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Abstract— This paper proposes a data-driven control design
method for nonlinear systems that builds upon the Koopman
operator framework. In particular, the Koopman operator is
used to lift the nonlinear dynamics to a higher-dimensional
space where the so-called observables evolve linearly. First, an
approximate linear time-invariant (LTI) lifted representation
of the nonlinear system is obtained. To take into account the
residual error, an approximation of the ℓ2-gain of the error
system is computed from data. Based on the obtained model
and the ℓ2-gain bound, a dynamic feedback controller providing
robust performance guarantees is synthesized. The controller
synthesis method only depends on the frequency response of the
LTI approximation; thus, is independent of the lifting dimen-
sion. Next, to further reduce the ℓ2-gain of the error system, a
linear parameter-varying (LPV) lifted model is considered. A
control design method based on the robust control of the LTI
part of dynamics and compensation of the parameter-varying
dynamics is proposed. It is shown that the presented control
strategy guarantees internal stability of the closed-loop system
under the assumption that the parameter-varying dynamics are
open-loop BIBO stable while also delivering robust performance
guarantees for certain input-output channels through which the
parameter-varying dynamics are fully cancelled.

I. INTRODUCTION

Effective strategies to control nonlinear systems has re-
mained a central topic in the field of control theory. While
control methods for linear systems provide strong theoretical
guarantees by employing well-understood design tools, the
inherent complexities of more general and less structured
nonlinear systems pose significant challenges. Consequently,
the Koopman operator theory [1] has gained considerable
attention in the past decade for its ability to provide a
global linear representation of a large class of nonlinear
systems. Instead of explicitly examining the evolution of
the system states, Koopman operator theory focuses on the
evolution of a lifted space of observable functions typically
determined by a nonlinear transformation of the states. While
the Koopman operator exhibits linearity on this space of
observables, the primary concern is that, even for a finite
dimensional nonlinear system, the lifted space is generally
infinite-dimensional.

In practice this challenge is navigated by approximating
the Koopman operator acting on a high-dimensional, yet still
finite, set of observable functions. Various algorithms exist to
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compute tractable approximations. One of the most straight-
forward and prevalent approximation techniques comes from
Extended Dynamics Mode Decomposition (EDMD) [2].
While EDMD has been applied to a wide range of problems
for estimation [3], [4] and control [5], [6], establishing
rigorous bounds on approximation errors remains an ongoing
topic of research [7], [8]. Thus, most of the existing control
methods based on the Koopman operator lack guarantees of
closed-loop stability.

While the Koopman operator framework has been well-
studied for autonomous systems, controller design necessi-
tates the consideration of forced dynamics. Motivated by this,
[9] presented the application of this paradigm to systems with
inputs. However, a notable concern for Koopman theory in
the context of forced systems is the fact that the linearity
of the lifted dynamics in observables does not necessarily
extend to linearity in the inputs. In light of the firmly
established control methodologies for LTI systems, several
studies imposed linearity in inputs by restricting the choice
of observables to functions that are linear in inputs [5], [6].
However, the validity or consequences of such a restriction
on the space of observables for general nonlinear systems is
not thoroughly discussed.

It is imperative to acknowledge a broader spectrum of
systems characterized by a more general structure, where
the lifted model may not inherently exhibit linearity with
respect to the system inputs. The work in [10] showed that
a valid Koopman representation that is linear in inputs is not
guaranteed to exist even in the infinite dimensional case. It is
presented that in continuous-time, Koopman lifting results in
an LPV representation even for input linear or control-affine
nonlinear systems [11]. Iacob et al. [12] extended this to the
case of discrete-time systems while also characterizing the
approximation error introduced by using an LTI represen-
tation instead of an LPV one. These works highlighted the
limitations of LTI lifted representations prompting the con-
sideration of less restrictive spaces of observable functions.
Bruder et al. [13] discussed the advantages of bilinear lifted
models over LTI ones claiming that they strike a compromise
between generality and ease of controller design. Sinha et al.
[14] presented stabilizing state feedback controller design
method for input-affine nonlinear systems using a bilinear
representation. More recently, again based on a bilinear
representation, Strasser et al. [15] proposed a stabilizing
state feedback synthesis method that is applicable for general
nonlinear systems by also accounting for the modeling error
under a finite-gain assumption.

In this paper, we introduce a data-driven robust control



framework for nonlinear systems based on Koopman lifting.
First, we examine the scenario of LTI lifted models. By
utilizing the available data that was used for lifting, we
also compute an approximation of the ℓ2-gain of the error
system with probabilistic guarantees based on the scenario
approach [16]. We then design a dynamic feedback controller
that ensures robust performance guarantees in the closed-
loop. Our approach utilizes the fixed-structure data-driven
controller design method proposed in [17], accommodating
mixed H2/H∞ objectives. As this synthesis method relies
solely on the frequency response data of the LTI model, the
complexity of the synthesis problem becomes independent
of the lifting dimension. This mitigates a primary drawback
associated with Koopman lifting for controller synthesis,
enabling the use of high-order models and facilitating the
design of superior-performing controllers. Next, to further
minimize the ℓ2-gain of the error system, we consider the
identification of lifted LPV models. For controller synthesis,
we treat the model as a sum of an LTI model and an LPV
model. To adress the LTI component, we again synthesize a
robust controller following the approach in [17], while we
design a compensator for the remaining LPV part. Under the
assumption that time-varying part of the lifted dynamics are
open-loop bounded-input bounded-output (BIBO) stable, we
show that the proposed controller provides internal stability
guarantees for the closed-loop system as well as performance
guarantees for certain input-output channels.

The rest of this paper is organised as follows, a brief
background on Koopman operator theory, EDMD and the
employed FRF data based control synthesis method is
provided in Section II. In Section III, based on a lifted
LTI representation, the linear controller design method with
robust performance guarantees is presented. Next, an LPV
Koopman representation is considered to alleviate the error
and a stabilizing control strategy with LPV compensation
is proposed in Section IV. Conclusions and future work are
discussed in Section V.

II. BACKGROUND

In this section, a brief background on Koopman operator
theory, data-driven identification of Koopman lifted represen-
tations via EDMD and employed frequency response func-
tion (FRF) based controller synthesis method is provided.

A. Koopman lifting

Consider the discrete-time nonlinear system,

xk+1 = f(xk, uk), (1)

where x ∈ X ⊆ Rnx is the state variable, u ∈ U ⊆ Rnu is
the input and f : X ×U → X is the nonlinear state transition
map. The Koopman operator Kf : F → F is a linear
operator that advances an observable function ϕ(xk, uk) one-
step forward in time,

ϕ(xk+1, uk+1) = Kfϕ(xk, uk) = ϕ(f(xk, uk), uk+1). (2)

where F is a Banach space of observable functions that
is invariant under the action of the Koopman operator.

Therefore, the main idea behind the Koopman framework is
to express the system dynamics in terms of the lifted states
of observable functions instead of the state variable x itself.
By doing so, the Koopman operator K globally maps the
nonlinear dynamics in the state space to linear dynamics in
the lifted space of observables. Readers can refer to [1], [18]–
[21] for more details on Koopman operator theory.

In general, the Koopman operator acts on an infinite-
dimensional space of functions. In practice, however, a finite-
dimensional approximation of the Koopman operator must
be employed. To achieve so, a finite set of regressors or
observable functions D = {ϕj}dj=1 called a dictionary is
considered. Then, the approximate Koopman operator KΦ

defined on the d dimensional space of observables FΦ ⊂ F
propagates Φ(x) =

[
ϕ1(x) . . . ϕN (x)

]T
forward in time,

Φ(xk+1) = KΦΦ(xk) + rk,Φ, (3)

with rk,Φ := rk,Φ(xk, uk) being the truncation error that is
also dependent on the choice of dictionary.

Given its maturity and intuitive structure, identifying an
LTI model is often times desirable for control design. Identi-
fying an LTI system is realizable by restricting the dictionary
of observables to the form,

Φ(xk, uk) =
[
Φx(xk, uk) Φu(xk, uk)

]T
=

[
Φx(xk) uk

]T
,

(4)
yielding,

Φx(xk+1) = AΦΦx(xk) +BΦuk + εk,Φ, (5)

where the identified system matrix AΦ, control influence
BΦ and residual error εk,Φ depend on the choice of re-
gressors in Φ. While the aforementioned approach facilitates
the application of established control techniques for LTI
systems, it comes with a notable drawback. Iacob et al. [12]
demonstrated that, even in cases of nonlinear systems with
linear inputs, the exact lifted representation remains non-
linear with respect to inputs. This trade-off becomes evident:
imposing a linear input structure on the model for the sake
of simplifying control inevitably leads to increased residual
modeling error εk,Φ.

In order to reduce this error while still arriving at a model
that is desirable for control design, Φu(xk, uk) = Φu(xk)uk

can be chosen. This delivers an LPV model in the form,

Φx(xk+1) = AΦΦx(xk) +BΦΦu(xk)uk + εk,Φ. (6)

Some approaches [13]–[15] consider the specific case where
Φu(xk) = Φx(xk) which results in a bilinear model that is
a relatively desirable form for control design. However, this
work considers the more general case (6) resulting in an LPV
system where the parameter dependence is only embedded
in to the input matrix B̄(xk) = BΦu(xk).

B. Extended dynamic mode decomposition

Here we briefly summarize the EDMD algorithm [2] that
enables the computation of the AΦ and BΦ matrices in (6)
by solving a least-squares problem. Based on a set of data



trajectories with N samples {xk, uk}N−1
k=0 and a selected

dictionary of observable functions D, the matrices

X :=
[
Φx(x0) . . . Φx(xN−2)

]
,

X+ :=
[
Φx(x1) . . . Φx(xN−1)

]
,

and

U :=
[
Φu(x0)u0 . . . Φu(xN−2)uN−2

]
,

are constructed. Then, the matrices AΦ and BΦ in (6) can
be obtained by solving,

min
A,B

∥∥∥∥X+ −
[
AΦ BΦ

] [X
U

]∥∥∥∥ (7)

which has the ℓ2-optimal solution
[
AΦ BΦ

]
= X+

[
X
U

]†
.

This yields the optimal matrices satisfying the system dy-
namics (6) such that ∥εk,Φ∥2 is minimized. Note that again
by setting Φu(xk) = 1, an LTI model as in (5) can be
obtained.

C. FRF based controller synthesis algorithm

The problem of mixed sensitivity controller synthesis
using only frequency domain data is addressed in [17]. Given
the FRF G(ejw) of an LTI system and a structured controller
K = XY −1 with polynomial matrices X(z) and Y (z),
the algorithm minimizes the norm of a mixed-sensitivity
problem. For illustration purposes we can consider the basic
problem,

min
K

∥W1S∥∞ (8)

where W1 is a weighting filter and S = (I + GK)−1 is
the sensitivity function. Assuming that an initial stabilizing
controller Kc = XcY

−1
c is known, a stabilizing controller K,

which delivers a sub-optimal solution of (8), can be obtained
by solving,

min
K

γ

s.t.

[
P ∗Pc + P ∗

c P − P ∗
c Pc (W1Y )∗

(W1Y ) γI

]
> 0 ∀ω ∈ Ω,

(9)
where Ω = (−π/Ts, π/Ts] with Ts the sampling period,
P = Y +GX and Pc = Yc+GXc. Note that the optimization
problem (9), depends only on the frequency response data
of the system. Thus, the complexity of the problem depends
only on the input-output dimensions of system G while it
remains independent of its number of states. See [17] for
further details and the stability proof.

III. LINEAR FEEDBACK CONTROLLER DESIGN

We consider the general nonlinear system with inputs
(1) and our goal is to design a stabilizing controller with
performance guarantees by only using the data {xk, uk}N−1

k=0

collected from the system. Using the available data we
first identify a lifted LTI representation (5) of the system
considering a set of appropriate observable functions (4). We
compute the system matrices in (5) by following the EDMD
algorithm. Then, we select the output of the lifted system as

a subset of the observables that we would like the controller
to act on, i.e. ȳ = CΦΦ(x) =

[
I 0

]
Φ(x).

Since, ȳ does not correspond to the true output of the
system, we also identify a mapping C̄Φ from ȳ to the output
of the true system by solving the following least-squares
problem,

min
C̄

∥∥Y − C̄ΦȲ
∥∥ , (10)

where Ȳ =
[
ȳ(x0) . . . ȳ(xN−1)

]
. The resulting approx-

imated output ŷ is the best projection of the true output y
on the span of ȳ in a least squares sense, i.e. y ≈ ŷ = C̄Φȳ.

Remark 1: It is a common choice to include the true
output of the system in the set of observable functions such
that Φ(x) =

[
y(x) ϕ1(x) . . . ϕN (x)

]
as well in the

outputs of the lifted model ȳ =
[
I 0

]
Φ(x) . This makes

the mapping from ȳ to the true output trivial such that
ŷ = C̄Φȳ =

[
I 0

]
ȳ. We also consider this case in the

rest of the paper for the sake of simplicity.
As a result, we obtain a nominal LTI model G0,

G0 :

{
zk+1 = AΦzk +BΦuk,

ȳk = CΦzk,
(11)

with zk ≈ Φx(xk), and an error system ∆ that we treat as
uncertainty,

∆ :

{
εk+1 = Φ(xk+1)− zk+1,

ek = CΦεk,
(12)

such that G = C̄Φ(G0 + ∆) where G represents the true
nonlinear system. The block diagram representation of the
resulting closed-loop system is presented in Fig. 1.

In order to design a controller with performance guaran-
tees for the closed-loop system in Fig. 1, the ℓ2-gain of ∆
must be characterized from data such that the well known
small-gain theorem can be employed for robust controller
synthesis.

K G0

∆

u
C̄Φ

r uK ȳ y
d

−

e

Fig. 1. Block diagram of the closed-loop system with an LTI Koopman
representation.

A. Lower bound on ℓ2-gain of error system

We rewrite the dynamics (12) of the error system ∆ as,

∆ :

{
εk+1 = Φ(xk+1)−AΦzk −BΦuk,

ek = CΦεk,
(13)

with ε0 = 0 such that the true system and the LTI represen-
tation have the same initial conditions.

Definition 1: Let γ ≥ 0, the error system ∆ (13) is said
to have linear ℓ2-gain less than or equal to γ if,

N−1∑
k=0

∥ek∥2 ≤ γ2
N−1∑
k=0

∥uk∥2 + β(|ε0|), (14)



for some K-function β for all N ≥ 1 and all u ∈ ℓ2[1, N ].
In Definition 1, the β(|ε0|) term represents the energy

stored in the system due to initial conditions. Since β(|ε0|) ≥
0, a suboptimal ℓ2-gain γ̂ of ∆ can be obtained by solving
the semi-infinite problem,

min
γ̂≥0

γ̂ (15)

s.t.

N−1∑
k=0

∥ek∥2 ≤ γ̂2
N−1∑
k=0

∥uk∥2 , ∀u ̸= 0 ∈ ℓ2[1, N ],

∀N ≥ 1. Since (15) is a convex problem wit infinitely many
constraints, we aim for obtaining a super-optimal solution
γ̄ ≤ γ̂ to (15) by making use the available data that we have
also used for Koopman lifting.

Using the available M data trajectories that were used for
EDMD, we first compute the corresponding M trajectories
of {{emk }N−1

k=0 }Mm=1 according to (13). Then, using these
trajectories we compute an approximate ℓ2-gain of ∆ by
solving,

min
γ̄≥0

γ̄ (16)

s.t.

N−1∑
k=0

∥emk ∥2 ≤ γ̄2
N−1∑
k=0

∥um
k ∥2 , ∀m ∈ [1,M ].

Assumption 1: Let the available data trajectories
{{xm

k , um
k }N−1

k=0 }Mm=1 be such that, for all m = [1,M ] and
k = [0, N − 1], each input sample um

k are randomly chosen
independent identically distributed (i.i.d.) samples from a
set of admissible inputs U ⊂ Rnu .

Assumption 1 implies that each input trajectory {um}Mm=1

is also an i.i.d. sample from the set u ∈ ℓN2 . Thus, by solving
(16) we replace the infinite number of constraints in (15) by
M randomly chosen i.i.d. constraints. Then, by the scenario
approach [16], if,

M ≥ 2

ϵ

(
ln

1

β
+ 1

)
, (17)

with probability no smaller than 1 − β, γ̄ satisfies all
constraints in (15) but at most an ϵ-fraction. For example
consider we have M = 2000 system trajectories with
N = 100 samples where ek ∈ R2, having a violation
probability greater than ϵ = 0.01 has a probability less than
1.2341×10−4 while this upper bound exponentially goes to
0 with M .

B. Controller Synthesis

Considering γ̄ obtained by solving (16) as an accurate
approximate bound on the ℓ2-gain of ∆ and the lifted LTI
representation (11) as a nominal model, we can synthesize a
controller by following the approach of [17]. The schematic
of the resulting closed-loop system with robust performance
guarantees is presented in Fig. 1. The benefits of using
this FRF data based controller synthesis algorithm within
Koopman framework are twofold:

• Since the method only uses the input-output FRF data
for the synthesis, the complexity of the controller syn-
thesis problem is independent of the lifting dimension.

• As the algorithm allows for structured controller syn-
thesis, the order of the resulting controller can also be
chosen independently from the lifting dimension.

Both of these aspects allow for the usage of high order
Koopman representations without resulting in computational
or implementation issues.

C. Numerical example

In this section, we illustrate our approach with a simple
simulation example. We consider the forced nonlinear Van
der Pol oscillator,

ẋ1 = x2, (18)

ẋ2 = (1− x2
1)x2 − x1 + u. (19)

We first obtain the discrete-time dynamics by forward Euler
discretization with step time Ts = 0.005s. For data gen-
eration we consider uniformly distributed initial conditions
inside a box xm

0 ∈ [−1.5, 1.5]2 and uniformly distributed
random inputs um

k ∈ [−1.5, 1.5]. We generate M = 3000
data trajectories of length N = 100 by simulating the
discretized model. For EDMD, we consider the observables
Φ(x) =

[
x1 x2 x2

1 x1x2 x2
1x2 u

]T
resulting in a 5

dimensional lifted LTI representation. The input dimension
of the controller K is chosen as 3 with CΦ =

[
I3×3 03×2

]
such that the controller is acting on the subset of obervables
{x1, x2, x

2
1}. Then, by solving (16), we obtain the lower

bound on ℓ2-gain of ∆ as γ̄ = 0.4271 where having a
violation probability greater than ϵ = 0.01 is guaranteed to
be less than 8.3153×10−7 by the scenario approach. Lastly,
the controller is synthesized by employing the algorithm in
[17] where,

min
K

∥∥W1(I +G0K)−1
∥∥
2

(20)

s.t.
∥∥W2K(I +G0K)−1

∥∥
∞ < 1,

is solved based on the FRF of the lifted representation where
W1 =

[
1 0 0

]
and W2 = γ̄ and K is a first-order dynamic

controller. As a result the controller is obtained in state-space
form as,

xK
k+1 = 0.624xK

k +
[
−0.4514 0.6046 −0.05328

]
uK
k ,

yKk = uk = 0.7564xK
k +

[
2.093 0.6543 0.141

]
uK
k ,

The closed-loop trajectory of the true system states with
the resulting controller simulated from the initial condition
x0 = [1,−0.6] with r = d = 0 is presented in Fig. 2. The
evolution of the system states in the state-space is also plotted
in Fig. 3. For comparison, we also synthesize the LQR
controller for cost matrices Q = diag(

[
1 0 0 0 0

]
)

and R = 1 however it is observed that the resulting con-
troller fails to stabilize the true system which showcases the
importance of the consideration of Koopman lifting errors.

IV. OUTPUT FEEDBACK CONTROLLER DESIGN WITH
LPV COMPENSATION

While LTI Koopman models are often used in the literature
due to their convenience, it is shown that a valid Koopman



Fig. 2. Closed-loop trajectory with x0 = [1,−0.6].

Fig. 3. Closed-loop trajectory with x0 = [1,−0.6].

representation is not guaranteed to exist in the LTI form
[10]. It is shown in [11], [12] that even nonlinear systems
that are linear in inputs do not assume an LTI form when
Koopman lifting is performed, either in the continous-time
or the discrete-time cases. Thus, in order to reduce the
error bounds such representations are yielding, we consider
Koopman lifted LPV representations in this section.

We first employ the EDMD algorithm by considering a
dictionary of lifting functions structured as

Φ(xk, uk) =
[
Φx(xk, uk) Φu(xk, uk)

]T
=

[
Φx(xk) Φu(xk)uk

]T
=

[
Φx(xk) uk Φ̂u(xk)uk

]T (21)

yielding an LPV lifted representation as in (6). Furthermore,
we select Φx(x) =

[
y(x) ϕ1(x) . . . ϕN (x)

]
, i.e.

ŷ = C̄Φȳ = C̄ΦCΦΦx(x) =
[
I 0

]
Φx(x),

resulting in the following LPV representation,

Ĝ :

{
zk+1 = AΦzk + B̂0,Φuk + B̂1,ΦΦu(xk)uk,

ȳk = CΦzk.
(22)

where zk ≈ Φ(x). Next, we rewrite the lifted system Ĝ
(22) as the sum of an LTI and an LPV system as Ĝ =
G0 +G1(Φu(xk)) with,

G0 :

{
z0,k+1 = AΦz0,k +B0,Φuk,

ȳ0,k = CΦz0,k,
(23)

G1(Φu(xk)) :

{
z1,k+1 = AΦz1,k +B1,Φ(Φu(xk))uk,

ȳ1,k = CΦz1,k.
(24)

where B0,Φ = B̂0,Φ, B1,Φ(Φu(xk)) = B̂1,ΦΦu(xk) yielding
zk = z0,k + z1,k and ȳk = ȳ0,k + ȳ1,k. Then, the resulting
residual error system to be treated as uncertainty is,

∆ :

{
εk+1 = Φ(xk+1)−AΦzk −B0,Φuk −B1,Φ(Φu(xk))uk,

ek = CΦεk,
(25)

such that G = G0 + G1(Φu(xk)) + ∆, where G represents
the true nonlinear system. We again obtain a super-optimal
ℓ2-gain of ∆ by solving (16) while probabilistic guarantees
on constraint violation can again be derived by the scenario
approach.

Theorem 1: If G1(Φu(xk)) is bounded-input bounded-
output (BIBO) stable and the feedback controller K robustly
stabilizes G0 with respect to the uncertainty,

∆ = G−G0 −G1,

the closed-loop system in Fig. 4 is also internally stable.
Proof: Since K robustly stabilizes G0, the controller

output u is bounded for any bounded external input. In other
words, it is guaranteed that the input of G1(Φu(xk)) is a
bounded signal. Thus, as long as G1(Φu(xk)) is already a
BIBO stable system, all the internal signals of the closed-
loop system in Fig. 4 remain bounded for any external input
such that the closed-loop system is BIBO stable.

K G0

G1(Φu(xk))

∆

−G1(Φu(xk))

u
C̄Φ

r uK ŷ0

ŷ1

y
d

e

ȳ

Fig. 4. Block diagram of the closed-loop system with LPV controller.

Based on Theorem 1, we synthesize the controller K for
the LTI part G0 of the lifted representation by employing the
method in [17]. It should be noted that since −G1(Φu(xk))
is also a part of the controller, the final controller to be
implemented is also parameter-dependent, which requires the
measurement of the system outputs as well as the absence
of any unmeasured disturbances on the input of the system.

Remark 2: It should be noted that in this case, we can
give performance guarantees for only certain input-output



channels on which G1(Φu(xk)) has no effect. The effect of
G1(Φu(xk)) persists through the paths from any external
input to the true output of the system y. Thus, no per-
formance guarantees on y can be provided. Still, one may
identify G0 as the best linear approximation (BLA) of the
nonlinear system and optimize the performance of ȳ during
the controller design. Even though this would not deliver
any performance guarantees for y, if G1(Φu(xk)) is small
when compared to G0, the performance of the closed-loop
system can still be improved. On the other hand, the effect
of G1(Φu(xk)) is fully canceled from any external input
to uK and u, for which it is possible to give performance
guarantees.

A. Numerical examples

To highlight the benefits of LPV lifted representations and
to illustrate our control approach, we consider a bilinear DC
motor example. After a coordinate shift to make the origin a
fixed point [22], the system dynamics can be expressed as,

ẋ1 = −Ra

La
x1 −

km
La

x2u+
kmτ1
LaB

u, (26)

ẋ2 = −B

J
x2 +

km
J

x1u+
kmua

JRa
u, (27)

where x1 is the rotor current, x2 the angular velocity, and
the control input u is the stator current. The parameters are
La = 0.314, Ra = 12.345, km = 0.253, J = 0.00441, B =
0.00732, τ1 = 1.47, ua = 60. We obtain the discrete-time
dynamics by the 4th-order Runge-Kutta method for a step
time of Ts = 0.01s. For data generation, we consider
uniformly distributed initial conditions inside a unit box
xm
0 ∈ [−1, 1]2 and uniformly distributed random inputs

um
k ∈ [−1, 1]. We generate M = 2000 data trajectories of

length N = 200 by simulating the discretized model.
For Koopman lifting, we first consider the observables

consisting of the system states and 20 radial basis func-
tions Φ0(x) =

[
x1 x2 ϕ1(x) . . . ϕ20(x) u

]T
where

ϕi(x) are Gaussian radial basis functions with randomly
generated centers inside the unit box [−1, 1]. By employing
the EDMD algorithm, we obtain the state transition matrix
A0 and input matrix B0 yielding an LTI representation G0

with 22 states. Next, to obtain an LPV representation, we
consider

Φ1(x) =
[
x1 x2 ϕ1(x) . . . ϕ2(x) u x1u x2u

]T
and solve,

min
B1

∥∥∥∥X+ −
[
A0 B0 B1

] [X
U

]∥∥∥∥ (28)

for the fixed A0 and B0 corresponding to the LTI dynamics
G0. This yields a model Ĝ = G0 + G1 as in (22)-(24).
By using this two-step EDMD, we aim to cover as much
of the system behavior by G0, since we can only deliver
performance guarantees for the purely LTI part, and use the
LPV part G1 to reduce the residual error.

We select C =
[
I2×2 02×20

]
such that the controller is

only acting on the true system states x1, x2. When only the

linear model G0 is considered, we obtain the approximate
ℓ2-gain of the error system as γ̄0 = 32.09106. On the other
hand, when the LPV model Ĝ = G0+G1 is considered, we
obtain γ̄ = 25.00404. This significant reduction of the ap-
proximated ℓ2-gain of the error system clearly demonstrates
the benefit of using an LPV representation since it reduces
the required robustness margin for controller synthesis, alle-
viating conservatism in performance. To further illustrate the
higher accuracy of the LPV representation, the trajectories
of x1 and x2 for G0, Ĝ, and the true system G for a square-
wave input signal u with amplitude 1 and period 10 seconds
are presented in Fig. 5.

Fig. 5. Open-loop simulation of the DC motor and its LTI and LPV
representations.

Lastly, the controller K is synthesized by employing the
algorithm in [17] where,

min
K

∥∥W1(I +G0K)−1
∥∥
2

(29)

s.t.
∥∥W2K(I +G0K)−1

∥∥
∞ < 1,

is solved based on the FRF of the lifted representation where
W1 = I2×2 and W2 = γ̄ and K is a second-order dynamic
controller. As a result, the controller is obtained in state-space
form as,

xK
k+1 =

[
0.465 0.196
−0.196 0.8635

]
xK
k +[

−0.001455 −0.00266
−0.0001084 −0.0002175

]
uK
k ,

yKk =
[
0.003032 −0.0002429

]
xK
k +[

6.574× 10−6 1.204× 10−5
]
uK
k .

The trajectory of the true system, initialized with x0 =
[−10, 10], in a closed-loop scheme using the resulting con-
troller as shown in Fig. 4, with r = d = 0, is presented in
Fig. 6.



Fig. 6. Closed-loop state trajectories of the bilinear DC motor starting
from x0 = [−10, 10]T

V. CONCLUSION

In this paper, we presented a data-driven control frame-
work for nonlinear systems exploiting the Koopman opera-
tor’s ability to represent a nonlinear system as a linear one
in a higher-dimensional space. First, the case of LTI lifted
models is considered, where we computed an approximate
ℓ2-gain of the error system with probabilistic guarantees
based on available data. Synthesizing a linear output feed-
back controller using a fixed-structure data-driven design
method, we achieved robust performance guarantees. A no-
table advantage of our approach is its independence from
the dimension of the Koopman lifting, making it feasible to
handle high-order models that contribute to reducing the ℓ2-
gain of the error system. Next, we extended our framework to
incorporate LPV models obtained through Koopman lifting.
We successfully designed a controller that treats the LPV
model as a combination of LTI and LPV components. This
approach allowed us to utilize the stability properties of the
LTI part while efficiently compensating for the remaining
LPV dynamics. Notably, the stability guarantees were main-
tained under the BIBO stability assumption of the open-loop
parameter-varying dynamics. Our methodology contributes
to addressing the challenge of data-driven nonlinear control
by bridging the gap between the Koopman operator frame-
work and robust control synthesis.

Future work will focus on a more precise characterization
of the ℓ2-gain of the error system from data and providing
robust performance guarantees also for the case of LPV
lifted representations. Furthermore, refining the approxima-
tion techniques for the Koopman operator and the application
of this framework to practical examples remain interesting
avenues for research.
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