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Jour meilleur

Allergique à la vie, les matins sont obscurs.
Quand tout a un arrière-goût de déjà vu.
Les nuits sont mortes, tout le monde t’a abandonné, même la lune.
Mais la fin du désert se cache peut-être derrière chaque dune.

Tout va s’arranger, c’est faux, je sais que tu le sais.
Des fois je ne saurai plus trop quoi dire, mais je pourrai toujours écouter.
Tout ne va pas changer, enfin, sauf si tu le fais.
Quand tu as le désert à traverser, il n’y a rien à faire, sauf d’avancer.

On en rira quand on le verra sous un jour meilleur.

Civilisation
Aurélien Cotentin

To my family, partner, and friends. . .
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Abstract
Over the years, clinical institutes accumulated large amounts of digital slides from
resected tissue specimens. These digital images, called whole slide images (WSIs),
are high-resolution tissue snapshots that depict the complex interaction of cells at the
microscopic level. WSIs are critical to pathologists as they are used to identify disease
status and target appropriate patient treatments. However, the abundance of WSIs comes
with one primary drawback: the absence or scarcity of annotations. The accessibility to
labeled data is usually limited to critical information such as the patient’s clinical reports.
The reason is that generating additional annotations is tedious and time-expensive for
pathologists and, hence, should be avoided. Unfortunately, traditional supervised machine
learning relies on fully labeled data to be trained, which is unavailable in this context.
As a result, a significant part of the data ends up being discarded.

Out of the various approaches developed to tackle the inherent problem of label scarcity,
self-supervised learning (SSL) appears as a viable solution. SSL is based on the supervision
of data itself. In other words, it uses data structure as a pretext task to learn feature
representations. Consequently, self-supervised approaches can take advantage of the
broadly available clinical cohorts to train robust tissue descriptors without prior knowledge
of data labels. SSL models are mainly used to initialize downstream tasks such as
classification, segmentation, or survival analysis. Downstream tasks initialized with
pre-trained models generally require few labeled data to converge to optimal solutions,
thus reducing the impact of label sparsity.

Unfortunately, learning tissue representation from pathological data itself is challenging.
WSIs include various structural and visual biases that can hinder the performance of
our pre-trained models. For example, data acquired from different institutes might show
visual differences in staining intensity. This discrepancy appears as a strong domain shift
in the learned feature space, which makes pre-trained models less efficient for inter-clinical
applications. Another critical aspect is the inherent data complexity and heterogeneity,
which is not reflected in publicly available cohorts. These are often composed of curated
data that represent homogeneous tissue structures. This asymmetry can harm the quality
of tissue segmentation in downstream tasks and clinical metrics assessment.

In this thesis, we address the mentioned issues on computation pathology and label
availability. We propose novel approaches that take advantage of SSL to learn and build
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Abstract

complex tissue descriptors while avoiding access to labeled data. More specifically, we
first present a simple way to benefit from WSIs staining information to learn robust
feature spaces using SSL. Secondly, we tackle the problem of domain shift and data
heterogeneity by allowing the use of multi-source data to strengthen the quality of
feature representation. Next, we investigate the limitations of SSL when applied to tissue
segmentation and propose an alternative based on coarsely annotated data. Finally,
we conclude this work by building clinically relevant metrics based on our previously
designed architectures. By doing so, we aim to demonstrate the applicability of our
research by creating a bridge between theory and practice.

Keywords: Computer Vision, Machine Learning, Digital Pathology, Computational
Pathology, Self-supervised Learning, Label Scarcity, Survival Analysis.
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Résumé
Au cours des années, les instituts cliniques ont accumulé de grandes quantités d’images
numériques provenant d’échantillons de tissus réséqués. Ces images numériques, appelées
whole slide images (WSIs) en anglais, sont des “photographies” de tissus à haute résolution
qui décrivent l’interaction complexe des cellules au niveau microscopique. Ces diapositives
sont essentielles pour les pathologues, car elles permettent d’identifier le statut de
la maladie et de cibler les traitements appropriés. Cependant, l’abondance de WSIs
s’accompagne d’un inconvénient majeur, à savoir l’absence ou la rareté des annotations.
L’accès aux données annotées est généralement limité aux informations critiques telles
que les rapports cliniques des patients. La raison en est que la génération d’annotations
supplémentaires est fastidieuse et coûteuse en temps pour les pathologues et doit donc être
évitée autant que possible. Malheureusement, le traditionnel apprentissage automatique
supervisé repose sur des données entièrement annotées, qui ne sont pas disponibles dans
ce contexte. Par conséquent, une partie importante des données finit par être écartée.

Parmi les différentes approches développées pour résoudre le problème inhérent à la
rareté des annotations, l’apprentissage auto-supervisé (ou self-supervised learning (SSL)
en anglais) apparaît comme une solution viable. Le SSL est basé sur la supervision des
données elles-mêmes. En d’autres termes, il utilise la structure des données comme tâche
préalable à l’apprentissage de ses propres caractéristiques. Par conséquent, les approches
auto-supervisées peuvent tirer parti des cohortes cliniques disponibles pour former des
descripteurs tissulaires robustes sans connaissance préalable des annotations. Les modèles
SSL sont principalement utilisés comme initialisation pour des tâches concrètes telles que
la classification, la segmentation ou l’analyse de survie. Ces tâches qui sont initialisées
avec des modèles pré-entraînés nécessitent généralement peu de données annotées pour
être entraînées, ce qui réduit l’impact de la rareté de celles-ci.

Malheureusement, apprendre la représentation des tissus à partir des données patholo-
giques n’est pas une tâche triviale. Les WSIs comprennent divers biais structurels et
visuels qui peuvent entraver la performance des modèles pré-entraînés. Par exemple,
les données acquises dans différents instituts peuvent présenter des différences visuelles
en termes d’intensité de coloration. Ces divergences se manifestent par un décalage
dans la distribution des valeurs apprises, ce qui rend les modèles pré-entraînés moins
efficaces pour les applications intercliniques. Un autre aspect critique est l’hétérogénéité
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des données cliniques. Les cohortes accessibles publiquement sont souvent composées de
données épurées qui représentent des structures tissulaires homogènes. Cependant, dans
la pratique, les tissus sont des milieux complexes et hétérogènes. Cette asymétrie peut
nuire à la qualité de la segmentation des tissus. Elle est d’autant plus problématique
que la qualité de la segmentation est essentielle pour l’évaluation de certains paramètres
cliniques et par conséquent pour l’analyse de survie.

Dans cette thèse, nous abordons les limitations liées à la disponibilité des annotations.
Nous proposons de nouvelles approches qui tirent parti du SSL pour apprendre et
construire des descripteurs tissulaires complexes tout en évitant l’accès aux données
annotées. Plus précisément, nous présentons d’abord un moyen simple de tirer parti
des informations de coloration des WSIs pour apprendre des caractéristiques cohérentes.
Ensuite, nous nous attaquons au problème du décalage de domaine pour permettre
l’utilisation de données multi-sources. Par le suite, nous étudions les limites du SSL
lorsqu’il est appliqué à la segmentation des tissus et proposons une alternative basée sur
des données grossièrement annotées. Enfin, nous concluons ce travail en construisant des
métriques cliniquement pertinentes basées sur les architectures précédemment conçues.
Ce faisant, nous visons à démontrer l’applicabilité clinique de notre recherche en créant
un pont entre la théorie et la pratique.

Mots clés : Vision par ordinateur, apprentissage automatique, pathologie numérique,
pathologie informatique, apprentissage auto-supervisé, rareté des annotations, analyse de
survie.

vi



Sommario
Nel corso delgli anni, gli istituti clinici hanno accumulato grandi quantità di vetrini
digitali provenienti da campioni di tessuto asportati. Queste immagini digitali, chiamate
whole slide images (WSIs) in inglese, sono “fotografie” di tessuto ad alta risoluzione che
raffigurano la complessa interazione delle cellule a livello microscopico. Questi vetrini sono
fondamentali per i patologi, in quanto vengono utilizzati per identificare lo stato della
malattia e individuare i trattamenti appropriati per i pazienti. Tuttavia, l’abbondanza di
dati ha uno svantaggio principale : l’assenza o la scarsità di annotazioni. L’accessibilità ai
dati annotati è di solito limitata a informazioni critiche come il referto clinico del paziente.
Ciò è dovuto al fatto che la generazione di annotazioni aggiuntive è tediosa e costosa
per i patologi e quindi dovrebbe essere evitata. Purtroppo, il tradizionale apprendimento
automatico supervisionato si basa su dati completamente annotati per l’addestramento,
che non sono disponibili in questo contesto. Di conseguenza, una parte significativa dei
dati finisce per essere scartata.

Tra i vari approcci sviluppati per affrontare il problema intrinseco della scarsità di anno-
tazione, l’apprendimento auto-supervisionato, o self-supervised learning (SSL) in inglese,
appare come una soluzione praticabile. Il metodo SSL si basa sulla supervisione da parte
dei dati stessi. In altre parole, utilizza la struttura dei dati come compito preliminare per
apprendere la rappresentazione delle loro caratteristiche. Di conseguenza, gli approcci
auto-supervisionati possono sfruttare le coorti cliniche ampiamente disponibili per ad-
destrare robusti descrittori tissutali senza una conoscenza preliminare delle annotazione
dei dati. I modelli SSL sono usati principalmente come inizializzazione per compiti a
valle, come la classificazione, la segmentazione o l’analisi di sopravvivenza. I compiti a
valle che vengono inizializzati con modelli pre-addestrati richiedono in genere pochi dati
annotati per essere addestrati, riducendo così l’impatto della loro scarsità.

Purtroppo l’apprendimento della rappresentazione dei tessuti dai dati patologici non
è un compito banale. I WSIs comprendono diverse variazioni strutturale e visive che
possono ostacolare le prestazioni dei nostri modelli preaddestrati. Ad esempio, i dati
acquisiti da istituti diversi potrebbero mostrare differenze visive in termini di intensità di
colorazione. Questa discrepanza si manifesta come un forte scostamento del dominio nello
spazio delle caratteristiche apprese, che rende i modelli pre-addestrati meno efficaci per
le applicazioni inter-cliniche. Un altro aspetto critico è l’eterogeneità dei dati. Le coorti
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disponibili pubblicamente sono spesso composte da dati selezionati che rappresentano
strutture tissutali omogenee. Tuttavia, nella pratica, i tessuti sono struture complesse
ed eterogene. Questa asimmetria può compromettere la qualità della segmentazione dei
tessuti nelle applicazioni reali. È ancora più problematica perché le segmentazione a
grana fine sono essenziali per la valutazione delle metriche cliniche e quindi per l’analisi
della sopravvivenza.

In questa tesi, cerchiamo di affrontare le problematiche menzionate sulla patologia com-
putazionale e sulla disponibilità di annotazione. Proponiamo approcci innovativi che
sfruttano le informazioni di l’SSL per apprendere e costruire descrittori tissutali complessi
evitando l’accesso a dati annotati. Più specificamente, presentiamo innanzitutto un modo
semplice per trarre vantaggio dalle informazioni di colorazione del WSIs per apprendere
spazi di caratteristiche robusti. In secondo luogo, affrontiamo il problema del scostamento
di dominio e della eterogeneità dei data consentendo l’uso di dati provenienti da più
fonti, rafforzando così la qualità della rappresentazione delle caratteristiche. Successi-
vamente, analizziamo le limitazioni del SSL quando viene applicato alla segmentazione
dei tessuti e proponiamo un’alternativa basata su dati annotati in modo grossolano.
Infine, concludiamo questo lavoro costruendo una metrica clinicamente rilevante basata
sulle architetture precedentemente progettate. In questo modo, intendiamo dimostrare
l’applicabilità della nostra ricerca creando un ponte tra teoria e pratica.

Parole chiave : Computer Vision, Machine Learning, Patologia digitale, Patologia
computazionale, Apprendimento auto-supervisionato, Scarsità di etichette, Analisi della
sopravvivenza.
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1 Introduction

Tant qu’il y aura du malheur, il y aura de
l’inspiration.

Enfants terribles, Été triste
Lucas Taupin

This thesis focuses on the use of computer-based algorithms for histopathology, using
colorectal cancer (CRC) as a use case. Histopathology is the field of medical research
dedicated to diagnosing and studying diseases through tissue samples. When a patient is
diagnosed with CRC through screening, oncologists plan the treatment. That decision-
making can include pharmaceutical treatment, radiotherapy, and/or surgery. In the case
of surgery, the potentially hazardous tissue specimens are resected from the patient,
processed, imaged, digitized, and sent for extended diagnosis. These generated digitized
images, called whole slide images (WSIs), are snapshots of the tissues at the microscopic
level, which pathologists use to determine the tumor stage and, if necessary, make further
decisions on treatment planning. This assessment is performed by the evaluation of
observable markers in the tissue sample, such as the depth of invasion, lymphovascular
status, or metastasis. When available for multiple patients, these clinical markers are
sometimes used to predict group survival, thus improving our understanding of the
disease and treatment planning. This field of research is known as survival analysis.

The recent advances in scanning techniques allowed WSIs to reach previously unseen
image resolution and quality. Moreover, after years of deployment, institutes accumulated
considerable amounts of digitized scans. The availability of such a large set of digitized
data is an excellent opportunity for research and computational pathology to understand
the evolution and behavior of different diseases. Computational pathology is defined as
the use of computer-based models and resources to process and analyze WSIs. These
models could be used to assist pathologists in their daily routine by helping them to
automatically locate and identify the presence of tumors or predict specific biological
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markers.

Handling such a massive amount of data is not a trivial task for computers: processing
WSIs can be time-consuming and memory-wise expansive due to their high resolution.
However, the reduced availability of annotated data remains the main challenge. Indeed,
digitized images do not usually include manual annotations, such as cell- or tissue-type
labeling at the WSI-level. The few available information is stored at the patient level, in
their medical file, where details such as the type of cancer, the depth of invasion, or the
resection location are reported.

In addition, some recent computer-based algorithms, namely supervised machine learning,
need large amounts of annotated data to be trained and to learn from WSIs. One solution
to overcome the lack of labeled data would be for pathologists to manually annotate WSIs
to generate complementary data for supervised machine learning. However, in practice,
achieving such a task on a large set of data is tedious and time-demanding and, thus,
should be avoided. An alternative to supervised approaches that could overcome the need
for labeled data is self-supervised learning (SSL). Indeed, self-supervised models use the
data structure itself to learn feature representations and, therefore, do not require access
to labeled data. As a result, SSL can extract information from all the available data
even though they are unlabeled or partially labeled. It implies that publicly accessible
databases encompassing millions of tissues can be harnessed.

SSL works based on a two-step logic. First, it is used to learn tissue representation from
WSIs using encoders. Encoders are models that aim to synthesize information: when
presented with an image depicting a tissue, the encoder compresses its representation
and outputs a set of numerical values. Those values, called embeddings or features,
encapsulate multiple tissue information such as size, color, or shape. Second, encoders are
used to initialize other models performing additional tasks, called downstream tasks, such
as tissue classification or segmentation. Since the source SSL model provides valuable
tissue embedding, the downstream architectures typically require less annotation to be
trained. Consequently, few labeled data are often sufficient to achieve effective task
performances, thus reducing the impact of label sparsity.

Still, training SSL model using histopathological data is challenging. Apart from the
already mentioned issue on WSIs size, other aspects can harm the learning of the tissue
representations. For instance, WSIs cohorts can include scans from multiple institutes.
In theory, heterogeneous data strengthen the feature representation of SSL model by
proving diverse tissue examples from different sources. However, in practice, discrepancies
in the data can create variations in the encoded tissue distribution that are caused by
external factors rather than by the intrinsic features of the data. This discrepancy in
the data is known as a domain gap. Ideally, images from two distinct institutes should
share information once embedded through the encoder if they depict the same type of
tissues. However, if a domain gap exists, the two feature representations will not align,
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1.1. Roadmap of the Thesis

which can hinder the performance of the classification tasks when used for inter-clinical
applications.

Tissue segmentation is another limitation related to the application of SSL to histopatho-
logical data. Compared to classification, where weakly-labeled data are sufficient for
downstream tasks, a segmentation task requires pixel-wise annotations to produce fine-
grained outputs. Because such annotations are not available, WSIs output maps tend to
have a coarse tissue resolution. It is especially problematic as clinical markers used for
survival analysis typically rely on tissue segmentation.

In this thesis, the objective is to tackle the above-mentioned limitations of histopathol-
ogy. More precisely, this work focuses on building SSL architectures that learn tissue
representation from WSIs with limited access to labeled data and using them for various
downstream tasks. We first present a model that takes advantage of WSIs staining
information and spatial consistency to learn feature representation. Secondly, we address
the problems of heterogeneous data and domain gaps when working with multi-source
data. Thirdly, we demonstrate how to solve the problem of coarse tissue segmentation
using weakly-labeled data and SSL constraints. Finally, based on the previous work,
we generate - in an automated way - clinical markers at the patient level. The pre-
dicted metrics then serve an extensive survival analysis, which is performed along with
expert annotations to validate the approach. These experiments aim to highlight the
advantages of SSL in computational pathology and demonstrate its suitability for clinical
applications.

1.1 Roadmap of the Thesis

The thesis is divided into six chapters presenting the current state of the art (SOTA),
limitations, proposed methods, and conclusions of self-supervision and survival analysis
in histopathology.

Chapter 2 - Background and Prerequisites

This chapter introduces the main theoretical components of the thesis. It provides an
overview of basic medical knowledge related to the colon and rectal tract, as well as
its associated cancer, used to validate the methodology developed. The digitalization
of the resected CRC tumors to create WSIs, which allows histopathological diagnosis
and analysis, is then explained. Next, the field of computational pathology is presented.
It allows us to take advantage of today’s computational power to process, classify, and
segment WSIs using various algorithms. Then, a SOTA overview of the field of SSL
and its applicability to histology to learn tissue representation is provided. Afterward,
survival models, used to predict patient survival and hazards based on the learned tissue
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feature, are described. Finally, the public datasets and clinical cohorts used in this thesis
are listed and described.

Chapter 3 - Divide-and-Rule

This chapter presents our first contribution dedicated to a general solution for tissue
representation learning using SSL and constraints in the feature space. To do so, baselines
relying on spatial consistency and clustering to regularize the feature space are introduced.
Then, an optimization scheme named Divide-and-Rule (DNR), which takes advantage of
the WSIs spatial structure to improve feature embedding, is presented. In addition, a
stain-based reconstruction for the autoencoder (hematoxylin and eosin (HE) to RGB) is
proposed by exploiting the inner properties of the WSIs. Finally, a novel way to create
patient descriptors from classified WSIs and use them for survival analysis is introduced.

Chapter 4 - Self-Rule to Multi Adapt

This chapter addresses the domain gap limitation of data from public cohorts caused by
variations in the WSIs acquisition process. A novel SSL method called Self-Rule to Multi
Adapt (SRMA) is proposed to align feature representation from multi-source datasets to
the target space defined by our in-house data. By doing so, all publicly available data
can be used to transfer knowledge to in-house (private) cohorts.

Chapter 5 - Coarse to Refined

All the methods presented in the previous chapters output a coarse classification, which
hinders the prediction of reliable metrics for diagnosis. In this chapter, the coarse
to refined (C2R) approach, which aims to use SSL to refine classification outputs, is
introduced. The model takes as input weakly-labeled data, thus alleviating the need for
pixel-wise annotations. In addition, a unique solution to validate the models is proposed,
using consecutive tissue cuts and specific tissue staining.

Chapter 6 - Building Clinically Relevant Metrics

Throughout this thesis, we focused on tissue classification and segmentation. We can now
produce fine-grained tissue maps from WSIs using SSL-based approaches. In this chapter,
we propose to take advantage of our previous work to automatize well-established metrics.
We then compare our automated approach with existing clinical reports using survival
analysis. By doing so, we aim to create a link between research and practical applications.
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1.2. Contributions

Chapter 7 - Conclusion

Finally, a review of the main contributions is provided. In addition, the challenges
faced and their respective solutions are enumerated. Future directions to improve tissue
representation, WSIs classification, and survival analysis are then presented.

1.2 Contributions

In this thesis, we discuss our main research contributions:

1. Taking advantage of WSIs spatial structure and staining information to learn
feature representation in a SSL fashion [4],

2. Proposing a combination of SSL and unsupervised domain adaptation to allow the
use of multi-source data from publicly available cohorts [1, 2],

3. Refining segmentation maps by imposing various SSL constraints without the need
for fine-grained annotations,

4. Building an automated pipeline to predict clinically relevant metrics as tumor to
stroma ratio (TSR) and tumor border configuration (TBC) [3].
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2 Background and Prerequisites

Quand j’ai demandé des sources, on m’a dit
"C’est l’homme qui a vu l’homme qui a vu
l’ours"... Finalement, c’est peut-être les
épines qui ont des roses.

Storyteller, Storyteller
Médine Zaouiche

This chapter explains the scientific background needed to understand the content of the
thesis. We explore the main concepts of our research point by point. By the end of
this chapter, we aim to give the reader an understanding of the current research and
limitations in computational pathology.

To this end, we first provide an overview of the colon (and rectum) structure as well as its
associated cancer in section 2.1. We then explain in section 2.2 how digitized images are
generated from resected specimens such that they can be used for further diagnosis. In
addition, we create a link to the previous section and show how colorectal tissues look from
a histological point of view. In section 2.3, we explore the use of computational power to
process and learn from the newly acquired images. More specifically, we highlight and
discuss the constraints of the three most common learning approaches in computational
pathology: supervised, weakly supervised, and self-supervised. In section 2.4, we reach
the core concept of our research and go more in-depth about the advantages and uses of
self-supervision in computational pathology. In order to take advantage of the learned
tissue representation through self-supervision, we examine the field of survival analysis
in section 2.5, which is a critical end-task in personalized medicine. Moreover, we take
the opportunity to give insights on the public and private data used throughout this
research in section 2.6 for both feature representation and survival analysis. Finally, we
conclude this chapter in section 2.7.
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Figure 2.1 – Representation of normal colon and tumor depth of invasion. (a) Overall
anatomy and subsites. (b) Normal colon layers [105]. (c) Tumor depth of invasion T1-4.

2.1 Colorectal Cancer

Colorectal cancer (CRC) is named after the colon and rectum area. We speak about CRC
when the primary tumor site is located in the lower gastrointestinal tract. Worldwide,
around two million people are diagnosed with CRC every year, which makes it the third
most common cancer [20]. Common risk factors include age (less occurrence in young
adults), obesity, alcohol consumption, or family history (first-degree relative previously
developed CRC) [24]. Overall, the five-year survival rate is at 68%. However, if the cancer
is diagnosed at an early stage, the survival rate goes up to 90%. As a result, the number
of CRC related deaths significantly decreased over the years with the development of
better screening strategies.

In Switzerland, the statistics on CRC show the same trends. CRC is the fourth most
common cancer, with more than 4,500 new cases in 2022, and the second cause of
cancer-related mortality [92]. The five-year survival rate is 67% [92].

Before jumping into the specifics of the CRC, we first introduce the anatomical aspect of
the normal colorectal area in Figure 2.1a-b. The colorectal tract (or large intestine) is
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Table 2.1 – Simplified UICC TNM histopathological classification. T, N, and M indicate
depth of invasion, positive lymph node assessment, and presence of distant metastasis,
respectively. The prefix p is used to indicate that the variables are validated pathologically.

Staging pT pN pM
I 1-2 0 0
II 3-4 0 0
III any 1-2 0
IV any any 1

composed of the following segments: cecum, ascending colon, hepatic flexure, transverse
colon, splenic flexure, descending colon, sigmoid colon, rectosigmoid junction, and rectum
[6]. All along the tract, we find regional lymph nodes connected to the lymphatic system
as well as tissue irrigation with veins and arteries.

When analyzing a cross-section of the colorectal tract, we can distinguish multiple tissue
layers. The inner lining is defined as the mucosa. It is composed of intestinal glands (also
called colonic crypts) covered by a single layer of epithelial cells with various functions,
such as mucus secretion or water absorption. Attached to it is a thin muscle layer
(muscularis mucosae) that separates the mucosa from the submucosa. The submucosa
is filled by lymphatic vessels and blood vessels irrigating the inner colon. Further on,
we can find two muscle layers, circular and longitudinal muscularis propria, while the
outer layers are composed of the subserosa, which contains the fat cells and the serosa.
Note that both muscle layers are not always present/visible depending on the resection
location.

For cancer staging, we widely refer to the Union for International Cancer Control (UICC)
TNM classification system that grades cancer status based on T, N, and M categories.
The simplified classification process is depicted in Table 2.1. T refers to the size and
depth of the main tumor, namely how deep the cancer has grown in the organ. N is linked
to the number of positive regional lymph nodes, and M is the presence of metastasis
(spread of the main tumor to distant organs). We refer as pT, pN, and pM the variables
T, N, and M that have been validated post-surgery at the histopathological level [120].

As illustrated in Figure 2.1c, the pT stage in CRC is linked to the depth of invasion where
pT1, pT2, pT3, and pT4 refers to the progression of the main tumor into the submucosa,
muscuaris propria, subserosa/adventitia, and serosa, respectively. Lesions limited to the
normal mucosa (i.e. which do not go through the muscularis mucosae) are referred to as
in situ (Tis). In addition, the pN grading assesses the spread to regional lymph nodes.
It is defined as no spread to regional lymph nodes (pN0), up to three infiltrated lymph
nodes (pN1), and more than three infiltrated lymph nodes (pN2). Finally, the presence
of metastases is labeled as pM1. For CRC, the most common site of metastases is the
liver.
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Figure 2.2 – Digitization pipeline of a resected specimen. (1) Resection of the specimen
and selection of a representative area. (2) Fixing, embedding, and sectioning of the
specimen. (3) Resulting slide. (4) Staining of the slide using HE. (5) Final digitized
whole slide image (WSI).

Note that more detailed subcategories exist for cancer grading. They are labeled using
letters (e.g. pN1c) but are not covered in this document. In addition to the mentioned T,
N, and M variables, other metrics are assessed in clinical reports, such as venous invasion,
tumor grade, or budding. For an extended definition of clinical variables, please refer to
the supplementary material in section A.3.

2.2 Specimen & Slide Preparation

The diagnosis of CRC through screening or biopsies is typically followed by the resection
of the main tumor. After resection, the tumor is processed, fixed, analyzed, and then
graded by pathologists. The analysis of the specimen can be done through a microscope
or using a computer by visualizing a digitized version of the specimen. Digital pathology
is hence defined as the digitization process and data management of specimen slides.

In this section, we describe the process for tissue preparations composed of a series of
consecutive steps [61, 93]. The overall procedure is depicted in Figure 2.2. First, one to
multiple tissue samples are selected from representative areas of the resected specimen.
The so-called representative areas are small tissue samples that might contain relevant
information for diagnosis. It includes, for example, the center of the primary tumor,
tumor front, or regional lymph nodes (Figure 2.2-1).

The tissue is then fixed using formaldehyde (also known as formalin when dissolved in
water). The primary purpose of fixation is to preserve tissue by retaining its morphological
and chemical characteristics as much as possible. When applied to the tissue, the formalin
solution shows a penetration rate of approximately 1 mm an hour. As a result, large
specimens require more extended fixation periods than biopsies, which can usually be
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Figure 2.3 – Staining of three consecutive cuts using hematoxylin and eosin (HE),
trichrome, and immunohistochemistry (IHC). (a) Hematoxylin (purple) and eosin (pink)
staining. (b) Trichrome staining with fast green (blue/green), fuchsin (red), and hema-
toxylin (purple). (c) IHC with hematoxylin (purple) and DAB (brown).

processed in a single day.

After fixation, the tissue goes through dehydration, whose role is to remove water and
fixative and to further harden the tissue. Next, the tissue is embedded in liquid paraffin.
Here, the orientation of the tissue is critical as it will determine the cutting axis. For
example, colon tissue needs to be oriented such that, after cutting, we highlight all
the tissue layers (i.e. perpendicular to the inner colon surface). Finally, the tissue is
sectioned using a microtome (Figure 2.2-2). The resulting slices are typically between
2 − 5µm thick, so a single layer of cells is visible. Note that an alternative for tissue
preparation is named frozen section. This approach generates a poor-quality output with
major artifacts but has the advantage of being extremely fast. The tissue can typically
be processed in a few minutes and is mainly used when urgent diagnoses are needed (e.g.
for intraoperative tumor resection).

The slides are now fixed and technically ready for visualization (Figure 2.2-3). However,
in the current setting, the samples show poor contrast between elements and are hardly
interpretable. As a result, the slices need to be further stained. The staining is a chemical
process that artificially highlights/enhances tissue components using dyes. (Figure 2.2-4).
Several types of staining can be applied depending on the desired features that need
investigation. The most common staining is hematoxylin and eosin (HE). The dyes react
based on the basic and acidic composition of the tissue. The hematoxylin stains nuclei of
cells in purple, while the eosin stains the cytoplasm, extracellular matrix, and collagen in
pink. Another practice is Masson’s Trichrome staining, which enhances the presence of
collagen fibers. It is helpful to identify stroma and muscle tissue as they can be hardly
distinguishable using HE images when no contextual information is available. Finally,
we cite immunohistochemistry (IHC), which aims at targeting specific proteins. It comes
in handy when there is a need to identify small patterns, such as isolated tumor cells.
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Figure 2.4 – Visualization of the colon tissue layers after scanning. (a) Normal colon. (b)
Invasion of the tumor through the submucosa to the muscularis propria.

To visualize the differences in staining appearances, we show in Figure 2.3 an example of
three consecutive cuts stained with different approaches. We assume we have one-to-one
feature correspondence between the three cuts as their cutting planes are, by definition,
a few micrometers apart. The first image depicts an HE WSI region with a tumor cells
cluster structure in the center. In the second image, we observe the result of a Masson’s
Trichrome stain that allows us to differentiate between collagen fibers in blue, cytoplasm
in red, and cell nuclei in purple. Finally, on the far right section, the IHC stain where
antibodies (i.e. AE1 and AE3) are selected to highlight cancer that forms in epithelial
tissue (i.e. carcinoma) in dark brown. Note that the AE1 and AE3 antibodies target
epithelial cells in general. As a consequence, normal mucosa will also appear brown.

Once stained, the images are scanned using a high-resolution camera (e.g. 0.25µm/pixel)
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to create the final WSI (Figure 2.2-5). Knowing that microscope glass slides are typi-
cally 25mm× 75mm , a single digitized image can reach 0.1megapixels× 0.3megapixels,
corresponding to a total of 30 gigapixels. Consequently, WSIs are often called gigapixel
images. We often deal with the output magnification when working with WSIs. It
defines the objective lens employed by the scanner and is independent of the camera’s
resolution [127]. Still, both values are inversely proportional. Given an output resolution
of the tissue at 20× (e.g. 0.5µm/pixel), we can expect its resolution to halve if we use
a magnification at 10× (i.e. 1µm/pixel). The same logic applies when doubling the
magnification to 40× (i.e. 0.25µm/pixel).

A visualization of the generated output from a normal colon sample is depicted in
Figure 2.4. In the first row, we highlight the main normal tissue layers as described in the
previous section. On the far left, the normal mucosa can easily be identified by its colon
crypts that are “flower shaped”. It is followed by the muscularis mucosae, which acts as
a boundary between the normal mucosa and the submucosa supplying it. The muscularis
propria appears to the right of the submucosa with both circular and longitudinal muscle
layers. Finally, on the far right, we observe the subserosa and serosa that form the limit
of the organ. On the bottom row, we can observe a tumor infiltration of the normal
tissue. Following the muscularis mucosae, we can identify the region where the tumor
breached through the boundary, allowing itself to progress further into the submucosa
and muscularis propria.

2.3 Computational Pathology

So far, we have described how to acquire digitized images. It is now time to go further and
learn how to take advantage of the generated data to perform clinical analysis. In daily
diagnosis, pathologists use either microscopes or visualization software to review cases
and perform tumor grading. These dedicated software often include various automated
tools to process the visualized image.

Computational pathology, sometimes called CPATH, uses computational power to process
histopathological images. It is often regarded as a complementary field that aims to
help pathologists in decision-making. Computational pathology has the advantage of
being able to process, learn, and synthesize large amounts of data. Various tools have
been developed to perform basic tasks such as stain estimation and extraction, tissue
description, or cell classification. For example, we recommend using QuPath [11], which
is an open software that allows simple visualization and processing of WSIs.

In this section, we first introduce the basics of WSIs stain extraction (subsection 2.3.1)
and normalization (subsection 2.3.2). Next, we explain how we can take advantage of
computational resources and machine learning to achieve various end tasks such as feature
representation or tissue classification (subsection 2.3.3). Finally, we give an overview of
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the metrics used in this document to assess the quality of the feature representations
(subsection 2.3.4).

2.3.1 Stain Extraction

WSIs use various stains such as HE to highlight tissue features. Nevertheless, the
appearance of stains can vary between slides based on their tissue density or the scanning
device. To solve this, we use stain extraction to isolate dye components from WSIs for
further normalization.

Let’s assume we have an RGB representation x ∈ [0, 1]3 of a pixel. Here, we want to
estimate its corresponding staining density s ∈ RNs+ where Ns is the number of stains (e.g.
Ns = 2 for HE). Light transmission depends on stains’ concentration in a non-linear way
[122]. Therefore, doubling the pixel values does not mean doubling its visual intensity.
Hence, we define the optical density (OD) equivalent of the input:

x′ = log(max(x, ε))
log(ε) , (2.1)

where ε� 1 is used to fix numerical instability when dealing with extreme values. The
computed OD is linearly proportional to the optical concentration of the stain. We then
define a conversion matrix V ∈ RNs×3 and its inverse V−1 ∈ R3×Ns to move from the
color space to the staining space and vice-versa. The relation between the RGB values
and staining representation is:

s = x′V−1 and x′ = sV. (2.2)

If the number of stains is lower than the one of RGB channels (i.e. Ns < 3), the inverse
of the conversion matrix is not defined. To overcome this issue, we use the Moore-Penrose
pseudo inverse V†:

V† = V>(VV>)−1. (2.3)

Most staining methods typically include two to three stains per WSI. The design and
creation of the conversion matrix V is essential to move from the RGB to the staining
space. We present the Ruifrok [122], Macenko [96], and Vahadane [139] methods, three
well-known strategies to estimate it. For better understanding, a visual comparison
between the approaches on a HE tile is depicted in Figure 2.5.
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Figure 2.5 – Example of stain estimation from an RGB image into its hematoxylin and
eosin (HE) components. We compare the three main approaches: Ruifrok [122], Macenko
[96], and Vahadane [139].

Ruifrok Estimation

In Ruifrok [122], they use pure staining concentration to estimate the conversion matrix.
In other words, they use single stained WSIs to measure absorption for red, green, and
blue channels. The results are aggregated over multiple regions to get the estimated
conversion matrix for hematoxylin (H), esosin (E), and diaminobenzidine (DAB):

V =


R G B

0.18 0.20 0.08 H
0.01 0.13 0.01 E
0.10 0.21 0.29 DAB

 . (2.4)

H, E are the two channels that form HE stained images. DAB highlights the content
of IHC slides. Together, these three components represent the most common stains in
histology. The matrix is then normalized row-wise to get the final estimation of the
conversion matrices:

Vruifrok =

0.65 0.70 0.29
0.07 0.99 0.11
0.27 0.57 0.78

 and V−1
ruifrok =

 1.88 −1.02 −0.55
−0.07 1.13 −0.13
−0.60 −0.48 1.57

 .
(2.5)

The matrices are fixed and can directly be applied to predict stain concentration in WSIs.
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A database of other stain estimations using the same approach is available online [87].

Macenko Estimation

When dealing with data from different institutes, we can see the limitations of using a
fixed conversion matrix. The estimation quality is directly affected by various factors,
such as the tissue’s local thickness or scanner settings.

In this context, an approach that can compute robust statistics from individual WSIs is
more appropriate, such as Macenko [96] that uses singular value decomposition (SVD)
to extract and isolate staining components. More formally, let M ∈ RN×3 be a set of N
OD measurements of RGB pixels from a WSI (Equation 2.1). We perform SVD on the
measurements’ covariance matrix to extract the eigenvectors. As the covariance matrix
is real symmetric, the SVD computation is relaxed and becomes:

cov(M,M) = E[(M− E[M])(M− E[M])>] SVD= U>ΛU, (2.6)

where E is the expectation operator, U contains the eigenvectors of the covariance matrix,
and Λ is a diagonal matrix with eigenvalues as entries. We assume that the two largest
eigenvalues are enough to capture most of the staining information. We then project the
measurements on the new 2D basis formed by the eigenvector and compute the resulting
angles φ ∈ RN for each entry as:

φ = arctan2 (MU) , (2.7)

where arctan2 is a function that measures the angles of the resulting vectors with respect
to the origin. Figure 2.6 shows an example of angle distribution across the measurements.
Based on the distribution of the angle, we select the top α-th and (1− α)-th percentiles
to get an estimation of the support vectors that are less sensitive to outliers as:

φαth = Qα(φ) and φ(1−α)th
= Q(1−α)(φ). (2.8)

Here Qα denotes the quantile function for a given α ∈ [0, 1]. Based on the newly computed
angles, we can retrieve their support vectors:

v1 = U
(

cos(φαth)
sin(φαth)

)
and v2 = U

(
cos(φ(1−α)th

)
sin(φ(1−α)th

)

)
. (2.9)
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Figure 2.6 – Stain estimation using the Macenko approach. (a) Input RGB measurements.
(b) 2D projection of the measurements based on matrix decomposition and estimated
stains. (c) Distribution of angles φ based on the two largest eigenvectors as well as the
estimated quantiles Qα and Q1−α (α=0.99).

In practice, we use α = 0.99. The newly estimated conversion matrix is defined as the
concatenation of both support vectors:

Vmacenko =
(
v1 v2

)>
. (2.10)

It is also important to mention that discarding measurements with high luminosity
improves the quality of the estimation. Such values are considered part of the background
and do not carry any stain information. It is done by converting the image to the LAB
colorspace [28] and applying a threshold δl ∈ [0, 1] on the luminescence channel. The
threshold is typically high and set to δl = 0.8.

Vahadane Estimation

In Vahadane [139], they propose a stain separation approach that maximizes the rep-
resentation sparsity and assumes a non-negative stain density. Here, we start with the
same set of OD measurements M ∈ RN×3 from a WSI. We then use dictionary learning
to find a positive matrix V ∈ RNs×3

+ , where Ns is the size of the dictionary (i.e. number
of stains) that satisfies:

arg min
V,D

‖M−DV‖22 + λ
N∑
i=1
‖di‖1, (2.11)

where ‖vj‖22 ≤ 1, ∀j ∈ {1, . . . , Ns}.

The values of D =
(
d0 · · · dN

)
∈ RN×Ns+ are jointly optimized to ensure sparsity of

the representation through the l1-norm. Dictionary learning will not be discussed in
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this work. However, such optimization constraints are well known, and we recommend
referring to SPArse Modelling Software (SPAMS) [97] for additional information and
implementation.

2.3.2 Stain Normalization

One of the main advantages of dynamic stain estimation is the normalization of the
staining information between WSIs. Basically, given a target and a source WSI, we can
normalize the entries of the source image such that it follows the color distribution of
the target one. Such a technique comes in handy when using models trained on cohorts
whose staining concentration and appearance differ from in-house data.

More formally, let’s assume two sets of OD measurements Msrc ∈ RN×3 and Mtar ∈ RM×3

which represent our source and target image, respectively. We extract their stain
concentration using one of the previously defined approaches (e.g. Macenko) to get
Vsrc,Vtar ∈ RNs×3. The staining representations Ssrc ∈ RN×Ns and Star ∈ RM×Ns are
given by:

Ssrc = MsrcV−1
src and Star = MtarV−1

tar. (2.12)

For each representation, we extract the range of stain concentrations. For the lower bound,
we assume that the staining representation cannot be negative (i.e. (S)i,j ≥ 0, ∀i, j).
For the upper bound, we use the (1 − α)-th quantile of the source and target stain
representation to be less sensitive to outliers. We define the normalized stain as the
re-scaled source concentration:

Snorm =
(
Sinorm · · · SNsnorm

)
and Sinorm =

Q(1−α)(Sitar)
Q(1−α)(Sisrc)

Sisrc, (2.13)

where Si is the i-th stain entry and i ∈ {1, . . . , Ns}. Note that a commonly used value for
upper bound estimation is α = 0.99. Finally, the normalized concentration is projected
back to the OD RGB space as:

Mnorm = SnormV. (2.14)

An example of stain normalization is given in Figure 2.7, where we can observe the
normalization of a source image to the target color distribution. We also display the
detected stain distributions for the source, target, and normalized image. Other methods
have been developed to solve the problem of image normalization, such as the use of the
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Figure 2.7 – Stain normalization using the Macenko approach. (a) Source image to
normalize. (b) Target distribution to match. (c) Distribution of stains for source and
target image as well as their estimated quantiles Qα (α = 0.99) and the resulting
normalized stain concentration. (d) Normalized source image based on target stain.

LAB colorspace instead of the conventional RGB space [134], or more elaborated methods
that take advantage of neural networks to train Gaussian mixture models [156]. However,
complex methods tend to increase computational time while only slightly improving the
result.

Before concluding, we list good practice recommendations to improve the quality of image
normalization. First, to avoid negative stain concentration, we encourage the use of
regularized optimization instead of pseudo inverse to impose sparsity and non-negativity
[139]. Secondly, we recommend using simple tricks to reduce the computational time [7].
Finally, it is essential to note that the normalization performance is linked to the image’s
color statistics. As a result, we suggest using large areas that include heterogeneous
tissue representations to cover a wide range of stain intensities.

2.3.3 Learning Feature Representation

When it comes to computational pathology, we rely on large WSIs that embed rich
multi-level tissue features (i.e. tissue available at different magnifications). A question
then arises: “How can we take advantage of such a large amount of data for clinical
applications?”. The answer to that question is not trivial, as it mainly depends on
the type of data available. For example, a straightforward solution would be to build
handcrafted features and use them to perform downstream tasks. However, such a
solution comes with two main drawbacks. First, it is time-consuming as the development
of handcrafted features often relies on a try-and-error strategy, and second, it is based
on the assumption that we have prior knowledge of what could be sets of discriminant
features for WSIs representation.

Here, we propose to use machine learning and neural networks to extract information
from WSI. Neural networks have the advantage of being able to learn discriminant
information by themselves. Moreover, machine learning can be used for various end
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Figure 2.8 – Presentation of the three main learning approaches for feature representation
as (a) supervised, (b) weakly supervised, and (c) self-supervised. Each WSI is composed
of multiple crops. We denote the patch, patch labels, WSI-level label, patch predictions,
and WSI-level prediction as Xi, yi, y, ŷi, and ŷ, respectively. The color overlays indicate
the location of labeled tissue classes.

tasks such as tissue classification, segmentation, or survival prediction. We list the three
most common learning strategies used in computational pathology to process and learn
from large histopathological datasets. A representation of the mentioned approaches is
depicted in Figure 2.8.

Supervised Learning

Let’s assume we have access to a WSI named W. This WSI is a composition of smaller
RGB patches that we denote as Xi ∈ W, where i ∈ {1, 2, . . . , |N |} is the index of the
image within the WSI. In the case of supervised learning, for each image tile, we have
access to a label yi that indicates the type of tissue present in the image such that it
forms a pair (Xi, yi). The pair is used to train a model whose output ŷi is compared to
the original label. Based on the predictions, the weights of the architecture are then
optimized until convergence (Figure 2.8a).

This procedure works well on large datasets such as ImageNet [42], where full annotations
are available. However, this is scarcely true in histopathology. Due to the large size
of WSIs, it is highly time-consuming to fully label them. Moreover, when it comes to
segmentation tasks, creating masks is sometimes unfeasible as certain areas are composed
of a mixture of tissues whose delimitations are barely distinguishable. The procedure
often requires additional staining to identify the presence of specific markers and tissues.

Weakly-supervised Learning

We refer to weakly-supervised learning when we rely on limited or imprecise labeled data,
which arises in different scenarios.
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The first example is partially annotated WSI where only subareas of the WSI are labeled
(Figure 2.8b.1). In this case, an expert annotator explicitly locates the presence of specific
tissue regions (e.g. tumor) within the WSI. We endup with few labeled pairs (Xi, yi)
with i ∈ {1, 2, · · · ,M},M � N . Knowing the local labels, it is still possible to follow a
standard supervised learning approach to train our network. However, the selected areas
only represent a small part of the WSI, and as we lack additional information about the
class distribution of the unlabeled areas, the remaining areas are usually discarded.

A second example is WSI-level labels (Figure 2.8b.2). In this case, we have access to
a single label y for each WSI. WSI-level labels are often available after clinical reports,
alongside various information such as the WSI staining, the presence of tumor within
the slide, or the type of organ it comes from. Such information can be processed to
learn discriminant features. However, one of the main drawbacks of this approach is the
localization of the region of interest. For example, when a WSI is labeled as “tumor”, it
does not necessarily mean that the whole tissue is composed of tumoral tissue but at
least part of it. As a result, the designed architecture often needs to implement a ranking
system to retrieve the positive tiles at inference time. Moreover, learning from gigapixel
images using a single label is difficult as it can quickly converge to trivial solutions.

Self-supervised Learning

Last but not least is the use of self-supervised learning (SSL). In this setup, we do not
have access to any of the labels. As a result, we must rely on something other than the
usual supervised methods to train the model. Here, the goal is to learn relevant feature
discriminators for future downstream tasks. Self-supervised approaches try to create
their own supervision from the input data (Figure 2.8c) to learn feature representations.
SSL is often mixed with unsupervised learning as both fields assume missing labels. In
fact, SSL is a branch of unsupervised learning. We speak about SSL whenever the model
creates its own supervision from the data. On the other hand, unsupervised learning
define all methods that do not rely on labeled data, such as clustering, anomaly detection,
or SSL [10].

Let’s assume we have access to a large amount of data from clinical WSIs and that
we are able to learn in a self-supervised fashion a feature extraction model such that
zi = fφ(Xi), where fφ is the model with learned parameters φ and zi the corresponding
extracted features from a tissue sample Xi. In addition, we assume that the model is
designed such that the dimensionality of the feature space is much lower than the one of
the input image. It means that for every tissue sample, we can get a compressed feature
representation of the input, thus easing future downstream tasks. Such models are often
called pre-trained or feature extractor models.

The use of pre-trained models comes with multiple advantages. Firstly, as they do not
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need labels, they can be trained on full cohorts to capture a wide range of tissue features.
This is critical as clinical cohorts are mainly composed of unlabeled data. Secondly, as
the model is trained on large cohorts, it is not task-specific, meaning that the same
pre-trained model can be used to solve both classification and segmentation problems.
Lastly, as the pre-trained models provide a compressed representation of tissues, it
typically lowers the number of annotations needed for downstream tasks. It is interesting
as it saves experts precious time.

2.3.4 Metrics

We finish this section by reviewing the principal metrics used in this research to assess
the quality of the classification and segmentation predictions.

F1-score

For classification, we prefer the use of F1-score as it considers the distributions and
occurrences of classes. Given a set of binary labels and predictions, we define the
class-wise F1-score:

P = TP

TP + FP
, R = TP

TP + FN
, and F1 = 2 PR

P +R
, (2.15)

where TP , FP , and FN are the number of true positives, false positives, and false
negatives, respectively.

When dealing with multiple classes, the F1-score is computed class-wise and afterward
averaged. Three main averaging strategies exist: micro, macro, and weighted. The
selection of the method is based on the end task. If the classes have equal importance
but different densities, we recommend using the macro score (i.e. average of F1-scores
across classes). Otherwise, the weighted solution is preferred (i.e. weighting average of
F1-scores based on class densities). The micro score is less common as it is similar to a
simple accuracy measure.

Dice and Intersection over Union

When it comes to evaluation segmentation, we typically use Dice (DSC) or intersection
over union (IOU) score:

DSC = 2|A ∩B|
|A|+ |B| and IOU = |A ∩B|

|A ∪B|
, (2.16)
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where A and B are ground truth and predictions map, respectively. By taking a closer
look at the DSC metric, we can see that its definition is the same as the F1-score. In
the literature, DSC is sometimes also referred to as Sørensen–Dice. As for IOU, it is
occasionally called Jaccard-Index. We scarcely report both DSC and IOU as they are
directly linked.

DSC = 2 IOU
1 + IOU . (2.17)

In this work, we prefer the use of DSC score to stay consistent with the evaluation of the
classification tasks.

Interobserver Agreement

One aim of this thesis is to provide automated approaches to assess clinical values to
lighten pathologist workload and allow analysis of large cohorts. The proposed automated
solution requires validation against experts’ annotations. To do so, we use the Cohen’s
kappa (κ) coefficient, also known as interobserver agreement (IOA), which measures the
level of agreement between two raters. For the binary case, it is defined as:

IOA = 2(TP · TN− FN · FP)
(TP + FP)(FP + TN) + (TP + FN)(FN + TN) , (2.18)

where TP , TN , FP , and FN are the number of true positives, true negatives, false
positives, and false negatives, respectively. For continuous variables, we recommend the
use of Pearson correlation or r2 coefficient of determination.

By ways of comparing, IOA value within range [0, 0.2], ]0.2, 0.4], ]0.4, 0.6], ]0.6, 0.8] and
]0.8, 1.0] are referred to as none, fair, moderate, substantial and near perfect agreement
respectively [99].

Chamfer Distance

Last but not least is the evaluation of tissue structure segmentation. The DSC score
provides the overall performance of a classification method but does not take into account
the spatial distribution of the output. Therefore, when detecting small patterns such
as tumor cells or invasion, we need to ensure we preserve the object structures. To do
so, we report density-aware Chamfer distance (DCD) that evaluates spatial coherence of
predictions [150]. More formally, let Sx, Sy ⊂ R2 be the sets of points from the labels
and predictions maps, respectively. We define DCD as:
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Figure 2.9 – Comparison between Dice (DSC) and density-aware Chamfer distance (DCD)
metrics based on ground truth and different predictions over two classes A and B. Both
outputs achieve a similar DSC score. A higher DCD score highlights a better preservation
of the class structures.

DCD = 1
2|Sx|

∑
x∈Sx

1− 1
nŷ
e−α‖x−ŷ‖2

+ 1
2|Sy|

∑
y∈Sy

1− 1
nx̂
e−α‖y−x̂‖2

 , (2.19)

ŷ = min
y∈Sy
‖x− y‖2, and x̂ = min

x∈Sx
‖x− y‖2,

where nŷ and nx̂ are local density estimators, and α ∈ R+ is a temperature factor. Here,
for each point x ∈ Sx in the label set, we compute its distance to the closest point ŷ ∈ Sy
in the evaluation set. The distance is then weighted based on the local density (i.e. total
number of points in Sx sharing the same ŷ as x). We then mirror the operation by
considering Sy as the evaluation set instead of Sx. The final prediction is the average of
both metrics, which should be minimized. In our case, we assume the local density is
nx̂ = nŷ = 1 as the local point density is the same in the 2D image plane. In Figure 2.9,
we show an example of the structure-preserving aspect of the DCD. While DSC scores are
similar, the second prediction shows more spatial consistency with the reference labels
and thus achieves much lower DCD.

2.4 Self-supervision and Computational Pathology

When it comes to histopathological data, we have access to a large amount of unlabeled
data. As they lack annotations, those data are usually discarded in standard supervised
approaches. In this section, we introduce SSL that aims to learn feature embedding from
unlabeled data. Such optimization models are able to build strong feature encoders that
can later be used for downstream tasks. Recent works use encoders’ architectures such
as residual networks (ResNets) [65] or vision transformers (ViTs) [47] to embed features.
However, in most cases, the encoder selection is independent of the formulation of the
problem.

24



2.4. Self-supervision and Computational Pathology

Figure 2.10 – Evolution of the top performing SSL models and backbones on ImageNet-1K
classification. We report both k-NN and linear evaluation for CPC [110], SimCLR [31],
MoCo [64, 32, 34], BT [157], SwAV [22], BYOL [59], BEiT [12], DINO [23, 111], and
iBOT [163]. (a) Timeline of the overall best performance on linear evaluation. (b) k-NN
and (c) linear evaluation for various architectures with the number of parameters.

An overview of the top performing models in the SSL field is depicted in Figure 2.10.
We highlight the evolution of the models’ performances on ImageNet-1k, which is the
reference dataset for SSL evaluation. The dataset includes a large variety of 1, 000 classes,
such as vehicles, dog breeds, vegetables, or even furniture. The images do not depict
medical tissue. However, the span and variety of classes are large enough to give a good
approximation of the model’s global performances. The top view depicts the evolution
of the best top-1 linear evaluation accuracies across the years. The bottom plots give a
more detailed performance overview as a function of the work, encoder, and number of
parameters used for k-NN and linear evaluations. Linear evaluation is defined as a single
linear layer trained on top of the pre-trained encoder, while k-NN is defined as the direct
evaluation of the embedding space (raw features).

In subsection 2.4.1, subsection 2.4.2, and subsection 2.4.3, we introduce the most common
SSL approaches as constrastive learning (CL), correlation/clustering-based, and self-
distilation, respectively. In subsection 2.4.4, we present the concept of self-supervision
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Figure 2.11 – Illustration of constrastive learning applied to histological patches. (a) The
reference image is named anchor. (b-c) The anchor forms a positive (visually similar)
and negative pair (visually dissimilar). (d) The optimization process tries to maximize
the similarity of the anchor to the positive example while repelling the negative one.

using auxiliary tasks and its application to histological images. Finally, we present the
latest trends in SSL for histological data subsection 2.4.5. For an extended introduction
to SSL, we recommend the works of [10, 36].

2.4.1 Contrastive Learning

A wide variety of SSL models rely on the principle of CL to learn feature embedding.
We start with an image, called an anchor, representing any data (e.g. image of a tumor).
Then, two additional images are selected. The first one is called the positive image and
is assumed to share visual similarity with the anchor (e.g. another example of tumor).
The second is called negative and is, on the contrary, visually different from the original
anchor (e.g. a muscle tissue). CL aims at increasing the feature similarity between the
anchor and positive example while maintaining disparity with the negative sample, as
depicted in Figure 2.11.

More formally, we assume we have access to multiple RGB images Xi ∈ RH×W×3 from a
dataset W such that {Xi}Ni=1 =W , where H and W denote the width and height of the
image, N the size of the dataset, and i the index of the image within the dataset. For each
image, we extract its embedding using an encoder fφ : RH×W×3 → RD as zi = fφ(Xi),
where D is the size of the embedding, and φ the model’s learnable parameters. In
addition to the images and their embedding, we assume we have access to two sets of
labeled pair indexes that indicate whether two samples are considered positives (similar)
or negatives (dissimilar):

I = {(i, j) | Xi,Xj are similar}, and \I = {(i, j) | Xi,Xj are dissimilar}. (2.20)

One of the first significant works on CL uses it for face verification [26, 35]. The
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Figure 2.12 – Architectures using contrastive learning to learn feature representation.
(a) Architectures NPSC [151], MoCo [64], SimCLR [31], and MoCov2 [32] for loss
optimization L given a input image sample Xi, augmentations ξs, ξt, encoder (student,
teacher) fφ (fφs , fφt), projection head fψ, queue Q, memory bank Z, and moving average
(MVA). (b) Different ways to maintain and update the set of negative samples for CL
given a new embedding zi.

optimization term is built such that it tries to reduce the distance between the anchor
(reference face) and the positive sample (face from the same person) while maximizing
the distance to the negative one (face of an impostor). The loss is named triplet loss and
relies on three components (i.e. anchor, positive, and negative samples). It is defined as:

min Ltriplet = min
φ

∑
(i,j)∈I

‖zi − zj‖2︸ ︷︷ ︸
Positive pair

+
∑

(i,j)∈\I
max(0, α︸︷︷︸

Margin

− ‖zi − zj‖2︸ ︷︷ ︸
Negative pair

), (2.21)

where α ∈ R+ is a tolerance margin acting as a threshold to avoid the collapsing of the
representation (i.e. convergence to constant vectors). The Euclidean distance measures
the similarity of positive and negative pairs. To minimize the loss, the model needs to
reduce the positive pair distance while maximizing the negative ones.

As the research progresses, the triplet loss is iteratively updated. The Euclidean distance
and positive part function are progressively replaced by the cosine similarity and the
exponential function [62, 110, 151]. In Figure 2.12, we highlight the evolution of the
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recent methods for CL and their way of handling negative entries. In NPSC [151], they
use a simple architecture zi = fφ(Xi) and a noise-contrastive estimation (NCE) loss to
learn feature representations:

P (z, z+,Z−) =
exp

Positive pair︷ ︸︸ ︷
z>z+/τ

‖z‖2‖z+‖2

exp z>z+/τ

‖z‖2‖z+‖2︸ ︷︷ ︸
Positive pair

+ ∑
z−∈Z−

exp z>z−/τ
‖z‖2‖z−‖2︸ ︷︷ ︸

All negative pairs

, (2.22)

min LNCE = min
φ

N∑
i=1
−

 log(P (zi, z̃i,Z\z̃i)) +
N∑

k=1,k 6=i
log(1− P (z̃i, z̃k,Z\z̃i))

 ,
(2.23)

where τ ∈ R+ is called the temperature and controls the sharpness of the confidence
predictions [145] and Z = {z̃i ∈ RD}Ni=1 the memory bank that keeps track of all samples
embedding. When a new sample zi is produced by the encoder, its respective entry in
the memory bank is updated using moving average (MVA):

z̃i ← (m)z̃i + (1−m)zi, (2.24)

where m ∈]0, 1] is the momentum and fixes the importance given to new samples. The
memory bank is used to sample negative entries for the NCE loss. The model tries
to maximize the similarity of the i-th sample zi and its memory embedding z̃i while
minimizing its similarity to all other memory bank entries Z\z̃i. In this setting, the size
of the memory bank |Z| = N is tied to the number of samples in the dataset. When
working with histological data, datasets can include millions of examples, which become
hard to maintain memory-wise.

In Momentum Contrast (MoCo) [32], a new milestone is reached with the reformulation of
the problem. The model uses random transformations to generate positive entries. Given
an input image Xi, two sets of random transformations ξs, ξt : RH×W×3 → RH×W×3 and
two encoders fφs , fφt : RH×W×3 → RD with parameters φs, φt, we can extract a positive
pair embedding as (zi, z+

i ), where zi = fφs(ξs(Xi)) and z+
i = fφt(ξt(Xi)). Since both

terms come from an augmented version of the same image, they are, by definition, similar.
For the negative sample, a different strategy is considered. Instead of relying on a memory
bank, MoCo maintain a queue Q = {qk ∈ RD}Qk=1 of negative samples. The queue length
is fixed and independent of the dataset size with Q � N . The model maximizes the
similarity between the reference view and its augmentation while considering all other
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samples as dissimilar. The loss becomes:

min LinfoNCE = min
φs

N∑
i=1

P (zi, z+
i ,Q). (2.25)

The queue is maintained using a first in, first out logic. Moreover, the weight φs are
optimized using backpropagation while the weight of φt are updated using MVA:

q1 ← z+

qk ← qk−1 , ∀k 6= 1, k < Q
, (2.26)

φt ← (m)φt + (1−m)φs m ∈ [0, 1]. (2.27)

The work of MoCo is followed by multiple works exploring other aspects of CL. In a
Simple framework for Contrastive Learning of visual Representations (SimCLR) [31], a
projection head fψ : RD → RD′ with parameters ψ is added on top of the encoder to
improve the feature representation. The output dimension D′ is typically kept lower
than the output encoder dimension D′ ≤ D. Moreover, the architecture uses a single
encoder fφ to embed features. The work of SimCLR does not rely on a memory bank to
keep track of the negative examples. Here, the model considers the elements of the batch
as negative entries. As a result, the model requires large batches to be trained, which is
a major limitation. In addition, the work highlights the critical importance of selecting
data augmentation operators and, in particular, using random cropping with resizing,
Gaussian blurring, and color jittering.

Later, MoCov2 [32] adapts its architecture to match SimCLR findings by including a
projection head. Finally, the latest MoCov3 uses ViTs to improve feature descriptors
further and remove the use of the queue. By the time of the writing, all follow-up
works on CL mainly focus on small process optimization, while the core concept remains
unchanged.

2.4.2 Correlation and Clustering

In this section, we describe the use of two peculiar SSL methods. They are inspired by
CL but differ from it. They use a clustering approach in Swapping Assignments between
multiple Views (SwAV) [22] and a correlation function in Barlow Twins (BT) [157] to
learn feature representation. In Figure 2.13, we show the difference in architecture
between the standard CL and the presented models. Both works rely on two sets of
transformations ξ1, ξ2 : RH×W×3 → RH×W×3 and an encoder fφ : RH×W×3 → RD with
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Figure 2.13 – Comparison between standard CL architecture, SwAV and BT given input
image Xi, augmentations ξ1, ξ2, encoder fφ, and model-dependent matrix C. SwAV use
a cluster-based approach while BT use a correlation-based one. The definition of the loss
L is model dependent.

parameters φ.

We start with SwAV and its clustering procedure. Instead of relying on negative samples,
they try to cluster the embeddings into a limited number of clusters. To do so, they
define a learnable clustering matrix C ∈ RD×K , where D is the size of the embedding
space and K is the number of clusters. The model uses the matrix C to project the
embeddings to a lower dimensional space. The result of the projection is defined as the
output probability map P = (pi,k)1≤i≤N,1≤k≤K :

pi,k = exp(z>i ck/τ)∑K
k′=1 z>i ck′/τ

, (2.28)

where τ is the temperature factor, pi,k is the probability that the i-th sample belongs
to cluster k, and both the embedding and cluster centers are normalized (i.e. ‖zi‖2 =
‖ck‖2 = 1). Moreover, the outputs are passed through a softmax function to ensure a
sharp prediction. During parameters optimization, the model tries to align the probability
assignment P to a target distribution Q = (qi,k)1≤i≤N,1≤k≤K via the loss:

minLSWAV = min
φ
−

N∑
i=1

K∑
k=1

qi,k log(pi,k). (2.29)

The target distribution is based on the positive entries Z+ = (z+
1 , · · · , z

+
N ) which represent

the same image embedding but augmented through a different set of transformations.
The target probability is estimated at every optimization step as:

max
Q∈Q

= Tr(QC>Z+) + εH(Q), (2.30)
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where H is the entropy function, ε the parameter that controls the smoothness (e.g.
ε = 0.05), Tr the trace of the matrix, and Q the constrains on the target distribution.
The optimization of Equation 2.30 is based on the Sinkhorn-Knopp [38] algorithm. For
more information, please refer to SwAV original work [22]. The goal of the constraints
on the target probabilities is to reduce the risk of cluster collapse by enforcing a uniform
distribution of the embedding into the K clusters.

Aside from its cluster-based approach, one of the main contributions of SwAV is the
introduction of the concept of multi-crop views that greatly help the learning of feature
similarity between positive pairs. The authors mention that random cropping is critical
to learning localized information between views. However, increasing the number of
views also increases the memory requirements. To tackle this issue, they propose to use
a standard image (e.g. 224px × 224px ) as a reference and to sample a few additional
low-resolution crops from it (e.g. 96px×96px). The model then compares the embedding
of the cropped areas to the original image. As the allocated memory quadratically
increases with the image size, using low-resolution crops is negligible.

The second method presented in this section is the work of BT [157]. The authors replace
the use of negative samples with the computation of feature cross-correlation as C =
(cj,j′)1≤j,j′≤D. Let’s define the output predictions Z = (zi,j)1≤i≤N,1≤j≤D = (z1, · · · , zN )>
and Z+ = (z+

i,j)1≤i≤N,1≤j≤D = (z+
1 , · · · , z

+
N )>. The correlation between two features j

and j′ is given as:

cj,j′ =

N∑
i=1

(zi,j − µj)(z+
i,j′ − µ

+
j′)√

N∑
i=1

(zi,j − µj)2

√
N∑
i=1

(z+
i,j′ − µ

+
j′)2

, j, j′ ∈ {1, . . . , D}, (2.31)

µj = 1
N

N∑
i=1

zi,j , and µ+
j = 1

N

N∑
i=1

z+
i,j .

Let’s now assume that the model achieves an optimal feature representation. The
influence of the data augmentation, therefore, should be negligible. Specifically, the
correlation matrix between the two sets should be diagonal to maximize inner similarity
while minimizing cross-correlation between features. The BT loss is then defined as:

minLBT = min
φ

D∑
j=1

(1− cj,j)2︸ ︷︷ ︸
inner term

+
D∑
j=1

∑
j′ 6=j

cj,j′
2︸ ︷︷ ︸

cross term

.

What makes BT an interesting approach is that instead of considering the correlation
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along the feature dimension, they investigate the correlation along the batch dimension.
As a result, the model performs better than SimCLR when confronted with small batch
sizes. Moreover, minimizing the cross-term encourages feature decorrelation and reduces
information redundancy. We can see the method as trying to maximize positive sample
correlation (diagonal terms) while repelling negative ones (non-diagonal terms).

2.4.3 Self-Distillation

Recently, the development of novel methods using CL slowed down. New architectures
only significantly improve feature representations by increasing models’ computational
complexities [118]. The renewal of SSL comes with the emergence of (self-)distillation
architectures. Distillation models are composed of two branches working together. The
first branch, called the student model, is typically small and compact to synthesize
information. The second branch, called the teacher model, tends to be more complex.
The fundamental intuition behind knowledge distillation is that large models fail to
exploit their capacity fully. As a result, we try to transfer (i.e. distillate) the information
from the large model (i.e. teacher) to the small one (i.e. student) while maintaining
competitive performances. When the teacher and student branches are identical, we talk
about self-distillation [5].

We present the most common self-distillation models in chronological order. To learn
feature representation, the models use different metrics to maximize information between
two views. They differ from CL approaches as they do not rely on negative example
support. The presented architectures are listed in Figure 2.14 along with their core concept.
We define as fφs , fφt : RH×W×3 → RD the student and teacher networks with parameters
φs and φt respectively. The augmentation functions ξs, ξt : RH×W×3 → RH×W×3 are
used to create variation of an input image Xi.

One of the first breakthroughs of self-distillation models comes with Bootstrap Your
Own Latent (BYOL) [59]. The logic is identical to SimCLR and MoCo, where the
augmentation of the view serves as positive pair examples. The optimization loss in
BYOL is:

minLBYOL = min
φs,ψ
−

N∑
i=1

fψ(zsi )>zti
‖fψ(zsi )‖2‖zti‖2

, (2.32)

zsi = fφs(ξs(Xi)), and zti = fφt(ξt(Xi)),

where fψ : RD → RD is a multilayer predictor with parameters ψ. The predictor is
applied to the student output predictions to create an asymmetry between the branches
and avoid collapsing (i.e. model predicting the same output on both sides). Using

32



2.4. Self-supervision and Computational Pathology

Figure 2.14 – Latest self-distillation architectures. (a) BYOL [59], (b) SimSiam [33],
(c) DINO(v2) [23, 111], and (d) iBOT [163]. We denote the input data as Xi, data
augmentations as ξs, ξt, encoder (student, teacher) as fφ (fφs , fφt), projection head as
fψ, stop-gradient as sg, and moving average as MVA. The definition of the loss L is
model-dependent.

standard backpropagation, we first update the student branch (φs, ψ). Then, the weights
of the teacher model (φt) are updated using a MVA:

φt ← mφt + (1−m)φs m ∈ [0, 1]. (2.33)

A surprising aspect of BYOL is its resilience to collapse. Mathematically, the model
admits trivial solutions (e.g. collapsing of the predictions to constant vector). However,
the authors empirically prove that their approach never converges to such a solution.
As a result, the authors hypothesize that the combination of the predictor and MVA
prevent the model from collapsing. In SimSiam [33], they further investigate the stability
of BYOL through various experiments. They prove that the MVA does not improve and
even deteriorates the embedding quality. As a result, the MVA is replaced with a simple
weight sharing (i.e. φs = φt = φ).

The work of SimSiam and BYOL is followed by knowledge DIstillation with NO labels
(DINO) [23]. Instead of cosine similarity, they rely on cross-entropy to learn feature
embedding. As the previous model, DINO uses various tricks to avoid collapsing. They
propose the use of both centering and output sharpening to regularize convergence. The
loss is given as:

minLDINO = min
φs
−

N∑
i=1

H(softmax(zsi/τs), softmax((zti − c)/τt)), (2.34)

where τs, τt ∈ R+ are temperature factors, H is the cross-entropy function, and c the
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output centers. The temperature are typically small (e.g. τs, τt ≤ 0.1). The centers are
learnable parameters and are used to “prevent one dimension from dominating” over
the other ones. Both the parameters of the teacher model and centers are updated at
each training step using MVA. Moreover, DINO is the first major self-distillation work
to take advantage of ViT encoders to boost its performance. ViT-based models show
better accuracy than previous ResNet-based encoders.

Later, image BERT pre-training with Online Tokenizer (iBOT) [163] proposes a novel
composition of two loss terms to learn feature embedding. The first term LCLS is based on
a cross-view while the second term LMIM is based on an in-view optimization. Moreover,
the approach relies on architectural specificities of ViTs. Before an image is fed to the
ViT encoder, it is split into tiny image crops. For example, according to the standard
terminology, a model named ViT/16 means the input image is cut into small 16 × 16
pieces. In addition to these crops, ViTs append a learnable class token to the list of
inputs. As a result, both the crops and the class token are processed by the model. In
practice, we use the output prediction of the class token as a reference for the image
embedding rather than the individual crop outputs. For more information about the
behavior of ViTs, we recommend the work of [47].

More formally, let’s assume we have an input image Xi ∈ RH×W×3. We split the input
image into small patches Pi,j ∈ RH/P×W/P×P 2 , where P 2, H/P , W/P are the number,
height, and width of the patches and j ∈ {1, · · · , P 2} is the patch index. Therefore,
Pi,j denotes the j-th patch of the i-th image. Subsequently, we define as zi ∈ RD the
class embedding of an image Xi and as vi,j ∈ RD the embedding of the patch Pi,j . The
outputs of the student model are given as the image and patches embedding using ξs, ξt
data augmentations:

zsi = fφs(masking(ξs(Xi))), ẑsi = fφs(masking(ξt(Xi))),
vsi,j = fφs(masking(ξs(Pi,j))), and v̂si,j = fφs(masking(ξt(Pi,j))),

(2.35)

where the masking operator randomly replaces a subset of the image patches with mask
tokens. The output is, therefore, a corrupted version of the original input. The logic
is similar to the one of the dropout [68] where part of the information is removed to
increase the model robustness. For the teacher branch, the output definitions are the
same, except that no masking is applied:

zti = fφt(ξs(Xi)), ẑti = fφt(ξt(Xi)),
vti,j = fφt(ξs(Pi,j)), and v̂ti,j = fφt(ξt(Pi,j)).

(2.36)
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The overall loss mixes the prediction from both branches and augmentations. The iBOT
loss is then given as the summation of the cross and in-view losses:

minLiBot = min
φs
−

Cross-view loss (LCLS)︷ ︸︸ ︷
N∑
i=1

(zti)> log(ẑsi ) + (ẑti)> log(zsi )

−
N∑
i=1

P 2∑
j=1

mi,j (vti,j)> log(vsi,j) +mi,j (v̂ti,j)> log(v̂si,j)︸ ︷︷ ︸
In-view loss (LMIM)

, (2.37)

where mi,j ∈ 0, 1 is the masking parameter that keeps track of the patch masked at the
input.

At the time of writing, the state of the art (SOTA) model in SSL is DINOv2 [111].
Fundamentally, the DINOv2 architecture does not include any significant contribution
with respect to DINO. Still, the model cleverly takes advantage of recent works to boost
its performance. Out of all the minor modifications proposed, we identify the three main
components as (i) the implementation of the recent improvements proposed in iBOT, (ii)
the enlargement of batch sizes, and (iii) the use of curated data (i.e. sets of data that
are filtered to match specific queries and tasks).

2.4.4 Auxiliary Tasks

In this section, we introduce the concept of auxiliary tasks that are external cost functions.
Such tasks are typically self-supervised and often data-specific. Examples of auxiliary
tasks include the prediction of image rotation [56], channels conversion to different color
spaces [158], patches localization within the image [46], image reconstruction through
autoencoders [143], inpainting [113], or jigsaw puzzle solving [108]. Auxiliary tasks Laux

i

are added on top of an already existing primary loss Lprimary term (e.g. classification or
segmentation) to form a constrained loss L:

L = Lprimary +
∑
i

Laux
i︸ ︷︷ ︸

Auxiliary tasks

. (2.38)

Hence, removing auxiliary terms does not hinder the convergence capability of the main
term. Their core purpose is to help the primary loss term to converge toward better
feature representation. It is a particular case of multi-task learning. The subtlety is that
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Figure 2.15 – Examples of auxiliary tasks for SSL [85, 130]. (a) Simple prediction
of magnification. (b) Jigsaw puzzle with various magnifications. (c-d) Autoencoder
architecture to reconstruct RGB or hematoxylin channels. (e) Generative model and
discriminator. We denote the encoder, decoder, generator, classifier/discriminator, data
augmentation, and stain extraction as fφ, fψ, fθ, h, ξ, and ζ respectively.

multi-task learning does not prioritize one loss over the other, whereas here, we consider
one loss as the primary and all others as optional.

As mentioned before, the design of auxiliary tasks is often tied to the data structure.
For example, let’s consider the picture of a cat lying on the ground. Here, the concept
of up and down is directly defined within the image. Hence, rotating the image and
asking the network to retrieve the original angle would make sense. However, when
considering a histological picture, the concept of up and down is not defined as the data
lack orientation. In this setting, using rotation as an additional task would not improve
the feature representation.

Recent works [85, 130] analyze the relevance of various auxiliary tasks applied to histo-
logical data. The tasks that show the best performances are presented in Figure 2.15.
The first task is the prediction of magnification. Given an input image Xi ∈ RH×W×3 we
aim to predict whether the image is acquired at, for example, 5×, 10×, 20×, or 40×. To
do so, we use a simple encoder fφ : RH×W×3 → RD and classifier h : RD → RC , where
D is the size of the embedding space and C the number of possible magnifications. The
loss is given as:

minLaux
mag = min

fφ, h

N∑
i=1

H(h ◦ fφ ◦ ξmag(Xi),yi), (2.39)

where yi ∈ RC is the coded magnification label, H the cross entropy function, N the total
number of samples, and ξmag : RH×W×3 → RH×W×3 the magnification transformation.
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In practice, WSIs include different magnifications available for the same image. However,
if the target magnification is not available, the transformation is replaced by a simple
image interpolation.

Another possible task is jigsaw puzzle solving. However, histological images lack ordering
as well. For example, different tumor types have distinct tumor/stroma arrangements.
To solve this, the authors propose replacing the jigsaw with a mosaic of the image at
different magnifications. The model tries to predict which magnification is present in
each part of the image. The loss is given as:

minLaux
jigmag = min

fφ, h

N∑
i=1

H(h ◦ fφ ◦ ξjigmag(Xi),yi), (2.40)

and is highly similar to the magnification prediction. The differences lie in the aug-
mentation ξjigmag : RH×W×3 → RH×W×3 that generates the mosaic and the number of
output classes C for the label. Given the four possible magnifications, we end up with
C = 4! = 24 combinations.

The third and fourth tasks explored are the use of an autoencoder [67]. Here, the encoder
is coupled with a decoder fψ : RD → RH×W×3 that projects the encoded image back to
the input space. The loss is then given as the difference between the reconstructed image
and the input one:

minLaux
ae = min

fφ, fψ

N∑
i=1
‖fψ ◦ fφ(Xi)−Xi‖2. (2.41)

One of the main drawbacks of using autoencoders is that we have no control over
the quality of the encoded results. When training an autoencoder, we want the first
stage (encoder) to capture most of the information, as the decoder will be dropped for
downstream tasks. We usually use shallow decoders (e.g. fewer parameters in decoder
than in encoder) to ensure a strong feature representation through the encoder. Due to
its higher complexity, the encoder will balance the sloppiness of the decoder.

The other alternative use of the encoder is to focus on a single channel. Instead of
reconstructing the RGB image, we target one of the HE channels. The reason is that
the RGB to RGB reconstruction does not ensure the learning of the structural aspect
of the image. The autoencoder might only learn interpolation functions to reconstruct
images. By converting the input to HE channels, we force the model to capture the
picture’s underlying structure [4]. Out of the HE channels, hematoxylin captures most
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of the information with cell nuclei [85]. The loss is then given as:

minLaux
aeh = min

fφ, fψ

N∑
i=1
‖fψ ◦ fφ(Xi)− ζ(Xi)‖2, (2.42)

where ζ : RH×W×3 → RH×W is the function that converts the RGB image to its
hematoxylin equivalent. The decoder output is adjusted to fit the number of channels of
the reconstructed hematoxylin image.

The last approach presented is the use of a generative network [37]. Here, an additional
branch tries to fool the network by generating fake inputs. The network fθ : RZ →
RH×W×3 takes as input a random variable z ∈ RZ to generate a fake image, where Z is
the size of the random vector. The fake images are fed with the real data to fool the
classifier h. The discriminator loss is given as:

min maxLaux
dis = min

fθ
max
fφ, h

N∑
i=1

log(h ◦ fφ(Xi))︸ ︷︷ ︸
Real

+
M∑
j=1

log(1− h ◦ fφ ◦ fθ(zj))︸ ︷︷ ︸
Fake (generated)

, (2.43)

where we train the encoder and discriminator to maximize the probability of correct
prediction while optimizing the generator to fool the discriminator.

All the presented tasks are optional and can be added to an existing architecture to
boost its performance. Moreover, they are all self-supervised tasks and do not require
additional annotations. It comes particularly handy when only a subset of the data is
labeled. The training of models using auxiliary tasks shows competitive results with
fully supervised methods [85]. More specifically, the use of magnification, jigmag, and
generative models largely contribute to the performance boost.

The auxiliary tasks mentioned in this section are a non-exhaustive list of possible tasks
applied to histological data. Other approaches take advantage of the inner properties of
histological images. We cite, for example, the use of spatial proximity in WSIs to build
positive training pairs [4, 137], the use of different stain augmentation to make the model
invariant to stain variations [135], or taking advantage of the rotation-agnostic aspect of
histological images to train rotation equivariant networks [142].

2.4.5 Current Research

Finally, we conclude this section by reviewing the current SOTA for SSL in histology.
Overall, medical research tends to follow the computer vision field. It is common to see
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Table 2.2 – Results of linear evaluation and fine-tuning over multiple histological datasets
(BACH [8], K19 [77], PCAM [142], and MHIST [148]) as taken from [75]. The fraction
of labels used for the evaluation is reported for each experiment.

Linear evaluation Fine-tuning
BACH K19 PCAM MHIST K19

Arch. Method 100% 100% 100% 100% 1% 10% 100%
ResNet-50 Supervised 80.83 90.93 80.79 76.25 90.28 93.87 92.09

MoCov2 [32] 77.50 93.52 86.78 77.07 91.73 95.10 96.21
SwAV [22] 83.33 95.78 85.28 71.14 89.26 92.84 93.31
BT [157] 87.50 94.60 88.15 78.81 91.23 92.84 93.23

ViT-S/16 Supervised 75.83 91.56 80.96 78.51 93.15 94.76 95.81
DINO [23] 85.83 94.19 88.78 76.15 94.03 94.92 95.81

ViT-S/8 DINO [23] 83.33 95.29 90.12 77.89 95.03 96.27 97.13

the emergence of a novel SSL work followed by its application to medical images in the
next months. We cite for example the use of SSL-based methods using autoencoders
[4, 155], MoCo [1, 147], SimCLR [88], BYOL [146], DINO [30], or iBOT [51] applied to
histopathology.

When applying SOTA SSL models to the medical fields, authors tend to add small tricks
on top of the base method. Although those modifications aim to boost their approaches’
performance, it becomes difficult to quantify the contribution of each component with
respect to the original SSL work. A recent benchmark [75] compares the raw performances
of the recent SOTA SSL models over different histological datasets.

The first important outcome of their research is that self-supervised learning outperforms
the standard supervised approach. In other words, a model pre-trained on medical data
achieves better performances on the same medical data compared to their ImageNet
pre-trained counterparts. This conclusion is more complex than it seems. In many
medical applications, such as MRI, images are expensive to acquire and not abundant.
For histology, HE slides are relatively cheap to process and available in large quantities.
It is only because of their abundance that we can reliably train self-supervised models
for downstream tasks.

Secondly, they present the synthesized results as presented in Table 2.2 on multiple
histological datasets (BACH [8], K19 [77], PCAM [142], and MHIST [148]). For the
supervised reference, the authors considered pre-trained weights on ImageNet. For DINO,
they selected two different input patches with 8 and 16 pixels. From the linear evaluation,
the authors mention the lack of significant improvement between methods. The interesting
results come in the fine-tuning performance given different label ratios. They observe
that self-supervised models still perform well when the number of annotations is reduced.
This aspect is critical as expert labels are time-consuming to acquire. More specifically,
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ViT-based architectures achieve the best performances.

Out of the most recent SSL models applied to digital slides, we cite HIPT [29] and SRCL
[147] that both use transformers as encoders. In HIPT, they use DINO-like architectures
to learn hierarchical features. This approach is interesting as it tackles the problem of
image representation at different magnifications. The authors introduce a simple way to
aggregate multi-scale local features to generate a WSI-level representation. This work is
a first step toward an efficient patient data representation of WSIs. One can imagine
using such technique to perform image retrieval given rare pathologies. The second
work, SRCL, focuses on positive pair mining to improve model performance on various
downstream tasks. It is one of the few latest works that use contrastive learning.

2.5 Survival Analysis

Survival analysis is defined as all the techniques used to estimate entities’ expected
survival times and hazards. It can be applied to various domains, such as failure in
mechanical systems or death of living organisms in life sciences. Here, we focus on
survival analysis for the medical applications where we aim to model the time-to-event
(TTE). The TTE is typically set as the time interval between the disease diagnosis (or
surgery) and the event’s occurrence (or loss of patient follow-up). We define three main
TTE targets as overall survival (OS), disease-free survival (DFS), and disease-specific
survival (DSS) which are defined as:

• OS: Overall survival time of a given patient. The occurrence of the event is
considered as the death of the patient. The cause of death is not necessarily linked
to the tumor. It can include organ failure, premature death, or postoperative death,

• DFS: Survival time without recurrence/relapse of the disease. The occurrence of
the event is considered as the recurrence of the cancer,

• DSS: Survival time with respect to a specific disease. The occurrence of the event
is considered as the death of the patient from a given disease (e.g. CRC). This
endpoint is more difficult to assess as the patient’s death is often not directly
related to the tumor (e.g. organ failure, pneumonia, or ascites).

To account for postoperative death (i.e. patient dying following the surgery), it is
recommended to discard the set of patients where the event occurs less than 30-day after
surgery [74] (or less than 90-day for a safer margin [39]). Regarding the patient follow-up
time, the gold standard is to consider a 5-year survival time [125] (60 months). Moreover,
patients with survival times longer than the 5-year standard are set to an identical time
point (e.g. 60 + 1 months). The event entries are all forced to “no event” as the event
did not occur within the 5-year interval.
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During a study, losing track of the patient’s status is frequent. In this case, we keep the
last follow-up time as the reference and call the case “right-censored”. Right censoring
means we know the time is greater than the final measure, but we do not know by how
much.

More formally, let us denote as (ti, ei, xi) the data from the i-th patient of a study,
i ∈ {1 . . . N}, where ti ∈ R+ is the TTE, ei ∈ {0, 1} the event status, and xi ∈ RK a set
of K patient features. For the events, we denote as 1 the event’s occurrence and as 0 the
right-censored event. In the next part of the section, we present well-known tools used
to assess survival time. We recommend the use of Python packages for data analysis
[115, 40].

We first present the non-parametric Kaplan-Meier (KM) survival estimator in subsec-
tion 2.5.1. We then move to the parametric Cox proportional hazards (CPH) approach
to compute hazard rates of clinical features in subsection 2.5.2. Then, we discuss the
use of univariate and multivariate models and how to ensure their statistical significance
subsection 2.5.3. Finally, we introduce useful metrics to assess the prediction capability
models subsection 2.5.4.

2.5.1 Kaplan-Meier Estimator

The KM estimator [76] is the most common non-parametric estimator of survival functions.
It aims at predicting the probability of a patient surviving past a specific time τ and is
given as:

S(τ) =
∏

{j | tj≤τ}

(
1− dj

nj

)
, (2.44)

dj =
N∑
i=1

1(tj=ti)1(ei=1), and nj =
N∑
i=1

1(ti≥tj),

where 1 is the indicator function. For each time step tj ≤ τ , we compute the number
of deaths occurring (dj) and the number of patients left in the study (nj) prior to time
τ . The final survival probability at time τ is the cumulative product of the current and
previous estimates. To compute the confidence interval (CI), we estimate the variance
using Greenwood’s [58, 102] approach:

Var(S(τ)) = S(τ)2 ∑
{j | tj≤τ}

dj
nj(nj − dj)

. (2.45)
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Figure 2.16 – Kaplan-Meier (KM) estimator for stage I and IV CRC patients. We use a
90-day threshold for postoperative risk and consider a 5-year interval. The KM (red/blue)
is displayed with a 95% confidence interval (CI) (light red/blue). Samples with survival
time larger than the 5-year threshold are set to 60+1 months with no event occurrence.
The table below displays the number of patients left in the study, cumulative censored
samples, and cumulative events for given time steps.

Considering the approximation of the 95% CI (i.e. ' 2 times the standard deviation),
the final function boundaries are given as S(τ)± 2

√
Var(S(τ)). An example of the KM

estimator applied to stages I and IV CRC patients is given in Figure 2.16. We can
observe a lower survival probability after the 5-year period for the group with stage IV
cancer compared to stage I.

2.5.2 Cox Proportional Hazards

The Cox proportional hazards (CPH) is a regression model predicting proportional
hazards from covariates. Survival functions are used to model the occurrence of specific
events given time τ . Proportional hazards, on the other hand, focus on the influence
of patients’ features. For example, given a set of patients with metastasis (pM1) and
patients without metastasis (pM0), we are interested in knowing the hazard ratio (HR)
between the two groups. Moreover, the proportional hazards are not limited to categorical
variables as opposed to KM estimator. The hazard function h of a patient with features
x is defined as:

h(τ | x) =
baseline hazard︷ ︸︸ ︷

h0(τ) exp

log-partial hazard︷ ︸︸ ︷
K∑
j=1

(xj − xj)βj︸ ︷︷ ︸
partial hazard

. (2.46)

It comprises a baseline function h0(τ) that is common to all patients in the study and a
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Figure 2.17 – Cox proportional hazards (CPH) regression for tissue invasion depth (pT)
and positive lymph nodes (pN). (a) Hazard function for different clinical features states.
The highest risk occurs with both high pN (pN > 0) and pT (pT > 2). (b) The hazard
ratios (HRs) for pT and pN. Only pN is statistically significant and increases the risk
when considering the 95% confidence interval (CI).

partial hazard term. As the function uses an exponential term to estimate hazards, we
refer to the inner terms as log-partial hazards. For each feature xj , we estimate its mean
over the population as xj (i.e. mean of the feature over patients). The parameters βj
are regressed and express the HRs.

The regression of the parameters and the definition of the CIs are based on partial log-
likelihood (LL) maximization, which is out of the scope of this document. We recommend
reading work on untied times [16] and tied times [49] for additional information about the
topic. Note that in the presence of many variables, it is ordinary to add a regularization
term on the parameters using l1-norm. An example of CPH regression to tissue depth
invasion (pT) and positive lymph nodes (pN) is depicted in Figure 2.17. We show the
multivariate HR with CI. When plotting the hazard ratios, if a parameter is located on
the right of the baseline (i.e. HR > 1), we consider it increases the patient risk. On the
contrary, if the parameter is located on the left (i.e. HR < 1), then the risk is decreased.
Finally, if the confidence interval crosses the baseline (i.e. HR = 1), then the variable is
statistically nonsignificant.

2.5.3 Forward Selection

When performing survival analysis, we aim to select the variables that better explain the
patient survival and hazard functions. Univariate models check whether a single variable
is linked to the patient outcome. In the multivariate setting, we study how combining
multiple variables influences survival.

In the multivariate case, it is essential to check for variable independence. Two features
may be highly correlated and then redundant to the model fitting. Here, we propose
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to use forward selection and check for variable significance. Let’s assume we have two
multivariate models h1, h2:

h1(τ | x) = h0(τ) exp(
K∑
j=1

(xj − xj)βj),

h2(τ | x) = h0(τ) exp((xK+1 − xK+1)βK+1 +
K∑
j=1

(xj − xj)βj),
(2.47)

We consider the first model as the reference model. The second model is the same as the
first model except for the fact that it includes one additional variable and its associated
parameter (i.e. xK+1 and βK+1). We want to know whether adding a new variable
benefits the reference model. To do so, we define the log-likelihood ratio test (LLRT):

χ2
LLR = −2(LL(h1)− LL(h2)), (2.48)

where LL is the maximized log-likelihood under each model [91]. We use the χ2 test with
one degree of freedom (df = (K + 1)−K = 1) to check for statistical significance as a
single variable is added to the base model.

In practice, when dealing with multiple variables, we first perform an univariate analysis
for each of the K variables. Out of the tested variables, we keep the ones where the
p-value is lower than a certain threshold (e.g. p < 0.1). We are then left with K ′ < K

variables. The use of 0.1 as a threshold for confidence value is empirical and subject to
discussion. The main idea behind this threshold is to keep the variables that are (nearly)
significant when fitting the univariate models (i.e. threshold slightly above p = 0.05).
As a second step, we select one of the K ′ univariate models that maximize the LL as
the reference model. We then try to add to the reference model a second variable out of
the K ′ − 1 left. To do so, we test all the possible pairs and keep the one that maximizes
the LL. Finally, we use LLRT to assess whether there is a benefit in adding the newly
selected variable. The process is then iteratively repeated until either no variables left or
LLRT fails.

It is important to note that a variable can achieve statistical significance when used in
a univariate model but fails in a multivariate one. The interpretation is that there is
another variable in the multivariate model that captures the information of that variable.
We, therefore, have redundancy of the data. A simple example would be using pT and
pTMN in a multivariate model. Both variables are highly correlated since pT information
is encapsulated in the pTNM classification. As a result, there is no benefit in considering
both variables for model fitting.
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2.5.4 Metrics

With the previously presented approaches, we can now predict survival and hazard
probabilities given clinical data. However, we lack a metric to compare the quality of the
predictors. In this section, we provide additional tools to assess the discriminating power
of a survival predictor.

Concordance Index

Let be a set of N patients where (ti, ei, xi) are the data of the i-th patient, ti ∈ R+ is
the TTE, ei ∈ {0, 1} the event status, and xi ∈ R a predicted score. The concordance
index (C-Index) aims to assess the quality of the predicted survival scores. To do so,
we want to check how many patient pairs are properly ordered. To check for order, we
consider pairs (i, j) where ti ≤ tj . We define the set of admissible pairs:

C = {(i, j) | ti ≤ tj , ei = 1} i, j ∈ {1, . . . , N}, (2.49)

where N is the total number of patients. Here, we cannot order right-censored samples.
The reason is that even though we know that for a right-censored patient i, the TTE is
at least ti, we do not have any information about the upper bound. As a result, we only
order samples based on the occurrence of events (i.e. ei = 1). The C-Index is given as:

C-Index = 1
|C|

∑
i,j∈C

1(ti<tj)1(xi≤xj) + 1
21(ti=tj). (2.50)

The final metric lies in the interval [0, 1] where 0 means perfect anti-concordance, 0.5
random predictions, and 1 perfect concordance. It is impossible to order tied events (i.e.
occurring simultaneously). Consequently, tied events are set to the default values (i.e.
0.5) to avoid any influence on the metric. As a result, the C-Index index can be seen as
an estimation of the percentage of event pairs that are correctly ordered.

Brier Score

The C-Index is a ranking metric that does not consider the correlation of the variable to
the time-to-event (TTE). Ideally, both the predicted metric and the TTE should follow
the same trend.

Let’s assume that the feature xi indicates the probability of i-th patient to be even free
at time ti. We introduce the Brier score (BS) [17] as the mean squared error function
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applied to survival forecasting. It is defined for the univariate case as:

BS = 1
N

N∑
i=1

(ti − xi)2. (2.51)

However, this definition assumes both variables are normalized. Moreover, it does not
consider the right-censoring aspect of the data. A time-dependent generalization of the
metric to right-censored data is proposed [57]:

BS(τ) = 1
N

N∑
i=1

1(ti≤τ)1(ei=1)
(0− xi)2

Ĝ(ti)︸ ︷︷ ︸
Event already occurred

+1(ti>τ)
(1− xi)2

Ĝ(τ)︸ ︷︷ ︸
No event yet

, (2.52)

where Ĝ(t) is the probability of an event occurring after time t. Finally, the integrated
Brier score (IBS) is given as the integration of all time contributions (i.e. time-weighted
average):

IBS =
∫

BS(τ) dτ. (2.53)

2.6 Dataset

Throughout this work, we use multiple datasets to train our models and perform survival
analysis. We first introduce the set of images used for classification and segmentation
tasks in subsection 2.6.1. We then give an overview of the clinical data used for survival
analysis in subsection 2.6.2.

2.6.1 Classification and Segmentation

We use multiple external datasets, such as Kather 16 (K16), Kather 19 (K19), colorectal
cancer tissue phenotype (CRCTP), and SemiCol challenge. All datasets contain labeled
patches extracted from HE-stained WSIs of different tissue types found in the human
gastrointestinal tract. We also use multiple in-house cohorts to train our self-supervised
models. An overview of all the dataset information is presented in Table 2.3. We report
the status of the data (public or private), the number of classes, tiles, and WSIs, the size
and magnification of the patches, and the scanner’s resolution at the given magnification.

Throughout this work, we try to have consistency in class definitions. Hence we define 11
different base classes in this work as advent (ADV), adipose (ADI), background (BACK),
blood (BLOOD), complex stroma (CSTR), debris (DEB), lymphocytes (LYM), mucin
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Table 2.3 – List of the main CRC datasets used for training along with their information.
We report the status of the datasets (public or private), the number of available classes,
tiles, and WSI, as well as the tiles’ size and target magnification. We also include
information about the scanner resolution.

Datasets Status Classes Tiles Slides Size Magn. Res.
K16 [79] Public† 8 5,000 10 150 px 20× 0.495 µm/px
K19 [77]

Train Public† 9 100,000 86 224 px 20× 0.5 µm/px
Val Public† 9 7,180 50 224 px 20× 0.5 µm/px

CRCTP [71]
Train Public†,‡ 7 196,000 14 150 px 20× NA
Test Public†,‡ 7 85,000 6 150 px 20× NA

In-House [1, 2, 4]
DDNR Private - 650,000 660 224 px 20× 0.486 µm/px
DSRMA-WSI Private - 199,500 665 448 px 40× 0.243 µm/px
DSRMA-ROI Private 9 3 3 NA§ 2.5× 3.885 µm/px
DC2R-WSI Private 9 270,000 665 512 px 10× 0.971 µm/px
DC2R-ROI Private 2 14 7 NA§ 20× 0.486 µm/px

SemiCol Private† 10 1,759 20 3000 px 20× 0.5 µm/px
† Last checked on 14 Aug 2023.
‡ Use of the 2nd fold that ensures patient-level separation between training ans testing.
§ Not applicable as no fixed sizes. Representation of WSIs large area.

(MUC), muscle (MUS), normal mucosa (NORM), stroma (STR), and tumor (TUM). The
class definitions are presented in Table 2.4.

K16 Dataset

The K16 dataset [79] contains 5, 000 patches (150px × 150px, 74µm × 74µm) from
multiple HE stained WSIs from the UMM pathology archive (University Medical Center
Mannheim, Mannheim, Germany). All images are digitized using a scanner magnification
of 20× (0.495µm/px). There are eight classes of tissue phenotypes, namely tumor
epithelium, simple stroma (homogeneous composition and smooth muscle), complex
stroma (stroma containing single tumor cells and/or few immune cells), immune cells,
debris (including necrosis, erythrocytes, and mucus), normal mucosal glands, adipose
tissue, and background (no tissue). The dataset is balanced with 625 patches per class
and is publicly available online1.

K19 Dataset

The K19 dataset [78] consists of patches depicting nine different tissue types: tumor tissue,
stroma, normal colon mucosa, adipose tissue, lymphocytes, mucus, smooth muscle, debris,

1https://zenodo.org/record/53169.
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Table 2.4 – Definition and abbreviation of the main classes used in our work. The
definitions might differ slightly based on the application.

Class Abrev. Definition [78, 79, 93, 101]
Advent ADV Adventitial tissue, pericolic fat tissue, including large vessels.
Adipose ADI Also known as fat tissue, it is a connective tissue composed of

adipocytes. Located in the outer layer of the colon.
Background BACK Empty tiles without the presence of tissue and slide artifacts.
Blood BLOOD Erythrocytes without any stromal or other tissue.
Complex stroma CSTR Also referred to as tumor-associated stroma (TA-STR). Storma

surrounding tumor epithelium.
Debris DEB Cells that underwent apoptosis or necrosis.
Lymphocytes LYM Immune cells. Usually extracted from lymphoid aggregates.
Mucin MUC Content secreted by the intestinal glands.
Muscle MUS Composed of the muscularis propria (circular and longitudinal).

Muscularis mucosa is not included.
Normal mucosa NORM Normal/healthy tissue that lines the digestive tract.
Stroma STR Connective tissue that includes submucosal tissue and collagen.
Tumor TUM Composed of colorectal adenocarcinoma epithelium.

and background. The data come from the NCT Biobank (National Center for Tumor
Diseases, Heidelberg, Germany) and the UMM pathology archive. Each class is roughly
equally represented in the dataset. In total, there are 100, 000 patches (224px × 224px,
112µm × 112µm) in the training set. All images are digitized using a scanner at a
magnification of 20× (0.5µm/px). The authors released two versions of the training
set. The first includes original WSI tiles, and the second normalized samples using the
Macenko approach. The validation set is composed of 7, 180 patches with unbalanced
classes. The images of the validation set are all normalized following the same procedure
as the training set. The data are publicly available online2.

CRCTP Dataset

The CRCTP [71] dataset contains a total of 281, 000 patches depicting seven different
tissue phenotypes (tumor, inflammatory, stroma, complex stroma, necrotic, benign, and
smooth muscle) split into training and testing sets from the UHCW (University Hospitals
Coventry and Warwickshire, United Kingdom). The different phenotypes are roughly
equally represented in both sets. In the training set, for tumor, complex stroma, stroma,
and smooth muscle, there are 35,000 patches per class (15,000 for the testing set); for
benign and inflammatory, there are 21,000 (9,000 for the testing set); and for debris,
there are 14,000 (6,000 for the testing set). The patches (150px × 150px) are extracted
at 20× resolution from 20 HE WSIs, each one coming from a different patient. For each
class, only subsets of the WSIs are used to extract the patches. The annotations are
made by two expert pathologists. The author released a version of their dataset where

2https://zenodo.org/record/1214456.
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they ensure data independence between training and testing data (i.e. data from the
training set and test set comes from different WSIs). The data are publicly available
online3.

While working with the CRCTP, we found discrepancies between the data labels and the
tissue images. It appears that a non-negligible part of the released data is mislabeled.
Moreover, we identify multiple tiles that appear in both train and test sets. We recommend
that future users consider these discrepancies and read the supplementary material in
section A.1.

In-house Dataset

During this thesis, we use five in-house private datasets extracted from the archive of the
IGMP (Institute of Tissue Medicine and Pathology, University of Bern, Switzerland).
The datasets are named after the method they were used for. The datasets are described
in detail in their corresponding chapter as they are task-specific. Please refer to chapter 3,
chapter 4, and chapter 5 for more details.

SemiCol Challenge

The SemiCol dataset is proposed by the European Society of Digital and Integrative
Pathology (ESDIP) as a challenge. The train set includes 1, 759 tiles (3000px × 3000px)
extracted from 20 CRC WSIs from the University Hospital Cologne (Cologne, Germany)
and the LMU (University Hospital of Munich, Germany). The tiles are partially labeled
by expert pathologists. Both institutes use different scanners but with an equal resolution
of 0.5µm/px (20×). The tiles are relatively large compared to the previously presented
datasets, which gives more contextual information. There are ten different classes: tumor,
normal mucosa, tumor-associated stroma (complex stroma), submucosal tissue and fat
tissue, muscles, lymphocytes, necrosis, mucin, blood, and background. The authors plan
to publicly release the data by early 20244.

Note that the challenge also includes additional data from patient biopsies. The slides
are labeled as either benign or tumor. For more information, please refer to the original
website.

Discrepancies in Class Definitions Between Datasets

The class definitions are not homogeneous across the datasets. Moreover, datasets do
not contain the same number of tissue classes. Here, we discuss the main adaptation

3https://warwick.ac.uk/fac/cross_fac/tia/data/crc-tp.
4https://www.semicol.org/data/.
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made to ensure correspondence between the datasets.

Following a discussion with expert pathologists, we group stroma/muscle and debris/-
mucus as stroma and debris, respectively, to create a corresponding adaptation between
K19 and K16. Moreover, the complex stroma class definition between K16 and CRCTP
is not identical. The CRCTP complex stroma class contains tiles from the tumor border
region and is more consistent with the tumor class in the K16 and K19 datasets. In K16,
the complex stroma is not limited to the tumor border surroundings. It is defined as the
desmoplastic reaction area, usually composed of a mixture of debris, lymphocytes, single
tumor cells, and tumor cell clusters.

Finally, in the SemiCol dataset, the adipose is merged with the submucosal tissue and
labeled as advent (ADV). When adapting other datasets to the SemiCol tiles, we neglect
the submucosal part and only consider the remaining classes.

A visual representation of the occurrence and relationship of different tissue types across
all datasets is available in the supplementary material (section A.2).

2.6.2 Clinical

To perform our clinical analysis we rely on 2, 054 WSIs from 1, 695 unique patients from
five different cohorts named PA, PB, PC , PD, and PE . The main characteristics of the
cohort are listed in Table 2.5. All five sets are composed of patients where either OS or
DFS data are available. We excluded entries where the patients underwent preoperative
treatment. We consider a 90-day postoperative threshold.

The data from PA,B are obtained from the IGMP. Patients of PC come from the Radboud
UMC (University Medical Center, Nijmegen, Netherlands). Data of PD comes from
the cancer genome atlas (TCGA) online cohort. More specifically, from the colon
adenocarcinoma (COAD) and rectal adenocarcinoma (READ) subsets where we select
diagnosis slides [14] (i.e. including the term “DX” in the filename). TCGA does not
include DFS. Finally, the data in PE are solely composed of patients with stage II CRC
from Mount Sinai Hospital (Toronto, Canada). Note that the histological type of the
tumor (i.e. adenocarcinoma or mucinous) is not available for this set.

To estimate the median follow-up time, we reverse the event occurrence to focus on the
loss of follow-up time as a new variable [126]. Using KM we can estimate the median
time by setting a threshold at 50%. It is challenging to maintain good follow-up data
over the years. In our cohorts, we observe that, on average, we tend to lose half of the
patient follow-up after around 5-year. The PB cohort is composed of recent patients. As
a result, we lack DFS events for a large part of the cohort. For additional information
about other clinical variables and the restriction of the data to stage II, please refer to
the supplementary material in section A.3.
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2.7 Conclusion

We conclude this chapter by summarizing the key information. Digital pathology is the
study of disease and tissue based on digitized images. These broadly available digital
slides, called WSIs, are tissue snapshots that depict the complex interaction between
cancer and normal cells. However, their data abundance comes with a main drawback:
the absence or scarcity of labels. As a result, standard supervised machine learning
cannot fully benefit from all the accessible data.

To this end, we aim to take advantage of SSL to learn tissue representation without
annotation. SSL allows architectures to create pre-trained models that produce good
feature descriptors for downstream tasks such as classification, segmentation, and survival
analysis. The use of pre-trained models typically requires fewer annotations, thus partially
solving the problem of label scarcity.

In the following chapters, we tackle recurrent problems with SSL as the scarcity of
labels for downstream tasks, the inherent domain shift of data, the coarse resolution of
classification models, and the design of automated clinical metrics for survival analysis.
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Table 2.5 – Patient cohorts with main clinical variables. For the clinical applications, we use data from five different cohorts.

Characteristics Bern (PA) Bern MSI (PB) Nijmegen (PC) TCGA (PD) Toronto (PE) All (PA−E)

Patients 383 174 556 463 118 1694
Slides 739 174 556 469 118 2054
Sex (%)

Male 230 (60.1%) 91 (52.3%) 269 (48.4%) 237 (51.2%) 68 (57.6%) 895 (52.8%)
Female 153 (39.9%) 83 (47.7%) 287 (51.6%) 226 (48.8%) 50 (42.2%) 799 (47.2%)

T-stage (%)
T1 20 (5.2%) 9 (5.2%) 12 (2.2%) 14 (3.0%) - 55 (3.3%)
T2 52 (13.6%) 25 (14.5%) 82 (14.7%) 85 (18.4%) - 244 (14.4%)
T3 214 (56.0%) 72 (41.6%) 340 (61.2%) 311 (67.3%) 101 (86.3%) 1038 (61.5%)
T4 96 (25.1%) 67 (38.7%) 122 (21.9%) 52 (11.3%) 16 (13.7%) 353 (20.9%)

N-stage (%)
N0 198 (52.8%) 105 (63.6%) 321 (57.7%) 266 (57.6%) 118 (100%) 1008 (60.1%)
N1 102 (27.2%) 32 (19.4%) 151 (27.2%) 113 (24.5%) - 398 (23.7%)
N2 75 (20.0%) 28 (17.0%) 84 (15.1%) 83 (18.0%) - 270 (16.1%)

TNM (%)
I 62 (16.2%) 26 (14.9%) 75 (13.5%) 82 (18.3%) - 245 (14.6%)
II 134 (35.0%) 79 (45.4%) 241 (43.3%) 170 (38.0%) 118 (100%) 742 (44.2%)
III 127 (33.2%) 59 (33.9%) 218 (39.2%) 135 (30.2%) - 539 (32.1%)
IV 60 (15.7%) 10 (5.7%) 22 (4.0%) 60 (13.4%) - 152 (9.1%)

Histopathologic type (%)
Adenocarcinoma 328 (86.5%) 139 (83.2%) 419 (75.6%) 383 (86.5%) NA 1269 (82.2%)
Mucinous 51 (13.5%) 28 (16.8%) 135 (24.4%) 60 (13.5%) NA 274 (17.8%)

OS (%)
Alive 275 (72.0%) 58 (75.3%) 422 (75.9%) 375 (81.0%) 101 (85.6%) 1231 (77.1%)
Dead 107 (28.0%) 19 (24.7%) 134 (24.1%) 88 (19.0%) 17 (14.4%) 365 (22.9%)

DFS (%)
Free 275 (86.5%) 27 (90.0%) 446 (81.8%) NA 98 (83.8%) 846 (83.8%)
Recurrence 43 (13.5%) 3 (10.0%) 110 (18.2%) NA 19 (16.2%) 165 (16.2%)

OS 5-year 67.5% 70.1% 71.8% 62.1% 84.8% 70.6%
OS Median follow-up (CI) 95 (89 - 101) 59 (38 - 61) 88 (79 - 108) 26 (25 - 29) 64 (62 - 67) 60 (57 - 63)
DFS 5-year 82.9% NA 78.3% NA 82.8% 80.0%
DFS Median follow-up (CI) 40 (38-43) NA 67 (58 - 76) NA 63 (60 - 65) 54 (50 - 58)

Abbreviations and definitions: Not available or few samples (NA), confidence interval (CI), and median follow-up time in months.
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3 Divide-and-Rule: Learning from
Digital Slides Structure

Comment le haut peut diviser le bas? En
créant le concept de communautés.

Diviser pour mieux régner, Horizon vertical
Valentin Le Du

Histopathology is characterized by its large data availability. Resected tissues from
patients undergoing surgery are selected, embedded, and scanned for diagnosis. Over the
years, clinical institutes have accumulated thousands of whole slide images (WSIs). The
availability of such a large amount of data is a boon for large machine-learning models
that tend to be more data-greedy. However, access to these large cohorts comes with
a main drawback: labels’ scarcity. Annotations are expensive and time-consuming to
acquire for expert pathologists.

Consequently, novel methods need to find a way to learn tissue structure in an unsuper-
vised way or to take advantage of already existing publicly available labels. Some works
use, for example, unsupervised clustering [103], registered data from multiple stains [43],
or manual feature extraction [53] to account from the lack of labels. Other works take
advantage of the availability of patient survival data to build train end-to-end archi-
tectures [166, 90]. However, they heavily relied on noisy and compressed features from
pre-trained networks that lack interpretability. Another solution is using self-supervised
learning (SSL) methods [64, 167, 31] that do not require any prior annotations.

In this chapter, we propose our novel approach to learn histopathological patterns
through self-supervised learning [4]. We first introduce three reference baselines in
section section 3.1. Then, motivated by the advantages and pitfalls of the presented
baseline, we present in section 3.2 our novel way to model tissue interactions using
image reconstruction. The model relies on the use of an autoencoder to learn features
in a self-supervised fashion, thus alleviating the need for labeled data. Moreover, we
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Figure 3.1 – Baseline feature space optimization. (a) The used encoder architecture fφ
and memory bank Z, (b) spatial consistency (DSC), (c) clustering assignment (DCA),
and (d) embedding clustering (DEC). We show how each baseline take advantage of an
embedding zi = fφ(Xi) to learn discriminant feature using different neighborhood sets S
or N .

impose constraints in the encoder latent space to further improve data representation.
Finally, to validate the performance of our architecture, we take advantage of our model
tissue description to predict patients’ survival. To do so, we propose a way to aggregate
feature representation within WSIs to create interpretable patient descriptors using
spatial clustering in section 3.3. Finally, we fit our representation using data from a
well-characterized patient cohort with clinicopathological data, including survival time
in section 3.4. To accelerate research, we make our code and trained models publicly
available on GitHub1.

3.1 Constrain on Feature Embedding

This section presents three different baselines that impose constraints in the feature
space to learn discriminant features. The embedding space can be seen as a compression
space where we have access to a large amount of encapsulated information about the
visual aspects and properties of the images. Before going through some specific example,
let’s define W = {Xi}Ni=1 as the set of N image tiles with index i that compose a WSI.
We can define the embedding of each tile as zi = fφ(Xi) ∈ RD, where fφ is an encoder
with parameters φ and D the size of the embedding space. We now introduce different
SSL losses as spatial consistency (DSC), clustering assignment (DCA), and embedding
clustering (DEC) that can be applied to impose consistency in the feature space. The
visual representation of the learning procedure is depicted in Figure 3.1.

1https://github.com/christianabbet/DnR.
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3.1. Constrain on Feature Embedding

3.1.1 Spatial Continuity (DSC)

We want to take advantage of the spatial consistency of the WSI. If we consider two tiles
sampled from the same WSI, which are spatially close to each other, we can assume that
they share similar visual content. We can define the set of tile index Si that constitute
the spatial neighborhood of Xi as:

Si = {j | ‖coord(Xi)− coord(Xj)‖2 < ε, i 6= j, andXj ∈ W} , (3.1)

where coord denotes the x and y spatial coordinates of the tile within the WSI and ε is
a distance threshold. As a result, Si is the set of tiles indexes within spatial distance ε of
Xi. Decreasing ε lowers the distance threshold and thus increases the likelihood for the
two patches to share information. We define the spatial continuity loss as:

minLDSC = min
φ

1
N

N∑
i=1

1
|Si|

∑
j∈Si
‖zi − zj‖2

= min
φ

1
N

N∑
i=1

1
|Si|

∑
j∈Si
‖fφ(Xi)− fφ(Xj)‖2 .

(3.2)

One of the drawbacks of this approach is the definition of the optimal value of ε. In most
cases, the selection of ε is class and context-dependent. If not careful, the learning process
might optimize the representation of tissues that do not share any visual similarity.
Moreover, the model lacks negative examples to repel features in the current setup. A
trivial solution to the loss would be to set all features to a constant vector. In this case,
the loss reaches a local minimum as all the feature space representation collapses.

3.1.2 Cluster Assignment (DCA)

Another way to impose consistency in the feature space is to consider a clustering
approach. Here, we define a set of K clusters with centroids µk ∈ RD. We assign each
embedding zi of our feature space to the nearest cluster Nk as:


N (t)
k = {i | ‖zi − µ(t−1)

k ‖2 < ‖zi − µ(t−1)
j ‖2 , ∀j 6= k , j ∈ [1 . . .K]}

µ
(t)
k = 1

|N (t)
k
|

∑
i∈N (t)

k

zi . (3.3)

The estimation of the centroids µk is the average of the given cluster embeddings and
changes with time steps t. For each cluster, we aim at minimizing the distance of the
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embeddings to their cluster center µk. The definition of the optimization loss is given as
follows:

minLDCA = min
φ

1
N

K∑
k=1

∑
i∈Nk

‖zi − µk‖2. (3.4)

In this setup, the frequency of the update is prone to discussion. A recent work suggests
updating clusters between training epochs [104]. However, it means the embeddings
must be recomputed at each epoch, thus slowing down the training time. An alternative
solution is to use a memory bank Z = {z̃i}Ni=1 as an embedding substitute. When a
new embedding zi is generated with the encoder, we update the memory bank with the
corresponding entry:

z̃i ← m z̃i + (1−m) zi and m ∈ [0, 1], (3.5)

where m controls the momentum. In practice, m is kept high to avoid giving too much
weight to the new samples. It ensures more stability during the learning process. The
memory bank is initialized before training using a normal distribution. When computing
the centroids, we use the Equation 3.3 where we substitute zi with the entries z̃i of the
memory bank Z. It lets us easily update the cluster assignment and centroids at each
optimization step.

Still, the cluster assignment approach raises a few concerns. The first is the initialization
of the centroids. In the standard K-means, they are randomly initialized, which makes
them sensitive to outliers and changes in feature space densities. Secondly, dense clusters
are prioritized due to their significant contribution to the loss term. As a result, smaller
clusters might eventually be emptied and collapse. To ensure a good initialization of
centroids, a workaround is to run initialization with multiple restarts and select the
solution that minimizes Equation 3.4. In addition, clusters are re-initialized when they
collapse to avoid the degradation of the feature representation. In other words, when a
small cluster is emptied, we set a new center located inside another larger, non-empty
cluster. By doing so, we avoid big clusters to gather all the information.

3.1.3 Embedded Clustering (DEC)

With the previously defined DCA, we assume that the feature space is uniformly dis-
tributed and that samples represent single classes. As a result, the assignment of a
cluster only depends on the nearest center, which can be prone to error. For example, an
outlier will likely alter the clustering quality by significantly shifting its mean toward
itself. Here, we assume that our feature space comprises a soft mixture of sparse and
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dense areas. Based on this assumption we estimate a Student’s t distribution [140, 152]
to measure the similarity between our embedding zi and centroids µk as:

qi,k = (1 + ‖zi − µk‖22)− 1
2

K∑
k

(1 + ‖zi − µk‖22)− 1
2

. (3.6)

We can see the variable qi,k as the probability of sample zi to belong to the cluster k with
mean µk. The samples are, therefore, softly assigned (i.e. not tied to a single cluster).
The clusters are initialized at the beginning of the training following the standard K-
means procedure. The second step is to define a target distribution to match. The
selected function needs to strengthen predictions [152] and is defined as:

pi,k =
q2
i,k/fk

K∑
k′
q2
i,k′/fk′

and fk =
N∑
i

qi,k . (3.7)

Raising the prediction qi,k to the second power sharpens the distribution and encourages
high-confidence assignment. In addition, the predictions are normalized with the so-called
soft cluster frequencies fk. Locally dense clusters can bias the learning of the feature space
due to their large amount of assigned samples. As a result, the representation of other
more sparse areas is neglected. The variables fk are inversely proportional to the cluster
sizes and aim to decrease dense clusters’ impact. The objective loss matches the source
distribution Q = (qi,k)1≤i≤N,1≤k≤K to the selected target one P = (qi,k)1≤i≤N,1≤k≤K
using Kullback-Leibler (KL) divergence as:

minLDEC = min
φ

KL(P || Q) = min
φ

N∑
i

K∑
k

pi,k log pi,k
qi,k

. (3.8)

The limitation of this approach is the need for a pre-training step. The initialization of
the cluster centers is performed only once at the beginning of the optimization. As a
result, the model needs to first learn feature representation through another approach,
such as autoencoders or stacked autoencoders [143].

3.2 Proposed Approach

This section introduces our novel Divide-and-Rule (DNR) approach. The model aims
to solve the presented baselines’ limitations while taking advantage of SSL. We first
introduce our self-supervised transfer colorization scheme that takes advantage of staining
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Figure 3.2 – The architecture of our proposed Divide-and-Rule (DNR) approach. The
model is composed of an encoder fφ and decoder fψ. It takes as input XHE

i the
concatenation of the hematoxylin XH

i and eosin component XE
i of an image Xi extracted

using function ζ. The memory bank Z is updated with the embedding vector zi and
used to learn discriminant features through LDivide and LRule. The decoder reconstructs
the output image X′i which is used to optimize LMSE .

information in subsection 3.2.1. Then, we present our DNR loss to represent image patches
based on their spatial proximity and embedding. Finally, we motivate our region of
interest (ROI) detection scheme that focuses on tumor representation in subsection 3.2.3.
The architecture of the presented method is depicted in Figure 3.2.

3.2.1 Learning from Staining

To learn a first representation of our embedding, we take advantage of the staining
information. Let’s assume we have access to N images Xi, i ∈ {1, . . . , N}. For each input
image Xi, we extract its hematoxylin XH

i ∈ RH×W and eosin XE
i ∈ RH×W channel

using stain decomposition ζ : RH×W×3 → RH×W×2. The resulting matrix XHE
i is given

in Equation 3.9 and is the concatenation along the channel axis of both XH
i and XE

i

components.

ζ(Xi) = XHE
i =

(
XH
i XE

i

)
. (3.9)

The image XHE
i is fed to an encoder fφ : RH×W×2 → RD with parameters φ to generate

zi ∈ RD where D is the dimension of the embedding space. As a second step, the
vector zi is fed to the decoder fψ : RD → RH×W×3 with parameters ψ to create
the reconstructed image X′i ∈ RH×W×3. The decoder is created by alternating five
convolutional layers, rectified linear unit (ReLU), and bilinear up-sampling until the
desired output dimension is reached. We add a final convolution and hyperbolic tangent
(Tanh) layer for the regression output. The architecture of the decoder is selected to
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Figure 3.3 – Illustration of the optimization process of the divide and rule components.
Left: the sampling of whole slide image tile. Right: the divide and rule settings. We
show the example of a tile embedding zi, its overlapping tiles Si, and its feature space
neighbors Ni. All presented tiles depict tumor tissue and are assumed positive to zi.

have a minimal number of parameters. This approach allows us to ensure that the
encoder generates a meaningful latent space, as the decoder is not complex enough to
achieve perfect sample reconstructions. Finally, we define the optimization process as
the minimization of the reconstruction loss between the input and predicted images:

minLMSE = min
φ,ψ

1
N

N∑
i=1
‖Xi −X′i‖2

= min
φ,ψ

1
N

N∑
i=1
‖Xi − fψ ◦ fφ ◦ ζ(Xi))‖2 .

(3.10)

3.2.2 Divide-and-Rule

The principle behind our self-supervised learning approach is based on spatial proximity
and entropy minimization. The overall pipeline is depicted in Figure 3.3. First, we
consider that any two spatially adjacent WSI image patches (positive pairs) are more
likely to share similar visual content and thus share more information in the feature
space than two distant WSI patches (negative pairs). One of the limitations of spatial
proximity is the definition of the distance threshold ε (see Equation 3.1). Here, we impose
overlapping between positive patches to ensure that the positive pairs share similar
histomorphological patterns. We denote the set of patch indexes that overlap with patch
Xi as:

Si = {j | ‖coord(Xi)− coord(Xj)‖2 ≤
1
2 min(H,W ), i 6= j} , (3.11)
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where the distance is conditioned by the patch’s original size. We then define a second
set of positive tiles using tissue similarity in the feature space. To do so, we first create
a memory bank {z̃i}Ni=1 = Z to keep track of past embedding zi using momentum as
in Equation 3.5. Here, we can interpret z̃i as an estimation of the embedding zi. The
memory bank allows us to query any tissue embedding during training. Moreover, we
consider that zi and z̃i are normalized entries ‖zi‖2 = ‖z̃i‖2 = 1 ∀i ∈ [1 . . . N ]. Finally,
we define the index set of memory bank patches that achieve a low cosine distance when
compared to the query zi:

Ni = {j | (1− z̃>j zi) ≤ (1− z̃>k zi), ∀k, i 6= j}. (3.12)

Here, we consider the closest sample for simplicity. We assume neighbor samples in
the feature space share similar visual patterns. We use cosine distance as the reference
metric, which is robust in high-dimensional spaces. Another option to create Ni could
have been to define a confidence threshold on the cosine distance. Any embedding with
a lower cosine distance than the mentioned threshold would have been assigned to Ni.
However, defining a fixed threshold in practice is difficult as the cosine distance between
entities evolves through the training.

We propose to follow a simple to hard learning logic to learn feature representation
progressively. Given an embedding, we compute the tile’s relative entropy to other tiles
embedding. If a sample lies in a high-density area (i.e. many and close neighbors in the
feature space), its relative entropy would be low. On the contrary, for a sample that lies
in a small density area (i.e. few and distant neighbors), its entropy would be high. The
entropy acts as a threshold between close and distant samples [151]. The relative entropy
h =

(
h1 · · · hN

)
∈ RN is defined as:

pi,j =
exp (z̃>j zi/τ)
N∑
k=1

exp (z̃>k zi/τ)
, (3.13)

hi = −
N∑
j=1

pi,j log(pi,j) , (3.14)

where τ ∈ [0, 1] is the temperature parameter that controls the sharpness of the predictions.
During the learning procedure, we split our samples into two sets B and B̄. Here, B is the
set of elements that we consider to have low relative entropy, and B̄ is its complementary
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set where elements have high relative entropy. They are defined as:

B = {i | hi is top-k in h} and B̄ = {i | hi is not top-k in h}. (3.15)

The entries of B are considered easy samples as their local embedding is dense and thus
should contain many relevant candidates for similarity matching. The number of top-k
samples is gradually increased during training such that we go from easy samples (low
entropy) to hard ones (high entropy) as:

k = br e
E
c, (3.16)

where E is the total number of epochs, e the current epoch and r ∈]0, 1] a scaling factor.
We define our first loss term in Equation 3.17. The objective focuses on samples with
high entropy that are considered individual classes. Here, we tie together overlapping
patches while maximizing the distance to other features, as the model is not confident
enough to impose a constraint in the feature space.

LDivide = − 1
|B̄|

∑
i∈B̄

log

 1
|Si|

∑
j∈Si

pi,j

 . (3.17)

The second loss aims at minimizing the distance between overlapping and low entropy
samples. The B samples are labeled as relevant candidates as they lie in a locally dense
feature space. We define the optimization process as:

LRule = − 1
|B|

∑
i∈B

log

 1
|Si ∪Ni|

∑
j∈Si∪Ni

pi,j

 . (3.18)

The objective includes both the spatial Si and feature space Ni constraints to improve
the feature representation. The overall objective is defined as the composition of the
reconstruction loss, divide, and rule loss.

min
φ,ψ
LDNR = min

φ

[
min
ψ

(LMSE) + λ (LDivide + LRule)
]
, (3.19)

where λ controls the importance given to the divide and rule terms. The detailed
pseudocode is given in algorithm 1.
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Algorithm 1: Pseudocode for DNR framework.
Get a set of samples W = {Xi}Ni=1 ;
Build the set of overlapping tiles {Si}Ni=1 ; . Equation 3.11
Initialize memory bank Z by sampling from normal distribution ;
for e = 0 to E − 1 do

Update top-k threshold ; . Equation 3.16
Compute relative entropies h using memory bank Z ; . Equation 3.14
Create sets B and B̄ based on relative entropy ; . Equation 3.15
for batch {Xi ∈ W}Bi=1 do

Extract image stain XHE
i = ζ(Xi) ;

Compute embedding zi = fφ(Xi), and reconstruction X′i = fψ(zi) ;
Normalize embeddings zi ;
Get the set of neighbors Ni ; . Equation 3.12
Compute loss LDivide, LRule and LMSE ; . Equation 3.19
Optimize φ and ψ parameters ;
Update memory bank Z. ; . Equation 3.5

end
end

3.2.3 Region of Interest Detection

Our goal with the proposed DNR approach is to learn discriminative features from WSIs
for survival analysis. WSIs are intricate images exhibiting diverse tissue distribution,
including lymph nodes, tumor areas, and healthy tissue. Since tumor areas are the
primary regions distinguishing between healthy and unhealthy patients, we presume that
the cancerous region holds the most relevant information for predicting patient survival.
However, WSIs often lack manual annotations regarding the presence and location of
cancerous tissue. Therefore, we aim to develop an automated method for detecting tumor
regions within WSIs.

To accomplish this, we use publicly available data to train a transfer learning model to
classify the histological components of WSIs and identify ROIs as depicted in Figure 3.4.
This approach eliminates the need for external annotations, saving time and effort. We
utilize the Kather 19 (K19) dataset [77] which consists of 100,000 images of tissue from
colorectal cancer (CRC) separated into nine different classes, namely adipose (ADI),
background (BACK), debris (DEB), lymphocytes (LYM), mucin (MUC), muscle (MUS),
normal mucosa (NORM) stroma (STR), and tumor (TUM).

Initially, we train a simple classifier fθ : RH×W×3 → RC with parameters θ. The model
is the succession of a ResNet encoder followed by a linear projection head [66]. Here, W ,
H represent the height and width of the input RGB image X ∈ RH×W×3 and C is the
number of classes. Subsequently, we apply our trained algorithm to WSIs using a sliding
window approach. We use the stain normalization τ : RH×W×3 → RH×W×3 to match the
color space between the public data and our in-house slides to ensure that the classifier’s
performance is not diminished when transferring the model to different images.

62



3.3. Spherical Clustering

Figure 3.4 – Estimation of the region of interest (ROI) based on tumor-associated region.
(a) We use a ResNet architecture fθ trained on Kather 19 (K19) classes and use it
to discriminate tumor (TUM), stroma (STR), and lymphocytes (LYM) instances on
normalized in-house tiled whole slide image (WSI). (b) Overview of the classification of
the WSI with the final estimated ROI highlighting the main tumor area.

We refine our approach by retraining three out of the C available classes, namely LYM,
STR, and TUM, to provide an initial estimation of the tumor area and exclude a
significant portion of healthy tissue regions. These classes exhibit strong discriminatory
evidence for the task and have received endorsement from the pathologist. Including the
TUM class is self-evident as it contains the primary tumor blobs. Moreover, lymphocytes
surrounding the tumor indicate an immune reaction and are potentially linked to a higher
survival score. Additionally, the intra-tumoral area is predominantly represented by
the STR class. Furthermore, given the absence of information on whether the detected
stroma is part of the main tumor, it is crucial to solely consider the stromal content
directly attached to the tumor when creating the ROI.

3.3 Spherical Clustering

We seek to build a unique representation for each patient based on WSIs. To achieve
our goal, we use a spherical K-means (SPKM) [161] approach to cluster our latent space
Z into K different clusters with centers µk ∈ RD. We assume the memory bank is a
reasonable estimation of the feature space distribution. Moreover, we prefer the spherical
K-means (SPKM) approach rather than a standard K-means one, as both LDivide and
LRule terms rely on cosine distance to compute feature similarities. As a result, the
embedding representation lies on a D dimensional unit sphere.

Let’s now assume that we have access to M samples Xi, i ∈ {1, . . . ,M} from a patient
discriminative area (i.e. extracted from a ROI). To generate the patient representation,
we detach the decoder fψ, embed every patches using the encoder fφ, and assign them
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Figure 3.5 – Overview of spherical K-means representation. (a) We use the previously
learned memory bank Z to fit a spherical K-means (SPKM) model with K centers µk.
(b) We apply the spherical K-means (SPKM) on whole slide image tiles Xi to get cluster
assignment ci and create patient final representation fpatient.

to the nearest clusters to create vector c ∈ RM as:

c =
(
c0 . . . cM

)
and ci = arg min

k∈{1,...,K}
z>i µk . (3.20)

So far, we have access to a clustered representation of the WSI whose cardinality
depends on the number of patches M . Unfortunately, such representation is inconsistent
between patients and cannot be used as is for survival analysis. To overcome this issue,
we choose to aggregate the results at the WSI level using cluster probability fprob =(
f prob

1 . . . f prob
K

)
∈ RK and tile interaction as f inter = vec((f inter

k,k′ )1≤k,k′≤K) ∈ RK·K :

f prob
k = 1

M

M∑
i=1

1(ci=k), (3.21)

f inter
k,k′ = 1

M

M∑
i=1

1
|Si|

∑
j∈Si

1(ci=k) · 1(cj=k′), (3.22)

Si = {j | ‖coord(Xi)− coord(Xj)‖2 ≤
√

2
2 (W +H), i 6= j}, (3.23)

where Si is the index set of spatial neighbor patches of Xi patch, W and H patches
width and height, and 1 the indicator function. Here, f prob

k denotes the probability that
a patch belongs to cluster k and f inter

k,k′ is the probability that a patch belonging to cluster
k is surrounded by elements from cluster k′. Note that the definition of the set S differs
from the set defined in DNR approach. The overall procedure is depicted in Figure 3.5.
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The concatenation of both predictors gives the final patient descriptor:

fpatient =
(
fprob f inter

)
∈ RK(K+1) . (3.24)

When multiple slides are available per patient, the predictors are computed slide-wise
and averaged.

3.4 Experiments

In this section, we first present the experimental setting in subsection 3.4.1. Then, we
show the results of the spherical clustering in subsection 3.4.2. Finally, we perform an
ablation study of our implementation and survival analysis in subsection 3.4.3.

3.4.1 Experimental Settings

For the encoder fφ, we use a ResNet-18 backbone where the input layer is updated to
support two input channels (hematoxylin and eosin (HE) stains). The stain estimation
is performed using the Ruifrok [122] method. The latent space has dimensions D = 512.
The decoder fψ is a succession of convolutional layers, ReLUs, and up-samplings (bicubic).
We use Adam optimizer with β = (0.9, 0.999) and learning rate, lr = 1e−3. The model
is trained with the reconstruction loss LMSE for 10 epochs with early stopping to create
a first representation of the features with batch size B = 32. Then, we add LDivide for
an additional 20 epochs with λ = 1e−3, r = 0.25B, and τ = 0.5. Finally, we go through
5 additional rounds using LRule while raising the entropy threshold between each round
to refine the feature representation.

The data used to train our DNR model are generated from the patient set PA which is
composed of hundred slides from colorectal cancer (CRC) patients. For each WSI, we
use the model fθ trained on K19 to identify the ROI. From the ROI, we extract up to
1000 tile per slide, which brings the total of 650K individual tiles over PA. Tiles are
normalized using the Macenko [96] algorithm to match K19 color distribution. The size
of the images are 224px × 224px and their resolution is 0.486µm/px at 20×. We also
extract the overlapping tiles necessary for the similarity learning, which doubles the size
of the training set and brings it to over 1.3M tiles. The dataset for training is named
DDNR.

We compare our work with the baselines DSC, DCA, and DEC. For fair comparison, we
use the ResNet-18 backbone. The number of clusters for training is tied to the one of
the spherical clustering. We fit SPKM with K = 8 and K = 16 clusters to the memory
bank embeddings, which we consider as a good estimation of DDNR features.
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Figure 3.6 – Visualization of spherical K-means (SPKM) with K = 16 clusters assignation.
Tiles are selected from patient set PA.

Figure 3.7 – Evolution of feature cosine similarities over the training epochs. As the
training progress, the composition of losses (LMSE, LDivide, and LRule) is updated. For
a given image embedding, we compute its similarity to random, S, and N entries.
Similarities with respect to S and N show better correlation compared to random entries.

3.4.2 Cluster Interpretation

Examples of tile sampled from each cluster for K = 16 are presented in Fig. 3.6. The
learning of the feature space is unsupervised and does not include prior knowledge of
tissue similarities. To validate our model, we asked pathologists to analyze and evaluate
the consistency of the estimated clusters. Out of the 16 clusters, we identify two clusters
that highlight dense tumor areas (i.e. c2, c6). Certain clusters show tumor-to-stroma
interaction as c4, c11, c14. Other notable clusters focus more on inflammatory tissues (i.e.
c7), muscles and large vessels (i.e. c8), collagen and adipose (c9), or blood and veins (i.e.
c11). Some clusters do not directly represent the type of tissue but rather the positioning
information such as c3, which describes the edge of the WSI. The results for K = 8 and
the baseline methods’ clustering are available in supplementary section B.1.

3.4.3 Ablation Study and Survival Analysis

In this subsection, we focus on the ablation study and survival analysis. In Figure 3.7, we
can observe the evolution of the cosine distance in the feature space throughout training.
We start the learning procedure with the training of the autoencoder (LMSE) and then
add the Divide (LDivide) and Rule (LRule) loss terms to further improve the feature space
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Table 3.1 – Multivariate survival analysis for the baselines and proposed Divide-and-Rule
approach. We report losses LMSE, LDivide, and LRule. The parameters K, Nfeat and n
denote the number of clusters, the number of features that achieve statistical relevance
when performing forward selection (p < 0.05), and the number of patients in each set
respectively. The integrated Brier score (IBS) and concordance index (C-Index) are
performance indicators.

Pclinical
A (n = 253)‡ PA (n = 374)‡

Method L
M

SE

L
D

iv
id

e

L
R

ul
e

K N
fe

at

IBS [57] C-Index [63] IBS C-Index

Clinical 8 0.290 0.608*** - -

DSC 8 3 0.284 0.540+ 0.285 0.556**

DCA† [104] 8 2 0.289 0.545** 0.285 0.556***

DEC† [152] 8 4 0.288 0.609** 0.283 0.577**

DNR RGB 8 2 0.285 0.527** 0.286 0.510***

DNR H&E 8 3 0.287 0.607* 0.282 0.604***

DNR H&E X 8 3 0.283 0.595** 0.284 0.592***

DNR (ours) H&E X X 8 4 0.285 0.611* 0.283 0.624***

DSC 16 9 0.293 0.607 0.288 0.646***

DCA† [104] 16 7 0.283 0.625+ 0.285 0.632**

DEC† [152] 16 7 0.276 0.641** 0.276 0.643***

DNR RGB 16 0 0.290 0.500 0.290 0.500
DNR H&E 16 5 0.282 0.636* 0.280 0.632***

DNR H&E X 16 10 0.301 0.621+ 0.293 0.647***

DNR H&E X X 16 13 0.285 0.674 0.273 0.694
† Autoencoder is replaced with the self-supervised objective function.
‡ State of the patient cohort as in 2019 (cohort updated in 2021).
+ p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001 (log-rank test).

representation. We highlight the distribution of similarities between random samples
in the memory bank, overlapping pairs (S), and embedding neighborhood (N ). In the
first phase (i.e. epochs = 10), we can already see a difference in the distributions. As
the training proceeds, both random and S histograms tend to narrow and become more
selective. When adding the final LRule component to our mode, we can observe that
the measured similarity in the embedding space is higher. It highlights the difference in
distribution between sparse embedding areas (first peak) and dense areas (far right peak).
An overview of the decoder reconstruction performance is available in supplementary
section B.2.

Based on the SPKM, we build our survival features on top of the predicted clusters for
each patient. We report our results on the patient set PA and patient subset Pclinical

A ⊂ PA.
The subset Pclinical

A is composed of patient data where all clinical metrics are available
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Figure 3.8 – Averaged hazard ratio over N = 20 runs for patient cohort Pclinical
A features

(fprob
k and f inter

k,k′ ) over K = 16 clusters, HE staining reconstruction, divide and rule losses.
The decrease and increase are depicted in blue and red, respectively.

as some clinical entries of PA are missing. The generated features are fed to a Cox
proportional hazards (CPH) model to predict overall survival (OS). We perform ablation
studies by testing the performance of our presented architecture in different settings.
As a baseline, we consider the usual clinical metrics and the approaches presented in
section 3.1. To reduce the risque of overfitting, we use the leave-one-out cross validation
(LOOCV) approach, where we iteratively remove one sample from the patient set and
use it for validation. The results are presented in Table 3.1.

Our model outperforms previous approaches by a safe 5% margin on C-Index [63].
Regarding the autoencoder (LMSE), learning from HE representation instead of RGB
help the model in finding better feature. In addition, both LDvidie and LRule terms tend
to increase as well the overall performance of the model. The absence of LRule decreases
the prediction score. Such behavior is to be expected as the term LDivide scatters the data
and focuses on self-instance representation. When LRule is introduced, the model can
restructure the embedding by linking similar instances. Also, we observe an augmentation
in features, Nfeat, that achieve statistical relevance for prognosis as we go through our
learning procedure (for K = 16), which proves that our proposed framework can model
more subtle patches interactions.

In Figure 3.8 we display the results over cohort Pclinical
A for the best performing model

using HE reconstruction, K = 16 cluster, and all DNR losses. For each feature, we
display the averaged hazard ratio (HR) using LOOCV. We solely depict the metrics that
are selected by the CPH univariate fitting as statistically significant.

Out of the detected feature that contributes to the survival outcome of the patients, we
observe different interactions between tissues. For example, we see blood vessels and
tumor stroma (f inter

1,13 ), which are linked to a lower survival outcome. A similar trend
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is observed in the relation between tumor stroma and connective tissues (f inter
2,8 ). Both

predictions are linked to a deeper tumor invasion and, thus, lower survival outcomes.
In the ablation studies, solely the f prob

3 component is selected. The cluster shows the
presence of tumor edges (i.e. outline of the tissue). However, such a feature should not
be correlated to survival outcomes. After investigation, we observe that the feature is
linked to the slide and tissue selection. Slides containing solely tumor are more likely
to be sampled from more invasive cases and thus correlated with worst prognosis. As a
result, the single-class distributions are not deterministic of survival.

3.5 Conclusion

In this chapter, we proposed a self-supervised learning method that offers a new approach
to learning histopathological patterns within cancerous tissue regions. Our model presents
a novel way to model the interactions between tumor-related image regions and tackles the
inherent problem of data interpretability when predicting patient outcomes. Our method
surpasses all previous baseline methods and achieves state of the art (SOTA) results in
terms of C-Index without any data-specific annotation. Ablation studies also show the
importance of different components of our method and the relevance of combining them.

However, we mention some limitations with our current approach. First, the proposed
feature aggregation for patient description is based on a novel metric. Such features
usually fail to be applied in daily diagnosis as experts do not trust them. Moreover,
in practice, we often rely on data from multiple institutes or acquired with different
scanners. This data heterogeneity causes a domain shift that can hinder the performance
of downstream tasks. To reduce the domain shift, our presented architecture uses stain
normalization to match feature distributions between the training and inference sets. This
approach is time-consuming and prone to error as the normalization is usually computed
region-based and thus inconsistent across the WSI. For instance, the normalization of
dense tumor areas tends to fail due to their low expression of eosin.

In the next chapter, we tackle the problem of feature normalization and domain shift by
combining unsupervised domain adaptation (UDA) and SSL.
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4 Self-Rule to Multi Adapt: Han-
dling Data from Multiple Sources

In the previous chapter, we explained how to take advantage of largely available unlabeled
data to learn feature representation of colorectal cancer (CRC) tissues. However, we
also mentioned the limitations of our approach when dealing with data from multiple
sources. More specifically, let’s assume we can access labeled data from an external
source and want to transfer its knowledge to our inner target cohort. This situation
commonly appears when dealing with publicly available data. The most straightforward
approach would be to train a supervised model on the source-labeled data and apply it
to our private data. However, as the public data comes from an external institute, the
appearance of the whole slide images (WSIs) would most likely differ from the target
site, which creates a domain shift. Unfortunately, this shift in distribution tends to lower
the model’s prediction quality.

One way to tackle the issue of domain shift is unsupervised domain adaptation (UDA).
The approach works by learning from a rich source domain together with the label-
free target domain to have a well-performing model on the target domain at inference
time. UDA allows models to include a large variety of constraints to match relevant
morphological features across the source and target domains.

Out of the recent works that rely on UDA, we cite the work of DANN [54] that uses
gradient reversal layers to learn domain-invariant features. Self-Path [85] latter benefits
from the DANN approach and combines it with self-supervised auxiliary tasks. The
selected tasks reflect the structure of the tissue and are assumed to improve the stability of
the framework when working with histopathological images. Such auxiliary tasks include
hematoxylin channel prediction, jigsaw puzzle-solving, and magnification prediction.
Another example is CycleGAN [164], which takes advantage of adversarial learning to
map images between the source and target domain cyclically. However, adversarial
approaches can fall short because they do not consider task-specific decision boundaries
and only try to distinguish the features as either coming from the source or target
domain [123]. A further issue is that most UDA methods consider fully-labeled source
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datasets [48] for domain adaptation. However, digital pathology mainly relies on unlabeled
or partly-labeled data, as acquiring fully labeled cohorts is often unfeasible. In addition,
recent approaches treat domain adaptation as a closed-set scenario [21], which assumes
that all target samples belong to classes present in the source domain, even though this
is often not the case in a real-world scenario. To overcome this, OSDA [124] proposes an
adversarial open-set domain adaptation approach, where the feature generator has the
option to reject mistrusted or unknown target samples as an additional class. In another
recent work, SSDA [153] uses self-supervised domain adaptation methods that combine
auxiliary tasks, adversarial loss, and batch normalization calibration across the source
and target domains.

In this chapter, we propose our label-efficient framework called Self-Rule to Multi Adapt
(SRMA) [2] for tissue type recognition in histological images and attempt to overcome
the issue of domain shift by combining self-supervised learning approaches with UDA
(section 4.1). We present an entropy-based approach that progressively learns domain
invariant features, thus making our model more robust to class definition inconsistencies
as well as the presence of unseen tissue classes when performing domain adaptation.
SRMA can accurately identify tissue types in hematoxylin and eosin (HE) stained images,
which is an essential step for many downstream tasks. Our proposed method achieves
this by using a few labeled open-source datasets and unlabeled data, which are abundant
in digital pathology, thus reducing the annotation workload for pathologists. This work
is an extension of our previously proposed Self-Rule to Adapt (SRA) [1] framework
to multi-source domain adaptation (i.e. including an additional public dataset and
performing further experiments to assess the model’s performance). We show that our
method outperforms previous domain adaptation approaches in a few-label setting and
highlight the potential use for clinical application in the diagnostics of CRC in section 4.2.
To promote open research, we make our code available on GitHub1.

4.1 Method

In our unsupervised domain adaptation scenario, we have access to a small set of labeled
data sampled from a source domain distribution and a set of unlabeled data from a target
distribution. The goal is to learn a hypothesis function (e.g. a classifier) on the source
domain that provides a good generalization in the target domain.

To this end, we propose a novel self-supervised cross-domain adaptation setting called
SRMA, described in more detail below. We first introduce the architecture in a single-
source setting in subsection 4.1.1 to subsection 4.1.4 and then present the generalization
to the multi-source setting in subsection 4.1.5. Figure 4.1 gives an overview of the
proposed framework, and algorithm 2 presents the pseudo-code of our SRMA method in
the single-source setting.

1https://github.com/christianabbet/SRA.
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Figure 4.1 – Schematic overview of the Self-Rule to Multi Adapt (SRMA) framework for
a given input image X sampled from D = Ds∪Dt = ⋃K

k=1Dks ∪Dt. Each encoder receives
a different augmented version of the input image generated by transformations ξ1 or ξ2.
The loss LSRMA = LIND + LCRD is the composition of the in-domain loss (LIND) and
cross-domain loss (LCRD), which aims at reducing the domain gap between the source
and target domains. The queue Q keeps track of previous samples’ embeddings and their
set of origin (source or target).

4.1.1 Architecture

To train our framework, we rely on a set of images D = Ds ∪ Dt that is the aggregation
of a set of source images Ds and a set of target images Dt. The model takes as input
an RGB image X ∈ RH×W×3 sampled from D where H and W denote the height and
width of the image, respectively. After sampling, two sets of random transformations
are applied to the image X using image augmentations ξ1, ξ2 : RH×W×3 → RH×W×3. It
generates a pair of augmented views that are assumed to share similar content as they
are both different augmentations of the same sampled input image. Each image of the
pair is then fed to its respective encoder fφ : RH×W×3 → Rd and momentum encoder
fψ : RH×W×3 → Rd to compute the query z ∈ Rd and key z+ ∈ Rd embeddings of the
input image. Here, φ, ψ, and d represent the weights of the encoder, the weights of
the momentum encoder, and the dimension of the embedding space, respectively. For
notation simplicity, when sampling an image X, we directly assume its embedding as
z, z+ ∈ D.

Each network’s branch consists of a residual encoder followed by two linear layers based
on the architecture proposed in MoCoV2 [32]. We use the key embeddings z+ to maintain
a queue of past samples Q = {ql ∈ Rd}|Q|l=1 in a first-in, first-out fashion, where Q is the
size of the queue. The elements of Q are called negatives as they represent previously
encoded entries that are different from the current batch elements. When updating the
queue with a new negative sample, not only the sampled image’s embedding is stored,
but also its domain of origin (source or target). It allows the architecture to know at any
time the domain of origin of each queue sample.

The queue provides many examples that alleviate the need for a large batch size [31] or
the use of a memory bank [82]. In addition, it enables the model to scale more easily as
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Algorithm 2: Pseudocode for the single-source SRMA framework.
Initialize queue Q by sampling from normal distribution ;
Normalize queue vectors {qi} ∈ Q ;
for e = 0 to Nepochs − 1 do

Create D by uniformly sampling from Ds and Dt ;
Update easy to hard coefficient r ; . Equation 4.10
for batch {Xi ∈ D}Bi=1 do

Get augmented samples using data augmentation ξ ;
Perform forward pass using fφ and fψ on augmented data to

get zi and z+
i respectively ;

Normalize vectors zi, z+
i ;

Compute in-domain loss LIND ; . Equation 4.4
Calculate cross-entropy H̄ ; . Equation 4.7
Compute easy to hard Rs, Rt sets ; . Equation 4.11
Evaluate cross-domain loss LCRD ; . Equation 4.9 updated
Compute LSRA = LIND + LCRD ; . Equation 4.1
Update fφ weights with backpropagation ;
Update fψ weights with momentum ; . Equation 4.17
Update queue Q with z+

i ; . Equation 3.5
end

end

D grows since the queue size does not depend on it. Moreover, fψ is updated using a
momentum approach, combining its weights with those of fφ. This approach ensures
that fψ generates a slowly shifting and coherent embedding.

Motivated by recent work in the field [1, 55, 82], we extend the domain adaptation
learning procedure to our model definition and task. Hence, we split the loss terms into
two distinct tasks, namely the in-domain LIND and cross-domain LCRD representation
learning. The objective loss LSRMA is the summation of both terms, which are described
in more detail below.

min
φ
LSRMA = min

φ
LIND + LCRD. (4.1)

4.1.2 In-domain Loss

The first objective LIND aims at learning the distribution of each source and the target
domain features individually. We want to keep the two domains independent as their
alignment is optimized separately by the cross-domain loss term. For each embedding
vector z, there is a paired embedding vector z+ generated from the same sampled tissue
image and therefore is, by definition, similar. As a result, the sample’s similarity can
be jointly optimized using a contrastive learning approach [110]. Here, we strongly
benefit from data augmentation to create discriminant features that match both z and
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z+, making them more robust to outliers. By selecting data augmentations suited
to histology [50, 136], we can ensure that the learned features are consistent with
naturally occurring data variations in histology and, therefore, guide the model towards
histopathologically meaningful representations. This approach differs from other recent
works [82], where memory banks are used instead of the combination of a queue and
data augmentation to keep track of past samples. The in-domain loss, as expressed in
Equation 4.4, constrains the representation of the embedding space for each domain
separately.

p IND(z, z+,Q) = exp(z>z+/τ)
exp(z>z+/τ) + ∑

ql∈Q
exp(z>ql/τ) . (4.2)

l IND(D,Q) =
∑

z ,z+∈D
log

[
p IND(z , z+,Q)

]
. (4.3)

LIND = −1
|Ds|+ |Dt|

[l IND(Ds,Qs) + l IND(Dt,Qt)] . (4.4)

We denote Qs,Qt ⊂ Q as the sets of indexed samples of the queue that were previously
drawn from the corresponding domain Ds,Dt ⊂ D, and τ ∈ R as the temperature. The
temperature is typically small (τ < 1), thus sharpening the signal and helping the model
to make confident predictions. For all images of each dataset Ds,Dt, we want to minimize
the distance between z and z+ while maximizing the distance to the previously generated
negative samples from the corresponding sets Qs,Qt. The samples in the queue are
considered reliable negative candidates as they are generated by fψ whose weights are
slowly optimized due to its momentum update procedure.

4.1.3 Cross-domain Loss

We can see the cross-domain matching task as the generation of features that are
discriminative across both sets. In other words, two samples that are visually similar
but are drawn from the source Ds and target Dt domain, respectively, should have a
similar embedding. On the other hand, when comparing these samples to the remaining
candidates of the opposite domain, their resulting embeddings should be far apart.
Practically, performing cross-domain matching using the number of available candidates
within a batch might deteriorate the quality of the domain-matching process due to
the limited amount of negative samples. Therefore, we use the queue to find negative
samples for domain matching. Hence, we compute the similarity and cross-entropy of
each query pair z, z+ drawn from one set (for example, Ds) to the stored queue samples
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from the other set (for example, Qt):

pCRD(z,q,Q) = exp(z>q/τ)∑
ql∈Q

exp(z>ql/τ) , (4.5)

H(z, z+,Q) = −
∑
q∈Q

pCRD(z,q,Q) log
[
pCRD(z+,q,Q)

]
, (4.6)

H̄(z, z+,Q) = 1
2
[
H(z , z+,Q) +H(z+, z ,Q)

]
. (4.7)

A low cross-entropy H means that the selected query pair z , z+ from one domain matches
with a limited number of samples from another domain. The fact that the model matches
the query with only a subset of samples of the other domain implies that it is confident
when building domain-agnostic features to retrieve relevant candidates. Moreover, we
update our initial definition of H in SRA [1], where solely z is used. By taking the
average cross-entropy H̄, the model is now also penalized when the predictions from z , z+

of the same image are different. It improves the consistency of the domain matching [9].
As a result, the loss LCRD aims to minimize the averaged cross-entropy of the similarity
distributions, assisting the model in making confident predictions:

l CRD(D,Q) =
∑

z ,z+∈D
H̄(z, z+,Q), (4.8)

LCRD = 1
|Ds|+ |Dt|

[
l CRD(Ds,Qt) + l CRD(Dt,Qs)

]
. (4.9)

4.1.4 Easy-to-hard Learning

Two main pitfalls can hamper the performance of our cross-domain entropy minimization.

Firstly, at the start of the learning process, the similarity measure between samples
and the queue is unclear as the model weights are initialized randomly, which does not
guarantee proper feature descriptions. As a result, the optimization of their relative
entropy and the loss term LCRD is ambiguous in the first epochs.

Secondly, being able to find matching samples for all input queries across datasets is a
strong assumption. In clinical applications, we often rely on open-source datasets with
a limited number of classes to annotate complex tissue databases. More specifically,
challenging tissue types such as complex stroma subtypes are often absent in public
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Figure 4.2 – Toy example of the cross-domain matching of different target queries to a fixed
source queue. The first column shows two example target query images with computed
embedding z. The second column depicts the source queue images maintained by the
model and their corresponding embeddings {ql}. In the third column, the distribution of
the computed similarities pCRD between the queries and each queue sample are plotted.
Similar and dissimilar patterns with respect to the query are displayed in green and
red. The top row highlights the case where the model is able to find at least a subset of
elements of the queue that match the query (low entropy), as opposed to the bottom
row where none of the queue samples match the presented query (high entropy). The
class labels in this figure have been added for ease of reading and are unavailable during
training.

datasets while frequent in the WSIs encountered in daily diagnostics. This example is
illustrated in Figure 4.2. The top row shows the case where for a given target query z
there are samples with a similar pattern in the source queue (i.e. the distribution of
similarities pCRD has low entropy). The second row highlights the opposite scenario
where no queue elements match the query, generating a quasi-uniform distribution of
similarities and, therefore, a high entropy. In other words, optimizing Equation 4.7 for
all samples might result in a performance drop as we try to find cross-domain candidates
even if there are none to be found.

We introduce an easy to hard (E2H) learning scheme to tackle both of these issues. The
model starts with easy-to-match (low cross-entropy) samples and progressively includes
harder (high cross-entropy) samples as the training progresses. We assume the model
becomes more robust after each iteration and is more likely to properly process harder
examples in later stages. Formally, we substitute the domains Ds,Dt in Equation 4.9
with the corresponding set of candidates Rs,Rt and update our cross-domain loss as:

r =
⌊

e

Nepochs · sw

⌋
· sh, (4.10)
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Rs = {z, z+ ∈ Ds | H̄(z , z+,Qt) is reverse top-r},
Rt = {z, z+ ∈ Dt | H̄(z , z+,Qs) is reverse top-r},

(4.11)

LCRD = 1
|Rs|+ |Rt|

[
l CRD(Rs,Rt) + l CRD(Rt,Rs)

]
. (4.9 updated)

where the ratio r is gradually increased during training using a step function. We denote
sw, sh as the width and height of the step, respectively, Nepochs as the total number
of epochs, and e the current epoch. The term reverse top-r indicates the ranking of
cross-entropy terms in reverse order (low to high values). For example, r = 0.2 will
capture the top 20% of the samples with the lowest cross-entropy. This definition ensures
that as long as r = 0 (i.e. Nepochs · sw > e) we only use the in-domain loss LIND for
backpropagation, and the cross-domain loss term LCRD is not considered. It lets us first
learn feature representations based on the in-domain feature distribution. Moreover, with
the tuning of the parameter sh we can control the range of r and thus ensure that its
value never reaches r = 1 to avoid systematic cross-domain matching where no candidates
are available.

4.1.5 Generalization to Multiple Source Scenario

Our proposed SRMA framework can be generalized to consider multiple datasets in the
source domain. It is especially useful if the available source datasets overlap in terms
of class definitions, which increases the diversity of the visual appearance of the source
data. More formally, we rely on K source datasets denoted Dsk where ⋃Kk=1Dsk = Ds,
and D = Ds ∪Dt. The same is valid for the source queues Qsk where ⋃Kk=1Qsk = Qs, and
Q = Qs ∪Qt. We present two multi-source scenarios as depicted in Figure 4.3 for both
the in-domain and cross-domain loss.

One option is to consider all source domains as a single domain Ds = ⋃K
k=1Dsk for the

in-domain loss:

L1:1
IND = −1

|Ds|+ |Dt|

[
l IND(

K⋃
k=1
Dsk,

K⋃
k=1
Qsk) + l IND(Dt,Qt)

]
. (4.12)

Here, we make no distinction between the source sets and consider a one-to-one features
representation importance (1 : 1) between the source and target domain. This definition
is equivalent to the single source in-domain adaptation. Alternatively, we can consider
each source and the target domain as independent sets as in Equation 4.13. With this
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Figure 4.3 – Proposed multi-source scenarios for (a) the in-domain LIND and (b) the
cross-domain LCRD optimization. With the one-to-one settings (1 : 1), we treat all source
sets Dsk as a single set Ds. Each source domain is considered an independent set in the
K-to-one (K : 1) setting.

K-to-one (K : 1) scenario, we have K + 1 separate in-domain optimizations:

LK:1
IND = −1

|Ds|+ |Dt|

[
K∑
k=1

l IND(Dsk,Qs) + l IND(Dt,Qt)
]
. (4.13)

The same logic applies to the cross-domain matching. We can either consider a one-
to-one correspondence between the unified source domain and the target domain as
in Equation 4.14 or match each of the individual source domains to the target as in
Equation 4.15.

L1:1
CRD = −1

|Ds|+ |Dt|

[
l CRD(

K⋃
k=1
Dsk,Qt) + l CRD(Dt,

K⋃
k=1
Qsk)

]
. (4.14)

LK:1
CRD = −1

|Ds|+K|Dt|

K∑
k=1

[
l CRD(Dsk,Qt) + l CRD(Dt,Qsk)

]
. (4.15)

The formulation of the E2H learning procedure has to be updated to comply with
the multi-source domain definition. For the one-to-one setting, sets Rs, Rt remain
unchanged as we make no distinction between the different source sets. However, for
the K-to-one setting, the model seeks to match the target domain to the source domain
without considering multiple available source domains. We replace the domains Dsk, Dt
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in Equation 4.15 with the corresponding set of candidates Rsk, Rt defined as:

Rsk = {z, z+ ∈ Dsk | H̄(z , z+,Qt) is reverse top-r},

Rt =
K⋃
k=1
{z, z+ ∈ Dt | H̄(z , z+,Qsk) is reverse top-r}.

(4.16)

The overall loss LSRMA for the multi-source setting is the combination of the in-domain
loss (L1:1

IND or LK:1
IND) and the cross-domain loss (L1:1

CRD or LK:1
CRD).

4.2 Experiments

In this section, we present and discuss the experimental results. The general experimental
setup is described in subsection 4.2.1. We validate our proposed self-supervised domain
adaptation approach using publicly available datasets and compare it to current state
of the art (SOTA) methods for UDA in subsection 4.2.2. Additionally, we assess the
performance in a clinically relevant use case by validating our model on WSI sections from
our in-house cohort in subsection 4.2.3. We perform an ablation study in subsection 4.2.4
for the single-source setting as well as additional experiments on the importance of the
E2H learning procedure in subsection 4.2.5. These experiments are further extended to a
multi-source application in subsection 4.2.6 to subsection 4.2.7 on both publicly available
datasets and WSI sections.

4.2.1 Experimental Settings

In this section, we present the general setup that is used in all experiments. First, the
architecture is trained in an unsupervised fashion and is referred to as the pretraining
step. Next, a linear classifier is trained on top as described and is referred to as the
classification step [31].

For the unsupervised learning step, the architectures of the feature extractors, fφ and fψ,
are composed of a ResNet18 [65] followed by two fully connected layers (projection head)
using rectified linear unit (ReLU). The output dimension of the multi-layer projection
head is d = 128. We update the weights of fφ as θφ using standard backpropagation and
fψ as θψ with momentum m = 0.999:

θψ ← mθψ + (1−m)θφ. (4.17)

The model is trained from scratch for Nepochs = 200 epochs until convergence using the
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stochastic gradient descent (SGD) optimizer (momentum = 0.9, weight decay = 10−4),
a learning rate of λ = 0.03, and a batch size of B = 128. The queue size is fixed to
Q = 216 = 65, 536 samples. For the similarity learning, we set τ = 0.2. We apply random
cropping, grayscale transformation, horizontal/vertical flipping, rotation, grid distortion,
ISO noise, Gaussian noise, and color jittering as data augmentations ξ1, ξ2. At each
epoch, we sample 50, 000 examples with replacement from both the source and target
dataset to create D with a total of N = 100, 000 samples. The ratio r is updated between
each epoch, while the sets Rs, Rt for cross-domain matching are computed batch-wise.

During the second phase, the momentum encoder branch is discarded as it is not used
for inference. The classification performance is evaluated using a linear classifier, which
is placed on top of the frozen feature extractor. The linear classifier directly matches
the output of the embedding d to the number of classes. It is trained for Nepochs = 100
epochs until convergence using the SGD optimizer (momentum = 0.9, weight decay = 0),
a batch size of B = 128, and a learning rate of λ = 1. We use only a few randomly
selected source labels to train this classification layer in order to simulate the clinical
application, where we usually rely on a large quantity of unlabeled data and only have
access to a few labeled samples. More precisely, we use n = 1, 000 samples (i.e. 1%)
to train the linear classifier with Kather 19 (K19) and n = 500 samples (i.e. 10%)
when training with Kather 16 (K16). For the classes we use the following abbreviations:
adipose (ADI), background (BACK), debris (DEB), lymphocytes (LYM), normal mucosa
(NORM), mucin (MUC), muscle (MUS), stroma (STR), tumor (TUM), and complex
stroma (CSTR). While training the linear classifier, we multi-run 10 times to obtain
statistically significant results. The set of selected source labels varies between these
runs, as they are randomly sampled for each run. If not specified otherwise, we use
sw = 0.25 and sh = 0.15 for E2H learning. We use a ResNet18 backbone for all the
presented baselines for a fair comparison.

The complex stroma class definitions between K16 and colorectal cancer tissue phenotype
(CRCTP) are different. As a result, the complex stroma class is kept for training but
excluded from the evaluation process when performing adaptation on K16 and CRCTP.
With this problem definition, we fall into an open-set scenario where the class distribution
of the two domains does not rigorously match, as opposed to a closed-set adaptation
scheme.

In addition, we create an in-house cohort for domain adaptation that we name DSRMA-WSI.
The dataset is composed of 665 HE-stained WSIs from our local CRC patient cohort
PA. The slides originate from 383 unique patients diagnosed with adenocarcinoma and
are scanned at a resolution of 0.248µm/px (40×). None of the selected slides originated
from patients who underwent preoperative treatment. From each WSI, we uniformly
sample 300 (448px × 448px, 111µm × 111µm) regions from the foreground masks to
reduce the computational complexity of the proposed approach. It creates a dataset with
199, 500 unique and unlabeled patches. We assume that these randomly selected samples
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Table 4.1 – Classification and unsupervised domain adaptation (UDA) from K19 (source)
to K16 (target). The top results for the domain adaptation methods are highlighted
in bold. We report the F1 score for each class as well as the overall weighted F1 score
(W-F1) averaged over 10 runs.

.
Pretrain Class.

Methods K
19

K
16

K
19

K
16

TUM
ST

R
LY

M
DEB

NORM
ADI

BACK
W

-F 1

Source only‡ X 74.0** 77.4** 75.3** 50.5** 66.9** 87.0** 93.1** 75.1**

MoCoV2 [32] X X 93.5** 79.3+ 49.7** 68.6 91.6** 96.1** 96.0** 82.2**

MoCoV2 [32]† X X X 36.8** 45.4** 27.1** 30.8** 45.2** 43.1** 43.6** 38.9**

DANN [54] X X X 65.8** 60.8** 42.3** 47.8** 61.9** 64.1** 62.3** 57.8**

Stain norm. [96] X X X 77.8** 75.9** 68.2** 42.1** 75.1** 77.4** 87.6** 72.2**

CylceGAN [165] X X X 70.7** 71.6** 62.3** 47.6** 75.5** 89.0** 88.2** 72.4**

SelfPath [85] X X X 71.5** 68.8** 68.1** 57.6** 77.6** 82.3** 85.5** 73.1**

OSDA [124] X X X 82.0** 78.2* 83.6* 63.8** 80.3** 90.8** 93.2* 81.7**

SSDA - Rot [153] X X X 85.1** 78.5** 81.3** 68.2 88.7** 93.9** 96.5** 84.7**

SSDA - Jigsaw [153] X X X 90.0** 81.2 79.5** 64.4** 88.3** 94.2** 95.7* 84.9**

SENTRY [116] X X X 88.7** 74.4** 86.0 65.5* 91.5** 94.1** 97.9+ 85.7**

SRA [1] X X X 93.4** 72.9** 82.7* 67.9+ 96.5* 97.0+ 97.2+ 86.9*

SRMA X X X 97.3 79.3+ 80.2** 62.2** 98.7 97.6 98.1 87.7

Target only§ X 94.6** 83.6** 92.6** 88.7** 95.4** 97.8+ 98.5+ 93.0**

† Source and target datasets are merged and trained using contrastive learning.
‡ Direct transfer learning: trained on the source domain only, no adaptation (lower bound).
§ Fully supervised: trained knowing the labels of the target domain (upper bound).
+ p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.001; unpaired t-test with respect to the top result.

reasonably estimate our cohort’s tissue complexity and heterogeneity.

4.2.2 Cross-domain Patch Classification

In this task, we use the larger dataset K19 as the source dataset and adapt it to K16.
We motivate the selection of K19 as the source set by the fact that it is closer to the
clinical scenario where we mainly rely on a large quantity of unlabeled data and only
a few labeled ones, by using only 1% of the labels in K19. We evaluate the model’s
performance with the patch classification task on the K16 dataset. The mucin and muscle
in K19 are grouped with debris and stroma, respectively, to allow comparison with the
K16 class definitions. We use 70% of K16 to train the unsupervised domain adaptation.
The remaining 30% are used to test the performance of the linear classifier trained on
top of the self-supervised model.

The results of our proposed SRMA method are presented in Table 4.1, in comparison
with baselines and SOTA algorithms for domain adaption. As the lower bound, we
consider three approaches. Firstly, we apply direct transfer learning in a supervised
fashion using the source data (source only). Secondly, we train MoCoV2 using the source
domain as training data and apply it to the target domain. As the third baseline, we
also use MoCoV2, but the model is trained on the source as well as the target domain,
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Figure 4.4 – The t-SNE projection of the source (K19) and target (K16) domain embed-
dings. The top row shows the alignment between the source and target domain, while
the bottom row highlights the representations of the different classes. We compare (f)
our approach to other (b-e) UDA methods, and (a) the fully supervised, transfer learning
baseline (source only).

merged into one training set. For the upper bound, we use the target domain data to
train the model (fully supervised approach). The performances on complex stroma are
not reported as the class is not present in K19. Figure 4.4 shows the t-SNE projection
and alignment of the domain adaptation for the transfer learning (source only), the
top-performing baselines (OSDA, SSDA with jigsaw solving), our previous work SRA
and our novel approach (SRMA). Complementary results can be found in section C.1
and section C.2.

MoCoV2 fails to generalize knowledge between the sets when merging the source and
target domains as it learns two distinct embeddings for each domain. The experiment
highlights the limitations of contrastive learning without domain adaptation in the
presence of domain distribution gaps. When training solely on the source domain, the
contrastive approach shows better results and feature representations. Macenko stain
normalization [96] slightly decreases the performances, compared to the source only
baseline, as it introduces color artifacts that are very challenging for the network classifier.
It mainly comes from the distribution of target samples, namely K16, composed of dark
stained patches that are difficult to normalize properly.

CycleGAN suffers from performance degradation for the lymphocytes predictions. Like
color normalization, it tends to create saturated images. In addition, the model alters
the shape of the lymphocytes nuclei, thus fooling the classifier toward either debris or
tumor classification.

In our setup, we observe that using the gradient reversal layer leads to an unstable loss
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optimization for both Self-Path and DANN, which explains the large performance drops
when training. Heavier data augmentations partially solve this issue. OSDA benefits
from the open-set definition of the approach and achieves very good performance for
lymphocytes detections. SSDA achieves similar results when using either rotation or
jigsaw puzzle-solving as an auxiliary task. Due to the rotational invariance structure of
the tissue and selected large magnification for tilling, rotation and jigsaw puzzle-solving
are not optimal auxiliary tasks for digital pathology. Of the presented baselines, SENTRY
achieves top competitive results on almost all classes. The main limitation appears to be
the distinction between tumor and normal mucosa.

Our proposed SRMA method shows an excellent alignment between the same class
clusters of the source and target distributions and outperforms SOTA approaches in
terms of weighted F1 score (W-F1). Notably, our approach is even able to match the upper
bound model for normal and tumor tissue identification. The embedding of complex
stroma, which only exists in the target domain, is represented as a single cluster with
no matching candidates, highlighting the model’s ability to reject unmatchable samples
from domain alignment.

Furthermore, the cluster representation is more compact compared to other presented
methods, where, for example, normal mucosa tends to be aligned with complex stroma
and tumor. Our approach suffers a drop in performance for stroma detection, which
can be explained by the presence of lymphocytes in numerous stroma tissue examples,
causing a higher misclassification rate. Moreover, the presence of loose tissue with a
structure similar to stroma in the debris class is challenging. The overlap is also observed
in the embedding projection.

4.2.3 Use Case: Cross-domain Segmentation of WSIs

In this section, we perform domain adaptation using our proposed model from K19
to our in-house dataset DSRMA-WSI. Moreover, we further validate our approach in a
real case scenario on WSI ROIs. To do so, we select three ROIs of size 5mm × 5mm
(' 20, 000px × 20, 000px), which an expert pathologist annotates according to the
definitions used in the K19 dataset. The regions are selected such that, overall, they
represent all tissue types, as well as challenging cases such as late cancer stage (ROI 1),
mucinous carcinoma (ROI 2), and torn tissue (ROI 3). The annotated validation set is
named DSRMA-ROI.

The qualitative and quantitative results are presented in Figure 4.5, alongside the original
HE ROIs, their corresponding ground truth annotations, direct transfer learning (source
only), as well as comparative results of the top-scoring SOTA approaches. We use a
tile-based approach to predict classes on each ROI and use conditional random fields [25]
to smooth the prediction map. The available labeled tissue regions are limited to the
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(a) Qualitative results on region of interest (ROI).

ROI 1 ROI 2 ROI 3
Methods Acc. IoU κ Acc. IoU κ Acc. IoU κ

Source only 58.2** 51.5** 0.450** 53.0** 42.9** 0.436** 42.9** 34.9** 0.366**

OSDA [124] 62.7** 56.8** 0.503** 47.9** 37.5** 0.389** 37.2** 33.3** 0.317**

SSDA - Jigsaw [153] 71.5** 60.1** 0.591** 41.3** 30.8** 0.324** 24.9** 22.5** 0.211**

SENTRY [116] 68.4** 53.6** 0.520** 63.7** 52.5** 0.551** 47.0** 33.5** 0.379**

SRMA (ours) [2] 78.2 66.8 0.678 71.1 59.3 0.630 55.8 38.8 0.466
+ p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.001; unpaired t-test with respect to top result.

(b) Quantitative results on region of interest (ROI).

Figure 4.5 – Qualitative (top) and quantitative (bottom) results of the domain adaptation
from K19 to our unlabeled in-house dataset DSRMA-WSI. We show the original regions of
interest (ROIs) from DSRMA-ROI and their ground truth, respectively. We compare the
performance of our SRMA algorithm to the lower bound and the top-performing SOTA
methods. We report the pixel-wise accuracy, the weighted intersection over union (IOU),
and the pixel-wise Cohen’s kappa (κ) score averaged over 10 runs.

presented ROIs.

For all models, stroma and muscle are poorly differentiated as both have similar visual
features without contextual information. This phenomenon is even more apparent in the
source only setting, where muscle tissue is almost systematically interpreted as stroma.
Moreover, due to the lack of domain adaptation, the boundary between tumor and
normal tissues is not well defined, leading to incorrect predictions of these classes.

On the other hand, OSDA fails to adapt and generalize to new tumor examples while
trying to reject mistrusted samples. This phenomenon is most visible in ROI 3, where the
model interprets the surroundings of the cancerous region as a mixture of debris, stroma,
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and muscle. SSDA tends to predict lymphocyte aggregates as debris. It can be explained
by the model’s sensitivity to staining variations as well as both classes’ similarly dotted
structures. Moreover, the model struggles to properly embed the representations of
mucin. The scarcity of mucinous examples in the target domain makes the representation
of this class difficult.

As in the patch classification task, SENTRY is the top-performing baseline. However, the
model is still limited by its capacity to distinguish between tumor and normal mucosa
due to the few label setting. Also, the detection of the stroma area appears less detailed
compared to other approaches such as OSDA or SRMA.

Our approach outperforms the other SOTA domain adaptation methods in terms of pixel-
wise accuracy, weighed intersection over union (IOU), and pixel-wise Cohen’s kappa score
κ. Regions with mixed tissue types (e.g. lymphocytes/stroma or stroma/isolated tumor
cells) are challenging cases because the samples available in the public cohorts mainly
contain homogeneous tissue textures and few examples of class mixtures. Subsequently,
domain adaptation methods naturally struggle to align features, resulting in a biased
classification. We observe that thinner or torn stroma regions, where the background
behind is well visible, are often misclassified as adipose tissue by SRMA, which is most
likely due to their similar appearance. However, our SRMA model is able to correctly
distinguish between normal mucosa and tumor, which are tissue regions with very relevant
information downstream tasks such as survival analysis.

Figure 4.6 presents a qualitative visualization of the model’s embedding space. The
figure shows the actual visual distribution of the target patches, the source domain label
arrangement, and the source and target domain overlap. The patch visualization also
shows a smooth transition between class representations where, for example, neighboring
samples of the debris cluster include a mixture of tissue and debris. The embedding
reveals a large area in the center of the visualization that does not match the source
domain. The area mostly includes loose connective tissue and stroma, which are both
under-represented in the training examples. Also, mucin is improperly matched to the
loose stroma, which explains the misclassification of stromal tissue in the ROI 2. The
scarcity of mucinous examples in our DSRMA-WSI cohort makes it difficult for the model
to find suitable candidates.

4.2.4 Ablation Study of the Proposed Loss Function

In this section, we present the ablation study of our SRMA approach. We denote LIND
as the in-domain loss, LCRD as the cross-domain loss, and E2H as the easy-to-hard
learning scheme. We evaluate the performance of our model on two tasks. The first
one is the domain alignment between K19 (source) and K16 (target), which follows the
experimental setting described in subsection 4.2.2. The results are presented in Table 4.2.
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Figure 4.6 – The t-SNE visualization of the SRMA model trained on K19 and our
in-house data DSRMA-WSI. All sub-figures depict the same embedding. (a) Patch-based
visualization of the embedding. (b) Distribution of the labeled source samples. (c) The
relative alignment of the source and target domain samples.

The second task is the domain adaptation of K19 (source) to DSRMA-WSI (target) and
evaluation on DSRMA-ROI, as presented in subsection 4.2.3. Table 4.3 shows the results
of these experiments. The following section jointly discusses the results of both tasks.

We use MoCoV2 [32] as a baseline. The model is trained following a contrastive learning
approach just using the source domain data (K19) as well as with the source and target
dataset merged.

We also compare our proposed approach SRMA to our previous work SRA [1]. For the
single-source domain adaptation, the difference between SRA and the proposed extension
SRMA lies in the reformulation of the cross-entropy matching. As a result, only the
entropy-related terms, namely LCRD and E2H, are affected. Thus, training SRA and
SRMA using only the in-domain loss LIND is the same set-up.

The baseline fails to learn discriminant features that match both sets, leading to poor
performances in both cross-domain adaptation tasks. This shows that, if not constrained,
the model is not able to generalize the knowledge and ends up learning two distinct

87



Self-Rule to Multi Adapt

Table 4.2 – Ablation study for the proposed SRMA approach on classification. We denote
LIND as the in-domain loss, LCRD as the cross-domain loss, and E2H as easy-to-hard.
We train the domain adaptation from K19 (source) to K16 (target). We report the
F1 and weighted F1 score (W-F1) score for the individual classes and the overall mean
performance (average over 10 runs).

Methods LIND LCRD E2H T
U
M

ST
R

LY
M

D
E
B

N
O
R
M

A
D
I

B
A
C
K

W
-F

1

MoCoV2 [32]† 93.5** 79.3+ 49.7** 68.6 91.6** 96.1** 96.0** 82.2**

MoCoV2 [32]‡ 36.8** 45.4** 27.1** 30.8** 45.2** 43.1** 43.6** 38.9**

SRA [1] X 88.1** 72.8** 78.0* 71.8* 89.9** 93.4* 86.0* 82.9**

SRA [1] X 14.1** 9.1** 0.2** 10.1** 4.9** 0.0** 61.5** 14.4**

SRA [1] X X 63.0** 69.9** 85.1 57.7** 98.2+ 97.9 90.0** 80.3**

SRA [1] X X X 93.4** 72.9** 82.7* 67.9+ 96.5** 97.0** 97.2* 86.9*

SRMA X 35.3** 3.6** 0.0** 2.1 15.6** 64.0** 16.5** 19.8**

SRMA X X 93.3** 77.4+ 80.5** 66.2+ 91.4** 97.8+ 98.3 86.5*

SRMA X X X 97.3 79.3 80.2** 62.2** 98.7 97.6+ 98.1+ 87.7
† Trained on K19 only.
‡ K19 and K16 merged as a single set.
+ p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.001; unpaired t-test with respect to top result.

feature spaces, one for the source and one for the target domain.

Training using only LIND achieves relatively good performances but fails to generalize
knowledge to classes where textures and staining strongly vary. In the patch classification
task, for example, this is apparent for the background and tumor class. For the second
evaluation task, we can observe the same trend in the ROI 3 where the tumor and normal
stroma are mixed.

Using only LCRD does not help and creates an unstable model. As we do not impose
domain representation, the model converges toward incorrect solutions where random sets
of samples are matched between the source and target datasets. Moreover, it can create
degenerated solutions where examples from the source and target domain are perfectly
matched even though they do not present any visual similarity. The reformulation of the
entropy, however, slightly improves the cross-domain matching.

Even the combination of the in-domain and cross-domain loss is not sufficient to improve
the capability of the model. When performing a class-wise analysis, we observe that
the performance on tumor and debris detection drastically dropped without the entropy
reformulation. Both classes are forced to match samples from other classes, thus worsening
the representation of the embedding.

The introduction of the E2H procedure improves the overall classification as well as
most of the per-class performance for the first task. In the second task, it improves the
performance across all metrics in all three ROIs. The importance of the E2H learning is
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Table 4.3 – Ablation study for the proposed SRMA approach on WSI. We denote LIND
as the in-domain loss, LCRD as the cross-domain loss, and E2H as easy-to-hard. We train
the domain adaptation from K19 (source) to our in-house dataset (target). We report
the pixel-wise accuracy, the weighted intersection over union (IOU), and the pixel-wise
Cohen’s kappa (κ) score for three manually annotated ROI (average over 10 runs).

ROI 1 ROI 2 ROI 3

Methods L
IN

D

L
C

R
D

E
2H

Acc. IoU κ Acc. IoU κ Acc. IoU κ

MoCoV2 [32]† - - - 62.8** 51.5** 0.492** 51.8** 40.4** 0.429** 45.0** 33.7** 0.358**

MoCoV2 [32]‡ - - - 55.6** 47.0** 0.417** 29.8** 19.8** 0.220** 32.1** 25.5** 0.240**

SRA [1]§ X - - 75.4* 65.5+ 0.646* 67.9* 55.1* 0.594* 49.8** 35.7** 0.415**

SRA [1]§ - X - 10.8** 2.2** 0.000** 6.0** 0.4** 0.000** 6.1** 0.6** 0.000**

SRA [1]§ X X - 76.6* 66.0+ 0.658* 70.1* 58.2* 0.619* 52.6** 36.8* 0.438**

SRA [1]§ X X X 75.2* 63.8* 0.639* 68.9** 57.4** 0.607** 54.1* 37.3* 0.448*

SRMA - X - 59.3** 47.1** 0.429** 9.6** 1.9** 0.029** 26.1** 11.8** 0.080**

SRMA X X - 72.4** 63.4** 0.608** 70.6+ 59.1+ 0.630+ 51.8** 31.9** 0.415**

SRMA X X X 78.2 66.8 0.678 71.1 59.3 0.630 55.8 38.8 0.466
† Trained on K19 only.
‡ K19 and K16 merged as a single set.
+ p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.001; unpaired t-test with respect to top result.

evaluated and discussed in more detail in the next section.

Overall, the updated definition of the entropy improves the model’s performance for both
the cross-domain patch classification and WSI segmentation task. It helps to ensure that
both model branches output a similar distribution, thus providing better cross-domain
candidates. The improvement is most visible for the tumor and stroma predictions.

4.2.5 Evaluation of the E2H Learning Scheme

In this section, we discuss the usefulness and robustness of the E2H learning. The
learning ratio r is based on the two contributing variables sw and sh. In Table 4.4, we
show the impact of different combinations of these parameters on the single cross-domain
segmentation task (see subsection 4.2.3). We report the pixel-wise accuracy, the weighted
IOU, and the pixel-wise Cohen’s kappa (κ) score for the presented ROI.

Firstly, we observe that the model is more robust when sh is low. The variable is
an indicator of the ratio of samples used for cross-domain matching. In other words,
the architecture benefits from a small sh that allows it to focus on examples with
high similarity/confidence while avoiding complex samples without properly matching
candidates. Secondly, the selection of sw is also crucial to the stability of the prediction.
This quantity measures the number of epochs to wait before considering more complex
examples in the cross-domain matching optimization. For small sw values, the model has
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Table 4.4 – Importance of sw and sh parameter tuning for the E2H learning scheme on
the three ROI for each parameter pair. We report the pixel-wise accuracy, the weighted
intersection over union (IOU), and the pixel-wise Cohen’s kappa (κ) score (average over
10 runs).

Metrics

Images Acc. IOU κ Acc. IOU κ Acc. IOU κ

sw = 0.125 , sh = 0.075 sw = 0.125 , sh = 0.1 sw = 0.125 , sh = 0.125

ROI 1 0.777+ 0.658* 0.670+ 0.758* 0.642** 0.646** 0.752** 0.652* 0.643**

ROI 2 0.686** 0.567** 0.602** 0.653** 0.527** 0.561** 0.697* 0.565* 0.613*

ROI 3 0.544* 0.375* 0.452* 0.542* 0.388+ 0.458+ 0.546* 0.369* 0.454*

ALL 0.669* 0.518** 0.618** 0.651** 0.495** 0.599** 0.665** 0.509** 0.615**

sw = 0.25 , sh = 0.15 sw = 0.25 , sh = 0.2 sw = 0.25 , sh = 0.25

ROI 1 0.782+ 0.668+ 0.678+ 0.764* 0.642** 0.654* 0.756* 0.633** 0.642**

ROI 2 0.711+ 0.593 0.630+ 0.709+ 0.581* 0.626+ 0.703* 0.573* 0.620+

ROI 3 0.558 0.388 0.466 0.552+ 0.379+ 0.464+ 0.542* 0.384+ 0.459+

ALL 0.684 0.535+ 0.635 0.675* 0.521** 0.626** 0.667** 0.511** 0.617**

sw = 0.5 , sh = 0.45 sw = 0.5 , sh = 0.6 sw = 0.5 , sh = 0.75

ROI 1 0.786 0.680 0.684 0.758** 0.641** 0.646** 0.745** 0.626** 0.629**

ROI 2 0.714 0.589+ 0.631 0.697* 0.563** 0.610* 0.697* 0.571* 0.614*

ROI 3 0.534** 0.380+ 0.447* 0.524** 0.370* 0.439** 0.520** 0.364* 0.438**

ALL 0.678+ 0.539 0.629+ 0.659** 0.510** 0.609** 0.654** 0.496** 0.603**

+ p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.001; unpaired t-test with respect to top result.

no time to learn the feature representation properly before encountering more difficult
samples. This is especially true for the first few epochs after initialization, where the
architecture is not yet able to optimally embed features. Furthermore, using large sw
weakens the model’s capability to progressively learn from more complex samples.

Figure 4.7 shows an example patch from the training phase and highlights the usefulness
of the E2H scheme. When dealing with a heterogeneous target data cohort, some tissue
types might not have relevant candidates in the other set (open-set scenario). The
presented example shows an example composed of a vein and blood cells. Such a tissue
structure is absent from the source cohort and thus does not have a matching sample in
the target domain.

Without the E2H learning, the model is forced to find matching candidates for the query
z, here normal mucosa (NORM), to minimize the cross-entropy term H̄. When plotting
the similarity distribution, the matched samples form an out-of-distribution cluster with
high similarity to the query (z>ql ' 1). This phenomenon is even more visible with the
cumulative function (red) that tends to the step function.

When training with the E2H scheme, we observe a continuous transition in the distribution
of sample similarities. Here, the top retrieved samples share the same granular structure
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4.2. Experiments

Figure 4.7 – Importance of the E2H learning scheme for the cross-domain image retrieval.
The first column shows the input query image z from DSRMA-WSI (target domain), the
second column presents the retrieved samples from K19 that have the highest similarity
in the source queue {qi}, and the third column shows the density distribution (blue) of
similarities across the source queue as well as its cumulative profile (red). We list the
retrieved examples with their assigned classes. The query class is unknown.

as the query. Still, we have to be careful as they do not represent the same type of tissue.
The retrieved samples are examples of necrosis, whereas the query shows red blood cells.
The fact that the architecture is less confident (i.e., the similarity is lower for the top
retrieved samples) is a good indicator of its robustness and ability to process complex
queries.

As a result, the introduction of the E2H process prevents the model from learning
degenerated solutions. We also observe this with other open-set tissue classes, such as
complex stroma and loose connective tissue, which are absent in the source domain.

4.2.6 Multi-source Patch Classification

We explore the benefit of using multiple source domains with different distributions to
perform domain adaptation for the patch classification task. To do so, we select K19 and
K16 as the source sets and CRCTP as the target set. To learn the feature representations,
the model is trained in an unsupervised fashion using both source domains as well as
the unlabeled target domain. For the evaluation, we train a linear classifier on top
of the frozen features with a few randomly selected labeled samples from the source
domains (1000 samples from K19 (1%), and 500 samples from K16 (10%)). By using
only little labeled data, we aim to reduce the annotation workload for pathologists while
still achieving good classification performances. The set of labeled data differs between
each run, as they are randomly sampled for each individual run.

The three datasets K19, K16, and CRCTP do not have one-to-one classes correspondence.
Thus, for the evaluation of the target set, we only consider the classes present in all
datasets, namely, tumor (TUM), stroma (STR), lymphocytes (LYM), normal mucosa
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Table 4.5 – Performance of the SRMA framework on the CRCTP dataset in a multi-source
domain setting. We show the results for different combinations of K16 and K19 used
for the self-supervised pre-training as well as training the classification header. We also
compare the performance of the 1 : 1 with the K : 1 setting for the loss definitions (see
Equations 4.12-4.15). We report the F1 score for the individual classes and weighted F1
score (W-F1) for the overall mean performance (all) (averaged over 10 runs).

Pretrai Class. Multi-source

Methods K
19

K
16

K
19

K
16

L
IN

D

L
C

R
D

T
U
M

ST
R
†

LY
M

N
O
R
M

D
E
B
†

W
-F

1

Single source:

SRA [1] - X - X - - 82.2 69.3 62.5** 69.8 47.4* 69.4
SRMA - X - X - - 82.0+ 63.5** 66.3 51.9** 50.3 65.2**

SRA [1] X - X - - - 91.0* 84.9** 62.0** 71.7 58.5+ 79.2**

SRMA X - X - - - 91.7 86.7 65.4 68.6** 58.9 80.2

Multi source:

DeepAll [48] X X - X - - 52.4** 64.1** 36.5** 14.2** 13.8** 47.1**

SRA [1] X X - X 1 : 1 1 : 1 70.9** 68.5** 45.6** 72.2** 19.1** 62.2**

SRMA X X - X 1 : 1 1 : 1 76.6** 69.3** 48.7** 74.5** 18.2** 64.4**

SRMA X X - X K : 1 1 : 1 89.4+ 74.9+ 66.8 75.6 43.7 74.4
SRMA X X - X 1 : 1 K : 1 75.9** 73.3* 45.9** 73.0** 22.6** 65.8**

SRMA X X - X K : 1 K : 1 89.8 75.2 64.5** 74.1** 25.7** 72.5**

DeepAll [48] X X X - - - 72.4** 88.6** 43.6** 53.2** 71.8** 73.2**

SRA [1] X X X - 1 : 1 1 : 1 86.2** 87.6** 66.7** 71.0** 80.5 81.8**

SRMA X X X - 1 : 1 1 : 1 92.5 88.4** 68.7** 68.3** 74.2* 82.9*

SRMA X X X - K : 1 1 : 1 91.5* 87.6** 70.7 75.0 65.7** 82.7*

SRMA X X X - 1 : 1 K : 1 90.1** 90.1 69.6+ 72.9** 71.6** 83.6
SRMA X X X - K : 1 K : 1 91.6+ 87.4** 68.7** 73.9** 53.3** 81.2**

DeepAll [48] X X X X - - 81.4** 85.7+ 50.9** 50.1** 51.5** 72.6**

SRA [1] X X X X 1 : 1 1 : 1 85.8** 85.9 72.9* 72.1** 59.2 80.1
SRMA X X X X 1 : 1 1 : 1 92.9 82.4** 72.1* 70.8** 53.7** 79.3*

SRMA X X X X K : 1 1 : 1 92.8+ 81.7** 73.5 74.6 49.8** 79.3*

SRMA X X X X 1 : 1 K : 1 89.6** 84.7* 72.5* 74.4+ 52.1** 80.0+

SRMA X X X X K : 1 K : 1 92.5* 80.6** 70.5** 73.9** 39.4** 77.4**

† The STR and MUS classes are merged as STR class; DEB and MUC classes as DEB.
+ p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.001; unpaired t-test with respect to top result.

(NORM), and debris (DEB). Still, during the unsupervised pre-training, we consider
all classes, including those that do not have matching candidates across the sets, such
as background (BACK) and adipose (ADI). This setup creates an open-set scenario for
cross-domain matching and allows the model to learn more robust feature representations.

For comparison purposes, we use the same hyper-parameters as in the single source
domain patch classification setting with sw = 0.25, sh = 0.15. The probability of
drawing a sample X from the source or the target domain is the same. The results are
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presented in Table 4.5. We compare the performance of different experimental setups in
regards to the used datasets and multi-source scenario for our SRMA. We show three
scenarios where we use either K16, K19, or the combination of the two (K16 and K19)
to train the classification layer. To evaluate the impact of the multi-source scenario,
where we investigate all possibilities for the in-domain (L1:1

IND,LK:1
IND) and cross-domain

(L1:1
CRD,LK:1

CRD) loss definitions, as introduced in Equation 4.12 to Equation 4.15. As
baselines, we consider the single source setting of the presented SRMA model, our
previous SRA work, as well as the DeepAll approach that uses aggregation of all the
source tissue data into a single training set [48].

The SRMA and SRA single source baselines both show a better performance for K19
compared to K16. It is most likely due to the fact that the variety of examples in K16 is
limited (only 5, 000 examples), thus hindering the generalization of feature representations
in the pre-training stage. Also, SRMA outperforms our previous SRA work for all classes
except one, which indicates the entropy reformulation’s robustness.

For the multi-source adaptation, we show three scenarios where we use either K16,
K19, or the combination of the two (K16 and K19) to train the classification layer.
When using solely K16, we can observe that the debris classification tends to have
lower performances across all models. Debris examples in K16 appear highly saturated,
making class generalization challenging. Only the proposed SRMA approach is able
to achieve better performances compared to the single source baselines. Using K19 for
the classification of target patches gives overall the best performance. Interestingly,
using both K19 and K16 leads to a drop in performance. It is likely due to potential
discrepancies between the class definitions, which makes it more difficult for the model
to generalize the class representations across the different modalities.

When comparing the in-domain and cross-domain multi-source scenarios, we find that
using L1:1

IND and LK:1
CRD achieves the best results across the various settings. It suggests

optimizing the source domain as a single set for the in-domain representation is better.
However, when performing cross-domain matching, considering domain-to-domain corre-
spondence between each source set and the target domain yields better performances.
It ensures that the model looks for relevant candidates in all individual source sets, as
tissue samples might have a distinct appearance in different source domains.

We also note that LK:1
IND is only relevant when only using K16 to train the classification

header. It is because the cross-domain matching fails to retrieve debris samples correctly
from the K16 domain, which tend to be misclassified as lymphocytes because of their
similar granular appearance and as well as their hematoxylin-positive aspect. Overall the
combination of both LK:1

IND and LK:1
CRD degrades the performance slightly. Complementary

results on the importance of the dataset ratios when sampling data for the unsupervised
pre-training phase are available in section C.3.
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4.2.7 Use Case: Multi-source Segmentation of WSIs

In this section, we present the results for the multi-source domain adaptation for patch-
based segmentation of WSI ROIs. More specifically, we are interested in the detection of
desmoplastic reactions (complex stroma), which is a prognostic factor in CRC [138]. We
use both K19 and CRCTP as the source datasets to add complex stroma examples to
the source domain. Our in-house dataset DSRMA-WSI is used as the target domain.

To assess the quality of the prediction, we evaluate the models on the same ROIs as in
the single-source setting. However, the previously provided annotations do not include
complex stroma. We overcome this by defining a margin around the tumor tissue in the
existing annotations, which is considered as the interaction area. Stroma in this region
is, therefore, re-annotated as complex stroma. The margin is fixed to 500µm such that it
includes the close tumor neighborhood [13, 106]. Note that this is a rough estimation as
the tumor-to-stroma interaction areas might vary a lot depending on the type of tumor.

As a baseline, we use DeepAll, which aggregates all the source tissue data into a single
training set [48]. The model is trained in an unsupervised fashion using a standard
contrastive loss to optimize the data representation of the features [32]. In this case, no
domain adaption is performed across the sets.

The results are presented in Table 4.6 and Figure 4.8. In Table 4.6, we compare the
performance of the models with and without complex stroma detection across all three
ROIs. We compare the single as well as the multi-source SRMA approaches to the
baselines, DeepAll, and our previously published SRA method. We report the F1-score
for complex stroma, the overall weighted F1 score (W-F1), the pixel-wise accuracy, the
Dice (DSC), the weighted IOU, and pixel-wise Cohen’s kappa (κ).

Without considering the complex stroma class, the numerical results show that all
the multi-source settings achieve similar performances. Including an additional dataset,
namely CRCTP, does not improve nor seriously deteriorate the classification performances
on the ROIs. Furthermore, merging the source domains for in-domain optimization
(L1:1

IND) seems to be the best setup. For the cross-domain matching, both L1:1
CRD and LK:1

CRD
achieve similar scores.

However, the benefit of using the multi-source approach can be observed when including
complex stroma detection. Here, the models that use CRCTP as source set achieve better
results. The detection of complex stroma improves by up to 20− 25%. By contrast, the
cross-domain matching on each subset LK:1

CRD penalizes the complex stroma detection. It
can be explained by the fact that only CRCTP contains examples of complex stroma.
Therefore, imposing complex stroma retrieval in K19 is unfeasible. Another challenge is
the relatively significant overlap between the complex stroma and the tumor class. The
model tends to classify the tumor border area as complex stroma.
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Table 4.6 – Analysis of the performance of the SRMA approach in regards to complex
stroma detection. Multiple possible scenarios are evaluated in regard to the data included
for pre-training, as well as the multi-source setting (1 : 1 versus K : 1, see Equation 4.12
to Equation 4.15), as indicated in the table. We report the F1-score for complex stroma,
the overall weighted F1 score (W-F1), the pixel-wise accuracy, the Dice (DSC) score, the
intersection over union (IOU), and the pixel-wise Cohen’s kappa (κ) score (averaged over
10 runs).

Pretraining Multi-source

Model K
19

C
R
C
T
P

L
IN

D

L
C

R
D

F1
-C

ST
R
†

W
-F

1

A
cc
.

D
SC

IO
U

κ

ROI 1-3 (w/o CSTR)
DeepAll [48] X X - - - 62.2** 61.5** 58.3** 48.3** 0.552**

SRA [1] X - - - - 64.8** 66.1** 63.2** 52.1** 0.611**

SRMA X - - - - 66.7+ 68.4+ 64.7** 53.6+ 0.636+

SRMA X X 1 : 1 1 : 1 - 67.3 68.5 66.9 54.1 0.636
SRMA X X K : 1 1 : 1 - 64.4** 66.5** 63.7** 51.6** 0.615**

SRMA X X 1 : 1 K : 1 - 66.2+ 67.8+ 65.2* 52.8* 0.629+

SRMA X X K : 1 K : 1 - 63.8** 66.0** 63.2** 50.9** 0.609**

ROI 1-3 (w/ CSTR)
DeepAll [48] X X - - 0.1** 50.5** 53.9** 49.6** 39.9** 0.479**

SRA [1] X - - - 21.4** 60.0** 62.4** 58.2** 49.0** 0.577**

SRMA X - - - 26.3** 61.4** 64.1** 59.5** 49.8** 59.4**

SRMA X X 1 : 1 1 : 1 47.9+ 64.7+ 65.9* 63.1 52.4+ 0.613**

SRMA X X K : 1 1 : 1 49.2 65.0 66.9 61.8** 52.4 0.624
SRMA X X 1 : 1 K : 1 46.4+ 64.0+ 65.1** 61.9* 51.3* 0.604**

SRMA X X K : 1 K : 1 36.6** 62.3** 64.6** 59.7** 50.0** 59.9**

† Performances are only available with extended annotations (w/CSTR).
+ p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.001; unpaired t-test with respect to top

In Figure 4.8, we display the visual results of the complex stroma detection on ROIs 1
and 3, where desmoplastic reactions, and thus complex stroma, are present. We show,
from left to right, the reference images, the original ground truth labels, the extended
ground truth labels with complex stroma, the DeepAll baseline, our previous SRA work,
and as well the results of the presented SRMA model (L1:1

IND and LK:1
CRD setting).

SRMA outperforms the baselines in terms of pixel-wise accuracy, IOU, and Cohen’s
kappa score κ. Notably, the detection of the tumor is much more detailed compared to
the single-source approach in both ROIs. Parts of the tissue previously considered as
tumors can now be properly matched, thanks to the introduction of the complex stroma
class.

Another interesting result in ROI 3 is that all the stromal areas are now considered
as either complex stroma, tumor, or lymphocytes by all models. It highlights how
challenging the classification of complex stroma is without access to the higher-level

95



Self-Rule to Multi Adapt

Figure 4.8 – Results of the multi-source domain adaptation from K19 and CRCTP to
DSRMA-WSI dataset. (a-c) show the original ROIs from DSRMA-ROI, their original ground
truth (without CSTR), and the extended ground truth (with CSTR), respectively. We
compare the performance of our SRMA framework (f) to our previous work SRA (e) and
to the DeepAll baseline (d). For the multi-source optimization, we use the 1 : 1 and K : 1
approach for the in-domain and cross-domain, respectively. We report the pixel-wise
accuracy, the weighted IOU, and the pixel-wise Cohen’s kappa (κ) score averaged over
10 runs.

context. Pathologists also find this difficult, as they rely not only on the tissue morphology
for this assessment but also on the spatial relations (i.e. the proximity to the tumor
area). Here, according to our extended ground truth, the complex stroma only surrounds
the tumor region. However, the tissue tear disconnected some of the tumor’s surrounding
regions, which suggests that the complex stroma area, in reality, spans even further. This
correlates with the prediction of both models, which identify the whole region as complex
stroma.

Lastly, using the multi-source setting allows the introduction of a new class as complex
stroma to the detection task. In the presented setting, the source domains do not need
one-to-one class correspondences for the model to learn meaningful cross-domain features.
Here, CRCTP does not include mucin, background, and adipose, while K19 does not
contain complex stroma. It is an interesting outcome, as it shows that new data that
might even be acquired under different circumstances can be added with additional tissue
classes without interfering with or altering the performance of the existing classes.

The visualizations of the multi-source domain embedding space as well as the patch-based
segmentation of a full WSI image are available in section C.4-section C.5.
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4.3 Conclusion

In this work, we explore the usefulness of self-supervised learning and UDA for the
identification of histological tissue types. Motivated by the difficulty of obtaining expert
annotations, we explore different UDA models using a variety of label-scarce colorectal
cancer histopathology datasets from publicly available sources.

As our main contribution, we present a new label-transferring approach from partially
labeled public datasets (source domain) to unlabeled target domains. It is more practical
than most previous UDA approaches, which are often tailored to fully annotated source
domain data or tied to additional network branches dedicated to auxiliary tasks. Instead,
we perform progressive cross-entropy minimization based on the similarity distribution
among the unlabeled target and source domain samples, yielding discriminative and
domain-agnostic features for domain adaptation.

Throughout various label transfer tasks, we show that our proposed SRMA method can
discover the relevant semantic information even in the presence of few labeled source
samples and yields a better generalization on different target domain datasets. Moreover,
we show that our model definition can be generalized to a multi-source setting. As a
result, the proposed model is able to learn rich data representation using multiple source
domains.

So far, the presented datasets are mainly composed of curated and, thus, homogeneous
tissue. Such data, however, does not capture the heterogeneity and complexity of patches
extracted from images in the diagnostic routine. It can lead to erroneous detection, e.g.,
background, and stroma interaction interpreted as adipose tissue. This limitation is even
more emphasized as the tile-based approach gives coarse WSI segmentations. Coarse
representations can be used for simple tasks such as locating tumor areas or checking
for depth of invasion. Still, more is needed when computing detailed metrics such as
tumor-to-stroma interaction. For such tasks, advanced segmentation models are required.
Unfortunately, segmentation architectures often rely on pixel-wise annotations to be
trained, which are scarce and tedious to acquire.

In the next chapter, we use self-supervised learning to improve tissue segmentation.
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5 Coarse to Refined: Improving
Tissue Detection

In the previous chapter, we built an adaptation framework that uses weakly labeled source
sets to classify target whole slide image (WSI) patches. Such classification architectures
rely on sliding window approaches that produce coarsely segmented output at inference
time. These representations are not suited for medical applications where fine-grained
segmentation is needed. In addition, publicly available annotated data are often designed
for classification tasks [77, 79, 71] and are composed of homogeneous tissue examples
lacking contextual information. For example, distinguishing between stroma and smooth
muscle is a non-trivial task when surrounding tissues are unknown. Our motivation is to
combine self-supervised learning (SSL) and weakly supervised semantic segmentation
(WSSS) to segment complex tissue structures efficiently. WSSS is defined as the use of
weakly labeled data (e.g. patch label) to train segmentation models. This setting is more
convenient than supervised segmentation tasks requiring pixel-wise annotation.

In this chapter, we propose our coarse to refined (C2R) data-efficient training approach.
The method tackles previous observations on data heterogeneity and output resolution.
Furthermore, we assume that collecting dense pixel-labeled data is an uphill task. While
segmentation annotation at low magnification is straightforward, generating precise
dense pixel annotation at high resolution (i.e., gigapixel histology images) is tricky. The
annotation quality highly relies on the staining or potential local artifact and is prone to
error. As a result, we avoid using extra manually annotated data as much as possible.

In the first step, we train a shallow network to classify tissue patches using open-source
labeled data. The model is then used to generate coarse pseudo labels from WSIs
(section 5.1), thus creating a large bank of tissue representations. In the second step, we
use the generated pseudo labels to train a segmentation network (section 5.2) to refine
the detection of the tissue while taking advantage of the contextual information and
visual consistency. Then, we propose a novel way to validate our results while avoiding
additional human annotation by using staining information (section 5.3). Finally, we
perform ablation studies of the presented architecture on diverse datasets (section 5.4).
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Figure 5.1 – Creation of pseudo labels. (a) Classification approach where we use a model
fA and apply it on WSI tiles to create pseudo labels Ypseudo

cls , ypseudo
cls , and Xpseudo. (b)

k-nearest neighbors (KNN) approach where we create a feature embedding from fA′ to
assign pseudo labels Ypseudo

knn , ypseudo
knn , and Xpseudo.

5.1 Pseudo Labeling

In this section, we tackle the creation of pseudo labels. As previously explained, acquiring
pixel-wise labels for segmentation is a tedious task. Instead, we propose a simple approach
to generate pseudo labels for our C2R model. Firstly, we build a shallow architecture to
perform coarse tissue classification using publicly available data. Secondly, we apply the
model to WSIs to create large amounts of pseudo-labeled data. By sampling directly from
WSIs, we can ensure data heterogeneity (i.e. mixture of tissue classes). Consequently,
we aim to take advantage of WSI complex structures to improve tissue representation
without additional annotations. In Figure 5.1, we depict an overview of the pseudo label
creation.

More formally, we want to be able to generate various annotated tissue regions from
WSIs as (Xpseudo,ypseudo). Here Xpseudo ∈ RWp×Hp×3 is a RGB tile with width Wp and
height Hp. The variable ypseudo ∈ [0, 1]C is the pseudo label linked to the selected tile
and represents the local distribution of classes in the image. We propose two solutions
to compute the pseudo labels based on classification (subsection 5.1.1) and k-nearest
neighbors (KNN) (subsection 5.1.2).
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5.1.1 Classification

Our first approach relies on tissue classification. First, we train a model fA to distinguish
between C classes. The architecture comprises a pre-trained vision transformer (ViT)
network with a linear classification head attached on top. The weights of the ViT
backbone are fixed, and solely the head is updated through training. We feed the model
RGB tiles X ∈ RH×W×3 as input and aim at predicting target y ∈ [0, 1]C , where W , H
represent the height and width of the tile. We suppose the tiles come from a publicly
available dataset and thus are labeled.

Once trained, the model is applied on WSIs using a sliding window approach to get a
first estimation of slide segmentations. We then randomly select a sub-region of the WSIs
as Xpseudo as well as its corresponding classification map Ypseudo

cls ∈ [0, 1]wp×hp×C over C
classes where wp, hp represent the height and width of the classification map. We define
the pseudo label of the given region Xpseudo as the average of class probabilities over the
classification map:

ypseudo
cls = 1

hpwp

hp∑
i=1

wp∑
j=1

(
Ypseudo

cls

)
i,j
. (5.1)

Here, i, j are the index of the matrix along the first two dimensions (namely height
and width). The final pseudo label pair for the classification approach is given as
(Xpseudo,ypseudo

cls ). Note that the width and height of the tile and its segmentation are
proportional as Wp ∝ wp and Hp ∝ hp.

5.1.2 k-Nearest Neighbors

For the second approach, we use a pre-trained ViT architecture fA′ . Here, we feed the
model RGB tiles from publicly available datasets to get feature representations. Based
on the generated embedding, we build a KNN classifier over the C classes. To get the
prediction of a given WSI tile, we feed it to the pre-trained model, look for the k-nearest
samples, and use majority voting for the final decision. Then, we apply the same logic as
in the classification setup, where we randomly select a sub-region of the WSI as Xpseudo

as well as its corresponding segmentation Ypseudo
knn ∈ {0, 1}hp×wp×C . We select the same

subareas as the previous approach to have pseudo-label correspondence for the training
in the next section. We define the pseudo label using the same approach:

ypseudo
knn = 1

hpwp

hp∑
i=1

wp∑
j=1

(
Ypseudo

knn

)
i,j
. (5.2)
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Figure 5.2 – Proposed architecture for our coarse to refined (C2R) approach. We
feed Xpseudo, ypseudo to our ViT backbone to generate Z1, . . . ,ZL embeddings. The
predictions are aggregated at every level using classification heads fφ1 , . . . , fφL , fψ to
create the segmentation map Ŷseg. The segmentation map is constrained by a self-
correlation loss Lseg, classification losses Lcls, Lknn, and visual consistency losses Lphoto

reg ,
Lphoto

cls . For the visual consistency, we generate an augmentation Xphoto of the original
image using transformations ξphoto and fed it to the model to produce Ŷphoto

seg .

5.2 Method

In this section, we introduce our network as depicted in Figure 5.2. The main architecture
fB : RWp×Hp×3 → RWs×Hs×C takes as input a tile Xpseudo ∈ RWp×Hp×3 and predict
a segmentation map Ŷseg ∈ RWs×Hs×C . For training, we rely on the pseudo labels
ypseudo ∈ RC previously generated. For each input image, we have access to two pseudo
label estimations as ypseudo

cls and ypseudo
knn .

The image first goes through a ViT that outputs feature embeddings Zl ∈ RWs×Hs×D,
l ∈ {1, . . . , L} that are the representation of the input image at the l-th ViT layer
and where D is the dimension of the ViT feature space. The embeddings are passed
through a set of nonlinear classifier fφl : RWs×Hs×D → RWs×Hs×C with parameters
φl to get a second representation where C is the number of classes. Note that the
classifiers’ weights are not shared across the architecture, as each layer embedding is
unique. Finally, the predictions are concatenated and passed through a last classifier
fψ : RWs×Hs×L·C → RWs×Hs×C with parameters ψ to get the final segmentation map
Ŷseg. We define the overall loss as the contribution of multiple terms:

minLC2R = min
φ1,...,φL,ψ

Lcls + Lknn︸ ︷︷ ︸
classification

+ Lseg︸︷︷︸
segmentation

+Lphoto
cls + Lphoto

reg︸ ︷︷ ︸
visual consistency

 . (5.3)
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Algorithm 3: Pseudocode for the C2R framework.
Initialize ViT with pretrained weights and freeze them ;
Initialize thresholds δfg to constant ;
for e = 0 to Nepochs − 1 do

for batch {(Xpseudo,ypseudo
cls ,ypseudo

knn )i}Bi=1 do
Get augmented samples Xphoto using data augmentation ξphoto ;
Perform forward pass using ViT ;
Reconstruct embedding Z using layers’ outputs ; . Equation 5.9
Perform forward passes fφ1 , . . . , fφL

, fψ to get segmentation
maps Ŷseg and Ŷphoto

seg ;
Compute self-correlation refinement Mc

scg ; . Equation 5.12
Get refined foreground mask Mc

mask ; . Equation 5.13
Compute classification loss Lcls and Lknn ; . Equation 5.5 - 5.6
Compute segmentation loss Lseg ; . Equation 5.14
Compute visual consiftency Lphoto

cls and Lphoto
reg ; . Equation 5.16 and 5.22

Evaluate overall loss LC2R ; . Equation 5.3
Update thresholds δfg ; . Equation 5.15
Update weights φ1, . . . φL, ψ with backpropagation ;

end
end

First, we use classification losses from the previously generated pseudo labels. Secondly,
we use a segmentation loss based on self-correlation to refine the prediction of classes.
Finally, we add visual consistency terms to increase the robustness of the predictions
under stain variation and artifacts. The ViT weights are fixed, and the optimization is
performed over the sets of parameters φ1, . . . , φL, and ψ. We describe the implementation
of classification losses in subsection 5.2.1, the segmentation loss in subsection 5.2.2, and
visual consistency losses in subsection 5.2.3. The C2R pseudocode for the presented
architecture is given in algorithm 3.

5.2.1 Classification

We define a classification loss between the output prediction and the previously generated
pseudo labels. We use multilabel soft margin (MLSM) to compute errors on multi-labels
as the loss is able to handle mixtures of class probability as target labels [73]. The MLSM
function gives the error between a target y and prediction ŷ:

LMLSM(y, ŷ) = − 1
C

C∑
i=1

yi log
( 1

1 + exp(−ŷi)

)
+ (1− yi) log

( exp(−ŷi)
1 + exp(−ŷi)

)
. (5.4)

We then define the losses as the error between the global average pooling (GAP) of the
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predictions and pseudo labels ypseudo
cls and ypseudo

knn as:

Lcls = LMLSM
(
ypseudo

cls , ŷcls
)

= LMLSM

ypseudo
cls ,

1
WsHs

Ws∑
i=1

Hs∑
j=1

(Ŷseg)i,j

 , (5.5)

Lknn = LMLSM
(
ypseudo

knn , ŷcls
)

= LMLSM

ypseudo
knn ,

1
WsHs

Ws∑
i=1

Hs∑
j=1

(Ŷseg)i,j

 . (5.6)

5.2.2 Segmentation and Self-correlation

With the current setup, we do not impose any constraint on the segmentation map (i.e.
output features). Here, we aim to generate a mask that estimates the class location
within the feature map and use it to improve our segmentation. To do so, we employ the
concept of class activation maps (CAMs) [162]. CAMs are local attentions of the model
for a given class and image. A high value in a CAM is linked to a significant contribution
of the area to the class prediction. As a result, CAMs are directly correlated with the
presence of the class. It is defined as:

Mcam = (θ[L])>Ŷ[L−1]
seg , (5.7)

where θ[L] are the weight of the last layer of the model and Ŷ[L−1]
seg the model features

evaluated at second to last layer. In our architecture, we use a nonlinear classification
head fψ with no bias to create our segmentation output. Consequently, in our setup, the
CAMs are implicitly defined:

Mcam =Ŷseg

=
(
Ŷ1

seg . . . ŶC
seg

)
,

(5.8)

where, Ŷc
seg ∈ RWs×Hs is the CAM for class c. The CAMs give a coarse estimation of

the model’s activations. To refine our prediction, we use self-correlation map generating
(SCG) [112]. The SCG compute the first-degree correlation between the extracted features
of the model and sum their contributions for a given class mask. Here, we consider the
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output of the pre-trained model as the feature reference for the self-correlation. Each
layer l of the ViT outputs a representation Zl ∈ RHsWs×D where HsWs is the flattened
spatial size of the feature map and D the dimension of the embedding. We create the
overall image descriptor Z, which is the concatenation of each layer embedding:

Z =
(
Z1 · · · ZL

)
∈ RHsWs×LD

=
(
f1 · · · fHsWs

)>
.

(5.9)

By looking at the transpose matrix, we can also see Z as a list of HsWs feature descriptors
fi ∈ RLD. The vector fi is the embedding of the i-th entry of the segmentation map. We
can now compute the first order self-correlation S ∈ RHW×HW+ between the representation
of the segmentation map entries:

Si,j = max(0, f>i fj
‖fi‖‖fj‖

),

S = (Si,j)1≤i,j≤HW .

(5.10)

We use cosine similarity to measure the affinity between two feature entries. We can
interpret Si,j as the correlation between the i-th segmentation map entry and its j-th
element. A high value means that those two locations share similar content. We then use
the CAMs to remove the background information from the correlation map and select
the class-relevant objects:

Uc ={S}(vec(Ŷc
seg)>0)

=
(
uc1 · · · ucN

)
,

(5.11)

Mc
scg = 1

N

N∑
i=1

uci . (5.12)

We use the masking function {S}A and condition A to select the columns of the self-
correlation map that are part of the class activation and create a compressed representation
of the segmentation Uc. In other words, given the condition A = vec(Ŷc

seg) > 0 and
A ∈ {0, 1}HsWs we select the columns of S where A is nonzero (i.e. class foreground
map). The result is then averaged over the selected columns to create the final SCG
map. As we rely on positive cosine similarity to compute self-correlation, the element of
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the map Mc
scg are all contained in the range [0, 1]. They can be seen as the probability

of each entry belonging to a given class c. We get the segmentation mask by applying a
threshold δfg ∈ [0, 1] to the confidence score SCG:

Mc
mask = Mc

scg > δfg. (5.13)

The mask represents the refined foreground for a class c where we impose class consistency:

Lseg = LMLSM
(
ypseudo, {Ŷseg}(Mc

mask 6=0)
)
, arg max

c∈{1,...,C}
ypseudo
c . (5.14)

In practice, we compute the loss on the majority class. In this case, the masking function
is performed over the first two dimensions of the matrix Ŷseg. We apply the MLSM
loss for every entry of the segmentation map that reaches the confidence threshold δfg.
The threshold is a hyper-parameter of the model that can be tricky to estimate. In the
literature, the threshold selection is often obtained empirically and fixed [73]. However,
the optimal value is likely to change during training as the segmentation maps are
estimated. Moreover, the threshold might vary depending on the selected class. Here, we
propose to use a moving average (MVA) to update class-specific thresholds during the
learning procedure. We define the update of the threshold δcfg of a given class c:

δcfg ← mδcfg + (1−m)
Hs∑
i=1

Ws∑
j=1

(Mc
mask)i,j

(
Mc

scg �Mc
mask

)
. (5.15)

where � is the element-wise product and m ∈ [0, 1] the update momentum.

5.2.3 Visual Consistency

Aside from classification and segmentation losses, we also impose visual consistency.
The idea is that for a given input image Xpseudo we can generate an augmented image
Xphoto that shares a similar structure with the input using a set of transformation
ξphoto : RHp×Wp×3 → RHp×Wp×3. We select the transformations such that they only
affect the visual aspect of the image but not its geometry (e.g. colorspace shift). As
a result, overlapping the two images still produces pixel-wise matching between the
two entries. We define the estimated segmentation map of the augmented view as
Ŷphoto

seg = fB(Xphoto). We follow the same logic as before, where we average the prediction
across the segmentation map to get the final class probability. The visual consistency
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Figure 5.3 – Probability of given feature map samples in range [vmin, vmax] to belong to
the k-th bin with center ck and width δ. We use two sigmoid functions as upper and
lower bounds. The final statistics are given as the difference between the two decision
functions. In this example we assume vmax = −vmin = 1, K = 10, and k = 3.

classification loss is given as follows:

Lphoto
cls = LMLSM

(
ypseudo

cls , ŷphoto
cls

)
= LMLSM

ypseudo
cls ,

1
WsHs

Ws∑
i=1

Hs∑
j=1

(Ŷphoto
seg )i,j

 . (5.16)

Another way to take advantage of the augmented frame is to link the feature space of
the original view and its augmented version in a self-supervised fashion. We use l1-norm
as in [72] to minimize the distance between the feature spaces:

Lphoto
reg = ‖max(Ŷseg, 0)−max(Ŷphoto

seg , 0)‖1 . (5.17)

However, l1-norm assumes we have a strict one-to-one correspondence between the fea-
tures, which can be too constraining. Another option is to match the feature distribution
between the two domains using histograms instead of relying on element-wise prediction.
Unfortunately, the histogram function itself is not differentiable. To overcome the issue,
we use shifted sigmoids to estimate feature distributions [144]. The process is fully
differentiable and is depicted in Figure 5.3. We define as µk the centers of the histogram
bins with k ∈ {1, . . . ,K}:

µk = vmin + (k + 0.5)δ and δ = vmax − vmin
K

. (5.18)

The values vmax and vmin ∈ R are the range of the histogram, K the number of bins, and
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δ their widths. For each histogram bin, we use a sigmoid function sλ to compute the
probability vector’s elements z =

(
z1 . . . zD

)
to belong to the cluster µk:

sλ(z) = 1
1 + exp (−λz) , (5.19)

rk(z) =

D∑
d=1

sλ((zd − µk) + δ
2)− sλ((zd − µk)− δ

2)

K∑
l=1

D∑
d=1

sλ((zd − µl) + δ
2)− sλ((zd − µl)− δ

2)
, (5.20)

where λ ∈ R is a hyperparameter that fixes the sharpness of the sigmoid and D the
dimension of the vector. The larger the value λ, the more selective the sigmoid func-
tion. We define the reference P = (qc,k)1≤c≤C,1≤k≤K and target Q = (qc,k)1≤c≤C,1≤k≤K
distributions:

pc,k = rk(vec(Yc
seg)) and qc,k = rk(vec(Yphoto,c

seg )). (5.21)

The histogram matching is performed across each individual class. The loss is given as
the Kullback-Leibler (KL) between the estimated feature distributions of the reference
segmentation map Yseg and its augmented view Yphoto

seg .

Lphoto
reg = KL(P‖Q) =

C∑
c=1

K∑
k=1

pc,k log pc,k
qc,k

. (5.22)

5.3 Use Staining as Validation

In the previous section, we introduced our WSSS approach to improve segmentation
from coarse labels. To evaluate the performance of our method, we need pixel-wise
ground truth annotations from colorectal cancer (CRC) tissue, which are unavailable.
Manual segmentation is a tedious task requiring the annotator to follow tissue boundaries
across gigapixel images carefully. Moreover, certain areas are not clearly separable as
they are, in fact, mixtures of classes. This phenomenon is worsened by the use of HE
staining that can create poor contrast between certain classes. Hence, even for a trained
pathologist, distinguishing between tissue types is challenging and time-consuming at
high magnification.

We propose a novel and fast way to generate segmentation labels from WSIs without the
need for tiresome annotation. More precisely, we focus on tumor and stroma detection as
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Figure 5.4 – Generating segmentation labels from stained WSIs. (a) Process of tissue
cutting and staining into Trichrome, hematoxylin and eosin (HE), and immunohisto-
chemistry (IHC). (b) Registration of Trichrome and IHC to HE slide using matching key
points khe

i and triangles the
j . Stains are extracted from the registered slides, thresholded

using δfastgreen and δdab, and merged to create the segmentation map.

their interaction has been proven to be an interesting prognostic factor [141, 138]. Given
a fixed tissue specimen from a patient, we cut three consecutive slides as depicted in
Figure 5.4a. The top slide is stained using Trichrome, highlighting the smooth muscle
in red/purple and collagen fibers (i.e. stroma) in green/blue. The center cut is stained
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using the standard HE procedure to color basic and acidic components. Finally, the
bottom slide is stained with IHC to enhance the presence of tumor cells in brown.

As the acquired slides are from consecutive cuts, we assume that local changes in shapes
and textures are negligible. However, WSIs are vast. The addition of local small
displacement due to tissue steering can result in large offsets between images at the
WSI level. To tackle this issue, we consider the central HE slide as the reference and
use it to register the Trichrome and IHC images. Image alignment can be performed
using automatic feature extractors [83, 121]. However, automated approaches tend to
fail when applied to histological images as WSIs have poor local feature descriptors.
Another solution is to use homography. For each image, we manually select N paired
points {(ktrichrome

i ,khe
i ,kihc

i ∈ R2)}Ni=1 that matches across the three cuts. The number
of selected locations is typically low to keep the annotation process simple and fast. We
then use Delaunay triangulation [41] to build triangle meshes out of the generated key
points.

Let’s assume we end up with M matching triangles between images. For each triangle
tihc
j in the IHC image, we have a corresponding triangle the

j in the reference HE image,
where j ∈ {1, . . . ,M} denotes the index of the triangle. We build a projection matrix
that matches the triangle source point to the reference one. The projection matrix is
then applied to the source triangle to deform it locally. We apply the same approach to
match the triangles ttrichrome

j of the Trichrome image to the reference HE image. The
procedure is depicted in Figure 5.4b.

Once registered, we estimate the staining distribution using the Macenko [96] approach.
For the Trichrome image, we extract the Fast Green component as Mtrichrome ∈ RH×W

that is correlated with the presence of collagen and therefore stroma. On the IHC slide,
we isolate the diaminobenzidine (DAB) component as Mihc ∈ RH×W that highlight
tumor cells. We carefully selected slides that do not include normal tissue as epithelial
cells would appear in the DAB channel and be mixed with the tumor. We apply threshold
δfastgreen and δdab on Trichrome and IHC maps to generate the foreground masks. The
prediction maps for the HE image Yhe = (yi,j)1≤i≤H,1≤j≤W is defined as:

yi,j =



Stroma , if (Mtrichrome)i,j ≥ δfastgreen and (Mihc)i,j < δdab

Tumor , if (Mtrichrome)i,j < δfastgreen and (Mihc)i,j ≥ δdab

Uncertain , if (Mtrichrome)i,j ≥ δfastgreen and (Mihc)i,j ≥ δdab

Background , otherwise.

(5.23)

We add a small uncertainty margin around the detection maps to create a smooth
transition between the classes. The overall procedure to generate segmentation labels
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Algorithm 4: Pseudocode for segmentation label acquisition.
Cut three consecutive slides from a tissue block ;
Stain top, middle and bottom slides using trichrome, HE, and IHC, respectively ;
Select a set of N paired points (ktrichrome

i ,khe
i ,k

ihc
i ) that match between the slides ;

Apply Delaunay triangulation to build M matching triangle sets across images ;
for triangles tuple (ttrichrome

j , the
j , t

ihc
j ) j ∈ {1, . . . ,M} do

Find transformation from ttrichrome
j to the

j ;
Apply transformation to trichrome triangle to align it ;
Find transformation from ttrichrome

j to the
j ;

Apply transformation to IHC triangle to align it ;
end
Extract Fast Green stain from Trichrome image ;
Extract DAB stain from IHC image ;
Apply threshold δfastgreen and δdab to prediction maps for stroma and tumor respectively ;
Merge maps and set as uncertain overlapping predictions ;
Create uncertainty margin around classes to allow smooth transition ;

from the consecutive cuts is summarized in algorithm 4.

5.4 Experiments

In the experiments section, we first detail the experimental setup for extracting the
pseudo labels, the training of the segmentation architecture, and the acquisition of
segmentation labels for validation in subsection 5.4.1. Then, we perform ablation studies
on our in-house data in subsection 5.4.2 and show comparisons with our previous Self-
Rule to Multi Adapt (SRMA) work. In subsection 5.4.3, we discuss the architecture’s
performance when applied to data from different scanners. Finally, in subsection 5.4.4,
we further validate our approach using data from the SemiCol segmentation challenge.

5.4.1 Experimental Settings

As a reference for the pseudo labeling extraction, we use data from Kather 19 (K19)
which is composed of C = 9 classes as adipose (ADI), background (BACK), debris (DEB),
lymphocytes (LYM), muscle (MUS), mucin (MUC), normal mucosa (NORM), stroma
(STR) and tumor (TUM). The size of the training input images is H = W = 224px at
20× magnification (i.e. 0.4856µm/px). For the pseudo labeling, we use a pre-trained ViT
model from Dino [23] whose weights are kept fixed. We use ViT-S/16 architecture with
a feature space size of D = 384. On top of the ViT, we attach a linear classifier to create
fA. For fA′ , we directly use the output of the pre-trained model to fit the KNN classifier
with k = 5. The output resolution of the classification is 109µm (224px · 0.4856µm/px).

To generate our pseudo labels, we apply the trained models on slides from the patient
set PA. We select Hp = Wp = 512px for the generated pseudo labeled at 10× magni-
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fication (i.e. 0.9712µm/px). The resolution of the pseudo label classification is hence
508µm (512px · 0.9712µm/px) to include contextual information. Out of the generated
classification map on patient set PA, we randomly sample areas such that we end up
with 270, 000 pseudo labels balanced over all classes (30, 000 examples per class). The
dataset is named DC2R-WSI and is used train the C2R architecture.

For the segmentation, we use the same pre-trained ViT model with fixed model weights.
The selected architecture is composed of a succession of L = 12 layers. We attach
nonlinear classifiers fφl to ViT layers l = {3, 6, 9, 12} to build the intermediate feature
representation [160]. All four nonlinear classifiers are composed of two fully connected
layers with rectified linear unit (ReLU) activation, input and hidden layer dimension
set to D = 384 and output layer to the number of classes C. Finally, the features are
aggregated and passed through a final nonlinear classification stage fψ with input size 4C,
hidden dimension 4C, and output size C. The resolution of the output is defined by the
size of the ViT model patches (i.e. 16 pixels). Given the input size of the pseudo labels
Hp = Wp = 512, we end up with Hs = Ws = 32 and a resolution of the segmentation
map of 15.5µm. It represents an upscaling factor of 7 compared to the initial resolution
of fA. The architecture is trained for a single epoch with Adam optimizer, learning rate
lr = 5 · 10−3, and weights decay w = 5 · 10−4

To generate photo samples, we use a set of transformations ξphoto composed of color
jittering, random gamma, ISO noise, coarse dropout, Gaussian noise, gray conversion,
Gaussian blur, image compression, and contrast limited adaptive histogram equalization
(CLAHE). The previously mentioned transformations do not affect the inner structure
of the tissue. In addition, we use another set of transformations that alter the samples’
geometry. It comprises random resized crop, horizontal flip, rotation, and grid distor-
tion. The transformations are applied simultaneously to both images to ensure feature
correspondence. The mentioned transformations are available in the Python package
Albumentations [19].

For the segmentation branch, we use m = 0.99 when updating thresholds to ensure
slowly shifting values. If not specified otherwise, we set δfg = 0.05 as starting value
for all classes. When computing histograms for visual consistency, set the range of the
histogram as vmax = −vmin = max(Q0.99(Ŷseg), Q0.99(Ŷphoto

seg )) to reduce the impact of
the outlier. The number of bins and the scaling factor are empirically set to K = 32 and
λ = vmax/K, respectively.

To generate segmentation labels, we use 7 tissue blocks from 7 different patients. The
samples are selected to represent different cancer stages and depths of invasion. The
tissues are all digitized using two scanners with different optics. In the result section,
we refer to the scanners as A and B. If not mentioned, the results are given for images
digitized using scanner B. Out of the selected tissue blocks, we extract 14 regions of
interest (ROIs) to create segmentation maps. On average, we use N = 11 registration
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Table 5.1 – Ablation study of loss term Lc2r and evaluation on DC2R-ROI from scanner
B. Results are averaged over 10 runs. We use an unpaired t-test with respect to the
top result. The single level setting use only last ViT layer and multilevel use layers
{3, 6, 9, 12}. For self-correlation we use different thresholds as δfg = {0.05, 0.2,MVA}.
We report class-wise F1 score and Macro-F1.
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F1 F1 Macro-F1

Classification
fθ 64.3± 2.5 75.6± 8.4 70.0± 4.0

SRMA [2] 68.1± 0.3 70.1± 2.3 69.1± 1.2

Segmentation (fB)
Single level
C X 70.4± 1.4 71.7± 4.8 71.1± 2.7

K X 72.2± 0.7 66.1± 2.6 69.2± 1.4

CK X X 71.7± 1.7 73.9± 3.8 72.8± 2.3

Multilevel
ML-C X 75.1± 3.1 80.6± 6.1 77.8± 4.1

ML-K X 75.0± 2.1 70.9± 4.8 72.9± 3.3

ML-CK X X 76.5± 2.7 79.4± 5.5 78.0± 3.2

Visual consistency
ML-C-P X X X 75.2± 3.3 83.7± 2.8 79.4± 1.6

ML-C-RL1 X X L1 79.2± 1.5 83.6± 3.9 81.4± 2.4

ML-C-RH X X H 76.9± 2.6 82.6± 2.9 79.7± 2.1

ML-C-PRL1 X X X L1 79.5± 1.8 85.5± 2.8 82.5± 2.0

ML-C-PRH X X X H 76.4± 2.8 83.3± 2.1 79.8± 2.1

Self-correlation
ML-C-S0.05 X X 0.05 78.8± 3.3 84.3± 4.7 81.5± 3.8

ML-C-S0.20 X X 0.20 77.5± 2.6 83.0± 4.2 80.3± 2.9

ML-C-SMVA X X MVA 78.4± 2.2 84.4± 3.3 81.4± 2.6

Visual & Self-correlation
ML-C-P-S0.05 X X X 0.05 79.2± 2.1 84.6± 2.7 81.9± 2.0

ML-C-PRL1-S0.05 X X X L1 0.05 80.0± 2.1 84.5± 3.2 82.2± 2.5

ML-C-PRH-S0.05 X X X H 0.05 79.4± 2.0 83.3± 3.6 81.4± 2.5

Abbreviations: Lcls (C), Lknn (K), Lphoto
cls (P), Lphoto

reg (R), Lseg (S), Multilevel (ML),
l1-norm (L1), l1-norm on foreground values (L1+), histogram matching (H).

points across the ROIs. The threshold values for foreground selection in the optical
density (OD) space are manually selected as δfastgreen ∈ [0.60, 0.90] and δdab ∈ [0.02, 0.06].
We apply post-processing on the segmentation map to remove objects with an area
smaller than the output segmentation resolution (i.e. 15µm × 15µm). The dataset is
named DC2R-ROI and used for validation.

5.4.2 Ablation Study - In-House Segmentation

We perform an ablation study of our proposed approach on our in-house DC2R-ROI data.
We use the segmentation labels generated using Trichrome and IHC staining as ground
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truth. The models are applied on the central HE image. We report class-wise F1 score
and macro averaging F1 on STR and TUM. Tissues detected by our architecture that
are not part of either STR and TUM are considered incorrect. The results are presented
in Table 5.1. We use the pseudo labeling model fA as a baseline. For the losses, we use
the abbreviations Lcls (C), Lknn (K), Lphoto

cls (P), Lphoto
reg (R) and Lseg (S). Regarding the

ViT, we define the single level setting as the use of the last layer l = 12 and multilevel
as the combined outputs of layers l = {3, 6, 9, 12}. For the visual consistency regulation
term, we try l1-norm (L1) and histogram matching (H) losses. About the self-correlation,
we test different thresholds as δfg = {0.05, 0.2,MVA}.

From the results, we can observe that using pseudo labels generated with the classification
approach gives the best results. The use of KNN pseudo labels gives reasonable results for
tumor detection but dramatically drops when used for stroma identification. This is due
to the fact that the model interprets muscle tissue as stroma. This issue is partially solved
when both losses are combined (CK), but not enough to achieve statistical improvement.
On the other hand, multilevel architecture greatly improves the performance on both
tumor and stroma with respect to the single-level stetting.

Regarding visual consistency, using an additional classification constraint (P) does not
significantly improve the model’s performance. Overall, combining both loss terms (PR)
and l1-norm produces better results. Self-correlation improves the performance of the
model across all modalities. Regarding the threshold, keeping a lower threshold helps the
model generate confident predictions. We observe a gain of +12% in tumor and stroma
detection compared to our previous SRMA work.

Self-correlation Threshold

We go more in-depth about the selection of the foreground threshold. As detailed in the
method, the threshold δfg indicates the confidence in the foreground map. Any value
from the CAMs above the mentioned threshold is considered part of the class foreground
mask.

In Figure 5.5, we show the behavior of the image thresholding for the self-correlation map.
As a reference, we selected an image that includes both stroma and tumor. Moreover,
we highlight the evolution of the threshold when using the MVA. Finally, we present how
the tumor foreground mask map evolves with and without self-correlation loss for the
MVA case.

We observe that the MVA stabilize after a few steps. This phenomenon is visible in the
self-correlation where the target mask remains fixed. Another interesting observation is
the behavior of the CAM with and without using the self-correlation loss. The use of Lseg
forces the model to expand the detection and allow it to learn new feature representation.
Consequently, the CAM merges features into more coherent and denser areas. However,
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Figure 5.5 – Evolution of the CAM with and without the presence of self-correlation
constrain Lseg. (a) Reference image with the presence of tumor tissue. (b) Variation of
the thresholds δfg = {0.05, 0.2,MVA} through the training. (c) CAM without (top row)
and with (middle row) self-correlation for different training steps and δfg = MVA. The
target mask for self-correlation is given in the last row.

when focusing on the numerical result, we do not see a difference between the use of a
fixed threshold at δfg = 0.05 or the use of the MVA. We prefer using MVA as no manual
thresholding is required.

Histogram Matching

In our work, we propose two different approaches for regularizing visual consistency. The
first approach relies on l1-norm, while the second uses histogram matching. Here, we
focus on the second regularization approach.

In Figure 5.6, we present an example of the evolution of the matching of histograms
through the training. Each column shows a different training step, while each row
represents a different training setting. With the top row, we display the case where no
regulation is used. On the bottom row, we apply regularization as histogram matching.
We highlight the real feature distribution (continuous line) as well as the estimated
feature distribution using the proposed approach (blue/orange bins). We define as target
the feature generated from the original view and as source the features of the augmented
view.

We observe that the estimated and real feature distributions properly align across all
steps in the regularized setting. As the training progresses, the regularization term can
impose and maintain feature alignment between the source and target histogram. For the
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Figure 5.6 – The behavior of the histogram matching through training. Each column
represents a different training step. The top and bottom rows show the baseline and the
use of histogram matching for regularization loss Lphoto

reg , respectively. For the baseline,
we show the real feature distribution for a given class. We denote as target the original
image and as source the augmented view. For the histogram matching, we add the
estimated feature distribution. For all plots, we report KL loss.

baseline, we observe that the two distributions shift after a few steps. The phenomenon
is more visible with the computation of the KL divergence loss that increases as training
progresses. The presented results show that the features are not centered around the
boundary decision 0. Our previous assumption vmax = −vmin is not optimal as the
positive bins are less populated. However, as the histogram range is based on the upper
bound, we ensure the range of positive values is properly represented.

Use Case - WSI Segmentation

In our previous SRMA work, a sliding window is used to classify local patches. This
approach produces a coarse segmentation output that is unsuitable for clinical applications.
In Figure 5.7, we visually compare the performance of our proposed C2R to our previous
SRMA architecture. The C2R framework is able to generate fine-grained segmentation
maps. The arrows highlight locations where small tissues are accurately identified. We
can observe tumor-associated stroma that lies between tumor aggregates. These features
are critical when evaluating various clinical metrics for CRC.

5.4.3 Scanner Variability

For the validation of the model, consecutive cuts are acquired. After the staining proce-
dure, the images are digitized using two scanners, A and B, from the same constructor.
Still, they present different characteristics that can hinder segmentation model perfor-
mances [80]. Firstly, scanner A uses an old, low-tier camera, while scanner B relies on
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Figure 5.7 – Comparison of WSI local segmentation between the proposed approach
and previous SRMA [2] work. The arrows highlight specific areas where C2R is able to
achieve detailed segmentation.

Figure 5.8 – Scanners visual comparison at (a) low and (b) high magnification. We
display the same regions acquired with two scanners, A and B.

a recent, high-quality camera. Secondly, scanner B uses gamma calibration, while the
feature is deactivated in scanner A. This disparity allows us to compare the model’s
performance under different acquisition settings. In Figure 5.8, we display examples of
the two scanned images at low and high magnification.

The difference in color calibration is visible between the two images. For scanner B, the
images appear brighter, and the contrast between the hematoxylin and eosin stains is
more visible. In addition, between the two acquisitions, slides were manually cleaned.
On the images from scanner A, we identify dust on the glass that causes obstructions
and focusing issues for the camera.
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Table 5.2 – Comparison of the performance of C2R under scanner variation in DC2R-ROI.
Results are averaged over 10 runs. We use an unpaired t-test with respect to the top result.
The single level setting use only last ViT layer and multilevel use layers {3, 6, 9, 12}. We
report class-wise F1 score and DCD.

Tumor Stroma All

Methods Scanner DCD [150] F1 DCD [150] F1 Macro-F1

Baseline
SRMA[2] A 0.129± 0.002 65.9± 0.7 0.101± 0.011 63.3± 4.2 64.6± 2.1

Single level
C A 0.103± 0.016 65.6± 1.8 0.039± 0.007 66.1± 5.3 65.9± 3.2

K A 0.075± 0.008 70.5± 1.0 0.044± 0.003 61.7± 2.4 66.1± 1.4

CK A 0.089± 0.011 67.8± 2.0 0.036± 0.004 68.9± 3.6 68.4± 2.5

Multilevel
ML-C A 0.101± 0.022 69.5± 3.4 0.031± 0.004 75.5± 3.9 72.5± 1.9

ML-K A 0.075± 0.021 72.4± 3.2 0.041± 0.008 67.0± 6.7 69.7± 4.6

ML-CK A 0.086± 0.017 72.3± 2.3 0.031± 0.008 75.3± 5.8 73.8± 2.6

Baseline
SRMA[2] B 0.108± 0.006 68.1± 2.5 0.084± 0.006 70.1± 2.3 69.1± 1.2

Single level
C B 0.071± 0.010 70.4± 1.4 0.031± 0.005 71.7± 4.8 71.1± 2.7

K B 0.048± 0.003 72.2± 0.7 0.038± 0.003 66.1± 2.6 69.2± 1.4

CK B 0.058± 0.007 71.7± 1.7 0.029± 0.003 73.9± 3.8 72.8± 2.3

Multilevel
ML-C B 0.056± 0.010 75.2± 3.1 0.026± 0.007 80.6± 6.1 77.8± 4.1

ML-K B 0.040± 0.006 75.0± 2.1 0.038± 0.003 70.9± 4.8 72.9± 3.3

ML-CK B 0.050± 0.011 76.5± 2.7 0.026± 0.004 79.4± 5.5 78.0± 3.2

Abbreviations: Lcls (C), Lknn (K), Multilevel (ML).

In Table 5.2, we compare the performance of the proposed architecture on the different
scanners. We report the F1 score and density-aware Chamfer distance (DCD) for tumor
and stroma, as well as the macro-F1 over both classes. The use of the DCD is a good
indicator of the granularity of the prediction. We observe a significantly higher error rate
when computing DCD for the tumor on scanner A. As the model tends to miss small
tumor areas due to the lack of color contrast, the distance to the closest set tends to
increase and thus DCD with it. This phenomenon is less visible on stroma as the class is
usually composed of large and dense areas. The evaluation of the F1 score also highlights
the difference between the two scanners. Note that during the training procedure, the
augmentation includes transformations that take into account gamma correction and
color distortion. However, such transformations are insufficient when the color space
gap is too large. A visualization of tissue segmentation applied to tumor and stroma for
scanner comparison is available in appendix section D.1.
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Table 5.3 – Ablation studies of C2R architecture on SemiCol challenge. Results are
averaged over 10 runs. We use an unpaired t-test with respect to the top result. We
report class-wise F1 score and challenge specific loss SemiCol-F1.

F1 score SemiCol-F1

Methods AD
V

LY
M

MU
C

NO
RM

MU
S

DE
B

TU
M

CS
TR

Al
l

Single level
C 36.1 42.7 43.2 25.9 48.4 24.3 47.1 28.2 34.3± 0.8

K 36.0 31.3 37.6 30.0 46.9 22.1 45.5 22.9 31.8± 0.7

CK 36.3 43.3 41.0 25.4 49.2 24.2 47.4 27.5 34.2± 0.7

Multilevel
ML-C 38.9 61.9 52.2 31.8 56.3 35.9 57.9 29.1 42.2± 1.7

ML-K 38.1 43.6 40.6 35.1 55.1 30.3 49.0 22.9 36.4± 2.2

ML-CK 41.8 58.1 50.1 35.6 57.8 36.0 58.6 29.5 42.6± 1.6

Visual consistency
ML-C-P 42.1 61.8 53.4 35.4 55.9 35.0 59.5 31.2 43.4± 1.7

ML-C-RL1 46.5 70.6 58.6 44.0 64.3 45.9 60.4 32.8 48.3± 1.8

ML-C-RH 45.0 58.3 54.0 37.6 60.3 35.9 57.8 30.6 43.7± 1.5

ML-C-PRL1 45.3 67.8 59.2 46.8 61.6 43.4 61.8 33.2 48.1± 1.9

ML-C-PRH 46.0 61.7 54.3 39.3 60.0 36.6 58.5 31.5 44.6± 0.9

Self-correlation
ML-C-S0.05 39.8 68.9 60.7 41.4 62.1 37.7 61.9 31.6 46.6± 1.7

ML-C-S0.20 40.9 71.4 54.5 31.4 61.3 37.1 61.9 30.4 45.1± 0.8

ML-C-SMVA 38.3 72.9 56.0 39.0 60.1 39.3 61.7 30.6 46.0± 1.3

Visual & Self-correlation
ML-C-P-S0.05 39.3 71.5 60.9 41.2 61.9 38.2 63.0 33.1 47.2± 2.0

ML-C-PRL1-S0.05 42.5 75.8 71.4 47.6 64.7 46.0 64.9 32.8 51.1± 2.9

ML-C-PRH-S0.05 40.5 73.9 61.7 45.5 62.8 41.9 62.4 31.9 48.3± 2.3

Abbreviations: Lcls (C), Lknn (K), Lphoto
cls (P), Lphoto

reg (R), Lseg (S), Multilevel (ML), l1-norm (L1),
histogram matching (H).

5.4.4 Ablation Study - SemiCol Challenge

To further validate our approach, we use data from the SemiCol online challenge1. The
challenge includes two tasks: classification of WSIs and segmentation of CRC tissue.

For the first experiment, we apply our model trained on K19 to the challenge data. As
the class definitions from the challenge differ from the K19 data, we assume complex
stroma (CSTR) is linked to STR and that advent (ADV) is correlated to ADI. In addition,
we discard blood (BLOOD) class as it is absent from the source data. The results are
reported in Table 5.3. We report F1 score for each class as well as SemiCol macro-F1.
The metric is defined as the standard macro-F1 but with twice the importance given to
TUM class.

Overall, the use of both visual consistency and self-correlation improves the performance
of the model. We observe a substantial benefit in using the multilevel aggregation

1https://www.semicol.org/ last accessed on 26/05/23.
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Table 5.4 – Evaluation of C2R architecture when trained on SemiCol challenge data.
Results are averaged over 10 run. We use an unpaired t-test with respect to the top
result. We report class-wise F1 score and challenge specific loss SemiCol-F1.

F1 score SemiCol-F1

Methods A
D

V

B
LO

O
D

LY
M

M
U

C

N
O

R
M

M
U

S

D
E

B

T
U

M

C
ST

R

A
ll

Trained on K19
ML-C 38.9 0.0 61.9 52.2 31.8 56.3 35.9 57.9 29.1 42.2± 1.7
ML-C-P 42.1 0.0 61.8 53.4 35.4 55.9 35.0 59.5 31.2 43.4± 1.7
ML-C-PRL1 45.3 0.0 67.8 59.2 46.8 61.6 43.4 61.8 33.2 48.1± 1.9
ML-C-PRH 46.0 0.0 61.7 54.3 39.3 60.0 36.6 58.5 31.5 44.6± 0.9
ML-C-S0.05 39.8 0.0 68.9 60.7 41.4 62.1 37.7 61.9 31.6 46.6± 1.7
ML-C-PRL1-S0.05 42.5 0.0 75.8 71.4 47.6 64.7 46.0 64.9 32.8 51.1± 2.9
ML-C-PRH-S0.05 40.5 0.0 73.9 61.7 45.5 62.8 41.9 62.4 31.9 48.3± 2.3

Trained on SemiCol
ML-C 72.7 59.3 62.5 62.8 55.6 80.1 62.5 59.5 38.0 61.3± 2.4
ML-C-P 73.8 59.2 61.4 61.8 56.8 80.8 62.2 63.5 43.9 62.7± 2.8
ML-C-PRL1 75.1 65.9 71.3 72.1 70.8 85.6 69.6 68.0 47.7 69.4± 2.0
ML-C-PRH 71.8 57.7 63.8 59.9 57.4 78.8 62.8 63.3 41.7 62.0± 3.1
ML-C-S0.05 78.9 73.3 80.4 77.5 82.2 86.8 76.5 71.0 47.6 74.5± 1.7
ML-C-PRL1-S0.05 79.5 74.2 82.6 78.4 83.5 87.4 78.9 73.5 51.6 76.3± 2.1
ML-C-PRH-S0.05 79.3 71.6 81.7 78.8 81.7 87.0 78.1 72.4 50.5 75.3± 2.4

Abbreviations: Lcls (C), Lknn (K), Lphoto
cls (P), Lphoto

reg (R), Lseg (S), Multilevel (ML), l1-norm (L1),
histogram matching (H).

compared to the single-level setting as in the in-house validation set. In addition, using
the l1-norm for visual consistency shows better results. The difference is particularly
notable for the detection of tumor and mucin tissue. A surprising outcome is the poor
performance of the self-correlation loss on the ADV term. Here, the model predicts
the adipose central areas as background tissue as they appear empty. This behavior is
expected as the self-correlation ensures that regions with high feature similarity share the
same label. Moreover, using l1 regularization for visual consistency significantly impacts
muscle detection, even outperforming other proposed loss compositions.

Adaptation to Challenge Data

To prove the robustness of our model to weakly-labeled data, we retrain our model using
the SemiCol challenge data. We create weak labels from the provided segmentation
annotation. For each annotated image, we apply majority voting across the whole region.
Here, we aim to mimic a lazy annotator that would give single labels to large areas
without caring about precise annotation. Such an approach allows the annotator to
efficiently label WSIs in a small amount of time. The training set contains 1, 759 tiles of
3000px × 3000px from 20 different WSI. Out of this set, we extracted 21, 783 annotated
tiles of size 500px × 500px. The classes are distributed as follow: 6, 971 background, 277
blood, 197 lymphocytes, 2, 604 normal mucosa, 420 mucin, 3, 111 muscle, 387 debris,
5, 549 advent, 1359 tumor and 889 complex stroma examples.
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The generated data are largely imbalanced with a ratio of NBACK/NLYM = 35 between the
highest and least populated classes. Imbalanced data are expected in clinical applications
as the tissue classes are scarcely equally distributed. When training the architecture, we
pay attention to increasing the sampling rate of the underrepresented classes to ensure
proper representation of all tissues. We present the results in Table 5.4, where we report
previous results (i.e. trained based on K19) and adapted results (i.e. trained with
SemiCol weakly-labeled data).

We observe a significant improvement in the prediction performance over all classes.
The detection of NORM, MUS, and DEB increases by over 20%. The base architecture
with the multilevel setting outperforms all models trained using K19 data. Moreover,
we observe that with fewer data, the main contribution comes from the self-correlation
loss. The term helps the model to create homogeneous class areas. The benefit of visual
consistency is only visible for the overall segmentation.

5.5 Conclusion

In this chapter, we present an approach for tissue segmentation, where we take advantage
of coarsely-labeled data. We first build a shallow model based on publicly available data.
Then, we use the model to process our in-house cohort and extract pseudo labels from
more than 600 WSIs. Next, we use pseudo labels as input for our C2R algorithm. As the
inputs are extracted from WSIs, we ensure that the data represent heterogeneous classes
and complex tissue interaction. Here, we prove we can benefit from weakly-labeled public
data to achieve fine-grained segmentation. More importantly, the proposed architecture
does not require additional annotation to be trained, thus saving experts precious time.

To validate the performance of our segmentation, we take advantage of consecutive
cuts stained with HE, IHC, and Trichrome to generate segmentation labels for tumor
and stroma classes automatically. By doing so, we again avoid the need for additional
annotations. Moreover, the acquisition of consecutive cuts is reasonably cheap, which
makes it an affordable option for clinical institutes. In addition, as the model is based on
a coarse to refined logic, designing new segmentation tasks would not demand extensive
manual annotation. The coarse labeling of WSIs would be enough to achieve precise
prediction. This claim is supported by our experiment on the SemiCol challenge data,
where only weakly-labeled areas are available.

With the proposed approach, we can predict fined-grained segmentation maps given
weakly-labeled data. However, solely predicting tissue outputs is pointless if not linked
to a practical end task. In the next chapter, we take advantage of our model to predict
clinically relevant metrics automatically.
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6 Building Clinically Relevant
Metrics

The previous chapters focused on the creation and optimization of various self-supervised
learning architectures. These frameworks can solve complicated tasks, learn from open
source weakly-labeled data, generate representations of complex tissue structure, account
for whole slide image (WSI) domain shift, or predict fine-grained segmentation maps.

However, the presented applications and experiments are limited to classifying and
segmenting well-known public datasets that lack clinical motivations. This chapter uses
the previously designed architecture to build clinical metrics and perform survival analysis
to connect our research to medical applications. Clinical metric assessment often relies
on pathologists’ visual assessment, which might come with a few limitations. The first
is that visual annotation tends to have low interobserver agreement (IOA), which can
lower the confidence of survival model scores. The second is that manual annotation of
clinical cohorts, including hundreds of patients and slides, is tedious. Finally, the third is
that the need for manual annotation makes the generalization of the method to other
cohorts tricky.

In this work, we propose using our tissue segmentation model to build a fully automated
pipeline to predict clinically relevant metrics on various cohorts without the need for
external annotation [3]. Using an automated approach, we aim to solve the issues on IOA,
manual annotations, and generalization. We first introduce multiple clinical metrics as
tumor to stroma ratio (TSR) and tumor border configuration (TBC) that are known to
have high predictive value in colorectal cancer (CRC) in section 6.1 and 6.2, respectively.
Then, we further explore other less well-established clinical features such as tumor to
mucin ratio (TMR) and tissue distribution in section 6.3. Next, we compare our results
with expert annotation on different clinical cohorts, compute correlation with other
reported clinical variables, and perform univariate and multivariate survival analysis in
section 6.4. Finally, we conclude our chapter in section 6.5. To further contribute to
open research, we make our code available on GitHub1.

1https://github.com/christianabbet/WSImetrics_CRC.
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Figure 6.1 – Identification of main tissue region for TSR estimation. (a) Detection of
tumor (ATUM) and stroma (ASTR) tissue from a WSI. (b) Tumor-associated stroma
(ATA-STR) in range δTA-STR from main tumor. (c) Region of interest AROI.

6.1 Tumor to Stroma Ratio

Tumor to stroma ratio has been shown to be an independent prognostic factor in CRC
[3, 131, 154, 133]. The metrics aim to quantify the interaction between tumor tissue
and the surrounding stromal content. Dense tumor areas are more likely to be linked
with less aggressive tumor progression and, thus, better survival prognosis. On the
contrary, regions with sparse tumor areas are more likely to have high tumor budding,
more invasive patterns, and, therefore, poor prognosis factors [141].

Recent works attempt to predict TSR in a (semi-)automated fashion. In [52], they rely
on pixel-wise annotation to detect tumor and stroma components. In [154], they use
superpixel segmentation and feature extraction to predict TSR in tissue microarray
(TMA) for breast cancer. The approach relies on fine-grained annotations by expert
pathologists, which are tedious to acquire. In [159], they generate a coarse segmentation
map based on patch labels to estimate TSR. Here, TMAs are assumed to be representative
of the main WSI and thus require manual annotations. In [106], they propose quantifying
the desmoplastic reaction at the tumor border. However, training the segmentation
architecture and identifying the tumor front depends, again, on human inputs.

In Figure 6.1, we highlight the main components needed to compute TSR. Given a
hematoxylin and eosin (HE) WSI, we assume a segmentation is generated where classes
tumor (TUM) and stroma (STR) are available. The tumor ATUM and stroma ASTR areas
are defined as the area that is segmented by the model as tumor and stroma, respectively.
In addition, we introduce the tumor-associated stroma (TA-STR) area ATA-STR that
represent the neighborhood of the tumor. It is estimated as the WSI stroma tissues that
are in the range δTA-STR of the main tumor [106].

Given the introduced components, we define TSR at the WSI level:

TSRWSI = |ATUM|
|ATUM ∪ASTR|

. (6.1)
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When computing TSR at the WSI level, we might include stroma content from normal
areas. This can bias the metric by over-representing STR and thus underestimating TSR.
This is even more problematic as low TSR has been proven to be correlated to worse
survival probability. To tackle this issue, we replace the estimation of the STR with
TA-STR such that the estimation of TSR directly depends on stroma content surrounding
the tumor:

TSRTA = |ATUM|
|ATUM ∪ATA-STR|

. (6.2)

Finally, we define a TSR estimation based on a region of interest (ROI). We assume we
are able to identify a localized region AROI that we believe is a good representation of
the overall tumor progression. Based on the area, we update the TSR estimation:

TSRROI = |ATUM ∩AROI|
|(ATUM ∪ASTR) ∩AROI|

. (6.3)

The definition and identification of the ROI is based on clinical recommendations and is
discussed in the next section.

6.1.1 Region of Interest Identification

Currently, TSR is not reported in routine diagnostics, as there are no binding guidelines.
However, there exists a scoring recommendation [141]. On slides from the most invasive
tumor part, the area with the highest amount of stroma and where tumor cells are
present in all “four directions” of the image field is selected using a 10× lens. Then, the
amount of tumor and stroma in the ROI are estimated and scored as 10% increments.
As a result, the estimation of TSR for a patient is given by a single ROI that matches
the previously mentioned criteria. To solve this task, we use a two-step procedure. First,
we explain how we identify potential region candidates (i.e. regions where tumor cells
are present in all “four directions”) and then detail how we select the final ROI from all
matching candidates.

We define the concept of “four directions” as the region where the tumor is homogeneously
distributed around the ROI central point. If we draw L equally spaced lines (inter-angle
of 2π/L) that radiate from the ROI center, each line should encounter a tumor area in a
close range. We formalize this approach by defining a detection area A ∈ [0, 1]W×H×C
that represents the result of a segmentation algorithm where W,H are the dimensions
of the area and C the number of detected classes. We denote as ASTR,ATUM ∈
[0, 1]W×H the channels of A that contain the stroma and tumor class detection probability,
respectively. To detect potential ROI candidates with tumor presence, we define a filter
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Figure 6.2 – Estimation of valid tumor regions in all directions. (a) Input WSI with
10× lens reference. (b) Tumor segmentation map. (c) Detection sub-filter Θ with
hyperparameters L, a, b, c. (d) Post filtering and localization of valid ROI center where
the tumor is present in all directions.

Θ =
(
Θ1 . . . ΘL

)
= (θjkl)1≤j,k≤N ,1<≤l≤L. The filter comprises L sub-filters of shape

N ×N that form circle sections. The size N is set such that the filter size matches with
the 10× lens dimensions. The filter is defined as:

θjkl(a, b, c) = Π
(1

2 + r −N/2
a

)
Π
(
φ

b

)
, (6.4)

with z =
(
j − N

2

)
+ i

(
k − N

2

)
, r = |z| , and φ = arg

(
z ei(

2πl
L

+c)
)
,

where i is the imaginary component, Π the rectangular function, j, k, l the filter indexes,
and arg the complex number argument (i.e. angle with respect to positive real axis). An
overview of the created filter is given in Figure 6.2. The hyperparameters a, b, and c
control the filter width, depth, and offset angle, respectively. Each sub-filter is separated
by an angle of 2π

L . We apply sub-filters on the detected tumor area and use a threshold
δROI to check for ROI centers candidates:

ALOC = max
((

L∑
l=1

1
|Θl|

(ATUM ∗Θl) ≥ δROI

)
− L+ 1, 0

)
, (6.5)

where the max function is applied to all entries of the matrix individually. We limit
the convolution operator to the dimensions of ATUM. With the presented formula, an
element of ALOC is considered as valid ROI center location if the convolution between
the tumor area and the sub-filters exceeds the threshold value δROI for all L channels.
Increasing the value of L generates more sub-filters and thus further enforces the presence
of the tumor around the patch center.
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6.1. Tumor to Stroma Ratio

Figure 6.3 – Localization of high stroma concentration for TSR estimation. (a) Input
WSI with high stroma content. (b) Segmented stroma area. (c) Average filter as a
circular disk. (d) Local stroma density and identification of max value across WSI.

With ALOC, we get a list of ROI potential locations. Out of localized candidates, we
want to select the area with the highest stroma content to compute TSR. To do so, we
use the same logic as before and build a second filter that computes the local average
stroma content across the map. The filter Φ = (φjk)1≤j,k≤N is defined as:

φjk = Π
(
r

N
− 1

2

)
and r =

√(
j − N

2

)2
+
(
k − N

2

)2
. (6.6)

The filter represents a disk of diameter N . The procedure is depicted in Figure 6.3.
When convoluted with an area, it averages the local predictions. The filter is applied to
the stroma detection and masked using the previously computed ROI valid locations.
Out of the valid locations, the selected region AROI = (aj,k)1≤j≤W,1≤k≤H is given as the
circular area with radius N

2 centered in the point with highest stroma content:

aj,k = 1dist((j,k),(l,m))<N , (6.7)

and arg max
l∈{1,...W},m∈{1,...H}

((ASTR ∗ Φ) ∩ALOC)l,m ,

where dist(·, ·) computes the euclidean distance between two points coordinates and l,m
are the coordinated of the ROI center. The TSR is then estimated using Equation 6.3.

TSRROI = |ATUM ∩AROI|
|(ATUM ∪ASTR) ∩AROI|

. (6.3 recall)

In practice, we apply Gaussian blurring on top of the detected stroma density to
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merge potential local maxima and get a smoothed ROI localization. Moreover, we
sometimes have access to a handful of WSIs per patient. When looking at the scoring
recommendations, we should select the case with the highest stroma content, hence the
lowest computed TSR across slides. However, it assumes we can access all patients’
slides, which is scarcely true. If only a few slides are available per patient, we recommend
processing TSR for individual WSI and then averaging the values across slides.

With the presented approach, the estimation of the TSR is based on the evaluation
of a single ROI. As a result, the algorithm might be sensitive to local maximums and
minimums. Moreover, as the method explicitly looks for the region with high stormal
content, it might oversample regions with low TSR and bias survival predictions. To
reduce the impact of outliers, we propose to investigate the use of top-K ROI detections
to estimate the TSR at the WSI level. To do so, we start by predicting the first ROI as
before. Then, we remove the former ROI detection from the prediction map and compute
the second ROI. The procedure is repeated until we get all K estimates. The top K
predictions are then averaged to produce the final estimate:

TSRROI = 1
K

K∑
i=1

TSRROIi , (6.8)

where TSRROIi is the metric estimation at step i.

6.2 Tumor Border Configuration

The TBC is defined as the configuration of the tumor invasive front [70]. The margin can
be classified as either expanding/pushing (i.e. “tumor reasonably well circumscribed”)
or infiltrating (i.e. “tumor invading in a diffuse manner with widespread penetration
of normal tissues”). An illustration of the TBC is presented in Figure 6.4. The TBC is
evaluated at the WSI level. A WSI that shows a fully infiltrating tumor pattern is given
a score of 0. On the contrary, a WSI with a solely pushing pattern is scored with 1. All
intermediary configurations lie in the range TBC ∈ [0, 1].

Multiple works focus on the estimation and use of TBC in CRC [84, 168, 117]. In [168],
the inclusion of TBC in survival analysis shows better stratification of stage II patients.
In [117], the work is extended to stage III patients to show similar results. Both studies
rely on manually annotated images from single cohorts.

In this section, we propose a fully automated way to extract TBC from WSI predictions.
To do so, we first explain how we find the delimitation between normal and tumor tissue
to detect tumor border (TB) in subsection 6.2.1. As a second step, we present three
different approaches to estimate TBC using normal vectors (subsection 6.2.2), tumor
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6.2. Tumor Border Configuration

Figure 6.4 – Visualization of tumor border configuration (TBC). (a) Expanding border:
pushing tissue. (b) Infiltrating: invasion of normal tissue in a diffuse manner. Figure
adapted from [70].

ratio (subsection 6.2.3), and tumor interaction (subsection 6.2.4) based on TB.

6.2.1 Tumor Border

The definition of the tumor area slightly differs from the TSR section. For TSR estimation,
we use raw tumor detection from segmentation models as the main tumor area. However,
when estimating TB, we must consider the attached necrotic and mucinous tissues to
identify all tumor-related components. In this section, we define the tumor area as the
combination of the tumor-detected tissue and its surrounding debris and mucin. We use
a region-growing approach to expand the tumor area to neighboring tissues. For more
information about the creation of the tumor area, please refer to the additional content
in section E.1.

To perform the identification of the TB, we assume the tumor progresses linearly from
the inner colon (normal mucosa) to the muscle area to reach the outer fat tissue (adipose)
finally. As a result, we can look for the decision boundary that separates the tumor tissue
(i.e. tumor, debris, and mucin) from the normal tissues (i.e. normal mucosa, muscle,
and adipose). For notation simplicity, we define as p ∈ A a point that belongs to the
prediction map A (i.e. the coordinates of the point are part of the area). We define the
distance of a point p to the nearest normal and tumor tissue:

dTUM(p) = min
q∈ATUM

‖p− q‖2 and dNORM(p) = min
q∈ANORM

‖p− q‖2, (6.9)

where ATUM and ANORM are defined as tumor and normal tissue areas, respectively. We
then define the decision boundary as the function:

∆DB(p) = dTUM(p)− dNORM(p)
2(dTUM(p) + dNORM(p)) . (6.10)
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Figure 6.5 – Estimation of TB from HE image. (a) Input image from HE scan. (b)
Identification of the normal areas (norma mucosa/muscle/adipose) and tumor (tumor/de-
bris/mucin). We compute the distance to the nearest tissue and show decision boundaries
function ∆DB based on different thresholds. (c) Regression of decision boundary toward
tumor tissue and smoothing to obtain TB estimation.

The function is designed such that:

lim
dNORM→0

∆DB = 1
2 and lim

dTUM→0
∆DB = −1

2 . (6.11)

The decision boundary is contained in the interval [−1
2 ,

1
2 ] and equal to 0 when the

distance to both region is equal. Values of −1
2 and 1

2 mean direct contact with tumor
and normal tissue, respectively. The estimation of the TB is visualized in Figure 6.5.
To estimate the TB, we first follow the contour of the decision function given a fixed
value. The selection of the threshold is performed empirically such that it creates a
coherent contour that outlines the shape of the tumor. When looking at the example in
Figure 6.5b, we observe a gap between the boundary and the main tumor blob. Ideally,
the estimated TB should tightly follow the outline of the tumor.

To reduce the gap, we iteratively regress the decision line toward the tumor area. For
each point of the border, we move it to the nearest tumor point. The process is repeated
multiple times until convergence. The resulting line now directly fits the main tumor
outline. Finally, we use spline [45] fitting to smooth the representation and get our TB
estimation. When fitting the spline functions, we uniformly sample the tumor border to
ensure fair representation of each border point.

For the rest of the chapter, we define the set of N points {rt ∈ A}Nt=1 that represents
our estimated TB points. We assume the points are ordered along the TB such that the
contour normals point outward from the tumor area.
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Figure 6.6 – Computation of TBC based on local border normals. We use the ideal tumor
front as a pushing reference and compare it with the raw tumor outline. (a) Estimated
ideally pushing tumor border points rt with normals n(rt). (b) Raw tumor outline points
pl with normals n(pl). (c) We perform the dot product between elements of the set Sa
and rt to estimate local TBC.

6.2.2 Normal Product

This section presents our first approach to compute TBC. To do so, we assume the TB is
a good estimation of an ideally pushing border as it harmoniously follows the tumor’s
outline. As a result, any shape that differs from that reference line would be considered
infiltrating. An illustration of the procedure is depicted in Figure 6.6, where we can see
the set of point rt that represents the TB. In addition, we introduce the set of points
{ql ∈ A}Ml=1 that represent the “raw” border of the tumor map ATUM.

So far, we have two sets of points that do not align and represent different borders. We
aim to measure how much the raw points ql differ from the ideally pushing line formed
by points rt. To do so, we first compute the normal vector of points rt:

n(rt) = 1
‖rt+1 − rt−1‖2

(
(ry)t−1 − (ry)t+1

(rx)t+1 − (rx)t−1

)
, (6.12)

where (rx)t and (ry)t are the x and y coordinate of point rt. As previously mentioned,
we assume the points are ordered along the border and that their normals always head
outward from the tumor area. We do the same with the points from the raw borders and
get n(ql). Next, we create the neighborhood of TB points:

Sa(rt) = {l | ‖ql − rt‖2≤ ‖ql − rk‖2 ∀k ∈ {1, . . . , N}} l ∈ {1, . . . ,M}. (6.13)

Here, the set Sa(rt) contains the indexes of the raw tumor points that have rt as closest
element. The local TBC estimation as index t is given as the dot product between the
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reference point and its nearest neighbors normals as:

(TBCNP)t = 1
|Sa(rt)|

∑
l∈Sa(rt)

〈n(rt) , n(ql)〉, (6.14)

where 〈· , ·〉 is the dot product between the two vectors. Finally, the local predictions
are thresholded and averaged along the border to get the estimation as the WSI level:

TBCNP = 1
N

N∑
t=1

1(TBCNP)t≥δNP . (6.15)

The hyperparameter δNP ∈ [−1, 1] act as a confidence threshold. The larger δNP is,
the more restrictive the metric is to consider the local estimation as a pushing border.
For each point along the TB, we get a local estimation of either pushing (≥ δNP) or
infiltrating (< δNP). Note that the local prediction are in range (TBCNP)t ∈ [−1, 1].
However, in practice, the dot products between the local components rarely sum up to a
result lower than 0 as this would mean that the angle between the ideally pushing border
and the raw estimate is, on average, greater than π

2 rad.

6.2.3 Tumor Ratio

For the second approach, we rely on local tumor tissue distribution. When moving along
the TB, we can locally estimate the ratio of tumor tissue with respect to other tissues. If
the ratio is high, we assume the local presence of tumor tissue is high, and then the TBC
is more likely to be pushing. On the contrary, if we have a low presence of tumor tissue,
we are more likely to have an infiltrating pattern. The quantity of tumor is assessed
on the “inner” (i.e. toward the main tumor) side of the TB. The reason is that TB
represents the delimitation of the tumor area and, therefore, properly surrounds it. A
graphical overview for TBC based on local tumor ratio is given in Figure 6.7a-c. To
know whether a point p ∈ A is located on the so-called “inner” side of the margin, we
use the border normals:

Θ(p) = 〈(p− rt) , n(rt)〉 arg min
t∈{1,...,N}

‖p− rt‖2. (6.16)

Here, if Θ(p) < 0, the point is located inside the tumor area. On the contrary, if
Θ(p) > 0, the point lies outside of it. This estimation of elements’ sidedness is only valid
if the points of the TB are relatively close to each other. We can define the local inner
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Figure 6.7 – Computation of TBC based on local tumor ratio and tissue interaction. (a)
Point rt on estimated pushing border and tumor area. (b) Mask AIN(rt) with radius
δIN. The mask is limited to the inner tumor area. (c) Masking of the tumor area. TBC
is given as the ratio of tumor tissue within the mask. (d) TBC is given as the local
interaction of tumor Sb with the surrounding tissues Sc.

neighborhood AIN(rt) = (ai,j(rt))1≤i≤W ,1≤j≤H as:

ai,j(rt) = 1(Θ(p)≤0 , ‖p−rt‖2≤δIN) p =
(
i j

)>
. (6.17)

The value δIN acts as a threshold that selects the influence area of the metric. As we
increase the value of δIN, we consider tissue areas that are further away from the TB.
The TBC is then assessed for every point t along the border as the tumor ratio within
the inner mask.

(TBCRATIO)t = |AIN(rt) ∩ATUM|
|AIN(rt)| . (6.18)

The local predictions are then thresholded and averaged along the TB to get the TBC at
the WSI level:

TBCRATIO = 1
N

N∑
t=1

1(TBCRATIO)t≥δRATIO , (6.19)

where δRATIO is a threshold that fixes the ratio of tumor needed to consider the local
area as pushing. The metric lies in the interval [0, 1] where 0 and 1 mean infiltrating and
pushing patterns, respectively.
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6.2.4 Tumor Interaction

We introduce a last estimation of the TBC based on tumor interaction with neighbor
tissues. One of the limitations of the previous approach is that we assume lower tumor
density is correlated with an infiltrating pattern. However, a simple ratio cannot represent
a tissue structure as it is solely based on total areas.

We propose to compute local tissue interaction [4]. A graphical representation is available
in Figure 6.7a-b,d. Here, we start from the local masking AIN(rt) as for the TBC based
on tumor ratio. Given a tumor point that is part of the local mask, we can compute the
number of its neighbors that are also part of the tumor area. As a result, if a tumor
point is surrounded by tumor tissue, it is more likely to be part of a dense area (pushing).
On the contrary, if a tumor point is isolated, it is more likely to be part of a sparse area
(infiltrating). More formally, let {pl ∈ A}Ml=1 be the set of points that are part of the
prediction map. We define the subset of points’ index that belong to both the local mask
and the tumor area:

Sb(rt) = {l | pl ∈ AIN(rt) ∩ATUM} l ∈ {1, . . . ,M}. (6.20)

In addition, we define the local neighborhood of a point:

Sc(pl) = {k | ‖pk − pl‖2 ≤ δc} k ∈ {1, . . . ,M}, (6.21)

where the value δc is a hyperparameter that limits the number of neighbors based on
the distance to the source point. To assess the interaction between the tumor and
the surrounding tissue, we go through the elements of Sc and check whether they also
belong to the tumor area. As a result, for each point within the tumor mask area (i.e.
AIN(rt) ∩ATUM) we get a local representation of the tumor compactness:

(TBCINTER)t = 1
|Sb(rt)|

∑
l∈Sb(rt)

1
|Sc(pl)|

∑
k∈Sc(pl)

1(pk∈ATUM). (6.22)

The value is averaged along the border to get the TBC estimation at the WSI level:

TBCINTER = 1
N

N∑
t=1

1(TBCINTER)t≥δINTER , (6.23)

where δINTER is the metric specific threshold. The local metric values lie in the interval
[0, 1] where 0 and 1 mean infiltrating and pushing patterns, respectively. A representation

134



6.3. Extra Definitions

of the introduced metrics’ behavior on toy examples is available in the supplementary
section E.5.

6.3 Extra Definitions

In this section, we tackle less well-established metrics. We first introduce the definition
of TMR in subsection 6.3.1 and then move to tissue representation around the tumor
border in subsection 6.3.2.

6.3.1 Tumor to Mucin Ratio

TMR is indirectly reported in routine diagnostic to identify mucinous adenocarcinoma in
CRC. If the mucinous area represents more than 50% of the overall tumor area, the case
is considered mucinous. Recent work uses a machine learning-based approach to quantify
the presence of mucin in CRC [107]. Unfortunately, the method still needs manual input
from the pathologist to locate the final area.

We propose using our segmentation method to compute TMR fully automatedly. Given a
WSI, we assume a segmentation map is generated where classes TUM and mucin (MUC)
are available. The tumor ATUM and mucin AMUC areas are defined as the areas that
are segmented by the model as tumor and mucin, respectively. Given the introduced
components, we define TMR at the WSI level as:

TMR = |ATUM|
|ATUM ∪AMUC|

. (6.24)

Note that AMUC also includes mucin from normal tissue crypts. However, we assume
the amount is negligible at the WSI level.

6.3.2 Stroma Tissue Distribution

Another interesting feature is the distribution of tissue classes along the tumor border. It
is defined as the presence of a specific tissue class in the TB surroundings. For example,
when looking at CRC cases where the tumor reached the muscle layer (i.e. pT3), we
can investigate tissue distribution at the interface. Sometimes, we observe close contact
between the two tissues where the tumor directly penetrates the muscle area. In other
cases, we see a broad band of TA-STR that acts as a boundary between them. As
TA-STR has been proven to be an interesting prognostic factor [109], we can wonder
how the presence or absence of TA-STR at the interface influences survival predictions.

The assessment of tissue distribution cannot be visually done. Fortunately, based on our
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estimation of the TB, we can efficiently compute tissue distribution across large cohorts.
To do so, we define the outer region AOUT(rt) = (ai,j(rt))1≤i≤W ,1≤j≤H centered in rt of
the TB as:

ai,j(rt) = 1(Θ(p)>0 , ‖p−rt‖2≤δOUT) p =
(
i j

)>
, (6.25)

The mask represents the region of the tumor that is progressing toward normal tissue.
For each location, we check for the presence of STR within the range of the TB. As the
distance to the border is small, we can assume the TA-STR and STR classes overlap in
terms of definition. A threshold is then applied to the local metrics, and the results are
averaged along the TB as:

TDSTR = 1
N

N∑
t=1

1(TDSTR)t≥δTD and (TDSTR)t = |AOUT(rt) ∩ASTR|
|AOUT(rt)| . (6.26)

The metric gives an overall value of the presence of stroma at the border. A value of 1
indicates a systematic presence of stroma along the border. On the contrary, 0 means no
stroma is present and that the tumor directly grows through the normal tissues. This
work focuses on the TA-STR component. However, the metric can be applied to different
tissue classes such as adipose (e.g. check for the presence of fat tissue), lymphocytes (e.g.
check for immune response/inflammation), or debris (e.g. presence of necrotic tissue).

6.4 Experiments

In this section, we evaluate the performance of the metrics on multiple cohorts. First, we
define the experimental setup in subsection 6.4.1. We then validate our result on TSR
along with manual annotations in subsection 6.4.2. Next, we compare the three automated
TBC prediction approaches to expert annotations in subsection 6.4.3. Afterward, we
analyze the correlation of TMR and tissue distribution with other clinical parameters.
Finally, we validate the metrics estimation by performing univariate and multivariate
survival analyses on multiple cohorts in subsection 6.4.5-6.4.6.

6.4.1 Experimental Settings

For the experiment, we use the coarse to refined (C2R) detection model presented in
chapter 5 to generate fine-grained tissue segmentation maps. The selected architecture
implements multi-level feature extraction, visual consistency through l1 regularization,
and self-correlation map prediction.
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The interaction distance is set to δTA-STR = 1000µm thus including more context for
metric estimations [106]. We use a 50% cutoff to split patients into two groups based on
the TSR measure as high (TSR ≥ 50%) and low (TSR < 50%).

The identification of TSR ROI is performed using L = 6 sub-filters to ensure the presence
of surrounding tumor tissue. The size of the filter is fixed based on the size of the 10×
lens, which corresponds to a circle of 2500µm in diameter. Based on the resolution of
the segmentation algorithm (i.e. ' 15µm/px), we end up with a size of N = 161 for the
filters. Moreover, to design the detection filter Θ, we use parameters a = π

8 , b = 0.1N ,
c = {0, π9 ,

2π
9 }. We use multiple offset values c to improve the detection of ROIs and cover

all possible orientations. We compute the filtering with each value of c and aggregate
the results as the union of all detected regions. The value for the tumor threshold in the
ROI is empirically fixed to δROI = 0.25. For the average filter Φ, we use the same filter
size N as for the ROI candidates. We use K = 3 to compute the ROI estimations at the
WSI level.

The detection of the TB is done by fixing the value of the decision function to ∆DB = −0.2.
It ensures that the decision line lies closer to the main tumor area. The selection of
metric thresholds for TBC (i.e. δNP, δRATIO, and δINTER) are discussed in the next
section. For the sake of simplicity, the distances of the inner and outer regions are fixed
to the same value as the distance to TA-STR as δTA-STR = δIN = δOUT = δTD = 1000µm.
Regarding local interaction, we empirically set the local neighborhood to δc = 150µm.
The idea is to keep δc � δTA-STR to get a micro versus macro representation of the area.

Note that the convolution of large filters over WSI segmentation maps can be a computa-
tionally expansive task. If the segmented area is too large, we recommend downsampling
the predictions map to make a first coarse estimation of the ROIs. The detection can
then be refined by applying filtering at full resolution on coarsely detected areas. Another
solution is to perform chunk-wise analysis to reduce computational complexity.

The result are validated on five CRC patients cohorts (PA, PB, PC , PD, and PE). We
have access to overall and/or disease-free survival for each cohort patient. Patients
who underwent preoperative treatment are excluded from the data. Please refer to
subsection 2.6.2 for extended information about available patient data.

6.4.2 Automated TSR Evaluation

To validate the performance of our TSR estimation, we rely on 10 annotated WSIs from
the University of Southern Denmark (SDU). For each slide, we have access to the ROI
location selected by the expert as well as its label: high or low. We compute the TSR
metrics (i.e. TSRWSI, TSRTA, TSRROI1, TSRROI2, TSRROI3, and TSRROI ) on all slides.
The value TSRANNO is given as the TSR evaluated given the ROI selected by the expert.
The distributions of the metrics are presented in Figure 6.8. We display the Pearson
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Figure 6.8 – Comparison of TSR prediction based on different approaches. We use a 50%
cutoff to split between TSR high (blue) and low (red). We report the Pearson correlation
(gray) between automated predictions and the annotated area. (a) Estimation at the
WSI level with and without TA-STR. (b) Detection of the top K = 3 ROI and averaged
results. (c) TSR estimated on manually annotated ROIs.

correlation between the annotated area and the automated evaluations.

When looking at the distribution of the annotated area, we observe a distinct split
between the high and low groups. The fact that the estimation of TSR within the
selected area matches the ground truth group (i.e. perfect split at 50%) is an indicator
that the segmentation model is able to properly assess TUM and STR areas.

For the WSI level metrics, we can see that the distribution is shifted toward high TSR.
This is explained by the fact that the diagnostic slides tend to include large tumor areas.
When limiting the computation of TSR to TA-STR, we get a better split between the
two groups. By doing so, we reduce the impact of distant normal stroma. As a result, we
get a better split between the two groups. However, the influence of the tumor area is
increased, and the overall TSR estimation is even more biased toward high predictions.

Regarding the estimation of the ROI, we observe a slowly shifting mean as we increase the
number of top K ROIs. It is explained by the fact that the detection of ROIs is based on
the presence of dense stroma regions. The areas with the highest stroma concentration are
selected first (i.e. first ROI). As a result, the remaining regions have, by definition, less
stroma and hence higher TSR. The averaging of top K areas produces TSR estimations
that are roughly centered around the decision boundary (i.e. 50%). However, due to the
small size of the validation cohort, we must be careful about generalizing the results to
larger cohorts. A visualization of the generated output ROIs on a WSI is available in the
supplementary material in section E.2.

The detection of TSR is applied to all cohorts PA−E . When processing new WSIs, the
detection of TSR may face challenges. For example, the approach can fail to identify a
ROI that meets the “four directions” for tumor detection. Moreover, it is not always
possible to detect K ROIs depending on the size of the WSI and tumor area. As a result,
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Table 6.1 – Error rate of the automated TSR detection approaches for each cohort.
We display the total number of slides with successful detection and the error rate as a
percentage.

Metric (ER %) PA PB PC PD PE PA−E
Slides 739 (0.0) 174 (0.0) 556 (0.0) 469 (0.0) 118 (0.0) 2055 (0.0)
Slide-level

TSRWSI 739 (0.0) 174 (0.0) 556 (0.0) 469 (0.0) 117 (0.8) 2055 (0.0)
TSRTA 739 (0.0) 174 (0.0) 506 (0.0) 440 (0.0) 117 (0.8) 2055 (0.0)

ROI level
TSRROI1 725 (1.9) 174 (0.0) 556 (9.0) 469 (6.2) 116 (1.7) 1961 (4.6)
TSRROI2 717 (3.0) 171 (1.7) 487 (12.4) 409 (12.8) 116 (1.7) 1900 (7.6)
TSRROI3 704 (4.7) 167 (4.0) 460 (17.3) 373 (20.5) 115 (2.5) 1819 (11.5)
TSRROI 725 (1.9) 174 (0.0) 556 (9.0) 469 (6.2) 116 (1.7) 1961 (4.6)

Abbreviations: Error rate as a percentage (ER %).

Figure 6.9 – Distribution and evolution of TSR estimation for cohort PA−E . (a) Distri-
butions of TSR values based on ROI metrics. (b) Transition of TSR estimation between
low and high group as we include additional ROIs.

an essential feature of our tool is the error rate (ER). It quantifies how likely our model
is to fail TSR estimation. In Table 6.1, we display the ER of the different TSR detection
approaches on WSIs. We get a perfect detection rate when computing TSR detection at
the WSI level. Regarding the ROI-based methods, the ER tends to increase with the
number of regions. For PA, PB, and PE we manage to extract K = 3 ROIs in a large
majority of cases. However for PC , and PD the ER goes up to 20.3% for the third ROI.
It mainly comes from the fact that the WSI images are small, prohibiting tumor areas
from being extracted using a 2.5mm lens. Part of the detection errors also come from
high-grade examples where the model tends to classify tumor tissue as STR. These data
limitations must be considered when performing TSR estimation.

We further explore the behavior of TSR by looking at the distribution and transition
of the metrics on larger cohorts in Figure 6.9. We first display the reparation of TSR
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Figure 6.10 – Correlation of TSRROI with clinical feature other multiple cohorts (PA to
PE). We report the correlation with respect to the (a) depth of invasion and (b) number
of positive lymph nodes. Statistical significance is tested using the Mann–Whitney U
test.

across ROIs. We observe that the first detected ROI tend to have lower TSR values. As
we include more ROI, we increase the average detected TSR. It confirms our previous
results with manually labeled areas. The second plot shows the transition of the TSR
value when applying a 50% cutoff. For each patient, we compute the change in TSR
group (low and high) as we include more ROIs. For example, a patient without state
transition (low-to-high or high-to-low) has a constant line. On the contrary, a patient
with group variations will show state transitions. The results highlight the unbalanced
aspect of state transitions. We observe few changes from high-to-low TSR compared to
low-to-high. Roughly half of the patients whose first region is labeled as TSR low have
their third ROI labeled as high. We assume that taking the average between the three
regions might dampen this effect.

In Figure 6.10, we present the correlation between ROI-averaged TSR estimates (i.e.
TSRROI) and clinical feature. The correlation is assessed on all cohorts, and statistical
significance is tested using the Mann–Whitney U test as we expect non-Gaussian distri-
butions. Out of all the clinical features available, we display the depth of invasion (pT)
and the positive lymph nodes (pN). For additional results on other TSR estimates and
clinical features, please refer to supplementary material in section E.4.

We observe a strong correlation between the TSR estimation and the clinical features. The
depth of invasion is inversely proportional to the TSR estimation. As the tumor progresses
through the tissue, it tends to have a higher TA-STR density. More interestingly, the
positive lymph node assessment is correlated with the TSR. A high pN value indicates
lower TSR estimation. The results are expected as both pT and pN are used to grade
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Figure 6.11 – Comparison of manual and automated TB. (a) Close view of the WSI
tumor border. (b) Expert annotation. (c) TB estimation (red: dilated). (d) Distribution
of Dice scores and average distance to annotation on PC . We report the median across
slides.

tumor stage, and high cancer stages are linked to more invasive and aggressive patterns.

6.4.3 Automated TBC Evaluation

Before validating the performance of the TBC, we need to assess the quality of the TB
estimation. We take advantage of 532 manually labeled TB by expert pathologists on
PC cohort. The borders are drawn using a digital brush marker. An example of an
annotated area with estimated TB is displayed in Figure 6.11. We select two measures
to quantify the closeness of our prediction to the annotations. The first is the spatial
consistency (DSC) score between the predicted line and the labeled area. The second
metric measures the average minimal distance between the two predictions. During the
evaluation process, the predicted TB is dilated to reach the thickness of the annotation
to allow a fair estimation.

Overall, we get 55.1% and 1, 178µm for DSC and average distance, respectively. When
looking at the distributions of DSC scores, we can observe that most predictions achieve a
high score. After manually reviewing the cases, we observe four main causes of erroneous
TB detection by our model. The first reason is the annotations’ lack of consistency in
including or excluding the TB interface between normal mucosa and tumor. The second
reason is the presence of large muscle or adipose blobs within the main tumor area. It is
difficult for our approach to distinguish between a healthy tissue encapsulated within
the main tumor and a proper TB linked to tumor progression. Such cases are hard to
visually assess as the delimitation of the TB depends on the 3D tissue structure, which
is lost after cutting. Thirdly, our model fails to capture small tumor buds in highly
inflamed areas. As a result, we tend to prioritize regions with dense tumor blobs when
estimating TB. Finally, we observed that distant mucin blobs (i.e. disconnected from
the main tumor) are not included in the main tumor area by our model. The reason is
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Table 6.2 – Number TBC annotations available across cohorts. We rely on two different
groups of annotations: TBC-Patient (assessed on multiple slides and averaged), TBC-Slide
(assessed on a single slide).

Characteristics PA (n = 383) PB (n = 174) PD (n = 463) PA,B,D (n = 1020)

TBC-Patient(%)
Pushing 149 (54.6%) 89 (53.0%) - 238 (54.0%)
Infiltrating 124 (45.4%) 79 (47.0%) - 203 (46.0%)

TBC-Slide(%)
Pushing - 62 (37.1%) 96 (35.7%) 158 (36.2%)
Infiltrating - 105 (62.9%) 173 (64.3%) 278 (63.8%)

Table 6.3 – Detection performance of the automated TBC approaches for each cohort. We
display the total number of slides with successful detection, the error rate as a percentage,
and the detected tissue layers.

Metric (ER %) PA PB PC PD PE PA−E
Slides 739 (0.0) 174 (0.0) 556 (0.0) 469 (0.0) 118 (0.0) 2055 (0.0)
Tissue

Adipose 710 (3.9) 163 (6.3) 538 (3.2) 208 (55.7) 114 (3.4) 1733 (15.7)
Muscle 713 (3.5) 172 (1.1) 556 (0.0) 252 (46.3) 112 (5.1) 1804 (12.2)
Adi. | Mus. 736 (0.4) 174 (0.0) 556 (0.0) 267 (43.1) 117 (0.8) 1849 (10.0)
Tumor 738 (0.1) 174 (0.0) 547 (1.6) 467 (0.4) 117 (0.8) 2043 (0.6)

TBC (any) 736 (0.4) 174 (0.0) 542 (2.5) 248 (47.1) 117 (0.8) 1817 (11.6)

Abbreviations: Error rate as a percentage (ER %).

that our approach uses a region-growing pattern to estimate the main tumor blob.

To assess the quality of the TBC estimation, we rely on annotations by expert pathologists.
The TBC is scored using 10% increments from infiltrating (0%) to pushing (100%). When
used for survival prediction or correlation, the TBC is usually stratified based on a 50%
threshold as pushing (≥ 50%) and infiltrating (< 50%). The number of available
annotations is reported in Table 6.2. We distinguish two groups of annotation as TBC-
Patient and TBC-Slide. In the first case, the TBC is given at the patient level. It is
computed on multiple slides and then averaged. In this setting, we cannot access the
slides used to evaluate the metric. Moreover, the annotations are generated by multiple
experts. In the second case, all cases are reviewed by the same pathologist. The TBC
is assessed on a single diagnostic slide. Here, we have a one-to-one slide comparison
between annotated and automated TBC.

The automatic detection of TBC is applied to cohorts PA−E . We compute the ER for
the TBC estimation as well as for the identification of the tissue layers used to compute
TBC (i.e. muscle, adipose, and tumor). The results are shown in Table 6.3. We observe
that in a large majority of cases, the model is able to identify either muscle or adipose
tissue and thus estimate the tumor growing direction (ER = 10.0%). The exception is
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Figure 6.12 – Evolution of interobserver agreement (IOA) between TBC estimations and
expert’s annotations as a function of the metric threshold. We display each cohort’s
optimal threshold and IOA. The last plot shows the absolute difference on TBC estimation
between annotators PB-Patient and PB-Slide, as well as the resulting IOA on top of the
figure.

PD, where we identify a significant drop in performance. In almost half of the WSIs, the
model fails to detect muscle or adipose tissue and, therefore, the orientation of the tumor.
This is mainly because WSIs only include the tumor area and hence lack contextual
information. Regarding the detection of TBC, we achieve a ER of 11.6% which goes
down to 1.1% if PD is omitted. Note that in some cases, the detected tumor border is
not large enough to compute relevant statistics and is, therefore, discarded.

In Figure 6.12, we assess the performance of the automated TBC estimation with respect
to the expert annotations. We report Cohen’s kappa score, also known as IOA. The
metric measures the agreement between two annotators, where 0 and 1 mean no and full
agreement, respectively. For the annotation, we use 50% as a split between TBC high
and low. For the automated approaches, we swipe the thresholds (i.e. δNP, δINTER, and
δRATIO). In the far right plot, we display the IOA within the PB cohort where we can
compare TBC annotation between TBC-Patient and TBC-Slide.

We observe a large variance in terms of IOA evolution across the different metrics. Each
metric shows a different operating range. We get the highest results in the intervals
[0.45, 0.65], [0.8, 0.925], [0.675, 0.875] for δNP, δINTER, and δRATIO, respectively. For the
δNP and δRATIO, we perceive a Gaussian-like distribution of the IOA for all cohorts. This
observation is not valid for the distributions of the δINTER metric where the distributions
appear skewed. We have to be careful while selecting the final operating threshold.
Choosing a threshold that is too high might result in a bad generalization of the metrics
to other cohorts, as it would be too selective. Here, a reasonable approach would be to
consider thresholds that maximize the average correlation as δNP ' 0.45, δINTER ' 0.8,
δRATIO ' 0.675. The best IOA is achieve on PB-Slide using TBCRATIO with a score of
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Figure 6.13 – Correlation of automated TBC estimation (δNP, δINTER, δRATIO) with
clinical feature on multiple cohorts (PA to PE). We report correlation with (a) depth of
invasion and (b) number of positive lymph nodes. Statistical significance is tested using
the Mann–Whitney U test.

0.57.

When looking at the performance of the metrics cohorts-wise, we can also observe large
variations. The PB-Slide results have the best outcomes across all metrics. Here, we have
access to the original slides used for annotation and can perform one-to-one evaluation.
The fact that we have high IOAs means the model can properly assess TBC in an
automated fashion. The evaluation on PA,B-Patient shows similar but lower results. The
consistency across the cohorts is expected as they both are from the same institute and are
annotated by the same experts. Moreover, as we do not have access to the same patients’
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slides as the expert annotator, we cannot ensure a one-to-one correspondence between
the features, which can explain the performance drop. Still, we achieve reasonable IOA
values further validates our approaches. More surprisingly, the agreement on PD is
relatively low compared to other cohorts. This can be explained by the fact that the
samples in the cohort have lower quality and, thus, are more challenging to assess for
both the expert and the model. Moreover, we observed inconsistencies in the annotations
that can further explain the low agreement. Finally, we compare the IOA between the
two groups on the PB cohort. The outcome achieves an IOA score of 0.394, which is
considered as low. It shows that precise TBC estimation is challenging when relying on
a single patient slide.

Finally, we investigate the performance of our automated approaches by checking the
correlation of predictions with clinical features in Figure 6.13. TBCNP shows lower
correlation with pT and pN compared to TBCINTER and TBCRATIO. We see the same
overall behavior for all metrics where higher pT and pN correlate with lower TBC
(infiltrating pattern). The metrics tend to fail to show statistical relevance between pT1
and pT4. This can be explained by the fact that pT1 is underrepresented with only
a few cases (i.e. 3% of all patients). Another observation is the absence of statistical
significance between pN1 and pN2 when correlated to TBC. As the difference between
the two metrics is based on the number of positive lymph nodes (from one to three for
pN1 and more than three for pN2), their patterns might share similarities.

We compare the performance of the metrics applied to our previous Self-Rule to Multi
Adapt (SRMA) model. The evaluation of the correlation between the use of SRMA and
C2R models on TSR estimation, as well as the correlation of automated prediction with
pathologists annotation for SRMA, are available in section E.3.

6.4.4 Extra Metrics

We investigate the additional metrics. In diagnosis, if more than 50% of the tumor
volume is occupied by mucin, the case is considered mucinous [93]. As TMR is inversely
proportional to the amount of mucin, adenocarcinoma and mucinous cases should be
connected to high and low TMR, respectively. The results are presented in Figure 6.14.

The first plot highlights th correlation between the two components. We observe a
clear difference between the groups for all presented cohorts. In the second plot, we
apply different thresholds to the automated TMR prediction and compute IOA with
histological types. We observe that for all datasets, the optimal threshold is located
close to the decision value (i.e. 50%). However, the overall IOA still remains low. After
manually reviewing the results, it appears that the lack of patient slides causes a drop
in performance. In most cases, the model can properly assess TMR at the WSI level.
However, more than one slide is needed to fix the patient histological type.
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Figure 6.14 – Correlation between TMR automated prediction and histological types. (a)
Distribution across the different datasets with CRC type split. (b) IOA between TMR
and labeled histological type for different TMR thresholds.

Figure 6.15 – Correlation of stroma tissue distribution TDSTR with (a) depth of invasion
and (b) cancer classification across five different cohorts. The p-value thresholds are
displayed at the bottom of the table.

Regarding tissue distribution, we follow the same logic and check for correlation with
other clinical features. For the selection of the threshold, no recommendation exists.
As a result, the threshold is selected such that we equally split patients into low and
high groups (i.e. median of the metric) as 20% (δTD = 0.2). The results for stroma
local distribution at the tumor boundary are presented in Figure 6.15. For both clinical
metrics, we observe a correlation with TDSTR. As expected, high cancer stages and
deeper invasions are more prone to have high stroma tissue at the boundary.
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6.4.5 Univariate

With the previous results, we are now reasonably certain that the generated outputs
align with the expert annotations. The next phase is to take advantage of the automated
pipeline to predict survival. To do so, we use five different cohorts where we have access
to both overall survival (OS) and disease-free survival (DFS) data. We remove patients
who died up to three months after surgery. Regarding the study length, we have access
to patient follow-up up to 10 years after surgery. However, the median follow-up time
across all cohorts is around five years. As a result, we use the gold standard 5-year period
for the event analysis. We estimate hazard ratios using Cox proportional hazards (CPH)
with l1-norm regularization and penalty factor λ = 0.01. The results are presented in
Figure 6.16 for OS and DFS. We report the main clinical metrics as gender, depth of
invasion (pT), lymph node metastases (pN), cancer classification (TNM), histological
type (adenocarcinoma or mucinous), microsatellite instability (MSI), tumor budding,
lymphatic invasion, venous invasion, and manual TBC estimation. Along with the clinical
labels, we report the output of the automated approaches for TSR (i.e. TSRWSI, TSRTA,
TSRROI, and TSRROI1), TBC (i.e. TBCNP, TBCRATIO, and TBCINTER), and extra (i.e.
TMR, and TDSTR ). For the automated approaches, we use a threshold at 50% to split
continuous variables into low and high groups. The exception is TSRTA, where we use
the group median across all cohorts instead. The reason lies in the definition of the
tissue distribution that is not correlated with an existing clinical variable and hence is
not centered around the 50% decision boundary.

When focusing on the clinical variable, we observe that lymph node metastasis, lymphatic
invasion, and cancer staging show the best predictive value for both OS and DFS. For
tumor depth of invasion, we get mixed results. The reason is that we rely on a few pT1-2
examples. Regarding gender, we get a statistically significant hazard ratio where women
tend to have a lower hazard probability. Here, we must be careful with interpreting results
as the data are not adjusted for age [98, 149]. We also note that budding is correlated to
DFS. Moreover, the manual annotation for TBC achieves statistical significance on the
first set for OS and DFS.

Regarding the automated approaches, TSR estimation shows similar results across all
cohorts. The evaluations of the TSR based on ROIs (i.e. TSRROI, and TSRROI1) achieve
relevant result for both OS and DFS. When it comes to TSR assessment at the WSI level,
the results are mixed. While we can observe a difference in the hazard ratio for DFS,
we get no clear outcome for OS. In addition, we do not see a clear difference between
TSRWSI, and TSRTA. Hence, it is not possible to validate our previous intuition that
considering TA-STR for TSR estimation would help the model for patient stratification.

For TBC estimation, all three approaches manage to reach statistical significance for
both OS and DFS when merging the cohorts. We observe that the TBCINTER predictor
shows a more coherent behavior across cohorts. The manual annotation highlights a
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Figure 6.16 – Univariate CPH estimation for OS and DFS based on clinical and automated
metrics across cohorts. We consider a 5-year period for the study where features are
binarized before model fitting. The selected group is indicated between parentheses.
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difference in the hazard ratio for OS in PA, which is not the case for the automated
approaches. This is most likely because the manual TBC is assessed on multiple slides,
whereas the automated predictor uses a single WSI to assess TBC. More specifically,
when looking at the TBC estimation on the stage II cohort (i.e. PE) we do not perceive
any divergences between the groups. It suggests that TBC does not help stage II CRC
patient stratification.

Finally, we focus on the additional metrics. The TMR does not show any difference in
predictions between the two groups. This outcome confirms the previous results obtained
with the histological type, where we could not see any variations between adenocarcinoma
and mucinous types. Concerning the distribution of stroma at the boundary (TDSTR),
only one of the cohorts shows a distinction between high and low categories.

We provide the Kaplan-Meier (KM) estimation for automated metrics in section E.6.
Moreover, the extension of the univariate CPH analysis to stage II CRC patient is
available in section E.7.

6.4.6 Multivariate

For the multivariate analysis, we use forward variable selection. For each cohort, we
select as potential variables the ones that achieve statistical significance in the univariate
setting. We only retain the clinical variables common to all cohorts, namely age, gender,
pT, pN, TNM, and microsatellite instable (MSI) status. To avoid high redundancy of
the variables, we select for TSR and TBC estimation the variables that achieve the best
fit across cohorts as TSRROI1 and TBCRATIO, respectively. In addition, we also keep
stroma tissue distribution TDSTR as a variable. Other automated metrics are dropped.
The results for OS and DFS survival are presented in Figure 6.17 for the aggregation of
all cohorts with the computed IBS and C-Index scores.

In the first column, we highlight the clinical variable in the multivariate case. Out of
the selected entries, age, gender, pT, and TNM are selected by the model for OS. We
observe the same trend for the DFS. In columns two to four, we present the results where
we add our proposed automated metrics as potential variables. If the designed metrics
have significant statistical relevance, the model should select them during the forward
selection. For the OS, the multivariate model keeps the distribution of stroma tissue
at the boundary. For the DFS case, both TSR and TBC predictors are selected. In all
cases, we notice that the depth of invasion disappears or is replaced by the automated
approaches. It highlights that the pT variable is redundant when adding the automated
predictions. The multivariate analysis restricted to the stage II cohorts is available in
the supplementary section section E.7.
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Figure 6.17 – Multivariate CPH estimation for OS based on clinical and automated
metrics on cohorts aggregation. We consider a 5-year period for the study where features
are binarized before model fitting. The selected group is indicated between parentheses.
We report concordance index (C-Index) and integrated Brier score (IBS).

6.5 Conclusion

In this chapter, we focus on building clinically relevant metrics for survival analysis.
More specifically, our work is centered on the estimation of TSR, TBC, and TMR, which
are known to be interesting features for patient stratification. The assessment of all three
metrics relies on manual annotation by expert pathologists. Such a task is tedious, prone
to error, and acts as a break in the development of large cohort studies.

To tackle this problem, we propose to take advantage of our weakly supervised semantic
segmentation (WSSS) C2R model to estimate clinical metrics in an automated fashion.
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For TSR, we present multiple approaches that rely either on WSI-level statistics or ROIs
identification. Regarding TBC, we first develop a TB locator and then introduce various
estimates based on the computation of normal products, tissue ratio, and local interaction.
The assessment of TMR is based on the ratio between the amount of detected tumor and
mucin. Finally, we investigate the presence of STR tissue as the tumor boundary that
we believe could have a high predictive power. To validate the quality of the presented
metrics, we compare our automated predictions to expert annotations in terms of F1-score
and IOA.

We further explore the predictive power of the metrics by running univariate and
multivariate analyses across five different cohorts. The statistics include more than 2,000
slides and 1,700 unique patients where OS and/or DFS are available. The survival analysis
shows statistical significance for TSR, TBC, and stroma presence at the boundary. Even
though TMR correlates with histological types, it does not, unfortunately, show up as a
relevant metric based on the presented patient slides.

In a nutshell, the presented automated approach saves pathologists precious time while
allowing large-scale studies. It highlights the predictive power of TSR, TBC, and
stroma distribution regarding patient stratification. We show that our method has the
potential for automated TSR assessment to be included in standard reporting. Moreover,
complementary analysis on stage II cohort data shows encouraging values for DFS.

Throughout the development of our approach, we faced some limitations that could
hinder the performance of our predictions. Firstly, the orientation of the tumor depends
on the presence of muscle and adipose layer. Such layers are not always available and
could lead to a performance drop. A solution to recover part of the detection would
be to include the localization of the normal mucosa or muscularis mucosa. Secondly
and lastly, the assessment of TBC and TSR is usually performed on multiple slides and
aggregated at the patient level by taking the average or minimum. In our study, we are
often limited to a single WSI per patient, which can lower the IOA. In future studies,
we should investigate the effect of slide availability at the patient level. Moreover, an
alternative to computing the TBC would be to merge the metrics into a single descriptor.
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7 Conclusions

Sais-tu seulement à quel point tu ne sais
pas?

Batterie faible, Autotune
William Kalubi Mwamba

This chapter concludes the thesis. We first summarize the work and contributions in
section 7.1. Then, we discuss the faced limitations and future directions in section 7.2.

7.1 Summary

In chapter 2, we introduce the main concepts of the thesis. We give the reader all the
tools to properly understand the challenges linked to self-supervision in histopathology
and colorectal cancer (CRC).

In chapter 3, we present our first contribution with the work of Divide-and-Rule (DNR).
We highlight the advantages of combining self-supervised learning (SSL) and whole
slide images (WSIs) structured data to learn tissue representation. We show that using
staining information from hematoxylin and eosin (HE) to reconstruct original RGB
images (HE to RGB) yields better feature representation compared to the traditional
setting (RGB to RGB). In addition, we prove that the combination of spatial and feature
proximity losses is critical to learning coherent tissue features. Finally, we demonstrate
the prediction capability of our model by aggregating tissue representation at the patient
level and performing survival analysis. The results highlight multiple sets of features that
are relevant for patient stratification. Such features include tumor-to-stroma interactions
as well as dense tumor areas.

Next, we move to chapter 4, where we introduce our second contribution as Self-Rule

153



Conclusions

to Multi Adapt (SRMA). With this work, we tackle the problem of WSIs domain gap
when working with multi-source data. Through extensive experiments, we show that our
model can benefit from multiple source data if available. It allows us to take advantage
of the weakly-labeled data from the source site without asking expert pathologists for
additional annotations. Moreover, we demonstrate that our model can handle previously
unseen classes using an easy to hard (E2H) approach. It comes in handy as publicly
available data often provide labels for a handful of categories, which might not correctly
represent the complexity of our target data.

In chapter 5, we summarize our third contribution as coarse to refined (C2R) which aims
to refine tissue segmentation. The previous approaches used a sliding window approach
to perform tissue identification, which tends to produce coarse class representations. In
this chapter, we prove that the combination of weakly supervised semantic segmentation
(WSSS) and SSL can help the model to learn coherent segmentation maps. Moreover, we
demonstrate that our approach can be trained using data from lazy annotators, which
removes the need for pixel-wise annotations.

Finally, we present our fourth and last contribution in chapter 6. We take advantage
of our previous model to automatically predict well-established metrics. We show that
the automated predictions align with experts’ annotations on multiple cohorts and thus
can be used for extensive studies. Consequently, we highlight the correlation of the
predicted metrics with various clinical variables over large patient sets. Moreover, through
univariate and multivariate analysis, we show that tumor to stroma ratio (TSR), tumor
border configuration (TBC), and tissue distribution can be used along with clinical
metrics to stratify patient groups and, possibly, target better treatment. In this chapter,
we demonstrate the applicability of our research to diagnostic routines.

Throughout this thesis, we highlighted the importance of open research. Sharing work
and results is critical for reproducibility and developing novel approaches. Consequently,
we make our research available online.

7.2 Limitations and Future Works

We now continue our chapter by discussing the limitations of our work and proposing
future development directions. We first concentrate on two topics associated with data
self-supervision and then discuss two additional issues related to clinical variables.

Structure Representation, the Never-ending Story: One of the significant limita-
tions we face in this work is the creation of fine-grained segmentation. The problem is
addressed in chapter 5 using WSSS and shows promising results. Still, we could observe
a few limitations during the validation phase. For instance, even though the output
resolution of the model has been improved, it remains insufficient to properly detect
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small cell structures as tumor buds. The model would benefit from implementing tissue
consistency terms to improve its segmentation prediction. For example, the model could
impose local class uniformity during segmentation using superpixels [107, 154].

In addition, the rise of foundation models that include famous architectures such as
BERT [44], DALLE [119], or GPT [18] should be investigated. Foundation models are
defined as “any model that is trained on broad data (generally using self-supervision at
scale) that can be adapted to a wide range of downstream tasks” [15]. What makes them
different from the presented self-supervised approaches is their scale (e.g. 175 billion
for GPT-3 whereas 85 million for DINO). They can be used for many tasks, including
text synthesis, image description, and segmentation. They are already used in digital
pathology to synthesize information from biomedical texts and histopathological images
[94, 69].

Benefiting from Curated Data: The evolution of computational pathology is con-
ditioned by the current state of the art (SOTA) in SSL. We can see the most recent
works [30, 51] use the latest SSL approaches as DINO [23] and iBOT [163] to learn
tissue embedding. However, a recent benchmark [75] suggests that this race to better
SSL models does not highlight any clear winners as all approaches tend to perform
reasonably well. The authors recommend putting more attention on creating large-scale
curated domain-aligned datasets. This is confirmed in DINOv2 [111] where curated data
significantly improve the embedding representation. In our work, the creation of in-house
datasets is either performed by randomly sampling from WSIs (chapter 3 and chapter 4)
or based on pseudo labels (chapter 5). As a result, the generated data can hardly be
considered curated.

For future development, we encourage people to keep track of the current research in
SSL. But more importantly, we recommend creating large sets of curated data to train
SSL models. It could be achieved by building a simple image retrieval network based
on cosine-similarity [111, 114] or ranking scores [132]. Moreover, as histological data
are widely available, the resulting sets of data could easily include millions of relevant
examples.

Gathering Information from Multiple Slides: Another critical aspect of this thesis
is the availability of patient data and, more precisely, WSIs. For most cohorts, we have
access to a single WSI per patient. However, more than one slide is needed to achieve
proper statistics. Tumors are complex mediums whose structure might diverge based on
different cuts. Moreover, our presented approaches to compute clinical metrics rely on the
presence of muscle and adipose tissue to identify tumor orientation and progression. If the
mentioned tissues are unavailable on the slide, the case is excluded from further analysis.
These limitations can be observed in section 6.4 where the interobserver agreement (IOA)
between the automated approach and pathologists for TBC varies a lot based on the
selected slides.
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Tumor representation will benefit from having access to multiple WSIs. Based on this
conclusion, we encourage using additional WSIs data per patient in future work. In
addition, the question of: “how to properly aggregate the results given multiple patient
slides?” should also be investigated. It will help determine whether the tumor structure
information is equally spread across cuts or is concentrated at specific locations, such as
most invasive tumor parts. This aspect is critical to the building of clinically relevant
metrics.

Clinical Metrics and Survival Analysis: The provided solution for metric assessment
relies on a two-step approach. We first use machine learning models to infer WSI
segmentation maps and then run our estimate of TSR and TBC based on the predicted
outputs. The estimation of the metrics is based on hand-crafted features that try to
mimic the pathologists’ evaluation process. In future work, we would like to remove the
need for hand-crafted features and intermediary processing by building an end-to-end
network that predicts metrics directly from WSIs.

This also raises the interest in other applications that can benefit from this end-to-end
approach, such as optimizing time-to-event (TTE) for survival analysis [86]. The task is
challenging since survival data are usually scarce, thus making the training of end-to-end
architectures tricky. A possible development idea would be to take advantage of the
multiple-slide setting. Given several slides from the same patient, we can assume they
all originated from distinct cases sharing the same TTE.

Last but not least is the use of genetic data. It allows us to investigate further the
correlation of our prediction with other variables, such as microsatellite instable (MSI)
(high/low), that are associated with CRC [89].
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A Background - Supplementary
Material

A.1 CRCTP Anomalies

During this thesis, we discovered multiple discrepancies between data labels and images in
the colorectal cancer tissue phenotype (CRCTP) dataset [71]. To assess the quality of the
dataset labels, we use a pre-trained architecture [64] to compute patch embeddings. We
denote as ui,vj ∈ RD, the i-th and j-th embedding of dimension D of an image from the
training set and testing set, respectively. We use the uniform manifold approximation and
projection (UMAP) [100] to project the high-dimension embedding to a two-dimensional
space. The procedure is similar to the t-distributed stochastic neighbor embedding
(t-SNE) [140] except for the fact that the transformation learned by UMAP can be
applied to new samples. As a result, we use a subset of our data (from train and test) to
learn the UMAP transformation and then apply it to the whole dataset. This approach
is less greedy regarding computational resources when working with big datasets.

The feature representations of both the training and testing set are depicted in Figure A.1.
As the representation of the UMAP is learned with samples from the test and training
set, we have a direct correspondence between features. At first sight, it seems that
class distributions match. However, when looking closely, we identify areas with label
discrepancies. To help visualize those errors, we fit a k-nearest neighbors (KNN) model
to the projected training set data using K = 9 neighbors and then apply it to the test
data to check for prediction errors in the UMAP space. We display the error density over
the feature map. The darker the area, the denser the classification error between the two
sets. These results are qualitative as the distances between features in the UMAP space
are not Euclidean. Still, we report potential labeling errors between classes complex
stroma (CSTR) and tumor (TUM), as well as stroma (STR) and muscle (MUS).

We further investigate the overlapping of the sets. For each sample of the training set,
we look for the one in the testing set that maximizes similarity as the dot product
sim(ui,vj) = arg maxj u>i vj . We found out a significant part of the results have queries
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Figure A.1 – Visualization of CRCTP feature embeddings. (a-b) Projection of the
embedding space using t-SNE for train and test set in CRCTP. (c) classification error
density between the two sets using a simple KNN classification.

Figure A.2 – A non-exhaustive list of overlapping tiles between train and test set in
CRCTP fold2 data. The fold does not ensure patient slides’ and tiles’ independence
between the two sets. For each example, we report the unique id of the tile as well as
their overlap.

in the test set that visually overlap. In the data description, the author mentioned that
the data from the 2nd fold are split patient-wise, meaning that data from one slide cannot
belong to both the training and testing set. In Figure A.2, we display a non-exhaustive
list of overlapping tiles between the training and testing sets. Not only do part of the
data from both sets belong to the same patient slides, but they also highly overlap (e.g.
ID 9509 in train and ID 410 in test set achieve 100% overlap). Moreover, the labels are
not consistent between the sets. Tiles that appear with label TUM (e.g. ID 12462, 17157,
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7558) in training set end up as benign in the test set (e.g. ID 5160, 5347, 5042).

The presented results show evident discrepancies between the training and testing set.
Moreover, we observe a redundancy of some tiles between the training and test sets.
After reviewing with an expert, the training set labels “better” represent the actual tissue
images. The data from the CRCTP still represent a helpful resource for strategies where
no labels are required, such as unsupervised domain adaptation (UDA) or self-supervised
learning (SSL).

A.2 Datasets Correspondence

In Figure A.3, we visually represent the classes for the main datasets used in this work.
For the SemiCol data, we display cropped areas of the main images to allow a fair
comparison with other datasets. For the in-house data, we present image samples from
patient set PA. We add a reference value for the corresponding size of the tiles in pixels.
The reference size is common to all tiles from the same dataset. Finally, if the name of
the class differs from our definition, we state its original name at the top right of the tile.

A.3 Additional Cohorts Information

In this section, we report additional information about the available clinical variables.
In Table A.1 and A.2, we show the details about the median age (with interquartile
range), tumor location, tumor grade, lymphatic invasion, venous invasion, budding,
microsatellite status, consensus molecular subtypes (CMS), and post-operative treatment
as well as their definitions. We label as not available (NA) the entries with incomplete
measures. For microsatellite instable (MSI), the mismatch repair status is defined based
on immunohistochemistry (IHC) staining [6]. As a result, we do not have access to
MSI-low and MSI-high status.

In Table A.3, we restrict the definition of the cohort to stage II colorectal cancer (CRC).
We report the same variables as the general case presented in the main document.
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Figure A.3 – Tissue correspondence between main classification datasets Kather 16 (K16), Kather 19 (K19), CRCTP, In-House, and
SemiCol. We display the original class name if it differs from the column name.
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Table A.1 – Patient cohorts extended clinical variables.

Characteristics Bern (PA) Bern MSI (PB) Nijmegen (PC) TCGA (PD) Toronto (PE) All (PA−E)

Age (median [IQR]) 71.6 [61.9 - 78.7] 74.0 [65.3 - 80.0] 70.0 [61.0 - 78.0] 67.0 [57.0 - 75.0] 69.0 [59.0 - 77.8] 70.0 [60.0 - 78.0]
Tumor site (%)

Right 140 (38.4%) 104 (59.8%) 331 (59.9%) 167 (43.6%) 55 (47.4%) 797 (50.1%)
Left 167 (45.8%) 62 (38.7%) 222 (40.1%) 158 (41.3%) 61 (52.6%) 670 (42.1%)
Rectal 58 (20.9%) 8 (4.6%) - 58 (15.1%) - 124 (7.8%)

Tumor grade (%)
g1 21 (5.5%) 16 (9.9%) 16 (2.9%) NA 110 (93.2%) 163 (13.5%)
g2 287 (75.5%) 94 (58.0%) 391 (71.7%) NA 8 (6.8%) 780 (64.7%)
g3 72 (18.9%) 52 (32.1%) 138 (25.3%) NA - 262 (21.7%)

Lymphatic invasion (%)
l0 156 (43.7%) 85 (48.9%) 301 (69.8%) NA NA 542 (56.3%)
l1 201 (56.3%) 89 (51.1%) 130 (30.2%) NA NA 420 (43.7%)

Venous invasion (%)
v0 219 (61.2%) 97 (55.7%) NA NA 96 (87.3%) 412 (64.2%)
v1 139 (38.8%) 77 (44.3%) NA NA 14 (12.7%) 230 (35.8%)

Budding (%)
Low 107 (36.9%) 69 (55.2%) NA 186 (72.4%) 27 (22.9%) 389 (49.2%)
Intermediate 88 (30.3%) 25 (20.0%) NA 38 (14.8%) 31 (25.3%) 182 (23.0%)
High 95 (32.8%) 31 (24.8%) NA 33 (12.8%) 60 (50.8%) 219 (27.7%)

MSI (%)
MSS 257 (87.4%) 88 (50.6%) 376 (76.0%) 271 (68.8%) 88 (77.9%) 1080 (73.5%)
MSI 37 (12.6%) 86 (49.4%) 119 (24.0%) 123 (31.2%) 25 (22.1%) 390 (26.5%)

CMS (%)
CMS1 NA NA NA 48 (12.8%) NA 48 (12.8%)
CMS2 NA NA NA 166 (44.4%) NA 166 (44.4%)
CMS3 NA NA NA 51 (13.6%) NA 51 (13.6%)
CMS4 NA NA NA 109 (29.1%) NA 109 (29.1%)

Postoperative therapy (%)
No 126 (66.3%) 6 (60.0%) 435 (79.7%) 235 (59.0%) NA 802 (70.1%)
Yes 64 (33.7%) 4 (40.0%) 111 (20.3%) 163 (41.0%) NA 342 (29.9%)

Abbreviations: Not available or too few samples (NA). Interquartile range (IQR)
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Table A.2 – Main definitions of clinical variables used in the main documents. For
extended information, please refer to the reference publications [6, 95, 60].

Name Definition

Tumor site
Right Locations include cecum, ascending, hepatic flexure, and transverse colon.
Left Locations include splenic flexure, descending, sigmoid, and rectosigmoid

junction.
Rectal Location solely include rectum.

Histopathologic type
Adenocarcinoma Cancer, which forms in glandular epithelial cells (most common).
Mucinous Characterized by the presence of extracellular mucin that accounts for at

least 50% of the tumor volume.
Other Less common CRC (e.g. signet ring cell carcinoma).

Tumor grade
g1 Well differentiated, low grade (like healthy cells).
g2 Moderately differentiated, intermediate grade (somewhat like healthy cells).
g3 Poorly differentiated, high grade (less like healthy cells).

Lymphatic invasion
l0 No.
l1 Yes, cancer cells within lymph vessels.

Venous invasion
v0 No.
v1 Yes, cancer cells within blood vessels.

Budding [95]
Low 0 to 4 tumor buds within 0.785 mm2.
Intermediate 5 to 9 tumor buds within 0.785 mm2.
High more than 10 tumor buds within 0.785 mm2.

MSI [6]
MSS Microsatellite stable, also referred to as mismatch repair proficient (MMR-p).
MSI Microsatellite instable, also referred to as mismatch repair deficient (MMR-

d). The distinction between MSI-L and MSI-H is performed through im-
munohistochemistry.

CMS [60]
CMS1-4 Classification based on various factors such as the presence of specific

mutations.

Postoperative therapy
No No.
Yes Indicates that the patient received postoperative radiotherapy or chemother-

apy.
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Table A.3 – Patient cohorts with main clinical variables restricted to stage II CRC.

Characteristics Bern (PA) Bern MSI (PB) Nijmegen (PC) TCGA (PD) Toronto (PE) All (PA−E)

Patients 134 79 241 170 118 742
Slides 261 79 241 170 118 869
Sex (%)

Male 77 (57.5%) 47 (59.5%) 116 (48.1%) 86 (50.6%) 68 (57.6%) 370 (51.1%)
Female 57 (42.5%) 32 (40.5%) 125 (51.9%) 84 (49.4%) 50 (42.2%) 362 (48.9%)

T-stage (%)
T1 - - - - - -
T2 - - - - - -
T3 104 (77.6%) 48 (60.8%) 198 (82.2%) 159 (93.5%) 101 (86.3%) 610 (82.3%)
T4 30 (22.4%) 31 (39.2%) 43 (17.8%) 11 (6.5%) 16 (13.7%) 131 (17.7%)

N-stage (%)
N0 134 (100%) 79 (100%) 241 (100%) 170 (100%) 118 (100%) 742 (100%)
N1 - - - - - -
N2 - - - - - -

TNM (%)
I - - - - - -
II 134 (100%) 79 (100%) 241 (100%) 170 (100%) 118 (100%) 742 (100%)
III - - - - - -
IV - - - - - -

Histopathologic type (%)
Adenocarcinoma 109 (82.6%) 57 (75.0%) 174 (72.5%) 136 (83.4%) NA 476 (77.9%)
Mucinous 23 (17.4%) 19 (25.0%) 66 (27.5%) 27 (16.6%) NA 135 (22.1%)

OS (%)
Alive 107 (79.9%) 27 (77.1%) 199 (82.6%) 152 (89.4%) 101 (85.6%) 586 (84.0%)
Dead 27 (20.1%) 8 (22.9%) 42 (17.4%) 18 (10.6%) 17 (14.4%) 112 (16.0%)

DFS (%)
Free 109 (94.0%) 13 (92.9%) 220 (92.1%) NA 98 (83.8%) 440 (90.5%)
Recurrence 7 (6.0%) 1 (7.1%) 19 (7.9%) NA 19 (16.2%) 46 (9.5%)

5-year OS 92.1% 78.2% 89.1% 62.1% 84.8% 90.5%
5-year DFS NA NA 91.2% NA 82.8% 92.5%

Abbreviations: Not available or too few samples (NA).163
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Figure B.1 – Top cluster elements based on K = 8 for Divide-and-Rule (DNR) (ours),
spatial consistency (DSC), clustering assignment (DCA), and embedding clustering
(DEC). The patches are samples from cohort PA.

B.1 Spherical Clustering

This section presents the extended result for the spherical K-means (SPKM) clustering.
We display in Figure B.1 and Figure B.2 the results for the K = 8 and K = 16 cases,
respectively. The clustering is applied to the feature representation of the Divide-and-Rule
(DNR) (ours), spatial consistency (DSC), clustering assignment (DCA), and embedding
clustering (DEC).

For the DSC, we observe the model is biased toward color representation. The cluster
c1 (k = 8) and c11 (k = 16) highlight patches that have a high green component (i.e.
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Figure B.2 – Top cluster elements based on K = 16 for Divide-and-Rule (DNR) (ours),
spatial consistency (DSC), clustering assignment (DCA), and embedding clustering
(DEC). The patches are samples from cohort PA.

pen marks on the whole slide image (WSI)). Such features are not relevant for survival
analysis. For the DCA, DEC, and DNR, the clusters present more diverse information.
At this stage, it is difficult to assess the relevance of the cluster information.

B.2 Reconstruction

This section shows the qualitative reconstruction of the decoder. The results are depicted
in Figure B.3. The model takes as input a patch (top row). The hematoxylin and eosin
channels are then extracted from the input patch and fed to an encoder. Finally, the
decoder reconstructs the output image based on the feature representation (bottom row).
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Figure B.3 – Image reconstruction for DNR. The model use hematoxylin and eosin (HE)
channel to retrieve RGB source images.

We can see that the reconstruction of the image is by far not optimal. It mainly appears as
a blurred image. This is because the decoder is composed of a succession of interpolation
layers. Moreover, the decoder is designed as a shallow network, so the encoder captures
most of the information.
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C.1 Selection of Self-supervised Model

To assess which self-supervised model is more fitting our UDA setting, we compare
the performances of several state of the art (SOTA) self-supervised methods (SimCLR
[31], SupContrast [81], and MoCoV2 [32]), as well as the performance of the standard
supervised learning approach when facing different levels of data availability. The results
are presented in Table C.1. We report the performance of the single domain classification
on K16 and K19. The supervised approach uses ImageNet pre-trained weights. The
self-supervised baselines are trained from scratch. After self-supervised training, we
freeze the weights, add a linear classifier on top, and train it until convergence. For
SupContrast [81], we jointly train the representation and the classification as described
in the original paper.

MoCoV2 [32] outperforms the two other SOTA approaches. On K16, the model gains
up to 10% in terms of the F1-score to the other self-supervised baselines. In addition,
MoCoV2 gives competitive results with the supervised baseline that is initialized with
ImageNet weights. It shows that MoCoV2 is able to efficiently learn from unlabeled data
and create a generalized feature space. It mainly comes from the combination of the
momentum encoder and the access to many negative samples. Hence, we adapt MoCoV2
for our proposed UDA method.

C.2 Patch Classification - t-SNE Projection

In this section, we present the complementary results to the ones in subsection 4.2.2
for patch classification. The embeddings of all baselines and our proposed approach are
displayed in Figure C.1 using t-SNE visualization. We show the alignment between the
source (K19) and target (K16) embedding domain, as well as classes-wise.
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Table C.1 – Classification results of the different SOTA self-supervised approaches, as well
as the supervised baseline on the K19 and K16 patch classification tasks. We present the
results for different percentages of available training data. The top results are highlighted
in bold. We report the weighted F1 score.

K16 K19
Labels fraction Labels fraction

Methods 10% 20% 50% 1% 2% 5%

Supervised‡ 85.8** 86.5** 87.9** 89.2+ 89.9+ 90.5+

SimCLR [31] 79.6** 78.9** 78.6** 76.9** 79.4** 80.7**

SupContrast [81] 60.8** 73.2** 80.8** 78.7** 81.6** 85.0**

MoCoV2 [32] 88.5 90.2 91.1 89.9 90.3 90.6
‡ Model initialized with ImageNet pre-trained weights.
+ p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.001; unpaired t-test with respect
to the top result.

With the source only approach, we can observe the lack of domain alignment between
the feature spaces. Here, the model learns two distinct distributions for each set. On the
other side, our approach shows a satisfactory alignment of domains compared to most
baselines. The target complex stroma (K16) is linked to tumor, debris, lymphocytes, and
stroma in the source domain (K19).

C.3 Multi-source Dataset Sampling Ratio

When performing multi-source domain adaptation, we assume all the source and target
samples are from the same distribution. When sampling from D, we have an equal
probability of drawing a sample from the source or the target domain. In this section, we
analyze the importance of sapling the source and target domains during the pre-training
stage. We use K19 and K16 as source datasets and CRCTP as the target dataset.
For K19 and K16, only 1% and 10% of the source labels are used, respectively. The
classification performance results on the CRCTP dataset are presented in Table C.2. We
indicate the multi-source scenario (1 : 1 or K : 1), the sampling probability for each of
the datasets, and the batch size.

The cross-domain matching using the K : 1 scenario shows the highest variance, and its
performances can vary by up to 2.6%. Overall, we can observe that balanced probability
between all sets, namely 1

3 each, gives similar results across all multi-source scenarios. In
addition, when lowering the sampling probability of K16 we can see a drop in performances.
It suggests that it is essential to have a balanced sampling strategy even if one of the
source sets (i.e. K16 with 5,000 examples) is much smaller.
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Figure C.1 – t-SNE projection of the source (K19) and target (K16) domain embeddings.
We show the alignment of the embedding space as well as the individual classes for all
presented models between the source and target domain. The classes of K19 are merged
and relabeled according to the definitions in K16. The standard supervised approach is
depicted in (a). We compare our approach (i) to other domain adaptation methods (b-j)
as [54, 96, 27, 165, 124, 85, 153, 116], respectively. Our approach (k) qualitatively shows
the best source and target domain alignment.

C.4 Multi-source - t-SNE Projection

Figure C.2 shows the visualization of the embedding for the proposed multi-source domain
adaptation in subsection 4.2.7. It highlights the alignment of the feature space between
the two source sets (K19, CRCTP) and our in-house dataset.

We observe that for each source domain, the categories are well clustered. Moreover, we
notice that the classes shared by both domains (i.e. tumor, stroma, debris, lymphocytes,
normal mucosa, and muscle) overlap. In addition, the domain-specific tissues (i.e. adipose,
background, mucin, and complex stroma) form individual groups and are independent.
Subsequently, our approach was able to properly correlate similar tissue definitions across
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Table C.2 – Study of the multi-source domain performance of the Self-Rule to Multi
Adapt (SRMA) approach with different sampling ratios. We use K19 and K16 as source
datasets and CRCTP as the target dataset. We compare the introduced multi-source
approaches defined in Equation 4.12 to Equation 4.15, where 1 : 1 and K : 1 refers to the
one-to-one and K-to-one setting, respectively. We report the F1 score for the individual
classes and weighted F1 score (W-F1) as the overall mean performance (all) averaged
over 10 runs.
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DeepAll [48] - - - - - 128 72.4** 88.6** 43.6** 53.2** 71.8** 73.2**

SRA[1] 1 : 1 1 : 1 0.25 0.25 0.50 128 86.2** 87.6** 66.7** 71.0** 80.5 81.8**

SRMA 1 : 1 1 : 1 0.25 0.25 0.50 128 92.5 88.4** 68.7** 68.3** 74.2* 82.9*

SRMA K : 1 1 : 1 0.25 0.25 0.50 128 91.5* 87.6** 70.7 75.0 65.7** 82.7*

SRMA 1 : 1 K : 1 0.25 0.25 0.50 128 90.1** 90.1 69.6+ 72.9** 71.6** 83.6
SRMA K : 1 K : 1 0.25 0.25 0.50 128 91.6 87.4** 68.7** 73.9** 53.3** 81.2**

SRMA 1 : 1 1 : 1 0.33 0.33 0.33 128 92.9+ 87.8** 68.3** 65.3** 72.0* 82.0**

SRMA K : 1 1 : 1 0.33 0.33 0.33 128 93.1 87.3** 70.5** 78.3 66.9** 83.4*

SRMA 1 : 1 K : 1 0.33 0.33 0.33 128 92.5* 89.7 71.6 73.0** 66.9** 83.8
SRMA K : 1 K : 1 0.33 0.33 0.33 128 92.2* 88.6** 66.1** 74.3** 74.5 83.4*

SRMA 1 : 1 1 : 1 0.40 0.20 0.40 128 90.5** 88.3** 63.8** 71.8** 66.1** 81.5**

SRMA K : 1 1 : 1 0.40 0.20 0.40 128 90.8** 89.8 62.0** 74.7 64.1** 82.2**

SRMA 1 : 1 K : 1 0.40 0.20 0.40 128 92.0* 88.6** 69.5 73.7** 64.8** 82.8**

SRMA K : 1 K : 1 0.40 0.20 0.40 128 92.7 89.3** 65.8** 74.7+ 75.2 83.8
‡ The STR and MUS classes are merged as STR class; DEB and MUC classes as DEB.
+ p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.001; unpaired t-test with respect to top

the source domains while maintaining domain-specific tissue representation.

Looking at the source and target projection, we discern a batch of tissue (center-top) that
does not align with the source domain. When associated with the patches visualization, we
can recognize tiles with loose stroma, collagen, or blood vessel representation. Rightfully,
none of the mentioned classes were present in the source domain, thus proving the
usefulness of the easy-to-hard approach.

C.5 Patch-based Segmentation of WSIs from the TCGA
Cohort

In this section, we highlight the performance of our framework on a publicly available
WSI (UUDI: 2d961af6-9f08-4db7-92b2-52b2380cd022) from the the cancer genome atlas
(TCGA) colon cohort [128, 129]. We apply our trained SRMA framework, as described
in subsection 4.2.3, where K19 is used as the source domain and our in-house domain as
the target one. We show the original image, classification output, and the tumor class
probability map of our proposed SRMA method in Figure C.3.
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Figure C.2 – t-SNE visualization of the SRMA model trained on CRCTP, K19 and
the in-house dataset. All sub-figures depict the same embedding. (a) Patch-based
visualization of the embedding. (b-c) Distribution of the labeled source samples. (d)
Relative alignment of the source and target domain samples.

The model is able to classify tissue across the whole slide accurately. Moreover, the
pipeline gives a somewhat detailed output, which is a remarkable performance for a patch-
based approach that is not explicitly designed for segmentation purposes. Furthermore,
the model is agnostic to artifacts such as permanent marker spots (green marks on the
bottom left). The tumor prediction map gives an overview of the tumor class probability
across the WSI. This class is particularly interesting, as tumor detection is essential for
many downstream tasks (e.g. detection of the invasive front or the tumor stroma ratio).
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Figure C.3 – Segmentation results on a WSI from the TCGA cohort achieved by our
SRMA model trained using K19 as the source dataset and our in-house set as the target
dataset. We show the (a) original image, (b) classification output, and (c) tumor class
probability map.
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D.1 Scanner Comparison - Tumor and Stroma

In Figure D.1, we show the output segmentation for tumor and stroma detection. The
two rows depict the results for scanners A and B, respectively. We display the original
HE image in the first column. Then, we show the generated annotation based on the
consecutive cuts. Finally, we present the results for our SRMA and coarse to refined
(C2R) approaches. For the classification, tissues that are not identified as either tumor
or stroma are set to other (i.e. gray).

The prediction on scanner B achieves better performance. Regarding the methods, we
observe the refinement of the output resolution for the C2R method. The architecture
produces a fine-grained segmentation map. It is a considerable improvement with respect
to SRMA.
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Figure D.1 – Scanner and method comparisons of tissue segmentation for tumor, stroma,
and other detection. We display the original HE region, the generated annotations,
and predictions for SRMA [2] and C2R. The rows show the difference in predictions
scanner-wise.
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E.1 Tumor Area Estimation

When computing tumor border configuration (TBC), we must rely on a good tumor area
estimation. The first estimation of the tumor area is made using the tumor channel from
the segmentation algorithm. Unfortunately, this detection does not include debris and
mucinous areas. In diagnosis, both sites are contained in the primary tumor area. A
simple solution would be to merge the detection of the three channels as tumor, mucin,
and debris to estimate the tumor’s main area better. However, debris includes other
artifacts across the WSIs that are not linked to the presence of the tumor. In addition,
mucin is present in normal mucosae crypts, which is not correlated with the tumor area.

To overcome this issue, we use a region-growing approach. We use the tumor detection
points as seeds for the algorithm. Note that the tumor is preprocessed to remove small
detection points. The model then expands the area to include surrounding debris and
mucinous tissue iteratively. Doing so ensures that all the selected tissues are directly
connected to the tumor area. An overview is depicted in Figure E.1. We stop the
expansion of the area when no the expanding area remains unchanged between two steps.

E.2 Region of Interest Estimation

In Figure E.2, we observe an example of the detection of the ROIs at the WSI level. We
display the top K = 3 regions and the area selected by the expert pathologist for manual
evaluation. The local estimation of TSR is reported along with the area’s name. For the
ROIs, we show the HE original WSI crop at 2.5×.

The presented example is labeled as a TSR-low case by the experts. It is validated by the
evaluation of TSR within the annotated area by the algorithm (i.e. TSRANNO = 0.180).
When looking in more detail at the segmentation map, we can see that the manually
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Figure E.1 – Iterative tumor estimation. We start the estimation from the filtered tumor
detection (step 0). The model then iteratively adds neighbor tissues (debris and mucin)
using morphology to expand the tumor area. The final estimation is given in step 10.

selected area does not seem to match the “four directions” rule. Here, the selected region
includes tumor buds that are hard to detect by the segmentation algorithm. However,
looking at the first ROI, we can observe a similar tumor structure as the annotated area,
including sparse tumor blobs surrounded by stroma. When going through the WSIs, we
often encounter cases where multiple locations fit the requirements for best ROI. We
scarcely faced examples where only a single location of the WSI was determining the
classification into TSR-low group. In other words, detecting the optimal ROI location is
not limited to a single area.

The estimations of the TSR for the first two ROIs are similar (i.e. TSRROI1 = 0.342 and
TSRROI2 = 0.318) and depict a TSR-low case based on a 50% cutoff. The third area, on
the contrary, represents a TSR-high case (i.e. TSRROI3 = 0.593. If we take the average
of the K detected area, we still end up in a TSR-low case. However, here we see how
sensitive the TSR group estimation is at the WSI level. Setting the number of ROIs
higher would change the classification of the WSI toward a TSR-high case. Due to the
large size of the selected lens, the value of K needs to be kept small.

E.3 SRMA metric predictions

In this section, we elaborate on the difference in metric predictions between C2R and
SRMA [2] models. The metrics are computed on cohort selected our TSR work [3] using
SRMA.

In Figure E.3, we present the difference between the SRMA and C2R approach. The
first two columns show the correspondence between metrics prediction. We observe that
for both cohorts, there is a linear correlation with a Pearson score of 0.739 and 0.824.
Still, the SRMA approach tends to predict higher TSR estimates. It is linked to the
underestimation of the stroma content. Finally, in the last column, the differences at the
WSI level are depicted.
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Figure E.2 – Visualization of the regions of interest (ROIs) localization for tumor to
stroma ratio (TSR) estimation. (a) Segmentation of a reference WSI with localization of
the top K = 3 ROIs and manual annotation. (b-d) Top K ROIs with their WSI local
crop and detection filter (white). (e) Manual annotation by the expert pathologist.

Figure E.4 present the correlation between the TSR metrics automatic prediction and
the pathologist annotations. The TSR correlate highly with the expert’s annotations.
Unfortunately, the estimates tend to predict high values. In this case, using a cutoff at
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Figure E.3 – Comparison on TSRROI1 prediction between SRMA and C2R models. (a-b)
Correlation of predictions on PA and PD cohorts. The ideal one-to-one correspondence
(ideal), linear regression (regr.), and Pearson correlation r are depicted. (c) Slide-level
differences between SRMA and C2R models.

Figure E.4 – Comparison of TSR prediction based on SRMA model [2]. We use a 50%
cutoff to split between TSR high (blue) and low (red). We report the Pearson correlation
(gray) between automated predictions and the annotated area. (a) Estimation at the
WSI level with and without tumor-associated stroma (TA-STR). (b) Detection of the
top K = 3 ROI and averaged results. (c) TSR estimated on manually annotated ROIs.

50% is not optimal. A more reasonable threshold would lie around 75%. However, this
does not fit with the TSR definition.

Finally, in Figure E.5, we compute the interobserver agreement (IOA) for TBC estimation
using three different approaches on two cohorts. We observe a relatively low IOA, which
suggests that the predictions do not align with expert annotations.

E.4 Correlation: TSR and Clinical

Here, we present the correlation of the TSR estimation with the clinical feature. We
present the three main estimation as TSRWSI, TSRROI1, and TSRROI. Out of all the
clinical features, we selected the most relevant ones as pT (depth of invasion of the
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Figure E.5 – Evolution of interobserver agreement (IOA) between TBC estimations and
expert’s annotations as a function of the metric threshold. We display each cohort’s
optimal threshold and IOA for SRMA [2].

tumor), pN (number of lymph nodes affected), and the overall cancer stage (I to IV).
The results are presented in Figure E.6 for five different cohorts.

We observe a similar trend for all TSR metrics. The prediction of the depth of invasion
makes the best predictor. Lower TSR correlates with higher invasion depth, cancer stage,
and lymphatic invasion. It is expected that cancer with high tumor-associated stroma
tends to have worse survival outcomes than dense tumors. Note that we observe the
same trend even for PE , which is limited to stage II patients. It indicates that TSR
could be used to stratify stage II patients.

E.5 TBC - Examples

In Figure E.7, we highlight the performance of the TBC estimation on three different
tumor areas (top row). The areas are handcrafted to represent three standard interfaces
between tumor and stroma. The first example depicts a slowly moving border. Here, the
edge is uniformly pushing through the tissue. The second example shows a “finger-like”
growing pattern. The tumor grows using what can be identified as fingers. In the third
and last case, we observe multiple small tumor structures ahead of the primary tumor
area. These regions are composed of small tumor structures such as tumor buds. The
last two mentioned patterns are connected to infiltrating cases.

We display the evolution of the local TBC for the metrics TBCNP, TBCRATIO, and
TBCINTER. We use a threshold for each metric to distinguish between the pushing and
infiltrating aspect of the local TBC. The value of the thresholds are selected for displaying
purpose. The overall TBC is estimated along the tumor border (TB) and represented as
the percentage of TB location where the local TBC is higher than the selected threshold.

With the first case, we observe no variation of the TBC for all metrics and get a perfectly
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pushing estimation of the overall TBC. In the second case, the “finger-like” growing
pattern indicates an infiltrating border. All metrics can adequately detect the infiltrating
part. The most interesting results come from the last case. Here, we see that the local
estimation of TBCNP varies a lot. As a result, we end up with regions estimated as
pushing even though the pattern shows tumor budding. The remaining metrics are more
stable. It comes from the fact the TBCRATIO and TBCINTER metric locally average the
prediction, thus smoothing the prediction output. A solution to fix the estimation of
TBCNP would be to apply the same logic as for the other estimates and locally average
the predictions for the normal vectors.

In Figure E.8, we display the estimation of the TB at the WSI-level. In Figure E.8a, we
show the classification results over multiple classes along with the TB. For each point
along the TB, the border is estimated as either pushing or infiltrating. In Figure E.8b,
we present the main tissue areas (tumor, adipose, and muscle) used to orient the tissue.
Finally, in Figure E.8c, we measure the local TBCINTER given a threshold δINTER.

E.6 Kaplan-Meier

We show the Kaplan-Meier (KM) estimates for overall survival (OS) and disease-free
survival (DFS) in Figure E.9 and Figure E.10, respectively. The results are computed for
the automated metrics TSRROI1, TBCINTER, and TDSTR on all cohorts (PA−E). The
metrics are selected based on their performance on the univariate model and stratified
into two groups: low and high. For TSR and TBC, we use 50% as a cutoff. For the
stroma distribution, the split is set to the group median (i.e. 0.2).
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Figure E.6 – Correlation of the TSR feature with respect to other clinical values. We
present the results for TSRWSI, TSRROI1, TSRROI over five different cohort. The clinical
features are as follows: (a) depth of invasion of the tumor, (b) the overall cancer stage,
and (c) the number of lymph nodes affected. We indicate statistical relevance using the
Mann–Whitney U test.
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Figure E.7 – Toy examples for TBC estimation. Each column shows a different border
configuration with tumor (red) progressing through stroma (blue), TB outline (dashed),
and growing direction (arrows). The rows show the evolution of the TBC estimates along
the tumor border (start to end). We use predefined thresholds for each metric.
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Figure E.8 – Visualization of TB and TBC estimation. (a) Segmentation of the WSI into
multiple classes. For each point along the TB, we estimate if it is pushing or infiltrating.
(b) Identification of main tissue blobs to build boundary. (c) Local TBC measure before
thresholding for interaction (TBCINTER).
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Figure E.9 – Overall survival and Kaplan-Meier estimates for TSRROI1, TBCINTER, and TDSTR on all cohorts (PA−E). The metrics
are stratified into low and high groups. The table below shows the number of at-risk patients at each time step.
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Figure E.10 – Disease-free survival and Kaplan-Meier estimates for TSRROI1, TBCINTER, and TDSTR on all cohorts (PA−E). The
metrics are stratified into low and high groups. The table below shows the number of at-risk patients at each time step. Not available
(NA).
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E.7 Proportional Hazards - Stage II

In Figure E.11 and Figure E.12, we report univariate and multivariate Cox proportional
hazards (CPH) for stage II patients across all cohorts. We use the same settings as for
the analysis over all CRC stage with 5-year study length and l1-norm regularization
(λ = 0.01). For the univariate case, we report results across the five different cohorts.
Concerning the multivariate approach, we solely highlight the overall performance. We
reduce the variables to the ones that are common to all cohorts.

Regarding the clinical variables for the univariate case, it is difficult to find a metric that
improves patient stratification. For the OS, gender and lymphatic invasion highlight a
difference across all cohorts. For DFS, only budding shows a distinction between the
groups. In all cases, we cannot find a consistent metric for each cohort. When focusing
on the TSR estimation, we observe good performances for the DFS prediction. Both TSR
estimation based on ROIs and TA-STR shows statistical significance at the overall level.
Surprisingly, we observe a clear difference with the estimation of TSR using TA-STR
rather than the dummy WSI approach. The difference was not visible when we included
all cancer stages. It validates the hypothesis that the stroma in the neighborhood of the
main area contains relevant information for stage II patient stratification.

When focusing on the multivariate setting, specifically the OS case, we observe only
a statistical significance of the clinical metric. Adding the results of the automated
approaches does not improve the performance of the proportional hazards. For the
DFS case, we notice major differences. First, none of the clinical metrics are selected
by the model. In addition, only the automated TSR works for the overall estimation.
Surprisingly, the aggregation of all metrics does not show significant results even though
TSR has proven useful. This is because we work with a different subset of slides in the
two settings. For the overall case, we consider entries where TSRROI1, TBCRATIO and
TDSTR are available which is more restrictive.
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Figure E.11 – Univariate CPH estimation for OS and DFS based on clinical and automated
metrics for stage II subset. We consider a 5-year period for the study where features are
binarized before model fitting. The selected group is indicated between parentheses.
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Figure E.12 – Multivariate CPH estimation for OS and DFS based on clinical and
automated metrics for stage II subset. We consider a 5-year period for the study where
features are binarized before model fitting. The selected group is indicated between
parentheses. We report concordance index (C-Index) and integrated Brier score (IBS).
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