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“Nothing in life is to be feared, it is only to be understood.

Now is the time to understand more, so that we may fear less.”

— Marie Curie
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Abstract

As the field of ethology advances, especially over the past two decades, the role of animal-

robot interaction tools has increasingly become essential. This importance arises from the

need for controlled, repetitive, repeatable, and long-duration experiments, which not only

relieve human researchers from tedious tasks but also offer novel insights into the rules that

govern collective behavior. Such devices can infiltrate groups of animals (in this case, fish)

and engage in closed-loop interactions, eliciting responses that range from biomimetic to

modulated behavior. However, constructing harmonious biohybrid groups of animals and

robots is an intricate task. Despite significant progress in the domain, many questions remain

unanswered, necessitating further research and development in both robotics and collective

behavior modelling.

This thesis delves into the intersection of collective behavior phenomena and robotics. It

capitalizes on the advancements in electronics manufacturing, cutting-edge algorithms, and

increased accessibility to computational power that have reshaped the field, resulting in

a mixed society methodology that achieved unprecedented levels of biomimicry. Initially,

a comprehensive exploration was conducted to understand how fish groups interact with

artificial agents. We showed that models displaying active, bidirectional interactions lead

to a higher probability of integrating the artificial agent into the fish group. This realization

underlined the necessity of transitioning to more detailed and accurate models of interaction

that can withstand comparisons to spontaneous fish interactions. Addressing these limitations,

we carried out an extensive study on the key design factors that enhance the performance of

social interaction models, also revealing the need for a rigorous spatio-temporal benchmarking

metric set. This set ensures these models successfully generate realistic short- and long-

term social dynamics. However, these models uncovered a secondary engineering problem.

Transferring high-fidelity models back to reality demanded highly agile and responsive robotic

equipment, a requirement unmet by the current state-of-the-art. Accordingly, within this

thesis, we designed a novel framework, inclusive of an experimental setup, a mobile robot,

and ancillary software (e.g., for robot control, artificial intelligence and analytical behavioral

models...) to overcome these limitations. This approach subsequently enabled us to make

substantial strides towards bridging the “biomimicry gap” by transferring high-fidelity models

from simulation to reality. The culmination of this thesis outlines our success in progressively

bridging this gap, demonstrating unprecedented similarity between simulations, biohybrid,

and spontaneous fish-only interaction experiments. By open-sourcing the entirety of the

developed software and hardware tools, we aim to lay a solid foundation for future research in
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the realm of robot-animal interaction.

In conclusion, this thesis significantly contributes to our understanding of the underlying

rules that govern collective behavior. We hope it will pave the way for the creation of truly

biohybrid groups and set the stage for future explorations into models of social interactions

and their exploitation as robot controllers.

Keywords: Animal-robot interaction, ethorobotics, artificial intelligence, machine learning,

deep learning, biohybrid systems, biomimetics, collective behavior, social interactions, com-

plex systems modelling, real-time robot control, reality gap.
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Résumé

Au fur et à mesure que le domaine de l’éthologie progresse, en particulier au cours des deux

dernières décennies, le rôle des outils d’interaction entre les animaux et les robots est de plus

en plus essentiel. Cette importance découle de la nécessité d’expériences contrôlées, répéti-

tives, répétables et de longue durée, qui non seulement soulagent les chercheurs humains

des tâches fastidieuses, mais offrent également de nouvelles perspectives sur les règles qui

régissent le comportement collectif. De tels dispositifs peuvent s’infiltrer dans des groupes

d’animaux (dans ce cas, des poissons) et s’engager dans des interactions en boucle fermée,

provoquant des réponses allant du comportement biomimétique à un comportement modulé.

Cependant, la construction de groupes biohybrides harmonieux d’animaux et de robots est

une tâche complexe. Malgré des progrès significatifs dans le domaine, de nombreuses ques-

tions restent sans réponse, nécessitant des recherches et un développement supplémentaires

tant en robotique qu’en modélisation du comportement collectif.

Cette thèse explore l’intersection des phénomènes de comportement collectif et de la ro-

botique. Elle s’appuie sur les avancées dans la fabrication d’électronique, les algorithmes

de pointe, et l’accessibilité accrue à la puissance de calcul qui ont remodelé le domaine,

aboutissant à une méthodologie de société mixte qui a atteint des niveaux sans précédent de

biomimétisme. Dans un premier temps, une exploration approfondie a été menée pour com-

prendre comment les groupes de poissons interagissent avec des agents artificiels. Nous avons

montré que les modèles présentant des interactions actives et bidirectionnelles conduisent

à une probabilité plus élevée d’intégration de l’agent artificiel dans le groupe de poissons.

Cette réalisation a souligné la nécessité de passer à des modèles d’interaction plus détaillés

et précis qui peuvent résister aux comparaisons avec les interactions spontanées des pois-

sons. Pour pallier ces limitations, nous avons mené une étude approfondie sur les facteurs de

conception clés qui améliorent la performance des modèles d’interaction sociales, révélant

également le besoin d’un ensemble rigoureux de mesures de référence spatio-temporelles.

Cet ensemble assure que ces modèles génèrent avec succès des dynamiques sociales réalistes

à court et à long terme. Cependant, ces modèles ont mis à jour un problème d’ingénierie

secondaire. Transférer des modèles haute fidélité à la réalité exige un équipement robotique

agile et réactif, une exigence non satisfaite par l’état de l’art actuel. Ainsi, dans cette thèse,

nous avons conçu un nouveau cadre d’études, comprenant un dispositif expérimental, un

robot mobile, et des logiciels auxiliaires (par exemple, pour le contrôle du robot, l’intelligence

artificielle et les modèles comportementaux analytiques...) pour surmonter ces limitations.

Cette approche nous a ensuite permis de faire des avancées substantielles vers la réduction
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du “fossé du biomimétisme” en transférant des modèles de haute fidélité de la simulation

à la réalité. L’aboutissement de cette thèse décrit notre succès à combler progressivement

ce fossé, démontrant une similitude sans précédent entre les simulations, les expériences

d’interaction biohybride et spontanée entre poissons uniquement. En mettant en open source

l’intégralité des outils logiciels et matériels développés, nous visons à poser une base solide

pour les futures recherches dans le domaine de l’interaction entre les robots et les animaux.

En conclusion, cette thèse contribue de manière significative à notre compréhension des

règles sous-jacentes qui régissent le comportement collectif. Nous espérons qu’elle ouvrira

la voie à la création de véritables groupes biohybrides et posera les bases pour de futures

explorations des modèles d’interactions sociales et de leur exploitation en tant que contrôleurs

de robots.

Mots-clés : Interaction animal-robot, éthorobotique, intelligence artificielle, apprentissage

automatique, apprentissage profond, systèmes biohybrides, biomimétisme, comportement

collectif, interactions sociales, modélisation de systèmes complexes, contrôle robotique en

temps réel, écart réalité-simulation.
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Riassunto

Con l’avanzare del campo dell’etologia, soprattutto negli ultimi due decenni, il ruolo degli stru-

menti di interazione tra animali e robot è diventato sempre più essenziale. Questa importanza

deriva dalla necessità di esperimenti controllati, ripetitivi, ripetibili e di lunga durata, che non

solo alleviano i ricercatori umani dai compiti noiosi, ma offrono anche nuove intuizioni sulle

regole che governano il comportamento collettivo. Tali dispositivi possono infiltrarsi in gruppi

di animali (in questo caso, pesci) e impegnarsi in interazioni a ciclo chiuso, suscitando risposte

che vanno dal comportamento biomimetico al comportamento modulato. Tuttavia, costruire

gruppi bioibridi armoniosi di animali e robot è un compito complesso. Nonostanti significativi

progressi nel campo, molte domande rimangono senza risposta, richiedendo ulteriori ricerche

e sviluppi sia in robotica che nella modellazione del comportamento collettivo.

Questa tesi esplora l’intersezione tra fenomeni di comportamento collettivo e robotica. Si

avvale dei progressi nella produzione di elettronica, algoritmi all’avanguardia e l’aumentata

accessibilità alla potenza di calcolo che hanno ridisegnato il campo, portando a una metodo-

logia di società mista che ha raggiunto livelli senza precedenti di biomimetismo. Inizialmente,

è stata condotta un’indagine esaustiva per capire come i gruppi di pesci interagiscono con gli

agenti artificiali. Abbiamo dimostrato che i modelli che mostrano interazioni attive e bidire-

zionali portano a una maggiore probabilità di integrazione dell’agente artificiale nel gruppo di

pesci. Questa constatazione ha sottolineato la necessità di passare a modelli di interazione

più dettagliati e accurati che possano resistere ai confronti con le interazioni spontanee dei

pesci. Per affrontare tali limitazioni, abbiamo condotto uno studio approfondito sui fattori di

progettazione chiave che migliorano le prestazioni dei modelli di interazione sociali, rivelando

anche la necessità di un rigoroso insieme di metriche di benchmarking spazio-temporali.

Questo insieme garantisce che i modelli generino con successo dinamiche sociali realistiche a

breve e lungo termine. Tuttavia, questi modelli hanno rivelato un secondo problema ingegne-

ristico. Trasferire modelli ad alta fedeltà alla realtà richiedeva attrezzature robotiche agili e

reattive, un requisito non soddisfatto dallo stato dell’arte attuale. Di conseguenza, in questa

tesi, abbiamo progettato un nuovo framework, che comprende un setup sperimentale, un

robot mobile e software ausiliario (ad es. per il controllo del robot, intelligenza artificiale e

modelli comportamentali analitici...) per superare queste limitazioni. Questo approccio ci ha

successivamente permesso di fare passi significativi verso il colmare il “divario biomimetico”

trasferendo modelli ad alta fedeltà dalla simulazione alla realtà. Il culmine di questa tesi

delinea il nostro successo nel colmare progressivamente questo divario, dimostrando una so-

miglianza senza precedenti tra simulazioni, esperimenti di interazione bioibrida e spontanea
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solo tra pesci. Rendendo open source l’intero insieme degli strumenti software e hardware

sviluppati, miriamo a gettare le basi solide per future ricerche nel campo dell’interazione tra

robot e animali.

In conclusione, questa tesi contribuisce in modo significativo alla nostra comprensione delle

regole che governano il comportamento collettivo. Speriamo che posse aprire la strada alla

creazione di veri e propri gruppi bioibridi e preparare il terreno per future esplorazioni dei

modelli di interazione sociale e del loro utilizzo come controllori di robot.

Parole chiave: Interazione animale-robot, etorobotica, intelligenza artificiale, apprendimento

automatico, apprendimento profondo, sistemi bioibridi, biomimetica, comportamento col-

lettivo, interazioni sociali, modellazione di sistemi complessi, controllo robot in tempo reale,

divario realtà-simulazione.
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Zusammenfassung

Mit dem Fortschreiten der Ethologie, insbesondere in den letzten zwei Jahrzehnten, hat die

Rolle von Tier-Roboter-Interaktionstools zunehmend an Bedeutung gewonnen. Diese Bedeu-

tung ergibt sich aus der Notwendigkeit von kontrollierten, wiederholten und langandauernden

Experimenten, die nicht nur menschliche Forscher von mühsamen Aufgaben entlasten, son-

dern auch neue Einblicke in die Regeln bieten, die kollektives Verhalten bestimmen. Solche

Geräte können sich in Tiergruppen (in diesem Fall Fische) einschleusen und in geschlossenen

Interaktionsschleifen agieren, die von biomimetischem bis zu moduliertem Verhalten reichen.

Dennoch ist die Bildung harmonischer biohybrider Gruppen aus Tieren und Robotern eine

komplexe Aufgabe. Trotz erheblicher Fortschritte in diesem Bereich bleiben viele Fragen

unbeantwortet, was weitere Forschung und Entwicklung sowohl in der Robotik als auch in der

Modellierung kollektiven Verhaltens erfordert.

Diese Dissertation untersucht die Schnittstelle zwischen kollektiven Verhaltensphänomenen

und Robotik. Sie nutzt die Fortschritte in der Elektronikfertigung, modernste Algorithmen und

den erhöhten Zugang zu Rechenleistung, die das Feld geprägt haben, was zu einer gemisch-

ten Gesellschaftsmethodik führte, die beispiellose Biomimetik-Niveaus erreichte. Zunächst

wurde eine umfassende Untersuchung durchgeführt, um zu verstehen, wie Fischgruppen mit

künstlichen Agenten interagieren. Wir zeigten, dass Modelle, die aktive, bidirektionale Inter-

aktionen aufweisen, eine höhere Wahrscheinlichkeit haben, den künstlichen Agenten in die

Fischgruppe zu integrieren. Diese Erkenntnis unterstrich die Notwendigkeit des Übergangs zu

detaillierteren und genaueren Interaktionsmodellen, die den spontanen Fischinteraktionen

standhalten können. Um diese Einschränkungen zu beheben, führten wir eine umfangreiche

Studie zu den Schlüsseldesignfaktoren durch, die die Leistung von sozialen Interaktions-

modellen verbessern, und zeigten auch die Notwendigkeit eines strengen raumzeitlichen

Benchmarking-Maßstabs auf. Dieser stellt sicher, dass diese Modelle erfolgreich realistische

soziale Dynamiken kurz- und langfristig erzeugen. Dennoch offenbarten diese Modelle ein

sekundäres Ingenieurproblem. Die Übertragung von Hochleistungsmodellen zurück in die

Realität erforderte hoch agile und reaktionsfähige robotische Ausrüstungen, eine Anforderung,

die vom aktuellen Stand der Technik nicht erfüllt wurde. In dieser Dissertation entwickelten

wir daher einen neuen Rahmen, einschließlich eines experimentellen Setups, eines mobilen

Roboters und unterstützender Software (z. B. für Robotersteuerung, künstliche Intelligenz und

analytische Verhaltensmodelle), um diese Einschränkungen zu überwinden. Dieser Ansatz er-

möglichte es uns, bedeutende Fortschritte bei der Überbrückung der "Biomimetik-Lücke" zu

machen, indem wir Hochleistungsmodelle von der Simulation in die Realität übertrugen. Der
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Abschluss dieser Arbeit skizziert unseren Erfolg, diese Lücke schrittweise zu überbrücken und

zeigt eine beispiellose Ähnlichkeit zwischen Simulationen, biohybriden und spontanen reinen

Fischinteraktionsexperimenten. Durch die Open-Source-Bereitstellung aller entwickelten

Software- und Hardwaretools wollen wir eine solide Grundlage für zukünftige Forschungen

im Bereich der Tier-Roboter-Interaktion schaffen.

Abschließend trägt diese Dissertation erheblich zum Verständnis der zugrunde liegenden

Regeln bei, die das kollektive Verhalten bestimmen. Wir hoffen, dass sie den Weg für die Schaf-

fung von echten biohybriden Gruppen ebnet und die Bühne für zukünftige Untersuchungen

von sozialen Interaktionsmodellen und deren Nutzung als Robotersteuerungen bereitet.

Schlüsselwörter: Tier-Roboter-Interaktion, künstliche Intelligenz, maschinelles Lernen, tie-

fes Lernen, biohybride Systeme, Biomimetik, kollektives Verhalten, soziale Interaktionen,

komplexe Systemmodellierung, Echtzeit-Robotersteuerung.
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1 Introduction

This section’s content is adapted from the following article:

• Papaspyros, V., Bonnet, F., Collignon, B. and Mondada, F., 2019. Bidirectional in-

teractions facilitate the integration of a robot into a shoal of zebrafish Danio rerio.

PloS one, 14(8), p.e0220559. https://doi.org/10.1371/journal.pone.0220559 (reuse

authorised under the CC 4.0 licence) – Papaspyros et al. (2019)

– Vaios Papaspyros’s contribution: Data curation, formal analysis, investigation,

methodology, software, visualization, writing – original draft, writing – review

& editing.

• Papaspyros, V., Escobedo, R., Alahi, A., Theraulaz, G., Sire, C. and Mondada, F.,

2023. Predicting long-term collective animal behavior with deep learning. bioRxiv,

pp.2023-02. https://doi.org/10.1101/2023.02.15.528318 (reuse authorised under a

non-exlusive distribution licence) – Papaspyros et al. (2023b)

– Vaios Papaspyros’s contribution: Conception, data curation, formal analysis,

investigation, methodology, software, visualization, writing – original draft,

writing – review & editing.

• Papaspyros, V., Burnier, D., Cherfan, R., Theraulaz, G., Sire, C. and Mondada, F.,

2023. A biohybrid interaction framework for the integration of robots in animal

societies. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3290960 (reuse autho-

rised under the CC 4.0 licence) – Papaspyros et al. (2023a)

– Vaios Papaspyros’s contribution: Conception, data curation, formal analysis,

investigation, methodology, software, hardware, visualization, writing – origi-

nal draft, writing – review & editing.

• Papaspyros, V., Theraulaz, G., Sire, C. and Mondada, F., 2023. Quantifying the

biomimicry gap in biohybrid systems. arXiv. https://doi.org/10.48550/arXiv.2308.

08978 (reuse authorised under the CC 4.0 licence) – Papaspyros et al. (2023c)

– Vaios Papaspyros’s contribution: Conception, data curation, formal analysis,

investigation, methodology, software, visualization, writing – original draft,

writing – review & editing.
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1.1 Collective animal behavior

The complex spatio-temporal structures and interactions observed in groups of social animals

have long fascinated and piqued the interest of scientists. How is it that from individual

actions we observe the emergence of collective patterns of unique complexity Camazine et al.

(2003); Theraulaz et al. (2003)? Or, similarly, how can we disentangle the collective dynamics

to discover the individual primitives that led to a collective pattern Lukeman et al. (2010) on a

global scale? These simple, yet difficult to answer, questions have triggered numerous studies

on social animals throughout the years, some of which remain unanswered.

The resulting domain, that of collective behavior, has become a very active field of research,

studying the fundamental mechanisms by which individuals coordinate their actions Sumpter

(2010); Krause and Ruxton (2002); Ball (2011) and self-organize Camazine et al. (2003); Couzin

et al. (2003). One of the most common forms of collective behavior can be observed in schools

of fish and flocks of birds that have the ability to coordinate their movements to collectively

escape predator attacks or improve their foraging efficiency Vicsek and Zafeiris (2012); Cavagna

et al. (2018). This coordination at the group level mainly results from the social interactions

between individuals. Important steps to understand these collective phenomena consist in

characterizing these interactions and understanding the way individuals integrate interactions

with other group members Deutsch et al. (2020); Herbert-Read (2016); Gautrais et al. (2012);

Calovi et al. (2018).

1.2 Models of collective behavior

Notably, nowadays, new tracking techniques and tools for behavioral analysis have been

developed that have greatly improved the quality of collective motion data Branson et al.

(2009); Dell et al. (2014); Gallois and Candelier (2021); Anderson and Perona (2014); Pérez-

Escudero et al. (2014); Romero-Ferrero et al. (2019); Walter and Couzin (2021). In particular,

advances in computing have allowed the development of computationally demanding data-

oriented model generation techniques Calovi et al. (2018); Escobedo et al. (2020); Jayles et al.

(2020); Cazenille et al. (2019); Heras et al. (2019); Costa et al. (2020); Collignon et al. (2017);

Aoki (1982); Bode et al. (2010); Reynolds (1987); Couzin et al. (2002); Lopez et al. (2012);

Niwa (1996); Vicsek et al. (1995); Bertin et al. (2006); Chaté et al. (2008); Nagai et al. (2015);

Gautrais et al. (2012); Zienkiewicz et al. (2015); Mwaffo et al. (2015) and the subsequent

simulation of biological models Gilpin et al. (2020); Collignon et al. (2017). This has resulted

in more realistic models that attempt to recover the social interactions that govern collective

behaviors. Yet, the bottleneck with most of these approaches is that they rely on demanding

and laborious mathematical work to obtain the interactions from experimental data, e.g., by

means of manually crafting functions that approximate the observed signals, and proceeding

to computationally infer the best fit for the function parameters.
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An alternative to such analytical models is to exploit machine learning (ML) techniques and

let an algorithm learn the interactions directly from data. The know-how required to use these

techniques is different from the one needed to design analytical models. Nevertheless, the

structure of ML algorithms, e.g., neural network, has an impact on the modeling performance,

and requires extensive knowledge on the use and implementation of neural networks Mam-

madli et al. (2019). Furthermore, modelling a new species requires that we (potentially) retrain

the network, but without changing its structure. The downside of this flexibility is that ML mod-

els are usually less explainable (“black box”). Yet, recent ML algorithms provide higher-level

information mappable to more tangible formats, such as force maps, which show the strength

and direction of behavioral changes experienced by an individual when interacting with other

individuals in a moving group Heras et al. (2019); Costa et al. (2020). Despite their limited

explainability, ML algorithms require only a few biological assumptions. They offer an almost

hypothesis-free procedure Valletta et al. (2017) that can even outperform human experts in

detecting subtle patterns Marques et al. (2018), making ML a very appealing complementary

approach to analytical models.

For both analytical and ML models, several studies evaluate models over short timescales

and through instantaneous quantities such as speed, acceleration, distance and angle to ob-

jects Cazenille et al. (2018b, 2019), or by measuring the error between predictions and ground

truth Heras et al. (2019); Alahi et al. (2016); Kothari et al. (2021). Only more recently, long

timescales have also been considered Jayles et al. (2020), that is, sufficiently long timescales to

observe and verify the emergence and evolution of collective dynamics. Whereas the notion of

long-term timescale may vary depending on the animal and type of dynamics under study, it

is well established that collective behavior spans multiple timescales Ioannou and Laskowski

(2023), thus, a model’s effectiveness in the short term does not guarantee similar performance

over long timescales. Therefore, there are models that only exhibit accuracy in the short

term. When these models are used for extended simulations (typically in the range of 1-3h for

social interaction studies), a divergence from the actual observations of an animal’s inherent

behavior may become apparent. The shortcomings of current social interaction models can

be summarized as follows: 1) they are often employed to predict short-term quantities with

minimal or no evaluation over long timescales, and 2) even when these models are used for

extended simulations, the assessment often lacks rigor in terms of temporal quantities and

focuses predominantly on instantaneous spatial ones.

1.3 Robots in ethology

While some knowledge can be obtained by observing and modelling the innate interactions

within animal groups, in more recent years, scientists are presented with a new opportunity

for studying collective behavior. That is, the use of robots and robotic devices to probe, control

or mimic the behavior of animals. As a result of the rapid development of micro-electronic and

embedded systems, scientists can now use those devices to stimulate the animals in such a way

as to validate theoretical assumptions which were traditionally based on observation. In turn,
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this allows for experiments with closed-loop interaction models stimulated in real-time with

true feedback from the animal. To this day, these advancements, along with advancements in

computer hardware and algorithms, have facilitated the development of smaller and more

agile robotic systems that can be operated with improved perception systems and increasingly

sophisticated motion models. In turn, this has allowed scientists to put these theoretical

models to the test in real-life scenarios and with true feedback from the animals, in order to

study their collective behavior. Some of them Pillot et al. (2010); Correll et al. (2008); Worm

et al. (2018) relied on the use of teleoperated devices that produce signals (e.g., visual, acoustic,

electric) to attract or repel the animals, others rely on mobile robots that are not explicitly

mimicking the animal under study (e.g., it could be a sheepdog among sheep Strömbom et al.

(2014)) and, in cases where visual stimulus is critical, some relied on mimetic lures, that is,

on lures that mimic the shape, size, and appearance or behavior Faria et al. (2010); Bonnet

et al. (2014); Kopman and Porfiri (2013); Halloy et al. (2007); Marras and Porfiri (2012). These

studies demonstrated that artificial agents able to perceive and emit pertinent and adapted

signals can influence and control self-organized choices by mixed groups of animals and

robots Romano et al. (2019).

Over the years, the combination of these advances, along with a continued interest in decipher-

ing the rules that govern collective behavior, has led to the design of a plethora of biohybrid

systems, spanning from groups of fish Faria et al. (2010); Swain et al. (2011); Landgraf et al.

(2013); Bonnet et al. (2014); Landgraf et al. (2016); Ruberto et al. (2016); Bartolini et al. (2016);

Bonnet et al. (2018); Porfiri (2018); Romano and Stefanini (2021, 2022b,a), bees Landgraf et al.

(2010); Stefanec et al. (2017); Griparić et al. (2017); Barmak et al. (2023), cockroaches Halloy

et al. (2007), locusts Romano et al. (2020), rats Shi et al. (2014), and birds Jolly et al. (2016);

Folkertsma et al. (2017); Gribovskiy et al. (2010, 2018); Simon et al. (2023). While these systems

primarily serve as a means to examine animal behavior, they also offer a glimpse into potential

strategies for preserving ecosystems, thereby contributing to environmental conservation

efforts Ilgün et al. (2021); Schmickl et al. (2021).

In these systems, the investigation of collective responses within biohybrid groups typically

involves closed-loop mechanisms that encompass environmental sensing (e.g., tracking an-

imal positions, temperature. . . ), decision-making processes (e.g., utilizing computational

behavioral models), and targeted communication channels specific to the species under study.

For example, bees may respond to air currents or hive temperature fluctuations Bonnet et al.

(2012); Stefanec et al. (2017); Griparić et al. (2017); Barmak et al. (2023), while fish can be

influenced by lures or visual stimuli Faria et al. (2010); Swain et al. (2011); Kopman et al. (2013);

Landgraf et al. (2013); Bonnet et al. (2014); Landgraf et al. (2014, 2016); Bonnet et al. (2018);

Porfiri (2018); Chemtob et al. (2020); Romano and Stefanini (2021, 2022b); Maxeiner et al.

(2023).
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1.3.1 Behavioral robot controllers

Although robots have proved to be a valuable asset in this context, they have also uncovered

the need for adaptive behavioral models that can drive the robot’s movement in an animal-

like manner. From the first experiments of sheep herding Vaughan et al. (2000); Strömbom

et al. (2014) to the more recent fish-robot interaction experiments Bonnet et al. (2018, 2019);

Romano and Stefanini (2021, 2022a); Porfiri et al. (2019), scientists have been attempting

to uncover the underlying dynamics that allow for modulating the animal behavior. This

requires models capable of adapting to the collective dynamics (either to influence or mimic

the decision-making process), despite the rapid or more gradual changes that might deem a

non-adaptive model completely inadequate. This is indeed imperative to the development of

truly autonomous animal-like robots, in the behavioral control sense, that can blend in the

animal group for long periods of time by self-regulating their interactions with their social

companions. However, the design of such generic models is particularly difficult due to 1)

limited number of high-fidelity models that reproduce the underlying dynamics with high

accuracy, 2) unaccounted for physical properties of robotic systems in the model, and 3) lack

of adaptation to animals’, here fish’s, behavioral plasticity de Lourdes Ruiz-Gomez et al. (2008);

Suriyampola et al. (2023).

A review of the literature of the animal-robot interaction domain, covers two general categories

of control schemes for the robot(s): (1) open-loop, and (2) closed-loop control. The former

consists of behavioral models implemented on a robot, that are inherently not adaptive, do

not react or take into account the behavior of neighboring animals Bonnet et al. (2018); Ladu

et al. (2015a); Phamduy et al. (2014); Polverino et al. (2013); Abaid et al. (2012a); Ladu et al.

(2015b); Polverino et al. (2012); Spinello et al. (2013); Polverino and Porfiri (2013a); Ruberto

et al. (2016); Bartolini et al. (2016); Kruusmaa et al. (2016); Abaid et al. (2013); Butail et al.

(2013, 2014b) or they are based on replaying pre-recorded trajectories with respect only to

the setup dimensions (i.e., the robot does not explicitly model interactions with the setup

boundaries, but will purposely avoid collisions). On the other end, closed-loop models are

designed to provide means for the robot to perceive, locally or globally, its environment Faria

et al. (2010); Swain et al. (2011); Landgraf et al. (2013); Cazenille et al. (2018c) (e.g., fish, walls...).

These models can be further classified as passive or active depending on their tendency to

naively follow the collective decisions (e.g., by mirroring their movements) or, in the second

case, to take initiative and influence the shoal members given some criteria. Thus, creating a

biohybrid group requires careful design and attention to animal-specific communication cues

Mondada et al. (2013).

Despite a plethora of proposed behavioral robot controllers, similarly to experiments based

on simulation, the majority makes use of simplified rules of interaction to command the robot.

These rules often lack comprehensive validation, but are computationally efficient for use in

real-time systems.
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Figure 1.1: Illustration of the sources of the biomimicry gap. (1) The modeling phase may in-
troduce a first source of discrepancy between the effect of social interactions on the swimming
patterns in the model and the ones observed in real fish. (2) A second source of discrepancy
between the visual appearance of the lure and that of a real fish might introduce imperfect
communication cues and elicit unrealistic behavioral responses from neighboring organ-
isms. (3) Finally, a third source of discrepancy between the characteristics of the movement
produced by the model and its realization by the lure occurs when the numerical model is
transferred to real-world scenarios due to the physics constrains that were not accounted
for in the model. H. rhodostomus photo was taken by David Villa ScienceImage/CBI/CNRS,
Toulouse.

1.3.2 The biomimicry gap

Nonetheless, akin to the well known reality gap observed when transferring simulated robot

controllers to real-world applications Jakobi et al. (1995); Jakobi (1997); Mouret and Chatzi-

lygeroudis (2017); Martinoli et al. (1999), biohybrid systems may exhibit a similar discrepancy,

but more complex because of including biological entities interacting among them, with

the environment and with the robot. This gap arises from the combination of the following

elements (also depicted in Fig. 1.1):

1. Subtle behavioral patterns that social interaction models fail to capture. This causes a

discrepancy in the decision-making process that effectively adheres to different (with

varying degree) social dynamics and generates short- and long-term spatio-temporal

patterns that may present differences from fish-only interactions in the same environ-
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ment. We call this the social interaction gap;

2. the fidelity of the communication cues exhibited by the artificial device(s) toward the

animal, which we call the communication cue gap. In this thesis’ context, the level of

biomimicry of artificial lures, which affects the way fish perceive and interact with it.

This may not be relevant for some animal species, but is indeed shown to play a crucial

role in fish-robot interactions Romano and Stefanini (2022a);

3. physics related to the operation of the robot in real life that were not accounted for

in models. This refers to the discrepancies discussed in Jakobi et al. (1995); Jakobi

(1997); Mouret and Chatzilygeroudis (2017), and in the context of modelling social

interactions, especially, there is typically a complete lack of any physical modelling in

social interaction models. We refer to this discrepancy as the physics gap.

We refer to the global resulting gap by coining the term “biomimicry gap”. This term encom-

passes all of the above aspects, illustrating the complexity of the phenomena that goes far

behind the typical definition of the reality gap as it currently exists in the literature. In that re-

spect, and to the best of our knowledge, the feasibility of bridging the social interaction reality

gap by conducting long experiments in both simulated and real environments and comparing

their outcomes has not been conclusively addressed. Throughout this thesis, we attempt to

understand and implement ways to further bridge the biomimicry gap by advancing on all

three of its stems.

The approach we followed in this thesis to bridge this gap is summarized in the 4-step method-

ology summarized below:

1. Measure the effect varying degrees of interactivity in models affects the collective dy-

namics. This step establishes a baseline for the biomimicry gap (discussed in Chapter 3).

2. Design and rigorously benchmark models in simulation to create high-fidelity models

(discussed in Chapter 4).

3. Design and construct high-fidelity lures/replicas that are specially designed for the type

of experiment (addressed in Chapter 5). For instance, mimicking fish behavior requires

highly biomimetic lures of the same species, predation studies require good quality

replicas of a fish’s natural predator...).

4. Model the physics of the system in question. In this thesis, we do not directly answer

this question, but we indirectly address it by using a physical system to replicate the

dynamics that are validated in simulation (see Chapters 6 and 7). Then, we proceed to

trace the potential sources of the gaps that arise. Intuitively, if we were to alleviate the

effect of the imperfect models and communication cues, we would be able to directly

measure the physics gap.
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1.4 Fish as a model for understanding social dynamics

Many fish species exhibit social skills that lead to complex dynamics. Besides the social

interaction studies, fish are an ideal candidate animal for laboratory-confined experiments,

mainly due to their size and easy to replicate housing conditions. For this thesis work, we

chose the zebrafish Danio rerio (wild-type, AB strain) Nasevicius and Ekker (2000) and the

rummy-nose tetras Hemigrammus rhodostomus as our models.

The zebrafish is a freshwater fish species, very commonly found in aquariums. Notably,

the zebrafish have 70% genetic homology with humans, which makes them ideal for drug

development, cancer and clinical studies or for studies concerning the regenerative abilities.

In terms of behavioral studies, the zebrafish have already served as a model for several studies

on information propagation Crosato et al. (2018); Butail et al. (2016); Ruberto et al. (2016);

Porfiri (2018) and animal-robot interaction Bonnet et al. (2014, 2018); Cazenille et al. (2017,

2018c); Ruberto et al. (2016); Porfiri (2018).

Figure 1.2: Zebra Danio rerio.

Similarly, H. rhodostomus exhibit a strong social component, stronger than that of zebrafish

Escobedo et al. (2020). Thus, they are an ideal fit to validate how social interaction models

allow artificial systems (e.g., mobile robot-lure systems) to blend into living fish groups with

minimal to no effect on the collective dynamics.

Figure 1.3: Rummy-nose tetra Hemigrammus rhodostomus. Photo by David Villa ScienceIm-
age/CBI/CNRS, Toulouse.

1.4.1 Burst-and-coast swimming

H. rhodostomus or D. rerio, like many other fish species, move in a burst-and-coast manner,

meaning that their swimming pattern consists of a sequence of abrupt accelerations each

followed by a longer gliding period (see Fig. 4.1B), during which a fish moves more or less

in a straight line (see Fig. 4.4C). The kicking instants observed in the curve of the speed can

be interpreted as decision times when the fish potentially initiates a change of direction.

In H. rhodostomus, the mean time interval between kicks and the typical kick length were

experimentally found to be close to 0.5 s and 7 cm, respectively Calovi et al. (2018), and close
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to 0.8 s and 8 cm for zebrafish. When confined in circular tanks, fish tend to swim close to the

curved wall because their trajectory is made of quasi straight segments with limited variance

of the heading angle between kicks, hence preventing the fish to escape from the tank wall

(unless when a rare large heading angle change occurs) Calovi et al. (2018). When swimming

in groups, H. rhodostomus and D. rerio tend to remain close to each other, especially when the

number of fish in the tank is small. Naturally, the characteristics and variability of this motion

and the emerging social interactions, is inherently linked with the experimental environment

and conditions under which these motions are observed Li et al. (2021); Xue et al. (2023).

1.5 Biohybrid experiments: A temporal-technological duality per-

spective

As previously highlighted, biohybrid systems, comprising behavioral models and the robotic

systems they command, have proved insightful for fish behavior studies, with a focus on vari-

ous domains including biomimetics Landgraf et al. (2014); Cazenille et al. (2018c), predation

Abaid et al. (2013), phenotypics Romano and Stefanini (2022a), and behavioral modulation

Bonnet et al. (2018); Chemtob et al. (2020), among others. Nonetheless, only a limited number

of studies have concentrated on evaluating the degree to which such systems gain acceptance

and genuinely become indistinguishable from living animals (refer to Table 1.1) — a pivotal

aspect that enables researchers to derive more confident and relevant conclusions regarding

the origins of responses elicited by these systems. Specifically, it is pivotal to discern whether

potential phenotypic and behavioral discrepancies between the robotic system and the study

animal significantly widen the biomimicry gap, well before the effects of deliberately targeted

stimuli are quantified. This issue casts biohybrid experiments in a nuanced light, challenging

the degree to which a modern robotic system can furnish clear, unbiased insights into the

decision-making processes of animals, specifically, fish.

Moreover, it has been observed that fish-robot systems generally engage in experiments

over relatively brief durations, with a typical session spanning between 5-30 min and only

seldom extending from 30 to 60 min. This approach may sufficiently serve the objectives of

certain experiments, particularly those intended to investigate the instantaneous or short-

term behaviors of fish to very specific stimuli Abaid et al. (2012a); Polverino and Porfiri (2013a);

Polverino et al. (2013); Butail et al. (2014b,a); Phamduy et al. (2014); Ladu et al. (2015b,a);

Donati et al. (2016), and it is plausible that associated studies can exclusively rely on short-

term timescale metrics. Consequently, such experiments have traditionally employed either

open-loop and fixed pattern models (refer to Table 1.1) or closed-loop models of low reactivity,

primarily with the purpose of initiating a predetermined pattern of response subject to specific

fish states.

Conversely, to explore the spontaneous movement and social interactions among fish, it is

essential to center attention on closed-loop reactive or biomimetic models, which strive to

more precisely emulate realistic behaviors. Within Table 1.1, we distinguish between reactive
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Table 1.1: Partial social interaction model & biohybrid framework literature overview. The
table lists notable scientific works published between 2010-2023. It also includes a taxonomy
with respect to the number of individuals in the study, the type of patterns (i.e., prerecorded
trajectories or dynamically generated ones) exhibited during experiments, information on
whether the experiment is in simulation or reality, the experiments’ duration (excluding
acclimatization periods), and the temporal timescale over which they are assessed.

№ Literature
№ agents

incl.
robot(s)

Interaction type Simulation Reality Interaction loop
Exp. time

(min)
Timescale

1 Maxeiner et al. (2023) 2 Fixed ✗ ✓ Open, Closed 10 Short

2
Romano and Stefanini

(2022b)
2 Fixed ✗ ✓ Open 15 Short

3
Romano and Stefanini

(2021)
2 Fixed ✗ ✓ Open 20 Short

4 Chemtob et al. (2020) 5, 6 Biomimetica ✗ ✓ Open, Closed 15 Short
5 Cazenille et al. (2019) 5 Biomimetic ✓ ✗ - 30 Short
6 Calovi et al. (2018) 1, 2, 5 Biomimetic ✓ ✗ - n/ab Short, Longc

7 Bonnet et al. (2018) 6 Fixed, Reactive ✗ ✓ Open, Closed 30 Short
8 Cazenille et al. (2018a) 5 Biomimetic ✓ ✗ - 30 Short
9 Cazenille et al. (2018b) 5 Biomimetic ✗ ✓ Closed 30 Short

10 Cazenille et al. (2018c) 5
Random,

Biomimetic
✗ ✓ Open, Closed 30 Short

11 Cazenille et al. (2017) 5 Biomimetic ✓ ✓ Closed 30 Short
12 Collignon et al. (2016) 1, 10 Biomimetic ✓ ✗ - 60 Short
13 Ruberto et al. (2016) 2 Fixed ✗ ✓ Open 10 Short
14 Bartolini et al. (2016) 2 Fixed ✗ ✓ Open 15 Short
15 Kruusmaa et al. (2016) ≈ 3000 Fixed ✗ ✓ Open 150-200d Short
16 Donati et al. (2016) 5 Fixed ✗ ✓ Closede ⪆ 10 Short

17 Landgraf et al. (2016) 7
Fixed, Reactive,

Biomimetic
✗ ✓ Open, Closed ⪅ 15 Short

18 Ladu et al. (2015a) 2 Fixed ✗ ✓ Open 10 Short
19 Ladu et al. (2015b) 2 Fixed ✗ ✓ Open 10f Short

20 Landgraf et al. (2014) 22
Reactive,

Biomimetic
✗ ✓ Closed 30 Short

21 Phamduy et al. (2014) 2 Fixed ✗ ✓ Open 10 Short
22 Butail et al. (2014b) 2, 3 Fixed ✗ ✓ Open 5 Short
23 Butail et al. (2014a) 2 Fixed ✗ ✓ Open 5 Short
24 Polverino et al. (2013) 2 Fixed ✗ ✓ Open 5g Short

25
Polverino and Porfiri

(2013b)
2 Fixed ✗ ✓ Open 5 Short

26 Spinello et al. (2013) 2 Fixed ✗ ✓ Open 15 Short

27
Polverino and Porfiri

(2013a)
4 Fixed ✗ ✓ Open 5 Short

28 Butail et al. (2013) 4 Fixed ✗ ✓ Open 5 Short
29 Abaid et al. (2013) 2h Fixed ✗ ✓ Open ≈ 20 Short
30 Abaid et al. (2012a) 12 Fixed ✗ ✓ Open 5 Short
31 Polverino et al. (2012) 1, 10, 11 Fixed ✗ ✓ Open 40i Short
32 Faria et al. (2010) 2, 11 Fixed ✗ ✓ Open ≈ 120 minj Short, Long

aThe robots follow a biomimetic model that is periodically interrupted and exchanged for a specific modulation
strategy.

bThe model is discrete, and simulations are conducted with respect to kicks that amount to ≈ 10 h of data.
cThe evaluation does not include long-term timescale observables, but these observables are employed for the

same model in Chapter 4.
dThe robots act once every 15 min or 20 min depending on the experiment.
eAn open-loop motion is triggered by a closed-loop detection procedure.
fInitial acclimatization period of 20 min with caffeine concentration. 10 min acclimatization and 10 min

experimentation (recorded segment) in another tank.
gThere is a 62 min long acclimatization period pertinent to the experiments.
hThere is also an external fright stimulus.
iThe authors state that experiments are partitioned in 8 trials of 5 min.
jThe robot operates only at 5, 30, 60, and 120 min intervals to perform a short, predefined, motion.

12



and biomimetic models based on the fidelity they demonstrate. To elaborate, a reactive model

might indeed function in a closed-loop, displaying simplified behaviors of the fish group (for

instance, following the group’s centroid Landgraf et al. (2016), etc.), while a biomimetic model

seeks to replicate fish decision-making with a high fidelity to the actual system. Regardless of

the interaction loop (open or closed), collective dynamics in natural systems unfold across

multiple timescales Ioannou and Laskowski (2023), the source of two pivotal challenges: 1)

a necessity for systems to be validated across both short- and long-term timescales, and 2)

determining the extent to which our task needs to be evaluated at the distant end of the

long-term timescale.

However, regarding long-term timescale experiments, Table 1.1 reveals that from 2010 to

2023, only few researchers have explored and investigated social interactions in extended

timescales, and even fewer have validated hypotheses in both simulation and reality. For

instance, within the context of fish social interactions, only the authors in Calovi et al. (2018)

have conducted prolonged simulations of their social interaction model, enabling the study of

emergent long-term dynamics, but have only done so in later research on human interactions

Jayles et al. (2020). In terms of real-world experiments, whereas we observe significant strides

in implementing biomimetic models Cazenille et al. (2017); Landgraf et al. (2014, 2016), these

studies also rely exclusively on instantaneous metrics. Nevertheless, a notable paradigm shift

is observed for Cazenille et al. (2017), whose authors conducted the only study, to this date

(late 2023), that offers insights into the social dynamics of fish in both simulated and real

environments.

The absence of temporal assessments in the existing state-of-the-art necessitates a critical

definition of the temporal horizon for current and future studies. Indeed, establishing this

is a non-trivial task, contingent upon several factors including the animal’s characteristics

(size, housing configuration, etc.), the behavior(s) scientists aim to study, and the scale of the

collective group. Nonetheless, establishing a lower bound serves as a more accessible starting

point. For example, fresh-water fish species in the wild exhibit high assemblage variability even

within short time periods Czeglédi et al. (2022, 2016); Olin and Malinen (2003), at small enough

timescales of even mere hours. Whereas this may simply be the case of sampling bias during

short period experiments, it still suggests a need for relatively long within-day experiments

and multiple replicates. This also underscores that the conventional experimentation times,

as listed in Table 1.1, may fall short of thoroughly observing the full collective dynamics of even

relatively small groups of fish. Furthermore, the typical total number of replicates conducted

in the studies listed in Table 1.1, usually translates to a cumulative experimentation time

capped at approximately 4 hours. In contrast, more recent modeling approaches suggest

that a substantial volume of social interaction data (potentially exceeding 10 hours) might

be requisite to assure minimized per replicate noise Calovi et al. (2018). Therefore, future

research on biohybrid interactions, particularly those aiming to replicate authentic social

interactions should, at a minimum, establish a lower limit of 60 min, as well as, a significantly

higher cumulative experimentation time (e.g., greater than 8-10 h).
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Next, identifying an upper bound proves somewhat less straightforward than determining

a lower one. Guided by insights from Ioannou and Laskowski (2023), we might consider

temporal timescales extending from the juvenile stage of fish through to adulthood, even

within the realm of social interactions, acknowledging that the social behavior of fish indeed

varies with age. This not only demands considerably extensive and intricate experimental

plans, but also presupposes a more nuanced understanding of collective dynamics at shorter

timescales before attempting to observe social behavior evolution across different age groups.

This complexity often motivates the concentration of behavioral studies on adult fish, as evi-

denced by the majority of research endeavors listed in Table 1.1. Consequently, in behavioral

studies focused on a single age group, one might assume that a few hours under a consistent

experimental configuration would be adequate. Nonetheless, even within a single day, the

circadian rhythm of fish can influence their behavior, for instance, in the periods shortly before

or after feeding or during shifts in light intensity, and must be taken into account Boujard and

Leatherland (1992). Thus, even within laboratory environments, we must carefully schedule

experiments to avoid overlapping with feeding times or the periods early and late in the day

(sunrise/sunset phases), typically resulting in a further constricted experimental window of

6-8 h. This could empirically be established as the upper bound for social interaction studies

of this nature.

However, the experimental window for biohybrid systems is further constrained by the op-

erational autonomy of existing robotic systems. While numerous experiments, outlined in

Table 1.1, typically span 5-15 min, and even fewer extend between 20 and 30 min, the critical

need for experiments on longer timescales has been somewhat overlooked and underplayed.

Additionally, current biohybrid systems often lack the capability to operate over extended

durations (elaborated further in Chapter 5), for instance, due to reliance on batteries Landgraf

et al. (2016) or power delivery systems prone to high failure rates Bonnet et al. (2014), thereby

substantially constraining the upper bound of experimental time. Furthermore, replicating

realistic levels of social interactions using robotic systems not only necessitates considerable

technological advancements to facilitate lengthier experiments, but also demands enhanced

fidelity in fish-like motion, as previously discussed.

The task at hand, that is, to understand and potentially minimize the biomimicry gap poses a

notable challenge, advocating for the development of high-fidelity biohybrid platforms that

can conceal and mitigate artificially-induced bias, to genuinely observe fish responses on

individual and collective scales, as well as, across both short and long timescales. Subsequent

chapters detail our approach, which encompasses extended experiments (relative to the cur-

rent state-of-the-art presented in Table 1.1), enabled by robotic systems with unprecedented

agility and autonomy, and commanded by models closely mirroring the spontaneous social

dynamics evident in fish schools.
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2 Thesis outline

2.1 Thesis objectives

Deciphering collective behavior through the use of robotic devices has rapidly progressed since

the early 2000s. However, as discussed in previous sections, there exist research directions

that are yet to be explored and research questions (RQ) that remain unanswered. The main

research we sought to answer is:

• How can we bridge the biomimicry gap with the purpose of constructing cohesive mixed

(i.e., biohybrid) groups of animals and robots that are indistinguishable from fish-only

groups?

Naturally, this research question requires work spanning the domain of collective behavior

and complex system modelling, and that of real-time robot design, control, and deployment.

Ergo, our original research question encompasses the following sub-questions:

(RQ1) How can we explore the bidirectionality of fish-robot interactions to measure how they

facilitate the integration of a robot into fish groups?

(RQ2) How can we design and assess bidirectional models of high fidelity (w.r.t., to observations

from the spontaneous animal interactions)?

(RQ3) Which key elements make for robotic devices that can closely mimic fish motion and

dynamics to subsequently transfer such models “back to reality”?

(RQ4) How can we measure, and what is the gap between real experiments and simulations

with such models?
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2.2 Summary of contributions and thesis organization

2.2.1 Part II

This part of the thesis is dedicated to modelling strategies, as well as, the metrics that validate

a model’s fidelity with respect to spontaneous fish movements.

Chapter 3.

We study the bidirectionality of interactions between a robot and groups of fish. In this chapter,

we establish a baseline understanding into how biomimetic models can lead to increased levels

of acceptance in biohybrid groups. This research question is primarily aimed at establishing a

baseline about the social interaction gap (depicted in Fig. 1.1).

Chapter 4.

We investigate how a deep learning algorithm can achieve state-of-the-art level predictions

for social interactions. We expand on how models of behavior (deep learning or otherwise)

should be stringently assessed in both short and long timescales and demonstrate that while

models may predict well in the short term, this does not guarantee good predictions in the

long term. We also conduct an ablation study to expand this methodology to multiple fish

species. Following the work in Chapter 3, this chapter aims at reducing the effect of the social

interaction model on the biomimicry gap (see also Fig. 1.1).

2.2.2 Part III

This part delves into the state-of-the-art laboratory equipment that enables us to perform

biohybrid studies. We also present the equipment that allows us to bring the models from Part

II to be transferred back to real-life in Chapters 6 and 7.

Chapter 5.

We redesign the modern small animal experimentation framework and introduce a novel

experimental setup and robot for robot-animal interaction studies, which is aimed at reducing

the physical gap observed when transferring models into real systems (see Fig. 1.1). Within this

chapter, we also demonstrate how biomimetic characteristics are key to establishing strong

communication cues with the animals (fish), thus further reducing the biomimicry gap owed

to this component (depicted in Fig. 1.1).
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2.2.3 Part IV

In this part, we assess the transferability of social interaction models into real-life through

biohybrid groups. That is, we traverse the steps of Fig. 1.1, and attempt to quantify the

biomimicry gap, also shedding some light into which of the sub-gaps contributes the biggest

deviation from simulated and real-life fish groups.

Chapter 6.

We conduct experiments with a deep learning model for social interactions by commanding a

robot interacting with live fish. We investigate the consistency of the robotic system and social

interaction model across many hours of experiments. Finally, we perform a series of analyses

to measure the “biomimicry gap” between the simulated model and its physical interpretation

through the robot. We focus in quantifying the biomimicry gap observed in groups of two

individuals.

Chapter 7.

We conduct experiments with an analytical model for social interactions by commanding

a robot interacting with live fish. Yet again, we perform a series of analyses to measure the

“biomimicry gap”, but this time we extend the experimentation to varying group sizes of fish.

This not only further substantiates our methodology to quantify the gap, but also demon-

strates how the gap is affected when changing the group size (and in turn, the complexity of

dynamics).

2.2.4 Part V

Chapter 8.

We discuss on the sum of our findings, take note of the limitations of our and the domain’s

current work, and expand on the directions of future work.
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Part IIHow to design models that encode animal
behavior
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3 Establishing a baseline of fish-robot
dynamics

This section’s content is adapted from the following article:

• Papaspyros, V., Bonnet, F., Collignon, B. and Mondada, F., 2019. Bidirectional in-

teractions facilitate the integration of a robot into a shoal of zebrafish Danio rerio.

PloS one, 14(8), p.e0220559. https://doi.org/10.1371/journal.pone.0220559 (reuse

authorised under the CC 4.0 licence) – Papaspyros et al. (2019)

– Vaios Papaspyros’s contribution: Data curation, formal analysis, investigation,

methodology, software, visualization, writing – original draft, writing – review

& editing.

• The article’s work was funded by the Swiss National Science Foundation project

“Self-Adaptive Mixed Societies of Animals and Robots” (Grant No. 175731) and

partially funded by the EU-ICT project ASSISIbf (Grant No. 601074).

• Ethics: The authorization for the experiments conducted in this research work was

approved by the state ethical board of the Department of Consumer and Veterinary

Affairs of the Canton de Vaud (SCAV) of Switzerland (authorization № 2778).

3.1 Introduction

To well understand the full process that allows for creating a biohybrid society, we began by

running an experiment involving all components of the system and investigated the various

elements generating the biomimicry gap. We explored various types of models, that is, we

created models aimed at producing different interactions and used a state-of-the-art robot

and framework. The results are the baseline of this thesis and allow for starting the exploration

on how to close the several levels of gaps to eventually generate a cohesive biohybrid society,

where the robot is well integrated within it. Whereas thus far, it has been experimentally

shown that fish decision-making processes can be manipulated with the use of artificial lures

Faria et al. (2010); Swain et al. (2011); Landgraf et al. (2013); Bonnet et al. (2014); Landgraf et al.

(2016); Ruberto et al. (2016); Bartolini et al. (2016); Bonnet et al. (2018); Porfiri (2018); Romano

and Stefanini (2021, 2022b,a), there is limited insight into how the models commanding

21

https://doi.org/10.1371/journal.pone.0220559


the robot affect its successful integration to the fish group. Indeed, the degree to which a

robot needs to exhibit social skills is not validated experimentally. That is, to investigate how

interactive the robot needs to be, with respect to fish decisions, to strongly engage with and

integrate into fish groups. The interactivity can be, in turn, interpreted as the robot’s ability to

communicate bidirectionally, and alternate between following passively and actively taking

decisions. In many ways, this provides insight into the principles that should underlie social

interaction models capable of bridging part of the biomimicry gap (social interaction gap, see

Fig. 1.1). Currently, there are two main ways to command the robot.

A first strategy that addresses relies on open-loop models Phamduy et al. (2014); Polverino

et al. (2013); Polverino and Porfiri (2013b); Abaid et al. (2012a); Butail et al. (2014a); Ladu et al.

(2015a,b); Polverino et al. (2012); Spinello et al. (2013); Polverino and Porfiri (2013a); Ruberto

et al. (2016); Bartolini et al. (2016); Kruusmaa et al. (2016); Abaid et al. (2013); Butail et al.

(2013, 2014b) that do not actively react to or take into account the actions of the animals. In

this case, it may be difficult to discern if the focal animal is reacting to external stimuli or to

another agent considered as a shoal member. Therefore, they may often fail to provide a clear

insight into the internal decision-making process and the natural information flow between

the shoal members. A second strategy is based on closed-loop models Cazenille et al. (2018c);

Faria et al. (2010); Swain et al. (2011); Kopman et al. (2013); Landgraf et al. (2013, 2016); Porfiri

et al. (2019); Kim et al. (2018) attempting to achieve a conspecific status among individuals

by engaging in mutual information exchange and could reveal the intrinsic decision-making

mechanism of individuals.

Therefore, the following research question arises: can we discriminate between different

behavioral rules by implementing them in a robot interacting with a shoal of zebrafish? And

more importantly, how bidirectional do closed-loop models need to be in order to create

harmonious biohybrid groups?

To investigate the extent to which the bidirectionality of models affect the collective behavior

of fish, we devised the following experiment: (1) we make use of a circular corridor setup,

a commonly used experimental arena for numerous studies on collective behavior Bonnet

et al. (2018); Crosato et al. (2018); Abaid and Porfiri (2010); Lecheval et al. (2018); (2) we de-

signed three behavioral models exhibiting three different dynamics, namely, a purely reactive

model that explicitly follows the fish, an imposing direction model constantly attempting

to dictate the collective swimming direction decision and a biomimetic model mimicking

the decisions of zebrafish in a circular corridor environment; (3) we performed experiments

with zebrafish-only and mixed groups of robots and zebrafish; (4) we analyzed the results

using three inherently different approaches. We show that our robotic system was capable of

participating in the collective decision-making and blending in the shoal without significantly

perturbing its interaction dynamics. This, in turn, led to an improved integration state where

the robot was not only accepted by the shoal, but it was also contributing to the collective

decision and acting as a leader for the majority of the time. Thus, bidirectional interactions

proved to be the key to forming cohesive biohybrid groups.
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3.2 Background

3.2.1 Animals

For the experiments, 60 wild-type zebrafish Danio rerio with short fins were used (AB strain).

The zebrafish were acquired from a pet shop and subsequently stored in a 60 L aquarium.

The average length of the zebrafish used was approximately 4 cm. Water in the housing

aquarium was kept at a temperature of 26 C◦. The fish were fed once per day with commercial

food between 16:00 and 18:00. Furthermore, the aquarium was enriched with plastic plants,

Cladophora, gravel, rocks, and aquatic snails.

3.2.2 Experimental setup

The experimental arena pictured in Fig. 3.1 consists of a 10 cm wide circular corridor (from

two circular walls: 1) an outer of 58 cm diameter, and 2) an inner of 38 cm diameter) placed

in a 100× 100× 25 cm3 glass tank, as in Bonnet et al. (2018). This setup presented the

zebrafish with a binary choice for movement, that is, they could either move clockwise (CW)

or counter-clockwise (CCW). In fact, this is a common setup for behavioral studies Abaid and

Porfiri (2010); Jiang et al. (2017); Bonnet et al. (2018); Lecheval et al. (2018) because it allows for

setting aside spatial complexities. Instead, this setup provides a symmetric arena that enables

researchers to analyze multiple instances of the same behavioral traits (e.g., U-turns Crosato

et al. (2018) where the fish will perform a direction change greater than or equal to 180°) and

quantify their consistency across different types of behavioral models.

The bottom part of the experimental tank was covered with a Teflon plate to allow for smoother

motion of the robotic fish lure (see Sec. 3.2.3) and avoid any stimuli produced by reflections or

by the mobile robot moving below the setup. Furthermore, the setup was confined behind

white sheets to isolate the fish from the rest of the room, while also maintaining a consis-

tent lighting environment. A uniform luminosity for the room was provided by four 110- W

fluorescent lamps placed at each of the four sides of the tank.

3.2.3 Robotic system for closed-loop zebrafish-robot interactions

For the zebrafish-robot interaction experiments, we used one miniature wheeled robot, the

FishBot Bonnet et al. (2014, 2012) (see Fig. 3.2B). The robot was placed between two conductive

plates located below the experimental setup (see Fig. 3.1) and was powered using brushes

that were constantly in contact with them. This configuration allowed the robot to operate

for long periods of time and powered the motors that were, in turn, capable of achieving the

necessary speed and acceleration in order to quickly adapt to the rapid spatial displacements

of zebrafish. The FishBot was additionally equipped with a Bluetooth chip that allowed it to

wirelessly communicate with a computer that was providing the necessary motor commands.
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Figure 3.1: Experimental setup. (left) Top view depicting the setup’s dimensions, i.e., inner
ring radius of 19 cm and outer of 29 cm. The dotted circles indicate the positions of zebrafish
while the full circle indicates the position of the biomimetic lure, and (right) breakdown view
of the setup depicting individual components that are necessary for closed-loop interaction.
The mobile robot (FishBot) is moving below the tank and drives a biomimetic lure inside the
tank through a magnetic coupling. The top and bottom mounted cameras capture frames
at a rate of 15 Hz and transmit the information to a computer. The computer will then fuse
the information to determine the positions and heading of fish and robot(s) alike. In gray, we
denote the conductive plates that are used to power the FishBot.

A soft biomimetic lure of approximately 4.5 cm length (see Fig. 3.2A) was selected to physically

interact with the animals. This lure was designed to mimic the morphology of fish and

passively beat its tail during its underwater motion. As described in Bonnet et al. (2014) this

specific lure achieved strong acceptance in groups of zebrafish. Subsequently, it was mounted

on a carbon stick at a height of 3 cm to ensure that it was visible by neighboring fish. An

iron plate located at the bottom of this stick carried two magnets that allowed for a magnetic

coupling (similarly to Bonnet et al. (2014); Faria et al. (2010); Swain et al. (2011); Landgraf et al.

(2013, 2016), see Fig. 3.2D) to the robot located below the setup.

3.2.4 Control and tracking software

In order to close the interaction loop between the fish and the robot, we made use of the

Control and tracking for multi-agent animal-robots groups (CATS) framework Bonnet et al.

(2017). CATS continuously monitored the positions of the robot and the animals through

image frames obtained by the two cameras located above and below the setup (see Fig. 3.1).

In particular, the overhead camera was set to simultaneously stream video in two resolutions;

(1) a 1040×1040 stream that was recorded and used for the analysis of the experiment, and (2)

a 512×512 stream that was used in CATS for the detection of the fish and/or lure in real-time.

The image frames from the camera located at the bottom of the setup were directly fed to

CATS for processing.
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Figure 3.2: FishBot and biomimetic lure. (A) The biomimetic lure (approximately 4.5 cm
long) fixed on a white carbon stick, (B) the FishBot on its side (approximately 5.5 cm long),
(C) relative size of the lure, FishBot and FishBot cover (from left to right), and (D) assembled
robotic system; the white cover protects critical parts of the FishBot, and the lure magnetically
coupled to the FishBot.

More specifically, the agents’ positions were determined by feeding the image frames of

the overhead camera to a corner detection method Shi et al. (1994) implemented using the

OpenCV Bradski (2000) library; while the camera located below the setup was used to localize

the mobile robot, which was equipped with 6 light-emitting diodes of blue color, using a blob

detector. Subsequently, CATS fused information from both cameras to distinguish the artificial

lure from the living individuals. We note that, both cameras operated at a rate of 15 frames per

second.

Once CATS had finished determining the positions, the resulting spatial information (2D

position and heading direction) became available in the control layer of CATS. This layer is

responsible for the higher level control procedure of the robot (i.e., deciding which is the

next desired state for the robot). The behavioral models presented in the following section

were implemented within the control layer of CATS and output higher level commands such

as desired velocity, position, and orientation. Those commands were then fed to a micro-

controller unit where a proportional-integral-derivative controller (PID) translated the higher

level commands to motor commands, similarly to Bonnet et al. (2012).

Additionally, to the online control procedure that was devised for the fish-robot interaction

experiments, the videos of each experiment underwent post-processing using the idTracker

software Pérez-Escudero et al. (2014) to extract the trajectories of each agent for each experi-
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ment. This time-consuming and computationally expensive process is capable of recreating

the trajectories of each identified agent (6 agents for 30 minute long experiments) with on

average 95% accuracy, correcting any mistakes made in trajectories due to crossings that

occurred naturally throughout the experiment.

3.3 Experimental procedure

For the duration of the experiments, we maintained a constant height of 6 cm of water in the

setup. Under these conditions, the fish were not additionally stressed, and their movement

was on average constrained to a specific height, thus, reducing spatial complexities on the

z-axis. Prior to placing the zebrafish in the setup, the water temperature was brought to 26 C◦.

Thereafter, a shoal of zebrafish was randomly caught from the rearing tanks with a fishnet

and placed in the experimental setup. After a 5-minute acclimatization period during which

the FishBot remained stationary, we started and recorded the experiment for 30 minutes. No

individual was used twice in the same day.

We conducted 10 experiments with shoals of six zebrafish and no FishBot to observe the

baseline behavior of the fish (hereby referred to as “fish-only” experiments) when no artificial

stimuli were provided. Then we conducted a total of 3×10 experiments with five zebrafish and

one FishBot with three different behavioral models (described in the following section) for the

FishBot. Each model was tested in random order to account for the fish getting accustomed to

a specific behavior exhibited by the robot.

3.4 Behavioral models

Follower Model (FM). We designed a closed-loop following model, the “Follower Model”,

where the robot was simply instructed to head towards the point in space that was on average

most dense in terms of fish occupancy (i.e., the robot is given an explicit Cartesian goal

position that corresponds to this point). FM is a purely reactive, passive model in the sense

that it does not actively model or embed interaction in its design and instead reacts only to

the position of the fish by always following it.

Despotic Model (DM). We also designed an open-loop model, which is an adaptation of the

approach described in Bonnet et al. (2018) that uses only one robot which was instructed

to perform a CW movement throughout the experiment, that is, the robot does take spatial

information into account. Contrary to FM, this model is always attempting to impose the

collective movement direction decision, thus we call it “Despotic Model”.

Feedback-Initiative Model (FIM). Finally, we implemented a closed-loop parametric be-

havioral model similar to Abaid and Porfiri (2010). In Abaid and Porfiri (2010), the authors
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described a model that operates in a one-dimensional decision space (i.e., CW or CCW move-

ment). First, the circular corridor arena is divided into 40 equal cells of 9-degree arc length

each. Then, the focal individual will take a directional decision according to the perceived

heading directions of its neighbors and a probability to “disobey” this collective decision. More

specifically, the next heading direction of an individual is given by the following expression:

h(fish j , t +1) =
h(fish j , t )+

NP∑
i=0, i ̸= j

h(fishi , t )

∣∣∣h(fish j , t )+
NP∑

i=0, i ̸= j
h(fishi , t )

∣∣∣ , (3.1)

where h(fish j , t) ∈ {−1,1} the heading direction at time t and NP the subset of the set of all

individuals, NA , that are in the perceptual range of the focal individual. The perceptual range

is defined as the set F ⊆ NA of the individuals that are within pr cells in the forward direction

of the focal individual. At every timestep and after computing the new heading direction, the

focal individual is given a probability 1−Pobey to choose the opposite direction to the one

computed through the above interaction metric. We refer to this opposition to the collective

decision of swimming direction as the initiative of the focal individual.

In order to investigate the degree to which our robot can influence the directional decisions

taken by the group, we propose a variant of this model where the focal individual attempts

to closely mimic zebrafish interaction in similar arenas Abaid and Porfiri (2010); Jiang et al.

(2017); Bonnet et al. (2018) while at the same time it intelligently embeds initiative in its

decision-making according to the feedback perceived by the neighboring social companions.

Therefore, we call this model “Feedback-Initiative Model”. Similarly to Abaid and Porfiri (2010),

we discretized the circular corridor in cells and controlled the robot’s direction of movement

in the one-dimensional space of CW or CCW movement. More specifically, we separated the

setup in 40 cells, each of which corresponds to approximately 4 cm of arc length, the average

length of a single zebrafish. Essentially, increasing the number of cells, i.e., decreasing the arc

length per cell, would allow for more detailed separation of the fish in terms of cell occupancy,

but would be subject to the noise produced by CATS (see Sec. 3.2.4). This discretization process

reduced the locomotion control dimensions to 1D space, and the model need only to output a

simple instruction at every timestep: move one cell CW or CCW. The model made a prediction

about the best candidate direction at time t+1, every 0.25 seconds (i.e., the controller timestep

is equal to 0.25 seconds). In the context of this chapter, the best candidate swimming direction

was considered to be the one that has the highest probability to elicit a collective U-turn (i.e.,

a switch of the swimming direction for the majority of individuals).

Our source of inspiration for those interactions was derived by the innate behavior of zebrafish

in similar setups and can be summarized in the following two key features for a focal individual:
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1) an innate tendency to align with the shoal, and 2) a tendency to perform a U-turn when

few or no agents are in the field of view of the focal, initiating a direction change that might

propagate throughout the shoal Bumann and Krause (1993); Collignon et al. (2017); Lecheval

et al. (2018); Jiang et al. (2017). The former is formalized as a weighted sum of the direction of

a focal individual’s neighbors and is defined as the dot product of the heading (-1 or 1) and an

exponential function that can rapidly increase or decrease the impact of a neighbor according

to its position, as follows:

h(fish j , t +1) =
NA∑

i=0, i ̸= j
h(fishi , t ) ·eα·p(fishi , t ) (3.2)

where p(fish j , t) ∈ [0, |NC |) ⊆ Z the position of the fish j at time t , NC the set of cells that

correspond to the discretization process and a ∈R a regulatory parameter to set the slope.

To allow for more flexibility in FIM we used two separate parameters α f and αb for fish that

are in leading and following positions respectively (see Algo. 1) and defined the sets F and B of

fish in the forward and backward positions respectively. Intuitively, the difference between the

parameters a f and ab can express biologically observed behaviors such as that fish within the

immediate field of view of a focal individual have more influence on it Bumann and Krause

(1993); Collignon et al. (2017); Crosato et al. (2018); Lecheval et al. (2018), while the followers

can still be perceived due to the water flow Dijkgraaf (1963) and might have less, but significant

influence. The parameters α f and αb were manually tuned for this specific configuration and

are given the values -0.2 and -0.5, respectively. Despite the sum’s ability (see Eq. 3.2) to phase

out the influence of perceived agents over distance, we explicitly limited the robot’s knowledge

within 15 cells (p f = 7 cells forward, pb = 7 cells backwards and current cell occupied; or 135◦

of perceptual range for the choice of 40 cells). Indeed, for very low values of α (see Eq. 3.2), a

conspecific could have been perceived in front and behind the focal fish due to the circular

design of the setup. The limits were empirically selected to emulate the effect that the two

circular walls have on the ability of individuals to see neighbors due to the setup’s curvature.

Finally, the focal individual’s tendency to perform a U-turn and even disobey the collective

decision of the shoal concerning the direction of movement was modeled as a probability

Pobe y . The probability Pobe y is dependent on the amount of fish in the forward direction to

account for an individual’s intuition to not wander too far from the fish school or to simply

initiate a random direction change. More specifically, this probability is regulated by two

constant parameters (see Algo. 1): 1) ainfluence = 4, which allows one to increase or decrease

the amount of influence of forward individuals concerning the obedience, 2) a constant upper

bound τ= 0.95, value which we estimated through past fish-only experiments. A subset of the

parameter space that could be used in different scenarios include:

• α f =αb =− inf, τ= 1 ⇒ Pobey = 1, will produce purely following behavior.
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• α f =αb = τ= 0 ⇒ Pobey = 0, will produce a behavior that always contradicts the collec-

tive.

• ainfluence = 0, will retain a constant and neighbor-independent Pobe y .

• Setting the perceptual range to zero (i.e., F i sh′ =;) and τ= 1, will produce an imposing

direction behavior (the initial direction will be followed throughout the experiment).

We designed this model to be parametric and include stochastic elements of decision-making.

The parametric design allows for modification of the model to comply with different scenarios

of interaction or species of fish (e.g., the robot could be instructed to emphasize on following

by changing a few parameters), either prior to deployment or during an experiment, while

the stochasticity serves as a way to promote initiative in the model. In Abaid and Porfiri

(2010) the authors described a model where the focal individual’s next direction will be with

high certainty decided by the average swimming direction of the neighboring individuals.

Conversely, here, the goal was to elicit a different effect from the fish and influence them to

change their swimming direction.

Figure 3.3: Closed-loop robot control. For each system cycle: 1) a high resolution image frame
is captured by the overhead camera, 2) the frame sent to a high performance computer, where
it is processed to determine the positions, velocities, and headings of each individual, 3) the
extracted positions are discretized and each individual is placed in its corresponding cell, and
4) the discretized positions and headings of each individual are forwarded to the FIM, which
in turn, weighs the heading direction of the neighboring individuals and produces a desired
position (red star) for the next timestep. After a few timesteps, an approximation of the target
position will be achieved (green star) and the process is repeated.
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Algorithm 1 Pseudocode summarizing the Feedback-Initiative model (FIM). Let two sets F
and B contain the fish in forward and backward cells. Then, the decision of a focal individual
in time t +1 will be determined by the sum of two exponential functions weighted by a f and
ab for the forward and backward fish, respectively. Finally, the focal individual reverses its
predicted direction with probability Pobey, determined according to a lower bound τ and an
obedience coefficient ainfluence.

procedure STIMULATE(Fish′)
Split Fish′ to:

C = {fish in focal cell} ⊆ Fish′

F = {fish in p f forward cells} ⊆ Fish′

B = {fish in pb backward cells} ⊆ Fish′

s =
|F |∑

i=0, fishi∈F
h(fishi , t ) ·eα f p(fishi , t ) +

|C∪B |∑
j=0, fish j∈C∪B

h(fish j , t ) ·eαb ·p(fish j , t )

h′ =
{

s , s ̸= 0
h(focal, t ) , other wi se

Pobey =
{
τ∗

(
1− (|F ∪C |+1)−αinfluence

)
, Fish′ ̸= ;

τ , other wi se

with probability 1−Pobey reverse h′

return h′

procedure MOVE(h(focal, t +1))

p(focal, t +1) = p(focal, t )+h(focal, t +1)

procedure FEEDBACKINITIATIVEMODEL

∀ f i sh ∈ Fish, where |Fish| = |NA| :
Initialize position ∈ [0, |NC |)
Initialize heading ∈ {CW =−1, CCW = 1}

while stopping criteria not met do
∀ f i sh ∈ Fish :

Fish′ = {fish within the perceptual range of the focal fish} ⊆ Fish∪;
h(focal, t +1) = STIMULATE(Fish′)
MOVE(h(focal, t +1))

3.5 Data treatment

3.5.1 Data filtering

The 15 frames per second capture rate made it possible to detect even minor fluctuations in

the displacement of an individual. On one hand, this rate is useful for tracking fast moving

objects or animals, but, in the case of zebrafish that move with an average speed below 20-
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25 cm/second in this setup, it might induce noise due to temporary loss of the position or

the image processing algorithm reporting minor differences in the position of an individual

at every timestep. Therefore, throughout the following experiments we filtered the data

reported in two ways: (1) 3 frames (0.2 seconds of interaction) were averaged to calculate the

centroidal position, heading, or velocity of each agent and (2) the behavioral models presented

in following sections discretized the positions in bins, the number of which was selected to

further filter the measurements where necessary.

3.5.2 Data analysis

In this section, we introduce a set of metrics based on spatial, directional and information

theoretic measures, as well as the statistical methods followed to evaluate and compare the

behavioral models. We note that, all the raw trajectory data are available at https://doi.org/10.

5281/zenodo.6783303.

Average angular distance

In collective behavior, denser groups often suggest a more cohesive, aligned and organized

movement Buhl et al. (2006); Jiang et al. (2017), thus, density-based measures have been

widely used for inferring the interaction rules within a group of animals Lukeman et al. (2010);

Hemelrijk and Hildenbrandt (2008). Here, we computed a similar measure, by calculating the

average angular distance between all pairs of agents. The angular distance between two fish

is defined by the angle θi j (t ) at time t , where i , j are two individuals and θi j (t ) ∈ [0,π] is the

angle between i and j with respect to the origin point of the setup (center of both rings). We

note that, θi j (t ) refers to the acute angle between the two individuals (i.e., we only evaluate

the angular proximity). The average angular distance was computed as the average of all the

pairwise angular distances and is summarized in the following expression:

averageAngularDistance(t ) = 1

NA(NA −1)

NA∑
i=1

NA∑
j=1, i ̸= j

θi j (t ) (3.3)

Collective U-turns

Although the average angular distance provides useful topological information concerning

the closeness of the group and thus its cohesive and synchronized movement, it would be

incomplete without a complementary metric concerning the interactions within it. Here, we

captured these interactions in the number of collective direction changes performed (e.g.,

from CW to CCW or vice versa), which in this binary choice scenario we defined as collective

U-turns. The U-turn in schools of fish has attracted attention Crosato et al. (2018); Lecheval

et al. (2018); Jiang et al. (2017) as it provides insight on how information is propagated among
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individuals. Consequently, the effect that each behavioral model has on the occurrence of

collective U-turns is representative of its ability to mimic, modulate or perturb the collective

decision-making.

To calculate the number of collective U-turn events, we first defined the polarization of a

zebrafish shoal in this context, as follows:

pol(t ) = 1

NA

NA∑
i=0

h(fishi , t ) (3.4)

A collective U-turn occurs when the polarization of the shoal switches from one direction to

another (pol(t) ·pol(t −1) < 0; i.e., we did not take into account transitions from CW/CCW

to 0). Complementary figures concerning the duration of consecutive movement before a

collective U-turn occurs are available in Appendix A section (Figs. A.1, A.2, A.3, A.4, A.5, A.6,

A.7, A.8).

Transfer entropy

To complete the aforementioned metrics, we also employed an information theoretic mea-

sure based on the Shannon entropy Shannon and Weaver (1949), called transfer entropy

(TE) Schreiber (2000); Vicente et al. (2011). Recent studies in collective behavior Crosato

et al. (2018); Butail et al. (2014a); Porfiri (2018); Mwaffo et al. (2017); Porfiri and Marín (2017);

Ruberto et al. (2018) have been increasingly using TE to provide insight on the mutual interac-

tions of individuals over time or with time delays Wibral et al. (2013). Here, we adopted the

notation of TE with embedded delay, as defined in Takens (1981). More specifically, given two

time-series X and Y , TE measures the amount of information provided by the source X about

the target Y and is defined as follows:

TX→Y =∑
p(yn+1, y (k)

n , x(l )
n ) log

p(yn+1|y (k)
n , x(l )

n )

p(yn+1|x(k)
n )

(3.5)

where l and k are the history lengths for the two time-series:

x(l )
n =

{
xn , xn−τk , xn−2τk , . . . , xn−(k−1)·τk

}
(3.6)

y (l )
n =

{
yn , yn−τl , yn−2τl , . . . , yn−(l−1)·τl

}
(3.7)

and τk , τl the time delay for the source and destination signal, respectively.
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In the context of this chapter, we defined the time-series X , Y to be the heading direction of

two separate individuals over time. More specifically, we represented the direction of each

agent in a discrete signal with values -1 (CW) or 1 (CCW), by sampling the direction of each

individual every 0.2 seconds. For this computation, a more detailed trajectory is required,

and thus we used a discretization with a cell count of NC = 160 (i.e., 1 cm per cell; for this

procedure, we used the positions extracted from idTracker). In case an individual had not

moved during this period, we assumed that its heading has remained the same as in the

previous timestep. Furthermore, considering that the influence of one individual to another

will be delayed in time, we shifted the source and target time-series by a factor τk and τl ,

respectively. The intuition behind this measure is that given the direction Yn of an individual,

we gain information about the next direction Xn of another individual. It is rather obvious

that the direction change of a single individual will not propagate instantly and, thus, there

exist the parameters τk and τl that express this delay.

However, choosing the latter parameters is a non-trivial task, as the values need to be meaning-

ful with respect to the experiment in question and at the same time expressive enough to allow

for observing potential differences in the fish-robot experiments. To that end, we adopted

the same technique of the authors in Crosato et al. (2018), that is, we run a simple search

algorithm to find the parameters that maximize the average TE for the fish-only experiments.

To reduce the size of the search space, we only considered values of k ∈ [1,15] and τk ∈ [1,15]

(i.e., up to three seconds of signal length and delay). We explicitly set the target delay to τl = 1

and the length to l = 1 (i.e., 0.2 seconds) as we are interested in the effects of the source signal.

We note that, the robot-fish experiments were considered for this optimization step to account

for the bias that was introduced due to the use of the lure and the models.

Subsequently, we calculated all the pairwise TE values and computed the mean TE across

all individuals during one experiment. To do so, we used the JIDT Lizier (2014) framework

to calculate the TE with the optimized parameters k = 4 and τk = 1 (i.e., k = 4 corresponds

to 0.8 seconds of history and τk = 1 corresponds to a delay of 0.2 seconds). In fact, the time

of 0.8 seconds is found to be approximately equal to the average decision time of zebrafish

Escobedo et al. (2020), whereas a delay of 0.2 seconds is empirically found to correspond to

the reaction time of zebrafish Roberts et al. (2019). The optimized parameters are empirically

found to correspond to the time that is necessary for an individual to perform a U-turn and

fully propagate it to the shoal.

We computed two separate mean TE values: one for the outgoing and one for the incoming

amount of information exchanged. For each case, we sum the resulting TE for the trajectories

of all the fish-fish or fish-robot pairs. Intuitively, the metric expresses the average information

flow direction (incoming or outgoing) when the robot is used. For each behavioral model

and each of the outgoing and incoming cases, we computed three different quantities: (1) the

overall TE for all individuals (2) the TE related to the robot alone (outgoing and incoming) and

(3) the average TE of all fish (i.e., excluding the robot’s contribution).
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3.5.3 Statistical tests

To further validate the interpretation of the resulting data, we performed a Kruskal–Wallis

(KW) test followed by a post hoc analysis using Tukey’s honest significant difference (T-HSD),

for each measure presented in the following section. The Kruskal–Wallis is chosen due to the

fact that the variance of the data-sets in question differs depending on the experiment type.

3.6 Behavioral model assessment

3.6.1 Average angular distance

First, we compiled the average angular distance between the shoal members across the entire

observation period for each experiment of the four tested conditions (Fig. 3.4). For the fish-

only condition (i.e., where no artificial stimuli are present in the setup), we observed an

average angular distance of 35.04±12.62◦. Compared to this baseline measure, all models

showed a higher inter-individual angular distance (FM: 64.72±15.95◦, DM: 59.31±11.87◦,

FIM: 51.04± 10.68◦), with these distributions differing significantly from each other (KW

test, p < 0.0001, χ2 = 22.45). A more detailed comparison revealed that both the FM and

DM significantly differ from the fish-only (T-HSD post hoc test, p < 0.0001 and p < 0.001,

respectively) while the FIM differs significantly from the FM and DM (T-HSD post hoc test,

p ≈ 0.22 and p ≈ 0.53, respectively) but not from the fish-only distribution (T-HSD post hoc

test, p ≈ 0.072). Complementary statistics are available in Table A.1 of Appendix A. Thus,

while FIM still did not perform as well as the control experiments (16◦ ≈ 8 cm arc distance), its

ability to mimic the collective decision-making allowed the robot to maintain the cohesion of

the shoal with on average 14◦ better than FM and 9◦ better than DM. Moreover, the results

observed are consistent over time as shown in Fig. 3.4B depicting the average angular distance

for every minute of the experiment.

The mean performance and amount of variance in the FM model is indicative of its deficiency

when it with regard to its ability to be accepted and integrated with the shoal. Furthermore,

such result is in direct contradiction with FM’s explicit goal, which was to head towards the

densest point of the shoal and thus promote a more cohesive behavior, and could suggest that

its movement patterns were too aggressive to be accepted by the shoal and contribute to its

operation. DM, on the other hand, performed on average worse than the fish-only but exhibits

similar variance and seemed to perturb the shoaling behavior less. Finally, FIM was the most

consistent over time, which could be indicative of an overall better acceptance by the shoal.

3.6.2 Collective U-turns

The collective U-turns performed per minute (see Fig. 3.5). (1) fish-only had median of 13.05

turns and a mean of 12.38±3.71, (2) FM had median of 7.25 turns and a mean of 8.27±2.30,

(3) DM had median of 6.97 turns and a mean of 7.91±1.60 and (4) FIM had median of 12.38
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Figure 3.4: (A) Average angular distance in degrees over ten runs and (B) average angular
distance in 1-minute timesteps over all replicates. Annotations of the statistical significance
(Kruskal–Wallis test folowed by Tukey’s honest significant difference criterion post hoc analysis)
are marked with a dash or stars. The dash corresponds p > 0.05, a single star to p < 0.05, two
stars to p < 0.01, three stars to p < 0.001. and four stars to p < 0.0001.

turns and a mean of 11.91±2.77. These distributions differ significantly from each other (KW

test, p < 0.001 and χ2 = 16.63). An additional post hoc T-HSD analysis showed that: FM versus

fish-only had significantly different mean rank (p < 0.05); DM versus fish-only also showed

significantly different mean rank (p < 0.001); FIM versus fish-only showed no significant

difference (p > 0.99) but FIM versus FM (p < 0.05) and DM (p < 0.01) showed a significant

difference (a detailed table of the post hoc analysis is available in Table A.2 of Appendix A).

These results showed that FM’s and DM’s poor performance in terms of angular distance

translated in poor performance in terms of collective U-turns. While this was to be expected

for the DM that was instructing the robot to move CW, FM once again appeared to disrupt the

collective dynamics of the shoal. More specifically, DM’s low number of U-turns demonstrated

its ability to influence the collective decision-making rather than to participate in it (the

shoal moves CW ≈ 65% of the time, similar to Bonnet et al. (2018)). Conversely, there was no

significant difference between FIM and the fish-only experiments regarding the collective

U-turns. This indicates that FIM had strong biomimetic capabilities due to its design, that

explicitly embedded the ability to follow but also initiate direction changes.

In addition to the collective U-turns, we also investigated the success rate of the robot to initiate

a collective U-turn. In Fig. 3.6A we depict the percentage of successful U-turns that were

owed to the robot’s motion, in Fig. 3.6B we depict the highest percentage of successful U-turns

exhibited by any one individual taking part in the experiment, and in Fig. 3.6C we depict the

percentage of the robot that was the most influential individual. We note that, in the case of the

fish-only experiments we chose one random individual and we excluded the DM experiments
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Figure 3.5: Average number of collective U-turns per minute over all replicates. Annotations
of the statistical significance (Kruskal–Wallis test followed by Tukey’s honest significant dif-
ference criterion post hoc analysis) are marked with a dash or stars. The dash corresponds
p > 0.05, a single star to p < 0.05, two stars to p < 0.01, three stars to p < 0.001. and four stars
to p < 0.0001.

since the robot would never perform a U-turn. Intuitively, the above measurements can

provide an estimate of the leadership characteristics of each model compared to the innate

behavior of the zebrafish. Moreover, the distributions depicted in Fig. 3.6A and Fig. 3.6B

provide, once again, insight on the degree to which the robot might have been perturbing or

naturally interacting with the living individuals.

We performed KW test for the successful U-turn initiation distribution and obtained the values

of p < 0.05 and χ2 = 7.65. A follow-up T-HSD post hoc test revealed that fish-only does not

differ significantly from the FM (p > 0.5), while it did indeed differ significantly from FIM

(p < 0.5). FM also differs significantly from FIM (p < 0.05). While Fig. 3.6B alone does not

provide a lot of additional information (the distributions d not differ significantly KW test,

p > 0.05), in combination with Fig. 3.6A we notice that the robot’s U-turn initiation success

rate was very similar to the distribution for the fish-only individuals with the highest success

rate. In Fig. 3.6C we quantified the latter in terms of the percentage that the robot acted as

the leading individual and found that in FM experiments this corresponds to 20% and in FIM

experiments to 70%. While FIM was clearly more successful in initiating a U-turn, FM’s success

rate was greater than what could be expected by a following model. This is, was fact, directly

linked to the densest point alternation (see Sec. 3.4), which could very well have triggered a

U-turn for the robot if the densest centroid appeared in the reverse direction. Overall, this

provides evidence that the FIM was capable of producing patterns that did not perturb the

collective and simultaneously allowed it to have a leadership role with high probability.
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Figure 3.6: U-turn initiation success rates. (A) successful U-turns that were initiated by
the robot (or a random individual in the case of fish-only), (B) highest success rate in an
experiment owed to any one individual, and (C) percentage of experiments in which the
robot had the highest success rate. Annotations of the statistical significance (Kruskal–Wallis
test folowed by Tukey’s honest significant difference criterion post hoc analysis) are marked
with a dash or stars. The dash corresponds p > 0.05, a single star to p < 0.05, two stars to
p < 0.01, three stars to p < 0.001. and four stars to p < 0.0001.

3.6.3 Transfer entropy

We complete this section by evaluating the information propagation capabilities of each model

by resorting to information theory and more specifically to the use of TE (see section Sec. 3.5.2).

In Fig. 3.7, we measured the TE for all shoal members (fish and robots) quantifying the average

influence that individuals exerted on (outgoing TE) or received from (incoming TE) the others.

First, we analyzed the average outgoing entropy for all agents (Fig. 3.7A). Again, the distribu-

tions significantly differ from each other across the different treatments (KW test, p < 0.00001,

and χ2 = 26.78). The fish-only condition, that showed the highest TE values, differs signifi-

cantly from the FM (T-HSD post hoc test, p < 0.01) and DM (T-HSD post hoc test, p < 0.0001)

but not from the FIM (T-HSD post hoc test, p ≈ 0.59).

The lower performance observed in the mixed groups could be partly attributed to the robot’s

slow response to stimuli or the models’ lack of locomotive aspects that might play an important

role in good integration (e.g., biomimetic locomotion patterns). Conversely, it is important

to note that the amount of outgoing directional information exchanged did not significantly

differ in the case of FIM versus fish-only which in turn implies that the robotic lure had a

considerable impact on the shoal. In fact, FIM stood out compared to the rest of the models in

terms of distribution similarity, therefore, we conclude that its biomimetic decision-making

was indeed important when it came to propagating information within the shoal.
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Figure 3.7: Average transfer entropy (TE) for heading direction time-series. The first row (i.e.,
Fig. A, B, C) corresponds to the average outgoing TE of the shoal (i.e., amount of TE from focal
towards other individuals) and the second (i.e., D, E, F) corresponds to the average incoming
TE (i.e., amount of TE from other individuals towards the focal). A & D: TE for the mixed group
(all individuals are considered), B & E: TE only for the robotic agent (for fish-only experiments
a random fish replaces the robot) and C & F: TE only for living individuals (i.e.,. the robot
is excluded in the computation and for fish-only experiments a random fish and excluded
from the analysis). Annotations of the statistical significance (Kruskal–Wallis test followed by
Tukey’s honest significant difference criterion post hoc analysis) are marked with a dash or
stars. The dash corresponds p > 0.05, a single star to p < 0.05, two stars to p < 0.01, three stars
to p < 0.001. and four stars to p < 0.0001. The complete pairwise comparisons can be found
in the Supporting information Tables A.5, A.6, A.7, A.8, A.9, A.10.

To highlight the role played by the robot in the shoal dynamics, we separated the average

outgoing TE of the robot (Fig. 3.7B) and the average outgoing TE of the fish (Fig. 3.7C). The

intuition behind this threefold separation (average TE for all agents, average robot TE, average

fish TE) is summarized as follows: (1) an overall estimate of how each model affected direc-

tional information transfer in the shoal, (2) a quantification of the robot’s interaction with the

fish and (3) an evaluation of the perturbations in information transfer between the fish due to

the presence of the robot. We note that, for the fish-only box-plots of Fig. 3.7B and 3.7C, we

chose one fish at random, since no robot is used.

For the robot TE case in Fig. 3.7B, the distributions differ significantly (KW test, p < 0.00001

and χ2 = 27.19). A multiple comparison of the distributions showed that: fish-only did not

differ significantly from FM (T-HSD post hoc test, p ≈ 0.11) and FIM (T-HSD post hoc test,

p ≈ 0.54) but differed significantly from DM (T-HSD post hoc test, p < 0.0001).
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Then, we computed the average outgoing TE exchange only among the fish for the different

conditions (Fig. 3.7C). The KW test showed that the distributions differ significantly with each

other (KW test, p < 0.05). The multiple comparisons post hoc test revealed that: fish-only differ

significantly from FM (T-HSD post hoc test, p < 0.01), but not from DM (T-HSD post hoc test,

p > 0.05) and FIM (T-HSD post hoc test, p ≈ 0.93). In these cases, FIM performed closely to the

control experiments. We believe that this could be linked to the degree of acceptance of the

robot by the society. More specifically, if the robot does not perturb the directional information

propagation, or ideally contributes to it, it might have higher chances to be accepted as a

conspecific. In that respect, FIM seems to be the better model out of the ones we tested.

Similarly, we computed the average incoming TE for all individuals Fig. 3.7D, only the robot

Fig. 3.7E, and only the fish for all conditions Fig. 3.7F. For the incoming TE for all agents, the

results were identical to the one obtained for the average outgoing TE shown in Fig. 3.7A as the

amount of information exchanged is preserved within the system but distributed differently

among the fish and the robot.

Concerning the average incoming TE of the robot (see Fig. 3.7E), the distributions were

significantly different, as observed for the average outgoing TE (KW test, p < 0.0001,χ2 = 32.21).

From the complementary T-HSD post hoc analysis we obtained the values p ≈ 0.07, p < 0.0001,

p < 0.05 for fish-only versus FM, fish-only versus DM and fish-only versus FIM, respectively.

In this case, the FIM under-performed compared to FM. However, this could be expected as

the FM, a purely reactive model, was constantly instructing the robot to follow the fish while

the FIM could lead the robot to take an initiative that contradicted the behavior of the fish.

For the average incoming TE of only the fish (Fig. 3.7F), we also observed a significant effect

of the conditions on the average TE (KW test, p < 0.001). However, contrarily to the average

outgoing TE, the multiple comparisons showed that fish-only significantly differs from the FM

(T-HSD post hoc test, p < 0.01) and DM (T-HSD post hoc test, p < 0.001) but not from the FIM

(T-HSD post hoc test, p ≈ 0.89). These results confirmed that the robot controlled by the FIM

did not impede the transfer of information between the fish.

3.7 Conclusion

Testing theoretical hypotheses in realistic conditions is an imperative step towards under-

standing the collective dynamics of natural systems. However, generating specific patterns

that are valuable to validate those hypotheses requires sophisticated physical systems. In

the case of animal studies, and specifically the study of zebrafish’s group interactions, such

systems must blend well enough in the shoal as to allow for natural and life-like interaction

dynamics to emerge. Thus, apart from visual biomimetic cues, a robotic device ought to

behave as close to the living creature as possible. In turn, this raises questions on the necessity

of complex behavioral models in order for an artificial agent to socially interact with a high

degree of integration in the group. Here, we showed that a model, that has been simplified to

be implemented on a physical system, allowed the robot to establish an increased degree of
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life-like interactions with a shoal of fish through a bidirectional communication scheme.

While one could assume that a simple following model that instructs a robotic agent to

move towards the fish would succeed in “infiltrating” the shoal, we showed that our such

a Follower model (FM), failed to do so. Intuitively, a lure that is not attempting to interact

with the living agents is less appealing to them and at times is completely disregarded (in the

collective decision-making sense). In fact, the results of the previous section indicate that

this passive control scheme perturbed the behavior of the fish, as we observed greater mean

inter-individual distance and at the same time fewer U-turns performed on the global scale.

This was also validated by visual inspection of the corresponding experiment recordings. To

trace the source of this failure, we used a TE metric to estimate the amount of information

that is exchanged when this model is active on the robot. While such a metric can not be

used to safely draw causal conclusions alone, the results indicate that there was a significantly

different trend in the information flow for this model (see Fig 3.7) that could explain the

dissimilarity on the global scale (i.e., inter-individual distance, U-turns and successful U-turn

initiation).

Conversely, the Despotic Model (DM), tests the response of the fish when the scenario is

inverted, that is, when the robot is disregarding their decisions concerning the direction of

movement. More specifically, we aimed to test two extreme cases and observed the responses

for each one. As shown in Sec. 3.6.3, the DM also fails to capture the interest of the living

individuals for long periods of time. However, the Feedback-Initiative model (FIM) managed

to exhibit patterns that proved to lead to similar dynamics on a global scale. Especially the

results depicted in Fig. 3.5 concerning the collective U-turns, showed that the living individuals

interact with the robot and between them in a marginally different manner to that of groups

of fish (only). Similarly, the TE measurements indicated that the robot managed to establish

stronger communication channels with the fish that could, in turn, explain the similarity of

the resulting U-turn distributions. Notably, We noticed that the robot had a leading role (i.e., a

direction change of the robot was likely to propagate to the remaining group members) for

the majority of the experiments and had a very similar influence to the most influential fish

individual of the fish-only experiments.

This highlights the importance of encoding bidirectional (i.e., closed-loop) behaviors in robot

controllers to create biohybrid groups. While this notion is further studied in following chap-

ters, the results of this section establish the foundation for the work conducted in 2 directions:

1) here we tested a simplified 1D model of interaction, but our findings indicated that bridg-

ing the gap between this model and the real behavior of fish requires more sophisticated

models of social interaction, and 2) the robotic system (composed of the mobile robot and

biomimetic lure) must also exhibit realistic traits (visual and in terms of motion; physics and

communication cue gap in Fig. 1.1) to be truly accepted and form a biohybrid group.

The simplified models we have used in this study inevitably raise questions about the robot’s

ability to blend seamlessly with the fish group and meaningfully interact with its neighbors.
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This ambiguity is a common thread in much of the existing literature on fish-robot interac-

tions. In essence, there is a noticeable lack of evidence pointing to the specific components

of the biohybrid system that might cause significant discrepancies, leading to interaction

dynamics that substantially deviate from those observed in natural settings. This indicates a

pressing need for closer examination of the three factors contributing to the biomimicry gap

(as outlined in Fig. 1.1) with the aim of creating biohybrid groups that more closely emulate

natural fish populations. For instance, in this and previous studies employing the same system

Bonnet et al. (2018, 2016), the lure used is a commercially available fishing lure which, despite

superficial resemblances to the zebrafish, possesses markedly different physiological proper-

ties (e.g., see the tail in Fig. 3.2A). Likewise, as discussed in subsequent chapters (e.g., Chapter 5

and Appendix C.1), the FishBot v4.4 exhibits limitations in generating diverse dynamics across

various environments, further widening the physics gap. Keeping these limitations in mind, in

subsequent chapters, we first systematically address the social interaction gap, and then we

follow up with ways to mitigate the physics and communication cue gap. We then return to

biohybrid experiments to quantitatively evaluate our success in bridging the biomimicry gap.
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4 Designing and benchmarking social
interaction models: from analytical to
machine learning models, and from
short to long timescale dynamics gen-
eration

This section’s content is adapted from the fol-

lowing article (Under review/Preprint available):

• Papaspyros, V., Escobedo, R., Alahi, A., Theraulaz, G., Sire, C. and Mondada, F.,

2023. Predicting long-term collective animal behavior with deep learning. bioRxiv,

pp.2023-02. https://doi.org/10.1101/2023.02.15.528318 (reuse authorised under a

non-exlusive distribution licence) – Papaspyros et al. (2023b)

– Vaios Papaspyros’s contribution: Conception, data curation, formal analysis,

investigation, methodology, software, visualization, writing – original draft,

writing – review & editing.

• The article’s work was funded by the Swiss National Science Foundation project

“Self-Adaptive Mixed Societies of Animals and Robots” (Grant No. 175731). Our

collaborators from the Université Toulouse – Paul Sabatier were funded by the

French National Research Agency (ANR-20-CE45-0006-01).a

• Ethics: The experiments conducted with H. rhodostomus were approved by the

Ethics Committee for Animal Experimentation of the Toulouse Research Federation

in Biology no. 1 and comply with the European legislation for animal welfare. The

experiments conducted with D. rerio were approved by the state ethical board of

the Department of Consumer and Veterinary Affairs of the Canton de Vaud (SCAV)

of Switzerland (authorization no. 2778).

aAll the code concerning the data pre-processing, neural networks, and plot scripts are publicly
available in https://doi.org/10.5281/zenodo.7634912. Experimental and generated data are avail-
able in https://doi.org/10.5281/zenodo.7634687.
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4.1 Introduction

As discussed in Chapter 1, and after conducting a baseline study in Chapter 3, in this chapter

we address the issue of designing and benchmarking high-fidelity models of social interaction.

As shown in the previous chapter, models are more likely to command robots that integrate to

animal groups when they are efficient in their bidirectional information exchange. Intuitively,

the more accurate the interaction models that are subsequently used to command a robot,

the smaller the gap to be traversed. In the remaining of this chapter, we validate this intuition

with experimental data.

We demonstrate that ML models can generate realistic synthetic data with minimal biological

assumptions, and that they allow to accelerate and generalize the process of collective behavior

modeling. More specifically, we present a social interaction model composed of a deep neural

network that captures both the short- and long-term dynamics observed in schooling fish. We

apply our approach to pairs of rummy-nose tetra (Hemigrammus rhodostomus) swimming in

a circular tank, and show that it can also be applied to fish species with similar burst-and-coast

swimming (zebrafish; Danio rerio). Our ML model is benchmarked against the state-of-the-

art analytical model for this species Calovi et al. (2014), showing that it performs as well as

the latter, even for very subtle quantities measured in the experiments. Moreover, we also

introduce a systematic methodology to stringently test the results of an analytical or ML model

against experiment, at different timescales, and in the context of animal collective motion.

This chapter serves as a stepping stone to closing the biomimicry gap and generating accurate

robot controllers, by significantly reducing the social interaction gap (outlined in Fig. 1.1).

Naturally, fully bridging this gap is an iterative process requiring thorough validation. As

noted in previous paragraphs, in this chapter, we also introduce a set of metrics to measure

the extent to which a model can bridge the biomimicry gap between simulation and real-life

observation. Following chapters further delve into how this is translated to a biohybrid group

composed of fish and a robot.

4.2 Experimental data

The trajectory data used in this chapter were originally published in Calovi et al. (2018) for

Hemigrammus rhodostomus swimming either alone or in pairs in a 50 cm diameter circular

tank Calovi et al. (2018). This species is characterized by a burst-and-coast swimming mode,

where the fish perform a succession of sudden short acceleration periods (kick), each followed

by a longer gliding period almost in a straight line. The instant of the kicks, when heading

changes take place, are assimilated to decision instants.

The dataset corresponds to 40 hours of video recordings at 25 Hz. Fish are tracked with

idTracker Pérez-Escudero et al. (2014), an image analysis software which extracts the 2D

trajectories of all individuals. Occasionally, the tracking algorithm is temporarily unable

to report positions accurately. This can be due to small fluctuations in lighting conditions,
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fish standing still or moving at very low speed, fish swimming very close to the surface, to

the border, or to each other. These instances are corrected using several filtering processes.

Since our analyses focus on social interactions, we remove the periods during which fish are

inactive. Fish body length (BL) is of about 3.5 cm, and the intervals of time during which

fish velocity is less than 1 BL/s are removed. Large leaps in fish trajectories during which

fish move by more than 1.5 BL ≈ 5.25 cm between two consecutive frames, meaning that fish

move at almost 65 cm/s, are also identified and removed, as they result from tracking errors.

Finally, a linear interpolation procedure fills missing points. The final dataset used in this

work represents approximately 10 hours of trajectory data for pairs of H. rhodostomus. For this

work, trajectories of the original dataset are resampled with a timestep of ∆t = 0.12 s instead

of the original 0.04 s provided by the camera, and data points have been converted from pixel

space to a normalized [−1,1] range to facilitate the training of the networks. The subsampling

rate was chosen carefully to reduce the random noise between subsequent camera frames at

the very short timescale of 0.04 s, while maintaining a sufficiently small timestep to study and

model the social interactions.

4.3 Quantification of individual and collective behavior in pairs of

fish

We use a set of observables to quantify how close the results of the models are from the

measures obtained in the experiments Calovi et al. (2018); Escobedo et al. (2020); Jayles et al.

(2020). These observables constitute a challenging benchmark when designing and testing

a model. In the case of deep learning techniques, those observables also serve as means to

partially explain what the algorithm has learned. In both cases, the observables constitute a

stringent validation test.

Let us first define the temporal variables characterizing the individual and collective behavior

of the fish. Fig. 4.1A shows two fish swimming in a circular tank of radius R = 25 cm. The

position vector of a fish i at time t is given by its Cartesian coordinates u⃗i (t) = (xi (t), y i (t))

in the system of reference, centered at the center of the tank C (0,0). The components of

the velocity vector v⃗i (t) = (v i
x (t), v i

y (t)) are given by v i
x (t) = (ui

x (t)−ui
x (t −∆t))/∆t (similar

expression for v i
y ). The heading angle of the fish is assumed to indicate its direction of

motion and is therefore given by the angle that the velocity vector forms with the horizontal,

φi (t ) = ATAN2(v i
y (t ), v i

x (t )).

The motion of a given fish i is then described using the three following instantaneous variables:

the speed, Vi (t ) = ∥v⃗i (t )∥, the distance of the fish to the wall, r i
w(t ) = R −∥u⃗i (t )∥, and the angle

of incidence of the fish to the wall, θi
w(t ), defined by the angle formed by the velocity vector

and the normal to the wall: θi
w(t ) =φi (t )−ATAN2(y i (t ), xi (t )), see Fig. 4.1A.

When there are two fish i and j in the tank, their relative motion is characterized by means

of three variables: the distance between fish, di j (t ) = ∥u⃗i (t )− u⃗ j (t )∥, the difference between
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Figure 4.1: A. Individual and collective variables characterizing the instantaneous state of
an individual (focal fish in red) and its pairwise relation with a neighbor (blue): distance to
the wall r i

w(t), angle of incidence to the wall θi
w(t), heading angle φi (t), distance between

individuals di j (t ), difference of heading angles φi j (t ), and angle of perception ψi j (t ). Positive
angles (curved arrows) are defined in the anti-clockwise direction, starting from the positive
semi-axis of abscissas. The radius of the circular setup is R = 25 cm. For visualization purposes,
the size of fish is not to scale with the tank. B. Typical profile of the fish speed, V (t ), showing
the typical sequence of kicks (abrupt accelerations followed by longer gliding phases). C.
Trajectories of two fish close to the wall due to their burst-and-coast swimming mode. The
dots in the trajectories denote the instants of the kicks, where fish decision-making is assumed
to take place.

their heading angles, φi j (t ) =φ j (t )−φi (t ), which measures the degree of alignment between

both fish, and the angle of view, ψi j (t), which is the angle with which fish i perceives fish j ,

and which is generally independent of ψ j i (t ). See Fig. 4.1A for the graphical representation

of these quantities. The angle of perception of the fish also allows us to define the notion

of geometrical leadership for two fish: fish i is the geometrical leader (and therefore, j is the

geometrical follower) if |ψi j (t )| > |ψ j i (t )|, meaning that i has to turn by a larger angle to face j

than the angle that j has to turn to face i . In practice, these definitions of the geometrical

leader and follower provide a precise and intuitive characterization of a fish being ahead of

the other. Note that being the leader or the follower is an instantaneous state that can change

from one kick to the other.

These 6 quantities Vi (t ), r i
w(t ), θi

w(t ), di j (t ), φi j (t ), and ψi j (t ) being defined, the measure of

their probability distribution functions (PDF) constitutes a set of observables probing the

individual and collective instantaneous fish dynamics in a fine-grained and precise manner.

The PDF of Vi (t), r i
w(t), θi

w(t) probe the behavior of a focal fish sampled over the observed

dynamics, and are hence called instantaneous individual observables. The PDF of di j (t),
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φi j (t), and ψi j (t) characterize the correlations between 2 fish at the same time t and are

hence called instantaneous collective observables. These 3 collective observables can be easily

generalized to a group of arbitrary size N > 2, by considering i and j as pairs of nearest

neighbors, or pairs of second-nearest neighbors (or even farther neighbors), or even averaging

them over all pairs in the group (then probing the size, the polarization, and the anisotropy

of the group). Ultimately, comparing experimental results and model predictions for these

individual and collective observables constitute a stringent test of a model.

Moreover, to characterize the temporal correlations arising in the dynamics, we make use of

3 additional observables involving quantities measured at two different times, for a given focal

fish Jayles et al. (2020): the mean-squared displacement CX (t), the velocity autocorrelation

CV (t), and, especially challenging, the autocorrelation of the angle of incidence to the wall

Cθw (t ), defined respectively by

CX (t ) =
〈[

u⃗i (t + t ′)− u⃗i (t ′)
]2

〉
, (4.1)

CV (t ) = 〈
v⃗i (t + t ′) · v⃗i (t ′)

〉
, (4.2)

Cθw (t ) =
〈

cos
[
θi

w(t + t ′)−θi
w(t ′)

]〉
, (4.3)

where 〈w(t)〉 is the average of a variable w(t) over all reference times t ′ (assumption of a

stationary dynamics, where correlations between two times depend solely on their time

separation), over all focal fish, and over all experimental runs. Note that, although CV (t ) can

be shown to be the second derivative of CX (t ), both quantities are measured independently. In

principle, these correlation observables can also be generalized to probe the (collective) time

correlations between the two different fish (or between nearest neighbors in a group of N > 2

individuals). For instance, one could consider CV (t ) = 〈
v⃗i (t + t ′) · v⃗ j (t ′)

〉
, where the average is

now over nearest neighbor pairs. However, in the present study, we will limit ourselves to the

study of the 3 (individual) correlation functions listed in Eqs. 4.1-4.3.

4.4 Analytical and deep learning models of fish behavior

The H. rhodostomus’ motion is characterized by a burst-and-coast swimming pattern (see

1.4.1). In the following section, we leverage aspects of this swimming pattern to “inform” our

models and allow them to generate more realistic social interactions in simulation. Since the

fish typically swim in close proximity, the social interactions between them reflect the com-

bined tendency to align with and follow their neighbors while at the same time maintaining a

safe distance with the wall. At a given kicking instant, only a few neighbors (one or two) have

a relevant influence on the behavior of a fish Lei et al. (2020). The decision-making of fish

displaying a burst-and-coast swimming mode can thus be reproduced by considering only

pairwise interactions. Naturally, if one considers pairs of fish, like here, it suffices to consider

the relative state of the neighboring fish (relative position and velocity) and the effect of the

distance and the relative orientation to the wall Calovi et al. (2018); Escobedo et al. (2020).
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Analytical Burst-and-Coast model

The Analytical Burst-and-Coast model (hereafter called ABC model) quantitatively reproduces

the interaction dynamics of H. rhodostomus swimming alone or in pairs under the hypothesis

that fish decision-making times correspond exactly to their kicking times, that is, the new

direction of movement, the duration, and the length of the kick are decided precisely at the

end of the previous kick Calovi et al. (2018).

Given a pair of agents i and j at a respective state (u⃗ n
j ,φn

j ) and (u⃗ n
i ,φn

i ) at time t n , the state of

agent i at the next instant of time t n+1
i is given by

t n+1
i = t n

i +τn
i , (4.4)

φn+1
i =φn

i +δφn
i , (4.5)

u⃗ n+1
i = u⃗ n

i + l n
i e⃗ (φn+1

i ), (4.6)

where e⃗ (φn+1
i ) is the unitary vector pointing in the heading direction φn+1

i , τn
i and l n

i are the

duration and length of the n-th of agent i kick, and δφn
i is the heading change of agent i .

During the gliding phase, the kick length is defined l n
i = vn

i τ0(1−exp[−τn
i
τ0

]), where the speed

is empirically found to decrease exponentially with a dissipation time τ0 = 0.8 s. That is, vn
i ,

l n
i , and t n

i are generated from bell-shaped probability density functions that are in agreement

with experimental data from H. rhodostomus Calovi et al. (2018).

The heading angle change δφn
i is the result of three effects: the effect of the wall, the effect

induced by the social interactions with the other fish (repulsion/attraction and alignment),

and the natural spontaneous fluctuations of fish motion (cognitive noise). The social influence

depends only on the relative state of both agents, determined by the triplet (di j ,ψi j ,φi j ). The

derivation of the shape and intensity of the functions involved in δφn
i is based on physical

principles of symmetry of angular functions and a data-driven reconstruction procedure

detailed in Calovi et al. (2018) for the case of H. rhodostomus and in Escobedo et al. (2020) for

the general case of animal groups. Thus, Eq. 4.5 can be further expanded as:

δφn
i = δφn

R,i (r n
w,i )+δφn

wi
(r n

w,i ,θn
w,i )+δφn

Att,i j (d n
i j ,ψn

i j ,φn
i j )+δφn

Ali,i j (d n
i j ,ψn

i j ,φn
i j ) (4.7)

where δφn
R,i (r n

w,i ) = γRg , with g a Gaussian random variable of zero mean and unit variance

and γR is the heading direction fluctuation strength which is found to be of the order of

0.35 rads for single and pairs of fish, but may vary for larger groups or different species. Then,

δφn
w,i (r n

w,i ,θn
w,i ) = γw,i sin(θn

w,i ) f n
w,i (rn

w,i ) is the repulsive force exerted by the wall on the fish i

at time t n , with f n
w,i (rn

w,i ) ∈ [0,1] a regulatory parameter to adjust the repulsive effect of the

wall such that f n
w,i (rn

w,i ) → 0 when the individual i is far from the wall and f n
w,i (0) = 1, and γw

the repulsion intensity. The expected attraction and alignment are defined as the product of

48



three functions as follows:

δφn
Att,i j (d n

i j ,ψn
i j ,φn

i j ) = F n
Att(d n

i j )On
Att(ψ

n
i j )E n

Att(φ
n
i j ) (4.8)

δφn
Ali,i j (d n

i j ,ψn
i j ,φn

i j ) = F n
Ali(d n

i j )On
Ali(ψ

n
i j )E n

Ali(φ
n
i j ) (4.9)

where O are odd functions (e.g., as the focal fish turns by equal angles but of the opposite sign),

and E functions are even. These functions have been computationally fit on H. rhodostomus

data obtained during spontaneous movements in a similarly-sized, circular, arena. Here, the

parametrization of these functions closely follows the original definition in Calovi et al. (2018),

where:

F n
Att(d n

i j ) =
d n

i j −3

3
(
1+ (d n

i j /20)2
) (4.10)

On
Att(ψ

n
i j ) = sin(ψn

i j )
(
1−0.33cos(ψn

i j )
)

(4.11)

E n
Att(φ

n
i j ) = 1 (4.12)

F n
Ali(d n

i j ) = exp
[− (d n

i j /20)2] (4.13)

On
Ali(ψ

n
i j ) = sin(φn

i j )
(
1+0.33cos(2φn

i j )
)

(4.14)

E n
Ali(φ

n
i j ) = 1+0.6cos(ψn

i j )−0.32cos(2ψn
i j ) (4.15)

Starting from the initial condition (u⃗ 0
i ,φ0

i ) of fish i , the length, and the duration of its next kick,

l 0
i and τ0

i , are sampled from the experimental distributions obtained in Calovi et al. (2018).

Then, the timeline t 1
i of fish i is updated with Eq. 4.4, the heading angle of the next kick φ1

i is

calculated with Eq. 4.5, and the position of the fish at the end of the kick u⃗1
i is obtained with

Eq. 4.6. As kicks of different fish are asynchronous, the next kick can be performed by any

of the two fish. Each fish has thus it own timeline, but is subject, at each of its kicks, to the

evolution of the other fish along its own kicks.

The ABC model is, therefore, a discrete model that generates kick events instead of continuous

time positions. To directly compare with the DLI model presented in the next section, which

is a continuous time model, we re-sampled the trajectories made of kick events produced by

the ABC model and build continuous time trajectories with a timestep of size ∆t = 0.12 s. We

produced trajectories that add up to a total of approximately 16.6 hours of duration, that is,

500,000 timesteps. To do so, we exploit the viscous dynamics (due to water grad) for times

0 ≤ t ≤ t n
i to derive the following continuous time expression:
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u⃗i (t n
i + t ) = u⃗n

i + l n
i

1−exp[− t
τ0

]

1−exp[−τn
i
τ0

]
e⃗(φn+1

i ) ⇒ (4.16)

⇒ u⃗i (t n
i +τn

i ) = u⃗i (t n+1
i ) = u⃗n

i + l n
i e⃗(φn+1

i ) = u⃗n+1
i , (4.17)

Deep Learning Interaction model

The Deep Learning Interaction model (hereafter called DLI model) consists of an Artificial

Neural Network (ANN) which is fed with a set of variables characterizing the motion of H. rho-

dostomus and which provides the necessary information to reproduce the social interactions

of these fish by estimating their motion along timestep of length ∆t = 0.12 s. At time t , the DLI

is designed to take sequences of states as input to capture the short- and long-term dynamics.

Then, it generates predictions for the acceleration components of the fish at the following

timestep t +∆t .

For the DLI model, the state of an agent i at time t is defined by

si (t ) = (
u⃗i (t ), v⃗i (t ),r i

w(t )
) ∈R5. (4.18)

The state of an agent includes redundant information: in a fixed geometry, r i
w can be de-

duced from u⃗i , and v⃗ n
i from the input sequence u⃗ n−4

i , . . . , u⃗ n
i . This redundancy is intended to

facilitate the training process of the neural network.

The system’s state S(t ) is then defined as the combination of both agent states, in addition to

their inter-individual distance di j (t ) (also a redundant variable):

S(t ) = (
si (t ),s j (t ),di j (t )

) ∈R11. (4.19)

Fig. 4.2 shows the structure of the ANN, consisting of 7 layers: two Long-Short Term Memory

(LSTM) layers Hochreiter and Schmidhuber (1997), and 5 fully connected (Dense) layers.

The first LSTM layer consists of 256 neurons and is located at the input of the ANN, where

it receives the sequence of the 5 last states of the system, i.e., a matrix of dimension 5×11:

(S(t −4), . . . ,S(t)). This history length of 4 timesteps (0.48 s) is borrowed from the biology of

the fish: as already mentioned, the time it takes for a fish to display its characteristic behavior,

a kick, is 0.5 s Calovi et al. (2018), therefore, we input the current state plus the states that

correspond to the average duration of a kick. The output of the first LSTM is then gradually

reduced in dimension by two successive dense layers, and then scaled up again with a second

LSTM, whose configuration is also based on a history of 5 states. Then, two other dense layers

are used to reduce the dimension of the output of the second LSTM, and a last dense layer is

applied to provide the final output of the ANN. More details about the configuration of the

ANN are given in Table B.7.
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Figure 4.2: Structure of the Artificial Neural Network (ANN) used in the DLI model. From
left to right: Input of the ANN: the 5 last states, (S(t − 4), . . . ,S(t)) at time t . Where S(t) =(
si (t ),s j (t ),di j (t )

) ∈R11 and each state is parametrized as si (t ) = (
u⃗i (t ), v⃗i (t ),r i

w(t )
) ∈R5; the

7 layers (two LSTM layers and 5 Dense Layers) capturing the social dynamics; Output: the
two pairs of values (µx ,σx ) and (µy ,σy ) corresponding respectively to the mean and standard
deviation of the probability distribution function (assumed to be Gaussian) of each component
ax and ay of the instantaneous acceleration vector a⃗ at time t +1, constituting the prediction
of the DLI model.

The output of the ANN consists of two pairs of values, (µx ,σx ) and (µy ,σy ), corresponding

to the expected value and standard deviation of the x and y components of the predicted

acceleration, which are assumed to be Gaussian distributed Chua et al. (2018), as actually

found for H. rhodostomus Calovi et al. (2018). Hence, the predicted acceleration of the agent,

a⃗ = (ax , ay ), can be written

ax =µx +σx gx , ay =µy +σx g y , (4.20)

where gx and g y are independent standard Gaussian random variables drawn from N (0,1).

Then, the velocity vector of the agent i at the time t n+1 is given by

v⃗ n+1
i = v⃗ n

i +∆t a⃗ n
i , (4.21)

and the position of the agent is updated according to

u⃗ n+1
i = u⃗ n

i +∆t v⃗ n+1
i . (4.22)

We note that in the DLI model, the predicted variance of the acceleration accounts for the fish

intrinsic spontaneous behavior exhibited during their decision process (cognitive noise), and

hence translates the fact that 2 real (or modeled) fish will not act the same if put twice in the

same given state characterized by Eq. 4.19.
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The prediction of the ANN for at time t n+1 is thus a vector of dimension 1×4 that can be

written as (µ⃗n+1
pred, σ⃗n+1

pred), where

µ⃗n+1
pred = (

µn+1
x ,µn+1

y

)
and σ⃗n+1

pred = (
σn+1

x ,σn+1
y

)
. (4.23)

The ANN is then trained to approach the real/observed values µ⃗n+1
real by means of the Adaptive

Moment Estimation Optimizer (Adam) with a time-decaying learning rate λ= 10−4 and a

negative log-likelihood loss function ℓ defined in terms of the prediction error ϵ⃗n+1 = µ⃗n+1
pred −

µ⃗n+1
real and the standard deviations as follows Kingma and Ba (2014):

ℓ(⃗ϵn+1, σ⃗n+1) = 1

2

Nh∑
n=1

[⃗ϵn+1]T C −1(σ⃗n+1) ϵ⃗n+1 + Nh

2
log∥C (σ⃗n+1)∥, (4.24)

where Nh is the number of timesteps in the history of the input of the ANN (here Nh = 5)

and C is a diagonal covariance matrix with the values of σ⃗n+1
pred in the diagonal and zeroes

elsewhere.

The training of the ANN is carried out with a subset of the experimental dataset. More

specifically, the training process is given a budget of 45 epochs with a batch size of 512 samples

on a dataset that was split 80%, 15%, and 5% for training, validation, and test, respectively.

Then, the DLI is used to produce trajectories of 500,000 timesteps of size ∆t = 0.12 s, as done

with the ABC model. At the beginning of the simulation, each agent is given a copy of the

DLI model and both agents are initialized with a random 5 timesteps long trajectory. At each

timestep t n , the state vector S(t n) is built and introduced in the network, which provides

the estimated instantaneous acceleration distributions at time t n+1. Then, the acceleration

is evaluated according to Eq. 4.20, and the next positions of the agents u⃗ n+1
i and u⃗ n+1

j are

obtained from the equations of motion, Eqs. 4.21, 4.22.

Designing the DLI model

Designing and selecting an appropriate ANN structure to model a system is for the most

part non-trivial and requires either an extensive search through automatic methods (e.g.,

neuro-evolution Martín et al. (2007); Mwaura and Keedwell (2015); Sekaj et al. (2019)) or an

exhaustive number of empirical attempts for very specific applications Cazenille et al. (2019);

Heras et al. (2019); Costa et al. (2020). Here, we followed a hybrid approach consisting in

empirically designing an ANN based on biological insight and automatically searching for

its optimal structure by bootstrapping the search. Once we established this initial model, we

performed an automated search for similar neural networks using the same input and output

for different combinations of i ) the number of layers, i i ) the size of the layers, and i i i ) the

activation functions (i.e., transfer functions tasked with mapping the inputs of a neuron to a

single weighted output value passed to the next layer). The search included a total of 96 neural

network structures (see Table B), out of which the ANN shown above is the best performing.
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Three notable categories of networks were considered: i ) non-probabilistic networks that only

generate
(
µn+1

x ,µn+1
y

)
(and hence, not explicitly including the cognitive noise), i i ) probabilistic

networks that do not have memory cells (hence, missing the fact that fish are gliding passively

on a timescale of order 0.5 s), and i i i ) probabilistic networks that implement memory thanks

to LSTM layers. Non-probabilistic networks (i ) provide the mean value of the components of

the acceleration for the next timestep with high accuracy, but miss the essential variability

that is intrinsic to the spontaneous behavior of fish and which allows for the emergence of

social interactions. Probabilistic networks without memory (i i ) are able to partly capture this

intrinsic variability, but do not fully capture the non-linear nature of the problem (see Fig. 4.9

and Video 4 of Appendix B). Finally, probabilistic networks with memory (i i i ) performed

generally well, and we found that the structure used in the DLI model consistently provides

the best results for the number of epochs set for training and for the ANNs considered by the

automatic search.

Our search approach revealed the existence of two crucial ingredients that must be consid-

ered in the model, both accounting for biological characteristics of fish behavior observed

experimentally. First, the neural network must be fed with information covering the typical

timescale along which relevant changes take place in the behavior of the fish. Since real

fish kicks last 0.5 s on average, the NN needs information about the fish behavior over time

intervals of at least this duration (that is, 4 to 5 timesteps of 0.12 s). However, we found that

using longer vector lengths (up to 10 timesteps) for the case of H. rhodostomus does not lead

to any significant improvement in the results, while considerably increasing the training time.

Second, the output of the network must contain a sufficiently wide diversity of predictions so

that the agents reproduce the high variability of responses that fish display when behaving

spontaneously and reacting to external stimuli.

ANNs without memory tend to make too similar predictions, and agents do not initiate the

typical direction changes that are observed in the experiments. A possible solution could be to

add some phenomenological noise to the predictions of the NN. However, this would result in

an unrealistic behavior, albeit an improvement over not adding noise at all. For example, when

a fish swims close to the wall, it does not have the same liberty to turn toward or away from

the wall, which would not be captured by a too crude implementation of the fish cognitive

noise. Our approach accounts for this behavioral uncertainty for each state (position, velocity,

distance to the neighbor and to the wall) and for both degrees of freedom during the training

phase of the ANN, being therefore able to capture these complex behavioral patterns. The

performance of the two variants is depicted in Fig. 4.9.

Rejection procedures

Notably, none of these models is explicitly encoding the existence of the circular wall bounds

(R = 25 cm). On one hand, the ABC exploits the distance to the wall in order to compute its

influence on the individual’s decision-making by means of repulsion, but does not explicitly

guarantee that the individual will always choose to stay within the bounds. On the other hand,
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the DLI’s black-box nature does not provide a lot of evidence with respect to the underlying

dynamics that it learned, however, the DLI is explicitly given the distance to the wall for the

focal and neighboring individual, implicitly guiding it to learn this constraint. Nevertheless, as

the primary goal is to study the social interactions within the walls, we implement a rejection

procedure pertinent to each model, to guarantee the pair dos not escape.

For the ABC, upon generating a prediction that will lead an individual outside the wall, the

authors of Calovi et al. (2018) opted to repeat the stochastic decision-making loop until a valid

prediction is made, or a threshold is reached. In the latter case, the individual is explicitly

positioned in a position parallel to the wall before repeating the decision-making loop once

more. Similarly, if sampling the Gaussian distributions that the DLI generates yields an invalid

trajectory, then the sampling process is repeated until a valid prediction is made. We have

no empirical data from the DLI to suggest that this behavior occurs frequently, or that the

resampling has to be thresholded, similarly to the ABC, for computational efficiency reasons.

In fact, when the rejection procedure is lifted, the DLI pairs tend to stay within the wall

confines for the majority of the simulations we ran, indicating that it indeed encoded the

interaction with the wall (see Fig. B.1). Conversely, despite the use of relevant information,

i.e., distance to the wall, the ABC is not designed or likely to operate well without the rejection

procedure.

4.5 Assessing the generative capabilities of biomimetic social inter-

action models

When fish swim in a circular tank (here, of radius R = 25 cm), they interact with each other

and with the tank wall. The resulting collective dynamics can be finely characterized by

exploiting the 9 observables introduced and described in the Materials and Methods Section.

As explained there, these observables probe 1) the instantaneous individual behavior, 2) the

instantaneous collective behavior, and 3) the temporal correlations of the dynamics.

Hereafter, three 16-hour trajectory datasets are analyzed: the first one corresponds to pairs of

H. rhodostomus in our experiment, the second one to the Analytical Burst-and-Coast model

(ABC), and the third one to the Deep Learning Interaction model (DLI). Video 1 of Appendix B

shows typical trajectories for these three conditions. The aim of this section is to quantitatively

validate the qualitative agreement observed in this video.

4.5.1 Quantification of the instantaneous individual behavior

The individual fish behavior is characterized by three observables: the probability distribution

function (PDF) of the speed V , of the distance to the wall rw, and of the angle of incidence

to the wall θw. When swimming in pairs, fish tend to adopt a typical speed of about 7 cm/s

(see the peak of the PDF in Fig. 4.3A), but can also produce high speeds up to 25–30 m/s.

Both fish remain close to the wall of the tank (a consequence of the fish burst-and-coast
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swimming mode Calovi et al. (2018)), the leader being closer to the wall (typically, at about

0.5 BL) than the follower (at about 1.2 BL; see Fig. 4.3B). This feature is due to the follower fish

trying to catch up with the leader fish by taking a shortcut while taking the turn. Moreover, fish

spend most of the time almost parallel to the wall: see the peaks of both PDFs at θw ≈±90◦ in

Fig. 4.3C. A slight asymmetry is observed in the PDF of θw, showing that, in the experiments,

fish have turned more frequently in the counter-clockwise direction. Values of the mean and

the standard deviation of the PDFs presented in this section are given in Tables B.1, B.2, and

B.3.

Figure 4.3: Probability density functions (PDF) of observables characterizing individual beha-
vior: A Speed V , B distance to the wall rw, and C angle of incidence to the wall θw. Black lines:
experimental fish data. Blue lines: agents of the Analytical Burst-and-Coast model (ABC). Red
lines: agents of the Deep Learning Interaction model (DLI). Dashed lines: geometrical leader;
dotted lines: geometrical follower.

Both ABC and DLI models produce agents that move at the same mean speed as fish in

the experiments, and Fig. 4.3A shows that the speed PDF for both models are in excellent

agreement with the one observed in real fish. Moreover, the agents of the ABC model are

as close to the wall and as parallel to it as fish are. The PDF of the ABC leader is in good

agreement with that of the fish leader (Fig. 4.3B). However, the PDF for the ABC follower has

a peak at about the same distance to the wall as that of the leader, while the corresponding

peaks are more separated for real fish. Yet, the PDF for the ABC follower is broader than for

the leader, showing that the ABC follower tends to be farther from the wall than the leader, as

observed for real fish. For the DLI model, the peaks of both leader and follower PDFs are at

about the same position as for real fish, although their height is smaller than for fish, meaning

that DLI-agents tend to explore more frequently the interior of the tank (observe the thicker

tails of the PDF of rw for the DLI model in Fig. 4.3B). Alignment with the wall is also well

reproduced by both models (Fig. 4.3C), including the asymmetry in the direction of rotation

around the tank: their peak at θw > 0 is higher than the one at θw < 0. As already seen in the

PDF of rw, DLI-agents visit more often the interior of the tank, and are hence less aligned with

the wall than the real fish and ABC agents. Note that the tendency of DLI-agents to rotate

more frequently in the counterclockwise direction is learned from the training set, while this

asymmetry has to be explicitly implemented in the ABC model, by introducing an asymmetric

term in the analytical expression of the wall repulsion function. A closer look at Fig. 4.3C
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shows that fish actually follow the wall with a most likely angle of incidence |θw| that is slightly

smaller than 90◦, a feature resulting from the burst-and-coast swimming mode inside a tank

with positive curvature: fish are found more often going toward the wall than escaping it.

4.5.2 Quantification of the instantaneous collective behavior

H. rhodostomus is a social species, and Fig. 4.4A shows that the two fish remain most of

the time close to each other, with the PDF of their distance di j presenting a peak around

di j ≈ 7cm ≈ 2 BL (mean and standard deviation of the PDFs presented in this section are given

in Tables B.1, B.2, and B.3. The fish have a strong tendency to align with each other, as shown

in Fig. 4.4B, with the PDF of their relative heading φi j being sharply peaked at 0◦. In addition,

the PDF of the viewing angle ψi j reveals that the fish are swimming one behind the other

rather than side-by-side. This is illustrated in Fig. 4.4C by the sharp difference in the PDF of

the viewing angle for the leader and the follower. The PDF of ψleader is peaked around ±160◦,

meaning that the follower fish is almost right behind the leader fish, but slightly shifted to the

right or left. A slight left-right asymmetry in the PDF of the viewing angles is also visible, the

follower being more frequently on the left side of the leader, a consequence of the fact that the

fish in the experiment follow the wall by turning more often counterclockwise (Fig. 4.3C), with

the follower swimming farther from the wall than the leader (Fig. 4.3B).

Figure 4.4: Probability density functions (PDF) of observables characterizing collective beha-
vior: A Distance between individuals di j , B difference in heading angles φi j , and C angle of
perception of the geometrical leader and follower ψi j . Black lines: experimental fish data.
Blue lines: agents of the Analytical Burst-and-Coast model (ABC). Red lines: agents of the Deep
Learning Interaction model (DLI). Dashed lines : geometrical leader; dotted lines: geometrical
follower (in C).

All these features are well reproduced by both models, with only some small quantitative

deviations. The ABC model reproduces almost perfectly the experimental PDF of the distance

between fish, whereas the PDF for the DLI model is only slightly wider and presents slightly

more weight at very small distance than found for real fish or in the ABC model (Fig. 4.4A).

The DLI model is in turn better than the ABC model at reproducing the PDF quantifying the

alignment of the fish, the latter producing more weight near 0◦ than for real fish (Fig. 4.4B).
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Both models fail at reproducing the very small increase in the PDF atφi j ≈±180◦, which corres-

ponds to sudden U-turns that real fish sometime perform. The PDF of the viewing angles for

the leader and the follower (Fig. 4.4C) are also fairly reproduced by both models, including the

slight left-right asymmetry observed in real fish, although the peak in the PDF at ψfollower = 0◦

(and to a lesser extent at ψleader ≈−160◦) is not quite as sharp as in the experiment.

4.5.3 Quantification of temporal correlations

Fig. 4.5 shows the 3 observables defined in Eqs. 4.1-4.3 and probing the emerging temporal

correlations in the system: the mean squared displacement CX (t ), the velocity autocorrelation

CV (t), and the autocorrelation of the angle of incidence to the wall Cθw (t), as function of

the time difference t between observations. The figure reveals that both models fail to fully

reproduce quantitatively these very non-trivial observables, which indeed constitute the most

challenging benchmark characterizing the correlations emerging from the fish behavior.

Figure 4.5: Observables quantifying temporal correlations in the system. A Mean squared
displacement CX (t), B Velocity temporal autocorrelation CV (t), C Temporal correlations of
the angle of incidence to the wall Cθw (t). Black lines: experimental fish data. Blue lines:
agents of the Analytical Burst-and-Coast model (ABC). Red lines: agents of the Deep Learning
Interaction model (DLI). Dashed lines: geometrical leader; dotted lines: geometrical follower;
full lines: average over the 2 fish or agents.

Fish data present 3 distinct regimes: a quasi-ballistic regime at short timescale (t ≲ 1.5s) where

CX (t ) ≈ 〈v2〉t 2, followed by a second short diffusive regime (1.5s≲ t ≲ 5 s) where CX (t ) ≈ Dt ,

which is limited by the finite size of the tank, ultimately leading to a third regime of saturation

(t > 5 s) characterized by slowly damped oscillations since fish are guided by the wall (Fig. 4.5A).

Accordingly, the velocity correlation function starts from CV (t = 0) = 〈v2〉 at short time and

also presents damped oscillations (Fig. 4.5B). The negative minima of the oscillations in CV (t )

correspond to times when the focal fish is essentially at a position diametrically opposite

to its position at the reference time t = 0, its velocity then being almost opposite to that at

t = 0. Similarly, positive maxima correspond to times when the fish returns to almost the

same position it had at t = 0, with a similar velocity, guided by the tank wall. Of course, these

oscillations are damped as correlations are progressively lost, and the velocity correlation

function CV (t ) ultimately vanishes at large time t ≫ 20s, due to the actual stochastic nature of
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the trajectories at this timescale (possible U-turns, or the fish randomly crossing the tank).

Note that CX (t ) is markedly different for the leader and follower fish, with a higher saturation

value for the leader, which swims closer to the wall, as mentioned above.

The ABC model is able to fairly reproduce the short and intermediate regimes for CX (t)

(Fig. 4.5A), as well as the position of its first peak, reached only slightly later than for fish (1 s

after). The ABC model also reproduces the experimental saturation value of CX (t ) averaged

over the two fish. As for the DLI model, its predictions are only slightly worse than that of the

ABC model, due to the fact that the DLI agents are moving a bit farther to the wall compared to

ABC agents and real fish. Yet, both models equally fail at producing more than one oscillation,

and the correlations are damped faster compared to the experiment.

As for the velocity autocorrelation CV (t ) (Fig. 4.5B), the ABC model reproduces almost perfectly

the short and intermediate regimes and the position of the first negative minimum (hence,

up to t = 6 s), while the DLI model underestimates the depth of this first minimum. But

again, both models fail at reproducing the persistence of the correlations, producing a too fast

damping of the oscillations (an effect slightly stronger in the DLI model).

Both models struggle at reproducing the correlation function Cθw (t ) of the angle of incidence

to the wall (Fig. 4.5C), where the fish curve first sharply decreases up to t = 6 s and then

remains close to Cθw ≈ 0.2. The ABC model is clearly unable to reproduce both the decreasing

range (clearly diverging before t = 2 s) and the correct saturation value (never falling below

Cθw ≈ 0.6). As for the DLI model, it produces a slightly sharper decay of Cθw (t ) than for real fish,

up to t ≈ 6 s, but fails to reproduce the non-negligible remaining persistence of the correlation

observed in fish for t > 7s, with Cθw (t) in the DLI model decaying rapidly to zero. In fact,

both models fail to reproduce the experimental Cθw (t ) for opposite reasons. The ABC model

exhibits a too high persistence of the correlations of θw compared to real fish, presumably

because real fish indeed often follow the wall but can also produce sharp U-turns, as observed

in Fig. 4.3C. On the other hand, the failure of the DLI model in reproducing Cθw (t ) stems from

the fact that DLI agents move farther from the wall and cross through the tank more often

than real fish and ABC agents (see the discussion of Fig. 4.3B above), hence leading to a too

fast, and ultimately total, loss of correlation for θw.

4.6 Benchmarking the DLI against a similarly purposed neural net-

work

Along with ABC, we also adapted a neural network from Kothari et al. (2021), that was initially

intended for human trajectory forecasting in crowded spaces, for pair-wise fish interactions.

More specifically, we used a D-MLP-ConC-LSTM as described in Kothari et al. (2021), which we

refer to as D-LSTM for brevity. The models presented in Kothari et al. (2021) were introduced

in the context of forecasting human trajectories in arbitrary scenes of humans walking. We

found that there are many similarities in the approach and goals of human trajectory fore-
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casting research works and the goals of our work, i.e., to model the interactions between fish.

Therefore, we chose to adapt and use this algorithm to obtain a baseline of the performance

that our neural network, presented in the following subsection, achieves. We opted to not

intervene with the core structure of the neural network and use the framework provided by

the authors of Alahi et al. (2016); Kothari et al. (2021)1, and parametrize it to generate accurate

trajectory estimates. An example of generate trajectory simulation for the MLI can be found in

S14 Video.

The model’s name is partly owed to its directional pooling layer, where the relative velocity of

neighboring individuals is combined with the focal individual’s to estimate its future trajectory.

To obtain predictions, we trained the network with the same input data, only adapted to a

different format compatible with the TrajNet++ framework Kothari et al. (2021). Furthermore,

we opted to convert the inputs to meters, instead of the arbitrary [−1,1] scale, to allow for

more intuitive parameter selection. The TrajNet++ framework provides a series of different

tools for different tasks, including pre-processing of datasets. Before training the D-LSTM,

we performed a pre-processing methodology provided by TrajNet++ that categorizes the data

in 4 categories depending on the trajectory type. Namely, static (Type I), linear (Type II),

non-linear Type III) and non-interacting (Type IV) trajectories. Here, we parametrized the

percentage of the trajectories that correspond to those types and are subsequently used for

training, with values 80%, 100%, 100%, and 100%, respectively. Then, the TrajNet++ tool split

the dataset in 80-15-5% manner for the training, validation and test datasets. We also set the

frame rate option for the pre-processing tool to 25 frames per second, which corresponds

to the timescale chosen for ABC, DLI, and the experiments. Finally, we parametrized the

group distance threshold to 0.5 m, that is, the diameter of the setup to always consider both

individuals in the dataset.

Then, similarly to DLI, the parameters of the model were learned by minimizing a negative

log-likelihood loss using the Adam optimizer Kingma and Ba (2014) with an initial learning

rate of λ= 0.0001. A step learning rate scheduler was used to reduce the learning rate with

every 10 epochs. The network was given a budget of 80 epochs and a batch size of 8. With

respect to the directional pooling layer and the underlying grid, we selected a grid of 32 cells

with a cell side size of 0.005 m (see details in Kothari et al. (2021)).

The network itself is structured as follows; 1) the input state, rectangular position, of the focal

individual is passed to a Multi-layered perceptron (MLP) structure. We opted to maintain

the original input information of the D-LSTM, therefore, contrary to the DLI, the D-LSTM

is missing 3 input variables, namely, distance to the wall for the focal and the neighboring

individual, and inter-individual distance. 2) the directional information (relative velocity and

position) of the top-k (in the context of this work k = 1) neighbors are concatenated, and

3) the concatenation is passed to an LSTM layer. Both the MLP and LSTM layers consist of

256 neurons. The network was given observations of length 5, similarly to DLI, and asked to

predict the mean and standard deviation of the components of acceleration of 3 future time

1https://github.com/vita-epfl/trajnetplusplusbaselines

59

https://github.com/vita-epfl/trajnetplusplusbaselines


steps (duration of ∆t = 0.36 s), instead of 1 that was required from DLI, for two reasons; 1) to

put pressure during training on the network to learn more accurately, and 2) to compare its

longer horizon forecasting capabilities against DLI. In D-LSTM’s simulations, we considered

only the prediction corresponding to t +∆t and followed the same simulation logic of DLI

(see the Materials and Methods section of the main text). That means, a new trajectory was

generated at every time step (∆t = 0.12 s). It is indeed common, in such cases, that only one

time step is used for simulation and the remaining part of the trajectory is used to understand

the estimated intent of the agent.

4.6.1 Comparing the short- and long-term performance of DLI and D-LSTM

4.6.2 Quantification of instantaneous individual behavior

D-LSTM produces agents that do not swim at the same speed as fish in the experiments. The

location of the peak of the PDF of V (see Fig. 4.6A) is indeed in good agreement with the

experiments, but the distribution decays much faster than in the experiments and DLI and

goes to zero at approximately 25cm/s. Fig. 4.6B shows that the PDFs of the D-LSTM leader

and follower are not in good agreement with the experiments or DLI and both agents swim

very close to the wall most of the time. Furthermore, agents tend to swim at a farther distance

from the wall more often than in the experiments (see the dashed and dotted lines in Fig. 4.6B

between 6−25cm) and the DLI. Similarly, Fig. 4.6C shows that alignment with the wall is not

well reproduced by the D-LSTM model. The locations of the peaks are well reproduced with

respect to the experiments, including an angle of incidence θw smaller than 90◦. However, the

D-LSTM agents swim parallel to the wall considerably less than in the experiments, see the

PDF for values of θw <−90◦ and θw > 90◦.

4.6.3 Quantification of instantaneous collective behavior

The PDF of the inter-individual distance di j is quantitatively different from what is measured

for the experiments. Notably, the location of the peak is located approximately 1cm more

to the left (i.e., closer to the neighboring agent) than in the experiments (see Fig. 4.6).

Furthermore, the D-LSTM agents swim much closer to each other and almost never swim

more than 15cm away from each other, contrary to the experiments. Conversely, the D-LSTM

reproduces the alignment PDF φi j very well, albeit D-LSTM agents tend to be unaligned

more often than in the experiments and DLI. Similarly, to ABC and DLI, the D-LSTM fails

to reproduce the small increase in the PDF at ∆phi ≈ 180◦. Viewing angles are very well

reproduced by the D-LSTM. In fact, the PDF is very similar to those of ABC and DLI, although

the D-LSTM follower agent (see dotted lines in Fig. 4.6) tends to swim less often parallel to the

leader agent.

60



A B C

D E F

G H I

Experiments

D-LSTM
DLI

Leader
Follower

Fish average

Figure 4.6: Probability density functions (PDF) of all observables. A Speed V , B distance to the
wall rw, C angle of incidence to the wall θw, D Distance between individuals d , E difference in
heading angles φi j , F angle of perception of the geometrical leader and follower ψ, G Mean

squared displacement (i.e., CX (t) =
〈[

u⃗(t + t ′)− u⃗(t ′)
]2

〉
), H Velocity temporal correlations

(i.e., CV (t ) = 〈
v⃗(t + t ′) · v⃗(t ′)

〉
), and I Temporal correlations of the heading of a fish relative to

the wall (i.e., Cθw (t) = 〈
cos

[
θw(t + t ′)−θw(t ′)

]〉
). Black lines: experimental data of real fish.

Orange lines: agents of D-LSTM. Red lines: agents of DLI (Deep learning interaction model).
Dashed lines correspond to the leader, and dotted lines to the follower.

4.6.4 Quantification of time correlation

Fig. 4.6G shows that the D-LSTM cannot well reproduce the short or intermediate regimes of

CX (t ). The curve saturates later than the fish in the experiments (2 s more) being considerably

farther distance from the wall compared to fish or ABC and DLI. Similarly to fish, ABC and DLI,

the leader and follower have different curves for CX (t ) and CV (t ) (Fig. 4.6G and H, respectively),

although in D-LSTM the effect is less pronounced than the other two interaction models. The

oscillations of CV (t) in D-LSTM are sharply damped and disappear at t = 5 s. Similarly to
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ABC and DLI, the oscillations in Cθw (t) are not in good agreement with fish data and fail to

reproduce the correlation of fish for t > 2.5 s.

4.6.5 Comparing the short-term performance of DLI and D-LSTM

Trajectory forecasting algorithms provide a longer trajectory horizon than t +∆t in an attempt

to capture the intent of the agents. Here, the ANNs’ goal is to reproduce similar movement

trajectories as fish.

A

B

Experiments (observation)
Experiments (prediction ground truth)
DLI (prediction)
D-LSTM (prediction)

Focal individual predictions Neighboring individual predictions 

DLI
D-LSTM

DLI
D-LSTM

DLI

D-LSTM

DLI

D-LSTM

(i) DLI

D-LSTM

(ii)
DLI

D-LSTM

(iii)

D-LSTM

DLI(iv)
D-LSTM

DLI(v)

(vi)

Figure 4.7: A Mean squared error between the generated position and the actual position of
the focal individual (left) and the neighbor (right), and B examples of generated trajectories
for DLI and D-LSTM (left) and uncertainty of the models (right) for all panels (i)-(vi), where
certainty is depicted with hues of blue to yellow, for low to high certainty areas, respectively.

In Fig. 4.7, we depict a box-plot of the performance of DLI and D-LSTM with respect to

their mean squared error measured against the fish in the experiments. Both models have

achieved comparable performance, as the D-LSTM performs systematically better by marginal

difference. As expected, the models demonstrated an increasing error (see Fig. 4.7A) for the

more distant horizon (i.e, at 0.36 s). InFig. 4.7B(i-vi), we depict a few trajectory examples along
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with their uncertainty maps (on the right-hand side of each example). Fig. 4.7A show that

the D-LSTM makes more confident decisions, that is, the generated trajectories exhibit less

variability. After visual qualitative inspection of approximately 3,500 trajectories, such as the

ones of Fig. 4.7B, we did not observe any differences or particularities for either model.

4.7 Validation of the DLI’s scalability to other fish species

The premise of ML algorithms is that they can more easily scale up to solve similar tasks.

In this subsection, we put this to the test. That is, to validate the DLI’s performance with a

different fish species. Therefore, we conducted experiments of D. rerio pairs, similarly to the

H. rhodostomus. Then, we trained the DLI as described in previous sections of this chapter.

4.7.1 Quantification of the instantaneous individual behavior

Fig. 4.8A is very well reproduced by the DLI, capturing the peak of the PDF correctly. Marginal

difference is noticed in velocities between 15 and 30 cm/s. The DLI is also reproducing well

the PDF of the leader and follower distance to the wall rw (Fig. 4.8B), with marginal differences

producing a wider PDF for the DLI. In Fig. 4.8C, the PDFs of the angle of incidence to the wall

θw show good agreement, with marginal differences between angles of −90◦ and 90◦.

4.7.2 Quantification of the instantaneous collective behavior

In terms of the collective behavior, the DLI is marginally worse when compared to real fish

for the interindividual distance di j of agents (see Fig. 4.8D). Similarly, the DLI is not fully

capable of recovering the PDF heading angles exhibiting more occurrences in the tails of the

PDF (φi j <−50◦ and φi j > 50◦). However, when DLI leader and follower agents swim, they

are able to reproduce the PDF of viewing angle ψi j with good agreement to the original fish

experiments.

4.7.3 Quantification of temporal correlations

Contrary to H. rhodostomus, D. rerio data present only 2 distinct regimes: quasi-ballistic regime

at short timescale (t ≲ 2s) where CX (t ) ≈ 〈v2〉t 2, followed by a saturation regime (t > 5 s) cha-

racterized by slowly damped oscillations (Fig. 4.8G). Similarly, the velocity correlation function

starts from CV (t) ≈ 〈v2〉 at short time and presents oscillations (Fig. 4.8H). Oscillations are

eventually damped at a time greater than t ≫ 20 s. Contrary to H. rhodostomus, leader and

follower showcase approximately the same saturation values. DLI agents reproduce the

reproduce well the oscillations of CX (t ) up to t ≈ 2.5 s. Contrary to the real experiments, the

DLI PDF is quickly damped after this time. The same is true for CV (t), that is also quickly

damped after t ≈ 2.5 s. However, the Cθw (t ) PDF of the DLI model is in better agreement with

the experiments, but the two curves deviate in amplitude at t ≈ 2 s.
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Figure 4.8: Probability density functions (PDF) of all observables. A Speed V , B distance to the
wall rw, C angle of incidence to the wall θw, D Distance between individuals d , E difference in
heading angles φi j , F angle of perception of the geometrical leader and follower ψ, G Mean

squared displacement (i.e., CX (t) =
〈[

u⃗(t + t ′)− u⃗(t ′)
]2

〉
), H Velocity temporal correlations

(i.e., CV (t ) = 〈
v⃗(t + t ′) · v⃗(t ′)

〉
), and I Temporal correlations of the heading of a fish relative to

the wall (i.e., Cθw (t ) = 〈
cos

[
θw(t + t ′)−θw(t ′)

]〉
). Black lines: experimental data for zebrafish.

Red lines: agents of DLI. Dashed lines correspond to the leader, and dotted lines to the follower.

4.8 Assessing neural networks with no memory components

One of the main alternatives investigated during the automated search, described in previous

sections of this chapter, is a Multi-layered Perceptron Interaction (MLI) version of the DLI.

That is, we maintained the general shape of the structure of 7 layers, but all of them are dense

layers. That also means that the input is not a sequence of states, but only the last state at

time t n . For reference, we also tested various architectures where a sequence of states was

concatenated and provided at the input of the network, but we present MLI for two reasons: 1)
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concatenating past states at the input would provide some sort of memory to the ANN which

is not the comparison we set out to make, and 2) the ANNs with sequence of states at the input

(and no memory) did not give better results than MLI. Naturally, the lack of LSTM layers that

consist of memory cells, means that the MLI is composed of significantly less free parameters

than the DLI (approximately 1/6 th). An example of generate trajectory simulation for the MLI

can be found in S16 Video.

A B C

D E F

G H I

Experiments
MLI

Leader
Follower

Fish average

Figure 4.9: Probability density functions (PDF) of all observables. A Speed V , B distance to the
wall rw, C angle of incidence to the wall θw, D Distance between individuals d , E difference in
heading angles φi j , F angle of perception of the geometrical leader and follower ψ, G Mean

squared displacement (i.e., CX (t) =
〈[

u⃗(t + t ′)− u⃗(t ′)
]2

〉
), H Velocity temporal correlations

(i.e., CV (t) = 〈
v⃗(t + t ′) · v⃗(t ′)

〉
), and I Temporal correlations of the heading of a fish relative

to the wall (i.e., Cθw (t) = 〈
cos

[
θw(t + t ′)−θw(t ′)

]〉
). Black lines: experimental data of real

fish. Orange lines: agents of D-LSTM. Red lines: agents of MLI (Multi-layered Perceptron
Interaction model). Dashed lines correspond to the leader, and dotted lines to the follower.
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4.8.1 Quantification of the instantaneous individual behavior

Fig. 4.9A shows that the PDF of V is considerably different from the experiments. More specif-

ically, the location of the peak is located at a much lower velocity (≈ 1cm/s). Similarly, the

PDF of the MLI leader and follower of are not peaked at the same location as the experiments.

However, the PDF of the MLI follower is peaked at a greater distance to the wall than the leader

MLI agent, in agreement with what is measured in the experiments. Despite this, the PDF

of the leader and follower also demonstrate smaller peaks around a distance of dw = 19cm.

The alignment with the wall is also not very well reproduced by MLI (Fig. 4.9), although the

asymmetry in the direction of rotation is captured to a small extent. Furthermore, whereas the

PDFs of both the leader and follower MLI agent capture the slightly smaller angle of incidence

θw when θw > 0, the angle of incidence for θw < 0 is approximately equal to 90◦.

4.8.2 Quantification of the instantaneous collective behavior

In Fig. 4.9D the inter-individual distance di j PDFs of MLI are not in good agreement with

the experiments. Although the location of the peak is located at the same value as in the

experiments, there is a second peak at di j ≈ 26cm which is not present in fish data. Similarly,

Fig. 4.9E shows that MLI fails in reproducing the PDF of alignment φi j , although the peak

location is in good agreement with the experiments. However, MLI agents swim considerably

less amount of time aligned than the experiments. The viewing angle (Fig. 4.9F) leader and

follower PDF peaks are in good agreement with the experiments, but the asymmetry present

in the fish data is not captured. Furthermore, both PDFs of the MLI are wider around the

peaks than the experiments.

4.8.3 Quantification of temporal correlations

The MLI is not able to accurately reproduce the oscillations of CX (t ) similarly to experiments.

It saturates approximately 1 s later than the fish in the experiments, while considerably farther

distance from the wall. Similarly to fish, ABC and DLI, the MLI leader and follower have

different curves for CX (t ) and CV (t ) (Fig. 4.9G and H, respectively). Fig. 4.9H shows that MLI is

also unable to reproduce the oscillations of CV (t ). The curve deviates from t = 0 and reaches

the first oscillation at time t = 5 s, similarly to the experiments, but is quickly damped after.

Cθw (t) are not in good agreement with fish data and fail to reproduce the correlation of fish

for t > 2.5 s. Notably, the leader and follower curves of the MLI are considerably different, in

contrary to the fish data.

4.8.4 Complementary analyses

H. rhodostomus Lei et al. (2020), like many other group-living species Cavagna et al. (2018),

effectively only interact with a few influential neighbors, at a given time. Thus, for a given

agent in a group of N > 2 agents, the DLI for H. rhodostomus should only retain the influence of
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typically the two agents leading to the highest acceleration Wang et al. (2022); Lei et al. (2020),

as predicted by the DLI model. Video 3 of Appendix B illustrates this procedure for N = 5

agents, resulting in a cohesive and aligned group, in qualitative agreement with experimental

observation Lei et al. (2020).

4.9 Conclusion

Studying social interactions in animal groups is crucial to understand how complex collective

behaviors emerge from individuals’ decision-making processes. Very recently, such inter-

actions have been extensively investigated in the context of collective motion by exploiting

classical computational modeling Calovi et al. (2018); Escobedo et al. (2020); Jayles et al. (2020)

and automated machine learning-based methods Heras et al. (2019); Costa et al. (2020). Al-

though ML algorithms have been shown to provide insight into the interactions of hundreds of

individuals at short timescales Heras et al. (2019); Costa et al. (2020), their ability to reproduce

the complex dynamics in animal groups at long timescales has not yet been assessed.

In this chapter, we have presented a deep learning interaction model (DLI) which reproduces

the behavior of fish swimming in pairs. We have also introduced the appropriate tools for

its validation when compared to experimental results and when confronted with the state-

of-the-art analytical model (ABC). In fact, our study establishes a systematic methodology

to assess the long-term predictive power of a model (analytical or ML), by introducing a

set of fine observables probing the individual and collective behavior of model agents, as

well as the subtle correlations emerging in the system. These observables, which can be

straightforwardly extended to groups of N > 2 agents, provide an extremely stringent test for

any model aimed at producing realistic long-term trajectories mimicking that of actual animal

groups. In particular, we consider that the usual validation of an ML model at a short timescale

should be complemented by the type of long timescale analysis that we propose here, in order

to fully assess its performance.

The DLI model closely reproduces the dynamics of real fish at both the individual (speed, dis-

tance to the wall, angle of incidence to the wall) and collective (distance between individuals,

relative heading angle, angle of perception) levels during long simulations corresponding

to more than 16 hours of fish swimming in a tank, hence successfully generating life-like

interactions between agents. When compared to experiment, the ABC model and the DLI

model essentially performs equally well. Notably, the DLI model better captures the most

likely distance of the leader and follower from the wall. However, the DLI model is less accurate

in reproducing the temporal correlations quantified by the mean-squared displacement and

the velocity autocorrelation. Yet, both ABC and DLI models fail at capturing the temporal

correlations of the angle of incidence to the wall, but for very different reasons.

Our study demonstrates two advantages of ML techniques: 1) they can drastically accelerate

the generation of new models (as illustrated here for zebrafish), and 2) with minimal expertise

in biology or modeling. This is especially useful in robotics, where models often act as
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behavioral controllers (i.e., trajectory generators) that guide the robot(s). Although there

already exist many bio-hybrid experiments in the literature, most of them rely on simplified

models for behavioral modulation Bonnet et al. (2016, 2018) (see also Chapter 3), few of them

exploit realistic models (analytical or ML) Cazenille et al. (2018c,b), and, to our knowledge,

none of them are tested in the long term in simulations or real-life. In this context, ML has

the potential to benefit multidisciplinary studies, provided such techniques are thoroughly

validated in simulations.

However, accelerating the production of collective behavior models with ML comes at a

cost. Indeed, the DLI is a black-box model, and although it captures the subtle impact of

social interactions between individuals, it is impossible to retrieve the interaction functions

themselves. Some approaches partially address this issue by providing insight into how the

network operates for specific sets of inputs Heras et al. (2019); Costa et al. (2020). Yet, they still

do not offer explicit interaction functions. On the other hand, analytical models supplemented

by a procedure to reconstruct social interactions Calovi et al. (2018); Escobedo et al. (2020)

provide a concise and explicit description of the system in question. Moreover, varying the

parameters of such models allows for investigating their relative impact on the dynamics, and

to make predictions for various sets of these parameters Wang et al. (2022). This is not feasible

with ML models, unless they are retrained or specifically structured to allow it. Finally, whereas

the DLI was shown to also perform well for the zebrafish, this required completely retraining

the network on zebrafish data. However, given that both H. rhodostomus and zebrafish swim

in a burst-and-coast manner, in future work could investigate only partially retraining the

network (e.g., the last few layers that intuitively decode the social dynamics captured in the

model) by exploiting transfer learning techniques Zhuang et al. (2020); Weiss et al. (2016).

In summary, this chapter shows that DLI-like models may now be considered as firm candi-

dates to shed light on groundbreaking problems such as how social interactions take place

and affect collective behavior in living groups. Yet, we have emphasized that social interaction

models should be precisely tested at both short and long timescales. Future work could

include the design of ANNs that provide additional information about the learned dynamics,

possibly by exploiting symbolic regression algorithms Quade et al. (2016); Chen et al. (2019).

Furthermore, in Chapter 6 we thoroughly investigate how the DLI model can be transferred

back to real-life through a robotic system to create biohybrid groups that exhibit life-like social

interactions.
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Part IIIWhat makes for an efficient biohybrid
interaction framework
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5 Introducing a novel biohybrid interac-
tion framework

This section’s content is adapted from the following article:

• Papaspyros, V., Burnier, D., Cherfan, R., Theraulaz, G., Sire, C. and Mondada, F.,

2023. A biohybrid interaction framework for the integration of robots in animal

societies. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3290960 (reuse autho-

rised under the CC 4.0 licence) – Papaspyros et al. (2023a)

– Vaios Papaspyros’s contribution: Conception, data curation, formal analysis,

investigation, methodology, software, hardware, visualization, writing – origi-

nal draft, writing – review & editing.

• The article’s work was funded by the Swiss National Science Foundation project

“Self-Adaptive Mixed Societies of Animals and Robots” (Grant No. 175731). Our

collaborators from the Université Toulouse – Paul Sabatier were funded by the

French National Research Agency (ANR-20-CE45-0006-01).

• Ethics: All H. rhodostomus experiments were conducted at the Centre de

Recherches sur la Cognition Animale, Centre de Biologie Intégrative, CNRS, Univer-

sité de Toulouse – Paul Sabatier. Experiments were approved by the local ethical

committee for experimental animals and were performed in an approved fish facil-

ity (A3155501) under permit APAFIS#27303-2020090219529069 v8 in agreement with

the French legislation.

5.1 Introduction

Nearly a decade after the initial iteration of the FishBot v4.4 Bonnet et al. (2012, 2014) and

other similar platforms Swain et al. (2011); Landgraf et al. (2013, 2016), advancements in

algorithms and precision construction methodologies have enabled significant improvement.

This progress also extends to the ancillary hardware and software that supports the robot’s

operation, such as cameras and communication protocols. In this chapter, we present a

novel Behavioral Observation and Biohybrid Interaction (BOBI) framework, comprising: 1) an
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experimental setup; 2) a wheeled mobile robot, the LureBot; 3) a lure-building methodology,

primarily designed to study fish interactions, as well as small animals or insects in general;

4) an open source distributed codebase utilizing Robot Operating System (ROS) 1 (Melodic

Morenia Stanford Artificial Intelligence Laboratory et al. (2018)) packages to manage various

aspects of the setup and robot.

This new experimental framework facilitates and considerably extends continuous experi-

ments (exceeding 3 h), at robot speeds that can reproduce or even surpass the motion profiles

of multiple fish species (e.g., Rummy-nose Tetra – Hemigrammus rhodostomus – and zebrafish

– Danio rerio), with potential for applications to other small animal species. Additionally, BOBI

incorporates significant upgrades over the FishBot v4.4 Bonnet et al. (2012, 2014) and the

Control and Control And Tracking Software (CATS) Bonnet et al. (2017) (see Sec. C.1 for a

performance comparison between the FishBot v4.4 and the LureBot), in terms of real-time

robot control, individual detection and identification algorithms, and hardware components

such as cameras for capturing more precise data. In addition, in the context of the present

work where the LureBot is interacting with rummy-nose tetra fish (Hemigrammus rhodosto-

mus), the LureBot is commanded by a data-driven model which was shown in simulations to

faithfully reproduce the collective behavior of this species Calovi et al. (2018); Lei et al. (2020).

Furthermore, we have designed the new experimental platform to be mobile, compact, and

user-friendly for non-engineering personnel, a feature that, to the best of our knowledge,

has not been addressed in similar works. Finally, we demonstrate two sets of control exper-

iments with groups of H. rhodostomus and a lure manipulated by the LureBot. We validate

its operational stability and confirm its acceptance by the fish. This new framework allowed

us to reduce the physics gap (see Fig. 1.1) between simulation and preliminary real-world

experiments, the communication gap (see Fig. 1.1) by introducing a new biomimetic lure con-

struction methodology, and acted as a first step towards the extended biohybrid experiments

presented in Chapters 6 and 7, that allowed us to measure the biomimicry gap.

5.1.1 Chapter outline

The remainder of the chapter is organized as follows:

• in Sec. 5.2, we describe the design aspects of the experimental setup that includes the

fish tank, recording equipment, and the robot;

• in Sec. 5.3, we introduce our new robot, the LureBot, and provide a description of its

mechanical and electronics design;

• in Sec. 5.4, we detail our software architecture that allows the interplay of the experi-

mental setup and robot;

• in Sec. 5.5, we present our lure design methodology;
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• in Sec. 5.6, we describe 3 trajectory generation methodologies that we used to control

the robot, and in particular, to test its acceptance by the fish;

• in Sec. 5.7.1, we detail the handling conditions of the fish and provide a step-by-step

procedure that we have followed during our experiments;

• in Sec. 5.7.2, we describe some data-related post-processing operations;

• in Sec. 5.8, we present the results of our experiments. We first focus on assessing the

acceptance of the robot by the fish by exploiting open-loop trajectory generators with

a biomimetic lure and a disc-shaped lure. Then, we quantify the behavior of a single

fish and of the robot alone and of a fish swimming with the robot. Finally, we present

preliminary results for a group of 4 fish interacting with the LureBot;

• in Sec. 5.9, we highlight the main contributions of this chapter’s work and also discuss

some of its limitations and potential areas for future exploration.

5.2 Experimental Setup

The proposed behavioral setup, depicted in Fig. 5.1, measures 810mm×810mm×1810mm

(w ×d ×h), which is smaller than the previous one Bonnet et al. (2017, 2012), which measured

1000mm×1000mm×2100mm (w ×d ×h). All aluminum beams are indented in the middle

to allow for mounting external attachments. Therefore, all the necessary equipment (e.g.,

lights, cameras. . . ) can be directly attached to it for use and storage. Conversely, in Bonnet

et al. (2017, 2012) some equipment (e.g., lights) was permanently fixed to the experimental

room walls. Consequently, it was particularly difficult to move it and proved rather restricting

for maintenance and experimental procedures alike, and it was almost impossible to use the

setup in different experimental facilities, even if those were located in the same building. The

proposed setup stands on omnidirectional wheels (equipped with brakes) attached to each

corner of the frame, which allows the experimenter to move with great ease, even when the

full equipment is mounted on its frame.

In the current setup configuration, a 10mm thick glass tank of 720mm×720mm×140mm

(w ×d ×h) is fixed on the outer frame, and is used to bound the experimental area. The tank’s

bottom surface is fitted with a white polytetrafluoroethylene layer (PTFE) due to its small

friction coefficient, which allows for smooth motion of the lure (see Sec. 5.5.1). Inside the tank,

we use the same circular shaped arena that was used in our previous setup (refer to Chapter 3).

An additional inox plate is glued on the outer bottom part of the tank and connected to the

positive pole of an external power supply. A second plate is placed below the glass tank, on four

spring-loaded supports (see Fig. 5.1) that are attached to the frame. This space is where the

wheeled robot(s) operate. The plate consists of a perforated inox layer glued on transparent

plexiglass. The holes in the inox layer allow for light to pass through, and the plexiglass

serves two purposes: 1) maintain the inox layer flat, and 2) diffuse the light passing through

the perforated surface. Our previous setup entirely lacked those two characteristics. The
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Figure 5.1: Experimental setup and software overview. (a) Basler acA4024-29um
monochrome camera mounted at the center top of the metal frame. (b) Color webcam
(ELP-USBFHD01M-L170) equipped with a fisheye lens and mounted at the center bottom of
the metal frame. (c) Sample frame from the top camera depicting 5 agents (including a lure).
(d) Sample frame from the bottom camera depicting the two LED lights of the robot, namely,
red and green located at the front and back of the robot, respectively. (e) Cross-section view
of the experimental setup depicting the robot operating below the tank and the lure moving
inside it. (f ) Robot detector module. Extracts the robot positions and headings from the robot’s
LED lights, using images from the bottom camera. (g) Individual detector routine. No iden-
tities assigned at this point. (h) Trajectory assignment module. Given the tracked positions
of robots (bottom camera) and individuals (top camera), and using past observations, this
module assigns unique trajectory IDs to individuals. (i) Behavioral control module. High-level
decision-making process that generates target vectors (positions or velocities) for the robot to
follow. (j) High-level robot control module. The module consists of regulation routines that
take instructions from decision-making models and translate them into motor commands.
(k) Robot interface module. The communication interface that exchanges information with
the robot(s). (l) On-board (low-level) robot control module. (m) Data logging module. The
module collects and stores the outputs of all other routines for analysis and debugging pur-
poses. (n) Sample frame depicting the fused information from the top and bottom cameras
after executing the trajectory assignment routine. The red marker signifies that the individual
is the artificial robot; blue markers correspond to all other individuals; the orange marker
represents the robot’s desired position; and the two green circular markers are the two most
influential neighbors of the lure (see Lei et al. (2020) for more details).
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distance of this plate to the tank bottom is regulated by the mounting location of the springs

on the frame and support elements (gauge blocks) in between. The adjustable springs and

support elements also serve as means to fine-tune the magnetic coupling strength between

the lure and robot, by adjusting the distance between them. Additionally, the springs allow the

experimenter to easily add or remove robots by momentarily compressing the springs, instead

of the external crank lift system used in our previous setup.

We attach two cameras of different specifications in two aluminum beams at the top and

bottom of the outer frame, for each camera respectively (see Figs. 5.1a, b). The top camera,

which is used to monitor the contents of the glass tank, is a monochrome high resolution

(4024 pixels×3036 pixels) Basler acA4024-29uc fitted with a low distortion lens. The camera

is capable of delivering frames at 30 Hz, twice the rate of the camera used in Bonnet et al.

(2017, 2012), with added resolution. The bottom camera is the same full high-definition

(1920 pixels×1080 pixels) color webcam (ELP-USBFHD01M-L170) from Bonnet et al. (2017,

2012). It is capable of retrieving frames at 30 Hz and is equipped with a fisheye lens that can

keep the second plate in frame even when it is mounted at a low position (close to the camera

in Fig. 5.2e). The bottom part of the frame, which includes the plate where robots operate, is

enclosed by Medium-density fiberboard (MDF) boards. This eliminates environmental light

sources and allows for easier detection of the LED lights located at the bottom part of the

robot’s chassis.

5.3 LureBot

5.3.1 Mechanics

A full depiction of the LureBot’s mechanical design1 is presented in Fig. 5.2, and can be gener-

ally summarized as a two-part design that consists of its chassis and cover. The robot’s outer

dimensions are 49mm×50mm×42.7mm (w×d×h), not including the magnets (Fig. 5.2a) and

ball casters (Fig. 5.2i) or 49mm×78mm×46.7mm (w ×d ×h), otherwise. For reference, the

FishBot v4.4’s outer dimensions (without its magnets) are 22mm×43mm×67mm (w ×d ×h)

Bonnet et al. (2014).

The LureBot’s chassis is roughly equal to the bottom half of its height and houses two motors

symmetrically placed in its center. We explicitly designed it in a differential drive configura-

tion to allow for rapid direction changes, including rotations in-place thanks to the motor

placement symmetry, much like the U-turn movements exhibited in fish schools Crosato et al.

(2018). We use two independent Faulhaber AM1524-0450 stepper motors (Fig. 5.2h), that are

capable of producing speeds up to 100 cm/s and accelerations of 175 cm/s2, which are more

than adequate to express the motion profile of fish species like H. rhodostomus or Danio rerio

(refer to Chapter 4). The motors are directly attached to an aluminum frame (Fig. 5.2f), a

material we explicitly chose to dissipate the large amounts of heat (up to 90 °C) generated

1Designs available at https://doi.org/10.5281/zenodo.7796299
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Figure 5.2: Description of the robot and its internal parts. (a) Conductive metal link which is
used during operation to supply power (positive pole) to the robot. An identical link exists
on the bottom part of the robot (negative pole). (b) Two rectangular neodymium magnets
measuring are housed on the top robot cover; half of each magnet is below the cover surface
and half above. (c) A thin metal post is used to penetrate the lure and maintain it at a fixed
height. (d) At the base of the metal post, there is an additional metal plate with two neodymium
magnets attached below it. (e) A low friction Poly(methyl methacrylate) (PMMA) plate houses
the magnets and metal post. (f ) An aluminum part covers the robot base’s middle area. (g)
Two brass parts cover the robot base’s sides. (h) Two rubber wheels are directly driven by two
stepper motors. (i) Two ball casters support the robot on the back and front. (j) Two RGB LED
lights, on the back and front of the robot, are attached to and driven by the main board. (k)
Three infrared (proximity; IR) sensors and (l) two supercapacitors are soldered on the (m)
custom electronics circuit board. (n) Arduino Nano 33 IoT single-board.

by the motors during long experiments. Furthermore, to facilitate the transfer of heat, we

apply thermal paste between surfaces that come into contact with the motor’s outer shell

(e.g., the aluminum frame). We attach two brass parts (Fig. 5.2g) to the sides of the aluminum

frame, primarily to add weight and improve traction during operation. As a result, the LureBot

weighs 300 g and is significantly heavier than the FishBot v4.4’s 80 g. A recessed area on each

brass component accommodates two rubber wheels (Fig. 5.2h), each one directly attached to

a motor.

In comparison, the FishBot v4.4 was unstable in high-speed movements (primarily angular),

and for the majority of our past experiments, its maximum speed was limited to 20−25 cm/s
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Bonnet et al. (2018) (refer to Chapter 3). Hence, it was unable to reproduce the entire spectrum

of speeds observed in fish schools. Increasing its speed required that we: 1) increase the

torques (i.e., using new motors), and 2) decrease the operating distance of the robot to the top

plate to ensure sufficient magnetic coupling in faster movements. However, the latter reduces

traction in the wheels, and while this could be partially solved by adding weight, the motors

on the FishBot v4.4 did not produce enough torque to support this choice.

On the lower part of the LureBot’s chassis, there exist two ball casters extending the LureBot’s

length by 18 mm, that serve a dual purpose, namely: 1) they support the robot during its

movement, and 2) have recessions made of light diffusive material for the LED lights (Fig. 5.2j)

facilitating its detection by the bottom camera. Finally, we place a conductive link, depicted in

(Fig. 5.2a) below and along the center axis of the robot, to limit the effect of uneven friction

forces when the link is touching the conductive plate located below the robot.

The second part of the LureBot’s mechanical design, the cover, is designed to house two

neodymium magnets (Nd-Fe-B) measuring at 8mm×8mm×4mm (w×d×h) with a magnetic

strength of 14.7 N (1.5 kg), depicted in Fig. 5.2b, used to magnetically move the lure within the

tank (Fig. 5.2b). The magnets protrude by half their size (i.e., 4 mm) above the cover to allow

for easier replacement if necessary, while remaining firmly fixed in a symmetric arrangement

during operation. Additionally, we attach a conductive link along the center axis of the cover

(Fig. 5.2a), similarly to the bottom one, that makes contact with the inox plate located below

the glass tank. The cover is also used to enclose and protect the robot’s electronics (discussed

in the following section). Similarly to the FishBot v4.4, and unlike battery powered robots

Swain et al. (2011); Landgraf et al. (2013, 2016), the two conductive links allow for continuous

access to a power source during operation, i.e., the robot can operate normally for extended

periods of time (≫ 3 h).

5.3.2 Electronics

The LureBot is driven by two main components, the Arduino Nano 33 IoT (see Fig. 5.2n)

connected on a custom circuit board (see Fig. 5.2m). We use the Arduino as an endpoint (see

Fig. 5.1l) that communicates with the high-level interface (see Fig. 5.1k) and receives motor

commands. We use those commands, i.e., the desired motor speeds, to time-schedule the

step signals of the two Faulhaber motors at 100 Hz. The resulting signals are propagated to

the custom circuit board that eventually powers and drives the two Faulhaber motors. The

motors have a nominal voltage of 2 V, but we power them at 5.3 V to ensure that they have

sufficient current to achieve the desired holding torques. However, this means that the motors

produce more heat than intended. In addition to the heat dissipation measures described in

the previous section, we use a Pulse-Width modulation (PWM) signal operating at a 70-30%

ratio at 1 A and 0.2 A, respectively, to limit the amount of time the motors spend on high

currents, and effectively reduce the heat they produce. Therefore, the ratio choice is a tradeoff

between producing sufficient torques and low temperatures, and we extensively tested the
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robot to obtain one that yields a good balance. The circuit board also houses and powers two

LED lights (see Fig. 5.2j) and three TCRT1000 infrared (IR) sensors (see Fig. 5.2k). Finally, we

add two supercapacitors (charging at 3 V with 10 F capacity, each), on two sides of the board

(see Fig. 5.2l). Their role is to ensure that temporary loss of power (e.g., conductive link not

making good contact with the plate or voltage drops) does not cause a complete power down

or lead to dimmed LED lights, which are critical for the robot(s)’ detection and control.

5.4 Software architecture

The experimental setup and robot/lure is operated by the Behavioral Observation and Biohy-

brid Interaction (BOBI) software framework, for which, modules are implemented as ROS 1

packages2. We use ROS because of its: 1) widespread use and support in the robotics com-

munity; 2) package-based architecture that allows modules to be easily replaced, maintained,

adapted, or extended; 3) distributed architecture that allows programs (nodes) to be run on

different machines to balance the computational load; 4) support of many common program-

ming languages, e.g., C++ and Python, which makes it easier to alter high-level operational

aspects (e.g., the behavioral model generating trajectories) for people with limited knowledge

or interest in systems programming.

In comparison, our previous Control And Tracking Software (CATS) Bonnet et al. (2017), was

packaged as a single C++ software suite, with explicit dependencies to external libraries (e.g.,

GStreamer 0.1 Team (2016)). These choices shortened its life span and proved rather limiting:

1) for experimenters with little programming know-how, as it required good knowledge of

C++ programming; 2) for maintenance, as GStreamer has since moved to a newer version

that is not backwards compatible; 3) for software and hardware upgrades, because newer

operating systems present dependency conflicts with CATS’ external libraries which have been

considerably updated and often do not support newer hardware (e.g., GStreamer 0.1 with USB

Basler cameras).

As depicted in Fig. 5.1, BOBI is currently comprised of 4 main packages for vision, control,

logging tasks, and interfacing with the robot (orange, green, blue, and red color, respectively).

Additionally, there are 2 supporting packages that hold ROS message and service definitions,

i.e., the definitions of communications that allow the system to distribute information in

real-time, and, finally, simulation models for the LureBot. In the following subsections, we

detail the implementation of the three operationally fundamental modules, namely, vision,

control, and robot interface. Video 1 of Appendix C includes a depiction of a single operational

cycle within the framework.

2Code available at https://doi.org/10.5281/zenodo.7796357
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Vision

Similarly to our previous work Bonnet et al. (2017), we utilize two cameras installed at the top

and bottom of the experimental setup (see Figs. 5.1a, b and Sec. 5.2) to track the individuals

(including the lure, if any) and robot, respectively. The cameras operate at their maximum rate

of 30 Hz, twice the rate used in our previous setups Bonnet et al. (2017) (see also Chapter 3),

which allows for tracking even the very rapid and fine movements of fish or other rapidly

moving animals.

Both camera streams are downsampled at source from their original resolution to 512 pixels×
512 pixels and 640 pixels×480 pixels for the top and bottom camera, respectively, to reduce

the computational load. Operating the cameras at their highest resolution is computationally

demanding and not required for fish individuals, but the extra resolution could prove useful

for smaller animals, e.g., ants. At the beginning of an operational cycle, we obtain two frames,

one from each of camera stream. The two frames are subject to distortion caused by each

camera’s lens, therefore, in the modules depicted in Fig. 5.1f and g, we first undistort them,

and optionally apply a mask to retain user-defined regions of interest (i.e., to further reduce

the computational load and assist the detection). Then, we run two routines for each frame in

parallel.

For the bottom camera frame, we apply a color threshold twice, once to isolate the light blob

produced by the front LED and once for the light blob produced by the back LED. The two LED

lights have been purposely given different colors to indicate the heading of the robot instantly,

unlike the single LED color used in Bonnet et al. (2017) which requires that the heading is

inferred from the robot’s movement.

For the top camera frame, we use the first 500 frames to train a Mixture of Gaussians back-

ground subtractor variant (namely, MOG2) KaewTraKulPong and Bowden (2002) with a learn-

ing rate λ = 0.05 using the implementation provided by OpenCV Bradski (2000). Once the

training is complete, we instead start by subtracting the background from the frame to remove

static objects (e.g, the tank’s walls) from following operations. Then, we run a blob detection

algorithm to extract regions of interest that could potentially be identified as individuals.

We directly remove small blobs with size much smaller than the animals being tracked. We

use the remaining blobs to create a masked frame which contains black pixels outside their

boundaries and the original pixel intensities inside, substantially reducing the computational

load of subsequent operations. We apply a corner detection algorithm, namely, the Shi-Tomasi

Shi et al. (1994), on the masked frame to extract candidate pixel positions of the individuals’

heads. These two pieces of information, that is, the coordinates of the head and the centroid

of the blob, give a good estimate of the individuals’ instantaneous heading directions and

positions at any time, without the use of past frames.

Finally, we convert all coordinates from their pixel values to their actual coordinates in meters.

To achieve this, we designed an auto-calibration routine that uses the robot and a lure to

traverse a grid of points, while recording the positions of the robot and lure separately. After
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the grid is traversed, we use the two resulting matrices to solve a Perspective-n-Point system

Marchand et al. (2015) and to retrieve the roto-translation matrices that allow for converting

coordinates between the two cameras’ different coordinate systems. This allows for precisely

fusing information from the top and bottom cameras to identify which individual is indeed the

lure, an important feature for the computation of behavioral models. In Fig. 5.1n, we depict

an example of what this result looks like, where the individual in red color has been identified

to be the lure.

In our experiments with up to 25 individuals, the described processes were completed in

approximately half the time it takes for a new frame to arrive (i.e., at ≈ 60 Hz), using a com-

puter equipped with an AMD Ryzen Threadripper 2970wx 24-core processor and an NVIDIA

GeForce RTX 2080 Ti graphics card. We take advantage of the remaining time to apply a

trajectory assignment routine (see Fig. 5.1h). More specifically, within the routine we apply

operations to account and correct for missing individuals in frames (i.e., in case of overlapping

or very small distances between individuals – which is particularly common in fish groups).

More importantly, we attempt to maintain unique identifiers (IDs) for each individual across

different frames in real-time. Whereas there exist many solutions to solve this problem offline

Pérez-Escudero et al. (2014); Romero-Ferrero et al. (2019); Gallois and Candelier (2021), those

methodologies are not fit for real-time systems, as they depend on past and future trajectory

points to discern between individuals. Instead, real-time systems, like CATS Bonnet et al.

(2017), often bypass this problem by using behavioral models that, by design, do not require

trajectory information or work under the assumption that errors are small. In BOBI, we for-

mulate the ID assignment as a combinatorial optimization problem and apply a Hungarian

method Kuhn (1955) to solve it. That is, we solve the minimization problem that follows in

real-time:

min
P

Trace(P ·C ), (5.1)

where P is a permutation matrix and C a cost matrix of size m ×n. Assuming that there

is no overlapping between individuals of two subsequent frames (our algorithm is able to

automatically correct overlapping coordinates in some cases), then m = n. Otherwise, the

minimization problem (5.1) is solved for the cost matrix Cm×n and the missing individual

coordinates are directly copied from past observations. In some cases, if prior observations

are also uncertain, our algorithm allows the system to return a vector of coordinates smaller

than the actual number of individuals, but still guarantees the smallest possible assignment

cost. We experimentally parametrize and define the cost matrix as

Cm,n =


f (1,1) f (1,2) · · · f (1,n)

f (2,1) f (2,2) · · · f (2,n)
...

...
. . .

...

f (m,1) f (m,2) · · · f (m,n)

 (5.2)
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with

f (i , j ) = a · ∥pi (t )−p j (t −1)∥+b · |φi (t )−φ j (t −1)|, (5.3)

and where pi (t ), p j (t −1) are the Cartesian position vector of the individuals with ID i and j ,

at time t and t −1, respectively. Similarly, φ denotes the heading direction of individuals, and

a, b are weighing parameters. For fish experiments, we found that a = 0.95 and b = 0.08 yields

good ID assignments results.

Control

We semantically separate the robot control into two types of controllers, namely, behavioral

and motion controllers. The former often consist of decision-making models or any general

purpose trajectory generator, while the latter translate the desired trajectories into motor

velocities.

Our motion control routine, depicted in Fig. 5.1j, comprises a pair of proportional-integral-

derivative (PID) controllers to regulate the linear and angular speed of the robot. The output

of these controllers is subsequently converted into two motor speed commands, one for each

motor. Specifically, the PID variant we utilized incorporates a priori knowledge of the desired

speed, since most of our behavioral models generate decisions in the form of velocities.

The mathematical expression for the speed PID controller used in our study can be expressed

as follows:

u(t ) = Kp e(t )+Ki

∫ t

0
e(τ)dτ+Kd

de(t )

d t
+KaVa , (5.4)

where u(t ) is the new motor speed, Kp , Ki , Kd , and Ka correspond to the proportional, integral,

derivative gains, and an optional a priori speed gain, respectively. The e function denotes the

error signal, which represents the difference between the desired and actual speed, while Va

refers to the desired or a priori speed that can be explicitly specified in the behavioral control

module.

For the linear speed PID, we use (5.4), and define the error function as elinear(t) = ∥p(t)−
p(t −1)∥, i.e., the Euclidean distance between the current and goal position. Similarly, for the

angular speed PID, we use the error function eangular(t ) = (
φ(t )−φ(t −1)

)
mod π. We typically

find that when using the additional a priori component, the robot has smoother acceleration

and deceleration phases, and simultaneously accounts for the loss of speed (due to the phase

smoothing) with the proportional gain, and effectively maintains the desired average speed

Va over short durations of time.

We denote V ′ and ω′ the linear and angular speed generated by the two PIDs, respectively.

Then, the left and right motor speeds for the differential drive, denoted as Vl and Vr , respec-

tively, are computed as follows:
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Vl =
2V ′−ω′L

2
, and Vr = 2V ′+ω′L

2
(5.5)

where L = 0.0451 m the distance between the center point of the two wheels.

Robot Interface

We currently offer support for 3 robots in BOBI, namely, the LureBot, the FishBot v4.4 used

in our previous studies Bonnet et al. (2019, 2017) and Chapter 3 and the Thymio II Mondada

et al. (2017). In the remaining of this section, we focus on the LureBot, our latest hardware

addition that is presented here for the first time.

To interface with the LureBot we use the BLE protocol, which offers a publish-subscribe com-

munication model 3. More specifically, the high-level interfacing routine, depicted in Fig. 5.1k,

is responsible for three tasks: 1) to send the motor commands to the corresponding BLE char-

acteristic; 2) to react to notifications from the LureBot which include information about the

robot state (e.g., current motor speeds, IR sensor values, etc.), and to communicate those back

to the motion control module (see Fig. 5.1j); 3) to verify the stability of the communication link.

In fact, the latter is a safety procedure we devised on both ends of the communication, the

robot, and the computational machine running the high-level routine, and can be summarized

as an abrupt motor stop in case there has not been any incoming message for more than 0.5 s,

or one of the two ends is detecting largely desynchronized communication. In the last part of

Video 1 of Appendix C, we illustrate how the LureBot operates in a closed loop and ultimately

interacts with the fish.

5.5 Lures

In our previous studies Chapter 3, Bonnet et al. (2018, 2016); Cazenille et al. (2015), we made

use of commercially available fishing lures, with a body length of 4.0 cm. They were factory-

painted, and their tail was specifically designed to oscillate passively to attract attention.

However, this presented two problems: 1) small-sized lures (length < 4 cm) are hard to find

in commercial stores, and more importantly, 2) they rarely replicate the color patterns of

actual fish in detail, especially those that are primarily lab animals, like rummy-nose tetra

or zebrafish. In this section, we present the methodology we developed to construct two

lures, a visually biomimetic and a non-biomimetic disc-shaped, with equipment that is readily

available in most laboratories.

3Robot code (low level; see Fig. 5.1l) available at: https://doi.org/10.5281/zenodo.7802052
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Figure 5.3: Lure construction process. (a) Picture of an actual Hemigrammus rhodostomus
(photo by David Villa ScienceImage/CBI/CNRS, Toulouse). (b) Mold (cross-section view)
constructed from a 3D scan of an actual H. rhodostomus. PLASTIBAITS® Low Shore liquid
plastic mixed with a silver pearl color pigment is inserted from the top. (c) Picture of the lure
without paint. (d) Picture of the final hand-painted biomimetic lure after the application of
protective coating. (e) Picture of a disc-shaped black lure.

5.5.1 Biomimetic (BM) Lure

To construct a biomimetic (BM) lure replicating the color patterns of H. rhodostomus, we

first obtained a high quality 3D model of an actual H. rhodostomus. We built the replicas

out of plastic, namely, PLASTIBAITS® Low Shore, which is rated at 22 Shore hardness. We

empirically found that this hardness index provides enough flexibility in-water to allow for

sufficient deformation when in contact with objects (e.g., the tank wall or neighboring fish),

and for passive tail movements due to water flow. The plastic, which is initially in liquid form,

contains a hardener that is activated at high temperature, approximately 150◦. Therefore, we

built the molds out of high-temperature tolerance resin material (see Fig. 5.3b). Then, we

replicated the color patterns of H. rhodostomus in a 4-step process: 1) we introduced a small

amount of silver pearl color pigment in the liquid plastic before pouring it into the mold; 2)

we let the lures dry completely (usually a few hours) (see Fig. 5.3c); 3) we hand-painted the

lures with consumer-level, alcohol-based markers and let them dry; 4) we coated the painted

lures with varnish to protect the color. The final result is the lure depicted in Fig. 5.3d.

5.5.2 Disc-shaped (DS) Lure

For validation purposes, we also built a disc-shaped (DS) lure (see Fig. 5.3e) with the same

process as described in the previous section. The DS lure was painted matte black using the

same alcohol-based markers used for the biomimetic lure. Additionally, we molded the disc-

shaped lure to have the same exact volume as the biomimetic, such that the only difference

between them lies in their color and shape.
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5.6 Trajectory generators

In this section, we describe the three trajectory generators that we have implemented on the

robot to validate its capabilities. In the first two cases, the robot is passive and does not react

to the fish, and it follows a predetermined circular trajectory or an eightfold rose trajectory.

We specifically designed these non-biomimetic trajectories to study the extent to which actual

fish interact with the two different lures, BM and DS. In the third case, the robot decisions are

commanded by means of a state-of-the-art behavioral model Calovi et al. (2018) that generates

realistic trajectories for H. rhodostomus.

Figure 5.4: Open-loop trajectory generator patterns. (a) Circular (clockwise) trajectory. (b)
Eightfold rose. The trajectory is constructed by rotating an eight-like pattern by a step of 45◦

(see also Fig. 5.7a for the full trajectory).

5.6.1 Circular trajectory (CT)

The robot performs a clockwise circular trajectory of radius R ′ = 22.5 cm (see Fig. 5.4a; Video

1 of Appendix C). During this movement, the robot uses the PID controller summarized in

(5.4) to track circular trajectory waypoints. Individual waypoints are generated every 0.2 s and

advance the goal position by 0.1 rad, i.e., which corresponds to a theoretical constant speed

movement of V = 11 cm/s, similar to the average speed exhibited by H. rhodostomus (refer

Chapter 3). In this case, the robot follows a trajectory similar to what an actual single fish

would do, by staying very close to the tank wall. This model is open-loop, in the sense that the

robot does not react to the movements of the fish or to its relative position to the wall.

5.6.2 Eightfold rose trajectory (R8T)

We have designed a second open-loop trajectory generator, where the robot is instructed to

perform a trajectory with an eightfold symmetry, similar to a so-called rose in mathematics

(see Fig. 5.4b; Video 1 of Appendix C). Contrary to the previous case of a circular trajectory, the

robot now spends long periods in the innermost area of the experimental tank. In fact, the

interest of this trajectory lies in the fact that it allows us to explore whether a fish is willing to

follow a DS or BM lure into areas of the tank that it would not normally visit.
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5.6.3 Biomimetic interaction model (BIM)

We have also implemented a closed-loop behavioral model describing the social interactions

exhibited by H. rhodostomus, as defined in Calovi et al. (2018). This model has been shown to

reproduce the actual fish interaction dynamics with great accuracy, in numerical simulations

Calovi et al. (2018), Chapter 4 and by implementing the model in groups of CUBOID robots

Lei et al. (2020) (these CUBOID robots were moving on a disc in open air and were not inter-

acting with any fish). Here, we implement the model in the LureBot to conduct preliminary

experiments with fish interacting with a lure (biomimetic or disc-shaped) propelled by the

robot.

The model is constructed through a computational methodology Escobedo et al. (2020) for

fish species that perform a burst-and-coast swimming mode Calovi et al. (2018), like rummy-

nose tetra (H. rhodostomus) and zebrafish (Danio rerio). Indeed, their motion consists in a

succession of short and sudden acceleration phases (kick or burst), each followed by a longer

deceleration period, almost in a straight-line (gliding or coasting phase). The updated heading

and speed of a focal agent are decided during the kick phase and depend on its heading and

distance with respect to the tank wall, and on its relative heading, relative position and distance

to neighboring agents Calovi et al. (2018); Lei et al. (2020). We exploit the tracking features

presented in previous sections to obtain real-time information and plan the robot’s motion

at time t +∆t , where ∆t = 1/30 s, the smallest possible duration between two image frames.

During the kick phase, the robot computes its target position and rapidly accelerates towards

it. Subsequently, during the gliding phase, the robot attempts to maintain a straight-line

movement with the speed profile computed at kick time. We also use the a priori component

of the PID in (5.4) to approximate the speed profile that the model computes.

5.7 Protocols and Data Treatment

5.7.1 Experimental Procedure

Hemigrammus rhodostomus (rummy-nose tetras) were purchased from Amazonie Labège in

Toulouse, France. Fish were kept in 16 L aquariums on a 12/12 hour, dark/light photoperiod,

at 27◦C with a 30 min dimming period between phases and were fed ad libitum with fish flakes.

The average body length of the fish used in these experiments is 35 mm. A trained technician

feeds and verifies the housing conditions every day between 8:30 am and 9:30 am.

All behavioral experiments presented in the following sections were conducted within a

circular arena of radius R = 25 cm. We filled the experimental arena in such a way that the

water level inside the circular arena was approximately 5 cm. The water is supplied by the

same water filtering system used for housing the fish. Therefore, it has the same salinity and

conductivity conditions. Similarly, the temperature inside the tank is maintained at an average

temperature of 27◦, to match the one in the rearing tanks. The behavioral setup presented

in previous sections is housed in a separate room to the one containing the rearing tanks.
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Experiments were performed with fish that have been fed and only during the fully lit periods,

between 9:00 am and 20:30 pm.

For all experiments, we follow the same procedure, summarized below:

1. Fish are randomly selected from a rearing tank that has not been used during the

previous day, and placed in the circular arena.

2. They are subsequently given an acclimatization period of 15 minutes. During this period,

if a fish is exhibiting a high-stress level (belly up; floating without moving at all...), we

return it to its rearing tank and randomly pick another fish.

3. Each fish or fish group is left to interact with a lure for 1 hour and is then returned to its

corresponding tank. For biohybrid experiments we adapt our procedure as follows:

(a) we first introduce the BM lure and conduct the experiment for 1 hour;

(b) we remove the BM lure and let the fish rest for 15 minutes;

(c) we introduce the DS lure and conduct another 1-hour experiment with the same

fish.

4. We return all fish to their rearing tank.

This procedure ensures that no fish is tested twice in the same day, nor two days in a row, to

avoid the fish getting accustomed to the lure or to specific patterns it exhibits.

5.7.2 Data Filtering

We use idtracker.ai (v4) Romero-Ferrero et al. (2019) with a high-resolution recording (1500×
1500 pixels) of the experiment to track the movements of all agents and extract their 2D

trajectories offline. The software reports an average tracking success rate greater than 99.5%, a

result that is further validated by manual inspection. Additionally, we run a post-processing

procedure that checks for and corrects any remaining instances where agents’ identities are

misclassified or missing (e.g., when idtracker.ai cannot detect all individuals at a specific video

frame). Analyses of later sections focus on the interaction of the lure with the fish, therefore,

long periods during which the fish are barely moving are removed. More specifically, given the

35 mm average body length of H. rhodostomus, we remove intervals during which the fish or

the lure speed is less than 1 BL/s. This procedure also removes instances where the magnetic

coupling between the robot and lure is lost, and the lure is stationary. The percentage of the

experiment that corresponds to those periods is further discussed hereafter, and is referred to

as the “inactivity percentage”, for brevity. Finally, all trajectories are resampled with a timestep

of ∆t = 0.1 s instead of the original 1/30 s. The new timestep is carefully selected to reduce the

random noise introduced between subsequent frames and the dimensionality of the dataset,

but is still small enough to study the interactions of fish and lure.
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5.8 Assessing the dynamics of biohybrid groups

We validate our robotic system software and hardware by conducting experiments first focus-

ing on the impact of the choice of lure (DS or BM), and then, studying the behavior of the robot,

in particular, when interacting with 1 or 4 actual fish4. Furthermore, we consider 5 observables

to evaluate the robot’s ability to move similarly to a fish and validate the importance of the

visually biomimetic lure:

1. a qualitative comparison of the agents’ trajectories by means of density heatmaps

indicating the areas of the circular experimental tank visited by the robot and the fish

during a given experiment;

2. the probability density function (PDF) of an agent’s speed V ;

3. the PDF of an agent’s acceleration α;

4. for N > 1 agents, the probability density function of the group’s interindividual distance:

d =
√

1

N −1

∑
j ̸=i

∥pi −p j∥2, (5.6)

where i is the focal agent and the index j runs over its N −1 neighbors;

5. for N > 1 agents, the inactivity percentage, i.e., the percentage of time when the focal

agent is barely moving, as detailed in the Sec. 5.7.2.

Moreover, in order to quantify the (dis)similarity between the PDF produced by the fish and

the DS/BM lures, we have also considered the Hellinger distance between these PDF (for more

details, including the detailed definition, see Appendix C; Tables C.1 to C.4 there).

In the first set of experiments, we study the impact on the behavior of a fish of using a

biomimetic (BM) lure compared to a disc-shaped (DS) lure. We test each lure in 2 separate

open-loop cases: 1) the lure is performing a circular trajectory (CT; see Sec. 5.6); 2) the lure

is performing an eightfold rose trajectory (R8T; see Sec. 5.6). Hence, in this first series of

experiments, the robot/lure is passive and does not react to the fish.

The second set of experiments consists of 3 closed-loop cases, where the robot is now com-

manded by the biomimetic interaction model (BIM): 1) without any fish in the setup, and

generating realistic velocity commands when the robot is interacting with the tank wall alone

(a baseline to validate that the robot can reproduce the basic motion profile of a single H. rho-

dostomus); 2) in presence of a single H. rhodostomus fish, and for both the BM and DS lure, and

comparing the results to the spontaneous motion of a pair of H. rhodostomus; 3) with 4 H. rho-

dostomus, and comparing the results to the spontaneous motion of 5 actual H. rhodostomus.

Video 1 of Appendix C shows side-by-side comparisons of all experiments.

4Data available at https://doi.org/10.5281/zenodo.7796158
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5.8.1 Experiment № 1: Open-loop dynamics

Figure 5.5: Short trajectories from the open-loop experiments. (a) Disc-shaped (DS) lure
swimming in a circular motion with a H. rhodostomus in the tank. (b) Biomimetic (BM) lure
swimming in a circular motion with the same H. rhodostomus in the tank. (c) DS lure swim-
ming in an eightfold rose motion with a H. rhodostomus in the tank. (d) BM lure swimming in
an eightfold rose motion with the same H. rhodostomus in the tank. On all trajectories, a dot is
shown every second, and the X marker represents the start of a trajectory. In both open-loop
experiments, the fish responds more faithfully to the passive motion of the BM lure (see also
Figs. 5.6 and 5.7 for a more quantitative assessment).

Circular trajectory

Fig. 5.5a and b display a short excerpt of the circular passive trajectory of the DS and BM lures,

along with that of the fish interacting with the lure (see also Video 1 of Appendix C). More

quantitatively, Fig. 5.6 presents the results corresponding to a 1-hour-long circular trajectory

of the robot and the resulting trajectory of a single fish interacting with the DS lure (insets

a-d) or the BM lure (insets e-h). Fig. 5.6i shows that when the fish swims with the DS lure in

the tank, it maintains a typical distance of 46 cm from the lure, almost the maximum possible

distance from the robot’s predefined trajectory of radius R ′ = 22.5 cm. Remarkably, when the

DS lure is replaced by the BM lure, the same fish maintains a much smaller typical distance

of 3 cm. The DM lure is hence unable to capture the fish’s attention. In fact, in the presence

of the DS lure, the fish remains inactive for long periods, with an inactivity percentage (see

Sec. 5.7.2) of 71.1% (see Fig. 5.6j). However, in the presence of the BM lure, the fish is only

inactive for 6.4% of the experiment’s duration.
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Figure 5.6: Motion profile when a fish interacts with a passive DS or BM lure (CT). (a)
1-hour-long robot circular trajectory (CT) with the disc-shaped (DS) lure. (b) 1-hour-long
H. rhodostomus spontaneous trajectory swimming with the DS. (c) Probability density function
(PDF) of the DS’s (red color) and fish’s (blue color) speed V . (d) PDF of the DS’s (red color)
and fish’s (blue color) acceleration α. (e) 1-hour-long robot circular motion trajectory with
the biomimetic (BM) lure. (f ) 1-hour-long H. rhodostomus spontaneous trajectory swimming
with the BM. (g) PDF of the BM’s (green color) and fish’s (blue color) speed V . (h) PDF of the
BM’s (green color) and fish’s (blue color) acceleration α. (i) PDF of the pair’s interindividual
distance (d ; BM and fish in green color, DS and fish in red color). (j) Inactivity percentage (BM
and fish in green color, DS and fish in red color). In all PDFs, the white dot corresponds to
the median, and the thick horizontal black line corresponds to the limits of the first and third
quartile.

The robot typically moves at 11.3 cm/s (see the red and green PDF peak and median value

that match in Fig. 5.6c, g), regardless of the lure choice, which matches the intended speed

for this motion (see Sec. 5.6). When the fish swims with the DS lure, the speed of the fish is

typically 4 cm/s, much lower than that of the lure, and rarely reaches more than 10 cm/s (see

the PDF of the fish speed in Fig. 5.6c). However, when the same fish swims with the BM lure,

its typical speed is now 11.4 cm/s (see PDF peak in Fig. 5.6g), very similar to the typical speed

of the lure, and the speed PDF of the fish and the lure are also fairly similar (see Fig. 5.6g). Note

that the speed PDF of the DS and BM lures display a ±2 cm/s fluctuation around the median

speed, which naturally occurs when the robot slips or deviates from the circular trajectory

momentarily and the PID controller (see Sec. 5.4) tries to compensate for it.

In terms of acceleration, the robot produces typical values of 17.5 cm/s2 (see the peak of the

red and green PDF in Fig. 5.6d, h), regardless of the lure choice. The PDF of the robot’s accel-

eration is relatively narrow, as the robot is producing higher accelerations for compensatory

movements alone. When the fish swims with the DS lure, its typical acceleration is 9 cm/s2

(see the PDF peak in Fig. 5.6d), but when the same fish swims with the BM lure, the typical

acceleration is 3 cm/s2 higher (see the PDF peak in Fig. 5.6h). In the DS case, we recorded

more instances where the fish had a low acceleration than in the BM case.
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We have also computed the Hellinger distance between the PDF of speed and acceleration

of the fish and that of the DS and BM lures. The Hellinger distance is a quantifier of the

(dis)similarity of 2 PDF and is precisely introduced in the Appendix C. The results of Table C.1

confirm that the PDF of speed and acceleration for the BM lure are in much better agreement

with the corresponding PDF for the fish, than for the DS lure.

Eightfold rose trajectory

Figure 5.7: Motion profile when a fish interacts with a passive DS or BM lure (R8T). (a)
1-hour-long robot eightfold rose trajectory (R8T) with the disc-shaped (DS) lure. (b) 1-hour-
long H. rhodostomus spontaneous trajectory swimming with the DS. (c) Probability density
function (PDF) of the DS’s (red color) and fish’s (blue color) speed V . (d) Probability density
function of the DS’s (red color) and fish’s (blue color) acceleration α. (e) 1-hour-long robot
eightfold rose trajectory with the biomimetic (BM) lure. (f ) 1-hour-long H. rhodostomus
spontaneous trajectory swimming with the BM. (g) Probability density function of the BM’s
(green color) and fish’s (blue color) speed V . (h) Probability density function of the BM’s
(green color) and fish’s (blue color) acceleration α. (i) Probability density function of the pair’s
interindividual distance (d ; BM and fish in green color, DS and fish in red color). (j) Inactivity
percentage (BM and fish in green color, DS and fish in red color). In all PDFs, the white dot
corresponds to the median, and the thick horizontal black line corresponds to the limits of the
first and third quartile. The fish swimming with the DS and BM lures is actually the same fish
(see Sec. 5.7.1).

Fig. 5.5c and d display a short excerpt of the eightfold rose passive trajectory of the DS and

BM lures, along with that of the fish interacting with the lure (see also Video 1 of Appendix C).

More quantitatively, a 1-hour-long eightfold rose trajectory of the robot results in the pattern

shown in Fig. 5.7a, e. When the fish swims with the DS lure, it qualitatively appears to follow

the lure, but not enough to reproduce the clear pattern performed by the robot (see Fig. 5.7b).

However, when the BM lure is in the tank with the same fish, the fish trajectory reproduces the

eightfold rose pattern with a much better contrast than with the DS lure (compare Fig. 5.7b

and f).
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Fig. 5.7i shows the PDF of the interindividual distance for the pair. In the DS lure case, the pair

typically moves at a distance of 4 cm, but also at greater distances, up to 15 cm. Notably, the

PDF shows that the pair never swims closer than 3 cm (see the head of the red PDF in Fig. 5.7i).

The fish typically swims at a distance of 3 cm from the BM lure, and can get as close as 1 cm

(see the green PDF head and peak in Fig. 5.7i). In addition, the tail of the PDF of the distance

between the fish and the lure is notably thinner than in the case of the DS lure. When the fish

swims with the DS lure, it is inactive 27.9% of the experiment’s duration. On the other hand,

when the same fish swims with the BM lure, it practically does not stop moving (inactive 0.2%

of the time; see Fig. 5.7j).

The robot’s PDF of speed for both lures are marginally different, with typical speed of 11.3 cm/s

and 11.7 cm/s for the DS and BM lure, respectively (see the peaks of the speed PDFs in

Fig. 5.7c, g). The median speed for the two lure variants coincides with their corresponding

peak speed. For both lures, the speed PDF of the fish is markedly narrower than that of the

robot. In the DS case, the fish moves at a typical speed of 9.5 cm/s (see Fig. 5.7c). When

swimming with the BM lure, the same fish moves slightly faster (see Fig. 5.7g), with a typical

speed of 10 cm/s, and with a narrower speed PDF than in the DS case.

The acceleration PDF of the robot for the two lures are marginally different, with peak values

of 15 cm/s2 and 17 cm/s2 for the DS and BM lure, respectively. This is due to more frequent

slipping and trajectory deviation instances in the BM’s case, which are caused by the forces

applied by the water on its larger footprint. The fish accelerated in an almost identical manner

in both cases with a typical acceleration of 12 cm/s2 (see the peaks of the PDF in Fig. 5.7d, h),

although, in the BM case, the fish acceleration PDF presents a slightly thicker tail, also observed

in the BM lure’s PDF.

Again, the results of Table C.2 in the Appendix C for the Hellinger distance confirm that the

PDF of speed and acceleration for the BM lure are in better agreement with the corresponding

PDF for the fish, than for the DS lure. However, Table C.2 also points to the fact the PDF of the

speed for the BM lure does not reproduce that of the fish as well as for circular trajectories (see

Table C.1).

In conclusion, the results of our first series of experiments indicate that a rummy-nose tetra

fish interacts much strongly with our biomimetic lure than with the disc-shaped lure. For a

circular trajectory, the DS lure is totally unable to capture the attention of the fish, whereas the

fish faithfully follows the BM lure, staying at close distance. For the eightfold rose trajectory,

the fish follows the DS lure, but without precisely matching the trajectory of the lure. When

swimming with the BM lure, the fish remains closer to the lure, and reproduces much more

faithfully the complex trajectory of the lure. Finally, for both types of trajectory, the fish is

much more active when interacting with the BM lure than with the DS lure.
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5.8.2 Experiment № 2: Closed-loop dynamics

Single agent interacting only with the tank wall

Figure 5.8: Single agent motion profile. (a) 1-hour-long robot trajectory generated by the
Biomimetic Interaction Motion (BIM) model. (b) Probability density function (PDF) of the
robot speed V . (c) Probability density function of the robot acceleration α. (d) 1-hour-long
H. rhodostomus spontaneous trajectory. (e) Probability density function of fish speed V . (f )
Probability density function of fish acceleration α. In all PDFs, the white dot corresponds to
the median, and the thick horizontal black line corresponds to the limits of the first and third
quartile.

Fig. 5.8a and Fig. 5.8d depict the 1-hour-long trajectory of the robot and fish, respectively (see

also Video 1 of Appendix C). The fish and the robot (driven by the BIM) both stay close to the

tank wall – a consequence of the burst-and-coast dynamics Calovi et al. (2018) – although the

robot is on average slightly closer to the wall than the fish.

The fish typically moves at a speed of 7 cm/s (see the peak of the PDF in Fig. 5.8b), but also

exhibits faster movements of up to 30−35 cm/s. On the lower end, the fish does not move

below 2 cm/s very often. The robot moves at a marginally different typical speed of 7.5 cm/s

(see the peak of the PDF in Fig. 5.8e) and produces a narrower speed PDF tail in Fig. 5.8e),

and maximum speeds in the range 25−30 cm/s, but also moves more often with a speed

between 0 and 2 cm/s. The differences at the head and tail of the two PDFs are also reflected

in the difference between the robot’s median speed of 9.6 cm/s and the fish’s median speed of

11.6 cm/s.

The robot and the fish move with a typical acceleration of 9.5−10 cm/s2 (see the peaks of

the PDFs in Fig. 5.8c, f). Overall, the PDF of the acceleration of the robot and the fish are in

excellent agreement (Fig. 5.8c), although the PDF for the robot displays a slightly fatter tail,

which results in a slightly higher median acceleration for the robot (21.7 cm/s2) than for the

fish (18.5 cm/s2).
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Figure 5.9: Short trajectories from the closed-loop experiments. (a) Trajectories recorded
from the spontaneous interactions of a H. rhodostomus pair in the tank. (b) Disc-shaped
(DS) lure commanded by the behavioral model and interacting with a H. rhodostomus (Fish
0). (c) Biomimetic (BM) lure commanded by the behavioral model and interacting with
a H. rhodostomus (Fish 0). Note that fish 0 is the same across the 3 experiments. On all
trajectories, a dot is shown every second, and the X marker represents the start of a trajectory.
Again, the fish responds more faithfully to the motion of the BM lure than to the DS lure (see
also Fig. 5.10 for a more quantitative assessment).

Finally, the results of Table C.3 in the Appendix C for the Hellinger distance confirm that the

PDF of speed and acceleration for the BM lure are in good agreement with the corresponding

PDF for the fish.

Biohybrid group of 2 agents

Fig. 5.9a-c respectively displays a short excerpt of the trajectories of 2 fish, of a fish interacting

with the DS lure, and of the same fish interacting with the BM lure (see also Video 1 of Ap-

pendix C). More quantitatively, in Fig. 5.10, we show the full trajectories and the corresponding

PDF for pairs of H. rhodostomus fish (insets a-d), the DS lure and a fish (insets e-h), and the

BM lure and a fish (insets i-l). We use one fish (with ID 0) across all 3 cases to obtain a direct

comparison. In both the biohybrid pair interaction experiments, the trajectories follow a

similar trend, where the pair usually stays close to the wall, and only rarely swims away from

it. This is in line with what is observed in actual groups of H. rhodostomus (see Fig. 5.10a, b).

However, in the case of the DS, the actual fish tends to swim markedly closer to the wall than

the fish-only pair and the biohybrid pair with the BM lure.
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Figure 5.10: Motion profile for pairs of agents. (a) and (b) 1-hour-long spontaneous trajecto-
ries for a pair of H. rhodostomus fish. (c) Probability density functions (PDF) of the speed V for
the H. rhodostomus pair. (d) Probability density functions of the acceleration α for the H. rho-
dostomus pair. (e) 1-hour-long robot (using the biomimetic interaction model) trajectory with
the disc-shaped (DS) lure. (f ) 1-hour-long H. rhodostomus spontaneous trajectory swimming
with the DS. (g) Probability density function of the speed V for the DS (red color) and fish (blue
color). (h) Probability density function of the acceleration α for the DS (red color) and fish
(blue color). (i) 1-hour-long robot (using the biomimetic interaction model) trajectory with
the biomimetic (BM) lure. (j) 1-hour-long H. rhodostomus spontaneous trajectory swimming
with the BM. (k) Probability density function of the speed V for the BM (green color) and fish
(blue color). (l) Probability density function of the acceleration α for the BM (green color)
and fish (blue color). (m) Probability density function of the pair’s interindividual distance (d ;
BM and fish in green color, DS and fish in red color, H. rhodostomus pair in blue color). (n)
Inactivity percentage (BM and fish in green color, DS and fish in red color, H. rhodostomus pair
in blue color). In all PDFs, the white dot corresponds to the median, and the thick horizontal
black line corresponds to the limits of the first and third quartile. In all three experiments, fish
0 is actually the same fish (see Sec. 5.7.1).

The PDF of the speed of both H. rhodostomus agents are almost identical, and shows that they

typically swim at a speed of 4 cm/s, but at times reach higher speeds of order 27−30 cm/s

(see the peaks and tails of the speed PDFs in Fig. 5.10c). The typical swimming speed for the

biohybrid group with the DS lure, is 3.5 cm/s (see the peaks of the speed PDFs in Fig. 5.10g),

with the two agents having an almost identical distribution of speed. The width of the speed

PDF in the DS case is also marginally different from the ones from the fish-only case. In the

biohybrid group with the BM lure, the speed PDF of the two agents are once again marginally

different, and their typical speed is 4 cm/s and 4.8 cm/s for the fish and lure, respectively

(see the peaks of the PDFs in Fig. 5.10k). Furthermore, the two speed PDFs show that the

agents swim generally slower, almost always below 19 cm/s. Similar results are obtained for

the PDFs of acceleration. Indeed, the two fish acceleration PDFs are almost identical, with
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typical accelerations of 8 cm/s2 (see the peaks of the PDFs in Fig. 5.10d) and at times as high

as 75 cm/s2 (see the tails of the PDFs in Fig. 5.10d). In the biohybrid group with the DS lure,

the robot’s typical acceleration is 9 cm/s2, while the fish typical acceleration is 4 cm/s2 (see

the peaks of the PDFs in Fig. 5.10h). The two agents do not often accelerate with high values

(> 50 cm/s2). For the biohybrid group with the BM lure, the acceleration profile is marginally

different from the DS case (see the PDF of acceleration in Fig. 5.10l).

The pair of H. rhodostomus tend to swim at a distance of 5 cm from each other (see the peak

and median of the PDF of interindividual distance in Fig. 5.10m). In the DS case, the pair

swims on average at a smaller distance of 3 cm, and sometimes as far as 10 cm. When the same

fish swims with the BM lure, their typical distance is 4 cm, but as shown in Fig. 5.10m, the

PDF of interindividual distances is wider than in the other two cases, meaning that the fish

swim more often far from each other, as far as 17 cm. However, when the robot is following

trajectories generated by BIM, it is by design attracted to its neighbor(s), regardless of its

movement. Therefore, the interindividual distance is effectively coupled with the inactivity

percentages shown in Fig. 5.10n. As shown in Fig. 5.10n, the fish-only pair does not move for

74.9% of the experiment’s duration. When the DS lure replaces one of the agents, then, the

pair is inactive less often, only 45.2% of the time. However, the lowest inactivity percentage

out of the three cases is reported when the same fish is swimming with the BM lure. Then,

the pair is inactive for 8.9% of the experiment’s duration, which potentially explains the wider

PDF of interindividual distance in Fig. 5.10m.

The results of Table C.4 in the Appendix C for the Hellinger distance show that the PDF of

speed and acceleration for the BM and DS lures are in comparable and fair agreement with

the corresponding PDF for the fish (Hellinger distances ≲ 0.2). However and as noted above,

for both lures, the PDF of the distance to the fish is markedly different from the PDF of the

distance between 2 fish, resulting in Hellinger distance values of 0.455 and 0.411 for the DS

and BM lures, respectively.

Finally, in all our experiments presented up to now, we find that the biomimetic lure has

a stimulating effect on the fish, resulting in the fish having a higher activity than when it

interacts with the disc-shaped lure, or even when it interacts with a conspecific (see Video 1 of

Appendix C).

Biohybrid group of 5 agents

A qualitative assessment of the density heatmaps of Fig. 5.11a and d reveals that the biohy-

brid group (the robot and 4 fish) and the 5-fish group both tend to move close to the wall,

although the radial dispersion of the biohybrid group appears to be larger. Yet, the robot radial

dispersion is, in fact, very similar to that of fish 0 and 1 in the fish-only group. Furthermore,

in both cases, we observe that the robot and the fish tend to adopt a similar trajectory radius

throughout the experiment (in particular, see the atypical low radial dispersion of fish 3 in

Fig. 5.11, or the smallest trajectory radius observed for fish 3 in Fig. 5.11d).
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Figure 5.11: Motion profile for groups of 5 agents. (a) 1-hour-long spontaneous trajectories
of 5 H. rhodostomus. (b) Probability density functions (PDF) of the speed V for each agent in
the fish-only group. (c) Probability density functions of the acceleration α for each agent in
the fish-only group. (d) 1-hour-long fish and robot (using the biomimetic interaction model;
with the biomimetic lure) trajectories. (e) Probability density functions of the speed V for
each agent in the biohybrid group (robot in green color and fish in blue color). (f ) Probability
density functions of the acceleration α for each agent in the biohybrid group (robot in green
color and fish in blue color). (g) Probability density function of the pair’s interindividual
distance (d ; biohybrid group in green color, and fish-only group in blue color). (h) Inactivity
percentage (biohybrid group in green color, and fish-only group in blue color). In all PDFs, the
white dot corresponds to the median, and the thick horizontal black line corresponds to the
limits of the first and third quartile.

The group of 5 fish swims at synchronized speeds, as shown by their speed PDFs in Fig. 5.11b.

All fish typically swim at a speed of 14−15 cm/s and not faster than 25 cm/s (see the peak

and tail of the PDF of speed, respectively). In the biohybrid group, all agents swim typically

faster than the 5 fish-only group, with typical speeds in the range 17−19 cm/s for the fish and

23 cm/s for the robot (see the peaks of the corresponding speed PDFs in Fig. 5.11e). They also

reach higher speeds than the fish-only group, up to 30 cm/s for the fish and 35 cm/s for the

robot. In other words, the robot commanded by the BIM swims faster, and the fish adjust their

speed profile accordingly.

Fig. 5.11c shows that agents in the 5 fish-only group have almost identical acceleration PDFs,

with a typical acceleration of 16 cm/s2), and less frequent high values up to 60 cm/s2). In the

biohybrid group case, the PDF of acceleration for the robot is wider, with a typical value of

35 cm/s2, but also producing higher acceleration, up to 90 cm/s2 (see the peak and tail of the

PDF of acceleration for the robot in Fig. 5.11f). The fish in the biohybrid group also tend to

produce higher accelerations, in the range 20−25 cm/s2, but rarely going above 75 cm/s2.
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The group of 5 H. rhodostomus typically swims in close formation with a typical interindividual

distance d ∼ 5 cm (see the PDF of interindividual distance in Fig. 5.11g). The group does not

often swim with a distance greater than 9 cm or smaller than 2.5 cm (see the tail and head

of the PDF of interindividual distance). Despite the speed and acceleration differences, the

biohybrid group also swims in close formation, with a typical d ∼ 6 cm (see the peak of the PDF

of interindividual distance in Fig. 5.11g). Similarly to the fish-only group, the interindividual

distance does not get larger than 9 cm, but is remaining above 4 cm (see the tail and head of

the PDF of interindividual distance; Fig. 5.11g). The median interindividual distance is very

similar in both cases (see the white points in Fig. 5.11g). Both groups of agents remained very

active throughout the experiment (see Fig. 5.11h), with an inactivity percentage of 2.6% and

1.6% for the biohybrid and fish-only group, respectively.

Despite the higher radial dispersion observed in the biohybrid group, and the higher typical

robot speed compared to that of its 4 companion fish, the most important conclusion of

this experiment is that the biohybrid group remains essentially as compact as the fish-only

group. In particular, not only is the robot able to participate in the collective dynamics, but its

presence does not lead to the dislocation of the group (see Video 1 of Appendix C). This, along

with our experiments with one fish interacting with a passive biomimetic lure (see Sec. 5.8.1)

or in closed-loop with the BIM robot (see the previous section), shows that the robot is fairly

well accepted by the fish, which respond to its presence in a way consistent with their response

to the presence of one or four conspecifics.

5.9 Conclusion

The complexity of biohybrid systems often necessitates experimentation with small groups

of animals, simplified behavioral models, and limited durations. The latter constraint is

particularly limiting when studying long-term interactions that emerge within fish groups (see

Chapter 3).

In this chapter, we have introduced a versatile framework for behavioral experiments and

open-sourced its hardware and software components. Our new and improved tools enable

the execution of real-time, highly precise biohybrid animal experiments while maintaining a

minimal physical footprint in the experimental space. This aspect, to our knowledge, has not

been explicitly addressed in similar studies, but we believe it significantly enhances both the

experimenter’s experience and laboratory conditions. Furthermore, we present a new robotic

system, the LureBot, which demonstrates increased agility, precision, and extended operation

duration compared to our former system, the FishBot v4.4. Our findings show that, with

the robot’s augmented torque and new perception and control algorithms, it can effectively

interact with up to four H. rhodostomus, a very demanding task for any miniature robot.

Additionally, we showcase our procedures for constructing biomimetic lures, emphasizing

that, in many contexts, such as for fish groups, their visual appearance plays a critical role in

facilitating interactions.
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More specifically, using this system, we show that fish exhibit a strong preference for biomimetic

lures over non-biomimetic ones. Once this has been established, we deploy our robots with

a closed-loop behavioral model to interact with groups of fish. This data-driven behavioral

model exploits the reconstructed social interactions of H. rhodostomus Calovi et al. (2018) and

has been shown in simulations to faithfully reproduce the collective behavior of groups of

1, 2, and 5 fish Calovi et al. (2018); Lei et al. (2020). First, we demonstrate that the LureBot

can express the entire motion profile spectrum of the species under study (e.g., H. rhodosto-

mus), when interacting with the tank wall alone. Next, we present the results of experiments

involving one fish and a lure, showing that the fish reacts to the robot similarly as when

swimming with another fish. Notably, the biohybrid experiment consistently exhibits high

activity, indicating that the robot can continuously engage in interactions. This finding holds

significant potential for experiments requiring the collection of large, reproducible datasets.

We also conduct experiments with larger groups, consisting of one lure and four fish, and

show that the biohybrid group behaves comparably to fish-only experiments. However, in the

five-agent experiments, the robot moves faster than individual fish in either the biohybrid

group or fish-only experiments. Despite this, group cohesion is maintained, suggesting that

although the biohybrid does not perfectly reproduce fish-only experiments, the fish in the

group do not seem adversely affected, unlike when non-biomimetic models are used (as

shown in Chapter 4).

The research work presented in this chapter not only contributes to the development of more

efficient and sophisticated biohybrid systems, but also paves the way for future studies to

explore the intricacies of animal behavior and social interactions. The open-source nature

of the framework should encourage further advancements and adaptations within the field,

thereby fostering a deeper understanding of the mechanisms underlying the collective be-

havior of various animal species. Furthermore, this chapter’s work contributes towards our

goal of closing the biomimicry gap, and more specifically in reducing the contribution of the

physics and communication cue gap as outlined in Fig. 1.1. That is, our new framework allows

for long real-time control experiments that produce marginally different dynamics than those

observed in experiments, and the biomimetic lure constructed as part of this investigation is

shown to be accepted by fish and facilitates the interactions. The effect of the robot on the

social dynamics is further explored in Chapters 6 and 7.
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Part IVTransferring social interaction models from
simulation to reality

99





6 Evaluating the biomimicry gap in
biohybrid pairs driven by a deep
learning model

This section’s content is adapted from the following article:

• Papaspyros, V., Theraulaz, G., Sire, C. and Mondada, F., 2023. Quantifying the

biomimicry gap in biohybrid systems. arXiv. https://doi.org/10.48550/arXiv.2308.

08978 (reuse authorised under the CC 4.0 licence) – Papaspyros et al. (2023c)

– Vaios Papaspyros’s contribution: Conception, data curation, formal analysis,

investigation, methodology, software, visualization, writing – original draft,

writing – review & editing.

• The article’s work was funded by the Swiss National Science Foundation project

“Self-Adaptive Mixed Societies of Animals and Robots” (Grant No. 175731). Our

collaborators from the Université Toulouse – Paul Sabatier were funded by the

French National Research Agency (ANR-20-CE45-0006-01).

• Ethics: All H. rhodostomus experiments were conducted at the Centre de

Recherches sur la Cognition Animale, Centre de Biologie Intégrative, CNRS, Univer-

sité de Toulouse – Paul Sabatier. Experiments were approved by the local ethical

committee for experimental animals and were performed in an approved fish facil-

ity (A3155501) under permit APAFIS#27303-2020090219529069 v8 in agreement with

the French legislation.

6.1 Introduction

In previous chapters, we have devised and implemented both software and hardware tools with

the objective of minimizing the social interaction gap (Chapter 4), the physics gap (Chapter 5),

and the communication cue gap (Chapter 5). The integration of these efforts now allows

us, in this chapter, to explore the biomimicry gap as a comprehensive entity. We examine

this concept with a focus on pairs of agents, be they pairs of real H. rhodostomus, simulated

H. rhodostomus, or a robot and one H. rhodostomus.
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Notably, a few flocking models for fish behavior, analytical or machine learning, have been

evaluated in extended simulations to study long-term emergent collective behavior Collignon

et al. (2016); Calovi et al. (2018); however, these models have not been tested and validated in

biohybrid groups. Conversely, numerous models have been deployed on robotic devices with-

out being tested in simulations Abaid and Porfiri (2010); Bonnet et al. (2016); Cazenille et al.

(2017, 2018c,b, 2019). Furthermore, the majority of these studies involve robot experiments

lasting no more than 30 minutes, with the resulting interactions typically assessed solely in the

short term. Consequently, none of these models have been stringently benchmarked in both

short- and long-term timescales within both simulation and fish-robot biohybrid experiments.

In fact, previous results indicate that certain models may yield satisfactory biomimetic out-

comes in the short term while failing to reproduce emergent dynamics accurately on longer

time scales (refer to Chapter 4).

Moreover, the transfer of computer models of social interactions into robot controllers that

operate in real situations involving animals is not simple and can generate a discrepancy

with their numerical simulation, akin to the reality gap observed when transferring simulated

robot controllers to real-world applications Jakobi et al. (1995); Jakobi (1997); Mouret and

Chatzilygeroudis (2017). However, this gap is only but one out of three primary sources of

discrepancies in biohybrid systems (depicted in Fig. 1.1): 1) subtle behavioral patterns that

social interaction models fail to capture, 2) physics related to the operation of the robot in

real life that were not accounted for, and 3) the extent of biomimicry exhibited by artificial

lures Romano and Stefanini (2022a); Chapter 5. We refer to the cumulative effect of these gaps

with the term “biomimicry gap”. Therefore, the biomimicry gap is an inherent aspect of the

multifaceted, cross-domain process of creating biohybrid groups composed of animals and

robots. To the best of our knowledge, the feasibility of bridging this biomimicry gap — achieved

by conducting extended experiments in both simulated and real-world environments, and

comparing their results — has yet to be conclusively and rigorously validated across all these

levels in a single approach.

In this chapter, we investigate this notion by employing the (pretrained) machine learning

model presented in Chapter 4. We implement this model on a robotic system, the LureBot

(see Chapter 5), and execute approximately 11 hours of multiple pair experiments wherein

a biomimetic lure interacts with a single H. rhodostomus. This allows us to measure the

behavioral differences between actual and simulated pairs H. rhodostomus, as well as, pairs of

1 biomimetic lure and 1 H. rhodostomus. In turn, this yields the first end-to-end approach

aimed at quantifying and reducing the biomimicry gap, and is presented in the following

sections.
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Figure 6.1: Closed-loop robot control with Deep Learning Interaction (DLI) model. (a) We
use the top setup camera to track all agents (fish and/or lure) in real-time, and store unique
trajectories for each agent. A 5× 11 vector of individual and collective states, spanning 5
timesteps is fed to the DLI. (b) The DLI outputs two acceleration distributions, one for each
Cartesian component. Then, the accelerations are converted to desired speed and position for
t +1 and communicated to the robot.

6.2 Methods

6.2.1 Real-time tracking and robot control

Experiments were performed with the Behavioral Observation and Biohybrid Interaction

(BOBI) framework introduced in Chapter 5, including the LureBot, to propel a H. rhodostomus

lure. We exploit BOBI to track multiple agents (here, only 2 are used) in real time, while

maintaining unique IDs for each agent’s trajectory. These agent-specific sequences of spatial

displacement can be exploited by a behavioral model (see Section 6.2.2) to compute real-time

individual and collective quantities concerning the biohybrid group, and close the loop of

interaction by adapting the robot’s behavior with instructions on future movements.

Here, we use the Proportional-Integral-Derivative (PID) controller as defined in BOBI (see

Chapter 5), that incorporates a priori velocity information provided by the behavioral model.

The PID combines the linear and angular errors between the LureBot’s current and desired

position, as well as the model’s predicted velocity profile, to smoothly displace the robot.

6.2.2 Deep Learning Interaction model

We use a pretrained version of the Deep Learning Interaction (DLI) model, introduced in

Chapter 4, to generate real-time goal positions for the LureBot. For readability purposes, this

section to summarizes the key elements of the DLI. For the full description, refer to Chapter 4.
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The DLI consists of 7 layers (see Fig. 6.1b; Chapter 4): 1st and 4th are LSTM layers Hochreiter

and Schmidhuber (1997); the remaining are densely connected layers; ReLU activations are

used for all layers except for the last one which is linear. For a single agent i , the state at time t

is defined as a 1×5 vector xi (t ):

si (t ) = (
u⃗i (t ), v⃗i (t ),r i

w(t )
) ∈R5, (6.1)

where u⃗i (t ), v⃗i (t ) are the 2D position and velocity, respectively, and r i
w(t ) the distance of the

individual i from the wall at time t . Then, the pairwise state at time t is summarized in the

following 1×11 vector:

Si j (t ) = (
si (t )︸︷︷︸

individual (focal)
information

, s j (t )︸ ︷︷ ︸
individual (neighbor)

information

, di j (t )︸ ︷︷ ︸
collective

information

) ∈R11, (6.2)

with i the focal individual for which we generate trajectory predictions, j its neighbor, and

di j their interindividual distance. In real-time, we feed the DLI with a 5×11 sequence (S(t −
4), . . . ,S(t )) of the pair-wise states (see Fig. 6.1a), where we make sure that i (focal individual)

corresponds to the LureBot.

Subsequently, the DLI model outputs the expected acceleration mean and standard deviation

value, (µx ,σx ) and (µy ,σy ), of the Cartesian components x and y . Assuming a Gaussian

distribution for the acceleration Chua et al. (2018), we sample this distribution to produce

acceleration predictions a⃗ = (ax , ay ) and use the following motion equations to generate

velocity commands and the goal position of the LureBot at time t +1:

v⃗i (t +1) = v⃗i (t )+∆t a⃗, (6.3)

u⃗i (t +1) = u⃗i (t )+∆t v⃗i (t +1), (6.4)

where ∆t = 0.12 s, a choice made with respect to the data filtering procedure applied on the

raw data to generate an intermediate training dataset for the DLI. The 2D velocity commands,

defined in (6.4), and goal position, defined in (6.4), are given to the BOBI’s PID, and eventually

translated to motor commands (see Section 6.2.1; see Fig. 6.1a,b).

In Chapter 4, this approach was validated in long simulations and is shown to be capable of

reproducing the social dynamics of H. rhodostomus pairs faithfully with respect to experiments.

In the following sections, we test the extent to which the DLI can produce faithful interactions

when deployed on a physical robot-fish group instead of a simulated group.

6.2.3 Evaluating the short- and long-term interactions

To characterize the short- and long-term interactions of the agent pairs, we employ the

same observables introduced in Chapter 4. In short, we use 3 observables that correspond

to instantaneous quantities at the individual level, for which we measure their probability
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Figure 6.2: Individual and collective variables. For the focal agent i (light gray) we define the
individual quantities: u⃗i its Cartesian position, v⃗i its instantaneous velocity, r i

w its distance to
the wall,φi agent i ’s heading angle. We also define the collective quantities from i ’s perspective
when its neighbor j (dark gray) swims in the tank: interindividual distance di j . R = 25 cm
corresponds to the radius of the circular setup, phii j , the heading difference between both
fish, and ψi j , the angle with which fish j is perceived by fish. Note that, for visualization
purposes, the size of agents is not to scale.

density function (PDF): the speed, V of an individual; its distance to the wall, rw; and its

heading angle relative to the normal to the wall, θw. Then, 3 additional observables probe

the instantaneous collective dynamics: the distance di j between the pair of individuals; the

difference |φi j | between the heading directions of the two individuals ; and the angle ψi j

at which an individual perceives its neighbor. Finally, we consider 3 temporal correlation

functions that probe the social dynamics at a very fine level Jayles et al. (2020), and which are

generally particularly difficult to reproduce:

CX (t ) =
〈[

u⃗i (t + t ′)− u⃗i (t ′)
]2

〉
, (6.5)

CV (t ) = 〈
v⃗i (t + t ′) · v⃗i (t ′)

〉
, (6.6)

Cθw (t ) =
〈

cos
[
θi

w(t + t ′)−θi
w(t ′)

]〉
. (6.7)

CX is the mean-squared displacement, CV the velocity autocorrelation, and Cθw the autocor-

relation of the angle of incidence to the wall. In general, we denote Cq (t) = 〈q(t + t ′)q(t ′)〉
as the average of the quantity q(t)q(t + t ′) over the reference times t ′, over individuals, and

over different experiments. Assuming the stationarity of the system, the temporal correlation

function Cq (t ) only depends on the time difference between observations, and is often noted

Cq (t ) = 〈q(t )q(0)〉 (implicitly implying an average over the reference time t ′ = 0).
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6.3 Dynamics of pairs of agents

In this chapter, we focus on the social dynamics that arise from pairwise interactions in three

different conditions. First, we consider≈ 11 h of experiments involving pairs of H. rhodostomus,

to characterize and quantify the spontaneous social interactions when no artificial devices are

present in the tank.

Secondly, we consider ≈ 16 h of effective trajectories for DLI simulated pairs (DLI-SP) from

Chapter 4, as a baseline to the robot’s underlying model in ideal conditions. This DLI model

was originally trained in on a different series of experimental data obtained in Calovi et al.

(2018) for the same species (H. rhodostomus), but in different conditions (different tank but of

same radius R = 25 cm, lightning conditions...). We will also mention the results obtained after

retraining the DLI model with the fish data considered in the present chapter’s work, which

we will refer to as the DLIv2-SP (see Appendix D and in particular Table D.1 and Figs. D.1, D.2,

and D.3).

Finally, we conducted ≈ 11 h of experiments where the LureBot propels a biomimetic lure

moving inside the circular arena, which is interacting in closed-loop with an actual H. rhodos-

tomus. For brevity, in the following analysis of the results, we will simply refer to the LureBot

and the lure attached to it as the LureBot. The LureBot is given a pre-trained copy of the DLI

model of, which is queried in real time to generate biomimetic trajectories (see Section 6.2.2).

We refer to these data as DLI biohybrid pairs (DLI-BP). We did not perform experiments with

the LureBot trained with the DLIv2 model.

We explicitly designed a protocol which did not allow the use of the same fish in an experiment

for at least 48 h after their first test, to avoid potential conditioning effects when the fish

interact with the lure. The fish housing conditions and experiments have been approved by

the local ethical committee and are described in detail in Chapter 5.

6.4 Results

This section reports the detailed comparison between the three test cases: 1) (fish-only) exper-

iments with pairs of H. rhodostomus; 2) DLI simulated pairs (DLI-SP); and 3) DLI biohybrid

pairs (DLI-BP), that consist of the LureBot interacting with a H. rhodostomus. In addition, at

the end of this section, we will briefly present results for DLIv2 simulated pairs (DLIv2-SP).

The comparison between the different test cases exploits the observables described in Sec-

tion 6.2.3. For all quantities (PDF and correlation functions), we have computed the statistical

and sample to sample standard error by using a bootstrap method. In addition, for each PDF,

we report the mean and standard deviation (SD) in Table D.1, as well as their standard error

that we will omit to mention in the hereafter analysis of the results, for readability purposes

(except when their value is relevant to the discussion). Moreover, in order to compare the PDF

for a given quantity between two given test cases, we compute the Hellinger distance (see Ap-
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pendix C). In general, a Hellinger distance H(F |G)≲ 0.1 points to a good agreement between

both PDF, 0.1 ≲ H(F |G) ≲ 0.2 points to a fair similarity between them, while H(F |G) ≳ 0.2

indicates that the two distributions are significantly dissimilar.

6.4.1 Instantaneous individual quantities

Figure 6.3: Instantaneous individual quantities. (a) Speed V probability density function.
(b) Distance to the wall rw probability density function. (c) Angle of incidence to the wall θw

probability density function. Dark gray, blue, and red colors correspond to the distributions of
the fish-only experiment, the DLI simulated pairs, and the DLI biohybrid pairs, respectively.
In all PDFs, the colored dot corresponds to the median, and the thick horizontal black line
corresponds to the limits of the first and third quartile. The inset plots depict the PDFs of the
DLI biohybrid pair experiments where the dotted, dashed, and solid lines correspond to the
robot, neighbor and average agent distributions, respectively. The shaded areas correspond to
the standard deviation.

Fig. 6.3a shows the speed PDF for the three cases we considered. Fish pairs swim at a mean

speed of 10.5 cm/s, associated to a standard deviation (SD) of 5.7 cm/s (see Table D.1). DLI

simulated pairs produce a rather similar speed PDF (Hellinger distance H = 0.09; see Table D.2),

albeit slightly wider (SD of 7.0 cm/s), with a nearly identical mean of 11.1 cm/s. For biohybrid

pairs, the fish and the LureBot have a very similar mean speed (identical within error bars; see

Table D.1), which is 20 % smaller than in the fish-only experiments, although the SD is similar

to that of the fish experiments, resulting in a Hellinger distance of H = 0.18.

In Fig. 6.3b, we plot the PDF of the distance to the wall, rw , for each case. Fish pairs swim very

close to the wall, with a mean distance of 4.4 cm and a SD of 3.9 cm, both comparable to the

fish typical body length (∼3.5 cm). This is a consequence of the burst-and-coast swimming

mode exhibited by H. rhodostomus, as shown in Calovi et al. (2018). Indeed, the motion of
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this species is characterized by a succession of sudden acceleration periods (“kicks” or bursts

of typical duration 0.1 s), each followed by a longer gliding period of typical duration 0.5 s,

during which the fish moves in a quasi straight line. Because of the rather narrow distribution

of heading changes between kicks, even observed when a fish is far from the wall Calovi et al.

(2018), the fish is unable to escape the concave boundaries of the wall, except when rare large

heading changes occur. The mean distance to the wall is 5.7 cm for the DLI simulated pairs,

and the associated PDF compared to that for fish experiments is H = 0.13, showing that the

DLI model captures reasonably well the tendency of the fish to move close to the wall. For

biohybrid pairs, we found that the fish swims farther to the wall than in fish-only experiments,

with a mean distance of 5.5 cm. In this case, the LureBot is even farther to the wall, at a mean

distance of 6.6 cm, which likely also causes the fish to swim farther to the wall than in fish-only

experiments.

Finally, in Fig. 6.3c, we plot the PDF of the absolute value of the heading angle relative to the

normal to the wall, |θw|. As a consequence of the agents (fish, DLI model, or LureBot) moving

close to the wall, we naturally find that the mean of |θw| is very close to, but slightly below 90◦

(see Table D.1), a difference which is statistically significant. Indeed, as already reported in the

experiments of Calovi et al. (2018), the agents spend slightly more time heading toward the

wall (|θw| < 90◦) than moving away from it (|θw| > 90◦). The PDF for the three considered cases

are symmetric around their mean, but we find that the fish experiments lead to the narrowest

distribution, with a SD of 22◦, compared to a SD of 35◦ for the DLI simulated pairs, and a SD

of 33◦ and 43◦ for the fish and the LureBot in a biohybrid pair. The values of these SD are

naturally correlated with the mean distance of the agent to the wall: the farther the agent, the

larger are the fluctuations (SD) of its heading angle relative to the wall. Note that although the

SD is larger for biohybrid pairs than for DLI simulated pairs (and for fish pairs), the intensity

of the peak near |θw| = 90◦ is larger for biohybrid pairs, which will have further consequences

when we will address the temporal correlations of θw (see Section 6.4.3).

In summary, DLI-BP achieve fair agreement with the experimental results for all quantities.

Concurrently, DLI-BP and DLI-SP show smaller dissimilarity, indicating that the transposition

of the simulated model into the robot was successful leading a good overall precision (see

Table D.2). We also observe that, in some cases (e.g., |θw|), the fish’s behavior guides the DLI-

powered robot to approximate the experimental dynamics better, either due to unaccounted

for dynamics in the model or due to an adapted fish behavior caused by the robot’s presence.

Nonetheless, the observables test the DLI’s performance at a very fine level, especially in the

case of DLI-BP, where the physical aspect is also impeding the precise reproduction of the

social dynamics, either due to the imperfect (with respect to fish) motion of the robot or the

varying degree the robotic system’s acceptance by the fish.
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Figure 6.4: Instantaneous collective quantities. (a) Interindividual distance di j probability
density function. (b) Difference in heading anglesφi j probability density function. (c) Viewing
angle ψi j probability density function. Dark gray, blue, and red colors correspond to the
distributions of the experiment, DLI simulated pairs and DLI biohybrid pairs, respectively.
In all PDFs, the colored dot corresponds to the median, and the thick horizontal black line
corresponds to the limits of the first and third quartile. The inset plots depict the PDFs of the
DLI biohybrid pair experiments where the dotted, dashed, and solid lines correspond to the
robot, neighbor and average agent distributions, respectively. The shaded areas correspond to
the standard deviation.

6.4.2 Instantaneous collective quantities

H. rhodostomus have a natural tendency to swim in close proximity to each other. In our

experiments, fish pairs typically maintain a median interindividual distance di j of less than

two body lengths (see Fig. 6.4a), with a mean distance of 8.05±0.71 cm and a SD of 5.1 cm (see

Table D.1). The dynamics of DLI simulated pairs results in a very similar PDF (H = 0.16), with

a mean of 7.43±0.03 cm, which is within one standard error (for the fish experiments) from

the mean obtained for fish. As for the biohybrid pair, it is less bound than pairs of fish or DLI,

with a mean distance between the fish and the LureBot of 9.96±0.48 cm. The distribution

is also slightly wider, with a SD of 6.3 cm. In fact, although the peak of the interindividual

distance PDF is located at a similar value as for fish or DLI pairs (5−6 cm in the three cases),

the biohybrid pairs are more often separated by a distance larger than 15 cm.

H. rhodostomus is a social species, often found to form well aligned schools. In fact, their

pairwise alignment interaction was quantitatively measured in Calovi et al. (2018), showing

that this interaction remains strong up to three body lengths, well within the typical distance

between fish. In Fig. 6.4b, to quantify the alignment within pairs of agents, we plot the

distribution of the absolute value of the difference between the heading angles of the two
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agents, |φi j | (see the graphical definition in Fig. 6.2). The mean heading difference observed

in fish experiments is 27◦, with a rather narrow PDF associated with a SD of 30◦, confirming

the good level of alignment between the two fish. The DLI simulated pairs are not as aligned

as fish pairs, with a larger mean and SD equal to 38◦, although the Hellinger distance between

the two PDF (H = 0.14) remains satisfactory. The corresponding PDF for biohybrid pairs

exhibits the largest disagreement with the fish experiments of all the PDF presented here

(H = 0.30). Indeed, despite also being peaked at |φi j | = 0, the PDF has a non-negligible weight

for |φi j | > 90◦, resulting in a much larger mean of 59◦ and a SD of 48◦. This wider PDF is a

consequence of the fact that the fish and the LureBot, despite remaining close to each other on

average, have a much higher probability than fish pairs to be at a distance above the range of

the alignment interaction. Moreover, when the fish and the LureBot are far apart and attempt

to get closer, they have a high chance to be actually anti-aligned during this process, hence

the significant weight of the PDF near |φi j | = 180◦.

Finally, Fig. 6.4c shows the PDF of the angle of perception ψi j , defined in Fig. 6.2. For pairs of

fish, the PDF presents clear peaks atψi j = 0◦ and near |ψi j | = 180◦. This indicates that the well

aligned fish are following each other rather than swimming side by side. For DLI simulated

pairs, the same pattern is observed but with slightly less pronounced peaks, although the

Hellinger distance of H = 0.05 confirms the excellent agreement between both PDF. As for

the biohybrid pair, the PDF averaged over the fish and the LureBot again presents the same

peaks as before, but even less pronounced. Again, the less sharp peaks are a consequence of

the fact that the biohybrid pairs stand farther from the wall than fish pairs, and above all, of

the fact that their distance has a higher probability to be large enough so that their angle of

perception ψi j becomes uncorrelated. The lesser alignment of the biohybrid pairs (see above)

originates from the same causes, and in turn also results in a more homogeneous distribution

of the angle of perception. However, the apparent reasonable agreement with the PDF for

the fish-only and DLI-SP pairs masks the difference between the PDF for the fish and for the

LureBot shown in the top inset of Fig. 6.4c. There, we observe that the peak near ψi j = 0◦

is dominated by the contribution of the fish, showing that the fish more often follows the

LureBot than the converse. In addition, we find that the PDF for the fish is also peaked slightly

above ψi j =−180◦, while the PDF for the LureBot has a corresponding peak slightly below

ψi j =+180◦. By periodicity of 360◦, these two peaks are obviously located at almost the same

angle, but this slight angular shift translates to the fact that the fish is, on average, slightly

closer to the wall than the LureBot, as noted in Section 6.4.1.

The instantaneous collective quantities demonstrate that despite the dissimilarities measured

in the individual behavior of both DLI-SP and DLI-BP with respect to the fish-only experiment,

the collective dynamics are fairly reproduced. Furthermore, the DLI is transferred in a physical

system with good agreement compared to its simulated version, and the living agent responds

positively. However, the angular control of the robot is arguably less precise, which contributes

to the general deviation from the experimental angle-related distributions.
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6.4.3 Temporal correlation quantities

Figure 6.5: Temporal correlation quantities. (a) Mean squared displacement CX (t). (b)
Velocity autocorrelation CV (t). (c) Temporal correlations of the angle of incidence to the
wall Cθw (t ). Dark gray, blue and red colors correspond to the distributions of the experiment,
DLI simulated pairs and DLI biohybrid pairs, respectively. Dotted, dashed and solid lines
indicate the robot, neighbor and average agent distributions, respectively. The shaded areas
correspond to the standard deviation.

In Fig. 6.5, we plot the three observables used to quantify the temporal correlations that

emerge in the system during the long-term dynamics, which are defined in Section 6.2.3.

Fig. 6.5a shows the mean square displacement of the agents, CX (t), in the three considered

cases. After a rapid growth, CX (t ) presents a peak and an ultimate decay to a mean level equal

to twice the mean square of the distance to the center of the tank. Indeed, for large time

difference, the positions at time t ′ and t + t ′ become uncorrelated, and we obtain

CX (t ) =
〈[

u⃗i (t + t ′)− u⃗i (t ′)
]2

〉
≈

t→+∞
〈

u⃗2
i (t + t ′)

〉+〈
u⃗2

i (t ′)
〉

= 2
〈

u⃗2
i (t ′)

〉
, (6.8)

which becomes time-independent due to the stationarity of the dynamics. Although CX (t)

has the same qualitative form in the three cases, one observes differences in the position and

height of the peak and in the asymptotic value. The latter is explained by the fact that the

closer the agents are to the wall, the larger is the mean square of their distance to the center

of the tank,
〈

u⃗2
i (t ′)

〉
. Indeed, we have found, in Section 6.4.1, that fish pairs swim closest

to the wall, while biohybrid pairs are the farthest, which is consistent with the asymptotic

behavior of CX (t ) observed in Fig. 6.5a. Furthermore, the top inset of Fig. 6.5a for the biohybrid
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pairs shows that CX (t ) for the fish is systematically larger than for the LureBot, which is also

consistent with the fact that the fish swims slightly closer to the wall than the LureBot. As for

the position of the peaks in Fig. 6.5a, it roughly corresponds to the time for the corresponding

agent to travel half of the tank perimeter. This time is directly correlated with the mean

speed of the agent. In Section 6.4.1, we found that the fish pairs and DLI simulated pairs had

essentially the same mean speed, which explains the agreement between the position of the

corresponding peaks in CX (t). However, we also found that the biohybrid pairs were 20 %

slower, which explains the fact that the peak in their CX (t ) is reached at a later time than for

fish and DLI pairs.

Fig. 6.5b shows the velocity autocorrelation, CV (t), in the three considered cases, which

vanishes for t large enough, when the velocity at time t + t ′ becomes uncorrelated with that

at time t ′. It can be formally shown that CV (t) = d 2CX (t)/d t 2 (although this relation is only

approximate, when the 2 quantities are observed independently over a finite sampling time),

so that the interpretation of the shape of CV (t ) results from the analysis that we have presented

above for CX (t ). In particular, the peaks of the first two oscillations in CV (t ) roughly correspond

to the two inflection points just before and after the main peak in CX (t ). In addition, CV (t = 0)

is the mean square velocity, and we indeed observe an agreement between its value for fish

and DLI pairs, while the slower biohybrid pairs result in a lower initial value of CV (t = 0) in

this case.

Finally, the (most subtle) temporal correlation function of the heading of an agent relative to

the wall, Cθw (t ) = 〈
cos

[
θi

w(t + t ′)−θi
w(t ′)

]〉
, is shown in Fig. 6.5c. For very large time t , Cθw (t )

must obviously decay, but we observe that for fish pairs, we still have Cθw (t = 30s) ≈ 0.35,

indicating strong correlations. For DLI simulated pairs, We find that Cθw (t) vanishes very

rapidly (Cθw (t = 15s) ≈ 0). Finally, for biohybrid pairs, we still observe some weak remnant

correlations at t = 30s, with Cθw (t = 30s) ≈ 0.1 (although the correlation is dominated by the

contribution of the fish, as shown in the top inset of Fig. 6.5c). Here, the decay rate of Cθw (t )

is strongly related to the sharpness of the peak near θw = 90◦ in the PDF of θw (see Fig. 6.3c

and Section 6.4.1). Indeed, a sharp peak suggests that it can take a long time to explore values

of θw far from 90◦, leading to a slower decay of Cθw (t ). Accordingly, we indeed found that the

least sharp peak in the PDF of θw is observed for DLI simulated pairs, resulting in the fastest

decay of Cθw (t ) in this case.

Both the DLI-SP and DLI-BP fail to precisely reproduce the correlation function Cθw (t ), pro-

ducing a very similar sharp decay compared to the one of real fish. This is derived by the DLI’s

tendency to frequently produce trajectories farther from the wall than what observed in the

experiment. Despite an overall dissimilarity between the experiment and the DLI derivatives,

the DLI-BP remains fairly faithful to the DLI-SP. Yet again, this indicates that the DLI is miss-

ing some aspects of the social dynamics before being deployed on the robot, but the robot

performs reasonably well in reproducing its underlying model.
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6.4.4 Complementary results for DLIv2 simulated pairs

In addition to the Deep Learning Interaction (DLI) pretrained network utilized in the previous

sections, we have also considered an updated version, the DLIv2. This version was retrained

on data gathered from the present fish-only experiments under new lighting conditions,

concurrently to the robot experiments presented in this chapter, so that retraining was only

feasible after their completion. However, it provided us with the opportunity to test the

scalability and predictive performance of the pretrained DLI with new input samples, which,

while not fundamentally different, originated from altered social dynamics. For this purpose,

we conducted extensive simulations with the DLIv2, and found that their results are in excellent

agreement with the present fish-only pair experiments (see Tables D.1 and D.2 for further

details) for the individual (see Fig. D.1) and collective (see Fig. D.2) observables, and for the

temporal correlation functions (see Fig. D.3). The performance of the simulated DLIv2 model

present a significant improvement compared to that of the pretrained DLI model, and one

could expect that the LureBot commanded by the DLIv2 model would lead to better results

than for the LureBot commanded by the pretrained DLI model. Yet, our point here is that the

pretrained DLI model, in different experimental conditions, can still interact with a fish in a

similar way as a fish would do.

6.5 Conclusion

Despite the abundance of studies on fish-robot interactions, to our knowledge, no prior re-

search has drawn comparisons between the social interaction dynamics produced by fish-only,

biohybrid, and simulated groups. This comparison also introduces an intriguing issue: while

the reality gap in robotics Jakobi et al. (1995); Jakobi (1997); Mouret and Chatzilygeroudis

(2017) typically pertains to the transferability of robot controllers from simulation to real-life

conditions, a parallel can be drawn for biohybrid social interactions, termed the biomimicry

gap. Addressing this gap is complicated by: 1) subtle behavioral patterns that researchers or

machines fail to consider during the modelling process, 2) the inherently imperfect biomimetic

properties of artificial lures and devices, and 3) the absence of physics in most models. Con-

structing biohybrid systems with minimal or, ideally, no biomimicry gap, thus making them

indistinguishable from pure animal groups, could open doors to groundbreaking research in

biological systems. This would enable, for example, the introduction of controlled, localized

perturbations to accurately gauge an animal’s reaction. Such endeavors require that any

non-biomimetic effects of the robot be stringently assessed and alleviated. It is therefore

crucial to ensure that models do not simply overfit experimental data, but genuinely translate

to real-world scenarios, through robotic systems that can reproduce these models as expected.

Alas, while substantial progress has been made in the intersection of behavioral modeling and

robotics hardware which has long been promoted as the key to unraveling and understanding

the mechanisms that underlie collective behavior in animal groups, this assertion has not been

convincingly demonstrated in the literature. Especially in terms of models, most biohybrid
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systems are designed to modulate collective decisions between a limited set of spatial choices

(which often resolves to a binary choice). Many of these systems rely on simplified passive

(open-loop) Phamduy et al. (2014); Polverino and Porfiri (2013b); Abaid et al. (2012a); Ladu

et al. (2015b); Spinello et al. (2013); Ruberto et al. (2016); Bartolini et al. (2016); Kruusmaa

et al. (2016); Butail et al. (2014b) or reactive (closed-loop) Cazenille et al. (2018c,a); Faria

et al. (2010); Swain et al. (2011); Landgraf et al. (2013, 2016); Porfiri et al. (2019); Kim et al.

(2018) models, with only a handful utilizing biomimetic models. Even fewer biomimetic

models have been successfully tested in biohybrid groups Cazenille et al. (2018c,a) to emulate

real-life dynamics of fish groups. Simultaneously, to our knowledge, no end-to-end machine

learning (ML) model has been examined in this context, despite the booming field of ML.

Assessing a model’s fidelity is particularly challenging in the case of ML models, which are

often black-box (i.e., not easily explainable). Moreover, our understanding of how well robotic

devices can integrate and interact with living animal groups primarily relies on metrics that

do not account for model limitations. Similarly, many models evaluated in simulations, rely

on metrics that do not account for how such models can scale to real life Cazenille et al.

(2015, 2017, 2018a). Finally, the role of biomimetic lures and agile robotic devices in such

studies is usually underplayed. That is, there is insufficient evidence to support the claim that

biomimetic systems can bridge the biomimicry gap.

Fish

Simulation Biohybrid

H = 0.20H = 0.12

H = 0.14

Figure 6.6: Quantification of biomimicry gap (root mean squared Hellinger distance of all
observables) values between different experiments. Fish data compared to simulations yield
a root mean squared Hellinger distance value of H = 0.12; simulations compared to biohybrid
groups yield a mean squared distance H = 0.14; and Biohybrid groups have a mean squared
distance H = 0.20 when compared to fish-only data.

In this chapter, through the precise and comparative quantification of collective behavior in

pairs of agents (fish-only pairs, DLI simulated pairs and DLI biohybrid pairs), we demonstrate

that our biomimetic lure and robot system (introduced in Chapter 5), combined with the DLI,

are capable of bridging a substantial part of the biomimicry gap. More specifically, our study

reveals that the overall gap between actual pairs of H. rhodostomus and simulation is smaller

(root mean squared Hellinger distance of 0.12 of all observables) than that of the simulation
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and the biohybrid experiment (root mean squared Hellinger distance of 0.14 of all observables),

or the biohybrid pairs compared to fish-only pairs (root mean squared Hellinger distance of

0.20 of all observables), a direct result of the sum of the discrepancies indicated. In essence,

our DLI model is successful in generating realistic social interactions (see also Chapter 4),

our robotic system is very capable of replicating its instructions with small discrepancies, but

the transferred model results in greater discrepancies and the gap widens compared to the

simulation (see Fig. 6.6). Nonetheless, the biohybrid pair is not well aligned compared to

fish groups, which is confirmed when we compute the largest Hellinger distance value out of

the quantities considered (Hellinger distance between angle of incidence PDF is H = 0.30),

and is the largest contributor to widening the social interaction discrepancies (i.e., the largest

contributor, out of all observables, to increasing the Hellinger distance). These discrepancies

are consequently observed for the correlation function of the angle of incidence to the wall.

It is worth noting that even in fish-only experiment comparisons, the Hellinger distance will

probably exceed zero (albeit it is expected to be close to it), owing to the inherent behavioral

variability fish display between experiments. This suggests that the primary goal for robotic

systems might be to significantly reduce the gap, rather than entirely eliminating it.

Therefore, despite the positive results highlighted in our study, we demonstrated that further

closing the biomimicry gap requires work on minimizing all three discrepancy sources (de-

picted in Fig. 1.1). First, it requires that we refine our modelling approaches (e.g., by repeating

the experiments with the DLIv2). Second, the physics-related discrepancies, primarily at-

tributable to the transposition of the model into the robot, remains relatively small, but also

requires measurable improvement in the robotic system’s operation to fully bridge the gap.

Finally, discrepancies in the communication cues pose a considerable challenge in terms of

evaluation and could only be fully measured in the absence of the other two sources of dis-

crepancies. These discrepancies might correlate with the way social interactions are faithfully

modeled, under the assumption that the real fish’s responses change due to the artificial lure,

potentially influencing the interaction dynamics it is exhibiting in unexpected ways (i.e., not

frequently or at all observed in spontaneous interactions). Whereas it remains indeterminate

as to what constitutes the ultimate goal in reducing the biomimicry gap, our study introduces

a methodology and the resulting baseline values that produced realistic interactions. Further-

more, the correlation between improving the Hellinger distance and reducing the gap is not

yet known, but future studies can leverage the values presented in this study as a baseline

comparison score. To that end, along with the between-sample noise that we measured with

our bootstrap approach, future work could include independently repeating the entirety of

the fish-only experiments to provide insight into the behavioral variability of H. rhodostomus.

In turn, this could provide better understanding into a sensible lower bound for the average

Hellinger distance value, that indicates excellent agreement between any two datasets.

We believe our study may be the first of many that emphasizes on both simulated and

biomimetic biohybrid experiments in a single end-to-end approach. An approach that, as

demonstrated, allows us to gain more insight into which aspects led to behavioral differences

in the biohybrid experiments and, therefore, need improvement. In turn, this contributes to: 1)
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establishing a better experimentation pipeline to investigate the varying sources of gaps (e.g.,

physical robot limitations, social interaction gaps in models, and eventually discrepancies in

the communication cues exploited to evoke responses), and 2) drawing more definitive and

insightful behavioral conclusions without the unrealistic effects introduced by the robotic

system and social interaction models. Future studies could benefit by the advances presented

in this chapter, by reporting the biomimicry gap score (in the form of the quantities presented).

We hope that future studies may standardize and utilize a common methodology to evaluate

the fidelity of biohybrid systems with respect to natural ones.
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7 Investigating the biomimicry gap
with varying sizes of biohybrid groups
driven by a high-fidelity model

This section’s content is adapted from the following article:

• This is partial and preliminary work that will undergo more analysis and will be

included in a future publication. The results of this work have been generated in

collaboration with Guy Theraulaz, Clément Sire, and Francesco Mondada.

– Vaios Papaspyros’s contribution: Conception, data curation, formal analysis,

investigation, methodology, software, visualization, writing..

• The article’s work was funded by the Swiss National Science Foundation project

“Self-Adaptive Mixed Societies of Animals and Robots” (Grant No. 175731). Our

collaborators from the Université Toulouse – Paul Sabatier were funded by the

French National Research Agency (ANR-20-CE45-0006-01).

• Ethics: All H. rhodostomus experiments were conducted at the Centre de

Recherches sur la Cognition Animale, Centre de Biologie Intégrative, CNRS, Univer-

sité de Toulouse – Paul Sabatier. Experiments were approved by the local ethical

committee for experimental animals and were performed in an approved fish facil-

ity (A3155501) under permit APAFIS#27303-2020090219529069 v8 in agreement with

the French legislation.

7.1 Introduction

As discussed in previous chapters, fish schooling behavior is a captivating example of collec-

tive intelligence and emergent patterns in nature. Uncovering the underlying mechanisms

governing these behaviors could provide valuable insights into various applications, including

robotics, environmental monitoring, and even human social dynamics. Yet, despite a plethora

of biohybrid studies, only a handful rely on the real time use of highly biomimetic models (as

presented in Chapter 6), and, to our knowledge, none provide insight into the biomimicry

gap between underlying models that control robots and the dynamics created in biohybrid

experiments.
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In Chapter 6, we showed that a deep learning model of social interactions can be transposed

back to real life, albeit imperfectly. More importantly, our methodology introduced measurable

observables to quantify the distance from its simulated counterpart, and provided insight as to

which biomimicry gap components (see Fig. 1.1) contribute to discrepancies. In this chapter,

we conduct a similar study, where we scale this experiment to varying sizes of biohybrid

groups (of one, two, and five individuals), and we additionally investigate, for the first time

in a biohybrid system, the role of multiagent perception in fish groups Lei et al. (2020) on

reducing the social interaction gap (see Fig. 1.1). To do so, we employ our robotic system

(see Chapter 5), wherein a robot propels a biomimetic lure realistically, and is designed to

interact with a varying number of live fish. More specifically, we conduct an ablation study on

how the analytical burst-and-coast model (introduced in Calovi et al. (2018) and presented

in Chapter 4), can be transposed back to real life when: 1) the LureBot interacts with the

wall of the tank alone, 2) the LureBot interacts with one H. rhodostomus, and 3) the LureBot

interacts with four H. rhodostomus. This process affords us the opportunity to partially unravel

the structure of social dynamics within biohybrid groups, and facilitates an evaluation of

the model’s and lure’s abilities to reproduce the natural social interactions inherent to the

group. Concurrently, it sheds light on two of the three facets of the biomimicry gap defined

in Chapter 1 (depicted in Fig. 1.1). Specifically, we probe: 1) whether any subtle behavioral

patterns elude the behavioral model steering the robot (social interaction gap), and 2) if part

of this gap can be attributed to the robot’s physical properties (physics gap).

Intriguingly, the novel biohybrid system introduced in Chapter 5, when coupled with the

compelling evidence garnered in Chapter 6, elucidates that pairing with a high-fidelity social

interaction model can markedly diminish the biomimicry gap. This, in turn, permits the

derivation of more robust, minimally biased and more confident conclusions regarding the

inherent behaviors of fish. Oftentimes, artificial systems have illuminated biological insights in

non-biomimetic social interaction settings. Examples include artificial stimuli that span from

phenotypically divergent lures Romano and Stefanini (2021) and physiologically distinct ones

Bartolini et al. (2016); Polverino and Porfiri (2013a); Kruusmaa et al. (2016), to lures mimicking

predators Abaid et al. (2013), and other visual stimuli Abaid et al. (2012b). Conversely, as

contended in prior chapters, we assert that deriving confident biological conclusions relies on

our comprehension and mitigation of the biomimicry gap. Specifically, it relies on biohybrid

systems capable of exhibiting profound similarity to biological groups and minimal discrep-

ancies originating from the artificial instruments. Consequently, studying the spontaneous

responses of living individuals to deliberately targeted robotic stimuli is afforded augmented

confidence concerning biological insight.

To that end, in this chapter, we explore a biological question, newly possible to validate

in reality through our biohybrid system, concerning the impact of multiagent stimuli on a

focal individual and the resultant emerging effects on collective-level dynamics. Although

the effects of multiagent stimuli have been previously probed in the context of fish social

interaction within simulations and robot-only swarms Lei et al. (2020), to our knowledge, no

similar experiment has ever been conducted utilizing a biohybrid system. Consequently, in
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subsequent sections, we delve into this concept, enabling the focal individual (i.e., the artificial

lure) to perceive: 1) the single most influential neighbor (i.e., with the highest social influence

force, see Calovi et al. (2018) and Chapter 4), and 2) the two most influential neighbors.

7.2 Methods

7.2.1 Multiagent simulations with the analytical burst-and-coast model

The analytical burst-and-coast (ABC) model simulations are initially configured as indicated

in Chapter 4, regardless of the number of individuals tested. The parameters of the model are,

however, adapted on a group-size basis as follows:

1. We conduct a series of simulations until the generated dynamics are closely fitting the

experimental data, and in order to provide a good initial parameter set for the biohybrid

system.

2. These parameters are then tested with the real-time system and are further hand-tuned

to reduce notable discrepancies introduced by the biohybrid system’s hardware and

software components.

3. Finally, the hand-picked parameters are used in long simulations that are compared to

the biohybrid results. Although using the same parameters prioritizes good performance

for the biohybrid system, it may lead to reduced performance in simulation. However,

this choice allows for a direct quantification of the biomimicry gap, one of the primary

objectives of this study.

The model parameters affected during this process typically correspond to the fish-wall (γw)

and fish-fish (γAtt) attraction strength, as well as the fish-fish alignment (γAli) preference.

Furthermore, in the real-time system, we reduce the average kick duration from 0.52 s to

0.2 s to account for the robot’s inherently slower response time compared to that of fish.

The latter adaptation is not applied to simulations, as there are no mechanical aspects that

require for this compensatory choice. As per the model’s definition (see Calovi et al. (2018)

and the corresponding section in Chapter 4), during a focal individual’s decision-making

process, we compute the social influence of each individual on the focal, as an effect of the

latter’s heading direction for its next motion. The effect is defined as the sum δφAtt(d ,ψ,∆φ)+
δφAli(d ,ψ,∆φ), that is, the effect of the fish-fish attraction and alignment strength, respectively.

Typically, for fish groups of N > 2 individuals, the default definition of the model sums the

resulting influence of all focal-neighbor pairs, before applying the cumulative effect on the

focal individual’s heading direction.

As previously mentioned, investigating a focal individual’s behavior with limited perceptive

abilities, requires that instead of considering the cumulative effect of all neighbors, we only
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consider a subgroup subject to a selection criterion. In the following sections, this criterion

refers to the most influential neighbor, and corresponds to the individual(s) with the largest

value δφAtt(d ,ψ,∆φ)+δφAli(d ,ψ,∆φ). In practice, during the decision-making process for the

robotic system, we first sort the individuals in descending order of their influence, and test

two cases where the focal (robotic) individual considers the top k = 1 and k = 2 neighbors,

similarly to Lei et al. (2020).

7.2.2 Real-time robot control with the analytical burst-and-coast model

To generate biomimetic trajectories for the robot to follow, we use the analytical burst-and-

coast model implementation described in the previous subsection and Chapter 4. Notably, we

alter the model such as to generate predictions for time t +1 in continuous time, as opposed

to the (discrete) kick-based logic of the model. At a first level, the ABC remains the same, that

is, we generate kicks (i.e., peak velocity, duration...), then we sample the kick every with a

30 Hz rate to obtain and send the desired motor commands to the robot. In fact, we make

use of the a-priori PID as defined in Chapter 5, where we tuned a PID controller to act on top

of an a-priori known average velocity. We found that this controller was able to reproduce

the velocity profile better than the traditional PID. Once the kick duration has elapsed, we

compute a new kick and repeat the above process. We note that, the robot itself does not truly

perform a kick. Whereas the PID controller produces kick-like speed profiles, those are, in

fact, not highly faithful to the ones observed by fish. The latter is indeed within the LureBot’s

capabilities, but at the time we conducted the experiments the low-level controller that can

perform this motion was not available.

Fig. 7.1 summarizes the closed-loop system we employed for the experiments presented in

following sections. First, our cameras capture the latest frame (see Fig. 7.1a). Then, once the

frame is available, BOBI (see Chapter 5) extracts the position, velocity, and direction of each

individual (see Fig. 7.1b), information which is used to compute individual and collective

quantities. This information, is then fed to the analytical burst-and-coast model which

stochastically computes a kick to be performed (see Fig. 7.1c). As discussed already, in order to

control the robot, we convert this discrete time information to continuous time segments by

sampling the kick (see Fig. 7.1d bottom) every ∆t = 1/3 s to produce its corresponding speed

transitions. These speed transitions combined with the desired heading direction are used to

command the robot at a rate of 30 Hz until t = t n+1
i . The robot then magnetically propels a

biomimetic lure that is placed within the tank. For simplicity and brevity, we refer to the lure

and the LureBot as the robot.

Notably, for group sizes N > 2, we tested the two perception cases where the most influential

neighbor is the one whose effect will contribute the largest heading variation, relative to the

focal individual (as described in the previous subsection). Additionally, the robotic agent’s

desired speed is selected in a probabilistic manner to either: 1) retain its previous speed,

2) randomly draw it from the speed distribution as measured in groups of fish that interact
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Figure 7.1: Closed-loop analytical burst-and-coast control of the robot. (a) the camera
system captures a frame at time t , (b) the frame is used to extract the position, velocity, and
direction of all individuals, (c) the resulting information is used by the analytical burst-and-
coast (ABC) model to generate trajectory predictions, (d) the trajectory is adapted and sampled
for continuous time control of the robot, and motor commands are sent to the robot.

spontaneously, or 3) copy the average speed of its neighbors. This probability, along the

kick generation parameters, may vary depending on the number of fish in the tank, and

is empirically set for the different group sizes. All experiments are conducted in the same

experimental setup presented in Chapter 5, that is, the fish swim in a circular arena of radius

R = 25 cm.

7.2.3 Data processing

We follow a similar data treatment as in Chapter 5. First, we employ idtracker.ai (v4) Romero-

Ferrero et al. (2019) in conjunction with high-resolution recordings (1500×1500 pixels) from

the experiment to monitor all agent movements and extract their 2D trajectories offline. The
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software reports an average tracking success rate exceeding 99.5%, which is further validated

through manual checks. We also incorporate a post-processing step that rectifies any instances

of misclassified or missing agent identities (e.g., when idtracker.ai fails to identify all individuals

in a particular video frame). Subsequent analyses are centered on the lure’s interaction with

the fish, hence, lengthy periods with minimal fish movement are excluded. Considering the

average body length of H. rhodostomus is 35 mm, we discard segments where the fish or lure’s

speed is under 1 BL/s. This procedure also eliminates occasions where the magnetic linkage

between the robot and lure breaks, leaving the lure stationary. Ultimately, all trajectories

undergo resampling with a timestep of ∆t = 0.1 s, replacing the original 1/30 s. This adjusted

timestep is deliberately chosen to mitigate the random noise arising between consecutive

frames and minimize the dataset’s dimensionality, while preserving enough detail to scrutinize

the interactions between the fish and lure.

7.2.4 Experimental procedure

The Hemigrammus rhodostomus (rummy-nose tetras) used in our experiments were acquired

from Amazonie Labège located in Toulouse, France. The fish were accommodated in 16 L tanks,

maintained at a temperature of 27◦C, and subjected to a 12/12 hour dark/light photoperiod

with a 30-minute transition period. Fish were fed freely with fish flakes. A trained technician

ensured proper feeding and living conditions each day between 8:30 am and 9:30 am. The

average length of the fish used in our studies is 35 mm.

The subsequent behavioral experiments were carried out in a circular enclosure with a radius

of R = 25 cm (the same setup from Chapters 5 and 6). The water level inside the enclosure was

kept around 5 cm. The water used in the enclosure came from the same filtering system as

the fish tanks, thus ensuring similar salinity and conductivity conditions. The temperature

was maintained at an average of 27◦C, similar to the fish tanks. The experimental setup was

housed in a separate room from the fish tanks. All experiments were conducted during fully lit

periods, between 9:00 am and 20:30 pm, with fed fish.

Our experimental process is summarized as follows:

1. Fish were randomly chosen from a tank not used on the previous day and transferred to

the circular arena;

2. we then allowed the fish a 15-minute acclimation period. Fish showing significant stress

(e.g., remaining motionless or floating belly-up) were returned to their tank, and another

fish was selected at random;

3. each fish or fish group was given an hour (1 h) to interact with the robot, after which

they were returned to their respective tank;

4. This process is repeated until we collect approximately 11 h of data for each case.
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This procedure ensured that no fish was subjected to tests two days consecutively or twice in a

single day. This precaution helped prevent the fish from becoming accustomed to the lure or

any specific patterns it displayed.

7.2.5 Evaluating the short- and long-term interactions

To evaluate the dynamics produced by fish-only, simulated and biohybrid groups, we follow

the same procedure introduced in Chapter 6 and Jayles et al. (2020). That is, we exploit the

9 observables considered in Chapter 4 (see Fig. 6.2), with adaptation for groups N > 2, as

described below.

The first 3 observables correspond to instantaneous quantities at the individual level, for

which we measure their probability density function (PDF): the speed, V of an individual;

its distance to the wall, rw; and its heading angle relative to the normal to the wall, θw. 3

additional observables probe the instantaneous collective dynamics, although as denoted

below, those 3 observables differ for the case of N = 2:

• the distance di j between the pair of individuals (or between nearest-neighbor pairs in a

group of more than 2 individuals);

• the difference φi j between the heading directions of the two individuals;

• and the angle ψi j at which an individual perceives its neighbor,

and for N = 5:

• cohesion, i.e., the average of the average distance between pairs of individuals

P (Ci ) =
√√√√ 1

N −1

N∑
i

(⃗ri − r⃗ j )2; (7.1)

• the average of the average nearest neighbor distances for each fish in the group P (di );

• and the average polarization of the group P (Pi )

P (Pi ) = 1

N −1

N∑
i

(
cos(φi −φ j )

)
, (7.2)

where i ∈ [1, N ] and we plot the quantities P (·) two times, 1) for all i ∈ [1, N ], and a second for

all i ∈ [1, N ] with i ̸= ROBOT_ID.

Finally, we consider 3 temporal correlation functions that probe the social dynamics at a very

fine level Jayles et al. (2020), and which are generally particularly difficult to reproduce. CX is
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the mean-squared displacement, CV the velocity autocorrelation, and Cθw the autocorrelation

of the angle of incidence to the wall. In general, we denote Cq (t) = 〈q(t + t ′)q(t ′)〉 as the

average of the quantity q(t)q(t + t ′) over the reference times t ′, over individuals, and over

different experiments. By the assumption of stationary of the system, the temporal correlation

function Cq (t ) only depends on the time difference between observations, and is often noted

Cq (t ) = 〈q(t )q(0)〉 (implicitly implying an average over the reference time 0).

For all quantities (PDF and correlation functions), we have computed the statistical and

sample to sample standard error by using a bootstrap method. Additionally, we measure

the Hellinger distance between PDFs to quantify the (dis)similarity between the different

quantities and cases (see Appendix C).

7.3 Results

7.3.1 Experiments with a single agent

Instantaneous individual observables

Figure 7.2: Instantaneous individual quantities. (a) Speed V probability density function.
(b) Distance to the wall rw probability density function. (c) Absolute angle of incidence to
the wall |θw| probability density function. Dark gray, blue, and red colors correspond to the
distributions of the fish-only experiment, the ABC simulated agents, and the ABC robotic
agents, respectively. In all PDFs, the colored dot corresponds to the median, and the thick
horizontal black line corresponds to the limits of the first and third quartile. The shaded areas
correspond to the standard deviation.

In Fig. 7.2a we plot the three cases considered in this chapter. Single fish typically swim at a

mean speed of 12.16 cm/s, with a standard deviation (SD) of 6.68 cm/s (see Table E.1). ABC

simulated agents produce a fairly similar distribution of velocity (Hellinger distance H = 0.20;

see Table E.2), although narrower (SD of 5.77 cm/s) and with a smaller mean of 10.96 cm/s.

The robot, exhibits a very similar means speed with ABC-SP (H = 0.13) and are in very good

agreement with single fish (H = 0.18).
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Fig. 7.2b shows the PDF of the distance to the wall, rw, for the three cases. Firstly, fish agents

swim very close to the wall with a mean distance of 2.03 cm and SD of 2.49 cm, less than one

body length (≈ 3.5 cm). Similarly to what was discussed in Chapter 6, this is a consequence

of the burst-and-coast swimming mode of H. rhodostomus Calovi et al. (2018). Due to this

movement, the fish is unable to escape the concave boundaries of the wall. ABC simulated

agents exhibit a greater distance to the wall, with a mean value 3.72 cm and an SD of 3.99 cm,

which differs from that of living fish with H = 0.31. Conversely, the robot typically produces

smaller distances to the wall than those of fish-only and the simulated agent. More specifically,

the robot swims at a mean distance of 1.73 cm with an SD of 2.04 cm from the wall, producing

similar distributions compared to fish with H = 0.15. Notably, the robot behavior is rather

different when compared to simulated agents, with their in-between difference measured at

H = 0.39.

Finally, Fig. 7.2c shows the PDF of the absolute value of the heading angle relative to the

normal to the wall, |θw|. As described in Chapters 4 and 6, due to the swimming proximity of

the agents (fish, simulated, or robotic) to the wall, we measure the means to be slightly smaller

than 90◦ (see Table E.1). Out of the three cases, fish agents exhibit the narrowest distribution

with SD of 18.16◦, with a close second being the robot with an SD of 18.39◦, and the simulated

agents producing SD of 25.12◦. The SD values are correlated with the mean distance to the

wall, meaning that larger distances from the wall would lead to larger SD for the angle of

incidence to the wall. In fact, the robot is in very good agreement with single fish distributions

(H = 0.11), better than the agreement with simulated agents (H = 0.18).

The robot experiments demonstrated very good agreement with fish-only experiments, while

exhibiting a more significant difference from their simulated counterpart (see Table E.2). The

differences between simulation and real-world experiment are most likely owed to physics,

the PID controller inducing some noise in the motion, as well as the delays propagating into

the real-time system and causing delayed responses (albeit, by a small amount).

Temporal correlation functions

Fig. 7.3 depicts three observables probing the emergent temporal correlations, as defined in

Sec. 4.3.

In Fig. 7.3a, we plot the mean squared displacement of the agents, CX (t), for all three cases.

The CX (t ) for single fish agents presents a rapid growth towards its peak at ≈ 5 s, after which

point, there is a small decay to a mean level equal to twice the mean square of the distance

to the center 403 of the tank. Although all three curves present a very similar growth up to

≈ 3 s, they differ in their peak height as well as their asymptotic value. Generally, the closest

an agent swims to the wall, the larger the mean square of their distance to the wall. This is

in line with the higher asymptotic value of the robot, which swims on average closer to the

wall than both the other agents (fish-only and simulated). Conversely, the simulated agent

has the lowest asymptotic value due to its, on average, larger distance to the wall. Focusing
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Figure 7.3: Temporal correlation quantities. (a) Mean squared displacement CX (t). (b)
Velocity autocorrelation CV (t ). (c) Temporal correlations of the angle of incidence to the wall
Cθw (t ). Dark gray, blue and red colors correspond to the distributions of the experiment, ABC
simulated agents and ABC robotic agents, respectively. Solid lines indicate the average agent
distributions. The shaded areas correspond to the standard deviation.

on the position of the peaks, which corresponds to the time for an agent to travel half of the

tank perimeter, i.e., correlated to its velocity, we also note differences among the curves. The

robot exhibits a peak later than the other two cases, caused by its smaller average speed than

that of fish. Finally, the robot curve exhibits oscillations for a longer amount of time, a direct

outcome of its very close movement to the wall.

In Fig. 7.3b, we plot the velocity autocorrelation, CV (t ), which vanishes when the velocity of

time t + t ′ becomes uncorrelated with that of time t ′, for large values of t . We note that, as

discussed in Chapter 6, CV (t) and CX (t) are independently observed over a finite sampling

time, despite the fact that CV (t ) can be approximated using CX (t ). The peaks of the oscillations

of CV (t) correspond to the inflection points before and after the main peak in CX (t). For

CV (t = 0), we obtain the mean square velocity, which shows, as discussed in the previous

section, the initial velocity of the robot is smaller than that of fish.

Finally, in Fig. 7.3c, we plot the temporal correlation function of the heading of an agent relative

to the wall, Cθw (t ) = 〈
cos

[
θi

w(t + t ′)−θi
w(t ′)

]〉
. In all three cases, we expect Cθw (t ) to decay, at a

rate which is strongly related to the sharpness of the peak in Fig. 7.2c. Indeed, we observe that

the robot presents strong correlations even after long time, with Cθw (t = 30 s) ≈ 0.78, related to

the very sharp peak it produced for |θw|, which suggests that it may take a long time to explore

values of θw far from 90◦. The slowest decay is presented by the simulated agent, albeit there

the agent still presents strong correlations for a long time Cθw (t = 30 s) ≈ 0.62. Lastly, the fish

decay fast, but also maintain strong correlations for a long time Cθw (t = 30 s) ≈ 0.18.

Both the simulated agent and the robotic fail to precisely reproduce the correlation function

Cθw (t), producing a similar but not as sharp decay compared to the one of the real fish. For

the robot, this is owed to its tendency to swim very close to the wall, while simulated agents
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swam farther but maintain an angle of incidence of almost 90◦ throughout the experiments.

Similarly to our findings in Chapter 6, the ABC seems to not precisely reproduce the underlying

correlations, but the robot was adequately able to follow the dynamics commanded by the

ABC model (see the relative difference of Cθw (t ) between robot and simulation).

7.3.2 Experiments with agent pairs

Instantaneous individual observables

Figure 7.4: Instantaneous individual quantities. (a) Speed V probability density function.
(b) Distance to the wall rw probability density function. (c) Absolute angle of incidence to
the wall |θw| probability density function. Dark gray, blue, and red colors correspond to the
distributions of the fish-only experiment, the ABC simulated pairs, and the ABC biohybrid
pairs, respectively. In all PDFs, the colored dot corresponds to the median, and the thick
horizontal black line corresponds to the limits of the first and third quartile. The inset plots
depict the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid
lines correspond to the robot, neighbor and average agent distributions, respectively. The
shaded areas correspond to the standard deviation.

Fig. 7.4a shows the speed PDF for fish-only, ABC simulated pairs (ABC-SP), and ABC biohybrid

pairs (ABC-BP). Fish pairs swim at a mean speed of 10.5 cm/s associated to a standard devia-

tion (SD) of 5.73 cm/s. ABC-SP produce fairly similar speed PDF (Hellinger distance H = 0.18),

although slightly wider with a SD of 6.39 cm/s, and a very similar mean of 10.38 cm/s. Con-

versely, ABC-BP speed PDF differ than those of fish-only (H = 0.26) and ABC-SP (H = 0.27),

with a much lower mean of 7.93 cm/s and narrower distribution (SD of 4.89 cm/s). In fact,

from the inset plot in Fig. 7.4a, which shows the speed PDF of the robot (dotted line) and that

of the neighboring fish (dashed line), we observe that both agents produce this slower and

narrower PDF (see also Table E.3).
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In Fig. 7.4b, we plot the PDF of the distance to the wall, rw, for the three cases. Fish pairs, as

discussed in Chapter 6, swim very close to the wall and produce a mean distance of 4.39 cm

and SD of 3.86 cm, a — already discussed — consequence of the burst-and-coast swimming.

ABC-SP reproduce this PDF fairly well (H = 0.15) with mean distance of 5.49 cm and SD of

4.91 cm, that is, the pairs swim slightly farther from the wall and with a greater SD than fish.

On the contrary, ABC-BP perform very similarly to fish experiments (H = 0.06) than ABC-SP

(H = 0.18). Biohybrid pairs swim with a mean distance of 4.10 cm from the wall and a SD

of 3.70 cm, both values almost identical to fish-only experiments. The inset plot in Fig. 7.4b,

however, reveals that the neighboring fish swims on average much farther from the wall with a

mean distance of 4.46 cm, compared to the robot that produces a sharp peak at 3.74 cm with

narrower tail (SD of 0.07 cm; see Table E.3). That is, despite the agreement when the agent

distributions are superimposed (averaged), there exist some dissimilarities at the individual

level.

Finally, Fig. 7.4c shows the absolute angle of incidence to the wall, |θw|. Similarly to the result

of single individuals, fish pairs moving close to the wall naturally produce (absolute) angles

of incidence slightly below 90◦. Here, fish pairs typically swim with an absolute angle of

87.42◦ and SD of 21.91◦. ABC-SP produce fairly a similar distribution (H = 0.19), characterized,

albeit with a slightly greater mean of 89.95◦ and wider tail (SD of 33.63◦). Once again, ABC-BP

show an excellent better agreement to fish-only experiments (H = 0.10), but also with respect

to ABC-SP (H = 11). Biohybrid pairs produced distributions with a mean of 88.12◦ and SD

of 25.93◦, both marginally different from fish-only experiments. The inset plot of Fig. 7.4c,

confirms that both robot and fish in the biohybrid pair produce similar distributions, albeit

the robot exhibits a marginally wider distribution (see Table E.3).

All in all, ABC-SP and ABC-BP are in fair agreement (see Table E.4), indicating that the ABC

model was transposed back to real life with fair accuracy. In fact, ABC-BP are in better

agreement to fish-only experiments than ABC-SP, indicating that there is a bigger gap in the

simulated dynamics than in real experiments with biohybrid pairs. However, the lower veloci-

ties exhibited by both fish and robot in biohybrid experiments, indicate a general deviation

from spontaneous interactions of fish, which directly stems from the interplay of the artificial

lure and the living individual(s).

Instantaneous collective observables

In Fig. 7.5a, we plot the interindividual distance of the agent pair, di j . Fish pairs swim in

close formation, with a mean interindividual distance of 8.05 cm and SD of 5.71 cm. Also,

note that the median interindividual distance in fish pairs is less than 2 body lengths (see

Fig. 7.5a). ABC simulated pairs produce markedly different dynamics (H = 0.38), with a

mean interindividual distance of 5.49 cm and SD of 4.15 cm. Conversely, ABC biohybrid pairs

are in fair agreement with fish-only experiments (H = 0.23), and produce dynamics where

the interindividual distance is 8.10 cm and the SD 7.41 cm, that is, the resulting distribution

exhibits a very similar peak with fish pairs, but has a wider tail (see Fig. 7.5a), meaning that the
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Figure 7.5: Instantaneous collective quantities. (a) Interindividual distance di j probability
density function. (b) Difference in heading angles |φi j | probability density function. (c)
Viewing angle ψi j probability density function. Dark gray, blue, and red colors correspond to
the distributions of the experiment, ABC simulated pairs and ABC biohybrid pairs, respectively.
In all PDFs, the colored dot corresponds to the median, and the thick horizontal black line
corresponds to the limits of the first and third quartile. The inset plots depict the PDFs of the
ABC biohybrid pair experiments where the dotted, dashed, and solid lines correspond to the
robot, neighbor and average agent distributions, respectively. The shaded areas correspond to
the standard deviation.

pairs swim more often at a great distances, e.g., at di j > 15 cm.

Fig. 7.5b shows the absolute value of the heading angle difference of agent pairs, |φi j |, that

is, we quantify the pair alignment. Fish pairs tend to form strong interactions that consist of

highly aligned movement. Indeed, their absolute heading angle difference is on average 26.72◦

with a SD of 29.81◦. ABC-SP produce a significantly similar PDF (H = 0.06) with a mean value

of 29.35◦ and a SD of 30.85◦. Notably, ABC biohybrid pairs are also very similar to fish pairs

(H = 0.10) and in excellent agreement with their simulated counterpart (H = 0.07). The mean

absolute heading difference in biohybrid pairs greater than that of fish, with a value of 36.50◦

and SD of 40.60, thus they produce a wider PDF than both the fish pairs and ABC-SP. That

is a consequence of the higher probability for the pair to swim in large distances, at which

instances the robot and fish attempt to close the distance by swimming anti-aligned, ergo

there is a noticeable weight at |φi j | = 180◦.

We conclude the collective observables by plotting the angle of perception (or viewing angle)

in Fig. 7.5c, ψi j . Fish pair PDF present clear peaks near ψi j = 0◦ and |ψi j | = 180◦. This

suggests that fish typically follow each other in an aligned manner, instead of swimming side

by side. ABC simulated pairs present excellent agreement in their dynamics compared to fish
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(H = 0.05), albeit with less pronounced peaks. This difference is mainly derived from the fact

that ABC-SP swim farther from the wall. ABC-BP also present similar peaks, but even less

pronounced than in ABC-SP. Regardless, the ABC-BP are in excellent agreement with fish pairs

(H = 0.09) and ABC-SP (H = 0.04). In the inset of Fig. 7.5c, we observe that the peak atψi j = 0◦

is dominated by the contribution of the fish (almost a flat line; see dashed curve), indicating

that the fish spends more time following the robot than the inverse.

In summary, both ABC-SP and ABC-BP failed to capture the interindividual distance profile

produced by spontaneously interacting H. rhodostomus pairs. However, the remaining collec-

tive observables are in excellent agreement with fish pairs. Furthermore, ABC-SP and ABC-BP

are in very good agreement with respect to all collective observables, supporting the claim that

the robot is well reproducing the commands of the ABC model, hence closing the biomimicry

gap, albeit with marginal differences.

Temporal correlation functions

Figure 7.6: Temporal correlation quantities. (a) Mean squared displacement CX (t). (b)
Velocity autocorrelation CV (t). (c) Temporal correlations of the angle of incidence to the
wall Cθw (t ). Dark gray, blue and red colors correspond to the distributions of the experiment,
ABC simulated pairs and ABC biohybrid pairs, respectively. Dotted, dashed and solid lines
indicate the robot, neighbor and average agent distributions, respectively. The inset plots
depict the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid
lines correspond to the robot, neighbor and average agent distributions, respectively. The
shaded areas correspond to the standard deviation.

Finally, in Fig. 7.6, we plot the three temporal correlation observables, which probe the long-

term emergent dynamics of the system.
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Fig. 7.6a shows the mean square displacement, CX (t), of the agent pairs in each case. CX (t)

presents a rapid growth, which eventually results to a peak, followed by decay to a mean level.

ABC-BP swim on average closer to the wall, thus creating a more correlated displacement in

the long-term timescale. On the contrary, both fish pairs and ABC-SP produce curves that are

damped faster, and systematically present smaller values than ABC-BP. This corresponds to the

very close movement of ABC-BP to the wall. However, ABC-BP have on average smaller speed

than fish and ABC-SP, which is noticeable in the delayed peaks CX (t ) peaks of the ABC-BP. We

note that, the position of the peaks roughly corresponds to the time for an agent to travel half

the of the tank perimeter. The inset plot of Fig. 7.6a, shows that the robot and fish motion is

strongly correlated.

For the velocity autocorrelation, CV (t ), shown in Fig. 7.6b, the peaks of the first two oscillations

roughly correspond to the inflection points before and after the main peak in CX (t ). Fish pairs

and ABC-SP are in excellent agreement, presenting only a marginal difference. Conversely,

ABC-BP, similarly to the mean square displacement correlation, present a markedly different

curve, that does not decay as fast and is not damped to the mean throughout the 30 s window.

This suggests that the biohybrid pair generally moves in a more coordinated and correlated

manner.

In Fig. 7.6c, we plot the final and most subtle of temporal correlations, the correlations

function of the heading of an agent relative to the wall, Cθw (t ). Although for very large times

t , Cθw (t) decays, we observe that in all cases the pairs still maintain relatively high values

for Cθw (t = 30 s). More specifically, the fish pair presents a value Cθw (t = 30 s) ≈ 0.35, ABC-SP

presents a value of Cθw (t = 30 s) ≈ 0.28, and ABC-BP presents a value of Cθw (t = 30 s) ≈ 0.44.

ABC-SP and ABC-BP present a slightly faster decay rate, but all three correlation functions

maintain the fairly strong correlations for the duration of 30 s. Furthermore, in the case of

ABC-BP, the inset plot in Fig. 7.6c, shows that both robot and fish contribute equally to the

average Cθw (t ), also observed for the first two correlation observables.

In summary, ABC-SP remains fairly faithful to the temporal dynamics observed in fish pairs.

On the contrary, ABC-BP fails to reproduce any of the temporal dynamics (ABC-SP or fish

pairs), and presents very strong correlations with the fish that swims in the tank. Naturally,

the differences are also partly attributed to the biohybrid pair’s significantly lower average

speed (see Fig. 7.2a), and tendency to move closer to the wall (see Fig. 7.2b). However, this

difference is not apparent in ABC-SP, which is based on the same ABC model formulation that

commands the robot.

7.3.3 Experiments with groups of five agents (1 agent in perception field)

In the following paragraphs, we present the results of simulated and biohybrid experiments

using the ABC model, which is explicitly set to generate trajectories by taking into account only

the first most influential neighbor. We note that, as discussed in Chapter 4 and shown in Lei

et al. (2020), fish groups seem to take into account multiple individuals in the decision-making
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process, with k = 2 individuals producing good agreement compared to experimental data

of fish. This section presents the results produced when we used ABC with k = 1, and in the

following section the results when k = 2.

Instantaneous individual observables

Figure 7.7: Instantaneous individual quantities. (a) Speed V probability density function.
(b) Distance to the wall rw probability density function. (c) Absolute angle of incidence to
the wall |θw| probability density function. Dark gray, blue, and red colors correspond to the
distributions of the fish-only experiment, the ABC simulated groups, and the ABC biohybrid
groups, respectively. In all PDFs, the colored dot corresponds to the median, and the thick
horizontal black line corresponds to the limits of the first and third quartile. The inset plots
depict the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid
lines correspond to the robot, neighbor and average agent distributions, respectively. The
shaded areas correspond to the standard deviation.

In Fig. 7.7, we plot the three instantaneous observables for all cases of groups with five agents,

where the simulated and real-time ABC model is taking into account the k = 1 most influential

individuals.

Fig. 7.7a shows the speed PDF for fish, ABC simulated groups (ABC-SG), and ABC biohybrid

groups (ABC-BG). Fish swim on average faster than in smaller groups, with a mean speed of

15.23 cm/s and an SD of 5.94 cm/s. ABC simulated groups produce very similar speed PDF

(H = 0.08), characterized by a mean of 13.65 cm/s and an SD of 5.47 cm/s. ABC biohybrid

groups also produce fairly similar speed PDF, albeit with a lower mean of 14.15 cm/s and a

wider PDF tail (SD of 6.92), resulting in a Hellinger distance H = 0.13. The inset plot in Fig. 7.7a,

shows the speed PDF of the four fish (dashed line) compared to the speed PDF of the robot
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(dotted line), from which we observe that the H. rhodostomus agents contribute to the lower

end of the speed weight, while the robot tends to move much faster (see also Table E.5).

In Fig. 7.7b, we plot the PDF of the distance to the wall, rw, for which we observe that fish

generally swim farther from the wall than smaller groups due to their, on average, higher speed.

In fact, they swim with a mean distance of 7.02 cm and a SD of 4.53 cm. ABC-SG once again

produces a fairly similar distance PDF, albeit with a higher mean value of 8.38 cm and wider

tail (SD of 5.99 cm), eventually leading to a Hellinger distance of H = 15. ABC-BG produce

greater distances of 10.06 cm with SD of 5.13 cm, that are in relatively good agreement with

fish experiments (H = 0.23). However, the distance to the wall PDF of the robot in the inset

plot in Fig. 7.7b, highlights that the robot is much more likely to swim close to the wall than

fish, that, in fact, swim almost 20% farther from the wall than in fish-only experiments (see

Table E.5).

Finally, in Fig. 7.7c, we plot the absolute heading angle relative to the normal to the wall, |θw|.
Similarly to smaller groups, the (close) proximity at which the agents are swimming to the wall,

causes a mean value |θw| that is slightly below 90◦, that is, agents tend to swim more often

towards the wall than away from it. The fish group PDF is measured to have the narrowest

distribution out of the three cases, with a SD of 20.02◦, compared to a SD of 43.97◦ for ABC-SG,

and 32.18◦ for ABC-BG (H = 0.37 and H = 0.20, respectively). Notably, the robot tends to swim

towards the wall almost as often as the neighboring fish group, but has higher probability to

swim parallel to it (see the inset plot in Fig. 7.7c), a potential effect of its less precise angular

control.

Similarly to previous sections, the ABC-SG and ABC-BG do not reproduce the dynamics at their

full extent, but generally maintain a good agreement with the spontaneous social dynamics

exhibited in groups of H. rhodostomus. However, the biohybrid experiments are in good

agreement with the simulated results, both commanded by the same social interaction model.

This verifies that the closed-loop system presented in Chapter 5 is capable of bridging the

biomimicry gap to an adequate degree to reproduce realistic dynamics at the individual level.

Instantaneous collective observables

Fig. 7.8a shows the cohesion PDF, P (Ci ), of the group (see Eq. 7.1). Fish produce a cohesion

PDF with a mean of 7.37 cm and SD of 2.53 cm, which demonstrates that fish typically swim

in close formation with respect to all their neighbors, forming a tightly packed group. ABC-

SG produce fairly similar cohesion PDF (H = 0.23), albeit with a greater mean value of 8.93

and wider tail (SD of 4.46). ABC-BG produce even less similar PDF compared to fish groups

(H = 0.25), with a mean of 9.65 cm and SD of 5.54. The inset plot in Fig. 7.8a, confirms that

although fish agents produce a similar PDF to the fish-only experiments, the robot contributes

to the ultimately wider PDF, which is caused by its tendency to, on average, swim farther than

the fish group.
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Figure 7.8: Instantaneous collective quantities. (a) Interindividual distance di j probability
density function. (b) Difference in heading angles |φi j | probability density function. (c)
Viewing angle ψi j probability density function. Dark gray, blue, and red colors correspond
to the distributions of the experiment, ABC simulated groups and ABC biohybrid groups,
respectively. In all PDFs, the colored dot corresponds to the median, and the thick horizontal
black line corresponds to the limits of the first and third quartile. The inset plots depict
the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid lines
correspond to the robot, neighbor and average agent distributions, respectively. The shaded
areas correspond to the standard deviation.

Focusing on Fig. 7.8b, which shows the average distance to the nearest neighbor, P (di ), we

observe that fish groups maintain an average distance of 4.37 cm with SD of 2.27 cm from their

nearest individual. For reference, this value is in the scale of one to two body lengths (average

body length of the H. rhodostomus used is ≈ 3.5 cm). ABC-SG produce relatively similar PDF

(H = 21) with a mean distance from the nearest neighbor equal to 4.37 cm and SD of 2.27 cm.

ABC-BG slightly more dissimilar PDF (H = 0.22) with a greater mean value compared to fish,

equal to 5.03 cm and a SD of 1.59 cm. Indeed, from the inset plot in Fig. 7.8b, we observe that

the robot produces a much wider PDF, swimming on average much farther from its nearest

neighbor than fish do (mean 8.15 cm; SD 5.10 cm; see Table E.5).

In Fig. 7.8c, we plot the PDF of the polarization measure defined in Eq. 7.2. As it happens for

smaller groups of fish of previous sections, groups of five fish typically swim in an aligned

manner. Fish groups produce an average alignment PDF with mean value 0.91 and SD of 0.15,

reflecting a highly aligned movement of the group. Conversely, both ABC-SG and ABC-BG

move in a significantly less aligned manner (H = 0.53 and H = 0.32, respectively). Here, we

note that the PDF of simulated and biohybrid pairs are in fair agreement H = 0.25, strongly

indicating that the social interaction model parametrization is not calibrated for aligned
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movement, but this is also a direct effect of opting to take into account the social influence

of the most influential individual alone. Notably, the fish in the biohybrid group seem to

produce a generally less aligned movement even without the contribution of the robot (see

inset plot in Fig. 7.8c), suggesting that the robot’s motion affects the group’s typical movement

at a collective level.

In summary of this section, ABC-SG and ABC-BG are shown to produce dynamics that are

overall dissimilar compared to fish dynamics. On one hand, this may be attributed to consid-

ering only the most influential individual in the decision-making process. On the other hand,

the greater average distances reported are may well be correlated with the robot’s slightly

delayed response and less accurate angular control. However, we note that the PDF produced

by ABC-SG are generally in good agreement with the PDF of ABC-BG (see Table E.6), once

again showing that the robot is fairly good at transposing the model dynamics back to real life,

but ABC requires further calibration to bridge the biomimicry gap.

Temporal correlation functions

Figure 7.9: Temporal correlation quantities. (a) Mean squared displacement CX (t). (b)
Velocity autocorrelation CV (t ). (c) Temporal correlations of the angle of incidence to the wall
Cθw (t ). Dark gray, blue and red colors correspond to the distributions of the experiment, ABC
simulated groups and ABC biohybrid groups, respectively. Dotted, dashed and solid lines
indicate the robot, neighbor and average agent distributions, respectively. The inset plots
depict the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid
lines correspond to the robot, neighbor and average agent distributions, respectively. The
shaded areas correspond to the standard deviation.
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Fig. 7.9 shows plots for the three temporal correlation functions, namely, the mean square

displacement CX (t ), velocity autocorrelation CV (t ), and the temporal correlation of the angle

of incidence to the wall Cθw (t ).

First, in Fig. 7.9a, we plot the mean square displacement, CX (t ). For fish groups, the function

is characterized by a rapid growth, which eventually leads to a first peak at time ≈ 4 s followed

by a decaying oscillation around a mean level, equal to twice the mean square distance to the

center of the tank. For large time t , the positions eventually become uncorrelated, and the

curve is damped as the agents are guided by the tank walls until the correlation vanishes. The

resulting ABC-SG correlation curve has the same qualitative form as that of fish, while the

ABC-BG curve presents more oscillations along the 30 s window depicted in Fig. 7.9. Notably,

all three curves present differences in the location and height of their peaks, as well as their

asymptotic values. The latter correlated to the swimming distance from the wall in such a

way that the closer agents swim to the wall, the higher the means square displacement CX (t )

is observed. This mirrors the measurements in Table E.5 for the distance to the wall, rw,

which show that ABC-BG swim farther from the wall than the other two cases. A breakdown

of the ABC-BG case, shown in the inset plot in Fig. 7.9a, justifies the robot’s asymptotic

behavior, which linked to its shorter distance from the wall compared to its neighboring fish,

but the average curve results in a lower mean CX (t ) value. Furthermore, the slowly damped

periodic oscillations of the ABC biohybrid groups demonstrates that their movement remains

correlated for a longer amount of time, compared to the other two cases. Finally, the location

of the peaks roughly corresponds to the time it takes for the agents to travel half the tank’s

perimeter, and is, therefore, directly correlated with their speed and distance to the wall. Here,

all three cases present their (first) peak with a small-time difference, primarily owed to their

different distances to the wall.

In Fig. 7.9b, we plot the velocity autocorrelation, CV (t ). The peaks of the first two oscillations

correspond to the two inflection points right before and after the main peak in CX (t ). CV (t = 0)

corresponds to the mean square velocity, which is in agreement with the results presented in

previous paragraphs. We note that, quantitatively, the ABC-BG is in better agreement with the

fish-only group velocity autocorrelation curve. The inset plot in Fig. 7.9b confirms that the

robot initially contributes to a typically higher velocity than that of its neighboring fish, but for

large enough t the curves are almost identical.

In Fig. 7.9c, we quantitatively observe that all three Cθw (t ) curves markedly differ. However, this

is arguably the subtlest among the correlation functions and the most difficult to reproduce.

Despite the fact that for very large time t , Cθw (t ) will decay, we observe that fish groups we still

have a relatively high value Cθw (t = 30 s) = 0.7 (almost twice what was observed in fish pairs).

For ABC simulated groups, Cθw (t) vanishes very rapidly, and has a value Cθw (t = 30 s) < 0.05.

ABC-BG also show a rapid decay, and maintain a value Cθw (t = 30 s) = 0.25, fairly lower than

that of fish groups. For reference, as discussed in previous paragraphs, the decay rate is

correlated to the sharpness of the peak near θw, which indeed justifies the very fast decay of

ABC-SG that produced a very wide PDF θw (see Fig. 7.7).
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Both ABC-SG and ABC-BG are fairly capable of reproducing the mean square displacement and

the velocity autocorrelation, but fail to recover the angle of incidence to the wall correlation.

Similarly to previous observables, the biohybrid group produce better agreement for the

correlations compared to the simulated groups, suggesting that the simulation, at its current

parametrization, is not adequately reproducing the short- or long-term social dynamics. On

the other hand, the robot, perhaps partly masked by the fish group’s behavior, is overall good

at approximating the spontaneous social dynamics of fish-only H. rhodostomus groups.

7.3.4 Experiments with groups of five agents (2 agents in perception field)

In this section, we repeat the experiments with groups of five fish, only this time we consider

the k = 2 most influential individuals.

Instantaneous individual observables

Figure 7.10: Instantaneous individual quantities. (a) Speed V probability density function.
(b) Distance to the wall rw probability density function. (c) Absolute angle of incidence to
the wall |θw| probability density function. Dark gray, blue, and red colors correspond to the
distributions of the fish-only experiment, the ABC simulated groups, and the ABC biohybrid
groups, respectively. In all PDFs, the colored dot corresponds to the median, and the thick
horizontal black line corresponds to the limits of the first and third quartile. The inset plots
depict the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid
lines correspond to the robot, neighbor and average agent distributions, respectively. The
shaded areas correspond to the standard deviation.

In Fig 7.10 we plot the individual quantity observables for all three cases, where the ABC

model considers the top two most influential neighbors. First, Fig 7.10a shows the speed
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PDF. For fish groups, we use the same dataset, thus the mean and SD remain identical (mean

15.23 cm/s; SD 5.94 cm/s). The ABC simulated groups produce a significantly similar PDF

(H = 0.08) with a mean value of 15.35 cm/s and SD of 5.15 cm/s. The ABC-BG with k = 2

produce a PDF that shows an improved, with respect to k = 1, agreement compared to fish

groups (H = 0.10). However, similarly to the k = 1 case, the inset plot in Fig 7.10a, reveals that

the fish contribution masks the higher speed of the robot and its wider speed PDF.

When considering the top two most influential individuals, ABC-SG produces a distance to the

wall PDF that is slightly improved compared to the k = 1 case, with a mean value of 8.10 cm

and SD of 5.65 cm, resulting in a Hellinger distance H = 0.12 (see Fig 7.10b). ABC biohybrid

groups also present a sizeable improvement over the k = 1 case, with a mean and SD values of

9.32 cm and 4.85 cm, respectively, and an improved Hellinger distance H = 0.19. The inset plot

Fig 7.10b, reveals that the fish group (excluding the robot’s contribution), maintains a greater

distance from the wall compared to fish-only groups, but when ABC is considering the top two

most influential neighbors, the group swims ≈ 0.8 cm closer to the wall than when considering

only the most influential. This shift, although small and fully explained from this observable

alone, already suggests the ABC-BG engage in more life-like interactions when k = 2.

Finally, in Fig 7.10c we plot the absolute heading angle difference to the normal to the wall,

|θw|. The ABC-SG with k = 2 produces dissimilar angle PDF (H = 0.38), equally dissimilar to

the k = 1 case. However, the biohybrid groups, show a 30% similarity improvement in the

Hellinger distance (H = 0.14), compared to the k = 1 case. More specifically, the ABC-BG

produce a PDF with a sharper peak and narrower tails (SD of 28.40◦), albeit they are still wider

than those produced by fish-only groups (SD of 20.02◦).

Allowing the model to consider the top two most influential neighbors to produce motion

predictions, showed a small increase in similarity at the level of the individual quantity ob-

servables, both in the case of simulated and biohybrid pairs. Finally, the ABC-SG and ABC-BG

also showed an improvement of the order of 10% in their Hellinger distance (see Table E.8),

demonstrating how high-fidelity models with proper calibration can effectively bridge the

biomimicry gap.

Instantaneous collective observables

In Fig. 7.11a, we show the cohesion PDF for the two ABC cases that consider the top two

most influential neighbors. ABC simulated groups exhibit a 20% deterioration in the Hellinger

distance compared to the k = 1 case. Conversely, ABC biohybrid groups, exhibit a 40% im-

provement (H = 0.15) over the k = 1 case. The improvement is caused by the on average

smaller intergroup distance both when considering the robot alone and the neighboring fish

alone (i.e., by excluding the robot). However, similarly to the k = 1 case, the fish contribute to

the high probability of maintaining a small distance to their neighbors, rather than the robot

(see inset plot in Fig. 7.11a).
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Figure 7.11: Instantaneous collective quantities. (a) Interindividual distance di j probability
density function. (b) Difference in heading angles |φi j | probability density function. (c)
Viewing angle ψi j probability density function. Dark gray, blue, and red colors correspond
to the distributions of the experiment, ABC simulated groups and ABC biohybrid groups,
respectively. In all PDFs, the colored dot corresponds to the median, and the thick horizontal
black line corresponds to the limits of the first and third quartile. The inset plots depict
the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid lines
correspond to the robot, neighbor and average agent distributions, respectively. The shaded
areas correspond to the standard deviation.

Fig. 7.11b shows the average distance to the nearest neighbor, for which ABC-SG with k = 2,

once again, show a small deterioration in their corresponding Hellinger distance (H = 0.31),

while the ABC-BG improve by approximately 60% (H = 0.11), showing very good agreement

with fish groups. However, the inset plot in Fig. 7.11b highlights that this improvement is owed

to the higher probability of fish to swim closer to their neighbor, while the robot, similarly to

the k = 1 case, struggles to stay very close to its nearest neighbor.

Finally, in Fig. 7.11c we plot the polarization PDF of the group. Contrary to the results of the

last two observables, here, ABC-SG show an improved polarization agreement with fish groups,

albeit the PDF remains significantly dissimilar (H = 0.43). Conversely, ABC-BG produce a

polarization PDF that showcases an approximately 30% improvement over the k = 1 case, with

a value of H = 0.20, and achieve a relatively good agreement with fish group polarization PDF.

Notably, the inset plot in Fig. 7.11c shows that both the robot and the four fish contribute

equally to the average polarization PDF. However, the robot has higher probability to be

unaligned with the rest of the group, and more notably, the fish group produces higher

probability of being unaligned as well (see the Table E.7).
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With respect to the collective quantity observables, we observed a markedly large improvement

when the ABC model considers the top two most influential neighbors. However, we note that,

the similarity between ABC-SG and ABC-BG with k = 2 improves only for the individual and

deteriorates for the collective quantities, with respect to how the k = 1 groups compared to

fish-only groups.

Temporal correlation functions

Figure 7.12: Temporal correlation quantities. (a) Mean squared displacement CX (t). (b)
Velocity autocorrelation CV (t ). (c) Temporal correlations of the angle of incidence to the wall
Cθw (t ). Dark gray, blue and red colors correspond to the distributions of the experiment, ABC
simulated groups and ABC biohybrid groups, respectively. Dotted, dashed and solid lines
indicate the robot, neighbor and average agent distributions, respectively. The inset plots
depict the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid
lines correspond to the robot, neighbor and average agent distributions, respectively. The
shaded areas correspond to the standard deviation.

In Fig. 7.12, we plot the three temporal correlation functions: mean square displacement

CX (t ), velocity autocorrelation CV (t ), and the temporal correlation of the angle of incidence

to the wall Cθw (t ). We note that, the ABC variants are set to consider the top two most highly

influential neighbors to generate future motion primitives.

Fig. 7.12a shows the mean square displacement, CX (t ). The correlation curve for fish groups

remains identical to the one of the previous section, with a rapid growth phase, a first peak

at time ≈ 4 s, followed by a decaying oscillation. The resulting ABC-SG correlation curve is

very similar to the one observed for ABC-SG with k = 1. However, the ABC-BG curve presents

a measurable improvement, with a first peak height more similar to fish groups than in the

case of k = 1, as well as a more similar asymptotic rate compared to fish. The improvement
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is primarily owed to the improved (smaller) distance to the wall produced by ABC-BG (see

Table E.7 for further details), while ABC-SG do not produce improved results.

Then, in Fig. 7.12b, we plot the velocity autocorrelation, CV (t ). Here, considering the top two

most influential neighbors drives a significant improvement in the agreement of the velocity

autocorrelation functions. In the case of ABC-SG, the location and height of the first peak

are markedly improved from its k = 1 counterpart, albeit the inability of the simulated group

to produce similar speeds to fish groups, leads to delayed peaks. On the contrary, ABC-BG

present a small but noticeable improvement compared to ABC-BG with k = 1, exhibiting very

similar peak heights and location for the first 15 s, after which point, the curves diverge, but

maintain roughly the same asymptotic value.

Finally, Fig. 7.12c remains a difficult quantity to reproduce, despite the multi-level improve-

ments presented in previous paragraphs. Indeed, the ABC simulated pairs produce only a

slightly improved decay rate, but nevertheless still almost entirely vanish within the observa-

tion time-window with a value Cθw (t = 30 s) < 0.05. For the ABC-BG, the angle of incidence to

the wall, θw, is improved with respect to ABC-BG with k = 1 and compared to fish groups (see

Fig. 7.10c; Table E.7) leads to more slowly decaying Cθw (t ), closing the gap between ABC-BG

and fish groups, but still decay fairly fast to the value Cθw (t = 30 s) = 0.37.

In summary, considering k = 2 most influential neighbors in the ABC compute cycle, produced

more similar correlation curves than when the ABC considers only k = 1. That is, as discussed

in detail in Lei et al. (2020), the artificial agent is much more able to follow life-like social

dynamics, and as presented in this section, is better integrated in the fish group.

7.4 Conclusion

Chapter 6 delves into the transferability of social interaction models from simulated to real-

world environments, while providing insight on the biomimicry gap that surfaces in this

transition. While it sets a precedent for the formal investigation of this gap, it does not

investigate the scalability of such interaction models with respect to the number of individuals,

nor does it investigate the biological notion of the number of individuals that are taken

into account during an individual’s decision-making process, and as a result reduces the

biomimicry gap. This chapter tackles these limitations by applying the analytical burst-and-

coast model as outlined in Calovi et al. (2018) and Chapter 4 to command the LureBot (as

described in Chapter 5) in real-time, allowing it to interact with varying group sizes of fish.

Our goal, in this chapter, was to examine how such models scales, and how the biomimicry

gap either widens or narrows when social dynamics evolve from the interactions of one to

five individuals, as compared to a pair of individuals (one robot and one fish) as presented in

Chapter 6. We also investigated the significance of taking into account multiple individuals

when taking decisions (for groups of N = 5 individuals), which while it has been explored in

simulation and robot swarms Lei et al. (2020), has never been validated in biohybrid groups.

Despite the unprecedented, yet partial, success on bridging the biomimicry gap, we also
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observed discrepancies that did not allow for fully bridging the biomimicry gap.

Fish

Simulation Biohybrid

H = 0.15H = 0.24

H = 0.25

(A) N = 1

Fish

Simulation Biohybrid

H = 0.18H = 0.12

H = 0.17

(B) N = 2

Fish

Simulation Biohybrid

H = 0.23H = 0.30

H = 0.22

(C) N = 5, k = 1

Fish

Simulation Biohybrid

H = 0.16H = 0.30

H = 0.26

(D) N = 5, k = 2

Figure 7.13: Quantification of biomimicry gap (root mean squared Hellinger distance across
all observables) values between different experiments. (A) values for single agent experi-
ments (N = 1), (B) values for pairs of agent experiments (N = 2), (C) values for group of five
agent experiments (N = 5) where the robot considers the most influential neighbor (k = 1),
and (D) values for single agent experiments (N = 5) where the robot considers the two most
influential neighbor (k = 2).

At a first level, the social interaction gap stems from the imperfect, and sometimes insufficient,

performance of the ABC model in simulations, where self-propelled agents respond instantly

without any physical constraints, thereby revealing missing dynamics in the model. We found

that, in many instances, biohybrid groups performed better compared to the simulated model

which displayed a larger discrepancy relative to real experiments (see root mean squared

Hellinger distances for single, pairs, and groups of five agents in Fig. 7.13A, Fig. 7.13B, and
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Fig. 7.13C-D, respectively). This naturally leads to the expectation that better social interaction

models would substantially improve biohybrid pairs’ performance. These limitations become

more evident as we increase the group size (see Tables E.6, E.8; and Fig. 7.13C-D), potentially

caused by the superposition of discrepancies between each individual and the robot. Notably,

in the 5-agent groups, we validated for the first time in a biohybrid system that these discrep-

ancies are significantly reduced, by approximately 30%, when the robot considers the top

two most influential neighbors (see Table E.8; Fig. 7.13C-D). This demonstrates how missing

elements in social interaction models at the individual level can scale to discrepancies at the

collective level. In all group size cases, much like in Chapter 6, the biohybrid groups displayed

poor performance in alignment, leading to subpar performance in the corresponding cor-

relation observable for the angle of incidence. The inability of our system, comprising the

social interaction model and biohybrid interaction framework, to reproduce alignment has

inadvertently propagated in the remaining observables. However, despite the discrepancies,

the majority of distributions we studied for the biohybrid case showed reasonable agreement

with real experiments, falling within an acceptable range of biomimetic performance, with

means squared Hellinger distance values of H = 0.15 for N = 1, H = 0.18 for N = 2, H = 0.23 for

N = 5, k = 1, and H = 0.16 for N = 5, k = 2. That is, except for biohybrid experiments where

we consider only the most influential neighbor, our system (model and robotic framework)

achieved Hellinger values of H < 0.2, which, as previously, discussed, indicates very good

agreement with real groups of fish.

At the second level, the observed discrepancies in the physics and communication cue gaps

can be traced back to unaccounted physical factors, such as simulation mechanics, robot

motion, and computational methods that limit robot response time, as well as subtle patterns

that the social interaction model may be missing. These discrepancies can be attributed

to issues such as the loss of magnetic coupling between the LureBot and lure, lossy and

delayed wireless communication with the robot, imperfect fish tracking, and robot inertia.

Regarding the physical gap, the experiments in this chapter and Chapter 6 now allow us to

identify limitations in our current system. These limitations could be addressed in future work

through software or hardware developments. However, as discussed in previous chapters, the

communication gap remains particularly challenging to understand, since ideally, the task of

bridging it would require the elimination of the other two sources of discrepancies. Nonethe-

less, it can be intuitively assumed that the lure’s lack of vertical axis movement may make the

lure itself less noticeable to neighbors in some occasions, thereby decreasing its impact on

their decision-making and causing short- and long-term discrepancies. Furthermore, despite

our best efforts, replicating the colors and shape of the lure to resemble the H. rhodostomus

remains only an approximation of the living animal.

Despite these setbacks, similarly to Chapter 6, we establish that the fish engage into meaning-

ful social interactions with the robot throughout the experiments, as the root mean squared

Hellinger distances demonstrate (depicted in detail in Fig. 7.13). For instance, even when the

robot moves faster than the fish group, significant changes in the behavior of the remaining

(live) group members are not observed. Yet, there is potential for further improvements. For
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example, having structured this multi-level issue, attention could be shifted towards optimiza-

tion algorithms that calibrate the social interaction model in real time or simulations to align

with the target dynamics. This approach mirrors those found in Cazenille et al. (2015, 2016,

2018b, 2019), but with validation in both simulation and biohybrid experiments, and utilizing

high-fidelity models. Naturally, this introduces a new trade-off between computational time

and system responsiveness.

Together with the work presented in Chapter 6, this chapter, to the best of our knowledge, rep-

resents the first (along with that of Chapter 6) end-to-end investigation concentrating on the

biomimicry gap, that utilize high-fidelity models that control robots in real time. In particular,

we executed an experiment involving varying fish group sizes, leveraging the same end-to-end

approach established in Chapters 4. To achieve this, we make use of the specialized equipment

presented in Chapter 5 and scale up the initial biomimicry gap experiment outlined in Chap-

ter 6 to include different sizes of fish groups. We believe that the culmination of these elements

of work, leading to this chapter’s experiment, could potentially set a benchmark for similar

biohybrid experiments within this field. With this research, we hope to establish groundwork

for future end-to-end methodologies that verify behavioral models both in simulations and

real life, and extend the work of Chapter 6 by assessing the scalability of such experiments at

all levels (simulation and biohybrid) when additional individuals contribute to the collective

dynamics. In this way, we are making strides towards genuinely understanding and bridging

the biomimicry gap as defined in Chapter 1.
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8 Contributions and research outlook

The investigation of collective behavior phenomena spans multiple disciplines, robotics being

among them. While the domain of robot-animal interaction is not a new field, as discussed

throughout this thesis, it nonetheless harbors numerous yet-to-be-explored research inquiries.

The advancements in electronics manufacturing, the development of modern algorithms, and

the widespread access to computational power have collectively transformed this field. These

progressions have furnished researchers with increasingly efficient tools for experimentation,

thereby enabling more sophisticated and comprehensive studies. The ultimate aim is to

provide insight into the underlying interaction rules governing collective systems.

In Chapter 1, we presented the primary limitations inherent to the various disciplines involved

in studying collective behavior and creating biohybrid groups. We also discussed the research

questions derived from these limitations (Chapter 2). In Chapter 3, we provided evidence

supporting the notion that fish groups are more likely to integrate a robot engaging in active

bidirectional interactions (RQ1). This finding not only establishes the baseline behavior

we strive for in robot-animal experiments, but also underscores the need for additional

work on modeling social interactions. In Chapter 4, we tackled this modeling challenge by

implementing and rigorously evaluating two social interaction models (one analytical and one

machine learning) that exhibit high fidelity in mimicking spontaneous fish movements (RQ2).

We further stressed the necessity of benchmarking such models over short and long timescales

to examine the emergence of temporal correlations, rather than merely fitting short-term

spatial metrics. In Chapter 5, we introduced a novel open-source robotic system equipped to

replicate the demanding dynamics of the models presented in Chapter 4. Lastly, in Chapters 6

and 7, we explored how the high-fidelity models outlined in this thesis can be transposed

back into real-world scenarios via the Behavioral Observation & Biohybrid Interaction (BOBI)

framework (refer to Chapter 5; RQ3). The successful transposition of these models is subject

to potential discrepancies arising from both physical realities and gaps in social interaction

modeling. We coin this discrepancy the “biomimicry gap” (RQ4), a concept analogous to

the reality gap Jakobi et al. (1995); Jakobi (1997); Mouret and Chatzilygeroudis (2017), but

differentiated by its emphasis on the social interaction component.
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This thesis’ work was purposely structured to investigate the three components of the biomimicry

gap. The three components to the biomimicry gap (social interaction, physics, and commu-

nication cue gap) were investigated incrementally and in accordance to the general mixed

society construction methodology introduced in Chapter 6 and summarized in Fig. 8.1. In

the following sections, we summarize the key outcomes of the thesis that align and provide

solutions to our research questions, covering the majority of mixed society study areas.

Figure 8.1: Biomimicry gap study plan. The light blue, yellow, orange, and red frames depict
the areas of study covered in this thesis, as well as, their corresponding relationship to our
research questions and chapters.
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8.1 How can social interactions be modeled in an informative and

expressive manner, with the purpose of constructing cohesive

mixed (i.e., biohybrid) groups of animals and robots?

8.1.1 (RQ1) How can we explore the bidirectionality of fish-robot interactions to
measure how they facilitate the integration of a robot into fish groups?

While it is recognized that fish groups engage in bidirectional communication, the extent

to which this bidirectional interaction is affected when artificial agents are present remains

largely unknown. A host of researchers have delved into the concept of eliciting responses

via artificial lures (e.g., Faria et al. (2010); Swain et al. (2011); Landgraf et al. (2013); Cazenille

et al. (2018c); Porfiri (2018); Chemtob et al. (2020); Romano and Stefanini (2021, 2022b)),

yet none have undertaken a comparative study. In Chapter 3, we ventured into this domain,

experimenting with models that range from: 1) open-loop models, which remain unresponsive

to stimuli from neighbors, to 2) closed-loop models that can be further subdivided into i)

passive models, which indiscriminately follow group-level movements, and ii) active models,

which alternate between following and leading.

Our results indicated that the active approach facilitated the robot’s integration into the

biohybrid group, and we even observed that the fish were more inclined to follow the robot’s

lead. However, the low complexity of the model used limited us from gaining a deeper

understanding of how this model made the robotic agent more appealing to the fish. This

served as motivation to transition towards more intricate and accurate models of interaction,

which could then be compared against spontaneous fish interactions (RQ2).

8.1.2 (RQ2) How can we design and assess bidirectional models of high fidelity
(w.r.t., to observations from the spontaneous animal interactions)?

To gain a deeper understanding of how fish adapt their behavior in the presence of an artificial

lure, we shifted our focus to the design of more detailed models of social interaction (refer

to Chapter 4). We aimed to ascertain whether machine learning methodologies could yield

such models, in contrast to using traditional analytical approaches, and whether substantial

improvements could be observed when employing either of these methods. However, in this

endeavor, we uncovered a more substantial challenge. While it is well established that (fish)

collective behavior operates over multiple temporal scales Ioannou and Laskowski (2023),

most models of social interaction predominantly depend on short-term observations and

predictions of spatial quantities. During the development phase, it quickly became apparent

that a model performing well over short intervals does not necessarily translate into equivalent

success over long periods.

149



We tackled the these limitations in a comprehensive research work in Chapter 4, where:

1. we proposed a robust spatial and temporal benchmarking metric set;

2. we developed a novel deep learning model of social interaction and contrasted it against

the state-of-the-art analytical model and a similarly purposed trajectory forecasting

algorithm.

Through this process, we identified key design choices that were instrumental in enabling the

machine learning algorithm to learn the dynamics. Namely:

• Models that perform well in short timescales do not necessarily generate realistic long

timescale social dynamics;

• Neural networks with memory significantly outperform their non-memory counter-

parts;

• modelling the data as a sequence-to-sequence problem aids the model convergence

(i.e., to a model that can generate realistic social dynamics);

– Input sequence lengths that are biologically informed are trained faster and per-

form better (i.e., their length is selected based on biological knowledge, here 0.5 s

is the average kick length).

• there is an imperative need for standardized benchmarking metric sets that validate a

social interaction model’s generative abilities.

We trust that this work will establish a more methodical design and evaluation standard, and

stimulate the research community to validate the generative capabilities of social interaction

models across both short and long timescales to ensure their accurate generative capabilities

of the targeted social dynamics.

8.1.3 (RQ3) Which key elements make for robotic devices that can closely mimic
fish motion and dynamics to subsequently transfer such models “back to
reality”?

The development of high-fidelity social interaction models in Chapter 4 further highlighted

three limitations in the realms of software and hardware:

1. In combination with the rapid real-time control of multiple devices, including a mobile

robot, these models necessitate real-time identification of all individuals. This function-

ality was neither available in our previous experimental framework (CATS) Bonnet et al.

(2017) nor is it typically featured in existing fish-robot frameworks;
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2. The models demand robots capable of matching or exceeding the agility of fish, a

criterion that the majority of current robotic systems fails to meet (refer to Appendix C.1);

3. The models call for faithful (fish) replicas to ensure minimal visual bias.

These limitations served as the motivation for the design and development of a novel frame-

work, encompassing an experimental setup, a mobile robot, and the ancillary software, as

presented in Chapter 5. We exploited the BOBI framework to showcase how the amalgamation

of these advancements succeeded in achieving unprecedented levels of biomimicry across

varying sizes of fish groups.

8.1.4 (RQ4) How can we measure, and what is the gap between real experiments
and simulations with such models?

Despite numerous animal-robot interaction studies, including the subset of fish-robot studies

which are the focal point of this thesis, to our knowledge, no study performs a comprehensive,

end-to-end analysis of how social interaction models transition from simulation to reality.

Analogous to the reality gap Jakobi et al. (1995); Jakobi (1997); Mouret and Chatzilygeroudis

(2017), we introduced the term “biomimicry gap”, which represents a similar discrepancy

resulting from unaccounted physics when controlling the robot, and subtle complexities

missing from the social interaction models commanding the robots. Echoing the challenges of

the first research question (RQ1), this gap not only constrains our understanding of collective

behavior (within the context of animal-robot interaction), but also inherently complicates

identifying the root causes of such a gap, whether they lie in physical or modeling elements.

In this thesis, we strive to enhance our understanding and bridge this gap by integrating the

work of (RQ1-3; Chapters 3-5). The culmination of these findings lays the groundwork for

Chapters 6 and 7.

In Chapter 6, we introduced the concept of the biomimicry gap to the research community

by transferring a deep learning model of social interactions from simulation to reality. We

demonstrated the feasibility of this approach, observed significant similarity between simula-

tions and biohybrid experiments, although some deviation from the spontaneous behavior

of fish groups was noted. To our knowledge, this represents the first validation of a neural

network model for social interactions in both simulation and reality.

Similarly, Chapter 7 involves a larger-scale experiment. Using an analytical model of social

interactions with varying fish group sizes, we accurately measured the discrepancies between

fish-only, simulated, and biohybrid fish groups. More specifically, we demonstrated that our

robotic system is capable of bridging the physics and communication gaps to unprecedented

levels, with our models causing only minor discrepancies contributing to the social interaction

gap. Notably, we observed that these discrepancies widen as the group size increases. Both

our models and the biohybrid system exhibited a larger discrepancy for larger groups, which

could be attributed to the superposition of the complex dynamics at the individual level
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generating increasingly diverse dynamics at the collective level as the number of individuals

involved increases. Our models and robot are currently constrained within a certain amount

of variance, indicating potential directions for future work. We posit that this experimental

approach, to the best of our knowledge, is pioneering in its kind, bridging the gap between

simulated and real-life studies of robot-assisted social interactions.

8.1.5 Technical limitations and future work

This section’s content is adapted from the following article:

• Papaspyros, V., Burnier, D., Cherfan, R., Theraulaz, G., Sire, C. and Mondada, F.,

2023. A biohybrid interaction framework for the integration of robots in animal

societies. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3290960 (reuse autho-

rised under the CC 4.0 licence) – Papaspyros et al. (2023a)

– Vaios Papaspyros’s contribution: Conception, data curation, formal analysis,

investigation, methodology, software, hardware, visualization, writing – origi-

nal draft, writing – review & editing.

While significant progress has been made in comparison to existing robotic platforms, certain

aspects of our robotic platform still warrant further exploration and development. Narrowing

the gap between the spontaneous movements of fish and those generated by biohybrid groups

depends on the continuous development of motion models and the hardware supporting

them.

The inherent limitations of mechanical devices, such as the LureBot, which lack the plasticity

of living organisms, pose a challenge. For instance, fish, including H. rhodostomus and D. rerio,

can execute extremely rapid directional changes that the LureBot can only approximate. In

particular, the LureBot cannot fully express the burst-and-coast dynamics (sudden acceler-

ation followed by a gliding period) observed in several fish species. Moreover, due to the

inherent design of the BOBI and LureBot, the lure effectively moves in two dimensions. While

the majority of fish experiments in the context of the study of collective phenomena consider

fish swimming in shallow water (an effective two-dimensional setup), let us mention that

some fish robotic platforms have the ability to move in 3D Ruberto et al. (2016); Bartolini et al.

(2016). In many cases, such as in this study, the biomimetic lure, while visually very similar to

the considered fish, is passive: it does not actively beat its tail or bend its body, nor can one

control its posture. Whereas lures with an actively beating tail have been proposed Bonnet

et al. (2016), such lures are bound to be larger than the considered species, to accommodate

the necessary electronics and mechanics. Therefore, additional research on improved motors

and LureBot configurations that could potentially allow it to perform a true burst-and-coast

motion is a valid future research direction.
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8.1.6 Modelling limitations and future work

Modeling social interactions remains a considerable challenge within the scientific commu-

nity. Various methodologies exist for creating models, but within the context of this thesis,

we categorize them into two primary types: 1) analytical models, and 2) machine learning

models. Each type comes with its own limitations, as we detailed in Chapters 1 and 4. Gen-

erally, these limitations manifest as a failure of analytical models to detect subtle patterns

Marques et al. (2018), and a lack of explainability in machine learning models. In turn, those

discrepancies between models and real-life dynamics, lead to a wider social interaction gap

(see Fig. 1.1). One potential solution might lie in the utilization of transformer architectures

Vaswani et al. (2017), which can provide high-level insights into the learned decision-making

process, while automatically learning the dynamics from data. In addition to these limitations,

current social interactions are typically validated with a relatively small number of individuals

to allow for easier interpretation of the results and also to discern the effects of individuals

on other individuals. However, further growing our understanding of collective behavior,

inherently requires scaling up behavioral experiments to more species and large fish groups.

In Chapter 4, we showed that the Deep Learning Interaction (DLI) model can be extended to

two fish species that swim in a burst-and-coast manner, but future work should include 1)

extending the models to more burst-and-coast species, like the guppies, and 2) implement-

ing, adapting, extending, or validating general purpose social interaction models that can

accelerate scalability studies across markedly different species.

8.1.7 Behavioral experiment, scalability limitations, and future work

These scalability limitations are also prominent in biohybrid experiments, where they typically

arise from the complexity of real-time information fusion and action. Tracking multiple indi-

viduals, especially when maintaining the identities of study animals for extended experiments,

is inherently difficult, but the difficulty varies based on the defined real-time requirements

of the task. While studies on slower-moving animals or long-term pattern emergence might

only require lower frame rates (e.g., 5-10 frames per second), fish-robot experiments typically

demand at least 25 frames per second for accurate animal tracking. Moreover, to mitigate

physical discrepancies due to the robot’s slow response times, owed to its mechanical com-

ponents, that contribute to the biomimicry gap (see Fig. 1.1), processing times should be

significantly reduced (i.e., requiring higher frame rates), allowing the robot to adapt almost

instantaneously to individual and collective dynamics.

Another prevalent limitation that is observed, is the relatively brief duration of experiments

(refer to Table 1.1), which hinders advancements in understanding the evolution within long-

term timescale experiments, as discussed throughout this thesis. Before the introduction

of the robotic system in Chapter 5, and as evidenced in Table 1.1, many robotic systems

either were not engineered for prolonged operation or were utilized in studies specifically

exploring short-term timescale phenomena. Particularly in contexts of social interaction,
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that influence the biomimetic efficacy of robotic systems, future research should embrace

experiments of considerably longer durations. In this thesis, we managed to double the

duration of the average biohybrid experiment, but posit that extending experiments even

further could yield additional behavioral insights. Furthermore, the present technological

state and understanding in this field could arguably accommodate studies on even longer

timescales, such as exploring the disparities in social interactions between juvenile and

adult fish in laboratory conditions, with and/or without robotic systems, similarly to recent

behavioral research on fish in the wild Monk et al. (2023).

On a similar tangent, Table 1.1 illustrates that, for over a decade, biohybrid interaction ex-

periments have typically involved small groups, ranging from 5 to 10 individuals. While we

have identified in previous chapters that even within such modest group sizes, substantial

discrepancies occasionally generate a broad biomimicry gap, it is imperative that larger groups

gain a more focal role in biohybrid experiments moving forward. Consequently, it is pivotal

to quantify how effectively high-fidelity social interaction models can scale to accommodate

larger groups. Although this concept is occasionally probed in simulation studies Calovi et al.

(2018); Wang et al. (2022); Xue et al. (2023), yielding significant biomimetic outcomes, its

exploration in biohybrid experiments has been scarce.

Finally, the large majority of experiments, are conducted in notably similar, and typically

symmetrical experimental setups, frequently designed to explore the binary choices of fish

Bonnet et al. (2018); Chemtob et al. (2020); Bonnet et al. (2019), and less often to explore the

fidelity of biohybrid systems with respect to biological ones Cazenille et al. (2017); Landgraf

et al. (2016). Regardless of the setup design, its effect on the social dynamics is typically

not discussed, despite its measurable effect. For instance, in square arenas Cazenille et al.

(2017), individuals often demonstrate a pronounced spatial preference for corners, which

proves challenging to interpret or model, thereby motivating the selection of symmetrically

circular arenas, as seen in Chapter 4. In fact, fish in open circular setups exhibit much more

diverse social dynamics, primarily due to the more available space compared, for example,

to the circular ring setup in Chapter 3. However, even with circular arenas, we observe the

setup’s curvature influencing the emergent social dynamics. Additionally, we pinpoint another

limitation of analytical models (explored in Chapter 4), which the lack of environmental

bound encoding. In simpler terms, in the absence of the rejection procedure (see Chapter 4),

analytical burst-and-coast simulated agents (or robots in Chapter 7) would escape the confines

of the wall since it is not perceptually present for individuals. Conversely, DLI simulated agents

in Chapter 4 appear to have encoded sufficient implicit information during training so that,

even without the rejection procedure, they consistently remain within the wall confines for a

minimum of 1 h (refer to Fig. B.1) on average. Similar observations were made in experiments

by Cazenille et al. (2017), and suggest that the deployed models have also learned pivotal

aspects of environment interaction, enabling them to mirror spatial distributions akin to those

of fish, though explicit information regarding the presence of a rejection procedure remains

undisclosed.
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8.2 Final words

Establishing cohesive biohybrid groups that emulate realistic social dynamics necessitates

a multi-faceted approach aimed at bridging the biomimicry gap. At the fundamental level,

this calls for the development of high-fidelity bidirectional models of social interaction, sup-

plemented with benchmarking tools to confirm their generative capabilities. Transferring

such models to physical systems necessitates agile robotic counterparts, in this case, a mobile

robot capable of closely emulating the motion profile (e.g., velocity, acceleration) of the target

species. We have presented substantial strides toward bridging the biomimicry gap and cre-

ating genuinely biohybrid groups, and we have open-sourced our complete set of software

and hardware tools. This allows the scientific community to reproduce, enhance, and scale

up animal-robot interaction studies. While a comprehensive understanding of the governing

rules of collective behavior remains elusive, the robotic tools, including those presented in

this thesis, prove to be a highly promising, if not indispensable, resource for future ethological

studies revolving around and beyond social interaction modeling.
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A Appendix for Chapter 3 “Establishing
a baseline of fish-robot dynamics”

Text 1. The experiments were conducted between the 30th of April and 5th of June 2018 at the

premises of École Polytechnique Fédérale de Lausanne. The earliest recorded experiment was

conducted at 9:30 and the latest at 18:30. During the experimentation time, the zebrafish were

housed with a 14 to 10 day to night ratio.

Table A.1: Post hoc analysis for the average angular distance distributions preceded by a
Kruskal–Wallis test and using Tukey’s honest significant difference criterion.

Model Model Lower CI Estimate Upper CI p-value
fish-only Follower -36.1312 -22.7000 -9.2688 0.0001
fish-only Despotic -33.2312 -19.8000 -6.3688 0.0009
fish-only Feedback-Initiative -26.1312 -12.7000 0.7312 0.0717
Follower Despotic -10.5312 2.9000 16.3312 0.9453
Follower Feedback-Initiative -3.4312 10.0000 23.4312 0.2226
Feedback-Initiative Despotic -6.3312 7.1000 20.5312 0.5258

Table A.2: Post hoc analysis for the average angular distance distributions preceded by a
Kruskal–Wallis test and using Tukey’s honest significant difference criterion.

Model Model Lower CI Estimate Upper CI p-value
fish-only Follower 0.2707 13.7000 27.1293 0.0435
fish-only Despotic 2.2707 15.7000 29.1293 0.0142
fish-only Feedback-Initiative -14.0293 -0.6000 12.8293 0.9995
Follower Despotic 11.4293 2.0000 15.4293 0.9810
Follower Feedback-Initiative -27.7293 -14.3000 -0.8707 0.0316
Feedback-Initiative Despotic -29.7293 -16.3000 -2.8707 0.0098

S1 Video. Recordings (segments) of the models in action. A short video depicting each model’s

resulting dynamics for a duration of 60 seconds. The full videos are available upon request

due to the large file size. https://doi.org/10.1371/journal.pone.0220559.s020
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Table A.3: Post hoc analysis for the U-turn initiation success rate distributions preceded by a
Kruskal–Wallis test and using Tukey’s honest significant difference criterion.

Model Model Lower CI Estimate Upper CI p-value
fish-only Follower -5.0272 4.2000 13.4272 0.5347
fish-only Feedback-Initiative -15.8272 -6.6000 2.6272 0.2143
Follower Feedback-Initiative -20.0272 -10.8000 -1.5728 0.0168

Table A.4: Post hoc analysis for the highest U-turn initiation success rate by any one individual
distributions preceded by a Kruskal–Wallis test and using Tukey’s honest significant difference
criterion.

Model Model Lower CI Estimate Upper CI p-value
fish-only Follower -4.3272 4.9000 14.1272 0.4269
fish-only Feedback-Initiative -12.9272 -3.7000 5.5272 0.6151
Follower Feedback-Initiative -17.8272 -8.6000 0.6272 0.0738

Table A.5: Post hoc analysis for the average outgoing transfer entropy distributions preceded
by a Kruskal–Wallis test and using Tukey’s honest significant difference criterion. (Average
outgoing TE including all agents)

Model Model Lower CI Estimate Upper CI p-value
fish-only Follower 3.9688 17.4000 30.8312 0.0048
fish-only Despotic 11.3688 24.8000 38.2312 0.0000
fish-only Feedback-Initiative -6.8312 6.6000 20.0312 0.5870
Follower Despotic -6.0312 7.4000 20.8312 0.4896
Follower Feedback-Initiative -24.2312 -10.8000 2.6312 0.1644
Feedback-Initiative Despotic -31.6312 -18.2000 -4.7688 0.0028

Table A.6: Post hoc analysis for the average outgoing transfer entropy distributions preceded
by a Kruskal–Wallis test and using Tukey’s honest significant difference criterion. (Average
outgoing TE only for the robot’s contribution)

Model Model Lower CI Estimate Upper CI p-value
fish-only Follower -1.5312 11.9000 25.3312 0.1036
fish-only Despotic 12.8688 26.3000 39.7312 0.0000
fish-only Feedback-Initiative -6.4312 7.0000 20.4312 0.5380
Follower Despotic 0.9688 14.4000 27.8312 0.0300
Follower Feedback-Initiative -18.3312 -4.9000 8.5312 0.7848
Feedback-Initiative Despotic -32.7312 -19.3000 -5.8688 0.0013
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Table A.7: Post hoc analysis for the average outgoing transfer entropy distributions preceded
by a Kruskal–Wallis test and using Tukey’s honest significant difference criterion. (Average
outgoing TE only for the fish contribution)

Model Model Lower CI Estimate Upper CI p-value
fish-only Follower 5.0688 18.5000 31.9312 0.0023
fish-only Despotic -0.3312 13.1000 26.5312 0.0590
fish-only Feedback-Initiative -10.2312 3.2000 16.6312 0.9283
Follower Despotic -18.8312 -5.4000 8.0312 0.7301
Follower Feedback-Initiative -28.7312 -15.3000 -1.8688 0.0180
Feedback-Initiative Despotic -23.3312 -9.9000 3.5312 0.2307

Table A.8: Post hoc analysis for the average outgoing transfer entropy distributions preceded
by a Kruskal–Wallis test and using Tukey’s honest significant difference criterion. (Average
incoming TE including all agents – identical to outgoing case for all agents)

Model Model Lower CI Estimate Upper CI p-value
fish-only Follower 3.9688 17.4000 30.8312 0.0048
fish-only Despotic 11.3688 24.8000 38.2312 0.0000
fish-only Feedback-Initiative -6.8312 6.6000 20.0312 0.5870
Follower Despotic -6.0312 7.4000 20.8312 0.4896
Follower Feedback-Initiative -24.2312 -10.8000 2.6312 0.1644
Feedback-Initiative Despotic -31.6312 -18.2000 -4.7688 0.0028

Table A.9: Post hoc analysis for the average outgoing transfer entropy distributions preceded
by a Kruskal–Wallis test and using Tukey’s honest significant difference criterion. (Average
incoming TE only for the robot’s contribution)

Model Model Lower CI Estimate Upper CI p-value
fish-only Follower -0.7312 12.7000 26.1312 0.0717
fish-only Despotic 16.0688 29.5000 42.9312 0.0000
fish-only Feedback-Initiative 2.3688 15.8000 29.2312 0.0134
Follower Despotic 3.3688 16.8000 30.2312 0.0072
Follower Feedback-Initiative -10.3312 3.1000 16.5312 0.9342
Feedback-Initiative Despotic -27.1312 -13.7000 -0.2688 0.0436

Table A.10: Post hoc analysis for the average outgoing transfer entropy distributions preceded
by a Kruskal–Wallis test and using Tukey’s honest significant difference criterion. (Average
outgoing TE only for the fish contribution)

Model Model Lower CI Estimate Upper CI p-value
fish-only Follower 4.6688 18.1000 31.5312 0.0030
fish-only Despotic 6.6688 20.1000 33.5312 0.0007
fish-only Feedback-Initiative -9.6312 3.8000 17.2312 0.8864
Follower Despotic -11.4312 2.0000 15.4312 0.9810
Follower Feedback-Initiative -27.7312 -14.3000 -0.8688 0.0317
Feedback-Initiative Despotic -29.7312 -16.3000 -2.8688 0.0099
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Figure A.1: Duration of consecutive movement towards a direction (across all 10 replicates)
(fish-only case).

Figure A.2: Duration of consecutive movement towards a direction (across all 10 replicates).
For the fish-only case, a random individual is excluded.
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Figure A.3: Duration of consecutive movement towards a direction (across all 10 replicates).
Follower model.

Figure A.4: Duration of consecutive movement towards a direction (across all 10 replicates).
Follower model with the robot excluded from the analysis.
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Figure A.5: Duration of consecutive movement towards a direction (across all 10 replicates).
Despotic model.

Figure A.6: Duration of consecutive movement towards a direction (across all 10 replicates).
Despotic model with the robot excluded from the analysis.
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Figure A.7: Duration of consecutive movement towards a direction (across all 10 replicates).
Feedback-Initiative model.

Figure A.8: Duration of consecutive movement towards a direction (across all 10 replicates).
Feedback-Initiative model with the robot excluded from the analysis.
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B Appendix for Chapter 4 “Designing
and benchmarking social interaction
models: from analytical to machine
learning models, and from short to
long timescale dynamics generation”

Table B.1: Mean and standard deviation values for the experiment.

Quantity Pair Leader Follower
V (cm/s) 11.04±6.69 11.54±7.05 10.53±6.27
r (cm) 4.58±3.53 3.93±3.56 5.23±3.38
θw (◦) 12.44±91.40 12.07±90.25 12.81±92.54
d (cm) 8.16±5.76 — —
φi j (◦) 0±53.47 — —
ψ (◦) −8.54±107.47 −15.66±143.82 −1.42±48.12

Table B.2: Mean and standard deviation values for the ABC model.

Quantity Pair Leader Follower
V (cm/s) 11.42±6.13 11.62±6.18 11.21±6.08
r (cm) 4.93±4.20 4.46±4.18 5.40±4.17
θw (◦) 19.92±90.12 19.48±88.02 20.37±92.18
d (cm) 7.92±5.44 — —
φi j (◦) 0±40.72 — —
ψ (◦) −5.45±107.41 −9.87±144.03 −1.02±47.85

Video 1. Examples of trajectories obtained in experiments with H. rhodostomus (left), for the

Analytical burst-and-coast (ABC) model (center), and for the Deep Learning Interaction (DLI)

model (right). This video illustrates the qualitative agreement between trajectories generated

by the ABC and DLI models and experimental trajectories, while the quantitative agreement

between the models and experiments is studied in detail in the Result section. The video

can be downloaded at https://github.com/epfl-mobots/preddl_2023/tree/v1.0.4/Videos/S1_

Video.mp4.
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Table B.3: Mean and standard deviation values for the DLI model.

Quantity Pair Leader Follower
V (cm/s) 11.07±7.04 11.56±7.44 10.58±6.58
r (cm) 5.65±4.42 5.24±4.42 6.07±4.26
θw (◦) 6.70±94.37 6.19±92.15 7.21±96.54
d (cm) 7.42±4.38 — —
φi j (◦) 0±54.23 — —
ψ (◦) −4.11±107.13 −7.20±142.12 −1.02±52.30

Table B.4: Mean and standard deviation values for D-LSTM model.

Quantity Pair Leader Follower
V (cm/s) 9.17±4.71 9.41±4.88 8.93±4.51
r (cm) 6.96±5.84 6.71±5.88 7.20±5.79
θw (◦) 12.40±91.41 12.03±90.28 12.77±92.53
d (cm) 5.58±3.22 — —
φi j (◦) 0±62.59 — —
ψ (◦) −1.20±107.40 −2.44±140.59 0.04±57.46

Table B.5: Mean and standard deviation values for the Euclidean distance between prediction
and real trajectory (focal individual).

Focal individual
Future time-point 0.12 s 0.24 s 0.36 s
DLI 0.12±0.11 0.29±0.26 0.46±0.46
D-LSTM 0.11±0.13 0.25±0.22 0.40±0.32

Table B.6: Mean and standard deviation values for the Euclidean distance between prediction
and real trajectory (neighboring individual).

Neighboring individual
Future time-point 0.12 s 0.24 s 0.36 s
DLI 0.11±0.15 0.26±0.27 0.41±0.39
D-LSTM 0.10±0.12 0.22±0.20 0.35±0.39

Video 2. Example of a generated trajectory simulation for the D-LSTM model. Already at the

qualitative level, the D-LSTM model fails at reproducing realistic trajectories (compare with

Video 1). The video can be downloaded at https://github.com/epfl-mobots/preddl_2023/

tree/v1.0.4/Videos/S2_Video.mp4.

Video 3. Example of collective behavior in a group of 5 DLI agents, without any retrain-

ing. For a given focal agent, we compute the predicted acceleration and noise which would

be produced by each of the 4 other agents. Following Lei et al. (2020), we define the two

most influential neighbors as the neighbors leading to the two highest predicted acceler-
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Table B.7: Implementation details of the DLI per layer. The 5 columns correspond to the
increasing layer count, the type of layer, activation function, number of inputs, and number of

outputs, respectively.

№ Layer Type Activation function № Inputs № Outputs
0 LSTM ReLU 256 128
1 Fully connected ReLU 128 64
2 Fully connected tanh 64 64
3 LSTM ReLU 256 128
4 Fully connected ReLU 128 64
5 Fully connected tanh 64 64
6 Fully connected None 64 4

Table B.8: Mean and standard deviation values for D. rerio experiment.

Quantity Pair Leader Follower
V (cm/s) 11.20±7.37 11.22±7.47 11.19±7.26
r (cm) 2.49±3.42 2.45±3.43 2.52±3.40
θw (◦) −20.26±90.42 −20.51±88.60 −20.00±92.20
d (cm) 14.49±13.30 — —
φi j (◦) 0±85.65 — —
ψ (◦) 16.45±111.59 26.19±143.86 6.70±63.40

Table B.9: Mean and standard deviation values for DLI model (D. rerio).

Quantity Pair Leader Follower
V (cm/s) 9.87±7.37 10.00±7.27 9.74±6.94
r (cm) 3.56±4.24 3.56±4.30 3.57±4.17
θw (◦) −15.24±93.67 −15.23±89.62 −15.24±97.56
d (cm) 17.77±13.96 — —
φi j (◦) 0±93.87 — —
ψ (◦) 11.69±107.60 15.53±135.31 7.86±69.40

ations. Ultimately, the focal fish speed and position are updated according to equations

(9-11), using the sum of these two highest accelerations and the average predicted noise.

This video illustrates the fact that, although the DLI was only trained to mimic the social

interactions between pairs of fish, it produces cohesive and aligned trajectories for 5 agents,

in good qualitative agreement with corresponding trajectories for 5 rummy-nose tetra Lei

et al. (2020). In the future, we will address the quantitative comparison between long-term

trajectories for groups of DLI agents and real fish, in particular, in connection to our robotic

platform Papaspyros et al. (2019); Bonnet et al. (2016, 2018). The video can be downloaded at

https://github.com/epfl-mobots/preddl_2023/tree/v1.0.4/Videos/S3_Video.mp4.
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Video 4. Example of a generated trajectory simulation for the Multi-layered Perceptron

Interaction (MLI) model. Already at the qualitative level, the MLI model fails at reproducing

realistic trajectories (compare with Video 1). The video can be downloaded at https://github.

com/epfl-mobots/preddl_2023/tree/v1.0.4/Videos/S4_Video.mp4.

Figure B.1: DLI simulations without a rejection procedure in place. The rows depict different
simulations of DLI pairs, and the columns depict the behavior of each individual during
those simulations. More specifically, each sub-figure depicts the distance to the wall of each
individual as a function of time. Overall, the figure depicts the underlying dynamics learned
by the DLI during training, that allowed it to implicitly learn the location of the wall and stay
within its confines for the majority of the experiments. Alternatively, to guarantee that the pair
stays within the wall confines, a rejection procedure is put in place, resampling the predicted
distributions until they yield a valid motion inside the tank walls.
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Table B.10: Neural network grid. We depict the 82 neural networks considered for the social
interaction modelling problem. The first column indicates the type of network (with or without
memory and sequence input), the second corresponds to the number of inputs, the third
indicates the use of collective information (along with individual used in all networks), the
fourth depicts the sequence of layers (where L, F, D correspond to LSTM, fully connected, and
dropout layers, respectively), and the fifth depicts the activation function sequence (where T,
S, G, and N correspond to tanh, sigmoid, Gaussian, and no activation, respectively).

N Memory № inputs Neurons Layers Activations

1 ✓ 11 256, -, 128, 64, 256, -, 96, 20, 4 LDFFLDFFF G[0.1]GGG[0.1]GGN

2 ✓ 11 256, 128, 64, -, 256, 96, 20, -, 4 LFFDLFFDF GGG[0.1]GGG[0.1]N

3 ✓ 11 256, 128, 64, -, 128, 64, 20, -, 4 LFFDLFFDF GGG[0.1]GGG[0.1]N

4 ✓ 11 256, 192, 128, 96, 32, 24, 12, -, 4 LFFFFFFDF GGGGGGG[0.1]N

5 ✓ 11 256, -, 128, 64, 256, -, 96, 20, 4 LDFFLDFFF G[0.4]GGG[0.4]GGN

6 ✓ 11 256, 128, 64, -, 256, 96, 20, -, 4 LFFDLFFDF GGG[0.4]GGG[0.4]N

7 ✓ 11 256, 128, 64, -, 128, 68, 20, -, 4 LFFDLFFDF GGG[0.4]GGG[0.4]N

8 ✓ 11 256, 192, 128, 96, 32, 24, 12, -, 4 LFFFFFFDF GGGGGGG[0.4]N

9 ✓ 11 256, -, 128, 64, 256, -, 96, 20, 4 LDFFLDFFF R[0.4]RTR[0.4]RTN

10 ✓ 11 256, 192, 128, 96, 32, 24, 12, -, 4 LFFFFFFDF GGGGGGG[0.4]N

11 ✓ 11 256, 128, 64, 256, 96, 20, 4 LFFLFFF RRTRRTN

12 ✓ 11 128, 80, 50, 128, 80, 20, 4 LFFLFFF RRTRRTN

13 ✓ 11 128, 80, 50, 96, 64, 20, 4 LFFLFFF RRTRRTN

14 ✓ 11 64, 32, 16, 64, 32, 16, 4 LFFLFFF RRTRRTN

15 ✓ 11 256, 128, 64, 256, 96, 20, 4 LFFLFFF SSTSSTN

16 ✓ 11 128, 80, 50, 128, 80, 20, 4 LFFLFFF SSTSSTN

17 ✓ 11 128, 80, 50, 96, 64, 20, 4 LFFLFFF SSTSSTN

18 ✓ 11 64, 32, 16, 64, 32, 16, 4 LFFLFFF SSTSSTN

19 ✓ 11 256, -, 128, 64, 256, -, 96, 20, 4 LDFFLDFFF R[0.1]RTR[0.1]RTN

20 ✓ 11 128, -, 80, 50, 128, -, 80, 20, 4 LDFFLDFFF R[0.1]RTR[0.1]RTN

21 ✓ 11 128, -, 80, 50, 96, -, 64, 20, 4 LDFFLDFFF R[0.1]RTR[0.1]RTN

22 ✓ 11 64, -, 32, 16, 64, -, 32, 16, 4 LDFFLDFFF R[0.1]RTR[0.1]RTN

23 ✓ 11 256, 128, 64, 256, 96, 20, 4 FFFFFFF SSTSSTN

24 ✓ 11 128, 80, 50, 128, 80, 20, 4 FFFFFFF SSTSSTN

25 ✓ 11 128, 80, 50, 96, 64, 20, 4 FFFFFFF SSTSSTN

26 ✓ 11 64, 32, 16, 64, 32, 16, 4 FFFFFFF SSTSSTN

27 ✓ 11 256, 128, 64, 256, 96, 20, 4 LFFLFFF GGGGGGN

28 ✓ 11 128, 80, 50, 128, 80, 20, 4 LFFLFFF GGGGGGN

29 ✓ 11 128, 80, 50, 96, 64, 20, 4 LFFLFFF GGGGGGN

30 ✓ 11 64, 32, 16, 64, 32, 16, 4 LFFLFFF GGGGGGN

31 ✓ 11 256, -, 128, 64, 256, -, 96, 20, 4 LDFFLDFFF G[0.1]GGG[0.1]GGN

32 ✓ 11 128, -, 80, 50, 128, -, 80, 20, 4 LDFFLDFFF G[0.1]GGG[0.1]GGN

33 ✓ 11 128, -, 80, 50, 96, -, 64, 20, 4 LDFFLDFFF G[0.1]GGG[0.1]GGN

34 ✓ 11 64, -, 32, 16, 64, -, 32, 16, 4 LDFFLDFFF G[0.1]GGG[0.1]GGN

35 ✓ 11 512, 256, 128, 512, 256, 64, 4 LFFLFFF RRTRRTN

36 ✓ 11 512, -, 256, 128, 512, -, 256, 64, 4 LDFFLDFFF R[0.1]RTR[0.1]RTN

37 ✓ 11 512, 256, 128, 512, 256, 64, 4 LFFLFFF GGTGGTN

38 ✓ 11 512, -, 256, 128, 512, -, 256, 64, 4 LDFFLDFFF G[0.1]GGG[0.1]GGN

39 ✓ 11 512, 256, 128, 64, 256, 128, 64, 32, 4 LFFFLFFFF RRRTRRRTN

40 ✓ 11 512, -, 256, 128, 64, 256, -, 128, 64, 32, 4 LDFFFLDFFFF R[0.1]RRTR[0.1]RRTN

41 ✓ 11 512, 256, 128, 64, 256, 128, 64, 32, 4 LFFFLFFFF GGGTGGGTN

42 ✓ 11 512, -, 256, 128, 64, 256, -, 128, 64, 32, 4 LDFFFLDFFFF G[0.1]GGTG[0.1]GGTN

43 ✓ 11 512, -, 256, 128, 64, 256, -, 128, 64, 32, 12, 4 LDFFFLDFFFLF R[0.1]RRTR[0.1]RRTRN

44 ✓ 11 512, -, 256, 128, 64, 256, -, 128, 64, 32, 12, 4 LDFFFLDFFFLF G[0.1]GGTG[0.1]GGTGN
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N Memory № inputs Neurons Layers Activations

45 ✓ 11 256, 64, 4 FFF SSN

46 ✓ 11 128, 48, 4 FFF SSN

47 ✓ 11 96, 32, 4 FFF SSN

48 ✓ 11 64, 16, 4 FFF SSN

49 ✓ 11 32, 8, 4 FFF SSN

50 ✓ 11 11, 6, 4 FFF SSN

51 ✓ 11 11, 256, 128, 4 LFFF SSSN

52 ✓ 11 11, 128, 64, 4 LFFF SSSN

53 ✓ 11 11, 96, 48, 4 LFFF SSSN

54 ✓ 11 11, 64, 32, 4 LFFF SSSN

55 ✓ 11 11, 32, 8, 4 LFFF SSSN

56 ✓ 11 11, 256, -, 128, -, 4 LFDFDF SS[0.1]S[0.1]N

57 ✓ 11 11, 128, -, 64, -, 4 LFDFDF SS[0.1]S[0.1]N

58 ✓ 11 11, 96, -, 48, -, 4 LFDFDF SS[0.1]S[0.1]N

59 ✓ 11 11, 64, -, 32, -, 4 LFDFDF SS[0.1]S[0.1]N

60 ✓ 11 11, 32, -, 16, -, 4 LFDFDF SS[0.1]S[0.1]N

61 ✓ 11 256, 96, -, 32, -, 4 FFDFDF SS[0.1]S[0.1]N

62 ✓ 11 128, 64, -, 16, -, 4 FFDFDF SS[0.1]S[0.1]N

63 ✓ 11 96, 48, -, 16, -, 4 FFDFDF SS[0.1]S[0.1]N

64 ✓ 11 64, 32, -, 16, -, 4 FFDFDF SS[0.1]S[0.1]N

65 ✓ 11 32, 16, -, 8, -, 4 FFDFDF SS[0.1]S[0.1]N

66 ✓ 11 11, 8, -, 6, -, 4 FFDFDF SS[0.1]S[0.1]N

67 ✓ 11 256, 96, -, 32, -, 4 LFDFDF SS[0.1]S[0.1]N

68 ✓ 11 128, 64, -, 16, -, 4 LFDFDF SS[0.1]S[0.1]N

69 ✓ 11 96, 48, -, 16, -, 4 LFDFDF SS[0.1]S[0.1]N

70 ✓ 11 64, 32, -, 16, -, 4 LFDFDF SS[0.1]S[0.1]N

71 ✓ 11 32, 16, -, 8, -, 4 LFDFDF SS[0.1]S[0.1]N

72 ✓ 11 11, 8, -, 6, -, 4 LFDFDF SS[0.1]S[0.1]N

73 ✓ 11 256, 96, 32, 4 FFFF SSSN

74 ✓ 11 128, 64, 16, 4 FFFF SSSN

75 ✓ 11 96, 48, 16, 4 FFFF SSSN

76 ✓ 11 64, 32, 16, 4 FFFF SSSN

77 ✓ 11 32, 16, 8, 4 FFFF SSSN

78 ✓ 11 11, 8, 6, 4 FFFF SSSN

79 ✓ 11 256, 96, 32, 4 LFFF SSSN

80 ✓ 11 128, 64, 16, 4 LFFF SSSN

81 ✓ 11 96, 48, 16, 4 LFFF SSSN

82 ✓ 11 64, 32, 16, 4 LFFF SSSN

83 ✓ 11 32, 16, 8, 4 LFFF SSSN

84 ✓ 11 11, 8, 6, 4 LFFF SSSN

85 ✓ 11 256, 128, 64, 32, 4 FFFFD SSSSN

86 ✓ 11 128, 64, 32, 16, 4 FFFFF SSSSN

87 ✓ 11 96, 48, 24, 12, 4 FFFFF SSSSN

88 ✓ 11 64, 32, 16, 8, 4 FFFFF SSSSN

89 ✓ 11 32, 16, 8, 4, 4 FFFFF SSSSN

90 ✓ 11 11, 8, 6, 4, 4 FFFFF SSSSN

91 ✓ 11 256, 128, 64, 32, 4 FFFFD SSSSN

92 ✓ 11 128, 64, 32, 16, 4 LFFFF SSSSN

93 ✓ 11 96, 48, 24, 12, 4 LFFFF SSSSN

94 ✓ 11 64, 32, 16, 8, 4 LFFFF SSSSN

95 ✓ 11 32, 16, 8, 4, 4 LFFFF SSSSN

96 ✓ 11 11, 8, 6, 4, 4 LFFFF SSSSN
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C Appendix for Chapter 5 “Introducing
a novel biohybrid interaction frame-
work”

To quantify the (dis)similarity of the PDF presented in the results section, we consider the

Hellinger distance D(F |G) between two PDF F (x) and G(x) for the same observable x Beran

(1977); Basu et al. (1997):

H(F |G) = 1

2

∫ (√
F (x)−

√
G(x)

)2
d x

= 1−
∫ √

F (x)
√

G(x)d x, (C.1)

where we have used the normalization of the PDF,
∫

F (x)d x = ∫
G(x)d x = 1, to obtain the last

equality. The first definition of H(F |G) makes clear that it measures the overall difference

between F (x) and G(x), while the second equivalent definition has a nice interpretation in

terms of the overlap of both PDF. Indeed, the second definition measures the distance from

unity of the scalar product of
p

F (x) and
p

G(x) seen as vectors of unit Euclidean norm (a

consequence of the normalization,
∫ p

F (x)
2

d x = 1).

The Hellinger distance is zero if and only if F (x) =G(x), and it always satisfies H (F |G) ≤ 1. The

upper bound H (F |G) = 1 is reached whenever the supports of the two PDF are not intersecting,

so that F (x)×G(x) = 0, for all values of x. In practice, a value of H (F |G) ≥ 0.2 points to the two

PDF being markedly dissimilar.

In Tables C.1 to C.4 below, we have computed the Hellinger distance for the PDF for the two

open-loop experiments (circular and eightfold rose trajectory for the DS and BM lures), for a

fish or a BM lure alone in the tank, and for the closed-loop experiments for pairs of individuals

(2 fish; fish 0 and DS lure; fish 0 and BM lure).

Video 1. Video segments of experiments and overview of BOBI. https://doi.org/10.1109/

ACCESS.2023.3290960/mm1
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Table C.1: Hellinger distance for pairs of individuals (the LureBot follows a passive circular
trajectory).

Agent Quantity Hellinger distance

Fish vs DS lure V 0.591
α 0.296

Fish vs BM lure V 0.193
α 0.202

Table C.2: Hellinger distance for pairs of individuals (the LureBot follows a passive eightfold
rose trajectory).

Agents Quantity Hellinger distance

Fish vs DS lure V 0.432
α 0.172

Fish vs BM lure V 0.352
α 0.134

Table C.3: Hellinger distance for single individuals (the LureBot is commanded by the behav-
ioral model).

Agent Quantity Hellinger distance

Fish vs BM lure V 0.172
α 0.086
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Table C.4: Hellinger distance for pairs of individuals (the LureBot is commanded by the
behavioral model).

Agents Quantity Hellinger distance

2 fish V 0.06
α 0.076

Fish vs DS lure V 0.087
α 0.135

Fish vs BM lure V 0.138
α 0.202

Pair of Fish
vs

Pair of DS and fish
d 0.455

Pair of Fish
vs

Pair of BM and fish
d 0.411
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C.1 Scaling up from the FishBot v4.4 to the LureBot

While attempting to transfer the models presented in Chapter 4 back to reality, we initially re-

lied on the FishBot v4.4 Bonnet et al. (2012, 2014) and CATS Bonnet et al. (2017) (see Sec. 3.2.4).

However, as extensively discussed in Chapter 5, the FishBot v4.4 lacked the agility to repro-

duce complex social interaction in real time. In fact, we implemented the same model as

in Sec. 5.6.3, to find that the robot lacks the combined speed and acceleration to follow the

model.

Figure C.1: LureBot versus FishBot v4.4 performance when interacting biomimetically with
the tank wall. Probability density functions (PDFs) for: A. velocity V (cm/s), B. acceleration α
(cm/s2), C. distance to wall dw (cm), and D. angle of incidence to the wall θw (◦).

In Fig. C.1 we compare the performance of the FishBot compared to that of the LureBot,

with respect to the dynamics exhibited by a single H. rhodostomus. The primary weakness of

the FishBot is already apparent in Fig. C.1A, which shows the PDF of velocity for each agent.

Whereas the two robots typically move with a speed of 6.15 cm/s, the FishBot is hard-limited by
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its top velocity (approximately 20 cm/s). We note that although the FishBot can in theory move

with up to 50 cm/s, the small size of the setup and the robot’s narrow design causes severely

unstable movement with velocities greater than 25 cm/s when the robot needs to perform

rapid direction changes. The difference between the two robots is smaller with respect to their

typical acceleration (see Fig. C.1B), albeit still markedly different to that of the LureBot. Both

robots typically swim with an acceleration of 4cm/s2 when being commanded by the same

biomimetic model. However, the FishBot is once again limited by its ability to accelerate fast

(see the narrower tail of the PDF in Fig. C.1). The FishBot’s inability to move close to the wall

(see Fig. C.1C), similarly to the LureBot and the fish in the experiment, is owed to the weaker

magnetic coupling between robot and lure. Due to the FishBot’s lighter frame (which weights

approximately three times less than the LureBot), it would often detach when in contact or

collision with the setup wall, even if such a contact was weak. Therefore, we often have to settle

with commanding the robot to farther from the wall. Conversely, the LureBot’s coupling to the

lure can withstand a significantly increased amount of collision strength before we observe a

detachment of the lure. Finally, both robots perform marginally different when it comes to

their ability to align with the wall during their movement, as show in Fig. C.1. The LureBot can

typically move more consistently (see the sharpness of the peak in Fig. C.1) compared to the

FishBot, but both perform marginally different (with more angular variability – thicker PDF

tails in Fig. C.1) from the fish in the experiment.
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D Appendix for Chapter 6 “Evaluat-
ing the biomimicry gap in biohy-
brid pairs driven by a deep learning
model”

Video 1. Video segments of the experiment, DLI-SP, and DLI-BP (https://doi.org/10.5281/

zenodo.8253256).

D.1 DLIv2 Supplementary figures (standard deviation)

Figure D.1: Instantaneous individual quantities. (a) Speed V probability density function.
(b) Distance to the wall rw probability density function. (c) Angle of incidence to the wall θw

probability density function. Dark gray, blue, and red colors correspond to the distributions of
the fish-only experiment, the DLI simulated pairs, and the DLIv2 simulated pairs, respectively.
In all PDFs, the colored dot corresponds to the median, and the thick horizontal black line
corresponds to the limits of the first and third quartile. The shaded areas correspond to the
standard deviation.
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Figure D.2: Instantaneous collective quantities. (a) Interindividual distance di j probability
density function. (b) Difference in heading angles|φi j |probability density function. (c) Viewing
angle ψi j probability density function. Dark gray, blue, and red colors correspond to the
distributions of the experiment, DLI simulated pairs and DLI biohybrid pairs, respectively.
In all PDFs, the colored dot corresponds to the median, and the thick horizontal black line
corresponds to the limits of the first and third quartile. The shaded areas correspond to the
standard deviation.

Figure D.3: Temporal correlation quantities. (a) Mean squared displacement CX (t). (b)
Velocity autocorrelation CV (t ). (c) Temporal correlations of the angle of incidence to the wall
Cθw (t ). Dark gray, blue and red colors correspond to the distributions of the experiment, DLI
simulated pairs and DLI biohybrid pairs, respectively. The shaded areas correspond to the
standard deviation.

178



D.2 DLIv2 Supplementary figures (confidence interval)

Figure D.4: Instantaneous individual quantities. (a) Speed V probability density function.
(b) Distance to the wall rw probability density function. (c) Angle of incidence to the wall θw

probability density function. Dark gray, blue, and red colors correspond to the distributions of
the fish-only experiment, the DLI simulated pairs, and the DLI biohybrid pairs, respectively.
In all PDFs, the colored dot corresponds to the median, and the thick horizontal black line
corresponds to the limits of the first and third quartile. The shaded areas correspond to the
68% confidence interval.

Figure D.5: Instantaneous collective quantities. (a) Interindividual distance di j probability
density function. (b) Difference in heading angles|φi j |probability density function. (c) Viewing
angle ψi j probability density function. Dark gray, blue, and red colors correspond to the
distributions of the experiment, DLI simulated pairs and DLI biohybrid pairs, respectively.
In all PDFs, the colored dot corresponds to the median, and the thick horizontal black line
corresponds to the limits of the first and third quartile. The shaded areas correspond to the
68% confidence interval.

D.3 DLI biohybrid pair supplementary figures (confidence interval)
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Figure D.6: Temporal correlation quantities. (a) Mean squared displacement CX (t). (b)
Velocity autocorrelation CV (t ). (c) Temporal correlations of the angle of incidence to the wall
Cθw (t ). Dark gray, blue and red colors correspond to the distributions of the experiment, DLI
simulated pairs and DLI biohybrid pairs, respectively. The shaded areas correspond to the
68% confidence interval.

Figure D.7: Instantaneous individual quantities. (a) Speed V probability density function.
(b) Distance to the wall rw probability density function. (c) Angle of incidence to the wall θw

probability density function. Dark gray, blue, and red colors correspond to the distributions of
the fish-only experiment, the DLI simulated pairs, and the DLI biohybrid pairs, respectively.
In all PDFs, the colored dot corresponds to the median, and the thick horizontal black line
corresponds to the limits of the first and third quartile. The inset plots depict the PDFs of the
DLI biohybrid pair experiments where the dotted, dashed, and solid lines correspond to the
robot, neighbor and average agent distributions, respectively. The shaded areas correspond to
the 68% confidence interval.
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Figure D.8: Instantaneous collective quantities. (a) Interindividual distance di j probability
density function. (b) Difference in heading anglesφi j probability density function. (c) Viewing
angle ψi j probability density function. Dark gray, blue, and red colors correspond to the
distributions of the experiment, DLI simulated pairs and DLI biohybrid pairs, respectively.
In all PDFs, the colored dot corresponds to the median, and the thick horizontal black line
corresponds to the limits of the first and third quartile. The inset plots depict the PDFs of the
DLI biohybrid pair experiments where the dotted, dashed, and solid lines correspond to the
robot, neighbor and average agent distributions, respectively. The shaded areas correspond to
the 68% confidence interval.
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Figure D.9: Temporal correlation quantities. (a) Mean squared displacement CX (t). (b)
Velocity autocorrelation CV (t). (c) Temporal correlations of the angle of incidence to the
wall Cθw (t ). Dark gray, blue and red colors correspond to the distributions of the experiment,
DLI simulated pairs and DLI biohybrid pairs, respectively. Dotted, dashed and solid lines
indicate the robot, neighbor and average agent distributions, respectively. The shaded areas
correspond to the 68% confidence interval.
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D.4 Supplementary Tables

Table D.1: Means and standard deviations. For the case of fish-only experiments, DLI sim-
ulated pairs (DLI-SP), and biohybrid pairs (DLI-SP), we report the mean and the standard
deviation (SD) of the 6 observables introduced in Section 6.2.3, along with their respective
standard error. The speed V is given in cm/s, the distances rw and di j are given in cm, and
the angles |θw|, |φi j |, and ψi j are in degrees. Note the small standard error in the case of
the (DLI-SP) resulting from extensive simulations ( 16.6h long, almost twice the amount of
data collected for other cases) and the fact that the 2 agents are statistically identical. For the
biohybrid experiments, we report the mean and SD for V , rw, and |θw|, averaged over the fish
and the LureBot, as well as for each of them. Finally, we present the corresponding results for
a DLI model retrained on the present fish experiments (DLIv2-SP).

Pair Quantity Mean Standard deviation

Fish-only V 10.50±0.60 5.73±0.36
rw 4.39±0.43 3.86±0.22
|θw| 87.42±0.39 21.91±1.46
di j 8.05±0.71 5.11±0.43
|φi j | 26.72±1.91 29.81±1.24
ψi j 7.96±4.73 108.98±1.19

DLI-SP V 11.06±0.04 7.04±0.02
rw 5.66±0.03 4.42±0.03
|θw| 88.07±0.06 34.55±0.16
di j 7.43±0.03 4.38±0.04
|φi j | 38.06±0.19 38.63±0.17
ψi j −4.11±0.33 107.13±0.06

DLI-BP V 8.60±0.22 5.93±0.12
rw 6.05±0.25 4.76±0.06
|θw| 86.44±0.17 38.07±0.73
di j 9.96±0.48 6.27±0.33
|φi j | 58.60±0.91 48.38±0.24
ψi j −7.42±4.16 110.41±0.51

DLI-BP (fish) V 8.44±0.26 5.13±0.21
rw 5.54±0.35 4.54±0.09
|θw| 87.46±0.19 32.76±1.25

DLI-BP (robot) V 8.74±0.16 6.62±0.12
rw 6.59±0.15 4.91±0.05
|θw| 85.42±0.24 42.78±0.79

DLIv2-SP V 10.53±0.48 6.18±0.28
rw 4.64±0.23 4.37±0.05
|θw| 87.56±0.11 26.47±0.47
di j 8.39±0.07 6.15±0.11
|φi j | 30.54±0.30 33.11±0.29
ψi j 11.72±0.87 109.08±0.19
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Table D.2: Hellinger distances. We exploit the Hellinger distance between two PDF to compare
the PDF of the 6 observables introduced in Section 6.2.3, for fish-only experiments, DLI
simulated pairs (DLI-SP), and biohybrid pairs (DLI-SP).

Pair Quantity Hellinger distance

Fish-only vs DLI-SP V 0.09
rw 0.13
|θw| 0.23
di j 0.12
|φi j | 0.14
ψi j 0.09

Fish-only vs DLI-BP V 0.18
rw 0.15
|θw| 0.25
di j 0.16
|φi j | 0.30
ψi j 0.15

DLI-SP vs DLI-BP V 0.14
rw 0.04
|θw| 0.04
di j 0.18
|φi j | 0.17
ψi j 0.07

Fish-only vs DLIv2-SP V 0.05
rw 0.08
|θw| 0.08
di j 0.14
|φi j | 0.06
ψi j 0.04
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Table D.3: Statistical significance tests for the experiment, DLI-SP, and DLI-BP. We ran a
Kruskal-Wallis test to measure whether the distributions differ significantly and a Tukey’s
honestly significant difference (T-HSD) test to test which distributions differ significantly.

Quantity Kruskal-Wallis Pair T-HSD

V p = 0.80, χ2 = 0.45 Fish-only vs DLI-SP p = 0.83
Fish-only vs DLI-BP p = 1.00
DLI-SP vs DLI-BP p = 0.83

rw p = 0.41, χ2 = 1.77 Fish-only vs DLI-SP p = 0.62
Fish-only vs DLI-BP p = 0.40
DLI-SP vs DLI-BP p = 0.94

|θw| p = 0.03, χ2 = 6.73 Fish-only vs DLI-SP p = 0.15
Fish-only vs DLI-BP p = 0.81
DLI-SP vs DLI-BP p = 0.03

di j p = 0.03, χ2 = 6.73 Fish-only vs DLI-SP p = 0.15
Fish-only vs DLI-BP p = 0.81
DLI-SP vs DLI-BP p = 0.03

|φi j | p = 0.00, χ2 = 53.38 Fish-only vs DLI-SP p = 0.00
Fish-only vs DLI-BP p = 0.00
DLI-SP vs DLI-BP p = 0.00

ψi j p = 0.06, χ2 = 5.56 Fish-only vs DLI-SP p = 0.35
Fish-only vs DLI-BP p = 0.05
DLI-SP vs DLI-BP p = 0.60
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Table D.4: Statistical significance tests for the experiment, DLI-SP, and DLIv2-SP. We ran a
Kruskal-Wallis test to measure whether the distributions differ significantly and a Tukey’s
honestly significant difference (T-HSD) test to test which distributions differ significantly.

Quantity Kruskal-Wallis Pair T-HSD

V p = 0.89, χ2 = 0.24 Fish-only vs DLI-SP p = 0.88
Fish-only vs DLIv2-SP p = 0.94
DLI-SP vs DLIv2-SP p = 0.99

rw p = 0.67, χ2 = 0.80 Fish-only vs DLI-SP p = 0.64
Fish-only vs DLIv2-SP p = 0.87
DLI-SP vs DLIv2-SP p = 0.92

|θw| p = 0.00, χ2 = 44.58 Fish-only vs DLI-SP p = 0.00
Fish-only vs DLIv2-SP p = 0.03
DLI-SP vs DLIv2-SP p = 0.00

di j p = 0.01, χ2 = 8.47 Fish-only vs DLI-SP p = 0.11
Fish-only vs DLIv2-SP p = 0.68
DLI-SP vs DLIv2-SP p = 0.01

|φi j | p = 0.00, χ2 = 28.15 Fish-only vs DLI-SP p = 0.00
Fish-only vs DLIv2-SP p = 0.03
DLI-SP vs DLIv2-SP p = 0.01

ψi j p = 0.09, χ2 = 4.87 Fish-only vs DLI-SP p = 0.08
Fish-only vs DLIv2-SP p = 0.81
DLI-SP vs DLIv2-SP p = 0.28
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E Appendix for Chapter 7 “Investigating
the biomimicry gap with varying sizes
of biohybrid groups driven by a high-
fidelity model”

E.1 Experiments with a single agent

Figure E.1: Instantaneous individual quantities. (a) Speed V probability density function.
(b) Distance to the wall rw probability density function. (c) Absolute angle of incidence to
the wall |θw| probability density function. Dark gray, blue, and red colors correspond to the
distributions of the fish-only experiment, the ABC simulated agents, and the ABC robotic
agents, respectively. In all PDFs, the colored dot corresponds to the median, and the thick
horizontal black line corresponds to the limits of the first and third quartile. The shaded areas
correspond to the 68% confidence interval.
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Figure E.2: Temporal correlation quantities. (a) Mean squared displacement CX (t). (b)
Velocity autocorrelation CV (t ). (c) Temporal correlations of the angle of incidence to the wall
Cθw (t ). Dark gray, blue and red colors correspond to the distributions of the experiment, ABC
simulated agents and ABC robotic agents, respectively. Solid lines indicate the average agent
distributions, respectively. The shaded areas correspond to the 68% confidence interval.

E.2 Experiments with agent pairs

Figure E.3: Instantaneous individual quantities. (a) Speed V probability density function.
(b) Distance to the wall rw probability density function. (c) Absolute angle of incidence to
the wall |θw| probability density function. Dark gray, blue, and red colors correspond to the
distributions of the fish-only experiment, the ABC simulated pairs, and the ABC biohybrid
pairs, respectively. In all PDFs, the colored dot corresponds to the median, and the thick
horizontal black line corresponds to the limits of the first and third quartile. The inset plots
depict the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid
lines correspond to the robot, neighbor and average agent distributions, respectively. The
shaded areas correspond to the 68% confidence interval.
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Figure E.4: Instantaneous collective quantities. (a) Interindividual distance di j probability
density function. (b) Difference in heading angles |φi j | probability density function. (c)
Viewing angle ψi j probability density function. Dark gray, blue, and red colors correspond to
the distributions of the experiment, ABC simulated pairs and ABC biohybrid pairs, respectively.
In all PDFs, the colored dot corresponds to the median, and the thick horizontal black line
corresponds to the limits of the first and third quartile. The inset plots depict the PDFs of the
ABC biohybrid pair experiments where the dotted, dashed, and solid lines correspond to the
robot, neighbor and average agent distributions, respectively. The shaded areas correspond to
the 68% confidence interval.

Figure E.5: Temporal correlation quantities. (a) Mean squared displacement CX (t). (b)
Velocity autocorrelation CV (t ). (c) Temporal correlations of the angle of incidence to the wall
Cθw (t ). Dark gray, blue and red colors correspond to the distributions of the experiment, ABC
simulated pairs and ABC biohybrid pairs, respectively. Dotted, dashed and solid lines indicate
the robot, neighbor and average agent distributions, respectively. The inset plots depict the
distributions of the ABC biohybrid pair experiments where the dotted, dashed, and solid lines
correspond to the robot, neighbor and average agent distributions, respectively. The shaded
areas correspond to the 68% confidence interval.
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E.3 Experiments with groups of five agents

E.3.1 Experiments with groups of five agents (1 agent in perception field)

Figure E.6: Instantaneous individual quantities. (a) Speed V probability density function.
(b) Distance to the wall rw probability density function. (c) Absolute angle of incidence to
the wall |θw| probability density function. Dark gray, blue, and red colors correspond to the
distributions of the fish-only experiment, the ABC simulated groups, and the ABC biohybrid
groups, respectively. In all PDFs, the colored dot corresponds to the median, and the thick
horizontal black line corresponds to the limits of the first and third quartile. The inset plots
depict the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid
lines correspond to the robot, neighbor and average agent distributions, respectively. The
shaded areas correspond to the 68% confidence interval.
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Figure E.7: Instantaneous collective quantities. (a) Interindividual distance di j probability
density function. (b) Difference in heading angles |φi j | probability density function. (c)
Viewing angle ψi j probability density function. Dark gray, blue, and red colors correspond
to the distributions of the experiment, ABC simulated groups and ABC biohybrid groups,
respectively. In all PDFs, the colored dot corresponds to the median, and the thick horizontal
black line corresponds to the limits of the first and third quartile. The inset plots depict
the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid lines
correspond to the robot, neighbor and average agent distributions, respectively. The shaded
areas correspond to the 68% confidence interval.

Figure E.8: Temporal correlation quantities. (a) Mean squared displacement CX (t). (b)
Velocity autocorrelation CV (t ). (c) Temporal correlations of the angle of incidence to the wall
Cθw (t ). Dark gray, blue and red colors correspond to the distributions of the experiment, ABC
simulated groups and ABC biohybrid groups, respectively. Dotted, dashed and solid lines
indicate the robot, neighbor and average agent distributions, respectively. The inset plots
depict the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid
lines correspond to the robot, neighbor and average agent distributions, respectively. The
shaded areas correspond to the 68% confidence interval.
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E.3.2 Experiments with groups of five agents (2 agents in perception field)

Figure E.9: Instantaneous individual quantities. (a) Speed V probability density function.
(b) Distance to the wall rw probability density function. (c) Absolute angle of incidence to
the wall |θw| probability density function. Dark gray, blue, and red colors correspond to the
distributions of the fish-only experiment, the ABC simulated groups, and the ABC biohybrid
groups, respectively. In all PDFs, the colored dot corresponds to the median, and the thick
horizontal black line corresponds to the limits of the first and third quartile. The inset plots
depict the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid
lines correspond to the robot, neighbor and average agent distributions, respectively. The
shaded areas correspond to the 68% confidence interval.
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Figure E.10: Instantaneous collective quantities. (a) Interindividual distance di j probability
density function. (b) Difference in heading angles |φi j | probability density function. (c)
Viewing angle ψi j probability density function. Dark gray, blue, and red colors correspond
to the distributions of the experiment, ABC simulated groups and ABC biohybrid groups,
respectively. In all PDFs, the colored dot corresponds to the median, and the thick horizontal
black line corresponds to the limits of the first and third quartile. The inset plots depict
the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid lines
correspond to the robot, neighbor and average agent distributions, respectively. The shaded
areas correspond to the 68% confidence interval.

Figure E.11: Temporal correlation quantities. (a) Mean squared displacement CX (t). (b)
Velocity autocorrelation CV (t ). (c) Temporal correlations of the angle of incidence to the wall
Cθw (t ). Dark gray, blue and red colors correspond to the distributions of the experiment, ABC
simulated groups and ABC biohybrid groups, respectively. Dotted, dashed and solid lines
indicate the robot, neighbor and average agent distributions, respectively. The inset plots
depict the PDFs of the ABC biohybrid pair experiments where the dotted, dashed, and solid
lines correspond to the robot, neighbor and average agent distributions, respectively. The
shaded areas correspond to the 68% confidence interval.
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E.4 Tables for Chapter 7

Table E.1: Means and standard deviations of quantities for single agents

Pair Quantity Mean Standard deviation

Fish-only V 12.16±0.92 6.68±0.29
rw 2.03±0.24 2.49±0.19
|θw| 89.46±0.32 18.16±1.10

ABC (simulated agent) V 10.96±0.13 5.77±0.04
rw 3.72±0.59 3.99±0.04
|θw| 88.85±0.13 25.12±0.46

ABC (robot) V 10.99±0.17 6.31±0.08
rw 1.73±0.09 2.04±0.08
|θw| 89.33±0.04 18.39±0.29

Table E.2: Hellinger distances for single agents

Pair Quantity Hellinger distance

Fish-only vs ABC-SP V 0.20
rw 0.31
|θw| 0.18

Fish-only vs ABC-BP V 0.18
rw 0.15
|θw| 0.11

ABC-SP vs ABC-BP V 0.13
rw 0.39
|θw| 0.11
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Table E.3: Means and standard deviations of quantities for agent pairs.

Agent Quantity Mean Standard deviation

Fish V 10.50±0.60 5.73±0.36
rw 4.39±0.43 3.86±0.22
|θw| 87.42±0.39 21.91±1.46
di j 8.05±0.71 5.11±0.43
|φi j | 26.72±1.91 29.81±1.24
ψi j 7.96±4.73 108.98±1.19

ABC-SP V 10.38±0.07 6.39±0.02
rw 5.49±0.02 4.91±0.03
|θw| 89.95±0.10 33.63±0.22
di j 5.63±0.04 4.15±0.08
|φi j | 29.35±0.31 30.85±0.47
ψi j 0.54±0.61 106.77±0.06

ABC-BP V 7.93±0.18 4.89±0.15
rw 4.10±0.11 3.70±0.06
|θw| 88.12±0.16 25.93±0.60
di j 8.10±0.46 7.41±0.73
|φi j | 36.50±2.05 40.60±1.27
ψi j 0.94±2.36 106.41±0.63

ABC-BP (fish) V 8.00±0.23 4.67±0.21
rw 4.46±0.26 3.32±0.10
|θw| 87.60±0.26 23.21±0.88

ABC-BP (robot) V 7.87±0.15 5.09±0.12
rw 3.74±0.07 4.00±0.08
|θw| 88.64±0.11 28.38±0.57
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Table E.4: Hellinger distances for agent pairs

Agent Quantity Hellinger distance

Fish vs ABC-SP V 0.18
rw 0.15
|θw| 0.19
di j 0.38
|φi j | 0.06
ψi j 0.05

Fish vs ABC-BP V 0.26
rw 0.06
|θw| 0.10
di j 0.32
|φi j | 0.10
ψi j 0.09

ABC-SP vs ABC-BP V 0.27
rw 0.18
|θw| 0.11
di j 0.23
|φi j | 0.07
ψi j 0.04
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Table E.5: Means and standard deviations of quantities for groups of five agents (ABC-BG,
ABC-SG with k = 1)

Pair Quantity Mean Standard deviation

Fish-only V 15.23±0.83 5.94±0.20
rw 7.02±0.72 4.53±0.38
|θw| 86.33±0.41 20.02±1.87

P (Ci ) 7.37±0.39 2.53±0.22
P (di ) 4.10±0.22 1.37±0.10
P (Pi ) 0.91±0.01 0.15±0.02

ABC-SG V 15.35±0.06 5.47±0.02
rw 8.38±0.05 5.99±0.02
|θw| 87.72±0.06 43.97±1.19

P (Ci ) 8.93±0.06 4.46±0.03
P (di ) 4.37±0.03 2.27±0.02
P (Pi ) 0.50±1e −3 0.38±1e −3

ABC-BG V 14.15±0.37 6.92±0.15
rw 10.06±0.27 5.10±0.04
|θw| 84.39±0.32 32.18±0.65

P (Ci ) 9.65±0.22 3.31±0.09
P (di ) 5.03±0.10 1.59±0.04
P (Pi ) 0.73±0.01 0.29±0.01

ABC-BG (fish) V 12.68±0.37 4.78±0.15
rw 10.83±0.31 3.89±0.08
|θw| 84.44±0.39 23.85±0.70

P (Ci ) 8.98±0.20 2.88±0.09
P (di ) 4.25±0.11 1.30±0.04
P (Pi ) 0.76±0.01 0.27±0.01

ABC-BG (robot) V 20.02±0.43 7.77±0.18
rw 7.00±0.13 5.21±0.06
|θw| 84.19±0.16 36.11±0.57

P (Ci ) 12.36±0.19 5.54±0.14
P (di ) 8.15±0.13 5.10±0.14
P (Pi ) 0.61±0.02 0.46±0.01
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Table E.6: Hellinger distances for groups of five agents (ABC-BG, ABC-SG with k = 1)

Pair Quantity Hellinger distance

Fish-only vs ABC-SG V 0.08
rw 0.15
|θw| 0.37

P (Ci ) 0.23
P (di ) 0.21
P (Pi ) 0.53

Fish-only vs ABC-BG V 0.13
rw 0.23
|θw| 0.20

P (Ci ) 0.25
P (di ) 0.22
P (Pi ) 0.32

ABC-SG vs ABC-BG V 0.16
rw 0.20
|θw| 0.19

P (Ci ) 0.24
P (di ) 0.28
P (Pi ) 0.25
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Table E.7: Means and standard deviations of quantities for groups of five agents (ABC-BG,
ABC-SG with k = 2)

Pair Quantity Mean Standard deviation

Fish-only V 15.23±0.83 5.94±0.20
rw 7.02±0.72 4.53±0.38
|θw| 86.33±0.41 20.02±1.87

P (Ci ) 7.37±0.39 2.53±0.22
P (di ) 4.10±0.22 1.37±0.10
P (Pi ) 0.91±0.01 0.15±0.02

ABC-SG V 15.34±0.05 5.51±0.17
rw 8.10±0.03 5.65±0.02
|θw| 88.06±0.05 43.73±1.44

P (Ci ) 6.19±0.03 2.81±0.03
P (di ) 3.08±0.01 1.53±0.02
P (Pi ) 0.67±3e −3 0.31±1e −3

ABC-BG V 15.53±0.42 6.99±0.12
rw 9.32±0.29 4.85±0.08
|θw| 84.80±0.18 28.40±0.98

P (Ci ) 8.81±0.31 3.40±0.19
P (di ) 4.54±0.13 1.58±0.07
P (Pi ) 0.79±0.02 0.26±0.01

ABC-BG (fish) V 14.21±0.47 5.17±0.12
rw 10.08±0.33 3.86±0.05
|θw| 84.79±0.21 21.43±0.71

P (Ci ) 8.09±0.31 2.91±0.21
P (di ) 3.65±0.15 1.18±0.10
P (Pi ) 0.82±0.02 0.23±0.02

ABC-BG (robot) V 20.80±0.38 7.80±0.14
rw 6.27±0.23 4.80±0.13
|θw| 84.84±0.16 34.29±0.97

P (Ci ) 11.70±0.32 5.76±0.21
P (di ) 8.12±0.22 5.41±0.17
P (Pi ) 0.65±0.02 0.45±0.01
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Table E.8: Hellinger distances for groups of five agents (ABC-BG, ABC-SG with k = 2)

Pair Quantity Hellinger distance

Fish-only vs ABC-SG V 0.08
rw 0.12
|θw| 0.38

P (Ci ) 0.29
P (di ) 0.31
P (Pi ) 0.43

Fish-only vs ABC-BG V 0.10
rw 0.19
|θw| 0.14

P (Ci ) 0.15
P (di ) 0.11
P (Pi ) 0.23

ABC-SG vs ABC-BG V 0.13
rw 0.18
|θw| 0.25

P (Ci ) 0.37
P (di ) 0.34
P (Pi ) 0.20
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