Measuring snow transport and sublimation near Princess Elisabeth Station, Antarctica

Armin Sigmund¹, Hendrik Huwald^{1,2}, Nander Wever², Océane Hames^{1,2}, Michael Lehning^{1,2}

¹Laboratory of Cryosperic Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland ²WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

Structure

- 1. Location and conditions at Princess Elisabeth Antarctica (PEA) Station
- 2. Facilities at PEA Station
- 3. Project goals
- 4. Methods and challenges

1. Location and conditions at PEA Station

 Belgian research station, managed by

- Dronning Maud Land, East Antarctica
- 72.0° S, 23.3° E, 1380 m asl.
- ~200 km from the coast
- Access by airplane
- Occupied in austral summer (Nov-Feb)
- Space for 25-40 people
- Air temperature: approx. -40°C to -5°C

1. Location and conditions at PEA Station

 Belgian research station, managed by

- Dronning Maud Land, East Antarctica
- 72.0° S, 23.3° E, 1380 m asl.
- ~200 km from the coast
- Access by airplane
- Occupied in austral summer (Nov-Feb)
- Space for 25-40 people
- Air temperature: approx. -40°C to -5°C

2. Facilities at PEA Station

Living and office spaces, bedrooms

Mechanical and electrical workshops, bedrooms

Scientific shelters

(Mobile) science containers

2. Facilities at PEA Station

Scientific shelters

(Mobile) science containers

Living and office spaces, bedrooms

Mechanical and electrical workshops, bedrooms

Vehicles

3. Project goals

- Measure automatically throughout the year:
 - Horizontal flux of snow transport
 - Turbulent fluxes of vapor (sublimation) and heat
 - Standard meteorology
 - Snow height changes

•

3. Project goals

- Measure automatically throughout the year:
 - Horizontal flux of snow transport
 - Turbulent fluxes of vapor (sublimation) and heat
 - Standard meteorology
 - Snow height changes
- Perform complementary measurements during summer campaigns:
 - Snow hardness profiles
 - · Photogrammetry with a drone
- Improve process understanding of snow transport and its contribution to sublimation
- Validate and improve models of snow transport, sublimation, and surface mass balance

- 2 measurement stations since 2016/2017
 - Snow transport

- 2 measurement stations since 2016/2017
 - Snow transport
 - Turbulent fluxes

- 2 measurement stations since 2016/2017
 - Snow transport
 - Turbulent fluxes
 - Standard meteorology

- 2 measurement stations since 2016/2017
 - Snow transport
 - Turbulent fluxes
 - Standard meteorology
 - Snow height changes

- 2 measurement stations since 2016/2017
 - Snow transport
 - Turbulent fluxes
 - Standard meteorology
 - Snow height changes
- Challenges
 - Power supply in austral winter
 - Snow accumulation buries the SPC

Thank you!

The second

Project funded by

SWISS POLAR INSTITUTE

