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Abstract

Fluid-driven frictional ruptures are important in a broad range of subsurface engineering

technologies and natural earthquake-related phenomena. Some examples of subsurface

operations where borehole fluid injections can induce frictional slip are deep geothermal

energy, CO2 and hydrogen geological storage, and wastewater disposal from oil and gas pro-

duction, among many others. On the other hand, natural phenomena such as seismic swarms,

aftershock sequences, and slow earthquakes, are often associated with transients of pore-fluid

pressure and fault slip. Motivated by the aforementioned applications and phenomena, this

doctoral thesis aims to mechanistically understand how pre-existing geological structural

discontinuities such as fractures and faults slide due to the pressurization of pore fluids, in

a three-dimensional configuration that can be used for quantitative comparisons with field

observations and preliminary engineering designs.

We first develop a numerical solver for frictional slip and fault opening along pre-existing net-

works of discontinuities in 3D elastic media. We then examine a model with Coulomb’s friction

to reproduce the initiation, propagation, and arrest of fluid-driven stable frictional ruptures.

We show that a dimensionless number containing information about the initial stress state of

the fault and the intensity of the injection governs the dynamics and shape of the ruptures in

all its stages. Next, we extend the model to account for a friction coefficient that weakens with

slip. This results in a broader range of fault slip behaviors, from unconditionally stable slip to

dynamic instabilities. We quantify the conditions controlling both the propagation of stable

slip and the nucleation of earthquakes. It is shown that the Coulomb’s friction model is both

an early-time and late-time asymptotic solution of the more general slip-weakening model.

After, we generalize some important fault rupture regimes to account for fairly arbitrary fluid

injections. In particular, the connection between the expansion rate of the slipping surface

and the history of injection volume rate is established.

Using field observations, we then apply and explore the implications of our modeling results

to injection-induced seismicity —a critical concern in the geo-energy industry. We show how

the history of injection rate may control the migration patterns of micro-seismicity, and how

these patterns may contain important information about in-situ conditions such as the fault

stress state. Further, we elaborate on how post-injection pulses of stable slip can continue

triggering seismicity due to stress-transfer effects, long after fluid injections stop. Finally,
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we propose a theoretical scaling relation for the maximum magnitude of injection-induced

slow slip events, which sheds light on how aseismic motions release potential energy during

injection operations.

This doctoral research offers for the first time a quantitative and conceptual framework for

understanding various subsurface and earthquake-science problems associated with frictional

ruptures induced by fluid injections. While some implications of our findings are already

explored in detail here, this work opens the possibility of understanding a much broader

range of field observations. Moreover, our research paves the way for designing laboratory

experiments, which is the next step to ground the theory we develop.

Key words: Fracture, friction, geological material, injection-induced aseismic slip, geo-energy

applications, injection-induced seismicity, post-injection seismicity, earthquake swarms,

geothermal energy, hydraulic stimulation technique.
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Résumé

Les ruptures frictionnelles induites par les fluides jouent un rôle important dans un large éven-

tail de technologies d’ingénierie souterraine et de phénomènes sismiques naturels. Parmi les

exemples d’opérations souterraines où les injections de fluide peuvent induire un glissement

frictionnel, citons l’énergie géothermique profonde, le stockage géologique de CO2 et d’hy-

drogène, et l’élimination des eaux usées issues de la production de pétrole et de gaz. D’autre

part, des phénomènes naturels tels que les essaims sismiques, les séquences de répliques et

les tremblements de terre lents sont souvent associés à des variations transitoires de pression

du fluide interstitiel et de glissement de faille. Motivée par les applications et les phénomènes

susmentionnés, cette thèse de doctorat vise à comprendre mécaniquement comment les dis-

continuités structurales géologiques préexistantes, telles que les fractures et les failles, glissent

du fait de la pressurisation des fluides interstitiels, dans une configuration tridimensionnelle

qui peut être utilisée pour des comparaisons quantitatives avec les observations de terrain et

permettre un dimensionnement préliminaires des opérations d’ingénierie.

Nous développons d’abord un code numérique pour le glissement frictionnel le long de dis-

continuités préexistantes dans un milieu élastique 3D. Nous examinons ensuite un modèle

avec frottement de Coulomb pour reproduire l’initiation, la propagation et l’arrêt de ruptures

frictionnelles stables induites par les fluides. Nous montrons qu’un nombre sans dimension

contenant des informations sur l’état de contrainte initial de la faille et l’intensité de l’injec-

tion régit la dynamique et la forme des ruptures. Ensuite, nous étendons ce modèle pour

tenir compte d’un coefficient de frottement qui s’affaiblit avec le glissement. Cela se traduit

par une gamme plus large de comportements de glissement de faille, allant du glissement

stable inconditionnel à l’initiation d’instabilités dynamiques. Nous quantifions les conditions

contrôlant à la fois la propagation du glissement stable et la nucléation des séismes. Il est

montré que le modèle de frottement de Coulomb est à la fois une solution asymptotique à

petits et grands temps du modèle plus général d’affaiblissement du glissement. Ensuite, nous

généralisons certains régimes importants de rupture de faille pour tenir compte d’injections

de fluide arbitraires en temps. En particulier, le lien entre le taux d’expansion de la surface de

glissement et l’historique du volume injecté est établi.

À l’aide d’observations effectuées sur le terrain, nous explorons les implications de nos ré-

sultats de modélisation à la sismicité induite par l’injection —une préoccupation majeure
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dans la pratique. Nous montrons comment l’historique du taux d’injection peut contrôler la

migration de la microsismicité, et comment cette migration peut contenir des informations

importantes sur les conditions in situ telles que l’état de contrainte de la faille. De plus, nous

montrons comment les impulsions de glissement stable post-injection peuvent continuer à

déclencher la sismicité en raison d’effets de transfert de contrainte, longtemps après l’arrêt

de l’injection de fluides. Enfin, nous proposons une relation d’échelle théorique pour la ma-

gnitude maximale des événements de glissement lent induits par l’injection, ce qui éclaire la

façon dont les mouvements asismiques libèrent l’énergie pendant les opérations d’injection.

Cette recherche doctorale présente pour la première fois un cadre quantitatif et conceptuel

pour comprendre divers problèmes associés à des ruptures frictionnelles induites par des

injections de fluides. Bien que certaines implications de nos résultats soient explorées en

détail ici, ce travail ouvre la possibilité de comprendre un éventail beaucoup plus large d’ob-

servations de terrain. De plus, notre recherche ouvre la voie à la conception d’expériences de

laboratoire, qui est la prochaine étape pour valider la théorie développée.

Mots clefs : Fracture, friction, matériau géologique, glissement aséismique induit par injec-

tion, sismicité induite par injection, sismicité post-injection, essaims de séismes, énergie

géothermique, technique de stimulation hydraulique.
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1 Introduction

1.1 Background and motivation

1.1.1 Subsurface engineering applications

In the context of subsurface industrial operations, it has been known since the Denver earth-

quakes in the 1960s, USA (Healy et al., 1968), that borehole fluid injections can induce fault

slip that is sufficiently fast to radiate detectable elastodynamic waves (earthquakes). Soon

after the Denver earthquakes, it also became clear that subsurface fluid injections can induce

slow, sometimes called aseismic1 slip (Hamilton & Meehan, 1971), which is generally more

difficult to detect by classical monitoring networks. Since then, an increasing number of

studies have inferred the occurrence of both seismic and aseismic slip as a result of industrial

fluid injections (Scotti & Cornet, 1994; Cornet et al., 1997; Bourouis & Bernard, 2007; Wei et al.,

2015; Eyre et al., 2022), with recent in-situ experiments in shallow natural faults providing

direct evidence and measurements of injection-induced fracture slip (Guglielmi et al., 2015;

Cappa et al., 2019; Cappa et al., 2022).

The reactivation of fractures and faults is particularly important for various applications in the

geo-energy industry. For instance, hydraulic stimulation techniques are commonly used with

the aim of increasing the permeability and fracture surface of deep, otherwise tight geothermal

reservoirs in order to achieve economical flow rates (Figure 1.1). The permeability increase is

expected to be attained by shear dilating pre-existing fractures (the so-called self-propping

effect) or creating new ones. The occurrence of predominantly aseismic rather than seismic

slip in these operations is considered a highly favorable outcome, as earthquakes of relatively

large magnitude can pose a significant risk to the success of these projects (Deichmann &

Giardini, 2009; Ellsworth et al., 2019). The challenge is then to engineer the fluid injection to

induce fault slip while keeping the magnitude of seismic events within acceptable levels. This

1In this thesis, we use the terms: fast slip, seismic slip, dynamic slip, and unstable slip, as nearly synonymous.
Similarly, we consider that the terms: slow slip, aseismic slip, quasi-static slip, and stable slip, have nearly the same
meaning. The distinction between both modes of sliding is commonly understood in the geophysics literature by
a threshold for the slip rate ∼ 1 cm/s.
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Chapter 1 Introduction

Figure 1.1: Schematics of hydraulic stimulation technique and steady operation of a geother-
mal power plant. Source: Department of Energy of the United States of America, Geothermal
Technologies Program.

requires a mechanistic understanding of how the multi-physical processes at play interact,

so that the link between important quantities for engineering design such as the volume and

rate of injection, the in-situ conditions, and the resulting reactivated fracture surface and

permeability changes, can be effectively established. Just as important is to understand the

physical mechanisms that trigger seismicity and what controls the size of these events.

Injection-induced fault slip and, in particular, induced seismicity, is also relevant for various

other geo-energy applications. For example, intensified industrial activities associated with

the injection of oil wastewater into permeable reservoirs have resulted in a sudden increase in

seismicity rates in the central and eastern United States (Ellsworth, 2013). Similarly, hydraulic

fracturing operations in unconventional oil and gas reservoirs have led to elevated seismic

activity in western Canada (Bao & Eaton, 2016). Injection-induced seismicity is also an

important concern in geological carbon sequestration (Zoback & Gorelick, 2012; Vilarrasa

& Carrera, 2015). These examples highlight the importance of developing a comprehensive

understanding of the mechanics of injection-induced fault slip and the seismic implications

associated with injection processes in various geo-energy contexts.

1.1.2 Natural earthquake-related phenomena

Fluid-driven fault slip occurs also due to natural processes in the Earth’s crust. For instance,

seismic swarms and aftershock sequences are often attributed to being driven by natural

fluid injections (Miller et al., 2004; Parotidis et al., 2005) or the propagation of aseismic slip

(Lohman & McGuire, 2007; Perfettini & Avouac, 2007), with recent studies suggesting that
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Figure 1.2: Schematics of a subduction zone. Modified from Bürgmann (2018).

the interplay between both mechanisms may be indeed responsible for the occurrence of

some seismic sequences (Z. Ross et al., 2017; Sirorattanakul et al., 2022; Yukutake et al., 2022;

Nishimura et al., 2023). In a similar manner, low-frequency earthquakes and tectonic tremors

are commonly considered to be driven by slow slip events (Figure 1.2) occurring downdip

the seismogenic zone in subduction zones (Rogers & Dragert, 2003; Shelly et al., 2006), where

systematic evidence of overpressurized fluids has been found (Shelly et al., 2006; Kato et al.,

2010; Behr & Bürgmann, 2021), with recent works suggesting that the episodicity and some

characteristics of slow slip events may be explained by fluid-driven processes (Warren-Smith

et al., 2019; Zhu et al., 2020; Perez-Silva et al., 2023). Metamorphic dehydration reactions

occurring within the oceanic slab (Peacock, 2009) and fault-valving behavior (Sibson, 2020)

are the two common candidates to explain this inferred over-pressurization and also the very

nature of pore pressure transients along the subduction plate interface (Figure 1.2).

1.2 Objectives

The main goal of this doctoral thesis is to mechanistically understand how pre-existing geologi-

cal structural discontinuities such as fractures and faults slide due to the pressurization of pore

fluids, in a three-dimensional configuration that can be used for quantitative comparisons

with field observations as well as preliminary engineering designs. Additionally, we aim to

explore the implications of our modeling results to the phenomenon of injection-induced

seismicity.

The following specific questions are systematically investigated throughout this thesis:
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1. How do the in-situ conditions and parameters of the injection control the reactivation

of aseismic slip on fractures and faults?

2. How does aseismic slip propagate and ultimately arrest upon the stop of fluid injections?

How seismicity may be triggered due to post-injection aseismic slip?

3. How does frictional weakening affect the propagation of aseismic slip and promote the

nucleation of earthquakes?

4. How do arbitrary injection rate histories control the dynamics of aseismic slip growth?

How do the temporal patterns of aseismic slip relate to observations of seismicity

induced by fluid injections?

5. What controls the maximum size and moment magnitude of injection-induced slow

slip events?

1.3 Research approach

In this thesis, we combine analytical and numerical techniques to understand from first princi-

ples of continuum (solid and fluid) mechanics the hydro-mechanical behavior of fractures and

faults subjected to fluid injections. A key part of our research approach involves using models

that are a simplified version of nature, rather than trying to replicate all of its complexity. We

therefore construct models that allow for profound analysis including the derivation of scaling

relations, analytical solutions, and the exploration of their entire dimensionless parameter

space via fully resolved numerical simulations. We gradually add complexity as we better

understand the problem. This helps us choose the next physical component that is most

likely to be important. Models including higher levels of complexity such as material and

stress heterogeneities and intricate geometry are extremely valuable for site-specific case

studies, among other applications. In this investigation, we attempt to provide a fundamental

understanding of the phenomenon at hand, not restricted to any specific case or application.

1.4 Organization of this manuscript

Following the guidelines of the doctoral school, this thesis is organized as a compilation

of scientific articles. As such, almost every chapter corresponds to a paper that is either

published, under review, or about to be submitted for consideration to a scientific journal.

This organization style may result in some redundancy between chapters.

The thesis is structured as follows.

• In Chapter 2, we develop a three-dimensional mechanical solver able to simulate the

propagation of frictional slip and fault opening on pre-existing discontinuities of arbi-

trary shape. These localized deformations are driven by variations in interfacial fluid
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pressure and/or total stresses applied either on the discontinuities’ faces or the far field.

This chapter is an early, significant milestone of this doctoral research, as it concerns the

numerical tool that allows us to efficiently resolve the dynamics of the physical models

we investigate in all of the subsequent chapters of this thesis. Additional information

about the numerical solver is described in Appendix A.

• In Chapter 3, we investigate the propagation of aseismic slip due to fluid injection

on a planar fault embedded in an infinite three-dimensional linearly elastic domain.

We consider fluid injections conducted at a constant volumetric rate and a constant

overpressure. It is assumed that the fault interface is governed by a constant friction

coefficient, thus focusing on the effect of long-range elastic interactions and the way

the injection is performed, in the propagation of aseismic ruptures. Analytical solutions

for the case of circular shear ruptures are derived, whereas the more general case of

non-circular ruptures is solved via numerical modeling. In addition, the fundamental

problem of the equilibrium shape of three-dimensional shear cracks is addressed.

• In Chapter 4, we examine the further propagation and ultimate arrest of aseismic slip

upon the stop of fluid injections. We consider the same fault model as in the previous

chapter and focus on the particular case of injection at a constant volumetric rate, which

is then suddenly stopped. The exact conditions determining when and where aseismic

ruptures arrest are established. Furthermore, based on our physical model and field

observations, we elaborate on how post-injection aseismic slip may trigger seismicity

after shut-in; a critical concern in the geo-energy industry.

• In Chapter 5, we extend the fault model of Chapter 3 to account for a friction coefficient

that weakens with slip. We focus on the simpler yet insightful case of axisymmetric

circular shear ruptures and quantify the effect of frictional rheology in aseismic slip

propagation. Aseismic slip can take place in two distinct modes in this model: as

an interfacial rupture that is unconditionally stable, or as the quasi-static nucleation

phase of an otherwise dynamic rupture. We therefore examine both, the conditions

controlling the propagation of aseismic slip, and the conditions leading to the nucleation

of earthquakes.

• In Chapter 6, we generalize some important regimes of propagation of aseismic slip to

account for fairly arbitrary injection rate histories. The history of injection has a strong

effect on the temporal patterns of slip growth. Moreover, we use our physical model in

combination with field observations of anthropogenic seismic swarms to understand

how different migration patterns of seismic swarms can emerge from a fluid injection

that activates fault slip. The model offers a unified framework for seismic swarms driven

by the combined effect of pore pressure diffusion and aseismic slip transients resulting

from fluid injections.

• In Chapter 7, we study the conditions that control the maximum size and moment

magnitude of injection-induced slow slip events. In particular, we examine how the in-

situ conditions (stress state, fault frictional and hydraulic properties) and fluid injection

5
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operational parameters such as the accumulated volume of injected fluid, determine an

upper bound for the maximum size of episodes of injection-induced aseismic slip.

• Finally, in Chapter 8, we provide some general conclusions and perspectives for future

works.
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2 A fast boundary-element-based solver
for frictional slip and fault opening
along pre-existing discontinuities in
3D elastic media

In this chapter, we develop a boundary-element-based solver for frictional slip and fault

opening along pre-existing discontinuities of arbitrary shapes and orientations in a three-

dimensional linearly elastic medium. Spatial discretization of the quasi-static elastic equilib-

rium is performed via a collocation boundary element method. The resulting dense boundary

element matrix is compressed through a hierarchical low-rank approximation technique. Time

integration is conducted via a fully implicit scheme employing a Newton-Raphson procedure.

We use an elastoplastic-like split of the displacement discontinuities with a non-associated

flow rule. Integration of the constitutive interface laws is performed locally via an elastic

predictor-plastic corrector algorithm, to which analytical expressions for the so-called plastic

multiplier and consistent tangent operator are provided.

Contributions of Alexis Sáez (CRediT author statement)

Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing

- Original Draft, Writing - Review & Editing, Visualization, Funding acquisition.

2.1 Problem formulation

Consider a Cartesian reference system {0;e1,e2,e3} and its corresponding coordinate system

{0; x1, x2, x3}, such that the coordinate vector x can be written in index notation as x = xi e i .

Let Σ be a set of pre-existing discontinuities of arbitrary shapes and orientations embedded in

an infinite, isotropic, homogeneous, and linearly elastic three-dimensional solid. We define

the displacement jump along the discontinuities as

di (x , t ) = u+
i (x , t )−u−

i (x , t ), x ∈Σ, (i = 1,2,3) , (2.1)

7
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where u+
i and u−

i are the displacement vector fields at the upper Σ+ and lower Σ− faces of the

discontinuities, respectively, and t is time.

The quasi-static elastic equilibrium (balance of momentum, Hooke’s law, and boundary

conditions) can be written as the following boundary integral equations relating the traction

vector field t acting along the discontinuities to the displacement discontinuity d (see, for

example, Hills et al., 1996; Mogilevskaya, 2014):

ti (x , t ) = t 0
i (x)+ t∞i (x , t )+

∫
Σ

Ki j (x ,ξ;µ,ν)d j (ξ, t )dSξ, x ∈Σ, t > 0,
(
i , j = 1,2,3

)
. (2.2)

In the previous equation, t 0
i is the initial traction vector at t = 0 before any displacement

discontinuity has occurred, t∞i is the far-field applied traction vector that can be due to, for

instance, tectonic or seasonal stress changes, among others, Ki j is the hypersingular (of order

1/r 3, r = ∥x −ξ∥) elastostatic traction kernel (e.g., Hills et al., 1996; Mogilevskaya, 2014), and µ

and ν are the bulk shear modulus and Poisson’s ratio, respectively. We adopt the geomechanics

convention of normal stress positive in compression. In equation (2.2) as well as in (2.1), the

position vectors are written in the global reference frame, whereas the stress and displacement

discontinuity vectors are expressed in a local Cartesian reference system such that the index

‘3’ corresponds to the component that is normal to Σ at x , and the indices ‘1’ and ‘2’ represent

two tangential (shear) components, orthogonal with each other.

We further introduce the so-called seismic radiation damping term (Rice, 1993) in the quasi-

static elastic equilibrium, resulting in the following set of integrodifferential equations,

ti (x , t ) = t 0
i (x)+ t∞i (x , t )+

∫
Σ

Ki j (x ,ξ;µ,ν)d j (ξ, t )dSξ

+ηi j
∂d j (x , t )

∂t
, x ∈Σ, t > 0,

(
i , j = 1,2,3

)
, (2.3)

where η11 = η22 =µ/2vs , η33 = (λ+2µ)/2vp and ηi j = 0 if i ̸= j , with vs =
√
µ/ρ the shear wave

velocity of the medium, ρ the bulk density, λ = 2µν/(1−2ν) the Lamé’s first parameter, and

vp =
√

(λ+2µ)/ρ the compressional wave velocity. Equation (2.3) is known in the earthquake

modeling community as “quasi-dynamic” approximation of the fully elastodynamic boundary

integral equations. The radiation damping term corresponds to the instantaneous drop of

stress at a given point x along the fault due to a local change in slip (or opening) rate. For

slow ruptures, which are the main topic of our work, the term is negligibly small. It will only

become relevant when slip undergoes a frictional instability, notably facilitating the numerical

time integration by slowing down the otherwise infinite speed that would emerge in a purely

quasi-static model.

Failure of the pre-exisiting discontinuities is governed by Terzaghi’s effective stress (Terzaghi,

1923). The effective traction vector t ′i is defined as

t ′i (x , t ) = ti (x , t )−δi 3p(x , t ), x ∈Σ, t > 0, (i = 1,2,3) , (2.4)

8
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where δi j is the Kronecker delta.

The pre-existing discontinuities are assumed to obey a Mohr–Coulomb failure criterion with-

out any cohesion. The yield criterion can be thus written as the following local inequality,

F (t ′i ,δ) =
√

t 2
1 + t 2

2 − f (δ)t ′3 ≤ 0, (2.5)

where f is a local friction coefficient that may generally depend on the slip δ. Note that in

principle, any kind of friction law can be considered in (2.5). Here, we formulate the yield

function based on slip-dependent friction because it corresponds to the more general friction

law we adopt in the following chapters.

We adopt a local elastoplastic-like constitutive relation for the discontinuities’ interfaces

following traditional modeling approaches of rock joints (see, for example, Fredriksson, 1976;

Michalowski and Mroz, 1978; Plesha, 1987; Mroz and Giambanco, 1996; Stupkiewicz and Mróz,

2001). We therefore split the rate of displacement discontinuity ḋi in an elastic and plastic

part,

ḋi (x , t ) = ḋ e
i (x , t )+ ḋ p

i (x , t ), x ∈Σ, t > 0, (i = 1,2,3) , (2.6)

where the superscripts ‘e’ and ‘p’ denote the elastic and plastic (frictional or opening) parts,

respectively. Note that in equation (2.5), δ = ∥d p
k ∥ (k = 2,3), with d p

k the shear part of the

displacement discontinuity (plastic) vector. We further introduce a linear elastic local relation

between the rate of effective tractions and the rate of the elastic part of the displacement

discontinuity,

ṫ ′i (x , t ) = −Ci j ḋ e
j (x , t ), x ∈Σ, t > 0, (i = 1,2,3) , (2.7)

where Ci j is a diagonal elastic stiffness matrix containing the shear and normal stiffness

components of the local elastic springs modeling the fault elastic response. Note that the

minus sign in the previous equation comes from our convention of signs for tractions and

displacement discontinuities.

In the rock mechanics literature, the relation (2.7) is generally non-linear (e.g., Bandis et al.,

1983). The elastic stiffness matrix depends on the current effective traction vector. Such non-

linear relation can be indeed used to account for non-linear changes in permeability when

modeling the hydro-mechanical response of fractures and joints (see, for example, Rutqvist

and Stephansson, 2003), resulting in similar relations to the ones used in the geophysics

literature to model mature faults (Rice, 1992). In this thesis, we are however interested in

modeling a rather rigid-plastic interface. Numerically, we thus consider values of the elastic

stiffness components that are sufficiently large to obtain ∥ḋ p
i ∥≫∥ḋ e

i ∥ whenever plastic flow

occurs. The purpose of the elastic spring (2.7) can be then viewed as a “penalty” parameter,

similar to the one used sometimes in computational contact mechanics (Wriggers, 2006).

9
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We use a non-associated Mohr-Coulomb flow rule to describe the evolution of the plastic part

of the displacement discontinuity,

ḋ p
i = −γ̇∂G

∂t ′i
, G =

√
t 2

1 + t 2
2 −ψ(δ)t ′3, γ̇≥ 0, (2.8)

where γ is the plastic multiplier, G is the so-called plastic flow potential, and ψ = tan
(
φ

)
is the

dilatancy coefficient with φ the dilatancy angle, that may generally depend on slip δ. Note

that the minus sign in the flow rule (2.8) comes from our convention of signs.

Finally, the inequalities for the yield function (2.5) and plastic multiplier (2.8) can be re-written

as the Karush-Kuhn-Tucker conditions of elastoplasticity,

γ̇≥ 0, F ≤ 0, γ̇F = 0. (2.9)

2.2 Spatial discretization

We discretize the set of pre-existing discontinuities Σ using an unstructured triangulation

Γ = ∪NE

k=1Γk , where Γk is the k-th triangular element and NE is the total number of elements

in the mesh. We use the displacement discontinuity method (Crouch & Starfield, 1983) to

solve the boundary integrals in the integrodifferential equations (2.3) and employ triangular

boundary elements with piece-wise uniform displacement discontinuity. Our formulation

of the method uses the explicit formulae of Nintcheu Fata (2009, 2011), which obtained

through analytical integration, closed-form solutions for all the singular integrals appearing

in the formulation of the method in 3D using constant-displacement-discontinuity triangular

elements (Kuriyama & Mizuta, 1993). Nintcheu Fata’s formulae are notably written in a

recursive manner that facilitates their computational implementation. For complete details

of our formulation and implementation, see Appendix A. In particular, we adopt boundary

elements with one collocation point located at the centroid of each triangle. The total number

of collocation points in the mesh is therefore NC = NE , and the total number of degrees of

freedom in 3D is N = 3NC .

The spatially discretized form of the elastic equilibrium, prior substitution of equation (2.4)

into (2.3), reads as

t ′ = t 0 + t∞−p +Ed +Qḋ , (2.10)

where t ′ ∈RN is the effective traction vector containing the components of effective tractions

at all the collocation points, t o ∈ RN is the initial total traction vector, t∞ ∈ RN is the far-

field applied traction vector, d ∈RN is the displacement discontinuity vector containing the

displacement discontinuity components of all the elements in the mesh, E ∈ RN×N is the

10
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collocation boundary element matrix which is dense and non-symmetric, and Q ∈RN×N is

the so-called radiation damping matrix which is diagonal. In equation (2.10), the explicit

dependence on time of all vectors (except by t 0 which is constant) has been omitted for

simplicity.

Equation (2.10) is arranged in order that t = t m
i = (t 1

1 , t 1
2 , t 1

3 , t 2
1 , t 2

2 ..., t NC
3 ), where the index i =

1,2,3 denotes the local components expressed in the local reference system of each boundary

element, with ‘3’ corresponding to the normal component, and ‘1’ and ‘2’ the tangential ones

(see Appendix A for further details), and the index m = 1,2, ..., NC denotes the collocation

points. Note that p = (0,0, p1,0, ..., pNC ) as the pore-fluid pressure affects only the normal

component of the effective traction vector.

Finally, an essential tool that allows us to tackle three-dimensional problems in a computa-

tionally efficient manner is the approximation of the dense boundary element matrix E via

a hierarchical matrix representation EH (Hackbusch, 2015). We use an in-house implemen-

tation of hierarchical matrices which reduces significantly the memory requirements and

speed up the most expensive numerical calculations of our solver, namely, the matrix-vector

multiplications involving EH (see Ciardo et al., 2020, and references therein for further details).

2.3 Time integration

We adopt a backward Euler (fully implicit) time integration scheme. Let ∆X = X n+1 −X n be

the increment of a generic variable X from the time t n to the time t n+1 with ∆t = t n+1 − t n

being the time step. By differentiating equation (2.10) with respect to time, we obtain the

following fully discretized incremental form of the elastic equilibrium,

∆t ′ (∆d ) =∆t∞−∆p + [EH +Q/∆t ]∆d −Qv n , (2.11)

where v n ∈ RN is the slip rate vector at the previous time step. Equation (2.11) is a non-

linear system of N equations for ∆d . The non-linearity comes from the elasto-plastic split,

equations (2.5) to (2.8), which results in an implicit dependence of ∆t ′ on ∆d , as denoted on

the left-hand side of equation (2.11).

We solve (2.11) via a Newton-Raphson (NR) scheme. Let us define the NR’s residual

r (∆d ) =∆t∞−∆p + [EH +Q/∆t ]∆d −Qv n −∆t ′ (∆d ) . (2.12)

The k-th NR iteration, where ∆d k+1 =∆d k +δ∆d , is given by the following linearized system,

J(∆d k ) ·δ∆d = −r (∆d k ), (2.13)

11
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where J = ∂r /∂∆d is the Jacobian matrix, readily calculated from (2.12) as

J = EH +Q/∆t +Ct , (2.14)

with

Ct = −∂∆t ′

∂∆d
(2.15)

the so-called consistent tangent operator of elastoplasticity (see, for example, de Souza Neto

et al., 2008).

For a given increment of the total displacement discontinuity vector at the k-th NR iteration

∆d k , the solution of the linearized system (2.13) requires evaluating the corresponding incre-

ment of effective traction vector ∆t ′(∆d k ) as well as the consistent tangent operator Ct . Both

evaluations depend on the specific forms of friction and dilatancy laws. We elaborate on this

in the next section.

2.4 Integration of the constitutive interface law

The integration of the constitutive interface law is performed locally at the collocation point

level, in a similar manner to the integration of elastoplastic constitutive equations in compu-

tational plasticity that are performed at the material, Gauss points in the case of finite element

schemes (e.g., de Souza Neto et al., 2008). The formulation and implementation of the solver

are so far general and agnostic to the constitutive details of the interface. This is beneficial

from a modular programming point of view, as every time new physical ingredients at the

level of the discontinuities’ interfaces are incorporated, the solver needs just to be adapted

in little terms, in relation to the module concerning the local elastoplastic integration. Note

that by integration of the constitutive interface law, we mean precisely two things: to calculate

the effective traction vector ∆t ′ and the corresponding consistent tangent operator Ct . Ex-

pressions for both quantities were derived throughout this doctoral research at the time they

were needed to resolve the particular problem at hand. Below, we summarize the constitutive

laws utilized in each chapter. Notably, we consider a special case that we denominate as

axisymmetric model. It corresponds to the case of a single planar fault hosting frictional

ruptures induced by axisymmetric loading (more details in the following chapters). In the limit

of a Poisson’s ratio ν = 0, such configuration produces axisymmetric circular shear ruptures. In

this case, the numerical formulation becomes essentially a two-dimensional one, with one

shear and one normal component of displacement discontinuity and traction per collocation

point. Details of the collocation boundary element matrix for such a particular case are given

in Appendix A.

We consider the following models:

• In Chapter 3, a fully three-dimensional model with constant friction.

12
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• In Chapter 4, a fully three-dimensional with constant friction and an axisymmetric

model with constant friction as well.

• In Chapter 5, an axisymmetric model with slip-weakening friction.

• In Chapter 6, no numerical calculations were required.

• In Chapter 7, a fully three-dimensional model and an axisymmetric model with constant

friction.

In all of our models, we consider no dilatant behavior. Moreover, in the following sections, we

describe in detail the integration of the constitutive interface laws utilized.

2.4.1 Elastic predictor - plastic corrector algorithm

To calculate the increment of effective traction vector ∆t ′ for a given ∆d , we use a classical

elastic predictor–plastic corrector algorithm which is a two-step procedure in which the two

possible modes of contact, elastic and plastic, are solved sequentially and the final solution is

chosen as the only one satisfying the yield inequality (2.5) (see, for example, de Souza Neto

et al., 2008, for details). In the case of constant friction, an explicit solution for the plastic

corrector part of the algorithm, also known as radial return mapping, is known in terms of the

plastic multiplier increment as (e.g., equation 10.125 in Wriggers, 2006):

∆γ =
∥τtrial

s ∥− f · t trial
n

ks
, (2.16)

where τtrial
s is the shear part of the elastic-trial traction vector ∆t ′i = −Ci j∆d j , t trial

n the normal

part, and f is the local constant friction coefficient.

For the axisymmetric model with the friction coefficient being an arbitrary function of slip,

f (δ), one can show that the plastic multiplier increment follows the following implicit equation

(e.g., equation 10.124 in Wriggers, 2006),

∆γ =
|t trial

s |− f
(
d p,n

s −∆γ · sgn
(
t trial

s

)) · t trial
n

ks
, (2.17)

where ts denotes the one shear component of the traction vector, and d p,n
s is the plastic

(frictional) slip from the previous time step. Equation (2.17) is solved locally via a Newton-

Raphson procedure.

Given the plastic multiplier increment ∆γ, calculations of other relevant quantities such as

frictional slip and traction vector are readily done considering the spatially-discretized form

of equations (2.6) to (2.8). Finally, even though we do not examine problems involving fault

opening in this work, its calculation in our scheme is straightforward. Once the yield function

for fault opening is violated, that is, the elastic-trial normal component of the effective traction

13
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vector is negative, the correction is trivial, t ′n = 0. The total increment of the normal component

of displacement discontinuity resulting from the global elastic equilibrium, equation (2.11), is

the fault opening.

2.4.2 Consistent tangent operator

To calculate the consistent tangent operator, we consider the so-called consistency condition

γ̇Ḟ = 0, which states that when plastic flow occurs (i.e., γ̇> 0), the stress state t ′i has to remain

on the yield function and thus Ḟ = 0. This additional equation can be written in incremental

form as

∂F

∂t ′i
∆t ′i +

∂F

∂δ
∆δ = 0. (2.18)

Note that for constant friction, ∂F /∂δ = 0.

In general, we obtain the consistent tangent operator by direct linearization of equations (2.6)

to (2.8), to obtain

∆t ′i = −Ci j

[
∆d j +∆γ

(
∆d j

) ∂G

∂t ′j

]
, (2.19)

with ∂G/∂t1 = sin(θ), ∂G/∂t2 = cos(θ), and ∂G/∂t ′3 = 0 because of zero dilatancy, where

θ = arctan(t2/t1) with t1 and t2 the two local components of the shear traction vector. Differ-

entiation of the latter expression with respect to ∆d j leads to the following expression for the

squared blocks Cm
t of size 3×3 that composed the global tangent operator Ct :

Cm
t = Ce −Cp , with Cp = −

k1cos(θ)

k2sin(θ)

0

⊗

∂∆γ/∂∆d1

∂∆γ/∂∆d2

∂∆γ/∂∆d3

 , (2.20)

where m denotes the m-th collocation point, Ce is the diagonal elastic stiffness matrix Ci j ,

and Cp is the plastic part of the tangent operator with ⊗ the tensor product. Note that if ∆γ = 0,

that is, if the collocation point state is elastic or, in other words, no frictional slip occurs, then

Cp is a null matrix, and Cm
t = Ce . The partial derivatives of the plastic multiplier ∆γ with

respect to ∆di are obtained from the consistency condition, equation (2.18). In the case of

constant friction, calculations are straightforward, leading to the following expression:

Cm
t =

 k1 sin2 (θ) −k1 sin(θ)cos(θ) f k3 cos(θ)

−k2 sin(θ)cos(θ) k2 cos2 (θ) f k3 sin(θ)

0 0 k3

 (2.21)

From this general 3D operator, the axisymmetric case is obtained readily by considering the

only two possible directions of slip in the pseudo-2D configuration, that is, θ = 0 and θ = π.

Hence, the squared blocks Cm
t of size 2×2 that compose the block diagonal matrix Ct are given

14
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by

Cm
t =

(
0 sgn

(
t trial

s

)
f kn

0 kn

)
, (2.22)

where ts is the shear component of the traction vector, and kn is the normal component of the

elastic stiffness matrix.

Finally, for the axisymmetric model with slip-weakening friction, the expression for Cm
t is

more cumbersome yet it can be computed from equation (2.20) with the following partial

derivatives:

∂∆γ

∂∆ds
=

kssgn
(
t trial

s

)
A

, and
∂∆γ

∂∆dn
= − f

(
d p

s
)

kn

A
, (2.23)

where A = f ′ (d p
s
)

t trial
n sgn

(
t trial

s

)−ks , with f ′ the first derivative of the arbitrary function de-

scribing the dependence of friction on slip. In the case of fault opening, calculations are again

trivial; the tangent operator Ct is simply a null matrix (no more contact at the interface).

2.5 Implementation details and verification tests

The most expensive calculations in our solver are the matrix-vector multiplications involving

the dense collocation boundary element matrix E. We use an in-house multi-threaded C++

implementation of hierarchical matrices. The rest of the code is written in the Wolfram

Mathematica language, which is binded to the C++ code via an API interface using the Wolfram

Library Link Library.

When solving the global Newton–Raphson scheme employed at every backward Euler time

step, we consider that convergence is reached when the relative increment of the L2 norm

of the displacement discontinuity vector increment (our primary unknown) between two

consecutive iterations falls below 10−4. On the other hand, the linearized system at each

Newton-Raphson iteration is solved using a biconjugate gradient stabilized iterative solver

(BiCGSTAB) with a tolerance set to 10−4. In general, we choose the time step using an adaptive

scheme based on the current rupture speed. Further details can be found in each chapter, as

the time integration details depend on the specific problem under consideration.

We extensively verified our numerical solver against analytical and semi-analytical solutions

that are derived in this same work and presented in the following chapters.
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3 Three-dimensional fluid-driven stable
frictional ruptures

In this chapter, we investigate the quasi-static growth of a fluid-driven frictional shear crack

that propagates in mixed mode (II+III) on a planar fault interface that separates two identical

half-spaces of a three-dimensional solid. The fault interface is characterized by a shear strength

equal to the product of a constant friction coefficient and the local effective normal stress.

Fluid is injected into the fault interface and two different injection scenarios are considered:

injection at constant volume rate and injection at constant pressure. We derive analytical

solutions for circular ruptures which occur in the limit of a Poisson’s ratio ν = 0 and solve

numerically for the more general case in which the rupture shape is unknown (ν ̸= 0). For an

injection at constant volume rate, the fault slip growth is self-similar. The rupture radius (ν = 0)

expands as R(t ) =λL(t ), where L(t ) is the nominal position of the fluid pressure front and λ is

an amplification factor that is a known function of a unique dimensionless parameter T . The

latter is defined as the ratio between the distance to failure under ambient conditions and the

strength of the injection. Whenever λ> 1, the rupture front outpaces the fluid pressure front.

For ν ̸= 0, the rupture shape is quasi-elliptical. The aspect ratio is upper and lower bounded by

1/(1−ν) and (3−ν)/(3−2ν), for the limiting cases of critically stressed faults (λ≫ 1, T ≪ 1)

and marginally pressurized faults (λ≪ 1, T ≫ 1), respectively. Moreover, the evolution of the

rupture area is independent of the Poisson’s ratio and grows simply as Ar (t ) = 4παλ2t , where

α is the fault hydraulic diffusivity. For injection at constant pressure, the fault slip growth is

not self-similar: the rupture front evolves at large times as ∝ (αt )(1−T )/2 with T between 0 and

1. The frictional rupture moves at most diffusively (∝p
αt ) when the fault is critically stressed,

but in general propagates slower than the fluid pressure front. Yet in some conditions, the

rupture front outpaces the fluid pressure front. The latter will eventually catch the former

if injection is sustained for a sufficient time. Our findings provide a basic understanding on

how stable (aseismic) ruptures propagate in response to fluid injection in 3-D. Notably, since

aseismic ruptures driven by injection at constant rate expands proportionally to the squared

root of time, seismicity clouds that are commonly interpreted to be controlled by the direct

effect of fluid pressure increase might be controlled by the stress transfer of a propagating

aseismic rupture instead. We also demonstrate that the aseismic moment M0 scales to the

injected fluid volume V as M0 ∝V 3/2.
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This chapter is a modified version of the following scientific article:

Sáez, A., Lecampion, B., Bhattacharya, P. & Viesca, R.C. (2022). Three-dimensional fluid-driven

stable frictional ruptures. Journal of the Mechanics and Physics of Solids, 132, 103672.

Contributions of Alexis Sáez (CRediT, Contributor Roles Taxonomy)

Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing

- Original Draft, Writing - Review & Editing, Visualization, Funding acquisition.

3.1 Introduction

Fluid-driven frictional ruptures play an important role in earthquake and fault mechanics

and can occur either as a natural process or be induced by human activities. Some examples

of the natural source are related to fault valving behavior (Sibson, 1992; Zhu et al., 2020) and

metamorphic dehydration reactions (Wong et al., 1997; Hacker et al., 2003; Kato et al., 2010) in

fault systems, whereas seismic swarms (Parotidis et al., 2005; Chen et al., 2012; Hatch et al.,

2020; Z. Ross et al., 2020) and aftershock sequences (Bosl & Nur, 2002; Miller et al., 2004; Hainzl

et al., 2016; Z. Ross et al., 2017; Miller, 2020) are other natural phenomena commonly attributed

to the migration of fluids in fault zones. On the other hand, anthropogenic fluid injections

associated with hydrocarbon and geothermal operations routinely produce microseismicity

and have been extensively linked to the reactivation of faults (Healy et al., 1968; Deichmann &

Giardini, 2009; Keranen et al., 2013; Ellsworth et al., 2019; Eyre et al., 2019).

Evidence for fluid-driven frictional ruptures is generally inferred from the observation of

seismicity spreading away from natural or human-related fluid injections in the Earth’s crust

(S. Shapiro et al., 1997; Parotidis et al., 2005; Hainzl et al., 2016; Z. Ross et al., 2017; Goebel

& Brodsky, 2018; Z. Ross et al., 2020). Observed seismicity is the result of unstable (seismic)

frictional sliding that radiates detectable seismic waves. Nevertheless, seismic slip is not the

only possible result of fluid injection. In fact, stable (aseismic) slip, which is more difficult

to detect due to the virtual absence of elastodynamic waves, is a likely frequent result of the

injection of fluids as demonstrated by past large-scale fluid injections in the field (Hamilton &

Meehan, 1971; Scotti & Cornet, 1994; Bourouis & Bernard, 2007), recent laboratory and in-situ

experiments (Guglielmi et al., 2015; Scuderi & Collettini, 2016; Cappa et al., 2019; Passelègue

et al., 2020), and recent cases of injection-induced seismicity (Wei et al., 2015; Chen et al.,

2017; Eyre et al., 2019).

As suggested by a number of recent experimental and observational studies (Guglielmi et al.,

2015; Wei et al., 2015; Duboeuf et al., 2017; Bhattacharya & Viesca, 2019; Cappa et al., 2019;

Eyre et al., 2019), injection-induced aseismic slip may trigger seismicity by the transfer of

solid stresses to unstable patches in pre-existing structural discontinuities, such as fractures

and faults. Such spatio-temporal perturbation of the stress field is due to a quasi-statically

expanding fluid-driven slipping patch that propagates along an initially locked and predom-
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inantly frictionally-stable pre-existing discontinuity. In this view and in the framework of

this model, seismicity can be conceptually understood as the result of instabilities triggered

by perturbing the pre-injection stress state of frictionally-unstable patches present either

in the same pre-existing discontinuity (due to heterogeneities in rock frictional properties)

or in others nearby the propagating rupture. The potential prominence of this triggering

mechanism has increased in recent times since new investigations have suggested that fluid-

induced aseismic slip can outpace the diffusion of fluid pressure (Bhattacharya & Viesca, 2019;

Eyre et al., 2019) and may be in fact the primary cause of observed seismicity during in-situ

experiments (Guglielmi et al., 2015; Duboeuf et al., 2017) and responsible for the triggering of

hydraulic fracturing-induced earthquakes (Eyre et al., 2019).

Recent efforts for understanding injection-induced aseismic slip have been motivated mostly

by the sudden increase of seismicity due to anthropogenic fluid injection (Keranen et al., 2014;

Bao & Eaton, 2016; Goebel & Brodsky, 2018). Nevertheless, understanding the mechanics

of fluid-driven aseismic slip is indeed relevant to any phenomenon that is predominantly

characterized by stable frictional sliding and the pressurization of interfacial fluids. This

might be the case of, for instance, some seismic swarms (Chen et al., 2012; Hatch et al.,

2020), aftershock sequences (Z. Ross et al., 2017), and slow slip transients near the base of the

seismogenic zone due to fault valving (Zhu et al., 2020) or metamorphic dehydration reactions

(Kato et al., 2010).

Despite the apparent relevance of fluid-driven aseismic ruptures in a wide variety of natural

and anthropogenic phenomena, the spatio-temporal evolution of aseismic slip in response

to fluid injection remains poorly constrained in 3-D. This is, in part, due to the challenge of

solving such a moving boundary value problem in which both fault slip and rupture shape

are unknown. In this article, we investigate the mechanics of injection-induced fault slip by

solving the problem of a fluid-driven frictional shear crack that propagates in mixed mode

(II+III) on a planar fault that separates two identical half-spaces of a three-dimensional, linear

elastic, and impermeable solid. The fault interface is saturated by pressurized fluid and it is

characterized by a constant hydraulic transmissivity and a shear strength that is determined

by the product of a constant friction coefficient and the local effective normal stress. We

consider that fluid is injected into the fault interface under two injection scenarios: injection

at constant volume rate and injection at constant pressure. The model is an extension to 3-D

of a previous 2-D model presented by Bhattacharya and Viesca (2019) and more recently by

Viesca (2021). In the process, we also investigate the fundamental problem of crack-shape

selection of a frictional shear crack under localized (point-force-like) and distributed effective

shear loadings, including its dependence on the Poisson’s ratio of the bulk.

3.2 Problem formulation

We consider a fault plane located along z = 0 that separates two semi-infinite, homogeneous,

isotropic and linear elastic solids (see Figure 3.1). The fault interface is governed by Coulomb’s
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Figure 3.1: Model schematic. A planar fault separates two semi-infinite linear elastic, homoge-
neous, and isotropic solids. The fault is characterized by a constant friction coefficient and
is embedded in uniform initial fluid pressure and stress fields. Fluid is injected right into
the fault through a wellbore located along the z axis. Fluid flow is confined within the fault
plane and is fault-parallel and axisymmetric with regard to the z-axis. A quasi-static rupture
of front R(t ) whose shape is unknown is driven by axisymmetric fluid pressure diffusion that
is characterized by a nominal fluid pressure front of radius L(t ).

friction with a constant friction coefficient. The initial stress tensor is uniform and is char-

acterized by a shear stress τo resolved on the fault plane that acts along the x direction, and

a total normal stress σo to the fault plane (that acts along the z direction). We assume that

fluid is injected into the fault plane through, for instance, a wellbore, that is located along the

z axis. We also assume that the solid is impermeable and the fault interface has a uniform

and constant hydraulic transmissivity; fluid flow thus occurs only within the fault plane and is

fault-parallel and axisymmetric with regard to the z axis. Owing to the planarity of the fault

and the uniform direction of the initial shear stress τo , fluid flow induces fault slip δ and

changes in the shear stress τ resolved on the fault plane that are for all practical purposes (see

Chapter ??, Section 4.8.1 for more details) both characterized by a uniform direction along

the x axis. The magnitude of the fault slip δ is maximum at the origin (the injection point)

and vanishes along the rupture front R(t) =
{
(x, y) : δ(x, y, t ) = 0

}
. The rupture front R(t) is

unknown a priori and is to be determined as part of the solution.

The quasi-static elastic equilibrium that relates the fault slip δ to the shear stress τ on the fault

plane Γ can be written as the following boundary integral equation (Hills et al., 1996)

τ(x, y, t ) = τo +
∫
Γ

K (x −ξ, y −ζ;µ,ν)δ(ξ,ζ, t )dξdζ, (3.1)

where τo is the initial shear stress, µ is the shear modulus of the solid, ν is the Poisson’s
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ratio, and K is the hypersingular (of order 1/r 3) elastostatic traction kernel (Hills et al., 1996).

We adopt the convention of slip positive in clockwise rotation, δ(x, y, t) = ux (x, y, z = 0+, t)−
ux (x, y, z = 0−, t ), where ux is the displacement component in the x direction. We also adopt

the convention of normal stress positive in compression.

The fault is assumed to obey a Mohr-Coulomb shear failure criterion without any cohesion:∣∣τ(x, y, t )
∣∣≤ f

(
σo −p(r, t )

)
, (3.2)

where f is the constant friction coefficient, σo −p(r, t) denotes Terzaghi’s effective normal

stress to the fault plane with p(r, t ) being the spatiotemporally evolving fluid pressure, which

is axisymmetric about the point of injection {O;r,θ, z} (see Figure 3.1). We further assume

that fault slip occurs without any normal displacement discontinuity, neither dilatant nor

contractant, and that fault slip does not impact fluid flow.

We make the assumption that the surrounding rock can be considered impermeable compared

to the fault itself at the scale of the injection duration. Single phase porous media flow (Bear,

2013) in the fault thus reduces (after width averaging across the fault thickness wh) to the

following two-dimensional pressure-diffusion equation on the fault plane

S
∂p

∂t
− k

η
∇2p = 0, (3.3)

where S is a storage coefficient combining the effect of both fluid and pore compressibilities,

k is the constant and uniform fault permeability, and η the fluid dynamic viscosity.

The fault is initially fully locked (zero slip rate) and the uniform initial fluid pressure field is

equal to po . We investigate sustained fluid injection for t > 0 under two different scenarios:

either at constant volume rate or at constant overpressure. The solutions of both boundary

value problems for the two-dimensional diffusion equation are well-known (Carslaw & Jaeger,

1959) and can be written in the following functional form

p(r, t ) = po +∆p∗Π(r,αt ), (3.4)

where ∆p∗ is a characteristic pressure and Π is the dimensionless injection-induced overpres-

sure. These solutions of the diffusion equation (3.3) notably depend on the fault hydraulic

diffusivity α = k/Sη [L2/T ] via the well-known diffusion characteristic length
p
αt .

For a constant volume rate injection from a point source, the two-dimensional flow solution is

given in polar coordinates by (section 10.4, eq. 5, Carslaw and Jaeger, 1959):

∆p∗ =
Qwη

4πkwh
, Π(r, t ) = E1

(
r 2

4αt

)
, (3.5)

where Qw is the constant injection volume rate [L3/T ], wh is the fault thickness [L], and E1

is the exponential integral function. Note that the product kwh is often denoted as the fault
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hydraulic transmissivity [L3].

For the case of an injection from a finite wellbore at constant overpressure, the solution reads

(section 13.5, eq. 6, Carslaw and Jaeger, 1959):

∆p∗ =∆pw , Π(r, t ) = 1+ 2

π

∫ ∞

0
e−ξ

2αt/r 2
w

J0(ξr /rw )Y0(ξ)−Y0(ξr /rw )J0(ξ)

ξ
(

J 2
0 (ξ)+Y 2

0 (ξ)
) dξ, (3.6)

where ∆pw is the applied constant overpressure at the wellbore of radius rw , and J0 and Y0

are the zero-order Bessel functions of the first and second kind, respectively.

The uniform initial fluid pressure and stress fields must satisfy the condition |τo | < f σ′
o on the

fault plane, where σ′
o =σo −po is the initial effective normal stress. This condition means no

activation of fault slip prior to the start of the injection. Fault slip starts when the fluid pressure

increase is sufficient to reach the Mohr-Coulomb shear failure criterion. The ensuing aseismic

rupture grows due to the direct effect of the fluid pressure that reduces locally the fault strength

in (3.2), and due to the quasi-static nonlocal elastic integral operator (3.1) that operates over

the fault slip distribution δ and determines the local shear stress change consistent with the

Mohr-Coulomb strength condition.

3.3 Self-similar rupture growth due to injection at constant volume

rate

3.3.1 Scaling and similarity

We first investigate the case of a constant volume rate injection, where the fluid pressure

evolution driving the rupture is given by equation (3.5). Such a diffusion solution is self-

similar: the pressure is only function of the self-similar variable r /
p

4αt , where L(t) =
p

4αt

is the characteristic diffusion lengthscale which corresponds to the evolution of the fluid

pressure front disturbance. Because no other time or length scales enter the problem, the

quasi-static rupture will also evolve in a self-similar fashion. This result is essential for the

problem addressed in this section. We denote the a priori unknown rupture shape as R(t ) ={
(x, y) : δ(x, y, t ) = 0

}
and scale it as

R(t ) = R(t )S , (3.7)

where S is the dimensionless rupture front and R(t) the characteristic rupture lengthscale.

Moreover, we define the amplification factor λ that relates the instantaneous rupture charac-

teristic scale R(t ) to the nominal location of the fluid pressure front L(t ), such that R(t ) =λL(t ).

A value of λ> 1 indicates that the rupture lengthscale is greater than the fluid pressure front

radius, whereas a value of λ< 1 indicates the opposite.

We can scale the spatial variables (x, y) with the diffusion lengthscale L(t ) (or alternatively with

the characteristic rupture scale R(t)) while the characteristic fluid pressure scale is directly
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given by ∆p∗ in equation (3.5). Introducing these characteristic scales in the Mohr-Coulomb

and elasticity equations, allows us to close the scaling of the problem as:

x⃗

L(t )
→ x⃗,

τ− f σ′
o

f ∆p∗
→ τ,

δ

δc (t )
→ δ,

p −p0

∆p∗
→ p, (3.8)

where the characteristic slip is given by δc (t ) = f ∆p∗L(t )/µ (or alternatively by f ∆p∗R(t )/µ if

R(t ) is used for the spatial scale). Using this scaling, the dimensionless form of the problem

depends on only two dimensionless parameters:

T =
1−τo/ f σ′

o

∆p∗/σ′
o

, (3.9)

and the Poisson’s ratio ν. The dimensionless rupture shape S thus depends on both ν and T .

The parameter T is similar to the one found by Bhattacharya and Viesca (2019) in their 2D

plane-strain model of a frictional shear crack driven by injection at constant pressure, whereas

the second dimensionless parameter, the Poisson’s ratio, arises from the three-dimensional

nature of the problem considered here, in which the rupture propagates in mixed mode (II+III)

with an a priori unknown shape.

The stress-injection parameter T is crucial in the present study. It encapsulates the information

about the initial state of stress acting on the fault and the characteristic injection pressure.

More specifically, the numerator of T , 1−τo/ f σ′
o , is a measurement of the “distance” to failure

under pre-injection ambient conditions (close to zero for a critically stressed fault, and close

to one for a fault initially far away from frictional failure), whereas the denominator ∆p∗/σ′
o

is an overpressure ratio which measures the amount of pressurization due to injection with

regard to the initial effective normal stress. Both numerator and denominator are indeed

independent parameters of a more general model for a shear crack obeying slip-weakening

friction in 2-D elastic media investigated by Garagash and Germanovich (2012).

The stress-injection parameter varies between 0 and +∞. The limiting values of T are asso-

ciated with end-member scenarios that are relatively similar to the ones identified first by

Garagash and Germanovich (2012). For small values of T , the condition 1−τo/ f σ′
o ≪∆p∗/σ′

o

must be satisfied. This means that the fault is ‘critically stressed’ with regard to the overpres-

sure ratio. For large values of T , the condition ∆p∗/σ′
o ≪ 1−τo/ f σ′

o must be satisfied, so

that the fault is ‘marginally pressurized’ with regard to the level of stress criticality. Hence,

following this prior study, we denominate the corresponding end-member scenarios as a

critically stressed fault (T ≪ 1) and a marginally pressurized fault (T ≫ 1).

It is worth noting that the characteristic pressure ∆p∗ = Qwη/4πkwh increases (and therefore

the stress-injection parameter T decreases) not only when the injection volume rate Qw grows,

but also when the fluid viscosity η increases or the fault hydraulic transmissivity kwh decreases.

On the other hand, large values of∆p∗ might be eventually upper bounded if the fluid pressure

near the injection point is high enough to make fault opening a significant mechanism driving

the propagation of the rupture. Such a problem has been notably addressed in the context of
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frictional instabilities in 2-D (Azad et al., 2017).

3.3.2 Analytical solution for circular ruptures

We first consider the particular case where the Poisson’s ratio ν is set to zero such that the

solution of the problem only depends on the value of T . In this limit (ν = 0), the rupture front

R(t) is circular because the energy release rate for an axisymmetric shear load distributes

uniformly along the circular crack front (see Section 3.7.1). The dimensionless rupture shape

S is thus the unit circle and R(t ) is simply the rupture radius. For such a frictional shear crack

with a constant friction coefficient, there is no fracture energy spent during propagation. The

condition for quasi-static crack propagation then reads (see Section 3.7.1)∫ R(t )

0

∆τ(r, t )√
R(t )2 − r 2

r dr = 0, (3.10)

where the axisymmetric shear stress drop is given by

∆τ(r, t ) = τo − f
(
σ′

o −∆p∗Π(r, t )
)

. (3.11)

The stress drop can be viewed as the contribution of two terms: a constant, negative term

τo − f σ′
o which is the difference between the initial shear stress τo and the initial fault strength

f σ′
o , and an axisymmetric and positive term f ∆p∗Π(r, t) capturing the local reduction of

fault strength due to fluid injection. After a change of variable s = r /R and incorporating the

previous definition of the amplification factor λ = R(t )/L(t ) into equation (3.10), the condition

for quasi-static crack propagation can be rewritten in dimensionless form as∫ 1

0

sE1(s2λ2)p
1− s2

ds = T. (3.12)

As expected from the scaling analysis, T is the only governing dimensionless parameter and,

as a result, there is a unique value of λ for each value of T . The integral in equation (3.12) can

be evaluated analytically to obtain the following implicit equation for λ as function of T

2−γ+ 2

3
λ2

2F2

[
1 1

2 5/2
;−λ2

]
− ln(4λ2) = T, (3.13)

where γ = 0.577216... is the Euler-Mascheroni’s constant and 2F2 [ ] is the generalized hyperge-

ometric function. The relation (3.13) is plotted in Figure 3.2. This figure shows that a critically

stressed fault (T ≪ 1) is characterized by a rupture that largely outpaces the fluid pressure

front (λ≫ 1). On the other hand, a marginally pressurized fault (T ≫ 1) is characterized by a

rupture that substantially lags the fluid pressure front (λ≪ 1).

The limiting behavior of equation (3.13) for small and large λ leads to simple closed-form

expressions for the corresponding end-member cases. In the limit of a critically stressed fault

(λ≫ 1), equation (3.13) can be asymptotically expanded as T ≈ 1/(2λ2)+O(1/λ4), leading to
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the following asymptotic solution for the amplification factor

λ≈ 1p
2T

. (3.14)

Likewise in the limit of a marginally pressurized fault (λ≪ 1), equation (3.13) follows the

asymptotic expansion T ≈ 2−γ− ln(4λ2)+O(λ2), that can be inverted to obtain

λ≈ 1

2
e(2−γ−T )/2. (3.15)

Since in the critically stressed limit, the pressurized fault patch is small compared to the

rupture area, the fluid pressure perturbation can be approximated by a monopole distribution.

Such approximation is, in terms of local reduction of fault strength, equal to a point force

given by

f ∆p∗Π(r, t ) ≈ f ∆p∗
(
2π

∫ +∞

0
Π(r, t )r dr

)
δdi r ac (r )/2πr = 2α f ∆p∗tδdi r ac (r )/r, (3.16)

where δdi r ac is the Dirac delta function in polar coordinates. Replacing this approximation in

equation (3.11), and then evaluating the crack propagation condition, equation (3.10), leads

equivalently to the asymptotic solution for λ in the critically stressed limit, equation (3.14).

On the other hand, in the marginally pressurized limit where the crack size is small compared

to the pressurized area, the fluid pressure perturbation within the crack can be approximated

by considering the behavior of the exponential integral function in equation (3.5) for small

values of its argument. Such approximate injection-induced local reduction of fault strength

is

f ∆p∗Π(r, t ) ≈− f ∆p∗
(
2ln

(
r /

p
4αt

)
+γ

)
. (3.17)

Again, replacing this approximation in the crack propagation condition, equation (3.10), leads

alternatively to the asymptotic solution for λ in the marginally pressurized limit, equation

(3.15).

The purpose of the previous analysis is to highlight the asymptotic form of the driving forces

related to the two end-member cases. As we will see later, both fault slip and rupture shape will

also show well-defined asymptotic behaviors, and thus the results can be directly associated

with the type of force that drives the crack growth in both limiting cases.

The asymptotic solutions (3.14) and (3.15) are shown in Figure 3.2 together with the general

solution given by equation (3.13). Note that the transition between both propagation regimes

(defined as λ = 1) occurs at T ≈ 0.5915.

Another interesting analytical result is the rupture speed Vr that decreases with the square
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(marginally pressurized fault)

(critically stressed fault)

Figure 3.2: Analytical solution for the amplification factor λ for circular ruptures (ν = 0)
driven by injection at constant volume rate. λ relates the rupture radius R(t ) to the nominal
position of the fluid pressure front L(t) =

p
4αt as R(t) =λL(t). The amplification factor λ is

a unique function of the stress-injection parameter T = (1−τo/ f σ′
o)/(∆p∗/σ′

o). The black
curve corresponds to the analytical solution given by equation (3.13), the blue dashed curves
represent the asymptotic solutions for a critically stressed fault (T ≪ 1, λ≫ 1), equation (3.14),
and a marginally pressurized fault (T ≫ 1, λ≪ 1), equation (3.15).

root of time and is simply given by

Vr =λ

√
α

t
. (3.18)

The singularity of the rupture speed at t = 0 is a consequence of the self-similar diffusion

lengthscale
p

4αt and the absence of inertia. In addition, the acceleration of the rupture front

is equal to −λpα/(2t 3/2). This power-law deceleration is comparable to tensile hydraulic

fracture propagation under a constant injection rate albeit at a different power-law of time

(Detournay, 2016).
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3.3.3 Numerical solution for circular ruptures

The numerical solution for circular ruptures allows us to obtain the axisymmetric self-similar

slip profiles and also to verify our numerical solver against the previously derived solution

for the amplification factor λ(T ). We use the boundary-element-based solver described in

Chapter 2, and run seven simulations for values of T = 0.001, 0.01, 0.1, 0.7, 2.0, 4.0 and 7.0 with

ν = 0. We perform 10 fully implicit time steps for each simulation.

Axisymmetric slip profiles and accumulated fault slip at the injection point

Figure 3.3a displays typical slip and pore pressure spatial profiles at different times after the

start of injection. The slip profiles correspond to the case T = 0.1 where the rupture front

outpaces the fluid pressure front (λ≈ 2.3). Owing to the self-similarity of the problem, the

slip profiles at different times collapse into one single curve under the scaling of equation

(3.8). As a consequence, there is a unique dimensionless slip profile for a given value of the

stress-injection parameter T . The unique self-similar slip profiles for the different values of

T are shown in Figs. 3.3b and 3.3d for critically stressed and marginally pressurized cases,

respectively.

Furthermore, in Section 3.7.2, we derive closed-form analytical expressions for the self-similar

slip profiles in the limiting cases of critically stressed (λ≫ 1) and marginally pressurized

(λ≪ 1) faults, that are:

δ(r, t )µ

f ∆p∗R(t )
=

8

π

[√
1− r̄ 2 −|r̄ |arccos(|r̄ |)

]
(3.19)

in the marginally pressurized limit, and

δ(r, t )µ

f ∆p∗L(t )
=

2
p

2T

π

[
arccos(|r̄ |)

|r̄ | −
√

1− r̄ 2

]
, (3.20)

in the critically stressed limit, where r̄ = r /R(t ) is the self-similar radial coordinate. Equation

(3.20) is indeed valid for r ≫ L(t) and it corresponds to the “outer” solution in the critically

stressed limit. Both analytical expressions are shown in Figures 3.3b and 3.3d together with

the numerical results.

The accumulated fault slip at the injection point, δ(r = 0, t), is plotted in Figure 3.3c as a

function of the stress-injection parameter T . Note that δ(r = 0, t ) is normalized by the position

of the fluid pressure front L(t ) on the left axis and by the rupture radius R(t ) on the right axis.

δ(r = 0, t ) is easily obtained from equation (3.19) in the marginally pressurized limit as

δ(r = 0, t ) =
8

π

f ∆p∗
µ

R(t ), (3.21)
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Figure 3.3: (a) Axisymmetric spatial profile of slip (red) and fluid overpressure (blue) at three
different times for a circular rupture driven by the injection of fluid at constant volume rate.
The stress-injection parameter is T = 0.1 for the particular choice of simulation parameters:
σ0 = 120 [MPa], τ0 = 47.958 [MPa], p0 = 40 [MPa], f = 0.6, µ = 30 [GPa], ν = 0, α = 0.01 [m2/s],
Qw = 1.8 [m3/mi n], kwh = 3 ·10−12 [m3], η = 8.9 ·10−4 [Pa · s]. (b) and (d) Self-similar slip
profiles as a function of the self-similar radial coordinate r /R(t) for different values of the
stress-injection parameter T considering both numerical and asymptotic analytical solutions.
(c) Normalized accumulated fault slip at the center of the rupture (the injection point) as a
function of the stress-injection parameter T , including prefactors derived analytically (8/π)
and numerically (3.5).
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whereas in the critically stressed limit,

δ(r = 0, t ) ≈ c
f ∆p∗
µ

L(t ). (3.22)

The prefactor c is obtained numerically and is approximately 3.5 (see Figure 3.3c).

Equations (3.19) to (3.22) confirm that the relevant scale for the shear stress is f ∆p∗, as

chosen in the scaling analysis. Also, it becomes now clear that the relevant lengthscale in the

problem depends on the limiting case under consideration; for marginally pressurized faults,

the relevant lengthscale is the rupture radius R(t), whereas for critically stressed faults, the

proper lengthscale is the nominal radius of the pressurized fault patch L(t ).

Rupture radius and solver verification

In order to determine numerically the instantaneous rupture radius R(t) at every time step

tn and verify our numerical solver against the analytical solution, equation (3.13), we solve

numerically for R(tn) by searching for the position of zero slip δ(R, tn) = 0. As the solution for

slip is axisymmetric in the limit of ν = 0, we search in fact for the zeros along the entire rupture

front by taking 100 equally-spaced values of the angular cylindrical coordinate θ ∈ [0,2π). In

this way, we build the rupture front and compute finally the instantaneous rupture radius by

fitting the equation of a circle centered at the origin to the zeros found for all the values of θ

considered.

Figure 3.4a shows the results for the rupture radius as a function of the nominal location of

the fluid pressure front L(t ) =
p

4αt for different values of the stress-injection parameter T . In

such plot, self-similar solutions for the rupture growth in the form R(t ) =λL(t ) are represented

by straight lines that cross the origin and have a slope equal to the amplification factor λ. We

estimate numerically the amplification factorλ for each value of the stress-injection parameter

T , by simply averaging the ratios R(t n)/L(t n) over the different time steps of the simulation.

The numerical results for the amplification factor λ are displayed in Figure 3.4b together with

the analytical solution, equation (3.13). The numerical results are in excellent agreement with

the theoretical predictions. This plus the previous comparison with the asymptotics of fault

slip allows us to verify our numerical solver before exploring the case of non-circular ruptures,

which is solved by numerical means only. The relative error between the numerical results

and the exact analytical solution for the amplification factor λ is showed in the inset of Figure

3.4b and is approximately below 1%.

3.3.4 Numerical solution for non-circular ruptures

We move now to the more general case where the Poisson’s ratio is different than zero. It is

important to recall that the rupture shape R(t ) is not known a priori but, of course, remains

self-similar. In order to cover the relevant parameter space, we run 21 simulations for the same
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Figure 3.4: (a) Simulation results for the rupture radius R(t ) as a function of the fluid pressure
front location L(t ) =

p
4αt for different values of the stress-injection parameter T . Self-similar

solutions of the rupture growth in the form R(t ) =λL(t ) are represented by straight lines that
cross the origin and have a slope equal to the amplification factor λ. (b) Comparison between
the numerical results for the amplification factor λ and the exact value given by the analytical
solution, equation (3.13). The relative error for λ as (λnum −λexact )/λexact is displayed in the
inset.

seven values of the stress-injection parameter T considered in the previous section, 0.001,

0.01, 0.1, 0.7, 2.0, 4.0 and 7.0, for three values of the Poisson’s ratio ν = 0.15, 0.30, and 0.45.

Rupture shape

We quickly recognize in our simulations that the ruptures evolve systematically in a nearly

elliptical shape. We also observe that the aspect ratio of the ruptures depends strongly not only

on the Poisson’s ratio but also on the stress-injection parameter T , i.e., on the initial stress state

and the driving force itself. Snapshots of two rupture simulations having the same Poisson’s

ratio but different values of the stress-injection parameter are shown in Figures 3.5a-b. It is

clear that the aspect ratio for critically stressed faults (Figure 3.5a, T = 0.001, λ≫ 1) is higher

than the aspect ratio for marginally pressurized faults (Figure 3.5b, T = 7.0, λ≪ 1).

In order to quantify the rupture shape, we perform a nonlinear regression of the rupture front

at every time step assuming an elliptical shape:

R(t ) =

{
(x, y, z = 0) :

(
x

a(t )

)2

+
(

y

b(t )

)2

= 1

}
, (3.23)

where a and b are the semi-major and semi-minor axes of the ellipse. We use the same

procedure described previously to estimate the rupture front, with the only difference that
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now the spatiotemporal evolution of slip is no longer axisymmetric. Typical ellipsoidal fits of

the rupture front are displayed in Figures 3.5a-b. Further details of the computation of the

rupture fronts can be found in Section 3.7.3, in which an estimate of the misfit between the

ellipsoidal fits and the actual numerical front is also provided.

The results for the aspect ratio a/b as a function of the stress-injection parameter T and the

Poisson’s ratio ν are summarized in Figure 3.5c. Note that the aspect ratio is time-invariant due

to the self-similarity of the problem, thus, we average the aspect ratio over the simulations’ time

steps for better accuracy. Figure 3.5c displays clearly two asymptotic behaviors of the aspect

ratio for the two end-member cases of a critically stressed fault and a marginally pressurized

fault. Additional simulations were run to better explore the dependence on Poisson’s ratio for

T = 0.001 (λ≈ 22.37, critically stressed faults) and T = 7.0 (λ≈ 0.03, marginally pressurized

faults). The results are shown in Figure 3.5d. We notably found by numerical observation that

the aspect ratio grows asymptotically with the Poisson’s ratio asa/b ≈ 1/(1−ν) for critically stressed faults (T ≪ 1, λ≫ 1)

a/b ≈ (3−ν)/(3−2ν) for marginally pressurized faults (T ≫ 1, λ≪ 1)
(3.24)

It is interesting to note that the aspect ratio for critically stressed faults, a/b ≈ 1/(1−ν), is

similar to the results obtained by Gao (1988) and Favier et al. (2006) for three dimensional

planar shear-crack under uniform remote loading and a uniform energy release rate along the

crack front.

Generalized amplification factor λ

Since the rupture front R(t ) is self-similar and nearly elliptical, we can write a(t ) =λaL(t ) and

b(t ) =λbL(t ), where λa and λb are the corresponding amplification factors for the semi-major

and semi-minor axes of the rupture front, respectively. Note that λa and λb depend only on

the stress-injection parameter T and the Poisson’s ratio ν. The evolution of a(t ) and b(t ) as a

function of the fluid pressure front location L(t ) =
p

4αt is shown in Figure 3.6a for different

values of the stress-injection parameter T and the Poisson’s ratio ν. In this figure, we also

include the reference circular case ν = 0, and indicate the meaning of λa , λb , and λ as the

slopes of the straight lines for a(t ), b(t ), and R(t ) (of the reference circular case), respectively.

Figure 3.6a shows that the major and minor axes for the elliptic ruptures (ν ̸= 0) lie about the

radius for the reference circular solution (ν = 0). For a given value of T and any value of ν,

we find that the geometric mean of a(t ) and b(t ),
p

a(t )b(t ), is equal to the radius R(t ) of the

circular crack solution for the same value of T (and ν = 0). This equality is equivalent to the

equality of amplification factors

λ =
√
λaλb =

p
a(t )b(t )

L(t )
(3.25)
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Figure 3.5: Typical simulations’ snapshots and ellipsoidal fits (blue curves) of the rupture front
for ν = 0.3 and (a) T = 0.001 (λ≈ 22.37, a critically stressed fault) and (b) T = 7.0 (λ≈ 0.03, a
marginally pressurized fault). The red points indicate the collocation points that have slipped.
In the background, the unstructured mesh made on triangular boundary elements with
quadratic shape functions. (c) Aspect ratio a/b as a function of the stress-injection parameter
T for different values of the Poisson’s ratio ν. (d) Aspect ratio a/b with increased resolution
for the Poisson’s ratio ν for the two end-member cases, T = 0.001 (λ≈ 22.37, critically stressed
faults) and T = 7.0 (λ≈ 0.03, marginally pressurized faults).
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This is demonstrated in the inset of Figure 3.6a in which the numerical values ofλnum =
√
λaλb

for all values of T and ν are plotted against the exact solution for circular ruptures λci r c .

The numerical results for equation (3.25) are plotted in Figure 3.6b together with the analytical

solution, equation (3.13), for all values of T and ν. In the inset, the relative difference between

the numerical results and the analytical solution are also displayed. Figure 3.6b thus demon-

strates that equation (3.25) is a generalization of the amplification factor that is now valid for

any value of the Poisson’s ratio. In the particular case of ν = 0, equation (3.25) reduces simply

to λ = R(t)/L(t), as originally defined when deriving the analytical solution for the circular

rupture case.

Poisson’s ratio-independent rupture area

The generalized amplification factor λ =
√
λaλb has a clear physical meaning. Indeed, it is

equivalent to the squared root of the ratio between the instantaneous elliptic rupture area

Ar (t) = πa(t)b(t) and the instantaneous pressurized area πL2(t): λ =
√

Ar (t )/(πL2(t )) such

that the evolution of the rupture area Ar (t ) is simply given by

Ar (t ) = 4παλ2t (3.26)

and is thus independent of the value of the Poisson’s ratio ν. The Poisson’s ratio (together

with the value of T ) modifies the shape of the ruptures, which are more or less elongated,

but it does not modify the rupture area, which solely depends on T . The rupture area Ar

evolves linearly with time and proportionally to the injected volume (∝V ) for such a constant

injection rate case.

Furthermore, for the two end-member cases of critically stressed and marginally pressurized

faults, equations (3.14) and (3.15) lead to simple closed-form expressions for the evolution of

the rupture area as function of the stress-injection parameter T :Ar (t ) ≈ 2παt/T for critically stressed faults (T≪1, λ≫1)

Ar (t ) ≈παe2−γ−T t for marginally pressurized faults (T ≫ 1, λ≪ 1)
(3.27)

It is worth noting that David and Lazarus (2022) obtained recently a somewhat similar result in

their study of tensile crack growth under the Paris’ fatigue law (with a uniform energy release

rate being a limiting case). They found, also by numerical observation, that a circular crack

solution is sufficient to predict the area of a rupture for any non-circular crack.

Rupture front R(t ) for the end-member cases

The asymptotic expressions for the aspect ratio (3.24) plus equation (3.27), lead to the following

closed-form expressions for the evolution of the semi-major a(t ) and semi-minor b(t ) axes of
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Figure 3.6: (a) Evolution of the semi-major a(t ) and semi-minor b(t ) axes of quasi-elliptical
ruptures as a function of the fluid pressure front location L(t) for different values of the
stress-injection parameter T and Poisson’s ratio ν. Solid red lines correspond to the analytical
solution for ν = 0, equation (3.13). λa and λb are the slopes of the straight lines for a(t) and
b(t ), respectively. Inset: comparison between the numerical results for the geometric mean√
λaλb and the exact analytical solution for circular ruptures λci r c . (b) Comparison between

the numerical values of the generalized amplification factor λnum =
√
λaλb =

p
a(t )b(t )/L(t )

(symbols) and λci r c (solid line). Inset: the relative difference (λnum −λci r c )/λci r c as a function
of the amplification factor λci r c .

the rupture front for critically stressed faults (λ≫ 1):

a(t ) ≈
√

2αt

(1−ν)T
, b(t ) ≈

√
(1−ν)2αt

T
, (3.28)

and for marginally pressurized faults (λ≪ 1):

a(t ) ≈
√

3−ν
3−2ν

p
αt ·e(2−γ−T )/2, b(t ) ≈

√
3−2ν

3−ν
p
αt ·e(2−γ−T )/2. (3.29)

Since the rupture front is quasi-elliptical, equations (3.28) and (3.29) fully define the spatiotem-

poral evolution of the rupture front R(t ) for the end-member cases.

Non-axisymmetric slip profiles and accumulated fault slip at the injection point

The non-axisymmetric self-similar slip profiles are unique for a given combination of T and ν.

Some typical slip profiles along the x-axis (normalized by a(t )) are shown in Figures 3.7a-b for

different values of the stress-injection parameter T and ν = 0.3. The accumulated fault slip at

the injection point δ(r = 0, t) is plotted in Figure 3.7c for all simulations as a function of the

stress-injection parameter T and the Poisson’s ratio ν. In Figure 3.7c, we include the circular
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Figure 3.7: (a) and (b) Self-similar slip profiles along the x-axis (normalized by a(t )) for different
values of the stress-injection parameter T and for ν = 0.3. (c) and (d) Normalized accumulated
fault slip at the injection point as a function of the stress-injection parameter T for different
values of the Poisson’s ratio, scaled by L(t ) and R(t ) =

p
a(t )b(t ), respectively.

rupture case (ν = 0) and δ(r = 0, t ) is further normalized in Figure 3.7d by the geometric meanp
a(t )b(t ) which is Poisson’s ratio-independent and in the limit of ν→ 0 corresponds to the

rupture radius R(t ).

Figures 3.7c-d shows that the accumulated fault slip at the injection point decreases for

increasing values of the Poisson’s ratio. In addition, we recover a similar scaling for δ(r = 0, t )

that in the circular rupture case: δ(r = 0, t ) ∼ f ∆p∗R(t )/µ in the marginally pressurized limit,

with the characteristic rupture scale R(t) taken as
p

a(t )b(t ) in Figure 3.7d; and δ(r = 0, t) ∼
f ∆p∗L(t )/µ in the critically stressed limit.

3.3.5 Aseismic moment

The scalar moment release M0 is a key measurement in seismology to quantify the potency

of a rupture (Aki & Richards, 2002). In our planar fault model with a uniform direction of

slip δ, the time-dependent aseismic moment (we focus on the case of a circular rupture) is

M0(t ) = 2πµ
∫ R(t )

0 δ(r, t )r dr , where R(t ) is the evolving rupture radius. We can thus compute

the aseismic moment numerically for all the seven values of T considered. Furthermore, we
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can use the asymptotic solutions of the slip distribution, equations (3.19) and (3.20), to derive

closed-form expressions for the limiting behaviors of the aseismic moment. We obtain that

M0(t ) ≈ 16

9
f ∆p∗R3(t ) (3.30)

in the marginally pressurized limit, and

M0(t ) ≈ 8

3
f ∆p∗L2(t )R(t ) (3.31)

in the critically stressed limit.

Both previous equations provide the proper scaling of the aseismic moment. We use these

scalings to normalized the numerical results that are presented in Figure 3.8 as a function of

the stress-injection parameter T . In this figure, we include the corresponding prefactors of

equations (3.30) and (3.31). Note that the prefactor 8/3 in the critically stressed limit is in good

agreement with the numerical solution, despite the slip profile being approximated by the

“outer” asymptotic solution of this limit only.

Moreover, equations (3.30) and (3.31) allow us to establish the corresponding scaling relation

between the moment release M0 and the injected volume V that has been extensively sought

with the purpose of constraining the magnitude of injection-induced earthquakes (McGarr,

2014; van der Elst et al., 2016; Galis et al., 2017; McGarr & Barbour, 2018). Because R(t ) =λL(t ),

L(t ) =
p

4αt and V (t ) = Qw t , the aseismic moment M0 scales to the injected volume V as

M0 ∝V 3/2. (3.32)

3.4 Non-self-similar rupture growth due to injection at constant

pressure

3.4.1 Scaling and similarity

Under the scenario of constant pressure injection, the evolution of fluid pressure given by

equation (3.6) is no longer self-similar. This is due to the presence of a finite wellbore radius rw

where the pressure is set constant which introduces a new characteristic length in the problem.

As a result, the frictional rupture will not evolve self-similarly, like for a constant injection

rate. We recall that self-similar solutions always correspond to idealized models in which the

dimensional parameters of the independent variables (space and time in our case) are equal

to zero or infinity (Barenblatt, 1996). The infinitesimal nature of the constant-volume-rate

fluid source of the previous section and its subsequent self-similarity, can be seen in fact as

an intermediate-asymptotic behavior of a more realistic physical system in which both the

fluid source and the domain are finite. In this view, the solution of Section 3.3 is valid for times

t ≫ r 2∗/α, where r∗ is the characteristic length of the fluid source, and for t ≪ R2∗/α, where R∗
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Figure 3.8: Normalized aseismic moment for circular ruptures (ν = 0) as a function of the stress-
injection parameter T . Numerical results and asymptotic behaviors for critically stressed
(T ≪ 1, λ≫ 1) and marginally pressurized (T ≫ 1, λ≪ 1) faults.

is the characteristic length of a finite domain. Note that the introduction of, for instance, a

frictional lengthscale in the self-similar problem of injection at constant volume rate, would

also cause the loss of self-similarity in the model.

The scaling thus differs slightly from the scaling of the previous section. The finite wellbore

radius rw introduces a characteristic diffusion timescale tc = r 2
w /α with α the fault hydraulic

diffusivity, such that we obtain:

t

tc
→ t ,

x⃗

rw
→ x⃗,

τ− f σ′
o

f ∆pw
→ τ,

δ

δc
→ δ,

p −p0

∆pw
→ p, (3.33)

where ∆pw is the constant overpressure imposed at the wellbore, and δc = f ∆pw rw /µ is the

characteristic slip.

As already mentioned, the loss of self-similarity is due to the finite size of the wellbore. In fact,

radial flow from an infinitesimal fluid source at constant pressure is not physically possible.

Injection of a finite volume from an infinitesimal fluid source in such geometrical conditions

always leads to infinite pressure.

The dimensionless solution of the problem depends now on three dimensionless parameters,

a slightly different stress-injection parameter T that is a function of the constant wellbore

overpressure ∆pw

T =
1−τo/ f σ′

o

∆pw /σ′
o

, (3.34)
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the Poisson’s ratio ν, and the dimensionless time αt/r 2
w .

The limiting values of T are determined by the condition for fault slip activation, f ∆pw ≥
f σ′

o − τo , and the condition for no slip prior to injection, f σ′
o − τo > 0. Together, these

conditions imply that T varies between 0 and 1, so that the stress-injection parameter is

now upper bounded, unlike the case of injection at constant volume rate in which T can

theoretically go up to +∞.

The limit of T → 1 is characterized by the condition f ∆pw → f σ′
o −τo . This condition can

be interpreted as a scenario in which the pressure at the fluid source, ∆pw , is just enough to

activate fault slip. This is the reason why such end-member case has been named in prior

studies as marginally pressurized faults (Garagash & Germanovich, 2012; Bhattacharya &

Viesca, 2019; Viesca, 2021). On the other hand, considering that ∆pw is always positive and

finite, the limit of T → 0 is associated with the condition τ0 → f σ′
0. This condition represents

the case of faults that are about to fail before injection, and is thus named as critically stressed

faults. Unlike the problem of injection at constant volume rate in which the fluid pressure

near the injection point is always increasing, here the pressure at the wellbore is fixed and

thus the terminology of critically stressed and marginally pressurized faults is unambiguous.

Note that σ′
0 >∆pw > 0, with the upper bound being the transition to fault opening that we

do not cross in this study.

3.4.2 Approximate analytical solution for circular ruptures

The solution of the diffusion equation for injection at constant pressure from a finite source,

equation (3.6), does not allow to treat the problem of a circular rupture analytically. Never-

theless, as we are interested in solutions for times that are in general large compared to the

characteristic diffusion time, tc = r 2
w /α, we can use the following asymptotic expansion for the

instantaneous pressure profile that is valid for t ≫ tc (Jaeger, 1955)

Π(r, t ) ≈ 1−2ln(r̄ )

{
1

ln(4t̄ )−2γ
− γ

(ln(4t̄ )−2γ)2

}
(3.35)

where r̄ = r /rw and t̄ =αt/r 2
w are the dimensionless radial coordinate and the dimensionless

time, respectively, and γ = 0.577216... is the Euler-Mascheroni’s constant.

Figure 3.9a shows the comparison between the ‘exact’ numerical solution for the fluid pressure

profile, equation (3.6) (solved via numerical inversion of the Laplace transform, Stehfest, 1970)

and the asymptotic expansion (3.35). In Figure 3.9a, we also include an asymptotic expansion

of Π(r, t) with higher order corrective terms that are function of r̄ and the successive time

derivatives of the terms in curly brackets in (3.35) (Jaeger, 1955). The higher order terms have

cumbersome expressions but are necessary to capture the “near front” behavior of the fluid

pressure profile as shown in Figure 3.9a. However, for the sake of simplicity, we neglect these

corrective terms in the following.

38



Three-dimensional fluid-driven stable frictional ruptures Chapter 3

Similarly to the case of injection at constant volume rate, we define the instantaneous rupture

radius R(t) and use the condition for quasi-static propagation of a circular crack with zero

fracture energy under axisymmetric shear load, equation (3.10), with now ∆τ(r, t) = τo −
f
(
σ′

o −∆pwΠ(r, t )
)
. After some algebraic operations, this propagation condition can be

rewritten as

1

R(t )

∫ R(t )

0

Π(r, t )√
R(t )2 − r 2

r dr = T (3.36)

where T is the stress-injection parameter defined in equation (3.34) for the constant pressure

injection case. We approximate Π(r, t) =
(
p(r, t )−p0

)
/∆pw by the asymptotic expansion

(3.35). Note that in equation (3.35), one could consider to drop the term of O
(
1/ln(t̄ )2

)
and

use a first order approximation for Π(r, t) instead; however, we found that better results

are systematically obtained by keeping the second order term in any further mathematical

operation and performing first order approximations afterwards.

The integration limits of equation (3.36) have to be considered carefully, since the asymptotic

expansion for Π(r, t) gives non-physical values that are greater than unity for r /rw < 1 and

negative for r /rw beyond the intersection with the abscissa (see Figure 3.9a). In fact, the

intersection with the abscissa defines conveniently a nominal position of the fluid pressure

front, L̃(t )/rw = exp(−(1/2)
(
2γ− ln

(
4t̄

))2 /
(
3γ− ln

(
4t̄

))
), that is given at the first order by

L̃(t ) =
p

c1αt (3.37)

where c1 = e ln(4)−γ = 2.245838... ≈ 2.25. The position of the fluid pressure front L̃(t) given by

equation (3.37) is shown in Figure 3.9a at different dimensionless times. With a change of

variable s = r /R and taking care of the integration limits as discussed before, we can rewrite

equation (3.36) in dimensionless form as∫ β0

0

1p
1− s2

sd s +
∫ β

β0

Π(sR, t )p
1− s2

sds = T (3.38)

where β0 = rw /R, and β = 1 if R ≤ L̃, or β = L̃/R otherwise (R > L̃).

Equation (3.38) can be solved to obtain the evolution of the normalized rupture radius R(t )/rw

as a function of the dimensionless time αt/r 2
w and the stress-injection parameter T . The

solution is piecewise due to the piecewise definition of β that indeed separates the two

possible rupture regimes. One regime is characterized by R(t) < L̃(t) which represents a

rupture front that lags the fluid pressure front, whereas the other regime is characterized by

R(t ) > L̃(t ) in which the rupture front outpaces the fluid pressure front.

In addition, the first integral of the left-hand side of equation (3.38) can be neglected if we

assume that the rupture radius R(t) is much bigger than the wellbore radius rw , so that

β0 = rw /R ≪ 1. Hereafter, we consider β0 = 0. Let us first consider the case in which R(t ) < L̃(t ).

After integrating equation (3.38) with β = 1, we obtain at the first order the following explicit
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Figure 3.9: (a) Instantaneous spatial profile of fluid pressure for injection at constant pressure,
Π(r, t), as function of the dimensionless radial coordinate r /rw at different dimensionless
times αt/r 2

w . Comparison between the exact solution given by equation (3.6), the asymptotic
expansion (3.35) valid for αt/r 2

w ≫ 1, and an asymptotic expansion with higher order correc-
tive terms (Jaeger, 1955). (b) Approximate analytical solution for circular ruptures driven by
injection at constant pressure, given by the amplification factor λ(t ) = R(t )/L̃(t ) as a function
of the stress-injection parameter T at different dimensionless times αt/r 2

w .

expression for the evolution of the normalized rupture radius in the form of a power-law

R(t )/rw = g (T )

(
αt

r 2
w

)(1−T )/2

(3.39)

where g (T ) = c2e−c3T , with c2 = e(2−γ)/2 = 2.036825... and c3 =
(
ln(4)−γ)

/2 = 0.404539....

Note that the transition between the two rupture regimes happens at a certain time t∗ when

R(t∗) = L̃(t∗). Using the first-order equations (3.37) and (3.39), we obtain that this transition

time is

αt∗

r 2
w

=

(
g (T )

c1

)2/T

(3.40)

Finally, the solution for the case R(t) > L̃(t) is obtained by integrating equation (3.38) with

β(t ) = L̃(t )/R(t ). The solution for the rupture radius is now implicit and it is given by

f1
(
β
)

ln(R(t )/rw )+ f2
(
β
)

= ln
(
L̃(t )/rw

)(
f1

(
β
)−T

)
(3.41)
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where

f1(β) = 1−
√

1−β2, and f2(β) = ln

(
2β

1+
√

1−β2

)
+

√
1−β2

(
1− ln

(
β
))−1 (3.42)

Equations (3.39) to (3.42) can be used to define a time-dependent amplification factor in the

form λ(t ) = R(t )/L̃(t ). Such approximate analytical solution for λ(t ) is plotted in Figure 3.9b at

different dimensionless times, as a function of the stress-injection parameter T .

3.4.3 Numerical solution for circular ruptures

We now solve numerically for the case of circular ruptures to obtain the evolution of the

axisymmetric slip profiles δ(r, t). In addition, the computation of the slip profiles allows us

to calculate numerically the rupture radius R(t) and test the accuracy of the approximate

analytical solution derived in the previous section. For this purpose, we run six simulations

for values of the stress-injection parameter T = 0.01, 0.1, 0.3, 0.5, 0.7, and 0.9 and set ν = 0.

We perform 9 fully implicit time steps per simulation for values of the dimensionless time

logarithmically spaced between 1 to 108.

Axisymmetric slip profiles and accumulated fault slip at the rupture center

Figures 3.10a, 3.10b and 3.10c display the non-self-similar slip profiles for different values

of the stress-injection parameter T . Since the solution is not self-similar, the dimensionless

slip profiles are not unique for a single value of the stress-injection parameter, but rather

time-dependent. Note that the slip profiles near the injection point are now smooth due

to the finite size of the fluid source. On the other hand, Figure 3.10d shows the normalized

accumulated fault slip at the center of the rupture δ(r = 0, t ) as a function of the dimensionless

time αt/r 2
w for different values of the stress-injection parameter T . This figure suggests that at

large times δ(r = 0, t ) ∼ ( f ∆pw /µ)R(t ), up to a factor 0.1 to 0.2 approximately, for the values of

T considered.

Rupture radius and comparison with approximate analytical solution

Based on the numerical solution of the axisymmetric slip profiles δ(r, t), we compute the

instantaneous rupture radius R(t) at every time step for each simulation. We use the same

procedure described in Section 3.3.3 for building the rupture front and computing the rupture

radius. The results are plotted in Figure 3.11a together with the approximate analytical solution

derived in the previous section.

The approximate analytical solution (valid for large times, αt/r 2
w ≫ 1) is in good agreement

with the numerical results for values of T ranging from 0.1 to 0.7, with an average relative

difference of about 5%. Near the limit of a marginally pressurized fault (T = 0.9), the ana-

lytical solution is less accurate (average relative difference around 20%) due to the fact that
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Figure 3.10: Non-self-similar normalized slip profiles for circular ruptures driven by injection
at constant pressure as a function of the normalized radial coordinate r /R(t) at different
dimensionless times αt/r 2

w . (a) Stress-injection parameter T = 0.01, (b) T = 0.1, (c) T = 0.5. (d)
Normalized accumulated fault slip at the center of the rupture as a function of dimensionless
time αt/r 2

w for different values of the stress-injection parameter T .
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Figure 3.11: Comparison between numerical results and approximate analytical solution for
circular ruptures driven by injection at constant pressure. (a) Dimensionless rupture radius
R(t )/rw as a function of dimensionless time αt/r 2

w for different values of the stress-injection
parameter T . (b) Same as (a) but for the time-dependent amplification factor λ(t ) = R(t )/L̃(t ).

the assumption R(t) ≫ rw is not properly satisfied. On the other hand, near the limit of a

critically stressed fault (T = 0.01), the analytical solution loses accuracy possibly due to the

fact that the “near front” behavior of the fluid pressure profile is not well captured by the

asymptotic expansion, equation (3.35). The absolute value of the relative difference between

the approximate analytical solution and the numerical results is around 30% in average.

Finally, Figure 3.11b displays the numerical results for the time-dependent amplification

factor λ(t) = R(t)/L̃(t) and the corresponding approximate analytical solution for it. Note

that for values of T ⪆ 0.7, the rupture lags the fluid pressure front at all times, whereas for

T ⪅ 0.01 the rupture outpaces the fluid pressure front at all times considered here. The case of

intermediate values, 0.5⪅ T ⪅ 0.1, is interesting because a transition of propagation regime

occurs at early times.

3.4.4 Numerical solution for non-circular ruptures

Finally, we solve numerically for the more general case where the Poisson’s ratio is different

than zero. We run 12 simulations for four values of the stress-injection parameter T = 0.1, 0.3,

0.5, and 0.7, plus three values of the Poisson’s ratio ν = 0.15, 0.30, and 0.45.

Similarly to the case of injection at constant volume rate, the simulations show that ruptures

evolve systematically in a nearly elliptical shape. We thus define the rupture front R(t)

according to the equation of an ellipse (equation (3.23)), and compute the semi-major a(t)

and semi-minor b(t) axes of the elliptical front following the same procedure described in

Section 3.3.4. Figure 3.12a shows the temporal evolution of the aspect ratio a(t )/b(t ) for ν = 0.3

and different values of the stress-injection parameter T . It can be observed that for values of

T closer to zero (critically stressed faults), the aspect ratio decreases over time and tends to a

constant value at large times, whereas for values of T closer to one (marginally pressurized
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Figure 3.12: (a) Aspect ratio a/b as a function of dimensionless time αt/r 2
w for different values

of the stress-injection parameter T . (b) Geometric mean
√
λa(t )λb(t ) for ν = 0.3 divided by

the amplification factor for circular ruptures (ν = 0), λci r cul ar , as a function of dimensionless
time αt/r 2

w for different values of the stress-injection parameter T .

faults), the aspect ratio increases over time and tends at large times to a constant value as well.

Finally, for intermediate values of T , the aspect ratio is nearly constant (see results for T = 0.3).

Figure 3.12b displays the ratio between the geometric mean
√
λa(t )λb(t ) for ν = 0.3, where λa

and λb are defined as λa(t ) = a(t )/L̃(t ) and λb(t ) = b(t )/L̃(t ), respectively, and the numerical

values of the amplification factor λ(t) for the circular rupture case (ν = 0). We observe that

like the case of injection at constant volume rate, the (now time-dependent) geometric mean√
λaλb is almost equal to the amplification factor λ(t ) for circular ruptures, meaning that the

rupture areas for the values of ν = 0 and ν = 0.3 are approximately the same for the values of T

considered here.

3.5 Discussions

3.5.1 Comparison between 2-D and 3-D models

We examine here the differences between our 3-D model and its counterpart in 2-D. In the two-

dimensional case, the diffusion of fluid pressure along the one-dimensional frictional interface

is self-similar under both injection scenarios (constant volume rate and constant pressure)

when considering a fluid point source (Carslaw & Jaeger, 1959). The solution in 2-D elasticity

for the evolution of the crack length under injection at constant pressure was presented by

Bhattacharya and Viesca (2019) and Viesca (2021). They showed that the amplification factor

λ = ℓ(t)/ℓd (t), where ℓ(t) is the position of the crack tip (equal to the half-crack length) and

ℓd (t ) is a nominal position of the fluid pressure front, is time-invariant and depends only on

the stress-injection parameter T (equation (3.34)). Interestingly, we found qualitatively the

same response in our 3-D model but for injection at constant volume rate.

On the other hand, the solution of the 2-D model for injection at constant volume rate has not
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been presented yet. We derive such solution in Section 3.7.4 and found that the amplification

factor λ is time-dependent (and hence, not self-similar) and follows

exp
(−λ2/2

)[(
1+λ2) I0

(
λ2/2

)+λ2I1
(
λ2/2

)]−2λ/
p
π = xc /ℓd , (3.43)

where ℓd =
p

4αt and xc =
p

4πk
(

f σ′
o −τo

)
/ f qwη. I0 and I1 are the modified Bessel functions

of the first kind of zero and first order, respectively. Equation (3.43) represents a unique

relation between the amplification factor λ and the ratio between the position of the fluid

pressure front ℓd and the characteristic length xc , which is plotted in Figure 3.13a together

with the corresponding asymptotes for small λ (short-run-out rupture regime) and large λ

(long-run-out rupture regime, details in Section 3.7.4).

The characteristic length xc corresponds to the position of the fluid pressure front at the onset

of crack growth (activation of slip or crack nucleation). Upon crack initiation, the rupture

lags the fluid pressure front and expands faster than the diffusion of fluid pressure. The crack

catches the fluid pressure front (λ = 1) when the normalized fluid pressure front ℓ̄d ≈ 3.1435 or,

in other words, when the fluid pressure front ℓd has grown approximately three times the size

xc necessary for the crack to start growing. After that, the rupture outpaces the fluid pressure

front and the crack keeps propagating faster than the diffusion of fluid pressure until it reaches

a steady propagation regime that is characterized by a constant rupture speed VR equal to (see

Section 3.7.4)

VR =
f αqwη

πk
(

f σ′
o −τo

) , (3.44)

where qw [L/T ] is the constant injection volume rate per unit fault thickness wh and unit

out-of-the-plane length b, such that qw = Qw /whb with Qw the injection volume rate
[
L3/T

]
.

The temporal evolution of the crack half length can be seen directly in Figure 3.13b, in which

the analytical solution is recast in terms of dimensionless half-crack length and dimensionless

time. Here, the short-run-out regime translates into an early-time solution that is valid for t

near x2
c /4α, and a late-time solution that is approached asymptotically in the limit t ≫ x2

c /4α.

This response of the 2-D model under constant rate of injection has no analog in 3-D. Injection

at constant volume rate in the 3-D model leads to a rupture speed that decreases with the

squared root of time, VR = λ
p
α/t (Equation (3.18)). Moreover, the relative position of the

rupture front and the fluid pressure front is time-invariant in 3-D.

Our analysis shows that the response of the 2-D and 3-D models under the same injection

scenario are different even qualitatively. These differences have to be carefully considered

when linking theoretical and numerical predictions to laboratory measurements and field

observations in which, generally, 3-D models prevail.
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Figure 3.13: Analytical solution for a frictional shear crack in 2-D elasticity driven by injection
at constant volume rate from a point source. (a) Ratio between the position of the fluid
pressure front ℓd and the position of the fluid pressure front at the onset of crack growth xc ,
with ℓd =

p
4αt and xc =

p
4πk

(
f σ′

o −τo
)

/ f qwη, versus the amplification factor λ = ℓ(t )/ℓd (t )
(solid black curve), where ℓ(t) is the half-crack length. Dashed blue curves correspond to
the asymptotes of the short-run-out (λ≪ 1) and long-run-out (λ≫ 1) rupture regimes. (b)
Dimensionless half-crack length ℓ(t )/xc versus dimensionless time t̄ = (ℓd /xc )2 = 4αt/x2

c (solid
black curve). Dashed blue curves correspond to the same asymptotes of panel (a) but in terms
of dimensionless half-crack length and time, which show themselves in this plot as early-time
and late-time solutions.

3.5.2 Assumption of constant friction

In the context of rock friction and earthquake mechanics, laboratory-derived friction laws

(Dieterich, 1979; Ruina, 1983) have been widely used to describe the entire spectrum of slip

rates in natural faults (Scholz, 2019). These empirical friction laws capture the dependence of

friction on slip rate and the history of sliding (via a state variable) as observed during velocity-

step laboratory experiments on bare rock surfaces and simulated fault gouge (Marone, 1998).

It seems then interesting to discuss under what conditions a constant friction coefficient can

mimic more complex models of fluid-driven frictional ruptures with rate-and-state friction.

Results in 2-D antiplane elasticity of fluid-driven fault slip propagating on a strengthening

(aging) rate-and-state frictional interface have been notably reported by Dublanchet (2019),

for the case of injection of fluid at a constant volume rate. Two distinct regimes of crack

propagation were observed in Dublanchet’s numerical simulations (following a first initial

phase of slip rate acceleration): a stable crack growth that tends ultimately to a constant

rupture speed, and an unstable crack growth in which the rupture speed blows up in a finite

time. He observed that what determines the stable/unstable fault response is the sign of the

difference between the residual shear stress left within the crack τr and the initial shear stress

resolved on the fault plane τo . If τr −τo > 0 (a condition that is guaranteed in a constant-

friction model), crack propagation is always stable, whereas if τr −τo < 0, the crack may evolve

towards an instability. Such ultimate stability condition can be indeed understood under the
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classic Griffith energy-balance and the small scale yielding approximation (Rice, 1968), as

performed by Garagash and Germanovich (2012) for a fluid-driven slip-weakening frictional

shear crack in 2-D.

The stable regime of crack propagation found by Dublanchet (2019) is indeed the most relevant

in the context of aseismic ruptures. Furthermore, during such stable propagation regime,

Dublanchet noticed that the crack behaves exactly as if it were governed by a constant friction

coefficient within the slipping patch. This is because in that regime, the leading-order terms

of the quasi-static elastic equilibrium are the nonlocal stress transfer along the fault and the

effect of fluid pressure change on reducing the constant part of the shear strength in the rate-

and-state friction law. It is not surprising then that our 2-D model of a constant-friction shear

crack derived in the Section 3.7.4 and summarized in Figure 3.13, shows qualitatively the same

response (under the same injection scenario), notably the ultimate steady crack propagation

regime characterized by a constant rupture speed VR . In our 2-D model, VR ∝ f αqw /( f σ′
o−τo)

(see equation (3.44)), which depends on the constant friction coefficient f , hydraulic diffusivity

α, injection rate qw , and residual τr and initial τo shear stress, in the same form as in the

rate-and-state model (Eq. 23 in Dublanchet, 2019), considering that f σ′
o is the residual shear

strength in the constant-friction model.

A similar result, also in 2-D elasticity, has been recently obtained by Garagash (2021) using

a different approach. He developed a Griffith-energy-balance-like equation of motion for

the evolution of crack length on rate-and-state faults that he then applied to the study of

slip transients due to point-force-like fluid injections. He notably showed that for injection

at constant volume rate on neutrally and under-stress (with regard to the ambient slip rate)

strengthening rate-and-state faults (obeying the slip law), the frictional ruptures expand

initially within the limits of the pressurized fault patch and move faster than the latter, until

they eventually outpace the fluid pressure front and reach also a terminal steady propagation

regime characterized by a constant rupture speed. This response is again qualitatively the

same of our 2-D model of a constant-friction shear crack, and the same found by Dublanchet

(2019) for the stable propagation regime. Moreover, as pointed out by Garagash (2021), the

ultimate behavior of the crack under these conditions is due to the diminishing effect of

rate-and-state fracture energy in the Griffith energy balance compared to the effect of the

fluid injection (in the energy release rate) with increasing rupture size, such that, in the limit

of large-run-out rupture, the crack behaves as having zero toughness, which is the case of a

friction coefficient that is constant.

Our discussion in 2-D elasticity suggests that the assumption of a constant friction coefficient

describes to first order the behavior of rate-and-state friction under conditions that are relevant

for the study of fluid-driven aseismic ruptures (rate-strengthening in both aging and slip

laws, and approaching the large-run-out rupture regime or late time solution), in which the

frictional fracture energy can be neglected. We expect our results in 3-D to provide also first-

order descriptions of fluid-driven aseismic ruptures in the context of rate-and-state friction,

yet this assumption remains to be confirmed in future studies.
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3.5.3 Implications to injection-induced seismicity

As suggested by a number of experimental and observational studies (Hamilton & Meehan,

1971; Scotti & Cornet, 1994; Bourouis & Bernard, 2007; Guglielmi et al., 2015; Wei et al., 2015;

Chen et al., 2017; Duboeuf et al., 2017; Cappa et al., 2019; Eyre et al., 2019), aseismic slip seems

to be a frequent result of fluid injections into the subsurface and might play a significant

role in injection-induced seismicity related to hydrocarbon and geothermal operations. It

is thought that fluid motion drives aseismic slip which in turn transmits solid stresses that

trigger part of the observed induced seismicity (Guglielmi et al., 2015; Wei et al., 2015; Duboeuf

et al., 2017; Bhattacharya & Viesca, 2019; Eyre et al., 2019). Our results open the possibility of

quantifying this triggering mechanism in a three-dimensional scenario that is more realistic

than previous two-dimensional models for fluid-driven aseismic fault slip (Bhattacharya &

Viesca, 2019; Dublanchet, 2019; Eyre et al., 2019; Garagash, 2021; Viesca, 2021).

First, we note that injection protocols generally consist of a series of injections conducted at a

constant volume rate. Results of Section 3.3 are thus more relevant for geo-energy applications.

In particular, we showed that aseismic slip induced by injection at constant volume rate is

self-similar in a diffusive manner. As a consequence, the rupture front expands proportionally

to the square root of time in the same way as the fluid pressure front does. Induced seismicity

that is commonly considered to be driven by the direct effect of fluid pressure increase due to

the square-root-of-time feature of seismicity clouds (S. Shapiro et al., 1997; S. Shapiro et al.,

2005), might instead be controlled by the stress transfer of a propagating aseismic rupture

(Bhattacharya & Viesca, 2019). This would notably be the case of critically stressed fractures

and faults in which the rupture front is predicted to be systematically ahead of the fluid

pressure front. Our results suggest that assessing whether seismicity is induced by aseismic-

slip stress transfer or fluid pressure increase might not be possible from the observation of

square root time dependence of seismicity front alone.

Our model is, of course, idealistic in the sense that it represents a single and isolated fracture

or fault in 3-D. Nonetheless, recent two-dimensional simulations of fluid induced aseismic

slip in fractured rock masses have shown that the same patterns predicted by a single fracture

in 2-D emerge collectively for a set of fractures (Ciardo & Lecampion, 2023). Notably, a

collective aseismic slip front outpaces the migration of fluids when the fracture network is

in the critically stressed regime in a global sense (Ciardo & Lecampion, 2023). In addition,

field observations indicate critically stressed fractures/faults are likely to be preferred, high-

permeability, conduits of fluid flow than the fractures and faults that are not optimally oriented

with regard to the stress field (Barton et al., 1995). Together, these observations suggest that

seismicity triggered by injection-induced aseismic slip might be indeed a general feature of

reservoir rocks in response to fluid injections.

Moreover, if aseismic slip is the dominant mechanism for the triggering of seismicity, current

estimates of reservoir hydraulic diffusivity α based on spatio-temporal seismicity patterns

(S. Shapiro et al., 1997) might be rather related to the quantity αλ2 (see equation (3.26)), with λ

48



Three-dimensional fluid-driven stable frictional ruptures Chapter 3

being an equivalent amplification factor of the fractured rock mass. Such amplification factor

would be intrinsically dependent not only on hydraulic properties of the fracture network,

but also on the distribution of fracture orientations with regard to the stress field and the rate

of injection. To illustrate this point, let us consider characteristic values for a fracture/fault

located at around 3 km depth with σ′
o ∼ 50 [MPa]. Assume the fracture is close to the critically

stressed limit, say 1 − τo/ f σ′
o ∼ 0.1, plus an injection rate Qw ∼ 30 [l/s] (typical of deep

geothermal projects) and fluid dynamic viscosity η∼ 10−3 [Pa·s]. The fracture/fault hydraulic

transmissivity kwh can vary over several orders of magnitude (e.g., Wibberley and Shimamoto,

2003). Consider, for instance, a plausible range kwh ∼ 10−13 − 10−15 [m3]. The resulting

range for the stress-injection parameter is T ∼ 0.002−0.2, which leads to an amplification

factor λ∼ 1.6−15.8. If aseismic slip would be the dominant mechanism in this hypothetical

case, estimates of α based on the squared root dependence of a purely pore-pressure-driven

triggering mechanism would be off (over-predicted) by a factor λ2 ∼ 2.5−250.

Another finding of our study is related to the scaling relation between the aseismic moment

release M0 and the accumulated injected volume of fluid V . This type of relation has been

extensively sought with the purpose of constraining the magnitude of injection-induced

earthquakes based on operational parameters (McGarr, 2014; van der Elst et al., 2016; Galis

et al., 2017; McGarr & Barbour, 2018). We found that the aseismic moment scales to the

injected volume of fluid as M0 ∝V 3/2, for injection at constant volume rate. Interestingly, the

same power-law scaling has been found for self-arrested injection-induced seismic ruptures

based on fully-dynamic rupture simulations and fracture mechanics arguments (Galis et al.,

2017). We emphasize that our scaling relation is derived for purely aseismic (quasi-static)

ruptures, whereas the relation found by Galis et al. (2017) represents seismic (dynamic) events.

3.5.4 Implications to seismic swarms and aftershock sequences

Seismic swarms and aftershock sequences are often characterized by diffusive spatiotemporal

patterns that are thought to be caused by naturally injected fluids into fault zones (Bosl & Nur,

2002; Miller et al., 2004; Parotidis et al., 2005; Chen et al., 2012; Hainzl et al., 2016; Z. Ross et al.,

2017; Z. Ross et al., 2020). Moreover, natural fluid releases are likely represented by the sudden

increase of injection rate at the fluid source origin followed by stabilization towards a constant

rate. This might be the case of, for instance, breaking an initially sealed and highly-pressurized

reservoir. Of course, after a certain period of injection at approximately constant rate, the rate

of injection has to decrease until the pressure at the initially highly-pressurized fluid source

equilibrates the fluid pressure of the surroundings; we neglect the rupture growth during that

stage and also after injection ceases. Our results for sustained injection at constant volume

rate can be thus discussed in the context of natural fluid-driven seismicity in seismic swarms

episodes and aftershock sequences.

Indeed, the previous discussion on injection-induced aseismic slip in fractured rock masses

is easily extendable to fault zones. Notably, seismicity is expected to be now constrained
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into a relatively well-defined fault plane of thickness that equals the size of the damage zone.

Observed seismicity would be the result of instabilities that occur either in the main fault

plane or in the fracture network of the damage zone. Similarly to the case of a fractured

rock mass, the triggering of seismicity by aseismic-slip stress transfer would depend on how

critically stressed the main fault plane or the damage zone fracture network is. The square

root time migration of seismicity might be insufficient to discriminate whether aseismic slip

or elevated fluid pressure is the direct triggering mechanism. Likewise, estimates of fault

hydraulic diffusivity α based on seismicity patterns might rather represent the quantity αλ2.

3.5.5 Permeability variations

Our model assumes that fluid flow occurs within a frictional interface characterized by a

constant hydraulic transmissivity. However, permeability changes due to variations of the

effective normal stress or, equivalently, the normal interfacial deformation/closure, are well-

documented in the fracture/joint rock mechanics literature (e.g., Bandis et al., 1983) and fault

mechanics literature as well (e.g., Rice, 1992). In addition, fracture/fault dilatant-behavior

can also induce significant permeability variations (e.g., Ciardo and Lecampion, 2019). The

effect of such hydro-mechanical couplings on the propagation of aseismic slip remains to be

investigated in 3-D and requires the solution of the fully-coupled hydro-mechanical problem

as solved, for instance, by Ciardo and Lecampion (2019) in 2-D.

3.6 Summary and concluding remarks

We have studied the quasi-static propagation of aseismic fault slip driven by fluid pressure

diffusion under two different injection scenarios, namely, at constant volume rate and at con-

stant pressure. Our model considers a frictional shear crack that grows in mixed mode (II+III)

on a planar fault interface that separates two identical half-spaces of a three-dimensional,

isotropic, homogeneous, linear elastic and impermeable solid. The fault interface is char-

acterized by: a shear strength that is equal to the product of a constant friction coefficient

and the local effective normal stress, a uniform stress state before injection, and a uniform

and constant hydraulic transmissivity. The problem admits analytical treatments for circular

ruptures which occur in the limit of a Poisson’s ratio ν = 0, and it is solved numerically for the

more general case in which the frictionally-constrained crack shape is to be determined as

part of the solution (ν ̸= 0).

For injection at constant volume rate from a point source, the fault rupture is self-similar. For

the limiting case of a circular crack (ν = 0), the rupture radius evolves simply as R(t ) =λL(t ),

where L(t ) =
p

4αt is the nominal position of the fluid pressure front and λ is an amplification

factor which is similar to the one presented by Bhattacharya and Viesca (2019) and Viesca

(2021) in their 2-D model. We derived an analytical solution for λ as a function of a unique

dimensionless parameter T . The stress-injection parameter T varies between 0 and +∞ and

contains the information related to the pre-injection fault stress state and the strength of the
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injection. Whenever λ> 1, the rupture front outpaces the fluid pressure front. As in previous

studies (Garagash & Germanovich, 2012; Bhattacharya & Viesca, 2019), two end-member cases

have been identified, namely, critically stressed faults (T → 0) that largely outpace the fluid

pressure front (λ≫ 1), and marginally pressurized faults (T →+∞) that significantly lags the

fluid pressure front (λ≪ 1). Simple closed-form asymptotic expressions have been derived for

λ and also for the axisymmetric slip distribution δ(r, t ), for the two end-member cases. Other

results include the rupture speed that decays with the square root of time as Vr (t) =λ
p
α/t ,

and the accumulated fault slip at the injection point which is δ(r = 0, t ) ≈ 3.5
(

f ∆p∗/µ
)

L(t ) for

critically stressed faults, and δ(r = 0, t ) = (8/π)
(

f ∆p∗/µ
)

R(t ) for marginally pressurized faults,

where f is the friction coefficient, ∆p∗ is the characteristic overpressure of the injection, and

µ is the shear modulus.

For the more general case in which the Poisson’s ratio is different than zero, we solved the

problem of determining the equilibrium shape of the frictional shear crack over the entire

parameter space. We found that the crack shape is quasi-elliptical and the aspect ratio is upper

and lower bounded by 1/(1−ν) and (3−ν)/(3−2ν). The two bounds are associated with the

limiting cases of critically stressed faults and marginally pressurized faults, respectively. There

is thus a strong dependence of the aspect ratio not only on the Poisson’s ratio but also on the

initial stress state and the driving force itself. Moreover, we found that the rupture area is

Poisson’s ratio-independent and grows simply as Ar (t ) = 4παλ2t . If λ> 1, the rupture area is

greater than the diffusively pressurized fault patch. Interestingly, λ is the same amplification

factor that for the circular rupture case, meaning that knowing the solution of the circular

shear crack is sufficient to determine the area of any other resulting crack shape for any value

of the Poisson’s ratio and the same value of T . In addition, simple closed-form asymptotic

expressions are provided for the semi-major a(t) and semi-minor b(t) axes of the quasi-

elliptical crack that fully define the rupture front for the corresponding end-member cases.

For injection at constant pressure from a finite source of radius rw , the fault rupture is not self-

similar. The rupture radius grows at large times as R(t ) =λ(t )
p

c1αt , where c1 ≈ 2.25,
p

c1αt is

the nominal position of the fluid pressure front and λ(t ) is an amplification factor known as

function of dimensionless time αt/r 2
w and T . The stress-injection parameter T varies in this

case between 0 and 1. λ(t ) decreases monotonically with time and the rupture radius expands

as R(t) ∝ (αt)(1−T )/2. For critically stressed faults (T → 0 =⇒ (1−T )/2 → 1/2), the rupture

evolves almost diffusively, whereas for marginally pressurized faults (T → 1 =⇒ (1−T )/2 → 0),

the rupture grows extremely slow. Generally speaking, the rupture front propagates slower

than the diffusive fluid pressure front. Yet in some cases the rupture front outpaces the fluid

pressure front, the latter will eventually catch the former if injection is sustained for a sufficient

time.

Among the two injection scenarios considered, injection at constant volume rate is the one

with broader implications. This is due to injection protocols in the geo-energy industry

normally consist of a series of injections at constant volume rate, whereas naturally injected

fluids into the Earth’s crust are likely represented by the same kind of source. Since aseismic
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ruptures expand diffusively (proportional to the square root of time) for that type of injection,

irrespective of the pre-injection stress state and the parameters of the injection, current

interpretations of fluid-driven seismicity might need to be revisited.

Indeed, it is commonly assumed that seismicity clouds are driven by the direct effect of fluid

pressure increase whenever seismic events are observed to spread away from the injection

zone with square root time dependence (S. Shapiro et al., 1997; Bosl & Nur, 2002; Parotidis

et al., 2005; Chen et al., 2012; Hainzl et al., 2016; Z. Ross et al., 2017; Z. Ross et al., 2020). Our

results challenge that interpretation and open the possibility that those episodes might be

controlled by the stress transfer of a propagating aseismic rupture instead (Bhattacharya &

Viesca, 2019). This would be notably the case of critically stressed fractures/faults in which

the rupture front is predicted to be systematically ahead of the fluid pressure front (λ≫ 1).

Furthermore, current estimates of reservoir and fault zone hydraulic diffusivity α based on

seismicity patterns (e.g., S. Shapiro et al., 1997; S. Shapiro et al., 2005; Z. Ross et al., 2017) might

be rather related to the quantity αλ2, with λ being a representative amplification factor of the

fractured rock mass or fault zone.

Another important finding is related to the scalar moment M0 due to purely aseismic (quasi-

static) motion. We found that it scales to the injected volume of fluid V as M0 ∝ V 3/2. In-

terestingly, this relation is the same as the one found by Galis et al. (2017) for self-arrested

injection-induced seismic (dynamic) ruptures.

We expect our analytical and numerical results to provide a conceptual and quantitative frame-

work to undertand various applied problems in geomechanics and geophysics associated with

aseismic fracture/fault slip induced by fluid motion. Moreover, our analytical results provide a

simple mean for verifying and benchmarking 3-D numerical solvers as performed here.

3.7 Supplementary material

3.7.1 Propagation condition for a constant-friction circular shear crack under
axisymmetric shear load

The stress intensity factors of a circular crack of radius R under an arbitrary shear traction

vector of components σxz and σy z (with regard to the reference frame showed in Figure 3.1)

applied anti-symmetrically on the crack surfaces read as (eq. 4.4.59 in Fabrikant, 1989; eq. 4 in

Lai et al., 2002)

K I I (R,φ)+ i K I I I (R,φ) =
1

π
p
πR

∫ 2π

0

∫ R

0

[{
σxz (r,θ)+ iσy z (r,θ)

}p
R2 − r 2e−iφ

R2 + r 2 −2Rr cos(φ−θ)

+ ν

2−ν

{
σxz (r,θ)− iσy z (r,θ)

}p
R2 − r 2

{
3R − r e i (φ−θ)

}
e iφ

R(R − r e i (φ−θ))2

]
r dr dθ, (3.45)

where φ is the polar angular coordinate, such that tan
(
φ

)
= x/y .
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Consider a shear load of axisymmetric magnitude ∆τ(r ) along the x direction, such that

σxz (r,θ) =∆τ(r ) andσy z (r,θ) = 0. Evaluating the integral of the right-hand side of the previous

equation with regard to θ, we obtain:

K I I (R,φ) =
2cos(φ)p

πR

∫ R

0
∆τ(r )

[
1p

R2 − r 2
+ 3ν

2−ν

p
R2 − r 2

R2

]
r dr, (3.46)

K I I I (R,φ) =
2sin(φ)p

πR

∫ R

0
∆τ(r )

[
− 1p

R2 − r 2
+ 3ν

2−ν

p
R2 − r 2

R2

]
r dr. (3.47)

Let us consider the energy release rate of a pure shear crack in 3-D elasticity, G = K 2
I I /E ′+

K 2
I I I /2µ (Lawn, 1993), where E ′ is the plane strain modulus. Using the previous equations

for the stress intensity factors in the limiting case of a material with Poisson’s ratio ν = 0

(E ′ = E = 2µ), we obtain the following expression for the energy release rate,

G =
2

πµR

(∫ R

0

∆τ(r )p
R2 − r 2

r dr

)2

. (3.48)

The fracture energy Gc of a constant-friction shear crack is zero, such that Griffith energy

balance G = Gc reduces simply to∫ R

0

∆τ(r )p
R2 − r 2

r dr = 0, (3.49)

that is the expression used in the main text as the condition for crack propagation. The same

expression can be alternatively obtain by enforcing the condition of no singularity for the two

fault shear stress components, namely, K I I = 0 and K I I I = 0, with ν = 0 in equations (3.46) and

(3.47), respectively.

3.7.2 Asymptotics of fault slip for circular ruptures driven by injection at constant
volume rate

The quasi-static elastic equilibrium that relates the fault slip distribution δ to the shear stress

drop ∆τ within an axisymmetric circular shear crack (ν = 0) of radius R(t) is (Salamon &

Dundurs, 1971, 1977; Bhattacharya & Viesca, 2019)

∆τ(r, t ) =
µ

2π

∫ R(t )

0

∂δ(ξ, t )

∂ξ

(
K [k(r /ξ)]

ξ+ r
+ E [k(r /ξ)]

ξ− r

)
dξ, (3.50)

where K and E are the complete elliptic integrals of the first and second kind, respectively, and

k(x) = 2
p

x/(1+x).
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The inverse relation of the previous equation is given by Sneddon (1951) (Eq. 121, p. 489) as

δ(r, t ) =
4R(t )

πµ

∫ 1

r̄

ξdξ√
ξ2 − r̄ 2

∫ 1

0

∆τ(sξR(t ), t )sdsp
1− s2

, (3.51)

where r̄ = r /R(t ) is the self-similar radial coordinate.

Considering that the shear stress drop∆τ(r, t ) = τ0− f
[
σ′

o −∆p∗E1
(
r 2/4αt

)]
(equation (3.11)),

the stress-injection parameter T =
(

f σ′
o −τo

)
/ f ∆p∗ (equation (3.9)), and the amplification

factor is defined as λ = R(t)/L(t) with L(t) =
p

4αt , we can recast the above equation in

dimensionless form,

δ̄ (r̄ ;T ) =
δ(r, t )µ

f ∆p∗R(t )
=

4

π

∫ 1

r̄

ξdξ√
ξ2 − r̄ 2

∫ 1

0

(
E1

(
s2ξ2λ2

)−T
)

sdsp
1− s2

, (3.52)

where δ̄ (r̄ ;T ) is the normalized self-similar slip distribution that is unique for a given value of

T . We recall that the amplification factor λ is known by equation (3.13) as a function of T as

well.

Equation (3.52) admits analytical integration in the limiting cases of critically stressed (λ≫ 1)

and marginally pressurized (λ≪ 1) faults. One of the inner integrals,
∫ 1

0 E1
(
s2ξ2λ2

)
sds/

p
1− s2,

has indeed the same limiting behaviors than the crack propagation condition, equation (3.12).

For large values of λ, such integral is approximated asymptotically as ∼ 1/
(
2ξ2λ2

)+O
(
1/λ4

)
(see equation (3.14)), whereas for small values of λ is ∼ 2−γ ln

(
4ξ2λ2

)+O
(
λ2

)
(see equation

(3.15)). Considering the previous asymptotic expressions, equation (3.52) can be evaluated an-

alytically to obtain the following closed-form expressions for the self-similar slip distribution:

δ(r, t )µ

f ∆p∗R(t )
=

8

π

(√
1− r̄ 2 −|r̄ |arccos(|r̄ |)

)
(3.53)

in the marginally pressurized limit (T ≫ 1, λ≪ 1), and

δ(r, t )µ

f ∆p∗L(t )
=

2
p

2T

π

(
arccos(|r̄ |)

|r̄ | −
√

1− r̄ 2

)
(3.54)

in the critically stressed limit (T ≪ 1, λ≫ 1).

The latter is indeed valid for r ≫ L(t ) only. It corresponds to the “outer” solution of the critically

stressed limit in which the reduction of frictional strength due to the fluid pressure perturba-

tion can be approximated as a point force. Equations (3.53) and (3.54) can be equivalently

derived by using the asymptotic expressions of the fluid pressure perturbation in the limiting

cases (see details on those approximations in Section 3.3.2). In addition, the condition for

having no singularity at the crack tip, ∂δ/∂r = 0 at r = R , is equivalent to the crack propagation

condition, equation (3.10), and will lead to same expressions that relates λ and T , equations

(3.14) and (3.15), in the corresponding end-member cases.
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Figure 3.14: Comparison between asymptotics of fault slip and results from the simulations
for (a) critically stressed faults (λ≫ 1), and (b) marginally pressurized faults (λ≪ 1).

Equations (3.53) and (3.54) are plotted in Figure 3.14 together with the slip profiles obtained

from the numerical simulations for values of T that are representative of the limiting cases.

We use logarithmic scale in the critically stressed limit in order to facilitate the comparison.

Note that the marginally pressurized limit is reached for values of T ⪆ 4 (Figure 3.14b). On the

other hand, in the critically stressed limit (Figure 3.14a), the “outer” solution breaks of course

for small r (it diverges at r = 0 indeed); an “inner” solution should be derived in order to solve

the boundary layer at r ∼O (L(t )) as done by Garagash and Germanovich (2012) and Viesca

(2021).

3.7.3 Numerical computation of rupture fronts

Given the numerical (piece-wise quadratic) solution of fault slip δ
(
x, y, tn

)
at a given time step

tn , we take 100 equally-spaced values of the angular cylindrical coordinate θi ∈ [0,2π) (with

i = 1, ...,100), and compute for each of them, the root of the system of equations δ
(
xi , yi , tn

)
= 0

plus tan(θi ) = xi /yi , via a Newton-Raphson procedure. We then use the solution, in the form

of a data set of 100 coordinate pairs
(
xi , yi

)
, to perform nonlinear regression analysis using

the routine NonlinearModelFit of Wolfram Mathematica. The nonlinear curve fittings are

performed considering the equation of a circle for the case ν = 0 (with the rupture radius Rm as

the model’s parameter) and the equation of an ellipse for the case ν ̸= 0 (with the semi-major

am and semi-minor bm axes of the ellipse as the model’s parameters).

In order to quantify the misfit between the model and the data, we consider the quantity

β = (1/NθR∗)
∑Nθ

i =1

∣∣r m
i − r d

i

∣∣, where r m
i is the radial distance (from the reference system origin

to the rupture front) predicted by the model at θi , r d
i is the same quantity but for the data, Nθ

is the total number of data points (100), and R∗ is used to scale the distances and is taken as

Rm for the circular case (ν = 0), and
p

ambm for the elliptical case (ν ≠ 0). Note that r m
i = Rm

for ν = 0, and r m
i = ambm/

√
(am sin(θi ))2 + (bm cos(θi ))2 for ν ̸= 0. The values of β averaged

over the 10 time steps considered in each simulation are shown in Table 3.1.
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It is worth mentioning that in the case of ν = 0, the exact shape of the rupture front is a circle.

Hence, the departure of β from zero corresponds uniquely to numerical errors. The average

of β over all values of T in the circular rupture case is 0.00644259. Thus, in the case of non-

circular ruptures (ν = 0.15, 0.30 and 0.45), one may consider that values of β that are only

larger than the ones for circular ruptures quantify an “actual” departure of the rupture front

from an exact ellipse. From Table 3.1, we observe that such difference increases systematically

with increasing values of ν and decreasing values of T , and is at most of 2% in the worst case

(ν = 0.45, T = 0.001).

Two graphical examples of the computation of the elliptical rupture fronts are displayed in

Figure 3.15. Figure 3.15a corresponds to the case of the most elongated rupture, which is also

the case that departs the most from an ellipse. On the other hand, Figure 3.15b corresponds

to the case of the least elongated rupture, in which the β-value is essentially in the other of

numerical errors (circular rupture case).

T
Poisson’s ratio ν

0 0.15 0.30 0.45

0.001 0.00574263 0.00724403 0.00969618 0.02028980

0.01 0.00608538 0.00648519 0.01010820 0.01888480

0.1 0.00571406 0.00643673 0.00849989 0.01005640

0.7 0.00689874 0.00630272 0.00653986 0.00754184

2.0 0.00732939 0.00606131 0.00629030 0.00639826

4.0 0.00664432 0.00708104 0.00690700 0.00671446

7.0 0.00668360 0.00644491 0.00681493 0.00691824

Table 3.1: Misfit parameter β of non-linear regression analyses conducted to compute the
rupture radius of circular ruptures (ν = 0) and the semi-major and semi-minor axes of the
quasi-elliptical ruptures (ν ̸= 0), for the self-similar case of injection at constant volume rate.
Values of β are averaged over the 10 time steps for each combination of T and ν.
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Figure 3.15: Two examples of the computation of the elliptical rupture fronts at given snapshots
for (a) the most elongated rupture (T = 0.001, ν = 0.45) and (b) the least elongated rupture
(T = 7.0, ν = 0.15). The blue points correspond to the position of the rupture front computed
numerically from the solution for fault slip δ

(
x, y, t

)
, for each one of the one hundred equally-

spaced angular cylindrical directions θi ∈ [0,2π) considered. The blue solid curves correspond
to the ellipsoidal curve fittings to the one hundred coordinate pairs. In the background,
the unstructured triangular mesh made on piece-wise quadratic boundary elements used
throughout this study.

3.7.4 Analytical solution in 2-D for a frictional shear crack driven by injection at
constant volume rate

Consider the same problem formulated in Section 3.2 but in 2-D elasticity. Fluid is injected via

a point source at x = 0 into a planar 1-D frictional interface located along the x-axis. Injection

is sustained for t > 0 at a constant volume rate qw [L/T ] per unit fault thickness and unit

out-of-the-plane length. The quasi-static crack propagation condition for a 1-D straight

constant-friction (zero-toughness) symmetric shear crack (either mode II or III) of half-crack

length ℓ(t ) reduces to (Barenblatt, 1962)

∫ ℓ(t )

−ℓ(t )

∆τ(x, t )√
ℓ2(t )−x2

d x = 0, (3.55)

where ∆τ(x, t ) is the shear stress drop given by

∆τ(x, t ) = τ0 − f
(
σ′

o −∆p(t )Π(ξ)
)

, (3.56)

with ξ = x/
p

4αt and (section 2.9, eq. 7, Carslaw and Jaeger, 1959)

∆p(t ) =
qwηp
πk

p
αt , Π(ξ) = exp

(−ξ2)−p
π |ξ|Erfc(|ξ|) . (3.57)
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As defined in the main text, η is the fluid dynamic viscosity, k is the fault intrinsic permeability,

and α is the fault hydraulic diffusivity.

Let us define the nominal position of the fluid pressure front ℓd (t ) =
p

4αt , a time-dependent

amplification factor λ in the form λ(t ) = ℓ(t )/ℓd (t ), and the following characteristic length

xc =
p

4π
k

(
f σ′

o −τo
)

f qwη
, (3.58)

The crack propagation condition can be then rewritten in dimensionless form

1

π

∫ 1

−1

Π(λs)p
1− s2

d s =
xc

ℓd
, (3.59)

that represents a unique relation between the amplification factor λ and the normalized

position of the fluid pressure front ℓd /xc .

The left-hand side of the previous integral can be evaluated analytically to obtain the following

implicit equation for λ as a function of ℓd /xc ,

exp
(−λ2/2

)[(
1+λ2) I0

(
λ2/2

)+λ2I1
(
λ2/2

)]−2λ/
p
π = xc /ℓd , (3.60)

where I0 and I1 are the modified Bessel functions of the first kind of zero and first order,

respectively.

The previous equation is the one reproduced in the main text and it is plotted in Figure 3.13a.

Asymptotic expansions of the left-hand side of this equation for small and large λ lead to

the following closed-form asymptotic solutions for the short-run-out rupture (λ≪ 1) and

long-run-out rupture (λ≫ 1) regimes:λ =
√

π
4

(
ℓd
xc

−1
)

, forλ≪ 1

λ = 1p
4π

ℓd
xc

, forλ≫ 1
, (3.61)

that are also plotted in Figure 3.13a.

From the asymptotic for the short-run-out rupture regime, we note that solutions are defined

only for ℓd /xc ≥ 1. The limit of ℓd /xc = 1 represents the instant in which activation of slip

(or crack nucleation) happens and implies that ℓd = xc at that moment. From the latter, it

becomes clear that the characteristic length xc is the size of the pressurized patch necessary

for the crack to start growing.

On the other hand, the previous asymptotics can be recast in terms of the dimensionless half-

crack length ℓ(t )/xc and the dimensionless time t̄ = (ℓd /xc )2 = 4αt/x2
c , to obtain the following
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expressions:
ℓ(t )
xc

=
√

π
4

(
t̄ −

p
t̄
)

, for t near x2
c /4α

ℓ(t )
xc

= 1p
4π

t̄ , for t ≫ x2
c /4α

, (3.62)

which corresponds to early-time and late-time solutions, respectively. From the asymptotic

for late times, we can write

ℓ(t ) =
2αp
πxc

t . (3.63)

Hence, the ultimate behavior of the crack is a steady propagation regime at constant rupture

speed VR equal to

VR =
f αqwη

πk
(

f σ′
o −τo

) , (3.64)

which is the other equation used in the main text.
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4 Post-injection aseismic slip as a mech-
anism for the delayed triggering of
seismicity

In this chapter, we investigate via a hydro-mechanical model the propagation and ultimate

arrest of aseismic slip during the so-called post-injection stage. We show that after shut-in,

fault slip propagates in pulse-like mode. The conditions that control the propagation as a

pulse and notably when and where the ruptures arrest are fully established. In particular,

critically-stressed faults can host rupture pulses that propagate for several orders of magnitude

the injection duration and reach up to nearly double the size of the ruptures at the moment

of shut-in. We consequently argue that the persistent stressing of increasingly larger rock

volumes caused by post-injection aseismic slip is a plausible mechanism for the triggering

of post-injection seismicity —a critical issue in the geo-energy industry. Our physical model

shows quantitative agreement with field observations of documented cases of post-injection-

induced seismicity.

This chapter is a modified version of the following scientific article:

Sáez, A. & Lecampion, B. (2023). Post-injection aseismic slip as a mechanism for the de-

layed triggering of seismicity. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 479, 20220810.

Contributions of Alexis Sáez (CRediT, Contributor Roles Taxonomy)

Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing

- Original Draft, Writing - Review & Editing, Visualization, Funding acquisition.

4.1 Introduction

It has been long recognized that subsurface fluid injections can induce fast fault slip (Healy

et al., 1968) that radiates detectable elastodynamic waves, and also slow, sometimes called

aseismic slip (Hamilton & Meehan, 1971), which is generally more difficult to detect by classical
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monitoring networks. Evidence for injection-induced aseismic slip dates back to the 1960’s,

when a slow surface fault rupture was causally linked to fluid injection operations of an oil

field in LA, USA (Hamilton & Meehan, 1971). Since then, an increasing number of studies have

inferred the occurrence of aseismic slip episodes as a result of anthropogenic subsurface fluid

injections (Scotti & Cornet, 1994; Bourouis & Bernard, 2007; Wei et al., 2015; Eyre et al., 2022),

with recent in-situ experiments of fluid injection into natural fault systems demonstrating by

direct measurements of fault deformation that slow slip was systematically the dominant style

of fault motion (Guglielmi et al., 2015; Cappa et al., 2019).

Injection-induced aseismic slip is thought to play an important role in seismicity induced by

industrial fluid injections, a phenomenon that has become critical in ensuring the sustain-

able development of unconventional hydrocarbon reservoirs (Bao & Eaton, 2016) and deep

geothermal resources (Deichmann & Giardini, 2009; Ellsworth et al., 2019). It is understood

that fluid-driven slow ruptures transmit stresses quasi-statically to unstable fault patches and

trigger instabilities at distances that can be far from the region affected by the pressurization

of pore-fluid (Bhattacharya & Viesca, 2019; Eyre et al., 2019). Moreover, a similar mechanism

might be also operating behind some natural episodes of seismicity such as seismic swarms

and aftershock sequences. In fact, both phenomena are commonly interpreted to be driven

by either the diffusion of pore pressure (Miller et al., 2004; Parotidis et al., 2005) or the prop-

agation of aseismic slip (Lohman & McGuire, 2007; Perfettini & Avouac, 2007), with recent

studies suggesting that both mechanisms might be indeed coupled and responsible for the

observed spatio-temporal patterns of seismicity (Z. Ross et al., 2017; Sirorattanakul et al.,

2022; Yukutake et al., 2022). Likewise, tectonic tremors and low-frequency earthquakes are

often considered to be driven by slow slip events in subduction zones (Rogers & Dragert, 2003;

Shelly et al., 2006), at depths where systematic evidence of over-pressurized fluids is found

(Shelly et al., 2006; Kato et al., 2010). Metamorphic dehydration reactions (Peacock, 2009)

and fault-valving behavior (Sibson, 2020) are the two common candidates to explain not only

this inferred over-pressurization, but also the very nature of pore pressure and aseismic slip

transients in these zones (Zhu et al., 2020).

The seemingly relevant role of fluid-driven aseismic slip in the previous phenomena have

motivated the development of physical models that, in recent years, have contributed to

a better understanding of the mechanics of this hydro-mechanical problem. Some recent

advances include a better notion of how the initial state of stress, the fluid injection parameters,

the fault hydraulic properties, and the possible rate-strengthening dependence of rock friction,

may affect the dynamics of fluid-driven aseismic slip transients in 2D (Dublanchet, 2019;

Garagash, 2021; Viesca, 2021; Yang & Dunham, 2021) and 3D media (Sáez et al., 2022). The

three-dimensional case is the relevant one for field applications and has been shown to be not

only quantitatively but also qualitatively very different from two-dimensional configurations

(Sáez et al., 2022). One common aspect of all prior studies is that they focus on fluid sources

that are continuous (uninterrupted) in time. Yet much less is known about aseismic ruptures

after the injection of fluids has stopped. In particular, the conditions that control the further

propagation and ultimate arrest of fluid-driven aseismic slip are fairly unknown, despite a
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recent investigation for a two-dimensional plane-strain configuration (Jacquey & Viesca, 2023).

This is of broad interest since, ultimately, any kind of fluid source and accompanying rupture

will have to stop. Understanding the mechanics of post-injection aseismic slip in a realistic

three-dimensional scenario is thus of major importance. It corresponds to the first goal of this

study.

Our second goal is to understand how and to which extent post-injection aseismic slip can be

considered as a possible mechanism for the triggering of seismicity after the end of subsurface

fluid injections. It is well-known since the Denver earthquakes in the 1960s (Healy et al., 1968)

that upon shutting off the wells, seismicity might continue to occur. Multiple observations

suggest that indeed, it is not rare that the largest events of injection-induced seismic sequences

happen during the post-injection stage. Examples of those cases are the 2006 ML > 3 Basel

earthquakes in Switzerland, and the 2017 Mw 5.5 Pohang earthquake in South Korea, both

causally linked to hydraulic stimulation operations of deep geothermal reservoirs (Deich-

mann & Giardini, 2009; Ellsworth et al., 2019). Also, the 2015 Mw 3.9 earthquake in western

Canada, occurred after the end of hydraulic fracturing operations in a hydrocarbon reservoir

(Bao & Eaton, 2016). Because the shut-in of the wells does not guarantee the cessation of

seismic events, current efforts to manage the seismic risk in the geo-energy industry such

as the so-called traffic light systems (Baisch et al., 2019), might be subjected to important

limitations in their effectiveness. Understanding the physical mechanisms underpinning

post-injection seismicity is thus of paramount importance for the successful development of

both hydrocarbon and geothermal reservoirs. We therefore aim in this study at understanding

the combined effect of pore pressure diffusion and solid stress changes due to aseismic slip in

the triggering of seismicity.

4.2 Governing equations and scaling analysis

4.2.1 Governing equations

We consider a planar fault in an infinite, linearly elastic, isotropic, impermeable, and three-

dimensional solid, as depicted in Figure 4.1. The initial stress tensor is assumed to be uniform

and is characterized by a shear stress τ0 resolved on the fault plane that acts along the x

direction and a total normal stress σ0 (acting along the z direction). We assume a uniform

initial pore pressure field of magnitude p0 that is perturbed by the sudden injection of fluids

into a poroelastic fault zone of width w . We model such fluid injection via a line-source that

is located along the z axis and crosses the entire fault width. The fault zone permeability k

and storage coefficient S are assumed to be uniform and constant. As a result, fluid flow is

axisymmetric with regard to the z axis and occurs only within the fault zone. We further assume

that the shear modulus µ and Poisson’s ratio ν of the poroelastic fault zone and impermeable

elastic host rock are the same. Under such conditions, the displacement field induced by

the fluid injection is irrotational and the pore pressure diffusion equation of poroelasticity

reduces to its uncoupled version (Marck et al., 2015), ∂p/∂t = α∇2p, where α = k/Sη is the
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fault hydraulic diffusivity, with η the fluid dynamic viscosity.

By neglecting any poroelastic coupling within the fault zone upon activation of slip, the quasi-

static elastic equilibrium that relates fault slip to the shear stress components along the fault,

can be written as the following boundary integral equations,

τi (x, y, t ) = τ0
i +

∫
Γ

Ki j (x −ξ, y −ζ;µ,ν)δ j (ξ,ζ, t )dξdζ, with i , j = x, y, (4.1)

where τ0
i = (τ0,0)T is initial shear traction vector, Ki j is the hypersingular (of order 1/r 3)

elastostatic traction kernel (see for example, Hills et al., 1996), and δ j = u+
j −u−

j is the fault slip

vector, with u±
j the displacement vector at the upper (+) and lower (−) faces of the slip surface

Γ .

The fault interface is assumed to obey a Mohr-Coulomb shear failure criterion with a constant

friction coefficient f and no cohesion expressed as the following local inequality,

∥τi (x, y, t )∥ ≤ f
(
σ′

0 −∆p(r, t )
)

, (4.2)

where σ′
0 =σ0 −p0 is the initial effective normal stress, and ∆p(r, t ) = p(r, t )−p0 is the axisym-

metric pore pressure perturbation, with r the radial coordinate.

Owing to the unidirectionality of the initial shear traction vector and the axisymmetry property

of the equivalent shear load in terms of magnitude, both fault slip and maximum shear stress

are characterized by an approximately uniform direction along the x axis (see Section 4.8.1 for

further details). The latter implies that for all practical purposes in this paper, the differences

between ∥δi∥ and |δx |, and ∥τi∥ and |τx |, are negligible (an approximation that was implicit in

Sáez et al., 2022). We therefore refer interchangeably hereafter to fault slip as δ≡ δx and fault

shear stress as τ≡ τx . Moreover, for the particular case in which ν = 0, Kx y = Ky x = 0 (see, for

instance, eq. 7.4 in Hills et al., 1996) and thus the direction of slip (or maximum shear) occurs

exactly along the x direction.

The injection of fluid starts at t = 0 and consists of two subsequent stages: a continuous

injection stage characterized by a constant rate of injection Q, and a post-injection stage in

which the injection rate drops instantaneously to zero at t = ts (see Figure 4.1c). Hereafter,

we refer to ts as the shut-in time. The solution of the linear diffusion equation before shut-in

(when 0 < t ≤ ts) is known as ∆p(r, t) = ∆p∗E1
(
r 2/4αt

)
(section 10.4, eq. 5, Carslaw and

Jaeger, 1959), where

∆p∗ =
∆pc

4π
, and ∆pc =

Qη

kw
. (4.3)

In the previous equations, ∆p∗ is the intensity of the injection with units of pressure, ∆pc is a

characteristic pressure that is in the order of magnitude of the overpressure at the fluid source,

and E1 (x) =
∫ ∞

x

(
e−xξ/ξ

)
dξ is the exponential integral function. The solution after shut-in
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Figure 4.1: Model schematics. (a) and (b), fluid is injected into a permeable fault zone of width
w via a line source that crosses the entire fault zone width. The fault is planar and embedded
in an unbounded linearly elastic impermeable host rock. The initial stress tensor is uniform.
(c) Fluid is injected at a constant rate Q until t = ts (the shut-in time) at which the injection is
instantaneously stopped.

(when t > ts), is obtained simply by superposition as

∆p(r, t ) =∆p∗
{

E1

(
r 2

4αt

)
−E1

(
r 2

4α (t − ts)

)}
. (4.4)

Note that the infinitesimal size of the fluid source in our model provides a proper finite volume

of injected fluid V = Qts , but infinite pressure at the injection point. In this regard, our model

must be understood as the late-time asymptotic solution of a more general model where the

fluid source possess a finite characteristic size, say ℓ∗. Our results will be thus applicable

when ts is much larger than the characteristic diffusion time ℓ2
∗/α over the finite source

lengthscale. This is indeed the case of most borehole fluid injections, where the borehole

radius is ℓ∗ ∼ 10 [cm]. By assuming values of hydraulic diffusivity in the range 10−4 to 1

[m2/s], the characteristic time ℓ2
∗/α takes values between 100 down to 0.01 [s] which are

much smaller than typical fluid injection duration in geo-energy applications. Moreover, the

asymptotic behavior of the exponential integral function for small values of its argument,

E1 (x) ≈−γ− ln(x), where γ is the Euler-Mascheroni’s constant, allows us to identify ∆pc as

the pressure scale that is in the order of magnitude of the overpressure at r = ℓ∗ when t ≫ ℓ2
∗/α,

as previously stated.

Equations (4.1), (4.2) and (4.4) constitute a complete system of equations to solve for the spatio-

temporal evolution of fault slip δ(x, y, t ) and, particularly, the moving boundary representing
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the slipping region S (t ). The slipping patch S (t ) may be defined mathematically as the region

in which the equality of equation (4.2) holds: S (t ) =
{(

x, y
) ∈ Γ :

∣∣τ(x, y, t )
∣∣ = f

(
σ′

0 −∆p(r, t )
)}

.

The initial conditions are naturally taken as δ(x, y,0) = 0 and δ̇(x, y,0) = 0 (fault initially at rest

and fully locked).

4.2.2 Scaling analysis and limiting regimes

The shut-in of the injection provides the natural characteristic timescale of the problem, the

shut-in time ts . This latter introduces, via the solution of the pore-pressure diffusion equation

(4.4), a characteristic diffusion lengthscale
p

4αts . Alternatively, one may choose (as suggested

by Sáez et al., 2022) to scale the spatial coordinates by a characteristic rupture lengthscale

at the moment of shut-in, say R∗
s . We normalize the pore pressure perturbation ∆p(r, t),

equation (4.4), by the intensity of the injection ∆p∗. Introducing the foregoing characteristic

scales in the Mohr-Coulomb shear failure criterion, equation (4.2), gives the normalized

shear stress,
(
τ− f σ′

0

)
/ f ∆p∗, which in turn is introduced in the balance of momentum,

equation (4.1), allowing us to close the scaling of the problem by normalizing the fault slip by(
f ∆p∗/µ

)p
4αts , or alternatively by

(
f ∆p∗/µ

)
R∗

s if the characteristic rupture lengthscale is

chosen for the spatial scale.

It can be shown by using the previous scales that the model depends, in addition to dimen-

sionless space and time, on one single dimensionless number:

T =
f σ′

0 −τ0

f ∆p∗
, (4.5)

and the Poisson’s ratio ν.

The so-called stress-injection parameter T is identical to the one presented recently by

Sáez et al. (2022) for the problem of continuous injection, and similar to the one introduced

first by Bhattacharya and Viesca (2019) in their 2D plane-strain model. T is defined as

the ratio between the amount of stress necessary to activate fault slip f σ′
0 −τ0, and f ∆p∗

which quantifies the effect of the fluid injection on the reduction of fault strength near the

injection point. The stress-injection parameter can vary theoretically between 0 and +∞
(Sáez et al., 2022). However, for practical purposes, we note here that T is upper bounded.

Since ∆pc = 4π∆p∗ is in the order of magnitude of the overpressure at the fluid source, the

minimum amount of overpressure that one needs to guarantee the activation fault slip under

such a line-source approximation is f ∆pc ∼ f σ′
0 −τ0. Substituting the previous relation into

(4.5) leads to an order-of-magnitude upper bound T ≲ 10 (the factor 4π indeed). Note that

the introduction of ∆pc and the resulting upper bound for T in this work put now the results

of the continuous-injection problem (Sáez et al., 2022) in a more practical perspective. The

limiting values of T are associated with two end-member scenarios that were first introduced

by Garagash and Germanovich (2012). When T is close to zero, τ0 → f σ′
0 and thus the fault is

critically stressed (about to fail before the injection starts). On the other hand, when T ∼ 10,
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the fault is "marginally pressurized" as the injection has provided just the minimum amount

of overpressure to activate fault slip, f ∆pc ∼ f σ′
0 −τ0. We will make extensive use of the

terms critically-stressed fault/regime and marginally-pressurized fault/regime to refer to these

limiting cases throughout this article.

As shown recently by Sáez et al. (2022), an important aspect of the foregoing two limiting

regimes is that they follow different scales during the stage of continuous injection, which

is particularly valid in the post-injection problem right at the moment of shut-in ts . Indeed,

the proper slip scale δ∗ in the critically-stressed limit comes from choosing
p

4αts as the

characteristic lengthscale,

δ∼ δ∗ =
f ∆p∗
µ

√
4αts . (4.6)

The proper scale for the slip rate follows from differentiation of the slip scale with respect to

time,

v ∼ v∗ =
f ∆p∗
µ

√
α

ts
. (4.7)

The slip and slip rate scales of the marginally-pressurized limit can be obtained likewise by

choosing the characteristic rupture scale R∗
s as the spatial lengthscale of the problem, i.e.,

δ∼ (
f ∆p∗/µ

)
R∗

s and v ∼ (
f ∆p∗/µ

)
R∗

s /ts . Nonetheless, the latter scales will be seen later to

be somewhat irrelevant in the post-injection stage, because marginally-pressurized faults will

host ruptures that after shut-in arrest almost immediately.

Finally, the second dimensionless parameter of the model, the Poisson’s ratio ν, is expected to

have only an effect on the rupture shape. As shown by Sáez et al. (2022) for the continuous-

injection stage, the Poisson’s ratio modifies the aspect ratio of the resulting rupture fronts

which become more elongated for increasing values of ν. The position of the elongated

rupture fronts is nevertheless determined primarily by the position of circular ruptures, that

correspond to a limiting case in which the Poisson’s ratio of the solid ν is zero. The case of

circular ruptures is thus particularly insightful and notably simpler, since in that limit, we

can take advantage of the axisymmetry property of the mechanical problem (Bhattacharya &

Viesca, 2019; Sáez et al., 2022).

4.3 Pore-pressure diffusion: the pore-pressure back front

The pore-pressure perturbation ∆p(r, t ) is the only external action driving the rupture after

shut-in. It is thus essential to examine in detail its spatio-temporal evolution. Various normal-

ized spatial distributions of pore pressure are plotted in Figure 4.2a at different dimensionless

times. We first observe that pore pressure decreases quickly after the stop of injection near

the fluid source in the sense r ≪p
4α (t − ts), asymptotically as ∆p(r, t )/∆p∗ ≈ ln

(
t̄/

(
t̄ −1

))
(red dashed curve), with t̄ = t/ts the dimensionless time. Moreover, at large times (t̄ ≫ 1), it
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Figure 4.2: (a) Normalized spatial distribution of pore pressure at different dimensionless
times. Dashed curves correspond to asymptotic behaviors as explained in the main text. (b)
Evolution of normalized pore pressure at some fixed dimensionless radial positions. Red
circles indicate the instants at which the maximum pressure ∆pm is reached. (c) Spatial
distribution of pore pressure rate normalized by ∆ṗ∗ =∆p∗/ts , at two dimensionless times
after shut-in. Red circles indicate the position of the pore-pressure back front P (t ), equation
(4.8).

decreases simply as ∆p(r, t)/∆p∗ ≈ 1/t̄ (blue dashed curve) for points that are close to the

injection now in the sense r ≪p
4αt . The latter indicates that the region in which the previous

asymptotic behavior is approximately satisfied grows diffusively (∝p
αt ), and has the shape

of a plateau in Figure 4.2a.

Moreover, Figure 4.2a displays that after shut-in the pore pressure keeps increasing away

from the injection line. To better understand such process, it may result convenient to look

at the temporal evolution of pore pressure at fixed normalized positions over the fault plane.

Figure 4.1b displays such a plot. Here, we observe that pore pressure remains increasing for

some time after injection stops (t̄ > 1) and eventually reaches a maximum (red circles). After

this instant of maximum pressure, the pore pressure decreases following ultimately the same

asymptotes of Figure 4.2a, meaning that the aforementioned diffusely expanding plateau has

reached the corresponding fixed radial positions in Figure 4.2b.

The relation between a given position over the fault plane and the time at which the maximum

pressure is reached, defines a "back front" of pore pressure, P (t ) =
{
r (t ) ∈ Γ : ∂∆p(r, t )/∂t = 0

}
.

Owing to the axisymmetry property of pore pressure diffusion in our model, P (t ) is circular

and is thus fully defined by its radius P (t ). Differentiating equation (4.4) with respect to time

and solving for ∂∆p/∂t = 0 leads to the following expression for the normalized radius of the

pore-pressure back front,

P (t )p
4αts

=

[
t̄
(
t̄ −1

)
ln

(
t̄

t̄ −1

)]1/2

, (4.8)
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which further reduces to P (t )/
p

4αts ≈
p

t̄ , or simply P (t ) ≈p
4αt , at large times. Note that the

large-time asymptote of P (t ) is the same expression than that of the radius of the pore-pressure

perturbation front L(t) =
p

4αt for the continuous-injection stage, albeit each expression

describes different processes.

On the other hand, the maximum pore pressure increase undergone historically at a given

position r , say ∆pm(r ), is obtained by simply evaluating the pore pressure perturbation

∆p(r, t) at the time tm in which the maximum occurs, i.e., ∆p(r, tm(r )). tm comes from

solving for time in (4.8) with P (t ) = r . ∆pm(r ) is displayed in Figure 4.2a (gray dashed curve)

representing the pore pressure back front P (t ) in this plot, which corresponds to the envelope

of all curves (for all times) associated with instantaneous spatial distributions of pore pressure.

Note that ∆pm(r ) cannot be obtained in closed form since equation (4.8) is not invertible

for time, nevertheless, in the large-time limit, tm(r )/ts ≈ r̄ 2, such that ∆pm(r )/∆p∗ ≈ E1 (1)−
E1(r̄ 2/(r̄ 2 −1)). The previous asymptotic approximation is also plotted in Figure 4.2a (green

dashed curve). Similarly, an expression for ∆pm as a function of time t may be derived, which

is indeed obtainable in closed form as ∆pm(t ) =∆p(P (t ), t ) (gray and green dashed curves in

Figure 4.2b).

4.4 Pulse-like circular ruptures

Circular ruptures occur in the limit of a Poisson’s ratio ν = 0. As discussed in previous sections,

a Poisson’s ratio different than zero is expected to affect mainly the shape of the resulting

ruptures, and less significantly other relevant quantities of the fault response (Sáez et al., 2022).

Circular ruptures are thus a particularly insightful case, in which the axisymmetry property of

the mechanical problem (Bhattacharya & Viesca, 2019; Sáez et al., 2022) simplifies the analysis

of results. The effect of Poisson’s ratio on the rupture shape will be quantified in Section 4.5.

4.4.1 Recall on the self-similar solution before shut-in

The solution for the continuous-injection stage (t ≤ ts) of the same problem was presented

recently by Sáez et al. (2022). We briefly summarize some of their results as they provide

the starting point for the understanding of the post-injection phase. Sáez et al. showed that

fault slip induced by injection at constant volume rate (from an infinitesimal source) is self-

similar in a diffusive manner. The rupture radius R(t) evolves simply as R(t) =λL(t), where

L(t ) =
p

4αt is the nominal position of the pore-pressure perturbation front, and λ is the so-

called amplification factor for which an analytical solution as function of the stress-injection

parameter T exists (eq. (21) in Sáez et al., 2022). The asymptotic behavior of λ for the limiting

values of T is particularly insightful. For critically-stressed faults (T ≪ 1), the amplification

factor turns out to be large (λ ≫ 1) and thus the rupture front outpaces largely the fluid

pressure front (R(t) ≫ L(t)), with λ obeying the simple asymptotic relation λ≈ 1/
p

2T . On

the other hand, for marginally-pressurized faults (T ≫ 1), the amplification factor is small

(λ≪ 1), such that the rupture front lags significantly the fluid pressure front (R(t) ≪ L(t)),
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with λ ≈ (1/2)exp
[(

2−γ−T
)

/2
]
, where γ = 0.577216... is the Euler-Mascheroni’s constant.

These simple closed-form expressions provide important insights into the response of faults

during continuous fluid injections. They allow us to to estimate the slip front position in a

compact and convenient way that also determine whether aseismic-slip stress transfer (λ> 1)

or pore pressure increase (λ < 1) is the dominant mechanism in the possible triggering of

seismicity associated with coupled fluid flow and fault slip processes.

4.4.2 Transition from crack-like to pulse-like rupture: the locking front

In Section 4.3, we showed that the shut-in of the injection is characterized by the emergence

of the so-called pore-pressure back front, which corresponds to the instantaneous position at

which the pressure has reached its maximum historically. With reference to Figure 4.2c, we

consequently see that pore pressure is instantaneously increasing at every point on the fault

plane located beyond the position of this front: ∂∆p(r, t )/∂t > 0 for all r > P (t ). This results in

a moving region where the fault shear strength τs(r, t ) = f
(
σ′

0 −∆p(r, t )
)

is decreasing. Such

reduction of fault strength is indeed what uniquely drives the propagation of the rupture after

shut-in. On the other hand, in the complementary inner region r < P (t ), the opposite holds,

and ∂∆p(r, t )/∂t < 0 (see Figure 4.2c). The pore pressure is thus diminishing and the effective

normal stress and thus fault shear strength is rising as a result. Furthermore, the enhanced

fault shear strength may eventually become locally greater than the resolved shear stress

τ, consequently re-locking the slip surface. We observe the development of this re-locking

process systematically in all our numerical solutions, starting virtually right after shut-in.

Such re-locking process is characterized by a locking front B(t ) propagating outwardly from

the injection location. The emergence of this locking front marks the transition from crack-

like (before shut-in) to pulse-like (after shut-in) propagation mode, a prominent feature of

post-injection aseismic slip.

Similarly to the rupture front R(t), the locking front B(t) must be circular when ν = 0, and

is thus fully defined by its radius B(t). Figure 4.3 shows the transition from crack-like to

pulse-like propagation as seen in the normalized slip δ, slip rate v , and shear stress τ and

strength τs spatial distributions, at times right before shut-in and at some time after shut-in.

The aseismic pulses can be seen clearly in Figure 4.3b for the slip rate distribution, where the

positions of the locking and rupture fronts are highlighted. Note that both the magnitude

(peak slip rate) and width of the pulses decrease monotonically with time. On the other hand,

the Mohr-Coulomb inequality given by equation (4.2) establishes that, within the slipping

patch (B(t ) < r < R(t )), the shear stress must be equal to the fault shear strength, whereas in

the re-locked region (r < B(t)), the shear stress must be lower than the fault shear strength.

Both cases can be clearly seen in Figure 4.3c, where the positions of the rupture and locking

fronts are also highlighted. Note that the normalized shear strength in Figure 4.3c is equal

to (τs − f σ′
0)/ f ∆p∗ = −∆p/∆p∗, which is minus the normalized pore pressure perturbation.

In addition, we observe that at some distance away from the locking front and towards the

injection point, the shear stress after shut-in is slightly greater than the shear stress right

70



Post-injection aseismic slip and the delayed triggering of seismicity Chapter 4

0 0.5 1. 1.5
1.0

0.8

0.6

0.4

0.2

0.0

normalized 
shear stress

normalized 
shear strength

0 0.5 1. 1.5
10 4

0.001

0.010

0.100

1

10

0 0.5 1. 1.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Accumulated slip 
after shut-in

(right 
 before shut-in)

(a) (b) (c)

Figure 4.3: Normalized spatial profiles of (a) slip δ, (b) slip rate v , and (c) shear stress τ and
shear strength τs , for a mildly critically-stressed fault with T = 0.1, at two dimensionless times,
one right before shut-in (t̄1 = 1) and the other one at some moment after shut-in (t̄2 = 3). The
positions of the locking B(t ) and rupture R(t ) fronts are highlighted throughout panels (a) to
(c). In panel (b), gray curves correspond to aseismic pulses at times t̄ = 1.54 and 6.25.

before shut-in. This amplification of fault shear stress after shut-in is due to the amount of slip

accumulated through the passage of the slip pulse (shown in Figure 4.3a) and the non-local

redistribution of stresses associated with it via the quasi-static non-local integral operator of

equation (4.1). We further elaborate on the amplification of shear stress behind the locking

front when analyzing the characteristics of slip rate and shear stress rate along the fault in

Section 4.4.5.

4.4.3 Evolution of the rupture, locking, and pore-pressure back fronts: conditions
for pulse-like propagation and arrest

We have identified three relevant fronts that propagate simultaneously upon the stop of the

injection: the rupture front of radius R(t ), the pore-pressure back front of radius P (t ), and the

locking front of radius B(t ). The temporal evolution of these three fronts is shown in Figure

4.4a for an exemplifying case with T = 0.15. Since the only external action that drives the

rupture pulses is the further increase of pore pressure after shut-in at distances r > P (t ), the

pore-pressure back front must be located behind the rupture front in order to guarantee the

sustained propagation of the rupture: P (t) < R(t). Similarly, the propagation of the locking

front is driven by the existence of a region within the pulse where the pore pressure decreases

(and thus the shear strength increases to effectively re-lock the fault), such that P (t) > B(t).

Hence, the following inequalities must be satisfied during pulse-like propagation in the post-

injection stage, B(t) < P (t) < R(t), which are verified in all our numerical solutions, such as

the one displayed in Figure 4.4a.
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Figure 4.4: (a) Evolution of the rupture front radius, locking front radius, and pore-pressure
back front radius, for an exemplifying case with T = 0.15. The front radii are normalized by the
rupture radius at the moment of shut-in Rs . Instants of shut-in of the injection ts and arrest of
the rupture ta are highlighted, as well as the maximum run-out distance Ra . (b) Evolution of
the rupture front radius and locking front radius for many values of T ranging from ≈ 0.94 to
10−3.

On the other hand, since the Coulomb’s shear strength on the fault plane is always bounded,

the shear stress developed at the front of the rupture pulse must be bounded as well, to

effectively allow both quantities to be equal. In other words, the slipping patch must propagate

with no stress singularity at the "fracture" front of such a cohesive-like crack (Barenblatt, 1962).

Hence, both stress intensity factors in mode II and mode III must be equal to zero at r = R(t ).

This fracture-mechanics-like propagation condition was derived in appendix B of Sáez et al.

(2022) for any axisymmetric circular shear rupture, and is still valid for pulse-like (annular)

ruptures as long as the "fracture" is understood not as the current slipping patch, but rather as

the region that has ever experienced any amount of slip since the start of the injection (i.e., for

all r < R(t )). The condition reads as (Sáez et al., 2022)

∫ R(t )

0

∆τ (r, t )√
R(t )2 − r 2

r dr = 0 ⇐⇒
∫ B(t )

0

τ0 −τ∗ (r, t )√
R(t )2 − r 2

r dr +
∫ R(t )

B(t )

τ0 − f
(
σ′

0 −∆p(r, t )
)√

R(t )2 − r 2
r dr = 0.

(4.9)

Note that ∆τ (r, t ) = τ0 −τ (r, t ), with τ0 the initial shear stress and τ (r, t ) the instantaneous

shear stress distribution. In the right-hand side of equation (4.9), we have split the integral

into two parts recognizing that within the slipping patch, the shear stress must be equal to

the fault shear strength: τ (r, t ) = f
(
σ′

0 −∆p(r, t )
)
, whereas in the re-locked region, τ∗ (r, t )

corresponds to the instantaneous shear stress distribution which depends on the current slip

distribution through the quasi-static non-local integral operator of equation (4.1).

The second propagation condition for the post-injection aseismic pulses comes from the
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analysis of Garagash (2012) for seismic and aseismic pulses driven by thermal pressurization.

As we discuss in detail in Section 4.4.5, our aseismic pulses are akin to an annular "crack" of

inner radius B(t) and outer radius R(t), as long as the dislocation density is replaced by the

slip rate gradient ∂v/∂r , and the change of shear stress by the shear stress rate ∂τ/∂t . The

near-tip asymptotic behavior of classical cracks (Rice, 1968) is thus valid but in terms of ∂τ/∂t

and v . Having this result in mind, we can now invoke Garagash’s healing condition, which

states that the shear stress rate ∂τ/∂t must be non-singular at the locking front to effectively

allow the fault to re-lock. This is because within the slipping patch and, particularly, at the

locking front, the shear stress rate must equal the shear strength rate (the plastic consistency

condition, see for example, appendix A in Sáez et al., 2022), in our case, ∂τ/∂t = − f ∂∆p/∂t .

Since ∂∆p/∂t is bounded all over the fault plane, it follows that ∂τ/∂t cannot be singular at

the locking front.

Garagash obtained an integral equation similar to (4.9) based on the non-singularity of shear

stress rate at the locking front (equation (19) in Garagash, 2012). Such integral equation is

valid under the assumptions of his study in 2D elasticity for a solitary steady pulse traveling in

anti-plane (III) or in-plane (II) mode of sliding. Indeed, if our pulse that is non-steady would

be solved in 2D elasticity, a similar expression can be derived for the two symmetric pulses

(traveling in opposite directions) that would emerge in that case, from known stress intensity

factors (SIF) formulae (Tada et al., 2000). To the best of our knowledge, the SIF formulae for an

annular crack under axisymmetric loading are unknown (numerical procedures have been

proposed to calculate them in mode I, e.g., Clements and Ang, 1988). Nevertheless, one can

still formalize this second propagation condition based on the near-tip asymptotic behavior

of classical cracks as (Barenblatt, 1962; Rice, 1968)

Kτ̇ = 0, with
∂τ(r, t )

∂t
≃ Kτ̇p

2π [B(t )− r ]
when r → B(t )−. (4.10)

Kτ̇ is the so-called "stress-rate intensity factor" (Garagash, 2012) with units of
(
pressure/time

)·
length1/2. It quantifies the intensity of the leading-order (singular) term of ∂τ/∂t near the

locking front. Note that Kτ̇ may be also written in terms of the mode II, K2,τ̇, and mode III,

K3,τ̇, stress-rate intensity factors, as K 2
τ̇ = K 2

2,τ̇+K 2
3,τ̇. Indeed, since the two components of the

shear stress rate on the fault plane must be non-singular along the locking front, equation

(4.10) can be stated in the stronger form, K2,τ̇ = K3,τ̇ = 0. Note also that the stress-rate intensity

factor is not the same than the stress intensity factor rate, at least along the locking front. For

the latter, there is no stress intensity factor whatsoever, since there is no fracture tip and thus

no potential singular term for τ when r → B(t )−. Hence, although it could have been tempting

to write the healing condition (4.10) as dG/dt = 0, where G is the energy release rate, such

statement is not true.

Equations (4.9) and (4.10) are, therefore, the necessary conditions for the propagation of post-

injection aseismic slip as an annular pulse. Together, these two equations describe the motion

of the rupture front R(t ) and locking front B(t ) that are at quasi-static equilibrium with a given

∆τ(r, t ). Yet as already mentioned, we cannot solve these two equations without solving the
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entire moving boundary value problem. However, they provide additional insights into the

mechanics of the problem and, as shown in Section 4.4.5, define important characteristics of

the slip rate and shear stress rate distributions along the fault plane.

We now seek for the conditions that characterize the final arrest of the rupture pulses. Figure

4.4a shows that as expected at the moment of arrest, the locking front B(t) catches up the

rupture front R(t). Since in that instant the rupture pulse effectively vanishes, equation

(4.10) has no relevance. However, the "fracture" (slipped surface) is still present and, to be

at mechanical equilibrium, equation (4.9) must be satisfied. Since the second term of the

right-hand side of (4.9) approaches zero at the time of arrest, equation (4.9) takes now the

simpler form∫ Ra

0

τ0 −τ∗ (r, ta)√
R2

a − r 2
r dr = 0, (4.11)

where ta is the time of arrest and Ra = R(ta) is the corresponding rupture radius at the arrest

time (the maximum run-out distance). In the previous equation, Ra may be equivalently

replaced by Ba = B(ta). Furthermore, since the rupture after shut-in is driven uniquely by

the further increase of pore pressure that occurs in the region r > P (t ), the rupture arrest will

be also characterized by the moment at which the pore-pressure back front catches up the

rupture front (see Figure 4.4a). Therefore, the following conditions must be also met exactly at

the time of arrest,

R(ta) = B(ta) = P (ta), (4.12)

and more importantly, by combining the previous equation with equation (4.8), we obtain an

analytic relation between the radius Ra and time ta of arrest,

Ra =
√

4αta

(
(ta/ts −1)ln

(
ta

ta − ts

))1/2

, (4.13)

which in the large-time limit (ta ≫ ts) becomes simply Ra ≈p
4αta . Equations (4.11) and (4.13)

provide a complete system of equations to solve for the time at arrest ta and the maximum

run-out distance Ra . However, the shear stress profile left by the arrested rupture τ∗ (r, ta) in

equation (4.11) is unknown analytically. Hence, we must determine at least one of these two

quantities numerically.

4.4.4 Arrest time and maximum run-out distance

We now determine numerically the normalized arrest time ta/ts and normalized maximum

run-out distance Ra/Rs by spanning the relevant parameter space with 40 values of T ranging

from 10−3 to 10, equally spaced in logarithmic scale. The results are presented in Figure 4.5.

Marginally-pressurized faults (T ∼ 10) produce slip pulses that arrest almost immediately

after the stop of the injection and practically do not grow further than the size of the ruptures
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Figure 4.5: (a) Normalized arrest time and (b) normalized maximum run-out distance as a
function of the stress-injection parameter T . In (a) and (b), the red dashed line represents
the asymptotic behavior in the critically-stressed regime (T ≪ 1), equations (4.14) and (4.15),
respectively. In (b), the green dashed curve is an improved approximation obtained by substi-
tuting equation (4.14) directly into (4.13). The gray crosses correspond to the evaluation of Ra

via the analytic relation, equation (4.13), using the numerical solution of ta .

at the moment of shut-in (Rs), whereas critically-stressed faults (T ≪ 1) host events that can

last up to ≈ 103 times the injection time ts and grow approximately up to 1.8 times the rupture

radius at the shut-in time (for the smallest value of T considered). Critically-stressed faults

are, therefore, the asymptotic regime of more practical interest. We thus focus on determining

its behavior precisely.

For the normalized arrest time, Figure 4.5a shows a clear power law between ta/ts and T .

Using a linear least square regression, we obtain

ta

ts
≈ aT −b , (4.14)

with a = 0.946876 and b = 1.084361. In solving the least-squares problem, we have considered

data points satisfying T ≲ 0.01 (≪ 1) and obtained an R2 equal to 0.999993.

We can now use the analytic relation between Ra and ta , equation (4.13), to construct a

critically-stressed asymptotic approximation for the normalized maximum run-out distance

using the power-law relation (4.14). In particular, at large arrest times (ta ≫ ts), (4.13) is

approximately equal to Ra/Rs ≈ (1/λ)
p

ta/ts . Substituting λ≈ 1/
p

2T (see Section 4.4.1) and

(4.14) into the previous expression, leads to the sought critically-stressed approximation,

Ra

Rs
≈

(
2a

T b−1

)1/2

, or Ra ≈
(

4aαts

T b

)1/2

. (4.15)

In addition, we can substitute equation (4.14) directly into (4.13) to provide an improved

asymptotic approximation for the critically-stressed regime that is approximately valid over a

broader range of values of T (green curve in Figure 4.5b). Note that in Figure 4.5b, we have

also plotted the values of Ra not from the numerical solution, but rather by evaluating the
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Figure 4.6: (a) Slip rate distribution normalized by the instantaneous peak slip rate vpeak (t)
at three dimensionless times for a mildly critically-stressed fault with T = 0.1. Red dashed
curves represent the tip asymptotic behavior, equation (4.17). (b) Shear stress rate distribu-
tions normalized by the stress-rate scale τ̇∗ = f ∆p∗/ts , for the same times than in (a). The
singular and non-singular stress rate fields near the rupture and locking fronts, respectively,
are highlighted in red. The green dashed curve corresponds to the normalized rate of shear
strength at t̄ = 1.54. (c) Evolution of the normalized peak slip rate in time for many values of
T ranging from ≈ 0.75 to 10−3 (from left to right). In the inset, same results but time is scaled
to be between 0 at shut-in and 1 at arrest.

analytic relation (4.13) (gray crosses) given the numerical solution of ta . The latter is just to

illustrate the exactness of the relation between the radius of arrest and the time of arrest (4.13).

4.4.5 Characteristics of slip rate and shear stress rate

We now examine in detail the slip-rate characteristics of the aseismic pulses (Figure 4.6).

Let us consider the quasi-static elastic equilibrium that relates the fault shear stress τ and

slip distribution δ for an axisymmetric circular shear rupture, in the compact form given

by Bhattacharya and Viesca (2019). We differentiate that integral equation with respect to

time (using Leibniz’s integral rule, applying the condition of no shear stress singularity at

the rupture front ∂δ (R(t ), t )/∂r = 0, and the fact that ∂v/∂r = 0 within the re-locked region

0 < r < B(t )) to arrive to the following relation1,

∂τ (r, t )

∂t
=
µ

2π

∫ R(t )

B(t )

∂v(ξ, t )

∂ξ

(
K [k(r /ξ)]

ξ+ r
+ E [k(r /ξ)]

ξ− r

)
dξ, (4.16)

where K [·] and E [·] are the complete elliptic integrals of the first and second kind, respectively,

and k(x) = 2
p

x/(1+x). Equation (4.16) is akin to the elastic equilibrium of an annular crack

1albeit with a minus one factor due to the difference between the geomechanics convention of positive stresses
in compression and the classical solid mechanics convention of positive stresses in tension.
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of inner radius B(t ) and outer radius R(t ), but in terms of shear stress rate ∂τ/∂t and slip rate

gradient ∂v/∂r , instead of shear stress τ and slip gradient ∂δ/∂r . The asymptotic behavior of

the slip rate distribution near the rupture and locking fronts thus follows the tip asymptotics

for displacement discontinuity of classical cracks (Rice, 1968):

v(r, t ) ∝
√

R(t )− r when r → R(t )− , and v(r, t ) ∝ (r −B(t ))3/2 when r → B(t )+. (4.17)

Note that the rupture front features a stress-rate singularity in the classical form

∂τ(r, t )

∂t
≃ Kτ̇,Rp

2π (r −R(t ))
when r → R(t )+, (4.18)

where Kτ̇,R is the “stress-rate intensity factor". The subscript R is introduced to distinguish

Kτ̇,R from the stress-rate intensity factor of the locking front Kτ̇ already introduced in equation

(4.10). Note that the singularity may be written in a stronger form for the two components of

shear stress rate on the fault plane (the mode II and mode III directions), as already discussed

for the locking front in Section 4.4.3. On the other hand, the healing condition (4.10) has been

already taken into account in equation (4.17) for the locking front, such that the leading-order

term of the slip rate is now the next term of the near-tip asymptotic expansion of classical

cracks v ∝ s3/2(Rice, 1968), where s is the distance from the tip towards the slipping patch.

In this way, the shear stress rate is bounded at the locking front, whereas nothing prevents

the shear stress rate to be infinite at the rupture front. It is indeed the shear stress τ the one

quantity that must be bounded at the rupture front, according to the condition (4.9).

The foregoing tip asymptotics are highlighted in red in Figures 4.6a-b, which show typical slip

pulses and their corresponding shear stress rate distributions along the fault plane at three

times. In Figure 4.6b, the green dashed curve corresponds to the normalized rate of shear

strength at t̄ = 1.54 that must be equal to the normalized shear stress rate within the slipping

patch according to the consistency condition mentioned in Section 4.4.3. Such equality can

be clearly visualized in this figure. Note that the slip rate in Figure 4.6a is normalized by the

instantaneous maximum slip rate vpeak (t), that decays fast in time. The evolution of the

maximum slip rate is indeed displayed in Figure 4.6c for relevant values of T ranging from

10−3 to ≈ 0.75 (greater values than 0.75 correspond to ruptures that arrest almost immediately

after shut-in). Owing to the relatively fast decay of the maximum slip rate after shut-in, the

peak shear stress rate at both the locking and rupture fronts is also observed to decay fast, as

depicted in Figure 4.6b.

4.5 Pulse-like non-circular ruptures

In this section, we examine the effect of a Poisson’s ratio different than zero on the propagation

and ultimate arrest of the post-injection aseismic pulses. For this purpose, we consider a fixed

value of ν = 1/4 (Poisson’s solid).
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4.5.1 Recall on the self-similar solution before shut-in

Sáez et al. (2022) also solved the continuous-injection problem for the case of ν ≠ 0. They

showed that the rupture front is well-approximated by an elliptical shape that becomes more

elongated for increasing values of ν and decreasing values of T : the more critically stressed

the fault is, the more elongated the rupture becomes. The aspect ratio of the quasi-elliptical

rupture fronts is upper bounded by 1/(1−ν) in the critically-stressed limit (T ≪ 1), and

lower bounded by (3−ν)/(3−2ν) in the marginally-pressurized limit (T ∼ 10). Furthermore,

the rupture area Ar (t ) evolves simply as Ar (t ) = 4παλ2t (linear with time), and interestingly

it does not depend on the Poisson’s ratio ν (see figure 6 in Sáez et al., 2022). The previous

numerical observations led to closed-form approximate expressions for the entire evolution

of the quasi-elliptical rupture fronts in terms of the semi-major a(t) and semi-minor b(t)

axes of an ellipse, as a(t ) = R(t )/
p

1−ν and b(t ) = R(t )
p

1−ν in the critically-stressed regime,

and a(t) = R(t)
p

3−ν/
p

3−2ν and b(t) = R(t)
p

3−2ν/
p

3−ν in the marginally-pressurized

regime, with R(t) the rupture radius of a circular rupture for the same value of T , which is

known analytically (see Section 4.4.1).

4.5.2 Effect of ν on the propagation of the aseismic pulses

We summarize the main characteristics of the propagation of pulse-like non-circular ruptures

in Figure 4.7. This figure is composed by four snapshots of the normalized slip rate distribution

for a mildly critically-stressed fault with T = 0.1. Each snapshot represents a remarkably

different propagation phase. The first one, Figure 4.7a, corresponds to a moment right before

stopping the injection, specifically at t̄ = 0.99, where t̄ = t/ts . At this time, the rupture is

still propagating in crack-like mode. For this value of T , the quasi-elliptical rupture front

outpaces the pore-pressure perturbation front. Note that the spatial coordinates in Figure

4.7 are normalized by the rupture lengthscale Rs =λ
p

4αts (radius of a circular rupture with

the same value of T , see Section 4.4.1). The second snapshot, Figure 4.7b, displays the

rupture after shut-in at approximately 4.75 times the injection duration. In this figure, we can

already observe the locking front and thus the propagation of the rupture as an annular pulse.

Interestingly, although the rupture front is clearly elongated along the mode II direction of

sliding (same as it is before shut-in), the locking front seems to be slightly elongated along the

mode III direction instead.

Figures 4.7c and 4.7d show the most remarkable effects of considering a Poisson’s ratio different

than zero. Figure 4.7c corresponds to the instant at which the locking front is about to

coalesce with the rupture front along the mode III direction of sliding. Note that at this time

of coalescence tc , approximately equal to 9.44 times the injection duration in this case, the

pore-pressure back front is also intersecting both the rupture and locking fronts. Let us denote

the maximum run-out distance of the rupture in the mode III direction as ℓc (see Figure 4.7c

for its definition). The previous observation, that was somewhat expected from the analysis of

circular ruptures (see equation (4.12)), means that there is a unique relation between ℓc and tc ,
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Figure 4.7: Snapshots of normalized slip rate distribution for a non-circular rupture with
T = 0.1 and ν = 0.25. The spatial coordinates x and y are scaled by the rupture radius at the
shut-in time Rs for the same T but ν = 0, whereas dimensionless time t̄ = t/ts as usual. (a)
Crack-like propagation right before shut-in (t̄ = 0.99). (b) Propagation as an annular pulse
after shut-in (t̄ = 4.75). (c) Moment in which the locking and rupture fronts are about to
coalesce (t̄ ≈ 9.44). (d) Propagation after coalescence of the fronts as two "moon-shaped"
pulses traveling in opposite directions (t̄ = 11.75). The maximum run-out distance of the
rupture ℓa that will be eventually reached at some later time is depicted. The positions at
which the locking, rupture, and pore-pressure back fronts intersect each other are indicated
with red circles.
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in the form ℓc = P (tc ), where P (t ) is the instantaneous radius of the pore-pressure back front

known analytically from equation (4.8). Moreover, after the coalescence of the fronts, Figure

4.7d displays that the original annular pulse is split into two symmetric "moon-shaped" pulses

that travel in opposite directions. The moving positions at which the locking and rupture

fronts are intersecting each other are shown with red circles in Figure 4.7d. These positions

are again such that the pore-pressure back front is located exactly at the same place. The

condition (4.12) for circular ruptures at the time of arrest is thus still valid for non-circular

ruptures but now at any time tc ≤ t ≤ ta . Finally, the instantaneous rupture area of each

moon-shaped pulse decreases continuously with time and will eventually collapse into a point

located along the x axis at some distance ℓa as depicted in Figure 4.7d. ℓa corresponds to the

maximum run-out distance of the entire rupture and, similarly to the case of circular ruptures,

equation (4.13) will now take the form ℓa = P (ta), where ta is the time of arrest.

4.5.3 Effect of ν on the arrest time and maximum run-out distance

We calculate the time of arrest ta and maximum run-out distance of the rupture ℓa , as well as

the time of coalescence tc and maximum run-out distance in the mode III direction ℓc , for

ten values of the stress-injection parameter T ranging from 10−3 to ≈ 0.59. This range allows

us to span the most relevant part of the parameter space associated with critically-stressed

faults. Figure 4.8a summarizes the results for the normalized arrest time ta/ts and normalized

time of coalescence tc /ts , including the results for the arrest time of circular ruptures tν=0
a . We

observe that the coalescence of the fronts occurs at earlier times than the arrest of circular

ruptures. Moreover, a Poisson’s ratio ν ≠ 0 has the clear effect of delaying the arrest of the

aseismic pulses with regard to the circular case. To better quantify this delayed arrest, we plot

the same results in the inset but normalize the arrest and coalescence times by the arrest time

of circular ruptures. It can be seen that the more critically-stressed the fault is, the longer it

takes for non-circular ruptures to arrest compared to circular ones. Furthermore, the ratio

ta/tν=0
a seems to approach an asymptotic value of ≈ 1.21 in the critically-stressed limit (when

T → 0).

Figure 4.8b shows the results for the normalized maximum run-out distance of the rupture

ℓa/Rs and normalized maximum run-out distance in the mode III direction ℓc /Rs . In accor-

dance with the results for tc and ta , the distance ℓc is lower than the arrest radius of circular

ruptures Ra for the same value of T , whereas the maximum run-out distance of non-circular

ruptures ℓa is greater than the maximum run-out distance of its circular counterpart Ra . In

addition, the relations ℓc = P (tc ) and ℓa = P (ta) discussed in the previous section are shown to

be in good agreement (gray crosses in Figure 4.8b) with the numerical results up to numerical

discretization errors. Moreover, the inset shows the run-out distances ℓa and ℓc but normalized

by the arrested radius of circular ruptures Ra . The maximum run-out distance ℓa seems to

approach an asymptotic value in this case of ≈ 1.1Ra in the limit of critically-stressed faults.
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Figure 4.8: (a) Normalized arrest time ta and coalescence time tc for ν = 0.25 as a function of
the stress-injection parameter T for values ranging from 10−3 to ≈ 0.59. The inset shows the
same results but normalized by the arrest time of circular ruptures tν=0

a . (b) Same as (a) but for
the maximum run-out distance of the rupture in the mode II ℓa and mode III ℓc directions
of sliding. In the inset, same results but normalized by the arrest radius of circular ruptures
Ra . Gray crosses in (b) come from evaluating ta and tc of panel (a) in equation (4.8) for the
pore-pressure back front.

4.6 Discussion

4.6.1 Critically-stressed regime versus marginally-pressurized regime

Figures 4.5 and 4.8 summarize one of the most important results of this article. Marginally-

pressurized faults (T ∼ 10) produce aseismic pulses that arrest almost immediately after shut-

in, whereas critically-stressed faults (T ≪ 1) are predicted to host ruptures that propagate

for several orders of magnitude the injection duration and grow up to approximately twice

the size of the ruptures at the moment of shut-in (for the smallest value of T considered).

Critically-stressed faults are therefore the relevant propagation regime that is able to sustain

seismicity after shut-in. Under this regime, the long-lived aseismic pulses provide a longer

exposure of the surrounding rock mass to continuous stressing due to aseismic slip and, at

the same time, their longer run-out distances perturb a larger volume of rock mass up to

≈ 23 = 8 times larger than the volume affected at the moment of shut-in, therefore increasing

the likelihood of triggering earthquakes during the post-injection stage compared to the

marginally-pressurized case.

To illustrate under what conditions these two regimes can occur, let us consider some char-

acteristic values of a fault undergoing fluid injection. Consider that water is injected into a

fault zone at a constant volume rate Q ∼ 30 [l/s], which is typical of hydro-shearing treatments

of deep geothermal reservoirs at around 3 to 4 km depth (Ellsworth et al., 2019). Assume

also a fluid dynamic viscosity η ∼ 10−3 [Pa · s]. The fault hydraulic transmissivity can vary

over several orders of magnitude. Consider, for instance, a plausible value of kw ∼ 10−12

[m3] (Evans, Genter, et al., 2005). This yields a characteristic pressure at the fluid source of

∆pc = 30 [MPa] and an intensity of the injection ∆p∗ ≈ 2.4 [MPa] (equation (4.3)). Let us
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consider for the initial effective normal stress a characteristic value of σ′
0 ∼ 60 [MPa], that

is somewhat consistent with a depth of 3-4 km under gravitational loading and hydrostatic

conditions. Assuming a friction coefficient f = 0.6, the initial fault shear strength is f σ′
0 = 36

[MPa], while the intensity of the strength reduction due to fluid injection is f ∆p∗ ≈ 1.4 [MPa].

The amount of initial shear stress τ0 acting on the fault will finally determine the regime of the

fault response in this example. Consider first a fault that is close to failure, say τ0 = 35.9 [MPa]

(0.1 [MPa] to failure). This leads to a small value of the stress-injection parameter T ≈ 0.07

(equation (4.5)), and therefore to a fault responding in the so-called critically-stressed regime

(T ≪ 1). Before shut-in, the fluid-induced aseismic slip front in this example is predicted to

outpace the pore pressure perturbation front by a constant factor λ≈ 1/
p

2T ≈ 2.7 (Section

4.4.1), for the case of circular ruptures. Consider that the injection was conducted during a

period of ts = 1 [day]. Then, after shut-in, the post-injection aseismic pulse is expected to

propagate for ta − ts ≈ 16 [days] (equation (4.14)) and reach a maximum run-out distance of

≈ 1.54 times the run-out distance at the moment of shut-in (equation (4.15)). To close this

dimensional example, let us assume that the fault has a hydraulic diffusivity of, say, α = 0.01

[m2/s]. The radius of the rupture at the moment of shut-in is Rs = λ
p

4αts ≈ 159 [m] (see

again Section 4.4.1), and the maximum run-out distance of post-injection aseismic slip will be

Ra ≈ 1.54 ·159 [m] ≈ 245 [m]. If the hydraulic diffusivity were ten times lower, Rs and Ra would

decrease by approximately 30%.

Consider the same example of the previous paragraph, but now with a fault that is further

away from failure. Assume, for instance, a lower value of the initial shear stress τ0 = 25 [MPa]

(11 [MPa] to failure). The stress-injection parameter for this case becomes T ≈ 7.9, well within

the marginally-pressurized regime (T ∼ 10). Prior shut-in, the slip front is predicted to lag the

pore pressure perturbation front by a factor λ≈ (1/2)exp[
(
2−γ−T

)
/2] ≈ 0.02 (Section 4.4.1).

Moreover, upon the stop of the injection, the rupture is expected to arrest almost immediately

(see Figure 4.5), such that ta ≈ ts ≈ 1 [day] and Ra ≈ Rs =λ
p

4αts ≈ 1.2 [m]. In the two previous

examples, the end-member regimes were achieved by changing only the initial shear stress

acting on the fault or, equivalently, the distance to failure. This highlights the importance of the

pre-injection stress state on determining the response of the fault. However, there is another

relevant quantity that may equally change the fault response regime, namely, the intensity of

the injection ∆p∗. So far, we have assumed hydraulic parameters resulting in ∆p∗ ≈ 2.4 [MPa]

(and ∆pc = 30 [MPa]). Imagine now that the fault is still relatively close to failure as in the first

example (τ0 = 35.9 [MPa]) but a much smaller amount of fluid is being injected, say Q = 1 [l/s].

This is unlikely the case of a hydraulic stimulation but could instead occur in the case of a

natural source of fluids occurring at the same depth. The intensity of the injection (equation

(4.3)) is now ∆p∗ ≈ 0.08 [MPa] (with ∆pc = 1 [MPa]), and the corresponding stress-injection

parameter T ≈ 2.1. This will lead equivalently to a rupture that lags the fluid pressure front

during continuous injection (λ≈ 0.37) and that arrest almost immediately after shut-in. The

latter, despite the fact that the fault was "just" 0.1 [MPa] away from failure under ambient

conditions. On the other hand, a more intense injection than the one with Q = 30 [l/s] will act

in the direction of moving the fault response towards the critically-stressed regime (decreasing
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values of T ). Those injections might however sometimes open the fault (if ∆pc ≳ σ′
0), a

mechanism that is not accounted in this work.

4.6.2 Conceptual model of post-injection seismicity

In the next sections, we use our model to investigate to which extent post-injection aseismic

slip can be considered as a mechanism for the delayed triggering of seismicity. However,

before going into the details of the discussion, it seems convenient to establish first a few

general concepts. First, we note that any model that aims at explaining observations of post-

injection seismicity must produce spatio-temporal changes of pore pressure or solid stresses

after shut-in. Our model produces both of them. In fact, the pore pressure changes alone

are essentially equal to the ones already considered by Parotidis et al. (2004) to explain the

so-called back front of seismicity that is sometimes observed after the termination of fluid

injections. Note that Parotidis et al.’s model assumes the increase of pore pressure as the only

triggering mechanism of seismicity. We, instead, elaborate on a mechanism based on the

combined effect of transient changes in solid stresses due to aseismic slip and pore pressure

after shut-in. For the sake of simplicity, we carry out all discussions in terms of circular

ruptures only. Rupture non-circularity does not modify the order of magnitude of the results.

Let us define now conceptually what seismicity means in the context of our model. We consider

that a single fault plane undergoes some transient fluid injection that may be approximated

as a pulse of injection rate (see Figure 4.1c). It is assumed that as a result of the injection,

the fault slides predominantly aseismically. Seismic events are thought to be triggered on

unstable patches of the same fault plane (due to, for instance, heterogeneities in rock frictional

properties) or other pre-existing discontinuities in the surroundings of the slowly propagating

rupture. The former and latter events are commonly denominated as on-fault and off-fault

seismicity, respectively, a terminology that we use later on. Note that an important underlying

assumption of this conceptual model is that the unstable patches of the aseismic fault do not

represent a sufficiently large area to change its predominantly stable mode of sliding to a large

dynamic rupture.

We define a Mohr-Coulomb failure function in the form,

F (x , t ;n) = |τ (x , t ;n)|− f
(
σ (x , t ;n)−p (x , t )

)
, (4.19)

where τ and σ are the shear and total normal stresses acting on a certain unstable patch

with unit normal vector n at a given position x and time t , p is the pore-fluid pressure, and

f is a constant (static) friction coefficient. The failure function is such that F ≤ 0 always.

The inequality F < 0 holds when no frictional failure occurs, whereas the equality F = 0 is

valid whenever frictional sliding is activated. The initial stress state is assumed such that

F (x , t < 0;n) < 0 at all pre-existing discontinuities before injection starts. Once injection

begins, the failure function may approach zero by changes in the solid stresses τ and σ and

the pore pressure p. Upon failure of a certain patch, slip may evolve seismically only if the

83



Chapter 4 Post-injection aseismic slip and the delayed triggering of seismicity

friction coefficient is allowed to weaken. The time-dependent nucleation of instabilities and,

moreover, the explicit modeling of seismicity, are out of the scope of our study. Instead,

we consider a conceptual model in which any positive change of the failure function at a

certain position and time may lead to frictional sliding and, subsequently, to the possibility of

triggering an instability.

We introduce two types of changes of the failure function that will prove to be useful for our

analysis. The first one, a static change ∆F between two times,

∆F (x ;n) =∆τ (x ;n)− f
(
∆σ (x ;n)−∆p (x)

)
. (4.20)

The second one, an instantaneous change Ḟ ,

Ḟ (x , t ;n) = τ̇ (x , t ;n)sgn(τ (x , t ;n))− f
(
σ̇ (x , t ;n)− ṗ (x , t )

)
. (4.21)

∆F is widely known in seismology as the Coulomb stress change (King et al., 1994), a terminol-

ogy we adopt hereafter. Note that in equation (4.20), we assume that the change of shear stress

∆τ is positive if it occurs in the same direction as the shear stress at the selected initial time.

On the other hand, in equation (4.21), sgn(·) is the sign function and the dot over the scalar

fields represents a partial derivative in time. Ḟ is commonly denominated as the Coulomb

stressing rate, a quantity that is sometimes correlated to seismicity rates (Dieterich, 1994).

Finally, we highlight that positive contributions to failure ∆F > 0 (Ḟ > 0) are given by both

positive changes of pore pressure ∆p > 0 (ṗ > 0) and negative changes of total normal stress

∆σ< 0 (σ̇< 0). The effect of the shear stress is however less straightforward and knowledge

about the direction of τ and thus about the absolute state of stress is required to evaluate its

relative contribution to ∆F (Ḟ ).

4.6.3 On-fault seismicity

Theoretical considerations

On fault, both aseismic-slip stress transfer and pore pressure changes are active during the

post-injection stage. We use the Coulomb stressing rate Ḟ as an indicator of the regions where

seismicity is expected. Let us first note that due to the planarity of the fault, the total normal

stress rate σ̇ is zero. Hence, the only component of stress rate that is active along the fault

plane is the shear one τ̇. Moreover, since the absolute state of stress of the fault is known, we

can assume by convention that τ> 0 and consequently that positive rates of shear stress are

the ones that contribute to frictional failure. Along the fault plane, equation (4.21) thus further

simplifies to

Ḟ (x , t ) = τ̇ (x , t )+ f ∆ṗ (x , t ) . (4.22)

We first analyze the stress-transfer effect, τ̇ in equation (4.22). With reference to the char-

acteristics of slip rate and shear stress rate that we describe in detail in Section 4.4.5, it can
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be readily shown that the shear stress rate acting on possible unstable patches is positive

everywhere along the fault plane. For the region outside of the pulse, this can be derived

after differentiating equation (4.1) with respect to time and noting that seismicity should be

triggered predominantly in the proximity of both the locking and rupture fronts, as a conse-

quence of the amplification of shear stress rate concentrated near the tips of the aseismic

pulses (see Figure 4.6b). Regarding the inside of the pulse, the value of τ̇ in our model, which is

simply equal to the fault shear strength rate, is somewhat irrelevant. The actual stress-transfer

effect comes rather from considering that unstable patches may be effectively locked and

surrounded by aseismic slip. The latter would increasingly load the locked patches in shear

until eventually a dynamic event could be triggered.

With regard to the pore-pressure effect, f ∆ṗ in equation (4.22), its contribution to seismicity

can be understood readily from the mere definition of the pore-pressure back front. At

distances r > P (t), where P (t) is the radius of the front, the pore pressure rate is positive.

Therefore, the region ahead of the pore-pressure back front is where fluid-induced instabilities

are expected, a result that was already introduced by Parotidis et al. (2004). Conversely, at

distances r < P (t), the opposite holds ∆ṗ < 0, and thus the triggering of instabilities is here

inhibited.

We are now ready to superimpose the effects of τ̇ and f ∆ṗ to notably determine the sign

of Ḟ . This is schematized in Figure 4.9a, where four different regions in which the results

of the superposition operate differently, are delineated by the three relevant fronts of the

problem, namely, the rupture front R(t), the pore-pressure back front P (t), and the locking

front B(t ). In region R1 for distances ahead of the pulse r > R(t ), the Coulomb stressing rate Ḟ

is always positive. In this region, seismicity is expected to be triggered by the contribution of

both a positive shear stress rate τ̇> 0 and a positive pore pressure rate ∆ṗ > 0. Let us further

analyze the magnitude and distribution of Ḟ here. This is shown in Figure 4.9b, where the

spatial profile of normalized Coulomb stressing rate is plotted at various dimensionless times

for an exemplifying case with T = 0.1. The solitary contribution of the pore pressure rate,

which is independent of the value of T , is also included in this figure. Note that the scale

of the Coulomb stressing rate Ḟ∗ comes from equation (4.22) and is equal to Ḟ∗ = f ∆p∗/ts .

We observe from Figure 4.9b that ahead of the rupture pulse and at early times after shut-in,

Ḟ is dominated by the amplification of shear stress rate (τ̇≫∆ṗ), whereas at intermediate

times and notably at large times, the pore pressure rate becomes the most dominant quantity

(∆ṗ ≫ τ̇) from some distance ahead of the rupture front that gets increasingly closer to the

slip front with time. However, at the rupture front itself and very close to it, the shear stress

rate will always dominate the magnitude of Ḟ due to the square-root singularity of τ̇ discussed

in Section 4.4.5.

Let us now consider the regions R2 and R3 that compose the slipping patch. Here, seismic

events are promoted by the increase of shear stress τ̇> 0 acting on locked unstable patches

that are loaded by surrounding aseismic slip, a mechanism that is denoted by δ̇> 0 in Figure

4.9a. Moreover, in region R2 ahead of the pore pressure back front r > P (t ), the pore pressure
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rate is also positive, meaning that the Coulomb stressing rate Ḟ is strictly positive too. The

triggering of instabilities in region R2 is thus expected. Conversely, in the region R3 behind

the pore pressure back front r < P (t), the pore pressure rate is negative. As such, its effect

counterbalances the positive contribution due to aseismic slip (δ̇> 0). Whether Ḟ is positive

or negative in this region is not possible to know from our calculations, because we do not

explicitly model the effect of any potential locked patch on the shear loading. Nevertheless, by

assuming that the shear loading τ̇ is some unknown but positive quantity, the solitary effect of

the pore pressure changes provides a lower bound for Ḟ within the slipping patch. Even more,

the pore-pressure effect f ∆ṗ is a lower bound of Ḟ over the entire fault plane since as already

discussed, the stress-transfer effect τ̇ is positive everywhere. This can be clearly observed in

Figure 4.9b when looking at the regions behind (R4) and ahead (R1) of the rupture pulse.

Finally, in the region R4 behind the slip pulse r < B(t), seismicity is promoted by the ampli-

fication of the shear stress rate near the locking front, albeit such amplification is going to

be neutralized to some extent by the negative pore pressure rate operating in this region. In

fact, Figure 4.9b shows that the negative pore pressure rate appears to completely neutralize

the stress rate amplification behind the locking front for the particular case shown in this

figure. Furthermore, a general proof of this numerical observation can be developed as follows.

First, we recall that Ḟ = 0 within the slipping patch and, particularly, when r → B(t)+. Note

that we have just referred to Ḟ with the same notation than the Coulomb stressing rate acting

on unstable locked patches (equation (4.22)). However, we are rather referring by Ḟ in this

particular case to the rate of the failure function on the portion of the slipping patch that is

aseismically sliding. Since τ̇ and ∆ṗ are both continuous at the locking front (the former

due to the healing condition discussed in Section 4.4.3), the previous limit is also valid when

approaching B(t) from the outside of the pulse: Ḟ = 0 when r → B(t)−. Because both τ̇ and

∆ṗ decrease monotonically with increasing distances measured from the locking front and

towards the injection point r = 0, we conclude that Ḟ < 0 for all points located behind the

locking front, r < B(t ). We highlight that this statement is valid at any time after shut-in and

for any value of T . More importantly, it allows us to establish unequivocally that seismicity is

not expected to occur behind the locking front, despite the positive increase of shear stress

operating behind the rupture pulse.

The final region along the slip plane where seismicity is theoretically expected after shut-in

(Ḟ > 0) is highlighted in Figure 4.9a by the white points that represent the location and time of

possible seismic events. Note that in this figure, we intentionally draw increasingly less events

as time goes. This is due to the Coulomb stressing rate decreases many orders of magnitude

at intermediate and large times comparing to early times (see Figure 4.9b) and as such, the

seismicity rate is expected to decrease in a similar manner. Moreover, the lower limit of the

seismically active region resembles the back front of seismicity proposed by Parotidis et al.

(2004). Indeed, Parotidis et al.’s back front is equal to the pore-pressure back front P (t ) of this

work (eq. 5 in Parotidis et al., 2004, equation (4.8) here). Whether some instabilities can be

triggered or not in region R3 seems quite irrelevant from an observational point of view, since

such small spatial differences between the locking front and the pore pressure back front are
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Figure 4.9: (a) Theoretical signature of on-fault seismicity after shut-in. Distance versus time
plot showing regions over the fault plane (R1 to R4) where the combined effect of aseismic-slip
stress transfer (τ̇ or δ̇) and pore pressure changes (ṗ) operates in different manners. White
points represent the location/time of possible seismic events where the Coulomb stressing
rate Ḟ is predicted to be positive. Dashed curves correspond to the position where Ḟ is 1%
and 10% of the characteristic Coulomb stressing rate Ḟ∗ = f ∆p∗/ts . (b) Normalized Coulomb
stressing rate Ḟ (solid lines in gray scale) and pore pressure rate ∆ṗ (dashed lines in red
scale) along the fault plane at three dimensionless times for the same rupture than in (a),
T = 0.1. Dimensionless times in the legend box are in the format t̄ = t/ts , ((t − ta)/(ta − ts)).
(c) Application of our model to the 1993 hydraulic stimulation of the GPK1 well at the Soultz-
sous-Forêts geothermal site in France (Baria et al., 1996). The migration of seismicity from
the injection point is well-represented by our model based on realistic field parameters as
described in the main text. ∗The injection point has been taken at 2,925-m depth as in Parotidis
et al. (2004).
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very likely indistinguishable in seismic catalogs and, in many cases, possibly even smaller

than their location errors. Therefore, the back front of on-fault seismicity of post-injection

aseismic slip is for practical purposes equal to the one of Parotidis et al. (2004).

Finally, unlike the back front of seismicity that corresponds to a sharp front (∆ṗ = 0), the

upper limit of the seismically active region or seismicity front is not sharply defined. This is

because the Coulomb stressing rate Ḟ vanishes theoretically only at infinity. The definition of

a seismicity front thus requires some degree of arbitrariness likely associated with a chosen

threshold to trigger instabilities. In our case, to be somehow consistent with the definition

of the back front in terms of rates, one possible choice is to define the front of seismicity as

a small percentage of the Coulomb stressing rate undergone in the proximity of the rupture

front. Since the scale Ḟ∗ = f ∆p∗/ts represents such a quantity at least at early times, we

calculate and display curves associated with 1% and 10% of Ḟ∗ in Figure 4.9a. We recognize

that other choices are possible, notably in terms of Coulomb stress rather than in terms of

rates.

The 1993 hydraulic stimulation at the Soultz geothermal site, France

With the previous theoretical considerations in mind, we aim now at testing our model against

field observations of post-injection seismicity. We choose the well-documented case of the

1993 hydraulic stimulation at the Soultz geothermal site in France, where direct evidence of

significant aseismic slip induced by the fluid injection exists (Cornet et al., 1997). Our focus is

the first injection test of the GPK1 well, where 25,000 [m3] of water were injected into granite

over a period of about 15 days. The injection was conducted with a step incremental flow

rate that reached a maximum of 36 [l/s] through a 550-m open-hole section located at depths

between 2,850 m and 3,400 m (Cornet et al., 1997). Figure 4.9c shows the spatio-temporal

evolution of seismicity of the more than 10,000 events recorded during the injection test,

before and after shut-in (Baria et al., 1996).

Previous studies have suggested that this injection test stimulated a network of fractures

(Evans, Moriya, et al., 2005), whereas our model considers the stimulation of only one single

planar fault in 3D. Nevertheless, recent simulations of injection-induced aseismic slip in a 2D

Discrete Fracture Network (DFN) have shown that the same patterns predicted by a single

fracture in 2D emerge collectively for the DFN (Ciardo & Lecampion, 2023). This is notably the

case of a set of fractures operating under critically stressed conditions (Ciardo & Lecampion,

2023). Since the fractures intersecting the open-hole section of the borehole in this test are

known to be critically stressed (Evans, 2005), we make the seemingly reasonable assumption

that the response of the fracture network can be approximated by an equivalent single planar

fault in 3D.

To compute the evolution of the relevant fronts associated with the signature of seismicity

predicted by our model, we must estimate two quantities independently: the fault hydraulic

diffusivity α and the stress-injection parameter T . Thanks to the estimates of aseismic
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slip based on borehole-wall deformation by Cornet et al. (1997), we may estimate the fault

hydraulic diffusivity based on the formula of accrued slip at the injection point in the critically-

stressed regime, δ(r = 0, t = ts) ≈ 3.5
(

f ∆p∗/µ
)p

4αts (equation (4.6) here, with the pre-factor

in eq. 28 of Sáez et al., 2022), where ts = 370 [hr] is the shut-in time. Considering a shear

modulus µ = 20 [GPa] (Cornet et al., 1997) and a constant friction coefficient f = 0.6, we

just need to estimate ∆p∗ (equation (4.3)). For the latter, we approximate the injection

history as a pulse of injection characterized by the same duration of 370 [hr] and a constant

injection rate that equals the actual volume of injected fluid, which yields Q ≈ 19 [l/s]. The

hydraulic transmissivity kw has been estimated by others at the highest pressures of the test

in approximately 1.7×10−12 [m3] (Evans, Genter, et al., 2005). Assuming a water dynamic

viscosity of η = 8.9× 10−4 [Pa·s], we can finally calculate the pressure intensity ∆p∗ ≈ 0.8

[MPa] and the characteristic overpressure at the fluid source ∆pc ≈ 10 [MPa]. The latter is

indeed very close to the actual downhole overpressure measured at 2,850 m depth, equal to

9.1 [MPa] (Cornet et al., 1997). Finally, based on the estimates by Cornet et al. (1997) who

reported fracture slip along the open-hole section up to 4.7 [cm], we estimate a fault hydraulic

diffusivity of α≈ 0.06 [m2/s]. This value of α is in the same order of magnitude than the one

estimated through a different method by Parotidis et al. (2004).

With this estimate of diffusivity, we compute the evolution of the pore pressure back front

after shut-in (equation (4.8)), and the evolution of the overpressure front L(t ) =
p

4αt before

shut-in, both displayed in Figure 4.9c. The next step is to compute the evolution of the rupture

and locking fronts for which we must estimate the stress-injection parameter T (equation

(4.5)). From the previous analysis of determining α, we already know that f ∆p∗ ≈ 0.48 [MPa],

so that we just need to estimate the initial distance to failure, f σ′
0 −τ0. This is perhaps the

most difficult quantity to estimate in our model. Although in this case, we do know that the

fault is critically stressed (Evans, 2005), the value of T in the critically-stressed regime is very

sensitive to changes in the order of tenths or hundredths of one megapascal, which is quite

challenging to constrain confidently. It seems then more reasonable to assume a priori that the

amplification of shear stress near the slip front contributes to some significant extent to drive

the seismicity front before shut-in —since the fault is critically stressed and the overpressure

front slightly lags the seismicity front— and consequently determine the amplification factor

λ that explains well the evolution of seismicity. We find λ = 1.45 to explain well the data

before shut-in (see Figure 4.9c). In the previous estimate, we considered the fact that some

seismicity is expected to be triggered ahead of the slip front and thus the rupture front must

lag the seismicity front to some extent. Finally, this value of λ yields a value of T ≈ 0.279

(Section 4.4.1), which in turn gives a distance to failure of approximately 0.1 [MPa]. The latter

is within the range of initial distances to failure of fractures intersecting the open-hole section

as estimated by Evans (2005).

The corresponding rupture and locking fronts resulting from T ≈ 0.279 are shown in Figure

4.9c. We observe that our model seems capable of explaining relatively well the migration

of seismicity during this episode of combined fluid flow and aseismic slip, both before and

after shut-in. Our hydro-mechanical model enriches previous analyses of the migration of
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Figure 4.10: Application example of our model to the 2013 hydraulic stimulation of the GRT-1
well at the Rittershoffen geothermal site in France. (a) Coulomb stress change ∆F due to
injection-induced aseismic slip on the reactivated fault for discontinuities oriented as the
receiver fault. The plane x ′-y ′ is perpendicular to the reactivated fault and crosses at its origin
the injection point at a depth of about 2,370 m. Yellow and red circles correspond to the
injection point and the nearest point of the receiver fault to the injection, respectively. (b)
Slip distributions over the reactivated fault at different times after shut-in. (c) Coulomb stress
change along the receiver fault after shut-in. The distance along the receiver fault is measured
from the red circle indicated in (a) and in the direction of the black arrow.

seismicity (Parotidis et al., 2004) by considering the previously overlooked effect of stress

transfer due to aseismic slip, which was previously suggested to be important in this field

case (Cornet, 2016) but never tested likely due to the lack of physical models. Notably, the

theoretical signature of post-injection seismicity (Figure 4.9a) seems to be present in the

seismicity cloud. Moreover, the arrest time of the aseismic pulse for this value of T is predicted

as ta ≈ 3.78× ts ≈ 58 days (equation (4.14)), which is ≈ 43 days after shut-in. Seismicity was

however recorded only within the first 5 days upon the stop of the injection, which is t̄ ≈ 0.12

of normalized time as defined in Figure 4.9a. This seems again consistent with our theoretical

reasoning that most of the seismicity should be expected at early times after shut-in, when the

Coulomb stressing rate is the highest in the post-injection problem (Figure 4.9b).

4.6.4 Off-fault seismicity

Seismicity can be triggered not only on unstable patches laying along the aseismically slid-

ing fault, but also on unstable patches present in other pre-existing discontinuities nearby

the propagating slow rupture. Because fluid flow is assumed to occur only within the per-

meable fault zone that hosts the reactivated slip plane, off-fault seismicity can be triggered
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uniquely by the mechanism of stress transfer due to aseismic slip in our model. Equations

(4.20) and (4.21) thus take the following forms that exclude the null pore pressure changes,

∆F (x ;n) =∆τ (x ;n)− f ∆σ (x ;n) and Ḟ (x , t ;n) = τ̇ (x , t ;n)sgn(τ (x , t ;n))− f σ̇ (x , t ;n), respec-

tively. Evaluating the previous expressions requires knowledge of the normal vectors n of

pre-existing discontinuities and the absolute state of stress, both of which are obviously

site-specific and always partially uncertain. Given the site-specific nature of the required infor-

mation, we address the challenge of exploring the off-fault triggering mechanism by analyzing

a specific field example. Moreover, in Section 4.8.2, we discuss some further implications of

our model such as the Coulomb stressing rate in the vicinity of the reactivated fault and the

off-fault counterpart of the seismicity signature shown in Figure 4.9a.

The 2013 hydraulic stimulation at the Rittershoffen geothermal site, France

We focus on the 2013 hydraulic stimulation of the GRT-1 well in the crystalline basement

of the Rittershoffen geothermal field in France, at a depth of about 2 [km] (Baujard et al.,

2017; Lengliné et al., 2017). This stimulation lasted for about 1 day and was accompanied

by swarm-like seismicity that illuminated a single planar structure that was reactivated in

shear due to the fluid injection (Lengliné et al., 2017). Our model of a single planar fault in 3D

seems therefore a good approximation for this field case. Upon shut-in, seismicity stopped

immediately. However, after 4 days in which no seismic activity was detected, a short-lived

second swarm began and developed along a nearby sub-parallel structure likely part of an

en-echelon fault system (Lengliné et al., 2017). Several hypotheses were discussed by Lengliné

et al. (2017) to explain what possibly led the second fault to failure as well as the 4-days delay of

this second swarm. The favoured hypothesis for the failure of the second fault was in fact the

stress transfer due to injection-induced aseismic slip associated with the first fault. However,

the authors discarded post-injection aseismic slip as a mechanism for explaining the delayed

triggering of the second swarm. They argued that slip on the first fault would be difficult

to promote after shut-in due to fault pressure drops quickly to zero, thus moving the fault

interface away from failure (Lengliné et al., 2017). In light of our results, this statement is valid

only locally at the injection point, where the fault interface re-locks immediately upon the

stop of the injection. However, as we have seen, pore pressure keeps increasing away from

the injector after shut-in, which drives the propagation of a pulse-like frictional rupture that

further accumulates slip on the fault. Hence, injection-induced aseismic slip can potentially

explain as a unique mechanism both the failure of the second fault and the delayed triggering

of the swarm of this particular case for which the reactivated fault is indeed thought to be

critically stressed (Lengliné et al., 2017).

Again, as in the 1993 Soultz case, we want to estimate the fault hydraulic diffusivity α and

the stress-injection parameter T . In the absence of reliable estimates of both aseismic slip

and hydraulic diffusivity, we assume for the purpose of this illustration a characteristic value

of α = 0.05 [m2/s] for the reactivated fault. This is in the order of magnitude of diffusivities

estimated from other fluid injections in nearby reservoirs (Parotidis et al., 2004), as well as
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in this same geothermal field via pressure transient analysis (Baujard et al., 2017). Yet the

latter must be considered with care since the estimates are based on production tests that

are strongly influenced by near-well processes (Baujard et al., 2017). To estimate the stress-

injection parameter T , we follow a similar approach than the one used in the previous section

for the 1993 Soultz case. We assume the aseismic slip front to play an important role in

explaining the migration of seismicity which consist in this case of more than 1,300 events

(Lengliné et al., 2017). Considering a rupture radius at the moment of shut-in Rs = 250 [m]

(see figure 9 in Lengliné et al., 2017), we obtain from Rs =λ
p

4αts (Section 4.4.1) with ts = 19

[hr] in this case, an amplification factor λ≈ 2.14, which yields a stress-injection parameter

T ≈ 0.117.

This value of T gives an arrest time of aseismic slip ta ≈ 9.70 × ts ≈ 184 [hrs] (equation

(4.14)), which is equivalent to approximately 7 days after the stop of the injection. The latter

is indeed longer than the 4-days delay of the second swarm. Yet the relatively short time

between the estimated arrest time and the occurrence of the second swarm suggests that

most of the post-injection stress transfer from the first to the second fault must have occurred

shortly after stopping the injection. To better quantify this, we calculate the Coulomb stress

change associated with the reactivation of the main fault in our model. The Coulomb stress

calculations are based on the following combination of parameters: Q = 38 [l/s], η = 8.9×10−4

[Pa·s], kw = 10−11 [m3], µ = 20 [GPa], f = 0.6, σ′
0 = 10 [MPa] and τ0 = 5.981 [MPa]. The constant

injection rate Q is obtained by equating the injected volume of fluid of the actual injection

history considering the same injection duration. The fault hydraulic transmissivity kw is

calculated such that the characteristic overpressure at the fluid source ∆pc (equation 4.3)

approximately matches the maximum downhole overpressure measured at a depth of 1,920 m

during the injection, approximately equal to 3 [MPa] (Baujard et al., 2017). Finally, the initial

stress state (σ′
0 and τ0) is chosen to be consistent with the value of T , the injection intensity

∆p∗, and the partially constrained stress state in the zone (Lengliné et al., 2017).

Following Lengliné et al. (2017), we further consider that the fluid injection induced pure left-

lateral aseismic slip on a strike-slip feature oriented N25oE and dipping 70oW. As the second

swarm occurred over a fault with variable strike, we focus for the purpose of our illustrative

example on the northern branch of the second fault only. We thus consider a receiver fault

oriented N5oE with the same dip angle than the main fault (Lengliné et al., 2017) (see Figure

4.12a). We calculate the slip distribution over the reactivated fault at three times: right at the

moment of shut-in, 1 day after shut-in, and 4 days after shut-in, as displayed in Figure 4.12b.

In this figure, we can observe that 1 day after stopping the injection most of the post-injection

aseismic slip accumulated at the time the second swarm began, has already taken place. The

Coulomb stress change associated with the foregoing slip distributions are shown in the top

and bottom panels of Figure 4.12a, at the shut-in time and 4 days after shut-in (when the

second swarm started), respectively. Our Coulomb stress analysis indicates that the location

of the second swarm is in a region of positive Coulomb stress change, which is consistent with

the calculations in Lengliné et al. (2017). Note that our distribution of Coulomb stress change

is different than the one in Lengliné et al. (2017) since the slip distribution of our model is
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peaked around the injection point and not uniform.

Finally, Figure 4.12c displays the spatio-temporal evolution of the Coulomb stress change

along the receiver fault at the same three times than before, with the origin at the red circle

indicated in Figure 4.12a. Note that the magnitude of the Coulomb stress change is about 2

[kPa]. This value is quite low and suggests that if aseismic-slip stress transfer is responsible

for the delayed triggering of the second swarm, such a fault must be very critically stressed

under the assumptions of our example. Given that pore pressure diffusion can sometimes

weaken unstable areas even off fault, we can postulate a hydraulic connection between the two

faults, possibly created by a wing crack in a step-like en-echelon fault system, and estimate the

resulting overpressure 4 days after shut-in. By assumingα = 0.05 [m2/s] still as a representative

value of diffusivity, the overpressure at the nearest point (red circle in Figure 4.12a) of the

receiver fault with regard to the injection point (yellow circle in Figure 4.12) is approximately

6 [kPa] (equation 4.4). The latter is in the same order of magnitude than the Coulomb stress

change due to aseismic slip, suggesting that both mechanisms may be equally important in

our example. Note that 4 days after the stop of the injection, the increment of Coulomb stress

with regard to the moment of shut-in, is just about 0.5 [kPa] (Figure 4.12c). Hence, most of the

post-injection increment has already happened within the first day.

Although our analysis has oversimplified many aspects of this field case, our physical model

seems to have the potential to reproduce field observations of post-injection off-fault seismic-

ity, as illustrated by this application example. However, an in-depth analysis would be needed

to fully clarify the role of post-injection aseismic slip in this particular field case.

4.6.5 Possible evidence for post-injection aseismic slip and other relevant field
cases

In addition to the foregoing field cases, there are apparently a few other cases of geo-energy

projects where observations of seismicity after shut-in suggest the occurrence of post-injection

aseismic slip. One of these cases is the 2016 long-lived seismic swarm that persisted for more

than 10 months after completion of hydraulic fracturing operations of a hydrocarbon reservoir

in western Canada (Eyre et al., 2020). In this case study, the authors attributed indeed the

delayed swarm activity to post-injection aseismic slip. Unlike the off-fault setting of the

Rittershoffen case in France, the configuration here is a clear case of on-fault seismicity.

Specifically, aseismic slip is thought to be induced by hydraulic fractures that intersect (and

pressurize) frictionally-stable segments of a nearby fault at the reservoir level (shales), which

in turn transmits solid stresses to distal segments of the same fault but in carbonate units that

are thought to slide unstably (Eyre et al., 2019). One key aspect of the proposed conceptual

model for post-injection seismicity in this case, is the assumption of heterogeneities in fault

permeability to explain a remarkable characteristic of the swarm, namely, a nearly constant

rate of post-injection seismicity (Eyre et al., 2020). The proposed model assumes that elevated

pore pressure remains trapped within the fault after shut-in at the reservoir level, due to the
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extremely low permeability of the shale formations. These trapped fluids are therefore thought

to be responsible for a nearly steady propagation of aseismic slip that could explain the

constant rate of seismicity (Eyre et al., 2020). Although their proposed model slightly differs

from our model (in which the fault permeability is homogeneous), this case study seems

to provide relevant evidence for the mechanisms discussed here. Moreover, as suggested

by Cornet (2016), another case in which aseismic slip might have triggered post-injection

seismicity is the Basel earthquakes in 2006 in Switzerland; a hypothesis that has been recently

considered in combination with other triggering mechanisms via plane-strain geomechanical

modelling (Boyet et al., 2023).

Further and possibly more conclusive evidence for post-injection aseismic slip may come

from carefully-designed laboratory and/or in-situ experiments of fluid injection. Laboratory

experiments where a finite rupture grows along a pre-existing interface (Passelègue et al., 2020;

Gori et al., 2021; Cebry et al., 2022) are particularly promising to explore the post-injection

stage. On the other hand, in-situ experiments where the fault deformation is monitored

simultaneously at the injection point and at another point away from it (Cappa et al., 2022),

may also provide the opportunity to investigate this mechanism when combined with hydro-

mechanical modelling that includes the depressurization stage (Larochelle et al., 2021).

4.6.6 Model limitations: solution as an upper bound

Our model contains the minimal physical ingredients to reproduce post-injection aseismic slip

in 3D media. As such, the effects of a number of additional effects remain to be investigated.

In particular, we have assumed that fluid flow induces mechanical deformation but not vice

versa. It has been however suggested for long time that variations of effective normal stress

may induce permeability changes in fractures (Witherspoon et al., 1980) and faults (Rice,

1992). Also, it is known that frictional slip may be accompanied by dilatant (or contracting)

fracture/fault-gouge behavior that would inevitably induce changes in fluid flow and thus

in the propagation of fault slip (see Ciardo and Lecampion, 2019, for example). Poroelastic

effects in the surrounding medium around the fault may be of first order in some cases (see, for

instance, Heimisson et al., 2022). Accounting for a permeable host rock may notably speed up

the depressurization of pore-fluid within a fault zone after shut-in due to the leak-off of fluid.

Consequently, the arrest time and maximum run-out distance of the rupture pulses would

likely decrease. In this regard, our model in which the leak-off of fluid into the surrounding

medium is neglected would represent an upper bound for the arrest time and maximum

run-out distance similarly to the case of the arrest of mode I hydraulic fractures (Möri &

Lecampion, 2021).

In relation to friction, we consider the simplest description that allows us to produce uncondi-

tionally stable fault slip, namely, a constant friction coefficient. However, laboratory-derived

friction laws (Dieterich, 1979; Ruina, 1983) are widely used in the geophysics community

to reproduce the entire spectrum of slip velocities of natural earthquakes (Scholz, 2019).
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Unconditionally stable fault slip may be obtained notably in some regimes of so-called rate-

strengthening faults when subjected to continuous fluid sources (Dublanchet, 2019; Garagash,

2021). For the post-injection problem, a more complex constitutive friction law would add

a finite amount of fracture energy as well as frictional healing. In this regard, our model

represents a situation in which the fracture energy spent during propagation is zero and

there is no possibility for the friction coefficient to heal with time. The dissipation of a finite

amount of fracture energy at the rupture front would resist propagation of the aseismic pulses.

Similarly the healing of the friction coefficient would further contribute to the re-locking

process of the fault thus accelerating the propagation of the locking front. Both ingredients are

therefore expected to shorten the arrest time and maximum run-out distance of the rupture

pulses. Our model thus represents also an upper bound with regard to these two mechanisms.

Finally, it is worth mentioning that injection-induced aseismic slip also occurs during the

quasi-static phase preceding the nucleation of dynamic ruptures (Garagash & Germanovich,

2012; Dublanchet, 2019).

4.7 Concluding remarks

We have provided an in-depth investigation of how post-injection aseismic slip propagates and

ultimately arrests in 3D media. Our results provide for the first time a conceptual and quanti-

tative framework that may help to understand various observations and applied problems in

geomechanics and geophysics associated with slow ruptures driven by the motion of fluids.

Among them, a particularly relevant problem for geo-energy applications is the phenomenon

of post-injection seismicity. It has been long recognized that aseismic slip may alter the stress

state of large rock volumes during borehole fluid injections (Scotti & Cornet, 1994). Based on

our findings, we suggest that aseismic slip may continue stressing even larger and more dis-

tant regions after shut-in, during timescales that could span even months for fluid injections

of only a few days, if the reactivated discontinuity is critically stressed as quantified by the

value of the stress-injection parameter T . Our physical model shows quantitative agreement

with field observations of documented cases of post-injection induced seismicity (Cornet

et al., 1997; Lengliné et al., 2017), thus providing support for the mechanisms presented here.

Further and possibly more conclusive evidence may potentially come from revisiting more

case studies via geomechanical modeling, notably from laboratory and/or in-situ experiments

that can either monitor or infer the propagation of slow ruptures.

Current efforts to manage the seismic risk associated with subsurface fluid injections such

as the so-called traffic light systems might be subjected to important limitations in their

effectiveness in light of our results. Traffic light systems work under the tacit assumption that

operational measures will become shortly effective in preventing the occurrence of events of

larger magnitude than some pre-defined threshold (Baisch et al., 2019). Our results suggest

that instead, the stressing of increasingly larger rock volumes perturbed by aseismic slip may

be persistent if the chosen operational measure is shutting in the well. Future works should

therefore focus on developing physics-based strategies to mitigate the seismic risk associated
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with post-injection aseismic slip.

4.8 Supplementary material

4.8.1 Rake angle

In the main text, we mention that the direction of slip (or maximum shear) can be well-

approximated as being entirely along the x axis, which is the direction of the initial maximum

shear stress in our model (see Figure 4.1 in the main text). Here, we consider the case of ν = 1/4

(a Poisson’s solid) and quantify the accuracy of this approximation, to numerical precision.

We solve for our model in the continuous-injection stage, for two cases: T = 0.001 and

T = 0.5878. The former corresponds to a fault that is very critically stressed (T ≪ 1) in which

the equivalent shear load driving the rupture tends to be a point force superimposed on a

uniform load of opposite sign (Sáez et al., 2022), whereas the latter represents a case in which

the slip front is always located near the overpressure front (λ≈ 1), and the equivalent shear

load is more evenly distributed. Since the continuous-injection problem is self-similar (Sáez

et al., 2022), we examine the numerical results at a single instant, and the conclusions remain

valid at any time.

Figures 4.11a-d show the results for T = 0.001. The rake angle is measured counterclockwise

from the x axis: φ = arctan
(
δy /δx

)
. If the rake angle is zero, the direction of slip aligns exactly

with the x axis. We observe that φ increases when approaching the injection point at r = 0,

where the fluid-injection equivalent point force is located (Sáez et al., 2022). However, the rake

angle is at most about 0.5 degrees, corresponding to a y-component of slip magnitude of 1%

or less of the x-component δx .

On the other hand, Figures 4.11e-h show the results for T = 0.5878. In this case, where the

equivalent shear load is more evenly distributed, the rake angle is also more widely distributed

and around 0.1 degrees. Note that larger values than this correspond to numerical noise. This

maximum magnitude of the rake angle corresponds to a y-component of slip magnitude of

0.2% or less of the x-component δx .

Furthermore, a theoretical explanation for the small rake angle observed in our numerical

solutions can be devised (M. Lebihain, private communication, May 2023) from the first-

order perturbative theory for shear cracks of Gao (1988). Gao calculated variations of the

slip components for a shear crack whose shape differs slightly from a circular reference

configuration. The variations of slip with respect to the circular configuration are written in
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Figure 4.11: Rake angle approximation. (a) to (d) Results for T = 0.001. (e) to (h) Results for
T = 0.5878
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polar coordinates as (equation 10 in Gao, 1988):

δ∆u j (r,θ) = 2
(1−ν2)

E

∫ 2π

0
K 0

2 (θ′; a)k2 j (θ′;r,θ, a)
(
a(θ′)−a(θ)

)
a(θ)dθ′

+2
(1+ν)

E

∫ 2π

0
K 0

3 (θ′; a)k3 j (θ′;r,θ, a)
(
a(θ′)−a(θ)

)
a(θ)dθ′, with j = r,θ,

where K 0
2 and K 0

3 are the mode-II and mode-III stress intensity factors (for ν ̸= 0) along the

rupture front of the circular crack configuration that are generated by the equivalent shear

loading driving the rupture (see Sáez et al., 2022, appendix B), k2 j and k3 j are the crack face

weight functions for the circular reference crack (see, for instance, equation 12 in Gao, 1988,

for their expressions in polar coordinates), and a(θ) is the perturbed rupture front that differs

slightly from the circular one. Note that for the sake of clarity in the notation, we wrote the slip

components as δr =∆ur and δθ =∆uθ.

Since the circular configuration is exact when ν = 0, and the greater the value of ν the more

elongated (less circular) the rupture shape becomes (Sáez et al., 2022), it seems convenient to

consider ν as the perturbation variable (Favier et al., 2006). By expanding to first order in ν the

rupture front a, stress intensity factors K 0
2 and K 0

3 , and crack face weight functions k2 j and

k2 j , one can show that the first-order variations of both slip components δ∆ur and δ∆uθ are

expressed in terms of convolutions that operate over the mode-II and mode-III stress intensity

factors of the circular rupture case with ν = 0. Since those stress intensity factors must be zero

due to the no-singularity condition of shear stress along the front (the condition for rupture

propagation in Sáez et al., 2022), the first-order corrections of both slip components are zero.

As the zero-order (ν = 0) contribution of slip in the y-direction is also zero (null rake angle

φ when ν = 0), we conclude that possible non-zero contributions to δy (or φ) will come only

from terms that involve ν2 or higher order, possibly resulting in the small variation of the rake

angle we obtained in our numerical solutions.

4.8.2 Off-fault seismicity

In the main text, we discuss the triggering mechanism of off-fault post-injection seismicity

by considering an illustrative field example: the 2013 hydraulic stimulation of the GRT-1 well

at the Rittershoffen geothermal field in France (Lengliné et al., 2017). Here, we discuss some

further implications of our model by analyzing an hypothetical case of hydraulic stimulation

into a deep geothermal reservoir.

We recall that because fluid flow is assumed to occur only within the permeable fault zone

that hosts the reactivated slip plane, off-fault seismicity can be triggered uniquely by the

mechanism of stress transfer due to aseismic slip in our model. Hence, equations (4.20) and

(4.21) in the main text, take the following forms that exclude the pore pressure changes,

∆F (x ;n) =∆τ (x ;n)− f ∆σ (x ;n) , (4.23)
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Figure 4.12: (a) and (d) Coulomb stress change ∆F and (b) and (c) Coulomb stressing rate Ḟ
on pre-existing discontinuities that are sub-parallel to a reactivated fault lying on the plane
z = 0. This example corresponds to the hydraulic stimulation of a single planar fault in a deep
geothermal reservoir, where the stress-injection parameter T = 0.05 and ν = 0. ∆F is from
the initial stress state at t = 0 to the (a) moment right before shut-in, and (d) to the moment
in which the rupture arrests. Dashed lines schematize sub-parallel fractures associated with
either other stimulation stages or en-echelon fracture systems. Ḟ is after (b) 1 day and (c) 30
days since the start of the injection.
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and

Ḟ (x , t ;n) = τ̇ (x , t ;n)sgn(τ (x , t ;n))− f σ̇ (x , t ;n) , (4.24)

respectively. To evaluate the previous expressions, knowledge about the normal vectors n

of the pre-existing discontinuities is required. To keep the analysis general to some extent,

there are at least two natural choices for the orientation of discontinuities that seem worth to

consider. The first one is the case of discontinuities optimally oriented with regard to stress

field: at angles θ∗ = ±(
π/4−arctan( f )/2

)
measured from the local direction of the maximum

principal stress. The calculation of the latter direction requires the full initial stress tensor

plus computations of its variation in time due to the redistribution of stresses caused by

the propagation of the aseismic pulses. Positive changes of the Coulomb stress function

would highlight the regions where seismicity is most likely expected in a context in which the

orientations of the discontinuities nearby the rupture are fairly unknown. The second option

is to consider discontinuities that are sub-parallel to the reactivated fault. For example, in

the context of hydraulic stimulation of deep geothermal reservoirs, multi-stage stimulation

techniques aim at reactivating isolated sub-parallel fractures that intersect the open-hole

section of the stimulation well at different depths/stages. Positive changes of the Coulomb

stress function in this case would highlight the effect of one stage on the others. In addition, it

is not rare that the reactivated fractures are part of en-echelon fracture systems such that other

sub-parallel discontinuities either overlap or form a step-like feature with the reactivated one.

Because of its simplicity and relevance for geo-energy applications, we only consider hereafter

sub-parallel discontinuities.

Figure 4.12 displays some static (∆F ) and instantaneous (Ḟ ) changes of the Coulomb stress

function for a circular rupture that propagates on a critically-stressed fault with T = 0.05.

The results are plotted on the x-z plane of our global reference system (see Figure 4.1 in the

main text) corresponding to the plane where the direction of slip is contained entirely. All

calculations in this figure are for a particular choice of parameters representing the hydro-

shearing treatment of a deep geothermal reservoir at approximately 4 km depth: injection

rate Q = 20 [l/s], injection duration ts = 5 [days], hydraulic diffusivity α = 5× 10−3 [m2/s],

hydraulic transmissivity kw = 10−13 [m2], fluid dynamic viscosity η = 2×10−4 [Pa·s], rock shear

modulus µ = 30 [GPa], constant friction coefficient f = 0.6, initial total normal stress σ0 = 120

[MPa], initial pore pressure p0 = 40 [MPa], and initial shear stress τ0 = 47.9045 [MPa]. For this

particular choice of parameters, the accumulated amount of slip at the injection point at the

shut-in time is δ≈ 1.9 [cm]. Note that δ can be approximated analytically from the slip scale

δ∗ in the critically-stressed regime, equation (4.6) in the main text, with the pre-factor 3.5

derived in equation (28) in Sáez et al. (2022).

Figure 4.12a shows the static change of Coulomb stress ∆F from the initial conditions to the

moment right before the end of the injection. At this time, the rupture is still propagating in

crack-like mode, with a radius equal to Rs =λ
p

4αts ≈ 297 [m] (λ≈ 1/
p

2T ≈ 3.2). The spatial

pattern of ∆F is remarkably different to the classic pattern of sub-parallel faults having a more
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homogeneously distributed slip (see figure 2a in King et al., 1994, for example) compared to

our slip distribution which is more peaked near the injection point (see Figure 4.3a in the

main text). Particularly, we obtain positive changes of Coulomb stress near the center of

the rupture, which may affect sub-parallel discontinuities of other stimulation stages. Such

sub-parallel fractures are schematized in Figure 4.12a by dashed lines. In addition, the positive

changes of Coulomb stress in the proximity of the rupture front may induce seismicity on

nearby discontinuities composing, for instance, an en-echelon arrangement of fractures, a

situation that is also schematized in Figure 4.12a.

On the other hand, Figures 4.12b and 4.12c display the Coulomb stressing rate Ḟ caused by

the aseismic pulse propagation respectively 1 day and 30 days after the end of the injection.

We can observe here the off-fault counterpart of the along-fault amplification of shear stress

rate near the locking and rupture fronts shown in Figure 4.6b. Note that the positive rate of

Coulomb stress near the locking front affects a region where, before shut-in, the Coulomb

stress has dropped ∆F < 0 (see Figure 4.12a). Furthermore, the final change of Coulomb stress

∆F from the beginning of the injection until the moment in which the rupture ultimately

arrest (Figure 4.12d), shows that overall there is a drop of Coulomb stress in the off-fault

region affected by the stress-rate amplification associated with the passage of the locking

front. The latter suggests that off-fault seismicity is not expected to be seen behind or around

the locking front, similarly to the case of on-fault seismicity that is analyzed in Section 4.6.3

in the main text. This observation is of course based on the particular case of pre-existing

discontinuities that are parallel to the reactivated fault. In this configuration, the main role

of post-injection aseismic slip seems to be the one of continuing inducing seismicity in

nearly the same regions of positive Coulomb stress change at the time of shut-in (Figure

4.12a) but at increasingly further distances. Note that for this example, the rupture radius

at arrest is Ra ≈ 449 [m], which is Ra/Rs ≈ 1.51 times greater than the rupture radius at

shut-in, whereas the time of arrest is ta ≈ 119 [days], that is ta/ts ≈ 23.8 times longer than

the injection duration. Finally and more generally speaking, depending on the orientation

of the surrounding pre-existing discontinuities and the pre-injection stress field, seismicity

can continue to be triggered in regions of positive Coulomb stress change after shut-in with

significant time delays and at increasingly further distances, perturbing the stress state of large

rock volumes with characteristic sizes that are in the order of the spatial extent of the arrested

rupture. For instance, for the example considered here, Ra/Rs ≈ 1.51 and thus the rock volume

altered by aseismic slip is in the order of (1.51)3 = 3.4 times larger at arrest than at shut-in.

4.8.3 Numerical time integration

Adaptive time-stepping scheme

One of the most challenging quantities to be solved accurately in our problem is the position

of the locking front, notably, at early times after shut-in when it moves at very high speeds. It

seems thus natural to adjust the time step based on the speed of the locking front, such that
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the time increment ∆t during the post-injection stage is chosen smaller at early times than

at large times. On the other hand, before shut-in, the relevant front speed is the one of the

rupture front, such that a general adjustable time step ∆t to be used in both stages (during

and after fluid injection), may be constructed as

∆t =β
∆x

max{vr , vb}
, (4.25)

where vr is the rupture front speed, vb is the locking front speed, ∆x is the boundary element

size (uniform in this work), andβ is a constant parameter that controls the number of elements

that the fronts advance during one time step. The front speeds vr and vb are estimated via

finite differences based on the solution of the previous time step. Most of the time, we

consider a value of β = 1.5 which results in a front advancement of 1 to 2 elements per time

step. Moreover, we further impose for robustness that at a given time step neither the rupture

front nor the locking front can advance more than nmax and less than nmi n elements. If any

of the two fronts advance more than nmax elements, the trial time step estimated via equation

(4.25) is divided by two, whereas if any of the two fronts advances less than nmi n elements, the

trial time step ∆t is multiplied by two. We select nmi n = 1, such that at least one of the two

fronts must always advance during one time step, while nmax is generally set to be equal to

3, except by the most marginally-pressurized cases (the greatest values of T ), in which nmax

must be increased not to be so stringent in these cases that are the stiffest numerically.

Some remarks on the 3D numerical solution

With regard to the time integration, since one time step in the 3D solver is much more expen-

sive computationally than in the axisymmetric solver, we consider a different time-stepping

strategy in order to keep the problem numerically tractable. Taking advantage of the exact

analytical solution for circular ruptures before shut-in and the accurate numerical solution

calculated via the axisymmetric solver in the post-injection stage, we control the numerical

error in the fully 3D solution as follows. With ν = 0 in the 3D solver, we solve for 5 time steps

between the start of the injection and the shut-in time, and 55 time steps between the shut-in

time and the arrest time of such already-known circular rupture solution. The time steps

before shut-in are selected such that the rupture front advances the same distance with each

time increment, whereas the time steps after shut-in are chosen considering that the locking

front is the one that advances the same distance with each time step. The relative error in the

3D solver is estimated based on the position of the rupture and locking fronts, before and after

shut-in, respectively. Before shut-in, we calculate the relative error as (Rnum−Ran)/Ran , where

Rnum is the rupture front radius estimated numerically from the 3D solver, and Ran is the

exact analytical solution. After shut-in, we estimate the relative error as (B num −B axi )/B axi ,

where B num is the locking front radius computed numerically from the 3D solver, and B axi is

the same quantity but calculated accurately via the axisymmetric solver. Not surprisingly, the

largest error occurs at early times after shut-in. Moreover, the error decreases monotonically

with time during the post-injection stage while the time step is always increasing. The relative
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error reaches its minimum value near the time of arrest. We find that the use of 100,000

elements (equal to 300,000 degrees of freedom) produces results that are sufficiently accurate

for the purpose of our work. For the most unfavorable case which is the least critically-stressed

case (T = 0.59), the relative error is below 2%.

With the previous error estimate for the circular rupture case (ν = 0), we then switch to the

non-circular problem for which ν = 0.25. For a given value of T , we use the same 60 time steps

as for the circular rupture case. Because the final time of arrest and maximum run-out distance

for non-circular ruptures are always greater than the corresponding circular counterparts

for the same value of T , additional time steps are always required. The subsequent time

increments are chosen always to be smaller than the last of the sixty time steps to make sure

the minimum error estimated previously is approximately an upper bound for the error of the

remaining part of the problem. In this way, we manage to estimate with sufficient accuracy

the arrest time and maximum run-out distance of non-circular ruptures, by systematically

reducing the time increment until eventually the rupture arrests. It is worth mentioning that

we use the same convergence tolerances in the 3D solver as in the axisymmetric solver.
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5 Fluid-driven slow slip and earthquake
nucleation on a slip-weakening circu-
lar fault

In this chapter, we extend the constant-friction fault model of Chapter 3 to account for

a friction coefficient that weakens with slip. This enables the model to develop a proper

cohesive zone besides incorporating a finite amount of fracture energy, both ingredients

absent in the former model. To do so, we consider two friction laws characterized by a

linear and an exponential weakening of friction respectively. We focus on the particular case

of axisymmetric circular shear ruptures as they capture the most essential aspects of the

dynamics of unbounded ruptures in three dimensions. It is shown that fluid-driven slow slip

can occur in two distinct modes in this model: as an interfacial rupture that is unconditionally

stable, or as the quasi-static nucleation phase of an otherwise dynamic rupture. Whether the

interface slides in one way or the other depends primarily on the sign of the difference between

the initial shear stress (τ0) and the in-situ residual strength (τ0
r ) of the fault. For ruptures that

are unconditionally stable (τ0 < τ0
r ), fault slip undergoes four distinct stages in time. Initially,

ruptures are self-similar in a diffusive manner and the fault interface behaves as if it were

governed by a constant friction coefficient equal to the peak (static) friction value. Slip then

accelerates due to frictional weakening while the cohesive zone develops. Once the latter gets

properly localized, a finite amount of fracture energy emerges along the interface and the

rupture dynamics is governed by an energy balance of the Griffith’s type. We show that in this

stage, fault slip always transitions from a large-toughness to a small-toughness regime due to

the diminishing effect of the fracture energy in the near-front energy budget as the rupture

grows. Moreover, while slip grows likely confined within the pressurized region in prior stages,

here the rupture front can largely outpace the pressurization front if the fault is close to the

stability limit (τ0 ≈ τ0
r ). Ultimately, self-similarity is recovered and the fault behaves again as

possessing a constant friction coefficient, but this time equal to the residual (dynamic) friction

value. It is shown that in this ultimate regime, the fault interface operates to leading order

with zero fracture energy. On the other hand, when slow slip propagates as the nucleation

phase of a dynamic rupture (τ0 > τ0
r ), fault slip also initiates in a self-similar manner and the

interface operates at a constant peak friction coefficient. The maximum size that aseismic
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ruptures can reach before becoming unstable (inertially dominated) can be as small as a critical

nucleation radius equal to the shear modulus divided by the slip-weakening rate, and as large

as infinity when faults are close to the stability limit (τ0 ≈ τ0
r ). The former case corresponds

to faults that are critically stressed before the injection starts, in which case ruptures always

expand much further away than the pressurized region. The larger the critical nucleation

radius is with regard to the cohesive zone size, the longer ruptures can accelerate aseismically

before becoming unstable. When the nucleation radius is smaller than the cohesive zone size,

aseismic ruptures accelerate upon departing from the self-similar response due to continuous

frictional weakening over the entire slipping region, undergoing nucleation unaffected by

the residual fault strength. Conversely, when the nucleation radius is (much) larger than

the cohesive zone size, aseismic ruptures transition towards a stage controlled by a front-

localized energy balance and undergo nucleation in a ‘crack-like’ manner. Our results include

analytical and numerical solutions for the problem solved over its full dimensionless parameter

space, as well as expressions for relevant length and time scales characterizing the transition

between different stages and regimes. Due to its three-dimensional nature, the model enables

quantitative comparisons with field observations as well as preliminary engineering design of

hydraulic stimulation operations. Existing laboratory and in-situ experiments of fluid injection

are briefly discussed in light of our results.

This chapter is a modified version of the following scientific article:

Sáez, A. & Lecampion, B. (2023). Fluid-driven slow slip and earthquake nucleation on a

slip-weakening circular fault. Under review in Journal of the Mechanics and Physics of Solids.

Contributions of Alexis Sáez (CRediT, Contributor Roles Taxonomy)

Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing

- Original Draft, Writing - Review & Editing, Visualization, Funding acquisition.

5.1 Introduction

Sudden pressurization of pore fluids in the Earth’s crust has been widely acknowledged as

a trigger for inducing slow slip on pre-existing fractures and faults (Hamilton & Meehan,

1971; Scotti & Cornet, 1994; Guglielmi et al., 2015; Wei et al., 2015). Sometimes referred to

as injection-induced aseismic slip, this phenomenon is thought to play a significant role in

various subsurface engineering technologies and natural earthquake-related phenomena.

Notable examples of the natural source include seismic swarms and aftershock sequences,

often attributed to be driven by the diffusion of pore pressure (Miller et al., 2004; Parotidis et al.,

2005) or the propagation of slow slip (Lohman & McGuire, 2007; Perfettini & Avouac, 2007),

with recent studies suggesting that the interplay between both mechanisms may be indeed

responsible for the occurrence of some seismic sequences (Z. Ross et al., 2017; Sirorattanakul

et al., 2022; Yukutake et al., 2022). Similarly, low-frequency earthquakes and tectonic tremors

are commonly considered to be driven by slow slip events occurring downdip the seismogenic
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zone in subduction zones (Rogers & Dragert, 2003; Shelly et al., 2006), where systematic

evidence of overpressurized fluids has been found (Shelly et al., 2006; Kato et al., 2010; Behr &

Bürgmann, 2021), with recent works suggesting that the episodicity and some characteristics

of slow slip events may be explained by fluid-driven processes (Warren-Smith et al., 2019; Zhu

et al., 2020; Perez-Silva et al., 2023).

Anthropogenic fluid injections are, on the other hand, known to induce both seismic and

aseismic slip (Scotti & Cornet, 1994; Guglielmi et al., 2015; Wei et al., 2015). For instance,

hydraulic stimulation techniques employed to engineer deep geothermal reservoirs aim to

reactivate fractures through shear slip, thereby enhancing reservoir permeability by either

dilating pre-existing fractures or creating new ones. The occurrence of predominantly aseismic

rather than seismic slip, is considered a highly favorable outcome, as earthquakes of relatively

large magnitudes can pose a significant risk to the success of these projects (Deichmann &

Giardini, 2009; Ellsworth et al., 2019). Injection-induced aseismic slip can, however, play a

rather detrimental role in some cases, as slow slip is accompanied by quasi-static changes

of stress in the surrounding rock mass which, in turn, may induce failure of unstable fault

patches that could sometimes lead to earthquakes of undesirably large magnitude (Eyre et

al., 2019). Moreover, since injection-induced aseismic slip may propagate faster than pore

pressure diffusion, this mechanism can potentially trigger seismic events in regions that

are far from the zone affected by the pressurization of pore fluids (Guglielmi et al., 2015;

Bhattacharya & Viesca, 2019; Eyre et al., 2019). Fluid-driven aseismic slip may play a similar

role in other subsurface engineering technologies than deep geothermal energy, such as

hydraulic fracturing of unconventional oil and gas reservoirs (Eyre et al., 2019), oil wastewater

disposal (Chen et al., 2017), and carbon dioxide sequestration (Zoback & Gorelick, 2012).

The apparent relevance of injection-induced aseismic slip in the aforementioned phenom-

ena has motivated the development of physical models that are contributing to a better

comprehension of this hydro-mechanical problem. The first rigorous investigations on the

mechanics of injection-induced aseismic slip focused, for the sake of simplicity, on idealized

two-dimensional configurations. Specifically, on the propagation of fault slip under plane-

strain conditions considering either in-plane shear (mode II) or anti-plane shear (mode III)

ruptures, with a fluid source of infinite extent along the out-of-the-plane direction. Yet these

studies have significantly contributed to establishing a fundamental qualitative understanding

of how the initial state of stress, the fluid injection parameters, the fault hydraulic properties,

and the fault frictional rheology affect the dynamics of fluid-driven aseismic slip transients

(Dublanchet, 2019; Garagash, 2021; Viesca, 2021; Yang & Dunham, 2021), the applicability of

such models remains limited as three-dimensional configurations are expected to prevail in

nature. Recently, Sáez et al. (2022) examined the propagation of injection-induced aseismic

slip under mixed-mode (II+III) conditions, on a fault embedded in a fully three-dimensional

domain. An important finding of this study is that for the same type of fluid source (ei-

ther constant injection rate or constant pressure in Sáez et al., 2022), the spatiotemporal

patterns of fault slip differ even qualitatively between the three-dimensional model and its

two-dimensional counterpart, highlighting the importance of resolving more realistic rupture
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configurations.

In the three-dimensional model of Sáez et al. (2022), the perhaps strongest assumption is

the consideration of a constant friction coefficient at the fault interface. This friction model,

known as Coulomb’s friction, corresponds to the minimal physical ingredient that can pro-

duce unconditionally stable shear ruptures. As discussed by Sáez et al. (2022), a model with

Coulomb’s friction represents a case in which the frictional fracture energy spent during rup-

ture propagation is effectively zero, without the possibility of developing a process zone in the

proximities of the rupture front. In this paper, we eliminate this assumption and therefore

extend the model of Sáez et al. (2022) to account for a friction coefficient that weakens upon

the onset of fault slip. This incorporates into the model the proper growth and localization of

a process zone, with the resulting finite amount of fracture energy. We do so by considering

the simplest model of friction that can provide the sought physical ingredients, namely, a

slip-weakening friction coefficient (Ida, 1972). We consider the two most common types of

slip-weakening friction: a linear and an exponential decay of friction with slip, from some

peak (static) value towards a constant residual (dynamic) one.

On the other hand, as shown by Sáez et al. (2022) for the Coulomb’s friction case, a Poisson’s

ratio different than zero has mainly an effect on the aspect ratio of the resulting quasi-elliptical

ruptures which become more elongated for increasing values of ν. The characteristic size of

mixed-mode, quasi-elliptical ruptures is nevertheless determined primarily by the rupture

radius of circular ruptures, which occur in the limit of ν = 0 for such an axisymmetric problem.

The case of a null Poisson’s ratio is therefore particularly insightful and notably simpler since

in that limit, we can leverage the axisymmetry property of the problem to compute more

efficient numerical solutions (Bhattacharya & Viesca, 2019; Sáez et al., 2022; Sáez & Lecampion,

2023b) besides allowing the problem to be tractable analytically to some extent. We therefore

focus in this paper on the case of mixed-mode circular ruptures alone. We also note that our

model can be considered as an extension of the two-dimensional model of Garagash and

Germanovich (2012). While Garagash and Germanovich focused their investigation on the

problem of nucleation and arrest of dynamic slip, our work here is concerned primarily with a

different phenomenon, namely, the propagation of aseismic slip. Nonetheless, since aseismic

slip could correspond indeed to the nucleation phase of an ensuing dynamic rupture, we also

examine the problem of nucleation of a dynamic instability under mixed-mode conditions.

In fact, by pursuing this route, we provide an extension of the nucleation length of Uenishi

and Rice (2002) to the three-dimensional, axisymmetric case, for both tensile and shear

ruptures. Similarly, we extend some other relevant nucleation lengths identified by Garagash

and Germanovich (2012).
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Figure 5.1: Model schematics. (a, b) Fluid is injected into a permeable fault zone of width w via
a line-source that crosses the entire fault zone width. The fault is planar and embedded in an
unbounded linearly elastic impermeable host rock of same elastic constants. The initial stress
tensor is uniform. The resulting mixed-mode (II+III) shear rupture is circular when Poisson’s
ratio ν = 0. (c) Direction of shear stress τ along the rupture front and the corresponding mode-
II and mode-III components with regard to both the Cartesian and cylindrical coordinate
systems.
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5.2 Problem formulation

5.2.1 Governing equations

Fluid is injected into a poroelastic fault zone of width w that is characterized by an intrinsic

permeability k and a storage coefficient S, assumed to be constant and uniform (see Figure

5.1b). The fault zone is confined within two linearly elastic half-spaces of same elastic con-

stants, namely, a shear modulus µ and Poisson’s ratio ν. The initial stress tensor is assumed to

be uniform and is characterized by a resolved shear stress τ0 and total normal stress σ0 acting

along the x and z directions of the Cartesian reference system of Figure 5.1a, respectively. We

consider the injection of fluids via a line source that is located along the z axis and crosses the

entire fault zone width. Under such conditions, fluid flow is axisymmetric with regard to the z

axis and occurs only within the porous fault zone. Moreover, the displacement field induced

by the fluid injection is irrotational and the pore pressure diffusion equation of poroelasticity

reduces to its uncoupled version (Marck et al., 2015), ∂p/∂t = α∇2p, where α = k/Sη is the

fault hydraulic diffusivity, with η the fluid dynamic viscosity. Solutions of the previous linear

diffusion equation are known extensively for a broad range of boundary and initial conditions

(Carslaw & Jaeger, 1959). Here, we focus on the perhaps most practical case in which the fluid

injection is conducted at a constant volumetric rate Q. For the following boundary conditions:

2πr w(k/η)∂p/∂r = −Q when r → 0 and p = p0 when r →∞, with p0 the initial pore pressure

field assumed to be uniform, the solution of the diffusion equation in terms of the overpressure

∆p(r, t ) = p(r, t )−p0 reads as (section 10.4, eq. 5, Carslaw and Jaeger, 1959)

∆p(r, t ) =∆p∗E1

(
r 2

4αt

)
, with∆p∗ =

Qη

4πkw
, (5.1)

where ∆p∗ is the intensity of the injection with units of pressure, and E1 (x) =
∫ ∞

x

(
e−xξ/ξ

)
dξ

is the exponential integral function.

Let us define the following characteristic overpressure,

∆pc =
Qη

kw
, (5.2)

which relates to the injection intensity as ∆pc = 4π∆p∗. A close examination of equation

(5.1) for the large times in which the line-source approximation is valid, t ≫ r 2
s /α with rs the

characteristic size of the actual fluid source, shows that ∆pc is in the order of magnitude of

the overpressure at the fluid source. Moreover, as discussed in Section 5.10, the fluid-source

overpressure, say ∆ps , increases slowly (logarithmically) with time, such that for practical ap-

plications, one could think in considering ∆ps to be rather constant and approximately equal

to the characteristic overpressure ∆pc . Because of its simplicity, we adopt such approximation

∆ps ≈∆pc throughout this work, with the implications further discussed in Section 5.10.

Having established that, we note that in this work we consider exclusively injection scenarios

in which the characteristic fluid-source overpressure satisfies ∆pc ⪅σ′
0, where σ′

0 =σ0 −p0 is
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the initial effective normal stress. In this way, we make sure that the walls of the fault remain

always in contact, thus avoiding hydraulic fracturing. This latter scenario has been notably

addressed in the context of slip instabilities by others (Azad et al., 2017).

Suppose now that the fault zone possesses a slip surface located at z = 0 where the totality

of fault slip is accommodated (see Figure 5.1b). The slip surface is assumed to obey a Mohr-

Coulomb shear failure criterion without any cohesion such that the maximum shear stress τ

and fault strength τs satisfy at any position along the slip surface and any time, the following

local relation

|τ| ≤ τs = f × (
σ′

0 −∆p
)

, (5.3)

where ∆p is the overpressure given by equation (5.1) and f is a local friction coefficient that

depends on fault slip δ (Ida, 1972). There are two common choices for the slip-weakening

friction model, namely, a friction coefficient that decays linearly with slip,

f (δ) =

 fp − (
fp − fr

) |δ|/δc if |δ| ≤ δc

fr if |δ| > δc ,
(5.4)

and a friction coefficient that decays exponentially with it,

f (δ) = fr +
(

fp − fr
)

e−|δ|/δc . (5.5)

In the previous equations, fp is the peak (or static) friction coefficient, fr is the residual

(or kinetic) friction coefficient, and δc is the characteristic ‘distance’ over which the friction

coefficient decays from fp to fr , as displayed in Figure 5.2. Moreover, we assume that the slip

surface is fully locked before the injection starts and, as such, the initial shear stress τ0 must

be lower than the in-situ static strength of the fault, τ0
p = fpσ

′
0.

According to equation (5.3), the injection of fluid has the effect of reducing the fault strength

owing to the increase of pore-fluid pressure which decreases the effective normal stress locally.

Such pore pressure increase will be eventually sufficient to activate fault slip when the fault

strength equates the pre-injection shear stress τ0, which marks the onset of the interfacial

frictional rupture. Indeed, owing to the line-source approximation of the fluid source, the

activation of slip in our model occurs immediately upon the start of the injection as a con-

sequence of the weak logarithmic singularity that the exponential integral function features

near the origin (see Section 5.10). In the three-dimensional axisymmetric configuration under

consideration, the resulting shear rupture will propagate under mixed-mode II+III conditions,

where II and III represent the in-plane shear and anti-plane shear deformation modes, respec-

tively. The modes of deformation are schematized in Figure 5.1c in terms of the near-front

shear stress components. Moreover, as stated in the introduction, we restrict ourselves to

the case of circular ruptures alone. Such an idealized case is exact for radial fluid flow when

the Poisson’s ratio ν = 0 (Bhattacharya & Viesca, 2019; Sáez et al., 2022). Moreover, in some

limiting regimes of the fault response, numerically-derived asymptotic expressions for the
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Linear

Exponential

Figure 5.2: Slip weakening friction law for (black) linear weakening and (red) exponential
decay with slip. If the friction coefficient f is multiplied by some constant effective normal
stress that is approximately uniform and representative of the one acting along the process
zone, then the gray areas times such effective normal stress represent fracture energy Gc . Note
that Gexp

c = 2 ·G lin
c when δc is the same in both models.

aspect ratio of elongated ruptures (ν ̸= 0) (Sáez et al., 2022) may result useful to construct

approximate solutions for the evolution of non-circular rupture fronts using the solution for

circular ruptures, at least in the case of Coulomb’s friction (Sáez et al., 2022).

By neglecting any fault-zone poroelastic coupling upon the onset of the rupture, the quasi-

static elastic equilibrium that relates fault slip δ to the shear stress τ acting along the fault can

be written as the following boundary integral equation along the x axis (Salamon & Dundurs,

1977; Bhattacharya & Viesca, 2019),

τ(r, t ) = τ0 + µ

2π

∫ R(t )

0
F (r,ξ)

∂δ(ξ, t )

∂ξ
dξ, (5.6)

where the kernel F (r,ξ) is given by

F (r,ξ) =
K (k(r /ξ))

ξ+ r
+ E (k(r /ξ))

ξ− r
, with k(x) =

2
p

x

1+x
, (5.7)

and K (·) and E (·) are the complete elliptic integrals of the first and second kind, respectively.

Note that in equation (5.6), the shear stress τ can be written as a function in space of the radial

coordinate only due to the aforementioned axisymmetry property when ν = 0. Equations (5.1),

(5.3), and (5.6), plus the corresponding constitutive friction law, either (5.4) or (5.5), provide

a complete system of equations to solve for the spatio-temporal evolution of fault slip δ(r, t )
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and the position of the rupture front R(t ): our primary unknowns in the problem.

5.2.2 Front-localized energy balance

Under certain conditions and over a certain spatial range, the previous problem may be for-

mulated equivalently through an energy balance of the Griffith type, that is, as a classical shear

crack in the theory of Linear Elastic Fracture Mechanics (LEFM) (Broberg, 1999). The idea that

frictional ruptures could be approximated by classical shear cracks is relatively old (Ida, 1972;

Palmer & Rice, 1973). Yet it has been just recently validated by modern experiments concerned

with the problem of frictional motion on both dry and lubricated interfaces (Svetlizky et al.,

2019).

Let us assume that there exists a localization length ℓ∗ near the rupture front such that the

shear stress evolves from some peak value τp at the rupture front r = R to some residual

and approximately constant amount τr at distances r < R −ℓ∗. The localization length ℓ∗ is

sometimes called the process zone size or cohesive zone size for the similarity of the shear

rupture problem to the case of tensile fractures (Barenblatt, 1962). Let us further assume that

ℓ∗ is small in comparison to the rupture radius R. Under such conditions, we can invoke

the ‘small-scale yielding’ approximation of LEFM to shear ruptures (Palmer & Rice, 1973). In

particular, during rupture propagation, the influx of elastic energy into the edge region G , also

known as energy release rate, must equal the frictional fracture energy Gc . The energy release

rate for an axisymmetric, circular shear rupture is (Appendix B of Sáez et al., 2022)

G =
2

πµR(t )

[∫ R(t )

0

τ0 −τr (r, t )√
R(t )2 − r 2

r dr

]2

. (5.8)

In the previous equation, it is assumed that the current shear stress acting on the ‘crack’ faces

is the residual strength τr . This is consistent with the small-scale yielding approach where the

details of the process zone are neglected for the calculation of G (Rice, 1968; Palmer & Rice,

1973). On the other hand, the fracture energy Gc corresponds to the energy dissipated within

the process zone per unit area of rupture growth, which in the case of a frictional shear crack

is equal to the work done by the fault strength τs against its residual part τr (Palmer & Rice,

1973),

Gc =
∫ δ∗

0
[τs(δ)−τr (δ∗)]dδ, (5.9)

where δ∗ is the accrued slip throughout the process zone assuming, again, that there exists a

proper localization length ℓ∗.

Let us now recast the Griffith’s energy balance, G = Gc , in a way that will be more convenient for

analytic derivations. For a mixed-mode shear rupture, the energy release rate can be expressed

as G = K 2
II(1−ν)/2µ+K 2

III/2µ (Irwin, 1958), where KII and KIII are the mode-II and mode-III

stress intensity factors. Here, KII and KIII are understood as the intensities of the singular fields
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of LEFM that emerge as intermediate asymptotics at distances ℓ∗ ≪ r ≪ R. Moreover, since

ν = 0, we can conveniently define

K 2 = K 2
I I +K 2

I I I = 2µG , and Kc =
√

2µGc , (5.10)

where K is an ‘axisymmetric stress-intensity factor’ and Kc an ‘axisymmetric fracture tough-

ness’. Note that if one considers the singular terms of the mode-II and mode-III shear stress

components acting nearby and ahead of the rupture front, say τII and τIII respectively (see

Figure 5.1c), then K represents the intensity of the square-root singularity associated with

the absolute (maximum) shear stress τ (acting along the x-direction of our Cartesian refer-

ence system) which relates to the in-plane shear and anti-plane shear stress components as

τ2 = τ2
II +τ2

III.

By combining equations (5.8) and (5.10), we can rewrite the Griffith’s energy balance in the

sought Irwin’s form, K = Kc , which yields

2p
πR(t )

∫ R(t )

0

τ0 −τr (r, t )√
R(t )2 − r 2

r dr = Kc . (5.11)

Let us now consider some details about the calculation of Gc in equation (5.9). Upon the

arrival of the rupture front at a certain location over the fault plane, the fault strength τs

weakens according to equation (5.3) due to both the decrease of the friction coefficient f

and the increase of overpressure ∆p. However, the near-front processes associated with

energy dissipation for rupture growth in equation (5.9) are for the most part related to the

frictional process only. This can be readily seen after closely examining equation (5.1) for the

spatio-temporal evolution of ∆p. Equation (5.1) introduces the well-known diffusion length

scale L(t) =
p

4αt in the problem, which is itself a proxy for the radius of the nominal area

affected by the pressurization of pore fluid (see Figure 5.1a). We note that if the overpressure

front L is either in the order of or much greater than the rupture radius R, then ∆p varies

smoothly over the process zone —whose length ℓ∗ is at this point by definition much smaller

than R. On the other hand, if L is much smaller than R, then ∆p varies abruptly over the

slipping region but is highly localized near the rupture center over a small zone that is far away

from the process zone, such that the overpressure within the process zone is negligibly small.

Hence, the overpressure has the simple role of approximately setting the current amount of

effective normal stress within the process zone, which can be reasonably taken as uniform at a

given time and evaluated at the rupture front, ∆p(R, t). The fracture energy Gc can be thus

approximated as

Gc ≈
[
σ′

0 −∆p(R, t )
]∫ δ∗

0

[
f (δ)− fr

]
dδ. (5.12)

Note that in addition to the separation of scales between the diffusion of pore pressure and the

frictional weakening process just discussed, the previous equation assumes that the friction

coefficient itself must effectively evolve throughout ℓ∗ (or equivalently over δ∗) towards an
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approximately constant residual value fr (δ∗) = fr . This latter is guaranteed in the linear-

weakening model (5.4) as δ∗ = δc , and it seems a good approximation for the exponential-

weakening case (5.5) at some δ∗ > δc . Assuming this latter separation of scales too, the residual

strength of the fault can be then written as

τr (r, t ) = fr ×
[
σ′

0 −∆p(r, t )
]

. (5.13)

Substituting the previous equation into (5.11) leads after some manipulations to an energy-

based equation for the rupture front R(t ),

2p
π

fr∆p∗p
R

∫ R

0

E1
(
r 2/L2

)
p

R2 − r 2
r dr︸ ︷︷ ︸

Kp

+

Kτ︷ ︸︸ ︷
2p
π

[
τ0 − frσ

′
0

]p
R = Kc (R, t ), (5.14)

where the explicit dependence of the rupture front R and overpressure front L on time t has

been omitted for simplicity.

Equation (5.14) is an insightful form of the near-front energy balance, equivalent to the

one obtained by Garagash and Germanovich (2012) in two dimensions. It shows that the

instantaneous position of the rupture front is determined by the competition between three

distinct ‘crack’ processes that are active during the propagation of the rupture. The first term

on the left-hand side Kp is an axisymmetric stress intensity factor (SIF) associated with the

equivalent shear load induced by the fluid injection alone, which continuously unclamps the

fault. The second term on the left-hand side Kτ is an axisymmetric SIF due to a uniform shear

load that is equal to the difference between the initial shear stress τ0 and the residual strength

of the fault without any overpressure, frσ
′
0, commonly known as stress drop. Note that this

term may be either positive or negative, whereas the first term is always positive. Finally, the

right-hand side of the near-front energy balance is associated with the fracture energy Gc that

is dissipated within the process zone or, in the Irwin’s form, the fracture toughness Kc . Note

that in our model, the fracture energy may generally depend on the rupture radius R and time

t due to variations in overpressure (see equation (5.12)).

5.3 Two simplified models

5.3.1 The constant friction model

The constant friction model is the simplest idealization of friction that produces fluid-driven

stable frictional ruptures. It has been extensively studied in two-dimensional configurations

for different injection scenarios (Viesca, 2021; Sáez et al., 2022) and more recently in the fully

three-dimensional case (Sáez et al., 2022). Here, we briefly summarize the main characteristics

of the circular rupture model (Sáez et al., 2022), whose results will be later put in a broader

perspective in relation to the slip-weakening model.
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Sáez et al. (2022) showed that fault slip induced by injection at a constant volumetric rate is

self-similar in a diffusive manner. The rupture radius R(t ) thus evolves simply as

R(t ) =λL(t ), (5.15)

where L(t ) =
p

4αt is the diffusion length scale and nominal position of the overpressure front,

and λ is the so-called amplification factor for which an analytical solution was derived from

the condition that the rupture grows with no stress singularity at its front,∫ 1

0

E1
(
λη

)√
1−η2

ηdη = T , (5.16)

which leads after evaluating analytically the corresponding integral to

2−γ+ 2

3
λ2

2F2

[
1 1

2 5/2
;−λ2

]
− ln(4λ2) = T , (5.17)

where γ = 0.577216... is the Euler-Mascheroni’s constant and 2F2 [ ] is the generalized hyper-

geometric function. Note that λ is a function of a sole dimensionless number, the so-called

stress-injection parameter

T =
fconsσ

′
0 −τ0

fcons∆p∗
, (5.18)

where fcons is the constant friction coefficient.

The parameter T is defined as the ratio between the amount of shear stress that is necessary

to activate fault slip fconsσ
′
0 −τ0, and fcons∆p∗ which quantifies the intensity of the fluid

injection. T can vary in principle between 0 and +∞ (Sáez et al., 2022). However, for practical

purposes T is upper bounded. Indeed, as described previously, ∆p∗ = ∆pc /4π with ∆pc

taken as approximately equal to the overpressure at the fluid source. Hence, one can estimate

the minimum amount of overpressure that is required to activate fault slip as fcons∆pc ≈
fconsσ

′
0 −τ0. Substituting the previous relation into equation (5.18) leads to an approximate

upper bound for T ⪅ 10, where we have approximated the factor 4π by 10. The lower and

upper bounds of T are associated with two end-member regimes that were first introduced

by Garagash and Germanovich (2012). When T is close to zero, τ0 → fconsσ
′
0 and thus the

fault is critically stressed or about to fail before the injection starts. On the other hand, when

T ≈ 10, the fault is ‘marginally pressurized’ as the injection has provided just the minimum

amount of overpressure to activate fault slip.

The asymptotic behavior ofλ for the limiting values of T is particularly insightful. For critically

stressed faults (T ≪ 1), the amplification factor turns out to be large (λ≫ 1), and thus the

rupture front outpaces largely the fluid pressure front (R(t) ≫ L(t)), whereas for marginally

pressurized faults (T ∼ 10), the amplification factor is small (λ≪ 1) and thus the rupture front

lags significantly the overpressure front (R(t) ≪ L(t)). In the critically stressed limit, since
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λ≫ 1, the equivalent shear load due to fluid injection can be approximated as a point force,

fcons∆p(r, t ) ≈ fcons∆P (t )δdi r ac (r )/2πr, with ∆P (t ) =∆p∗
∫ ∞

0
E1

(
r 2

4αt

)
2πr dr = 4παt∆p∗,

(5.19)

whereas in the marginally pressurized limit, its asymptotic form comes simply from expanding

the exponential integral function for small values of its argument as λ≪ 1: fcons∆p(r, t) ≈
− fcons∆p∗

[
ln

(
r 2/4αt

)+γ]
. Substituting the previous asymptotic forms for the fluid-injection

‘forces’ into the rupture propagation condition (5.16) leads to the following asymptotes for the

amplification factor (Sáez et al., 2022):

λ≈
1/

p
2T for critically stressed faults, T ≪ 1,

1
2 exp

([
2−γ−T

]
/2

)
for marginally pressurized faults, T ∼ 10.

(5.20)

Comparing the previous asymptotes with the exact solution (5.17) suggests that the asymptotic

approximation (5.20) is accurate up to 5% in the critically stressed and marginally pressurized

regimes, for T ⪅ 0.16 and T ⪆ 2, respectively.

5.3.2 The constant fracture energy model

Consider the simple case in which the fracture energy Gc is constant (and so the fracture

toughness Kc ). Although this is an idealized scenario, it accounts already for one of the

main ingredients of the slip-weakening friction model, that is, a finite fracture energy. At the

same time, the constant fracture energy model allows us to examine quickly the different

regimes of propagation that emerge from the competition between the three distinct terms

that compose the front-localized energy balance (5.14). Furthermore, a constant fracture

energy model will result to be an excellent approximation of some important rupture regimes

in the slip-weakening model.

Scaling and structure of the solution

Similarly to the case of Coulomb’s friction, let us define an amplification factor in the form

λ(t ) =
R(t )

L(t )
. (5.21)

Unlike the solution of the previous section that is self-similar, here the introduction of a finite

fracture energy breaks the self-similarity of the problem and makes the solution for λ be now

time-dependent.

Non-dimensionalization of the front-localized energy balance shows that the solution for the
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amplification factor λ can be written as

λ (Tr ,K (t )) , (5.22)

where Tr and K are two dimensionless parameters with the physical meanings that we

explain below. Interestingly, the dependence of λ on time is only in the second parameter K .

The first parameter Tr is a dimensionless number in the form

Tr =
frσ

′
0 −τ0

fr∆p∗
, (5.23)

which turns out to be identical to the stress-injection parameter of the constant friction model

(equation (5.18)) except that the constant friction coefficient fcons is now the residual friction

coefficient fr . For this reason, we name it as the ‘residual’ stress-injection parameter.

Tr quantifies the combined effect of the two equivalent shear loads that drive the propagation

of the ‘fractured’ slipping patch, namely, the uniform stress frσ
′
0 −τ0 and the distributed load

associated with fluid injection fr∆p(r, t) whose intensity is fr∆p∗. The uniform stress is

equal to the difference between the residual fault strength under ambient conditions frσ
′
0

and the initial shear stress τ0. Note that depending on the sign of frσ
′
0 −τ0, Tr can be either

positive or negative. Moreover, as noted by first Garagash and Germanovich (2012) in their

two-dimensional model, the sign of frσ
′
0 −τ0 is expected to strongly affect the overall stability

of the fault response. According to Garagash and Germanovich, if the condition frσ
′
0 < τ0 is

satisfied (Tr negative), ruptures may ultimately run away dynamically and never stop within

the limits of such a homogeneous and infinite fault model. Conversely, when frσ
′
0 > τ0 (Tr

positive), ruptures would propagate ultimately in a quasi-static, stable manner. Assuming for

now that the ultimate stability condition of Garagash and Germanovich (2012) holds in the

circular rupture configuration, we consider only ultimately quasi-static cases in this section

and, therefore, values for Tr that are strictly positive. We will soon show that this assumption

is indeed satisfied.

Let us now find the limiting values of Tr . As lower bound, Tr can be as small as possible

(Tr → 0) when frσ
′
0 → τ0. Since in this limit, the fault is approaching the ultimate unstable

condition of Garagash and Germanovich (2012), we refer to it as the ‘nearly unstable’ limit. As

an upper bound, similarly to the case of constant friction, the maximum value of Tr is set by

the minimum possible magnitude of ∆p∗, which in turn relates to the minimum amount of

overpressure that is required to activate fault slip. This is given by the approximate relation

fp∆pc ≈ fpσ
′
0 − τ0, where fp is the peak friction coefficient and ∆pc is the characteristic

overpressure of the fluid source (equation (5.2)). By substituting this previous relation into

(5.23), we find the sought upper bound to be Tr ⪅ 4π(σ′
0 −τ0/ fr )/(σ′

0 −τ0/ fp ). Since the ratio

fr / fp is always between 0 and 1 and the maximum value of the upper bound is obtained when

fr / fp → 1, we obtain such a maximum upper bound as Tr ⪅ 10 (again, the factor 4π). Given

that in this limit the upper bound is still related to the minimum amount of overpressure that is
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required to activate a frictional rupture, we still denominate it as marginally pressurized limit.

Note that the upper bound limit has a quite similar meaning to the one of T in the constant

friction model. Conversely, the lower bound limit of Tr has no longer the interpretation of a

critically stressed fault as for T .

The second parameter of the constant fracture energy model, K , corresponds to a time-

dependent dimensionless toughness. It can be either defined using the stress scales of the

nearly unstable or marginally pressurized limits depending on the proper regime characteriz-

ing the fault response. These two choices are:

Knu(t ) =
Kc(

frσ
′
0 −τ0

)p
R(t )

, and Kmp (t ) =
Kc

fr∆p∗
p

R(t )
, (5.24)

for the nearly unstable (Tr ≪ 1) and marginally pressurized (Tr ∼ 10) regimes, respectively.

Note that in (5.24), the explicit dependence of R on time has been emphasized as it provides

the time dependence of K .

The dimensionless toughness K quantifies the relevance of the fracture energy in the near-

front energy balance at a given time t . Since for any physically admissible solution in which

the injection is continuous, the rupture radius must increase monotonically with time, the

solution will always evolve from a large-toughness regime (K ≫ 1) to a small-toughness

regime (K ≪ 1). Moreover, the effect of the fracture energy in the energy balance can be

ultimately neglected as the dimensionless toughness effectively vanishes (K → 0) in the

limit R → ∞ (or t → ∞). We denominate this ultimate solution as the zero-toughness or

zero-fracture-energy solution. Since the effect of the fracture energy becomes irrelevant in

this limit, such asymptotic solution is self-similar (λ in (5.22) becomes time-independent).

Finally, the transition between the large- and small-toughness regimes is characterized by the

following rupture length scales (obtained by setting Knu = 1 and Kmp = 1, respectively),

R∗
nu =

(
Kc

frσ
′
0 −τ0

)2

and R∗
mp =

(
Kc

fr∆p∗

)2

. (5.25)

Note that the two dimensionless toughnesses in (5.24) are of course not independent as

they are two choices of one same parameter. They are indeed related through the residual

stress-injection parameter Tr as

Kmp = Tr Knu . (5.26)
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Figure 5.3: The constant fracture energy model. (Left) Nearly unstable regime (λ≫ 1, Tr ≪ 1)
and (right) marginally pressurized regime (λ≪ 1, Tr ∼ 10). (a, b) Amplification factor λ as a
function of dimensionless toughness K (t ) for different values of Tr . (c, d) Normalized rupture
radius R as a function of the normalized squared root of time or position of the overpressure
front L(t ) =

p
4αt . (e, f ) Normalized rupture radius R as a function of dimensionless time t . All

curves tend to collapse when using the latter scaling. Legends: black solid lines are the general
solution of the constant fracture energy model; red dashed lines correspond to the asymptotes
for λ (5.29) in (a, b), and the asymptotes for the normalized rupture radius (5.32) and (5.33) in
(c) and (d), respectively; blue dashed lines represent the constant residual friction, ultimate
zero-fracture-energy solution.
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General and ultimate zero-fracture-energy solutions

Considering the scaling of the previous section plus the definition of the following non-

dimensional integral:

Ψ(λ) =
∫ 1

0

E1
(
λη

)√
1−η2

ηdη, (5.27)

the front-localized energy balance (5.14) can be written in dimensionless form as

Ψ(λ)

Tr
−1 =

p
π

2
Knu , and Ψ(λ)−Tr =

p
π

2
Kmp , (5.28)

in the nearly unstable (Tr ≪ 1) and marginally pressurized (Tr ∼ 10) regimes, respectively.

Note that the non-dimensional integral Ψ is identical to the one in equation (5.16) and can

be thus evaluated analytically to obtain the left-hand side of equation (5.17). Moreover,

the limiting behaviors of such integral are: Ψ(λ) ≈ 1/2λ2 +O(λ−4) when λ≫ 1, and Ψ(λ) ≈
2−γ− ln

(
4λ2

)+O(λ2) when λ≪ 1. Using the previous asymptotic expansions and assuming

similarly to the constant friction model that λ≫ 1 when Tr ≪ 1, and λ≪ 1 when Tr ∼ 10,

we derive from equations (5.28), the following closed-form asymptotic expressions for the

amplification factor:

λ≈
1/

√(
2+p

πKnu
)
Tr for nearly unstable faults, Tr ≪ 1,

1
2 exp

[(
2−γ−Tr −Kmp

p
π/2

)
/2

]
for marginally pressurized faults, Tr ∼ 10,

(5.29)

where the dependence of both K and λ on time has been omitted for simplicity.

The full solution of the model given by equations (5.28) together with the asymptotics (5.29)

are shown in Figures 5.3a and 5.3b. The direction of time in these plots goes from right to left

as the dimensionless toughness K (t ) decreases with time. Moreover, since ultimately (t →∞,

R → ∞) the dimensionless toughness is negligibly small (K → 0), equations (5.28)a and

(5.28)b become both identical to the rupture propagation condition of the constant friction

model, equation (5.16), as long as the constant friction coefficient fcons is now understood as

the residual one fr . The solution of the constant friction model (5.17) with fcons = fr is also

displayed in Figures 5.3a and 5.3b. It is now clear how the constant fracture energy solution

approaches asymptotically the constant residual friction solution as K → 0. This can also be

seen in the asymptotics (5.29) that become identical to (5.20) when K = 0.

The previous result has an important implication: the constant friction model analyzed in

Sáez et al. (2022) can be now interpreted in two distinct manners: as a scenario in which the

friction coefficient does not significantly weaken ( fcons ≈ fp ), or as the ultimate asymptotic

solution of a model with constant fracture energy provided that fcons = fr . In the former, the

fracture energy Gc = 0 by definition. In the latter, the effect of the non-zero fracture energy

in the rupture-front energy balance is to leading order negligible compared to the other two

terms that drive the propagation of the rupture. In addition, because the integral Ψ(λ) is
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strictly positive and in the ultimate asymptotic regime K → 0, the near-front energy balance

(5.28) admits ultimate quasi-static solutions only if Tr > 0. Negative values of Tr which are

equivalent to the condition frσ
′
0 < τ0 may be thus related to ultimately unstable solutions, not

accounted for the quasi-static energy balance. This result supports our assumption that the

ultimate stability condition of Garagash and Germanovich (2012) holds in the circular rupture

configuration.

We now recast the solution of the constant fracture energy model in a perhaps more intuitive

way, as the evolution of the rupture radius with time:

R(t ) =λ(Tr ,K (t )) ·L(t ). (5.30)

Recalling that L(t ) =
p

4αt and noting that

Knu = (R/R∗
nu)−1/2, and Kmp = (R/R∗

mp )−1/2, (5.31)

we solve equations (5.28)a and (5.28)b for R/R∗ as a function of the normalized squared root

of time
p

4αt/R∗ and Tr , where R∗ represents the characteristic rupture length scale of either

the nearly unstable or marginally pressurized regime (equation (5.25)).

This version of the solution is displayed in Figures 5.3c and 5.3d. In these plots, the normalized

square root of time can be also interpreted as the normalized position of the overpressure front

L(t ). Indeed, the thicker dashed line corresponds to the current position of the overpressure

front. Slip fronts propagating above this line represent cases in which the rupture front

outpaces the overpressure front. We observe that such a situation is a common feature of

nearly unstable faults (Tr ≪ 1), being the analog regime of critically stressed faults in the

constant friction model. Moreover, taking into account (5.30) and (5.31), the asymptotics

(5.29) can be recast as the following implicit equations for the normalized rupture radius R/R∗

as a function of time:

p
4αt/R∗

nu =
R

R∗
nu

[(
2+

p
π√

R/R∗
nu

)
Tr

]1/2

(5.32)

for nearly unstable faults, and

p
4αt/R∗

mp =
2
(
R/R∗

mp

)
exp

[(
2−γ−Tr −

(p
π/2

)(
R/R∗

mp
)−1/2

)
/2

] (5.33)

for marginally pressurized faults.

Note that the transition from the large-toughness (K ≫ 1) to small-toughness (K ≪ 1)

regime in Figures 5.3c and 5.3d occurs along the vertical axis when R/R∗
nu ∼ 1 and R/R∗

mp ∼ 1,

respectively. The characteristic time at which this transition occurs can be approximated by

using the constant residual friction solution or, what is the same, the ultimate zero-fracture-
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energy solution, λr =λ (Tr ,K = 0), which yields

t∗nu ≈ 1

αλ2
r

(
Kc

frσ
′
0 −τ0

)4

, and t∗mp ≈ 1

αλ2
r

(
Kc

fr∆p∗

)4

. (5.34)

λr can be estimated from the asymptotes presented in equation (5.20) for both nearly unstable

(Tr ≪ 1) and marginally pressurized (Tr ∼ 10) faults, provided that T is replaced by Tr .

Normalizing time by the previous characteristic times naturally tends to collapse all solutions

for every value of Tr as displayed in Figures 5.3e and 5.3f, where the power law 1/2 reflects the

diffusively self-similar property of the ultimate zero-fracture-energy solution.

Finally, it seems worth mentioning that the solution for marginally pressurized faults is non-

physical at times in which the rupture is small, R/R∗
mp ⪅ 0.05 (see Figures 5.3d and 5.3f).

This could be related either to the occurrence of a dynamic instability or to a rupture size

that is too small compared to realistic process zone sizes. Indeed, the solution constructed

here for the case of constant fracture energy has the inherent limitations of LEFM theory.

First, it does not account for the initial stage in which the process zone is under development

(R < ℓ∗) and, second, it is an approximate solution that relies on the small-scale yielding

assumption (R ≫ ℓ∗). Both limitations are overcome in the next section by solving numerically

the governing equations of the coupled initial boundary value problem for slip-weakening

friction.

5.4 Scaling analysis, map of rupture regimes and ultimate stability

condition

5.4.1 Scaling analysis

The scaling of the slip-weakening problem comes directly from the two-dimensional linear-

weakening model of Garagash and Germanovich (2012), which is also valid for the exponential-

weakening version of the friction law. We summarize the scaling as follows:

t̄ =
t

R2
w /α

, r̄ =
r

R
, τ̄ =

τ

fpσ
′
0

, δ̄ =
δ

δw
, ∆p̄ =

∆p

∆p∗
, (5.35)

where the bar symbol represents dimensionless quantities, δw is the slip weakening scale, and

Rw is an elasto-frictional rupture length scale, given respectively by (see also Uenishi and Rice,

2002)

δw =
fp

fp − fr
δc , and Rw =

µ(
fp − fr

)
σ′

0

δc . (5.36)

In the previous equation, ( fp − fr )σ′
0/δc is the so-called slip-weakening rate (Uenishi & Rice,

2002).

123



Chapter 5 Slow slip and earthquake nucleation on a slip-weakening circular fault

Nondimensionalization of the governing equations of the model using the previous scaling

shows that the normalized fault slip δ̄ depends in addition to dimensionless space r̄ and time

t̄ , on the following three dimensionless parameters:

S =
τ0

fpσ
′
0

, P =
∆p∗
σ′

0

, F =
fr

fp
. (5.37)

The first parameter S is the pre-stress ratio or sometimes called, stress criticality. It is the

quotient between the initial shear stress τ0 and the initial static fault strength fpσ
′
0. The

pre-stress ratio S quantifies how close to frictional failure the fault is under ambient (pre-

injection) conditions. The range of values for S is naturally

0 ≤S < 1, (5.38)

being zero when the fault has no initial shear stress whatsoever, and close to one when the

fault is critically stressed or about to fail under ambient conditions, τ0 → fpσ
′
0.

The second parameter P is the overpressure ratio, which quantifies the intensity of the

injection ∆p∗ with regard to the initial effective normal stress σ′
0. The range of possible values

for P is determined as follows. Its upper bound comes from the maximum possible amount of

overpressure that in our model corresponds to a scenario in which the fault interface is about

to open: ∆pc ≈σ′
0, where ∆pc = 4π∆p∗ (equation (5.2)). On the other hand, the lower bound

of P comes from the minimum amount of overpressure that is required to activate fault slip:

fp∆pc ≈ fpσ
′
0 −τ0. By replacing the previous approximate relations into P = ∆p∗/σ′

0, we

obtain the sought range of values for P in an approximate sense as

10−1(1−S )⪅P ⪅ 10−1, (5.39)

where ≈ 10−1 comes from the factor 1/4π. Finally, the third parameter, the residual-to-peak

friction ratio F is such that

0 ≤F ≤ 1. (5.40)

F is zero when there is a total loss of frictional resistance upon the passage of the rupture

front, a situation that is unlikely to occur for stable, slow slip, as opposed to fast slip in which

thermally-activated dynamic weakening mechanisms could make the fault reach quite low

values for F (Rice, 2006). On the other hand, F is equal to one when the friction coefficient

does not weaken at all, which corresponds indeed to the particular case of Coulomb’s friction

fcons = fp .

Finally, it will result useful to define the residual stress-injection parameter Tr of the con-

stant fracture energy model, equation (5.23), as a combination of the three dimensionless
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parameters of the slip-weakening model,

Tr =
1−S /F

P
. (5.41)

In addition, one can also define a stress-injection parameter based on the peak value of friction

fp instead of the residual one. Such a parameter reads as

Tp =
fpσ

′
0 −τ0

fp∆p∗
=

1−S

P
. (5.42)

We denominate Tp as the ‘peak’ stress-injection parameter. The latter is indeed the maximum

possible value of the residual stress-injection parameter Tr (when F = 1), so that

Tr ≤Tp . (5.43)

As a final comment on the scaling, when comparing the fault response for each version of the

friction law, the results that we present in the next sections are particularly valid under the

assumption that both friction laws are characterized by the same slip-weakening scale δc (see

Figure 5.2). Alternatively, one could compare the effect of both friction laws under a different

condition such as, for instance, an equal fracture energy Gc , or any other criterion. In the case

of equal Gc , the characteristic slip weakening scales would be related as δc,lin = 2δc,exp. Our

results can be then easily re-scaled using the previous relation as the dimensionless solution

remains unchanged, and the same could be done with any other criterion.

5.4.2 Map of rupture regimes and ultimate stability condition

Given the similarity of the scaling between our three-dimensional axisymmetric rupture

model and the two-dimensional plane-strain model of Garagash and Germanovich (2012),

we find, not surprisingly, that the map of regimes of fault behavior in our model is essentially

the same as in the two-dimensional problem (Garagash & Germanovich, 2012). Figure 5.4

summarizes the map of regimes in the parameter space composed by S , P and F . Moreover,

as anticipated when examining the constant fracture energy model, the ultimate stability

condition of Garagash and Germanovich (2012) holds in the circular rupture case. Therefore,

mixed-mode circular ruptures will propagate ultimately (t →∞, R →∞) in a quasi-static,

stable manner, if any of the following three equivalent conditions is satisfied:

frσ
′
0 > τ0 ⇐⇒ S <F ⇐⇒ Tr > 0. (5.44)

Notably, the residual stress-injection parameter Tr must be strictly positive. Otherwise,

ruptures will propagate ultimately in an unstable, dynamic manner. In the latter case, dynamic

ruptures will run away and never stop within the limits of such a homogeneous and infinite

fault model. Since in this work, we are mainly interested in the propagation of quasi-static slip,

the regimes of major interest are the ones corresponding to ultimately stable ruptures and
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the quasi-static nucleation phase preceding dynamic ruptures. We examine both scenarios in

what follows.

5.5 Ultimately stable ruptures

Figure 5.5 displays the propagation of the slip front in the case of ultimately stable ruptures:

frσ
′
0 > τ0. Without loss of generality, we fix the residual-to-peak friction ratio F = 0.7 and

examine for both the linear- and exponential-weakening friction laws the parameter space for

P and S < 0.7. The case of an overpressure ratio P = 0.05 is shown in Figures 5.5a and 5.5b.

For all values of S in these figures, we obtain ruptures that propagate in a purely quasi-static

manner without any dynamic excursion, that is, the regime R1 in Figure 5.4. Figures 5.5c

and 5.5d show, on the other hand, the case of a lower overpressure ratio P = 0.035. For this

value of P , we observe the occurrence of the regime R2 for the linear-weakening case and

both regimes R1 and R2 for the exponential-weakening case. The regime R2 corresponds

to a situation in which a dynamic rupture nucleates, arrests, and is then followed by purely

quasi-static slip.

5.5.1 Early-time Coulomb’s friction stage and localization of the process zone

It is clear from Figure 5.5 that at early times and for both regimes (R1 and R2), the propagation

of the slip front is well approximated by the Coulomb’s friction model, fcons = fp . The rupture

radius thus evolves in this stage as

R(t ) ≈λp L(t ), (5.45)

where λp is the amplification factor given by equation (5.17) considering the peak stress-

injection parameter Tp , and L(t) =
p

4αt is the position of the overpressure front as usual.

This early-time Coulomb’s friction similarity solution is meant to be valid while the friction

coefficient does not decrease significantly throughout the slipping region, as shown for a few

cases in the examples of Figures 5.8d and 5.8e, when looking at the spatial distribution of the

friction coefficient for the earliest times (t1 and t2). Note that in Figure 5.5, we also include

the evolution of the overpressure front with time (light blue dashed line). In the spatial range

covered by this figure, the slip front of ultimately stable ruptures always lags the overpressure

front (R(t ) ≪ L(t )) as the corresponding values of Tp are well into the marginally pressurized

regime (Tp ∼ 10).

Now, beyond this early stage, the propagation of the slip front starts departing from the

Coulomb’s friction similarity solution while the slipping region experiences further weakening

of friction. At this point, a dynamic instability could nucleate, arrest, and be followed by

aseismic slip (examples in Figures 5.5c and 5.5d), within a relatively narrow region of the

parameter space (R2 in Figure 5.4). More generally, ruptures will propagate in a purely quasi-

static manner (examples in Figures 5.5a and 5.5b, regime R1 in Figure 5.4). Either way, when
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Figure 5.4: Map of rupture regimes for linear slip-weakening model (adapted from figure 11 in
Garagash and Germanovich, 2012). (R1) Unconditionally stable fault slip. (R2) Quasi-static slip
up to the nucleation of a dynamic rupture, followed by arrest and then purely quasi-static slip.
(R3) Quasi-static slip until the nucleation of a run-away dynamic rupture. (R4) Quasi-static
slip up to the nucleation of a dynamic rupture, followed by arrest and then re-nucleation of a
run-away dynamic rupture. ∗The condition of no slip is established in the approximate sense
discussed in Section 5.10.
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Figure 5.5: Ultimately stable faults, S <F = 0.7, at distances R/Rw < 20. Normalized rupture
radius versus square root of dimensionless time for (left) linear and (right) exponential weaken-
ing versions of the friction law. (a) P = 0.05 and (b) P = 0.035. Red dashed lines correspond to
the analytical constant friction solution considering the peak friction coefficient. Gray dashed
lines correspond to the solution of the front-localized energy balance, G = Gc . Green dashed
lines correspond to an improved version of the front-localized energy balance as explained in
the main text, shown here for only a few cases. Light blue lines represent the position of the
overpressure front L(t ) =

p
4αt . Note that for all cases, R(t ) ≪ L(t ).
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this transition happens, the rupture radius becomes greater than the rupture length scale

Rw , which is around the same order than the process zone size ℓ∗ for the linear weakening

law (see, for an example, Figure 5.8f). In the case of the exponential weakening law, Figure

5.5 shows that the transition is smoother and occurs later than for the linear weakening case,

whereas the localization of the process zone occurs also at a later time and for rupture lengths

that seem to be many times or even an order of magnitude greater than the elasto-frictional

length scale Rw (see, also, an example in Figure 5.8f). Furthermore, starting from this point,

the process zone has fully developed and thus a proper fracture energy Gc can be calculated.

In this way, we can now examine the evolution of the rupture front through the near-front

energy balance (5.14), to an accuracy set by the small-scale yielding approximation.

5.5.2 Front-localized energy balance, large- and small-toughness regimes

Using equation (5.12) in combination with (5.1), (5.4) and (5.5), we obtain an expression for

the fracture energy of the slip-weakening model as

Gc ≈ κ
(

fp − fr
)
δc

[
σ′

0 −∆p∗E1
(
λ2)] (5.46)

with λ(t) = R(t)/L(t) as usual, and κ is a coefficient equal to 1/2 for the linear weakening

case, and 1 for the exponential law, reflecting that the fracture energy of the latter is twice the

fracture energy of the former at equal δc .

Introducing the scaling of the slip weakening model (5.35) into equation (5.14), one can

nondimensionalize the front-localized energy balance in the following form,

FP Ψ (λ)+ (S −F ) =

p
π

2

p
2κ (1−F )

√
1−P E1

(
λ2

)
p

R/Rw
, (5.47)

where Ψ(λ) is the non-dimensional integral (5.27) whose evaluation is know analytically in

(5.17). As expected from the scaling of the problem, equation (5.47) shows that the normalized

rupture radius R/Rw depends in addition to dimensionless time L(t )/Rw (which is implicit in

λ) on the three dimensionless parameters of the model: S , P and F .

Considering that for any physically admissible quasi-static solution, the rupture radius must

increase monotonically with time, we solve equation (5.47) by imposing R/Rw and then

calculating L(t )/Rw for a given combination of dimensionless parameters. The solution of the

front-localized energy balance (5.47) is shown in Figure 5.5 together with the full numerical

solutions. We observe that in the linear weakening case, the near-front energy balance yields a

good approximation of the full numerical solution already for R ⪆ 2Rw . On the other hand,

in the exponential decay case, a good approximation is reached only after R ⪆ 10Rw . The

difference is due to the fact that the localization of the process zone is less sharp and takes

longer for the exponential decay in comparison to the linear weakening case, as exemplified

in Figure 5.8f. Moreover, the approximate nature of the energy-balance solution is of course
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due to the finite size of the process zone as opposed to the infinitesimal size required by LEFM.

Indeed, in the two-dimensional problem, a correction due to the finiteness of the process

zone for the linear weakening case was considered by Garagash and Germanovich (2012)

based on the work on cohesive tensile crack propagation due to uniform far-field load by

Dempsey et al. (2010), providing a solution with improved accuracy. Figure 5.5 shows the

results of this correction for a few cases in our model. The solution gets slightly better despite

our frictional shear crack is circular and as such, the pre-factors in the scaling relations of the

two-dimensional problem should differ from ours.

The front-localized energy balance allows us notably to examine the evolution of the rupture

radius beyond the spatial range covered in Figure 5.5, without the need to calculate the full

numerical solutions. Note that the energy-balance solution is not only a good approximation

over this spatial range but will also become an exact asymptotic solution in the LEFM limit

ℓ∗/R → 0. Solutions for 10 ≤ R/Rw ≤ 103 are displayed in Figure 5.6. In particular, Figure

5.6a shows that the higher the pre-stress ratio is, the faster the rupture propagates. Similarly,

Figure 5.6b displays that the more intense the injection is (higher overpressure ratio), the

faster the rupture propagates too. Both effects are intuitively expected and consistent with the

definition and effect of the stress-injection parameter in the constant friction model (Section

5.3.1). Moreover, initially (R/Rw ≤ 10), we observe in Figure 5.5 that the rupture front lags

the overpressure front (λ< 1) as faults are governed at early times by Coulomb’s friction with

a peak stress-injection parameter Tp well into the marginally pressurized regime (Tp ∼ 10).

Nonetheless, as the rupture accelerates due to the further weakening of friction, Figure 5.6

shows that at later times, the slip front may end up outpacing the overpressure front (λ> 1).

We examine the conditions leading to such behavior in what follows.

Nearly unstable faults, λ(t ) ≫ 1

When λ(t) ≫ 1, the term ∆p∗E1
(
λ2

)
in (5.46) can be neglected as the overpressure within

the process zone is vanishingly small. Hence, the fracture energy Gc becomes approximately

constant and simply equal to

Gc ≈ κ
(

fp − fr
)
δcσ

′
0. (5.48)

At these length scales and in this regime, the problem becomes now identical to the constant

fracture energy model that we extensively analyzed in Section 5.3.2. All the results and insights

obtained for nearly unstable faults in that model are therefore inherited here. In fact, the

rupture front will always outpace the overpressure front provided that the fault responds in

the nearly unstable regime as quantified by the residual stress-injection parameter Tr ≪ 1,

which is indeed intentionally the case of all the examples shown in Figure 5.6.

Introducing (5.48) into (5.24)a via (5.10), and then (5.24)a into (5.28)a, leads to the dimension-
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Figure 5.6: Ultimately stable ruptures, S <F = 0.7, at distances 10 ≤ R/Rw ≤ 103 for the linear-
weakening friction law. Normalized rupture radius R/Rw versus square root of dimensionless
time

p
4αt/Rw for: (a) P = 0.075 and different values of S (values of Tr indicated between

brackets); (b) S = 0.697 and different values of P ; (c) different combinations of P and S for
the same Tr = 0.1; and (d) same as (c) but re-scaling both axes using R∗

nu . Note that all curves
collapse under the new scaling in the latter plot.
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less form of the front-localized energy balance in the nearly unstable regime,

1

Tr
Ψ (λ)−1 =

p
π

2

p
2κ

1√
R/R∗

nu

, (5.49)

with

R∗
nu

Rw
=

(
fpσ

′
0 − frσ

′
0

frσ
′
0 −τ0

)2

=

(
1−F

F −S

)2

. (5.50)

Equations (5.49) and (5.50) can be also obtained by neglecting the term P E1
(
λ2

)
in (5.47) and

then dividing the latter by F−S . What is interesting to highlight, is that when the overpressure

across the process zone becomes approximately constant (and so the fracture energy Gc ),

the mathematical structure of the solution for the rupture front in the slip weakening model

changes and it is no longer dependent on three but only one single dimensionless number,

the residual stress-injection parameter Tr .

The new scaling is exemplified in Figures 5.6c and 5.6d. The former figure shows the evolution

of the rupture front as given by equation (5.47) for different combinations of S and P that are

all characterized by the same value of the residual stress-injection parameter, Tr = 0.1. After

re-scaling the solution using the characteristic rupture length scale R∗
nu (5.50), Figure 5.6d

displays how all curves in Figure 5.6c collapse under the new, constant-fracture-energy scaling.

Moreover, by using the asymptotic behavior of Ψ (λ) for large λ, equation (5.32) provides an

implicit equation for the normalized rupture radius R/R∗
nu as a function of the normalized

square root of time
p

4αt/R∗
nu and the residual stress-injection parameter Tr , provided that

R∗
nu is replaced by (5.50).

Marginally pressurized faults, λ(t ) ≪ 1

A similar reasoning can be considered now for the case in which λ(t) ≪ 1. Here, the over-

pressure within the process zone can be taken as approximately constant and equal to the

overpressure at the fluid source, ∆pc (5.2), as the rupture radius is much smaller than the

pressurized zone, R(t ) ≪ L(t ). Therefore, we can approximate the fracture energy (5.46) as

Gc ≈ κ
(

fp − fr
)
δc

(
σ′

0 −∆pc
)

, (5.51)

which is constant as well. We recall that ∆pc is a rough approximation of the fluid-source

overpressure as discussed in Section 5.10. Again, all the results and insights from the constant

fracture energy model are inherited now in this regime. Particularly, the so-called marginally

pressurized regime as quantified by the residual stress-injection parameter (Tr ∼ 10) is the

one related to λ(t ) ≪ 1. We recall that this marginally pressurized regime is not defined exactly

as the one emerging during the early-time Coulomb’s friction stage. The latter is defined by

the condition fp∆pc ≈ fpσ
′
0−τ0, whereas the former relates to the residual friction coefficient

instead, fr∆pc ≈ frσ
′
0 −τ0. We use the same name for these two regimes, yet there is this
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subtle difference between them.

By introducing (5.51) into (5.24)b via (5.11), and then (5.24)b into (5.28)b, we obtain the

dimensionless form of the front-localized energy balance in the marginally-pressurized regime,

Ψ (λ)−Tr =

p
π

2

p
2κ

1√
R/R∗

mp

, (5.52)

with

R∗
mp

Rw
=

(
fp − fr

)2
σ′

0

(
σ′

0 −∆pc
)(

fr∆p∗
)2 ≈

(
1−F

FP

)2

(1−10P ) . (5.53)

In the latter equation, we have approximated the factor 4π by 10 as usual in the marginally

pressurized limit. Alternatively, equations (5.52) and (5.53) can be derived by approximating

the term P E1
(
λ2

)≈ 4πP in (5.47) and then dividing the latter by FP . Moreover, by using

the asymptotic behavior of Ψ (λ) for small λ, equation (5.33) provides an implicit equation

for the normalized rupture radius R/R∗
mp as a function of the normalized square root of timep

4αt/R∗
mp and the residual stress-injection parameter Tr , provided that R∗

mp is replaced by

(5.53).

The meaning of the rupture length scales R∗
nu and R∗

mp are the same as in the constant fracture

energy model. Essentially, when R ≪ R∗, the fracture energy plays a dominant role in the near-

front energy balance. This is the large-toughness regime. On the other hand, when R ≫ R∗,

the fracture energy becomes increasingly less relevant in the rupture-front energy budget,

corresponding to the small-toughness regime. Hence, likewise in the constant fracture energy

model, unconditionally stable ruptures in the slip-weakening model will always transition

from a large-toughness to a small-toughness regime. This transition is shown in Figures 5.3c

and 5.3d for both nearly unstable and marginally pressurized faults, respectively, with R∗
nu and

R∗
mp as in equations (5.50) and (5.53).

5.5.3 Ultimate zero-fracture-energy similarity solution

By taking the ultimate limit R/R∗ →∞ in equations (5.49) and (5.52), it is evident that the

fracture-energy term in the energy balance (the right-hand side) vanishes for both the nearly

unstable (Tr ≪ 1) and marginally pressurized regimes (Tr ∼ 10). Hence, in this limit, equa-

tions (5.49) and (5.52) become simply

Ψ(λ) = Tr , (5.54)

which is exactly the rupture propagation condition of the constant friction model (equa-

tion (5.16)) but with a constant friction coefficient fcons equal to the residual one fr . The

self-similar constant friction model is therefore the ultimate asymptotic solution of the slip-
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weakening model, provided that fcons = fr . The transition from the small-toughness regime

to the constant residual friction solution, also denominated as ultimate zero-fracture-energy

solution, is shown in Figures 5.3c and 5.3d for both nearly unstable and marginally pressurized

faults, respectively. Note that one could alternatively define a dimensionless toughness K for

both regimes (λ(t) ≫ 1 and λ(t) ≪ 1) as in Section 5.3.2 (equation (5.24)) to show the same

type of transition than in Figures 5.3a-b, since the solution for the amplification factor can be

written as λ (Tr ,K (t )). Such a dimensionless toughness will always decrease with time and

ultimately tend to zero, K → 0.

Finally, using the constant residual friction solution λr , one can estimate as done in Sec-

tion 5.3.2 (equation (5.34)) the transition timescales between the large-toughness and small-

toughness regimes, which results in

t∗nu ≈
(
R∗

nu

)2

αλ2
r

, and t∗mp ≈
(
R∗

mp

)2

αλ2
r

. (5.55)

5.6 The nucleation phase preceding a dynamic rupture

Figure 5.7 displays the case of ultimately unstable ruptures: frσ
′
0 < τ0. Again, without loss of

generality, we fix the residual-to-peak friction ratio as F = 0.7, and examine the parameter

space for P and now S > 0.7, for both versions of the slip-weakening friction law. The case

of an overpressure ratio P = 0.1 which corresponds to an injection that is about to open the

fault, is shown in Figures 5.7a and 5.7b. For all values of S in these figures, we observe the

nucleation of a dynamic rupture that runs away and never stop within the limits of our model,

this is, the regime R3 in Figure 5.4. On the other hand, the case of a lower overpressure ratio

P = 0.05 is shown in Figures 5.7c and 5.7d. For the linear weakening model, we observe the

occurrence of both regimes R3 and R4 of Figure 5.4. The latter corresponds to cases in which a

dynamic rupture nucleates, propagates, and arrests, with a new rupture instability nucleating

afterward on the same fault, which is ultimately unstable (run-away). Moreover, in Figure 5.7d

for the exponential weakening version of the friction law, we do not observe the regime R4, at

least for the numerical solutions we include in this figure.

5.6.1 Early-time Coulomb’s friction stage and acceleration towards rupture insta-
bility

Similarly to the case of ultimately stable ruptures, here, unstable ruptures are also well-

described by the Coulomb’s friction model at early times (see Figure 5.7). Therefore, the

rupture radius evolves approximately as equation (5.45), with λp given by equation (5.17)

considering the peak stress-injection parameter Tp . Moreover, Figure 5.7 also shows that

during the nucleation phase, the slip front may largely outpace the overpressure front (λp ≫ 1)

when faults are critically stressed as quantified by the peak stress-injection parameter (Tp ≪ 1),

or significantly lag the overpressure front (λp ≪ 1) when faults are marginally pressurized
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Figure 5.7: Ultimately unstable faults, S >F = 0.7. Normalized rupture radius versus square
root of dimensionless time for (left) linear weakening and (right) exponential decay versions of
the slip weakening friction law. (a, b) P = 0.1 and (c, d) P = 0.05. Black and red circles indicate
the nucleation and arrest of a dynamic rupture, respectively. Red dashed lines correspond to
the analytical Coulomb’s friction model considering the peak friction coefficient. In (c) and (d),
gray dashed lines represent the near-front energy balance solution. In (c), the green dashed
line corresponds to an improved energy-balance solution as explained in the main text.
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(Tp ∼ 10). Figures 5.8d and 5.8e display, on the other hand, the spatial distribution of the

friction coefficient for critically stressed and marginally pressurized cases, respectively. We can

clearly observe that at the Coulomb’s friction stage, f / fp ≈ 1 throughout most of the slipping

region. Note that in this stage, we could also approximate the spatio-temporal evolution of

fault slip in the critically stressed and marginally pressurized regimes, using the analytical

asymptotic expressions derived by Sáez et al. (2022) (equation 25 and 26 in Sáez et al., 2022),

provided that fcons = fp . The same can be done for the ultimate zero-fracture-energy solution

of ultimately stable ruptures, with fcons = fr .

Now, beyond this early-time stage, the propagation of the slip front starts departing from the

Coulomb’s friction similarity solution due to the further weakening of friction. The latter can

be seen in Figures 5.8d and 5.8e for intermediate times (t2) and times close to nucleation (tc ).

The slip front accelerates indeed towards the nucleation of a dynamic rupture. Figure 5.7

shows that the rupture radius at the instability time increases with decreasing pre-stress ratio

S and increasing overpressure ratio P , for both versions of the friction law. This is consistent

with the extensive analysis of earthquake nucleation provided by Garagash and Germanovich

(2012) for the two-dimensional, linear weakening model. Moreover, Figure 5.7 also displays

that one of the main effects of the exponential weakening version of the friction law is to

smooth the transition of the rupture towards the dynamic instability with regard to the linear

law. Furthermore, the exponential law retards the instability time and generally increases the

critical radius for the rupture to become unstable. Such effect of the exponential law becomes

stronger when the pre-stress ratio S decreases towards its minimum value in the ultimately

unstable case, this is, the ultimate stability limit S = F .

Given the importance of the nucleation radius to characterize the maximum size that quasi-

static ruptures can afford in the ultimately unstable case, we calculate in the next sections

theoretical bounds for it, following the procedure of Uenishi and Rice (2002) and Garagash

and Germanovich (2012). This corresponds to an extension of their results from the two-

dimensional (mode II or III) fault model to the three-dimensional circular (modes II+III)

configuration.

5.6.2 Theoretical bounds for the nucleation radius

Critically stressed and marginally pressurized limits

As shown in Sections 5.9.1 and 5.9.2, at the time of instability tc , the time derivative of the

quasi-static elastic equilibrium throughout the slipping region takes the form of the following

eigenvalue problem for both the critically stressed (Tp ≪ 1) and marginally pressurized

(Tp ∼ 10) regimes:

1

2π

∫ 1

0
F

(
r̄ , ξ̄

) ∂v̄(ξ̄)

∂ξ̄
dξ̄ =βv̄(r̄ ), (5.56)
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where v̄ = v/vrms is the normalized slip rate distribution (with vrms given by equation (5.67)),

and β is the eigenvalue

β =
R

Rw
·
1 for critically stressed faults Tp ≪ 1

τ0/fpσ
′
0 for marginally pressurized faults Tp ∼ 10.

(5.57)

In the previous equations, the dependence of v̄ and R on the instability time tc has been

omitted for simplicity. Moreover, equations (5.56) and (5.57) are valid not only for the linear

weakening friction law (5.4), but also for the exponential one (5.5). This is due to both the

critically stressed and marginally pressurized limits are characterized by small slip at the

nucleation time, δ(r = 0, tc ) ≪ δc (see, for example, Figure 5.8). It takes just a simple Taylor

expansion to show that in this range of slip, the exponential weakening version of the friction

law is, to first order in δ/δc , asymptotically equal to the linear weakening case. This also means

that the residual branch of the linear weakening law does not need to be considered in such

stability analysis.

The solution of (5.56) for the eigenvalues and eigenfunctions is calculated in Section 5.9.3.

This is done by discretizing the linear integral operator on the left-hand side of (5.56) via a

collocation boundary element method using piece-wise ring ‘dislocations’ of constant slip

rate. The most important result is the smallest eigenvalue β1, which was shown by Uenishi

and Rice (2002) for the two-dimensional problem to give the critical nucleation radius. We

find (see Table 5.1)

β1 ≈ 1.003, (5.58)

which is interestingly, for all practical purposes, approximately equal to one. Taking hereafter

β1 ≈ 1, the nucleation radius is recovered from equation (5.57) as

Rcs
c ≈ Rw (5.59)

for critically stressed faults (Tp ≪ 1, vertical line S = 1 on the right side of Figure 5.4), and

Rmp
c ≈ fpσ

′
0

τ0
Rw =

Rw

S
, (5.60)

for marginally pressurized faults (Tp ∼ 10, inclined line P ≈ 10−1(1−S ) in Figure 5.4).

The theoretical estimates (5.59) and (5.60) are compared to numerical solutions that are

representative of each limiting regime in Figures 5.8a and 5.8b, respectively. In these figures,

the blue arrows indicate the theoretical radii at the instability time tc . We highlight that the

critically stressed nucleation radius (5.59) is a proper asymptote that is always reached in the

limit τ0 → fpσ
′
0, up to the numerical approximation made for the eigenvalue (5.58). On the

other hand, the marginally pressurized nucleation radius (5.60) can be defined only in an

approximate sense due to the reasons explained in Section 5.10. Although this approximation
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seems to be quite accurate for the linear weakening law (see Figure 5.8b), the exponential

decay version does not seem to follow this trend. This is likely due to the additional assumption

of small slip that the exponential weakening law requires in order to be well approximated

by a linear relation. In the example of Figure 5.8b, slip does not seem to be small enough.

Because of the approximate nature of the marginally pressurized limit, it is challenging to find

the model parameters that will result in a sufficiently small slip at the nucleation time for the

linear approximation of the exponential weakening law to be valid. Furthermore, equations

(5.59) and (5.60) suggest that the minimum possible nucleation radius is the one associated

with critically stressed faults (5.59), whereas the greatest possible nucleation radius can be as

large as infinity for marginally pressurized faults (5.60), in the limit of zero pre-stress τ0 → 0.

Yet such a limit corresponds indeed to an ultimately stable rupture, specifically, a case in

which the fault is about to open (top left corner of Figure 5.4), so that the dynamic rupture will

eventually arrest and then propagate ultimately in a quasi-static manner.

Finally, as shown in Section 5.9, the nucleation radius in the critically stressed limit (5.59) is

independent of the specific form of the spatio-temporal evolution of pore pressure, that is,

equation (5.59) is also valid for other types of fluid injections than the constant volumetric

rate considered in this study. On the other hand, the nucleation radius in the marginally pres-

surized limit (5.60) is, under certain conditions (see details in Section 5.9.2), also independent

of the injection scenario. Moreover, the critically stressed nucleation radius (5.59) is itself

an extension of the nucleation length of Uenishi and Rice (2002) (found also previously by

Campillo and Ionescu, 1997, under different assumptions) from their two-dimensional fault

model to the three-dimensional axisymmetric configuration. Since for the shear mixed-mode

(II+III) rupture, the circular front shape is strictly valid only when ν = 0, our results could be

used in combination with perturbation techniques such as the work of Gao (1988) to charac-

terize the corresponding non-circular slipping region at the nucleation time of a shear rupture

for ν ̸= 0. Indeed, since the work of Gao (1988) is based on linear elastic fracture mechanics

(valid in the small-scale yielding limit) and the nucleation radius (5.59) (and (5.60)) is smaller

than the process zone size, one should rather consider a variational approach as the one

proposed recently by Lebihain et al. (2022) for cohesive cracks based on the perturbation of

crack face weight functions. The approach of Gao (1988) would be still useful to characterize

non-circularity in the nearly stable limit of the next section. This would provide an alternative

to the work of Uenishi (2018) who considered an energy approach and fixed the rupture shape

to an ellipse. An elliptical rupture shape may be a very good approximation for a shear rupture

(Sáez et al., 2022), yet not necessarily the actual equilibrium shape. Finally, for a tensile (mode

I) rupture, the nucleation radius (5.59) is valid for any value of ν, as long as the load driving the

rupture growth is peaked around the crack center and axisymmetric in magnitude. Further

details about this generalization of our results can be found in Section 5.9.
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Nearly stable limit

Figures 5.7c and 5.7d show that the nucleation radius of ultimately unstable ruptures becomes

very large, R(tc ) ≫ Rw , when approaching the ultimate stability condition frσ
′
0 → τ0 (vertical

line S = F in Figure 5.4). Specifically, Figure 5.7c displays a case of large re-nucleation radius

(regime R4) in the linear weakening model for S = 0.71 (F = 0.7), whereas Figure 5.7d shows

an example of large nucleation radius for the exponential weakening model and the same

parameters than before. In the two-dimensional model, Garagash and Germanovich (2012)

not only found this same behavior but provided also an asymptote for the nucleation length

in this limit, which we also derive here for the circular rupture model.

First, let us note that the condition R(tc ) ≫ Rw implies also that R(tc ) ≫ ℓ∗, since the process

zone size ℓ∗ for the linear weakening model is roughly around the same order than the elasto-

frictional lengthscale Rw , and about an order of magnitude larger in the case of the exponential

weakening law. Hence, we can invoke the front-localized energy balance, equation (5.14).

Indeed, Figures 5.7c and 5.7d display such energy-balance solution for some ruptures that

are on their way to becoming unstable. On the other hand, near the ultimate stability limit,

R(tc ) is also much bigger than the radius of the overpressure front L(tc ), such that λ(tc ) ≫ 1.

Therefore, we can approximate the equivalent shear load associated with the fluid source as

a point force via equation (5.19). The corresponding axisymmetric stress intensity factor for

such a point force comes from resolving the integral of the left-hand side of equation (5.14)

considering (5.19) and fcons = fr , which gives

Kp =
fr∆P (t )

(πR)3/2
(5.61)

with ∆P (t ) = 4παt∆p∗. Substituting the previous equation into (5.14) leads to the following

form of the front-localized energy balance,

fr∆P (t )

(πR)3/2︸ ︷︷ ︸
Kp

+ 2p
π

[
τ0 − frσ

′
0

]p
R︸ ︷︷ ︸

Kτ

= Kc , (5.62)

where the fracture toughness Kc =
√

2µGc is, after combining equations (5.36) and (5.48),

equal to

Kc = ( fp − fr )σ′
0

√
2κRw . (5.63)

We recall that the coefficient κ is equal to 1/2 for the linear weakening friction law and 1 for

the exponential weakening case. Moreover, the fracture toughness Kc is constant due to the

negligible overpressure within the process zone when λ≫ 1.

By differentiating equation (5.62) with respect to time and then dividing by Ṙ on both sides,

one can show upon taking the limit at the nucleation time: R → Rc and Ṙ →∞, that Kp =

Kτ/3. Substituting this previous relation into (5.62) allows us to eliminate ∆P (tc ) and so the
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instability time tc in the equation, leading to the sought critical nucleation radius:

R∞
c

Rw
≃ 9πκ

32

(
fpσ

′
0 − frσ

′
0

τ0 − frσ
′
0

)2

=
9πκ

32

(
1−F

S −F

)2

, when frσ
′
0 → τ0. (5.64)

Note that the previous equation is a proper asymptote due to the small-scale yielding approxi-

mation. In addition, the relation Kp = Kτ/3 plus the previous expression for R∞
c can provide

together an expression for the nucleation time tc . Indeed, expressions for the instability time

tc in the critically stressed and marginally pressurized limits might be also obtainable analyti-

cally, via asymptotic analysis as conducted by Garagash and Germanovich (2012), yet we do

not attempt to pursue this route in this paper.

5.7 Discussion

5.7.1 Frustrated dynamic ruptures and unconditionally stable slip: the two propa-
gation modes of injection-induced aseismic slip

In our model, injection-induced aseismic slip can be the result of either a frustrated dynamic

rupture that did not reach the required size to become unstable, or the propagation of slip that

is unconditionally stable. Whether injection-induced aseismic ruptures occur in one regime or

the other, depends primarily on the ultimate stability condition of Garagash and Germanovich

(2012), that we demonstrated here to be applicable to the circular rupture configuration as

well (equation (5.44)).

Unconditionally stable ruptures

When the initial shear stress τ0 is lower than the in-situ residual fault strength, τ0 < frσ
′
0, faults

tend to produce mostly unconditionally stable ruptures (regime R1 in Figure 5.4), except for

a relatively narrow range of parameters where the nucleation of a dynamic rupture occurs,

followed by arrest and purely quasi-static slip (regime R2 in Figure 5.4). We found that uncon-

ditionally stable ruptures evolve always between two similarity solutions (see Figure 5.9). At

early times (stage I), they behave as being governed by Coulomb’s friction, that is, a constant

friction coefficient equal to the peak value fp . During this initial stage, fault slip is self-similar

in a diffusive manner and is governed by one single dimensionless number: the peak stress-

injection parameter Tp . After, the response of the fault gets more complex in stages II and III

yet ultimately, slip recovers the same type of similarity at very large times (stage IV). In this

ultimate regime, the rupture behaves as if it were governed by a constant friction coefficient

equal to the residual one fr , and depends also on one single dimensionless number: the

residual stress-injection parameter Tr . An interesting characteristic in both limiting regimes

is that the rupture propagates as having zero fracture energy Gc . While at early times Gc = 0 in

an absolute sense as the process zone has not developed yet, at large times the contribution

of the finite fracture energy to the rupture-front energy balance is to leading order negligible
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Figure 5.9: Schematic solution for unconditionally stable ruptures undergoing four distinct
stages in time. Stage (I), Coulomb’s friction similarity solution, fcons = fp . Stage (II), accelera-
tion due to frictional weakening and localization of the process zone. Stage (III), rupture is gov-
erned by an energy balance of the Griffith’s type, G = Gc , transitioning from a large-toughness
to a small-toughness regime. Stage (IV), ultimate constant residual friction similarity solution,
fcons = fr , also denominated ultimate zero-fracture-energy solution. Note that in the case of
aseismic slip as a frustrated dynamic instability, stage I is always present, while stages II and
III might be experienced to different extents depending on how large the nucleation radius is
compared to the process zone size.
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compared to the other terms that drive the propagation of the rupture. Furthermore, the two

similarity solutions are equivalent to the analytical solution for a constant friction coefficient

derived by Sáez et al. (2022), as long as the so-called stress-injection parameter T (see Section

5.3.1) is replaced by Tp at early times and Tr at large times, which are then associated with

constant amplification factors λp and λr , respectively, as shown in Figure 5.9. This is a key

finding of our work as it puts the results of the former constant-friction model of Sáez et al.

(2022) in a more complete picture of the problem of injection-induced aseismic slip.

In between the two similarity solutions, fault slip undergoes two subsequent stages. First,

after departing from the Coulomb’s friction solution, the rupture accelerates due to frictional

weakening (stage II). The details of the friction law matter here as the rupture radius is of the

same order as the process zone size. The exponential weakening law tends to slow down the

propagation of slip and smooth the acceleration phase with regard to the linear weakening case

when considering the same δc in both laws. Fault slip depends in addition to dimensionless

space and time, on three non-dimensional parameters: the pre-stress ratio S , the overpressure

ratio P , and the residual-to-peak friction ratio F . The higher the initial shear stress on the

fault is (higher S ) or the more intense the injection is (higher P ), the faster the rupture

propagates. Note that this dependence of the rupture speed on S and P is embedded in both

the peak stress-injection parameter Tp and residual stress-injection parameter Tr . Therefore,

it is a general feature present in all stages of injection-induced aseismic slip.

In a subsequent stage, once the process zone has adequately localized, the evolution of the

slip front is well approximated by the rupture-front energy balance (stage III). The details

of how the friction coefficient weakens from its peak value towards its residual value no

longer matter in relation to the position of the slip front or the rupture speed. The only two

important quantities here associated with the friction law are: the amount of fracture energy

that is dissipated near the rupture front, and the residual friction coefficient fr . Moreover,

the fracture energy is approximately constant (albeit of different magnitude) in the two end-

member cases of nearly unstable (λ(t ) ≫ 1) and marginally pressurized faults (λ(t ) ≪ 1), with

the amplification factor λ depending on only two dimensionless numbers: a time-dependent

dimensionless toughness K (t) and the residual stress-injection parameter Tr . A constant

fracture energy model as the one introduced in Section 5.3.2 is thus sufficient to capture the

dynamics of the slip front for the two end-members. The dimensionless toughness K (t)

quantifies the relevance of the dissipation of fracture energy in the rupture-front energy

balance, which decreases monotonically with time. The rupture speed thus increases with

time as the diminishing effect of the fracture energy offers less ‘opposition’ for the rupture

to advance. Eventually, K (t) → 0 when t →∞ and the rupture reaches asymptotically the

large-time similarity solution (stage IV), where the only information about the friction law

that matters is fr .

Finally, the residual stress-injection parameter Tr plays a crucial role in stages III and IV. When

faults are near the ultimate stability limit (Tr → 0) thus responding in the so-called nearly

unstable regime (Tr ≪ 1), the slip front always outpaces the overpressure front λ(t ) ≫ 1, even
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though at early times (stage I) the rupture front would likely lag the overpressure front λ(t ) ≪ 1.

Conversely, when faults operate in the so-called marginally pressurized regime (Tr ∼ 10), the

slip front will always move much slower than the overpressure front, λ(t ) ≪ 1, over the entire

lifetime of the rupture: the slip front will never outpace the overpressure front.

Aseismic slip as a frustrated dynamic instability

When the initial shear stress τ0 is greater than the in-situ residual fault strength, τ0 > frσ
′
0,

faults will always host a dynamic event, sometimes even more than one (regime R4 in Figure

5.4) if the injection is sustained for sufficient time. The maximum size that aseismic ruptures

can reach before becoming unstable is as small as the elasto-frictional length scale Rw for

faults that are critically stressed, and as large as infinity for faults that are either marginally

pressurized and about to open, or near the ultimate stability limit (so-called nearly stable

faults). The spatial range for a fault to exhibit aseismic slip as a frustrated dynamic instability is

therefore extremely broad. Moreover, similarly to the case of unconditionally stable ruptures,

the quasi-static nucleation phase is governed at early times by the Coulomb’s friction similarity

solution with fcons = fp (stage I in Figure 5.9). Aseismic ruptures can therefore move much

faster than the diffusion of pore pressure right after the start of fluid injection when faults

are critically stressed according to the peak stress-injection parameter (Tp ≪ 1, λp ≫ 1), or

propagate much slower than that when faults operate in the so-called marginally pressurized

regime (Tp ∼ 10, λp ≪ 1).

After, depending on how large the nucleation radius is with regard to the process zone size,

aseismic ruptures may be able to either partially or fully explore stages II and III on their way

to reach their critical unstable size. In stage II, the rupture behavior is the same as described

in the previous section for unconditionally stable ruptures. Moreover, if the critical nucleation

radius is sufficiently large compared to the process zone size, the rupture could transit stage

III where the propagation of the slip front is well approximated by an energy balance of the

Griffith’s type, similar to stage III of unconditionally stable ruptures.

Finally, it is worth noting that critically stressed faults and marginally pressurized faults

nucleate dynamic ruptures with very little decrease in the friction coefficient, far from reaching

the residual friction value over the entire slipping region at the instability time. Conversely,

nearly stable ruptures undergo dynamic nucleation in a ‘crack-like’ manner, that is, with a

small process zone where the fracture energy is dissipated and the remaining much larger

part of the ‘fracture’ (slipping area) is at the residual friction level. In between these two

limiting behaviors of dynamic rupture nucleation, a continuum of instabilities is spanned in

our model; a result already found by Garagash and Germanovich (2012) and also present in

heterogeneous, mechanically-loaded slip-weakening frictional interfaces (Castellano et al.,

2023).
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5.7.2 Laboratory experiments

Laboratory experiments of injection-induced fault slip on rock samples where a finite rupture

grows along a pre-existing interface (Passelègue et al., 2020; Cebry et al., 2022) have recently

confirmed some insights predicted by theory. For instance, the meter-scale experiments of Ce-

bry et al. (2022) showed that the closer to frictional failure the fault is before the injection starts,

the faster aseismic slip propagates. A somewhat similar observation was made previously by

Passelègue et al. (2020) through a set of centimeter-scale experiments and using a rupture-tip

energy balance argument. This general feature of injection-induced aseismic slip can be

particularly seen in the closed-form expression for the rupture speed of critically stressed

faults responding in the Coulomb’s friction stage: Vr =
[(

fp∆p∗/
(

fpσ
′
0 −τ0

))
(α/2t )

]1/2 (Sáez

et al., 2022). This formula displays, in addition to the previous stress state dependence, some

other general and quite intuitive features of injection-induced aseismic slip: the more intense

the injection is, or the higher the fault hydraulic diffusivity is; the faster the rupture propagates.

The latter dependencies remain to be seen in the laboratory, as well as many other aspects of

injection-induced fault slip. We discuss a few of them in the context of published experiments

in what follows. Notably, our results provide a means for characterizing the conditions under

which distinct regimes and stages of injection-induced aseismic slip are expected to emerge

under well-controlled conditions in the laboratory, where the validation of the relevant physics

incorporated in our model can be potentially realized.

For example, the type of experiments conducted by Passelègue et al. (2020) could provide

important insights into the aseismic slip phase preceding dynamic ruptures. Indeed, the nu-

cleation radius of critically stressed faults, equation (5.59), which is itself the circular analog of

Uenishi and Rice’s nucleation length, has been estimated under somewhat similar laboratory

conditions (confining pressures ∼ 100 MPa) in Rcs
c ∼ 1 m (Uenishi & Rice, 2002). Variations

of this nucleation radius could be reasonably expected due to uncertainties mostly in the

critical slip-weakening scale δc . Moreover, a nucleation length of about 1 m has been recently

measured by Cebry et al. (2022) during meter-scale experiments of fluid injection with fault

normal stresses of about 4 MPa. Since the experiments of Passelègue et al. were carried out

in a similar rock, if ones corrects the nucleation length of Cebry et al. (2022) by the effective

normal stresses that are representative of Passelègue et al.’s experiments, we obtain roughly

Rcs
c ∼ 10 cm. Since the critically stressed nucleation radius (5.59) is the minimum possible

nucleation size of injection-induced dynamic ruptures in our model, and given that Passelègue

et al.’s cylindrical rock samples have a diameter of 4 cm, we expect that their aseismic ruptures

might have likely been operating in the Coulomb’s friction phase (stage I) and perhaps some

excursion in the acceleration phase towards a dynamic instability (stage II), yet never reached

the onset of a macroscopic dynamic rupture in the sample. Moreover, as the initial shear stress

was set to be 90 percent of the ‘in-situ’ static fault strength, it is likely that the initial shear

stress was greater than the residual strength of the fault thus further supporting the ultimately

unstable condition assumed for these experiments.

Another interesting set of fluid injection experiments are the ones reported by Cebry et al.
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(2022). Their 3-meters long, quasi-one-dimensional fault, allowed them to observe not only

the nucleation of injection-induced dynamic ruptures but also some details of the quasi-static

phase preceding such instabilities. Due to the elasticity and fluid flow boundary conditions

in their experimental setup, it is not possible to make direct quantitative comparisons with

our three-dimensional model, nor with two-dimensional plane-strain models (Garagash &

Germanovich, 2012). An unbounded rupture may have certainly propagated before the fault

slip reached the shortest side of the sample, yet most of the measurements were conducted

starting from this moment. In spite of these differences, it is interesting to note at least two

experimental observations that are qualitatively consistent with our model: i) the aseismic

slip front continuously decelerates during fluid injection except for the moment right before

instabilities occur, and ii) the transition from self-arrested to run-away dynamic ruptures

seems to have occurred in relation to the ultimate stability condition (5.44). This type of

experiment is well suited to be analyzed via dynamic numerical modeling to provide the

possibility for direct quantitative comparisons.

Finally, using rock analog materials with reduced shear modulus such as PMMA (Cebry &

McLaskey, 2021; Gori et al., 2021) could provide important insights into injection-induced

aseismic slip by reducing the elasto-frictional length scale Rw in approximately one order

of magnitude. This “widens” the observable spatial range of the problem thus providing

the chance to explore larger-scale processes and regimes that would be otherwise difficult

to observe in the laboratory using rock samples. For instance, stage III, where injection-

induced aseismic slip is governed by an energy balance of the Griffith’s type, or perhaps even

stage IV, where ultimately stable ruptures behave as having nearly zero fracture energy, could

be potentially investigated in this type of experimental setting. The front-localized energy

balance of dynamic ruptures has been extensively studied on both dry (Svetlizky & Fineberg,

2014; Paglialunga et al., 2022) and fluid-lubricated frictional interfaces (Bayart et al., 2016;

Paglialunga et al., 2023). Yet the same kind of energy balance for injection-induced slow slip,

which is determined by the competition of three distinct factors (equation (5.14)), remains

to be investigated experimentally. Indeed, stages III and IV might be the relevant regimes

for subsurface processes such as the reactivation in shear of fractures by fluid injection for

geo-energy applications, and natural earthquake-related phenomena where coupled fluid

flow and aseismic slip processes are thought to play an important role (e.g., seismic swarms,

aftershock sequences and slow earthquakes).

5.7.3 In-situ experiments

Fluid injection experiments in shallow natural faults have recently provided important insights

into the mechanics of injection-induced fault slip (Guglielmi et al., 2015; Cappa et al., 2022).

Yet laboratory experiments under well-controlled conditions are likely better positioned than

in-situ experiments to validate the physics of injection-induced fault slip due to the further un-

certainties naturally present in the field (e.g., heterogeneities of stress, strength, fracture/fault

geometrical complexities, among others), in-situ experiments do have various benefits such
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as, for instance, covering a larger decameter scale and providing more realistic field conditions,

particularly those ones allowing the growth of fully three-dimensional unbounded ruptures

initiated from a localized fluid source, as the one considered in this study. Our results thus

provide the opportunity to make quantitative comparisons in these cases.

Among them, the experiments of Guglielmi et al. (2015) have been particularly impactful

as they were able to measure for the first time not only micro-seismicity and injection-well

fluid pressure and volume rate history (as done previously in large-scale field experiments

(Scotti & Cornet, 1994; Cornet et al., 1997), but also the history of induced fracture slip and

opening at the injection point/interval. This unique dataset has been analyzed via dynamic

numerical modeling by various researchers (Guglielmi et al., 2015; Bhattacharya & Viesca,

2019; Cappa et al., 2019; Larochelle et al., 2021). The multiplicity of proposed models that have

fitted the data suggests indeed that more spatially distributed measurements, as done more

recently (Cappa et al., 2022), could further help to constrain the underlying physical processes

operating behind these experiments. For the purpose of illustrating the application of our

model, hereafter we focus on the modeling work of Bhattacharya and Viesca (2019) for the

unique reason that they assumed a slip-weakening fault model which makes the application

of our results more straightforward.

Let us first estimate the three dimensionless parameters of our model: S , P , and F (5.37).

Considering the best-fit model parameters of Bhattacharya and Viesca (2019): µ = 11.84 GPa,

δc = 0.37 mm, fp = 0.6, fr = 0.42, σ′
0=5.08 MPa, and τ0 = 2.41 MPa; we can directly compute

S ≈ 0.79 and F = 0.7. Note that the estimated initial shear stress of 2.41 MPa is greater than

the in-situ residual fault strength frσ
′
0 ≈ 2.1 MPa (or alternatively S >F (5.44)), so that the

injection-induced rupture is inferred to be ultimately unstable. Because no macroscopic

dynamic rupture occurred during the experiment, the propagation mode of aseismic slip must

be the one of a frustrated dynamic instability. Let us now estimate the remaining dimensionless

parameter P . To do so, we need to estimate first the injection intensity ∆p∗, equation (5.1).

We approximate the injection history via a constant-volume-rate injection characterized by

the same total volume of fluid injected during the experiment. This gives roughly Q ∼ 40

l/min. The fault intrinsic permeability k is widely recognized to have increased during this

test (Guglielmi et al., 2015; Bhattacharya & Viesca, 2019; Cappa et al., 2019). It was estimated

by Bhattacharya and Viesca (2019) between kmin = 0.8×10−12 m2 and kmax = 1.3×10−12 m2.

Consider, for instance, the average k̃ = 1.05×10−12 m2. By assuming a fluid dynamic viscosity of

η∼ 10−3 Pa·s and fault-zone width w = 0.2 m (Bhattacharya & Viesca, 2019), the characteristic

wellbore overpressure, equation (5.2), is ∆pc ≈ 3.17 MPa, which is very close to the actual,

nearly constant wellbore overpressure measured at the latest part of the injection, ∼ 3 MPa

(see figure 2a in Bhattacharya and Viesca, 2019). Following this approximation for the fluid

injection, we obtain an injection intensity ∆p∗ ≈ 0.25 MPa, which in turn yields P ≈ 0.05. By

considering either the minimum or maximum fault permeability, we would obtain P ≈ 0.065

and P ≈ 0.04, respectively; the higher the permeability, the lower the injection intensity.

To understand under what regime aseismic slip may have developed during the initial Coulomb’s

147



Chapter 5 Slow slip and earthquake nucleation on a slip-weakening circular fault

friction stage (either critically stressed or marginally pressurized regime), let us calculate the

peak stress-injection parameter Tp . Given the known values for S and P , we obtain via

(5.42) Tp ≈ 4.22, which is well into the marginally pressurized regime, with an associated

amplification factor λp ≈ 0.12 (equation (5.20)). By considering kmin and kmax instead, we

would obtain just a modest change in Tp approximately equal to 3.20 and 5.22, respectively.

Furthermore, we can estimate the critical nucleation radius in the marginally pressurized

regime via equation (5.60). For that, we must calculate first the elasto-frictional lengthscale

Rw , equation (5.36). Given the best-fit model parameters, Rw ≈ 4.79 m, and the nucleation

radius is then Rmp
c ≈ 6.06 m. Considering the size of the aseismic rupture estimated by Bhat-

tacharya and Viesca at the final time analyzed in their work, t f = 1378 s (see inset of figure 3a in

Bhattacharya and Viesca, 2019), one could expect that the aseismic rupture was quite close to

become unstable. Note that in Bhattacharya and Viesca (2019), their original circular rupture

solutions were modified to appear elliptical considering the perturbative approach for circular

shear cracks of Gao (1988), who gives an aspect ratio a/b = 1/(1−ν) (to first order in ν), where a

and b are the semi-major and semi-minor axes of the elliptical rupture front. The calculations

of Gao (1988) involve a planar circular crack whose shape is perturbed under uniform shear

load and constant energy release rate along the front. Perhaps, a better correction could be

done by considering the asymptotic behavior in the marginally pressurized regime obtained

by Sáez et al. (2022), a/b = (3−ν))/(3−2ν), at least in the Coulomb’s friction stage where the

previous equation is valid. This would lead to ruptures that are less elongated than the ones

considered by Bhattacharya and Viesca (2019). For example, considering a Poisson’s ratio

ν = 0.25, the marginally-pressurized aspect ratio is a/b = 1.1, whereas Gao’s aspect ratio is

a/b ≈ 1.33. The latter was indeed found to be the asymptotic behavior in the critically stressed

regime (Tp ≪ 1) of the Coulomb’s friction stage (Sáez et al., 2022).

Let us assume as a first estimate, that the rupture propagates with Coulomb’s friction until

the final time t f = 1378 s. In this scenario, the rupture radius would be at this time sim-

ply R f = λp
√

4αt f , and the corresponding accumulated slip at the injection point, δ f =

(8/π)( fp∆p∗/µ)R f (equation 27 in Sáez et al., 2022). To perform the previous calculations, we

need to estimate the fault hydraulic diffusivity α = k/ηS. Considering the storage coefficient S

estimated in 2.2×10−8 Pa−1 (Bhattacharya & Viesca, 2019), we obtain a hydraulic diffusivity

α≈ 0.048 m2/s. The final rupture radius and accrued slip are then R f ≈ 2.01 m and δ f ≈ 0.07

mm, respectively. Variations in fault permeability considering kmin and kmax would result in

R f ≈ 2.91 m and 1.35 m, and δ f ≈ 0.12 mm and 0.04 mm, respectively. In any case, the previous

quantities do not account for the total slip measured at the injection point which is an order

of magnitude higher (∼ 1 mm) and estimated rupture radius ∼ 5 m. Moreover, there is a clear

acceleration of slip in the final part of the injection (see figure 3a in Bhattacharya and Viesca,

2019) which in our model could only come from frictional weakening (stage II). We therefore

calculate the evolution of the rupture front and slip at the injection point numerically.

Our numerical solution shows that the nucleation of a dynamic rupture occurs at Rc ≈ 6.08 m,

which is in excellent agreement with the theoretical nucleation radius for marginally pressur-

ized faults calculated previously. The calculated accrued slip at the center of the rupture at the
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instability time is 0.35 mm, which is about a third part of the actual measurement. On the other

hand, the nucleation time is tc = 5885 s, which is several times longer than t f . Indeed, at the

time t f the rupture radius is just 2.17 m in our numerical solution, not much larger than the

Coulomb’s friction approximation (2.01 m). The latter indicates that our model is indeed oper-

ating in stage I at t f . The differences between our calculations and the ones of Bhattacharya

and Viesca (2019) are due to time-history variations in permeability not accounted for in

our model, and the approximation of the fluid injection via an equivalent constant volume

rate. Nevertheless, the theoretical nucleation radius is expected to hold as this quantity is

relatively independent of the injection scenario. Finally, we note that a rupture propagating

in the marginally pressurized regime is expected to be confined within the pressurized area

even at the instability time. In this regard, the main difference with Bhattacharya and Viesca

(2019) who suggested that the slip front outpaced the migration of fluids is merely a matter of

definitions. In our case, the overpressure front L(t ) =
p

4αt represents the radial distance from

the injection point at which the overpressure is approximately 2 percent of the fluid-source

overpressure, the latter being approximately 3 MPa at the final time. In Bhattacharya and

Viesca (2019), various overpressure isobars are drawn. The one with the lowest overpressure is

at 0.5 MPa, which is around 17 percent of the fluid-source overpressure.

5.7.4 A note on rate-and-state fault models: similarities and differences

Laboratory-derived friction laws (Dieterich, 1979; Ruina, 1983) are widely used in the earth-

quake modeling community to reproduce the entire spectrum of slip velocities on natural

faults (Scholz, 2019). These empirical friction laws capture the dependence of friction on slip

rate and the history of sliding (via a state variable) as observed during velocity-step laboratory

experiments on bare rock surfaces and simulated fault gouge (Marone, 1998). In its simplest

form, the rate-and-state friction coefficient is expressed as

f (v,θ) = f0 +aln

(
v

v0

)
+bln

(
v0θ

dc

)
, (5.65)

where f0 is the friction coefficient at a reference slip rate v0 and state variable θ0 = dc /v0

with units of time, dc is a characteristic slip ‘distance’ for the evolution of θ, which is usually

thought to be an order of magnitude smaller than δc of the slip weakening model (Cocco &

Bizzarri, 2002; Uenishi & Rice, 2002), and a and b are the rate-and-state friction parameters,

both positive and of order 10−2. An additional dynamical equation describing the evolution

of the state variable θ is required. For the purpose of this discussion, we consider hereafter a

widely used state-evolution equation known as aging law: θ̇ = 1− vθ/dc .

The similarities between frictional ruptures obeying slip-weakening and rate-and-state friction

have been long recognized (see Cocco and Bizzarri, 2002; Uenishi and Rice, 2002; Ampuero

and Rubin, 2008; Garagash and Germanovich, 2012, for example). Furthermore, in the context

of injection-induced fault slip, some similarities were already recognized by Garagash and

Germanovich (2012), particularly in relation to the nucleation of dynamic slip. Specifically,
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they noted that the nucleation length of critically stressed faults for linear slip-weakening

friction or, what is the same, the one of Uenishi and Rice (2002), is identical to the nucleation

length of rate-and-state faults for a/b ≪ 1 (Rubin & Ampuero, 2005). On the other hand,

the large nucleation length near the ultimate stability limit which is equal (except by a pre-

factor of order one) to the one of Andrews (1976), is identical to the nucleation length of

rate-and-state faults when approaching the velocity-neutral limit a/b → 1 (Rubin & Ampuero,

2005). The equivalence between the previous nucleation lengths is obtained by recasting the

slip-weakening friction law in terms of the rate-and-state parameters, this is, replacing the

peak to residual strength drop ( fp − fr )σ′
0 by bσ′

0, and the stress drop τ0 − frσ
′
0 by (b −a)σ′

0

(Rubin & Ampuero, 2005; Ampuero & Rubin, 2008).

In addition to the previous similarities, we discuss some additional ones now. For instance, the

ultimate stability condition (5.44) has been observed to determine in rate-and-state models

whether velocity-weakening faults (a/b < 1) produce either self-arrested or run-away ruptures

(Norbeck & Horne, 2018). Also, the same stability condition has been observed to determine

whether velocity-strengthening faults (a/b > 1) host either purely quasi-static slip or a dynamic

instability (Dublanchet, 2019). Both results are essentially the same as predicted by slip-

weakening fault models. Indeed, the ultimate stability condition is somehow expected to

occur in rate-and-state models (both velocity weakening and velocity strengthening) in the

vicinity of the velocity-neutral limit (a/b → 1), as the condition (5.44) that the residual fault

strength drops at nearly the same level of the shear stress present further ahead of the rupture

is reminiscent of the case a ≈ b when analyzing the steady-state (θ̇ = 0) response of equation

(5.65) to an incremental velocity step approximating crudely the passage of a rupture front.

Another similarity between slip-weakening and rate-and-state fault models relates to our

constant-residual-friction similarity solution or ultimate zero-fracture-energy regime. As

already noted by Sáez et al. (2022) for the particular case of injection at constant volumetric

rate in a one-dimensional fault (see section 5.2 in Sáez et al., 2022), the ultimate regime of

rate-and-state faults (Dublanchet, 2019) coincides with the solution for a constant friction

coefficient (Sáez et al., 2022). It is clear now albeit in a three-dimensional model, that this

friction coefficient corresponds to the residual value in a slip-weakening model and that this

regime is characterized by negligible fracture energy. The latter is additionally consistent

with the work of Garagash (2021) who found that slip transients driven by a point-force-like

injection approach a zero-toughness condition as an ultimate regime in a one-dimensional

fault. Note that the limit of a point-force-like injection is reached in our three-dimensional

model in the nearly unstable limit, but not in the marginally pressurized one. Moreover, the

features that give rise to this ultimate asymptotic behavior seem rather general and we think

are likely expected to hold under other types of fluid injection. As already shown in Sáez et al.

(2022), the spatio-temporal patterns of injection-induced aseismic slip are strongly influenced

by the type of fluid injection (or injection rate history). Quantifying this effect is important

and we will address it soon in a future study.

We would also like to highlight some differences between slip-weakening and rate-and-state
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fault models. Indeed, one of the main physical ingredients that rate-and-state friction would

incorporate in our model is frictional healing. The recovery of the friction coefficient with the

logarithm of time is a well-established phenomenon (Dieterich, 1979; Ruina, 1983; Marone,

1998) that is essential in physics-based models that attempt to reproduce earthquake cycles

(Tse & Rice, 1986; Lapusta et al., 2000). Frictional healing would provide, for instance, the

possibility of nucleating multiple dynamic events on the same fault segment. Yet we highlight

that this is not a unique characteristic of rate-and-state friction in the sense that two events can

also nucleate on the same slip-weakening fault segment (regime R4 in Figure 5.4). Another case

in which the rate-and-state framework could be particularly useful is to model the reactivation

of faults that are thought to be steadily creeping. In fact, from a Coulomb’s friction perspective,

rate-and-state faults are always at failure: the shear stress is at any time and over the entire

fault extent equal to the fault strength. The initial stress state is a result of the history of sliding.

At an initial time t = 0, it will be defined by the initial distribution of slip rate vi and initial state

variable θi .

To illustrate this latter point and get some further insights into a rate-and-state fault model,

consider our same hydro-mechanical model but with a rate-and-state friction coefficient.

Due to the ‘always-failing’ condition, R(t) → ∞ in equation (5.6) and the inequality (5.3)

becomes an equality. One possible way of considering the initial stress state is to assume

that the initial slip velocity vi is uniform and it operates at the creep rate that one could

further consider as the reference slip rate v0. The initial stress state is then encapsulated in

the initial state variable θi . Assuming the latter as uniform as well, one can readily show by

dimensional analysis that the slip rate (the primary unknown in this model together with the

state variable) depends in addition to dimensionless space r bσ′
0/dcµ and time t v0/dc , on

the following five non-dimensional parameters: a/b, ∆p∗/σ′
0, α/αc , f0/b and θi /θ0, where

αc = µ2dc v0/b2σ′2
0 is a characteristic diffusivity. We note that this rate-and-state version of

our model has an increased complexity with two more dimensionless parameters than the

slip-weakening model. ∆p∗/σ′
0 is indeed our same overpressure ratio P . a/b quantifies

the degree of weakening (a/b < 1) or strengthening (a/b > 1) and, as discussed previously, it

would relate to the the ultimate stability behavior of the fault. f0/b quantifies the constant

part of the friction coefficient with regard to b which in turn relates to the strength drop (i.e.,

the decay from the peak to the residual friction). Finally, θi /θ0 is where the initial shear stress

or pre-stress ratio S of the slip-weakening model would equivalently emerge. In fact, by

multiplying equation (5.65) by σ′
0 and then expressing it at the initial conditions vi and θi , the

resulting dimensionless form of such equation reads as ln(θi /θ0) =
(

f0/b
)(
τ0/ f0σ

′
0 −1

)
. The

dimensionless parameter θi /θ0 can be then alternatively chosen as τ0/ f0σ
′
0, which is similar

to the pre-stress ratio of the slip-weakening model.

5.8 Concluding remarks

We have investigated the propagation of fluid-driven slow slip and earthquake nucleation on a

slip-weakening circular fault subjected to fluid injection at a constant volume rate. Despite
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some simplifying assumptions in our model, our investigation has revealed a very broad range

of aseismic slip behaviors, from frustrated dynamic instabilities to unconditionally stable

slip, from ruptures that move much faster than the diffusion of pore pressure to ruptures that

move much slower than that. The circular fault geometry is likely the simplest one enabling

quantitative comparisons with field observations thanks to its three-dimensional nature. It is

thus also useful for preliminary engineering design of hydraulic stimulations in geo-energy

applications. In addition to the effect of a non-zero Poisson’s ratio that will elongate the shape

of the rupture along the direction of principal shear, changes in lithologies as commonly

encountered in the upper Earth’s crust will alter the dynamics of an otherwise unbounded

rupture as the one we have examined here. In particular, the effect of layering might promote

containment of the reactivated fault surface within certain lithologies, similar to what is

observed for hydraulic fractures (Bunger & Lecampion, 2017). This effect may be important in

some cases and would require further quantification.

5.9 Supplementary material 1: Eigenvalue problem at the instability

time for unlimited linear weakening of friction

5.9.1 Generalized eigenvalue problem

Following Uenishi and Rice (2002) and Garagash and Germanovich (2012), we extend their

eigenvalue-based stability analysis, valid for unlimited linear weakening of friction under

either in-plane shear (II) or anti-plane shear (III) mode of sliding, to the case of a circular

rupture propagating under mixed-mode (II+III) conditions.

Equilibrium dictates that within the slipping region r ≤ R(t ), the fault strength τs (5.3) must

be locally equal to the fault shear stress τ (5.6). Equating the two previous equations and then

differentiating with respect to time, leads to

v (r, t )
d f

dδ
σ′(r, t )+ f (δ)

∂σ′(r, t )

∂t
=
∂τ0(r, t )

∂t
− µ

2π

∫ R(t )

0
F (r,ξ)

∂v(ξ, t )

∂ξ
dξ, (5.66)

where v = ∂δ/∂t is the fault slip rate. When differentiating the integral term previously, we

have considered Leibniz’s integral rule and applied the condition ∂δ (R(t ), t )/∂r = 0 which

guarantees non-singular shear stresses along the rupture front.

In our problem, the effective normal stress σ′(r, t) = σ′
0 −∆p(r, t) decreases from the initial

uniform value σ′
0 due to overpressure ∆p(r, t) associated with fluid injection, whereas the

shear stress that would be present on the fault if no slip occurs is a uniform and constant

value τ0. Nevertheless, for the sake of generality, we keep utilizing the generic terms σ′(r, t)

and τ0(r, t ). Indeed, σ′(r, t ) generally contains not only the initial effective normal stress and

changes in pore pressure but also possible changes in total normal stress from the far field,

as σ′ = σ− p. Similarly, τ0(r, t) could be a summation of both the initial shear stress and

far-field shear loading. Far-field loads may be due to, for instance, tectonic forces and seasonal
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variations of stress, among many others. Note that σ′(r, t ) and τ0(r, t ) are both axisymmetric

in magnitude and at least one of them must be locally peaked around the origin in order to

initiate slip at r = 0 at a certain time t = t0. Equation (5.66) is then valid at any time t > t0 and,

as mentioned in the main text, it assumes a Poisson’s ratio ν = 0.

Let us scale equation (5.66) by introducing the following non-dimensional quantities: r̄ = r /R ,

ξ̄ = ξ/R, and v̄ = v/vrms, where

vrms(t ) =

√
1

R(t )

∫ R(t )

0
v2(r, t )dr (5.67)

is the root mean square of the slip rate distribution, such that
∫ 1

0 v̄2(r̄ )dr̄ = 1. Note that

for the linear-weakening friction law (5.4), d f /dδ = −( fp − fr )/δc . The latter has the strong

assumption that the residual friction coefficient fr has not been reached yet at any point

within the rupture. Otherwise, wherever f = fr , d f /dδ = 0. Moreover, for the exponential-

weakening friction law (5.5), the same expression for d f /dδ is approximately valid in the range

of small slip δ≪ δc , to first order in δ/δc .

Considering the previous quantities plus the relation (5.36) µδc = ( fp − fr )σ′
0Rw , we nondi-

mensionalize equation (5.66) to obtain

− R

Rw
v̄(r̄ )

σ′(r̄ R)

σ′
0

+ R

µvrms
f (δ)

∂σ′(r̄ R)

∂t
=

R

µvrms

∂τ0(r̄ R)

∂t
− 1

2π

∫ 1

0
F

(
r̄ , ξ̄

) ∂v̄(ξ̄)

∂ξ̄
dξ̄. (5.68)

In the previous equation, we dropped the explicit dependence on time t of the various variables

for simplicity in the notation.

Following Uenishi and Rice (2002), at the instability time tc , the slip rate diverges all over the

fault plane, such that the root mean square of the slip rate distribution vrms(tc ) →∞. The only

non-vanishing terms of (5.68) lead to the following generalized eigenvalue problem:

R

Rw
v̄(r̄ )

σ′(r̄ R)

σ′
0

=
1

2π

∫ 1

0
F

(
r̄ , ξ̄

) ∂v̄(ξ̄)

∂ξ̄
dξ̄, (5.69)

which corresponds to the mixed-mode, circular rupture version of equation (14) in Garagash

and Germanovich (2012).

Given a normalized distribution of effective normal stress at the instability time, σ′(r, tc )/σ′
0,

equation (5.69) can be solved to obtain the corresponding generalized eigenvalues and eigen-

functions. Moreover, what is more important is to calculate the smallest eigenvalue that would

be related to the instabilities we observe in the full numerical solutions. In our problem,

σ′(r, tc ) is set by the distribution of overpressure at the time of instability, which does not allow

us to obtain a purely analytical insight as the instability time is generally unknown and, more

importantly, information about one of the problem parameters, the pre-stress ratio S , is lost

when deriving the eigenproblem (5.69). The only scenario in which equation (5.69) is inde-
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pendent of tc is when σ′(r, tc ) is uniform, which in turn leads to a regular eigenvalue problem.

Furthermore, in the particular case ofσ′(r, t ) =σ′
0, we obtain the circular rupture version of the

eigenvalue problem of Uenishi and Rice (2002), which will give the corresponding universal

nucleation radius of their problem.

5.9.2 Eigenvalue problem in the critically stressed and marginally pressurized
limits

Let us come back to our particular problem where σ′(r, t ) =σ′
0 −∆p(r, t ) and assume a rather

general but self-similar injection scenario such that the overpressure can be written in the

similarity form: ∆p(r, t ) =∆pw (t )Π(ξ), where ∆pw (t ) is the overpressure at the fluid source,

and Π(ξ) is the spatial distribution of overpressure with the properties: Π(0) = 1 and Π(∞) → 0.

Note that such a self-similar injection scenario is possible only if one assumes a line source

of fluids such that no length scale associated with the fluid source is introduced into the

problem. For a discussion about the line-source approximation, see Section 5.10. Introducing

the previous relations for the effective normal stress into (5.69), the generalized eigenvalue

problem becomes

R

Rw
v̄(r̄ )

(
1−∆pw

σ′
0

Π (λr̄ )

)
=

1

2π

∫ 1

0
F

(
r̄ , ξ̄

) ∂v̄(ξ̄)

∂ξ̄
dξ̄, (5.70)

where λ(tc ) = R(tc )/
p

4αtc is the so-called amplification factor at the instability time. We recall

that the dependence of the various variables in the previous equation on tc is omitted for

simplicity.

Consider now the critically stressed limit: τ0 → fpσ
′
0, where the rupture front largely outpaces

the overpressure front at the time of instability, such that λ(tc ) ≫ 1. In view of the properties of

Π(ξ), the term (∆pw /σ′
0)Π(λr̄ ) ≪ 1 so that, if neglected, equation (5.70) further simplifies to

R

Rw
v̄(r̄ ) =

1

2π

∫ 1

0
F

(
r̄ , ξ̄

) ∂v̄(ξ̄)

∂ξ̄
dξ̄. (5.71)

The previous equation is a regular eigenvalue problem. It corresponds indeed to the circular

rupture version of the eigenvalue problem of Uenishi and Rice (2002). Derivation of equation

(5.71) can be alternatively done by following the reasoning of Garagash and Germanovich

(2012) that in the critically stressed limit, the effective normal stress over the slipping region

is largely unchanged so that σ′(r, tc ) ≈σ′
0, except for a very small region of approximate sizep

4αtc near the rupture center that at spatial scales in the order of the rupture size can be

neglected. Replacing σ′(r, tc ) ≈σ′
0 into (5.69) leads equivalently to (5.71).

Let us now examine the marginally pressurized limit: fp∆pw ≈ fpσ
′
0 −τ0, where the rupture

front significantly lags the overpressure front at the instability time, so that λ(tc ) ≪ 1. We

refer to Section 5.10 for a discussion about the marginally pressurized limit and its relation

to the line-source approximation. Particularly, we note that the property Π(0) = 1 cannot be
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rigorously defined but, still, it can be established in an order of magnitude sense. Furthermore,

for injection at a constant volumetric rate, the prefactor is quite close to one for all practical

purposes (see Figure 5.11b). It is therefore convenient for practical applications to define the

marginally pressurized limit in an approximate sense. Hence, we approximate the fluid over-

pressure within the rupture as∆pwΠ(λr̄ ) ≈σ′
0−τ0/ fp . After substituting the previous relation

into (5.70), we obtain the following regular eigenvalue problem for marginally pressurized

cases,

R

Rw

τ0

fpσ
′
0

v̄(r̄ ) =
1

2π

∫ 1

0
F

(
r̄ , ξ̄

) ∂v̄(ξ̄)

∂ξ̄
dξ̄. (5.72)

It is important to mention that the critically stressed and marginally pressurized limits are

both characterized by small slip at the instability time: δ(r = 0, tc ) ≪ δc . This is observed in

our numerical solutions and was also established by Garagash and Germanovich (2012) in the

two-dimensional problem. The latter is very important since it implies that the approximation

of the exponential-weakening friction law by a linear relation is valid, as well as the assumption

of unlimited linear-weakening of friction (never reaching the residual strength of the fault).

Finally, as a last comment, we have established the eigenvalue problems in both limits for a

general (self-similar) injection scenario, not restricted to the constant-volumetric rate case

that we solve in the main text. However, in the marginally pressurized limit, we have implicitly

assumed that the overpressure at the fluid source at the instability time is approximately equal

to the overpressure at the time of activation of slip. Such approximation is reasonable in the

case of the constant-volumetric rate as the increase of overpressure at the fluid source is slowly

logarithmic (see Figure 5.11b) and assumed to be approximately constant, equal to ∆pc , for

practical applications. This approximation has to be carefully considered when dealing with

other injection scenarios (see, for instance, Garagash and Germanovich, 2012; Ciardo and

Lecampion, 2019; Ciardo and Rinaldi, 2021).

5.9.3 Numerical solution of the regular eigenvalue problem

In the critically stressed and marginally pressurized limits, the eigen equations (5.71) and

(5.72) can be recast as:

1

2π

∫ 1

0
F

(
r̄ , ξ̄

) ∂v̄(ξ̄)

∂ξ̄
dξ̄ =βv̄(r̄ ), (5.73)

with the eigenvalue

β =
R

Rw
·
1 for critically stressed faults Tp ≪ 1

τ0/fpσ
′
0 for marginally pressurized faults Tp ∼ 10.

(5.74)

We calculate the eigenvalues βk and eigenfunctions v̄k of (5.73), with k = 1,2, ...,∞, by dis-

cretizing the linear integral operator on the left-hand side via a collocation boundary element

155



Chapter 5 Slow slip and earthquake nucleation on a slip-weakening circular fault

k
Number of boundary elements N

100 1000 10000

1 0.998912 1.002648 1.003018

2 2.551356 2.561554 2.562539

3 4.111055 4.128215 4.129803

4 5.671338 5.696629 5.698843

5 7.230949 7.265725 7.268573

Table 5.1: Eigenvalues βk as a function of the number of boundary elements N .

method employing ring ‘dislocations’ with piece-wise constant slip rate. The details of such

implementation can be found in the supplementary material of Sáez and Lecampion (2023b).

For the numerical calculations, it is convenient to express the discretized form of the eigen

equation (5.73) in matrix-vector form as

Ev̄ k =βk v̄ k , (5.75)

where v̄ k ∈RN are the discretized eigenfunctions with k = 1,2, ..., N , where N is the number of

ring-dislocation elements, and E ∈RN×N is a non-dimensional matrix that is equivalent to the

collocation boundary element matrix of a circular shear crack of unit radius and unit shear

modulus (see Sáez and Lecampion, 2023b). By collocation boundary element matrix, we mean

that the product between E and a given vector representing a discretized slip distribution

δ, would give as a result the corresponding discretized shear stress distribution τ that is in

quasi-static equilibrium with δ, in an infinite and otherwise unstressed solid.

We solve the discretized eigen equation (5.75) with the standard Wolfram Mathematica func-

tions Eigenvalues and Eigenvectors which can be instructed to search only for the smallest

eigenvalues and their corresponding eigenvectors. We do not intend here to conduct an

extensive analysis of the eigenvalues and eigenfunctions as our unique goal in this work is to

determine the smallest eigenvalue that we expect to give the nucleation radii for the critically

stressed and marginally pressurized regimes. Nevertheless, we do report the first five (smaller)

eigenvalues and their eigenvectors in Table 5.1 and Figure 5.10, respectively. The eigenfunc-

tions are normalized such that
∫ 1

0 v̄ 2
k (r̄ )dr̄ = 1, meaning that the normalized eigenvectors from

(5.75) must be divided by
p

1/N . It is interesting to note that the smallest eigenvalue β1 is for

all practical purposes equal to 1. Also, we note that the eigenfunctions are not orthogonal as

the matrix E is non-symmetric.
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Figure 5.10: Normalized eigenfunctions v̄ k for N = 10000.

5.9.4 Universal nucleation radius of Uenishi and Rice for tensile and shear circular
rupture instabilities

The eigen equation (5.71) for the critically stressed limit corresponds to the penny-shaped

version of the eigen equation of Uenishi and Rice (2002). The nucleation radius (5.59) in

the main text, is, therefore, the nucleation radius of a dynamic instability in the conditions

analyzed by Uenishi and Rice (2002). In our circular configuration, the tectonic shear loading

that drives the quasi-static phase of the rupture must be considered to be unidirectional,

locally peaked around r = 0, and axisymmetric in magnitude. Moreover, this result is not only

valid for a mixed-mode (II+III) shear rupture (with ν = 0), but also for a cohesive tensile (mode

I) crack. In this latter case, the nucleation radius is valid for any value of ν as long as the shear

modulus µ is replaced by E ′/2, where E ′ = E/(1−ν2) is the plane-strain Young’s modulus. Note

that similarly to the shear rupture case, here the far-field tensile load driving the quasi-static

growth of the mode-I rupture must be also locally peaked at r = 0 (in order to initiate fracture

yielding at the origin) and axisymmetric in magnitude.
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5.10 Supplementary material 2: A note on the line-source approx-

imation of the fluid injection and the marginally pressurized

limit

In our model, we idealize the fluid injection as a line source. Such approximation is of course

valid for times t ≫ r 2
s /α, where rs is the characteristic size of the actual fluid source. This

is graphically shown in Figure 5.11a, where the line-source approximation is compared to

the solution for a finite circular source of radius rs . The latter is calculated from the known

solution in the Laplace domain (section 13.5, equation 16, Carslaw and Jaeger, 1959) that we

then invert numerically using the Stehfest’s method (Stehfest, 1970). Figure 5.11a shows clearly

how at large times the line-source and finite-source solutions become asymptotically equal

at distances r ≥ rs . In particular, the overpressure at the fluid source can be approximated at

large times by simply evaluating ∆p(r, t ) (equation (5.1)) at r = rs . By doing so, the argument

of the exponential integral function is very small, r 2
s /4αt ≪ 1, and the overpressure at the fluid

source can be asymptotically approximated as

∆p(r = rs , t ) ≈ ∆pc

4π

(
−γ− ln

(
r 2

s

4αt

))
, (5.76)

where γ = 0.577216... is the Euler-Mascheroni’s constant.

Equation (5.76) indicates that the overpressure at the fluid source increases logarithmically

with time. This is further displayed in Figure 5.11b, where the temporal evolution of ∆p(rs , t )

is plotted for both the line-source and finite-source solutions. From this figure, we observe that

the line-source approximation is already quite accurate for times αt/r 2
s ⪆ 10. Furthermore,

Figure 5.11b shows that the characteristic overpressure ∆pc (equation (5.2)) is in the order

of magnitude of the overpressure at the fluid source for a wide range of practically relevant

times. Consider, for instance, the case of geo-energy applications where fluid injections are

conducted through a wellbore of radius rs ∼ 10 cm. By assuming plausible values of hydraulic

diffusivity in the range 10−5 to 1 m2/s, the characteristic time r 2
s /α takes values between

1000 down to 0.01 seconds which are much smaller than typical fluid injection duration in

geo-energy applications. The large time limit is therefore commonly satisfied.

Note that we had already introduced ∆pc in a previous work (Sáez & Lecampion, 2023b) with

the purpose of defining the marginally pressurized limit in a form that is more convenient

for practical applications than in Sáez et al. (2022). We recall that the marginally pressurized

limit is defined by the condition that the overpressure at the fluid source ∆pw is just sufficient

to activate fault slip, fp∆pw ≈ fpσ
′
0 −τ0. As we have seen, we can approximate ∆pw quite

well through a line source, yet its magnitude is not constant but rather increases with time.

This increase is nevertheless logarithmically slow, so one could think in approximating ∆pw

as constant and equal to the characteristic overpressure ∆pc . Indeed, the pre-factor in the

order-of-magnitude relation ∆pw ∼∆pc is quite close to unity over a wide range of times

(see Figure 5.11b). We therefore enforce ∆pw ≈∆pc with the aim of defining the marginally
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Figure 5.11: Finite source (solid black) versus line-source approximation (dashed red). (a) Spa-
tial profile of normalized overpressure. (b) Normalized temporal evolution of the overpressure
at the fluid source.

pressurized limit in the more practically convenient manner: fp∆pc ≈ fpσ
′
0 −τ0. In this way,

we essentially avoid introducing the length scale of the fluid source rs into the problem that,

we think, would unnecessary complexify the model and its practical applications. This subtle

‘assumption’ is all over the main text. Moreover, because the so-called intensity of the injection

is ∆p∗ =∆pc /4π, the factor 4π is usually approximated by 10.

5.11 Supplementary material 3: Some remarks on the numerical

solution

The numerical solutions are obtained through the axisymmetric numerical solver described in

Chapter 2, with the adaptive time-stepping scheme described in the Supplementary Material

of Chapter 4. The parameter β that controls the number of elements that the front advances

during one time step is fixed for most simulations as 2.5, which results in a front advancement

of 2 to 3 elements per time step. To resolve properly the cohesive zone, we consider no less

than 100 elements covering the elasto-frictional length scale Rw .
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6 Spatiotemporal signatures of seismic
swarms driven by fluid injections and
induced aseismic slip

Seismic swarms are often attributed to be driven by either the diffusion of pore pressure

or the propagation of aseismic slip. In this chapter, we present a theoretical framework

in which these two scenarios emerge as end members of a more general model in which

earthquake swarms are driven by a combination of both mechanisms. We consider well-

documented cases of anthropogenic seismic swarms which serve as a natural laboratory to test

the theory, as the fluid sources underlying the seismic swarms are relatively well-constrained.

We find that a likely general feature of the seismicity clouds is to be driven by pore pressure

diffusion at early times of the injection and by stress transfer due to aseismic slip later on.

The conditions controlling the transition between both regimes are theoretically established.

While in the pore-pressure-driven regime, a square-root-of-time pattern of seismic swarm

migration is expected, in the aseismic-slip-driven regime the predicted patterns are strongly

connected to the injection flow rate history of the fluid source. Specifically, under well-

defined conditions, the predicted pattern follows the square root of the current total volume of

injected fluid. This theoretical prediction is found to be in good agreement with available field

observations. Moreover, in the aseismic-slip-driven regime, the migration of the seismicity

front is very sensitive to and contains important information on in-situ conditions such as

the background stress state. Our model can notably explain seismic swarms with square-root-

of-time migration patterns and characterized by unrealistically high hydraulic diffusivities

as being driven by aseismic-slip stress transfer, meaning that the fluid source operates at an

approximately constant volume rate. We also show that the back-front of seismicity frequently

associated with the termination of fluid injections is a signature that is theoretically expected

under the presence of aseismic slip as well.

This chapter is a modified version of the following scientific article:

Sáez, A. & Lecampion, B. Spatio-temporal signatures of seismic swarms driven by fluid injec-

tions and induced aseismic slip. In preparation.
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6.1 Introduction

Earthquake swarms are seismic sequences that are strongly clustered in space and time and

do not follow typical mainshock-aftershock behavior well-explained by the empirical Omori’s

law (Utsu, 1961). Seismic swarms are observed in a broad range of geological settings such as

volcanic and geothermal regions (e.g., Wicks et al., 2011; Yukutake et al., 2011), tectonic plate

interfaces (e.g., Holtkamp and Brudzinski, 2011; Nishikawa and Ide, 2017), stable continental

regions (e.g., Sharma et al., 2020), and geological reservoirs subjected to borehole fluid injec-

tions (e.g., Healy et al., 1968; Cornet et al., 1997; Wei et al., 2015). The spatio-temporal patterns

of earthquake swarms are commonly attributed to the signature of an underlying physical

mechanism. The most common physical processes in seismic swarms are the diffusion of

pore pressure and the propagation of aseismic slip. Pore pressure diffusion is often associated

with a squared-root-of-time pattern and swarm migration velocities that are relatively slow

in the sense that they feature realistic values of hydraulic diffusivity (e.g., Parotidis et al.,

2005; Chen et al., 2012; Z. E. Ross and Cochran, 2021). Besides, the so-called back-front of

seismicity is sometimes considered as a signature of pore pressure transients (e.g., Parotidis

et al., 2004; Sirorattanakul et al., 2022). Conversely, the spatio-temporal patterns of seismic

swarms driven by aseismic slip are much less understood. Yet it is commonly thought that

high migration speeds (high with respect to the diffusion of pore pressure) are a possible

signature of underlying aseismic slip transients (e.g., Lohman and McGuire, 2007).

A growing body of evidence suggests that whenever fluids are injected into the Earth’s crust,

the activation of not only seismic but also aseismic fault slip is present (Hamilton & Meehan,

1971; Scotti & Cornet, 1994; Cornet et al., 1997; Bourouis & Bernard, 2007; Guglielmi et al.,

2015; Wei et al., 2015; Cappa et al., 2022). Furthermore, the increasing availability of geodetic

data and advancements in data processing techniques are recently improving the detection of

slow slip events behind seismic swarms, with coupled fluid flow and aseismic slip processes

being now often invoked to explain more complete data sets (e.g., Sirorattanakul et al., 2022;

Yukutake et al., 2022; Nishimura et al., 2023). In this work, we develop a theoretical framework

for understanding what spatiotemporal signatures of seismic swarm migration are expected

under the combined effect of pore pressure diffusion due to fluid injections and induced

aseismic slip. We consider well-documented cases of anthropogenic seismic swarms which

serve as a natural laboratory to test the theory, as the fluid sources underlying the seismic

swarms are relatively well-constrained.
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6.2 Theory

6.2.1 Model

We consider fluid injection into a porous fault zone from a localized line source of fluids

(Figure 6.1) under the assumptions of the hydro-mechanical model presented recently by

Sáez and Lecampion (2023a). In this model, the resulting spatiotemporal evolution of pore

pressure follows a linear diffusion equation. In 2D, the line source is contained entirely within

the fault zone; it has an infinite extent along the out-of-the-plane direction of Figure 6.1a, and

produces a one-dimensional flow along the x axis. In 3D, the line source crosses the fault

zone perpendicularly to the fault plane, providing a more realistic localized source of fluids

and conditions for radial, axisymmetric flow (Figure 6.1b). Solutions of the linear diffusion

equation under both conditions are self-similar (Carslaw & Jaeger, 1959),

∆p(s, t ) =∆p∗(t ) ·Π
(

sp
4αt

)
, (6.1)

where s is a generalized spatial coordinate, equal to the Cartesian coordinate x in 2D, and the

radial coordinate r in 3D, ∆p∗(t) is the intensity of the injection with units of pressure that

may generally depend on time, Π(ξ) is the self-similar spatial profile of overpressure which

is function of the similarity coordinate ξ = s/ℓd (t), with ℓd (t) =
p

4αt the classical diffusion

length scale and α the fault hydraulic diffusivity. The function Π is such that Π(0) ≈ 1 and

Π(s →∞) → 0. In this way, ∆p∗(t) is approximately the overpressure at the fluid source at

any time t > 0, and the overpressure vanishes at infinity. The condition Π(0) ≈ 1 cannot be

achieved in 3D for injection from a line source, yet an approximation at the relevant time

scales of the model can be made to define ∆p∗(t) as the fluid-source overpressure (Sáez &

Lecampion, 2023a).

The injection of fluids has the effect of reducing the fault strength owing to the increase of pore-

fluid pressure which decreases the effective normal stress. Such pore pressure increase will be

eventually sufficient to activate fault slip when the fault strength equates to the pre-injection

shear stress τ0, which marks the onset of a fault rupture nucleating at the injection point. We

consider that quasi-static, aseismic slip propagates on a planar slip-weakening fault interface.

Our focus is on the case of unconditionally stable ruptures (Sáez & Lecampion, 2023a), which

satisfy the relation τ0 < frσ
′
0 (Garagash & Germanovich, 2012; Sáez & Lecampion, 2023a),

where fr is the residual friction coefficient and σ′
0 the pre-injection effective normal stress.

Such ruptures are characterized by four distinct and successive stages: (i) an initial phase

in which the slip transients are well approximated by a fault obeying a constant friction

coefficient equal to the peak value fp , (ii) an acceleration phase of the rupture front due to the

weakening of friction at rupture length scales that are comparable with the cohesive zone size,

(iii) a crack-like phase in which the dynamics of the rupture front is controlled by an energy

balance of the Griffith’s type, and (iv) an ultimate regime in which the rupture propagates as if

it were governed by a constant friction coefficient equal to the residual value fr .
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Figure 6.1: Model schematics. (a) and (b), fluid is injected into a permeable fault zone via an
infinitesimal source with an arbitrary history of volume rate. The fault is planar and embedded
in an unbounded linearly elastic impermeable host rock. The pre-injection stress state is
uniform. (a) Two-dimensional plane-strain model. (b) Three-dimensional circular rupture
model. (c) Pore-pressure-driven regime. (d) Aseismic-slip-driven regime. Gray areas in (c) and
(d) represent unstable fault patches producing seismicity.
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In this work, we assume that the rupture size is greater than the cohesive zone size, thereby

focusing on stages (iii) and (iv). Sáez and Lecampion (2023a) examined recently a particular

yet insightful case of ruptures that are driven by injection at a constant volume rate. Here,

we generalize their model to account for fairly arbitrary injection rate histories as described

by equation (6.1). For the sake of generality, we construct the physical model under two-

dimensional plane-strain conditions (Figure 6.1a) as it has been done previously for similar

models (Dublanchet, 2019; Garagash, 2021; Viesca, 2021; Yang & Dunham, 2021), as well as

in a more realistic three-dimensional configuration. In the latter, we focus on the case of

axisymmetric circular ruptures (Figure 6.1b) as they capture the most essential aspects of the

dynamics of unbounded ruptures in three dimensions (Sáez et al., 2022; Sáez & Lecampion,

2023a, 2023b).

Let us define ℓ(t ) as the position of the slip front, equal to the half-rupture length in 2D and

the rupture radius in 3D (Figure 6.1). The fraction of the energy dissipated per unit area of

rupture growth within the cohesive zone that is relevant for rupture advancement, known as

fracture energy Gc , can be approximated both in 2D and 3D as (Garagash & Germanovich,

2012; Sáez & Lecampion, 2023a)

Gc ≈
[
σ′

0 −∆p(ℓ, t )
](

fp − fr
) δc

2
, Kc =

√
2µGc , (6.2)

where Kc is the so-called ‘fracture’ toughness. The fracture energy must equal the influx of

elastic energy into the edge region G , also known as energy release rate, leading to (Garagash

& Germanovich, 2012; Sáez & Lecampion, 2023a)

2ℓβp
π

∫ ℓ

0

fr∆p(s, t )√
ℓ2 − s2

sγds + 2ψp
π

(
τ0 − frσ

′
0

)p
ℓ = Kc (ℓ, t ), (6.3)

with the coefficients ψ, β and γ given by:

{ψ,β,γ} =

{π/2,1/2,0}, in 2D

{1,−1/2,1}, in 3D.
(6.4)

Equation (6.3) summarizes in a compact way the competing physical mechanisms that take

place during the propagation of fluid-driven stable ruptures in our model. The first term of

the left-hand side is a stress intensity factor associated with the continuous reduction of fault

strength due to fluid injection which unclamps the fault. This term is always positive and

thus supplies energy to the rupture tip to promote rupture growth. The right-hand side is the

rupture toughness, proportional to the fracture energy. This local term is associated with the

dissipation of energy at the rupture front, thus resisting rupture advancement. The second

term of the left-hand side is a stress intensity factor associated with a constant ‘drop’ of stress

from the pre-stress τ0 to the in-situ residual fault strength frσ
′
0. This quantity is negative; a

necessary condition for the rupture to be unconditionally stable. It corresponds to a term that

‘consumes’ energy in a non-local manner, and thus resists rupture advancement.
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6.2.2 Swarm migration front and end-member regimes

Our model is characterized by three intrinsic length scales, namely, the slip front ℓ(t), an

overpressure front that is classically chosen in diffusion problems as ℓd (t ) =
p

4αt (Carslaw &

Jaeger, 1959), and an elasto-frictional length scale equal to ℓ∗ =µδc /( fp − fr )σ′
0. The latter is

associated with the cohesive zone size, where the dissipation of fracture energy happens. The

former two are the ones naturally related to the migration patterns of seismic swarms as we

explain below.

When ℓd (t ) ≫ ℓ(t ), the migration pattern of seismic swarms is expected to be dominated by

pore pressure diffusion (Figure 6.1c). It should thus show a characteristic square-root-of-time

dependence. This is because the diffusion front ℓd (t ) ∝p
t tracks an isobar of overpressure

Π(1) ∼ 1% of the current value of overpressure at the fluid source ∆p∗(t). The latter can be

interpreted as a minimum Coulomb’s stress change (threshold) required to trigger frictional

instabilities. If such a threshold exists, it is certainly expected to be strongly site-dependent.

Therefore, it does not seem possible to define in a sufficiently general and physically rigorous

manner a diffusion front that can be representative of a ‘seismicity front’ without accepting

a certain degree of arbitrariness. Indeed, a slightly different front than ℓd (t) yet of the same

order of magnitude has been widely used for interpreting seismic swarms as if they were

purely driven by pore pressure diffusion (S. Shapiro et al., 1997). However, if the structural

discontinuities hosting micro-seismic events are, for example, misoriented with regard to the

in-situ stress field, the Coulomb’s stress threshold associated with ℓd (t ) may be too small to be

representative of a seismicity front (Wang & Dunham, 2022).

On the other hand, when ℓ(t ) ≫ ℓd (t ), the migration pattern of seismic swarms is expected to

be dominated by aseismic-slip stress transfer (Figure 6.1d). In this case, the Coulomb’s stress

increase is maximum at the slip front and decays ahead of it. If one defines the seismicity front

based on a threshold of Coulomb’s stress change (subjected to the same degree of arbitrariness

discussed previously), such a front must be at some distance ahead of the slip front. Moreover,

if we adopt the simplifying assumption that the relative position of this front is approximately

invariant with regard to the location of the slip front, seismic swarms should migrate according

to the spatiotemporal patterns set by the dynamics of the slip front ℓ(t ). Furthermore, if the

offset between these two fronts is of smaller order than the rupture size, one can still consider

the slip front as a proxy for the seismicity front, at least for the purpose of defining the limiting

regimes of the model. Nevertheless, when constraining our model against field observations,

we will always position the slip front behind the seismicity front to recognize the above.

With the previous considerations in mind, we define a convenient non-dimensional quantity

that relates the two relevant fronts of the problem (Bhattacharya & Viesca, 2019),

λ(t ) =
ℓ(t )

ℓd (t )
. (6.5)

The so-called amplification factor λ provides a unified framework to understand what the nec-
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essary conditions for the previous two distinct regimes of seismic swarm migration to emerge

are, besides allowing us to identify the conditions under which a rather even combination of

the two mechanisms will control the migration of swarms, λ(t ) ∼ 1.

6.2.3 Pore-pressure-driven regime

When either the current fluid-source overpressure is not yet sufficient to activate fault slip,

fp∆p∗(t ) < fpσ
′
0−τ0, or slip has been activated but λ(t ) ≪ 1, the migration of seismic swarms

is expected to be dominated by pore pressure diffusion and the square-root-of-time pat-

tern. Moreover, as the rupture size is very small in comparison to the pressurized area, the

overpressure over the slipping region and particularly along the cohesive zone can be approxi-

mated by the overpressure at the fluid source, ∆p∗(t ). The fracture energy (6.2) can be thus

approximated in this regime as

Gc (t ) ≈ (
fp − fr

) δc

2

(
σ′

0 −∆p∗(t )
)

, (6.6)

which depends on time but no longer on the position of the slip front. Let us now define the

following non-dimensional integral,

Ψ(λ) =
∫ 1

0

Π
(
λη

)√
1−η2

ηγdη, (6.7)

which in view of the properties of Π satisfies the following limiting behaviors: Ψ ∼ 1 when

λ≪ 1, and Ψ≪ 1 when λ≫ 1.

Considering the scaling of the model in the case λ(t) ≪ 1 (Sáez & Lecampion, 2023a), we

obtain the dimensionless form of the energy balance (6.3) in the pore-pressure-driven regime

as

Ψ(λ)−ψTr (t ) =

p
π

2
Kd (t ), (6.8)

where,

Tr (t ) =
frσ

′
0 −τ0

fr∆p∗(t )
, and Kp (t ) =

Kc (t )

fr∆p∗(t )
p
ℓ(t )

, (6.9)

are the so-called residual stress-injection parameter and dimensionless toughness, respec-

tively. Unlike the case of injection at a constant rate where the parameter Tr is constant (Sáez

& Lecampion, 2023a), here Tr is time-dependent owing to the arbitrary injection rate histories

under consideration.
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6.2.4 Aseismic-slip-driven regime

When λ(t ) ≫ 1, the migration of seismic swarms is expected to be dominated by aseismic-slip

stress transfer and a migration pattern to be understood. Moreover, since the rupture front

is far ahead of the fluid-pressurized region, the overpressure along the cohesive zone can be

neglected. Hence, we approximate the fracture energy (6.2) in the aseismic-slip-driven regime

simply as

Gc ≈
(

fp − fr
) δc

2
σ′

0, (6.10)

which is notably constant and corresponds to the ‘in-situ’ fracture energy. In this regime, the

dimensionless form of the energy balance (6.3) is (Sáez & Lecampion, 2023a)

1

Tr (t )
Ψ(λ)−ψ =

p
π

2
Ks(t ), with Ks(t ) =

Kc

( frσ
′
0 −τ0)

p
ℓ(t )

, (6.11)

where Ks(t ) corresponds to the so-called nearly-unstable dimensionless toughness (Sáez &

Lecampion, 2023a).

6.2.5 General solution: the two dimensionless parameters

As demonstrated by equations (6.8) and (6.11), our proxy to quantify the relative contributions

of pore pressure and aseismic slip to the driving forces controlling the migration of seismic

swarms, the amplification factor λ, is a function of only two time-dependent dimensionless

parameters, Tr and K . The latter comes in two choices depending on the relevant regime,

either Kp or Ks . The dimensionless toughness K quantifies how much the fracture energy

contributes to resisting the advancement of the rupture at a given time t . Since any physically

admissible quasi-static solution of the model must be such that the position of the rupture

front ℓ(t ) increases monotonically with time, the dimensionless toughnesses Ks(t ) and Kp (t )

always decrease with time. In the pore-pressure-driven regime, Kp (t ) decreases even faster

than Ks(t ) if one considers a non-decreasing fluid-source overpressure with time. This means

that the rupture always accelerates in time with regard to the overpressure front due to the

diminishing effect of the fracture energy in the rupture-front energy balance, a result that was

previously found for the particular case of injection at a constant rate in 2D (Garagash, 2021)

and 3D (Sáez & Lecampion, 2023a), and is now generalized for arbitrary injection rate histories

in 2D and 3D.

According to equation (6.3), the fluid-injection integral term whose intensity is fr∆p∗(t) is

what ‘feeds’ the rupture to advance, whereas the term ∼ ( frσ
′
0−τ0)

p
ℓ has the effect of resisting

rupture growth. The competition between both non-local ‘energy’ terms is quantified by the

residual stress-injection parameter Tr , equation (6.9). The smaller the negative stress ‘drop’

τ0 − frσ
′
0, the less opposition the rupture has to grow; whereas the higher the intensity of the

injection, the faster the rupture propagates. Hence, decreasing values of Tr will always result
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in faster aseismic ruptures. Moreover, as shown in Section 6.5.1, the parameter Tr is bounded

as

Tmin = 1− τ0

frσ
′
0

<Tr (t ) < σ′
0 −τ0/ fr

σ′
0 −τ0/ fp

= Tmax. (6.12)

Its maximum value Tmax is associated with the minimum possible fluid-source overpressure,

that is, the amount that is just sufficient to activate fault slip, σ′
0 −τ0/ fp . On the other hand,

its minimum value Tmin is attained at the moment in which the fault is about to open when

the fluid-source overpressure approaches the in-situ effective normal stress. Note that if

we assume an injection rate history that produces a fluid-source overpressure ∆p∗(t ) which

increases monotonically with time, then Tr (t ) will always evolve from Tmax to Tmin. Therefore,

such fluid injections which one may quite frequently expect, always tend to accelerate aseismic

ruptures in time with regard to the overpressure front due to the decreasing values of Tr . We

highlight that our model is not limited to non-decreasing overpressures in time; fluid injections

can be quite arbitrary as long as a possible depressurization of pore fluids does not change

the propagation mode of the rupture from crack-like to pulse-like mode. The latter kind of

injection-induced aseismic ruptures has been examined recently by Sáez and Lecampion

(2023b).

So far, all of our results are general and not restricted to any specific injection rate history. To

illustrate the quantitative predictions that our model can make, let us prescribe a particular

injection scenario. Consider, for instance, axisymmetric radial flow with an injection rate that

increases linearly with time: Q(t ) = Rq t , where Rq is the (constant) rate of change of the injec-

tion rate. Closed-form expressions for ∆p∗(t ) and Π(ξ) are calculated in Section 6.5.2 for this

case. The solution in the aseismic-slip-driven regime, equation (6.11), is displayed in Figure

6.2a in terms of λ(Tr ,Ks). Note that all the previous general results such as the acceleration

of the slip front with regard to the overpressure front in time due to the decreasing values of

both Tr and Ks are present in this particular solution. Moreover, the transition between the

pore-pressure-driven regime and the aseismic-slip-driven regime could be interpreted in this

plot as the contour line λ = 1, which is a one-to-one relation between Tr and Ks .

6.2.6 Ultimate zero-fracture-energy regime and family of solutions

It can be readily shown from the definitions of the dimensionless toughnesses Kp and Ks , that

the ultimate regime of any unconditionally stable rupture (t →∞, ℓ→∞) is such that K → 0.

Hence, ultimately all ruptures behave to leading order as having zero fracture energy. This

result had been already obtained for injection at a constant rate in 2D (Garagash, 2021) and 3D

(Sáez & Lecampion, 2023a), and it is now generalized for arbitrary injection rate histories. In

this ultimate zero-fracture-energy regime, the rupture-front energy balance further simplifies

to

Ψ(λ) =ψTr (t ), (6.13)
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Figure 6.2: The main features of the model, as exemplified by the particular case of injection at
a linearly increasing volume rate with time. (a) Aseismic-slip-driven regime. Amplification fac-
tor λ as a function of the two dimensionless parameters Tr and Ks . (b) Zero-fracture-energy
solution, λ(Tr ,Ks = 0), and asymptotic solutions for the pore-pressure-driven (blue) and
aseismic-slip-driven (red) regimes. (c) Zero-fracture-energy solution in terms of the normal-
ized rupture radius versus dimensionless time. Aseismic-slip-driven regime is characterized
by a slip front moving at a constant rupture speed.

which is notably valid for both the pore-pressure-driven and aseismic-slip-driven regimes.

Equation (6.13) admits closed-form solutions under various practically useful injection scenar-

ios such as injection at a constant volume rate, constant overpressure, and linearly increasing

rate of injection with time. A family of solutions for (6.13) is reported in Section 6.5.2. Moreover,

in the case of the linearly increasing rate of injection that we analyzed previously, the ultimate

zero-fracture-energy solution is displayed in Figure 6.2b. Such a solution is recast in a more

intuitive manner in Figure 6.2c, where the evolution of the slip front in time ultimately reaches

a steady stage characterized by a constant rupture speed. This rupture speed is a function of

the fault hydraulic diffusivity and the time scale tc given by equation (6.19), derived in Section

6.5.2.

6.2.7 Slip front as function of accumulated fluid volume in the aseismic-slip-
driven regime

In the aseismic-slip-driven regime λ(t ) ≫ 1, the rupture surface is much bigger than the fluid

pressurized area, hence, the equivalent shear load due to fluid injection can be approximated

as a point force (Garagash & Germanovich, 2012; Viesca, 2021; Sáez et al., 2022; Sáez &

Lecampion, 2023a),

fr∆p(s, t ) ≈ fr∆P (t )
δdirac(s)

(2πs)γ
, with ∆P (t ) = 21−γ

∫ ∞

0
∆p(s, t ) (2πs)γds. (6.14)

Substituting the previous equation into (6.3) leads after some manipulations to

fr∆P (t )

(πℓ)γ+1/2
+ 2ψp

π

[
τ0 − frσ

′
0

]p
ℓ = Kc , (6.15)
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with Kc =
√

2µGc and Gc given by (6.10).

Previous studies concerned with the problem of injection-induced seismicity have attempted

to link the size of fault rupture events with a specific operational parameter: the volume of

injected fluid (McGarr, 2014; Galis et al., 2017; Garagash, 2021). Following the reasoning of

prior works (McGarr, 2014; Galis et al., 2017; Garagash, 2021), we can relate the temporal

evolution of the point force ∆P (t) to the current amount of injected volume V (t) as (see

Section 6.5.3)

∆P (t ) =
V (t )

Sw
, (6.16)

where S is the so-called oedometric storage coefficient representing the variation of fluid

content caused by a unit pore pressure change under uniaxial strain condition (Detournay

& Cheng, 1993), and w is the fault zone width. S is given by equation (6.25) and it accounts

for the effects of fluid, pore, and bulk compressibilities in the fault zone. In (6.16), V (t) has

units of m3 in 3D, and units of m2 in 2D (volume per unit length of injection line). Note that

the relevant compressibility-like parameter in our model is S, whereas in prior works is either

the inverse of the bulk modulus (McGarr, 2014; Galis et al., 2017) or the pore compressibility

(Garagash, 2021).

Substituting (6.16) in (6.15), we obtain after some manipulations,

V (ℓ, t ) = 2T ∗
r

(p
π

2
Ks(ℓ)+ψ

)
, with V (ℓ, t ) =

V (t )

πγwℓγ+1 and T ∗
r =

frσ
′
0 −τ0

fr S−1 , (6.17)

where V is a dimensionless volume equal to the volume of injected fluid divided by the volume

of fault whose slip surface has ruptured, and T ∗
r is a small Tr -like parameter. Equation (6.17)

is an implicit equation for ℓ as a function of the current injected volume of fluid. Moreover,

since ultimately Ks → 0, one can obtain a closed-form explicit expression for the position

of the slip front ℓ(t ) as a function of V (t ) in the ultimate zero-fracture-energy regime, which

reads as

ℓ(t ) = c

[
V (t )

wT ∗
r

]ξ
, with ξ =

1, in 2D

1/2, in 3D,
(6.18)

and the pre-factor c = (2πγψ)−ξ, equal to 1/π≈ 0.318310... in 2D, and 1/
p

2π≈ 0.398942... in

3D.

6.3 Application to the 1993 hydraulic stimulation at the Soultz geother-

mal site, France

We test our model against the well-documented case of the September 1993 hydraulic stim-

ulation at the Soultz geothermal site in France, where direct evidence of injection-induced
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aseismic slip exists (Cornet et al., 1997). The history of injection flow rate and accumulated

volume of injected water is displayed in Figure 6.3a. Approximately 25,000 m3 of water were

injected through the so-called GPK1 well into a hot granite formation during a period of about

15 days. The fluid injection was conducted in a step incremental manner that reached a

maximum of 36 l/s along the 550 m open-hole section located at depths between 2,850 m and

3,400 m. Figure 6.3b shows the spatiotemporal evolution of seismicity of the more than 10,000

events recorded during the injection test, before and after shut-in (Baria et al., 1996).

Prior works have suggested that this injection test stimulated a set of fractures (Evans, Moriya,

et al., 2005), whereas our model considers the stimulation of only one single planar fault.

Nevertheless, recent physics-based simulations of injection-induced aseismic slip in a two-

dimensional fracture network have demonstrated that the same patterns predicted by a single

fracture in two dimensions emerge collectively for a fracture network if it operates under

critically stressed conditions (Ciardo & Lecampion, 2023). Since the fractures intersecting

the open-hole section of the GPK1 well are known to be critically stressed (Evans, 2005), we

make the assumption that the response of the fracture network can be approximated by an

equivalent single planar fault.

Based on estimates of aseismic slip from borehole-wall deformations of up to 4.7 cm by Cornet

et al. (1997), an equivalent hydraulic diffusivity of α≈ 0.06 m2/s has been estimated by Sáez

and Lecampion (2023b). Figure 6.3b displays the corresponding overpressure front ℓd (t)

together with the micro-seismicity in a distance-versus-time plot. The injection ‘point’ has

been located according to the analysis of S. A. Shapiro et al. (1999). We observe that pore

pressure diffusion alone does not seem to be able to explain the migration of micro-seismicity,

especially in the second half of the stimulation period, where a square-root-of-time pattern

appears inconsistent with the data. Because of the known occurrence of aseismic slip, the

triggering of instabilities due to quasi-static stress transfer has already been suggested as a

significant contributing factor (Cornet, 2016), making this case particularly suitable for the

application of our hydro-mechanical model.

We first note that the injection rate history can be well approximated by a linear increase

in injection rate with time (Figure 6.3a). We estimate the slope of the injection ramp-up by

equating the actual volume of injected fluid, resulting in Q(t ) = Rq t with Rq ≈ 2.92×10−5 l/s2

as illustrated in Figure 6.3a. Assuming that the effect of the fracture energy in determining the

position of the slip front can be neglected, we note that a steadily rising injection rate leads

to a linear expansion of the slip front over time in the aseismic-slip-driven regime (Figure

6.2). This theoretical prediction aligns well with the observed pattern of micro-seismicity

giving us confidence to pursue this route. The zero-fracture-energy regime is governed by two

parameters, namely, the equivalent hydraulic diffusivity α, and the time scale (Section 6.5.2)

tc =
frσ

′
0 −τ0

fr Rqη/kw
(6.19)

that is associated with the activation time of fault slip. Assuming that the amplification of
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Figure 6.3: Application of our model to the 1993 hydraulic stimulation of the GPK1 well at the
Soultz-sous-Forêts geothermal site in France. (a) Injection flow rate history and accumulated
water volume in time. (b) Migration of seismicity in a distance versus time plot. For the
slip front (black), the solid line corresponds to the solution of the zero-fracture-energy limit,
equation (6.13), with the linear ramp-up approximation shown in panel (a). The dashed line
further assumes a point-force approximation for the fluid injection, resulting in a relation with
the accumulated volume, equation (6.18). (c) Amplification factor λ over time, highlighting
the different regimes/stages driving the migration of the seismic swarm.
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Coulomb’s stress ahead of the slip front dominates the evolution of the seismicity front in the

second part of the stimulation period, we find tc ≈ 2.9 hours to explain well the migration of

seismicity (Figure 6.3b). In the previous estimate, we recognize that the rupture front must

lag the seismicity front to some extent. The hydraulic transmissivity has been estimated at

the highest pressures of the test in approximately 1.7×10−12 m3 (Evans, Genter, et al., 2005).

Assuming a water dynamic viscosity of η = 3.5×10−4 Pa·s, equation (6.19) constrains the stress

‘distance’ to the stability limit, σ′
0 −τ0/ fr ≈ 0.06 MPa. Note that our parameter estimates give

also a wellbore overpressure ∆p∗(t ), equation (6.21), of about 10 MPa at the latest part of the

injection, which is very close to the actual downhole overpressure measured at 2,850 m depth

at these same times, equal to 9.1 MPa (Cornet et al., 1997).

By assuming that the seismic swarm operates in the aseismic-slip-driven regime at all times,

we can use equation (6.18) that relates the position of the slip front to the current total volume

of injected fluid. The history of accumulated volume is approximately quadratic in time

(Figure 6.3a), so that (6.18) predicts an approximately linear pattern of migration with time.

Knowing the accumulated volume in time, this model has the benefit of having only one

parameter. We fit the model with the results displayed in Figure 6.3b. The interpretation of

these results is part of an ongoing research.

6.4 Discussions

The application of our model to the September 1993 Soultz case shows a clear transition from

the pore-pressure-driven regime at early times (the first one to three days of injection) to the

aseismic-slip-driven regime at late times (starting from day 7 or 8). Indeed, our model predicts

that whenever aseismic slip becomes the dominant mechanism, an early pore-pressure-

driven regime and thus a transitional regime too, are expected to occur. The reason is that

in a Coulomb’s failure sense, a finite minimum amount of overpressure is always required

to activate fault slip. Hence, before this activation time, the only mechanism present is pore

pressure diffusion. Additionally, a gradual increase in overpressure is likely to happen in

most fluid injections, particularly in the one analyzed here. Hence, both the dimensionless

toughness K and residual stress-injection parameter Tr would decrease in time, so that an

acceleration of the slip front with regard to the overpressure front is expected and thus a

transition from the pore-pressure-driven regime to the aseismic-slip-driven regime is always a

latent possibility.

According to our model, the linear pattern of migration featured by the 1993 Soultz case is

strongly related to the approximately linear ramp-up of injection rate; a common injection

protocol in hydraulic stimulation operations. We observe that other anthropogenic seismic

swarms induced by the same kind of fluid-injection ramp-ups show systematically similar

linear patterns of migration. An example of them is the 2013 hydraulic stimulation of the

GRT-1 well at the Rittershoffen geothermal site in France, which is displayed in Figure 6.4a.

Also, the 2006 hydraulic stimulation at the Basel geothermal project in Switzerland (e.g., figure
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3a in Goertz-Allmann et al., 2011) shows a relatively linear pattern of migration. Yet we are still

in the process of further testing our model against these observations; our preliminary results

are encouraging.

On the other hand, it has been recently shown by Sáez and Lecampion (2023b) that seismicity

after shut-in is expected to be triggered approximately in a region between the rupture front

and locking front of the post-injection aseismic pulses that characterized the propagation of

stable slip after shut-in (Sáez & Lecampion, 2023b). Using the model and procedure described

in Sáez and Lecampion (2023b), we calculate the evolution of both fronts in time, including

the pore-pressure back front (eq. 3.1 in Sáez and Lecampion, 2023b) that has been proposed

to explain the so-called back front of seismicity sometimes observed after the termination of

fluid injections (Parotidis et al., 2004). Based on the application of our model to the 1993 Soultz

case after shut-in, as shown in Figure 6.3b, the back front signature seems also compatible with

the propagation of aseismic slip and its contribution to the delayed triggering of seismicity

(Sáez & Lecampion, 2023b).

Finally, seismic swarms are often considered to be driven by pore pressure diffusion due to

the classical square-root-of-time migration pattern (S. Shapiro et al., 1997; S. Shapiro et al.,

2005). However, in some occasions, the equivalent hydraulic diffusivity that is inferred from

distance-versus-time plots of seismicity clouds could result in unrealistically high values. An

example of those cases is the 2010-2011 seismic swarm at the Guy-Greenbrier fault in central

Arkansas, US, associated with the disposal of wastewater coming from oil and gas production

(Park et al., 2020). The migration of the seismicity cloud along the strike of the fault is displayed

in Figure 6.4b. We observe that equation (6.18) predicts that a square-root-of-time pattern

due to aseismic slip is also possible (see also section 6.5.2). Specifically, a square-root-of-time

pattern corresponds to fluid sources with an approximately constant injection flow rate. If

aseismic-slip stress transfer were the mechanism dominating the migration pattern of this

kind of seismic swarm, estimates of hydraulic diffusivity α based on the seismicity clouds

might be rather related to the quantityαλ2, with λ≫ 1 (see, Sáez et al., 2022, for further details

about this particular case).

6.5 Supplemental material

6.5.1 Limiting values of Tr

The limiting values of Tr are associated with meaningful scenarios. Its minimum value Tmin

is given by the maximum possible overpressure at the fluid source, σ′
0. Note that if σ′

0 is

surpassed, the fault walls would open (hydraulic fracturing), a condition that we do not intend

to explore here. On the other hand, its maximum value Tmax comes from the minimum

possible fluid-source overpressure. The latter corresponds to the amount of overpressure that

is required to activate fault slip, σ′
0 −τ0/ fp . These two limiting conditions provide the range of

possible values for the residual stress-injection parameter:
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Figure 6.4: (a) Seismicity at the Rittershoffen geothermal site, France (Lengliné et al., 2017).
The black solid line is the fitting of the slip front considering a linear injection ramp-up.
The blue dashed line corresponds to an overpressure front with α = 0.05 m2/s, and the blue
solid line α = 0.25 m2/s. (b) Seismicity at the Guy-Greenbrier fault in central Arkansas, US,
associated with the disposal of wastewater coming from oil and gas production. The seismic
swarm shows a strong square-root-of-time pattern, yet a relatively high equivalent hydraulic
diffusivity (modified from Park et al., 2020).

One can show that 0 < Tmin ≤ 1. The near-zero limit is approached when τ0 ≈ frσ
′
0. This

condition corresponds to the so-called nearly unstable limit of slip-weakening faults (Sáez

& Lecampion, 2023a). Nearly unstable ruptures are aseismic ruptures that are very close to

becoming unstable but will never do. The one limit is, on the other hand, approached when

the fault has almost no pre-stress, τ0 ≈ 0. Similarly, one can also show that 0 <Tmax ≤ 1. The

near-zero limit is again related to the nearly unstable condition, τ0 ≈ frσ
′
0, whereas the one

limit occurs this time when the slip-weakening friction law degenerates into the Coulomb’s

friction law, fr ≈ fp .

6.5.2 Family of solutions

Given an explicit expression for ∆p(s, t), equation (6.13) can be used to obtain analytical

solutions for λ in the so-called ultimate zero-fracture-energy regime. In fact, under the

assumption of a constant friction coefficient, equation (6.13) has been already solved in 2D

for ruptures driven by injection at constant overpressure (Bhattacharya & Viesca, 2019) and

constant injection rate (Sáez et al., 2022), whereas in 3D, equation (6.13) has been also solved

by Sáez et al. (2022) for the same two injection scenarios. These solutions are still valid here,

as long as the constant friction coefficient is interpreted as the residual friction value of the

slip-weakening model fr (Sáez & Lecampion, 2023a). Moreover, they are also valid in the early-

time Coulomb’s friction stage (not examined here, see further details in Sáez and Lecampion,

2023a) with a constant peak friction coefficient fp .

We complete this set of solutions by including a relevant injection scenario for hydraulic stim-

ulation operations, where the injection rate increases linearly with time. In 3D (axisymmetric
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Fluid source 2D - Mode II or III 3D - Mixed mode II+III

Q(t ) constant
Early times: ℓ (t ) ∝ (

t −p
t
)

(1)
ℓ (t ) ∝p

t (1)
Large times: ℓ (t ) ∝ t (1)

Q(t ) ∝ t
Early times ℓ (t ) ∝ (

t 3/2 −1
)

/t Early times: ℓ (t ) ∝p
te−t (2)

Large times: ℓ (t ) ∝ t 2 (2) Large times: ℓ (t ) ∝ t (2)

∆p(t ) constant ℓ (t ) ∝p
t (3) ℓ (t ) ∝ tβ (1)(4)

Table 6.1: Temporal patterns of the rupture front ℓ (t ) for different modes of propagation and
types of fluid source in the zero-fracture-energy regime. (1) Solutions derived by Sáez et al.
(2022). (2) Solutions derived here. (3) Solution derived by Bhattacharya and Viesca (2019). (4)
β is between 0 and 1/2 (Sáez et al., 2022).

radial flow), the overpressure solution is obtained by convolution

∆p(s, t ) =
∫ t

0

dQ(τ)

dτ
Gp (s, t −τ)dτ, (6.20)

where Gp is the Green’s function for overpressure due to a unit rate of injection Q(t ) = 1, given

by Gp (s, t ) =
(
η/4πkw

)
E1

(
s2/4αt

)
. For linearly increasing rate, Q(t) = Rq t , where Rq is the

rate of injection rate, the resulting overpressure solution is

∆p∗(t ) =
Rqη

kw
t , Π(ξ) =

1

4π

[(
ξ2 +1

)
E1

(
ξ2)−exp

(−ξ2)] . (6.21)

Substituting equation (6.21) into (6.13), we obtain after integration the following implicit

equation for λ,

1−γ+ 2

9

(
8−3γ

)
λ2 + 2

3
λ2

2F2

[
1 1

2 5/2
;−λ2

]
+ 4

15
λ4

2F2

[
1 1

2 7/2
;−λ2

]

− ln(4λ2)− 4

3
λ2 ln(2λ) = 4πTr (t ), (6.22)

where the residual stress-injection parameter takes now the specific form of a dimensionless

time: Tr (t ) = (t/tc )−1, with

tc =
frσ

′
0 −τ0

fr Rqη/kw
(6.23)

a characteristic time that relates to the time of activation of slip.

The solution in 2D can be obtained likewise. We do not report it here because it has limited

practical applications. Yet we do report the temporal patterns associated with it in Table 6.1.
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6.5.3 Point force-volume relation

Under the assumptions of our model (Sáez et al., 2022; Sáez & Lecampion, 2023a, 2023b), the

displacement field induced by the fluid injection into the poroelastic fault zone is irrotational.

Therefore, the fluid content ζ relates to the pore-fluid pressure p according to the following

local relation (eq. 96, Detournay and Cheng, 1993),

ζ = S∆p, (6.24)

where S is the so-called oedometric storage coefficient representing the variation of fluid

content caused by a unit pore pressure change under uniaxial strain condition (Detournay &

Cheng, 1993). S accounts for the effects of fluid, pore, and bulk compressibilities of the fault

zone, and is given by

S =
1

M
+ α2(1−2ν)

2(1−ν)µ
, (6.25)

where M is the Biot’s modulus and α the Biot’s coefficient. The latter is not to be confused

with hydraulic diffusivity.

We recall the definition of ζwhich corresponds to the variation of fluid volume per unit volume

of porous material. Hence, after integrating the linear relation (6.24) over the entire fault-zone

volume Afaultw , we obtain

V (t ) = Sw
∫

Afault

∆p(s, t )dA. (6.26)

Note that in our case the fault zone extent is infinite yet for practical purposes, it corresponds

to the volume affected by fluid overpressure. By recognizing that the integral in (6.26) is the

strength of the point force ∆P (t ) in (6.14), we can write the relation (6.16) in the main text.
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7 On the maximum size and moment
magnitude of injection-induced slow
slip events

A growing body of literature suggests that a significant part of the moment release during

subsurface fluid injections is due to aseismic motions. Understanding the size and moment

magnitude of injection-induced slow slip events is thus important to better assess the seismic

hazard associated with these operations. In this chapter, we present a theoretical estimate

based on rupture physics and supported by numerical simulations, for an upper bound of the

maximum size and moment magnitude of induced aseismic ruptures. We show that such an

upper bound depends strongly on in-situ conditions such as the background stress state and

frictional and hydraulic properties of the fault, and scales as a 3/2-power law with the injected

volume of fluids, which is notably the only relevant operational parameter in the formula.

We gather estimates of moment release due to aseismic slip and injected volumes coming

from fluid injections that vary in size from laboratory experiments to industrial applications.

Our preliminary results show good agreement between our theoretical estimate and these

observations.

This chapter is a modified version of the following scientific article:

Sáez, A. & Lecampion, B. On the maximum size and moment magnitude of injection-induced

slow slip events. In preparation.

Contributions of Alexis Sáez (CRediT, Contributor Roles Taxonomy)

Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing

- Original Draft, Visualization, Funding acquisition.

7.1 Introduction

Subsurface fluid injections have been long recognized to increase the risk of inducing earth-

quakes (Healy et al., 1968). While most of the time these earthquakes are harmless micro-
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seismicity, they can sometimes be of a relatively large magnitude which poses a serious hazard

for the geo-energy industry. Some examples of subsurface engineering technologies facing

this issue are the disposal of wastewater from oil and gas activities (Yeck et al., 2017), the de-

velopment of enhanced geothermal systems (Ellsworth et al., 2019), and hydraulic fracturing

of unconventional oil and gas reservoirs (Bao & Eaton, 2016). The disposal of oil wastewa-

ter has induced, for instance, some of the largest injection-induced earthquakes in the US,

namely, the Prague Mw 5.7 earthquake in 2011 (Keranen et al., 2013), and the Pawnee Mw 5.8

earthquake in 2016 (Yeck et al., 2017). On the other hand, the development of an enhanced

geothermal system in Pohang, South Korea, induced in 2017 a Mw 5.5 earthquake which led to

the shutdown of the project (Ellsworth et al., 2019), whereas hydraulic fracturing operations

in Canada have induced earthquakes of magnitudes of up to 4.6 (Babaie Mahani et al., 2017;

Babaie Mahani et al., 2019).

Subsurface fluid injections can induce not only earthquakes but also slow, aseismic slip events.

This has been known since the 1960s when a slow surface fault rupture was causally linked to

fluid injection operations of an oil field in LA (Hamilton & Meehan, 1971). Since then, a growing

number of studies have either inferred or directly measured episodes of injection-induced

aseismic slip during large-scale fluid injections in the field (Scotti & Cornet, 1994; Cornet

et al., 1997; Bourouis & Bernard, 2007; Wei et al., 2015; Eyre et al., 2019), in-situ experiments

(Guglielmi et al., 2015; Cappa et al., 2022), and laboratory experiments (Passelègue et al.,

2020; Cebry et al., 2022). Moreover, the largest “earthquake” induced by hydraulic fracturing

operations in Canada is, to this day, a slow slip event of magnitude 5.0 (Eyre et al., 2022), which

is comparable to the largest injection-induced earthquakes. Releasing elastic strain energy

through aseismic rather than seismic slips during industrial fluid injections is, in most cases,

preferable to avoid hazardous elastodynamic waves. Understanding what leads to one mode

of fault sliding or the other and the factors controlling the maximum size and moment release

of these human-induced fault ruptures is crucial to better assess the seismic hazard associated

with fluid injection operations.

In particular, the relation between operational fluid-injection parameters and the maximum

magnitude of induced earthquakes is an active area of research (McGarr, 2014; van der Elst

et al., 2016; Galis et al., 2017; Li et al., 2021). Essentially, one would like to know what are

the consequences of using a certain injection protocol in the seismic hazard associated with

that operation. Current approaches to estimating the moment release due to fluid injections

either neglect aseismic slips (McGarr, 2014; van der Elst et al., 2016; Galis et al., 2017) or do

not incorporate rupture physics (McGarr & Barbour, 2018). The latter leads to estimates that

are insensitive to the background stress state of a fault which is known to control the elastic

energy available for rupture growth and thus the dynamics of aseismic ruptures (Garagash &

Germanovich, 2012; Sáez et al., 2022). Building up on our previous studies (Sáez et al., 2022;

Sáez & Lecampion, 2023a, 2023b), we derive a theoretical upper bound of the maximum size

and moment magnitude of injection-induced slow slip events. We show that such an upper

bound depends on only one operational parameter: the accumulated volume of injected

fluids. Nonetheless, it also depends strongly on in-situ conditions, namely, the background
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Figure 7.1: Summary of fault response during and after fluid injection. (a) Fluid is injected at a
constant rate Q until t = ts at which the injection is instantaneously stopped. (b) Details of
the fault zone near the fluid source. (c) Crack-like rupture during the pressurization stage. (d)
Pulse-like rupture during the depressurization stage.

stress state and frictional and hydraulic properties of the fault. We gather estimates of moment

release due to aseismic slip and injected volumes coming from fluid injections that vary in

size from laboratory experiments to industrial applications. These observations are in good

agreement with our physics-based scaling relation.

7.2 Results

7.2.1 Model

We consider aseismic ruptures nucleated by a localized increase of pore-fluid pressure due to

the direct injection of fluids into a permeable fault zone (Figure 7.1b). We begin by examining

a fluid injection conducted at a constant rate Q over a finite period of time ts , followed by

a sudden stop of the injection (Figure 7.1a). This results in two distinct injection stages: a

pressurization or continuous-injection stage, and a depressurization or shut-in stage; which

allows for investigating ruptures in all its stages, from nucleation to arrest (Sáez & Lecampion,

2023b). We consider a planar infinite fault obeying a slip-weakening friction law. The host rock

is considered as purely elastic, and impermeable at the relevant time scales of the injection.
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The resulting displacement field due to the fluid injection is irrotational (Marck et al., 2015).

Fluid flow within the fault zone is then governed by an axisymmetric linear diffusion equation

(Detournay & Cheng, 1993). This hydro-mechanical model has been investigated in detail

by ourselves in a prior work (Sáez & Lecampion, 2023a), which is itself an extension to three

dimensions of the two-dimensional plane-strain model of Garagash and Germanovich (2012).

Here, we focus on the case of ruptures that are unconditionally stable or aseismic (Garagash &

Germanovich, 2012; Sáez & Lecampion, 2023a). In particular, the uniform background shear

stress τ0 must be lower than the in-situ residual fault strength frσ
′
0, where fr is the residual

(dynamic) friction coefficient and σ′
0 is the uniform initial effective normal stress. We assume

that τ0 and σ′
0 are the result of long-term tectonic loading. As shown recently by Sáez and

Lecampion (2023a), under these conditions, unconditionally stable ruptures evolve always

between two similarity solutions, one at early times where the fault interface behaves as being

governed by a constant friction coefficient equal to the peak (static) value fp , and the other

one at late times where the fault interface behaves to leading order as if it were governed by a

constant residual friction coefficient fr and negligible fracture energy Gc ≈ 0. The late-time

solution, which is the ultimate asymptotic regime of any rupture, is an upper bound for the

rupture size during the entire lifetime of the event, as it predicts the largest possible rupture

extent at any given time since the start of the injection.

7.2.2 Maximum size of injection-induced slow slip events

To keep the analytical derivations tractable, we approximate the rupture as being circular.

Strictly speaking, this is valid only when the Poisson’s ratio ν = 0. Nevertheless, we quantify

the effect of rupture non-circularity when ν ̸= 0 through numerical calculations. During the

pressurization stage (t < ts), the axisymmetric overpressure ∆p(r, t ) = p(r, t )−p0, with p0 the

uniform initial pore pressure, is given by ∆p(r, t ) =∆p∗ ·E1
(
r 2/4αt

)
, where ∆p∗ = Qη/4πkw

is the intensity of the injection with units of pressure, η is the fluid dynamic viscosity, and kw

andα are the fault hydraulic transmissivity and diffusivity, respectively. As stated previously, an

upper bound for the rupture radius R comes from assuming that the rupture surface operates

at a constant residual friction coefficient with zero fracture energy. Under these conditions,

the evolution of the rupture radius is governed by an energy balance of the Griffith’s type (Sáez

& Lecampion, 2023a):

2p
π

fr∆p∗p
R

∫ R

0

E1
(
r 2/4αt

)
p

R2 − r 2
r dr =

2p
π

[
frσ

′
0 −τ0

]p
R. (7.1)

According to this energy balance, the fluid-injection integral term of the left-hand side whose

stress scale is fr∆p∗ supplies elastic energy for the rupture to grow while continuously re-

ducing the fault strength. Conversely, in the absence of a local dissipation mechanism as

the fracture energy, the term of the right-hand side ∼ ( frσ
′
0 − τ0)

p
R, non-local in nature,

is responsible alone for resisting rupture advancement. The previously assumed condition

τ0 < frσ
′
0 is then essential to ensure the stability of the rupture, as otherwise the quasi-static

energy balance has ultimately no solution (Sáez & Lecampion, 2023a), that is, a run-away
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dynamic rupture occurs (Garagash & Germanovich, 2012; Galis et al., 2017; Sáez & Lecampion,

2023a). The competition between both ‘energy’ terms in (7.1) is quantified by one single

dimensionless number, the so-called residual stress-injection parameter (Sáez & Lecampion,

2023a),

Tr =
frσ

′
0 −τ0

fr∆p∗
. (7.2)

Intuitively, one expects that the smaller the negative stress ‘drop’ frσ
′
0 −τ0, the less opposition

the rupture has to grow, whereas the higher the intensity of the injection fr∆p∗, the faster the

rupture would propagate. Hence, decreasing values of Tr will always result in faster aseismic

ruptures. Equation (7.1) admits analytical solution in the form (Sáez et al., 2022),

R(t ) =λ (Tr ) ·L(t ), (7.3)

where λ is the so-called amplification factor (Bhattacharya & Viesca, 2019), and L(t ) =
p

4αt

is the classical diffusion length scale, also taken as the nominal position of the overpressure

front . Owing to self-similarity, λ is time-invariant and depends only on the parameter Tr .

This analytical solution (Figure 7.2a) was derived first by Sáez et al. (2022) for an interface with

constant friction, which is notably valid for our upper-bound solution as long as the constant

friction coefficient is replaced by fr . Figure 7.2a provides deep insights. When Tr ≪ 1, aseismic

ruptures break regions much further away than the pressurized fault zone, λ≫ 1. This is the

so-called nearly unstable regime (Sáez & Lecampion, 2023a) as when τ0 → frσ
′
0 the rupture

approaches the ultimate stability condition. Conversely, when Tr ∼ 10, aseismic ruptures are

confined well within the overpressurized region, a regime known as marginally pressurized

because it relates to a scenario in which the fluid injection provides just the minimum amount

of overpressure that is sufficient to activate fault slip (Garagash & Germanovich, 2012; Sáez &

Lecampion, 2023a).

Upon the stop of the fluid injection (t > ts), pore-fluid pressure drops quickly near the fluid

source while it keeps increasing away from it (Figure 7.1d). This latter increase is what further

drives the propagation of aseismic ruptures after shut-in. Since we want to provide an upper

bound for the rupture size, we adopt the simplifying assumption of neglecting the fracture en-

ergy and assume that slip propagates at a constant residual friction value fr . The propagation

and arrest of aseismic slip in a constant-friction fault have been extensively investigated (Sáez

& Lecampion, 2023b). In this model, ruptures transition from a crack-like propagation style

during the pressurization stage (Figure 7.2c) to a pulse-like mode after shut-in (Figure 7.2d).

Furthermore, based on the analysis of Sáez and Lecampion (2023b), one can readily show here

that the propagation of the slip pulses in our upper-bound configuration is controlled by the

same dimensionless number that controls crack-like propagation during the pressurization

stage, Tr . This is shown in Figure 7.2b for an exemplifying case displaying the evolution of the

locking and rupture fronts for a circular rupture. Slip arrests when the locking front catches the

rupture front. Although perhaps more insightfully, the rupture front stops when it is caught

by the so-called pore-pressure back front (Sáez & Lecampion, 2023b). This latter means that
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Figure 7.2: An upper bound for the maximum size of injection-induced slow slip events. (a)
Amplification factor as a function of the residual stress-injection parameter Tr . Blue and red
dashed lines correspond to asymptotic limiting behaviors for small and largeλ. (b) Normalized
position of the relevant fluid and slip fronts as a function of normalized time. (c) Maximum
run-out distance as a function of the parameter Tr . Non-circular solutions is for a Poisson’s
ratio ν = 0.25. (d) Normalized slip distribution at the moment the injection stops, and at the
moment the rupture arrests.
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there is no further increase of pore pressure within the rupture pulse that can ever sustain the

propagation of slip. This, in addition to the energy balance (7.1) expressed at the time of arrest

ta , provides a complete physical understanding of how, when, and where injection-induced

aseismic ruptures arrest.

The residual stress-injection parameter Tr , injection duration ts , and fault hydraulic diffusivity

α, control the upper bound for the arrest time ta and maximum rupture run-out distance Ra

(Figure 7.2c). When ruptures are marginally pressurized (Tr ∼ 10), the slip pulses arrest almost

immediately after the injection stops. Conversely, when ruptures are nearly unstable (Tr ≪ 1),

they are predicted to propagate for several orders of magnitude the injection duration and

grow up to approximately twice the size of the ruptures at the moment the injection stops.

The effect of a Poisson’s ratio ν ̸= 0 is such that it slightly increases both the arrest time and

maximum rupture run-out distance (Figure 7.2c). Furthermore, in the nearly unstable regime

that produces the largest ruptures, these upper-bound quantities can be estimated simply as

(Sáez & Lecampion, 2023b):

ta

ts
≈ aT −b

r , and Ra ≈
[

4αta

(
ta

ts
−1

)
ln

(
ta

ta − ts

)]1/2

, (7.4)

in the circular rupture case, with a = 0.946876 and b = 1.084361. Equations (7.2) and (7.4) show

that the arrest time and maximum size of aseismic ruptures are controlled by the following

factors: (i) how close to the background shear stress τ0 the in-situ residual strength of the fault

frσ
′
0 drops, (ii) how intensively the fluid injection is conducted according to ∆p∗, (iii) how

long the duration of the injection ts is, and (iv) how large the fault hydraulic diffusivity α is.

Moreover, the contribution of the depressurization stage to the maximum run-out distance is

approximately a factor of two at most. The order of magnitude of the maximum size is given

by the rupture radius, equation (7.3), evaluated at the moment the injection stops.

7.2.3 Maximum magnitude of injection-induced slow slip events

The scalar moment release M0 at a given time t is given by (Aki & Richards, 2002),

M0(t ) =µ
Ï

Ar (t )
δ(x, y, t )dxdy, (7.5)

where µ is the bulk shear modulus, δ is the current slip distribution, and Ar is the current

rupture surface. In the pressurization stage (t < ts), an upper bound for the spatiotemporal

evolution of fault slip can be obtained analytically for the end-member cases of nearly un-

stable and marginally pressurized ruptures (see Section 7.4.1). To highlight how significant

is to analyze the end-member cases, we note that their asymptotes for the rupture radius

nearly overlap and thus quantify together almost any rupture scenario (Figure 7.2a). The

slip distribution of nearly unstable ruptures is remarkably peaked around the injection point

(Figure 7.2d). Its analytical solution is indeed singular at the injection point; a boundary

layer must be resolved at distances r ∼ L(t ) (Garagash & Germanovich, 2012). Although this
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Figure 7.3: An upper bound for the moment release of injection-induced slow slip events. (a)
Normalized moment release during the pressurization stage as a function of the parameter
Tr for nearly unstable ruptures (red) and marginally pressurized ruptures (blue). Dashed
lines correspond to asymptotic analytical solutions. Solid lines correspond to full numerical
solutions. (b) Normalized moment release during the depressurization stage as a function of
the parameter Tr .

boundary layer has no consequences in estimating the moment release. After integration of

the slip profiles, equation (7.5) leads to an upper bound for the moment release M0 at a given

time t ≤ ts as,

M0(t ) ≃
16

3

(
frσ

′
0 −τ0

)
R(t )3 for nearly unstable ruptures, Tr ≪ 1,

16
9 fr∆p∗R(t )3 for marginally pressurized ruptures, Tr ∼ 10,

(7.6)

with R(t) known analytically from equation (7.3). Owing to self-similarity, the normalized

moment release depends uniquely on the parameter Tr for circular ruptures. We compare the

previous analytical estimates for M0 (dashed lines) against the full numerical solution of the

upper-bound model (solid lines) in Figure 7.3a.

To make the link between the moment release M0 and the operational parameters of the fluid

injection, namely, the injection rate and injection duration (one could alternatively choose

the injected volume V (t) = Qt in replacement of one of the other parameters), we use the

asymptotes for λ (Figure 7.2a) plus equation (7.3) to recast equation (7.6) as

M0(t ) = A ·V (t )3/2, with A =


16

3
p

frσ
′
0−τ0

(
fr

wS

)3/2
for Tr ≪ 1,

32
9π

frη
kw

λ3α3/2

Q1/2 for Tr ∼ 10.
(7.7)

It is interesting that in the marginally pressurized regime (Tr ∼ 10), the moment release

depends on the injected volume (or injection duration) and the injection rate, whereas in the

nearly unstable regime (Tr ≪ 1) which is the case that produces the largest ruptures, the only

operational parameter that controls the moment release is the current injected volume.
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In the depressurization stage (t > ts), the propagation and ultimate arrest of the aseismic

pulses result in a further accumulation of fault slip as exemplified in Figure 7.2d, and thus an

increase in the final moment release and magnitude of the events. Again, an upper bound for

the further accumulation of slip can be calculated by neglecting the fracture energy. By dimen-

sional considerations, one can readily show that such a contribution of the depressurization

stage to the final moment release as quantified by the ratio M0(ta)/M0(ts), depends only on

the residual stress-injection parameter Tr plus a small correction due to non-circularity when

ν ̸= 0. We calculate this contribution numerically (Figure 7.3b). The final moment release is

at most 4 times the moment release at the moment the injection stops in the more nearly

unstable cases (smallest values of Tr ). Moreover, the moment magnitude can be calculated

from the moment release evaluated at the time of arrest ta as (Hanks & Kanamori, 1979),

Mw =
2

3
log10 (M0)−6.07. (7.8)

7.2.4 Generalization to an arbitrary history of injection rate

By analyzing the particular and insightful case of injection at a constant volume rate in the

previous sections, we developed a time-dependent upper bound for the rupture size and

moment release that accounts for the entire lifetime of injection-induced slow slip events,

from nucleation to arrest. An important characteristic of this model is that aseismic ruptures

can grow much further away than the fluid-pressurized region (λ≫ 1) or be well confined

within it (λ≪ 1). An aseismic rupture that breaks non-pressurized fault regions is a possibility

that always emerges when incorporating rupture physics (Garagash & Germanovich, 2012;

Sáez & Lecampion, 2023a), even in the absence of frictional weakening owing to simple long-

range elastostatic stress transfer effects (Bhattacharya & Viesca, 2019; Sáez et al., 2022). Such

a regime has been observed in laboratory experiments (Cebry et al., 2022), inferred to have

occurred in in-situ experiments (Guglielmi et al., 2015; Bhattacharya & Viesca, 2019) and field

cases (Eyre et al., 2019). It seems likely that the slow slip events that have been detected so

far belong to this regime, as not only the ruptures of the largest extent are predicted to occur

under such conditions but also the greater amount of slip. Nearly unstable ruptures (Tr ≪ 1,

λ≫ 1) seem then to provide the upper bound of most practical interest. In this section, we

generalize such an upper bound to account for a history of injection flow rate that is arbitrary.

When ruptures are nearly unstable, because the slip front largely outpaces the overpressure

front, the reduction of strength due to fluid injection can be approximated as a point force,

fr∆p(r, t ) ≈ fr∆P (t )
δdirac(r )

2πr
, with ∆P (t ) = 2π

∫ ∞

0
∆p(r, t )r dr, (7.9)

whose strength ∆P (t ) relates to the current volume of injected fluid as (see Chapter 6, Section

6.2.7)

∆P (t ) =
V (t )

Sw
, (7.10)
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where S is the so-called oedometric storage coefficient representing the variation of fluid

content caused by a unit pore pressure change under uniaxial strain condition (Detournay &

Cheng, 1993), and w is the fault zone width. S is given by equation (6.25) and it accounts for

the effects of fluid, pore, and bulk compressibilities in the fault zone. Evaluating the double

integral (7.16) (see Section 7.4.1) prior substitution of (7.17), (7.9), (7.10), leads to

δ(r, t ) =
4

π

(
frσ

′
0 −τ0

)
µ

R(t )

[
1

2T ∗
r

V (t )

wπR(t )2

arccos(r̄ )

r̄
−

√
1− r̄ 2

]
. (7.11)

The condition that the rupture propagates with no stress singularity along its front (Barenblatt,

1962)

lim
r→R−

∂δ(r, t )

∂r

p
R − r = 0, (7.12)

requires that

R(t ) =

[
V (t )

2πwT ∗
r

]1/2

, (7.13)

which is an alternative way of deriving equation (6.18) in Chapter 6. Furthermore, substituting

(7.13) into (7.11) one obtains

δ(r, t ) =
4

π

(
frσ

′
0 −τ0

)
µ

[
arccos(r̄ )

r̄
−

√
1− r̄ 2

][
V (t )

2πwT ∗
r

]1/2

. (7.14)

Finally, we can calculate the moment release (7.5) as a function of the injected volume. After

integration, we obtain

M0(t ) =
16

3

(
frσ

′
0 −τ0

)[ V (t )

2πwT ∗
r

]3/2

, (7.15)

which is identical to equation (7.7) when Tr ≪ 1 if we substitute Tr given by equation (7.2).

7.3 Discussion

Our results provide upper-bound estimates for the maximum size and moment magnitude of

injection-induced slow slip events that are either confined to the pressurized region or grow

much further away than that. The latter scenario seems to be the more relevant practically.

However, so far the only existing estimate for the moment release accounting for aseismic slip

is based on assumptions that the rupture is confined within the pressurized region (McGarr

& Barbour, 2018). McGarr and Barbour (2018) proposed indeed a linear relation between

the cumulative moment release and V , which differs importantly from our 3/2-power law

scaling. To test their relation, they considered two data points of aseismic moment release

and injected volume in their study. One was related to the in-situ experiments by Guglielmi

et al. (2015), and the other one estimated from laboratory experiments of hydraulic fracturing
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Decameter-scale experiment in southeastern,
France, 2015. Guglielmi et al. (2015)

Decameter-scale experiment in Tournemire,
France, 2014. De Barros et al. (2019)

Centimeter-scale experiments. 
Passelègue (2023, Personal communication)

Large-scale experiment in Soulz-sous-foret
geothermal site, France, 1993. Cornet et al. (1997)

Hydraulic-fracturing-induced event, Alberta,
Canada, 2016. Eyre et al. (2019)

Hydraulic stimulation of GTR1, Rittersho�en,
Frace, 2013. Lengline et al. (2017)

Figure 7.4: Preliminary comparison of the theoretical upper bound for the moment release
due to aseismic slip for 4 values of the pre-factor A, with data points from volumes of different
sizes ranging from laboratory experiments to large fluid injections in the field (references in
the plot).

(Goodfellow et al., 2015). However, the physics of hydraulic fracturing (Detournay, 2016)

differs significantly from its shear rupture counterpart. Indeed, one can readily show that

the moment release by hydraulic fractures scales linearly with the injected volume as the

integral of the fracture width over the crack area is equal to the fracture volume. Assuming

that the injected fluid fulfills such a volume in a hydraulic fracture, equation (7.5) implies that

M0 ∝V in that case. We therefore keep the one point by Guglielmi et al. (2015) but discard the

hydraulic-fracturing data point as it corresponds to a different problem. In order to test our

upper-bound estimate, we collect additional data from available information coming from

laboratory and in-situ experiments, as well as large-scale fluid injections in the field. Our

preliminary results are shown in Figure 7.4 together with the upper bound estimate, equation

(7.7) for Tr ≪ 1, for four values of the factor A considering realistic parameters for it. The

comparison with observations is an ongoing work. We are currently gathering more data

points to be included in Figure 7.4.
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7.4 Supplementary material

7.4.1 Slip profiles for nearly unstable and marginally pressurized ruptures

Consider the quasi-static elastic equilibrium that relates the fault slip distribution δ to the

change of shear stress ∆τ within an axisymmetric circular shear crack (Sneddon, 1951):

δ(r, t ) =
4R(t )

πµ

∫ 1

r̄

ξdξ√
ξ2 − r̄ 2

∫ 1

0

∆τ(sξR(t ), t )sdsp
1− s2

, (7.16)

where r̄ = r /R(t) is the normalized radial coordinate. In the limiting regime of a rupture

propagating with zero fracture energy and at the residual friction level which provides the

upper bound for the moment release, the change of shear stress is simply

∆τ(r, t ) = τ0 − fr
[
σ′

0 −∆p(r, t )
]

= τ0 − frσ
′
0 + fr∆p(r, t ). (7.17)

For injection at a constant volume rate, the slip profiles for the end-member cases of nearly

unstable and marginally pressurized ruptures can be calculated following the procedure of

Sáez et al. (2022) as long as we interprete their constant friction coefficient as fr . An upper

bound for the spatiotemporal evolution of slip is then,

δ(r, t ) ≃
p

8

π

fr∆p∗
µ

L(t )
√

Tr

[
arccos(r̄ )

r̄
−

√
1− r̄ 2

]
, (7.18)

for nearly unstable ruptures (Tr ≪ 1), and

δ(r, t ) ≃ 8

π

fr∆p∗
µ

R(t )
[√

1− r̄ 2 − r̄ ·arccos(r̄ )
]

, (7.19)

for marginally pressurized ruptures (Tr ∼ 10). Integration of the previous slip profiles over the

rupture area leads to the asymptotes for the moment release M0 during the pressurization

stage, equation (7.6).
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8.1 Summary

This doctoral thesis investigated the mechanics of three-dimensional fluid-driven frictional

ruptures and their implications for the phenomenon of injection-induced seismicity —a

critical concern in the geo-energy industry. Below, we summarize the main findings and

conclusions of our research.

We examined the propagation of fluid-driven stable frictional ruptures using minimal physical

ingredients to reproduce such a phenomenon, including a constant friction coefficient at a

single planar fault interface. We considered fluid injections conducted at a constant volumetric

rate and a constant overpressure. We found that a dimensionless number equal to the ratio

between the stress criticality or distance to failure under ambient conditions and the intensity

of the fluid injection controls the dynamics of the interfacial ruptures. Insightful self-similar

and non-self-similar analytical solutions for the particular case of circular ruptures which

occur in the limit of a Poisson’s ratio equal to zero were derived, whereas the more general case

of non-circular ruptures was solved via numerical calculations. Two end-member regimes

were identified, namely, critically stressed faults that are about to fail (slide) before the injection

starts, and marginally pressurized faults that are characterized by an injection that provides

just the minimum amount of fluid pressure required to activate fault slip. Critically stressed

faults produce ruptures that expand much further away than the fluid-pressurized region.

Conversely, marginally pressurized faults host ruptures that are well confined within the

diffusively expanding region affected by the pressurization of pore fluids. We determined the

equilibrium shape of fluid-driven aseismic ruptures which were found to be quasi-elliptical.

The ruptures are more elongated for increasing values of the Poisson’s ratio and, perhaps

more interestingly, for faults that are closer to the critically stressed regime. This, our first

investigation, provided for the first time a basic understanding of how injection-induced

aseismic ruptures propagate in a fully three-dimensional configuration.

By extending our previous hydro-mechanical model to account for a shut-in period or stop of

the fluid injection, we found that aseismic slip not only keeps propagating after shut-in but
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also develops a in very distinct mode: as a pulse of slip. The conditions determining the propa-

gation in pulse-like mode and, more importantly, the conditions determining when and where

exactly fluid-driven aseismic ruptures arrest, were fully established. The same dimensionless

number identified during the continuous injection stage in our first investigation was found

to control the dynamics of the aseismic slip pulses. In particular, we found that marginally

pressurized faults produce ruptures that arrest almost immediately upon shut-in, whereas

critically stressed faults host ruptures that can propagate for several orders of magnitude the

injection duration and reach up to approximately twice the size of the ruptures at the moment

that the injection stops. We consequently argue that the persistent stressing of increasingly

larger rock volumes caused by post-injection aseismic slip is a plausible mechanism for the

triggering of post-injection seismicity. Seismicity after shut-in is a critical concern in the geo-

energy industry, as a growing number of cases show that the stop of fluid injection activities

does not necessarily guarantee the cessation of seismicity. Furthermore, it is not rare that

the largest events of injection-induced seismic sequences occur in the post-injection stage.

Using field observations of post-injection-induced seismicity, we elaborated via theoretical

arguments and numerical calculations on the characteristics of this triggering mechanism

and found quantitative agreement between our model and field observations.

We then extended our former constant-friction fault model to account for a friction coefficient

that weakens with slip. This enabled the model to develop a proper cohesive zone besides in-

corporating a finite amount of fracture energy, both ingredients absent in the former model. To

do so, we considered two friction laws characterized by a linear and an exponential weakening

of friction respectively. We focused on the particular case of axisymmetric circular shear rup-

tures as they were found in our previous investigations to capture the most essential aspects

of the dynamics of unbounded ruptures in three dimensions. It was shown that fluid-driven

aseismic slip can occur in two distinct modes in this model: as an interfacial rupture that is un-

conditionally stable, or as the quasi-static nucleation phase of an otherwise dynamic rupture.

The conditions determining whether the interface slides in one way or the other were fully

established. For ruptures that are unconditionally stable, we found that fault slip undergoes

four distinct stages in time. Initially, ruptures are self-similar in a diffusive manner and the

fault interface behaves as if it were governed by a constant friction coefficient equal to the peak

(static) friction value. Slip then accelerates due to frictional weakening while the cohesive zone

develops. Once the latter gets properly localized, a finite amount of fracture energy emerges

along the interface, and the rupture dynamics is governed by an energy balance of the Griffith’s

type. We showed that in this stage, fault slip always transitions from a large-toughness to a

small-toughness regime due to the diminishing effect of the fracture energy in the near-front

energy budget as the rupture grows. Moreover, while slip grows likely confined within the

pressurized region in prior stages, here the rupture front can largely outpace the pressurization

front if the fault is close to the stability limit. Ultimately, self-similarity is recovered and the

fault behaves again as possessing a constant friction coefficient, but this time equal to the

residual (dynamic) friction value. It was shown that in this ultimate regime, the fault interface

operates to leading order with zero fracture energy.
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On the other hand, when aseismic slip propagates as the nucleation phase of a dynamic

rupture, fault slip also initiates in a self-similar manner and the interface operates at a constant

peak friction coefficient. The maximum size that aseismic ruptures can reach before becoming

unstable (inertially dominated) was found to be as small as a critical nucleation radius equal

to the shear modulus divided by the slip-weakening rate, and as large as infinity when faults

are close to the stability limit. The former case corresponds to faults that are critically stressed

before the injection starts, in which case ruptures always expand much further away than

the pressurized region. The larger the critical nucleation radius is with regard to the cohesive

zone size, the longer ruptures can accelerate aseismically before becoming unstable. When

the nucleation radius is smaller than the cohesive zone size, aseismic ruptures accelerate

upon departing from the self-similar response due to continuous frictional weakening over

the entire slipping region, undergoing nucleation unaffected by the residual fault strength.

Conversely, when the nucleation radius is (much) larger than the cohesive zone size, aseismic

ruptures transition towards a stage controlled by a front-localized energy balance and undergo

nucleation in a ‘crack-like’ manner. We provided analytical and numerical solutions for the

problem solved over its full dimensionless parameter space, as well as expressions for relevant

length and time scales characterizing the transition between different stages and regimes. In

this more comprehensive picture of injection-induced fault slip, we notably found that our

former constant-friction model is an asymptotic solution that emerges at both early and late

times of the fluid injection, where the constant friction coefficient is either the peak or residual

friction value respectively.

Since we realized very early in our research that the temporal patterns of aseismic slip growth

were strongly dependent on the boundary condition associated with the fluid injection, we

investigated the mechanistic origins of this dependence in some important regimes of fault

slip propagation. By considering a fairly arbitrary history of injection flow rate, we found that

two time-dependent dimensionless numbers, one of them corresponding to a generalization

of the dimensionless number found in our first investigation, control the dynamics of uncon-

ditionally stable ruptures. Moreover, various properties of aseismic ruptures that were found

in the slip-weakening model for injection at a constant volume rate were generalized here for

arbitrary histories of injection flow rate. Some of these properties are the transition from a

large-toughness to a small-toughness regime and an ultimate asymptotic regime in which

the fault interface operates to leading order with zero fracture energy. In the limit in which

the rupture surface is much bigger than the fluid-pressurized region, an insightful analytical

relation between the position of the slip front and the accumulated volume of injected fluid

was found. In this regime, the only parameter of the fluid injection that matters to estimate

the position of the slip front is indeed the accumulated volume of injected fluid.

We then used the above findings to develop a theoretical framework for understanding seismic

swarms. Seismic swarms are often attributed to be driven by either the diffusion of pore

pressure or the propagation of aseismic slip. We proposed a theoretical model in which these

two scenarios emerge as end-member solutions of a more general case in which earthquake

swarms are driven by a combination of both mechanisms. We considered well-documented
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cases of anthropogenic seismic swarms which serve as a natural laboratory to test the theory,

as the fluid sources underlying the seismic swarms are relatively well-constrained. We found

that a likely general feature of the seismicity clouds is to be driven by pore pressure diffusion at

early times of the injection and by stress transfer due to aseismic slip later on. The conditions

controlling the transition between both regimes were theoretically established. While in the

pore-pressure-driven regime, a square-root-of-time pattern of seismic swarm migration is

expected, in the aseismic-slip-driven regime the predicted patterns are strongly connected to

the injection flow rate history of the fluid source. Specifically, under the conditions described

in the above paragraph, the predicted pattern follows the square root of the current volume of

injected fluid. This theoretical prediction was found to be in good agreement with available

field observations. Moreover, in the aseismic-slip-driven regime, the migration of the seismic-

ity front is very sensitive to and contains important information on in-situ conditions such

as the background stress state. Our model was shown to be notably able to explain seismic

swarms with square-root-of-time migration patterns and characterized by unrealistically high

hydraulic diffusivities as being driven by aseismic-slip stress transfer, meaning that the under-

lying fluid source operates at an approximately constant volume rate. We also demonstrated

that the back-front of seismicity frequently associated with the termination of fluid injections

is a signature that is theoretically expected under the presence of aseismic slip as well.

The moment release (and associated earthquake magnitude) due to subsurface fluid injections

is an important parameter for seismic hazard analysis in the geo-energy industry. A growing

body of literature suggests that a significant part of the moment release during fluid injections

is due to aseismic, rather than seismic motions. The occurrence of predominantly aseismic

slip in these operations is indeed considered a highly favorable outcome, as earthquakes of

a relatively large magnitude can pose a significant risk to the success of geo-energy projects.

Most of the current approaches to estimating the moment release due to fluid injections either

neglect the aseismic part or do not incorporate rupture physics. To contribute to filling this

gap of knowledge, we built up on all our above investigations to provide a theoretical estimate

supported by numerical calculations, for an upper bound of the maximum size and moment

magnitude of induced aseismic ruptures. We showed that such an upper bound depends

strongly on in-situ conditions such as the background stress state and frictional and hydraulic

properties of the fault, and scales as a 3/2-power law with the injected volume of fluids, which

is notably the only relevant operational parameter in the formula. We gathered estimates of

moment release due to aseismic slip and injected volumes coming from fluid injections that

vary in size from laboratory experiments to industrial applications. Our preliminary results

show good agreement between our theoretical estimate and available observations.

Finally, we would like to mention that an important contribution of this doctoral research

was the development of an efficient numerical solver to simulate frictional slip and fault

opening in 3D networks of discontinuities of arbitrary shapes. In our solver, these localized

deformations can be driven not only by variations in interfacial fluid pressure as explored in

this work but also by total stresses applied either on the discontinuities’ faces or the far field.

The capabilities of the solver are therefore much more general than what we exploited here.
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We expect this scientific output to become a very important tool for future investigations.

8.2 Perspectives

This doctoral research offers for the first time a quantitative and conceptual framework to

understand various problems associated with transients of frictional slip induced by either

natural or anthropogenic fluid injections in the Earth’s crust, arising both in subsurface

engineering applications and earthquake science. In addition, our research opens a number

of likely fruitful research directions to which we provide some guidelines and perspectives

below.

8.2.1 Incorporating further complexities

Incorporating further complexities into the model is an interesting research direction by itself.

For instance, all of our models assume that fluid flow occurs within a permeable interface

characterized by constant hydraulic properties. It has been however suggested for a long

time that variations of effective normal stress may induce permeability changes in fractures

(e.g., Witherspoon et al., 1980) and faults (e.g., Rice, 1992). Also, it is known that frictional

slip may be accompanied by dilatant (or contracting) fracture/fault-gouge behavior that

would inevitably induce changes in fluid flow and thus in the propagation of fault slip (e.g.,

Ciardo and Lecampion, 2019; Yang and Dunham, 2021). The effect of such hydro-mechanical

couplings on the propagation of fault slip remains to be investigated in 3D and requires the

solution of a fully-coupled hydro-mechanical problem. In addition, poroelastic effects in the

surrounding medium around the fracture/fault may be relevant in some cases (e.g., Heimisson

et al., 2022). Accounting for a permeable host rock would notably allow for fluid mass exchange

between the slipping region and the bulk, whose effects on the propagation of fault slip remain

poorly understood.

In terms of material (e.g., elastic constants and frictional properties) and stress heterogeneities,

changes in lithologies as commonly encountered in the upper Earth’s crust would certainly

alter the dynamics of the otherwise unbounded ruptures that we have examined here. In

particular, the effect of layering might cause containment of the reactivated fault surface

within certain lithologies thus promoting the development of elongated ruptures, similar to

what is observed for hydraulic fractures (Bunger & Lecampion, 2017).

8.2.2 Further applications of the models

In this thesis, we have already explored in detail some of the implications of our modeling

results, particularly for the phenomenon of injection-induced seismicity. Yet a much broader

range of applications can be potentially investigated. For instance, one could further explore

the implications of our models for natural seismic swarms. Unlike the anthropogenic seismic
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swarms that we examined here where the fluid source is relatively well-constrained, possible

natural sources of fluids activating aseismic and seismic slip during swarm episodes are of

course much less constrained. Nevertheless, there are a number of observables that one could

consider to make both qualitative and quantitative comparisons with our models, such as (to

mention just a few of them) spatial and/or temporal distributions of seismic moment release

and stress drops, as well as aseismic slip when, for instance, geodetic data is available to

conduct kinematic inversions (e.g., Sirorattanakul et al., 2022; Yukutake et al., 2022; Nishimura

et al., 2023). Also, analyzing global scaling relations of seismic swarms may help to better

constrain the underlying physical processes.

On the other hand, another interesting phenomena that could be analyzed in light of our

results are slow slip events in subduction zones (Bürgmann, 2018). There is general consensus

that fluids are involved in the mechanics of slow slip events (Behr & Bürgmann, 2021), with

several lines of evidence suggesting that they occur at depths where pore fluids are inferred to

be overpressurized up to near lithostatic pressures (Shelly et al., 2006; Kato et al., 2010; Behr &

Bürgmann, 2021). The common view is that they initiate as dynamic instabilities in a similar

manner to regular earthquakes (e.g., Liu and Rice, 2007), yet a mechanism that prevents the

slip rate from reaching levels that would radiate strong seismic waves is invoked (e.g., Segall

et al., 2010). An alternative model could consider that slow slip events are not frustrated

dynamic instabilities, but rather the result of unconditionally stable sliding. In this view, the

driving force that makes them emerge, propagate, and perhaps arrest, is transient episodes

of pressurization and depressurization of pore fluids (Warren-Smith et al., 2019; Perez-Silva

et al., 2023), which in turn induce episodes of aseismic slip that can propagate much faster

than the diffusion of pore pressure. Metamorphic dehydration reactions in the oceanic slab

may, for instance, induce hydraulic fractures that could transport fluids at the time scales that

are relevant for slow slip events. Fluid flow could be further modulated by spatiotemporal

variations of permeability due to fault-valving behavior (Zhu et al., 2020). The characteristics

of their seismic signature, so-called tremors and low-frequency earthquakes (Obara, 2002;

Katsumata & Kamaya, 2003), could provide important information to constrain such a model,

as well as global scaling relations (Ide et al., 2007; Frank & Brodsky, 2019; Michel et al., 2019).

8.2.3 Laboratory experiments

Our results provide a means for characterizing the conditions under which distinct regimes

and stages of injection-induced fault slip are expected to emerge not only in the field but also

under well-controlled and achievable conditions in the laboratory. Fluid injection experiments

where the notion of a finite rupture growing on a simulated interface exists (Passelègue et al.,

2020; Gori et al., 2021; Cebry et al., 2022) are particularly promising to investigate and validate

the mechanistic understanding we have obtained in this thesis. Our research can help guide

the design of these experimental works.
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A A collocation boundary element
method for elastostatic crack prob-
lems in three dimensions

A.1 Introduction

In order to solve numerically the boundary integral equations of linear elasticity, the so-called

boundary element methods (BEM) have been successfully developed over the past few decades

(Bonnet, 1999). BEMs are roughly categorized in two: collocation BEM and Galerkin BEM

(Bonnet, 2017). Among the applications for crack problems, one of the most widely used

methods is a type of collocation BEM called the displacement discontinuity method (DDM)

(Crouch & Starfield, 1983). The DDM is indeed our choice to relate the displacement discon-

tinuity distribution over a set of arbitrary-shaped fractures to the corresponding tractions

applied on the crack faces that are in elatostatic equilibrium, as required by the mechanical

solver developed in Chapter 2. Note that in this appendix, we make use of the term ‘crack’ to

refer to any pre-existing geological discontinuity.

One key ingredient of the DDM is to know the solution for the elastic fields (displacement

vector and stress tensor) due to a dislocation loop of a certain shape in a usually infinite

solid. The numerical method is then built, in simple words, by the superposition of multiple

dislocation loops that can geometrically represent the cracks under consideration via spatial

discretization. The most common dislocation loops used in the context of BEMs are rectangu-

lar and triangular loops. For the general case of arbitrary-shaped cracks, triangular dislocation

loops are preferred due to the greater versatility for the discretization of general non-planar

surfaces. For that reason, we adopt a triangular dislocation loop here.

The general solution for the elastic fields due to a dislocation over a general bounded plane

area in an infinite solid was first derived by Rongved (Rongved, 1957). Rongved’s solution is

given in terms of surface integrals that have to be solved by integrating over specific dislocation

regions (shapes). In our case of interest, the solution for a generic triangular dislocation loop

is known (Crouch & Starfield, 1983; Kuriyama & Mizuta, 1993) and is expressed in terms of

multiple hypersingular, singular, and quasi-singular integrals. One of the major challenges
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in the computation of the elastic fields and the implementation of the DDM is to calculate

those integrals in an accurate and efficient manner. Several numerical techniques have been

proposed in the literature to efficiently deal with these integrals (e.g., Lachat and Watson,

1976). Moreover, analytical integration techniques have been more recently developed and

provide exact yet cumbersome closed-form analytical expressions (e.g., Kuriyama and Mizuta,

1993; Nintcheu Fata, 2009).

In this work, we use the recent contribution of Nintcheu Fata (2009, 2011) who developed and

applied a new integration technique to solve analytically for three-dimensional boundary in-

tegrals of potential theory which appear explicitly in the elastic field solutions due to a generic

triangular dislocation loop in an isotropic, homogeneous, and infinite medium (Kuriyama &

Mizuta, 1993). One key aspect of our work here is to make the link between Nintcheu Fata’s

integrals and the elastic fields induced by a triangular dislocation loop. We note that the

explicit formulae obtained by Nintcheu Fata facilitate numerical implementations because

they are written in a recursive manner with regard to each edge of the triangular loop. Besides,

the treatment of the singularities for BEM applications is easier to deal with, as it will become

clear later.

A.2 A triangular dislocation loop in an infinite solid

A.2.1 The solution for the elastic fields

This section is based on the description of the elastic flieds due to a triangular dislocation

loop as described by Kuriyama and Mizuta (1993) plus some definitions and notations used

by Nintcheu Fata (2009, 2011) that will facilitate the link between both works in the following

section.

Consider a Cartesian frame {0; i 1, i 2, i 3} and the triplet {y 1, y 2, y 3} ⊂ R3 that corresponds to

the position vectors of the vertices of a generic triangular dislocation loop E (see Figure A.1,

left). Let us define the local reference system {y 1;e1,e2,e3} for E with origin at y 1, where e1 is

parallel (and pointing in the direction of) the triangle edge defined by the segment [y 1, y 2],

e2 = e3 ×e1, and e3 is normal to the plane of E spanned by {e1,e2}. The local reference system

is associated with the local coordinate system {y 1;ξ,ζ,η}.

Let x ∈R3 be an arbitrary observation point that when expressed in the local coordinate system

of E is

xo
y1 = x − y 1 = ξoe1 +ζoe2 +ηoe3. (A.1)

Following Kuriyama and Mizuta (1993), the displacement ui and stress σi j fields induced

at the arbitrary point x ∈ R3 due to a dislocation characterized by a constant displacement
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discontinuity vector di (i = 1,2,3) acting over the triangle E can be written as,

ui = ai j d j , σi j = bi j k dk , (i , j ,k = 1,2,3) (A.2)

where ai j and bi j k are the so-called influence coefficients and the displacement discontinuity

vector is defined as di = ui (ξ,ζ,η = 0−)−ui (ξ,ζ,η = 0+).

According to Kuriyama and Mizuta (1993), the influence coefficients can be expressed in terms

of the partial derivatives of the following integral function f , which is integrated over the

triangle E and evaluated at the arbitrary observation point x ∈R3,

f (ξo ,ζo ,ηo) =
∫

E

dξ′dζ′√
(ξ′−ξo)2 + (ζ′−ζo)2 + (ηo)2

. (A.3)

By defining first ai j =αãi j , the displacement influence coefficients take the following form,

ã11 = 2(1−ν) f3 −ηo f11 ã12 = −ηo f12 ã13 = −[
(1−2ν) f1 +ηo f13

]
ã21 = −ηo f12 ã22 = 2(1−ν) f3 −ηo f22 ã23 = −[

(1−2ν) f2 +ηo f23
]

ã31 = (1−2ν) f1 −ηo f13 ã32 = (1−2ν) f2 −ηo f23 ã33 = 2(1−ν) f3 −ηo f33 (A.4)

Similarly, by defining bi j k = βb̃i j k , the stress influence coefficients are determined by the

following expressions,

b̃111 = 2 f13 −ηo f111 b̃112 = 2ν f23 −ηo f112 b̃113 = f33 + (1−2ν) f22 −ηo f113

b̃221 = 2ν f13 −ηo f122 b̃222 = 2 f23 −ηo f222 b̃223 = f33 + (1−2ν) f11 −ηo f223

b̃331 = −ηo f133 b̃332 = −ηo f233 b̃333 = f33 −ηo f333

b̃121 = (1−ν) f23 −ηo f112 b̃122 = (1−ν) f13 −ηo f122 b̃123 = −(1−2ν) f12 −ηo f123

b̃231 = −ν f12 −ηo f123 b̃232 = f33 +ν f11 −ηo f223 b̃233 = −ηo f233

b̃131 = f33 +ν f22 −ηo f113 b̃132 = −ν f12 −ηo f123 b̃133 = −ηo f133 (A.5)

Where α and β are prefactors given by,

α =
1

8π(1−ν)
, β =

µ

4π(1−ν)
, (A.6)

with µ and ν the shear modulus and Poisson’s ratio, respectively.

In equations (A.4) and (A.5), the partial derivatives of f are denoted as f1, f2, ..., f333, where

each corresponding suffix means taking a partial derivative with respect to one of the local

coordinates of E , such that ξ = 1, ζ = 2 and η = 3.
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Figure A.1: Local coordinate systems associated with a generic triangle E . Taken from Nintcheu
Fata (2009).

A.2.2 The link between the elastic fields and the generic integrals of potential
theory

In this section, we link the work of Nintcheu Fata (2009, 2011) to the computation of the partial

derivatives of f that give the elastic fields as defined in the previous section through equations

(A.4) and (A.5). Following Nintcheu Fata (2009), let PE be the plane of E spanned by {e1,e2}

and y ∈ PE an arbitrary field point that expressed in the local coordinate system of E takes the

following form,

y y1 = y − y 1 = ξ′e1 +ζ′e2. (A.7)

Let us now define the local coordinate system {x ;e1,e2,e3} with origin at the observation point

x ∈R3 (see Figure A.1). In {x ;e1,e2,e3}, the position vector r of the arbitrary field point y ∈ PE

can be expressed as,

r = y −x = ξe1 +ζe2 +ηe3, (A.8)

so that the distance between the observation point x ∈ R3 and the field point y ∈ PE is r =∥∥y −x
∥∥ =

√
ξ2 +ζ2 +η2, with

ξ = ξ′−ξo , ζ = ζ′−ζo , η = −ηo . (A.9)

With these definitions, the integral function f given by equation (A.3) can be recast simply as

f (x) =
∫

E

d sy∥∥y −x
∥∥ =

∫
E

d s

r
, (A.10)
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so that the partial derivatives of f can be now calculated easily. After performing the respective

differentiation, the first and second partial derivatives of f take the following form,

f1 =
∫

E

ξ

r 3 d s f2 =
∫

E

ζ

r 3 d s f3 =
∫

E

η

r 3 d s

f11 = −
∫

E

1

r 3 d s +3
∫

E

ξ2

r 5 d s f22 = −
∫

E

1

r 3 d s +3
∫

E

ζ2

r 5 d s f33 = −
∫

E

1

r 3 d s +3η2
∫

E

1

r 5 d s

f12 = 3
∫

E

ξζ

r 5 d s f13 = 3η
∫

E

ξ

r 5 d s f23 = 3η
∫

E

ζ

r 5 d s, (A.11)

whereas the third partial derivatives are given by

f111 = −9
∫

E

ξ

r 5 d s +15
∫

E

ξ3

r 7 d s f222 = −9
∫

E

ζ

r 5 d s +15
∫

E

ζ3

r 7 d s

f333 = −9η
∫

E

1

r 5 d s +15η3
∫

E

1

r 7 d s f123 = 15η
∫

E

ξζ

r 7 d s

f112 = −3
∫

E

ζ

r 5 d s +15
∫

E

ξ2ζ

r 7 d s f122 = −3
∫

E

ξ

r 5 d s +15
∫

E

ξζ2

r 7 d s

f113 = −3η
∫

E

1

r 5 d s +15η
∫

E

ξ2

r 7 d s f223 = −3η
∫

E

1

r 5 d s +15η
∫

E

ζ2

r 7 d s

f133 = −3
∫

E

ξ

r 5 d s +15η2
∫

E

ξ

r 7 d s f233 = −3
∫

E

ζ

r 5 d s +15η2
∫

E

ζ

r 7 d s. (A.12)

At this point, we note that the integrals that define the partial derivatives of f in equations

(A.11) and (A.12) are exactly some of the generic integrals for the elastic surface potentials

solved analytically by Nintcheu Fata (2011). Following Nintcheu Fata’s notation, we can rewrite

the partial derivatives of f , equations (A.11) and (A.12), as

f1 = I ξ3 , f2 = I ζ3 , f3 = ηI3

f11 = −I3 +3I ξξ5 , f22 = −I3 +3I ζζ5 , f33 = −I3 +3η2I5

f12 = 3I ξζ5 , f13 = 3ηI ξ5 , f23 = 3ηI ζ5 , (A.13)

and

f111 = −9I ξ5 +15I ξξξ7 f222 = −9I ζ5 +15I ζζζ7

f333 = −9ηI5 +15η3I7 f123 = 15ηI ξζ7

f112 = −3I ζ5 +15I ξξζ7 , f122 = −3I ξ5 +15I ξζζ7

f113 = −3ηI5 +15ηI ξξ7 f223 = −3ηI5 +15ηI ζζ7

f133 = −3I ξ5 +15η2I ξ7 , f233 = −3I ζ5 +15η2I ζ7 , (A.14)

respectively.

Note that the notation for the generic integrals (e.g., I ξζζ7 ) is such that the subscript represents

the exponent of the integrand’s denominator and the superscript represents directly the
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integrand’s numerator.

A.2.3 Exact formulae for generic integrals

We describe now the procedure to compute the generic integrals appearing in equations (A.13)

and (A.14). We also discuss very briefly some relevant details of the analytical integration

technique used by Nintcheu Fata (2009, 2011).

One can define the local orthogonal companion basis {e1,e2,e3} of the generic triangle E

as a function of the the triplet {y 1, y 2, y 3} that represents the position vectors of the triangle

vertices as follows,

σ =

(
y 3 − y 1

) · (y 2 − y 1
)∥∥y 2 − y 1

∥∥2 , (A.15)

e1 =

(
y 2 − y 1

)∥∥y 2 − y 1
∥∥ , e2 =

(
y 3 − y 1

)−σ(
y 2 − y 1

)∥∥(
y 3 − y 1

)−σ(
y 2 − y 1

)∥∥ , e3 = e1 ×e2. (A.16)

Plus, the following geometric parameters of E (see Figure A.1, left),

b =
(

y 2 − y 1) ·e1, a =
(

y 3 − y 1) ·e2, c =
(

y 3 − y 1) ·e1 (A.17)

θ1 = arccos

(
cp

c2 +a2

)
, θ2 = arccos

(
b − c√

(b − c)2 +a2

)
, θ3 =π− (θ1 +θ2). (A.18)

By using the previous definitions, one can define the coordinates of the vertex ‘1’ of E in

{x ;e1,e2,e3} plus the auxiliary angles αi ,

ξ1 =
(

y 1 −x
) ·e1, ζ1 =

(
y 1 −x

) ·e2, η =
(

y 1 −x
) ·e3, (A.19)

α1 = 0, α2 =π−θ2, α3 =π+θ1. (A.20)

Using the auxiliary angles αi , one can now define a set of useful local reference systems

{x ;epi ,eqi ,e3} with origin at the observation point x ∈R3, which are associated with each i -th

edge Li = [y i , y i+1] of E (i = 1,2,3 and the superscript ’4’ must be replaced by ’1’), where the

unit vector epi is parallel (and points in the direction of) the corresponding triangle edge Li

(see Figure A.1, right). These three local reference systems {x ;epi ,eqi ,e3} induce three local

coordinate systems {x ; pi , qi ,η} such that,

pi = ξcos(αi )+ζsin(αi ), (A.21)

qi = −ξsin(αi )+ζcos(αi ). (A.22)

The analytical integration technique used by Nintcheu Fata (2009, 2011) makes extensive use

of the previously defined local reference and coordinate systems. We also highlight that in

his work, the generic integrals are classified in two categories. In one group, application of

the Stokes’ theorem is needed to transform surface integrals in contour integrals, whereas
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in a second group, integration can be performed directly as surface integrals. Notably, the

application of the Stokes’ theorem for the first group of integrals requires a special treatment

for the case in which the projection of the observation point x ∈R3 over the plane PE in the

direction of e3 (i.e., perpendicular to PE ) lies inside E .

Let us call such projection of the observation point as x̃ ∈ PE . As described carefully by

Nintcheu Fata (2009), the application of the Stokes’ theorem leads to different values of the

integrals of the first group depending on the following sub-cases: x̃ ∈ PE \ E (strictly outside

the triangle), x̃ ∈ {y 1, y 2, y 3} (over a triangle vertex), x̃ ∈ L1∪L2∪L3 \ ¯{
y 1, y 2, y 3

}
(over a triangle

edge but not over a triangle vertex), and x̃ ∈ E (strictly inside the triangle). This is the reason

why equation (A.33) is in the form of a piece-wise function.

The use of the local coordinate systems {x ; pi , qi ,η}, equation (A.21), and the transformation

of surface integrals into contour integrals, provides notably the chance to write the exact

expressions for the generic integrals of the first group as a sum of analytic formulae over the

sides Li of E (see appendix in Nintcheu Fata, 2011) that significantly facilitates the numerical

implementation. Furthermore, the second group of integrals that are solved directly as surface

integrals can be also expressed exactly as a sum of analytic formulae over the sides Li , after

using equation (A.21), and performing some algebraic manipulations (Nintcheu Fata, 2009).

The exact formulae for the generic integrals appearing in equations (A.13) and (A.14) can be

found in the appendix of Nintcheu Fata (2011). These formulae are written in terms of the

following functions that have to be evaluated for every edge Li of E ,

ρ̃i (x) = ρi −ρi+1, φ̃i (x) = p i
iρi −p i+1

i ρi+1, χi (x) = ln(p i
i +ρi )− ln(p i+1

i +ρi+1)

δi (x) =
p i

i

ρi
− p i+1

i

ρi+1
, Li (x) =

1

ρi
− 1

ρi+1
, Di (x) =

p i
i

(ρi )3 − p i+1
i

(ρi+1)3 , Λi (x) =
1

(ρi )3 − 1

(ρi+1)3

γi (x) = arctan

( −2p i
i qiηρi

(qi )2(ρi )2 − (p i
i )2η2

)
−arctan

( −2p i+1
i qiηρi+1

(qi )2(ρi+1)2 − (p i+1
i )2η2

)
, (A.23)

where again, the superscript and subscript ‘4’ must be replaced by ‘1’. The previous functions

require the computation of the local coordinates (p j
i , q j

i ,η) of the j -th vertex of E that are

endpoints of each i -th edge Li = [y i , y i+1]. These coordinates can be calculated as,

p1
1 = ξ1, p2

1 = b +ξ1, q1
1 = q2

1 = q1 = ζ1 (A.24)

p2
2 = (b +ξ1)cos(α2)+ζ1 sin(α2), p3

2 = (c +ξ1)cos(α2)+ (a +ζ1)sin(α2) (A.25)

q2
2 = q3

2 = q2 = −(b +ξ1)sin(α2)+ζ1 cos(α2) (A.26)

p3
3 = (c +ξ1)cos(α3)+ (a +ζ1)sin(α3), p1

3 = ξ1 cos(α3)+ζ1 sin(α3) (A.27)

q3
3 = q1

3 = q3 = −ξ1 sin(α3)+ζ1 cos(α3). (A.28)

(A.29)

Equation (A.24) gives the local coordinates of the endpoints y 1 and y 2 of edge L1, equations
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(A.25) and (A.26) give the local coordinates of the endpoints y 2 and y 3 of edge L2, and equa-

tions (A.27) and (A.28) the local coordinates of the endpoints y 3 and y 1 of edge L3. In addition,

the distance between the observation point x and the vertex y j can be computed via these

local coordinates simply as,

ρ1 =
√

(p1
1)2 + (q1)2 +η2, ρ2 =

√
(p2

2)2 + (q2)2 +η2, ρ3 =
√

(p3
3)2 + (q3)2 +η2. (A.30)

Finally, when evaluating displacement and traction vectors on the solid’s boundary,

θ(x) =

1
2

∑3
k=1γk (x)+θ0(x), if η> 0

1
2

∑3
k=1γk (x)−θ0(x), if η≤ 0

(A.31)

whereas in the case of evaluating displacement vectors at interior points of the solid,

θ(x) =

1
2

∑3
k=1γk (x)+θ0(x), if η≥ 0

1
2

∑3
k=1γk (x)−θ0(x), if η< 0.

(A.32)

In the previous two equations, θ0(x) depends on the location of the projection of x over the

plane PE in the direction e3 that we call x̃ . This is,

θ0(x) =



0, if x̃ ∈ PE \ Ē

θi , if x̃ = y i (i = 1,2,3)

π if x̃ ∈ L1 ∪L2 ∪L3 \ {y 1, y 2, y 3}

2π if x̃ ∈ E .

(A.33)

A.2.4 Computational implementation in C++

On the basis of the definitions of the previous section, the generic integrals given in the

appendix of Nintcheu Fata (2011) can be calculated via recursive formulae associated with

each edge Li of the triangle E . We implemented the numerical calculation of the generic

integrals that appear in the partial derivatives of f , equations (A.13) and (A.14), and the

subsequent computation of the elastic fields that are function of these partial derivatives

through equations (A.4) and (A.5).

The computational implementation was done in C++. The algorithm used for the computation

of the elastic fields is summarized below:

1. Assume x , {y 1, y 2, y 3} and di (i = 1,2,3) as known.

2. Compute the vectors {e1,e2,e3}, the geometric parameters a, b, c , and θi , the local coor-

dinates (p j
i , q j

i ,η), and the distances ρi , using equations (A.15) to (A.20), and equations

(A.24) to (A.30).

3. Compute the functions ρ̃i (x), φ̃i (x), χi (x), δi (x), L (x), D(x), Λi (x) and θ(x) using equa-
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tions (A.23), (A.33), and (A.31) or (A.32) depending on the location of the observation

point.

4. Compute the following generic integrals Ik , I ξk , I ζk (k = 3,5,7), I ξξk , I ξζk , I ζζk (k = 5,7), I ξξξ7 ,

I ζζζ7 , I ξξζ7 and I ξζζ7 , as defined in the appendix of Nintcheu Fata (2011).

5. Compute the partial derivatives f1, f2, ..., f333, using equations (A.13) and (A.14).

6. Compute the displacement ai j and stress bi j k (i , j ,k = 1,2,3) influence coefficients,

using equations (A.4) to (A.6).

7. Finally, compute the the displacement ui and stress σi j components using equation

(A.2).

Note that the elastic fields given by the previous algorithm are expressed in the local reference

system of the generic triangular dislocation loop E (see Figure A.1).

A.2.5 Verification

We tested our implementation for the computation of the generic integrals (steps 1 to 4 in

the algorithm described in the previous section) against numerical integration performed via

Wolfram Mathematica for observation points located outside the dislocation loop (otherwise

the integrals are singular and regular numerical integration procedures may loose precision).

This is done for a unit triangle with vertices given by y 1 = (0,0,0), y 2 = (1,0,0), and y 3 = (0,1,0),

and at different observation points x ∈R3. The results of this verification are summarized in

Table A.1. Many other cases for different triangular geometries were tested. The results were

systematically consistent.

A.3 The displacement discontinuity method

A.3.1 Formulation

As anticipated, the displacement and stress fields induced by a triangular dislocation loop

in an infinite solid can be used to develop an efficient numerical solver for boundary value

problems involving multiple arbitrary-shaped cracks in three dimensions. In our case, we

aim specifically at obtaining an expression that relates the distribution of displacement dis-

continuity components through the cracks to the distribution of the corresponding traction

components that need to be applied at the crack surfaces in order to satisfy elastostatic equi-

librium. We are interested here only in the case of an infinite solid, even though the extension

of the method to finite solids is straightforward (Crouch & Starfield, 1983).

Consider a discretization of an arbitrary-shaped crack surface Γ via a triangulation made

out of flat triangles such that Γ = ∪NE
i =1Ei , where Ei is the i -th triangular dislocation loop

element and NE is the total number of elements in the mesh. Consider now a constant

displacement discontinuity vector d j with components (d j
1 ,d j

2 ,d j
3 ) existing at every j -th
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Observation point = (1,0,0.3)T Observation point = (0.3,0.3,0.7)T

Exact formulae Numerical integration Exact formulae Numerical integration

I5 9.52059207 9.52059207 1.95541660 1.95541660

I ξ5 -2.35037195 -2.35037195 0.03421098 0.03421098

I ζ5 0.98559934 0.98559934 0.03421097 0.03421097

I ζζ5 0.20505000 0.20505000 0.07934980 0.07934980

I ξζ5 -0.35156588 -0.35156588 -0.02808261 -0.02808261

I7 64.55805175 64.55805175 3.47682764 3.47682764

I ξ7 -11.53353531 -11.53353531 0.04665346 0.04665346

I ξξ7 3.02978475 3.02978475 0.12588554 0.12588554

I ξζ7 -1.18701740 -1.18701740 -0.03915187 -0.03915187

I ξξξ7 -1.08743779 -1.08743779 0.01658548 0.01658548

Table A.1: Verification of some generic integrals. Analytical versus numerical integration.

triangle E j ( j = 1, ..., NE ) and expressed in the local reference system of E j as defined in the

previous section. Let us analyze the interaction between two dislocation loops Ei and E j .

First, let {e j
1,e j

2,e j
3} be the local orthogonal companion basis of the triangle E j . One can

define the rotation matrix R j = [e j
1,e j

2,e j
3] ∈ R3×3 (composed by column-vectors) and the

following transformation rule σg = R jσl (R j )T to transform the stress tensor from the local

reference system of E j to the global Cartesian reference system {0; i 1, i 2, i 3}. Likewise, the

rotation matrix associated with the triangle Ei can be defined as R i = [e i
1,e i

2,e i
3] ∈R3×3 and an

analogous transformation rule can be established. Furthermore, one can define the rotation

matrix R ∈R3×3 that characterizes the transition from the local reference system of E j to the

local reference system of Ei as,

R = (R i )T R j . (A.34)

Let t i j ∈R3 be the traction vector at the centroid1 of Ei induced by the constant displacement

discontinuity vector d j acting over the triangular dislocation E j , and expressed in the local

reference system of Ei . Since the elastic fields derived in section A.2 are expressed in the

local reference system of the applied dislocation loop (in our case E j ), one can show by using

equation (A.2), the corresponding transformation rules of R ∈R3×3, and the definition of the

1The selection of the centroid is arbitrary, in principle, it can be any point inside the triangle except at the edges
where the traction components are singular.
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Cauchy stress tensor t =σ ·n, that t i j takes the following form,

t i j = T i j d j (no sum on j ), (A.35)

where T i j ∈R3×3 is the stress influence matrix given by

T i j = [s1, s2, s3], (A.36)

with the column-vectors si

s1 = RB 1n, s2 = RB 2n, s3 = RB 3n. (A.37)

In the previous equation, Bi ∈ R3×3 (i = 1,2,3) are matrices whose entries are given by the

coefficients bi j k (i , j ,k = 1,2,3), equations (A.5) and (A.6), and n is the unit normal vector of

Ei expressed in the local reference system of E j , such that n = R j e i
3.

Finally, the traction vector at the centroid of the i -th triangular dislocation loop element t i ∈R3

due to the constant displacement discontinuities d j ∈R3 ( j = 1, ..., NE ) of all the NE triangular

dislocation loop elements can be computed by invoking the principle of superposition of

linear systems. Summing up the individual contribution given by equation (A.35), we obtain

t i =
NE∑
j =1

T i j d j . (A.38)

Repeating the same procedure for every i -th triangular dislocation loop element, one can

arrive to the final matrix-vector equation,

t = E d , (A.39)

where t ∈ R3NE is a vector containing the three components of all the individual traction

vectors evaluated at the centroid of each triangular dislocation loop element, E ∈R3NE×3NE is a

dense, fully-populated matrix accounting for the interaction and contribution of all triangular

elements, and d ∈ R3NE is a vector containing the three components of all the individual

displacement discontinuity vectors.

Note that equation (A.38) can be use to compute the traction vector at any arbitrary point in

R3 given a unit normal vector. A similar expression to (A.38) can be obtained to compute the

displacement vector and the stress tensor at any arbitrary point in R3.

A.3.2 Computational implementation in C++

On the basis of the definitions of the previous section, we implemented the computation of the

fully-populated elasticity matrix E ∈R3NE×3NE in C++, in order to solve general boundary value

problems in linear elasticity involving cracks of any shape in three dimensions, via equation
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(A.39). Note that both the traction vector t ∈R3NE and the displacement discontinuity vector

d ∈R3NE are expressed in (A.39) at the local reference systems of the corresponding triangular

dislocation loop elements.

A.4 Supplementary material: Axisymmetric boundary element ma-

trix

For the particular case of our planar axisymmetric circular rupture model (ν = 0), we im-

plement the displacement discontinuity method using ring-dislocation boundary elements

with piece-wise uniform displacement discontinuity (see Gordeliy and Detournay, 2011, for

example). The two relevant displacement discontinuity components are fault slip and fault

opening. Note that in our axisymmetric model, the slip is axisymmetric in terms of magnitude

but not in terms of direction. Fault slip is indeed unidirectional. The stress influence factors

Ei j that compose the collocation boundary element matrix E are obtained by subtracting

two concentric circular dislocation loops of different radii; a prismatic dislocation loop for

fault opening, and a glide dislocation loop for fault slip. The shear (or normal) stress Ei j at

the i -th collocation point located at ri due to the j -th ring-dislocation boundary element of

width ∆x j = R j −R j−1, where R j and R j−1 are the outer and inner radii of the ring, are thus

calculated by superposition as Ei j = F i
j −F i

j−1, where F i
j represents the shear (or normal) stress

at the i -th collocation point due to a circular dislocation loop of radius R j . The analytical

expression for F i
j is given by (see appendix B in Gordeliy and Detournay, 2011),

F i
j =µ∗ k

(
ρi j

)
8π

p
ρi j R j

k
(
ρi j

)2
(
1−ρ2

i j

)
4ρi j k1

(
ρi j

)2 E
(
k

(
ρi j

)2
)
+K

(
k

(
ρi j

)2
) , (A.40)

where µ∗ = 2µ for the shear (slip) component and µ∗ = E ′ (the plane-strain Young’s modulus,

which is equal to the Young’s modulus when ν = 0) for the normal (opening) component,

ρi j = ri /R j , k(x) = 2
p

x/(1+x), k1(x) = (1−x)/(1+x), and K (·) and E (·) are the complete

elliptic integrals of the first and second kind, respectively.

In the implementation of the displacement discontinuity method, we consider an equal

number of ring-dislocation boundary elements and collocation points, such that E is a squared

matrix of size 2N ×2N with N the number of boundary elements. The collocation points are

chosen to be located at the centroid of their respective elements.

210



Bibliography

Aki, K., & Richards, P. (2002). Quantitative Seismology (2nd edition).

Ampuero, J.-P., & Rubin, A. M. (2008). Earthquake nucleation on rate and state faults – aging

and slip laws. Journal of Geophysical Research: Solid Earth, 113(B1).

Andrews, D. J. (1976). Rupture propagation with finite stress in antiplane strain. Journal of

Geophysical Research (1896-1977), 81(20), 3575–3582.

Azad, M., Garagash, D., & Satish, M. (2017). Nucleation of dynamic slip on a hydraulically

fractured fault. Journal of Geophysical Research: Solid Earth, 122(4), 2812–2830.

Babaie Mahani, A., Kao, H., Atkinson, G. M., Assatourians, K., Addo, K., & Liu, Y. (2019). Ground-

Motion Characteristics of the 30 November 2018 Injection-Induced Earthquake Se-

quence in Northeast British Columbia, Canada. Seismological Research Letters, 90(4),

1457–1467.

Babaie Mahani, A., Schultz, R., Kao, H., Walker, D., Johnson, J., & Salas, C. (2017). Fluid Injection

and Seismic Activity in the Northern Montney Play, British Columbia, Canada, with

Special Reference to the 17 August 2015 Mw 4.6 Induced Earthquake. Bulletin of the

Seismological Society of America, 107(2), 542–552.

Baisch, S., Koch, C., & Muntendam-bos, A. (2019). Traffic light systems: to what extent can

induced seismicity be controlled? Seismological Research Letters, 90(3), 1145–1154.

Bandis, S., Lumsden, A., & Barton, N. (1983). Fundamentals of rock joint deformation. Inter-

national Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,

20(6), 249–268.

Bao, X., & Eaton, D. (2016). Fault activation by hydraulic fracturing in western canada. Science,

354(6318), 1406–1409.

Barenblatt, G. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Ad-

vances in Applied Mechanics, 7, 55–129.

Barenblatt, G. (1996). Scaling, self-similarity, and intermediate asymptotics (1st edition). Cam-

bridge University Press.

Baria, R., Baumgartner, J., & Gérard., A. (1996). European hot dry rock programme 1992-1995.

extended summary of the final report to ec (dgxii), contract jou2-ct92-0115. (tech. rep.).

211



Barton, C., Zoback, M., & Moos, D. (1995). Fluid flow along potentially active faults in crystalline

rock. Geology, 23(8), 683–686.

Baujard, C., Genter, A., Dalmais, E., Maurer, V., Hehn, R., Rosillette, R., Vidal, J., & Schmit-

tbuhl, J. (2017). Hydrothermal characterization of wells grt-1 and grt-2 in rittershoffen,

france: implications on the understanding of natural flow systems in the rhine graben.

Geothermics, 65, 255–268.

Bayart, E., Svetlizky, I., & Fineberg, J. (2016). Slippery but tough: the rapid fracture of lubricated

frictional interfaces. Physical Review Letters, 116, 194301.

Bear, J. (2013). Dynamics of fluids in porous media. Courier Corporation.

Behr, W. M., & Bürgmann, R. (2021). What’s down there? the structures, materials and envi-

ronment of deep-seated slow slip and tremor. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 379(2193), 20200218.

Bhattacharya, P., & Viesca, R. (2019). Fluid-induced aseismic fault slip outpaces pore-fluid

migration. Science, 364(6439), 464–468.

Bonnet, M. (1999). Boundary integral equation methods for solids and fluids. John Wiley &

Sons, Ltd.

Bonnet, M. (2017). Boundary integral equation methods for elastic and plastic problems. John

Wiley & Sons, Ltd.

Bosl, W., & Nur, A. (2002). Aftershocks and pore fluid diffusion following the 1992 Landers

earthquake. Journal of Geophysical Research: Solid Earth, 107(B12), ESE 17.

Bourouis, S., & Bernard, P. (2007). Evidence for coupled seismic and aseismic fault slip dur-

ing water injection in the geothermal site of Soultz (France), and implications for

seismogenic transients. Geophysical Journal International, 169(2), 723–732.

Boyet, A., De Simone, S., Ge, S., & Vilarrasa, V. (2023). Poroelastic stress relaxation, slip stress

transfer and friction weakening controlled post-injection seismicity at the basel en-

hanced geothermal system. Communications Earth & Environment, 4(1), 104.

Broberg, K. B. (1999). Cracks and fracture. Academic Press.

Bunger, A. P., & Lecampion, B. (2017). Four critical issues for successful hydraulic fracturing

applications. In X.-T. Feng (Ed.), Rock mechanics and engineering. CRC Press/Balkema.

Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip. Earth and

Planetary Science Letters, 495, 112–134.

Campillo, M., & Ionescu, I. R. (1997). Initiation of antiplane shear instability under slip depen-

dent friction. Journal of Geophysical Research: Solid Earth, 102(B9), 20363–20371.

Cappa, F., Scuderi, M., Collettini, C., Guglielmi, Y., & Avouac, J. (2019). Stabilization of fault slip

by fluid injection in the laboratory and in situ. Science Advances, 5(3).

212



Cappa, F., Guglielmi, Y., Nussbaum, C., De Barros, L., & Birkholzer, J. (2022). Fluid migration

in low-permeability faults driven by decoupling of fault slip and opening. Nature

Geoscience, 15(9), 747–751.

Carslaw, H., & Jaeger, J. (1959). Conduction of heat in solids (2nd edition). Oxford: Clarendon

Press.

Castellano, M., Lorez, F., & Kammer, D. S. (2023). Nucleation of frictional slip: a yielding or a

fracture process? Journal of the Mechanics and Physics of Solids, 173, 105193.

Cebry, S. B. L., Ke, C.-Y., & McLaskey, G. C. (2022). The role of background stress state in

fluid-induced aseismic slip and dynamic rupture on a 3-m laboratory fault. Journal of

Geophysical Research: Solid Earth, 127(8), e2022JB024371.

Cebry, S. B. L., & McLaskey, G. C. (2021). Seismic swarms produced by rapid fluid injection into

a low permeability laboratory fault. Earth and Planetary Science Letters, 557, 116726.

Chen, X., Nakata, N., Pennington, C., Haffener, J., Chang, J., He, X., Zhan, Z., Ni, S., & Walter, J.

(2017). The Pawnee earthquake as a result of the interplay among injection, faults and

foreshocks. Scientific Reports, 7(1), 4945.

Chen, X., Shearer, P., & Abercrombie, R. (2012). Spatial migration of earthquakes within seismic

clusters in Southern California: evidence for fluid diffusion. Journal of Geophysical

Research: Solid Earth, 117(B4).

Ciardo, F., & Lecampion, B. (2019). Effect of dilatancy on the transition from aseismic to seismic

slip due to fluid injection in a fault. Journal of Geophysical Research: Solid Earth, 124(4),

3724–3743.

Ciardo, F., Lecampion, B., Fayard, F., & Chaillat, S. (2020). A fast boundary element based solver

for localized inelastic deformations. International Journal for Numerical Methods in

Engineering, 121, 5696–5718.

Ciardo, F., & Rinaldi, A. P. (2021). Impact of injection rate ramp-up on nucleation and arrest of

dynamic fault slip. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,

8(1), 28.

Ciardo, F., & Lecampion, B. (2023). Injection-induced aseismic slip in tight fractured rocks.

Rock Mech. Rock Eng.

Clements, D., & Ang, W. (1988). Stress intensity factors for the circular annulus crack. Int. J.

Eng. Sci., 26(4), 325–329.

Cocco, M., & Bizzarri, A. (2002). On the slip-weakening behavior of rate- and state dependent

constitutive laws. Geophysical Research Letters, 29(11), 11-1-11–4.

Cornet, F. (2016). Seismic and aseismic motions generated by fluid injections. Geomechanics

for Energy and the Environment, 5, 42–54.

213



Cornet, F., Helm, J., Poitrenaud, H., & Etchecopar, A. (1997). Seismic and aseismic slips induced

by large-scale fluid injections. Pure and Applied Geophysics, 150, 563–583.

Crouch, S., & Starfield, A. (1983). Boundary element methods in solid mechanics: with ap-

plications in rock mechanics and geological engineering (1st edition). George Allen;

Unwin.

David, L., & Lazarus, V. (2022). On the key role of crack surface area on the lifetime of arbitrarily

shaped flat cracks. International Journal of Fatigue, 154, 106512.

Deichmann, N., & Giardini, D. (2009). Earthquakes induced by the stimulation of an enhanced

geothermal system below Basel (Switzerland). Seismological Research Letters, 80(5),

784–798.

Dempsey, J. P., Tan, L., & Wang, S. (2010). An isolated cohesive crack in tension. Continuum

Mechanics and Thermodynamics, 22(6), 617–634.
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