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Framework to evaluate the value of monitoring-technique information for 
structural performance monitoring

Numa J. Bertola and Eugen Br€uhwiler 

School of Architecture, Civil and Environmental Engineering (ENAC), Swiss Federal Institute of Technology Lausanne (EPFL), Laboratory for 
Maintenance and Safety of Structures (MCS), Lausanne, Switzerland 

ABSTRACT 
The management of existing civil infrastructure is becoming more crucial as a large share of bridges is 
approaching their theoretical end of service duration. Structural performance monitoring aims to verify 
bridge safety at a given time, and it should be differentiated from structural health monitoring, which 
aims at detecting structural damage. Possible monitoring techniques include bridge load testing, non- 
destructive testing, and continuous monitoring of structural behaviour, environmental conditions, and 
load levels. Nonetheless, selecting the optimal combination of monitoring techniques is challenging as 
each method provides unique but also redundant information. This study proposes a framework to 
assess the value of information from multiple bridge monitoring techniques. This framework enables 
defining the appropriate set of monitoring techniques to ensure that the collected information will 
potentially correct engineering decisions regarding structural safety. A full-scale bridge in Switzerland 
is used for validating the framework predictions. Combining four monitoring techniques, the expected 
average increase of degrees of compliance of structural verification is estimated to 19%, which is con-
sistent with the 36% obtained after performing these monitoring techniques. The methodology sup-
ports decision-makers in selecting an optimal combination of monitoring techniques for structural 
performance monitoring by maximizing the value of information.
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1. Introduction

In developed countries, most infrastructure was built in the 
second half of the twentieth Century. Most bridges are 
approaching their intended service duration (Biondini & 
Frangopol, 2016). Managing existing civil infrastructure is 
challenging because of evolving functional requirements, 
insufficient concrete and steel durability, and climate change 
(Yang & Frangopol, 2018, 2019). Neglecting infrastructure 
maintenance has been highlighted as one of the main limit-
ing factors of economic growth in many countries (Schwab 
& Sala-I-Martin, 2017). Infrastructure safety assessments are 
crucial as these evaluations influence the infrastructure-net-
work resilience and environmental impacts of asset manage-
ment (Bocchini, Frangopol, Ummenhofer, & Zinke, 2014; 
Frangopol & Liu, 2007).

Infrastructure conditions are typically evaluated based on 
visual inspection, which is repeated every few years by road 
agencies (Schellenberg, Vogel, Ch�evre, & Alvarez, 2013). 
However, the limitations of these qualitative inspections are 
well-known (Agdas, Rice, Martinez, & Lasa, 2016; Bertola & 
Br€uhwiler, Bertola & Br€uhwiler, 2023). For instance, some 
critical structural elements (i.e., prestressed tendons in con-
crete) may be embedded in the structure or are not access-
ible and thus cannot be visually inspected (Abdel-Jaber & 
Glisic, 2019; Jeon, Lee, Lon, & Shim, 2019).

To overcome the limitations of visual inspections, the 
deployment of monitoring systems to collect data on structural 
behaviour and conditions has attracted a lot of interest, see for 
example (Brownjohn, 2007; Catbas, Susoy, & Frangopol, 2008; 
Cross, Koo, Brownjohn, & Worden, 2013) among others. As 
structural models are inherently conservative (Proverbio, 
Vernay, et al., 2018), collecting monitoring data helps unlock 
untapped reserve capacities of existing infrastructure, thus 
improving decision-making without putting users at risk 
(Aktan, Bartoli, & Karaman, 2019; Smith, 2016). A better 
knowledge of structural performance can be leveraged to 
extend service durations and prioritize maintenance activities 
(Bocchini et al., 2014; Frangopol, Strauss, & Kim, 2008).

Two main structural-monitoring strategies should be dif-
ferentiated (Figure 1). First, field measurements are used to 
estimate the structural capacity at a given time accurately, 
called structural performance monitoring (SPM) (Feng, 
Kim, Yi, & Chen, 2004). This strategy involves measuring 
the structure over a given period of time (from a few 
minutes to a few months) to update the safety assessment 
with monitoring data. The second strategy involves assessing 
the decrease in the structural performance over time due to 
the deterioration of the materials, called structural health 
monitoring (SHM) or damage detection (Farrar & Worden, 
2010; Worden & Dulieu-Barton, 2004). These two strategies 
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can be regrouped under the name of non-destructive evalu-
ation (NDE) (Zheng & Ellingwood, 1998). As the same sen-
sors (i.e., accelerometers, thermocouples, and strain gauges) 
are used for both monitoring strategies (Capellari, Chatzi, 
Mariani, & Azam, 2017; Wong, 2007), the two strategies are 
sometimes not clearly differentiated in the literature.

SPM can involve several monitoring techniques (MT) to 
achieve its goal of estimating structural capacity more accur-
ately. These techniques include non-destructive testing 
(NDT), weight-in-motion (WIM), continuous monitoring of 
structural behaviour (over a short and predefined period of 
time), and bridge load testing. In NDT, instruments are 
locally deployed to temporarily measure the structural 
response under a known test setup (Kot et al., 2021; Lee, 
Kalos, & Shin, 2014). WIM stations measure axle and gross 
vehicle weights as vehicles pass through the measurement 
site, and this information is used to extrapolate maximum 
traffic demand (OBrien, Brownjohn, Hester, Huseynov, & 
Casero, 2021; Treacy, Br€uhwiler, & Caprani, 2014). Bridge 
weight in motion (BWIM) uses monitoring systems, such as 
strain gauges, to infer actual traffic load effects based on 
sensor measurements (Lydon, Taylor, Robinson, Mufti, & 
Brien, 2016; Ojio, Carey, OBrien, Doherty, & Taylor, 2016). 
The continuous-monitoring technique involves placing 
sensors and measuring the actual behaviour of the bridge 
elements due to the real operational (i.e., traffic) and 
environmental conditions for a given time (usually several 
months or years) (Oskoui, Taylor, & Ansari, 2019; 
Sawicki & Br€uhwiler, 2022; Wang, Niederleithinger, & 
Hindersmann, 2022).

In bridge load testing, static and dynamic excitations 
(Brownjohn, De Stefano, Xu, Wenzel, & Aktan, 2011; Cao, 
Koh, & Smith, 2019) are used to characterize the structural 
and material properties (i.e., the structural rigidity and the 
boundary conditions) of the bridge (Alampalli et al., 2021; 
Lantsoght, van der Veen, de Boer, & Hordijk, 2017). As 
each MT provides unique information, a combination of 
MTs is often recommended to maximize the information 
gain (Bertola, Henriques, & Br€uhwiler, 2023, Bertola, 
Henriques, Schumacher, & Br€uhwiler, 2022). MTs are often 
not combined for SPM. The first reason is that performing 
multiple techniques requires a large number of sensors and 
data-interpretation tools and may thus be expensive. 
Another reason is the difficulty in predicting the mutual 
and redundant information from multiple techniques. 
Selecting the optimal set of MTs is thus a complex task and 
must often be economically justified.

Researchers have first investigated optimal sensor net-
works to maximize the information gain during monitoring. 
(Bertola, Cinelli, Casset, Corrente, & Smith, 2019; Ercan & 
Papadimitriou, 2021). Strategies have been developed to pre-
dict the information gain of monitoring systems based on 
information-entropy criteria (Argyris, Papadimitriou, & 
Panetsos, 2017; Bertola, Papadopoulou, Vernay, & Smith, 
2017b; Papadimitriou, 2004). The information entropy, also 
called Shannon entropy, is a metric measuring the disorder 
in information content. Optimal sensor placement is 
obtained by optimizing the sensor configuration that will 
provide the maximal information on the system uncertain-
ties (Papadimitriou, 2004; Papadimitriou, Beck, & Au, 
2000). In other words, the information gain of sensor con-
figurations is evaluated based on uncertainty reduction (i.e., 
bridge properties identification) rather than the impacts of 
precise parameter values on bridge-safety evaluations.

Recently, efforts have been made to quantify the value of 
information (VoI) by comparing maintenance interventions 
with and without including expected information gain, see 
for example (Giordano, Quqa, & Limongelli, 2023; Pozzi & 
Der Kiureghian, 2011; Straub et al., 2017; Zhang, Qin, Lu, 
Liu, & Faber, 2022; Zonta, Glisic, & Adriaenssens, 2014) 
among others. One recent progress is the development of 
frameworks to quantify the VoI for sequential point-in-time 
decision-making for infrastructure management (Giordano 
et al., 2023; Larsson Ivanov, Bj€ornsson, Honfi, & Leander, 
2022; Verzobio, Bolognani, Quigley, & Zonta, 2022). The 
COST Action TU 1402 was a joint effort between academia, 
industry and authorities to provide complementary material 
for the quantification of the VoI of NDE between 2014 and 
2019 (COST Action TU1402,1402,1402, 2014). Three guide-
lines were introduced for operators (Sousa, Wenzel, & 
Th€ons, 2019b, 2019a), practising engineers (Diamantidis, 
Sykora, & Sousa, 2019), and scientists (Th€ons, 2019).

Although insightful frameworks have been provided, they 
often rely upon simplified assumptions with respect to 
maintenance actions, hypothetical information gain, and 
numerical examples (Kamariotis, Chatzi, & Straub, 2022; 
Th€ons, 2018). Further to this, a recent special issue has been 
released and aimed at demonstrating the practical feasibility 
of the VoI for infrastructure management through full-scale 
case studies (Sousa, K€ohler, & Casas, 2022). Despite these 
efforts, a challenge lies in the integration of the expected 
information gain from multiple MTs in the VoI frameworks 
(Zhang, Lu, Qin, Th€ons, & Faber, 2021). This work aims at 
providing novel approaches to tackle this challenge using 
results from a full-scale bridge case study in Switzerland.

This paper presents a novel framework to evaluate the 
value of information of a combination of MTs for SPM 
(VoI-based design of SPM) (Section 2). A combination 
means that several MTs will be performed on the bridge 
sequentially. The concept of the VoI in the context of SPM 
is first introduced. Then, methodologies are introduced to 
quantify the VoI depending if the MT provides a direct or 
indirect measure of structural properties (forward or inverse 
problem). These methodologies enable quantifying the VoI 
of SPM when several MTs can be performed. Results of a 

Figure 1. Influences of estimations from structural performance monitoring 
(SPM) and structural health monitoring (SHM) on bridge performance.
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large monitoring campaign between 2016 and 2019 on a 
bridge in Switzerland have been used to validate VoI predic-
tions of MTs using field measurements (Section 3). A dis-
cussion on the difference between information gain and VoI 
is made in Section 4.

2. Framework to evaluate the value of information 
of monitoring techniques for structural 
performance monitoring

2.1. Background

2.1.1. Error-domain model falsification (EDMF)
Error-domain model falsification (EDMF), is a probabilistic 
methodology for data interpretation of structural system 
(Goulet & Smith, 2013). This data-interpretation method-
ology is similar to Bayesian model updating and has been 
shown to provide robust identification (Pai & Smith, 2021, 
2022). EDMF requires several steps. First, a model class is 
defined, which involves both the creation of a parametric 
behavior model of the structural system through the selec-
tion of its most critical behavior-sensitive characteristics 
(i.e., material properties, geometry, boundary conditions, 
etc.), their plausible ranges, as well as the quantification of 
non-parametric model uncertainties (Ui, g) and measurement 
errors (Ui, y). The second step is the generation of a set of 
model instances from the model class, where each instance 
represents a unique combination of model-parameter values. 
Predictions of these model instances are then compared to 
the field measurements in the third step.

For a measurement location i, the prediction of a model 
instance gi Hð Þ is generated by assigning a unique combin-
ation of parameter values H: Let’s defined Ri the true struc-
tural response at this location (unknown in practice). Ri is 
linked to the field measurements yi and model prediction 
gi Hð Þ using Equation (1) with ny the number of measure-
ments:

gi Hð Þ þ Ui, g ¼ Ri ¼ yi þ Ui, y 8i 2 1, . . . , nyf g (1) 

Distributions of model Ui, g and measurement Ui, y uncer-
tainties are usually combined in a unique source of uncer-
tainty Ui,c using Monte-Carlo sampling (Robert-Nicoud, 
Raphael, & Smith, 2005b). Equation (1) is then transformed 
into Equation (2). The left side of Equation (2) shows the dis-
crepancy between the model-instance prediction and the sen-
sor data at location, i and is called the residual, ri:

gi Hð Þ − yi ¼ ri ¼ Ui, c 8i 2 1, . . . , nyf g (2) 

The last step involves falsifying model instances that have 
predictions that differ significantly to the measurements. 
For each measurement, upper and lower falsification thresh-
olds are defined using a level of confidence (typically set at 
95%) on Ui,c (J.-A. Goulet & Smith, 2013). If a model 
instance is associated with a residual value exceeding a 
threshold bound at least in one sensor location, this model 
instance is falsified. This falsification means that the associ-
ated combination of model parameter values is discarded. 
By falsifying the wrong model instances, the output of 
EDMF is a set of plausible model instances (i.e., plausible 

combinations of parameter values) among the initial popula-
tion. Therefore, only a subset of initial parameter ranges 
remains plausible, and information is gained.

2.1.2. Hierarchical algorithm for sensor placement
The hierarchical algorithm for sensor placement enables to 
identify optimal sensor configuration (Bertola et al., 2017b; 
Papadopoulou, Raphael, Smith, & Sekhar, 2014). The infor-
mation gain is evaluated by the ability of a sensor configur-
ation to discriminate model instances and is tailored for 
EDMF. The algorithm helps obtain the measurements that 
maximize the number of falsified model instances to reduce 
parameter-value ranges after monitoring. The hierarchical 
algorithm uses joint entropy as the objective function 
(Papadopoulou, Raphael, Smith, & Sekhar, 2016), which is 
an improvement of the information entropy. Information 
entropy has been used for two decades as the objective func-
tion for optimal sensor placement. This metric measures the 
disorder either in posterior parameter distributions 
(Papadimitriou et al., 2000) or model-instance prediction 
distributions (Robert-Nicoud, Raphael, & Smith, 2005a). 
Due to the large combination number of potential sensor 
configurations, a greedy search optimization algorithm is 
chosen (Papadimitriou, 2004).

In EDMF context, the evaluation of information entropy 
enables measuring the variability of model-instance predic-
tions at sensor locations for a given uncertainty level. In 
order words, a sensor location with a large information 
entropy associated, means that this location will maximize 
the discrimination of model instances, and is an attractive 
sensor location. To quantify the information entropy, a 
histogram of model prediction at each sensor location is 
generated. The range of model-instance predictions is subdi-
vided into NI, i subsets with a subset width given by the dif-
ference between upper and lower threshold bounds obtained 
with combined uncertainty Ui,c (Equation (2)). The prob-
ability that a particular model-instance prediction gi, j falls 
inside the jth subset is thus equal to P gi, jð Þ ¼ mi, j=

P
mi, j 

with mi, j the number of model instances falling inside jth 

interval. The information entropy H gið Þ of sensor location 
i is then evaluated by:

H gið Þ ¼ −
XNI, i

j¼1
P gi, jð Þlog2P gi, jð Þ (3) 

When the behavior of complex systems (i.e., bridges) is 
monitored, the collected measurements between sensor loca-
tions are correlated. The selection of the optimal sensor 
placement based on the information-entropy metric leads to 
suboptimal sensor configurations (Bertola, Papadopoulou, 
Vernay, & Smith, 2017a). To account for the mutual infor-
mation between locations, joint entropy is introduced as a 
new objective function for sensor placement (Papadopoulou 
et al., 2014). Joint entropy H gi, iþ1ð Þ enables the evaluation 
of the information entropy amongst sets of predictions at 
sensor locations. For a set of two sensors, the metric is cal-
culated using Equation (4). In this equation, P gi, j, giþ1, kð Þ id 
the joint probability that model-instance predictions fall 
inside the jth interval at sensor i and the kth interval at 
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sensor iþ 1 with k 2 1, . . . , NI, iþ1f g and NI,iþ1 is the max-
imum number of prediction intervals at the iþ 1 location 
and iþ 1 2 1, . . . , nsf g with the number of potential sensor 
locations ns:

H gi, iþ1ð Þ ¼ −
XNI, iþ1

k¼1

XNI, i

j¼1
P gi, j, giþ1, kð Þlog2P gi, j, giþ1, kð Þ

(4) 
Due to the redundancy in the information gained 

between sensors, the joint entropy is less than or equal to 
the sum of the individual information entropies at sensors i 
and iþ 1. Equation (4) can be transformed into 
Equation (5), where I gi, iþ1ð Þ is the mutual information 
between sensor locations i and iþ 1. The prediction of the 
algorithm is terms of information gain has been validated 
by the observations for several case studies (Bertola, Costa, 
et al., 2020):

H gi, iþ1ð Þ ¼ H gið Þ þ H giþ1ð Þ − I gi, iþ1ð Þ (5) 

2.2. Framework

2.2.1. Structural performance monitoring and metric for 
structural verifications
SPM aims to conduct structural verifications based on 
updated structural properties and observed loading demand. 
This monitoring approach should be differentiated from 
SHM, which aims at damage detection and predictions of 
future service duration (Figure 1). All structural require-
ments can be verified as monitoring information can influ-
ence both demand (load level) and structural capacity. This 
monitoring strategy has thus a lot of use cases in practice 
since often structural deficiencies are initially estimated by 
engineers. SPM typically has the following procedure:

1. Examination of the existing structure without monitor-
ing information.

2. Identification of structural deficiencies for all limit states.
3. Design of the appropriate monitoring system.
4. Performance of the monitoring campaign.
5. Interpretation of the data in terms of identified bridge 

property values.
6. Updating of structural models and structural capacity.

In this study, a framework is proposed for the third step 
of the SPM procedure (design of the appropriate monitoring 
system) when multiple MTs can be implemented (such as 
NDT, WIM, continuous monitoring, and bridge load testing 
in this study). Before assessing the value of information of 
MTs, the metric used to evaluate structural performance is 
introduced. Several metrics have been proposed in the 
literature (Ghosn, Due~nas-Osorio, et al., 2016; Ghosn, 
Frangopol, et al., 2016).

In Switzerland, structural safety is commonly calculated 
following the deterministic approach using the degree of 
compliance n (Br€uhwiler, Vogel, Lang, & L€uchinger, 2012), 
shown in Equation (6). When the degree of compliance has 
a value larger than 1.0, it means that structural safety is 
ensured. This deterministic metric is generic and can thus 

be applied to any structural verifications for serviceability 
limit states (SLS), ultimate limit states (ULS), and fatigue 
limit states (FLS). The proposed methodology could also be 
used for probabilistic structural evaluations (Cervenka, 2013; 
Gulvanessian, Calgaro, & Holickỳ, 2012; Melchers & Beck, 
2018; Straub, Schneider, Bismut, & Kim, 2020). The choice 
of a deterministic evaluation of the degree of compliance is 
twofold: first, it replicates the current practice of the evalu-
ation of structural safety in Switzerland. Second, it allows 
for faster evaluations of the structural verification metric.

To calculate both structural capacity and load effects at a 
given location of the bridge, analytical or numerical models, 
such as finite element models, are required. For a given case 
study, such as a bridge, several structural verifications are 
usually made for each limit state. In such cases, a degree of 
compliance for each structural verification is derived:

degree of compliance � n ¼ Capacity=Demand (6) 

2.2.2. Value of information
The proposed method to select the appropriate monitoring 
system (step 3 of the SPM process) is based on the concept 
of the value of information (VoI). VoI analyses aim at quan-
tifying the economic value of monitoring information by 
assessing how decision-making is impacted by the additional 
data. Therefore, this study aims at proposing a framework 
for VoI-based design of optimal monitoring-technique com-
bination for SPM. In this study, the value of information 
approach combines the entropy-based metric (Section 2.2) 
for information gain estimations and code-based determinis-
tic structural verification (Equation (6)). This approach is 
similar to the one used for sensor placement by Bertola, 
Proverbio, et al. (2020).

Decision-making in SPM is related to structural-safety 
assessments. In the present study, potential intervention 
actions involve either structural strengthening or doing 
nothing. Monitoring data provide valuable information if 
they can change the assessments of bridge safety for struc-
tural verifications that initially showed deficiencies. In such 
situations, a structural intervention would be made without 
monitoring data, but this intervention may be avoided 
thanks to monitoring. Monitoring data help re-evaluate the 
degrees of compliance (Equation (1)) by reducing uncertain-
ties on three main aspects: material properties (i.e., elastic 
modulus, material strength), load effect levels (i.e., max-
imum stress difference due to operating traffic), and struc-
tural modelling (i.e., boundary conditions, transverse load 
distribution). Each MT reduces uncertainties on a subset of 
parameters of structural models that may influence the 
structural safety assessment by means of an associated mon-
itoring cost. Maximizing the VoI of MTs for SPM involves 
defining which data collected by a combination of MTs is 
the most likely to affect structural-safety assessment with 
the smallest monitoring costs.

The VoI of a MT (or combination of techniques) for 
SPM is quantified using:

VoISPM ¼ ðCint − CnotÞ �Pðn � 1Þ − Cmon (7) 
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in which, Cint represents the cost of interventions, Cnot is 
the costs of doing nothing (assuming equal to zero and does 
not account for potential rehabilitation costs associated with 
interventions for the durability of non-structural elements), 
Cmon is the monitoring costs, and Pðn � 1Þ is the probability 
that the degree of compliance n will be higher than 1.0 after 
performing the MT. In such situations, the intervention is 
avoided, and Cint is thus saved (Bertola, Proverbio, et al., 
2020).

In this study, the simplification that Cint is a constant 
and is not affected by the outcomes of the monitoring cam-
paign is made. In practice, Cint may be slightly reduced if 
the degree of compliance is increased. Nonetheless, a signifi-
cant part of Cint depends on labour and indirect (i.e., impact 
on traffic) costs which are mostly independent of the degree 
of compliance. The optimal combination of MTs is defined 
as the combination that maximizes Pðn � 1Þ with a minimal 
Cmon: As the evaluation of degrees of compliance is made 
deterministically (Equation (6)), Pðn � 1Þ is the probability 
distribution that degrees of compliance will be found larger 
than 1.0 using this deterministic evaluation of structural 
safety given the potential information gain from a MT:

It is important to notice that a bridge may present sev-
eral structural verifications with deficiencies that are par-
tially uncorrelated, for instance, between SLS (Serviceability 
Limit State) and ULS (Ultimate Limit State). In such cases, 
Pðn � 1Þ is multi-dimensional. For example, a bridge where 
two structural verifications are deficient (n < 1 for each 
verification): the bending-moment at support (ULS) and the 
maximum deflection (SLS). As these verifications mostly 
depend on the structural capacity and the structural rigidity 
respectively, bridge properties influencing these verifications 
are partially uncorrelated. In such case, Pðn � 1Þ is a two- 
dimensional space, and this probability is computed for 
each verification independently and then combined. In add-
ition, several bridge properties affect each dimension of 
Pðn � 1Þ, such as material properties (i.e., structural rigid-
ity) and true load level (i.e., frequent and maximum axle 
loads).

Figure 2 shows the flowchart to quantify the VoI for 
SPM, where two MTs (bridge load testing and NDTs) are 
taken as illustrative examples (other MTs could be consid-
ered). The first stage involves evaluating structural perform-
ance without monitoring information. This evaluation is 
based on a visual inspection. The main structural character-
istics and load levels are estimated based on recorded infor-
mation on the bridge (i.e., construction drawings). 
Conservative values are assigned to bridge properties where 
precise information is not available. Several structural verifi-
cations are made for the serviceability, fatigue and ultimate 
limit states. Building a numerical model is often required to 
provide precise evaluations of structural safety, and results 
are expressed in terms of degrees of compliance (Equation 
(6)). At this stage, the first evaluation of bridge potential 
deficiencies is made. The potential structural strengthening 
is designed, and its costs Cint are estimated. If the bridge 
does not present structural deficiency, SPM is not econom-
ical and is not recommended.

The next stage involves defining the potential MTs for 
SPM that could be applied to reduce uncertainties on struc-
tural behaviour by identifying bridge properties, such as 
material properties, boundary conditions, and load levels. 
Estimations of sensor types, the number of devices, and the 
duration of monitoring are also made, leading to the evalu-
ation of the monitoring costs Cmon for each MT. Then, the 
usefulness of each MT is evaluated, and this process is made 
in three steps, as presented in detail in Section 2.2.3. The 
first step involves estimating posterior parameter distribu-
tions after monitoring. This step may not be trivial, espe-
cially when monitoring provides indirect information on the 
above-mentioned bridge properties, such as during load test-
ing. Then, the structural verifications are re-evaluated based 
on these posterior distributions. Finally, Pðn � 1Þ can be 
estimated by calculating the predictive distributions of the 
degrees of compliance.

The last step is selecting the appropriate combination of 
MTs (linear combination of monitoring outputs) that maxi-
mize the VoI for all structural deficiencies. As each MT pro-
vides unique information, the best technique will often 
differ between structural verifications of limit states. A com-
bination of MTs is thus often recommended to maximize 
the VoI if multiple structural deficiencies were initially eval-
uated. If the VoI of a given set of MTs is negative, this 
means that the monitoring costs are not justified by the 
benefits of this monitoring campaign. This MT should thus 
not be performed or improved.

2.2.3. Predicting monitoring outcomes
The main challenge in estimating the VoI for SPM lies in 
the evaluation of Pðn � 1Þ based on potential monitoring 
outcomes. Pðn � 1Þ depends on the bridge properties that 
can be identified during monitoring, the precision of this 
identification (called the identification range), and remain-
ing uncertainties. Quantification of the identification range 
depends if the monitoring provides information on the 
bridge parameters directly or indirectly. Direct parameter 
monitoring means that the sensing device measures the 
bridge property directly. For instance, a rebound hammer 
provides readings of the concrete compressive strength. 
Indirect monitoring implies that the sensor data must be 
interpreted to identify bridge properties. For instance, struc-
tural deflection (bridge behaviour) is measured during static 
load testing. Then the structural rigidity (bridge property) is 
evaluated using an inverse analysis (F. Catbas, Kijewski- 
Correa, Lynn, & Aktan, 2013; Smith, 2016). Two methodol-
ogies are presented below to evaluate Pðn � 1Þ for direct 
and indirect monitoring respectively.

Another challenge is to evaluate the impact of monitor-
ing properties on the degrees of compliance. One solution is 
to use the numerical or analytical model and generate a 
population of samples with a unique combination of prop-
erty values and evaluate the degree of compliance for each 
of them. This process may be computationally costly as suf-
ficient number of samples should be generated to explore 
the multi-dimensional parameter spaces, especially if non- 
linear finite-element models are used (Bertola, Proverbio, 
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et al., 2020). Using surrogate models is recommended to 
reduce the computational time of this step (Pai & Smith, 
2021; Proverbio, Costa, et al., 2018).

When using direct measurements (i.e., using non- 
destructive tests), the identification range (measurement 

uncertainty) depends mostly on the repeatability of meas-
urements that can be estimated based on sensor-supplier 
information and engineering judgment. The posterior par-
ameter distribution is directly obtained by combining its 
prior distribution with the measurement uncertainty 

Figure 2. Flowchart of the methodology to assess the value of information of monitoring techniques.
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distribution using Monte-Carlo method (Figure 3). Then, by 
combining these posterior distributions with non-identified 
parameter prior distributions, and additional uncertainties 
(i.e., modelling uncertainties), a predictive distribution of a 
given degree of compliance is obtained. This combination is 
again computed using the Monte-Carlo method.

For indirect measurements (i.e., through an inverse ana-
lysis after bridge load testing), evaluating the posterior par-
ameter distributions depends on the structural identification 
process between sensor data and model predictions. 
Defining the posterior parameter distributions thus depends 
on the sensor network that will be implemented, and the 
non-parametric uncertainties associated with the initial 
numerical models. The methodology to evaluate Pðn � 1Þ
for the indirect MT is shown in Figure 4. Compared to 
Figure 3, the main difference lies in additional steps to 
obtain the posterior distribution. The combination of pos-
terior distributions is computed using the same procedure 
described for direct measurements.

Sensor-placement methodologies provide information on 
the expected information gain, for instance, using the hier-
archical algorithm as shown in Section 2.2 (Bertola et al., 
2017b; Bertola, Proverbio, et al., 2020). First, the structural 
model is used to generate an initial set of model instances 
that are an instantiation of the model with a unique com-
bination of bridge-parameter values that can be updated 
given the MT. The hierarchical algorithm evaluates the abil-
ity of a given sensor network to discriminate model instan-
ces based on the model and measurement uncertainties 
involved in the process. The initial model instance set is 
separated into multiple subsets. Each subset represents a 
possible outcome of parameter-value identification after 
monitoring.

Assuming that each model instance is equally possible, 
each outcome is assigned a probability calculated using the 
ratio between the number of model instances in the subset 
and the total number of model instances. Then, for each 

subset, parameter distributions can be recalculated using 
prior parameter values of model instances within the subset. 
A representive value of each parameter updated distribution 
is taken that is either the mean value for SLS verifications 
or the most conservative value for ULS and FLS. Then, the 
posterior distribution of the parameter is estimated given 
the subset representative value and its assigned probability. 
The predictive distribution of the degree of compliance is 
then calculated, including these posterior parameter distri-
butions, remaining uncertainties and non-identifiable par-
ameter prior distributions.

3. Case study

3.1. Presentation

In this section, a composite steel-concrete bridge used as a 
case study is introduced. This 195-meter-long viaduct is 
located in Switzerland and was built in 1959 (Figure 5). The 
composite superstructure involves a reinforced concrete 
(RC) slab monolithically connected to two steel box girders. 
The bridge has eight spans between 15.8 and 25.6 m. The 
RC slab has a total width of 12.7 m, and its thickness varies 
between 17 and 24 cm. The two steel girders have the same 
square sections of 1.30 m. In 2002, an intervention was 
made to strengthen the bridge. Longitudinal stiffeners were 
added to the steel box girders, and the Gerber’s joints 
between the spans were fixed using steel connectors. It is 
worth mentioning that it is one of the first steel-concrete 
composite bridges in Switzerland and is important from a 
historical perspective (Mankar, Bayane, Sørensen, & 
Br€uhwiler, 2019).

Multiple MTs have been implemented on the bridge, and 
they are presented in the next paragraph. Measurements 
were collected between 2016 and 2019. A complete presenta-
tion of the monitoring system and the data collection is pre-
sented in (Bayane, Pai, Smith, & Br€uhwiler, 2021; Bertola 

Figure 3. Detailed procedure to evaluate the value of information of a monitoring technique where parameter values of two parameters (Econc and load level taken 
as illustrative examples) are directly measured (direct problem).



et al., 2023). The first MT involves NDTs (rebound hammer 
and sound velocity measurements). A static load test 
(second MT implemented) was performed on the fourth 
span in 2016 using a truck of 40 tons passing over the 
bridge at 10 km/h. Deflections and strains in the concrete 
deck were measured, and the sensor network involves three 
LVDTs, four strain gauges on the concrete deck, and one 
strain gauge and two LVDTs on the bottom of the steel gir-
der at mid-span (Figure 5c and d). Strain gauges are glued 
to the rebars on the bottom layer of the steel reinforcement 
in the concrete deck in longitudinal and transverse direc-
tions (Figure 5e).

The third MT involves continuous strain monitoring 
using conventional gauges and thermocouples to evaluate 
traffic effects and temperature variations for three years con-
tinuously for a predefined period of three years. 
Additionally, weight-in-motion (WIM) station (fourth MT) 
was installed prior to the bridge to estimate axle-load distri-
bution to re-evaluate ULS load model for three years (fourth 
MT). Table 1 provides a summary of the MTs implemented 
and their expected information gain on bridge parameters. 
These techniques have been selected as they provide infor-
mation on different properties of the structural system, and 
they are thus complementary.

The bridge superstructure is modelled using the finite- 
element software SCIA (Khemlani, 2010) (Figure 6). The 

model involves 1D and 2D elements. Although most activ-
ities were performed on the same span, the entire bridge is 
modelled to improve the accuracy of the predictions. For 
the same reason, piers are included in the numerical model. 
The complex geometry of the RC deck is precisely modelled 
to predict the transverse deformation accurately. The mesh 
size has been defined as 400 mm, except for the span that 
has been monitored, where it is reduced to 100 mm, 
improving the precision of the predictions. This mesh size 
has been determined based on engineering experience and 
the sensitivity of the numerical model predictions at sensor 
locations. Predictions of this model are used for the struc-
tural verifications of all limit states.

3.2. Initial bridge examination without monitoring data

The bridge examination is performed without including 
monitoring data in the verifications (the first step of the 
SPM procedure). For this case study, this examination 
involves in total 25 verifications: 13 for the ultimate limit 
state (ULS), 10 for the fatigue limit state (FLS), and 2 for 
the serviceability limit state (SLS). These verifications 
involve structural capacity for ULS, fatigue capacity for FLS, 
and bridge deflections for SLS based on the requirements of 
the Swiss standards (SIA 269). ULS verifications involve 
comparing shear and bending actions to structural 

Figure 4. Detailed procedure to evaluate the value of information of a monitoring technique where parameter values are indirectly measured (inverse problem).
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resistances at multiple locations on steel girders, secondary 
steel beams, and the concrete deck. FLS verifications include 
comparing the maximum stress difference in the steel gird-
ers, secondary steel beams, and rebar in the concrete deck 
to acceptable values in the standards for the selected details. 

SLS verifications involve computing the short and long-term 
deflections of the bridge and comparing these predictions to 
the respective maximum requirement in the standards.

For each verification, the degree of compliance (Equation 
(7)) is calculated using predictions in terms of structural 

Figure 5. Bridge presentation. a; b) Bridge photographs; c) evaluation of the bridge; d) monitoring installed on the fourth span of the bridge; e,f) LVDT measure-
ments; g) strain gauge glued on the longitudinal rebar at midspan.
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capacity and load effects of the finite-element model. 2 out 
of the 25 structural verifications present a degree of compli-
ance smaller than 1.0 (Figure 7). These verifications corres-
pond to a fatigue deficiency due to important stress 
differences in the longitudinal and transverse rebars on the 
bottom of the RC deck. The bridge has a reserve capacity 
for ULS thanks to the intervention in 2002.

3.3. VoI evaluation

In this section, the VoI is evaluated for each combination of 
MTs. More specifically, a combination of MTs involves 
combining the monitoring outputs (in terms of bridge-par-
ameter posterior distributions) from one or multiple techni-
ques linearly. Five MT combinations are used in this study: 
the four MTs (Table 1) and their linear combinations. The 
VoI is independently calculated for the two structural verifi-
cations presenting deficiencies (N�22 et N�23) for the 
fatigue limit state (Figure 7), as it is conservatively assumed 
that these two verifications are independent.

The evaluation of the VoI of each combination of MTs is 
based on the decision tree shown in Figure 8. The decision 
tree shows the potential outcomes regarding bridge safety 
assessment of the four MTs (Table 1) and the linear com-
bination of their outcomes. Based on this decision tree, the 
VoI of each combination of MTs is evaluated. The optimal 
combination of MTs is then defined using the solution with 
the largest positive VoI value compared to the solution 
without monitoring (NM). Four MTs (bridge load testing, 
continuous monitoring, WIM, NDT) are performed on the 
bridge (Section 3.2). Each MT will enable the update (using 
pre-posterior analysis) of various bridge parameters. These 
bridge parameters have a significant influence on a subset of 
structural verifications, and these relations are summarized 
in Table 1.

The VoI of each MT is first evaluated individually 
(Table 2). For the two structural verification (Structural 
Verifications 22 and 23) showing deficiencies (n < 1, 
Figure 7), the probability that structural safety will be 
ensured after monitoring Pðn � 1Þ is calculated for each 
MT. Results are detailed in the sequence. The NDTs enable 

Table 1. Summary of the monitoring technique performed on the bridge and their expected information gain on bridge parameters.

Name Monitoring technique Bridge parameters updated Influence of structural verifications

MT1 Non-destructive tests Material strength Ultimate limit states (Verifications 1 to 13)
MT2 Load testing Structural rigidity, Boundary condition Serviceability limit states (Verifications 24 to 25)
MT3 Continuous monitoring Traffic effects on rebar stress differences Fatigue limit states (Verifications 14 to 23)
MT4 Weigh-in-motion Axle-load distribution Ultimate limit states (Verifications 1 to 13)

Figure 6. Bridge numerical model.

Figure 7. Degree of compliance for each structural verification.
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the precise identification of the compressive strength of con-
crete, but this information does not influence the FLS verifi-
cations on the RC-deck rebars, Pðn � 1Þ of this MT is thus 
equal to zero. WIM data near the bridge provides informa-
tion on the ULS load level, and this technique also has 
Pðn � 1Þ equal to zero. Both the continuous monitoring 

and the load testing may have a Pðn � 1Þ larger than 0, and 
their evaluations are detailed below.

The continuous measurements during the three years 
were implemented on the rebars subject to potential fatigue 
problems, providing direct monitoring of the strain in these 
rebars. These measurements are then transformed into stress 
difference by multiplying them with the steel elastic modu-
lus estimated to 205 GPa. The prior distribution of the max-
imum stress difference is defined using a normal 
distribution with a mean value of 85 MPa and a standard 
deviation of 20 MPa. This distribution has been estimated 
based on sensitivity analysis of the numerical model, WIM 
data in Switzerland, and engineering judgment. Due to the 
large data sample, the posterior parameter distribution is 
taken as quasi-equal to the prior distribution with an identi-
fication range of 1 MPa (Figure 9). This identification value 

is based on the sensor precision and measurement repeat-
ability (reproducibility) of the instrument.

The total uncertainty distribution is calculated as the 
combination of distributions of sensor precision and steel 
elastic modulus variability (Figure 9b). The predictive distri-
bution of the degree of compliance is calculated using 
Monte-Carlo Sampling (1’000’000 simulations) by combin-
ing both the posterior parameter (stress-difference) distribu-
tions and the total uncertainty (discrepancy distribution). 
Then this distribution is divided by the steel fatigue capacity 
is equal to DrRd ¼ 80 MPa to obtain the predictive distri-
bution of the degree of compliance. Figure 9c shows the 
predictive distribution of the degree of compliance for the 
longitudinal rebar (Structural Verification 22). Given this 
predictive distribution, PCM, 22ðn � 1Þ is equal to 0.92, show-
ing that the probability that the degree of compliance is 
larger than 1.0 after monitoring, is significant using this 
MT. In other words, it means that the safety for Structural 
Verification 22 is ensured with a probability of 92% after 
performing the continuous-monitoring technique. 
Therefore, there is only an 8% probability that structural 
safety will not be ensured for Structural Verification 22 

Figure 8. Decision tree for the VoI-based design of the optimal set of monitoring techniques for the present case study based on the four monitoring techniques 
and the linear combination of their outcomes.

Table 2. Probability that the monitoring-technique outcome will lead to a degree of compliance larger than 1.0 after monitoring for the two insufficient struc-
tural verifications.

Degree of compliance  
before monitoring

Probability that the degree of compliance will be higher  
than 1.0 after monitoring Pðn � 1Þ

Structural verification Verification number NDT Load testing Cont. Monitoring WIM Combined

Fatigue long. 22 0.75 0 0 0.92 0 0.92
Fatigue trans. 23 0.34 0 0 0.25 0 0.25
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once data from the continuous-monitoring technique is 
collected.

The static load testing on the bridge provides indirect 
information on structural properties, as deflection and strain 
are measured rather than the structural stiffnesses and 
boundary conditions. Details on the sensor network and the 
three selected model parameters are presented in Section 
3.4. Three parameters have been identified using sensitivity 
analysis for the given load test (see details in Section 3.4). 
In this 3-parameter space, 806 model instances are gener-
ated using a grid-space sampling technique (J.-A. Goulet, 
Kripakaran, & Smith, 2010). These models represent the ini-
tial model class that will be used in the data interpretation 
in the next section.

The hierarchical algorithm (Section 2.1.2) is used to pre-
dict the information gain (Figure 10a), given this model- 
instance set, sensor network, and total uncertainties 
(Figure 10c). Results show that more than 30 model- 
instance subsets are predicted by the algorithm (Figure 10b). 
Each subset represents a possible monitoring outcome (or 
scenario) obtained by the algorithm. Each outcome has an 
assigned probability depending on the number of model 
instances in the subset (Section 2.1.2). For each subset, a 
mean value for each parameter is taken as the critical struc-
tural verifications involved FLS limit states. The posterior 
parameter distributions are then calculated (Figure 10d). If 
ULS verifications are critical, conservative parameter values 
are taken from the subset parameter ranges to evaluate the 
predictive distributions of structural verifications to ensure 
structural safety. Based on these expected posterior param-
eter distributions, the predictive distributions of the degree 
of compliance are evaluated (Figure 10e and f), where 
Structural Verifications 22 and 25 are taken as examples.

For Structural Verification 22, the degree-of-compliance 
predictive distribution is significantly lower than 1.0, show-
ing that this monitoring technique does not provide signifi-
cant information for this structural verification. This result 
is explained because the parameters identified during the 
static load testing (structural stiffnesses and boundary con-
ditions), do not significantly influence the FLS verifications 
that mainly depend on the action effects of the traffic 
loading.

Although load testing provides information on the struc-
tural stiffness and boundary condition, this monitoring 

technique is not recommended as it cannot significantly 
influence the decision regarding FLS bridge safety. 
Therefore, continuous monitoring is recommended based 
on the VoI of each monitoring technique as long as the VoI 
is larger than 0 (Equation (8)) using the minimum value of 
Pðn � 1Þ found in Table 2. For Structural Verification 22, 
Pðn � 1Þ is equal to 0.25 which means that there is a prob-
ability of 25% that the structural safety will be ensured after 
monitoring. The costs of monitoring and the costs of inter-
vention should then be compared (Equation (9)) in order to 
take the decision whether the monitoring technique should 
be performed or not. In practice, it is very likely that Cmon 
will be significantly lower than the Cint, and consequently 
the monitoring is recommended:

VoISPM ¼ Cint�Pðn � 1Þ − Cmon (8) 
Cmon

Pðn � 1Þ
¼

Cmon

0:25
� Cint (9) 

3.4. Data collection and interpretation

In this section, the data collection and data interpretation of 
the four MTs are summarized. Detailed analyses are pre-
sented in Bertola et al. (2023, 2022). The first MT involves 
NDTs (rebound hammer and sound velocity measurements). 
These tests were performed on the concrete deck on the 
four spans at several locations. Thanks to this monitoring, 
an update of the concrete compressive strength, initially 
assessed at 30 MPa, to fck (characteristic value) equal to 
38 MPa was possible. This result slightly influences evalua-
tions of the structural capacity for ULS verifications.

The second technique involves long-term monitoring of 
longitudinal and transverse rebars in the concrete deck, 
showing potential fatigue deficiencies. Based on the meas-
urements, stress histograms are created (Figure 11a and b), 
and are compared to the fatigue endurance limit of 80 MPa 
for straight ribbed steel rebar fatigue detail in Swiss stand-
ards (Swiss Society of Engineers & Architects, 2011). The 
measured stress levels are significantly lower than predicted 
using code-based load levels without monitoring informa-
tion. One reason for this large difference is that the actual 
traffic on the bridge produces significantly lower action 
effects than code load models. This information is only used 
for these two FLS verifications.

Figure 9. Evaluation of the value of information of the continuous monitoring technique for Verification 22. a) Prior-posterior distributions of stress difference; b) 
evaluation of total uncertainties in the stress difference (discrepancy distribution); c) estimation of the predictive distribution of the degree of compliance obtained 
after monitoring.

12 N. J. BERTOLA AND E. BRÜHWILER



The third MT involves a WIM station near the bridge to 
determine axle-load distribution. The monitoring was made 
over three years between 2016 and 2019, and detail of this 
monitoring can be found Bayane, Mankar, Br€uhwiler, and 
Sørensen (2019). On the 6th of October 2016, an 

unauthorized crane of 60 tons passed over the bridge. The 
continuous monitoring shows that this crane produces a 
much larger recorded stress level. The load level associated 
with this crane is twice as large as the average value and 
25% larger than the second-largest measurement of usual 

Figure 10. Evaluation of the value of information of the load-testing technique for several structural verifications. a) Joint-entropy results obtained with the hier-
archical algorithm; b) discrimination of the model-instance set; c) evaluation of total uncertainties for the Euncracked parameter (discrepancy distribution); d) estima-
tion of the pre-posterior parameter distribution for the Euncracked will be obtained after monitoring. e, f) Estimation of the predictive distribution of the degree of 
compliance that will be obtained after monitoring for structural verifications 22 (FLS) and 25 (SLS), respectively.

Figure 11. Results of the data collection. a), b) histogram of stress difference measured during three years in the transverse and longitudinal rebar subjected to 
potential fatigue insufficiency; C) daily maximum strain measured when the unauthorized crane passed through the bridge.
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traffic (Figure 11c). This load level has a probability of 
occurrence smaller than 10−6/year (Bayane et al., 2019). 
Further to this, the ULS load level is updated, and this crane 
is considered as exceptional traffic loading, and placed at 
the locations that maximize action effects on the bridge. 
The structural safety of the ULS can then be re-evaluated.

The fourth MT involved bridge load testing in 2016. The 
measurements from the static load test are then used to 
update the FE model. Three model parameters are selected 
based on a sensitivity analysis and model-class selection pro-
cess. The first two parameters: cracked and uncracked rigidity 
of the deck. Based on the traffic on the bridge, it was con-
cluded that the bridge deck should be cracked in the middle 
portion, reducing its rigidity. This rigidity variation is simpli-
fied as a variation of concrete modulus of elasticity. Smaller 
values are considered in the central part of the slab due to 
the expected cracking. The third parameter involves the rota-
tional stiffness between the elements at the Gerber joints due 
to steel connectors. Uncertainty levels associated with the 
measurements and the modelling have been estimated based 
on sensor-supplier information, literature review, repeatability 
during load testing, and engineering judgment. Larger model 
uncertainties are considered for concrete measurements due 
to the higher variability of material properties and difficulties 
in predicting cracking behaviour.

The initial parameter ranges are presented in Table 3. 
Ranges of equivalent moduli of elasticity for both cracked Ecr 
and uncracked Enc sections are considered following SIA 269 
(Swiss Society of Engineers & Architects, 2011). Ranges are 
defined with the minimum and maximum bounds, and these 
values are evaluated based on these Swiss standards and 
engineering experience. The value range models the connec-
tion from a perfect hinge to a fixed joint. A set of 806 model 
instances, with a unique combination of parameter values, 
has been generated using the finite-element model. The data 
interpretation is made using EDMF (Section 2.1.1).

The results of the identification are also shown in 
Table 3. From the initial 806 model instances, only 11 are 
candidates, meaning that the falsification process allowed 
the rejection of 795 models with large discrepancies between 
their predictions and measurements. A precise identification 
has been obtained for the cracked stiffness of the deck and 
rotational stiffness at the support, but little information has 
been collected on the uncracked stiffness of the deck. Based 
on the update of these structural properties, the structural 
verifications can be re-evaluated. Updated properties of this 
MT mainly influence SLS and FLS verifications.

3.5. VoI results validation using field measurements

In this section, VoI estimations based on the proposed 
methodology are compared to observations after the 

performance of the MTs. In Section 3.3, it was concluded 
that the continuous monitoring would provide significant 
information gain for the two deficient structural verifica-
tions (Verifications 22 and 23), while the bridge load testing 
will not provide information enabling a degree of compli-
ance larger than 1.0. Predictive distributions of the degrees 
of compliance were obtained and will be compared to the 
true value after monitoring. The predictive distribution is 
computed by combining the prior distributions and the dis-
crepancy function, following methodologies shown in 
Figure 3 or Figure 4. The shape of the predictive distribu-
tion mostly depends on the MT implemented that leads to 
different parameter posterior distributions.

Figure 12 depicts the degree-of-compliance predictive 
distributions of both deficient structural verifications based 
on expected information collected with the continuous- 
monitoring technique. The predictive distribution of the 
degree of compliance is compared with the observed value 
after monitoring (ni, measÞ: The degree of compliance without 
monitoring (ni, NM, obtained deterministically) is provided 
as a benchmark. Mean values of the predictive distribution 
(nmean) are significantly larger than the values obtained 
without monitoring information (nMN). Moreover, the 
observed values after monitoring (nmeasÞ are within the pre-
dictive distributions, showing that the methodology was able 
to accurately predict the information gain of the continu-
ous-monitoring technique. Monitoring results also show 
that the observed degrees of compliance are larger than 
code requirements (nrequiredÞ, meaning that the bridge safety 
is verified, and structural strengthening is not needed (do- 
nothing action).

The predictive distributions of the degrees of compliance 
of both deficient structural verifications based on the 
expected results of the bridge load testing are shown in 
Figure 13. The predictive distribution of the degree of com-
pliance is compared with the observed value after monitor-
ing (ni, measÞ: The degree of compliance without monitoring 
(ni, NM, obtained deterministically) is provided as a bench-
mark. As predicted by the VoI framework, the results of the 
revaluation of the degrees of compliance for both structural 
verifications show that this MT cannot improve the degrees 
of compliance above the code requirements (nrequiredÞ:

Moreover, nmeas values are within the predictive distribu-
tions obtained with the proposed methodology, showing 
that the methodology also accurately predicts the expected 
information gain for this MT.

Although VoI is negative, the framework also enables the 
evaluation of the information gain after monitoring for 
structural verifications with an initial degree of compliance 
larger than 1.0 (Figure 14). The predictive distribution of 
the degree of compliance is compared with the observed 
value after monitoring (ni, measÞ: The degree of compliance 

Table 3. Results of parameter identification based on the static load tests and data interpretation using EDMF.

Parameters Unit Prior to load testing After load testing

Number of plausible model instances [-] 806 11
P1 - Cracked stiffness of the deck (Ecracked) range [GPa] 3–20 11.5–12.5
P2 - Uncracked stiffness of the deck (Euncracked) range [GPa] 20–50 24–42
P3 - Rotational stiffness at the support (Krot) range [MNm/rad] 0–400 49–55

14 N. J. BERTOLA AND E. BRÜHWILER



without monitoring (ni, NM , obtained deterministically) is 
provided as a benchmark. This evaluation provides informa-
tion on whether a MT is useful to increase the degree of 
compliance, which could be helpful if modifications are 
made to the bridge (i.e., widening) in the future. The WIM 
MT enables an information gain for the ULS verifications, 
such as Verification 1, while the bridge load testing provides 
significant information for the SLS verification (i.e., 
Verification 25). The observed values (npriorÞ are close to the 
mean values of the predictive distributions (nmean), showing 
that the VoI framework accurately predicts information gain 
for SPM for all types of structural verifications and MTs.

4. Discussion

In this study, a framework has been introduced to evaluate 
the value of information (VoI) of MTs for SPM. The frame-
work was applied to a composite bridge in Switzerland that 
has been extensively monitored between 2016 and 2019. 
Results show that only continuous monitoring has a positive 
VoI. The VoI is a strict metric that only provides useful 
information when it can change the decision, in the present 
case regarding bridge fatigue-safety assessment. This defin-
ition implies that a MT that improves a degree of compli-
ance larger than 1.0 without monitoring information, is not 
recommended.

Figure 12. Validation of VoI estimation of the observed degree of compliance of both insufficient structural verifications using the continuous monitoring 
technique.

Figure 13. Validation of VoI estimation using the observed degree of compliance both insufficient structural verifications using bridge load testing.

Figure 14. Validation of information-gain prediction using the observed degree of compliance after monitoring for two structural verifications for ULS (left) and 
WIM monitoring and SLS (right) with bridge load testing.
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A less-strict definition of the information gain (i.e., the 
average increase of degrees of compliance) would have led 
to a different conclusion regarding recommended MTs. 
Table 4 shows the expected information gain for each moni-
toring and structural verification, using the mean value of 
the predictive distributions of the degrees of compliance 
(nmeasÞ: Results are also presented as a bar plot in Figure 15. 
Except for the NDTs, all MTs provide information that sig-
nificantly improves the degrees of compliance of structural 
verifications. Nonetheless, only load testing provides useful 
information for SLS verifications, while FLS verifications are 
mostly influenced by continuous monitoring and ULS verifi-
cations by the WIM data. Combining all MTs leads to an 
average expected increase of degrees of compliance of 19% 

over the 25 structural verifications, showing that monitoring 
can provide significant information for bridge performance 
evaluation. This expected increase in degrees of compliance 
is calculated as the average value of mean values of predict-
ive distributions from all structural verifications (SLS, FLS, 
ULS) that are calculated independently.

Figure 16 presents the degrees of compliance, including 
and without monitoring information for all structural verifi-
cations. All MTs are used to re-evaluate the degree-of-com-
pliance values. Most structural verifications have a 
significant increase of degree-of-compliance values, with an 
average increase of 36%. This result shows that monitoring 
information has an important potential to improve evalua-
tions of the structural performance of bridges. Additionally, 

Table 4. Expected influence of monitoring information on structural verifications.

Structural verification
Mean degrees of compliance  

before monitoring

Expected mean degrees of compliance after monitoring

NDT (MT1) Load testing (MT2) Cont. Monitoring (MT3) WIM (MT4) Combined (MT5)

SLS 2.84 2.91 
(þ3%)

3.23 
(þ14%)

2.84 
(þ0%)

2.84 
(þ0%)

3.23 
(þ14%)

FLS 1.45 1.45 
(þ0%)

1.45 
(þ0%)

1.76 
(þ25%)

1.45 
(þ0%)

1.76 
(þ25%)

ULS 1.82 1.88 
(þ2%)

1.82 
(þ0%)

1.82 
(þ0%)

2.12 
(17%)

2.15 
(þ18%)

All (average) 1.75 1.79 
(þ2%)

1.79 
(þ2%)

1.80 
(þ3%)

1.91 
(þ9%)

2.08 
(þ19%)

Figure 15. Expected mean degree of compliance for each combination of monitoring technique (left). Relative increase of the mean degree of compliance com-
pared to the no-monitoring scenario (right).

Figure 16. Degrees of compliance for all structural verifications before and after monitoring.
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all structural verifications have a degree of compliance larger 
than 1.0 after monitoring, meaning that the bridge is safe 
and no structural strengthening is needed.

The following limitations of the framework are recog-
nized. The framework predictions involving predictive dis-
tributions of degrees of compliance are significantly 
influenced by the initial prior distributions of bridge param-
eters. Although prior distributions for material properties or 
boundary conditions are well documented, it may be chal-
lenging to define load levels accurately if reliable WIM data 
are unavailable near the bridge.

The predictions of the structural capacity depend on the 
quality of the numerical model provided. A numerical 
model is required to accurately predict the predictive distri-
bution of the degrees of compliance that match the observed 
values. It has been seen that sometimes the monitoring 
results lead to a modification of the physics-based model, as 
shown for steel bridge case studies where boundary condi-
tions have been modified in an iterative process (Pasquier & 
Smith, 2016; Proverbio, Favre, et al., 2018), meaning that 
initial model predictions were inaccurate. For the present 
case study, a simpler numerical model (for instance, without 
properly modelling the complex geometry of the deck), 
would have led to the entire falsification of the 806 model 
instances, leading to refining the model simplification.

In such situations, the initial evaluation of the VoI may 
also be inaccurate. Nonetheless, the monitoring information 
leads to an iterative process where the numerical model is 
updated and then updated based on the data collected. If 
monitoring data enables an improvement of the numerical 
model, which leads to more accurate predictions of struc-
tural capacity, the benefit of the monitoring is already sig-
nificant. Nonetheless, this information gain is difficult to be 
quantified. For the present case study, using a simpler 
numerical model would have led to inaccurate VoI estima-
tions, but monitoring data would trigger a refinement of the 
numerical model, providing crucial information for deci-
sion-making. In case of uncertainties in the model class, 
multiple scenarios of structural models could be incorpo-
rated in the VoI evaluations, following recommendations for 
optimal sensor placement in such situations (Bertola, Pai, & 
Smith, 2021). Future work will consist in quantifying the 
impact of multiple models on the VoI estimations.

The proposed framework requires evaluating the degrees 
of compliance for a significant number of simulations. 
Evaluating structural capacity may require significant com-
putational time, especially when using non-linear numerical 
models. In such situations, building surrogate models of 
structural verifications is recommended to overcome the 
computational costs (Cheng & Lu, 2020; Pai & Smith, 2022).

5. Conclusions

In this paper, a framework is introduced to quantify the 
value of information of MTs for structural 
performance monitoring. A combination of four MTs is 
evaluated mainly: non-destructive tests, bridge-load testing, 
continuous monitoring of stress due to traffic loading, and 

weight-in-motion. These evaluations account for the moni-
toring costs and the probability that structural interventions 
will be avoided after monitoring. The methodology has been 
applied to a composite steel-concrete bridge in Switzerland, 
and monitoring results have corroborated the prediction in 
terms of expected information gain (i.e., increase of degrees 
of compliance) from multiple MTs. The expected average 
increase of degrees of compliance of 19% is estimated using 
the proposed framework, which is consistent with the 36% 
average compliance increase observed after monitoring. In 
this context, the following general conclusions are drawn:

� Performing a monitoring campaign can effectively 
update the assessment regarding bridge fatigue and 
structural safety as well as serviceability, as monitoring 
often leads to accurate rather than conservative bridge- 
property values.

� Each monitoring technique provides unique but also 
redundant information about the bridge properties. 
Therefore, their optimal combination should be carefully 
evaluated.

� The proposed framework can support engineers in the 
selection of the optimal monitoring techniques for struc-
tural performance monitoring when multiple techniques 
are possible. The framework enables maximizing the 
value of monitoring information when multiple monitor-
ing techniques are possible.

Considering the assumptions used in the present work, 
future research consists of including the expected impacts of 
monitoring information on the design of the interventions 
and refining the proposed methodology for the inclusion of 
the cost of intervention as a variable. Another research topic 
will be the extension of the proposed methodology to 
include the possibility that monitoring information will lead 
to significant modifications of the bridge behavior models.
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