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Introduction

= Aluminium remelting

Remelting 0.5 tcool/ta

Reduction 18 tCOZ/tAI

@

ALUMINUM

Power-to-gas for grid-scale energy storage.

= Sustainable aviation fuels

SAF may help attaining 70% of the CO,

emissions reduction needed by aviation

,.).

sector.

Aluminium France Federation, Climate and carbon footprint, 2023 [Link]
International Air TransportAssociation, NetZero2050: Sustainable aviation fuels, 2023 [Link]

Large heating/cooling demands - Waste heat is an important byproduct.

More stringent regulations (> 100 EUR/tco,) = Need for decarbonization.

Sustainable aviation fuels: solution for a hard-to-abate economic sector.

= Urban agglomerations

Seasonal requirements:

> space heating

» air conditioning

> refrigeration m

» domestic hot water
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https://www.aluminium.fr/en/stake/climate-and-carbon-footprint/
https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---alternative-fuels/
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=PFL  Aluminiumremeltingunits
Aluminium processing units

Base case operation:

Heating and cooling loads and temperature
levels per equipment.

. Energy consumption o
Unit (KWhitAl BSO) Temperature level (°C)
Preheater % 33.3 230°C
Melter Eé? 355.1 730 - 750 °C
Holder j 27.0 750 °C
Casting % 178.4 750 - 60° G
Scalper %
Pushers 1 & 2
@( @ @ 186.8 570 °C
Hat rolling 48.6 400 *C
Storage («:(@ 85.9 400-80°C
= (O
Cold rolling 49.2 130°C
i) 570, 130°C




=PFL  Blomassgasification and syngas treatment ’
= Dual bed biomass gasification unit produces syngas that can be either be j
used as fuel directly or as feedstock in a Fischer Tropsch process (H,:CO i

2> 21).
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=PFL  Powerto Gas, Reverse WGS, Storage and CO, injection

= Liguefied gas storage (CO, management).
= CO, import, injection, utilization or venting (subject to taxation).

= Reverse water gas shift unit to boost syngas feed to FT section.

O,

Recycling CO, CO, liquefaction and storage
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Elec.
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Florez-Orrego, Daniel, et al.



=PFL  Fischer-Tropsch liquids production

= A Fischer-Tropsch unit is designed produce mostly kerosene, also diesel and naphtha

from syngas.
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=PFL  UrbanAgglomeration

City 20,000 inhabitants

= Space heating, domestic hot water, air conditioning, refrigeration.

Heating or cooling demand (kW)
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UrbanAgglomeration ..., (0 inhabitants

= Space heating, domestic hot water, air conditioning, refrigeration.

= CO, district heating network.
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=prL  EnergyTechnologies

Aluminium remelting plant
Space heating (city, plant)
Domestic hot water (city)

Air conditioning (city)
Refrigeration (city)

Furnaces (syngas + oxycomb)
Gasification system
Cooling/chiling systems
Carbon abatement units
Power-to-gas systems (electrolysis)
Reverse water gas shift
Storage units (liquid CO,)
Waste heat recovery network
Transcritical sCO, power cycle

Air separation units

Others: Biodigestion, Cogeneration, HeatPump, etc.
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=PFL Methods

w = {utility units, resources}, y,, existence (binary) and f,, load factor variables

Optimization problem: minimum operating cost or maximum revenue:

Min fBiomass (m | C)Biomass + fNatGas (B ' C)NatGas - fE|eC (W .C)Elec + fEnvEm (m 'taX)EnvEm + fWater (m .C)Water

frrs Voo Z,ip x Ann _ factor
aw | +f m-Cjco, + ~ f aruminium (B € = f M - C )neat biofuel ,CO
r ICrr%orted ( )Imp?orted Ny ey Aluminium ( )Alumlnlum Eie;)tétr);géuel,coz ( )Exported 2
Subjectto:
Na, N Na)
> follor + > Q +R;—R =0 vr=1.N Z f W, + Z Wiet + Wiy =Wy =0
w=1 i=1 w=1 chemical
units
frinoYo < o< fraoYo  VoO=1.N, Wip 20, Wegy >0 R =0, R,;=0 R =0

- Cng= 0.45 EUR/KWh; cBiom = 0.014 EUR/KWh; cge=0.15 (Nov-Feb) or0.001 (Mar-Oct) EUR/KWh; Ceoinpari=0.0084 EUR/KQ; Ccozax=100 EUR/
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=PFL Methods

Process Modeling and Simulation:

<{IPESE
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=PFL Methods

= Tank cycling:  storageLevel, = f

tank,t

Storage Level,,, — Storage Level, = Mass or Energy Inlet, — Mass or Energy Outlet,

CO, stored at -50°C and 7bar (1155 kg/m3)

= CO, network (Aspen Plus and Coolprop):
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=PFL  Results and discussion )

Base case solution

The heating needs are provided by natural gas and electricity is imported from the grid to
be used in different appliances of the plant (rolling, fans, doors etc.).
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=PFL  Results and discussion

Base case solution

« Natural gas consumption 252.61 GWh/y (includes aux boiler NG cons. 59.67 GWhl/y, 11.81 kt/y CO,)

* Biomass consumption: 0 GWh/y

» Electricity consumption: 68.86 GWh/y

« Electricity air conditioning: 0.95 GWhly
» Electricity self-generation: 0 GWh/y

» Diesel consumption 0.23 kt/y

« Total emissions: 58.79 kt/y (only fossil)

* Indirect emissions: NG cons. 4.46 ktly, EE cons. 4.31 ktly

CAPEX: 1,492,560 EUR/y
OPEX: -1,077,183,970 EUR/y

[=Y
o
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=PFL  Results and discussion

Power-to-gas and biomass gasification
solution with CO, seasonal storage: SAF
and Aluminium productionintegration

Electricity is partially generated in a super-
critical CO, cycle.

Large amount of waste heat available from
biomass conversion units, FT synthesis and
stack gases.

Energy intensive furnaces and rwGS.

The district heating network is supplied with
the waste heat recovery from industrial
processes using heat pumps.




=PFL  Results and discussion
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=PFL  Results and discussion .

* Natural gas consumption: 0 GWhly

* Biomass consumption: 526.88 GWh/y
* Electricity import: 792.23 GWhly

* Electricity self-generation: 118.59 GWh/y CAPEX: 17,959,107 EUR/y

* Diesel consumption: 0.23 kt/y OPEX: -1,185,532,282 EUR/y
* Power consumption in FT unit: 4 GWhly

* Power cons. gasification (fuel and feed): 13.45 GWhl/y
* Power consumption in rwWGS unit: 18.41 GWhly

* Aluminum plant power consumption: 67.88 GWh/y

Florez-Orrego, Daniel, et al.

» Syngas from gasification: 20.58 kt/y
* Syngas from rWGS: 62.32 ktly
» Syngas fed to FT section: 82.89 kt/y

» Total emissions (all not captured): 141.28 ktly
* Indirect emissions: EE 49.62 kt/y, Biom 7.39 ktly
* Direct emissions (biogenic): Balance

- Kerosene production: 17.57 ktly * Import CO, (compensate losses): 0 ktly
- Naphtha production: 9.40 kt/y * CO; injected: O ktly
- Diesel production: 4.08 kt/y * CO, in flue stack from gasifier: 58.03 kt/y

- * CO, processedin rWGS: 89.30 ktly
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Conclusions

Hard to decarbonize heavy industries (transportation and metallurgical) require breakthrough approaches for a

proper management of waste heat recovery, cogeneration and carbon abatement technologies (oxyfuel).

Renewable energy together with an enhanced waste heat recovery and enlarged products portfolio can be more

attractive and environmentally friendly ways to produce SAF and aluminium.

Electricity import is used in the plant to drive the auxiliary aluminium remelting processes. A fraction of electricity is
used in a seasonal way (power-to-gas-to-heat approach) to increase the production of SAF, when integrated with

the biomassroute (CO, available). This process is currently more expensive capex-wise though.

Thus, a carbon tax is an important factor that may boost the deployment of carbon abatement technologies and

more efficient energy conversion systems, although may not be enough for reducing the risk perception.

Installing a novel CO,-based district heating network may increase efficiency, as the amount of power consumed

is much lower than the heat supply using fired heaters (harvest energy from environment).

[=Y
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