbance δ(x) := 0.1∗(x(2))2 are unknown. We aim to design the
input uk for i ∈ Z5

0 to minimize the cost
∑5

k=0

(
x⊤k+1Qxk+1 + u⊤k Ruk

)
where Q = 0.5 I2 and

R = 2 I2 with identity matrix I2 ∈ R2×2 while enforcing ∥xk+1∥∞ ≤ 0.7 and ∥uk∥∞ ≤ 1.5 for
0 ≤ k ≤ 5. Since we assume all the states are measured, we can evaluate the objective and
constraints. In this example, we assume to have a feasible sequence of inputs {uk}0≤k≤5 that
leads to a safe trajectory and results in a cost of 6.81 (as in Assumption 3.2). Different from
the settings in the model-based safe learning control methods [134, 135], we do not assume
that this safe trajectory is sufficient for identifying the system dynamics with small error
bounds. If the error bounds are huge, the robust control problems formulated in [134, 135]
may become infeasible.

We run SZO-QQ to further decrease the cost resulting from the initial safe trajectory and
derive within 146 seconds of computation an input sequence that satisfies all the constraints
and achieves a cost of 5.96. This cost is the same as the one obtained when assuming the
dynamics are known and applying the solver IPOPT [92]. This observation is consistent with
Theorem 3.2 on the convergence to a KKT pair. In this experiment, we set Li = Mi = 20

for i ≥ 1, µ = 10−4 and η = 10−1. Thus, the parameter ξ adopted is 2× 10−5 according to
(3.13).

85



Chapter 3. Safe Zeroth-Order Optimization Using Quadratic Local
Approximations

3.6.3 Optimal power flow for an unmodelled electric network

In this section, we apply SZO-QQ to solve the AC Optimal Power Flow (OPF) for the IEEE
30-bus system in [136].

Formulation of the OPF problem

To formulate an OPF problem, we introduce the following notations and assumptions:

• Let B = {b1, b2, . . . , bn} be the bus set and let T = {(bi, bj) : there is a transmission
line between bi and bj} be a set of undirected edges representing the transmission lines;

• We denote PGi , PLi , QLi , Ui and θi as the active power generation, active power
consumption, reactive power consumption, voltage and voltage angle at bi;

• From the bi to bj , the active power and the reactive power transferred are written
respectively as Pij(Ui, Uj , θi, θj) and Qij(Ui, Uj , θi, θj), while the current is denoted
as Iij(Ui, Uj , θi, θj). We refer the readers to [137] for the explicit expressions of these
functions;

• We also assume that there are nG generators at the buses bi, i ∈ ZnG
1 and b1 is a slack

bus providing active power to maintain the power balance within the network and has
a voltage angle of 0.

Then the OPF problem is formulated [137] as

min
PGi

,Ui,θi

nG∑
i=1

Ci(PGi) (3.14a)

subject to

PGi = PLi +
∑

(i,j)∈T

Pij(Ui, Uj , θi, θj), ∀i (3.14b)

−QLi =
∑

(i,j)∈T

Qij(Ui, Uj , θi, θj), i > nG (3.14c)

PGi = 0, for i > nG, θ1 = 0, (3.14d)

PG,min ≤ PGi ≤ PG,max, for i ≤ nG, (3.14e)

Iij,min ≤ Iij(Ui, Uj , θi, θj) ≤ Iij,max, ∀(i, j) ∈ T, (3.14f)

Umin ≤ Ui ≤ Umax, ∀i. (3.14g)

where Ci(·) is a quadratic function accounting for the generation cost and the equations
(3.14e)-(3.14g) give the safe intervals for the corresponding variables.

The main challenges of OPF applications lie in modelling the system and deriving the
accurate expressions of (3.14). The difficulties include the nonlinearity of device dynamics,
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slowly changing physical parameters and disturbances [138]. Inaccurate models can result
in suboptimal OPF solutions (leading to more generation cost) or violate the true hard
constraints (causing damages to devices) [139]. Therefore, we consider the black-box setting
and use SZO-QQ.

To this aim, we reformulate (3.14) as optimization with only inequality constraint to fit
(3.1) used by SZO-LP. Let {PGi}

nG
i=2 and {Ui}nG

i=1 be the main decision variables. Then by
assigning values to {PGi}

nG
i=2 and {Ui}nG

i=1, one can solve the power flow equations (3.14b)-
(3.14d) to derive the values for all the other decision variables in (3.14). Therefore, (3.14b)-
(3.14d) give us the functions

Ui = Ui({PGj}
nG
j=2, {Uj}nG

j=1), i = nG + 1, . . . , n,

θi = θi({PGj}
nG
j=2, {Uj}nG

j=1), i = 1, . . . , n.
(3.15)

By substituting (3.15) to (3.14), we obtain a reformulation where {{PGj}
nG
j=2, {Uj}nG

j=1} are
the only decision variables and there are not equality constraints.

Experiment results

Given a set of values for all the 11 decision variables, we can utilize a black-box simulation
model in Matpower [140] to sample the voltages of all the 30 buses and the power through all
the transmission lines in this network. We assume to have initial values for all the decision
variables such that the constraints are satisfied. In practice, initial values of the decision
variables verifying the safety constraints in power systems are not hard to find due to various
mechanisms for robust operation, e.g., droop control for power generation, shunt capacitor
control and load shedding.

Figure 3.4: Objective value as a function of computation time

The numerical experiment is executed on a PC with an Intel Core i9 processor. The
QCQP subproblems are SZO-QQ is solved using Gurobi [141] with Yalmip [142] as the
interface. Since the structure of the subproblems is fixed, we use optimizer function in
Yalmip to speed up the computation. In this experiment, we set µ = 0.001, ξ = 0.002, Λ = 2,
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Figure 3.5: Largest constraint value as a function of computation time

Mi = 0.2 and Li = 1 for i ≥ 1. In Figure 3.4, we illustrate the decrease of the cost and
compare it with the cost derived by using Gurobi to solve the model-based optimal power
flow. We see that the achieved cost within 1400 seconds is close to what the model-based
method derives, which is again consistent with Theorem 3.2. Meanwhile, from Figure 3.5,
which depicts the largest constraint function value with respect to the computation time,
we see that, even though the decision variables can get very close to the boundary of the
feasible set, the constraints are never violated.

Compared with only 1 second used by the model-based method to derive the solution,
SZO-QQ is slow. One reason is that solving the QCQP subproblems of SZO-QQ takes too
much time for this experiment, since the size of subproblems is the same as the original
problem. Another factor is that, as shown in Figs. 3.4 and 3.5, the decrease of the objective
functions slows down as the iterates get close to the feasible region boundary.

3.7 Appendices

3.7.1 Proof of Theorem 3.1

We notice that ν∗0 ≤ l∗0 and, from Assumption 3.1, fi(x0 + ν∗0ej) < fi(x0) + l∗0Lmax = 0 for
any i ∈ Zm

1 , j ∈ Zd
1. which shows the samples’ feasibility. To show the feasibility of S(0)(x0),

we first partition S(0)i (x0) as

S(0)i (x0) =
(
S(0)i (x0)

⋂
B(x0, l∗0)

) ⋃(
S(0)i (x0) \ B(x0, l∗0)

)
and notice that S(0)i (x0)

⋂
B(x0, l∗0) ⊆ Ω. Then, it only remains to show S(0)i (x0)\B(x0, l∗0) ⊆

Ω.

For x ∈ S(0)i (x0) \Bl∗0
(x0), we have

√
dν∗0 = l∗0 ≤ ∥x− x0∥. By the mean value theorem,
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for any i there exists θi ∈ [0, 1] such that

fi(x) =fi(x0) +∇fi (x0 + θi(x− x0))
⊤ (x− x0) (3.16)

=fi(x0) +∇fi (x0)⊤ (x− x0) + (∇fi (x0 + θi(x− x0))−∇fi (x0))⊤ (x− x0)

≤fi(x0) +∇ν∗0 fi (x0)
⊤ (x− x0) +

√
dν∗0Mi

2
∥x− x0∥+Mi∥x− x0∥2

≤fi(x0) +∇ν∗0 fi (x0)
⊤ (x− x0) + 2Mi∥x− x0∥2

≤0,

where the first inequality is due to Assumption 3.1 while the second one can be derived from
the definition of ν∗0 in Theorem 3.1. Hence, S(0)i (x0) \ B(x0, l∗0) ⊆ Ω. Since S(0)i (x0) ⊆ Ω,∀i,
then S(0)(x0) ⊆ Ω.

3.7.2 Comparison between two different formulations of local safe sets

The works [24, 25] adopt an alternative approximation of the constraints and, in particular,
form a local feasible set

T (0)(x0) :=
m⋂
i=1

{
x : ∥x− x0∥ ≤ −

fi(x0)

Li

}
.

We see that T (0)(x0) = {x : FL
i (x) ≤ 0,∀i} where FL

i (x) := fi(x0) + Li∥x − x0∥ is linear
in ∥x − x0∥. In contrast, S(0)(x0) = {x : FM

i (x) ≤ 0, ∀i} where FM
i (x) := fi(x0) +

∇ν∗0 fi (x0)
⊤ (x− x0) + 2Mi∥x− x0∥2 is a quadratic approximation of fi(x). In the following

proposition, we show that if x0 is sufficiently close to the boundary of the feasible set,
T (0)(x0) ⊂ S(0)(x0), which means that S(0)(x0) is less conservative.

Proposition 3.3. Let ℓmin = mini≥1(Li − Li,inf). For x0, if

min
i≥1
− fi(x0) ≤

Lmaxℓmin

4Mmax
, (3.17)

then T (0)(x0) ⊂ S(0)(x0).

Proof. For any x ∈ T (0)(x0), we have

∥x− x0∥ ≤
min−fi(x0)

Lmax
≤ ℓmin

4Mmax

and thus
2Mmax∥x− x0∥2 ≤

ℓmin

2
∥x− x0∥. (3.18)
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Considering ν∗0 = min−fi(x0)√
dLmax

and (3.6), we have

∥∥∥∆ν∗0
i (x)

∥∥∥
2
≤ ℓmin

2

and thus
∇ν∗0 fi(x0)

⊤(x− x0) =(∇fi(x0) + ∆
ν∗0
i (x))⊤(x− x0)

≤Li,inf∥x− x0∥+
ℓmin

2
∥x− x0∥

(3.19)

By summing up (3.18) and (3.19), we have for any x ∈ T (0)(x0)

FM
i (x) ≤ fi(x0) + Li∥x− x0∥ = FL

i (x) ≤ 0,

and thus x ∈ S(0)(x0). ■

3.7.3 Proof of Proposition 3.1

Proof of Point 1. Given any k, we have xk ∈ S(k)(xk) and xk+1 = argminx∈S(k)(xk)
f0(x) +

µ∥x− xk∥2. Thus,

f0(xk+1) + µ∥xk+1 − xk∥2 ≤ f0(xk) + µ∥xk − xk∥2 = f0(xk). (3.20)

Proof of Point 2. For k ≥ 0, one has f0(xk) ≤ f0(x0) < β according to Assumption 3.3.
Now we know {xk}k≥1 is within the set Pβ . Due to the boundedness of the set Pβ , we can
use Bolzano–Weierstrass theorem to conclude that there exists a subsequence of {xk}k≥1

that converges. Hence, {xk}k≥1 has at least one accumulation point xc. According to (3.20),
f0(xk+1) ≤ f0(x1)−µ

∑k
i=1 ∥xi+1−xi∥2. Since f0(x) is a continuous function on the compact

set Pβ , infx∈Pβ
f0(x) > −∞. Therefore,

∑∞
i=1 ∥xi+1 − xi∥2 <∞ and ∥xk+1 − xk∥ converges

to 0.

Proof of Point 3. The sequence {f0(xk)}k≥1 converging to f0(xc) is a direct consequence
of Point 2 in Proposition 3.1 and the continuity of f0(x).

3.7.4 Preliminary results towards the proof of Theorem 3.2

In this section, we only consider the case where A(xc) ̸= ∅. Before stating the preliminary
results, we have the following notations on the local feasible set S(k)(xk) of (SP1) in Algorithm
2. Our preliminary results are on the properties of the “limit” of these feasible sets as k goes
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to infinity. We define for strictly feasible x ∈ Ω,

O
(k)
i (x) :=x− ∇

ν∗kfi(x)

2Mi
,(

r
(k)
i (x)

)2
:=− fi(x)

Mi
+
∥∇ν∗kfi(x)∥2

4M2
i

,

(3.21)

which allows us to write
S(k)i (xk) = B(O

(k)
i (xk), r

(k)
i (xk)).

We let {xkp}p≥1 be a subsequence converging to xc. Since {ν∗k}k≥1 converges to 0 (see (3.9)),
we have

O
(kp)
i (xkp)→ Oi(xc), r

(kp)
i (xkp)→ ri(xc) as p→∞, (3.22)

where

Oi(xc) := xc −
∇fi(xc)
2Mi

, (ri(xc))
2 := −fi(x)

Mi
+
∥∇fi(xc)∥2

4M2
i

.

Then, we write

Si(xc) := B(Oi(xc), ri(xc)),S(xc) :=
m⋂
i=1

Si(xc).

With these notations, we can state and prove the following lemmas on the properties of
S(xc).

Lemma 3.4. Let Assumption 3.4 holds and A(xc) ̸= ∅ hold, where A(xc) := {i : fi(xc) = 0},
then

1. there exists x ∈ Ω that is strictly feasible with respect to S(xc), i.e. for any i ≥ 1,
f c
i (x) < 0 where

f c
i (x) := fi(xc) +∇fi(xc)⊤(x− xc) + 2Mi∥x− xc∥2.

For any x ∈ {x : f c
i (x) < 0, ∀i}, there exists k ∈ N such that x belongs to S(k)(xk);

2. there exists xs ∈ S(xc) such that xs ̸= xc. For any such xs and any 0 < t < 1, we let
x(t) = txc + (1− t)xs and have that x(t) is strictly feasible with respect to S(xc).

Proof of Point 1. We let A(xc) = {i1, . . . , il}. There exists y ∈ Rd such that

Jy =

−1...
−1

 , where J =

∇fi1(xc)
⊤

...
∇fil(xc)⊤

 , (3.23)

because J is full row rank due to LICQ. For any y satisfying (4.13), if ϵ0 = 1/(4Mmax∥y∥),
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then, for any ϵ < ϵ0, x = xc + ϵy/∥y∥ and i ∈ A(xc),

f c
i (x) = 0− ϵ/∥y∥+ 2Miϵ

2 < 0.

Since fi(xc) < 0 for any i /∈ A(xc), there exists ϵc > 0 such that, for ϵ < ϵc and x =

xc + ϵcy/∥y∥, f c
i (x) < 0 for any i /∈ A(xc). Thus, with ϵ = min{ϵ0, ϵc} and x = xc + ϵy/∥y∥,

we have f c
i (x) < 0 for any i. Since xc is an accumulation point, there exists k ∈ N such that

x belongs to S(k)(xk).

Proof of Point 2. We utilize the first point and the fact that xc is not strictly feasible
with respect to Ω to conclude that xc is not strictly feasible either with respect to S(xc) and
thus there exists xs ∈ S(xc) verifying xs ̸= xc. Considering that f c

i (x) is strongly convex,
we have, for any i and any 0 < t < 1, f c

i (x(t)) < max{f c
i (xc), f

c
i (xs)} ≤ 0.

Lemma 3.5. Let Assumption 3.4 and A(xc) ̸= ∅ hold, then xc is the unique optimum of the
convex optimization

min
x∈S(xc)

f0(x) + µ∥x− xc∥2. (3.24)

Moreover, the optimizer λc for the dual variable of (3.24) is also unique.

Proof. We prove the optimality of xc by contradiction. Assume xc is not the optimum
of (3.24), then there exists xs ∈ S(xc) verifying f0(xs) + µ∥xs − xc∥2 < f0(xc). According
to the second point of Lemma 3.4 in Section 3.7.4 and the continuity of f0(x), there exists
0 < t < 1 such that with x(t) = txc+(1− t)xs we have f0(x(t))+µ∥x(t)−xc∥2 < f0(xc) and
x(t) is strictly feasible with respect to S(xc). We let {xkp}p≥1 be a subsequence of {xk}k≥1

that converges to xc. Considering the first point of Lemma 3.4, there exists p such that
x(t) ∈ S(kp)(xkp). Because of the convergence of the subsequence, we can assume without
loss of generality that p is sufficiently large so that f0(x(t)) + µ∥x(t)− xkp∥2 < f0(xc). Due
to the optimality of xkp+1 for the problem (SP1) in Algorithm 2 when k = kp, we have
f0(xkp+1) +µ∥xkp+1− xkp∥2 < f0(xc), which contradicts the monotonicity of {f0(xk)}k≥1 in
Proposition 3.1. Due to optimality of xc and LICQ, there exists λc ∈ Rm such that (xc, λc)

is a KKT pair of (3.24).

We prove the uniqueness of xc and λc also by contradiction. Assume there exists
xo ∈ S(xc) \ {xc} such that f0(xo) + µ∥xo − xc∥2 = f0(xc). Due to the strong convexity of
the function f0(x) + µ∥x− xc∥2, we know

f0(
xo + xc

2
) + µ∥xo + xc

2
− xc∥2 < f0(xc),

which contradicts the optimality of xc for (3.24). Assume (xc, λc,1) and (xc, λc,2) are two
KKT pairs of (3.24) with λc,1 ̸= λc,2, then for j = 1, 2, λ(i)

c,j = 0 for any i ̸= A(xc),

m∑
i=1

λ
(i)
c,j∇fi(xc) = −∇f0(xc)
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and thus
m∑
i=1

(λ
(i)
c,1 − λ

(i)
c,2)∇fi(xc) = 0.

This contradicts LICQ at xc since λc,1 − λc,2 ̸= 0. ■

3.7.5 Proof of Theorem 3.2

This proof only considers the case where A(xc) ̸= ∅ and can be easily extended to “A(xc) = ∅”.
According to Lemma 3.5, there exists a λc ∈ Rm such that (xc, λc) is a KKT pair of (3.24),
i.e.,

∇f0(xc) +
∑

i∈A(xc)

λ(i)
c ∇fi(xc) = 0

and λ(i)
c = 0 for i /∈ A(xc),

which coincides with KKT conditions of (3.1). Thus, (xc, λc) is also a KKT pair of of (3.1).
Following the same arguments used in the proof of Lemma 3.5, one can exploit LICQ to
show that there does not exist λc,2 ̸= λc such that (xc, λc,2) is a KKT pair of (3.1).

3.7.6 Geometric illustration of an upperbound to ∥λc∥∞

With the following example, we aim to illustrate that ∥λc∥∞ is related to the geometric
properties of the feasible region. We consider an instance of the optimization problem (3.1)
where d = 2, the feasible region is convex, and (xc, λc) is a KKT pair. We only consider
the non-degenerate case where A(xc) = {1, 2} and assume LICQ holds at xc, i.e., ∇fi(xc)
are linearly independent for i = 1, 2. The objective and constraint functions are normalized
at xc, i.e., ∥∇fi(xc)∥ = 1 for i ∈ Z2

0. Then, we use coordinate transformation such that

∇f0(xc) =
[
0 −1

]⊤
. Since A(xc) = {1, 2}, the KKT pair (xc, λc) satisfies that λ(1)

c , λ
(2)
c ≥ 0

and
f1(xc) ≤ 0, f2(xc) ≤ 0

∇f0(xc) + λ(1)
c ∇f1(xc) + λ(2)

c ∇f2(xc) = 0

λ(1)
c f1(xc) = 0, λ(2)

c f2(xc) = 0.

(3.25)

Let θi be the angle between −∇f0(xc) and ∇fi(xc) for i = 1, 2. Due to the convexity of the
feasible region, 0 < θ1 + θ2 < π. By solving (3.25), we have that

λ(1)
c =

| sin θ2|
sin(θ1 + θ2)

, λ(2)
c =

| sin θ1|
sin(θ1 + θ2)

.

We illustrate in Fig. 3.6 how to construct θ1 and θ2.

We notice that
∥λc∥∞ < (sin θ)−1,
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where θ = π−θ1−θ2 is the angle between the two lines l1 := {x : (x−xc)
⊤∇f1(xc) = 0} and

l2 := {x : (x− xc)
⊤∇f2(xc) = 0}. These two lines are actually the boundaries formed by the

constraint functions f1(x) and f2(x) linearized at x = xc. From the above conclusions, we
see that for 2-dimensional optimization problems, we need a large Λ to satisfy Assumption
3.5 only when the angle θ is small.

: feasible region

Figure 3.6: The illustration of angles θ1 and θ2

3.7.7 Proof of Proposition 3.2

Since (xc, λc) is a KKT pair where ∥λc∥∞ < Λ, by using triangular inequalities on the norm
terms defining δ1(k, λc), we obtain

δ1(k, λc)

≤∥∇f0(xc) +
m∑
i=1

λ(i)
c ∇fi (xc) ∥+ ∥∇f0(xk)−∇f0(xc)∥

+ 4µ∥xk+1 − xk∥+
m∑
i=1

Λ

(
∥∇ν∗kfi (xk)−∇fi (xk) ∥

+ ∥∇fi (xk)−∇fi (xc) ∥
)
+ 4mMmaxΛ∥xk+1 − xk∥.

Similar computations for δ
(i)
2 (k, λc) give

δ
(i)
2 (k, λc) ≤|λ(i)

c fi(xc)|+ Λ|fi(xk)− fi(xc)|

+ Λ

(
Li|xk+1 − xk|+ 2Mi∥xk+1 − xk∥2

)
.

We let {xkp}p≥1 be an subsequence that converges to xc. Considering that the gradient
estimation error converges to 0 (see (3.9) and Lemma 3.1), we know the term ∥∇ν∗kpfi

(
xkp
)
−
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∇fi
(
xkp
)
∥ converges to 0 as p goes to infinity. Therefore, we have

lim
p→∞

δ1(kp, λc) = 0 and lim
p→∞

max
1≤i≤m

|δ(i)2 (kp, λc)| = 0.

Thus, for any k0 and η > 0, one can find kΛ > k0 such that max{δ1(kΛ, λc),max1≤i≤m |δ(i)2 (kΛ,

λc)|} < η/2. For k = kΛ in SZO-QQ, we have that λkΛ+1, the solution to (SP2), has an
infinite norm less than 2Λ because λc is a feasible solution to (SP2) and ∥λc∥∞ < 2Λ, which
is to say that the second termination condition of Algorithm 2 is satisfied when k = kΛ.

Since ∥xk+1 − xk∥ converges to 0 as k goes to infinity (see Proposition 3.1), we can
choose k0 to be sufficiently large so that, for any k > k0, ∥xk+1 − xk∥ ≤ ξ. Thus, the two
termination conditions are satisfied when k = kΛ.

3.7.8 Proof of Theorem 3.3

The pair (x̃, λ̃) and the index k̃ returned by Algorithm 2 satisfy x̃ = xk̃ and

max

{
δ1(k̃, λ̃),max{δ(i)2 (k̃, λ̃) : i ≥ 1}

}
≤ η

2
. (3.26)

By using triangular inequalities we have for any i,

∥∇ν∗
k̃−1fi

(
xk̃−1

)
−∇fi

(
xk̃
)
∥

≤∥∇ν∗
k̃−1fi

(
xk̃−1

)
−∇fi

(
xk̃−1

)
∥+ ∥∇fi

(
xk̃
)
−∇fi

(
xk̃−1

)
∥

≤αξ + Liξ. (3.27)

Then, based on (3.13), (3.26) and (3.27), we have

||∇f0
(
xk̃
)
+

m∑
i=1

λ̃(i)∇fi
(
xk̃
)
∥

≤
∥∥∥∥∇f0 (xk̃)+ m∑

i=1

λ̃(i)
(
∇ν∗

k̃−1fi
(
xk̃−1

)
+ 4Mi(xk̃ − xk̃−1)

)
+ 2µ(xk̃ − xk̃−1)

∥∥∥∥
+ ∥2µ(xk̃ − xk̃−1)∥+ 2Λ

m∑
i=1

(
4
∥∥Mi(xk̃ − xk̃−1)

∥∥)

+ 2Λ
m∑
i=1

(∥∥∥∇ν∗
k̃−1fi

(
xk̃−1

)
−∇fi

(
xk̃
)∥∥∥)

≤η/2 + 2Λ
m∑
i=1

(
5Miξ + αiν

∗
k̃−1

)
+ 2µξ ≤ η,

95



Chapter 3. Safe Zeroth-Order Optimization Using Quadratic Local
Approximations

and ∥∥∥λ̃(i)fi(xk̃)
∥∥∥

≤
∥∥∥∥λ̃(i)

(
fi(xk̃−1) +∇

ν∗
k̃−1fi

(
xk̃−1

)
(xk̃ − xk̃−1) + 2Mi∥xk̃ − xk̃−1∥

2

)∥∥∥∥
+ 2Λ

(
∥fi(xk̃)− fi(xk̃−1)∥+ ∥∇

ν∗
k̃−1fi

(
xk̃−1

)
−∇fi

(
xk̃−1

)
∥ · ∥xk̃ − xk̃−1∥

+ ∥∇fi(xk̃−1)∥ · ∥xk̃ − xk̃−1∥+ 2Mi∥xk̃ − xk̃−1∥
2

)
≤η/2 + 2Λ(2Liξ + αiξ

2 + 2Miξ
2)

≤η/2 + 2Λ(2Li + αi + 2Mi)ξ ≤ η,

which concludes the proof.

3.7.9 Proof of Lemma 3.2

We assume xτ is an accumulation point of {xk}k≥1 and is also a strict local minimizer.
We show the convergence of {xk}k≥1 by contradiction. We assume that C \ {xτ} ≠ ∅,
where C is the set of accumulation points of {xk}k≥1. Then, there exists ϵ > 0 such that
C ∩ (Ω \ B(xτ , ϵ)) ̸= ∅ and any x ∈ B(xτ , ϵ) \ {xτ} verifies f0(xτ ) < f0(x). Since the
sphere SP(xτ , ϵ) = {x : ∥x− xτ∥ = ϵ} is compact, we let σ = infx∈SP(xτ ,ϵ) f0(x) and have
σ > f0(xτ ). Therefore, there exists kα > 0 such that f0(xkα) < (σ + f0(xτ ))/2.

Since there exists an accumulation point outside B(xτ , ϵ) and {xk+1−xk}k≥1 converges to
0, we can find kβ > kα such that xkβ ∈ B(xτ , ϵ), xkβ+1 /∈ B(xτ , ϵ) and ∥xkβ+1− xkβ∥ ≤ (σ−
f0(xτ ))/(4Lmax). Let x̃ = {x : there exists t ∈ [0, 1] such that x = txkβ + (1− t)xkβ+1} ∩
SP(xτ , ϵ), i.e., x̃ is the intersection of SP(xτ , ϵ) and the line segment between xkβ and xkβ+1.
Then, ∥xkβ − x̃∥ ≤ (σ − f0(xτ ))/(4Lmax) and thus

f0(xkβ ) ≥ f0(x̃)−
σ − f0(xτ )

4

≥ σ − σ − f0(xτ )

4

> (σ + f0(xτ ))/2 > f0(xkα),

which contradicts with the monotonicity of {f0(xk)}k≥1 shown in Proposition 3.1. ■
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3.7.10 Proof of Lemma 3.3

To begin with, we let Dλ(y, ν) ⊂ Rm be the optimal solution set of the dual of the following
convex problem:

P(y, ν) : min
x∈Rd

f0(x) + µ∥x− y∥2

subject to fi(y) +

(
∆ν

i (y) +∇fi(y)︸ ︷︷ ︸
∇ν

i fi(y)

)⊤
(x− y) + 2Mi∥x− y∥2 ≤ 0.

(3.28)

Notice that the problem P(xk, ν
∗
k) coincides with (SP1) in Algorithm 2. Then, we have

Dλ(y, ν) := argmax
λ≥0

min
x

f0(x) + µ∥x− y∥2 +
m∑
i=1

λ(i)

(
fi(y)(

∆ν
i (y) +∇fi(y)

)⊤
(x− y) + 2Mi∥x− y∥2

)
.

By solving the inner minimization problem which is an unconstrained convex quadratic
programming, we know that there exist p ∈ Rm×1

≥0 and a ∈ R>0, independent of y and ν,
such that

Dλ(y, ν) = argmax
λ≥0

G(λ, y, ν),

where for λ ∈ Rm
≥0,

G(λ, y, ν) :=
λ⊤Q(y, ν)λ+ q⊤(y, ν)λ+ b(y, ν)

p⊤λ+ a
,

the functions Q(y, ν) ∈ Rm×m, q(y, ν) ∈ Rm×1, b(y, ν) ∈ R are continuous in (y, ν) and
Q(y, ν) is negative definite.

From the continuity of Q(y, ν), q(y, ν) and b(y, ν), the function G(λ, y, ν) is continuous
in all arguments for λ ≥ 0. Due to the continuity and the uniqueness of the optimal dual
solution Dλ(xc, 0) = {λc} (see Lemma 3.5), we can use perturbation theory [143, Proposition
4.4] to conclude that Dλ(y, ν) is upper semicontinuous at (y, ν) = (xc, 0).

Definition 3.2. Let W and V be two vector spaces. A multifunction F : W → P(V ), where
P := {P : P ⊂ V }, is said to be upper semicontinuous at w0 if for any neighborhood NV of
F (w0), there exists a neighborhood NW of w0 such that the inclusion F (w) ⊂ NV holds for
any w ∈ NW .

Considering the convergence of (xk, ν∗k) to (xc, 0) and the upper semicontinuity of Dλ(y, ν)

at (y, ν) = (xc, 0), for any δ > 0, there exists kδ > 0 such that Dλ(xk, ν
∗
k) ⊂ B(λc, δ) for any

k > kδ. Since λ◦
k+1 ∈ Dλ(xk, ν

∗
k) ⊂ B(λc, δ), we have λ◦

k+1 ∈ B(λc, δ) for any k > kδ.
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3.7.11 Proof of Theorem 3.4

According to Lemma 3.3, there exists k̄ > 0 such that ∥λ◦
k+1∥∞ ≤ 2Λ for any k ≥ k̄. Since

λ◦
k+1 is a feasible solution of (SP2) in Algorithm 2, λk+1, the optimal solution of (SP2), also

satisfies ∥λk+1∥∞ ≤ 2Λ.

Recall the definition of h(η) in (3.13). We let ξ̄ := infk≤k̄ ∥xk+1−xk∥, η̄ := inf{η : h(η) ≥
ξ̄/2} and consider the case where η < η̄. We first notice that if ∥xk+1 − xk∥ ≤ h(η), we have
∥xk+1 − xk∥ < ξ̄ and thus k > k̄. We then let K(η) := max{k : ∥xk+1 − xk∥ > h(η)} + 1.
Since ∥xK(η)+1 − xK(η)∥ ≤ h(η), we have that K(η) > k̄ and thus ∥λk+1∥∞ ≤ 2Λ, which is
equivalent to say that with k = K(η), the two termination conditions in Algoirthm 2 are
satisfied. Then k̃, the iteration number returned by Algorithm 2, verifies that k̃ ≤ K(η) + 1.
According to (3.12),

f0(x0)− inf{f0(x) : x ∈ Ω} ≥ f0(x0)− f0(xK(η)) ≥ µK(η)(h(η))2 (3.29)

and thus k̃ ≤ K(η) + 1 ≤ K(η) + 1. Therefore, according to the definition of h(η) in (3.13)
there exists A1 > 0 such that K(η) + 1 ≤ A1((Lmax +Mmax)/η)

2.

For η̄ ≤ η ≤ 1, we let A2 = supη̄≤η≤1
K(η)+1

(Lmax+Mmax)2
. According to the definition ofK(η), we

have that K(η) is monotonously decreasing with respect to η. Therefore, K(η) ≤ K(η̄) ≤ K(η̄)
and thus A2 is finite. Since K(η)+1 ≤ A2((Lmax+Mmax)/η)

2, by letting A = max{A1, A2},
we have for any 0 < η ≤ 1, K(η) + 1 ≤ A((Lmax +Mmax)/η)

2.

3.8 Final Remarks

The most notable feature of safe zeroth-order optimization methods is the feasibility of
samples. In this chapter, we focused on achieving sample feasibility by constructing local
feasible sets based on proxies of the constraint functions and their corresponding error upper
bounds. As the iterates approach the boundary of the feasible region, the local feasible sets
become smaller, resulting in slower progress of the iterates (see Section 3.7.2). To ensure a
rapid decrease in the objective function value, it is essential to maximize the size of the local
feasible sets. This can be achieved through two potential directions. Firstly, we can use less
conservative proxies and error upper bounds, for instance, by incorporating local smoothness
constants. Secondly, we can avoid getting too close to the boundary by keeping the iterates
away from it. In next chapter, our primary focus will be on exploring the latter direction.
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4 Safe Zeroth-Order Optimization Us-
ing Linear Programs

4.1 Introduction

In this chapter, we look into the same black-box optimization problem as in Chapter 3.
Therefore, we inherit the problem formulation and the notations from Sections 3.2 and 3.1.3.
As we have seen in Section 3.6.3, regarding the application of SZO-QQ to large-scale problems,
most computation time is spent on solving QCQP subproblems and the iterate progress slows
down when the iterates get close to the feasible region boundary. To further decrease the
computation and sampling complexities, in this chapter, we propose an alternative method
where the subproblems are easier to solve than QCQPs in SZO-QQ and the iterates have
the tendency to stay away from the feasible region boundary.

4.1.1 Contributions

The main contributions of this chapter are summarized as follows:

(a) We present a novel approach called Safe Zeroth-Order optimization using Linear
Programs (SZO-LP). This method iteratively solves linear programming subproblems
to derive descent directions and then decides the step length by sampling;

(b) We show that, under mild assumptions, a subsequence of SZO-LP’s iterates converges
to the primal of a KKT pair (see Definition 3.1);

(c) By application to an IEEE 30-bus benchmark problem, we show that SZO-LP can
efficiently solve an OPF problem with 11 decision variables and 158 constraints. We
compare SZO-LP with state-of-the-art approaches and demonstrate its advantages in
terms of computation time and the number of samples required.
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4.1.2 Structure of this chapter

We present SZO-LP in Section 4.2 and show the convergence properties of this method in
Section 4.3. In Section 4.4, we demonstrate the performance of SZO-LP when used to solve
the OPF problem.

4.2 Algorithm: SZO-LP

In this section, we present the necessary tools required by SZO-LP and the steps of its
implementation. Unlike SZO-QQ, where the gradient estimation step size is explicitly
expressed by the rule (3.9), in SZO-LP, we adjust the step size based on the requirement for
gradient estimation accuracy. For this aim, we let

ν(ϵ) :=
2ϵ√

dMmax

.

This function describes the step size for gradient estimation in (3.5) needed to achieve an
gradient estimation error less than ϵ, as indicated in the following proposition.

Proposition 4.1. Recall from Section 3.3 that ∆ν
i (x) := ∇νfi (x)−∇fi(x). Then,

∥∆ν(ϵ)
i (x)∥ ≤ ϵ.

This proposition is a direct consequence of Lemma 3.1. Recall that for the initial point x0
we can build a local feasible set S(0)(x0) as in (4.1). In this chapter, we make a slight modifica-
tion to the local feasible set construction. Specifically, we let l∗0 = mini∈{1,...,m} −fi(x0)/Lmax

and
ν∗0(ϵ) := min{l∗0/

√
d, ν(ϵ)}.

Since ν∗0(ϵ) ≤ ν(ϵ), we have ∥∆ν∗0 (ϵ)
i (x0)∥ ≤ ϵ for any ϵ > 0 and i ≥ 1. Then given any ϵ0 > 0,

the set

S(0)(x0) := ∩mi=1 S
(0)
i (x0), where

S(0)i (x0) :=
{
x : fi(x0) +∇ν∗0 (ϵ0)fi (x0)

⊤ (x− x0) + 2Mi∥x− x0∥2 ≤ 0
}
,

(4.1)

is feasible as shown in the following proposition, which is based on Theorem 3.1.

Proposition 4.2. All the samples used to construct S0(x0) are feasible. Moreover, the set
S(0)(x0) is convex and any x ∈ S(0)(x0) is strictly feasible.

In the lack of explicit constraint functions, a local feasible set is a common tool of several
zeroth-order methods [25, 24, 27] to ensure the feasibility of the iterates, though the specific
formulations are different. In the following, we propose our method where the local feasible
sets are used to select the step length for the derived descent direction.
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4.2 Algorithm: SZO-LP

4.2.1 Algorithm: Safe Zeroth-Order optimization using Linear Programs
(SZO-LP)

The main idea of the SZO-LP method, shown in Algorithm 3, is to iteratively select a descent
direction by executing in Line 7 LP(xk, ϵk) defined in (4.4). Thanks to the tightening contant
ϵk in the linear program involved in LP(xk, ϵk), the descent direction we obtain points into
the iterior of the feasible set. Along this direction, we select the step length (Line 9-14)
based on local feasible sets and the pre-defined length

γ(ϵk) :=
ϵk

4(Mmax + Lmax)
.

Algorithm 3 Safe Zeroth-Order optimization using Linear Programs (SZO-LP)
Input: ϵ0, ϵmin, Kswitch, initial feasible point x0 ∈ Ω
Output: x̃

1: k ← 0,TER = 0
2: while ϵk > ϵmin do
3: stmp ← LP(xk, 2ϵk)
4: if ∇ν∗k(2ϵk)f0(xk)

⊤stmp ≤ −4ϵk then
5: ϵk+1 ← 2ϵk, xk+1 ← xk
6: else
7: s∗k = LP(xk, ϵk)

8: if ∇ν∗k(ϵk)f0(xk)
⊤s∗k ≤ −2ϵk then

9: if k < Kswitch then

βk = argmax
β≥0

β s.t. xk + βs∗k ∈ S(k)(xk), (4.2)

αk = argmin
α∈{βk,γ(ϵk)}

f0(xk + αs∗k) (4.3)

10: xk+1 ← xk + αks
∗
k, ϵk+1 ← ϵk

11: else
12: xk+1 ← xk + γ(ϵk)s

∗
k, ϵk+1 ← ϵk

13: end if
14: else
15: ϵk+1 ← ϵk/2, xk+1 ← xk
16: end if
17: end if
18: k ← k + 1
19: end while

The essential steps are as follows:
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Providing the input data

The input includes an initial strictly feasible point x0 (see Assumption 3.2) and a tightening
constant ϵ0. Each iteration of the algorithm generates a new tightening constant ϵk, which
can be equal to ϵk−1, 2ϵk−1 or ϵk−1/2. Since ϵk converges to 0 (see Theorem 4.1), the user
can control the termination by providing a lower bound ϵmin for ϵk. The parameter Kswitch

marks the boundary of two methods for selecting step length, see the last bullet point.

Building local feasible sets

For a strictly feasible xk, we use (3.7) to define l∗k and

ν∗k(ϵk) := min{l∗k/
√
d, ν(ϵk)}.

We then use ν∗k(ϵk) and (4.1) to define S(k)(xk), a local feasible set around xk. From Theorem
4.2 we know that if xk+1 ∈ S(k)(xk) then xk+1 is also strictly feasible.

Solving subproblems for the descent diretion

In each iteration, we execute in Line 7 LP(xk, ϵk) to derive a search direction, which returns

argmin
∥s∥1≤1

(∇ν∗k(ϵk)f0(xk))
⊤s

s.t. (∇ν∗k(ϵk)fi(xk))
⊤s+ 2ϵk ≤ 0,

∀i ∈ A(xk, ϵk),

(4.4)

or NaN if (4.4) is not feasible. Here, A(x, ϵ) := {i : fi(x) ≥ −2ϵ} is the near-active constraint
index set. The solution to (4.4) is a direction that not only gives a fast descent but also
points into the interior of the feasible region Ω (away from the boundary). In (4.4), due to
the tightening constant ϵk, along the direction s∗k in Line 7, the constraint function values
decrease. Therefore, moving along the direction s∗k we indeed stay away from the boundary
of Ω. This direction helps to avoid small values of −fi(xk), which lead to conservative
local feasible sets S(k)(xk). Moreover, the inclusion of only near-active constraints makes
(4.4) small-size and easy to solve. We will later see in Theorem 4.1 that ϵk converges to 0.
Therefore, it is still possible that a subsequence of the iterates converges to a point on the
feasible set boundary.

We also let stmp = LP(xk, 2ϵk) and check in Line 4 whether ∇ν∗k(2ϵk)f0(xk)
⊤stmp ≤ −4ϵk,

which allows us to have Proposition 4.3, the proof of which is in Section 4.5.1. This proposition
will be later used to show in Theorem 4.2 the properties of the {xk}k≥1 as k goes to infinity.
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4.3 Convergence Properties of the Approach

Proposition 4.3. Any ϵk entering Line 7 satisfies

ϵk ≥
1

8
sup{ϵ :s = LP(xk, ϵ) verifies (4.5)

∇ν∗k(ϵ)f0(xk)
⊤s ≤ −2ϵ}.

Deciding the step length

When a direction s∗k derived in Line 7 gives sufficient descent (i.e., ∇ν∗k(ϵk)f0(xk)
⊤s∗k ≤ −2ϵk),

we move along the tentative direction s∗k. To decide the step length, we consider the local
feasible set and the pre-defined step length γ(ϵk) that is guaranteed to achieve a non-trivial
descent (see Lemma 4.1). In (4.2), we calculate by bisection the largest step length within
the local feasible set to derive αk in (4.3). The use of local feasible sets in Line 10 allows
us to obtain a larger step length than γ(ϵ), when xk is not close to the boundary of the
feasible set. This is because, from the formulation (4.1), smaller values of fi(xk) lead to
larger sizes of S(k)i (xk) while γ(ϵk) is independent of how far the iterates are from the feasible
set boundary. When k > Kswitch, we let the step length be γ(ϵk) as in Line 12, which is
useful for the proof of the iterates’ properties as k goes to infinity (see Theorem 4.2). The
selection of Kswitch is not critical since we use the step length in Line 10 for k < Kswitch

instead of that defined in Line 12 only to accelerate the descent in the early iterations of the
algorithm.

On the other hand, if the direction s∗k cannot give sufficient descent, we let ϵk+1 = ϵk/2

in Line 15 to relax the tightened constraints in (4.4). This relaxation makes it easier for
s∗k+1 to give sufficient descent, i.e., to satisfy ∇ν∗k(ϵk+1)f0(xk+1)

⊤s∗k+1 ≤ −2ϵk+1. Only when
s∗k+1 gives sufficient descent will we move along s∗k+1 to a new point.

We refer the readers to Remark 4.1 for how SZO-LP is compared with some state-of-the-art
methods.

4.3 Convergence Properties of the Approach

In this section, we aim to show that, under mild conditions and by letting ϵmin = 0, the
sequence {xk}k≥1 produced in Algorithm 3 has an accumulation point xc that is also the
primal of a KKT pair of (3.1). To start with, we show in Lemma 4.1 that, whenever
xk+1 ̸= xk, the new iterate xk+1 is strictly feasible and the objective function value gets a
non-trivial decrease.

Lemma 4.1. Suppose s∗k derived in Line 7 of Algorithm 3, satisfies

∇ν∗k(ϵk)f0(xk)
⊤s∗k ≤ −2ϵk.
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We have that xk + γ(ϵk)s
∗
k is strictly feasible. Furthermore xk + γ(ϵk)s

∗
k satisfies

f0(xk + γ(ϵk)s
∗
k)− f0(xk) < −ϵ2k/(8(Mmax + Lmax)). (4.6)

The proof of Lemma 4.1 is in Section 4.5.2. The main idea is to utilize the smoothness
constants in Assumption 3 to upper-bound fi(xk + γ(ϵk)) for i ∈ Zm

0 . Based on this lemma,
we have the following theorem on the sequences {xk}k≥1 and {ϵk}k≥1 as k goes to infinity.

Theorem 4.1. The following arguments hold:

1. The sequence {f0(xk)}k≥1 is non-increasing;

2. There exists at least one accumulation point of the sequence {xk}k≥1. For any accumu-
lation point xc,

lim
k→∞

f0(xk) = f0(xc) > −∞.

3. The sequence {ϵk}k≥1 converges to 0.

Proof. The first point is a direct consequence of Lemma 4.1, which implies that whenever
the iterate moves to a new point the objective function value decreases.

Proof of Point 2. Since {f0(xk)}k≥1 is non-increasing, f0(xk) ≤ f0(x0), for any k ≥ 1,
and thus xk ∈ Pβ . Due to the boundedness of Pβ , by the Bolzano–Weierstrass theorem, we
know that there exists at least one accumulation point of {xk}k≥1. For any accumulation
point xc, there exists a subsequence {xkp}p≥1 converging to xc. Due to the continuity of
f0(x),

lim
p→∞

f0(xkp) = f0(xc) > −∞.

By utilizing again the monotonicity of {f0(xk)}k≥1, we have limk→∞ f0(xk) = f0(xc) > −∞.

Proof of Point 3. We show this result through contradiction by assuming that {ϵk}k≥1

does not diminish as k goes to infinity. Based on this assumption, we can show that {ϵk}k≥1

does not converge to any non-zero values. If {ϵk}k≥1 converges to a non-zero value, by
noticing that ϵk ∈ {ϵ0 ∗ 2i : i ∈ Z}, we have that there exists K > 0 such that any k > K

verifies ϵk = ϵk−1. Then for any k > K the new iterate xk+1 is derived in Line 10 or 12
in Algorithm 3. According to Lemma 4.1, f0(xk+1) ≤ f0(xk) − ϵ2k/(8(Mmax + Lmax)) and
thus f0(xk) goes to −∞ as k goes to +∞, which contradicts Point 2. Therefore, ϵk does not
converge.

Since from Algorithm 3 {ϵk}k≥1 is bounded, we can conclude that {ϵk}k≥1 has multiple
accumulation points. Then there are ϵ > 0 and infinitely many k such that ϵk = ϵ and
ϵk−1 = ϵ/2. For any k of this kind, there exists k′ ≥ k verifying f0(xk′+1) ≤ f0(xk′) −
ϵ2/(8(Mmax + Lmax)). Consequently there are infinitely many k′ verifying f0(xk′+1) ≤
f0(xk′)− ϵ2/(8(Mmax + Lmax)), which again contradicts Point 2. ■
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4.4 Experiment on the OPF Problem

Theorem 4.1 offers us the essential tools to show in Theorem 4.2 the properties of an
accumulation point of {xk}k≥1 under Assumption 3.4.

Theorem 4.2. Suppose the iterates {xk}k≥1 with an accumulation point xc satisfy Assump-
tion 3.4, then there exists λc ∈ Rm

≥0 such that (xc, λc) is a KKT pair of (3.1).

The proof, in Section 4.5.3, is based on contradiction. If xc is not the primal of a KKT pair,
we can find r > 0, ϵ > 0 and sϵ ∈ Rd such that for any xk ∈ Br(xc) the solution s = LP(xk, ϵ)

verifies ∇ν∗k(ϵ)f0(xk)
⊤s ≤ −2ϵ. There are infinitely many k such that xk ∈ Br(xc) and s∗k is

derived through Line 7 in Algorithm 3. For any of these ks, according to (4.5), ϵk ≥ ϵ/8,
which contradicts Point 3 of Theorem 4.1.

Remark 4.1. Like SZO-QQ [27] and LB-SGD [24], the samples in SZO-LP are all feasible
and the iterates, under mild assumptions, have an accumulation point that is also the primal
of a KKT pair. In contrast, the tightening constant ϵk of SZO-LP keeps the iterates away
from the boundary of the feasible set and leads to less conservative local feasible sets than
those used in SZO-QQ and LB-SGD. Moreover, due to the use of the near-active set A(xk, ϵk)
the subproblems (4.4) are smaller-size and easier to solve than the QCQPs in SZO-QQ
and nonconvex subproblems in Safe Bayesian Optimization methods [25, 144]. However, to
rigorously show these advantages, we need to upper bound the number of iterations needed by
SZO-LP given certain accuracy requirements, which is left as future work.

4.4 Experiment on the OPF Problem

To illustrate the performance of SZO-LP, we apply it to the OPF problem formulated in
Section 3.6.3. In total, there are 11 decision variables and 158 constraints. We do not assume
knowledge of the system model for the optimization task. However, given a set of values
for all 11 decision variables, we can use a black-box simulation model in Matpower [140] to
sample the voltages of all the 30 buses and the current through all the transmission lines in
the network. Additionally, we assume the availability of initial values for all the decision
variables to start the SZO-LP algorithm from a feasible point.

We employ SZO-LP to reduce the quadratic cost induced by the initial decision values.
The numerical experiments are executed on a PC with an Intel Core i9 processor. The
solver we adopt for subproblems (4.4) is linprog in Matlab. We let Mi = Mmax = 0.13

and Li = Lmax = 0.5. The tuning of these two parameters is described in Remark (3.3).
Moreover, we set ϵ0 = 0.05, ϵmin = 10−6 and Kswitch = 200.

In Figures 4.1 and 4.2 , we present the results of our numerical experiments, where we
compare the performance of SZO-LP with SZO-QQ [27], LB-SGD [24] and Extremum Seeking
[106]. The QCQP subproblems in SZO-QQ are solved using MOSEK. The reference solution
of the OPF problem is returned by the optimization based on the true model and utilizing
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Figure 4.1: Decrease of cost and growth of the largest constraint function values with respect
to computation time

Figure 4.2: Decrease of cost with respect to the number of iterations
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4.4 Experiment on the OPF Problem

Gurobi [141] as the solver. The computation time in Figure 4.1 includes that consumed
by power grid simulation (through Matpower) when we query the objective and constraint
functions. We observe that all four methods keep the iterates feasible and eventually achieve
a generation cost very close to that (800.14) derived based on the true model. However,
SZO-LP achieves a faster decrease in the generation cost than the other methods.

One main reason for the superior performance of SZO-LP over SZO-QQ with respect to
computation time shown in Figure 4.1, is that the linear programming subproblems can be
solved faster. We notice that to finish the first 60 subproblems, SZO-LP takes 5.63 seconds
while SZO-QQ takes 72.06 seconds. Firstly, the subproblem in SZO-LP only takes into
account the near-active constraints while the subproblem in SZO-QQ involves all constraints.
Among the iterations of SZO-LP, the largest number of constraints is 2. Secondly, although
the big gap in efficiency shown in Figure 4.1 may be due to the specific solvers we select,
linear programs, in general, are open to a wider selection of solvers and thus allow for more
efficient implementations.

Unlike SZO-LP and SZO-QQ, LB-SGD and Extremum Seeking do not require solving
any subproblems, thus allowing for more iterations within a certain time length. This is why
LB-SGD can also achieve a low generation cost in a short time. However, considering the four
methods take the same number of samples every iteration, LB-SGD and Extremum Seeking
are less sample-efficient than SZO-LP and SZO-QQ since they require more iterations as
shown in Figure 4.2. Moreover, since LB-SGD and Extremum Seeking are based on log
barriers, these two methods require tuning of the barrier function coefficients. Improper
tuning might lead to suboptimality in LB-SGD or even infeasibility in Extremum Seeking.

SZO-LP has another advantage over SZO-QQ, which is the feature of SZO-LP keeping
the iterates away from the feasible set boundary before getting close to the primal of a KKT
pair. Iterates getting too close to the feasible set boundary might impede the decrease of
the cost. To see this point, we notice from Figure 4.1 that in SZO-QQ the decrease of the
generation cost slows down when the largest constraint function value is larger than -0.005.
The reason is that, when the largest constraint function value is close to 0, the local feasible
set constructed in SZO-QQ gets conservative, and thus the step length becomes small. When
the largest constraint function value gets larger than -0.005 for the first time, the generation
cost in SZO-QQ is 805.27 while the corresponding cost in SZO-LP is 801.77, which is much
closer to 800.14 (derived by optimization based on the true model). Therefore, we see that in
SZO-QQ the decrease of the objective function value can slow down at a much earlier stage.

In conclusion, from the experiment results, we see that SZO-LP is the most computation-
efficient and sample-efficient method, among the four approaches.

107



Chapter 4. Safe Zeroth-Order Optimization Using Linear Programs

4.5 Appendices

4.5.1 The proof of Proposition 4.3

We first show that if for some k > 0 and ϵα > 0

s1 = LP(xk, ϵα) verifies ∇ν∗k(ϵα)f0(xk)
⊤s2 ≤ −2ϵα (4.7)

then for any ϵβ ≤ ϵα/4

s2 = LP(xk, ϵβ) verifies ∇ν∗k(ϵβ)f0(xk)
⊤s2 ≤ −2ϵβ. (4.8)

With (4.7), we notice that s1 with ∥s1∥1 ≤ 1 is a feasible solution to the linear program
involved in LP(xk, ϵβ). This is because for any i ∈ A(xk, ϵβ) ⊂ A(xk, ϵα), we have

⟨∇ν∗k(ϵβ)fi(xk), s1⟩

≤⟨∇fi(xk), s1⟩+ |⟨∇fi(xk)−∇ν∗k(ϵβ)fi(xk), s1⟩|

≤⟨∇ν∗k(ϵα)fi(xk), s1⟩+ |∆
ν∗k(ϵα)
i (xk)|+ |∆

ν∗k(ϵβ)
i (xk)|

≤ − 2ϵα + ϵα + ϵα/4 < −ϵα/2 ≤ −2ϵβ.

Similarly, we can show that

⟨∇ν∗k(ϵβ)f0(xk), s1⟩ ≤ −2ϵβ.

Considering that s2 is the optimum of the linear program involved in LP(xk, ϵβ), (4.8) holds.

Then if ϵk enters Line 7 of Algorithm 3, the condition in Line 4 “stmp = LP(xk, 2ϵk)

verifying ∇ν∗k(2ϵk)f0(xk)
⊤stmp ≤ −4ϵk” does not hold. By letting

ϵα = sup{ϵ : s = LP(xk, ϵ) verifies ∇ν∗k(ϵ)f0(xk)
⊤s ≤ −2ϵ},

for any ϵβ ≤ ϵα/4, (4.8) holds. Therefore, 2ϵk ≥ ϵα/4. ■

4.5.2 Proof of Lemma 4.1

To begin with, we show that xk + γ(ϵk)s
∗
k is indeed strictly feasible. By using the mean value

theorem and noticing that ∥s∗k∥ ≤ ∥s∗k∥1 ≤ 1, we have that for any γ > 0

fi(xk + γs∗k)

<fi(xk) + γ∇fi(xk)⊤s∗k + 2γ2Mmax∥s∗k∥2

<γ∇ν∗k(ϵk)fi(xk)
⊤s∗k + γ∥∆ν∗k(ϵk)

i (x)∥ · ∥s∗k∥+ 2Mmaxγ
2

<− 2ϵkγ + ϵkγ + 2Mmaxγ
2
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<2(Mmax + Lmax)γ
2 − ϵkγ, ∀i ∈ A(xk, ϵk), (4.9)

fi(xk + γs∗k)

<fi(xk) + Lmaxγ, ∀i ∈ Zm
1 \ A(xk, ϵk). (4.10)

Therefore, we have

fi(xk + γ(ϵk)s
∗
k) < −ϵ2k/(8(Mmax + Lmax)) < 0

for any i ∈ A(xk, ϵk) and
fi(xk + γ(ϵk)s

∗
k) < −ϵk/2

for any i ∈ Zm
1 \ A(xk, ϵk). Hence, xk + γ(ϵk)s

∗
k is strictly feasible.

Similarly, we have that with γ = γ(ϵk) the objective function verifies

f0(xk + γs∗k) < f0(xk) + 2(Mmax + Lmax)γ
2 − ϵkγ.

Thus, f0(xk + γs∗k) < f0(xk)− ϵ2k/(8(Mmax + Lmax)).

4.5.3 Proof of Theorem 4.2

We only consider the case where A(xc, 0) is not empty. The proof can be easily adapted for
A(xc, 0) = ∅.

We show the result through contradiction by assuming that there does not exist λc ∈ Rm
≥0

such that (xc, λc) is a KKT pair. Then, one and only one of the following arguments holds:

1) ∇f0(xc) is not a linear combination of ∇fi(xc), i ∈ A(xc, 0),

2) ∇f0(xc) =
∑

i∈A(xc,0)
λi∇fi(xc) and there exists i∗ ∈ A(xc, 0) such that λi∗ > 0.

We show in the following that no matter which argument holds, we can always find s ∈ Rd

such that
⟨∇f0(xc), s⟩ < 0, ⟨∇fi(xc), s⟩ ≤ 0, ∀i ∈ A(xc, 0). (4.11)

If 1) holds, we let g∥ be the projection of ∇f0(xc) onto span{∇fi(xc), i ∈ A(xc, 0)} and
g⊥ := ∇f0(xc)− g∥. Then g⊥ ̸= 0, ⟨∇f0(xc), g⊥⟩ > 0 and ⟨∇fi(xc), g⊥⟩ = 0, ∀i ∈ A(xc, 0).
Therefore, s = −g⊥ satisfies (4.11).

If 2) holds, we assume without loss of generality thatA(xc, 0) ̸= {i∗}. Then we let h∥ be the
projection of ∇fi∗(xc) onto span{∇fi(xc), i ∈ A(xc, 0) and i ̸= i∗} and h⊥ := ∇fi∗(xc)− h∥.
Due to LICQ, h⊥ ̸= 0. One can verify that s = −h⊥ also satisfies (4.11).

Then we notice that since the set {s : (4.11) holds} is non-empty, there exist ϵ > 0 and
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sϵ with ∥sϵ∥1 = 1 such that

⟨∇fi(xc), sϵ⟩ ≤ −4ϵ, ∀i ∈ A(xc, 0) ∪ {0}. (4.12)

To see this result, we assume s̄ ∈ Rd satisfies (∇f0(xc))⊤s̄ < 0 and (∇fi(xc))⊤s̄ ≤ 0 for any
i ∈ A(xc, 0). We let A(xc, 0) = {i1, . . . , il}. There exists y ∈ Rd such that

Jy =

−1...
−1

 , where J =

∇fi1(xc)
⊤

...
∇fil(xc)⊤

 , (4.13)

because J is full row rank due to LICQ. Therefore, there exists σ > 0 such that

δi := −(∇fi(xc))⊤(s̄+ σy) > 0, ∀i ∈ A(xc, 0) ∪ {0}.

Then sϵ = s∗ϵ := (s̄+ σy)/∥s̄+ σy∥1 and ϵ = ϵ∗ := 1
4 mini δi/∥s̄+ σy∥1 satisfy (4.12).

Due to the continuity of ∇fi(x) for i ∈ Zm
0 , there exists r > 0 such that any x ∈ Br(xc)

verifies that
⟨∇fi(x), s∗ϵ ⟩ ≤ −3ϵ∗, ∀i ∈ A(xc, 0) ∪ {0}. (4.14)

Since xc is an accmulation point and {ϵk}k≥1 converges to 0, there exist infinitely many k

such that
k > Kswitch, xk ̸= xk+1,

A(xc, ϵk) ⊂ A(xc, 0), xk ∈ Br(xc).
(4.15)

For any of these ks, considering (4.14) and for any i

⟨∆ν∗k(ϵ
∗)

i (x), s∗ϵ ⟩ ≤ |∆
ν∗k(ϵ

∗)
i (x)| · ∥s∗ϵ∥ ≤ ϵ∗,

we have
⟨∇ν∗k(ϵ

∗)fi(x), s
∗
ϵ ⟩ ≤ −2ϵ∗, ∀i ∈ A(xc, 0) ∪ {0}. (4.16)

From Algorithm 3, we see that, for any k satisfying (4.15), xk+1 is derived through Line
12 and s∗k through Line 7. Therefore, we can use Proposition 4.3 and (4.16) to conclude
that ϵk ≥ ϵ∗/8 for infinitely many k. However, this conclusion contradicts with Point 3 of
Theorem 4.1.

4.6 Final Remarks

In this chapter, we proposed a safe zeroth-order method SZO-LP, which iteratively solves
linear programs to obtain descent directions and determines the step lengths. We showed
that, under mild conditions, the iterates of SZO-LP have an accumulation point that is also
the primal of a KKT pair. Through an experiment where we use SZO-LP to solve an OPF
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problem on the IEEE 30-bus system and compare with three other methods, we see that
SZO-LP is both computation-efficient and sample-efficient. However, currently we do not
have sufficient results to rigorously explain these advantages. In Algorithm 3, the termination
condition “ϵk > ϵmin” is heuristic since it is not clear how to select ϵmin for deriving a η-KKT
pair. This should be the first step to do for conducting a complete complexity analysis.
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5 Conclusions and Further Directions

In this thesis, we delved into the realm of data-driven control and optimization methods,
with a central focus on the challenges posed by uncertainty attenuation and quantification,
while sidestepping the use of predefined parameterized models.

In Part I, we designed controllers for data-driven robust control in the presence of
measurement noise. By rigorously quantifying the predictive errors stemming from data-
driven system representations, we were able to ensure robust constraint satisfaction and
establish upper bounds for suboptimality gaps. Our methodologies, showcased in Chapters 1
and 2, differ in their approaches to error quantification. Chapter 1 leveraged bootstrapping
to upperbound the prediction error. This method is computationally expensive and lacks
finite-sample guarantees. On the other hand, Chapter 2 implemented active experiment
design and harnessed perturbation analysis for error quantification, which relies solely on
noise range. While the error upper bounds in Chapter 2 hold almost surely, they can exhibit
conservatism, as illustrated in Section 2.6.2, since the worst-case errors might arise from
highly improbable noise realizations.

Given that the efficacy of robust control schemes hinges on how the uncertainties are
characterized, a pivotal avenue lies in devising a data-driven trajectory prediction method
that boasts rigorous and non-conservative error bounds. From the perspective of the author,
three directions might be worth exploring:

(a) Experiment design for increasing data informativity. For example, from Section
2.3.2, if the collected historical data leads to a high value of σmin(H), then the influence
of measurement will become weaker. Traditional experiment design methods are
based on good enough prior knowledge of the system model [145]. In the data-driven
framework, one can use collected data to form rough system representations to assist
formulating and solving experiment design problems.

(b) Filter design for noise attenuation in recent measurements. Several works in
the literature focus on this aspect, including [146, Chapter 6] and [51]. However, it is
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still open how to derive error bounds for the prediction based on the filtered recent
data.

(c) Less conservative upper bounds for prediction errors that hold for a high
probability. Identifying and excluding rare noise realizations responsible for worst-
case prediction errors could potentially shrink the uncertainty set underpinning robust
control tasks. If it is too hard to locate these worst-case scenarios, one can consider
using empirical methods (e.g., bootstrapping) and constructing a metric assessing how
trustworthy the empirical results are.

In Part II, we designed zeroth-order methods for safely optimizing problems with unknwon
objective and constriaint functoins. Our methods stand apart from traditional numerical
optimization due to the guaranteed feasibility throughout iterations. We achieved this feature
by constructing local feasible sets based on function smoothness. The main challenge lies
in how to enhance computation and sampling efficiency. In Section 4, we propose SZO-LP
such that the linear programming subproblems can be efficiently solved and the iterates
tend to stay away from the feasible region boundary. Although the performance is improved
compared with SZO-QQ in Section 3 when applied to solve the OPF problem, there are
several open problems worth further exploration:

(a) Non-asymptotic convergence properties. In Section 4, we only provide asymptotic
results. The key ingredients lacking are how the termination condition in Algorithm 3
is related to of the solution being an approximate KKT pair and how many iterations
needed before termination. The non-asymptotic results in Section 3 rely on the
regulation term. Moreover, the convergence rates of SZO-QQ and SZO-LP are still
lacking. Convergence rate is a standard property in first-order methods [147, Section
2.2]. To prove this property, one may have to assume local strong convexity for the
objective function.

(b) Harnessing accelerated gradient descent [148] and quasi-Newton [149, Chapter
6] methods. Both methods give faster convergence rate than standard gradient-based
methods while the second is advantageous especially when the objective function has a
Hessian matrix with a large condition number. In the literature, there are several works
on these two methods for constrained optimization [150, 151]. It is still open regarding
how they can be used for black-box optimization while ensuring sample feasibility.

(c) Sample complexity analysis in the presence of measurement noise. It is
beneficial to learn function gradients based on the collected data. However, regarding
how many samples are needed to achieve a certain level of accuracy, many open
questions might arise, e.g., what is a good sampling strategy for attenuation of noise,
which data subset is the most beneficial for function proxy construction and what
reasonable assumptions are needed to ensure error bounds.
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(d) Incorporating local Lipschitz/smoothness constants or other prior knowl-
edge. In SZO-QQ and SZO-LP, the regularity properties on the objective/constraint
functions we use are the global Lipschitz/smoothness constants (see Assumption 3.1).
Since both SZO-QQ and SZO-LP are based on local models, certainly, using local
information/prior knowledge will reduce the conservativeness and thus accelerate the
convergence.

(e) Online implementation. In reality, most safety-critical systems are subject to
time-varying disturbances. Therefore, online/real-time implementation is essential to
practical applications of optimization algorithms [152, 153]. For example, in real-life
OPF problems, the loads vary following daily and seasonal patterns. In this case, it
is challenging to maintain sample feasibility since the learned optimum at one time
instant might turn infeasible in the next. Therefore, constraint tightening is needed
against any unknown disturbance. However, doing so can compromise the optimality.
Moreover, the transient of the iterates between different time instants might exhibit
too much overshoot.

Besides the abovementioned theoretical problems, there might be issues related to the
practical applications of our zeroth-order algorithms. For example, given a specific problem,
the feature of the involved system might raise new requirements for the queries of the
unknown objective/constraint functions. In OPF problems, the varying power generation
must satisfy certain ramping constraints [154] and conform to the grid harmonics standards
[155, Chapter 3.1]. Therefore, the sampling strategies in SZO-QQ and SZO-LP might not be
feasible for real-life power system applications.
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