\mathbf{P}

Gyrokinetic simulations using a delta-f approach with an evolving background Maxwellian

M. Murugappan, L. Villard, S. Brunner and G. Di Giannatale

Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

Summary

- Noise control alone is not sufficient to reduce noise accumulation to acceptable levels
- \blacktriangleright Code used for the adaptive δf scheme is introduced, along with all physical assumptions and profiles used
- Mechanism for the adaptive scheme using a local Maxwellian with time-dependent temperature profile as control variate is explained (also submitted to PoP)
- Results show reduction in noise accumulation in the zonal component and improved signal-to-noise ratio values for the same simulation with lower marker numbers

Introduction & motivation

The δf PIC scheme [1] [2] is useful when simulating plasma core as small deviations from equilibrium distribution is expected, thus satisfying the $|\delta f|/|f_0| \ll 1$ assumption, which leads to noise reduction when compared to the full-*f* scheme ► When simulating the **plasma edge**, steep profile gradients, low density levels and high fluctuation amplitudes lead to violation of the δf assumption ▶ Benefits retained when using an adaptive time-dependent background distribution $f_0(t)$ as the control variate [3] A simplified model involving a flux-surface-averaged time-dependent background **temperature** is used to demonstrate the advantages gained

 $\blacktriangleright \delta f$ represented by markers

 $\delta f = \frac{1}{2\pi} \sum_{p}^{N_{p}} \frac{w_{p}(t)}{B_{\parallel}^{\star}/m_{i}} \delta [\boldsymbol{R} - \boldsymbol{R}_{p}(t)] \delta [\boldsymbol{v}_{\parallel} - \boldsymbol{v}_{\parallel p}(t)] \delta [\mu - \mu_{p}(t)]$

 $= \int d^{3}R d\alpha d\mathbf{v}_{\parallel} d\mu \frac{B_{\parallel}^{\star}}{m} \delta[\mathbf{R} + \boldsymbol{\rho}_{L}(\mu, \alpha) - \mathbf{r}] \delta f(\mathbf{R}, \mathbf{v}_{\parallel}, \mu, t)$

quasi-neutrality equation for the perturbed distribution:

 $\frac{en_0}{T_e}(\phi - \langle \phi \rangle_{fsa}) - \nabla_{\perp} \cdot \left(\frac{m_i n_0}{eB^2} \nabla_{\perp} \phi\right)$

Zonal flows and turbulence quenching

 \blacktriangleright Zonal flow strength is estimated by the radially averaged $E \times B$ shearing rate

$$\omega_{E\times B}(t) = \left\langle \left| \frac{1}{B} \frac{\partial^2 \phi_{00}}{\partial x^2} \right| \right\rangle$$

- > As the zonal (m, n) = (0, 0) mode is not physically damped, it is corrupted by noise accumulation with time
- Spurious zonal flow creation resulting from sampling error can be seen from the magnitude of $\omega_{F \times B}(0)$, despite initialing simulations with non-zonal modes
- Strong zonal flow shearing rate **quenches turbulence** [7], as can be seen by radially averaged heat diffusivity χ_H

(1)

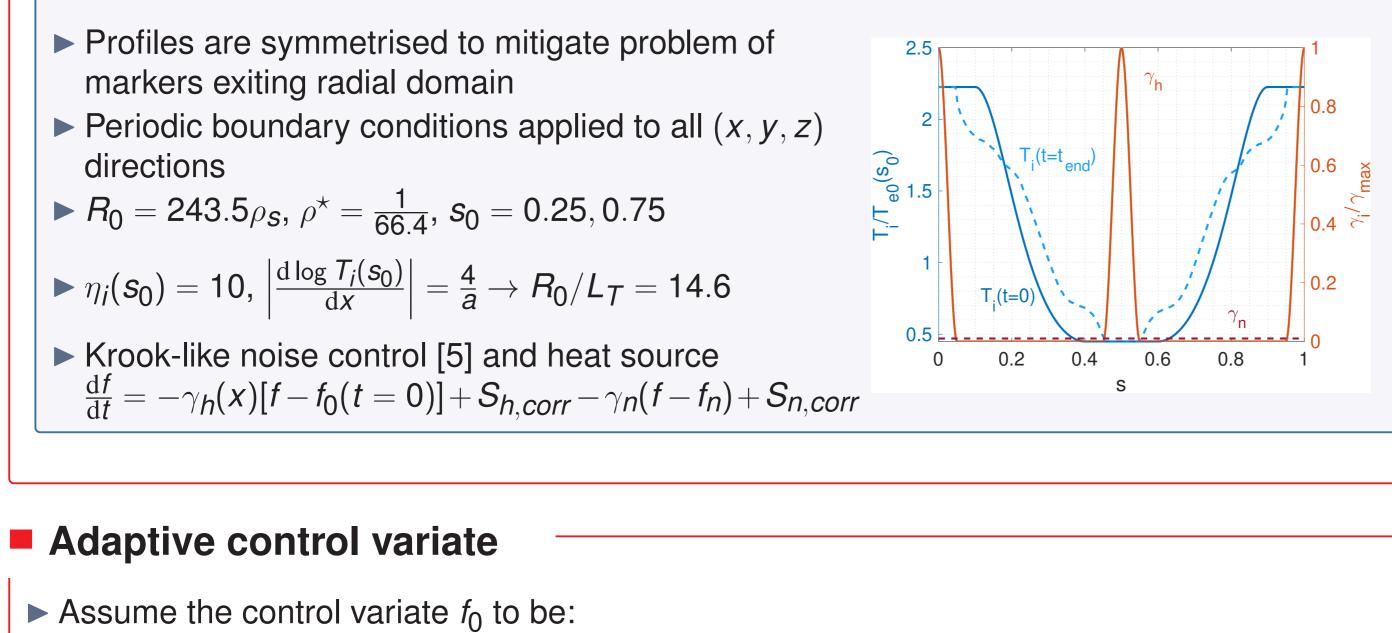
Test-bed: Physical assumptions and profiles

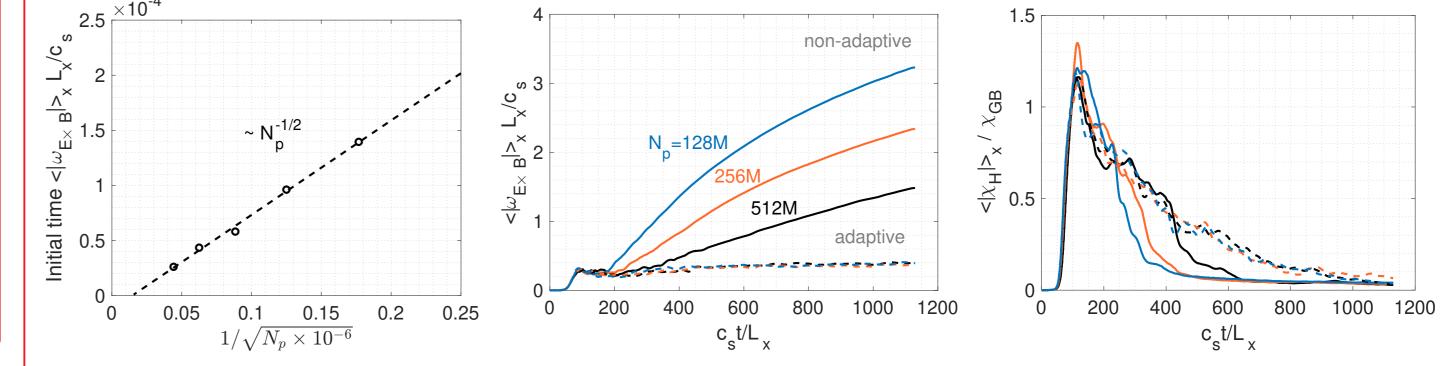
Code: GKengine[4]

- single ion species with adiabatic electrons
- ▶ electrostatic
- ► collisionless
- potential represented by (cubic) **B**-splines
- sheared-slab geometry
- highly paralellised involving MPI, OpenMP, OpenACC

Symmetrised profiles

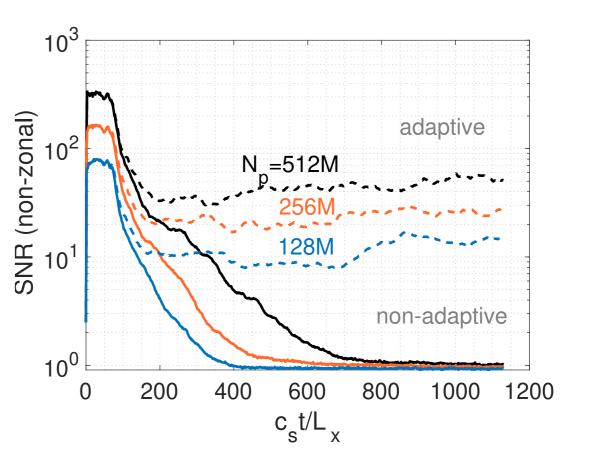
- markers exiting radial domain
- directions





Signal-to-noise ratio diagnostic

- Consistent with gyrokinetic ordering of $k_{\parallel}\rho_{s} \sim \rho^{\star}$ [8], a Fourier filter is applied to the amplitudes of the DFT of the spline coeffcients of (2)
- ► The filter [9] allowing only (*m*, *n*) modes satisfying $|m + nq(x)| < \Delta m$ to be resolved
- Definition of 'signal' and noise, represented by square amplitudes inside and outside the filter respectively



- Importance of time-dependent control variate
- lacktriangleright One in principle could use a time-dependent control variate $f = f_M(t) + \delta f$ and a time-independent noise control operator $-\gamma_n(f - f_M(0))$
- ► Or vice versa, with $f = f_M(0) + \delta f$ and $-\gamma_n(f f_M(t))$; for this case, the temperature profile of $f_n = f_M(t)$ adapts according to

$$f = f_0(t) + \delta f$$

$$f_0(X, v_{\parallel}, \mu, t) = f_M(t) = \frac{n_0(X)}{[2\pi T_{i0}(X, t)/m_i]^{3/2}} \exp\left\{-\frac{m_i v_{\parallel}^2/2 + \mu B(X)}{T_{i0}(X, t)}\right\}$$

The change in background kinetic energy:

$$\delta E_{kin0}(x,t) = \frac{3}{2}n_0(x)\delta T_{i0}(x,t) = \Sigma_k \xi_k(t)\Lambda_k(x)$$

is calculated at every N_{α}^{th} step by the ad-hoc relaxation equation [6]:

$$\frac{\partial}{\partial t} \left(\frac{3}{2} n_0(x) \delta T_{i0}(x,t) \right) = \alpha_E \left\langle \int \mathrm{d} v_{\parallel} \mathrm{d} \mu \frac{2\pi B_{\parallel}^{\star}}{m_i} \delta f \left(\frac{m_i v_{\parallel}^2}{2} + \mu B \right) \right\rangle_{\text{fsa}},$$

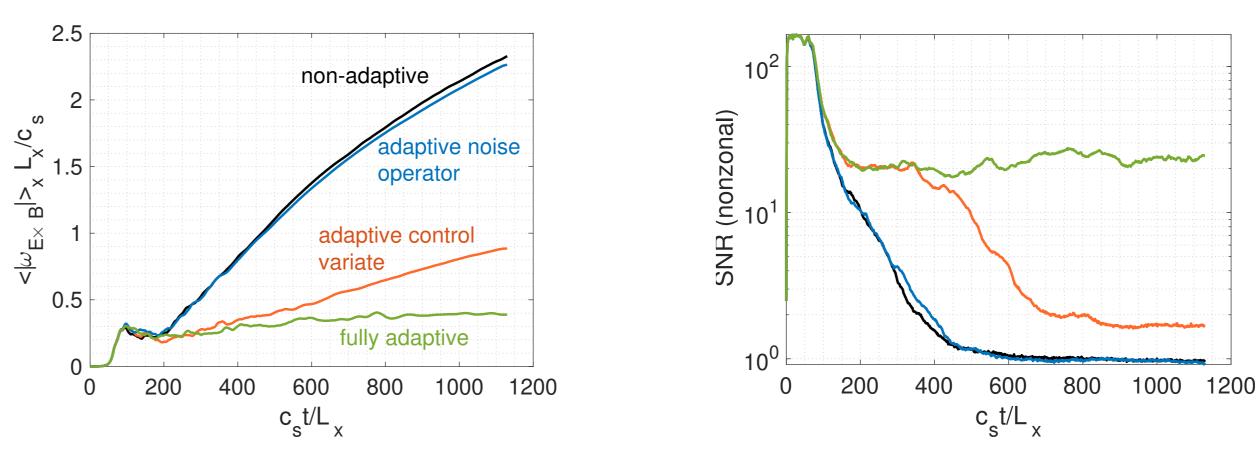
which leads to the linear system:

$$\Sigma_{k} \dot{\xi}_{k}(t) M_{kj} = \alpha_{E} \Sigma_{p}^{N_{p}} w_{p} \Lambda_{j}(X_{p}) \left(\frac{m_{i} v_{\parallel}^{2}}{2} + \mu B \right)$$

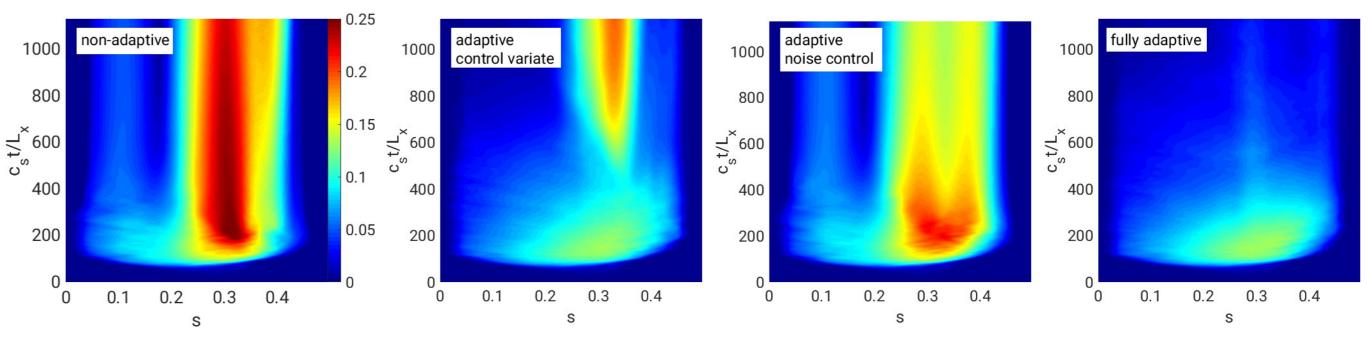
with $M_{kj} = \int \Lambda_k(x) \Lambda_j(x) dx$.

$$\frac{\partial}{\partial t} \left(\frac{3}{2} n_0(x) T_{i0}(x, t) \right) = \alpha_E \left\langle \int \mathrm{d} v_{\parallel} \mathrm{d} \mu \frac{2\pi B_{\parallel}^*}{m_i} [\delta f - (f_M(t) - f_M(t) -$$

The end-time result of $\omega_{E \times B}$ and SNR are qualitatively similar to the non-adaptive case



Comparison between cases can also be made via the flux-surface-averaged weight standard deviation



A time-dependent control variate and noise control are necessary to reduce noise accumulation

lacktriangleright Once background is changed, weights w_p are redefined to account for $\frac{df}{dt} = 0$, and an additional term of order $(\rho^{\star})^2$:

$$\int \mathrm{d}^{3}R \mathrm{d}\alpha \mathrm{d}\mathbf{v}_{\parallel} \mathrm{d}\mu \frac{B_{\parallel}}{m_{i}} \delta[\mathbf{R} + \rho_{L} - \mathbf{r}] \left[\delta f(\mathbf{R}, \mathbf{v}_{\parallel}, \mu, t) + f_{0}(\mathbf{X}, \mathbf{v}_{\parallel}, \mu, t) - f_{0}(\mathbf{X}, \mathbf{v}_{\parallel}, \mu, t = \mathbf{0}) \right]$$
(2)

analytic function markers

must be appended to the RHS of Eq.(1) to account for deviation from quasi-neutrality for the ion background; as this term is analytic, it is integrated via quadratures

Future work and generalisation

Implement adaptive scheme in ORB5 [10] with realistic geometry (on-going)

- Generalise the adaptive scheme to include background density adaptation with its own relaxation rate α_n ; useful even in the core when simulating e.g. kink ballooning, tearing, internal kink, modes
- Consider a more complicated control variate: non-Maxwellian function
- non-flux-surface-averaged function: to capture poloidal deviations

References –				This work was supported in part by the
[2] Y. Chen and S. E. Par [3] A. Y. Aydemir, Phys. F	ker. J. Comput. Phys. 220 , 839 (2007)	[6] S. Brunner et al., Phys. Plasmas 6 , 4504 (1999)	 [8] N. Tronko and C. Chandre, J. Plasma Phys. 84, 925840301 (2018) [9] S. Joliet et al., Comput. Phys. Comm. 117, 409-425 (2007) [10] E. Lanti et al., Comput. Phys. Comm. 251, 107072 (2020) 	Swiss National Science Foundation.
Swiss Plasma Center	EUROfusion	This work has been carried out within the framework via the Euroatom Research and Training Programme (Grant are however those of the author(s) only and do not necessa Neither the European Union nor the European	$\begin{array}{c} \star \star \star \\ \star $	

Joint Varenna-Lausanne International Workshop (2022), Varenna, Italy