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A Robotic Surgery Platform for Automated Tissue
Micromanipulation in Zebrafish Embryos

Ece Özelçi1,2, Erfan Etesami1, Laurel A. Rohde2, Andrew C. Oates2, Mahmut Selman Sakar1,2

Abstract—Microsurgical manipulations are key experimental
techniques in life science research, particularly in embryology.
These techniques are most often performed manually by highly
skilled scientists, posing limitations on speed, precision, and
reproducibility. Here we introduce a fully automated robotic
microsurgery platform that generates explants of specific tail tis-
sue from growing zebrafish embryos, a popular model organism
for vertebrate development. Our work leverages both classical
and deep learning-based image-processing techniques to perform
robotic micromanipulation on biological specimens. Using two
example experimental cases as proof of concept, we show that
our automated platform is more precise, accurate, and efficient
than teleoperated and manual microsurgery conducted by expe-
rienced scientists. Moreover, we demonstrate the usefulness of
our platform for inexperienced experimentalists, supporting an
important role for robotic microsurgery in broadening the use
of such techniques in experimental research.

Index Terms—Automation at micro-nano scales, computer
vision for automation, microsurgery, zebrafish embryos

I. INTRODUCTION

M ICROSURGERY is a discipline that combines spe-
cialized precision instruments and magnification with

advanced microscopy to operate on small and delicate tissues
[1]. Beyond an essential role in medicine, precise surgical
manipulations are a fundamental component of experimental
work in many life sciences domains, particularly embryology,
neuroscience, and translational research. A classic example is
the Nobel prize-winning work of Hans Spemann and Hilde
Mangold (1935) in which they explanted tissue from one
embryo and then transplanted it into a second to demonstrate
the existence of embryonic organizer tissue [2]. Most micro-
surgeries on lab-grown tissues or model organisms are still
performed manually, using basic tools such as razor blades,
microknives, forceps, scissors, and glass capillaries [3], [4].
On top of requiring steady hands and often years of training,
these manual techniques are difficult to standardize and are
limited in speed, precision, and accuracy. Here we address

Manuscript received: June, 11, 2023; Revised September, 29, 2023; Ac-
cepted November, 9, 2023.

This paper was recommended for publication by Editor Xinyu Liu upon
evaluation of the Associate Editor and Reviewers’ comments. (Corresponding
author: Mahmut Selman Sakar.)

1 Authors are with the Institute of Mechanical Engineering, Ecole
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,
Switzerland. ece.ozelci@epfl.ch, erfan.etesami@epfl.ch,
selman.sakar@epfl.ch

2Authors are with the Institute of Bioengineering, EPFL,
CH-1015 Lausanne, Switzerland. laurel.rohde@epfl.ch,
andrew.oates@epfl.ch

Digital Object Identifier (DOI): see top of this page.

these challenges by developing a fully-automated microsurgi-
cal platform designed for research using zebrafish embryos.

We decided to target our platform to zebrafish because it
is a widely-used model system for studying vertebrate devel-
opment due to shared genetics and developmental programs
with humans [5], [6]. Zebrafish embryos are particularly suited
for microsurgical approaches because of their rapid exter-
nal development and tissue transparency that allows internal
structures and fluorescent proteins to be visualized in the
growing embryo [6]. Microsurgical approaches in experiments
on zebrafish embryos are common and include injection, cell
transplantation, tissue ablation, and generation of explants [7]–
[9]. Previously, we showed the feasibility of generating tail
explants from zebrafish embryos using a robotic microsurgery
platform that was teleoperated by a scientist observing through
a stereomicroscope (Fig. 1(a)) [10].
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Fig. 1. Robotic microsurgery for embryology. (a) Schematic of tail explant
generation with robotic microsurgery. (b) Schematic of zebrafish embryo at
two different developmental stages. Relevant tissues are highlighted with
different colors. PSM is the acronym for the presomitic mesoderm. (c)
Using explants to study morphogenesis of body axis elongation and growth.
i. A bright-field image of an explant right after dissection and after 5
hours of culture. ii. Light-sheet fluorescence image of an explant expressing
fluorescently-tagged histone transgene for nuclear marking. Scale bars, 100
µm. (d) Using explants to study single-cell behavior. i. Schematic for the
process of isolating single cells from tail explants. ii. Time-lapse images of
Her1-YFP signal from a single isolated cell (from top left to bottom right).
iii. Representative plot showing the oscillatory behavior of gene expression.
The vertical axis is the intensity of Her1-YFP signal in arbitrary units. Scale
bar, 10 µm.

Our scientific aim is to study the mechanics of body
axis morphogenesis and segmentation. As vertebrate embryos
elongate, tissue blocks called somites successively form with
rhythmic timing from the presomitic mesoderm (PSM) in
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the trunk and tail (Fig. 1(b)). Our teleoperated platform was
critical to dissecting the dynamic interplay between somite
formation and tissue mechanics, which are thought to include
flow, deformation, and phase transitions [7], [11]–[13], by
enabling precise micromanipulation of embryonic tissue and
the generation of tail explants. This success was consistent
with the known power of robotic microsurgery platforms to
increase reproducibility, precision, and throughput, as well as
reduced tissue damage [14]–[17].

Going to the next step of fully automated microsurgery has
the potential to extend the usability of our platform to the
wider research community by eliminating the need for highly-
trained experimentalists [15], [18]–[20]. Notably, automation
contributes to the reduction of tissue damage in microsurgical
procedures. Pioneering work has shown that operating on mice
using an automated cranial microsurgery platform significantly
improves performance, providing access for a wide range of
researchers to advanced neurotechnologies [21]. In addition to
neurosurgery, ophthalmic surgeries also require extreme pre-
cision. Robot assistance has been successfully implemented in
various forms including telemanipulation and co-manipulation
[22], [23]. Recently, fully automated robotic microsurgery has
been demonstrated in posterior ocular procedures. The robotic
system automatically removes exceptionally thin membranes
without causing damage to the surrounding tissues — a
challenging task even for highly skilled clinicians [24].

The motivation for building a robotic microsurgeon for em-
bryonic research comes from our success at using tail explants
grown in culture as a testbed to explore how specific tissues
drive morphogenesis (Fig. 1(c)). Moreover, it has previously
been shown that individual cells can be isolated from disso-
ciated PSM explants to study the autonomous dynamics of
gene expression in segmentation (Fig. 1(d)) [25]. Considering
the rapid advances in various single-cell technologies such
as genomics, proteomics, and metabolomics, we believe that
robotic microsurgery to generate large numbers of cells from
precise explants taken from embryos or organoids will be more
widely adopted.

Here, we present several advancements toward fully au-
tomated tissue micromanipulation in zebrafish embryos. We
developed a controller that communicates with several periph-
eral instruments to autonomously detect distinct features of
embryos placed in a microwell array, then drives microscissors
mounted on a 6-DOF robot to cut out the desired part of
the tail. We designed two representative case studies. The
first case study involved explanting unsegmented tissue at a
single developmental time point from a group of embryos
that were at the same developmental stage. The second case
study also used the robot to generate explants in a group
of embryos, however, the challenge was to repeat this at
multiple time points as the embryos develop. In the first
case, we devised an algorithm based on classical computer
vision functions. This approach was computationally light and
did not require the collection and annotation of a dataset.
However, adapting this algorithm to identify tissue targets
on embryos at different developmental stages in the second
case proved to be inefficient, thus we opted for a more
versatile detection algorithm based on machine learning. When

trained properly, the algorithm successfully guided the robot
to generate explants from embryos of varying sizes and
shapes throughout development. Compared to manual and
teleoperated microsurgery, we found that automation reduced
the duration of the microsurgery while increasing accuracy and
precision. Our results illustrate the potential contributions of
automated microsurgery to embryology research in zebrafish
and other model organisms.

II. SYSTEM OVERVIEW

The automated robotic microsurgery platform we designed
consists of a motorized stage that translates and rotates the
specimen, and a surgery microrobot that moves and actuates
microscissors. We chose microscissors (Advanced DSP Tip
27+ Straight Scissors, 727.53, Alcon) as the surgical instru-
ment because microscissors have short, fine blades that provide
visibility and precision in confined places, facilitating the sharp
dissection of delicate embryos. The stage has a two-axis linear
positioner (PI, VT-80 100-DC) with a 10 cm travel range and
0.5 µm resolution, and a rotary positioner (PI, U-651.04V)
to align the specimen with respect to the microscissors (Fig.
2(a)). The rotary positioner is attached to the linear positioners
with 3D-printed parts.

The body of the microrobot is equipped with a motorized
6-DOF micromanipulator (SmarAct Gmbh) capable of moving
the microscissors (i.e., the end effector) with 4 nm translation
and 25 µo rotation resolution. The movement is performed
with three translational positioners (X, Y, Z), two rotary
positioners (roll, α, and pitch, β), and an open-loop light-
weight rotary positioner (yaw, γ) mounted on the adapter
enabling continuous axial rotation of the end-effector (Fig.
2(b)). An aluminum adapter, designed and micromachined to
hold the microscissors, is directly mounted on the β positioner.
The back-and-forth movement of a plunger against a passive
spring-loaded mechanism controls the opening and closing of
the microscissors’ blades (Fig. 2(b)). The lead screw on the
stepper motor acts as a piston to push the plunger.

A compact stepper motor (Haydon Kerk, LC15AQ12) is
mounted on the adapter piece with the tubular motor support to
actuate the end-effector. The motor is controlled by an Arduino
connected to a stepper motor driver (Easy drive, V4.4). An
Xbox One gamepad with customized button control settings
serves as the human-machine interface for the teleoperation of
the system. A CCD camera (Basler, acA1920-155uc) mounted
on a stereomicroscope (Olympus SZX10) allows observation
of the specimen and provides visual feedback. Agarose mi-
crowell arrays were fabricated from 3D-printed ABS-tough
molds to facilitate the imaging and surgical manipulation of
the embryos (Fig. 2(c)). The microwell array resides on the
rotary positioner.

III. SOFTWARE ARCHITECTURE

Figure 3(a) illustrates the software architecture, summariz-
ing the various connections among the cyber and physical
components of the platform. The code was developed in
Python with C++ scripts that interface with the driver of
the microsurgery robot. Both positioners and the motorized
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Fig. 2. Automated robotic microsurgery platform. (a) An image of the platform highlighting the major components. (b) The 6 degrees of freedom of
the surgery microrobot. The schematic illustrates the actuation mechanism of the microscissors. (c) Microscope image of the microwell array showing the
embryos placed along their lateral and dorsal axes. Scale bars, 2 mm. Insets display enlarged lateral and dorsal views of a 15-somite-stage zebrafish embryo.
The diameter of a single well is 600 µm. Scale bars, 100 µm. (A/P: anterior/posterior. D/V: dorsal/ventral)

micromanipulators of the surgery microrobot are controlled
by PID controllers based on the visual feedback provided
by computer vision. The framework is initialized with hard-
ware adjustments including referencing and positioning. Once
initialization is completed, the user activates the camera for
image acquisition. In the automated surgery mode, external
Python libraries perform computer vision to detect the key
locations on the embryo and the end effector. The coordinates
extracted from the processed images are transferred to the
controller of the 6-DOF surgery microrobot, which drives
the positioners. When the robot is ready to perform surgery,
the relevant script is activated to turn on the stepper motor
and actuate the end-effector. After each surgical operation,
a predefined trajectory array drives the linear positioners to
bring the next embryo. The control loop restarts once the linear
positioners bring the next embryo in the microwell array to the
workspace. The control architecture of the system explaining
these steps is shown in Fig. 3(b).

The high-level programming interface has two main blocks:
(1) the graphical user interface (GUI) and (2) worker threads
(Fig. 3(a)). We developed the GUI using Python modules
PyQt5 and PyQtGraph. The GUI controls all the peripheral
devices and operation modes. Running background tasks and
simultaneous actions may cause problems during application
updates. To ensure that the GUI does not freeze during these
updates, we implemented a multi-threading approach using

separate worker threads, allowing control of all components
in parallel.

Each gamepad axis and button of the Xbox controller was
assigned to a specific feature of the hardware components with
the “gamepad” class in Python. We also wrote an “ASM”
(Arduino Stepper Motor) class using the PySerial library to
control the stepper motor. The images acquired by the CCD
camera were exported with the pypylon library. Importantly,
the GUI is user-friendly, where the different action sequences
can be easily modified on the screen and requires no coding
experience. The software can be accessed from the follow-
ing GitHub repository: https://github.com/ecominator/robotic
microsurgery automation.git.

IV. RESULTS AND DISCUSSION

As a proof of principle for our fully automated platform,
we designed two experimental case studies based on ongoing
research work (Fig. 1) that relies on generating tail explants
from precise locations and developmental stages of zebrafish
embryos. The chorion of the zebrafish embryos was surgi-
cally removed using two forceps (FST-Dumont #5, 91150-20)
(Video 1). The released embryos were transferred using a glass
Pasteur pipette and placed inside agarose microwells with the
dorsal side facing up. These operations were done manually
by the researcher. After the manual placement of the embryos,
the automated dissection process was initiated to control stage
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Fig. 3. Software architecture. (a) High-level programming interface of
the control software for the robotic microsurgery platform. Blue and black
components refer to hardware and software-based actions respectively. Dashed
arrows are to indicate the worker thread connections. Continuous arrows show
the work sequence starting from the GUI. The shaded area indicates the
operations performed for a single embryo. (b) System control architecture.
“Ed” and “Sd” refer to the desired initial positions of the embryo and the
scissors, respectively. “1” and “2” refer to the first action (the annotation of the
microscissors) and the second action (the actuation of the microscissors which
then triggers the movement of the linear positioners that carry the embryos)
of the surgery microrobot.

movement, visual servoing of the surgery microrobot, and
actuation of the microscissors. During the experiments, linear
positioners were programmed to move at a constant speed
of 1 mm·s−1, and the maximum speed for the translational
positioners of the micromanipulator was set at 1.5 mm·s−1 to
maintain the orientation of the embryos inside the microwells
and to avoid damaging the embryos, respectively.

Case Study 1

The objective of the first study was to rapidly, precisely, and
accurately generate tail explants by cutting directly posterior
to the last formed somite in multiple embryos at the same
developmental stage (see Video 2). High throughput can often
be difficult to achieve using slow-paced manual dissection due
to the rapid development of the embryo. Embryos at the 15-
somite stage were placed in the microwell array and positioned
dorsal side up. Because the orientation of the embryos was
the same and the ambient illumination conditions were stable,
we used conventional image processing techniques to detect
key features of both the embryos and microscissors. An
algorithm implemented using the OpenCV module of Python
detected the key features of the embryo, which were then used
to calculate the distance between the target tissue and the

microscissors. The x- and y-axis of the surgery microrobot
was then instructed to move such that the microscissors
were positioned at the desired location. Finally, the positioner
controlling the z-axis of the robot was activated to translate
the microscissors down. The precise displacement in the z-axis
was determined through an initial calibration measurement
conducted on a single embryo for each microwell array. The
same displacement was used to operate on all the embryos
in an array as the embryos were at the same developmental
stage. The initial calibration is critical because although we
consistently cast a constant volume of liquid agarose gel (2
ml for 35mm-Mattek petri dish) there is a small variation in
the height of the agarose molds.

The image processing framework performed the following
steps: (1) the acquired image was blurred to remove the noise;
(2) thresholding was applied to the blurred image to distin-
guish the embryo and the microscissors as separate objects; (3)
parameters were manually tuned once and applied to all the
subsequent surgeries; (4) parts of the images corresponding
to the embryo and microscissors were cropped for further
processing; (5) image processing techniques that involved
closing, filling, and edge detection (Canny edge detector) were
used to identify the contour of the embryo, from which the
centroids of the relevant locations (i.e., top and bottom sides
of the notochord) were calculated; (6) closing, filling, and
line detection (probabilistic Hough transform) identified the
intersection point of the scissors’ blades; and (7) the detected
points were projected on the acquired image as shown in
Fig. 4(a). We found this image-processing framework to be
robust and computationally light, with an execution time of
180 milliseconds per embryo.

To evaluate the advantages of automation in this case study,
we compared the duration of automated robotic microsurgery
to that of robot-assisted microsurgery in which the robot was
teleoperated, and manual microsurgery. All work, in this case,
was done by a scientist who had 4 years of experience with
zebrafish micromanipulation. Each microwell array contained
36 embryos, which were operated on in a single run for speed
measurements. First, we evaluated how fast the microsurgeries
could be done with the different methods. The average time
for dissecting one embryo with automated, teleoperated, and
manual microsurgery was 19.4 ± 0.6 (N = 4, n = 144), 35.2 ±
3.5 (N = 3, n = 108), and 37.2 ± 2.5 (N = 3, n = 108) seconds,
respectively (Figure 4(b)) (N = the number of individual
experimental runs, n = the total number of embryos undergoing
microsurgery). We found that automated microsurgery was
twice as fast on average than the other methods, with a smaller
inter-experiment standard deviation, indicating that automated
dissection is both faster and more precise. Because a new
somite forms on average every 30 min (at 28.5oC) during
segmentation of the embryo [26], an experimenter would be
restricted to a 30 min window in which to collect explants at
the same developmental stage. Using the speeds determined
here, we anticipate that full automation would enable 93
explants to be collected within this window, as opposed to 51
for teleoperation and 48 for manual operation, thus meeting
our objective of improving high throughput sample collection.

Next, we wanted to see if this increase in throughput
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Fig. 4. High throughput dissection of tail explants. (a) The sequence
showing automated microsurgery steps. Yellow and orange squares indicate
the centroid of the lower part and, upper part, respectively, and blue square
indicates the mean of the x-components of the upper and lower centroids. Pink
square is the target location on the microscissors. Scale bar, 100 µm. (b) The
duration of explant generation per embryo done with automated, teleoperated,
or manual microsurgery. (c) The percent error in the length of the explant for
automated, teleoperated, or manual microsurgery. Lines indicate the median.

through automation was accompanied by an increase in the
accuracy of placement of the cut to generate the explants.
To facilitate analysis, we performed these surgeries on 6
embryos per round, following four steps: (1) embryos were
oriented laterally and a picture of each embryo was taken, (2)
embryos were then positioned dorsally for microsurgery, (3)
microsurgery was used to generate explants, and (4) explants
were oriented laterally and imaged. We measured the length
of the tail of the intact embryo before surgery, lintact, and
the length of the explant post-surgery, lexplant, to quantify the
relative error, which is given by (lintact−lexplant)×100/lintact.
To control for measurement variability, we measured the length
of the tail in an intact embryo at the start and finish of the
microsurgery interval. The computed relative error for the
control case was 0.69 ± 0.52 % (N = 6, n = 6), which we
attributed to measurement errors. The computed relative error
of the automated procedure was 1.87 ± 1.86 % (N = 6, n = 30),
which was significantly lower than both teleoperation (7.01 ±
4.84 %, N = 4, n = 24) and manual surgery (9.40 ± 7.57 %, N
= 3, n = 18) (Fig. 4(c)). Thus, automated robotic microsurgery
was 3 times more accurate than the other methods. Once
again, we calculated a smaller standard deviation from the
robotic microsurgery data, highlighting the precision brought
by automation.

To determine if automation, in this case, makes micro-

TABLE I
INEXPERIENCED USERS’ PERFORMANCE DURING MANUAL AND

TELEOPERATED SURGERIES

user # operation # surgeries in 30 min # viable explants

1 manual 36 9
teleoperation 16 13

2 manual 32 11
teleoperation 34 32

3 manual 8 4
teleoperation 16 16

surgery accessible to untrained experimentalists, we asked
three researchers who had no prior experience with zebrafish
embryos and our robotic platform to generate explants. Per-
formances of the different operators during manual surgery
greatly varied, but in all cases, the addition of robotic as-
sistance via teleoperation significantly improved the precision
and accuracy of viable dissections. Overall, automation of the
surgery was 10 to 20 times faster than manual surgery, and
3 to 7 times faster than teleoperated surgery. Importantly, full
automation enables an inexperienced user to collect the same
number of explants at a single somite stage as an experienced
user, whereas with teleoperation or manual techniques only
13 - 32 or 4 - 11 explants were generated within a 30 min
window, respectively (Table I).

Taken together, these results show that automation outper-
forms robot-assisted and manual microsurgeries in terms of
speed, accuracy, and precision, and has the potential to make
these experiments possible for inexperienced experimentalists.

Case Study 2

The objective of the second study was to generate explants
of unsegmented tissue at successive developmental stages (see
Video 3). To achieve this, we let the embryos grow inside
the microwell array and cut their tails at multiple time points
pre-defined by the user (Fig. 5(a)). In addition to speed
and accuracy, automation is useful for this type of dynamic
manipulation that would otherwise require the scientist to be
present throughout the entire developmental window.

Because embryos morph in 3D over time, the classical
image processing techniques used in the previous case study
were incapable of detecting the features of the embryo. To
address this issue, we implemented a deep learning-based
solution.

In biomedical image processing, where a limited number
of images are available for annotation, Deep Convolutional
Neural Networks (DCNNs) excel in tasks such as detection,
classification, segmentation, and information processing [27],
[28]). Previous work has shown that DCNNs outperform
other methods in various visual recognition tasks [27]. We
generated a dataset of 210 dorsal view images of zebrafish
embryos and annotated them. To use the available annotated
samples more efficiently for image segmentation, we used
the u-net model [27], a CNN architecture designed to take
advantage of data augmentation. The architecture contains an
encoder network with max pooling operators and a decoder
network with upsampling operators. Here, the encoder has
2D convolutional blocks with a kernel size of 3×3 and same
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Fig. 5. Automated microsurgery on developing embryos. (a) A representative image of embryos from the same developmental stage placed in the microwell
array. Black lines show the trajectory for the movement of the xy-stage. Scale bar, 1 mm. (b) Input image to the adapted u-net model and the output mask
tracing the notochord together with the annotated embryo image that is fed back to the GUI for visual servoing. Red points on the embryo correspond to
the predicted intervals of the somite boundary. (c) Representative images showing the manually annotated notochord along with the model’s prediction. The
outline of the annotated and the output masks are used for ease of visualization.

padding to preserve the image size. Each convolutional layer
was followed by a batch-normalization and a rectified linear
unit (ReLU) activation function. 2×2 max pooling layers
reduce the sensitivity of the network to the spatial location
of the features detected by the convolutional layers. To reduce
overfitting, each max pooling layer was followed by a dropout
layer with a rate of 0.5. The upsampling layers of the decoder
have the same kernel size as the convolutional layers, using a
stride of 2 along both width and height dimensions. The output
of each upsampling layer was concatenated along the channel
dimension. After each concatenation, the dropout operation
with a rate of 0.5 was applied. Finally, the output layer of the
network was a convolutional layer with a 1×1 kernel size. A
sigmoid activation function was applied on this output layer
to ensure that output values were bounded between zero and
one. The final output of the network is a grayscale mask.

Detecting somite boundaries in the dorsal view, the pre-
ferred view for surgical dissection, proved a challenging
task, particularly in young embryos (before the 15 somite
stage). Our initial attempts to create a dataset for semantic
segmentation models targeting the somite boundaries were not
robust. To address these morphological constraints, we used
an alternative approach to segment the tail. Unlike somite
boundaries, the notochord is clearly visible in the acquired
images, and by tuning the hyperparameters, we trained a u-net
model to detect the notochord. The input of the adapted u-net
model was a grayscale image of the embryo and the output
was a binary image of the notochord (Fig. 5(b)). Because the
anteroposterior length of each somite is approximately 50 µm,
we were able to divide the detected notochord into somite-
length sections by specifying this in the software. We then
used the output mask to deliver a set of points along the
detected notochord as approximate somite boundary locations
and projected these points on the input image (Fig. 5(b),
mapped). This was a coherent approximation for different
embryos because we started to generate the notochord mask
from the same anteroposterior position on the embryo axis
during the data set creation. The first marked red point was at

an identical location in all embryos, and the remaining points
were assigned using the same Euclidean distance.

We trained the network on Google Colab with GPU accel-
eration and a batch size of 5 for 200 epochs. The best model
had a training and validation accuracy of 92.5% and 91.0%,
respectively. For comparison, the red contours in Fig. 5(c)
show an example of a manually annotated notochord and the
model’s predicted output. The average execution time during
the experiment for this protocol was 0.58 seconds.

We designed an experiment where embryos at the 15 somite
stage were placed into the top three rows of the microw-
ell array (Fig. 5(a)). Before we started the experiment, we
specified at which target location (red point, (Fig. 5(b))) the
cutting should initiate. The robot was programmed to start
cutting from the top-right corner of the array, operating on
the 6 embryos located in the first row. Then, according to
our instructions, the robot waited for 1 hr to let the remaining
intact embryos form two new somites, raising the total number
of somites to 17, and re-activated the surgery sequence to
operate on the next 6 embryos located in the second row. This
procedure was repeated once more to dissect explants from
embryos with 19 somites located in the third row. Figure 6
shows close-up images of the zebrafish embryos corresponding
to the different time points. After all the explants were
dissected, we performed time-lapse imaging every 15 minutes
for 2 hours. The results showed that the robot successfully cut
the same part of the tail, the distal part containing PSM and
the tailbud, from embryos at different developmental stages.
Post-surgery, the explants continued to elongate and pattern
somites (Fig. 6).

V. SUMMARY AND OUTLOOK

In this work, we introduced an automated robotic micro-
surgery platform for high throughput, precise, and accurate
dissection of zebrafish embryos. We specifically designed
our platform as a benchtop system that fits adjacent to a
conventional microscope and can be operated without pro-
gramming expertise. Using the hardware details and software
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(a)

(b)

(c)
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t = 0 hr t = 3 hr

t = 3 hr

t = 2 hr

t = 2 hr

pre-surgery

t = 1 hr

t = 2 hr

* *

*

** *

****** **
*

t = 2 hr t = 3 hr

post-surgery
t = 0 hr

Fig. 6. Explants obtained at multiple time points in developing em-
bryos. Images taken pre-surgery show the zebrafish embryos at the target
developmental stages. Orange arrowheads indicate the desired cut location.
6 embryos were operated on at each time point (t = 0, 1, 2 hours). Images
taken immediately post-surgery show no somite boundaries. Subsequent de-
velopment includes sequential formation of somite boundaries in the explant.
Orange asterisks mark the formed somites. Exemplary images of the embryos
operated at time points (a) t=0, (b) t=1 hr, (c) t= 2 hr. Scale bars, 100 µm.

provided here, this system can be set up in any research
laboratory, making mechanical micromanipulation-based life-
sciences applications broadly accessible.

We showed the feasibility of programming a robot to
repeatedly generate tissue explants of a specific tail region
from a batch of embryos that were the same genotype and
developmental stage. Moreover, we designed an improved
DCNN-based dynamic protocol to generate explants of a spe-
cific tail region at multiple time points throughout development
in a single batch of fish. We found that a solution based
on OpenCV worked well in the first case, whereas our deep
learning-based feature detection method worked better for
tasks involving growth and shape change, despite the higher
computational cost.

We focused on distinct morphological features, the noto-
chord, and the somites, to generate the tail explants. To this
end, we trained the DCNN model to detect the notochord
of the embryo and position the microscissors through visual
servoing. As an extension of our work, a larger dataset with
multi-view images of embryos could be constructed from
several developmental stages and other morphological features
could be incorporated into the set of labels. This would be a
means of programming the microrobot to surgically remove
other tissues in the zebrafish embryo, such as the heart, eye,
yolk, and nervous system, to grow as explants or to study
tissue regeneration [29], [30]. To show the versatility of our
platform, we designed a proof-of-concept experiment where
the robot was programmed to dissect the head region of the
embryo that contains the eye. The robot successfully dissected
the targeted tissue using the same image processing functions
described in Case Study 1 (see Video 4). Our platform and
approach could also be applied to other model organisms,

including amphibians, chick, and mouse embryos as well as
organoids and other tissue culture models [31], providing
endless experimental opportunities for biomedical research.

Here, we focused on automating the microsurgery while
handling embryos and explants manually. Our future work
will address automating embryo placement into the microwells
and collection of explants post-surgery for further culture and
analysis, thus automating the entire experimental workflow.
Automation also offers new avenues on the imaging side.
Recent work has shown the feasibility of using DCNN to
classify mutant zebrafish embryos from microscope images
[32]. We envision an exciting future in which the robot is
programmed to operate on select embryos displaying certain
features identified through intelligent imaging and smart mi-
croscopy.
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