
Algebraic and Boolean Methods for SFQ
Superconducting Circuits

Alessandro Tempia Calvino, Giovanni De Micheli
Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

Abstract—Rapid single-flux quantum (RSFQ) is one of the
most advanced and promising superconducting logic families,
offering exceptional energy efficiency and speed. RSFQ technol-
ogy requires delay registers (DFFs) and splitter cells to satisfy the
path-balancing and driving-capacity constraints. In this paper, we
present a comprehensive exploration of methods for synthesizing
and optimizing SFQ circuits. Our approach includes algebraic
and Boolean optimization techniques that work on the xor-and
graph (XAG) representation of combinational logic. Additionally,
we introduce a technology mapping method to satisfy the path-
balancing and fanout constraints while minimizing the area.
Finally, we propose a synthesis flow for SFQ circuits. In the
experimental results, we show an average reduction in the area
and delay of 43% and 34%, respectively, compared to the state-
of-the-art.

I. INTRODUCTION

Superconducting electronics (SCE) stands out as one of
the most promising post-CMOS technology, proposing high-
speed and power-efficient solutions. Superconducting circuits
are based on Josephson junctions (JJs) and operate at a few
degrees Kelvin (typically 4K) where resistive effects are neg-
ligible. The switching speed of Josephson junctions supports
the realization of circuits clocked up to several tens of Giga-
hertz [1] and considerably lower power consumption compared
to CMOS, even considering the refrigeration power [2].

Rapid Single-Flux Quantum (RSFQ) is the most mature
superconducting logic family [3]. Multiple variants of RSFQ,
such as the eSFQ [4], are commonly grouped under the term
SFQ. Unlike CMOS, SFQ circuits encode the logic “true” in
a small voltage pulse and the logic “false” in a pulse absence.
Consequently, most SFQ logic gates are clocked to discern
between these two states. These gates function as latches,
with a clock input and one or more data inputs. When a
pulse arrives at a data input, it alters the internal state of
the gate. Subsequently, a clock pulse resets the gate to its
initial state and may generate an output pulse based on the
internal state. As SFQ circuits rely on the clock signal, they
necessitate pipelining at the gate level. To ensure correct data
propagation, i.e., data at each gate must be present at specific
time-frames for correct computations, SFQ circuits require
delay registers (DFFs) in the combinational paths so that every
path from primary inputs to logic gates traverses the same
number of clocked gates. This constraint is referred to as
path balancing. Furthermore, due to the quantized nature of
SFQ pulses, most RSFQ primitives have a maximum driving
capacity of one gate. Consequently, a special cell called splitter
is necessary to drive multiple fanouts.

Due to path-balancing DFFs and splitters, the area of
SFQ circuits can grow prohibitively large. In the literature,

several approaches have been proposed to tackle this problem.
In [5], a few logic synthesis algorithms have been enhanced
by integrating an approximate path-balancing cost. A similar
extension has been proposed in [6] for technology mapping.
Post-mapping optimization of path-balancing DFFs has been
also proposed in [7] using retiming [8]. Other work proposes
new SFQ gates [9], [10] and different clocking schemes [11],
[12] to decrease the design cost.

In this paper, we present an innovative synthesis flow to
carry out the optimization and mapping for SFQ technology.
In particular, we focus on delay optimization which is key to
synthesizing efficient SFQ circuits. Technology-independent
optimization is carried over the xor-and graph (XAG) since
it closely abstracts the logic primitives of SFQ. In fact, both
2-input XOR and 2-input AND (OR) gates have similar delay
and area costs. Moreover, XAGs are more compact than the
commonly used and-inverter graph (AIGs) offering better
opportunities to restructure logic through additional rewriting
rules and Boolean methods. We present several techniques
namely, mapping, re-mapping, algebraic rewriting, exclusive
sums-of-products (ESOP) balancing, Boolean rewriting, and
resubstitution. Technology mapping is performed directly on
the XAG without previous decomposition into an AIG. We
describe post-mapping methods to satisfy the path-balancing
and fanout constraints. Finally, we use minimum-area retiming
to optimally minimize the number of inserted balancing DFFs.

In the experiments, we show that our synthesis flow effi-
ciently reduces the delay without causing an area explosion.
We compare against the state-of-the-art showing 43% and 34%
reduction on average in area and delay, respectively.

II. BACKGROUND

In this section, we introduce the basic notations and the
necessary background on RSFQ ciruits.

A. Rapid Single-Flux Quantum

Rapid Single-Flux Quantum (RSFQ) is a fast and energy-
efficient superconducting logic family [3]. The particularity
of the RSFQ technology is that it is based on pulsing logic
utilizing Josephson junctions (JJs) as the primary switching
elements. Different variants have been proposed in the liter-
ature to improve the energy efficiency of RSFQ, such as the
energy-efficient single-flux quantum (eSFQ, [4]). In this paper,
we refer in general to all the variants as SFQ.

Logic cells in SFQ technology are implemented as clocked
elements. The behavior of these cells can be described as
a state machine, where data input pulses modify the cell’s
state, and clock pulses generate the output signal based on

b

a
s

c

(a) CMOS circuit

b

a
s

c
s

s

s

(b) Equivalent RSFQ circuit

Fig. 1: RSFQ mapping with clocked gates, path-balancing
DFFs, splitters, and balanced POs

that state while resetting it. Hence, a gate can be viewed
as a combination of combinational logic coupled with a
DFF. Consequently, SFQ circuits may implement gate-level
pipelining. SFQ circuits require delay registers (DFFs) in
the combinational paths to ensure correct data propagation.
These DFFs ensure that each path from the primary inputs
to logic gates traverses the same number of clocked gates, a
condition known as path balancing. Additionally, to enable
gate-level pipelining, i.e., new data can be provided every
clock cycle, also POs must be balanced. Balanced POs are a
constraint in sequential systems where the register-level clock
is a multiple of the gate-level clock. Due to the quantized
nature of SFQ pulses, most RSFQ primitives have a maximum
driving capacity of just one gate. A special cell called splitter
is employed to drive multiple fanouts, commonly up to 2 gates.

Figure 1 shows the difference between a CMOS circuit and
an equivalent RSFQ circuit. Notably, in Figure 1b gates are
clocked and DFFs are inserted to satisfy the path-balancing
constraint. Specifically, a DFF is placed before the OR gate,
and another one before the output C. Last, splitter cells are
inserted to drive multiple fanouts.

Cell libraries in SFQ technology typically comprise a set
of basic combinational blocks, such as DFF, INV, AND2,
OR2, and XOR2 [6], [13]. The evaluation of the area in SFQ
technology, prior to place and route, is commonly based on
counting the number of Josephson junctions (JJs) utilized.
Similarly, the delay is typically expressed as the maximum
number of cycles required for the circuit to complete its
computation. This value corresponds to the length of the
path that traverses the highest number of clocked cells in
the combinational logic. The clock frequency is typically
neglected before place and route as hard to characterize [6].

B. Notations and Definitions

A Boolean network is modeled as a directed acyclic
graph (DAG) with nodes represented by Boolean functions.
The sources of the graph are the primary inputs (PIs) of the
network, the sinks are the primary outputs (POs). For any node
n, the fanins of n is a set of nodes that have an outgoing edge
towards n. Similarly, the fanouts of n is a set of nodes that
have an incoming edge from n.

A cut C is a pair (n, K), where n is a node called root,
and K is a set of nodes, called leaves, such that 1) every path
from any PI to node n passes through at least one leaf and
2) for each leaf v ∈ K, there is at least one path from a PI
to n passing through v and not through any other leaf. The
size of a cut is defined as the number of leaves. A cut covers

all the nodes encountered on the paths between the leaves and
the root, including the root and excluding the leaves.

A cover of a Boolean network is a set of cuts such that
1) each node in the network is covered by at least one cut
and 2) the root of each cut in the cover is either a PO of the
network or a leaf of one or more cuts in the cover. A cover
can be extracted in reverse topological order by selecting cuts
rooting in the POs and recurring on the leaves.

III. OPTIMIZATION FOR SFQ CIRCUITS

Technology libraries for SFQ are typically simple and
implement basic functions. Notably, logic cells within these
libraries are all clocked and have similar areas. Interest-
ingly, XOR cells demonstrate a similar level of efficiency
as AND cells. Based on this observation, we center our
technology-independent synthesis flow for SFQ on xor-and
graphs (XAGs). XAGs have multiple advantages over the
commonly used and-inverter graphs (AIGs). XAGs are more
compact since they contain one additional primitive, which
is implemented using 3 2-input ANDs in AIGs. Consequently,
circuits represented by XAGs tend to be smaller and shallower.
Moreover, XAGs offer more opportunities to restructure logic
through additional rewriting rules and Boolean methods.

Minimizing the logic depth is essential for a fast and
compact SFQ circuit. First, the logic depth directly relates
to the circuit latency. Latency is generally dominated by the
number of clock cycles needed to realize a function. Since
each SFQ gate is clocked, the latency can be approximated
as the logic depth of the circuit. Second, delay optimization
helps to minimize the number of necessary balancing DFFs.
Intuitively, longer critical paths require more DFF elements
due to longer paths to balance.

In this section, we present several techniques aimed at opti-
mizing delay and area over the XAGs, thereby enhancing the
overall efficiency and performance of SFQ circuits. First, we
present a method to obtain an optimized XAG representation.
Then, we present techniques that target delay optimization.
Finally, we describe two methods to reduce the area.

A. Obtain the initial XAG

Given a generic Boolean network, the first problem to
address is how to obtain a good initial xor-and graph (XAG)
representation. To achieve it, we employ the state-of-the-
art mapping strategy based on [14]. It consists of a delay-
oriented mapping algorithm that leverages a database of size-
optimum XAG structures as a library. The XAG structures
are derived using SAT-based exact synthesis over the 4-input
NPN classes [15]. Multiple minimum structures with different
pin-to-pin delays are stored for each class. The utilization of
this method yields significantly improved results compared to
merely identifying XOR gates, as it incorporates Boolean opti-
mization and rewriting by utilizing locally optimum structures.

B. Depth Optimization

We propose three efficient algorithms, one algebraic and
two Boolean, to optimize depth over the primitives AND and
XOR.

0

a

b

1

c

0

d

1

f

4

∧

⊕

∧

(a) Before rewrite

0

a

0

a

b

1

c

0

d

1

f

3

∧

∧∧

⊕

(b) After rewrite

Fig. 2: Rewriting with AND-XOR distributivity in Ψ

1) XAG algebraic rewriting: Boolean algebra defines prim-
itive transformations and properties, referred to as a set Ω. In
the context of delay optimization, a subset of these fundamen-
tal properties plays an important role. In particular, for XAGs,
we can identify the following algebraic rules contained in Ω:

Ω.AAND : a ∧ (b ∧ c) = (a ∧ b) ∧ c (1)
Ω.AXOR : a⊕ (b⊕ c) = (a⊕ b)⊕ c (2)
Ω.DAND−OR : a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (3)

where (1) is the associative property of AND, (2) is the
associative property of XOR, and (3) is the distributive prop-
erty of AND over OR. Note that the associative property
of OR is contained in (1) and that (3) is valid also for
AND-XOR. In XAGs, transformations (1) and (2) can push
critical signals forward towards the POs, when the associative
property holds. Transformation (3), on the other hand, is less
directly applicable. Experimental results have shown that the
transformation is rarely useful, especially in optimized circuits.
Nevertheless, two powerful transformations can be derived
from (1), (2), and (3) when considering logic cones of 3
operators and the interaction between AND-OR and AND-
XOR. We refer to the extended set as Ψ:

Ψ.DAND−OR : a ∧ (b ∨ (c ∧ d)) = (a ∧ b) ∨ ((a ∧ c) ∧ d)
(4)

Ψ.DAND−XOR : a ∧ (b⊕ (c ∧ d)) = (a ∧ b)⊕ ((a ∧ c) ∧ d)
(5)

These two rules define the distribution of AND over OR (1)
and AND over XOR (2). Note that in an XAG, the OR
is represented as an AND with inverted inputs and output
according to De Morgan’s laws.

Figure 2 shows an example of how the derived AND-
XOR distributive rule can reduce the delay of a circuit. The
transformation is applied to the XAG in Figure 2a. The critical
signal d binds the arrival time at the output. The transformation
pushes signal d forward by distributing a through the XOR
operation and applying AND-associativity to d. The result in
Figure 2b shows a delay reduction by one, from 4 to 3, at the
cost of one additional AND operation.

The algebraic rules are graph-based. Hence, they are ex-
tracted structurally from an XAG. We employ rules to detect
properties and apply transformations based on input arrival

Algorithm 1: XAG depth algebraic rewriting
1 Input : XAG N
2 Output: Optimized XAG N
3 foreach edge p ∈ PO(N) do
4 if in critical path(N , p) then
5 foreach node n ∈ critical path(N , p) do
6 Ω.AAND(N , n);
7 Ω.AXOR(N , n);
8 Ψ.DAND−OR(N , n);
9 Ψ.DAND−XOR(N , n);

10 end
11 end
12 end
13 return N ;

times, inverted edges, and gate type. Node duplication is also
enabled in the case of nodes with multiple fanouts.

Algorithm 1 shows how the algebraic rewriting rules are
carried out on an XAG. The algorithm applies rewriting rules
on critical paths reachable from one PO at a time. The
critical paths are updated after every successful move. The
algorithm first tries to apply moves based on associativity,
which incur less area increase compared to distributive rules.
When associativity fails, distributive rules are attempted.

2) ESOP balancing: Exclusive-Sums-of-Products (ESOPs)
are a two-level representation of Boolean functions composed
of an exclusive OR of product terms. Differently from Sums-
of-Products (SOPs), which are based on the primitives AND
and OR, ESOPs utilize AND and XORs. In the SFQ context,
ESOPs are interesting since XORs are efficient gates. More-
over, for many Boolean functions, the number of cubes in
minimal ESOPs is lower than the number of cubes in minimal
SOPs [16].

SOP-balancing [17] is a scalable technique to optimize for
delay. It consists of extracting small cones of logic, generally
up to ten variables, converting them into SOPs, and applying
AND balancing to each term and the sum. In practice, each
term is considered as a multi-input AND and it is decomposed
into 2-input ANDs while minimizing the arrival time of the
term root. The sum is decomposed similarly into 2-input ORs.

In this work, we employ ESOP-balancing to achieve delay
optimization over the primitives AND and XOR. Algorithm 2
presents a high-level view of ESOP balancing. Given a large
XAG, cut enumeration [18] is used to break the circuit into
multiple logic cones. For each cone, an initial ESOP cover is
extracted using the algorithm described in [19] that computes
an exact minimum Pseudo-Kronecker expression (PKRMs).
PKRMs are a specific subset of ESOP expressions that can
be generated using only positive or negative Davio expansion
and Shannon expansion. In our implementation, we extract
PKRMs directly from truth tables without involving BDDs as
in the original formulation. Then, the initial cover is minimized
to obtain a compact ESOP using the EXORCISM family of
heuristics [20]. To reduce the run time, ESOPs are cached for
later reuse using a hash table. Next, AND- and XOR-balancing
is performed to generate a decomposition tree that minimizes
the arrival time at the root n. The arrival time of a leaf is
defined as the arrival time of the best cut computed at the

Algorithm 2: ESOP balancing
1 Input : XAG N
2 Output: Optimized XAG M
3 C ← ∅;
4 foreach node n ∈ N in topological order do
5 C(n)← compute cuts(N , C, n);
6 foreach cut c ∈ C(n) do
7 tt← compute truth table(N , c);
8 esop← compute exact pkrm(tt);
9 exorcism(esop);

10 compute balancing cost(N , C, n, esop);
11 if better delay than best cut then
12 set best cut(C(n), c);
13 end
14 end
15 end
16 area recovery(N , C);
17 M ← extract cover(N , C);
18 return M ;

leaf. Algorithm 2 works similarly to a technology mapper [14],
[17]. In the first section, from line 4 to line 15, the algorithm
computes the cuts and selects one having the best arrival time
for each node. At line 16, the area is recovered by selecting
lower-cost decompositions in paths where the slack is positive.
Area recovery works similarly to [14]. This step is crucial
to minimize the area increase derived from balancing due to
logic duplication. Finally, at line 17, a cover is extracted and
converted into a balanced and delay-optimized XAG.

3) Remapping: : XAG-remapping [14] is a rewriting tech-
nique that maps an XAG network to obtain a new XAG
implementation. A library of pre-computed XAG structures
is used to optimize the logic. This method is equivalent to
the one in Section III-A but with the difference that the input
and output data structures are the same. In the synthesis flow,
remapping minimizes the delay first and then recovers the area
constrained by the found delay.

C. Area recovery

In area recovery, rewriting and resubstitution have been
extended to work for XAG optimization.

DAG-aware rewriting [21] is a fast greedy algorithm that
aims at minimizing the size of a logic network by iteratively
replacing sub-graphs rooted in a node with smaller pre-
computed structures while preserving the functionality at the
root node. A database of pre-computed structures covers all
the 4-variable functions classified into the NPN equivalence
classes for compactness [15]. In our implementation, pre-
computed structures are the same used for previous mapping
tasks. Differently from remapping, this algorithm is DAG-
aware, i.e., it can reuse nodes that are already present in
the network. Hence, it is more suited for area optimization.
Our implementation constraints transformations to not increase
the circuit depth. Thus, required times are used to filter
transformations.

Resubstitution (re)expresses the function of a node using
other nodes, called divisors, that are already present in the
network. The transformation is accepted if the new imple-
mentation of a node is better in size compared to the current

implementation of the node in terms of its immediate fanins.
This approach generalizes to k-resubstitution, which adds k
new nodes and removes at least k + 1 nodes. In XAG-
resub [22], added gates are 2-input ANDs and XORs with
optional inverters at the inputs/outputs.

IV. TECHNOLOGY MAPPING

After technology-independent optimization, technology
mapping translates the optimized XAG in terms of the connec-
tion of cells from an SFQ cell library. This process involves 3
steps: mapping, balancing DFF insertion, and splitter insertion.

A. Mapping

In our approach, we adopt a direct mapping strategy that
starts from xor-and graphs (XAGs) as the subject graph,
enabling us to efficiently map into the SFQ cell library. To
achieve reduced latency and area, the mapper is configured for
minimal delay, focusing on optimizing performance. To further
enhance the quality of the mapping and minimize delays, we
introduce a pre-computed library of supergates [23]. These
supergates are single-output networks constructed from a few
library cells, treated as a single complex cell. The use of
supergates provides the distinct advantage of mitigating the
structural bias of the mapping algorithm, which often heavily
relies on the initial subject graph structure. The supergates are
generated recursively in multiple rounds using an enumeration
process, ensuring a thorough exploration of possibilities.

Previous work in SFQ mapping introduced a technology
mapper called PBMap [6], which incorporates an approximate
path-balancing cost into the area cost function. The approach
defines this cost based on dynamic programming, ensuring
local-optimal balancing for logic trees. However, when dealing
with optimized logic in a DAG format, where nodes may
have multiple fanouts, using path-balancing cost in technol-
ogy mapping presents three key disadvantages. First, PBMap
overlooks area costs and relies solely on path-balancing costs
that only work for trees of logic. In contrast, DAG-mapping
approaches and heuristics have been demonstrated to be
superior in comparison to minimizing delay and area [24].
Second, the heuristic used in PBMap treats the path-balancing
cost for each cell as independent, disregarding the potential
sharing of DFFs among cells connected to the same node.
Consequently, PBMap overestimates the penalty of imbalanced
solutions. Additionally, the exact DFF sharing information
remains unknown until the entire network is mapped, making
it challenging for their dynamic programming approach to
efficiently capture this complexity. Moreover, the number of
padding DFFs can be further optimized in a post-processing
phase by moving DFFs upwards or backward through logic.
Last, the simplicity of SFQ libraries enables technology map-
pers to already map logic trees with optimal solutions by
prioritizing local delay first and area second, without the need
to incorporate additional balancing costs. It is worth noting that
this proposition may not hold for libraries containing multi-
input cells (more than 2 inputs). However, these complex cells
lack efficient implementations in SFQ. Experimental results
confirmed these claims, indicating that delay-oriented mapping
yields better area results on average compared to the cost

function in PBMap. Furthermore, attempts to use the balancing
cost as a tie-breaker during cell selection heuristics have not
demonstrated any significant advantage.

Similar considerations apply to the integration of the
path-balancing cost in technology-independent algorithms [5]
where also real critical paths are not known. For instance, since
inverters are not represented, their contribution to the delay is
not considered during the optimization leading to incorrect
balancing.

B. Path balancing
After technology mapping, our approach inserts padding

DFFs to fulfill the balancing constraint of the circuit for
internal nodes and POs. The DFFs are inserted utilizing ASAP
scheduling, ensuring that the arrival times at each cell’s input
are synchronized (balancing constraint), while maintaining a
constant delay at their outputs (ASAP balancing policy). To
optimize the area, our method shares DFFs among nodes
connected to the same input node at the same clock level.
This algorithm guarantees an optimal DFF insertion for the
ASAP schedule, and it operates linearly with respect to the
number of gates in the circuit.

After initial insertion, balancing DFFs are minimized using
the minimum-area retiming algorithm in [25], [26]. This
algorithm iteratively pushes DFFs backward toward the PIs
in order to globally minimize their number.

C. Splitter insertion
As the final stage of technology mapping, we introduce

splitter cells to address the fanout constraint. Splitters are
inserted as balanced trees, considering that logic is inherently
balanced. Given that splitters in SFQ have a driving capacity
of 2 gates, their number for any arbitrary gate n is equivalent
to |FO(n)|−1, where FO(n) represents the fanouts of gate n.

V. EXPERIMENTS

The methods and the synthesis flow have been implemented
in C++17 in the open-source logic synthesis framework Mock-
turtle [27]. The experiments have been conducted on an Intel
i5 quad-core 2GHz on MacOS. All the results were verified
to be functionally equivalent and to fulfill the path-balancing
and fanout constraints.

A. Synthesis flow
Algorithm 3 shows the synthesis flow used in our experi-

ments. The initial point is a Boolean network which is simply
an and-inverter graph (AIG) in our experiments. First, some
fast and light area optimizations are performed using the area-
recovery algorithms in section III-C. The objective is to get
a compact starting point by removing logic redundancy. It is
crucial to not over-optimize at this step, and transformations
are accepted only if there is a significant improvement and
zero delay increase. Then, the core optimization starts using
the algorithms in Section III. An iteration alternates delay
optimization with area recovery. On the one hand, more the
iterations better the delay that can be obtained in the final
SFQ circuits. On the other hand, over-optimization leads to
area increase. In our experiments, we perform one iteration.
After, technology-independent optimization, the SFQ circuit

Algorithm 3: Synthesis flow
1 Input : Boolean network N , Iterations i, Library L
2 Output: SFQ circuit M
3 xag ← map to xag(N);
4 fast area opt(xag);
5 for i iterations do
6 xag depth algebraic rw(xag);
7 xag resub(xag);
8 xag ← map to xag(xag);
9 xag ← esop balancing(xag);

10 xag boolean rw(xag);
11 end
12 M ← map(xag, L);
13 path balance(M);
14 min area retime(M);
15 insert splitters(M);
16 return M ;

is obtained and optimized using the methods in section IV.
To maintain tractability and efficiency, we impose constraints
on the supergates. Specifically, we generate 6294 supergates
limiting the number of inputs to 5 and the number of cell
levels to 3.

The most computationally-intensive algorithm of the syn-
thesis flow is the minimization of path-balancing DFFs using
retiming. The complexity of retiming depends on the delay of
the circuit and the number of path-balancing DFFs. Neverthe-
less, problems of a million of DFFs can be solved in a few
seconds. All the other algorithms are linear w.r.t the number
of nodes in the circuit.

B. Comparing agaist the state-of-the-art

In our experiments, we conducted a comparison against
the current state-of-the-art RSFQ results in PBMap [6]. To
perform the evaluation, we utilized the Suny RSFQ cell library
[28]. This library shares the same cells as the one employed
in [6], which is not openly available, although the JJ count
per cell might vary slightly (delay and DFF count remain
unaffected). We report the results over the ISCAS [29] and
EPFL [30] benchmarks. The baseline consists of unoptimized
designs in the AIG format. We evaluate the quality of the
design in terms of JJ count for area and logic depth for la-
tency, as clock frequency cannot be truly characterized before
place and route. This is in line with prior work. Differently
from PBmap, we map the benchmarks to enable gate-level
pipelining. Hence, in our method, also POs are balanced.

Table I shows the results of the comparison. For our
approach, we show the size and depth of the optimized XAG,
and the area (number of JJs), number of path-balancing DFFs,
and delay (as number of cycles) of the obtained RSFQ circuit.
The time shows the total synthesis and mapping run time. For
PBMap, we show the area, number of DFFs, and delay. Our
synthesis algorithms considerably reduce the average size and
depth of the baseline by 21.72% and 46.30%, respectively.
After technology mapping, area, DFFs, and delay are reduced
by 43.00%, 24.20%, and 34.44% compared to PBMap. Our
approach obtains higher area and DFF count only on bench-
mark s38417 due to additional DFFs for PO balancing.

TABLE I: Evaluation of our method against the state of the art

Benchmark Baseline PBMap [6] Our method
Size Depth Area (JJs) DFFs Delay Size Depth Area (JJs) DFFs Delay Time (s)

c499 398 19 7758 476 13 217 9 4157 276 9 0.74
c880 325 25 12909 774 22 311 13 7187 482 14 0.85
c1908 341 27 12013 696 20 163 11 3634 287 11 0.74
c3540 1024 41 28300 1159 31 782 21 16278 798 22 2.03
c5315 1776 37 52033 2908 23 1096 17 23849 1735 16 2.08
c7552 1469 26 48482 2429 19 1010 17 22582 1824 16 2.97
s1196 477 19 15332 746 18 454 12 9701 506 12 1.35
s1238 532 23 17617 864 19 499 12 10060 572 13 1.41
s38417 9219 30 208289 8405 21 7492 16 209775 24125 17 5.64
sin 5416 225 215318 13666 182 5254 85 110254 5550 82 13.10
cavlc 693 16 16339 522 17 644 12 11888 381 12 1.70
dec 304 3 5469 8 4 304 3 5096 8 4 0.48
int2float 260 16 6432 270 16 210 10 3891 149 10 0.75
priority 978 250 102085 9064 127 490 13 10099 572 14 4.53

Improvement 21.72% 46.30% 43.00% 24.20% 34.44%

VI. CONCLUSION

In this work, we proposed a logic synthesis flow targeting
single-flux quantum (SFQ) superconducting circuits. Logic
optimization is performed on the xor-and graph (XAG) for
two reasons: i) SFQ primitive gates, namely the 2-input AND
and 2-input XOR, exhibit similar area and delay costs; ii)
XAGs are more compact than and-inverter graphs (AIGs)
and offer more opportunities to restructure logic. First, we
presented algebraic and Boolean methods that primarily target
delay optimization. Then, we presented a technology mapping
technique that involves supergates. Path-balancing DFFs are
inserted and then optimized using minimum-area retiming.
Finally, balanced splitter trees are inserted to satisfy the fanout
constraints. In the experiments, we showed an improvement
of 43%, 24%, and 34% for area, DFF count, and delay
respectively compared to the state-of-the-art.

ACKNOWLEDGMENTS

This research was supported by the SNF grant “Supercool:
Design methods and tools for superconducting electronics”,
200021 1920981, and Synopsys Inc.

REFERENCES

[1] T. Kawaguchi, M. Tanaka, K. Takagi, and N. Takagi, “Demonstration
of an 8-bit sfq carry look-ahead adder using clockless logic cells,” in
International Superconductive Electronics Conference, July 2015.

[2] D. S. Holmes, A. L. Ripple, and M. A. Manheimer, “Energy-efficient
superconducting computing—power budgets and requirements,” IEEE
Trans. on Applied Superconductivity, 2013.

[3] K. Likharev and V. Semenov, “RSFQ logic/memory family: a new
josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Trans. on Applied Superconductivity, 1991.

[4] O. A. Mukhanov, “Energy-efficient single flux quantum technology,”
IEEE Transactions on Applied Superconductivity, pp. 760–769, 2011.

[5] G. Pasandi and M. Pedram, “Balanced factorization and rewriting
algorithms for synthesizing single flux quantum logic circuits,” in Proc.
GLSVLSI, 2019.

[6] G. Pasandi and M. Pedram, “PBMap: A path balancing technology
mapping algorithm for single flux quantum logic circuits,” Trans. on
Applied Superconductivity, 2019.

[7] N. K. Katam and M. Pedram, “Logic optimization, complex cell design,
and retiming of single flux quantum circuits,” IEEE Trans. on Applied
Superconductivity, 2018.

[8] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, p. 5–35, jun 1991.

[9] R. Bairamkulov and G. De Micheli, “Compound logic gates for pipeline
depth minimization in single flux quantum integrated systems,” in Proc.
GLVLSI, 2023.

[10] R. Bairamkulov, A. T. Calvino, and G. De Micheli, “Synthesis of SFQ
circuits with compound gates,” in Proc. VLSI-SoC, 2023.

[11] K. Gaj, E. G. Friedman, and M. J. Feldman, Timing of Multi-Gigahertz
Rapid Single Flux Quantum Digital Circuits, p. 135–164. Springer US,
1997.

[12] G. Pasandi and M. Pedram, “An efficient pipelined architecture for
superconducting single flux quantum logic circuits utilizing dual clocks,”
IEEE Trans. on Applied Superconductivity, 2020.

[13] S. Yorozu, Y. Kameda, H. Terai, A. Fujimaki, T. Yamada, and S. Tahara,
“A single flux quantum standard logic cell library,” Physica C: Super-
conductivity, vol. 378-381, pp. 1471–1474, 2002.

[14] A. T. Calvino, H. Riener, S. Rai, A. Kumar, and G. De Micheli,
“A versatile mapping approach for technology mapping and graph
optimization,” in ASP-DAC, 2022.

[15] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT-
based exact synthesis: Encodings, topology families, and parallelism,”
IEEE Trans. CAD, 2020.

[16] T. Sasao and M. Fujita, “Representation of discrete functions,” Springer,
1996.

[17] A. Mishchenko, R. Brayton, S. Jang, and V. Kravets, “Delay optimiza-
tion using SOP balancing,” in Proc. ICCAD, pp. 375–382, 2011.

[18] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Proc. FPGA, 1999.

[19] R. Drechsler, “Pseudo-kronecker expressions for symmetric functions,”
IEEE Transactions on Computers, vol. 48, no. 9, pp. 987–990, 1999.

[20] A. Mishchenko and M. Perkowski, “Fast heuristic minimization of
exclusive-sums-of-products,” Intern. Reed-Muller Workshop, 2001.

[21] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis,” in Proc. DAC,
2006.

[22] L. Amarú, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, J. Olson,
R. Brayton, and G. De Micheli, “Improvements to boolean resynthesis,”
in Proc. DATE, pp. 755–760, 2018.

[23] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping,” in Proc. ICCAD,
2005.

[24] Y. Kukimoto, R. Brayton, and P. Sawkar, “Delay-optimal technology
mapping by DAG covering,” in Proc. DAC, pp. 348–351, 1998.

[25] A. P. Hurst, A. Mishchenko, and R. K. Brayton, “Fast minimum-register
retiming via binary maximum-flow,” in Proc. FMCAD, 2007.

[26] A. T. Calvino and G. De Micheli, “Depth-optimal buffer and splitter
insertion and optimization in AQFP circuits,” in Proc. ASP-DAC, 2023.

[27] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, S.-Y. Lee, A. T. Calvino, D. S. Marakkalage, and
G. D. Micheli, “The EPFL logic synthesis libraries,” CoRR,
vol. arXiv:1805.05121v3, 2022.

[28] “Suny RSFQ cell library.” http://www.physics.sunysb.edu/Physics/
RSFQ/Lib/contents.html.

[29] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
benchmarks: A case study in reverse engineering,” IEEE Des. Test.
Comput., 1999.

[30] L. Amarù, P.-E. Gaillardon, and G. D. Micheli, “The EPFL combina-
tional benchmark suite,” in Proc. IWLS, 2015.

