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Introduction & motivation
▶ The δf PIC scheme [1] [2] is useful when simulating plasma core as small deviations from

equilibrium distribution is expected, thus satisfying the |δf |/|f0| ≪ 1 assumption, which leads
to noise reduction when compared to the full-f scheme

▶ When simulating the plasma edge, steep profile gradients, low density levels and high
fluctuation amplitudes lead to violation of the δf assumption

▶ Following a previous work [3], a Maxwellian control variate as a function of the
unperturbed collisionless invariants is used to demonstrate the advantages gained

Adaptive control variate

▶ Assume the control variate f0 to be:

f = f0(t) + δf , f0(ψ̂0, E , t) =
n̂0(ψ̂0, t)

[2πT̂0(ψ̂0, t)/m]3/2
exp

{
− E

T̂0(ψ̂0, t)

}
with ψ̂0 the corrected canonical toroidal momentum [7] and E = mv2/2 + mµB

▶ The change in each species’ background flux-surface-averaged (f.s.a.) density and kinetic
energy is calculated with time-averaging at every N th

α step by the ad-hoc relaxation
equations [8]:

∂

∂t
⟨n0⟩fsa (ψ) = αn

〈∫
d3vδf

〉
fsa
,

∂

∂t
⟨Ekin0⟩fsa (ψ, t) = αE

〈∫
d3vδfE

〉
fsa
,

which lead to the modification in f0 via:

n̂0(ψ, t) ≈ ⟨n0⟩(ψ, t), T̂0(ψ, t) ≈ ⟨Ekin0⟩fsa(ψ, t)/[3/2⟨n0⟩(ψ, t)].

▶ Once the control variate is changed, weights wp are redefined to account for df
dt = 0

▶ Modifications to the quasi-neutrality equation (QNE) to solve for potential ϕ,

αP
ene0(ψ, t)
Te0(ψ, t)

(ϕ− ⟨ϕ⟩fsa)−∇⊥ ·
(

mini0(ψ, t)
eB2 ∇⊥ϕ

)
=

∫
d3v d3R{δfiδ[R + ρL − r ]} − δne,T − δne,P|00 +

∫
d3v d3R{∆fi0δ[R + ρL − r ]} −∆ne0,

with red terms constitute the changes to the left- (LHS) and right- (RHS) hand-side due to
background profile changes.

Test-bed: Physical assumptions, profiles, and cases

Code and profiles

▶ ORB5 code [4] with following restrictions:
single ion species, adiabatic/hybrid electrocs, electrostatic, collisionless, Krook-like noise
control [5]

▶ Density and temperature profiles share the same form:

ρV =

√
V (ψ)

V (ψedge)
T (ρV ) =


a0 + a2ρ

2
V 0 ≤ ρV ≤ ρcore

Tped exp[−κT (ρV − 0.8)] ρcore < ρV < 0.8
T1 + µT (1 − ρV ) 0.8 ≤ ρV ≤ 1

Tped = T1 + 0.2µT

▶ Magnetic equilibrium derived from CHEASE code [6] based on TCV shot #43516, with
aspect ratio 3.64, elongation 1.44 and triangularity 0.20 at the last closed flux surface

▶ ρ⋆(s0) = 1/245 with s =
√
ψ/ψedge and s0 = 1.0

▶ Safety factor: q(s) = 0.78 + 2.51s2

ITG case

▶ Ion temperature gradient induced turbulence
▶ Adaptive ion temperature with adiabatic electrons
▶ ‘Flux-driven’ with source term
γH(s) 1

⟨Ti0⟩fsa(ψ,t=0)

[
E

⟨Ti0⟩fsa(ψ,t=0) −
3
2

]
fi0(ψ, E , t = 0) + S(H)

corr
▶ Ion and electron parameters:
ρcore = 0.4431, T1 = 1, κT = 2.3, µT = 12, n1 = 1,
κn = 3.1, µn = 5 0 0.2 0.4 0.6 0.8 1
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TEM case
▶ Trapped electron mode induced turbulence
▶ Adaptive and hybrid electron densities
▶ ‘Temperature-gradient-driven’ with source term −γK (f − f0(t)) + S(K )

corr
▶ Ion parameters:

Np = 256M, ρcore = 0.4016, T1 = 1, κT = 2.3, µT = 6, n1 = 1, κn = 2.3, µn = 5
▶ Electron parameters:

Np = 256M, ρcore = 0.4016, T1 = 1, κT = 2.5, µT = 10, n1 = 1, κn = 2.3, µn = 5
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Summary
▶ All physical assumptions, profiles and cases studied to test the adaptive δf scheme are

introduced
▶ Mechanism for the adaptive scheme using a canonical Maxwellian control variate with

time-dependent density and temperature profiles is explained
▶ Results of all adaptive cases converged, even for simulations with lower number of markers,

with improved SNR values and greater profile relaxation

Signal-to-noise ratio diagnostic

▶ Consistent with gyrokinetic ordering, a Fourier filter [9] is applied to the amplitudes of the
DFT of the spline coefficients of QNE allowing only (m,n) ̸= (0,0) modes satisfying
|m + nq(x)| < ∆m to be resolved, which constitute the signal
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ITG case: 1 species temperature adaptation

▶ Looking at the time-averaged cs0t/a ∈ [1000,1200] ion temperature and zonal flow shearing
rate [10] ωE×B profiles,

ωE×B(s, t) =
s

2ψedgeq
∂

∂s

(
1
s
∂ ⟨ϕ⟩fsa
∂s

)
,

all adaptive cases converged, while the non-adaptive case stopped relaxing
▶ Comparison between non-adaptive and adaptive cases can also be made via the f.s.a. δf

weight standard deviation; higher values of this quantity leads to poorer evaluation of the
gyrocenter density in the QNE from the δf contribution

▶ Correction to RHS of QNE seems to have minimal effect, as it is of order O(ρ2
⋆) for

background temperature changes
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TEM case: 2 species density adaptation

▶ Looking at the time-averaged cs0t/a ∈ [200,250] ion density profiles, all cases converged
▶ Due to ambipolarity, ion and electron densities differ locally by 2%
▶ Nonetheless, adaptive cases greatly reduce f.s.a. δf weight standard deviation
▶ Correction to LHS of QNE shows no difference in results despite O(1) deviation
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Future work and generalisation
▶ Perform simultaneous density and temperature adaptation for ’flux-driven’ TEM-case
▶ Perform marker number convergence studies at quasi-steady state
▶ Consider a more general control variate: f0(ψ̂0, Ê , t) =

∑
ij aij(t)Λi(ψ̂0)Λj(Ê)e−Ê
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