
Scalable Logic Rewriting Using Don’t Cares
Alessandro Tempia Calvino, Giovanni De Micheli

Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

Abstract—Logic rewriting is a powerful optimization technique
that replaces small sections of a Boolean network with better
implementations. Typically, exact synthesis is used to compute op-
timum replacement on-the-fly, with possible support for Boolean
don’t cares. However, exact synthesis is computationally expen-
sive, rendering it impractical in industrial tools. For this reason,
optimum structures are typically pre-computed and stored in
a database, commonly limited to 4-inputs. Nevertheless, this
method does not support the use of don’t cares. In this paper,
we propose a technique to enable the usage of don’t cares in pre-
computed databases. We show how to process the database and
perform Boolean matching with Boolean don’t cares, with negli-
gible run time overhead. Logic rewriting techniques are typically
very effective at optimizing majority-inverter graphs (MIGs). In
the experiments, we show that the usage of don’t cares in logic
rewriting on MIGs offers an average size improvement of 4.31%
and up to 14.32% compared to state-of-the-art synthesis flow.

I. INTRODUCTION

Multi-level logic optimization [1] is an essential step in the
realization of efficient digital systems. State-of-the-art logic
synthesis tools initially describe a Boolean network using a
technology-independent representation of simple primitives,
such as the and-inverter graph (AIG) [2], that is optimized
for size and depth. Then, they map the network to the target
technology, and lastly, they further optimize the technology-
dependent circuit representation.

Logic rewriting is a powerful optimization technique that
iteratively rewrites small sections of a Boolean network with
better implementations, typically evaluated in terms of size or
depth. Many varieties of logic rewriting methods have been
proposed in the literature, such as DAG-aware rewriting [3],
cut rewriting [4], LUT-based rewriting [5], and mapping-based
rewriting [6]. Typically, SAT-based exact synthesis [7] is used
to compute optimum replacements for the network. However,
exact synthesis is computationally expensive and generally
limited to synthesizing networks up to 4 inputs. In industrial
applications, on-the-fly computation of replacements using
exact synthesis is generally run time prohibitive, even for small
logic blocks. Hence, structures are typically pre-computed and
saved in a database. Logic rewriting with databases employs
Boolean matching [8] to retrieve implementations from the
database given a Boolean function. However, while Boolean
don’t cares are supported by on-the-fly exact synthesis, they
are not supported by logic rewriting using a pre-computed
database. In the academic tools ABC [9] and Mockturtle [10],
size-optimum databases for logic rewriting contain up to 4-
input networks. In [11], a delay-optimum database has been
constructed using exact synthesis for up to 4-input networks.

Logic rewriting is very effective at optimizing many
graph representations, such as the majority-inverter

graph (MIG) [12], composed of three-input majorities
and inverters, with many applications in standard-cells flows,
and majority-based emerging technologies [13], [14].

This paper presents improvements to logic rewriting by
enabling the use of Boolean don’t cares (DCs) with pre-
computed databases. First, we present the notion of don’t care
class that is used to classify a database based on don’t cares
and permissible functions. This computation typically takes
less than half a second for databases containing up to 4 input
functions. Then, we present a Boolean matching approach
to access the database while leveraging Boolean don’t cares.
Finally, we propose an efficient integration of don’t care
computation and matching in cut-based logic rewriting.

In the experiments, we show that mapping-based rewriting
with DCs reduces up to 13.21% and 0.62%, on average,
the size compared to the state-of-the-art MIG flow over the
EPFL benchmarks. Notably, in this experiment, we compare
one algorithm against a flow of 3 algorithms composed of
the standard mapping-based rewriting and variants of Boolean
resubstitution. Moreover, we achieve even more reductions in
size up to 14.32% and 4.31% average after integrating logic
rewriting with DCs in the state-of-the-art flow.

II. BACKGROUND

In this section, we introduce the basic notations and the
necessary background related to logic networks, equivalence
classes, and reconvergences.

A. Notations and Definitions

A Boolean function is a mapping from a k-dimentional
Boolean space into a 1-dimentional one: {0, 1}k → {0, 1}.

A truth table representation of a k-input Boolean function
f : {0, 1}k → {0, 1} is a bit string b = bl−1 . . . b0, i.e., a
sequence of bits, of length l = 2k. A bit bi ∈ {0, 1} at position
0 ≤ i < l is equal to the value taken by f under the input
assignment a⃗ = (a0, . . . , ak−1) where

2k−1 · ak−1 + · · ·+ 20 · a0 = i.

A truth table t1 is said to imply, or cover, another truth table t2
if each bit of t1 is true also in t2. This relationship is denoted
as t1 ≤ t2. Similarly, t2 is said to be implied by t1, denoted
as t2 ≥ t1. For instance, 1000 ≤ 1001.

A Boolean network is modeled as a directed acyclic
graph (DAG) with nodes represented by Boolean functions.
The sources of the graph are the primary inputs (PIs) of the
network, the sinks are the primary outputs (POs). For any node
n, the fanins of n is a set of nodes driving n, i.e. nodes that
have an outgoing edge towards n. Similarly, the fanouts of n



is a set of nodes that are driven by node n, i.e., nodes that
have an incoming edge from n. If there is a path from node a
to node b, then a is in the transitive fanin (TFI) of b, and b is
said to be in the transitive fanout (TFO) of a. The transitive
fanin of b includes node b and the nodes in its transitive fanin,
including the PIs. The transitive fanout of b includes b and all
the nodes in its transitive fanout including the POs.

A cut C of a Boolean network is a pair (n, K), where n is
a node called root, and K is a set of nodes, called leaves, such
that 1) every path from any PI to node n passes through at
least one leaf and 2) for each leaf v ∈ K, there is at least one
path from a PI to n passing through v and not through any
other leaf. The size of a cut is defined as the number of leaves.
A cut is k-feasible if its size does not exceed k. A cut covers
all the nodes encountered on the paths between the leaves and
the root, including the root and excluding the leaves.

B. NPN -equivalence classes

Two functions f(x1, . . . , xn) and g(x1, . . . , xn) are NPN -
equivalent if there exists an inversion of the inputs Ni : (xi →
xi), a permutation of the inputs Pi : (xixj → xjxi), and an
inversion of the output No : (f → f̄ ) such that f and g can
be made Boolean equivalent [8].

For n-inputs, 22
n

different Boolean functions exist. Boolean
functions can be partitioned into NPN classes that are
orders of magnitude smaller than the number of functions.
In particular, n-input Boolean functions can be classified into
14, 222 and 616126 classes for n = 3, 4, 5, respectively.

C. Reconvergence

In a Boolean network, a path is a finite sequence of con-
nected nodes v0 → · · · → vl where (vi, vi+1) are connected
with an edge. Two paths are reconvergent if they start at the
same node v0 and end at the same node vl arriving from two
different fanins of vl. Identifying reconvergent paths is crucial
in logic optimization because reconvergences enable don’t care
optimizations. A reconvergence-driven cut is a type of cut
constructed to include reconvergences. This type of cut is used
in Boolean methods such as resubstitution [15] to leverage
don’t cares. A reconvergence-driven cut with multiple outputs
is referred to as a reconvergence-driven window.

III. EXTRACTING DON’T CARE CLASSES

Due to controllability or observability don’t cares (DCs) in
a logic network, often a Boolean function f can be changed
into another one, f ′, without affecting the intended behavior
of the circuit at the primary outputs. Such a function f ′ is
called a permissible function, and the functional flexibility is
described by its don’t care set dc. All the permissible functions
of f are referred to as the maximum set of permissible
functions (MSPF) [16].

In this section, we present a method to represent a database
of structures and compute permissible functions reachable
given Boolean don’t cares. First, the database is classified into
NPN -equivalence classes. Then, it is processed to compute
all the don’t care sets that lead to a permissible function with

better cost. Finally, we present our algorithm for Boolean
matching.

A. Database

The database is internally represented as a compact data
structure that facilitates fast Boolean matching. The database is
classified into NPN -equivalence classes to limit the number
of entries (e.g., 222 for 4-input functions). Each class func-
tionality is expressed by a representative truth table, which is
computed by finding the lexicographically smallest truth table
in the class. A class may list several implementations (Boolean
networks), each realizing the class representative function and
described by its area cost and pin-to-pin delay.

B. Don’t care classes

Given a database classified into NPN -equivalence classes,
we compute minimal don’t care sets that support moving from
an NPN class into a function in a different NPN class. The
definition of minimal is given later in the text at Definition 3.
Informally, this problem can be seen as the construction of
a directed graph where nodes are NPN classes and edges
are don’t care sets. This idea is similar to the work in [17],
where vertices are NPN classes, but edges link functions that
differ by one minterm. Thus, our approach differs in the size
of the graph, the number of edges, and the Boolean matching
technique. The graph creation is achieved by enumerating and
storing don’t care sets for each class.

Don’t care sets are represented as truth tables. For a function
f , an entry bi in its don’t care set dc is ‘1’ if the bit in position
i of f can be flipped. This information introduces flexibility in
the functionality potentially leading to a better implementation.

Example 1: Let c be a 2-input cut in an and-inverter
graph (AIG), composed two-input ANDs and inverters, with
function f = 1001 and don’t care set dc = 0001. The cut
represents an XNOR function that needs 3 AND nodes to be
implemented. The don’t care set introduces flexibility to flip
bit b0 of f to obtain f ′ = 1000, which is an AND function
that needs only one AIG node, improving the AIG size.

We define a don’t care class that belongs to an NPN class
as a set of don’t cares that supports Boolean transformations
into better permissible implementations. Generally, for a func-
tion f on k variables, there exist 22

k

possible don’t care sets.
Moreover, for each don’t care set dc, there are 2p possible
permissible functions, where p is the number of minterms in
dc, i.e., the number of bits at 1 in dc. Therefore, filtering
mechanisms are necessary to enable the computation and limit
the search space during Boolean matching. To enable Boolean
don’t cares, we use two assumptions that limit the number of
matching possibilities, stored don’t care sets, and permissible
functions.

Assumption 1. We use the best area of implementations in
the maximum set of permissible functions (MSPF) to evaluate
the benefit offered by a don’t care set.

If a database contains the size optimum implementations,
the best area coincides with the area optimum. This assump-
tion prioritizes the area over other metrics for multiple reasons.



First, logic rewriting is typically area-oriented. Second, the
area is usually independent of the context of the rewriting,
whereas propagation delay depends on the arrival time, and
it cannot be evaluated offline. Third, often better area imple-
mentation offer also better delay (especially in the context
of technology-independent optimization). This assumption is
used as a filter. In other words, we only store don’t care sets
for which there exist a function in the MSPF that offers a
better implementation in terms of area cost.

Assumption 2. For each don’t care set, we select only one
permissible function that minimizes the area.

Given a don’t care set for a function f , the size of the MSPF
can be pretty large, offering many implementation options.
Evaluating all of them during logic rewriting may significantly
increase the run time without offering a considerable advan-
tage. Hence, for each don’t care set, our method stores a single
permissible function that minimizes the area cost.

To further filter the number of saved don’t care sets, we
employ the definition of dominance.

Definition 3. For a function f , a don’t care set t1 is said to
dominate a don’t care set t2 if t1 ≤ t2 and the best area cost
in the MSPF of f for t1 is not worse than the one for t2. The
set t2 is said to be dominated by t1.

Informally, we refer to a non-dominated don’t care set as
minimal. Non-minimal sets are redundant to store since they
are implied and don’t offer better implementations.

Algorithm 1 shows the procedure to compute don’t
care (DC) classes and permissible functions. The algorithm
takes a database classified into NPN -equivalence classes
and the maximum number of input variables in the database,
which is typically 4, as inputs. The procedure starts by
iterating through each NPN class, assigning to fi the class
representative function. At line 4, the DC class for fi is set to
empty. Then, from line 5 to 14, the procedure iterates to all the
other classes fj with a better area cost than fi. At this step, all
the possible don’t care sets that link fi and fj are computed. To
achieve that, all the negations and permutations configurations
of fj are enumerated to capture all the functions g in the
NPN class of fj . Along with g, the enumeration generates
the input permutation vector perm and input/output negation
vector neg that store the information to transform g into fj .
The don’t care set dc, which links fi and g, is computed
using the exclusive disjunction operator at line 10. Then, dc
is checked for dominance following Definition 3. If the don’t
care set is currently minimal, previously computed dominated
sets are removed, and the new one is inserted in dc class.
The set is inserted together with the input permutations and
input/output negations to apply to fi under don’t care set dc to
obtain fj . Finally, dc class is sorted by implementation area
in ascending order. If a database is partial, i.e., it does not
contain implementations for each NPN class (not complete),
the best area of missing classes is assumed to be infinite.

Example 2: Let us consider the NPN -4 class fi = 033c,
with the bit string represented in hexadecimal format, having

Algorithm 1: Extracting don’t care classes
1 Input : Database data, Number of variables k
2 Output: Don’t care classes dc class
3 foreach function fi in NPN (k) do
4 dc class(fi)← ∅;
5 foreach function fj in NPN (k) do
6 sj ← best area(fj , data);
7 if sj ≥ best area(fi, data) then
8 break;
9 foreach {g, perm, neg} in npn enumeration(fj) do

10 dc← fi ⊕ g;
11 if is dominated(dc, dc class(fi), sj) then
12 continue;
13 remove dominated(dc, dc class(fi), sj);
14 dc class(fi).add(dc, fj , perm, neg);

15 sort dc class(dc class(fi));

16 return dc class;

best area 4. First, let us consider the class fj = 0000 (⊥) that
represents constants, of cost 0. The two possible don’t care
sets that link the two classes are dc1 = 033c and dc2 = fcc3,
since fi ∧ ¬dc1 = ⊥ and fi ∨ dc2 = ⊤. The two DC sets
are minimal and are found by taking the Boolean difference
between fi and fj for dc1, and fi and f̄j for dc2.

Example 3: Let us consider the previous class fi = 033c and
a class fj = 003c = x̄3∧((x1∧x̄2)∨(x̄1∧x2)) of cost 3. Along
with the trivial DC set dc3 = 0300, there exist another one
dc4 = 000c with permutations Pi : (x0x1x2x3 → x0x3x1x2)
and no negation. If we flip bits using the don’t care we obtain
g = fi ∧¬dc4 = 0330 = x̄1 ∧ ((x2 ∧ x̄3)∨ (x̄2 ∧ x3)), which
is a permutation P−1

i of class fj .
Regarding the scalability of Algorithm 1, the computation of

don’t care classes takes less than half a second for databases
up to 4-inputs and very low memory. For larger databases,
this method would experience limitations due to the double
exponential increase in the number of Boolean functions.
Hence, it may necessitate restricting the computation to only
practical classes for functions of more than 4 variables.
Practical classes are a subset of NPN classes that are highly
observed in common designs and tend to be much less than
NPN classes. For instance, common practical functions are
the fully- and partially-decomposable functions. In [5], the
authors found only 286 unique NPN classes for 6-input
functions when mining the EPFL benchmarks [18].

C. Boolean matching using Boolean don’t cares

Given a Boolean function and its don’t care set, as truth
tables, Boolean matching returns a list of implementations in
the MSPF class with minimal cost computed by Algorithm 1.

The Boolean matching procedure is shown in Algorithm 2.
Compared to standard Boolean matching over NPN classes,
our algorithm adds the steps from line 4 to 10. The algorithm
takes a function f , its don’t care set dc, the database, and
the don’t care classes as inputs. First, function f is canonical-
ized by computing the lexicographically smallest truth table
in its NPN class using fast enumeration [19]. The class



Algorithm 2: Boolean matching with don’t cares
1 Input : Function f , Don’t care set dc, Database data, Don’t

care classes dc class
2 Output: {Matches M , Permutations perm, Negations neg}
3 {fc, perm, neg} ← npn canonicalize(f );
4 dc← apply permutations(dc, perm);
5 foreach {t, fi, p, n} in dc class(fc) do
6 if t ≤ dc then
7 perm← apply permutations(perm, p);
8 neg ← apply permutations(neg, p);
9 neg ← neg ⊕ n;

10 return {data(fi), perm, neg};

11 return {data(fc), perm, neg};

representative fc is returned along with its permutation and
negation vectors. Then, the permutations are applied to the
don’t care set such that its bits respect the new permutation in
fc (line 4). Input and output negations are not applied since
they don’t affect the don’t cares. Then, the don’t care class of
fc is accessed to retrieve a better implementation. Each entry
is accessed in order, from the smallest area implementations
to the largest. Each entry is composed of its don’t care set
t, its NPN class representative fi, the permutation vector
to apply p, and the negation vector to apply n. The entry
is a permissible function if t ≤ dc, i.e., the don’t care set
t implies dc. As soon as this is true, the algorithm returns
the implementations for the best permissible function. Before
returning, the previously computed permutation and negation
vectors are adjusted to match the new NPN class and its
representative (from line 7 to 9). This is required to match the
functionality of the new class, as shown by Example 3. If no
entry matching the given don’t care set is found, the algorithm
returns the implementations from fc.

IV. LOGIC REWRITING WITH DON’T CARES

This section describes the integration of Boolean matching
with don’t cares into classical logic rewriting algorithms. The
classification of the database and the computation of the don’t
care classes presented in Section III are independent of logic
rewriting, are computed offline, and are not addressed in this
section. Algorithm 3 reflects the implementation of DAG-
aware rewriting [3] with an extension to support Boolean don’t
cares. Similarly, this method can be integrated into alternative
rewriting or mapping techniques.

Algorithm 3 tries to replace small sections of the network
defined by cuts with a better implementation. The algorithm
processes the nodes in topological order and searches for the
best replacements that locally improve the area. Compared to
the standard rewriting, Algorithm 3 adds the steps between
line 4 and 13. For each gate g, the k-feasible cuts rooted in n
are computed using a cut enumeration procedure [20]. Then,
a reconvergence-driven window of l inputs, having l > k, is
extracted around gate g. The window can be single-output (a
cut) in case only controllability don’t cares are used, or multi-
output, expanded over the transitive fanout of g if observability
don’t cares are used. Then, the window is simulated to extract

Algorithm 3: Logic rewriting with Boolean don’t cares
1 Input : Network N , Database data, Don’t care classes

dc class, Cut size k, Cut size l
2 foreach gate g ∈ N in topological order do
3 C ← compute cuts(N , g, k);
4 W ← reconvergence driven window(N , g, l);
5 S ← simulate window(W );
6 R← Λ;
7 best gain← 0;
8 foreach cut c ∈ C do
9 f ← truth table(c);

10 dc← ⊥;
11 if c ⊂W then
12 dc← compute dont cares(c, W , S);

13 {M,p, n} ← bool matching(f , dc, data, dc class);
14 gain← evaluate gain(N , g, c, M , p, n);
15 if gain > best gain then
16 R← candidate replacement(N , g, c, M , p, n);
17 best gain← gain;

18 if best gain > 0 then
19 replace(N , g, R);

complete truth tables for each covered node. The truth tables
are on l variables and computed with respect to the inputs of
the window. Next, for each cut, the best matches are evaluated.
First, for a cut c, its function f is extracted. Then, if the cut fits
in the window, i.e., all its leaves are contained in the window,
its don’t care set is computed from the window. If it doesn’t,
don’t cares are ignored for the cut. Alternatively, a window
may be computed to guarantee containment at the cut at the
cost of additional run time. However, experimental results have
shown that many cuts tend to be included in the window. Next,
Boolean matching is performed according to Algorithm 2, and
candidate replacements are evaluated. Finally, the candidate
with the best area gain is used as a replacement.

The most runtime-intensive process of logic rewriting with
Boolean don’t cares is the computation of DCs. Boolean
DCs for a cut are extracted starting from a window of
logic that includes it. First, the window is simulated over its
input to collect complete simulation patterns. Given simulation
patterns, controllability don’t cares (CDCs) are computed by
checking which combinations of patterns appear at the leaves
of the cut. Not-appearing patterns are CDCs for the cut.
This process is called projection of the don’t cares and its
complexity is exponential in the number of leaves of the
window. Observability don’t cares (ODCs) at a gate g are
instead computed by checking for which patterns the Boolean
difference between the function of the gate g and its inverse is
observable. Let S(g) be the simulation pattern in the window
for gate g and let O be the set of output of the windows. First,
the window is re-simulated fixing the simulation of gate g to
¬S(g) and obtaining the simulation patterns S′ at the outputs.
The ODCs are then computed as follows:

ODCg = ¬
∨
o∈O

S(o)⊕ S′(o).



a b c

x

y

∧

∧

∨
sa = 1111 0000
sb = 1100 1100
sc = 1010 1010
sx = 1000 1000

fy = 1111 1000
cy = 1101 1101

dcy = 0010 0010

Fig. 1. Example of projection of CDCs on a cut

The ODCs need to be projected over the cut leaves as
for CDCs. Despite being the run time bottleneck of logic
rewriting, projections for multiple cuts can be computed in
parallel, notably reducing the impact over run time.

Example 4: Figure 1 shows an example of CDC computation
and projection on an AIG. In this example, the window covers
the entire circuit. First, the window is simulated, obtaining the
patterns sa, sb, sc, and sx. Patterns sa, sb, and sc are the input
patterns of the window and are used to simulate all the input
combinations (each bit bi in every input pattern represents a
combination). The section in blue represents a cut to optimize
with function fy = a′ ∨ (b′ ∧ x′), computed considering a′,
b′, and x′ as inputs1. The care set cy , of node y, i.e., the
complement of the don’t care set, is computed starting from
the simulation patterns. Each combination of input patterns at
the cut sa, sb, and sx is used to set bits in cy . For instance,
taking b0, the input pattern of the cut is 000. Hence, b0 of cy
is set to one. Taking b6, the pattern is 110 setting b6 of cy
to 1. At the end of this process, the care set has a “1” for
occurring patterns. Finally, dcy = ¬cy is computed to express
the CDCs of the cut. Consequently, fy can be simplified into
11111010, which corresponds to a′ ∨ x′. This transformation
removes a node while preserving the correct functionality.

V. EXPERIMENTS

In this section, we present experimental results on logic
rewriting with Boolean don’t cares. For our experiments, we
use the EPFL combinational benchmark suite [18] containing
several circuits provided as and-inverter graphs (AIGs).

The construction of the database, the generation of the don’t
care classes, and Boolean matching with don’t cares have been
implemented in C++17 and used to extend the algorithms in
the open-source logic synthesis framework Mockturtle2. The
database of structures used in the experiments is available
in the library and contains 4-input size-optimum implemen-
tations obtained using exact synthesis. Up to 10 structures are
available for each NPN class. The experiments have been
conducted on an Intel i5 quad-core 2GHz on MacOS. All the
results were verified for functional equivalence.

In this experiment, we test logic rewriting with don’t cares
to optimize majority-inverter graphs (MIGs) [12], which have

1Variables a′, b′, and x′ are “virtual” variables input of the cut. The link
between a and a′ is not visible by the cut.

2Available at: https://github.com/lsils/mockturtle

many applications in standard-cells flows [12], and majority-
based emerging technologies [13], [14]. We compare our
approach against the state-of-the-art flow published in [21],
which is based on the most effective MIG methods known.
The baseline flow carries the optimization by running the com-
mand compress2rs in ABC, 3 times the mapping-based logic
rewriting algorithm in [6], the MIG Boolean resubstitution
in [13] until no more improvement, and the improved MIG
resubstitution presented in the paper itself [21]. These results
have been reproduced on our machine.

In our implementation, logic rewriting operates on a
database of 4-input size-optimum MIG implementations, the
same one used in [6]. The classification of the database and the
computation of don’t care classes took less than half a second
on our machine. We extended the implementation of two logic
rewriting algorithms to support don’t cares. In particular, we
improved the mapping-based logic rewriting algorithm in [6],
referred to as map, and the DAG-aware rewriting algorithm
in [3], referred to as rw. Both algorithms include the don’t care
computation as shown in Algorithm 3 for controllability don’t
cares. In the experiments, we don’t use observability don’t
cares for two reasons: 1) ODCs are generally not compatible,
i.e., not safe to use in parallel optimization (like map does) [1].
Hence, additional run time is required to compute compatible
ODCs (CODCs); 2) experimental results using ODCs (and
CODCs) in logic rewriting have not shown significant benefits
in quality. In our implementation, don’t care projections have
not been parallelized.

Table I shows the experimental results. To test our approach,
we implemented three flows with increasing optimization
effort. All three flows are applied to initial results obtained
by executing the optimization script compress2rs in ABC, like
for the state-of-the-art flow. Our first flow, named “map with
DCs”, consists of 3 iterations of map with CDCs computed
from 12-input cuts. Our second flow, named “map + rw with
DCs”, adds to flow one 3 iterations of rw with CDCs computed
from 8-input cuts. Finally, flow three, named “MIG flow with
DCs”, adds Boolean resubstitution [21] to flow two.

Our first flow reduces the size up to 13.21% and 0.62%
on average compared to the state of the art. This is a major
result considering that the comparison is between a single
command and a flow. Our flow includes the column TBM,
which reports the total time taken by Boolean matching with
don’t cares. The matching time is a small fraction of the
total time, which is mainly dominated by the computation
and projection of CDCs. Our second flow further reduces the
number of MIG nodes improving up to 14.06% and 2.17%
on average the state of the art. Almost every result is already
significantly better before employing Boolean resubstitution,
which is the standard algorithm to leverage Boolean don’t
cares. Notably, logic rewriting is very effective at optimizing
arithmetic benchmarks (the first 10 benchmarks). Finally, the
third flow uses also Boolean resubstitution to obtain superior
results for every benchmark reducing the size up to 14.32%
and 4.31% on average.

Furthermore, we tested this approach on AIG optimization.



TABLE I
COMPARISON BETWEEN STATE-OF-THE-ART MIG RESULTS AND MULTIPLE MIG FLOWS USING LOGIC REWRITING WITH DON’T CARES.

Benchmark Flow in [21] Map with DCs Map + rw with DCs Flow with DCs
Size Time (s) Size Red. (%) TBM (s) Time (s) Size Red. (%) Time (s) Size Red. (%) Time (s)

adder 384 0.18 384 0.00% 0.02 0.16 384 0.00% 0.20 384 0.00% 0.22
bar 2588 0.82 2597 -0.35% 0.06 0.73 2445 5.53% 1.68 2433 5.99% 1.72
div 12532 4.54 12551 -0.15% 0.40 6.58 12498 0.27% 12.27 12462 0.56% 16.30
hyp 124177 58.73 115856 6.70% 3.41 54.10 115628 6.88% 91.12 115541 6.95% 118.51
log2 23109 36.22 22714 1.71% 0.49 12.59 22430 2.94% 24.69 22010 4.76% 45.64
max 2210 0.99 2202 0.36% 0.06 1.08 2191 0.86% 2.28 2190 0.90% 2.63
multiplier 18440 6.80 17474 5.24% 0.47 7.10 17155 6.97% 10.08 17112 7.20% 12.65
sin 3967 4.20 4005 -0.96% 0.13 2.50 3929 0.96% 5.69 3870 2.45% 8.55
sqrt 12423 10.38 12450 -0.22% 0.34 7.06 12388 0.28% 10.60 12357 0.53% 16.08
square 9498 2.72 8243 13.21% 0.23 3.30 8163 14.06% 4.59 8138 14.32% 5.33
arbiter 6719 4.34 6996 -4.12% 0.17 5.27 6869 -2.23% 7.70 6711 0.12% 9.81
cavlc 533 2.60 525 1.50% 0.01 0.09 517 3.00% 0.17 492 7.69% 1.72
ctrl 79 0.62 84 -6.33% 0.00 0.01 81 -2.53% 0.02 74 6.33% 0.30
dec 304 0.23 304 0.00% 0.00 0.03 304 0.00% 0.03 304 0.00% 0.06
i2c 932 0.37 898 3.65% 0.02 0.18 893 4.18% 0.37 871 6.55% 0.49
int2float 181 0.24 180 0.55% 0.00 0.03 178 1.66% 0.04 172 4.97% 0.11
mem ctrl 34777 17.18 35218 -1.27% 0.82 14.59 34727 0.14% 33.91 32097 7.71% 43.75
priority 431 0.30 426 1.16% 0.01 0.15 420 2.55% 0.29 406 5.80% 0.35
router 151 0.17 155 -2.65% 0.00 0.04 154 -1.99% 0.08 147 2.65% 0.11
voter 4561 1.74 4819 -5.66% 0.12 1.95 4564 -0.07% 3.56 4555 0.13% 4.45

Average 0.62% 2.17% 4.31%

While rewriting with DCs helps reduce the number of AIG
nodes, the improvement is less significant compared to MIGs
since AIG-resynthesis methods are much more mature. In par-
ticular, the area reduction compared to standard rewriting [3] is
up to 6.8% and 0.42% on average over the EPFL benchmarks,
previously optimized using the script compress2rs in ABC.

VI. CONCLUSION

In this paper, we proposed a scalable technique to enable
Boolean don’t cares in logic rewriting with pre-computed
databases. Typically, don’t cares can be only leveraged when
using exact synthesis on-the-fly, which is runtime-prohibitive
for industrial synthesis tools. We presented the notion of don’t
care class, which is used to classify a database on minimal
don’t care sets and permissible functions. Then, we proposed a
method for Boolean matching with don’t cares and an efficient
integration in a logic rewriting algorithm. The experiments
showed a significant reduction in size in MIG optimization.
Compared to the state-of-the-art MIG flow, enabling don’t
cares in rewriting achieves an average size improvement of
4.31% and up to 14.32%.

ACKNOWLEDGMENTS

This research was supported by the SNF grant “Supercool:
Design methods and tools for superconducting electronics”,
200021 1920981, and Synopsys Inc.

REFERENCES

[1] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[2] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. CAD, 2002.

[3] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis,” in DAC, 2006.

[4] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken,
“On-the-fly and DAG-aware: Rewriting Boolean networks with exact
synthesis,” in DATE, Mar 2019.

[5] W. Haaswijk, M. Soeken, L. Amarù, P. Gaillardon, and G. De Micheli,
“A novel basis for logic rewriting,” in Proc. ASP-DAC, 2017.

[6] A. T. Calvino, H. Riener, S. Rai, A. Kumar, and G. De Micheli,
“A versatile mapping approach for technology mapping and graph
optimization,” in ASP-DAC, 2022.

[7] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT-
based exact synthesis: Encodings, topology families, and parallelism,”
IEEE Trans. CAD, 2020.

[8] L. Benini and G. De Micheli, “A survey of Boolean matching techniques
for library binding,” ACM Trans. Design Autom. Electr. Syst., July 1997.

[9] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Computer Aided Verification, 2010.

[10] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, S.-Y. Lee, A. T. Calvino, D. S. Marakkalage, and
G. D. Micheli, “The EPFL logic synthesis libraries,” CoRR,
vol. arXiv:1805.05121v3, 2022.

[11] L. Amarú, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, P.-E. Gail-
lardon, J. Olson, R. Brayton, and G. De Micheli, “Enabling exact delay
synthesis,” in Proc. ICCAD, 2017.

[12] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A new paradigm for logic optimization,” IEEE Trans. CAD, 2016.

[13] H. Riener, E. Testa, L. Amaru, M. Soeken, and G. D. Micheli, “Size
optimization of MIGs with an application to QCA and STMG technolo-
gies,” in Proc. NANOARCH, 2018.

[14] G. Meuli, V. Possani, R. Singh, S.-Y. Lee, A. T. Calvino, D. S.
Marakkalage, P. Vuillod, L. Amaru, S. Chase, J. Kawa, and G. D.
Micheli, “Majority-based design flow for AQFP superconducting fam-
ily,” DATE, p. 6, 2022.

[15] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a simple
circuit structure,” in Proc. IWLS, 2006.

[16] S. Muroga, Y. Kambayashi, H. Lai, and J. Culliney, “The transduction
method-design of logic networks based on permissible functions,” Trans.
on Computers, vol. 38, no. 10, 1989.

[17] F. Mailhot and G. De Micheli, “Technology mapping using boolean
matching and don’t care sets,” in Proc. EDAC, 1990.

[18] L. Amarù, P.-E. Gaillardon, and G. D. Micheli, “The EPFL combina-
tional benchmark suite,” in Proc. IWLS, 2015.

[19] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, “Fast boolean
matching based on npn classification,” in International Conference on
Field-Programmable Technology, 2013.

[20] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Proc. FPGA, 1999.

[21] S.-Y. Lee and G. De Micheli, “Heuristic logic resynthesis algorithms at
the core of peephole optimization,” Trans. CAD, 2023.


