
In Medio Stat Virtus*:
Combining Boolean and Pattern Matching

Gianluca Radi, Alessandro Tempia Calvino, Giovanni De Micheli
Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

Abstract—Technology mapping transforms a technology-
independent representation into a technology-dependent one
given a library of cells. This process is performed by means
of local replacements that are extracted by matching sections
of the subject graph to library cells. Matching techniques are
classified mainly into pattern and Boolean. These two techniques
differ in quality and number of generated matches, scalability,
and run time. This paper proposes hybrid matching, a new
methodology that integrates both techniques in a technology
mapping algorithm. In particular, pattern matching is used to
speed up the matching phase and support large cells. Boolean
matching is used to increase the number of matches and quality.
Compared to Boolean matching, we show that hybrid matching
yields an average reduction in the area and run time by 6% and
25%, respectively, with similar delay.

I. INTRODUCTION

Technology mapping is a crucial step in the realization of
integrated circuits. Its primary goal is to translate a technology-
independent representation of digital hardware into a connec-
tion of technology-specific components, such as standard cells
or lookup tables (LUTs). However, the optimal mapping of an
arbitrary Boolean function to a cell library is known to be an
intractable problem. Hence, technology mapping is generally
approached as a series of local substitutions applied to a multi-
level representation of logic known as the subject graph. The
key objective of technology-independent logic synthesis is to
achieve a compact subject graph, both in terms of size and
depth, to facilitate technology mapping and enhance quality.

Cell libraries, such as standard cells, define a set of pre-
designed and pre-characterized logic primitives that are used as
building blocks to create digital circuits. Technology mapping
uses these blocks to cover the subject graph while minimizing
a cost function, typically based on power, delay, and area.
Mapping addresses two sub-problems: matching and selection.
Matching involves associating sections of the subject graph
with a list of cells that are functionally equivalent and capable
of implementing those sections. Selection selects appropriate
cells to cover the graph such that the target cost function is
minimized.

In this paper, we focus on the matching problem. In early
approaches, cells were represented using a graph, typically
in the form of a NAND decomposition of the Boolean
functionality. The matching task was then formulated as a
(sub) graph isomorphism problem, particularly efficient when
the decomposition graph is a tree. This form of matching is
referred to as pattern matching [1]. However, this approach has

*Virtue stands in the middle

several drawbacks. The most important one is that the graph
decomposition is not canonical. Consequently, the number of
possible graph decompositions can grow exponentially large
for some cells, making it challenging to detect potential
matches. Moreover, the matching process is significantly more
involved when the decomposition graph is not a tree, such as
in the case of XOR gates. Later approaches used Boolean
matching [2] which is based on a canonical Boolean repre-
sentation of the function, solving the limitations of pattern
matching. Boolean matching inherently solves a tautology
problem. Typically, this technique scales to cells up to 6 inputs,
covering the majority of the cells present in standard cell
libraries. Modern approaches use truth tables or BDDs as a
canonical data structure.

In this work, we propose hybrid matching for technology
mapping, an approach that combines the strengths of pattern
and Boolean matching to achieve better quality. On the one
hand, pattern matching finds application for many cells that
are decomposable into NAND trees, such as ANDORs. Fur-
thermore, modern cell libraries contain cells of 7 or more
inputs, beyond Boolean matching capabilities (for reasonable
run time). On the other hand, Boolean matching generally
offers better quality for cells up to 6 inputs. By leveraging the
benefits of both techniques, hybrid matching computes both
pattern and Boolean matches and strategically combines them
to achieve better quality and run time speedup.

We have integrated hybrid matching in the technology
mapper in the logic synthesis library Mockturtle [3]. Similarly
to previous work [4]–[7], in this paper, we work with a gain-
based (load-independent) delay model. The methods discussed
in this paper are anyhow compatible with physical-aware
mappers since we focus on matching and not on covering. In
the experiments, we compare hybrid matching to both Boolean
and pattern matching showing that:

• Hybrid matching reduces the area up to 34% compared to
Boolean matching, making efficient use of large gates. On
average, it reduces the area by 6.15% while maintaining
a similar delay.

• Hybrid matching reduces the area by 5% on average
compared to pattern matching for better delay.

• Hybrid matching reduces the run time of technology
mapping by 25% compared to Boolean matching.

II. BACKGROUND

In this section, we introduce the basic notations and the
necessary background on matching and technology mapping.

A. Notations and definitions

A Boolean network is a directed acyclic graph (DAG) with
nodes represented by Boolean functions. The sources of the
graph are the primary inputs (PIs) of the network, the sinks are
the primary outputs (POs). For any node n, the fanins of n is a
set of nodes that have an outgoing edge towards n. Similarly,
the fanouts of n is a set of nodes that have an incoming edge
from n.

A cut C of a Boolean network is a pair (n, K), where n
is a node called root, and K is a set of nodes, called leaves,
such that 1) every path from any PI to node n passes through
at least one leaf and 2) for each leaf v ∈ K, there is at least
one path from a PI to n passing through v and not through
any other leaf. The size of a cut is defined as the number of
leaves. A cut is k-feasible if its size does not exceed k. A
trivial cut of a node is a cut composed of only the node itself.
A cut covers all the nodes encountered on the paths between
the leaves and the root, including the root and excluding the
leaves.

A cover of a Boolean network is a set of cuts such that
1) each node in the network is covered by at least one cut
and 2) the root of each cut in the cover is either a PO of the
network or a leaf of one or more cuts in the cover. A cover
can be extracted top-down (in reverse topological order) by
selecting cuts rooting in the POs and recurring on the leaves.

B. Cut enumeration

Cut enumeration [8] assigns a set of k-feasible cuts to each
node in the subject graph. Cut enumeration starts at the PIs and
proceeds in the topological order towards the POs. Processing
in topological order guarantees that the cut computation of a
node is performed after its fanins. For PIs, the list of cuts
contains only the trivial cut. For an internal node n with two
fanins a and b, its cut set Φ(n) is computed as follows:

Φ(n) = {{n}} ∪ {u ∪ v | u ∈ Φ(a), v ∈ Φ(b), |u ∪ v| ≤ k}

Informally, merging two sets of cuts adds the trivial cut and
the set of pair-wise unions of cuts belonging to the fanins.
Only k-feasible cuts are kept in the set. The pair-wise union
of two cuts belonging to the fanins is called cut merging.

C. NPN-equivalence classes

Two functions f(x1, . . . , xn) and g(x1, . . . , xn) are NPN-
equivalent if there exists a permutation of the inputs (xixj →
xjxi), an inversion of the inputs (xi → xi), and an inversion
of the output (f → f̄) so that f and g can be made Boolean
equivalent [9]. NP-equivalence classes are defined similarly
without considering the output inversion.

D. Technology mapping

Technology mapping [10] is the process of expressing a
Boolean network using a set of logic primitives contained in
libraries such as standard cells or field programmable gate
arrays. Before mapping, the Boolean network is represented
as a k-bounded Boolean network called the subject graph. A
k-bounded network contains nodes with a maximum fanin size

of k. And-inverter graphs (AIGs) are typically used as subject
graphs.

The subject graph is transformed into a mapped network
by applying local substitutions to sections of the circuits
defined by cuts and extracted using cut enumeration. Map-
ping addresses two sub-problems: matching and selection.
Matching involves associating cuts with a list of cells that are
functionally equivalent to the covered section. This process re-
quires the construction of a specific cell library representation
that is suitable for matching. Two main matching approaches
exist, namely, pattern matching [1] and Boolean matching [2].
Selection chooses appropriate cells to cover the graph such
that the target cost function is minimized. A delay-oriented
mapping aims to reduce the delay of the longest path in the
cover. An area-oriented mapping aims to minimize the total
area of the cover.

Delay-optimal technology mapping algorithms in a load-
independent model have been proposed in [4], [5]. These
methods have been extended to perform well on discrete-size
cell libraries with a gain-based model [11]. Multiple heuristics
for area minimization have also been proposed in [12], [13].
In [6], [14], logic decomposition is combined with mapping to
reduce the structural dependency on the subject graph. In [15],
mapping has been extended to support multi-output cells.

E. Disjoint support decomposition

The disjoint-support decomposition (DSD) is a special case
of Boolean decomposition. A function f has a DSD decom-
position if it can be decomposed such that

f(X) = h(X1, g(X2)), X1 ∪X2 = X X1 ∩X2 = ∅

A Boolean function is called full-DSD if function g
is recursively with disjoint support. Two efficient proce-
dures can be used to find DSD decompositions using 2-
input operators, namely top-decomposition [16] and bottom-
decomposition [17].

Top-decomposition finds a decomposition using a 2-input
operator ⊙ applied to a support variable xi and a remainder
function g:

f(X) = xi ⊙ g(X \ {xi}), xi ∈ X

Bottom-decomposition finds two variables xi and xj that
uniquely influence f through a 2-input operator:

f(X) = h(xi ⊙ xj , g(X \ {xi, xj})), xi, xj ∈ X

For instance, the function f = ((a ∨ b) ∧ (c ∨ d)) ∧ e is top-
decomposable for variable e and it is bottom-decomposable
for variables (a, b) and (c, d).

III. MATCHING

In this section, we present our methodology for Boolean
and pattern matching. Throughout this paper, we utilize the
term Boolean mapping to denote a mapping algorithm based
on Boolean matching and the term structural mapping for a
mapping procedure based on pattern matching.

A. Boolean matching

In technology mapping, delay, power, and area can be
minimized by exploiting different configurations of cells based
on the NPN -equivalence classes [7], [9]. Specifically, permu-
tations increase the number of matches, and negations play a
crucial role in the insertion of inverters. Boolean matching
relates a canonical representation of a Boolean function to a
list of cells that can implement it and is typically defined over
NP(N)-equivalence. In a Boolean mapper, Boolean matching
is performed during the cut enumeration phase of mapping
where a set of cells are associated to a cut given its function.

In line with previous work [7], we define a data structure
that facilitates Boolean matching. Such a library is a hash
table that relates the functionality represented as a truth
table to a set of cells that can implement it. For each cell,
the library also stores all its NP−configurations. Given a
function f of a cell, its NP−configurations are all the input
permutations and inversions applicable to f that generate
functions in the NP−equivalence class of f . Specifically,
given a Boolean function to match, the library returns a set of
cells in the NP−equivalence class of the function along with
their NP−configurations.

B. Pattern matching

Pattern matching associates a set of cells to a (sub) graph
by solving a graph isomorphism problem. A database contains
a family of patterns for each cell. In modern technology
mapping, a pattern is an AIG decomposition of a cell’s
function. A cell can be associated with a sub-graph in the
subject graph if one of its patterns matches the sub-graph,
i.e., it is structurally equivalent.

In technology mapping, sub-graphs to match are described
by cuts and extracted using cut enumeration. When cell’s
patterns are only trees, pattern matching integrates readily with
cut enumeration since the pattern identification algorithm is
based on dynamic programming. Specifically, patterns at a
node n can be identified during the cut merging operation
by linking two input cut patterns using the top operation of
node n.

To enable pattern matching, we first propose a method to
derive the pattern database. Then, we show how to identify
patterns during cut enumeration using pattern indexing.

C. Structural patterns derivation

In this work, we define patterns of a cell, called structural
patterns, as and-inverter trees representing the disjoint support
decomposition of the cell function. We restrict structural pat-
terns to include only trees since the matching procedure is very
efficient. Moreover, most of the cells in technology libraries
are full-DSD, such as ANDs, and AND-ORs. A few exceptions
are gates whose functions are not full-DSD, such as XORs,
MUXs, and Majorities. Thus, it is not possible to produce a
structural pattern for those functions, since the decomposition
leads inevitably to a DAG structure. Nevertheless, non-full-
DSD functions can be specifically identified on the subject

a b c d

p

r

q

∧

∧

∧

(a) Initial pattern

a b c d

pr

q

∧

∧

∧

(b) Other pattern

a b c d

p

r

q

∧

∧

∧

(c) Other pattern

Fig. 1: Possible structural patterns for AND4.

graph via structural analysis prior to mapping. This feature is
not part of our implementation.

Initially, one structural pattern is derived for each full-DSD
cell by applying recursively top decomposition and bottom
decomposition for AND and OR operators. A key observation
is that decomposition trees are not canonical. Hence, the same
function might be represented by different structural patterns.
For instance, an AND4 can be expressed as (a∧ (b∧ (c∧d))),
((a∧ b)∧ (c∧ d)), or (((a∧ b)∧ c)∧ d) resulting in the three
decomposition trees, depicted in Figure 1. Since matching is
performed by comparing derived patterns with sub-graphs in
the subject graph, generating multiple patterns for such cells
is crucial as it translates into additional match opportunities.
Thus, we employ an algorithm to derive the other possible
patterns from the initial one.

The algorithm derives the different structural patterns for a
cell by applying associative moves to its initial pattern. An
associative move is a tree rotation applied to nodes with the
associative property. Algorithm 1 presents the steps to derive
multiple patterns. The algorithm recursively applies associative
moves to every node of each computed structural pattern and
terminates when no new pattern is generated. For instance,
supposing the pattern shown in Figure 1a is the pattern initially
retrieved by the decomposition, the pattern in Figure 1b can
be obtained from the first one by applying an associative move
(left rotation) to node r. In order to mitigate the number of
derived structural patterns, hence limiting the run time for
pattern matching, the algorithm filters structural patterns that
are symmetric to others already found by canonicalizing the
order of PIs and AND’s input. Thus, in the case of the example
of Figure 1, the pattern of Figure 1c would not be produced
as it is symmetric to the one of Figure 1a.

Algorithm 1 Pattern Derivation
Input pattern og pat, node start node, pattern set set pat

1: procedure DERIVE(og pat, start node, set pat)
2: if is pi(start node) then
3: return
4: end if
5: l← left fanin(start node)
6: r ← right fanin(start node)
7: if not negated(l) AND not pi(l) then
8: r pat← right move(og pat, start node)
9: if check symm(r pat, set pat) then

10: add pat(r pat, set pat)
11: DERIVE(r pat, start node, set pat)
12: end if
13: end if
14: if not negated(r) AND not pi(r) then
15: l pat← left move(og pat, start node)
16: if check symm(l pat, set pat) then
17: add pat(l pat, set pat)
18: DERIVE(l pat, start node, set pat)
19: end if
20: end if
21: DERIVE(og pat, l, set pat)
22: DERIVE(og pat, r, set pat)
23: end procedure

D. Pattern indexing and pattern table generation

To identify isomorphic patterns, each node in the structural
patterns is assigned to an index. This index serves as a unique
identifier for sub-patterns. In practice, if two pattern roots have
the same index, it indicates that the patterns are isomorphic.

Patterns are processed in ascending order of size. The
procedure indexes nodes of a pattern in topological order.
Specifically, each PI is assigned an index of 1. To other nodes,
the index is uniquely assigned based on the input indexes
and polarities (structural hashing). The order of the inputs
is canonicalized for permutation to remove symmetries (e.g.,
an AND between 1 and 2 is equivalent to an AND between
2 and 1). This procedure neglects the presence of negations
and permutations at the PIs and the PO of a pattern. Hence,
isomorphic structures in an NPN−equivalence class share
the same index.

To illustrate the indexing procedure, let us consider the
simple cell library shown in Figure 2, composed of AND2,
OR2, and AND4 cells. The first pattern to be indexed is
the one associated with the AND2 cell and as such the
index 2 is assigned to its only node. Afterward, the pattern
corresponding to the OR2 cell is also assigned index 2, since
the same structure has already been observed and the input and
output negations are ignored. Next, the pattern in Figure 2c
is processed assigning new indexes for AND3 (index 3) and
AND4 (index 4). Finally, in Figure 2d another pattern of the
AND4 cell is elaborated leading to a new index 5.
This procedure naturally exposes the relationship between
structures and sub-structures. For instance, from the previous
example, we can derive that an AND4 can be described as
the AND between two AND2s or a PI and an AND3. From
this information, we generate a hash table that expresses for

1 1

2

∧

(a) Indexing of AND2

1 1

2

∧

(b) Indexing of OR2

1 1 1 1

2

4

3

∧

∧

∧

(c) Indexing of AND4

1 1 1 1

22

5

∧

∧

∧

(d) Indexing of AND4

Fig. 2: Indexing of patterns.

Indexes 1 2 3 4 5
1 2 3 4 - -
2 3 5 - - -
3 4 - - - -
4 - - - - -
5 - - - - -

(a) Pattern Table

Indexes Gates
2 AND2; OR2
4 AND4
5 AND4

(b) Index Table

TABLE I: Pattern and Index Table

each structure and substructure how they can be obtained by
ANDing smaller substructures. Such a table is the pattern
table. Additionally, we generate another hash table, named
the index table, which relates the pattern indexes representing
structural patterns to corresponding cells. Tables Ia and Ib
show the pattern table and index table for the patterns shown
in Figure 2.

E. Pattern matching in cut enumeration

During cut enumeration, each cut is assigned to a pattern
index that identifies the underlying pattern covered by the cut.
Differently from Boolean matching, this operation does not
require computing the function of the cut. Instead, the pattern
index is computed during the cut merging using the pattern
table. Specifically, the pattern index of a cut c, obtained by
merging two cuts u and v, is assigned by looking in the pattern
table for an entry with the pattern of u and pattern v as fanins.
Initially, a trivial cut is associated with the pattern index 1.
Then cuts are computed in topological order and patterns are
assigned.

Given a cut and its associated pattern index, pattern match-
ing retrieves the set of cells using the index table. Since the
cells are in the NPN−equivalence class, correct permutation,
and negations are applied during mapping.

IV. HYBRID MATCHING

In this section, we present our main contribution: hybrid
matching, a matching algorithm that combines the Boolean
and pattern matching techniques presented in Section III,
addressing the shortcomings of both strategies and achieving

a b c c b d

p

r

q

t

s

∧

∧

∧

∧

∧

Fig. 3: Subject graph with functional redundancy

better quality-of-results. We first compare the advantages and
disadvantages of Boolean and pattern matching to then present
the algorithm for hybrid matching.

A. Boolean vs. Structural

Boolean matching typically yields results of superior quality
compared to pattern matching for a few reasons. First, Boolean
matching is not restricted to full-DSD functions. Second,
Boolean matching inherently removes structural redundancies
present in the subject graph. However, Boolean matching
is also typically slower because it requires computing the
Boolean function and matching in the NP−equivalence class.
Boolean matching in NP−equivalence is typically addressed
by enumerating all the NP−configurations of the cells as
explained in Section III-A. This procedure may generate up
to n! · 2n configurations for a cell with n inputs. This has
two consequences. First, a Boolean library contains many
configurations, leading to more matches and larger mapping
time. Second, NP−matching hinders scalability to cells of
more than 6-inputs.

Although pattern-matching results are generally of inferior
quality, the matching time is significantly smaller. Indeed,
pattern matching supports larger cells because its matching
complexity depends on the number of patterns generated
which is typically small for full-DSD functions after filter-
ing for symmetries. Informally, the number of minimum-
size patterns for large full-DSD cells is significantly lower
than the NP configurations needed by Boolean matching.
Additionally, run time also benefits from the reduced number
of matches per cut compared to Boolean matching. Because
of this, the technology mapping algorithm is faster during
selection. Moreover, despite Boolean matching’s capability
to detect functional redundancy in the subject graph, pattern
matching can sometimes produce better results.

Using an example observed in our experiments, let us sup-
pose that the subject graph presents the structure of Figure 3
and that the ASAP 7nm cell library [18] is employed. The
structure presents functional redundancies and implements
the following Boolean function: (a ∨ b ∨ c) ∧ (c ∨ b ∨ d).
Since pattern matching is purely based on the structure, it
ignores redundancies and matches the subject graph to the
6-input OA33 cell, which implements the following Boolean
expression: (a ∨ b ∨ c) ∧ (d ∨ e ∨ f). Differently, Boolean
matching detects a functional support of 4 variables and
consequentially searches for 4-input cells to match. However,

Algorithm 2 Hybrid Matching
1: Input: Boolean library bool lib, pattern library pat lib, Boolean

network N , cut size Boolean k, cut size pattern l, bool
do pattern, bool do bool

2: Output: Match Set match set
3: if do pattern then
4: foreach node n ∈ N do
5: cut pat[n]← pattern cuts merge(cut pat, n, l)
6: match pat[n]← pattern match(cut pat[n], pat lib)
7: end for
8: end if
9: if do bool then

10: foreach node n ∈ N do
11: cut bool[n]← bool cut merge(match set, n, k)
12: match bool[n]← bool match(cut bool[n], bool lib)
13: match set[n]← union(match pat[n], match bool[n])
14: end for
15: end if
16: return match set

due to variable b being binate (present in two polarities), such
a cell cannot be found, leading to a mapping that employs an
AND3 and an AOI31 cell. This causes lower quality of results
for both area and delay compared to pattern matching.

B. Integrating Boolean and pattern matching

Initially, both pattern and Boolean libraries are generated
as described in Section III. In hybrid matching, two distinct
phases of cut enumeration are performed, one for pattern
matching and another for Boolean matching. Algorithm 2
shows the algorithm to compute cuts and matches. First,
cuts for pattern matching are enumerated and matched for
every node of the subject graph following the procedure of
Section III-E. Subsequently, for every node of the subject
graph, cuts for Boolean matching are enumerated and matched
as explained in Section III-A. However, at this step, the
algorithm joins the set of Boolean and structural cuts together
with their matches. The union and cut merge operation follows
the priority cuts paradigm [8] for which a limited number
of cuts are saved for each node and are sorted according
to a cost function depending on delay, area, and size. This
is a crucial point in the algorithm, as this procedure allows
us to combine the best results of both Boolean and pattern
matching, overcoming the respective shortcomings. Note that
Boolean cuts are computed starting from the merged cut sets.
Additionally, Hybrid matching can optionally perform only
Boolean or pattern matching, by selecting the parameters
do bool and do pat.

Algorithm 2 requires two distinct phases of cut enumeration
and matching since cuts for Boolean or pattern matching have
different characteristics. Cuts for Boolean matching require
the computation of the truth table, are limited to 6 inputs, and
have redundancies removed in the support. Contrarily, cuts for
pattern matching need only a pattern index, are canonicalized
on symmetries, and keep functional redundancies. Given these
differences, the two types of cuts are incompatible during the
cut merging operation.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of hybrid
matching in a technology mapper. We compare it to the state-
of-the-art Boolean mapper map implemented in ABC1, which
represents the baseline of our experiments. Furthermore, we
compare the hybrid approach against our Boolean and pattern
matching method by changing the parameters do bool and
do pat of Algorithm 2.

A. Setup

The Boolean, structural, and hybrid matching methods have
been implemented in C++17 as an extension to the technology
mapper in [7] and are available in the open-source logic
synthesis framework Mockturtle2 [3]. For the experiments, we
use the EPFL combinational benchmark suite [19] containing
combinational circuits in the form of AIGs. All the results
were verified using the combinational equivalent checker in
ABC. We employ the ASAP7 7nm cell library [18], pre-
processed by OpenLane3. The experiments were conducted
on WSL (Windows Subsystem for Linux) version 1.0 on a
2.5GHz Intel i5 dual-core. For every benchmark, we provide
the area and delay results and the total run time. The maximum
cut size for Boolean matching is 6, and for pattern matching is
9. Moreover, a maximum of 16 cuts are stored for each node.

B. Delay and Area-oriented Mapping

The results for delay-oriented mapping are shown in Table
II. As can be seen, the hybrid mapper obtains an average area
improvement of around 9% compared to the mapper in ABC,
6% compared to the Boolean mapper, and 4% compared to
the structural mapper. This is made possible by the usage
of both Boolean and pattern-matching cuts during mapping.
On the one hand, in benchmarks such as div, max, and sin,
the presence of large cuts extracted using pattern matching
determines a considerable area reduction over the Boolean
approach. On the other hand, for benchmarks such as voter and
hyp, the employment of XOR and Majority cells is the reason
for better results compared to the structural mapper. Delay
results are similar between the hybrid, Boolean, and ABC
mappers for most benchmarks. Only for a few of them, the
hybrid mapper achieves slightly worse delay values, resulting
in a negative average improvement over the Boolean mapper.
This is mainly due to the absence of NP-configurations in
structural patterns, resulting in fewer matches being found
by pattern matching. Nonetheless, the small negative result
is greatly outbalanced by the noticeable area reduction, which
peaks at 34% in the case of bar. Regarding run time, the hybrid
mapper achieves an average speedup of 1.27x compared to the
Boolean mapper, and 1.54x compared to the ABC mapper.
This is mainly caused by the employment of structural cuts.
These cuts typically present fewer matches than the Boolean
ones. Hence, on average, the number of matches per node

1Available at: https://github.com/berkeley-abc/abc
2Available at: https://github.com/lsils/mockturtle
3Available at: https://github.com/The-OpenROAD-Project/OpenLane

reduces, decreasing also the run time during selection. Indeed,
a structural mapper achieves the lowest run time.

The results for area-oriented mapping are shown in Table
III. Similar considerations apply with the only difference of
enhanced delay results when using hybrid matching.

VI. CONCLUSION

In this work, we presented a method that combines the
strengths of pattern and Boolean matching to achieve better
quality. On the one hand, hybrid matching supports large
standard cells. On the other hand, it offers superior quality
compared to pattern matching. In the experiments, we in-
tegrated hybrid matching in a technology mapper showing
better average area and run time results compared to Boolean
matching for similar delay values. Moreover, hybrid matching
proved to achieve results of superior quality for both area and
delay compared to pattern matching on average.

ACKNOWLEDGMENTS

This research was supported by the SNF grant “Supercool:
Design methods and tools for superconducting electronics”,
200021 1920981, and Synopsys Inc.

REFERENCES

[1] K. Keutzer, “DAGON: Technology binding and local optimization by
DAG matching,” in Proc. DAC, 1987.

[2] F. Mailhot and G. De Micheli, “Technology mapping using boolean
matching and don’t care sets,” in EURO-DAC, 1990.

[3] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, and G. D. Micheli, “The EPFL logic synthesis libraries,”
CoRR, vol. abs/1805.05121, 2019.

[4] Y. Kukimoto, R. Brayton, and P. Sawkar, “Delay-optimal technology
mapping by DAG covering,” in Proc. DAC, 1998.

[5] L. Stok, M. Iyer, and A. Sullivan, “Wavefront technology mapping,” in
Proc. DATE, 1999.

[6] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping,” in Proc. ICCAD,
2005.

[7] A. T. Calvino, H. Riener, S. Rai, A. Kumar, and G. De Micheli,
“A versatile mapping approach for technology mapping and graph
optimization,” in ASP-DAC, 2022.

[8] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Proc. FPGA, 1999.

[9] L. Benini and G. De Micheli, “A survey of Boolean matching techniques
for library binding,” ACM Trans. Design Autom. Electr. Syst., July 1997.

[10] G. De Micheli, “Technology mapping of digital circuits,” in Proc.
Advanced Computer Technology, Reliable Systems and Applications,
1991.

[11] B. Hu, Y. Watanabe, and M. Marek-Sadowska, “Gain-based technology
mapping for discrete-size cell libraries,” in Proc. DAC, 2003.

[12] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for area
minimization in LUT-based FPGA technology mapping,” TCAD, 2006.

[13] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” Trans. CAD, 2007.

[14] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic decom-
position during technology mapping,” Trans. CAD, 1997.

[15] A. T. Calvino and G. De Micheli, “Technology mapping using multi-
output library cells,” Proc. ICCAD, 2023.

[16] Bertacco and Damiani, “The disjunctive decomposition of logic func-
tions,” in Proc. ICCAD, 1997.

[17] V. Callegaro, F. S. Marranghello, M. G. A. Martins, R. P. Ribas, and
A. I. Reis, “Bottom-up disjoint-support decomposition based on cofactor
and boolean difference analysis,” in Proc. ICCD, 2015.

[18] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm finFET predictive
process design kit,” Microelectronics Journal, 2016.

[19] L. Amarù, P.-E. Gaillardon, and G. D. Micheli, “The EPFL combina-
tional benchmark suite,” in Proc. IWLS, 2015.

TABLE II: Results for Boolean, structural, hybrid matching for delay-oriented technology mapping. Green values represent
dominant values for area or delay.

Benchmark ABC map Boolean Structural Hybrid
Area Delay Area Delay Area Delay Area Delay

adder 92.53 2577.43 84.23 2573.43 89.83 2573.79 96.74 2572.58
bar 325.63 168.08 356.60 168.08 214.52 157.72 233.82 172.61
div 5597.18 43765.70 5362.89 43769.81 4626.64 44048.23 4587.79 43845.29
hyp 16373.78 195822.72 15158.98 195345.80 15997.90 195798.20 15329.77 195256.90
log2 2158.33 3954.51 2044.40 3846.34 2041.99 4109.75 1808.55 3913.82
max 226.59 2213.23 211.56 2213.23 195.03 2257.11 182.24 2232.52
multiplier 1942.83 2738.95 1909.41 2669.16 1900.97 2726.37 1686.94 2661.85
sin 425.40 1819.24 456.31 1760.28 434.31 1854.80 401.59 1817.37
sqrt 1838.48 47266.98 1883.23 47264.79 1911.20 47580.56 1838.26 47288.87
square 1193.80 2516.39 1104.55 2505.10 1218.89 2521.89 1123.76 2503.20
arbiter 766.68 898.75 766.32 898.75 766.32 898.75 766.41 898.75
cavlc 41.55 187.04 40.23 187.04 39.21 186.44 38.85 186.07
ctrl 8.76 102.49 8.26 102.49 10.63 120.31 8.29 101.21
dec 30.83 65.72 30.83 65.72 30.11 66.19 27.44 66.15
i2c 79.05 182.65 78.06 182.65 71.75 184.57 72.29 182.65
int2float 13.87 181.00 13.37 181.00 12.08 181.17 12.12 181.00
mem ctrl 2761.82 1107.42 2733.28 1100.46 2575.61 1130.11 2578.26 1118.13
priority 86.64 2501.95 83.70 2501.95 81.87 2510.03 81.95 2501.95
router 18.89 278.53 19.36 274.05 20.23 278.83 19.14 274.05
voter 1522.27 741.93 1595.57 782.75 1948.72 749.02 1510.62 745.68

Total time (s) 34.20 21.50 4.78 15.61
Ratio 1.000 1.000 0.970 0.994 0.949 1.014 0.907 0.998

TABLE III: Results for Boolean, structural, hybrid matching for area-oriented technology mapping. Green values represent
dominant values for area or delay.

Benchmark ABC map -a Boolean Structural Hybrid
Area Delay Area Delay Area Delay Area Delay

adder 57.40 3548.84 57.40 3548.84 73.88 2946.34 57.40 3549.45
bar 191.81 238.53 156.90 218.45 143.64 201.59 143.64 201.59
div 4047.23 79696.65 3912.10 80724.15 3865.42 91466.62 3644.84 66682.48
hyp 14365.80 300293.70 13301.86 247283.50 14196.88 380409.30 13218.19 253042.40
log2 1637.35 6620.43 1532.25 5406.38 1663.60 7944.24 1525.40 6144.87
max 166.18 2862.23 158.84 2967.26 147.29 3779.87 143.52 2955.95
multiplier 1495.42 4985.99 1318.02 3581.94 1466.00 5710.86 1331.50 3619.38
sin 308.47 3053.09 287.06 2806.80 292.89 3481.79 281.03 2865.45
sqrt 1463.56 107677.55 1370.76 112605.30 1377.46 100853.50 1367.95 112662.50
square 1167.34 3711.58 1066.28 3512.69 1132.82 3612.90 1070.01 3626.51
arbiter 569.40 1018.69 557.84 999.87 557.84 1015.47 557.72 999.87
cavlc 8.16 131.57 36.16 233.30 34.75 247.51 34.93 242.30
ctrl 8.16 131.57 7.96 125.09 9.40 154.49 7.38 127.51
dec 27.5 85.83 27.14 72.30 27.14 72.30 27.14 72.30
i2c 78.20 219.62 74.04 256.62 68.20 266.62 68.99 265.66
int2float 12.88 205.02 12.39 206.51 11.34 210.38 11.27 217.47
mem ctrl 2673.51 1800.28 2538.88 1975.53 2352.34 1679.64 2355.64 1727.51
priority 61.95 2795.01 59.48 3635.47 51.11 2943.53 51.06 2920.70
router 14.77 473.94 13.33 414.48 13.87 427.66 13.11 386.80
voter 905.61 1266.69 807.67 1197.85 862.19 1323.55 815.19 1170.45

Total time (s) 35.87 22.20 4.77 16.54
Ratio 1.000 1.000 0.937 0.966 0.954 1.049 0.902 0.947

