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Summary
▶ Noise control alone is not sufficient to reduce noise accumulation to acceptable levels
▶ Code used for the adaptive δf scheme is introduced, along with all physical assumptions and

profiles used
▶ Mechanism for the adaptive scheme using a local Maxwellian with time-dependent

temperature profile as control variate is explained (also submitted to PoP)
▶ Results show reduction in noise accumulation in the zonal component and improved

signal-to-noise ratio values for the same simulation with lower marker numbers

Introduction & motivation
▶ The δf PIC scheme [1] [2] is useful when simulating plasma core as small deviations from

equilibrium distribution is expected, thus satisfying the |δf |/|f0| ≪ 1 assumption, which leads
to noise reduction when compared to the full-f scheme

▶ When simulating the plasma edge, steep profile gradients, low density levels and high
fluctuation amplitudes lead to violation of the δf assumption

▶ Benefits retained when using an adaptive time-dependent background distribution f0(t) as
the control variate [3]

▶ A simplified model involving a flux-surface-averaged time-dependent background
temperature is used to demonstrate the advantages gained

Test-bed: Physical assumptions and profiles

Code: GKengine[4]

▶ single ion species with adiabatic
electrons

▶ electrostatic
▶ collisionless
▶ potential represented by (cubic)

B-splines
▶ sheared-slab geometry
▶ highly paralellised involving MPI,

OpenMP, OpenACC

▶ δf represented by markers

δf =
1

2π
Σ

Np
p

wp(t)
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▶ quasi-neutrality equation for the perturbed distribution:
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Symmetrised profiles

▶ Profiles are symmetrised to mitigate problem of
markers exiting radial domain

▶ Periodic boundary conditions applied to all (x , y , z)
directions

▶ R0 = 243.5ρs, ρ⋆ = 1
66.4, s0 = 0.25,0.75

▶ ηi(s0) = 10,
∣∣∣d logTi(s0)

dx

∣∣∣ = 4
a → R0/LT = 14.6

▶ Krook-like noise control [5] and heat source
df
dt = −γh(x)[f − f0(t = 0)]+Sh,corr −γn(f − fn)+Sn,corr
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Adaptive control variate

▶ Assume the control variate f0 to be:

f = f0(t) + δf

f0(X , v∥, µ, t) = fM(t) =
n0(X )

[2πTi0(X , t)/mi ]
3/2 exp

−
miv2

∥ /2 + µB(X )

Ti0(X , t)


▶ The change in background kinetic energy:

δEkin0(x , t) =
3
2

n0(x)δTi0(x , t) = Σkξk(t)Λk(x)

is calculated at every N th
α step by the ad-hoc relaxation equation [6]:
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which leads to the linear system:

Σk ξ̇k(t)Mkj = αEΣ
Np
p wpΛj(Xp)

miv2
∥

2
+ µB


with Mkj =

∫
Λk(x)Λj(x)dx .

▶ Once background is changed, weights wp are redefined to account for df
dt = 0, and an

additional term of order (ρ⋆)2:∫
d3Rdαdv∥dµ

B⋆
∥

mi
δ[R + ρL − r ][ δf (R, v∥, µ, t)+ f0(X , v∥, µ, t)− f0(X , v∥, µ, t = 0)] (2)

markers analytic function

must be appended to the RHS of Eq.(1) to account for deviation from quasi-neutrality for the
ion background; as this term is analytic, it is integrated via quadratures

Zonal flows and turbulence quenching

▶ Zonal flow strength is estimated by the radially averaged E × B shearing rate

ωE×B(t) =

〈∣∣∣∣∣1B∂2ϕ00
∂x2

∣∣∣∣∣
〉

x
▶ As the zonal (m,n) = (0,0) mode is not physically damped, it is corrupted by noise

accumulation with time
▶ Spurious zonal flow creation resulting from sampling error can be seen from the magnitude

of ωE×B(0), despite initialing simulations with non-zonal modes
▶ Strong zonal flow shearing rate quenches turbulence [7], as can be seen by radially

averaged heat diffusivity χH
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Signal-to-noise ratio diagnostic

▶ Consistent with gyrokinetic ordering of
k∥ρs ∼ ρ⋆ [8], a Fourier filter is applied to the
amplitudes of the DFT of the spline
coeffcients of ( 2)

▶ The filter [9] allowing only (m,n) modes
satisfying |m + nq(x)| < ∆m to be resolved

▶ Definition of ‘signal’ and noise, represented
by square amplitudes inside and outside the
filter respectively 0 200 400 600 800 1000 1200
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Importance of time-dependent control variate

▶ One in principle could use a time-dependent control variate f = fM(t) + δf and a
time-independent noise control operator −γn(f − fM(0))

▶ Or vice versa, with f = fM(0) + δf and −γn(f − fM(t)); for this case, the temperature profile of
fn = fM(t) adapts according to

∂

∂t

(
3
2

n0(x)Ti0(x , t)
)

= αE

〈∫
dv∥dµ

2πB⋆
∥

mi
[δf − (fM(t)− fM(t = 0))]

〉
fsa

▶ The end-time result of ωE×B and SNR are qualitatively similar to the non-adaptive case
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▶ Comparison between cases can also be made via the flux-surface-averaged weight
standard deviation

▶ A time-dependent control variate and noise control are necessary to reduce noise
accumulation

Future work and generalisation
▶ Implement adaptive scheme in ORB5 [10] with realistic geometry (on-going)
▶ Generalise the adaptive scheme to include background density adaptation with its own

relaxation rate αn; useful even in the core when simulating e.g. kink ballooning, tearing,
internal kink, modes

▶ Consider a more complicated control variate:
▶ non-Maxwellian function
▶ non-flux-surface-averaged function: to capture poloidal deviations
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