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Abstract

Most large galaxies host a Super Massive Black Hole at their center, attracting matter in its immediate
vicinity and forming a swirling accretion disk that emits a wide range of electromagnetic radiations.
These objects are called Active Galactic Nuclei. The brightest ones are known as quasars and are the
most luminous objects in the Universe. Quasars’ gravitational potential and energetic outflows have a
significant impact on the morphology of their host galaxy, on their formation, and fate. By studying their
structure, we can thus gain insight into the mechanisms behind galaxy evolution. In the past decade,
various measurements of accretion disk radii have challenged the established accretion model, leading to
an interest in alternative models and measurement methods.

As they are observable at large distances (∼ 1010 light years), quasars can also be used as cosmological
probes to measure the Hubble parameter, H0: the Universe’s current expansion rate. This tool is crucial
to confirm the tension between early and late-Universe measurements of H0, which could hint towards a
different cosmological paradigm than the currently prevailing flat-ΛCDM model.

Gravitational lensing offers a way to tackle both problems. A strong gravitational lens system is observed
when a massive object, such as a galaxy, lies between a quasar and the observer to create multiple magnified
images of the same source. The multiple images are produced by the various paths light takes to reach us.
As these optical paths are different in length and because they pass at different places in the gravitational
well of the lens, the difference is seen in the arrival times of photons in each lensed image of the source.
This so-called time delay gives us information about the cosmological distances between the source, the
lens and the observer and allows us to measure H0. This is called Time Delay Cosmography. In addition,
stars within the lensing galaxy can magnify each image independently through the microlensing effect.
The magnification partly depends on the light profile of the source, hence probing the quasar structure.

The goal of this thesis is double: 1- using microlensing to study the inner structure of quasars, with a focus
on one of the most interesting objects in this field, namely QJ 0158−4325 and 2- measuring H0 using the
double-lensed quasar HE 1104−1805, the second doubly-imaged quasar available so far to do Time Delay
Cosmography.

More specifically, I have shown that the reverberation of radiation from the accretion disk by the surround-
ing Broad Line Region (BLR) results in high-frequency features in the microlensing light curve that have
been overlooked so far. Analyzing the microlensing light curves in the frequency domain has highlighted
the importance of considering these features when measuring standard accretion disk size, as neglecting
them can lead to systematic bias. This novel technique has also allowed me to accurately measure the size
of the quasar’s BLR, consistent with previous estimates. Furthermore, my work revealed that detecting
unusually sustained periodic oscillations indicates that the quasar may host a Super Massive Binary Black
Hole with a milli-parsec separation. The improbability of observing this kind of system right before they
merge may indicate that their predicted coalescence time is underestimated and unknown mechanisms are
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at play. In the context of imminent wide-field surveys that will observe thousands of lensed quasars, I led
the development of a neural network that can quickly and efficiently identify pairs of quasar images under-
going microlensing events. By highlighting the relevant time window for complementary observations,
this forecasting algorithm will maximize the scientific output of such events, with the potential to unveil
features in quasar structure unseen so far.

The TDCOSMO collaboration aims at measuring H0 with a 1% precision to assess the H0 tension. As a
contribution to this effort, I conducted the full analysis of HE 1104−1805, the second doubly imaged quasar
in the sample. This involved measuring the time delay, the lens velocity dispersion in 2D, analyzing the
line-of-sight and modelling the lens mass. Each step required handling a different data set and thoroughly
investigating the measurement robustness. Despite the low number of images, the dimness of the lensed
arc and the high number of perturbers, I could determine H0 with a precision of 12%. This measurement
will contribute to improving the precision of the H0 measurement through the combined TDCOSMO
sample and will be part of the next milestone H0 measurement of the collaboration. Creating a sample of
double-lensed quasars for H0 measurement is crucial to identify any potential selection biases present in
the current TDCOSMO sample, which is predominantly made up of quadruple-lensed quasars. Moreover,
the population of doubly-imaged quasars outnumbers that of quadruples by a factor of 4. Using them to
measure H0 is thus crucial to fulfilling the TDCOSMO goal.

Key words: Quasars, Accretion disk, Broad Line Region, Microlensing, Strong Lensing, Time delay
Cosmography, Hubble-Lemaitre constant.
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Résumé

La plupart des galaxies massives abritent un trou noir supermassif en leur centre. Celui-ci attire la matière
de son voisinage immédiat et forme un disque d’accrétion tourbillonnant qui émet une large gamme de
rayonnements électromagnétiques. Ces objets sont appelés noyaux actifs de galaxies. Les plus brillants
sont connus sous le nom de quasars et sont les objets les plus lumineux de l’Univers. Le potentiel
gravitationnel et les écoulements énergétiques des quasars ont un impact significatif sur la morphologie de
leur galaxie hôte, sur sa formation et sur son destin. En étudiant leur structure, nous pouvons donc obtenir
des informations sur les mécanismes controlant l’évolution des galaxies. Au cours de la dernière décennie,
différentes mesures des rayons des disques d’accrétion ont remis en question le modèle établi, suscitant un
intérêt pour des modèles et des méthodes de mesure alternatifs.
Étant observables à de grandes distances ( ∼ 1010 années-lumière), les quasars peuvent également être
utilisés comme sondes cosmologiques pour mesurer le paramètre de Hubble, H0 : le taux d’expansion
actuel de l’Univers. Cet outil est crucial pour confirmer la tension entre les mesures du début et de la fin de
l’Univers concernant H0, ce qui pourrait provoquer un changement de paradigme cosmologique, différent
du communément accepté ΛCDM.
L’effet de lentille gravitationnelle offre un moyen d’étudier ces deux problèmes. Un système de lentille
gravitationnelle forte est observé lorsqu’un objet massif tel qu’une galaxie se trouve entre un quasar et
l’observateur, créant ainsi plusieurs images mirages magnifiées de la même source. Les multiples images
sont produites par les différents chemins empruntés par la lumière pour nous arriver. Comme ces chemins
optiques ont des longueurs différentes et passent à des endroits différents du potentiel gravitationnel de la
lentille, des différences sont observées dans les temps d’arrivée des photons de chaque image lentillée de
la source. Ce délai temporel nous renseigne sur les distances cosmologiques entre la source, la lentille et
l’observateur, et nous permet de mesurer H0. Cela s’appelle la cosmographie par délai temporel. De plus,
les étoiles à l’intérieur de la galaxie lentillée peuvent magnifier chaque image de manière indépendante
grâce à l’effet de microlentille. L’agrandissement dépend en partie du profil lumineux de la source et sonde
donc la structure du quasar.
L’objectif de cette thèse est double : 1) utiliser la microlentille pour étudier la structure interne des quasars,
en mettant l’accent sur l’un des objets les plus intéressants dans ce domaine, à savoir QJ 0158−4325, et 2)
mesurer H0 en utilisant le quasar à double lentille HE 1104−1805, le second quasar doublement imagé
disponible jusqu’à présent pour réaliser une cosmographie par délai temporel.
Plus précisément, j’ai montré que la variabilité de la micromagnification est affectée par la réverbération
du rayonnement du disque d’accrétion par les nuages de gaz environnants (abbrégé BLR en anglais). Cela
induit des variations à haute fréquence qui ont été négligées jusqu’à présent. L’analyse des courbes de
variation de la micromagnification dans le domaine de la fréquence a souligné l’importance de prendre
en compte ces caractéristiques lors de la mesure de la taille du disque d’accrétion, car les négliger peut
entraîner un biais systématique. Cette nouvelle technique m’a également permis de mesurer avec précision
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la taille de la BLR du quasar, en accord avec les estimations précédentes. De plus, mon travail a révélé
que la détection d’oscillations périodiques inhabituellement soutenues indique que le quasar pourrait
héberger un trou noir binaire supermassif avec une séparation de l’ordre du milli-parsec. L’improbabilité
d’observer ce type de système juste avant leur fusion peut indiquer que leur temps de coalescence prédit
est sous-estimé.
Dans le cadre des futures observations synoptiques qui observeront des milliers de quasars lentillés,
j’ai dirigé le développement d’un réseau neuronal qui peut rapidement et efficacement identifier les
paires d’images de quasars subissant des événements de microlentille. En mettant en évidence la fenêtre
temporelle pertinente pour des observations complémentaires, cet algorithme de prévision maximisera le
rendement scientifique de tels événements, avec la possibilité de révéler des caractéristiques de la structure
des quasars jusqu’à présent invisibles.
L’objectif de la collaboration TDCOSMO est de mesurer H0 avec une précision de 1% pour certifier la
tension de H0. En tant que contribution à cet effort, j’ai mené l’analyse complète de HE 1104−1805,
le deuxième quasar à double image de l’échantillon. Cela impliquait de mesurer le délai temporel, de
mesurer la dispersion de vitesse de la lentille en 2D, d’analyser la ligne de visée et de modéliser la masse
de la lentille. Chaque étape nécessitait de manipuler un ensemble de données différent et une enquête
approfondie de la robustesse de la mesure. Malgré le faible nombre d’images, la faible luminsité de l’arc
lentillé et le grand nombre de perturbateurs, j’ai pu déterminer H0 avec une précision de 12 %. Cette
mesure contribuera à améliorer la précision de la mesure de H0 grâce à l’échantillon combiné TDCOSMO
et fera partie de la prochaine mesure majeure de H0 de la collaboration. La création d’un échantillon de
quasars à double lentille pour la mesure de H0 est cruciale pour identifier d’éventuels biais de sélection
dans l’échantillon TDCOSMO actuel, qui est principalement composé de quasars quadruplement lentillés.
De plus, la population de quasars à double image dépasse celle des quadruples d’un facteur de 4. Les
utiliser pour mesurer H0 est donc crucial pour atteindre l’objectif de TDCOSMO.

Mots clefs : Quasars, Disque d’accrétion, Lentille gravitationnelle forte, Microlentilles, Constante de
Hubble-Lemaitre, Cosmographie par délai temporel.
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1 Introduction

1.1 Evolution of the cosmological paradigm

1.1.1 First conceptions

Throughout history, beliefs about the shape and position of the Earth have been heavily influenced by
cosmogony. In ancient Mesopotamia, the Babylonians thought the Earth was flat and floating on an ocean.
At the same time, the Egyptians integrated cosmology into their religious practices without explicitly
describing the planet’s shape or location. Greek philosophers like Pythagoras and Plato, however, proposed
a spherical Earth. Aristotle’s "On the Heavens", written in 350 BC, suggested that the Earth was at the
center of the Universe and that celestial bodies moved in perfect circles around it. This view prevailed
in Western civilisations until the 16th century when Copernicus revived Aristarchus’ proposition of a
heliocentric system with the Sun at the center (see Fig. 1.1). Galileo’s discovery of Jupiter’s satellites and
Kepler’s laws of planetary motion further supported this revolutionary idea.

Figure 1.1: Left panel: Trajectory of Mars recorded by Tycho Brahe and Johannes Kepler in the case of a
geocentric system with the Sun in a circular orbit around the Earth displayed in Astronomia Nova. Right
panel: : The orbit of a planet in the heliocentric model displayed in Epitome of Copernican Astronomy

In the 17th century, Isaac Newton published Philosophiae naturalis principia mathematical in which he
postulates the existence of a universal force applied to all matter: gravity. He also presents a mathematical
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framework that demonstrates Kepler’s laws and enables accurate prediction of the motion of celestial
bodies. In continuation with Kepler’s work, astronomers of the 19th century, such as Alexis Bouvard,
realised that Uranus’ trajectory was not following Newton’s law of motion and hinted towards the presence
of a nearby planet affecting its orbit. The existence of this planet, Neptune, was demonstrated by its
first observation in 1846. Similarly, the orbit of Mercury displayed peculiar precession of its perihelion
that astronomers also attributed to the presence of another undetected planet, in vain. This discrepancy
was only solved when the cosmological paradigm took another major turn with Albert Einstein’s general
theory of relativity (Einstein 1915). In the 18th century, Thomas Wright made the first serious proposition
about the size of the Universe by stating that the Milky Way was a flattened disk of stars filling the whole
Universe, with our solar system within it. This idea laid the groundwork for future investigations into the
structure of the Milky Way. Later, Immanuel Kant published Universal Natural History and Theory of the
Heavens in 1755, where he postulated that the Milky Way was only one of many self-contained "island
Universes", which was verified when significant improvements to telescope technology allowed Edwin
Hubble to distinguish various types of distant galaxies.

1.1.2 From Einstein’s happiest thought to the current paradigm

General Relativity

In 1905, Albert Einstein introduced the theory of special relativity (Einstein 1905). Based on the constancy
of the speed of light in all inertial frames of reference, Einstein postulated that the laws of physics are
the same for all observers in uniform motion, regardless of their relative velocities. This revolutionary
theory abolished the notion of absolute space and time and introduced the idea of spacetime as a unified
framework. The metric tensor gµν was introduced to characterise its geometry and encode the relationships
between distances, time intervals, and curvature. The interval between two neighbouring events is then
given by:

ds2 = gµνdxµdxν, (1.1)

with dx being the spacetime position vector. Following his special relativity theory, Einstein’s happiest
thought was realising that a free-falling person does not feel their own weight. He concluded that a
body’s inertial and gravitational mass are equal, which he called the "equivalence principle". This led
him to believe that gravity is a force that only appears in a non-inertial reference frame caused by the
curvature of spacetime around a mass. Consequently, nearby bodies or particles move along the shortest
path determined by the curvature of spacetime known as the geodesic line, as shown in Figure 1.2.

This deformation was formulated by the Einstein tensor Gµν and expressed as:

Gµν =
8πG
c4 T µν + Λgµν, (1.2)

where Tµν is the energy-momentum tensor, c is the speed of light and G is the gravitational constant. To
make this equation consistent with the then-common belief that the Universe is static, Einstein introduced
the cosmological constant Λ, which would prevent the Universe from contracting onto itself under the
influence of gravitation.

This new formulation of the gravitation principles completed the understanding of the solar system
dynamics since it successfully predicts the precession of Mercury’s orbit. During a historic expedition
to observe the solar total eclipse of 1919, Dyson et al. (1920) brought an additional confirmation of this
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theory when he measured the deflection angle α induced by the Sun on the light rays of a background star.
It was twice as large as predicted by Henry Cavendish in the 19th century based on Newtonian mechanics
but followed Einstein’s prediction:

α =
4GM
c2ξ

= 1.75′′
(

M
M⊙

) (
ξ

R⊙

)−1

, (1.3)

with ξ the impact parameter.

Figure 1.2: Illustration of the curvature of spacetime caused by the Sun. As the light ray moves across
a geodesic line, its trajectory is bent, and the apparent position of the source is shifted. (Adapted from
physics.stackexchange.com)

Towards an expanding Universe

In contradiction with Einstein’s intuition, various cosmologists proposed a solution to Einstein’s equation
while assuming a homogeneous, isotropic, and inflating Universe that originates from an initial state of
high density and temperature. The Friedmann-Lemaître-Robertson-Walker (FLRW) metric was created to
characterize such conditions and is formulated as:

g00 = 1, g11 = − a(t)2

1 − kr2 , g22 = −a(t)2r2, g33 = −a2r2sin2θ, (1.4)

dx = (t, r, dθ, dϕ2), (1.5)

where a(t) is the scale factor accounting for the expansion of the metric, t is the cosmic time, r, θ, and
ϕ are the spatial coordinates, and k is the curvature parameter (-1 for open, 0 for flat, and +1 for closed
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universes). Transforming Eq. 1.1 into:

ds2 = −dt2 + a(t)2
[

dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)
]
. (1.6)

The stretching of space between a distant object and the observer induces an apparent recessional velocity
(along the line of sight) of the source, increasing the wavelength of the light of the source, which appears
redder. This phenomenon, known as the cosmological Doppler redshift is given by z ≡ λobs

λemitted
− 1 and is

related to the recessional velocity v through:

z =

√
1 + v/c
1 − v/c

− 1, (1.7)

z ≈ v
c

if v << c. (1.8)

It scales from 0 for an object at the observer’s position and increases with the distance of the source.
Because the speed of light is finite, we only see an image emitted in an older epoch than the present time
t0. The cosmological redshift z and the time t can be used conversely. The scale factor of an object at the
time its light was emitted t is then given by:

a(t) ≡ a(z) ≡ 1
1 + z

. (1.9)

With the same assumptions, the energy-momentum tensor takes the form:

Tµν = (ρ + P)uµuν − Pgµν, (1.10)

where ρ, P, and uµ are the energy density, pressure, and four-velocity of the matter treated as a fluid.

By plugging this metric in Eq. 1.2, we can model our Universe with the so-called Friedmann equations:

( ȧ
a

)2
=

8πG
3

ρ − kc2

a2 +
Λ

3
, (1.11)

ä
a
= −4πG

3
(ρ + 3P) +

Λ

3
. (1.12)

We can hence define the expansion rate of the Universe at a time t, a.k.a the Hubble-Lemaitre parameter,
and by extension H0, the present space expansion rate as:

H(t) ≡ ȧ(t)
a(t)

(1.13)

H0 ≡ H(t0) ≡ ȧ(t0)
a(t0)

≡ ȧ(z = 0)
a(z = 0)

. (1.14)

As shown by the left panel of Fig. 1.3, Edwin Hubble’s measurement of distant galaxies velocity
measurement (Hubble 1929) confirmed the linear relation between recession velocity v of a distant object
and its distance from us d predicted by Georges Lemaitre (Lemaître 1927), the Hubble-Lemaitre law. It
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.45
Figure 1.3: Left panel: Hubble diagram assessing the linear relation between the recessional velocity and
the distance to galaxies (Adapted from Hubble 1929)). Following Eq. 1.15, the slope gave a first estimate
of H0 = 500km s−1Mpc−1. Right panel: Hubble diagram obtained by the High-Z Supernova Search
(adapted from Riess et al. (1998)). The best-fitting model includes a non-zero cosmological constant
materialized as Dark Energy.

can also be expressed in terms of redshift z:

v = H0 · d ↔ z = H0
d
c
. (1.15)

In 1948, George Gamow and his PhD student Ralph Alpher developed the theory of nucleosynthesis,
which explained the formation of light elements in the hot, dense early state of the Universe (Alpher et al.
1948). They coined the term "Big Bang" as a metaphorical description of the Universe’s origin to officially
give birth to the Big Bang Theory. This theory successfully predicted the existence of background radiation
emitted at the time of the recombination when the Universe matter transitioned from a hot plasma to
neutral gas. This radiation, known as the Cosmic Microwave Background (CMB), was serendipitously
discovered by Penzias & Wilson (1965) with a reported excess antenna temperature corresponding to a
microwave emitting body of 4.2 Kelvin. Later, the satellite COBE obtained the first complete map of the
CMB (Smoot et al. 1992) by measuring the microwave radiation in all possible directions.

At that time, the Universe was modelled without the cosmological constant (Λ=0). With the mechanism
behind the primordial explosion unknown, cosmologists assumed that the expansion of the Universe should
be decreasing under the influence of the dominant interaction of gravity. However, they debated the fate
of the Universe: is it going to expand infinitely, or will it collapse back to its initial condition in a "Big
Crunch"? To settle this question, the Supernova Cosmology Project and the High-Z Supernova Search
collaborations measured the distance to remote Supernovae. They both independently realized that the
recession velocities of the supernovae were higher than predicted by the Hubble-Lemaitre law (Riess et al.
1998; Perlmutter et al. 1998). As shown by the right panel of Fig. 1.3, at high redshifts, observation deviates
from a scenario where the Universe is filled with matter (with a Ωm=1). This could be only explained by
the fact that the Universe’s expansion is accelerated. Therefore, a non-zero cosmological constant was
reinstated to represent the influence of a so-called dark energy (DE) that fuels the acceleration of the
Universe expansion.

In the meantime, the study of galaxy clusters by Fritz Zwicky revealed that luminous matter does not
account for the total mass of the galaxy cluster (Zwicky 1933). Later, by analyzing the rotation curve of
spiral galaxies, Vera Rubin showed that galaxies are rotating faster than expected from their luminous
mass (e.g., Rubin et al. 1978). To resolve these discrepancies, the existence of non-baryonic matter, which
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Figure 1.4: Chandra telescope X-ray observation on top of optical imaging of the Bullet cluster (Adapted
from Clowe et al. 2006). The pink regions depict two galaxies’ interacting baryonic mass components
(mostly gas) right after their collision. The blue halos show the reconstitution of the dark matter halo
obtained via gravitational lensing.

does not interact with baryonic matter other than through gravitation and does not emit any detectable
radiation, was postulated. The "Bullet cluster" shown in Fig. 1.4 depicts two galaxy clusters right after
their collision (Clowe et al. 2004). By comparing their mass distribution obtained with gravitational
lensing to the luminous matter observed with X-ray observations, it becomes evident that part of the matter
is baryonic and interacts with its environment, while the other part is in the form of a cold and smoothly
distributed halo. This observation is one of the most compelling proof of the existence of the so-called
dark matter (DM).

The flat-ΛCDM model

Our cosmological model, therefore, consists of an expanding Universe filled with baryonic matter (BM),
cold dark matter (CDM) and dark energy, materialized by the cosmological constant Λ, leading to its
denomination: the Λ Cold Dark Matter (ΛCDM) model. We can hence decompose the energy density ρ
accordingly:

ρ = ρBM + ρCDM + ρΛ + ρr + ρk, (1.16)

where ρr refers to the density of radiation, i.e., components such as photons and neutrinos that move at
relativistic speed and ρk is the curvature’s energy density.

To investigate the large-scale curvature of the Universe, the average density of matter required for the
Universe to have a flat geometry, called critical density, was introduced and formulated as ρcrit =

3H2

8πG . We
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can now express the dimensionless density as a function of time (or redshift) as:

ΩBM,z =
ρBM

ρcrit

∣∣∣∣∣∣
z=z
,ΩCDM,z =

ρCDM

ρcrit

∣∣∣∣∣∣
z=z
,ΩΛ,z =

ρΛ
ρcrit

∣∣∣∣∣∣
z=z
,Ωr,z =

ρr

ρcrit

∣∣∣∣∣∣
z=z
,Ωk,z =

ρk

ρcrit

∣∣∣∣∣∣
z=z
. (1.17)

We can hence reformulate the Friedman equations (Eq. 1.12) into a single equation that allows us to model
the Universe at all stages using only eight parameters:

H(z)2 = H2
0

[
Ωr,0(1 + z)4 +

(
1 + ΩCDM,0

)
(1 + z)3 + Ωk,0(1 + z)2 + ΩΛ,0(1 + z)3(1+w)

]
, (1.18)

where the Dark Energy is parametrized as the equation of state of a perfect fluid:

w = PΛ/ρΛ, (1.19)

fixed to w = −1 in the ΛCDM model.

One of the most remarkable predictions of the ΛCDM model is the presence of small fluctuations in the
temperature of the CMB, shown in Fig. 1.5, caused by mild inhomogeneities in the primordial plasma.
However, creating precise CMB maps requires careful consideration of various biases, including the
effects of the Milky Way and foreground emission sources (e.g., Kogut et al. 1993; Copi et al. 2006). The
first mapping of these anisotropies by the space-based Wilkinson Microwave Anisotropy Probe (WMAP)
confirmed the predicted statistical properties of the CMB fluctuations (Spergel et al. 2003) and allowed an
estimation for most of the quantities of the ΛCDM model. The latest observation of the CMB with the
similar and improved Planck satellite released in Planck Collaboration et al. (2020a) locates it at z = 1090
and gives a precise measurement of the ΛCDM quantities:

Ωr,0 ≈ 9 · 10−5, (1.20)

ΩBM,0 = 0.0493 ± 0.0002, (1.21)

ΩCDM,0 = 0.264 ± 0.002, (1.22)

Ωk,0 = 0.0007 ± 0.0019, (1.23)

ΩΛ,0 = 0.685 ± 0.007. (1.24)

These measurements corroborate the diagnosis of previous ones regarding the composition of the Universe,
and since Ωk,0 is highly compatible with 0, it confirmed that the Universe is flat.

Using these values and the formalism introduced in Eq. 1.18, we are now able to retrace the main stages
of the Universe’s evolution according to the flat-ΛCDM illustrated in the bottom panel of Fig. 1.5. It
starts with all the matter and energy of the Universe concentrated in a single point. At this extremely high
energy density, the fundamental forces of nature are believed to be unified, and the laws of physics, as we
understand them, break down. During its first instants, up to 10−34s later, the Universe undergoes a phase
of "Inflation"I during which its volume is multiplied by 1026. As it expands, the Universe cools down, the
interactions differentiate, and elementary particles of the standard model (quarks, hadrons and leptons)
are created within the first second after the Big Bang. The nucleosynthesis began producing protons and
neutrons, which combined into hydrogen, helium and lithium atoms within the first 20 minutes. Because
of the different exponents assigned to each energy density term in Eq. 1.18, the expansion of the Universe
is alternatively dominated by its components. Radiation are predominant until about 40 000 years after the
Big Bang, after which matter prevails. The recombination happened around 375 000 years after the Big

IThis scenario was proposed by Alan Guth (Guth 1981) to resolve the ’Flatness problem’ which is out of the scope of this work
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Bang when the photons decoupled from atoms; the baryonic matter of the Universe was then mainly in
the form of neutral gas. This period is referred to as the "Dark Ages" as a consequence of the complete
opaqueness of this neutral gas to radiation. The first stars and galaxies formed a few hundred million years
later and emitted energetic radiation. This progressively re-ionized the intergalactic medium and made the
Universe transparent to radiation. Since 9.8 billion years after the Big Bang, the expansion of the Universe
became dominated by Dark Energy and is now exponential.

Figure 1.5: Top panel: Mapping of the background temperature across all directions in the sky (adapted
from Planck Collaboration et al. (2020a)). Anisotropies of the order of 104 K provide insights into the
distribution of matter and energy in the early Universe, helping to unravel the mysteries of cosmic evolution
and the origins of structures we observe today. Bottom panel: Chronology of the evolution of the Universe
as modelled by the flat-ΛCDM. Credits: ESO

Questions unanswered by the flat-ΛCDM model

In the present-day paradigm, the ΛCDM model is the most successful and accepted cosmological frame-
work as it explains a wide range of observed phenomena. However, the improvement of observational
tools and numeric simulation resolution revealed flaws in the model’s predictions.
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Some of the notable limitations include:

• Nature of the Dark Matter: Various kinds of particles with different hypothetical masses, generation
mechanisms and potential interaction with baryonic matter were imagined to compose Dark Matter.
Among the most popular candidates, we can find Weakly Massive Particles (WIMP, introduce by
Ellis et al. 1984), sterile neutrinos (e.g., Dodelson & Widrow 1994) or axions (e.g., Peccei &
Quinn 1977). These particles have yet to be directly observed, and multiple experiments are trying
to narrow down their properties to increase the probability of detecting them.

Another interesting dark matter component candidate is the Primordial Black Holes (PBH). First
hypothesized by Zel’dovich & Novikov (1966), they may have been formed during the inflation
period or shortly after when quantum fluctuations may have created sufficiently high-density fluctua-
tions that gravitationally collapsed. The mass of PBHs is hence determined by the scale at which
the density fluctuations occur and can range from fractions of a solar mass to several hundreds of
solar masses M⊙. The non-detection of such objects through microlensing nor gravitational waves
indicates that PBH make up at most 10% of the total Dark matter (see e.g. Green & Kavanagh 2020,
for a full review).

• Nature of Dark Energy: It is represented by the cosmological constant (Λ) in the model, but its
physical origin and properties remain elusive. The most straightforward and longstanding interpre-
tation of Λ postulates that it arises from the inherent energy density of empty space, often called
"vacuum energy". An alternative theory suggests that it may arise from the potential energy of a
dynamic field, leading to a temporary form of vacuum energy (Peebles & Ratra 1988). Referred
to as "quintessence", this dynamic dark energy would exhibit variations in space and time, which
could be discriminated from a cosmological constant (see, e.g., Tsujikawa 2013, for a full review).
More recently, Farrah et al. (2023) studied black holes spanning ten orders of magnitude in mass
across cosmic history and suggested that the mass of a black hole can increase with the expansion
of the universe. They supported the notion that black holes contribute to dark energy and explained
the onset of accelerating expansion at a redshift of around 0.7. Therefore, more observational and
experimental data are needed to confirm any of these theories and better understand dark energy.

• The H0-tension: Last but not least, the discrepancy between early-Universe and late-Universe probes
of the current expansion rate hints towards unknown physics beyond the ΛCDM model. The nature
of this tension and its potential resolution are discussed extensively in section 1.4
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1.2 Active Galactic Nuclei (AGN)

1.2.1 A bit of history

At the beginning of the 20th century, the spectra of multiple galaxies presented dominant narrow emission
lines (e.g., Fath 1909; Slipher 1917; Humason 1932). Carl Seyfert then found up to 8,000km · s−1 wide
broad emission lines in several other galaxies (Seyfert 1943). These observations were unusual because, as
shown in the bottom left panel of Fig. 1.6, the spectrum of standard galaxies is dominated by a continuum
of stellar emission with some absorption and faint emission lines, which give insights into their chemical
composition. The peculiar lines corresponding to hydrogen Balmer emission are induced by another
phenomenon Seyfert identified as taking place in the galaxy’s nucleus. Their brightness (equivalent to
the luminosity of the rest of the galaxy 1010L⊙) and compactness lead to the denomination "quasi-stellar
nuclei", and these galaxies were classified as Seyfert Type I (broad emission lines) and II (narrow emission
lines). With the development of radio astronomy, it quickly appeared that many surrounding galaxy centers

Figure 1.6: Spectra of different types of AGNs and the spectrum of a "standard" galaxy. Seyfert Type I
(broad emission lines), II (narrow emission lines)(Adapted from Combes (2021))

(even the center of our Milky Way) emitted radio waves (e.g., Bolton et al. 1949; Baade & Minkowski
1954). The 3C radio survey conducted with the Cambridge Interferometer expanded the catalogue of
radio-emitting objects and had a sufficient resolution to identify their optical counterpart (Hewish &
Ryle 1955). As shown by the left panel of Fig1.7, the optical imaging of some of the 3C systems (here
3C273) displays a point-like source that can be easily confused with a Milky Way star. Still, because of
their abnormal spectra, such systems were named "quasi-stellar object" (QSO) or quasar. The redshift
measurement of the quasar 3C273 z = 0.158 by Schmidt (1963) established that the source was not a star

10



Introduction Chapter 1

but a galaxy with a nucleus so bright that it outshines the rest of the galaxy. As shown by the right panel
of Fig. 1.7, the host galaxy is revealed when the central point source is correctly subtracted. Following
this breakthrough, it appeared that many mistakenly assumed stars with various types of unexplained
spectra were located at the center of distant galaxies. These were hence called Active Galactic Nuclei
(AGN), referring to the processes unrelated to stellar nuclear fusion dominant in standard galaxies. As
shown in Fig. 1.6, the diversity of spectra observed led to the classification of AGNs into five prominent
families: Seyfert galaxies, Radio-quiet quasars, Radio-loud, Blazars, and Radio galaxies. Table 1.1 gives a
summary of each family’s observational specificities. These families can be regrouped into Radio-quiet
AGNs (Seyfert galaxies and Radio-quiet Quasars making up to 80% of known AGNs (Kellermann et al.
2016; Mengistue et al. 2023)) and Radio-loud AGNs (Blazars, Radio-Loud Quasars, making up 20% of
known AGNs).

Figure 1.7: Left panel: HST imaging of the quasar 3C273, the visible diffraction spikes emphasize
the point-like nature of quasars. Right panel: PSF subtracted imaging revealing the host galaxy of the
quasar.(Adapted from Martel et al. (2003))

1.2.2 Unified Models

To explain the high luminosity and time variability of AGNs, Salpeter (1964) and Zeldovich (1964)
independently suggested that AGN are powered by accretion, the process of matter falling onto a central
supermassive black hole (SMBH). However, these early models did not provide a detailed explanation of
how the energy release occurs during the accretion process.

Later, Lynden-Bell (1969) expanded on these earlier ideas and introduced the concept of an accretion disk
surrounding a black hole. He proposed that the infalling matter forms a rotating disk as it spirals inward
toward the black hole. This accretion disk acts as a reservoir of gravitational potential energy and as the
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Table 1.1: Observational characteristics of the different types of AGNs. The indicative luminosity ranges
are compiled from Schechter (1976); Weedman (1976); Terebizh (1980); Xie et al. (2004). FSRQ stands
for Flat Spectrum Radio Quasar and LINER for Low-ionization nuclear emission-line region.

Type Narrow-line Broad-line X-rays
Excess
of UV

Excess
of far-IR Radio

Luminosity
range [L⊙ ]

Seyfert Galaxies
I yes yes some some yes no [109 − 1011]
II yes no some some yes no [107 − 109]

Radio-quiet Quasars
I yes yes some yes yes no [1011 − 1014]
II yes no some yes yes no [109 − 1011]

Radio-loud Quasars
I yes yes some yes yes yes [1011 − 1014]
II yes no some yes yes yes [109 − 1011]

Blazars
BL lac no no yes yes no yes [106 − 1011]
FSRQ no yes yes yes no yes [108 − 1013]

Radio Galaxies
Broad
Line yes yes some some yes yes [109 − 1011]

Narrow
Line yes no some some yes yes [107 − 109]

Standard Galaxies
Std galaxy weak no no no no no [105 − 1011]

LINER weak weak no no no no [105 − 1011]

matter falls deeper into the gravitational well, it releases a tremendous amount of energy in various forms,
including radiation. Furthermore, he paved the way toward a unified model of all AGN by proposing that
Seyfert galaxies were collapsed quasars.

Currently, the most widely accepted model of the structure of AGN was proposed by Antonucci (1993) and
Urry & Padovani (1995) is displayed in Fig. 1.8. When accounting for the line of sight angle, this model
allows the unification of AGNs under a single structure. Radio-loud quasars and Radio galaxies only differ
by their luminosity. Seyfert galaxies can similarly be unified with the same structure as radio-loud ones
without a jet. As shown in Fig. 1.9, the spectral energy density of the different regions covers the whole
electromagnetic spectrum.

Super Massive Black Hole and the accretion disk When solving the Einstein equation 1.2 for a
spherical mass, Karl Schwartzschild proved that if a body is smaller than its Schwartzschild radius
computed as RS = 2GM/c2, it will create a singularity in spacetime out of which even light can not escape
(Schwarzschild 1916) called a black hole. Later, Kerr (1963) resolved Einstein’s equation for a rotating
black hole, referred to as "Kerr black hole", as an extension to the non-rotating Schwartzschild black hole.
According to their mass, black holes are classified as:

• Micro black holes (µBH): MBH ≤ 10−1M⊙, RS ≤ 102m. They are still hypothetical, and their
formation is supposed to rely on quantum fluctuations in the early Universe (Hawking 1971)
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Figure 1.8: Unified model of AGN. The central SMBH is surrounded by a swirling disk of gas and dust
falling towards it, which, in the radio loud case, produces a twin jet launched in opposite directions from
the center. The accretion disk is embedded in a proton and electron plasma called the corona. Further away,
ionized gas clouds populate the broad and narrow line regions (BLR and NLR). An optically thick torus
of dust encircles the whole in the same plane as the disk. The BLR is hidden by the torus when viewed
edge-on, while the NLR, further away from the disk, is not. This explains the difference in the spectra of
type I and II quasars, Seyfert galaxies, and BLRG and NLRG. When viewed face-on, the emission of the
AGN is dominated by the jet, which emits uniformly across the electromagnetic spectrum. Indicative sizes
of the ISCO, accretion disk and dust torus are displayed. (Adapted from Britto et al. 2017)

• Stellar black holes (SBH): 1M⊙ ≤ MBH ≤ 102M⊙, RS ≤ 105m. They are formed by the collapse of
massive stars, which causes energetic supernovae explosions of which numerous examples were
observed (e.g., Chandrasekhar 1935; Oppenheimer & Volkoff 1939).

• Intermediate-mass black holes (IMBH): 102M⊙ ≤ MBH ≤ 105M⊙, RS ≤ 108m. They are believed to
be formed by the accretion of matter towards a seed SBH.

• Supermassive black holes (SMBH): MBH ≥ 105M⊙, RS ≥ 108m. They could result from the
accretion of matter by an initial SBH seed and the merger with other black holes (e.g., Kulier et al.
2015; Pacucci & Loeb 2020). However, the discovery of such objects less than a billion years after
the Big Bang (e.g., Bañados et al. 2018) could indicate that they can form by the direct collapse of
large metal-free gas clouds (e.g., Bromm & Loeb 2003).

For the purpose of this work, we will focus on SMBH, which is most likely the centrepiece of the AGN
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Figure 1.9: Schematic representation of a typical AGN (black curve), separated into the main physical
components with arbitrary amplitude (coloured curves). The SED of a star-forming galaxy (light grey
curve) is also shown for comparison. (Adapted from Harrison 2016)

structure around which an accretion disk can form. The accretion mechanism affects matter within ∼100RS

of the SMBH center, subject to extreme gravitational pull. As this matter spirals into the black hole, tidal
stretch and viscous frictions convert gravitational energy into heat and light.

The Innermost Stable Circular Orbit (ISCO) represents the closest orbit at which a photon (or any
relativistic particle) can stably orbit the black hole object without falling into it or being expelled. Its
radius depends both on the magnitude and direction of black hole spin a and is given by:

RISCO = 3RS if a = 0,
RS ≤ RISCO ≤ 3RS if a > 0,

3RS ≤ RISCO ≤ 4.5RS if a < 0,
(1.25)

The corresponding rotation regimes are non-rotating, prograde (same direction as the accretion disk), and
retrograde (opposite direction).

Outside this radius, the light emitted by the accretion process travels outwards through radiative transfer
and gives the quasar the luminosity:

Lacc = ηṀc2, (1.26)
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with η the radiative efficiency, which depends on the spin of the black hole (0.06 for non-rotating up to
0.32) but is commonly estimated to be around 0.1 (e.g., Bardeen 1970; Fabian & Lasenby 2019; Pacucci
& Loeb 2020; Pacucci & Loeb 2021), and Ṁ the mass accretion rate.

The Eddington luminosity defines the maximum luminosity achievable by accretion before the outward
radiation pressure exceeds the inward gravitational force. It is given by:

LE =
4πGMBHmp

σT
, (1.27)

where G is the gravitational constant, MBH is the mass of the black hole, mp is the mass of a proton, and
σT is the Thomson scattering cross-section.

The Eddington ratio defined as λE = L/LE is helpful to compare the accretion rate in a population of
AGNs.

The dynamic of the accreted material is governed by the combined influences of the gravity pull, the
rotational forces and the pressure exerted by outgoing radiation. Different regimes of rotation speed and
radiation pressure induce different shapes of the accretion disk. In the case of quasars, the SMBH imposes
a high-speed rotation of the accretion disk, but its thickness grows with the radiative pressure (Abramowicz
& Fragile 2013). Quasar accretion disks could, therefore be modelled as thin disks with a low accretion
rate or slim disks with a high accretion rate.

The thin disk model introduced by Shakura & Sunyaev (1973) stems from the resolution of the equations
describing the mass, energy, angular and radial momentum conservations and continuity conditions II. It
describes the structure and properties of thin accretion disks, assuming it is axisymmetric and in a steady
state, i.e. with a constant mass accretion rate. The disk’s viscosity ν transporting angular momentum
outward to allow the matter to move inward is modelled by ν ∝ αH, where α represents the angular
momentum transport’s efficiency and H the thickness of the disk.

The radial temperature profile of the disk for a given accretion rate Ṁ, and mass of the black hole MBH is:

T (r) =
[
GṀMBH

8πσr3

(
1 − RISCO

r

)]−1/4

K, (1.28)

with σ the Boltzmann constant. Since the accreted matter emits black body radiation, the Spectral Energy
Distribution (SED) of the whole accretion disk combines black body spectra with a peak at different
temperatures following this radial profile. As shown in Fig. 1.9, the total SED of the accretion disk peaks
in the optical range.

The light profile can therefore be expressed as:

I0(r) ∝ [exp(ξ) − 1]−1, where (1.29)

ξ =

(
r

RS

)3/4 1 −
√

Rin

r


−1/4

,

where RS is the scale radius, defined as the radius at which the temperature of the disk matches the

IIwe refer the curious reader to Eqs. 1-9 of Sądowski (2009)
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Figure 1.10: Left panel: Location of the six radiotelescopes used for the EHT setup. Right panel: First
resolved observation of the SMBH at the center of the M87 galaxy and its accretion disk captured by the
radio telescope EHT. The brightness temperature fluctuations between consecutive observations highlight
the variability of the accretion. (Adapted from Event Horizon Telescope Collaboration et al. 2019)

observation rest wavelength rest (kT = hc/λrest) expressed as:

Rλ ∝ Dsλ
3/210−m, (1.30)

with Ds the angular diameter distance to the source and m its magnitude. We can also express this radius
as a function of the black hole mass:

R ∝ (λrest)4/3 (MBH)2/3 (L)1/3 . (1.31)

The assumption that quasars follow the Shakura-Sunyaev solution is grounded in the understanding that
the accretion process in quasars is dominated by gravitational energy release and radiative cooling. It has
been successful in explaining the observed luminosities and spectra of many quasars (e.g., Caditz 1993).
It is important to note that there can be variations and deviations from this model under certain conditions.
For instance, at very high accretion rates, near or above the Eddington limit, radiation pressure becomes
significant and can affect the disk structure (Abramowicz et al. 1988). In these cases, the accretion disk
becomes geometrically thick, as in slim disks or advection-dominated accretion flows (see Abramowicz
& Fragile 2013, for a full review). The assumptions of the thin disk model may no longer hold, and the
temperature radial profile follows a different power-law T (r) ∝ r−1 (Spruit 2010).

Studying the temperature gradient of quasar accretion disk is, hence, a powerful probe of the accretion
mechanics but also of the central SMBH, which gravitational influence can change the axisymmetry of the
apparent shape of the accretion disk because of relativistic effects induced (e.g., Best et al. 2022).
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In 2019, the Event Horizon Telescope (EHT, Event Horizon Telescope Collaboration et al. 2019) used
simultaneously six radio telescopes around the globe to create a Very Long Baseline Interferometer which
is roughly the size of the Earth (see left panel of Fig. 1.10. This unprecedented setup reached the resolution
needed to image the shadow of the SMBH M87∗ (see right panel of Fig. 1.10) and in 2022: Sagittarius A,
the SMBH at the center of our galaxy (Event Horizon Telescope Collaboration et al. 2022a). By allowing
precise measurement of RISCO and MBH, these observations offered a new laboratory to study the metric
of the black holes as well as the mechanisms running the accretion process (e.g., Akiyama et al. 2021;
Event Horizon Telescope Collaboration et al. 2022b). Unfortunately, this technique only applies to nearby
SMBH, which are less active than distant quasars. To extend these studies to different accretion regimes,
different methods to probe the structure of distant quasars are presented in Chapter 2. As discussed in
Section 2.1.3, these different method do not all agree with the thin-disk model.

Broad and Narrow line regions The high energy radiation of the accretion disk excite clouds of gas
gravitationally bound to the system, producing line emission. In the Broad Line Region, which is typically
10−1 pc wide, these lines are broadened by the high velocity of the gas. The emission lines from the Broad
Line Region exhibit distinctive profiles with broad wings and narrow cores. The broad wings result from
gas moving at high velocities, ranging from thousands to tens of thousands of kilometres per second. The
narrow cores arise from gas clouds with lower velocities that may be more distant from the central black
hole. As further described in Section 2.1.1, the width of the broad lines can give a virial estimation of the
black hole mass, which, in turn constrains the accretion disk model. The exact geometry and structure
of these are still under investigation, but it is generally thought to be a thin shell (e.g., Zu et al. 2011;
Pancoast et al. 2011; Zu et al. 2013; Williams et al. 2020).

Further away, the speed of the gas decreases, and the lines are narrower. The NLR can be as big as 100 pc
and is therefore visible regardless of the angle of the line of sight.

1.2.3 Quasar optical variability.

As presented in Fig. 1.9, the optical luminosity of quasars is dominated by the accretion disk. Because
of the stochastic nature of the accretion process and the different time scales of the mechanisms at play,
the brightness across various timescales exhibits complex and erratic changes. Characterizing the quasar
variability offers another way to probe the accretion dynamics as the amplitude of the variation is linked,
among other parameters, to the Eddington ratio and the black hole mass (e.g., Giveon et al. 1999; MacLeod
et al. 2010; Rumbaugh et al. 2018). Furthermore, by unveiling a universal variability structure function for
quasars, Tang et al. (2023) opens a way to determine outlier objects whose internal processes deviate from
standard models.

The damped random walk (DRW) process is a simple yet powerful framework for describing the stochastic
nature of quasar variability (Kelly & Siemiginowska 2009). It is a Gaussian Process in which the kernel is
parametrized by the amplitude of short-time scale stochastic variations σ and the relaxation time τ, which
sets the time scale of long-term finite variations. The DRW parametrization allowed us to characterize the
variability of large quasar samples in the Sloan Digital Sky Survey (SDSS) and Pan-STARRS survey (e.g.,
MacLeod et al. 2010; Ivezić & MacLeod 2014; Suberlak et al. 2021).

Alternatively, the Continuous-time AutoRegressive Moving Average (CARMA) process offers a more
complex representation of variability (Kelly et al. 2014). The CARMA process involves autoregressive
and moving average components and is described by a characteristic polynomial that governs the system’s
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behaviour. CARMA models can capture a broader range of behaviours, including quasi-periodic oscilla-
tions, which are often present in observed quasar light curves (e.g., Gupta et al. 2008; Zhang et al. 2017;
Zhang 2022a,c).

Machine learning methods such as latent stochastic differential equations or auto encoder networks have
also emerged as a potent tool for modelling quasar variability (e.g., Tachibana et al. 2020; Lin et al.
2020; Fagin et al. 2023; Kovačević et al. 2023). These non-parametric modelizations of quasar variability
algorithms are more flexible than the DRW process. They are thus able to capture short patterns more
efficiently and extract the physical properties, such as the mass of the black hole, but are yet to be applied
to real data.

1.2.4 Interplays with the host galaxy

The energy released during the black hole’s accretion process affects the surrounding gas and dust. The
feedback mechanisms between quasars and their host galaxies, such as powerful winds and jets emanating
from the quasar’s central region, can impact star formation rates, galaxy morphology, and even the
distribution of stellar populations (e.g., Hopkins et al. 2007; Kormendy & Ho 2013). Furthermore, these
feedback mechanisms can regulate the black hole’s accretion, as shown by Poitevineau et al. (2023), who
found that radio-loud AGN displays distinct black hole mass to galaxy mass (MBH/M) ratios. Therefore,
radio feedback may control the growth of supermassive black holes and the formation of stellar masses
in these sources. In contrast, simulations by Soliman et al. (2023) suggest that different accretion disk
models can result in varying SMBH and host galaxy coevolution.

These findings emphasize the need to investigate the inner structure of AGN for a complete understanding
of galaxy and quasar co-evolution.

1.3 Gravitational lensing

1.3.1 Formalism

In Section 1.1, we reviewed how Einstein’s theory of general relativity describes the deformation of
spacetime caused by massive objects, resulting in the bending of surrounding light rays. It was therefore
imagined that, much like an optical lens, the gravitational influence of an object (known as the deflector or
lens) could focus light rays from a distant background source coming from different directions, creating the
illusion of multiple sources for the observer. Indeed, Einstein (1936) showed that an observer positioned
more than 542 AUs from the Sun could see multiple images of a background star, and Zwicky (1937)
showed that this phenomenon is very likely to be observed from Earth if we consider a galaxy acting
as a lens. A few years later, the serendipitous discovery of a twin quasar at redshift z = 1.29 by Walsh
et al. (1979) turned out to be the first observed gravitationally lensed object when very similar jets were
observed in both quasars (Gorenstein et al. 1984). The galaxy acting as the main deflector was identified
at z = 0.355. In this section, we will introduce the basics of gravitational lensing formalism, which allows
us to connect the observables of a gravitational lens system to the physical properties of the source and the
deflector.

As illustrated by the first predictions of Einstein and the first discovery of a gravitational lens system, the
distance between the observer, the lens and the source are orders of magnitude larger than the size of the
deflector. We can, therefore, safely treat the lens as a two-dimensional surface with negligible thickness.
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This shortcut, referred to as the thin-lens approximation, allows us to ignore any effects arising from the
finite thickness of the lens and focus solely on the refraction of light at the lens surfaces.

Fig. 1.11 shows a typical gravitational lensing system scheme. A light ray emitted by the source reaching
the lens plane at a distance ξ or angle θ from the deflector is deflected by an angle α̂ and the unobservable
separation of the source relative to the optical axis is noted β. The geometry displayed instinctively shows
us that, in the limit of small angles induced by the astronomical distances, we have:

βDs = θDs − α̂Dds, (1.32)

image plane

source plane

observer plane

Figure 1.11: Scheme of gravitational lens system. Following the thin-lens approximation, the observer,
image and source are characterized by planes. Dd, Ds and Dds refer to the angular diameter distance
between the planes. The optical axis (dashed grey line) connects the origin of each plane, defined as the
position of the observer, the position of the deflector and its projection in the source plane. The angle θ is
subtended by the impact parameter ξ given by the position of the image in the image plane. The deflection
angle α̂ is subtended by the observed light ray trajectory with the actual trajectory. The position of the
source relative to the optical axis induces the angle β. Figure credits: Aymeric Galan

by defining the scaled deflection angle α(θ) = Dds/Ddα̂ (hereafter referred to as deflection angle), we
obtain the fundamental lens equation:

β = θ − α(θ). (1.33)

In the thin-lens approximation, ˆα(ξ) is given by:

α(ξ) =
4G
c2

∫
d2ξ′Σ(ξ′)

ξ − ξ′
|ξ − ξ′|2 with Σ(ξ′) =

∫
dξ′3ρ(ξ′, ξ′3), (1.34)
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where Σ(ξ′) is the surface mass density obtained by projecting the volumic density ρ(ξ′, ξ′3) onto the image
plane, and d2ξ′ is the 2-dimensional distance element connecting the center of the lens mass distribution
to the orthogonal projection on the lens plane of each mass element.

The minimal surface density required to produce multiple images is defined as the critical surface density
and is computed by:

Σcrit =
c2Ds

4πGDdsDd
, (1.35)

it is used to define the convergence i.e the dimensionless surface density:

κ(θ) =
Σ(θ)
Σcrit

. (1.36)

We can, therefore express the deflection angle as:

α(θ) =
1
π

∫
(θ − θ′)κ(θ′)
|θ − θ′|2 dθ′, (1.37)

The deflection potential defined as:

ψ(θ) =
1
π

∫
κ(θ′)ln|θ − θ′|dθ′, (1.38)

allows us to express the convergence and deflection angle as:

κ(θ) =
1
2
∇2ψ(θ), (1.39)

α(θ) = ∇ψ(θ). (1.40)

The arrival time of a hypothetical photon passing through the image plane at the coordinate θ, also referred
to as the Fermat potential ϕ(θ), can be expressed as:

ϕ(θ, β) =
(θ − β)2

2
− ψ(θ). (1.41)

Following Fermat’s principle, according to which a light ray always takes the quickest path, we find an
alternative expression of the lens equation by looking for the stationary points of ϕ (θ):

∇ϕ(θ) = 0. (1.42)

Resolving this equation hence gives the location of the observed images.

We can now compute the transformation of an unlensed coordinate system β into a lensed one θ through
the Jacobian matrix of the lensing operator given by the lens equation 1.33 or the Hessian matrix of the
Fermat potential of Eq. 1.41:
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with δij being the Kronecker delta. The matrix can then be decomposed into the convergence term κ, which

magnifies the image, and the shear term with ||γ|| =
√
γ2

1 + γ
2
2 characterizing the stretching of the image.

A =
(
1 − κ 0

0 1 − κ
)
+

(−γ1 γ2

γ2 γ1

)
, (1.43)

In the case where the deflector potential is complex, this transformation is better represented with an
additional higher-order referred to as the flexion term, F (e.g., Goldberg & Natarajan 2002):

βi = Aijθj +
1
2
Fijkθjθk, (1.44)

Fijk = ∂kAij, (1.45)

where the flexion operator F can be expressed through the cartesian third derivative of the potential fxxx,
fxxy, fxyy and fyyy :

Fij1 =

(−2 fxxx − fyyy fxxy

fxxy − fyyy

)
Fij2 =

(− fxxy − fyyy

− fyyy −2 fxyy − fxxy

)
. (1.46)

The magnification of the image, µ, multiplies the flux of the source because lensing increases the size of
the image while conserving its surface brightness; it is given by:

µ =
1

det(A)
=

1
(1 − κ)2 − γ2 , (1.47)

Positions of the image plane where the Jacobian matrix has null eigenvalues and magnification diverges
are called critical lines. These lines separate areas of the image plane within which the Fermat potential
reaches an extremum or a saddle point, mapping them toward the source plane with the lens equation 1.33,
we obtain the caustic curve. It is important to note that even if a source is located on a caustic, it will not
be infinitely magnified. The assumptions of geometrical optics used to derive the equations are no longer
applicable, and wave optics predicts magnification values that are finite but very high.

1.3.2 Gravitational lensing regimes and their applications

The lens’s mass and alignment along the optical axis set the number of solutions to the lens equation Eq.
1.33. Because of the diversity of massive bodies in the Universe and their (at first order) homogeneous
spatial repartition, several regimes of gravitational lensing may be observed:

• Microlensing creates multiple images, but they are not resolvable because at most, a few milli-
arcseconds (mas) separate them. Still, the magnification of the source across time is detectable.
This regime is generally seen when a star or a planet (0.001M⊙ <M<10M⊙) acts as the main deflector.

• Strong-lensing is observed when multiple magnified images of a background source are separately
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resolvable. This regime is generally seen when a galaxy or cluster (M>1010M⊙) acts as the main
deflector.

• Weak lensing does not create multiple images but deforms and magnifies the background source.
This regime is generally seen when a galaxy or cluster acts as the main deflector, but the alignment
of the source with the lens is too poor to allow multiple images to form.

Microlensing

By considering a compact spherical mass in front of a star, we can model a typical microlensing system as
a point mass M in front of a point source. This configuration provides a simple mathematical framework
to apprehend lensing properties.

By assuming that the mass M is enclosed in a surface smaller than the impact parameter ξ, we can use the
deflection angle given in Eq. 1.3 and express the lens equation Eq. 1.33 as:

β = θ − Dds

DdDs

4GM
c2

1
θ
, (1.48)

θ2 − βθ − θ2
E = 0, (1.49)

yielding the solution:

θ± =
1
2

(
β ±

√
β2 + 4θ2

E

)
, (1.50)

θE =

√
Dds

DdDs

4GM
c2 , (1.51)

where we defined the Einstein radius θE. As illustrated by Fig. 1.12, when the source is perfectly aligned
with the lens (β =0), |θ| = θE solves the lensing equation and the source is deformed to the point where it
forms a so-called Einstein ring. In other cases, however, only two images are formed, with a constant
separation of 2θE. Even though these images were historically unresolved because θE ∼ 1 (mas) in these
kinds of systems, the technological progress made with the GRAVITY instrument on the Very Large
Telescope allowed Dong et al. (2019) to separately resolve the two images of a microlens system to get
unprecedented 2% precision on the mass measurement of the microlens.

In other cases, the main observable of such a system is the total magnification measured, obtained by
summing the magnification of individual images:

µ± =

1 −
(
θE

θ±

)4
−1

, (1.52)

µ = µ+ + µ− =
β̄2 + 2

β̄
√
β̄2 + 4

, (1.53)

(1.54)

where we introduced β̄ ≡ β/θE. We note that µ diverges when θ = θE inducing a critical curve that
tangentially magnifies images as they approach it, giving its name: the tangential critical line.

Due to the proper motion of the observer, lens and source, with a resulting transverse velocity vtrans,
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Figure 1.12: A microlensing system simulated by a point mass and a source. Shear was added to emulate
the effect of surrounding bodies that do not affect the magnification but still distort the images. Left panel:
Source plane displaying the caustic along with different positions of the source. Right panel: Image plane
displaying the critical curve and image configuration induced by the matching colour source position.

changes in the magnification are expected on a timescale defined as the Einstein time:

tE =
DdθE

vtrans
, (1.55)

which is of the order of a month for stars in our Milky Way. Assuming a rectilinear and uniform transverse
motion, we can express the evolution of β̄ with time:

β̄(t) =

√

β̄0 +

(
t − t0

tE

)2

, (1.56)

where t0 is the time where the distance β̄0 is minimal. Therefore, the observed photometry of a microlensed
source evolves with time as a function of its mass M and its shortest distance to the optical axis β̄0.

Several programs such as Microlensing Observations in Astrophysics (MOA) (Bond et al. 2001) and
Optical Gravitational Lensing Experiment (OGLE) (Udalski et al. 1994) are currently monitoring the
luminosity of stars in the Milky Way and the Magellanic Clouds. The sudden magnification of a star
proves that a compact body passed in front of it; the magnification’s amplitude and length then give the
microlens’ mass. An example of a magnification event reported by Lam et al. (2022) is shown in Fig.
1.13. The characteristic microlensing light curve fit to the OGLE and HST observations shows that the
microlens has a 1.6–4.4 M⊙ mass. The high mass of this body allowed for the detection of a ∼ 1 mas shift
of the position of the image throughout the event, making it the first astrometric detection of microlensing.
Furthermore, such a mass could correspond to a solitary black hole, uncovering the population of such
objects in our galaxy.

Microlensing can, in theory, be induced by a wide range of mass (between 10−6 < M/M⊙ < 106, Schneider
et al. 2006) and can therefore be used to study the population of various objects with a direct measurement
of their mass. Most commonly, if multiple superposed magnification events are observed, it means that the

23



Chapter 1 Introduction

Figure 1.13: Top panel: Four epoch, two band HST imaging of a microlensing demagnification event,
the luminosity of a faint star decreases as the microlensing body moves out of the alignment. Bottom
panel: By combining Eqs. 1.54 and 1.56, light curves are fit simultaneously to the four HST epochs and
the OGLE higher cadence observation to determine the mass of the microlens. (Adapted from Lam et al.
2022)

star is microlensed by a many-body system such as a binary star (e.g. Skowron et al. 2007; Maccarone
et al. 2019; Soszyński et al. 2021) or a planetary system (e.g. Gould et al. 2014; Yee et al. 2021; Shin et al.
2022).
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Among multiple other science uses, we will describe in Section 2.1.2 how microlensing can also be
observed in other galaxies and study extragalactic objects.

Strong lensing

To identify the main observables of a typical strong lens system, we will consider the simple case where
the lens is an elliptical galaxy, and the source is a quasar hosted in a galaxy.

Image position By assuming a constant volumic density throughout the elliptical galaxy, we can
approximate its surface mass distribution with a finite maximum surface density at the center and a
power-law decline with the radius, i.e. a Non-Singular Isothermal Ellipsoid (NIE) function. Contrarily
to the case where the lens is spherical, the lensing equation cannot be solved analytically, but numerical
methods such as ray tracing are used to find the position of the images to show that the tangential critical
line is now enclosed in a radial critical line.

As shown by Fig. 1.14, when the source is within the radial caustic, it will create five images, while only
three are created when the source is between the two caustics. In fact, Burke (1981) demonstrated that
elliptical mass profiles always induce an odd number of images. In the image plane, the Fermat potential’s
maximum, saddle, and minimal points induce an image within the tangential critical curve, between the
two critical curves, and outside both curves. This means that the eigenvalues of the transformation matrix
A defined in eq. 1.43 are either negative, one negative, one positive, or both positive. Consequently, the
magnification of saddle and minima images have opposite signs. Even though the observed flux of the
image is multiplied by the absolute value of the magnification, the magnification sign determines the parity
of an image. Negative-parity (or odd) images will appear as mirror images or mirrored compared to the
background source. In practice, if a lens creates a central image, it would be highly demagnified and
hidden by the lens.

Flux ratio Since the Einstein radius of strong lens system is typically ∼ 1 arcsec, their Einstein time is
much longer than for microlensing systems. Therefore, the magnification of an image is assumed to be
constant, and the ratio between the flux of an image pair provides a measurement of the corresponding
magnification ratio. The measurement of this ratio is very sensitive to absorption by the interstellar medium
(e.g. Falco et al. 1999), magnification by satellite, substructures (e.g. Dalal & Kochanek 2002), or stars
(i.e. microlensing Chang & Refsdal 1979). Comparing the observation to flux ratios predicted by a lens
mass model can, hence, provide valuable insights on the lens galaxy morphology and composition.

Lensed arc As shown by the left column of Fig. 1.14, in some systems, the galaxy hosting the
background quasar is extended enough to form a lensed arc superposed to the images of the quasar point
source. The shape of this arc gives additional constraints on the enclosed projected mass and allows us to
measure precisely the Einstein radius of the lens.

Time delay As the photon does not travel across a straight line from the source to the observer as
it would in a non-lensed case, we can express the additional time induced as a function of the Fermat
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potential given by:

τ(θ, β) =
1 + zd

c
DsDd

Dds
ϕ(θ, β). (1.57)

τ(θ, β) =
1 + zd

c
DsDd

Dds

(
(θ − β)2

2
− ψ(θ)

)
. (1.58)

where (θ−β)2

2 characterizes the geometrical delay while ψ(θ) is the so-called Shapiro delay due to the
time dilation caused by the gravitational field of the lens (Shapiro 1964). From which we can deduce the
difference in time taken by a light ray from an image A relative to an image B, ∆tAB:

∆tAB =
D∆t

c
∆ϕAB, (1.59)

∆tAB =
D∆t

c

(
(θA − β)2

2
− (θB − β)2

2
− ψ(θA) + ψ(θB)

)
, (1.60)

where we defined the Time delay distance, D∆t= (1 + zd) DsDd
Dds

. Hence, given a proper modelization of
the Fermat potential, the measurement of ∆tAB gives the ratio of angular diameter distances involved in a
strong lensing system.

We can generalize Eqs 1.60 and 1.41 in the case where multiple lenses lie at different redshifts, creating
with P different lens planes. The time-delay then becomes (e.g., Schneider et al. 1992):

∆tAB =

Pi=1∑ D∆t,i,i+1

c

[
(θA,i − θA,i+1)2

2
− (θB,i − θB,i+1)2

2
− ζi,i+1

(
ψi(θA,i) + ψi(θB,i)

)]
, (1.61)

D∆t,i,i+1 ≡ 1 + zi

c
DiDj

Dij
, i<j, (1.62)

ζi,j ≡ DDs

DjDs
, (1.63)

i = 1 refers to the nearest plane to the observer and i = P + 1 is the source plane. D∆t,i,i+1 is the time delay
distance between two planes and ζi,j is a rescaling factor.

By defining Deff
∆t ≡ D∆tl,s as the time-delay distance between the main lens plane and the source plane, the

time delay can be rewritten:

∆tAB =
Deff
∆t

c
∆ϕeff

AB (1.64)

With the effective Fermat potential:

ϕeff(θ) =
Pi=1∑ 1 + zi

1 + zd

DiDi+1Dds

DdDsDi,i+1

[
(θi − θi+1)2

2
− ζi,i+1ψi(θi)

]
. (1.65)

As we will discuss in section 3.1, Refsdal (1964) first stated that since these distances depend on cosmology,
one can measure H0 through a technique called "Time-delay Cosmography".

The most straightforward application of strong lensing is to measure the mass of the lensing body. In
gravitational lens systems created by galaxy clusters, it is possible to model the mass distribution of the
associated dark matter halo. It is, therefore possible to test the structure formation models within the
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framework of the Cold Dark Matter paradigm (e.g., Dahle et al. 2003; Newman et al. 2013; Grillo et al.
2015; Lagattuta et al. 2023). On single galaxy scale lensing, gravitational lensing allows us to detect
faint dark substructures that are otherwise challenging to observe directly. For example, the detection of
substructures with masses around 108 solar masses within massive elliptical galaxies (e.g. Vegetti et al.
2012) will give additional constraints to the CDM model, as the number of subhalos vary significantly in
alternative Warm Dark Matter models (e.g. Ritondale et al. 2019). Another application involves studying a
uniformly selected sample of lenses, such as the Sloan Lens ACS Survey sample (SLACS Bolton et al.
2006), to infer population properties like the mass profile slope and its evolution with redshift (e.g.,
Bolton et al. 2008), the characteristic scale of their dark matter halo (e.g., Gavazzi et al. 2007), or the
mass-to-light ratio (M/L) in the lens galaxy (e.g., Shajib et al. 2021). Similar population studies can
be expected for galaxies hosting quasar to probe the quasar-host co-evolution at high redshifts, Millon
et al. (2023) benefitted from the rare occurrence of strong lensing by a quasar to measure the mass of
both the quasar and its host galaxy with an unprecedented 0.5% precision, significantly better than with
conventional photometric or spectroscopic techniques (∼ 10% precision). In addition, this co-evolution
can be further studied when the quasar is the lensed object thanks to the high magnification, which enables
the mass measurement of the host galaxy, otherwise too small and faint to be observable with a standard
telescope (e.g., Ding et al. 2020, 2021). The magnification of the source can also be used to probe the
profile and characterize star formation regions of distant galaxies and bring valuable insights on the galaxy
evolution model (e.g. Nagy et al. 2022; Dessauges-Zavadsky et al. 2023).

As discussed in Section 3.1, the cosmological distances between lens planes in a strong lens system allow
us to measure H0 in a cosmological-independent way. Additionally, the rare event where a single galaxy
lenses sources at different redshifts provides constraints on Ωm,0 and on the dark energy equation of state
(Eq. 1.19) (e.g. Collett & Auger 2014; Sharma et al. 2023).

Weak lensing

No additional images are formed if the source is far enough from the optical axis to be outside the tangential
and radial caustic. However, its position in the image plane is still deflected, and its shape is stretched
tangentially. Since it is in a region where κ < 1, it is only mildly magnified.

The primary impact of weak lensing is on the ellipticity and alignment of the sources relative to the lens.
However, distinguishing whether the distorted shape of a single object is due to its geometric configuration
or weak lensing is challenging. A statistical analysis of the spatial distribution of many objects’ ellipticities
and alignments over a large field is required to detect weak lensing.

The first detection of weak lensing occurred more than a decade after the initial observation of a lensed
quasar. Tyson et al. (1990) demonstrated that galaxies within a large cluster tended to align perpendicular
to the cluster center. Subsequently, Bacon et al. (2000), Kaiser (2000) and Van Waerbeke et al. (2000)
independently observed a similar alignment caused by large-scale structures across cosmological distances,
named cosmic shear.
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Figure 1.14: Left column: Source plane illustration of the strong lens with a fiducial source position.
Middle column: Image position along with their denomination according to the nature of the corre-
sponding stationary point in the Fermat potential of Eq. 1.41. Right column: HST imaging of a similar
configuration real galaxy-quasar lenses. From top to bottom, the configuration names are: cross (HE
04351223), a long-axis cusp (RX J11311231), a short-axis cusp (J0659+1629), a fold (GRAL 11314419)
and a double (HE 11041805) are shown. (Adapted from Martin Millon’s PhD thesis. Image credit:
HST/NASA
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1.4 H0 measurement methods

1.4.1 History of the H0 measurement

The Hubble-Lemaître constant, H0, has garnered significant interest and debate in astrophysics for over a
century, with over 1000 estimations published since 1980 and more than 200 since 2020. As it is directly
observable, it can be easily used to validate predictions of any cosmological model, rendering it vital for
comprehending the Universe’s evolution. H0 can be inferred from the ΛCDM parameters, providing a
comprehensive model test and assisting in clarifying dark energy’s nature by untangling the parameter
degeneracies (e.g., Weinberg et al. 2013; Motta et al. 2021; Kamionkowski & Riess 2022). Throughout
history, astronomers have encountered numerous challenges in estimating the Hubble constant. The
first estimation, credited to Lemaître (1927), yielded approximately 625 km s−1Mpc−1based on galaxies’
radial velocities measurements. Subsequent revisions by Hubble (1929) and Hubble & Humason (1931)
reduced the value to around 500 km s−1Mpc−1. However, these early estimates proved to be significantly
overestimated. They presented a cosmic age problem, as they implied an age of only 2 billion years for the
Universe, contradicting radioactive dating of rocks that suggested Earth’s age to be at least 3 billion years.

The following decades saw the measurement of H0 being performed with various astrophysical phenomena
such as Cepheid stars (more details in Section 1.4.2 on the technicalities), which allowed the identification
of numerous sources of biases (e.g., Mineur 1944; Baade & Minkowski 1954; Humason et al. 1956;
Sandage 1958). A consensus range of 50-100 km s−1Mpc−1was then established, although debates
persisted between groups advocating for lower or higher values (e.g., Sandage & Tammann 1976; de
Vaucouleurs & Bollinger 1979).

The launch of the Hubble Space Telescope in 1990 seemed to settle the debate momentarily. Through the
recalibration of the Cepheids Period-Luminosity relation, the Hubble Key Project provided an estimate
of H0 = 72 ± 8 km s−1Mpc−1 (Freedman et al. 2001), in agreement with the measurement based on
the observation of the CMB with the WMAP satellite: (H0 = 72 ± 5 km s−1Mpc−1 Spergel et al. 2003).
Nevertheless, with the increasing precision of the CMB observation mission, the so-called "early-Universe"
measurements have been in growing tension with "local-Universe" or "late-Universe" measurements,
relying on nearby astrophysical objects or observations of the CMB. In this section, we will present both
families of H0 measurement methods and the relevance of this H0-tension for our understanding of the
Universe.

1.4.2 Late Universe measurements

Distance definitions

The Hubble-Lemaitre law introduced in Eq. 1.15 shows that the distance to astrophysical objects is directly
related to H0. It is, therefore, helpful to introduce several definitions of distances in the Universe.

The most straightforward way to compute a distance given its cosmological redshift in a Universe with a
constant expansion rate is the Hubble distance, given by:

dH(z) =
cz
H0

. (1.66)

However, since the expansion rate of the Universe is time-dependent (e.g. 1.18), it is only valid for very
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low redshifts (z ≲ 0.1). We can hence express the distance to points further away using the co-moving
distance between two points, constant over time:

dC(z) =
c

H0

∫ z

0

dz′

E(z′)
, (1.67)

with E(z) = H(z)
H0

, the dimensionless Hubble parameter.

The angular diameter distance defined as the ratio between the size of an object x and its apparent
angular size θ:

dA =
x

tan(θ)
≈ x
θ
, (1.68)

is related to the comoving distance (ergo the cosmological model) through dA(z) = dC(z)/(1 + z).

Alternatively, in a static Universe, the luminosity distance of an object with a luminosity L and an
observed flux F is given by dL =

√
L/4πF. To account for the Universe’s expansion, this translates to:

dL(z) = (1 + z)
c

H0

∫ z

0

dz′

E(z′)
, (1.69)

dL(z) = (1 + z)dC(z). (1.70)

The luminosity distance is also therefore determined by the difference between the apparent magnitude of
an object m and its absolute magnitude M, the distance modulus:

m − M = −2.5log


L
4πd2

L

 + 2.5log
(

L
4π10[pc]2

)
= 5log(dL) − 5 (1.71)

Therefore, astrophysical objects with a known size or luminosity allow us to measure the angular diameter
or luminosity distance to this object without any dependence on the cosmological model. These standard
rulers and standard candles can be used to constrain cosmological parameters such as H0.

Distance Ladder

One of the first standard candles used to measure H0 are the type Ia supernovae (SNIa). These have a pre-
dictable peak luminosity because they are triggered when a white dwarf star accretes to the Chandrasekhar
mass limit of 1.44M⊙ (Chandrasekhar 1935). As they are one of the most luminous phenomena in the
Universe, they are observable at distances large enough so that their recessional velocity is dominated by
the Universe expansion rather than their peculiar velocity, i.e. in the Hubble flow.

However, Phillips (1993) showed that the peak magnitude could noticeably change from one SNIa to the
other, hindering their standard candle status. To recover their standardizable quality, we need to calibrate
the SNIa distance modulus with independent measurements of distances.

Therefore, The distance ladder is created by a two-step calibration of secondary distance indicators in the
Hubble flow (such as SNIa) on primary distance indicators to inter-galactic objects, which are calibrated
on geometrical distance indicators within the Milky Way. The distance overlap between the indicators
ensures the continuity of the distance ladder from short intra-galactic distance to the Hubble flow.
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Geometric distance indicators

1. Parallax measurements rely on the apparent shift in the position of a star relative to background
stars when observed six months apart from two diametrically opposed points on Earth’s orbit. By
measuring the parallax angle, we can calculate the distance to the star using basic trigonometric
principles. Parallax measurements are widely regarded as one of the most commonly used and robust
geometric methods for estimating distances to stars in the Milky Way. The recent data release of the
Gaia mission (EDR3 Gaia Collaboration et al. 2021) reached a very high precision measurement of
the parallaxes to 1.8 billion stars within the Milky Way. However, it is important to note that the
parallax technique has inherent limitations and generally applies only to stars within a distance of
approximately 5 kiloparsecs (kpc).

2. Detached Eclipsing Binaries (DEBs) are binary star systems in which the two stars orbit each
other at a sufficient distance that their shapes and sizes remain unaffected by mutual interaction.

The DEB distance measurement technique relies on observing the eclipses occurring when one star
passes in front of the other as seen from Earth. By monitoring the light curve during these eclipses,
we can determine the orbital properties, including the orbital period and the depth and duration of
the eclipse. This information allows us to determine the relative sizes and masses of the stars, as
well as the size of their orbit, using Kepler’s law. By dividing the latter by the apparent angular size
of the orbit (determined astrometrically or spectroscopically), the angular diameter distance to the
DEB is determined.

DEBs play a crucial role as a distance indicator not only for globular clusters (Rozyczka et al. 2022)
but also for nearby galaxies, such as the Small Magellanic Cloud (SMC, Graczyk et al. 2018), the
Large Magellanic Cloud (LMC, Graczyk et al. 2020), and the Andromeda galaxy (Bonanos et al.
2006; Vilardell et al. 2010). The DEB technique provides a valuable means of distance estimation,
extending our reach to galaxies located up to approximately 1000 kiloparsecs (kpc). By studying the
properties of DEBs in nearby galaxies, we gain insights into stellar evolution, the cosmic distance
ladder, and the structure of these neighbouring systems.

Primary indicators

1. Cepheids are pulsating stars that exhibit a strong correlation between their period and their luminos-
ity, first discovered by Leavitt (1908). Their absolute luminosities and distance can be established
by measuring the pulsation period of Cepheids and calibrating their period-luminosity relation using
geometric distance indicators in the Milky Way. This technique proves effective for distances up to
40 Mpc, given the availability of highly precise photometry from instruments like the Hubble Space
Telescope (Riess et al. 2019). Although Cepheids cannot be directly resolved in distant galaxies
within the Hubble flow due to their faintness, they still play a crucial role in astrophysics. Their
primary application lies in calibrating the absolute magnitude of Type Ia supernovae (SNIa) in
galaxies where both Cepheids and SNIa have been observed.

2. The Tip of the Red Giant Branch (TRGB) marks the inflexion point of the red giant branch within
a colour-magnitude diagram corresponding to the triggering of helium fusion, consistently arising at
the same luminosity in red giants (e.g., Mould & Kristian 1986; Freedman 1988).
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Secondary indicators to H0 measurements

1. Type Ia Supernovae: As shown by Fig. 1.15, the SH0ES collaboration (Supernovae and H0 for the
Equation of State of dark energy) built a distance ladder using parallax and DEBs as geometrical
indicators, Cepheids and SNIa, resulting in the measurement H0 = 73.30±1.04 km s−1Mpc−1 (Riess
et al. 2022).

2. Baryonic Tully-Fisher relation (bTF): First introduced by Tully & Fisher (1977), this linear
correlation between the rotational velocity of spiral galaxies is indicative of their luminous mass,
and their absolute luminosity. It hence provides a mechanism to standardize the luminosity of spiral
galaxies within the Hubble flow, facilitating luminosity distance measurement. Recently, Kourkchi
et al. (2022) refined the calibration of the Tully-Fisher method through a dataset comprising 94
galaxies with well-determined distances derived from Cepheids or TRGB stars. Their analysis
yielded a H0 value of 75.5 ± 2.5 km s−1Mpc−1.

3. Surface Brightness Fluctuation technique (SBF, Tonry & Schneider 1988): This method
leverages the observation that nearby galaxies exhibit a more "granular" appearance than galaxies
located farther away. The reason behind this is the decreasing resolution of individual stars as the
distance to the galaxy increases. A distance indicator can be derived and calibrated using Cepheids
or TRGB distances by quantifying the amplitude of these surface brightness fluctuations. Blakeslee
et al. (2021) utilized the SBF technique, in combination with Cepheids and the TRGB as calibrators,
to obtain a value of H0 equal to 70 ± 2.5 km s−1Mpc−1. Alternatively, SBF has also been used as a
primary distance indicator to calibrate SNIa to get H0 = 70.50 ± 5.0 km s−1Mpc−1 (Khetan et al.
2021).

The comparison of distance ladder measurements using different astrophysical objects allows for studying
eventual sources of systematic errors in the measurements. By anchoring SNIa on TRGB calibrated on
DEBs in the LMC and SMC, Freedman et al. (2020) measured H0 = 69.6 ± 2.5 km s−1Mpc−1 which is in
slight tension with the Cepheid-based measurement of Riess et al. (2022). However, Anderson et al. (2023)
emphasized that the Red Giant Branch hosts several families of Red Giant stars, and varying stars mostly
populate its tip. By determining the tip while solely using the Small Amplitude Red Giants (OSARGs),
they recovered H0 = 71.8 ± 1.5 km s−1Mpc−1, which is in better agreement with Riess et al. (2022).

Water Mega Masers

Water molecules in Keplerian motion around a Supermassive Black Hole may create radio emission lines
due to the Microwave Amplification by Stimulated Emission of Radiation (MASER), creating Water
Megamasers. By measuring the radial velocity of these water masers, it becomes possible to calculate
the physical size of their orbits using Keplerian dynamics, which can then serve as a standard ruler for
distance determination (Humphreys et al. 2013; Reid et al. 2019). Utilizing this technique, the Megamaser
Cosmology Project (MCP) measured distances to six galaxies, reaching distances of approximately 130
Mpc allowing for direct measurement of H0 (73.9±3.0 km s−1Mpc−1 Pesce et al. 2020). This measurement
is, however, limited to nearby resolvable megamasers for which the peculiar velocity is not negligible
compared to the Hubble flow, creating the primary source of systematic bias of this technique. Alternatively,
it can be used in the distance ladder to extend the calibration of Cepheid measurement to higher distances
(Reid et al. 2019; Riess et al. 2022).
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Figure 1.15: Complete distance ladder built by the SH0ES collaboration. The distance moduli of 42 SNIa
are calibrated on the ones of Cepheids within the same host galaxies, which are calibrated on geometrical
indicators. Including 277 SNIa in the Hubble flow extends the ladder as far as z=2.26. (Adapted from
Riess et al. 2022)

Gravitationnal waves

In addition to verifying yet another prediction of Einstein’s general relativity, the first direct observation
of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO Abbott et al.
2016) opened a new era of astronomy and created a novel opportunity to measure H0. Gravitational waves
are ripples in the fabric of spacetime that are generated by the acceleration of massive objects. The first
detection came from the merger of two black holes, but since then, scientists have also observed mergers
involving binary neutron star systems.

During a binary neutron star merger, the in-spiralling motion of the two neutron stars emits a distinct
gravitational wave signal, allowing us to determine the chirp mass of the system, i.e., a combination of the
masses of the merging neutron stars.
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Using General Relativity, the chirp mass can be used to predict the total energy released in the form
of gravitational waves during the merger. By comparing this predicted energy to the amplitude of the
gravitational wave signal detected on Earth, scientists can infer the luminosity distance to the system
dubbing it as standard siren.

However, the measurement of H0 using standard sirens also relies on the observation of electromagnetic
counterpart (possible only for neutron star mergers), needed for the redshift determination of the system.
Only one such event, known as GW170817, has been discovered so far and the precision of its associated
H0 value ( H0 = 7012

−8 km s−1Mpc−1 Abbott et al. 2017) is altered by the degeneracy between the inclination
angle of the system and the Hubble constant. Using constraints on the orientation from radio observations
yielded an improved: H0 = 70.3 ± 5.0 km s−1Mpc−1 (Hotokezaka et al. 2019).

As the sensitivity of gravitational wave detectors continues to improve, it is expected that more binary
neutron star mergers will be detected, leading to a rapid advancement in the precision of Hubble constant
measurements using standard sirens (see e.g., Bailes et al. 2021, for a full review of upcoming GW
detectors.)

Time delay cosmography

Based on the gravitational lensing formalism detailed in Section 1.3, Refsdal (1964) proposed that
measuring the time-delay between different images combined with the mass modelling of a strong lens
system provided a measurement of H0 without relying on multiple calibration steps. For a comprehensive
description of this technique, we refer to Chapter 3 of this manuscript. Here, we present some key results
for comparison with other observational probes.

The first measurement with the first gravitationally lensed quasar Q0957+561 yielded H0 = 50 ±
17 km s−1Mpc−1 (Rhee 1991). It was, however, subject to many sources of biases as the time delay
of this system was subject to controversies for a long time (only solved by Kundić et al. 1997) and the
mass modelling techniques were too simplistic then. In the most recent studies, Wong et al. (2020) derived
a Hubble constant measurement of H0 = 73.3+1.7

−1.8 km s−1Mpc−1 using six strongly lensed quasars, while
Shajib et al. (2020) obtained H0 = 74.2+2.7

−3.0 km s−1Mpc−1 from a single system. Birrer et al. (2020)
re-evaluated the constraints using these seven lenses, adopting minimal assumptions regarding the mass
profile of the lensing galaxies. They reported a Hubble constant of H0 = 74.5+5.6

−6.1 km s−1Mpc−1. To further
improve precision, the inclusion of 33 SLACS lenses without time delays resulted in tighter constraints
and a lower value for the Hubble constant: H0 = 67.4+4.1

−3.2 km s−1Mpc−1. Alternatively, Shajib et al.
(2023) used resolved kinematics of the lens to constrain the mass profile of a single lens and obtained
H0 = 77.1+7.3

−7.1 km s−1Mpc−1.

Further discussion about the assumptions susceptible to bias in this measurement is made in Chapter 3.
Still, Time-delay cosmography stands out as one of the most precise techniques to measure H0.

1.4.3 Early Universe measurements

CMB observations

As discussed in Section 1.1, the temperature fluctuations of the CMB observed by the WMAP and Planck
satellites (see Fig. 1.5) are a central prediction of the ΛCDM. They can, therefore be used to measure
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cosmological parameters such as H0. Indeed, these observed structures are due to the complex interactions
between baryons, photons, and neutrinos during the pre-recombination epoch (e.g., Peebles 1968; Bond &
Efstathiou 1984). By decomposing the observed temperature map of Fig. 1.5 onto spherical harmonics
characterized by a multipole order l, related to the inverse of the angular size of anisotropy features,
the Planck collaboration achieved remarkable constraints on the angular power spectrum of the CMB
anisotropies shown in Fig. 1.16. Assuming ΛCDM cosmology, this power spectrum may be fit to constrain
the cosmological parameters (eq. 1.24 which allows the extrapolation of H0 = 67.27 ± 0.60 km s−1Mpc−1.

Figure 1.16: Angular TT power spectrum of the CMB (Planck Collaboration et al. 2020c). The ΛCDM fit
of this spectrum shows good agreement with the data and constrains the cosmological parameters.

Ground-based experiments, like the Atacama Cosmology Telescope (ACT Kosowsky 2003), have also
contributed to CMB measurements. This experiment trades off the atmospheric thickness for larger
collector sizes (6-meter primary mirror compared to 1.5 meter for Planck). ACT focuses on smaller, well-
selected regions of the sky, enabling it to probe small-scale fluctuations in the CMB that are inaccessible
to space instruments (Fowler et al. 2010). Their H0 measurement is in good agreement with Planck’s
(H0 = 67.9 ± 1.5 km s−1Mpc−1 Aiola et al. 2020).

CMB experiments are able to constrain multiple cosmological parameters simultaneously with unprece-
dented precision, considering a broad range of physical scales. However, since these parameters are
interconnected, changing one value affects the others. Consequently, CMB experiments do not provide
independent determinations of cosmological parameters but rather joint constraints. Determining the
Hubble constant from CMB measurements requires additional steps and assumptions, as H0 is a local
parameter related to the present-day acceleration of the universe. It is deduced from combining other
cosmological parameters, necessitating a comparison with more direct measurements.
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Baryonic Acoustic Oscillations

Like the temperature variations in the CMB, the distribution of galaxies in space is not uniform. Before
the recombination, the Universe was a hot plasma crossed by baryonic acoustic oscillation created by
cosmological perturbations. The transition of this plasma to neutral gas during the recombination suddenly
dropped the speed of sound and effectively froze the acoustic waves. During the period between the
formation of perturbations and the epoch of recombination, modes with varying wavelengths undergo
different oscillation periods. This phenomenon converts the characteristic time into a characteristic length
scale, resulting in a harmonic series of peaks and troughs in the power spectrum of anisotropies, as shown
in Fig. 1.16. This characteristic is known as the sound horizon at the end of the baryon drag epoch,
rdrag

s ≡ rd.

As the Universe expanded, the colder regions of the CMB map formed denser regions of the Universe
hosting more stars and galaxies. As a result, the signature of BAOs can still be observed today in the
spatial distribution of galaxies.

The Sloan Digital Sky Survey (SDSS York et al. 2000), the Baryon Oscillation Spectroscopic Survey
(BOSS Dawson et al. 2013) and extended BOSS (eBOSS Alam et al. 2021) have measured the redshift
of millions of galaxies, enabling the creation of a three-dimensional map of the Universe. By measuring
the distance between galaxies at different redshifts, it is possible to track the overdensities of galaxies
throughout the Universe and the size of BAOs throughout cosmic history. This makes BAOs a powerful
tool for bridging the gap between local and high-redshift measurements of H0.

BAOs do not directly measure H0 but rather the product rd · H0 and require external information to
calibrate rd. For example, Raichoor et al. (2021) used data from SDSS, BOSS and eBOSS to measure the
characteristic scale of the BAO, dependent on H0 and Alam et al. (2021) used constraints on Ωm from Big
Bang Nucleosynthesis (BBN) to constrain rd within the framework ofΛCDM. Their analysis independently
confirmed the CMB H0 measurement, H0 = 67.35 ± 0.97 km s−1Mpc−1. When adding the constraints
from the CMB power spectrum, they got an even more precise value of H0 = 68.20 ± 0.81 km s−1Mpc−1.

1.4.4 The H0-tension: status and possible resolutions

By summing up the different aforementioned H0 measurements, Fig. 1.17 highlights a discrepancy between
early-Universe measurements that depend on the ΛCDM model (≈ 67.5km s−1Mpc−1) and late-Universe
measurements which are independent of cosmological assumptions (H0 ≈ 73km s−1Mpc−1). As the
different techniques gain in precision and accuracy, the H0-tension is closing in on the symbolic 5-σ
significance level (e.g., Verde et al. 2019) meaning that a simple statistical fluke is highly unlikely.

The hypothesis suggesting that we reside in an under-dense region of the Universe has been proposed to
account for the higher expansion rate observed in "local" measurements. According to this scenario, denser
regions surrounding the Milky Way would pull galaxies away from us. As a result, the Universe’s expansion
rate, as perceived by an observer within the void, would appear faster than the average expansion rate on a
large scale. However, several studies (e.g., Wu & Huterer 2017; Kenworthy et al. 2019) demonstrated that
this scenario can only account for a negligible portion of the observed tension.

The reason behind this tension is either an unidentified source of systematic error in one of the families of
measurement, or we found a limit to what the ΛCDM model can explain, and a new cosmological model
is needed. As discussed, each probe has been tested with various datasets and assumptions. Even though
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Figure 1.17: Recent measurements of H0. Early Universe measurements are given by CMB power-
spectrum fitting (Planck Collaboration et al. 2020a) and BAO with constraints from BBN and the CMB
(Alam et al. 2021). Late Universe measurements are given by distance ladders of SH0ES (Riess et al.
2022), bTF (Kourkchi et al. 2022), SBF (Blakeslee et al. 2021), and OSARGs (Anderson et al. 2023); MCP
(Pesce et al. 2020); Gravitational-wave with an electromagnetic counterpart (Hotokezaka et al. 2019); and
Time Delay Cosmography (Wong et al. 2020). By ignoring eventual covariances within late Universe
probes, we compute an indicative joint constraint of H0 of TDC with the distance ladder measurements.
The combined constraint of every late Universe probe is also shown with the associated tension with the
early Universe measurement. (Adapted from Bonvin & Millon 2020)

sources of systematic error are still being investigated, there is no sign of a source of systematic bias that
would influence every early or late Universe probe in the same direction.

Jumping on the exciting opportunity to discover new physics, a multitude of new cosmological models
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have been proposed to resolve the tension (see Di Valentino et al. 2021, for a full review). To "shift"
one group of measurements towards the other, these models focus on modifying either early-Universe or
late-Universe physics.

Early-Universe solutions: By reconsidering the composition and interactions of the early Universe, the
cosmological parameters can be modified and predict higher observed values of H0 in the Late-Universe.
For example, the addition of massless dark relics, modelled as an increased effective number of neutrinos,
can enhance the radiation density Ωr at early times and introduce a degeneracy with the Hubble parameter
when observing CMB anisotropies. As their nature is totally unknown, these dark radiations were
successively modelled as Free-streaming (FSDR, e.g. Bashinsky & Seljak 2004), self-interacting (SIDR,
e.g. Ghosh et al. 2021), a mix of both (mixed DR e.g. Brust et al. 2017), SIDR scattering on Dark matter
(DR-DM, e.g. Buen-Abad et al. 2015), exotic massive self-interacting neutrinos plus FSDR (SIν+DR, e.g.
Kreisch et al. 2020), or even the Majoron, a Goldstone boson resulting from the spontaneous break of the
lepton number conservation (Escudero & Witte 2020, e.g., ). The main differences between these models
are the number of parameters added to the ΛCDM and their links to other physical observations such as
the neutrino oscillation and the cosmic neutrino background (see, e.g. Archidiacono & Gariazzo 2022,
for a detailed review).

Alternatively, the size of the sound horizon rd may have been overestimated by ΛCDM because various
unaccounted mechanisms could reduce the speed of sound in the primordial plasma. The length of the
sound horizon may have been affected by Primordial magnetic fields (e.g., Jedamzik & Abel 2013),
varying electron effective mass me (e.g., Franchino-Viñas & Mosquera 2021) combined or not with the
curvature of the Universe Ωk (e.g., Sekiguchi & Takahashi 2021), early dark energy models from Karwal
& Kamionkowski (2016) (EDE) or Niedermann & Sloth (2020) (NEDE) or early modified gravity (EMG,
e.g. Braglia et al. 2021).

Late Universe solutions: Introducing additional degrees of freedom in the equation of state of dark
energy (fixed to w = −1 in the standard ΛCDM model), provides a means to alter the value of H0 today
while preserving the early Universe physics. These modifications have a limited impact on the CMB
observations because dark energy had negligible influence in the pre-recombination era (as demonstrated
by 1.18). Models such as the wCDM add a parameter w to include the dark energy state equation (Eq. 1.19)
and replace the cosmological constant Λ. Values of w < −1 increase the acceleration of the expansion of
the Universe and tend to decrease the H0-tension (Planck Collaboration et al. 2020a), but w is only weakly
constrained by the CMB or any other observable and hence remain a hypothetical solution. Alternatively,
the Chevallier–Polarski–Linder (CPL, a.k.a. w0waCDM Chevallier & Polarski 2001) allows a time-varying
Dark matter w(z) = w0 +wa

z
1+z . We can also mention the Generalized Phenomenologically Emergent Dark

Energy (GPEDE, e.g. Li & Shafieloo 2020) which suggests that DE would only emerge at low redshifts
as well as models where Dark Matter decays into Dark Radiations (DM→ DR, e.g. Poulin et al. 2016).

So which one is the best ? In an attempt to rank all these possible new cosmological models, Schöneberg
et al. (2022) used the CMB power spectra measured by Planck as well as the BAO data from the BOSS
collaboration (Philcox & Ivanov 2022) to constrain the respective cosmological parameters and H0. As
shown by Fig. 1.18, none of the proposed models completely agree with both early and late Universe
measurements and therefore, no clear "winner" can be designated. Still, some are able to lower the tension
between the two significantly. For example, the varying me models and the Majoron and GPEDE models
put the tension below 3 − σ.
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Figure 1.18: H0-tension predicted by different cosmological models implying changes in the late or early
Universe physics or the existence of dark radiations. For each model, the value of H0 was computed using
the latest Planck data (Planck Collaboration et al. 2020c) and BAO data from Philcox & Ivanov (2022).
The most precise H0 measurements of each family are highlighted by the grey column (CMB measurement
by Planck Collaboration et al. (2020a)) and the green column (Distance ladder measurement by Riess et al.
(2019)). (Adapted from Schöneberg et al. 2022)

These results highlight the complexity of finding a new cosmological model. It is important to note that,
given the addition of parameters with each of these models, the precision of these H0 measurements is
hindered, which motivates the need for additional observational constraints.
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1.5 Outline of this work
As introduced in this first Chapter, our understanding of the Universe’s evolution took giant steps in the last
century to reach the flat-ΛCDM model. This model explains a wide range of observations but opens new
questions regarding the nature of Dark Matter and Dark Energy. Moreover, it is challenged in its prediction
of the value of H0 by measurements using late Universe probes. As they are the brightest objects in the
Universe, quasars can be observed at a high distance and probe the cosmology. Furthermore, studying
their structure gives us insight into gravity in extreme conditions and the evolution of their hosting galaxy.

In this thesis, I aim to use gravitational lensing of quasars to learn more about their inner structure and use
them as a cosmological probe to measure H0.

In Chapter 2, I highlight my contribution to the study of quasar structure using their microlensing light
curves and in Chapter 3, I present my contribution to the Time Delay Cosmography method.
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2.1 Main probes of quasar structure
As described in Section 1.2, quasars are powered by accreting supermassive black holes and play a crucial
role in galaxy evolution. However, their central processes occur on scales too small to be directly resolved
in most cases. In this section, we will review the state-of-the-art techniques used to study the geometry of
the accretion disk and the BLR: reverberation mapping and microlensing of strongly lensed quasars.

2.1.1 Reverberation Mapping

The optical luminosity of a quasar is dominated by the central accretion disk. The scheme of the quasar
structure shown in Fig. 1.8 illustrates how photons from this "driving engine" can be scattered or
reverberated by the other regions of the quasar. A photon that undergoes such effects experiences a time
lag proportional to the size of the reverberating region τ = R/c compared to a pristine photon coming
directly from the accretion disk. Reverberation mapping is the method that measures this time delay in
the variability of surrounding gas and dust to probe the inner regions indirectly and measure black hole
masses.

Reverberation mapping relies on several fundamental simplifying assumptions. Firstly, it assumes that the
irradiating flux stems from a sole central source. Secondly, it considers the light travel time as the primary
timescale of significance. Lastly, it assumes a linear association between the observed reprocessed and
ionizing fluxes. If we express the ionizing and reprocessed light curves as the sum of a constant component
and a variable component:

Fi(t) = F̄i + ∆Fi(t), (2.1)

Fr(t) = F̄r + ∆Fr(t), (2.2)

the relationship between the variable components of each light curve can be elucidated as follows:

∆Fr(t) =
∫ τmax

0
Ψ(τ)∆Fi(t − τ)dτ, (2.3)

with Ψ(τ) the transfer function, which encodes the geometry of the reverberating region. The reprocessed
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light curve can be viewed as a blurred and delayed rendition of the ionizing light curve, with Ψ(τ) as
the blurring kernel. This framework has the potential for expansion to incorporate velocity (or energy)
dependencies within the light curves and transfer function. Such extensions enable a comprehensive
investigation of the kinematics of the reprocessing region.

As illustrated by Fig. 1.9, the different regions of a quasar emit in different wavelengths. To perform
reverberation mapping, it is necessary to measure the changes in the flux of the quasar at different
wavelengths. The lag between the light curves provides valuable information about the responsivity-
weighted radius of the reprocessing region. However, the ultimate goal is to recover the transfer function,
which enables a comprehensive mapping of the geometry and dynamics of the region. Reverberation
mapping was initially used to measure the sizes of the BLR by studying lags between the UV/optical
continuum and broad emission lines like C IV and Hβ (typically 10 to 1000 days). It has since been
expanded to investigate the dusty torus (typically >1000 days), the accretion disk (UV/optical continuum,
1 to 100 days), and the X-ray corona (1 to 10 hours).

Optical light curves obtained from ground-based observations are often non-continuous due to observability
issues. Consequently, a time domain approach is typically employed to measure the lag. One standard
method is the cross-correlation function, where the light curves are shifted in time relative to each other,
and the correlation degree is quantified for each lag. Linear interpolation is frequently used to fill the gaps,
or the discrete correlation function can be employed to avoid interpolation (e.g. Gaskell & Sparke 1986;
White & Peterson 1994; Peterson 2006). The advantage of cross-correlation methods is their simplicity
and reliance solely on the data without making assumptions. However, these methods may not perform
well when the data is poorly sampled. Over the years, Markov Chain Monte Carlo (MCMC) methods
have been developed for lag determination. These methods assume that the underlying variability of the
AGN follows a damped random walk (DRW) or Gaussian processes to estimate the lag (e.g. Zu et al.
2011; Starkey et al. 2016; Yu et al. 2020). The advantage of MCMC methods is their ability to provide lag
estimates even with sparsely sampled data, compared to traditional cross-correlation methods. However,
they rely on assumptions regarding the characteristics of variability and the shape of the transfer function,
which introduces a dependence on the validity of these assumptions.

In the case of X-rays, the short timescales involved allow for the acquisition of uniformly sampled light
curves, enabling the use of Fourier analysis techniques. In this case, the cross-spectrum of the light curves
in two different X-ray bands is computed. Its phase provides the phase lag, which can be converted to a
time lag (e.g. Wilkins 2019).

Accretion disk reverberation In luminous quasars, material moves inward through the disk until
it reaches the innermost stable circular orbit (ISCO). In contrast, lower accretion rate quasars exhibit
truncated accretion disks due to low flow density and minimal energy radiation (e.g. Narayan 1996). X-rays
offer the best way to study quasars’ ISCO. UV photons are generated within a few Schwartzchild radii from
the SMBH and boosted to X-rays through inverse Compton scattering. Therefore, X-ray reverberation
measurements can determine the location of the inner disk edge and, in radiatively efficient quasars, infer
the black hole’s spin. Doppler broadened features in the X-ray spectrum, such as the iron Kα emission
line, are the most prominent reverberation features (e.g. Risaliti et al. 2013; Walton et al. 2014). The extent
of these features’ wings gives supplementary information on the ISCO’s size by allowing the gravitational
redshift measurement experienced by the reverberated rays. This method has been used to measure
the spins of more than 50 nearby AGNs (see Reynolds 2019, for a review). Alternatively, UV/optical
continuum reverberation mapping involves measuring lags in the hot inner region of the accretion disk and
the cooler outer region using the correlated light curve where the UV leads the optical (e.g. Cackett et al.
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Figure 2.1: Time lag as a function of the wavelength of the filters measured for the quasar NGC5548. The
dashed line shows the best fit of equation 2.4 with τ0 and β left as free parameters. The expected τ(λ)
relation computed with independently measured M = (5.2 ± 1.3) · 107)M⊙. Adapted from Fausnaugh et al.
(2016)

2007). The lag depends on the disk’s temperature profile (see eq. 1.28) and is modelled by a power-law:

τ(λ) = τ0


(
λ

λ0

)β
− 1

 , (2.4)

where the index, β, is 4/3 in the thin disk model of Shakura & Sunyaev (1973), λ0 is the reference
wavelength and τ0 is the reference lag (assumed to be the lag of the X-rays) which can be expressed as
a function of the mass of the black hole M and the Eddington ratio λE, τ0 ∝ (MλE)1/3 by the thin-disk
model (see eq. 12 of Fausnaugh et al. 2016, for the full derivation of τ0).

Recent monitoring campaigns of the Swift spatial telescope (Burrows et al. 2005) demonstrated high
precision in lag measurements and revealed longer lags than expected based on the standard thin disk
model (e.g., Shappee et al. 2014; McHardy et al. 2014). Groundbreaking constraints on quasar structure
were obtained when the Space Telescope and Optical Reverberation Mapping Program (AGN STORM,
De Rosa 2015) utilized Swift along with the HST and ground-based observations to monitor NGC 5548,
resulting in a significant increase in sampling rate (Fausnaugh et al. 2016). As shown by Fig. 2.1, this
campaign found wavelength-dependent lags mildly shallower than thin disk predictions (β ≈ 1 < 4/3).
It also showed that the standard assumption for the accretion rate yielded lags on average three times
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smaller than measured ones (i.e. for a given temperature, disk sizes are three times larger than expected).
Subsequent campaigns on other quasars found similar results (e.g. Edelson et al. 2019; Cackett et al. 2020;
Hernández Santisteban et al. 2020) with U band lags being consistent outliers in the τ(λ) power-law fit.

A complementary approach to intensive high-cadence monitoring of a few objects is to study a larger
sample of objects with lower cadence, utilizing large surveys. By examining the population of objects as
a whole, valuable insights can be gained despite individual objects not yielding precise lag-wavelength
relations. For instance, Jiang et al. (2017) analyzed 240 quasars observed by the Panoramic Survey
Telescope and Rapid Response System (PanSTARRS) and found that the average lags were 2-3 times
larger than expected. Similarly, Mudd et al. (2018) reported disk sizes consistent with being three times
larger than anticipated with DES data. In contrast, Homayouni et al. (2019) and Yu et al. (2020) observed
disk sizes in agreement with the expectations from a standard disk model using SDSS observations.

Future large surveys like the Large Synoptic Survey and Telescope at the Vera C. Rubin Observatory
(Rubin-LSST) will significantly expand the number of AGNs with multi-waveband photometric light
curves, providing ample opportunities to explore continuum reverberation in greater detail. For example,
Chan et al. (2020) showed that the shape of the transfer function can be investigated through the distortion
induced on different waveband LSST light curves.

Figure 2.2: Example of a reverberation mapping measurement of the BLR size. Left panel: Mean and
spectrum root-mean-square optical spectrum of the quasar NGC 3783. Right panel: Lightcurve of the
continuum and several emission lines with the corresponding cross-correlation found lag is displayed.
(Adapted from Bentz et al. 2021)

Broad Line region reverberation The first accurate measurement of broad-line reverberation in quasars
came in the early 1990s with the collaborative efforts of the International AGN Watch consortium I, which
conducted coordinated UV and optical photometric and spectroscopic monitoring from both ground-based
and space-based observatories. The initial findings ofPeterson et al. (1993) showed that high ionization
lines, such as C iv and HeII, were observed to respond first, followed by lower ionization lines like H β,

Ihttps://www.asc.ohio-state.edu/astronomy/agnwatch/
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indicating the presence of ionization stratification within the BLR. This motivated a new representation
of the BLR as a "locally optimally emitting cloud (LOC)" (Baldwin et al. 1995), which successfully
reproduced early reverberation results by considering a broader range of gas conditions within the BLR in
opposition to the previous belief in a single representative cloud. As our understanding of the necessary
observational constraints for successful reverberation mapping programs improved (length, sampling, SN
ratio, and flux calibration of the monitoring observations), there was a rapid increase in the number of
accurate measurements of broad-line reverberation (Peterson et al. 2004). Fig. 2.2 shows an example of a
recent BLR reverberation mapping measurement by (Bentz et al. 2021).

The achieved accuracy measurements of broad-line time delays in quasars allowed reverberation mapping
to give an estimate of the central black hole mass. Indeed, Peterson & Wandel (1999) showed that by
measuring the time lag, τ and line width V of a broad emission line, the mass of the black hole, MBH could
be determined by:

MBH =
f cτV2

G
, (2.5)

with f , a scaling factor that accounts for the unknown geometry and kinematics of the broad line region gas.
Notably, observations have shown that high ionization lines exhibit shorter time delays and broader widths
compared to low ionization lines, consistent with the expected virial motion and leading to consistent
determinations of MBH (e.g. Kollatschny et al. 2001). The scaling factor f has been constrained by
comparing the correlation between the mass of the central SMBH and the velocity dispersion of the stars,
σ∗ (e.g. Gültekin et al. 2009; McConnell & Ma 2013) for quasars and quiescent galaxies. Assuming that
all galaxies are drawn from the same parent sample, the scaling factor required to align the intercept of the
quasar relationship with that of quiescent galaxies provides an estimate of f . Values range from 2.8 to 5.5,
with most values falling around 4-5 (e.g. Onken et al. 2004; Grier et al. 2013; Batiste et al. 2017). In a
few nearby AGNs, dynamical modelling of surrounding stars allows us to measure the mass of the central
SMBH(e.g. Davies et al. 2006; Onken et al. 2014). The reverberation masses based on f are generally
consistent with those obtained from the dynamical models (e.g., Denney et al. 2010).

Assuming that the inclination angle contributes significantly to the value of f , values of 4-5 imply that the
average quasar is observed at an inclination angle of approximately 25-30 degrees, which aligns with the
current understanding of AGN unification models (described in Section 1.2). However, individual AGNs
may deviate from the average inclination angle, introducing an additional uncertainty of approximately
2-3 in reverberation masses when using f .

Recent advancements in the quality of reverberation datasets allowed researchers to map the geometry
and kinematics of the BLR gas for a select number of objects (e.g. Pancoast et al. 2014; Grier et al. 2017;
Williams et al. 2020).

Although the specifics vary among objects, there are notable similarities. The BLR gas tends to adopt a
thick disk-like configuration with a moderate inclination relative to our line of sight (around 10 to 40+
degrees). The dominant motion observed is typically rotational, with varying contributions from the inward
flow. In these cases, it is often possible to directly determine the black hole mass (MBH) without needing a
scaling factor, and the values obtained generally agree well with the constraints based on the scaling factor
for the same objects.

Most recent analyses have primarily focused on the H β emission line, Williams et al. (2020) used
modelling of the reverberation response across high- and low-ionization emission lines to demonstrate that
H β also arises from a thick disk-like structure in NGC 5548. As shown in Fig. 2.3, the kinematics indicate
a prominent outflowing component, although the orbits may still be bound. On the other hand,Lyα and
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Figure 2.3: Left panel: The top three panels display the observed H β emission line profile for each
observation epoch, the profiles generated by a specific broad-line region model, and the normalized
residual. The fourth panel exhibits the observed H β profile of the 10th epoch in black, and the emission-
line profile produced by the model is depicted in the second panel in red. The vertical dashed line represents
the emission line center in the observed frame. The time series of the integrated H β line and the continuum
data in black are shown in panels 5 and 6; the light red band shows the 1σ scatter of all models in the
posterior sample. Right panel: Best fitting geometry of the BLR composed by the three line-emitting
regions, represented by H β, C iv, and Lyα in blue, orange, and green, respectively. Each panel presents
the same three geometries, viewed from different angles and at different distance scales.

C iv appear to originate from a shell-like structure, and surprisingly, C iv exhibits a weaker outflowing
contribution compared to H β.

The multiplication of accurate reverberation mapping measurements unveiled a relationship between the
BLR’s size and the central AGN’s luminosity (e.g., Kaspi et al. 2000, 2005). Once the contamination from
host-galaxy starlight is correctly subtracted, the relationship takes the form RBLR ∝ L1/2

AGN (e.g., Bentz
et al. 2009, 2013) for local broad line AGNs. The size of the BLR in the quasar 3C 273, resolved in the
near-infrared using the GRAVITY instrument on VLT, agrees well with that derived from reverberation
mapping (e.g., Gravity Collaboration et al. 2018).
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The established relationship between the BLR size and the AGN luminosity has been employed to estimate
the size for large samples of broad-lined AGNs with only a single spectrum per target. These predictions
can then be combined with the broad-line width to estimate the black hole mass (e.g. Shen et al. 2011;
Mosquera & Kochanek 2011).

Most measured BLR sizes correspond to the H β emitting region, making the H β relationship the most
well-constrained. Efforts have been made to extend these results to Mg ii and C iv emission lines in the
rest-frame UV (e.g. Woo et al. 2018) to estimate black hole masses for high-redshift quasars. Therefore,
current estimates for quasars depend on the H β relationship established for local broad-lined AGNs.
Ongoing multiplexed reverberation mapping programs at high redshift are expected to enhance these
estimates in the future as calibrated relationships for C iv and other emission lines become available (e.g.,
Grier et al. 2019; Kaspi et al. 2021).

However, efforts to broaden the range of AGNs studied through reverberation mapping have included
objects with higher mass accretion rates. Several studies have shown that many AGNs, including those
with the highest accretion rates, deviate from the standard relationship (e.g. Du et al. 2015; Fonseca
Alvarez et al. 2020). The reasons for this deviation are not yet fully understood, with some attributing it to
physical changes arising from high accretion rates (e.g. Dalla Bontà et al. 2020), while others propose a
link to differences in the shape of the ionizing continuum (e.g. Fonseca Alvarez et al. 2020). Nonetheless,
local Seyferts are unsuitable models for high-redshift quasars; therefore, new methods are needed to
measure the size of BLR in distant quasars to properly investigate this relation in higher accretion rate
systems.

2.1.2 Quasar microlensing

Right after the discovery of the first strongly lensed quasar, ? stated that stars in a shear field (caused by
smooth dark matter in the lensing galaxy) could split each image separately into multiple images separated
by ∼ 10−5 arcsec and impact the flux of each image independently.

Microcaustic maps to model the micromagnification

To model these effects accurately, a common approach involves using two components to describe the
convergence κ = κ∗ + κDM in the galaxy at the position of the images. As defined in Wambsganss (1999),
the number of microlenses is therefore determined by:

N∗ =
κ∗A
π⟨M⟩ , (2.6)

with A the area of the galaxy considered and ⟨M⟩ the mean mass of stars in the lens galaxy.

The interaction between two or more point lenses with projected separations similar to their Einstein radii
exhibits nonlinear behaviour that can not be modelled analytically.

Therefore, magnification maps are used to model the effect of a population of microlenses in the lens galaxy
on one of the strong lens images. Several techniques are employed to create microlensing magnification
maps. One commonly used approach is inverse ray shooting (e.g., Kayser et al. 1986; Wambsganss
1999). After drawing N∗ stars from an Initial Mass Function (IMF, the distribution of stellar masses at
their formation within a population of stars) with a given mean mass, ⟨M⟩, multiple rays are shot from the
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observer plane through the lens plane using the adapted lens equation. In the presence of both smoothly
distributed and compact matter and shear γ at the position of the image, the lens equation Eq.1.33 becomes:

β =

(
1 − γ 0

0 1 − γ
)
θ − κDMθ −

N∗∑

i=1

mi
θ − θi

|θ − θi|2
. (2.7)

The position of each lightray in the source plane allows the construction of a magnification map. As shown
in Fig. 2.4, this method offers flexibility in capturing intricate magnification patterns, including regions
of high magnification and complex caustics, but is computationally expensive. Recent speed-up of the
process through the use of GPU (Thompson et al. 2010; Vernardos & Fluke 2014) and improvement of
algorithms (Jiménez-Vicente & Mediavilla 2022) made the generation maps large enough to be statistically
representative of the microlensing properties of a given system. Another technique, inverse polygon
mapping (Mediavilla et al. 2006), involves dividing the lens plane into polygons and mapping each
polygon to the source plane using the lens equation. This method is computationally efficient and
approximates the lensing effects well. However, it may not capture fine-scale structures and sharp caustics
as accurately as inverse ray shooting. While κ, κ∗ and γ are well constrained by macro models (e.g.
Birrer & Amara 2018; Chen et al. 2019; Rusu et al. 2020), various IMFs have been proposed based on
observational data and theoretical models. As the evolution of stars depends mainly on their initial mass,
the IMF are a key tracer of chemical history and evolution of galaxies (see Hopkins 2018, for a complete
review). One commonly used IMF is the Salpeter IMF (Salpeter 1955), which follows a power-law
distribution with a slope of -2.35. This IMF implies that low-mass stars are more abundant than high-mass
stars, resulting in a significant contribution from low-mass stars to the total stellar mass.

Another widely used is the Chabrier IMF Chabrier (2003), which incorporates a log-normal distribution for
low-mass stars. This IMF predicts a higher fraction of low-mass stars than the Galactic disk’s Salpeter IMF.
Alternatively, the Kroupa IMF (Kroupa 2001) consists of multiple power-law segments. It is characterized
by a shallower slope for low-mass stars and a steeper slope for high-mass stars. This IMF is motivated by
the need to reproduce the observed mass distribution in stellar clusters and the field population.

Fig. 2.5 shows a selection of magnification maps obtained with the same κ and γ but different IMFs. It is
important to note that the number and position of stars are identical in each case. To add compact dark
matter in the last case, a population of compact objects was drawn from the same IMF as the stars (i.e.
Salpeter with -2.35 slope) which is equivalent to considering that all matter is in the form of stars (κ∗ = κ).
The mean mass of the compact objects (here ⟨M⟩ = 0.3 M⊙) sets the physical scale of the map, which is
expressed in the corresponding Einstein radii RE.

By comparing the magnification maps obtained, we notice changes in the size and shapes of the caustic
network, but the magnification histograms give a better idea of the impact of the microlensing properties
of these maps. These reveal that Chabrier and standard Salpeter maps are qualitatively equivalent.
Nevertheless, changing the slope of the Salpeter IMF or adding compact dark matter mildly impacts the
magnification distribution of a given map.

In most cases, quasars are strongly lensed by early-type galaxies (e.g. Lemon et al. 2018; Shajib et al. 2019;
Lemon et al. 2023) in which the stellar population is well described by a Salpeter IMF (e.g. Treu et al.
2010). Therefore, the Salpeter IMF with 0.2 ≤ ⟨M⟩ ≤ 0.5M⊙ is a standard choice for microlensing studies
intending to study the source properties by fixing the lens properties (e.g. Kochanek 2004; Mortonson
et al. 2005; Morgan et al. 2008; Morgan et al. 2012; Cornachione et al. 2020b). It is important to note

IIhttps://gerlumph.swin.edu.au/tools/map_database
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Figure 2.4: Scheme of a standard strongly lensed quasar system, the solid black lines depict the path of
the light rays forming images A and B. Shooting rays through the lens plane to the source one generates
the magnification maps corresponding to the microlensing effect of a star population. As the micro
magnification is combined with the macro magnification, saddle and minimum images have opposite
sign magnification maps. A thin-disk light profile with RS displayed as a blue circle materializes the
quasar source; the red circles on the magnification maps indicate the relative size of the disk to the
caustics. The light blue arrows show the peculiar motions of individual components of the system,
and the orange arrows show the resulting effective velocity of the source in the magnification map.
The maps were taken from the GERLUMPH databaseIIwith physical properties similar HE 1104−1805:
κA = 0.65, κB = 0.33, γA = 0.605, γB = 0.290, RE = 2.36 · 1016.
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Figure 2.5: Top panel: Different magnification maps generated with different IMFs. For the case without
smooth dark matter, we assumed that dark matter is under the form of a compact object following the
same IMF as the starsIII. Bottom panel: Left: Histogram of the mass of microlenses which induce the
magnification maps shown above along with analytical Salpeter (solid) and Chabrier (dotted) distributions.
the red dotted line highlights ⟨M⟩ =0.3M⊙. Right: Magnification distribution of the corresponding
magnification maps, the red dotted line shows the macro-magnification of the image, which corresponds to
the mean magnification of the map.

that microlensing of quasars can also be used as a tool to probe the IMF’s slope (e.g. Jiménez-Vicente &
Mediavilla 2019, found a slightly different slope of -2.9 ± 0.9) or the existence of compact dark matter
component such as PBHs (e.g. Awad et al. 2023, showed that quasar microlensing could discriminate
between the existence or absence of close dark matter using the large sample of observations soon available
with Rubin-LSST).
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The relative motion of the source vs , lens vl, stars in the lens σ∗ and observer vo can be modeled as a
resulting effective velocity ve of the source in the source plane with:

ve =
vo

1 + zl

Dls

Do
− σ∗

1 + zl

Ds

Dl
+ vg, (2.8)

with vg and gaussian random variable with a standard deviation σg:

σg =


(
σl

1 + zl

Ds

Dl

)2

+

(
σs

1 + zs

)
1/2

, (2.9)

where σl and σs00 are the standard deviations of the peculiar velocity distributions of the lens and the
source. Following Eq. 1.55, the time for a thin disk to cross a micro caustic, tE, for most strongly lensed
quasar is of the order of years (e.g., Irwin et al. 1989; Schmidt & Wambsganss 2010; Mosquera &
Kochanek 2011). During this time, the luminosity of separate images of a strongly lensed quasar describes
an independent microlensing lightcurve.

Such light curves can be simulated by computing the total magnification of the accretion disk at each epoch.
As shown by the top panel of Fig. 2.6, since the total radius of a thin disk is generally comparable to the
Einstein radius RE of the microlenses (even though the scale radius is generally smaller, e.g., Mosquera &
Kochanek 2011) the accretion disk will not be magnified uniformly as it moves across the magnification
map. By convolving the magnification map with the assumed light profile of the source results, we obtain
the total magnification applied to the disk as a function of its position in the source plane. By drawing
trajectories in this convolved map, we can then generate microlensing light curves which, as displayed by
the lower panel of Fig. 2.6, depend both on the size and shape of the light profile.

As displayed, a wider accretion disk will induce smoother and longer microlensing events. Features in the
profile reflect on the shape of the peaks of the lightcurve corresponding to the moment when the accretion
disk enters or leaves a caustic (i.e. a caustic crossing). Converting the scale of the simulated curve to
observed time is possible through Eq. 1.55 with assumptions on the velocity dispersion and ⟨M⟩.

Observation of microlensed quasars

As first stated by Irwin et al. (1989) with the photometric monitoring of the first strongly lensed quasar
Q0957, the microlensing light curve can, therefore, give significant constraints on the size of the source
and its shape. In practice, each image’s photometric light curve S α(t) is the sum of the intrinsic variability
of the quasar I(t) from the microlensing variability mα(t) and the strong lensing macro magnification Mα.
After shifting the curves by the appropriate time delay (see Chapter 3 for a detailed explanation of the time
delay measurement), the difference between the two curves gives us the differential microlensing light
curve (hereafter referred to as microlensing light curve) which can be expressed as:

S A(t) − S B(t − ∆tAB) = mA(t) − mB(t) +MA −MB. (2.10)

Long-term monitoring programs were able to release multiple years-long microlensing light curves of
diverse systems both in the optical (OGLE (e.g., Udalski et al. 2006), SMARTS (e.g., Kochanek et al.
2006; Morgan et al. 2010) and COSMOGRAIL (e.g. Millon et al. 2020b,a, Fig. 2.7 shows examples of
lightcurves obtained)) and in the X-ray (e.g., Dai et al. 2010; Morgan et al. 2012). To constrain the size
of accretion disks, Kochanek (2004) proposed a Monte Carlo right curve fitting method to fit the size
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of accretion disks. Numerous realizations of light curves are generated by sampling random tracks in
the magnification patterns, as illustrated in Fig. 2.6. These simulated light curves are then compared to
the observed microlensing light curves using a goodness-of-fit estimator. Using Bayesian statistics, it is
possible to derive probability distributions for the quantities of interest, such as source size or microlens
mass. This approach was used to measure the accretion disk size of a broad sample of quasars (e.g. Morgan
et al. 2008; Dai et al. 2010; Poindexter & Kochanek 2010; Morgan et al. 2018; Cornachione et al. 2020a).
Using the 15 accretion disks measured with this technique, Cornachione & Morgan (2020) highlighted
that the estimate obtained based on the luminosity and the thin disk profile was, on average, four times
lower than the measurements. Hence echoing the statement of multiple reverberation mapping studies
discussed previously.

Alternatively, the size of the accretion disk can be determined with single epoch multi-waveband observa-
tion by measuring the temperature gradient of the accretion disk. Indeed, the apparent size of the disk
varies with wavelength due to its temperature distribution T (R) ∝ r−1/β, with β = 4/3 in the thin disk model
(see Eq. 1.28 for the full expression). The inner region is hot and appears in the bluest bands, whereas
the outskirts are detected in the redder bands. Influenced by the source size, micro-magnification also
becomes wavelength-dependent despite the achromatic nature of microlensing. This results in chromatic
flux ratios between the observed images of strongly lensed quasars, as observed in spectrophotometric
monitoring data (e.g., Anguita et al. 2008; Eigenbrod et al. 2008b). A single epoch chromatic flux ratio
can be simulated using magnification maps for a given size and temperature gradient. Similarly to the light
curve fitting method, the goodness of fit of an observed chromatic flux ratio can be used to derive the size
of a quasar accretion disk sizes and profile (e.g., Bate et al. 2008). Although this method may be affected
by the strength of wavelength-dependent microlensing, it remains a reliable approach for determining
accretion disk sizes (e.g., Bate et al. 2018a). While this technique generally agrees with the thin-disk
theory in many strongly lensed quasars (e.g., Bate et al. 2008; Floyd et al. 2009; Mediavilla et al. 2011;
Rojas et al. 2014), some systems exhibit accretion disk sizes underestimated by the thin-disk model by up
to an order of magnitude and (e.g., Blackburne et al. 2011; Motta et al. 2017; Bate et al. 2018b; Rojas
et al. 2020).
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Figure 2.6: Top panel: Illustration of the magnification of a thin disk (with a RS = 0.1RE highlighted by
the red circle) by a region of the magnification map corresponding to image A of HE 1104−1805 (see
caption of Fig. 2.4). Middle panel: Different radial light profile corresponding to standard or exotic
models of the accretion disk. Adding a hole in the light profile materializes the size of the black hole
shadow, while the wavy light profile models relativistic knots in the accretion disk. Bottom panel: Light
curves obtained for a given trajectory in the magnification map when changing the shape and size of the
source light profile. (Reproduced from Vernardos & Tsagkatakis 2019)
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Figure 2.7: Microlensing light curve obtained by the COSMOGRAIL program (Millon et al. 2020b) for the
strongly lensed quasar HE0435 and RXJ1131. The corresponding caustic crossing time are tE,0435 = 18.3
years and tE,0435 = 11.13 years. Sharp and long features in both light curves likely correspond to a caustic
crossing event. In contrast, as shown in Section 2.2, shorter features are manifestations of reverberated
intrinsic variability.

With a lensing galaxy unusually close to us (zl = 0.039), the strongly lensed quasar Q2237+030, also
named the "Einstein Cross", is an exceptional laboratory for microlensing studies. Its typical Einstein
time is of the order of month compared to years for other systems (e.g., Mosquera & Kochanek 2011)
which makes lightcurves with a similar level of details as the ones simulated in Fig. 2.6 quickly accessible.
By using multi-wavelength microlensing light curves of the system, Eigenbrod et al. (2008a) was able
to merge the constraints offered by both light curve fitting and chromatic flux ratio to precisely measure
the slope of the temperature profile and the accretion disk size in agreement with the thin disk model. As
forecasted by Oguri & Marshall (2010), the advent of the Rubin-LSST survey will give a multi-waveband
light curve of hundreds of strongly lensed quasars, which will allow such measurements to be applied to a
much larger sample and provide more constraints to the temperature profile of accretion disks.

This new profusion of data will also increase the chance of observing the exact moment when an accretion
disk crosses a caustic. As shown by Best et al. (2022), this will allow us to measure the size of the ISCO
and directly probe the properties of the central SMBH.

2.1.3 The accretion disk size problem

As described previously, both reverberation mapping and microlensing methods observe contradictions
to the thin disk model of Shakura & Sunyaev (1973). Both reveal discrepancies in the profile of the
disk materialized by the lag slope or the temperature slope, which are steeper than expected in multiple
instances, and the disk size is up to an order of magnitude larger than expected. These observations
gave rise to the so-called accretion disk size problem, which could hint toward modifications of the
thin-disk model (e.g. Cackett et al. 2021). One possibility is that disks are more complex than initially
assumed. As suggested by Dexter & Agol (2011), local fluctuations within the disk structure, creating
an inhomogeneous and time-dependent configuration, can account for the observed larger sizes. Another
consideration is the assumption of the disk emitting as a blackbody, which may not hold. Hall et al.
(2018) propose that disks with a low-density scattering atmosphere can explain the larger observed sizes in
continuum reverberation. Such an atmosphere leads to different temperature profiles, longer lags, and a
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flatter wavelength dependence of the apparent size, consistent with observations of NGC 5548.

Additionally, more sophisticated disk reprocessing models utilizing general relativistic ray-tracing, as
investigated by Kammoun et al. (2021), yield longer lags and can reproduce the observed sizes with
reasonable mass and mass accretion rate estimates. Papadakis et al. (2022) propose that X-ray illumination
of the accretion disk can significantly increase its half-light radius. Geometrical considerations have also
been explored. Gardner & Done (2017) propose that the inner disk may puff up to prevent direct UV/optical
disk irradiation by hard X-rays, and they associate the lags with variations in the outer disk’s vertical
structure. Another class of models, the corona-heated accretion-disk reprocessing models (e.g. Sun et al.
2020), attribute quasar UV/optical variability and disk lags to the coupling between the X-ray-emitting
corona and the accretion disk through magnetic fields. The magnetohydrodynamic waves in the corona
induce X-ray variability and temperature fluctuations in the disk, resulting in longer lags compared to the
simple disk reverberation model. Furthermore, factors beyond the disk itself can contribute to the observed
lags.

As for every discrepancy between measurements and theory, the development of new measurement
methods as a means to investigate potential bias of current practices is primordial.

2.2 A new method to measure Broad Line Region with microlensing
light curves

Reverberation mapping for unlensed quasars requires multiple waveband light curves to disentangle the
stochastic variability of the quasar from the reverberated emission. For strongly lensed quasar, however,
the multiplicity of images allows us to isolate the microlensing and reverberated signal from the intrinsic
one. As highlighted by Sluse & Tewes (2014), the flux of one image Fα, is the macrolensed sum of the
microlensed intrinsic flux µα(t)Fi(t) and the reverberated flux coming from the BLR FBLR(t). As the latter
originates from a region much broader than the accretion disk, we neglect the effect of microlensing on
this component:

Fα(t) = Mαµα(t)Fi(t) + MαFBLR(t), (2.11)

with Mα the macro magnification at image α. When including the reverberation in each image light curve,
the differential microlensing light curve expressed in Eq. 2.10 presents imprints of the reverberated signal.
As shown in Fig. 2.7, in contrast to the long and large amplitude variations of microlensing, these imprints
have a small amplitude and are short as they follow the same time variability as the accretion disk.

In the following paper, we dissect the different frequency ranges of each component by studying the
microlensing light curve in the Fourier space with its power spectrum. We apply this novel technique to
the microlensing light curve of QJ 0158−4325 as it showcases distinct high-frequency features that could
be apparent to BLR reverberation.

2.2.1 Computing the power spectrum of a microlensing light curve

The spectral density of a given time series x(t) at a given frequency f is defined by:

S xx( f ) = |x̂( f )|2 , (2.12)
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Where x̂( f ) is the Fourier transform of x(t) computed using the definition:

x̂( f ) =
∫ +∞

−∞
e−2πi f t x(t)dt, (2.13)

For a discrete evenly sampled signal of N points, the Discrete Fourier Transform is used:

x̂k =

N−1∑

n=0

e−
2πi
N knxn, (2.14)

While performing a discrete Fourier transform, a window function must be applied to the light curve to
avoid the so-called spectral leakage.

As illustrated by Fig. 2.8, when the signal is not composed by an integer number of periods because of its
finiteness, the waveform of a given frequency can be truncated, hence inducing discontinuities between the
periods. This introduces sharp transitions in the signal that are not supposed to exist, which in turn show
up by transferring the power of a frequency to other frequencies. The role of the window function w(t) is
to convolve the signal to smooth the transitions between the periods so that the spectral leakage is avoided.

* =

true spectrum
reduced leakage
spectrumincorrect spectrum

with leakage

original
waveform

sampled
time record

window function modified waveform

Fourier
replication

f f

Figure 2.8: Illustration of the spectral leakage phenomenon and use of the windowing to mitigate the
problem.

The Fourier transform then becomes:

x̂( f ) =
∫ +∞

−∞
w(t)e−2πi f t x(t)dt, (2.15)

Different window functions have been developed, each with its unique characteristics. To assess the
reliability of a specific window function, we separate the long and short-term scale variations in the data
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Figure 2.9: Top panel: In red, a spline fits the microlensing light curve of QJ 0158−4325, capturing
both long and short features. Another spline with few knots reproduces the longest variations in blue;
subtracting it from the first spline gives the short time scale variations. Middle panel: Power spectrum of
the corresponding curves with Hamming window, displaying significant spectral leakage Bottom panel:
Power spectrum of the corresponding curves done with flat top window exhibiting no spectral leakage.

and compare their power spectra to the original spectrum in the relevant frequency range. The middle
panel of Fig. 2.9 displays the power spectra obtained using the Hamming window function, while the
bottom panel shows the spectra obtained using the flat top window function.

The power spectrum of the long-timescale variation closely resembles that of the entire dataset for
frequencies below 1

1000 days−1 when the flat top window function is used. Similarly, the power spectrum
of the short time scale variation is nearly identical to that of the entire dataset for frequencies higher than

1
1000 days−1, indicating minimal spectral leakage. On the other hand, the Hamming window function does
not exhibit such desirable characteristics, as it introduces significant spectral leakage.

Using various window functions, it was found that the flat-top window function minimizes the difference
between low, and high frequencies and the data in the corresponding frequency ranges.
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ABSTRACT

Gravitational microlensing is a powerful tool for probing the inner structure of strongly lensed quasars and for constraining parameters
of the stellar mass function of lens galaxies. This is achieved by analysing microlensing light curves between the multiple images of
strongly lensed quasars and accounting for the effects of three main variable components: (1) the continuum flux of the source, (2)
microlensing by stars in the lens galaxy, and (3) reverberation of the continuum by the broad line region (BLR). The latter, ignored
by state-of-the-art microlensing techniques, can introduce high-frequency variations which we show carry information on the BLR
size. We present a new method that includes all these components simultaneously and fits the power spectrum of the data in the
Fourier space rather than the observed light curve itself. In this new framework, we analyse COSMOGRAIL light curves of the
two-image system QJ 0158-4325 known to display high-frequency variations. Using exclusively the low-frequency part of the power
spectrum, our constraint on the accretion disk radius agrees with the thin-disk model estimate and the results of previous work where
the microlensing light curves were fit in real space. However, if we also take into account the high-frequency variations, the data
favour significantly smaller disk sizes than previous microlensing measurements. In this case, our results are only in agreement with
the thin-disk model prediction only if we assume very low mean masses for the microlens population, i.e. 〈M〉 = 0.01 M�. At the same
time, including the differentially microlensed continuum reverberation by the BLR successfully explains the high frequencies without
requiring such low-mass microlenses. This allows us to measure, for the first time, the size of the BLR using single-band photometric
monitoring; we obtain RBLR = 1.6+1.5

−0.8 × 1017 cm, in good agreement with estimates using the BLR size–luminosity relation.

Key words. gravitational lensing: micro – gravitational lensing: strong – quasars: individual: QJ 0158-4325 –
quasars: emission lines

1. Introduction

There is a plethora of astrophysical and cosmological applica-
tions of strongly lensed quasars. The photometric variability of
the multiple lensed images allows us to measure the time delays
between arrival times of photons in the frame of the observer
and to measure cosmological parameters such as H0 (e.g.,
Refsdal 1964; Wong et al. 2020). The lensing magnification
offers an augmented view of quasar host galaxies by stretching
the image of the regions in the immediate vicinity of the cen-
tral supermassive black hole (SMBH), and therefore allows us
to extend the study of co-evolution of galaxies and active galac-
tic nuclei (AGN) to otherwise inaccessible redshifts (Gebhardt
et al. 2000; Peng et al. 2006; Ding et al. 2017a,b, 2021). In the
microlensing regime, photometric variations induced by stellar-
mass objects passing in front of the quasar images allow us to
both study the fraction of mass under compact form in lensing
galaxies and to dissect the structure of the central AGN on scales
as small as parsecs or even light days, even at high redshifts (see
Schmidt & Wambsganss 2010, for a general overview).

The bulk of quasar luminosity originates from the inner-
most regions containing the SMBH, and these are surrounded
by an accretion disk. Further out, clouds of ionised gas revolve
around this central power engine and form the broad and narrow
line regions (hereafter BLRs and NLRs), as illustrated in Fig. 1
(e.g., Urry & Padovani 1995; Elvis 2000). The main difference
between these two regions lies in their sizes, which imply dif-

ferent rotation velocities and therefore different widths of the
observed spectral lines. As most of the energy in a quasar is gen-
erated from accretion processes in the central disk, it is essential
to measure its size and energy profile. The latter is commonly
assumed to follow the thin-disk model of Shakura & Sunyaev
(1973) but research testing this model is ongoing (e.g., Edelson
et al. 2015; Lobban et al. 2020; Li et al. 2021). Beyond the cen-
tral accretion disk, the nature and dimensions of the BLR as well
as its interaction with the host galaxy are still not fully under-
stood (e.g., Peterson et al. 2006; Czerny & Hryniewicz 2011;
Tremblay et al. 2016). Measuring the size of the BLR is there-
fore also of interest because this is related to the mass of the
central SMBH (e.g., Williams et al. 2021), and can be used to
constrain models of the inner structure of AGNs and of galaxy
formation and evolution in general.

As the BLRs and accretion disks of quasars are gener-
ally smaller than 10−1 pc (Mosquera & Kochanek 2011), these
regions are not spatially resolved by any existing instrument1,
and several techniques have been developed to infer the structure
of the BLR and the accretion disk indirectly. The first measure-
ments of the sizes of accretion disks were derived from the flux–
size estimate, which relies on the relation between the luminosity

1 The Event Horizon Telescope (https://eventhorizontelescope.
org) can resolve the accretion disk while the BLR can be resolved
using the VLT, although these are both limited to a handful of nearby
AGNs.
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Fig. 1. Schematic view of the relative location and size of the different
regions of a quasar and illustration of the reverberation effect. RS is the
Schwarzschild radius of the central SMBH. The continuum light from
the central accretion disk (red) is reverberated both in the BLR (green)
and in the NLR (blue), which are much larger than the accretion disk
and are therefore much less affected by microlensing (see Sect. 3.3).

and radius of the accretion disk, R0, given by the thin-disk model
and following R0 ∝ L1/3 (Collin et al. 2002; Morgan et al. 2010).
Using this approach, Mosquera & Kochanek (2011) predicted
the radii of accretion disks in 87 strongly lensed quasars. Alter-
natively, continuum reverberation mapping, that is, the measure-
ment of the time-lag between different parts of the continuum,
has been used to estimate the size of the accretion disk under
the assumption of the lamp-post model (e.g., Krolik et al. 1991;
Chan et al. 2020). Examples of such measurements of quasar
accretion disks in non-lensed quasars can be found in Mudd
et al. (2018), Homayouni et al. (2019), and Yu et al. (2020). As
for the BLR size measurement, the reverberation mapping tech-
nique (Blandford & McKee 1982) relies on the time-lag between
the light rays coming straight from the accretion disk and those
scattered (reverberated) by the BLR, as shown in Fig. 1. This
method has been used to measure the size of the BLR and infer
the mass of the SMBH through spectrophotometric monitoring
(e.g., Bentz et al. 2009; Du et al. 2016; Williams et al. 2021;
Kaspi et al. 2021).

A complementary and independent approach to studying
quasar structure is to use microlensing by stars in the lensing
galaxy of strongly lensed quasars (Chang & Refsdal 1979). In
any given strongly lensed quasar, stars passing in front of the
lensed images split the wavefronts of the incoming light, creat-
ing additional micro-images of the source separated by a few
micro-arcseconds. The image splitting is not observable with
existing instrumentation, but the resulting microlensing magnifi-
cation is. In practise, the relative motion between observer, lens,
microlenses, and source induces a flickering of the macro-lensed
observable images. This flickering acts over timescales of weeks
to years (e.g., Mosquera & Kochanek 2011) and is a nuisance
when measuring time delays (e.g., Tewes et al. 2013; Millon
et al. 2020b) or macro-magnification ratios between the quasar
images (Blackburne et al. 2006). However, because the variable
micro-magnification depends on the dimensions of the source,
it also presents an opportunity to measure the size and energy
profile of accretion disks (Eigenbrod et al. 2008b) and to study
quasar structure in general. Microlensing techniques are mainly
sensitive to the half-light radius of the source and are less sen-

sitive to the shape of its light profile (Mortonson et al. 2005;
Vernardos & Tsagkatakis 2019).

The apparent radius of an accretion disk is wavelength
dependent because its inner region is hotter than its outskirts
and therefore emits more energy (Shakura & Sunyaev 1973).
As a consequence, the micro-magnification, which depends on
the size of the source, depends on the wavelength of obser-
vation as well, even though microlensing is by nature achro-
matic. This leads to chromatic flux ratios between the observed
images of a strongly lensed quasar, which have been identified
in spectrophotometric monitoring data (e.g., Eigenbrod et al.
2008a). Such chromaticity also enables the measurement of
quasar accretion disks through single-epoch multi-wavelength
observations (Bate et al. 2008), and although this method may be
biased by the strength of the wavelength-dependent microlens-
ing, it is a reliable way to measure the sizes of accretion disks
(Bate et al. 2018). While in many strongly lensed quasars this
method yields results in agreement with the thin-disk theory
(e.g., Bate et al. 2008; Floyd et al. 2009; Mediavilla et al. 2011;
Rojas et al. 2014), in other systems it was found that the thin-
disk model underestimates the size of the accretion disk by up
to an order or magnitude (e.g., Blackburne et al. 2011; Motta
et al. 2017; Bate et al. 2018; Rojas et al. 2020), which accord-
ing to Cornachione & Morgan (2020) would favour shallower
accretion disk temperature profiles than predicted by the thin-
disk model.

A second approach to measuring quasar structure with
microlensing is to use the pair-wise difference light curves
between quasar images corrected for the time-delay and macro-
magnification – often called ‘microlensing light curves’ – as they
are assumed to be corrected for intrinsic quasar variations by
construction. Currently, most methods currently in use interpret
such pair-wise differences in light curves by following the fitting
technique introduced by Kochanek (2004). This latter consists
of a Monte Carlo analysis comparing huge amounts of simulated
microlensing light curves (∼1011) generated by varying a num-
ber of physical parameters on quasar structure, microlensing,
and velocities until a fit to the data is obtained. The main lim-
itation of this approach is that, as the microlensing light curves
get longer, their complexity grows because of the inclusion of
more microlensing events, and consequently the number of sim-
ulations required to fit the data rises drastically. In addition, this
method assumes that microlensing occurs over long timescales,
of the order of years, and focuses on the long-term effects while
overlooking short-term variability. As a consequence, features
shorter than ∼1 year have much less weight in the final infer-
ence than the longer features, resulting in a frequency filtering
of the microlensing signal that may lead to overestimation of
the disk size2. Measuring the disk size with this technique has
been achieved by a number of authors (Morgan et al. 2008, 2012,
2018; Cornachione et al. 2020b). By comparing their microlens-
ing measurements with luminosity-based ones, Morgan et al.
(2010) and Cornachione et al. (2020b) pointed out a systematic
discrepancy, which they explain by a possible shallower temper-
ature profile of the disk than predicted by the thin-disk model.
Finally, a novel approach to microlensing light curve analysis
was introduced by Vernardos & Tsagkatakis (2019), who employ
machine learning to measure the accretion disk size. Such an

2 Dai et al. (2010) show that accounting for a magnification offset due
to contamination from the BLR of up to 40% translates into shrinkage
of the measured accretion disk by up to 50%. However, these authors
do not consider the impact of reverberation on the frequency content of
the light curves.
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Fig. 2. QJ 0158-4325 observed with the Hubble Space Telescope in the F814W filter (program ID 9267; PI: Beckwith). The microlensing magni-
fication maps (corresponding to 〈M〉 = 0.3 M�) are shown for each quasar image using the same colour scale, and are rotated with respect to the
shear angle. The green line indicates a realisation of a trajectory of the source, the same in orientation and length for both maps drawn from the
probability density function of ve shown on Fig. 5.

approach has the potential to capture both long- and short-term
(low- and high-frequency) variability in the signal, but has not
yet been applied to data.

High-frequency variations are visible in high-cadence mon-
itoring campaigns of strongly lensed quasars (e.g., Millon et al.
2020a), potentially carrying valuable information on quasar
structure, but their analysis is not possible with the light-curve-
fitting method because of the previously mentioned flaws. In
addition, high-frequency signals can be introduced either by
microlensing or can be partly due to reverberation processes
occurring between the inner accretion region and the BLR (e.g.,
see Fig. 1). The characteristics of the high-frequency variations
depend on the relative sizes of the accretion disk and the BLR
and lead to the so-called ‘microlensing-aided reverberation’ first
suggested by Sluse & Tewes (2014). In the present work we con-
sider this effect for the first time in the analysis of real data.

In order to study high-frequency variations, we introduce a
new method that relies on the Fourier power spectrum of the
microlensing light curve, which allows us to characterise the
overall properties of the observed signal rather than any specific
realisation of the light curve. Fitting the power spectrum enables
us to investigate every timescale of variation, both in the high and
low frequencies in a computationally tractable way. The method
is applied to the light curve of QJ 0158-4325, previously stud-
ied by Morgan et al. (2012) using the light-curve-fitting method,
who estimated a significantly larger disk size than that obtained
by Mosquera & Kochanek (2011) using a flux-based source size.
As we show in our study, the power spectrum method demon-
strates that part of the high-frequency variation in the microlens-
ing light curve can be explained by continuum light being rever-
berated in the BLR. For the first time, we estimate the size of the
BLR via microlensing-aided reverberation.

The paper is organised as follows: Sect. 2 explains how the
microlensing light curve of QJ 0158-4325 is obtained, together

with its power spectrum. Section 3 describes our new power-
spectrum analysis approach. Section 4 explains the validation
process of the method as well as the constraints obtained on
the structure of the quasar with and without taking into account
the reverberation process. We conclude with a discussion of our
results in Sect. 5. Throughout this work we assume Ωm = 0.3,
ΩΛ = 0.7, and H0 = 72 km s−1 Mpc−1 .

2. Data

QJ 0158-4325 is a doubly imaged quasar (see Fig. 2) discovered
by Morgan et al. (1999) that has been monitored for 13 years by
the Leonhard Euler 1.2m Swiss Telescope in the context of the
COSmological MOnitoring of GRAvItational Lenses (COSMO-
GRAIL) program (Courbin et al. 2005; Eigenbrod et al. 2005).
In Millon et al. (2020b), the light curves of this object were
extracted following three main steps: first, the instrumental noise
and the sky level were subtracted; then a point spread func-
tion (PSF) estimated from nearby stars was fitted to each quasar
image; before the flux was extracted at the image position with
the MCS deconvolution algorithm (Magain et al. 1998; Cantale
et al. 2016). This procedure allows one to extract the individual
fluxes of the quasar images decontaminated from the light of the
lensing galaxy (see Millon et al. 2020b, for more details). The
resulting light curves of QJ 0158-4325 are shown in Fig. 3.

2.1. Microlensing light curve

The observed light curve of a quasar image, S α(t), in magnitudes
is the sum of the macro-magnification, Mα, the intrinsic varia-
tion in each image, Vα(t), and the microlensing magnification
mα(t):

S α(t) =Mα + Vα(t) + mα(t). (1)
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Fig. 3. Top: COSMOGRAIL R-band light curves of images A and B of QJ 0158-4325 over a period of 13 years. For clarity, the B curve has been
artificially shifted upwards by 0.2 mag (adapted from Millon et al. 2020b). Middle: microlensing light curve (red) obtained from the observations
using Eq. (2) with ∆tAB = 22.7 days (Millon et al. 2020b), along with examples of spline fitting with different values of the η parameter (defined in
Sect. 2.2). Bottom: residuals of the three illustrative spline fits to the microlensing light curve. The number on the left indicates the artificial shifts
applied for the purpose of clarity.

Without loss of generality, we can assume that the signal
of image B of QJ 0158-4325 is simply a time-shifted ver-
sion of image A, that is, VB(t) = VA(t − ∆tAB), where
∆tAB is the time-delay between the two images. Hence,
the microlensing signal can be found by subtracting the
observed light curves after correcting for the time-delay and
macro-magnification:

S A(t) − S B(t − ∆tAB) = mA(t) − mB(t) +MA −MB. (2)

We note that we refer to this signal as ‘microlensing’ but it can
well include a fraction of non-microlensed continuum light from
the BLR, as shown below. This microlensing curve should there-
fore be seen as containing any ‘extrinsic’ variations, that is, vari-
ations unrelated to the quasar instrinsic variability. We keep the
macro-magnification constant across the length of the light curve
as we assume that it only changes on much longer timescales
(see Table 1 for the values used in this work).

As detailed in Millon et al. (2020b), the determination of
∆tAB is done by fitting the observed light curves with free-knot
splines implemented in the PyCS package (Millon et al. 2020c).
Such splines are piece-wise polynomials with the mean distance
between two knots assigned by a parameter η which controls the
smoothness of the resulting fit. Free-knot splines allow the posi-
tions of the knots to be adjusted so that they capture both long

and short features in the data being fitted. A single free-knot
spline is fitted simultaneously to all light curves to model the
intrinsic variation of the quasar while additional splines model
the extrinsic (microlensing) variations in each light curve sepa-
rately. A simultaneous fit of all instrinsic and extrinsic splines
then allows us to adjust the time delays.

For QJ 0158-4325, the time-delay was found to be ∆tAB =
22.7±3.6 days (Millon et al. 2020b) and the resulting microlens-
ing light curve (Eq. (2)) is shown in the middle panel of Fig. 3.
We do not expect the uncertainty on the time-delay to alter our
constraints on the quasar structure because it is much smaller
than the shortest timescale of interest, as discussed below. In the
present study, we focus on features in the differential light curve
that are longer than 100 days. The microlensing signal shows
a steady rise throughout the period of observations, resulting in
an overall increase of ≈1.2 mag, on top of which short modu-
lations are observed within a single season; small-scale varia-
tions are seen in the first seven seasons (from 2005 to 2011) with
a typical peak-to-peak amplitude of 0.1 magnitudes. Among
the many lensed quasars monitored by the COSMOGRAIL
project, very few exhibit such rich and diverse microlensing
and/or extrinsic behaviour. QJ 0158-4325 is therefore a promis-
ing test bench for investigating both high- and low-frequency
variability.
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Fig. 4. Power spectrum of the observed microlensing light curve com-
puted as the mean of the power spectra obtained for 1000 different real-
isations of photometric noise for every value of η sampling the range
[30:100] days with steps of 5 days used for the spline fitting parameter
(see text). The 1−σ envelope is given by the standard deviation of the
same set of power spectra. The dashed black line marks the boundary
between low and high frequency and the grey area indicates our adopted
frequency limit of 10−2 days−1, below which photometric uncertainties
dominate the data.

2.2. Power spectrum of the microlensing light curve

We represent the data in Fourier space in order to capture the
high-frequency features that are missed by the light-curve-fitting
method applied to QJ 0158-4325 in Morgan et al. (2012). The
resulting power spectrum therefore holds information across all
the frequencies and allows us to treat high- and low-frequency
signals simultaneously. In the following, we compute power
spectra of both observed and simulated light curves using a stan-
dard Fourier transform. To tackle the so-called spectral leakage
problem (Harris 1978), that is, the spurious broadening of spec-
tral lines in frequencies for which the length of the signal is not a
multiple of the corresponding period, we use a standard flat-top
window function.

As shown in the upper panel of Fig. 3, the light curves are
not evenly sampled: within a season, two measurements may be
separated by three or four days, and season gaps prevent the sig-
nal from being evenly sampled throughout the entire curve. The
latter would in fact introduce a pattern in the Fourier transform
that can be mistakenly interpreted as a periodic signal. To miti-
gate this, we interpolate the data through the season gaps using
the continuous spline that resulted from the fitting technique to
measure the time-delays, as outlined above. This offers a flex-
ible and model-independent way to fit time-series. We set the
sampling rate to one day and then compute the power spectrum.

The resulting power spectra have two main sources of uncer-
tainty: on one hand, the photometric uncertainties of the raw
data induce uncertainty in the very high frequencies correspond-
ing to the sampling rate of the light curve (of the order of 1-10
days). On the other hand, the choice of the parameter η can have
a significant impact on the fitting of short-timescale variations
because, as illustrated in the middle panel of Fig. 3, features
shorter than η are filtered out. The difference between underfit-
ting and overfitting the data depends on the origin we attribute to
a given short-timescale variation and whether we want to discard
it or not. As we aim to use as few hypotheses as possible on the
nature of these short variations, we do not make any assumption
on the actual value of η but rather consider a plausible range in

order to estimate the uncertainty induced by this parameter. We
define this range as [30:100] days in order that it be superior to
the time sampling of the data while still capturing most of the
high-frequency features. The scatter of the residuals in the bot-
tom panel of Fig. 3 shows that the selected range smoothly fits
the data and most of the high-frequency variability is accounted
for.

In order to quantify the uncertainty on the power spectrum
induced by these effects, 1000 different realisations of photomet-
ric noise are produced for every value of η sampling the range
[30:100] days with steps of 5 days used for the spline fitting,
yielding a set of 14000 data-like light curves. The power spec-
trum of the data that will be used further in this study is given by
the mean and standard deviation of this set of light curves, shown
in Fig. 4. As the extreme values of η either overfit or underfit the
light curve, the resulting uncertainty is conservative. We note
that the relative uncertainties are negligible up to frequencies
of 10−2 days−1 . For higher frequencies, the power drops below
10−3 and the relative uncertainties diverge because of the two
aforementioned sources of uncertainty. As the Einstein crossing
time is around 18 years in the QJ 0158-4325 system (Mosquera
& Kochanek 2011), we do not expect the light curve to con-
tain features with timescales shorter than 100 days. As a result,
there should not be a significant amount of signal above the
10−2 days−1 threshold and the power present in these frequencies
is induced by photometric noise. Therefore, we exclude the fre-
quencies above 10−2 days−1 (i.e. features shorter than 100 days)
from the following analysis.

3. Methods

In this section, the procedure of generating simulated light
curves is described, as well as the way the simulated and
observed power spectra are compared. The simulated variable
flux of a quasar image, Fα(t), is assumed to be the combination
of three components (Sluse & Tewes 2014): the intrinsic flux
variability, I(t), due to the stochastic emissions of the accretion
disk; the microlensing magnification, µ(t), due to stars in the lens
galaxy; and the flux arising from the BLR, FBLR(t), which echoes
the intrinsic variability of the continuum light of the accretion
disk. As the BLR is much larger than the accretion disk (typi-
cally ten times larger, Mosquera & Kochanek 2011), microlens-
ing of the resulting reverberated light is expected to be small3.
Hence we have:

Fα(t) = Mαµα(t)I(t) + MαFBLR(t), (3)

where µα is the time-dependent microlensing magnification and
Mα is the constant macro-magnification. Each component in this
equation is separately described below.

3.1. Intrinsic variability

The variability of the accretion disk is commonly described by
a damped random walk model (Kelly & Siemiginowska 2009;
MacLeod et al. 2010; Ivezić & MacLeod 2013). As the variabil-
ity of QJ 0158-4325 shows no major deviation from the standard
quasar optical variability, we model it using a damped random
walk model parametrized by a characteristic timescale, τDRW,
and amplitude, σDRW, of the variations. We use the JAVELIN

3 Although Sluse et al. (2012) showed that 10%-20% of the flux is
typically microlensed, Sluse & Tewes (2014) found that this effect
marginally impacts the variations in the microlensing light curve.
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code presented by Zu et al. (2013) to create simulations of intrin-
sic light curves, which are designed for studying the variability
of quasars (Zu et al. 2011). A damped random walk consists of
a Gaussian Process, GP, with mean intensity I and covariance
Cov(∆t) between two moments in time separated by ∆t such that:

I(t) = GP
[
I,Cov(∆t)

]
, (4)

with the covariance given by :

Cov(∆t) = σ2
DRW × exp(− |∆t| /τDRW). (5)

Knowing τDRW and σDRW completely defines the GP, from
which different but equivalent realisations of the intrinsic light
curve can be drawn.

3.2. Microlensing variability

Magnification maps are used to simulate microlensing events
produced by a given population of stars in the lens galaxy. In
order to simulate a stellar population, we need to compute the
values of the convergence, κ, the stellar surface density, κ∗, and
the shear, γ, at each image location from the smooth model of the
lens galaxy mass distribution (i.e. macro-model; see Sect. 4 and
Table 1). We then use a Salpeter initial mass function (IMF) to
describe the stellar mass distribution around a given mean stel-
lar mass 〈M〉. The maps are generated with the GPU-D soft-
ware, which implements the direct inverse ray-shooting method
as described in Vernardos et al. (2015), used in other microlens-
ing studies as well (e.g., Chan et al. 2021).

The characteristic scale of the magnification patterns cre-
ated by such compact objects in the lens galaxy is their Einstein
radius, RE , defined in the source plane as:

RE =

√
4G〈M〉

c2

Dls

DsDl
, (6)

where G is the gravitational constant, c the speed of light, and
Dl, Ds, and Dls correspond to the angular diameter distances
from the observer to the lens, from the observer to the source,
and from the lens to the source, respectively. The map dimen-
sions are 8192 × 8192 pixels, corresponding to a physical size
of 20RE × 20 RE and a pixel size of 0.0024 RE . Figure 2 shows
the configuration of the QJ 0158-4325 lens system along with a
realisation of magnification maps corresponding to the κ, κ∗, and
γ given by the smooth mass model at the given quasar image
positions.

In order to study the magnification of a finite-sized source
by a given caustic, we need to assume a light distribution pro-
jected on the plane of the sky. The accretion disk of the source
is assumed to be described by the thin-disk model (Shakura &
Sunyaev 1973), in which a monochromatic light profile as a
function of radius is given by:

I0(R) ∝ [exp(ξ) − 1]−1, where (7)

ξ =

(
R
R0

)3/4 1 −
√

Rin

R


−1/4

,

with R0 being the scale radius, that is, the radius at which the
temperature matches the rest-frame wavelength of the obser-
vation assuming black body radiation, and Rin < R is the
inner edge of the disk. Here we assume Rin = 04 and we

4 Rin is very small compared to R0 and should not have an impact on
the result because the half light radius R1/2 remains mostly unchanged.

Table 1. Fixed parameter values and free parameter ranges for the mod-
els of QJ 0158-4325 used in this study (see Sect. 3).

Name Value Unit

Intrinsic
τDRW

(a) 810 days
σDRW [9–95] Flux units

Microlensing
Lens mass model (b)

fM/L 0.9 –
〈M〉 [0.3, 0.1, 0.01] M�

Corresponding RE [3.41, 1.97,0.623] 1016 cm
Image A
κ 0.23 –
γ 0.39 –
κ∗/κ 0.81 –
MA 2.24 –

Image B
κ 0.72 –
γ 1.03 –
κ∗/κ 0.92 –
MB 0.84 –

Effective velocity
σpec(zl) (c) 277 km s−1

σpec(zs) (c) 248 km s−1

vCMB
(d) 328 km s−1

v∗ (d) 203 km s−1

〈ve〉 ± σe 786+450
−304 km s−1

Accretion disk light profile
R0 [0.1–6.1] RMK11

RMK11
(e) 1.62 × 1015 cm

Reverberation
fBLR

(a) 0.43 ± 0.034 –
RBLR [0.1–2.5] RBLRMK11

RBLRMK11
(d) 1.71 × 1017 cm

Notes. (a)See Sect. 4, (b)taken from Morgan et al. (2008), (c)Morgan et al.
(2012), (d)Kogut et al. (1993), (e) Mosquera & Kochanek (2011).

explore a range of R0 values that contains the value estimated by
Mosquera & Kochanek (2011), i.e. R0 ≈ 0.067 × RE (in the case
of 〈M〉 = 0.3 M�), which is ≈15 pixels on the maps that we use.
To compute the magnification induced on the source, we need to
convolve the magnification map with the light profile.

The timescale of a microlensing event is set by the effective
velocity in the source plane, ve, which is the vectorial sum of the
transverse velocities of the microlenses, v∗, of the lens galaxy vl,
of the source, vs, and of the observer, vo. As described in Neira
et al. (2020), the direction of the microlense velocity is random
and is uniformly sampled in the [0;2π] interval. The magnitude
of this velocity vector is given by:

v∗ =
√

2 ε σ∗, (8)

where ε is a factor depending on κ and γ, and is assumed to be
1 (Kochanek 2004), and σ∗ is the velocity dispersion at the lens
galaxy centre. The directions of vl and vs are random and their
magnitude is drawn from a Gaussian distribution with a given
standard deviation, σpec(z), as a function of redshift. Therefore,
these can be combined into a single normal variable vg with a
random direction and a magnitude given by a Gaussian with a
standard deviation given by:

σ2
g =

(
σpec(zl)
1 + zl

Ds

Dl

)2

+

(
σpec(zs)
1 + zs

)2

. (9)
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Fig. 5. Probability density of the effective velocity, ve, in the source
plane for QJ 0158-4325 from Eq. (11).

The velocity of the observer is measured with respect to the cos-
mic microwave background velocity dipole:

vo = vCMB − (vCMB · ẑ)ẑ, (10)

where vCMB is the measured velocity vector with respect to the
cosmic microwave background, and ẑ the line of sight of the
observer. The magnitude and direction of this component are
computed using the position of the object on the plane of the
sky. Combining these terms, the effective velocity is:

ve =
vo

1 + zl

Dls

Dl
− v∗

1 + zl

Ds

Dl
+ vg. (11)

In the case of QJ 0158-4325, zl = 0.317 and zs = 1.29 (Chen
et al. 2012). All other relevant parameters for QJ 0158-4325
are given in Table 1 and the resulting probability distribution
of ve from which the effective velocity in the source plane is
drawn is shown in Fig. 5. The probability density function in
Fig. 5 is approximated by a Gaussian kernel density estima-
tor and then sampled through the inverse transform sampling
method.

3.3. Reverberated variability

As shown in Sluse & Tewes (2014), delayed reverberation
of the continuum light from the BLR can significantly alter
the observed microlensing signal with modulations on short
timescales. In the case of QJ 0158-4325, Faure et al. (2009)
showed that the Mg ii as well as the Fe ii spectral lines, both
arising from the BLR, fall into the R-band used in this work. It
therefore makes sense to consider continuum reverberation as a
mechanism contributing to the observed light curves.

We can describe the reverberation component in Eq. (3) as
FBLR(t) = fBLRr(t), where fBLR is the flux ratio between the line
and the continuum and r(t) is the reverberated flux. The latter can
be computed as a convolution, r(t) = Ψ(t, τ) ∗ I(t), between the
intrinsic signal, I(t), and Ψ(t, τ), a time-lagging transfer function
that depends on the radius of the BLR through a corresponding
time lag τ = RBLR/c. Equation (3) then becomes:

Fα(t) = Mαµα(t)I(t) + Mα fBLR [Ψ(t, τ) ∗ I(t)] . (12)

In this work we model the reverberation region as a diffuse
ionised gas cloud with the geometry of a thin shell (Peterson
et al. 1993), so that Ψ(t, τ) is a top hat kernel with an amplitude
A and a width equal to twice the assumed time-lag τ:

Ψ(t, τ) =

{
A/τ if0 ≤ t < 2τ,
0 otherwise. (13)

The values of the fBLR and RBLR parameters examined here are
given in Table 1.

3.4. Light-curve simulation and fitting

Combining all the above model components, we are now able
to simulate light curves for each quasar image using Eq. (12).
The free parameters are 〈M〉, ve, R0, σDRW, and RBLR, which we
refer to as vector ζ. The final light curve to be compared to the
data is obtained by dividing (subtracting) the flux (magnitudes)
of pairs of simulated light curves for images A and B. Examples
of simulated light curves with and without reverberation along
with their corresponding power spectra are shown in Fig. 6.

For any given ζ, a batch of 105 curves is created from the
magnification maps and their power spectrum is computed. The
mean Psim(ω) and standard deviation σsim(ω) of the power spec-
trum in each frequency bin are then compared to the data using
a chi-square statistic:

χ2(ζ) =
1

Nω

∑

f

(Pdata(ω) − Psim(ω))2

σsim(ω)2 + σdata(ω)2 , (14)

where Pdata(ω) is the mean power spectrum of the data at the
frequency ω and σdata(ω) its standard deviation shown in Fig. 4.
This can be turned into a likelihood through:

L(d|ζ) = exp(−χ2(ζ)/2). (15)

Eventually, the posterior probability is obtained using Bayes
theorem:

P(ζ |d) = L(d|ζ) · P(ζ)/E(d), (16)

where P(ζ) is the prior probability of the parameters ζ and E(d)
is the probability of the data, that is, the Bayesian evidence.
Calculating E(d) requires integration of the posterior across the
whole parameter space, which is beyond the computational lim-
its of this study. This means that we cannot compare different
models, but we can still use relative probabilities within any
given model. All parameters are assumed to have a uniform prior
except ve, whose prior is given in Eq. (11). Finally, we obtain
the posterior probability marginalised over a given parameter or
subset of parameters ζi through:

P(ζi|d) =

∫

j,i
P(ζ j|d) · P(ζ j)dζ j. (17)

4. Results

We studied the effect of high-frequency variability, such as that
introduced by a reverberated BLR component, when measuring
the size of the accretion disk. In doing so, we found a new way to
measure the size of the BLR using the microlensing light curves
from Eq. (2) in the full frequency range. Before describing our
results, we present our prior assumptions for the various model
parameters listed in Table 1.
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Fig. 6. Top panel: example of a simulated light curve with and with-
out reverberation (dotted and solid lines respectively). Bottom panel:
corresponding power spectra. The curves and power spectra have been
produced using 〈M〉 = 0.3 M�, ve = 1236 km s−1,R0 = 0.5RMK11,
σDRW = 30 and RBLR = RBLRMK11 . Adding reverberation clearly adds
power to the high-frequency part of the spectrum.

Intrinsic variability. The long-term brightness decrease of
image B (see Fig. 3) compared to the behaviour of the light
curve A, which consists of oscillations around a mean, sug-
gests two possible scenarios: the intrinsic luminosity of the
quasar is decreasing and image A is microlensed or the intrin-
sic luminosity of the quasar is rather constant and a microlens-
ing event which started in image B before the beginning of the
observations is now ending, leading to a decrease in the micro-
magnification. According to MacLeod et al. (2016), photometric
changes of |∆m| ≥ 1 mag over ≈10 years, such as those observed
in light curve B, are very rare (around 1% of quasars display
this kind of variability). Furthermore, spectra of QJ 0158-4325
shown in Faure et al. (2009) (i.e. taken during the first quar-
ter of the light curve of Fig. 3), show a typical Type 1 QSO
spectrum for image A whereas the B spectrum shows faint and
deformed emission lines. Altogether, these observations lead us
to favour the second scenario. We therefore consider image A

to be microlensing-free, and use its light curve as a proxy for
the quasar intrinsic variability. Using the JAVELIN software (Zu
et al. 2013), which employs a maximum likelihood approach
in a Markov chain Monte Carlo (MCMC) framework, we find
τDRW = 810 days for the assumed damped random walk intrin-
sic variability model. However, the observed light curve is the
result of a convolution between the driving source and the light
profile of the quasar. Therefore, the amplitude of the variations,
σDRW, cannot be constrained, because it is degenerate with the
radius of the source R0 which is also unknown in this study. A
large interval is therefore considered for exploring this parame-
ter, which includes the values of σDRW for all the known quasars
(Suberlak et al. 2021).

Lens-mass model and magnification maps. Morgan et al.
(2012) explore a list of lens-mass models with a stellar mass
fraction, fM/L, of between 0.1 and 1, and give a relation between
fM/L and the time-delay between the two images ∆t. Using this
relation and the time-delay measured by Millon et al. (2020b),
we obtain fM/L = 0.9, which we use throughout the following.
We adopt the κ, γ, and κ∗ values at image locations from Morgan
et al. (2008), also listed in Table 1, to compute the magnification
maps that we use below. As model uncertainties are not given,
we assume δκ, δγ ≤ 0.01, as quoted in most modelling works
(e.g., see Table B1 of Wong et al. 2017). According to Vernardos
& Fluke (2014), magnification maps within these uncertainties
have a statistically equivalent magnification probability distribu-
tion. As a sanity check, the same experiment was performed with
a different mass model with ∆κ,∆γ ≥ 0.03 leading to the same
general conclusions. We therefore do not expect the uncertainty
on the macro-model to influence our study.

In most microlensing light-curve-fitting studies (Kochanek
2004; Morgan et al. 2008; Cornachione et al. 2020b), 〈M〉 =
0.3 M� is taken as a reference mass around which a range of
mean mass is explored. Because we are interested in high-
frequency variability, we also explore the effect of smaller values
of the mean mass, that is, 〈M〉 = 0.1 M� and 〈M〉 = 0.01 M�,
which can introduce shorter microlensing events for any given
effective velocity due to the corresponding small physical size
of the caustics. Choosing a shallower Chabrier IMF instead
of the steeper Salpeter one used here leads to fewer low-mass
microlenses and therefore reduces any effect of high-frequency
variability. Although this has been shown to affect magnification
map properties (see Chan et al. 2021), our goal here is to under-
stand such short-timescale variability and therefore we use the
Salpeter IMF for all values of 〈M〉.

Accretion disk size. In order to limit the number of free
parameters of our study, we assume a face-on thin-disk model.
The expected maximal inclination angle of a type-I AGN is ∼60
degrees with respect to the line of sight (e.g., Borguet et al.
2008; Poindexter & Kochanek 2010) and can induce, at most,
a factor two systematic effect on the determination of R0. Nev-
ertheless, R0, ve, and the inclination angle are degenerate. We
therefore repeated our measurement of RBLR each time varying
R0 and ve by factors of several and found no significant differ-
ences from our results in the face-on disk assumption. We use
log(R0/cm) = 15.07 ≡ RMK11 from Mosquera & Kochanek
(2011) as a reference value for the scale radius. We explore R0
in the range 0.1−6 × RMK11, which is bound at the low end by
the magnification map resolution and extends high enough to
include the measurement of Morgan et al. (2012).

Reverberated variability. As mentioned previously,
microlensing is dominant in image B compared to image
A. Therefore we use the spectrum from image A to derive
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Fig. 7. Mean (lines) and upper 1−σ envelope (shaded area) of power
spectra from 100 000 simulated curves for different (ve, R0) configura-
tions, in the absence of reverberation (FBLR = 0 in Eq. (3)), compared
to the data (same as Fig. 4). Due to the logarithmic scale, the lower
envelopes extend almost to the x-axis and are not displayed for clar-
ity. The vertical dashed line marks the boundary between low and high
frequency.

fBLR in order to avoid any contamination from a possibly
microlensed continuum. To do so, the spectrum presented in
Faure et al. (2009) was analysed using a multi-component
decomposition as in Sluse et al. (2012). However, contrary to
Sluse et al. (2012), a MCMC approach was used to estimate
the median fBLR and a 68% credible interval (see Table 1).
We emphasise the fact that fBLR is computed as the fraction of
flux coming from the BLR compared to the continuum in the

R-band, irrespective of the atomic species, and therefore both
the Mg ii and Fe ii emissions are included. As for the radius
of the BLR, Mosquera & Kochanek (2011) used the Hβ-BLR
size–luminosity relationship (Bentz et al. 2009) to estimate
RBLR = 1.71 × 1017 cm ≈ 39 light days, which we adopt here
as our reference value, RBLRMK11 . The lower bound of the RBLR
range that we explore is 0.1 × RBLRMK11 ≈ 5 light days, which is
the smallest reverberation delay observable with the sampling of
the light curve set to one point every 2–3 days. The upper bound
is set to 2.5 × RBLRMK11 to include the confidence interval of the
Mosquera & Kochanek (2011) estimate.

To understand the effect of key parameters in the frequency
of the signal in the simulated light curves we provide an illus-
trative example in Fig. 7, where we show power spectra cal-
culated for different values of the transverse velocity, ve with
corresponding directions drawn from the probability density
function shown in Fig. 5, and the scale radius, R0, two of the
main free parameters in subsequent models. Firstly, we note that
for a given value of R0 the power has a tendency to increase with
ve, which is justified because, the higher the velocity, the faster
the source crosses caustics, inducing more high-magnification
events in both the high and low frequencies. Secondly, for a
given value of ve, the power in the high frequencies is inversely
proportional to R0. This is explained by the microlenses magni-
fying an ever decreasing portion of larger accretion disks, with
the resulting magnification effect being diluted within the overall
flux, leading to smoother and weaker high-frequency variations.

Furthermore, Fig. 7 shows that in the low frequency regime
the models match reasonably well the data, while most of the
model differences occur in the high frequencies. It is almost
impossible to simultaneously match both the low and high fre-
quencies, whatever the model parameters may be. This suggests
that other physical mechanisms might be at play, in addition to
microlensing, which we explore with the following three experi-
ments:

– Low frequency (LF): we apply the power spectrum method
in the same setup as that used by Morgan et al. (2012), that is,
we use only the low-frequency part of the power spectrum,
imposing a cutoff at 1/750 days−1 that corresponds to the typ-
ical timescale considered in Fig. 2 of Morgan et al. (2012).
At this stage, we do not include any reverberation signal and
set FBLR = 0 in Eq. (3). As a result, even though intrin-
sic variability is included in this model, it is cancelled out
because we are studying the differential microlensing light
curves. This model is therefore not sensitive to the intrinsic
variability parameters σDRW and τDRW.

– Full frequency (FF): we perform the same analysis as above,
this time including the high frequencies up to 1/100 days−1.

– Reverberation full frequency (RFF): we use the full fre-
quency range of the data, as in the FF model, but this time
we include the reverberation of the continuum.

The details and outcomes of each experimental setup are detailed
below.

4.1. LF: Low frequencies without reverberation

In Morgan et al. (2012), the shortest features in the light
curves last approximately two consecutive seasons, or ≈750 days
(see their Fig. 2). This translates into frequencies of up to
1/750 days−1, which is lower than the 1/100 days−1 limit that
we set in Sect. 2. We therefore adopt 1/750 days−1 as being our
boundary between what we define as low and high frequency.
Here, we model only the low-frequency power spectrum of the
data, which contains by design the same signal frequencies as
the data used in Morgan et al. (2012).
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Fig. 8. Slices of the marginalised posterior probability of the (ve, R0, 〈M〉) parameter space (three-dimensional after the marginalisation over the
angle of ve using Eq. (17)) for each of the three models described in Sect. 4. Model LF: light curves simulated without reverberation and fitted
only to the low-frequency data, i.e. up to 1/750 days−1, which corresponds to the same frequency cut as in Morgan et al. (2012). Model FF:
same simulations are fitted to the full frequency range, i.e. up to 1/100 days−1. Model RFF: light curves are now simulated with reverberation
( fBLR = 0.432 ± 0.036, σDRW = 55 and RBLR = RBLRMK11 ) and the full observed frequency range up to 1/100 days−1 is considered. The solid line
corresponds to RMK11, the estimate of Mosquera & Kochanek (2011), the ellipse represents the (ve, R0) measurement interval from Morgan et al.
(2012). The coloured contours encapsulate [10–100]% of the probability volume and are projected in each of the displayed slices. We note that
our probability densities are not scaled by the evidence and therefore cannot be compared across different models.

The top row of Fig. 8 shows the posterior probability from
Eq. (16) as a function of ve, R0, and 〈M〉. The distribution of
R0 broadens with decreasing 〈M〉, becoming almost uniform for
the smallest mean mass of 〈M〉 = 0.01 M�, and therefore not
providing any useful constraint. This can be understood in terms
of the physical size of the magnification maps, which depends
on 〈M〉 through the Einstein radius of the microlenses, RE (see
Eq. (6) and Table 1), with respect to the velocity: decreasing
〈M〉 is equivalent to rescaling the magnification map to a smaller
physical size that allows the source to cross the map more rapidly
for the same effective velocity (which is equivalent to increasing
the effective velocity while keeping the mass fixed). Thus, small
masses and larger radii can induce enough high-frequency power
to fit the data as well as the smaller radii and larger masses.

Overall, our power spectrum measurement is in good agree-
ment with the estimate of Mosquera & Kochanek (2011), while
it is consistent within 1 to 2σ with the result of Morgan
et al. (2012) in the 〈M〉 = 0.01−0.1 M� cases. In the 〈M〉 =
0.3 M� case, we note a slight discrepancy with the results of
Morgan et al. (2012). This can be explained by our use of longer
light curves (6 more seasons) and the use of a model-driven
prior on the angle of ve, as illustrated in Fig. 5, instead of the
uniform prior used in previous studies5. Model LF is a sanity
check demonstrating that, when restricted to low frequencies, the
power spectrum and light-curve-fitting methods give compatible
results and the data can be explained by microlensing alone.

4.2. FF: Full frequency range without reverberation

We now include the high-frequency signal in the data and
attempt to explain it assuming that the observed variations come
solely from microlensing of the accretion disk, that is, exactly
the same model as in the LF setup. Our results, shown in the

5 The experiment ran with a uniform prior on the angle actually yields
a 1−σ to 2−σ compatible measurement.

second row of Fig. 8, favour much smaller accretion disks with
R0 < 0.5RMK11, excluding both the result of Morgan et al. (2012)
and the estimation of Mosquera & Kochanek (2011). This is less
prominent for the case with 〈M〉 = 0.01 M�, where we observe
the same behaviour for larger R0 as in the LF case, extending the
compatible sizes to somewhat larger values. Clearly, microlens-
ing alone has problems in explaining the high-frequency signal
and we need to invoke additional sources of variability to explain
the data, as we do in the following case.

4.3. RFF: Full frequency range with reverberation

Adding the reverberation process to the simulated light curves
is expected to increase the power of the high frequencies in the
signal. In the bottom row of Fig. 8 we show the posterior proba-
bility as a function of ve, R0, and 〈M〉 for a fiducial reverberation
model with RBLR = RBLRMK11 and σDRW = 55 (see also Fig. 10
and Sect. 4.4 ).

As we can see in the third row of Fig. 8, when including
the reverberation effect, the constraint obtained for the radius of
the accretion disk R0 is now dominated by the prior on ve and
R0 for every 〈M〉 explored. Still, we note that the areas corre-
sponding to any given percentage of enclosed posterior proba-
bility shrink with the value of 〈M〉. Indeed, if a simulated power
spectrum is compatible with the data for 〈M〉 = 0.3 M�, the
addition of power induced by the decrease in 〈M〉 (as discussed
in Sect. 4.1) pulls the simulated power spectrum away from the
data, thereby reducing their compatibility. Therefore, this model
tends to favour the standard value of 〈M〉 = 0.3 M�.

4.4. RBLR measurement

In order to measure the size of the reverberating region, RBLR, we
first explore the effect of the amplitude of the intrinsic variability,

A21, page 10 of 13



E. Paic et al.: Constraining quasar structure using high-frequency microlensing variations and continuum reverberation

σDRW, and of RBLR on the simulated power spectra, while keep-
ing the microlensing parameters fixed at 〈M〉 = 0.3 M�, R0 =
RMK11, and ve = 700 km s−1. The use of 〈M〉 = 0.3 M� is moti-
vated by the fact that galaxies are unlikely to host a population
of objects with 〈M〉 = 0.1or0.01 M� (see Sect. 4.3). Including
reverberation in the analysis allows us to explain the high fre-
quency using a realistic value of 〈M〉, or at least a consensus
one. As for ve, we use a value close to the mean value from
Eq. (11) (see also Table 1 and Fig. 5). We stress the fact that, if
the microlensing is identical in both images (i.e. µA(t) = µB(t)
in Eq. (3), which is more likely to happen if both images are not
microlensed), the effect of reverberation is absent from the dif-
ferential light curve we analyse. Therefore, reverberation is not a
stand-alone part of this study and the reverberation-induced vari-
ability ends up being weighted as a function of time because of
microlensing in the differential light curve. Figure 9 shows that
increasing σDRW leads to more power at the high frequencies,
mostly because the now stronger intrinsic variations are rever-
berated after a time-lag (τ = RBLR/c, see Eq. (13)) of the order
of tens to hundreds of days, i.e. with a frequency >1/750 days−1.
Analysing the effect of the BLR size, RBLR, is more complex. For
a given transfer function, Ψ(t,RBLR/c), a short variation of typi-
cally ≈100 days in the intrinsic signal I(t) appears twice in light
curves simulated using Eq. (3): once at time t and a second time
at t + RBLR/c. As RBLR is increased, the echoed signal moves
further, eventually becoming fully separated spatially from the
one originating at the disk, and is seen as a whole new feature of
the light curve. This adds power to the high-frequency domain,
justifying the difference between the RBLR = 0.2RBLRMK11 and
RBLR = RBLRMK11 cases in Fig. 9. As we keep increasing RBLR,
Ψ(t,RBLR/c) gets wider and starts to smooth out the short intrin-
sic variations, reducing their power. This explains the drop in
power in the highest of the frequencies when considering the
highest values of RBLR in Fig. 9.

Comparing Figs. 7 and 9, we see that a reverberated vari-
ability component has a stronger effect on the high-frequency
power than increasing ve or decreasing R0. This is to be
expected because intrinsic quasar variations generally have
shorter timescales than microlensing. As a consequence the
choice of microlensing model (i.e the ve and R0 values) has little
impact on the measurement of RBLR.

Using Eq. (16), we derive the probability density in the
parameter space (σDRW, RBLR) for a given set of parameters 〈M〉,
fBLR, ve, and R0. By marginalising on ve and R0 we obtain the
measurement of RBLR shown in Fig. 10. One could argue that
we obtain a bi-modal distribution in the posterior probability
for RBLR. This observation can be explained by the fact that, as
shown in Sect. 4, the R-band encapsulates the Mg ii and Fe ii
emission lines which can arise from two distinct regions of the
BLR. Indeed, the Hβ (used in Mosquera & Kochanek 2011) and
Mg ii lines seem to arise from the same part of the BLR in vari-
ous quasars (e.g., Karouzos et al. 2015; Khadka et al. 2021) and
should both yield similar sizes; whereas the Fe ii line is thought
to arise from a larger part of the BLR (e.g., Sluse et al. 2007;
Hu et al. 2015; Zhang et al. 2019; Li et al. 2021). Therefore,
the combination of the two signals modelled as a single BLR
emission could broaden our measurement and induce its slight
bi-modality. Still, the core of the probability lies in the [0.1–
1.5] RBLRMK11 range and the second mode observed for higher
values of RBLR rises only for the highest values of σDRW. The
marginalisation of this posterior over σDRW yields a probabil-
ity distribution for RBLR and by taking its 16th, 50th, and 84th
percentiles we measure RBLR = 1.6+1.5

−0.8×1017 cm. With a relative
precision of ≈80% our method is less precise than recent spectro-
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Fig. 9. Effect of the reverberation process on the power spectrum. The
data are shown as a solid red line. The coloured envelopes display the
power spectra from 100 000 simulated curves for different values of
RBLR. Each panel considers different values forσDRW. In this plot we use
R0 = RMK11, 〈M〉 = 0.3 M�, ve = 700 km s−1, and fBLR = 0.432 ± 0.036.
The black dashed line marks the boundary between low and high fre-
quency. While the high-frequency range is never well represented with
pure microlensing (blue), it is very sensitive to a change in the reverber-
ation parameters.

scopical reverberation mapping measurements (e.g., Grier et al.
2019; Penton et al. 2022 have around 30% relative precision for
quasars with z > 1.3) but is more precise than photometric rever-
beration mapping (e.g., Kaspi et al. 2021 have above 100% rel-
ative precision when using a cross-correlation function with R
and B filter light curves). The value of RBLRMK11 predicted by the
luminosity–size relation is in agreement with our measurement
at the 1−σ level.

5. Discussion

We now review the implications of the constraints on the accre-
tion disk scale radius, R0, found using the three different mod-
els. The first model shows that the low-frequency variations of
the microlensing light curve do not have a strong constrain-
ing power on R0 when using the power spectrum method.
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Fig. 10. Posterior probability den-
sity in the (σDRW, RBLR) parameter
space marginalised over the microlens-
ing parameters given 〈M〉 = 0.3 M�.
RBLR is given in units of RBLRMK11 =
1.71 × 1017 cm, indicated by the white
dashed line. The contours correspond
to the 1 and 2−σ confidence inter-
vals. Marginalised probability distribu-
tions of σDRW and RBLR are given in the
top and right histograms respectively.
In each histogram, the black line shows
the 50th percentile (median value) of
the distribution and the dashed lines
highlight the 16th and 84th percentiles.
Hence, we obtain σDRW = 72+16

−21 and
RBLR = 1.6+1.5

−0.8 × 1017 cm.

The second model indicates that the high-frequency part of the
power spectrum adds significant constraints to the accretion disk
measurement because the range of R0 compatible with the data is
shrunk and leans towards the smallest values. Therefore, ignor-
ing the high-frequency variations may lead to overestimation of
R0.

The first two models, which rely only on microlensing vari-
ability, both require lower values of the mean stellar mass 〈M〉.
However, a galaxy populated by stars with 〈M〉 = 0.01 M� is
barely conceivable because the least massive star known to this
day has a mass of 0.07 M� (Kasper et al. 2007). This means
that, according to these two models, the population of compact
objects that is most likely to produce the observed variability is
not made of stars. Hypothetical populations of primordial black
holes (Hawkins 2020b,a) and galaxies with a significant num-
ber of brown dwarfs and/or free-floating Jupiter-like planets (Dai
& Guerras 2018; Cornachione et al. 2020a) have been invoked
to explain unexpected microlensing features. Unfortunately, pri-
mordial black holes have, to date, never been observed in nearby
galaxies despite huge efforts of multiple collaborations (Alcock
et al. 2001; Niikura et al. 2019a,b). In addition, the theoretical
mass of a primordial black hole is poorly constrained and spans
the very broad range of

[
10−16, 102

]
M� (Green & Kavanagh

2020). Similarly, a low-mass stellar population is not observed in
the Milky Way (Mróz et al. 2017). In both cases, the explanation
behind the observed variability relies on an exotic population of
microlenses in the lens galaxy for which we do not have any
observational proof so far.

Continuum reverberation in the BLR is an acknowledged and
observed effect (Blandford & McKee 1982; Bentz et al. 2009;
Du et al. 2016; Williams et al. 2021) and supports the validity
of our third model. The latter encapsulates our best understand-
ing of microlensing light curve variability. It is also the only
model that favours a more standard value of the mean stellar
mass, 〈M〉 = 0.3 M�, which does not require any exotic pop-

ulation of microlenses. This suggests that reverberation of the
continuum by the BLR, which was observed multiple times with
spectroscopic monitoring, is also observable in single-band pho-
tometric light curves through their high-frequency variations on
the differential light curve.

Last but not least, this offers a new way of measuring the size
of the BLR illustrated by Fig. 10. The relative insensitivity of this
measurement to the microlensing parameters (ve, R0) is due to
the fact that, as stated in Sect. 4.1, the main challenge of a given
set of parameters ζ is to fit the high-frequency power and these
are mainly set by the reverberated variability. The downside of
this is that we are not able to discriminate between the values
of R0. Nevertheless, in the case of QJ 0158-4325, the measure-
ment of RBLR is in agreement with the Hβ-BLR size–luminosity
relation (Mosquera & Kochanek 2011).

6. Conclusions and perspectives

In this work, we present a new method whereby we use
the power spectrum of microlensing light curves to study the
strongly lensed quasar QJ 0158-4325 system. This method
allows us to take into account the high-frequency variations of
the data and simultaneously include the reverberated variability
in the microlensing paradigm. Our main results are summed up
in the following points:
1. Ignoring the high-frequency variations, as is the case with the

light-curve-fitting method, may lead to an overestimation of
the scale radius of the accretion disk R0. Indeed, we show
that the use of short-timescale variations excludes the values
of R0 found with the light-curve-fitting method in Morgan
et al. (2012).

2. In the context of standard paradigm microlensing light-curve
simulations, the data favour an exotic microlens population
drawn from an IMF with an unprecedentedly low mean mass
〈M〉 whereas with the model we propose, including the BLR
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reverberation, the data favour stellar populations drawn from
a standard Salpeter IMF with 〈M〉 = 0.3 M�.

3. For the first time, continuum reverberation by the BLR is
observed in a single waveband photometric light curve. We
use this opportunity to measure the size of the BLR in
QJ 0158-4325, obtaining RBLR = 1.6+1.5

−0.8 × 1017 cm, which is
compatible with the expectation of the luminosity–size rela-
tion with a better precision than standard photometric rever-
beration mapping techniques.

4. The power-spectrum-fitting method is insensitive to the scale
radius of the accretion disk R0 in the presence of reverberated
variability in the single-waveband light curve.

In light of the encouraging results this method gave for QJ 0158-
4325, we are looking forward to applying it to other systems for
which a microlensing light curve is available. In the upcoming
Vera C. Rubin Observatory era, this method offers a new way
to probe the luminosity–BLR size relation of quasars for a large
range of redshifts and luminosities.
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2.3 Binary black hole detection using microlensing light curves
Super Massive Binary Black Holes (SMBBH) are expected to arise from the merger of massive galaxies
harbouring an SMBH in their center. The life cycle of these can be divided into three main parts (Begelman
et al. 1980; Khan et al. 2013): 1) As each SMBH orbits around the new barycenter of the galaxy potential,
they lose kinematic energy because of kinematic friction induced by stars in the interstellar medium. This
phenomenon shrinks the orbit of the SMBHs until they bind into a binary system with a stabilized orbit of
the order of 1 pc. 2) Interaction with incoming third bodies, such as incoming stars, continues to reduce the
SMBBH kinematic energy through the gravitational slingshot mechanism, which transfers kinetic energy
from the most massive to the least massive interacting body. 3) Once the orbit radius is below ∼ 0.01pc,
general relativity predicts the generation of gravitational waves that quickly dissipate the remaining energy
of the system and precipitate the merge of the two SMBHs.

The first and third steps are predicted to be relatively rapid (respectively ∼ 107 years and 105 years).
However, the middle stage could reach up to ∼ 1011 years (i.e. more than the Universe age) because of
the low probability of interaction of the SMBBH with stars after the first step "cleaned" the surrounding
region. This stalling of the merger is referred to as the "Final parsec problem".

This is indeed a problem since the discovery of a gravitational wave background by the NanoGrav Pulsar
Timing Array strongly suggests that the merger of SMBBH is standard in the Universe Agazie et al.
(2023b,a). Several scenarios were imagined to break the stalling mechanism, such as the implication of
a third SMBH (Iwasawa et al. 2006) or deviations from spherical symmetry of the stellar distribution in
the inner parts of the galaxy (e.g., Khan et al. 2013; Vasiliev et al. 2015). While observed quasi-periodic
oscillations in quasars and blazars light curves are often reported (e.g., Gupta 2014; Zhang 2022b) and
could be associated with SMBBH (O’Neill et al. 2022), their period is often badly constrained due to
the overlaying stochastic variability of the quasar (Dong et al. 2022). Therefore, we lack observational
evidence to study the merger mechanisms on particular systems with only one serious candidate close
separation SMBBH (Valtonen et al. 2008).

The following paper focuses on a shorter part of the QJ 0158−4325 microlensing light curve. Indeed,
we detect seven consecutive oscillations with a period of 172.6 ± 0.9 days and a maximal amplitude of
0.26 ± 0.02 mag between 2006 and 2012. Fig. 4 of Paic et al. (2022) suggests that when considering the
light curve between 2005 and 2018, these features blend with the BLR reverberation. Still, we show in Fig.
4 and A.3 of Millon et al. (2023) that if we focus on the part 2006-2012 part of the light curve, this specific
feature is not likely due to this phenomenon. We are left with four main possible explanations related to the
nature of the microlens or complex structures in the source, which are thoroughly investigated in the paper.
The most likely hypothesis is that the source quasar is a Super Massive Binary Black Hole (SMBBH)
with only a few milli-pc separation. While additional observations, such as spectroscopic monitoring,
are necessary to confirm the binary nature of the object, the sustained periodic oscillations provide more
substantial evidence than in any previous SMBBH candidate.
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ABSTRACT

We report periodic oscillations in the 15-year-long optical light curve of the gravitationally lensed quasar Q J0158−4325 at zs = 1.29.
The signal is enhanced during a high magnification microlensing event of the quasar that the fainter lensed image, B, underwent
between 2003 and 2010. We measure a period of Po = 172.6 ± 0.9 days, which translates to 75.4 ± 0.4 days in the quasar frame. The
oscillations have a maximum amplitude of 0.26 ± 0.02 mag and decrease concurrently with the smooth microlensing amplitude. We
explore four scenarios to explain the origin of the periodicity: (1) the high magnification microlensing event is due to a binary star in
the lensing galaxy, (2) Q J0158−4325 contains a supermassive binary black hole system in its final dynamical stage before merging,
(3) the quasar accretion disk contains a bright inhomogeneity in Keplerian motion around the black hole, and (4) the accretion disk
is in precession. Of these four scenarios, only a supermassive binary black hole can account for both the short observed period
and the amplitude of the signal, through the oscillation of the accretion disk towards and away from high-magnification regions
of a microlensing caustic. The short measured period implies that the semi-major axis of the orbit is ∼10−3 pc and that and the
coalescence timescale is tcoal ∼ 1000 yr, assuming that the decay of the orbit is solely powered by the emission of gravitational waves.
The probability of observing a system so close to coalescence, in a sample of only 30 monitored lensed quasars, suggests either a
much larger population of supermassive binary black holes than predicted or, more likely, that some other mechanism significantly
increases the coalescence timescale. Three tests of the binary black hole hypothesis include: (i) the recurrence of oscillations in
photometric monitoring during any future microlensing events in either image, (ii) spectroscopic detection of Doppler shifts (up to
∼0.01c) associated with optical emission in the vicinity of the black holes, and (iii) the detection of gravitational waves through pulsar
timing array experiments, such as the Square Kilometre Array, which will have the sensitivity to detect the ∼100 nano-hertz emission.

Key words. gravitational lensing: micro – quasars: supermassive black holes – methods: data analysis

1. Introduction

The formation of supermassive binary black holes (SMBBHs)
is an expected end product that naturally emerges from
the hierarchical assembly of multiple galaxy mergers
(Haehnelt & Kauffmann 2002; Volonteri et al. 2003). The
binding of the two black holes in the central parsec of the
merging galaxies is first driven by dynamical friction until other
mechanisms, such as stellar hardening and disk-driven torques,
shrink the orbits further (see e.g. Amaro-Seoane et al. 2022,
for a review). Once the SMBBH reaches a separation of the
order of 0.01 parsec, the emission of gravitational waves (GWs)
efficiently dissipates the angular momentum and the merger of
the two black holes becomes inevitable (Begelman et al. 1980).

The process that leads to the merger of two supermassive
black holes (SMBHs) is described in numerical simulations over

? Light curves presented in this paper are only available at the CDS
via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5)
or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/
668/A77
?? Animated Figs. 5 and 9 are available at https://www.aanda.org

a wide range of dynamical scales (e.g. Merritt 2006; Dotti et al.
2007; Cuadra et al. 2009) but remains largely unobserved1. Mea-
suring the number density of SMBBHs across redshift would
improve our understanding of the mechanisms that lead to the
formation of black hole pairs, and help refine the expected num-
ber of mergers that current and future GW interferometers will
detect. The main observational difficulty comes from the insuf-
ficient resolution of the imaging surveys, which limits the min-
imum separation between the detected pairs of active galactic
nuclei to a few kiloparsecs (see e.g. Tang et al. 2021; Chen et al.
2022a; Lemon et al. 2022, for recent discoveries). The higher
resolution of radio observations offers the possibility to detect
closer pairs (Rodriguez et al. 2006), but this technique remains
limited to the nearest galaxies and to a minimal separation of
∼10 pc, leaving the sub-parsec-separation SMBBHs undetected.
These systems are, however, the most interesting ones as they

1 To date, OJ 287 is the only confirmed close SMBBH, which was
detected from the repeated pairs of outbursts every 12.2 yr, interpreted
as a secondary black hole crossing the accretion disk of the primary
black hole (Valtonen et al. 2008).
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are potential sources of GWs in the nano-hertz frequency range.
These frequencies fall within the highest sensitivity band of pul-
sar timing array (PTA) experiments, which means this signal
may be observable in the future. Unfortunately, they are also
notoriously difficult to detect since their separation is far below
the resolution limit of even the largest radio telescopes.

Consequently, candidates have been searched for
through indirect techniques, although the observable sig-
nature of such close SMBBHs remains an open question
(Bogdanović et al. 2008; Shen & Loeb 2010; Montuori et al.
2011; Gültekin & Miller 2012). Spectroscopic observations can
potentially reveal the presence of small-separation SMBBHs
through the presence of double-peaked emission lines (e.g.
Dotti et al. 2009; Bogdanović et al. 2009; Boroson & Lauer
2009) or through a change in the broad line velocities over
time (Eracleous et al. 2012), although the displacement of the
lines could also be attributed to unusual structures in the broad
line region (BLR). With the advent of recent time-domain
surveys, candidates have also been proposed from the observed
periodicity in some quasar light curves (Graham et al. 2015;
Liu et al. 2016; Charisi et al. 2016; Chen et al. 2020, 2022b;
O’Neill et al. 2022). With this technique, Jiang et al. (2022)
reported a rapidly decaying signal in optical and X-ray light
curves, interpreted as the imminent merger of a secondary black
hole on a highly eccentric orbit. However, this interpretation is
called into question by the recent spectroscopic observations
of Dotti et al. (2022), which rather favour the possibility of
a precessing accretion disk to explain the periodicity seen in
the optical light curves. This debate illustrates the difficulty of
unambiguously identifying the signature of a SMBBH through
spectroscopy or spatially unresolved light curves.

In this work we exploit gravitational microlensing to zoom
in onto the inner structure of the zs = 1.29 strongly lensed quasar
Q J0158−4325 (Morgan et al. 1999). This allows us to reveal the
presence of a sub-structure in the accretion disk far beyond the
resolving power of any other imaging techniques. We interpret
this sub-structure as a new candidate SMBBH, with a separation
of the order of a milliparsec.

Microlensing is a phenomenon that can occur in strongly
lensed quasars when a star from the lens galaxy approaches
one of the multiple images of the quasar. In addition to the
gravitational lensing effect produced by the entire galaxy, the
star itself acts as a gravitational lens, also producing a split-
ting of the quasar’s image. The typical image separation pro-
duced by a microlens is of the order of a micro-arcsecond
and is thus far too small to be resolved. However, the lensing
micro-(de)magnification produced by the star can be detected.
As the star passes in front of one of the quasar images, it mod-
ulates its magnification, hence producing ‘extrinsic’ variations
on top of the ‘intrinsic’ stochastic variations of the quasar. The
first detection of extrinsic variability attributed to microlens-
ing is reported in Irwin et al. (1989) in the Einstein Cross
(Q 2237+0305). This signal is now commonly seen in the light
curves of strongly lensed quasars and is a nuisance for time-
delay measurements (e.g. Poindexter et al. 2007; Tewes et al.
2013; Millon et al. 2020a).

It is a remarkable coincidence that the Einstein radii of the
stars acting as microlenses are typically slightly smaller than or
are similar to the characteristic angular size of accretion disks
(Mosquera & Kochanek 2011). This has an extremely impor-
tant consequence: as the alignment between the quasar, the star,
and the observer slowly changes over time, different regions of
the disk are magnified, hence offering the possibility to scan
the structure of the accretion disk on nano-arcsecond scales.

Microlensing is therefore a unique tool for probing the inner par-
sec near the central black hole. This method is also highly sen-
sitive to additional structures in the accretion disk, for example
mini-disks around a binary companion (Yan et al. 2014).

The COSmological MOnitoring of GRAvItational
Lenses (COSMOGRAIL) programme (Courbin et al. 2005;
Millon et al. 2020a) provides the largest dataset to date in which
to search for such microlensing events. It consists of a sample
of ∼30 strongly lensed quasar light curves with measured time
delays. Once the time delays are measured, the microlensing
signal can easily be isolated by shifting the curves by their time
delays and subtracting them pair-wise. The resulting difference
light curves are therefore free of the intrinsic variability of the
quasar and contain only the extrinsic microlensing variations.
Most of the COSMOGRAIL systems have been observed for
more than 10 yr, thus offering a long enough baseline to detect
microlensing signatures. Slow microlensing variations (i.e. on a
timescale of years) are observed in most of the lensed systems
and are often used to set constraints on the accretion disk
size (see e.g. Morgan et al. 2018; Cornachione et al. 2020, for
recent measurements) or on the temperature profile of the disk
(Eigenbrod et al. 2008; Goicoechea et al. 2020).

However, several studies have reported that the microlensing
signal is in fact much more complex than just a slow modula-
tion of the image magnification (Schild 1996; Hjorth et al. 2002;
Burud et al. 2002; Schechter et al. 2003; Millon et al. 2020b). It
also contains high-frequency variations (on a timescale of weeks
to months) that are too fast to be attributed to stars passing in
front of one of the quasar images, unless the stars in the lens
galaxy move at relativistic speeds. The fast variations have been
tentatively attributed to microlensing by a population of planet-
mass microlenses (Schild 1996), variations in the accretion
disk size over time (Blackburne & Kochanek 2010), inhomo-
geneities in the accretion disk (Gould & Miralda-Escudé 1997;
Schechter et al. 2003; Dexter & Agol 2011), or broad absorption
clouds shadowing the quasar (Wyithe & Loeb 2002). Works by
Sluse & Tewes (2014) and Paic et al. (2022) also propose that a
differential magnification of the reverberated flux by the BLR
could produce extrinsic variations on the same timescale as the
intrinsic variations of the quasar.

In the case of Q J0158−4325, the fast microlensing varia-
tions appear to be periodic, which is not observed in any other
lensed system monitored by COSMOGRAIL. This periodic sig-
nal is visible over the period 2003–2010, which coincides with
the period where the microlensing magnification of image B is
maximal. In this work we aim to qualitatively explain the ori-
gin of this periodicity. This paper is organised as follows: In
Sect. 2 we describe the observational data used in this analysis
and how the microlensing signal is extracted. Section 3 presents
the measurement of the period and amplitude of the periodic sig-
nal detected in the difference curve of Q J0158−4325 with a sim-
ple analytical model. Section 4 tests different hypotheses regard-
ing the origin of this periodicity. Finally, we conclude with a
discussion of our results in Sect. 5. Throughout this paper we
convert the angular size into physical size, assuming flat Λ cold
dark matter (CDM) cosmology with Ωm = 0.3, ΩΛ = 0.7, and
H0 = 70 km s−1Mpc−1.

2. Observational data

2.1. Data reduction

We use the R-band light curves of the doubly lensed quasar
Q J0158−4325 obtained from 13 years of monitoring at
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Fig. 1. HST image of doubly imaged quasar Q J0158−4325 in the
F814W filter (programme ID 9267; PI: Beckwith).

the Leonhard Euler 1.2 m Swiss Telescope (hereafter Euler)
in La Silla, Chile, in the context of the COSMOGRAIL
programme. Figure 1 shows the lensing configuration of
Q J0158−4325, as observed by the Hubble Space Telescope
(HST). The reduction and deconvolution of the Euler images are
described in detail in Millon et al. (2020a) and are based on the
MCS deconvolution algorithm (Magain et al. 1998). This proce-
dure allows us to precisely extract the flux at the position of the
multiple images while removing the contamination from the lens
galaxy. The Euler data cover the period August 2005–February
2018, with 527 epochs. Compared to the data presented in pre-
vious publications, the light curves are now calibrated using the
star located ∼2′′ to the east-south-east of the lens, labelled N1
in Fig. A.1 of Millon et al. (2020a). We used the Dark Energy
Survey (DES) Data Release 2 photometry (Abbott et al. 2021) of
this star in the R band to compute the zero point of the instrument
and calibrate the light curves. We note that this absolute calibra-
tion is only approximate due to a possible mismatch between the
DES r filter and the RG (‘Rouge Genève’) filter used for these
observations. This does not affect the present work.

In addition, we complement our dataset with 252 epochs
taken between August 2003 and December 2010 at the SMARTS
1.3 m telescope with the ANDICAM optical and infrared cam-
era, published in Morgan et al. (2012). Since these data overlap
with the Euler monitoring campaign, we merge all datasets into
a single light curve after fitting a flux and magnitude correc-
tion to compensate for the slight photometric offsets mainly due
to the differences in the filters and detector responses. This is
performed with the curve-shifting package PyCS32 (Tewes et al.
2013; Millon et al. 2020c), which we use to fit a spline model
on each image’s SMARTS light curve. We then minimise the
difference between the spline-interpolated light curves and the
Euler data by applying a magnitude shift, followed by a shift in
flux. Including both the Euler and SMARTS data, we obtain an

2 https://gitlab.com/cosmograil/PyCS3

interrupted light curve between August 2003 and February 2018
totalling 779 epochs3.

2.2. Microlensing curve

The time delay between image A and image B of Q J0158−4325
has been measured to be ∆tAB = 22.7 ± 3.6 days from the Euler
and SMARTS monitoring data, with image A leading image B
(Millon et al. 2020a). The microlensing signal can be extracted
by shifting the curves by the estimated time delay and subtract-
ing them. In doing this, we use a Gaussian process regression to
interpolate between the data points before performing the sub-
traction. The resulting difference curve is shown in the second
panel of Fig. 2. We refer to this curve as the ‘microlensing curve’
in the rest of this paper, but we note that it contains all extrin-
sic variations from both images not related to the quasar intrin-
sic variations. We do not interpolate over season gaps since the
Gaussian process regression is poorly constrained in these parts
of the light curves. Thus, the seasons of the microlensing curve
are 22.7 days shorter than the visibility season. The photometric
uncertainties of the microlensing curve are computed by adding
in quadrature the photometric uncertainties of image B and the
uncertainties of the Gaussian process model fitted onto image A.
The uncertainty in the time delay does not significantly impact
our microlensing curve as a shift of the time delay by 3.6 days in
either direction only introduces an additional error of the order
of 3 mmag, that is, ∼7 times smaller than the average photomet-
ric uncertainty of the Euler difference light curve. We therefore
neglect this additional source of uncertainty.

The dotted horizontal line on the second panel of Fig. 2 indi-
cates the expected magnitude difference from the macro-models
of Morgan et al. (2008), ∆0 = 0.87 mag. The microlensing curve
shows a slow decrease between 2005 and 2018, with image B
initially ∼0.55 mag brighter than predicted by the macro-models
published by Morgan et al. (2008). The brightness of image A
increases slightly while that of image B decreases more con-
sistently over the same period. In this particular case, it seems
that the microlensing variation is dominant in image B, espe-
cially in the first half of the monitoring campaign. This sce-
nario is supported by the spectra of Q J0158−4325 obtained in
2006 (Faure et al. 2009), which reveal an unusually low contrast
between the continuum and the broad lines in image B, which is
best interpreted as strong microlensing in that image. For these
reasons, we assume in the rest of the paper that the microlensing
activity was dominant in image B, whereas image A mostly con-
tains the intrinsic signal of the quasar. By removing the intrinsic
variations visible in image A, we assume that we obtain clean
observations of the extrinsic microlensing activity happening in
image B.

It is remarkable to observe periodic variations in the first part
of the microlensing curve, between 2003 and 2011, also cor-
responding to a period when image B is highly magnified by
microlensing. Over this period, the microlensing magnification
varies by about 0.7 mag with modulations of ∼0.2 mag (peak-
to-peak) with a period of ∼170 days in the observer frame. The
period is significantly smaller than 6 months, which rules out
the possibility of a seasonal effect. Moreover, the amplitude of
the periodic signal is maximal when the microlensing magnifi-
cation is also maximal, reaching, for example, 0.26 ± 0.02 mag
during the season 2005–2006. This corresponds to a modulation

3 Our data are publicly available from the COSMOGRAIL database:
https://obswww.unige.ch/~millon/d3cs/COSMOGRAIL_
public/
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Fig. 2. R-band light curve of the lensed quasar Q J0158−4325. The light curves combine the data obtained at Euler (2005–2018; Millon et al.
2020a) and SMARTS (2003–2010, Morgan et al. 2012). Top panel: the solid blue and orange lines correspond to the Gaussian process regression
used to interpolate the data, along with their uncertainties (shaded envelope). Second panel: difference light curve between image B and image A,
shifted by the time delay. We interpolate between the data points using the Gaussian process regression shown in the top panel. The horizontal
dashed line shows the expected flux ratio, in the absence of microlensing, computed from the macro lens model. Third and fourth panels: residuals
of the Gaussian process regression.

of the flux of image B by 26%. The periodicity then disappears
after 2011, when image B likely becomes de-magnified. Over
the 15 yr of our monitoring, the microlensing magnification has
changed by 1.22 mag, making Q J0158−4325 one of the most
microlensing-affected systems of the COSMOGRAIL sample.

3. Period measurement

3.1. Empirical model definition

We considered a simple model to represent the periodic varia-
tions seen in the microlensing curve over the period 2005–2010,
which become largely attenuated over the period 2010–2012.
Here, we fit the observed flux ratio between the two images of
the quasar, Fµ,o(t), rather than the magnitude difference:

Fµ,o(t) ≡ FB(t)
FA(t)

. (1)

We include a smooth model S (t) for the long-term variation
in the microlensing as well as the zero-point flux ratio, described

as a third-order polynomial:

S (t) = a3t3 + a2t2 + a1t + a0, (2)

which is sufficient to represent the long-term change of the
flux ratio over the period 2005–2012. Our model considers that
the amplitude of the periodic signal is linearly related to the
microlensing amplitude:

Fµ,m = (A · S (t) + C) · sin
(

2π
Po

t + φ

)
+ S (t), (3)

where Fµ,m is the modelled flux ratio, A and C are free scaling
parameters, Po is the period in the observed frame and φ is the
phase.

We perform a Bayesian fit with the likelihood defined as

lnL = −1
2

N∑

i=1


(Fµ,o(ti) − Fµ,m(ti))2

s2
i

+ ln(s2
i )
 , (4)
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Table 1. Best-fit reduced χ2 and median values of the main model parameters for the Euler, SMARTS, and joined Euler+SMARTS datasets.

Dataset χ2
red A T [days] φ C δ Time span

SMARTS 4.55 0.07+0.02
−0.02 175.83+1.52

−1.54 2.41+0.25
−0.23 −0.018+0.011

−0.012 0.018+0.001
−0.001 2005–2012

Euler 6.46 0.11+0.02
−0.02 172.57+0.85

−0.86 2.32+0.15
−0.16 −0.030+0.009

−0.009 0.019+0.001
−0.001 2005–2012

Euler+SMARTS 6.26 0.07+0.02
−0.02 173.85+0.90

−0.86 2.49+0.16
−0.15 −0.018+0.007

−0.008 0.020+0.001
−0.001 2005–2012

Notes. Reported uncertainties correspond to the 16th and 84th percentiles of the posterior distributions.
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Fig. 3. Flux ratio FB/FA as observed by the Euler telescope over the period 2005–2012. The solid red line shows our best-fit model. The dashed
black line shows the smooth polynomial model representing the slow microlensing variations.

where s2
i = σ2

i +δ2,σi is the individual epoch photometric uncer-
tainty, and δ is the global intrinsic scatter. We add the intrinsic
scatter δ as a free parameter to account for possibly underesti-
mated photometric uncertainties, or additional complexity in the
data not captured by this simple model.

Following Bayes’ theorem, we used the posterior distribution
of the free parameters, ω,

P(ω|dEuler, dSMARTS) ∝ L(dEuler, dSMARTS|ω)P(ω). (5)

We chose uninformative flat priors; A ∈ [0, 5], Po ∈
[0, 300] days, φ ∈ [0, 2π), C ∈ [−1, 1], δ ∈ [0, 1] and
a0, a1, a2, a3 ∈ [−1, 1]. We restrict our analysis to the period
2005–2012 where the periodic variations are the most prominent
and clearly seen above the noise level. We leave the interpreta-
tion of the complex microlensing signal over the period 2003–
2005 for the discussion in Sect. 5.

3.2. Results

The posterior distributions are sampled using the nested sam-
pling python package DYNESTY (Speagle 2020). The median as
well as the 16th and 84th percentiles of the marginalised pos-
terior distributions are quoted in Table 1 for the SMARTS, the
Euler and the joined SMARTS-Euler dataset. Here, the reported
χ2

red only include the photometric uncertainties. The derived
periods from the three datasets are compatible within 2σ. Our
most precise estimation is from the Euler dataset with Po =

172.6+0.9
−0.9 days. The best-fit to the SMARTS data has a signif-

icantly smaller χ2
red but mostly because of larger photometric

uncertainties. This results in a degraded precision on the derived
period when adding this dataset. For this reason, we restrict our
analysis to the Euler data only for the rest of this paper. The
best-fit on the Euler dataset is shown in Fig. 3.

The χ2
red of the fit is significantly above 1 for all three

datasets, indicating that our single sinusoid, whose amplitude is
linearly related to the microlensing magnification, is not suffi-
cient to capture the full complexity of the signal. This is also
reflected in the intrinsic scatter, which is significantly larger
than 0. We experimented with higher-order corrections of the
amplitude of the sinusoid without obtaining a significantly better
fit. We thus decided to keep our model as simple as possible but
this might be an indication that more complex phenomena, such
as the differential reverberation proposed by Paic et al. (2022),
are happening.

3.3. Lomb-Scargle periodogram

A standard technique for the spectral analysis of unevenly
spaced time series is the Lomb-Scargle periodogram (Lomb
1976; Scargle 1982). Here, we used the PyAstronomy4

(Czesla et al. 2019) implementation of the generalised Lomb-
Scargle (GLS) periodogram (see Zechmeister & Kürster 2009),

4 https://github.com/sczesla/PyAstronomy
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Fig. 4. Generalised Lomb-Scargle periodogram of the flux ratio
observed by the Euler telescope over the period 2005–2011. The data
were corrected from the long-term microlensing trend before computing
the periodogram. The vertical green line indicates the peak frequency.

which accounts for offsets and variable uncertainties across the
data points. We first corrected our data from the best-fit poly-
nomial found in the previous section in order to remove the
long-term microlensing trend. We then applied the GLS algo-
rithm to the corrected data, with frequencies ranging from 20−1

to 1000−1 days−1. The resulting periodogram on the Euler dataset
is displayed in Fig. 4, which shows a clear peak at a period of
about 171 days as well as smaller harmonic peaks at about 342
and 684 days. The same three peaks are also clearly detected on
the SMARTS and the joined Euler-SMARTS datasets.

Red-noise like variability observed in active galactic nuclei
has been shown to potentially produce spurious periodic sig-
nals, if only a few cycles are observed (Vaughan et al. 2016).
In the present case, we stress that we observe more than ten
cycles between 2005 and 2011. Moreover, the periodic signal
is not obvious in the direct emission but is unveiled only in the
microlensing light curve, where the intrinsic variations of the
quasars are expected to be cancelled. We therefore do not expect
the microlensing light curve to be affected by the red noise vari-
ability of the quasar. However, Sluse & Tewes (2014) have pro-
posed a mechanism where the stochastic variability of the quasar
could be echoed in the microlensing curve if a significant frac-
tion of the R-band flux is emitted from a region unaffected by
microlensing. We show in Appendix A that this mechanism is
not sufficient to reproduce the large amplitude of the extrinsic
variations seen in the microlensing light curve. We still used
this physically motivated model to generate 5000 simulated light
curves from a damped random walk (DRW) and compute the
microlensing curve for each of them, using the same differential
microlensing model as presented in Paic et al. (2022). The simu-
lated light curves have the same sampling and photometric noise
as the real data (see Appendix A for the details of this test).

Only 0.6% of the curves produces a peak in the GLS peri-
odogram with more power than observed in the Euler data over
the period 2005–2011. We conclude that this differential rever-
beration model is unable to reproduce the periodicity observed
in the first part of our observations at 3.7σ significance level.
Although it might still explain the small amplitude flickering
seen in the second part of our observations and in other systems
of the COSMOGRAIL sample, we conclude that it is improbable
that the observed periodicity arises by chance from the differen-
tial reverberation model proposed by Sluse & Tewes (2014) and
Paic et al. (2022).

4. Origin of the periodic signal

We propose four hypotheses to explain the periodicity observed
in the extrinsic variability of image B.

Hypothesis 1: The microlensing magnification is modulated
by a secondary star (or a planet) in the lens plane. The microlens-
ing event seen in image B is in fact produced by a pair of
microlenses.

Hypothesis 2: Q J0158−4325 is a binary black hole, with
two SMBHs in their final stage before merging. The motion of
the accretion disk around the centre of mass of the system in the
source plane is at the origin of the observed signal.

Hypothesis 3: The accretion disk contains an inhomogene-
ity in Keplerian motion around the central SMBH, which is
approaching the micro-caustic periodically.

Hypothesis 4: The inner part of the accretion disk is in
precession. This precession could be due to the Bardeen-
Peterson effect (Bardeen & Petterson 1975) or because the disk
is eccentric, which implies that the pericentre of elliptical orbits
advances at each revolution in a Schwarzschild potential.

Each of these scenarios is detailed in the following sub-
sections, where we propose simple toy models to evaluate if
these hypotheses could reproduce the same amplitude and period
of the microlensing signal. We assume that the light intensity
profile of the quasar’s accretion disk is represented by a non-
relativistic thin-disk profile (Shakura & Sunyaev 1973) such that

I0(R) ∝ 1
exp(ξ(R)) − 1

, (6)

where

ξ(R) =

(
R
R0

)3/4 1 −
√

Rin

R


−1/4

. (7)

In this last equation, Rin corresponds to the radius of inner
edge of the accretion disk and R0 is the scale radius, which can
be estimated from the black hole mass, MBH:

R0 = 9.7 × 1015 cm
(
λs

µm

)4/3 (
MBH

109M�

)2/3 (
L
ηLE

)1/3

, (8)

where λs is the observed wavelength in the quasar rest frame,
LE is the Eddington luminosity and η is the accretion efficiency.
Assuming a typical Eddington ratio L/LE = 1/3, accretion effi-
ciency of 10% (η = 0.1), and a black hole mass of MBH =
1.6× 108M� based on Mg II line width measurement (∼0.35 dex
uncertainties, Peng et al. 2006), we derive a characteristic scale
of the accretion disk of R0 = 7.9 × 1014 cm at 650 nm in the
observer frame, corresponding to λs = 650 nm/(1+zs) = 284 nm
in the quasar rest frame. This corresponds to 0.3 light-days. R0 is
related to the half light radius of the profile through the simple
relation R1/2 = 2.44R0. Finally, we fixed

Rin = 6rg, (9)

where rg = GMBH/c2 is the gravitational radius. Rin corre-
sponds the size of the innermost stable circular orbit (ISCO)
for a Schwarzschild black hole. We adopted a fiducial macro
lens model from Morgan et al. (2008) for a stellar mass fraction
fM/L = 0.9 (κ = 0.72, γ = 1.03, κ?/κ = 0.92 for image B). For
the population of microlenses used in Sect. 4.3, we made simi-
lar assumptions to those by Paic et al. (2022), that is, a Salpeter
initial mass function with mean stellar mass 〈M〉 = 0.3 M�
and a mass ratio of 100 between the heaviest and the lightest
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Fig. 5. Simulation of the microlensing effect produced by a binary star. Left panel: source plane micro-caustics (black) created by a pair of stars
located at the position of image B in the lens plane. The green and orange triangles show the stars’ locations, which are separated by 200 AU. The
inset panel zooms in onto the position of the accretion disk. The light (dark) blue circle corresponds to the accretion disk size R0 (size of the ISCO,
RISCO). Right panel: magnitude change of image B due to the periodic motion of the microlenses. An animated version of this figure is available
online.

microlenses. The mean Einstein radius RE of the microlenses,
projected into the source plane, is defined as

RE = Ds ×
√

4G〈M〉
c2

Dls

DlDs
, (10)

where Ds, Dl, and Dls are the angular diameter distances to
the source, to the lens and between the lens and the source.
For 〈M〉 = 0.3 M�, the Einstein radius is RE = 3.4 × 1016 cm
(13.1 light-days). We note that the size of the accretion disk
is smaller than the typical Einstein radius of the microlenses
(R0/RE = 0.023), which makes this system likely to be affected
by large microlensing variations.

4.1. Binary microlenses

In this first scenario, we assume that the periodic variations orig-
inate from a stellar binary (or a planetary system) in the lens
plane. We aim at estimating the amplitude of the microlensing
modulations that such a binary system would produce. First, we
fixed the orbital period of the binary system in the lens plane to

Pl = 2Po/(1 + zl), (11)

where Po is the measured period in the observer frame and zl =
0.317 is the lens redshift. For the measured Po = 172.6 days,
this gives Pl = 262.1 days. The factor of 2 introduced in Eq. (11)
comes from the fact that a binary system produces a modulation
of the microlensing signal at half the orbital period. By fixing the
period and the masses of the two binary stars, the semi-major
axis is imposed through Kepler’s second law. Additionally, we
assume that the orbital motion is circular and perpendicular to
the plane of the sky.

Second, we use the lens modelling software lenstronomy
(Birrer et al. 2021) to generate the microlensed images of the
accretion disk. Our lens model is composed of two point masses
(representing the stars) plus external convergence and shear
(κ = 0.72, γ = 1.03) corresponding to the value of our fidu-
cial macro lens model at the position of image B. We note that,

since image B is a saddle point, the caustic produced by the pair
of stars is split in two, as can be seen on the left panel of Fig. 5
(see e.g. Schechter & Wambsganss 2002, for a discussion of the
properties of microlensing caustics near a macro saddle point).

We assume a thin-disk profile (Eq. (6)) located at a distance
d = 0.5R0 from the fold of the caustics in the source plane.
We let the system evolve for one full period and compute the
total flux of image B at each time step. We compute ∆m, the
maximum peak-to-peak amplitude (in magnitude) of the peri-
odic microlensing signal. It corresponds to the maximal change
of microlensing magnification due to the orbital motion of the
two stars acting as microlenses.

The choice of d = 0.5R0 maximises the amplitude of the
periodic signal for a pair of 1 M� stars. This optimal distance
slightly varies with the mass of the microlenses but we fix it to
d = 0.5R0 for all microlenses’ masses since it does not change
∆m by more than a factor of 10. Similarly, we chose a location
near the caustic’s fold that maximises the signal but other choices
(e.g. positioning the disk near the caustic’s cusp) reduces the
amplitude by no more than a factor of 10.

Keeping the same source position relative to the caustic, we
repeat the experiment for a pair of compact bodies (stars or plan-
ets) with a mass M?,1 and M?,2 in the range 10−6−102 M�. The
amplitude of the microlensing signal ∆m produced by such a
binary system is shown on the left panel of Fig. 6. We recall
that the observed ∆m for Q J0158−4325 is ∼0.2 mag. Even an
extremely massive pair of 100 M� stars would not be able to
produce a periodic modulation of more than 10−5 mag, that is,
4 orders of magnitude smaller than the observed signal.

The right panel of Fig. 6 shows ∆m as a function of the orbit-
ing radius r? of the binary system and its total mass M?,tot =
M?,1 + M?,2, with M?,1 = M?,2. In this case, the orbital period is
not forced to match the observed one.

In this last example, we are able to reproduce the observed
amplitude but not the correct period. This is highlighted in Fig. 5
for a pair of 1 M� stars. The modulation of the microlensing
amplitude can reach 0.1 mag but only when the two stars are
separated by 200 astronomical units (AU). This corresponds to
a much longer period of 2000 yr. It is therefore not possible to
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Fig. 6. Maximal amplitude of the periodic signal, ∆m, for a pair of stars of mass M?,1 and M?,2 (left panel). The period is fixed to the observed
Pl = 262 days, which imposes the separation between the two stars. The right panel shows the maximal amplitude of the periodic signal, ∆m, as a
function of the total mass of the binary system, M?,tot, and the radius of the orbit, r?. In this case, the orbital period is not fixed and is indicated by
the black contours.

reproduce both the period and amplitude of the observed sig-
nal. Even when choosing an ideal source position relative to the
micro-caustic and extremely massive microlenses the observed
signal is at least 4 orders of magnitude larger than our simula-
tions. Moreover, we took a conservatively small value for the
accretion disk size, which might in fact be several times larger
than predicted by the thin-disk theory (see e.g. Pooley et al.
2007; Morgan et al. 2010; Cornachione & Morgan 2020, or an
overview of this issue). A larger disk would further reduce the
amplitude of the microlensing signal. It is therefore extremely
unlikely that the periodicity observed in the microlensing curve
of Q J0158−4325 originates from binary microlenses in the lens
plane.

4.2. Supermassive binary black hole

We explore the possibility that the modulation of the microlens-
ing signal originates from a system composed of two gravita-
tionally bound SMBHs. The orbital period in the source plane is
Ps = Po/(1+zs) = 75.4 days. We repeat the experiment presented
in Sect. 4.1, but with a single 1 M� star acting as a microlens in
the lens plane. This time, the periodic motion is generated by
displacing the centre of the thin-disk profile in the source plane
around the centre of mass of the binary system.

Similarly to Sect. 4.1, we position the centre of mass of the
system at a distance d = 0.5R0 from the fold of the micro-
caustic to maximise the microlensing amplitude. However, we
do not associate any light emission with the secondary black
hole; the modulation of the light profile occurs only because the
primary black hole and its accretion disk orbit around the sys-
tem’s centre of mass. Here, we neglect the possibility that the
secondary black hole may also have its own accretion disk, or
that complex structures such as circumbinary disks and mini-
disks may arise from the gravitational interaction of the two sys-
tems (see also Sects. 4.3 and 5 for a more detailed discussion
of this issue). Several numerical simulations (e.g. Cuadra et al.
2009; D’Orazio et al. 2013; Bowen et al. 2018) predict the for-
mation of a gap between the circumbinary disk and the two spi-
ralling black holes in the centre but the implementation of these
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Fig. 7. Maximum amplitude of the periodic signal, ∆m, as a function
of the secondary black hole mass, M2. The primary black hole mass is
fixed to our fiducial black hole mass estimate, MBH = 1.6 × 108 M�.

profiles is left for future work. Our simple representation is in
fact sufficient to reproduce the main features of the microlens-
ing curve, namely the period and the amplitude. Figure 7 shows
the maximal peak-to-peak amplitude ∆m for a secondary black
hole’s mass in the range 103−108 M� with the orbital period kept
fixed to Ps, and the mass of the main black hole M1 fixed to the
fiducial black hole mass of 1.6 × 108M�.

The observed microlensing amplitude is reproduced for a
binary companion mass of M2 ∼ 107 M�. This value should
rather be considered as a lower limit for M2 than a proper mea-
surement because we chose an optimal location of the system
relative to the micro-caustic and a conservatively small accretion
disk size. By changing some of the arbitrarily fixed parameters
in the model (such as the mass of the star acting as a microlens
or the distance from the caustic), one can easily accommodate
bigger masses for the secondary black hole.
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Solely based on our simulations, the hypothesis of a binary
SMBH is plausible and reproduces well the observed microlens-
ing curve. If we consider that the accretion disk might move
away from the caustic due to the relative motion of the source,
the star in the lens galaxy, the lens galaxy itself and the observer,
the microlensing magnification would be gradually reduced, and
the damping of the signal is easily reproduced.

However, such binary systems are thought to be rare because
of the rapid decay of their orbit due to GW emission. Neglect-
ing the dynamical friction and considering that the system loses
energy only through GW emission, the two black holes will
eventually merge on a coalescence timescale that depends on the
initial eccentricity and semi-major axis of the orbit. Assuming
M1 = 1.6×108 M�, M2 = M1/10, and a circular orbit, we obtain
an orbiting radius of r = 9.8 × 10−4 pc from the observed period
of 75.4 days in the source frame. The coalescence time of such a
close binary system reads (Peters 1964)

tcoal =
5

256
a4c5

G3M1M2(M1 + M2)
(12)

and is thus estimated to be tcoal ∼ 103 yr. This timescale is
extremely small compared to the age of the quasar at redshift
zs = 1.29, which is about 4 yr if the quasar was formed around
redshift 7. The probability of observing this system in the last
∼1000 yr before merging is approximately 2.6×10−7. If we con-
sider that the black hole could have encountered several merger
events during its lifetime, this probability can be increased by a
factor of a few but remains very small. Merger rates of SMBBHs
are yet to be constrained by observations and depend on the exis-
tence of primordial black holes (Auclair et al. 2022, see also
Erickcek et al. 2006 for an estimation of SMBH merger rates
observable with the Laser Interferometer Space Antenna).

Nevertheless, it is quite surprising, given the ∼30 lensed
quasars of the COSMOGRAIL sample, that we observe such
a system. However, if the mass of the black hole turns out to
be overestimated by a factor of 10, which is possible given that
black hole mass estimates based on broad line-width measure-
ments are notoriously uncertain, the coalescence time would be
much larger. Uncertainties on the black hole mass are typically
of the order of 0.3–0.4 dex from the intrinsic scatter of the virial
relationships (e.g. Peterson et al. 2004; Mejía-Restrepo et al.
2016) but several biases may affect the measurements, especially
if the black hole is a binary. If the mass of the primary black hole
is rather of the order of M1 = 1.6 × 107M�, the same mass ratio
would also reproduce both the amplitude and period of the sig-
nal. In this case, we find a larger coalescence time of 5 × 104 yr,
under the same assumptions. The probability of observing this
system would still be small (of the order of 10−5) and reaches
3 × 10−4, if we consider the 30 light curves of the COSMO-
GRAIL sample.

In summary, the scenario of a SMBBH is appealing to
explain the observed signal in the light curve but it hardly accom-
modates for the very short lifetime of these systems when the
decay of the orbit is dominated by GW emission. The probability
of observing this system in its final stage before merging is small
unless the black hole mass of Q J0158−4325 is largely overes-
timated, or if the merging is delayed by the gravitational inter-
action of a gaseous circumbinary disk (this issue is discussed in
more detail in Sect. 5). In this case, detecting such a signal would
be rare but not completely excluded.

Assuming that the emission closest to the larger black hole is
not disrupted by the merger process, a possible observational sig-
nature would be periodic Doppler shifts of the electromagnetic

emission. This would be observed at X-ray wavelengths, by mea-
suring the 6.4 keV Fe-Kα line shift. The Keplerian velocity of the
system is ∼27 000 km s−1, but for a mass ratio of q ∼ 10, the line-
of-sight velocity of the primary black hole is up to 2700 km s−1,
depending on the inclination angle. Line energy variations, both
intrinsic and extrinsic (Bhatiani et al. 2019), are typically larger
than the 5% level, making such a periodic spectroscopic detec-
tion difficult. For this reason, we cannot convincingly conclude
that the Fe-Kα line shift seen in the X-ray monitoring data
obtained for this system by Chartas et al. (2017) is due to a sec-
ondary black hole. Continued photometric monitoring at optical
wavelengths, however, should clearly reveal the periodic signal
during a microlensing event in either image, under the SMBBH
hypothesis.

4.3. Inhomogeneities in the accretion disk around the ISCO

In our third scenario, we explore the possibility of a small inho-
mogeneity in the accretion disk, differentially amplified due to
microlensing magnification of image B. In this case, the bright
‘hotspot’ may periodically approach a micro-caustic, hence
modulating the magnification of this region of the disk. To test
this scenario, we generate microlensing magnification maps by
inverse ray-shooting with the GPU-D software (Vernardos et al.
2014). The size of the maps is 20RE × 20RE.

First, we searched for trajectories in the magnification maps
that correspond to the long-term trend observed in the microlens-
ing curve. This is performed in a similar way to the Monte-Carlo
method presented in Kochanek (2004), except that we are not
aiming to measure the accretion disk size of the quasars, which
is degenerate with the total relative velocity between the quasar,
the microlenses and the observer. Here, we fix the accretion disk
size to its thin-disk predicted value, R0 = 7.9×1014 cm (0.3 light-
days). We generate 106 random trajectories through the magnifi-
cation maps assuming a total transverse velocity V , in the range
[0–2000] km s−1. We compute the flux ratios between image A
and image B along these trajectories, assuming that A is unaf-
fected by microlensing. We compare these simulations to obser-
vational data by taking the weighted mean of the observed flux
ratios in each season. The five best-fit trajectories are shown in
Fig. 8.

Several combinations of total transverse velocity and loca-
tion relative to the micro-caustics offer a good fit to the global
microlensing trend with a χ2

red < 1. However, those trajectories
cannot reproduce the periodic features observed between 2005
and 2010. Therefore, we propose here a more detailed model of
the microlensing curve with an accretion disk including a hotspot
orbiting the central black hole. A Gaussian profile is added to a
standard thin-disk profile to represent the hotspot, with its width
fixed to 2 pixels full width half maximum. This corresponds to a
physical size of 1.7 × 1014 cm (0.07 light-days). The period, P,
the luminosity ratio Lratio = Ldisk/Lhotspot, the initial phase of the
orbit θ0 and the accretion disk size R0 are left as free parame-
ters. The radius of the orbit is determined by the period and the
black hole mass, which is kept fixed to MBH = 1.6 × 108M�.
To limit the number of free parameters, we assume that the
hotspot is on a perfectly circular orbit, perpendicular to the
plane of the sky in a face-on disk, but our results can be eas-
ily generalised to elliptical orbits and inclined accretion disks.
We adopted flat priors: Po ∈ [0, 300] days, Lratio ∈ [0, 10],
θ0 ∈ [0, 2π], and log10(R0/cm) ∈ [14, 17]. We then computed
the flux ratio along the pre-defined trajectory and compare it
with the entire observed Euler light curve. We restrict our anal-
ysis to a smaller cutout of the magnification map, encompassing
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Fig. 8. Modelling of the long-term flux ratio variations from realistic microlensing simulations. Left panel: magnification map, convolved by a
thin-disk light profile with R0 = 7.9 × 1014 cm (0.3 light-days). The five best-fit trajectories are shown in colours. Right panel: observed flux
ratios FB/FA of the two lensed images. The observations are averaged by season in order to fit only the long-term variations, attributed to the
displacement of the quasar through the micro-caustic network. The five best-fit trajectories are shown as dashed lines. The horizontal dotted line
corresponds to the flux ratio expected from the macro lens model. The legend indicates the total transverse velocity, V , corresponding to the
selected trajectory as well as the associated reduced χ2 of the fit.

the best-fit trajectory, in order to keep the computational time
manageable.

We used the Python nested sampling package DYNESTY and
the auto-differentiation package JAX (Bradbury et al. 2018) for
the likelihood evaluation to make a Bayesian inference possible
in a reasonable time on a single GPU. Figure 9 shows the tra-
jectory in the magnification map, the microlensed accretion disk
profile, and the best-fit simulated light curve. The posterior dis-
tributions of the free parameters are shown in Fig. 10.

This model reproduces well the main features of the light
curve but the amplitude of the oscillations is not always matched.
Our goal is not to exactly reproduce the data as this would
require finding the ensemble of tracks that are compatible and
simultaneously account for the unknown complexity of the
source. Considering the various hypotheses to be tested and the
numerical complexity of such a fit, we do not attempt to per-
fectly model all the features seen in the microlensing curve.
Still, with this simple physical model, we recover a similar value
of the period (Po = 172.69+0.08

−0.06 days) as our purely empirical
model presented in Sect. 3. Interestingly, the luminosity ratio
between the main accretion disk and the hotspot is constrained
to Lratio = 4.8+0.2

−0.2. Although R0 is left as a free parameter, we
have an implicit prior on the accretion disk size coming from the
pre-selected trajectory, chosen to fit the long-term trend of the
microlensing curve. We nevertheless recover a similar luminos-
ity ratio by selecting trajectories with 0.5R0 and 2R0 and repeat-
ing the experiment.

The black hole mass estimates from Peng et al. (2006) and
the observed period constrain the distance of the hotspot from the

central black hole, which is localised relatively far from the cen-
tre (120rg). If we remove our assumption on the black hole mass,
we can compute the relation between the black hole mass and the
semi-major axis of the orbit for a fixed period of 75.4 days. This
is shown in Fig. 11.

We have not yet discussed what could be the emission mech-
anism at play in this hypothetical hotspot, producing around
20% of the total UV flux. A first explanation would be that
it is powered by accretion onto a secondary smaller black
hole, which would be similar to our second scenario. Alter-
natively, one can imagine that a compact region of the disk
is significantly hotter than the rest of the accretion disk. To
produce 20% of the UV flux, this hotspot would preferably
be located close to the ISCO, which would require the mass
of the black hole to be largely underestimated. Bringing the
hotspot to the ISCO would require an extremely large black
hole mass of the order of 1010M�. Although accretion disks
are thought to be inhomogeneous at some level, the model of
inhomogeneous accretion proposed by Dexter & Agol (2011)
rather produces small temperature fluctuations everywhere in the
disk rather than in one single, hot, UV-emitting region. Mod-
els predicting numerous small inhomogeneities in the accre-
tion disk would not produce the periodicity observed in the
data.

In addition, if the hotspot is powered by a mechanism other
than accretion and is not bound by gravity, we would expect
that the local inhomogeneity in the disk is rapidly disrupted by
Keplerian shear. This is a similar argument made by
Eracleous et al. (1995), who estimated that inhomogeneities
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Fig. 9. Inhomogeneous accretion disk simulations. Left panel: microlensing magnification map. The red line shows the trajectory that best fits
the long-term microlensing trend (see Fig. 8). Middle panel: microlensing magnified accretion disk profile, including a Gaussian hotspot orbiting
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online.
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would dissipate on a timescale of order

τshear ≈
2rPKep

3h
, (13)

where r is the radius of the orbit, PKep is the Keplerian period and
h is the radial extent of the inhomogeneity. Considering that the
inhomogeneity is approximately the size of the local height of the
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Fig. 11. Black hole mass as a function of the semi-major axis of the
hotspot’s orbit. The orbital period is fixed to the observed one, Ps =
75.4 days. Peng et al. (2006) estimates of the black hole mass imply
that the emission region of the disk at the origin of the periodic signal
is located at around 120rg from the central black hole. The vertical blue
line indicates the ISCO for a Schwarzschild black hole.

disk we obtain (Veilleux & Zheng 1991; Eracleous et al. 1995)

τshear ∼ 7
(

MBH

108M�

) (
r

100rg

) ( T
105K

)−1/2

yr, (14)

where T is the local temperature of the disk. This means that a
hotspot localised at ∼120 gravitational radii from a central black
hole of MBH = 1.6×108M� will dissipate in about 13 yr because
of Keplerian shear. This timescale is indeed longer than our
observational baseline. The fact that such an extremely bright
hotspot has appeared exactly during the high magnification event
of image B would imply that they are much more common than
expected. This is at odds with the observations of other lensed
quasar microlensing events. The last possibility is that the same
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region of the disk is constantly heated, regenerating the hotspot
on a timescale smaller than τshear. To our knowledge, no such
mechanism is capable of producing one-fifth of the quasar lumi-
nosity on a single small region of the disk. In the same vein,
obscuring a part of the disk (as proposed by e.g. Wyithe & Loeb
2002) could introduce the observed periodicity but to match
the amplitude it would require masking one quarter of the total
quasar luminosity, and thus would also quickly be disrupted by
Keplerian shear.

Overall, accretion onto a secondary black hole seems the
most plausible, if not the only, mechanism capable of produc-
ing the required amount of UV flux, while keeping the emis-
sion region sufficiently small to be significantly amplified by
microlensing.

4.4. Precessing accretion disk

Eccentric accretion disk models were originally proposed to
account for asymmetric double-peaked emission lines seen in
quasar spectra (Eracleous et al. 1995; Strateva et al. 2003). Two
main mechanisms were put forward to explain their formation:
(1) a perturbation of the disk by tidal forces induced by a smaller
black hole and (2) elliptical accretion of the debris resulting from
the disruption of a star. In the case of Q J0158−4325, the black
hole seems too massive to provoke a tidal disruption event. A star
approaching the black hole would be swallowed without being
disrupted (Rees 1988).

Regardless of the formation channel, eccentric disks precess
due to the advance of the orbit’s pericentre in a Schwarzschild
potential. The precession angle per revolution is given by

δφ =
6πGMBH

c2a(1 − e2)
, (15)

where a is the semi-major axis of the orbit and e its eccentricity.
This implies a precession period of (e.g. Eracleous et al. 1995;
Storchi-Bergmann et al. 2003)

Pprec ∼ 3.29
(

MBH

108M�

) (
r

100rg

)5/2

yr, (16)

where r is the pericentre distance of the orbit. Fixing Pprec to the
observed period in the source plane, Ps = 75 days, we obtain
from Eq. (16) an estimate of the orbit radius of the emitting
region in precession:

rprec ∼ 27rg. (17)

Following the argument of Eracleous et al. (1995), the
timescale on which an orbit will circularise due to differential
precession can be estimated as

τcirc ∼ 2 × 104
(

MBH

108M�

) (
r

100rg

)2

(1 + e)
( T
105K

)−1/2

yr. (18)

If we assume a local temperature of the UV emission region of
∼5000 K, the circularisation timescale at rprec is τcirc ∼ 2600 yr.
This timescale is to be compared with the local viscous timescale
to determine if the disk can remain eccentric for a sufficiently
long time. The local viscous timescale is given by (Frank et al.
1992):

τvisc ∼ 3150 α−4/5ṁ−3/10
(

MBH

108M�

)3/2 (
r

100rg

)5/4

yr, (19)

where α is the viscosity parameter as defined by
Shakura & Sunyaev (1973), and ṁ is the accretion rate in

M�·yr−1. Assuming a typical value for α of 0.2 and a typical
accretion rate of 1 M�·yr−1, the viscous timescale of the precess-
ing region can be roughly estimated to τvisc ∼ 4500 yr. The two
timescales are comparable, which indicates that the differential
precession plays an important role in the circularisation of the
disk. As discussed in Eracleous et al. (1995), only the outer part
of the disk (r > 100rg) could maintain a significant eccentricity.
This would, however, lead to a much longer precession period,
of the order of ∼1000 yr, hence impossible to detect. This
scenario seems therefore improbable unless the eccentricity has
developed recently or is maintained by tidal forces.

We finally propose that a detached disk is in precession; not
because of its eccentricity but because it would be subject to
Lense & Thirring (1918) differential torques if the disk is not
aligned with the black hole spin (Bardeen & Petterson 1975).
The disk might break into several rings, which precess at differ-
ent rates (Nixon & King 2012; Nealon et al. 2015). In this sce-
nario, the orientation of the disk relative to the line of sight might
change periodically, hence modulating the luminosity. Alterna-
tively, the detached disk might also shadow periodically the cen-
tral source. The precession period is given by

PLT = π
c3a3(1 − e2)3/2

G2M2
BHχ

, (20)

where χ is the dimensionless black hole spin parameter. Assum-
ing no eccentricity, and black hole spin in the range χ = 0.1−0.9,
we estimate the radius of the detached ring in the range 8−17rg
to match the observed period, assuming that the modulation of
the signal occurs at twice the precession frequency. This result
is difficult to accommodate with theoretical expectations, which
predict that the inner disk (r . 100rg) should align rapidly with
the black hole spin because of the differential Lense & Thirring
(1918) torques (see e.g. Natarajan & Pringle 1998; King et al.
2005; Nixon & King 2012, and references therein). However,
recent general-relativistic magnetohydrodynamic simulations by
Liska et al. (2021) have shown that the alignment radius might
be as small as 5–10 gravitational radii in the case of thin, highly
tilted disks around rapidly rotating black holes. Although it can-
not be completely excluded, this scenario of an accretion disk
in rapid precession would face a second difficulty; if a detached
disk is obscuring periodically the central source, it should also
leave an imprint in image A, which is not observed. We did not
detect any significant power in the Lomb-Scargle periodogram
of image A at this frequency. Even in the case of a strong micro-
magnification gradient across the accretion disk in image B, it
is difficult to imagine a configuration where a detached precess-
ing disk would absorb up to 20% of the flux of image B while
staying unnoticed in image A.

5. Discussion

Q J0158−4325 has now been monitored in the optical for 15 yr,
thus allowing us to obtain a robust measurement of the time
delay. Given the time delay, it is now obvious that image B
has encountered a high magnification event during the period
2003–2008, with a possible caustic crossing between 2003 and
2006. The quasar has moved away from the caustic and is now
de-magnified by microlensing. Over the period 2005–2018, the
long-term microlensing trend is typical of a system exiting a
micro-caustic and is well reproduced in our simulation (see
Fig. 8). It is however not clear why the microlensing amplitude
has a maximum in the middle of the season 2003, decreases
in 2004 and reaches a second maximum of similar amplitude
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in 2006. It is possible that this double peak is the signature of
double caustic crossing with the quasar entering and exiting the
caustic 2 yr apart. However, we could not find any trajectories
matching both the long-term trend over the period 2005–2018
and the double peak in 2003 and 2005 for a single disk size. We
speculate that a more complex source-size effect plays an impor-
tant role during the high magnification event between 2003 and
2005, and a simple thin disk model following a rectilinear trajec-
tory through the microlensing magnification pattern is not suffi-
cient to represent our data.

Thus, for the rest of the analysis, we focused only on
the Euler data, covering the period 2005–2018, which contain
another key feature of the microlensing curve; periodic oscil-
lations of the image flux ratio. These oscillations are detected
at a period of 172.6 days during the high magnification event.
The amplitude of this signal decreases concomitantly with the
microlensing magnification of image B. We note that this period
of 172.6 days also matches with the peak observed in the first
season in 2003, providing supporting evidence that this peak
has the same physical origin as the rest of the oscillations. This
feature in the first season of the SMARTS data corroborates
the hypothesis that the periodic signal originates from a sub-
structure (possibly a secondary black hole) orbiting the quasar.

The scenario of a binary black hole as the origin of this peri-
odicity is appealing as it naturally explains both the amplitude
and period of the signal, whether or not the secondary black
hole has its own accretion disk and associated UV emission.
Our simple model shows that the motion of the main accretion
disk in the source plane around the centre of mass of the sys-
tem would be sufficient to reproduce the observed signal with
a modest mass ratio (q . 10), commonly observed in numer-
ical simulations (e.g. Volonteri et al. 2003, 2009). Similarly, if
the secondary black hole has its own light emission and its
orbit moves it periodically into higher and lower magnification
regions of the microlensing map, only a modest luminosity ratio
of ∼5 is required to fit our data. Assuming a rough scaling rela-
tion M ∝ L0.7 (Woo & Urry 2002), this leads to a mass ratio of
q ∼ 3, similar to that expected from a companion causing oscilla-
tions of the primary disk. These numbers are derived under sim-
plifying assumptions: that the quasar disk is seen face-on and the
orbital motion is circular and perpendicular to the line of sight.
Including all the orbital degrees of freedom might be necessary
to fully explain the shape of the oscillation seen in the microlens-
ing light curve but this is left for future work. We also assumed
that the light profile of the quasar follows a simple thin-disk
model or a Gaussian profile. Including a more realistic light pro-
file of the interacting accretion disk might also better reproduce
the observed data. Finally, there is a possibility that the two black
holes have similar UV brightness. We did not fit the mass and
luminosity ratios at the same time because these two quantities
are degenerate and it did not allow us to obtain meaningful con-
straints. However, in this scenario, the microlensing light curve
is modulated at half the orbital period. This would only change
the orbital parameters marginally (r = 1.6×10−3 pc) but leave the
rest of our conclusions unchanged. This last possibility would
qualitatively explain the second harmonic peak at 342 days seen
in the periodogram, although it could also be explained by the
amplitude of the signal decreasing over time, which would arti-
ficially create power at higher harmonics as well.

The main issue of the SMBBH scenario is the short lifetime
of these systems, due to the rapid decay of their orbit through
GW emission. This problem is in fact far from being insur-
mountable. Several simulations (Tang et al. 2017; Moody et al.
2019; Muñoz et al. 2019, 2020; Bortolas et al. 2021) have

demonstrated that, in some cases, the torques induced by cir-
cumbinary disks could counteract the GW-induced torques and
slow down the decay of the orbit (see e.g. Sect. 2.2.2.2 of
Amaro-Seoane et al. 2022, for a review of this issue). This mech-
anism could delay significantly the merger of the two black
holes, or even cause the two black holes to out-spiral. In this
case, close binaries separated by a few hundred rg to a thousand
rg would be much more common.

Finally, we estimate the characteristic strain and frequency
of the GW that could be observed from this system and com-
pare with the sensitivity curves of current and future PTA exper-
iments. For simplicity, we treat the two images separately and
ignore interferences although these can be used to break the
mass-sheet degeneracy (Cremonese et al. 2021). This is enough
to get an order of magnitude of the characteristic strain. The GW
frequency, fgw, corresponds to twice the observed frequency.
We assume the latter to match the orbital frequency, such that
fgw = 2/Po = 1.34 × 10−7 Hz, which falls in the PTA band
[10−9, 10−6] Hz. We note that this corresponds to a wavelength
of λgw = 0.072 pc, which is comparable to the Schwarzschild
radius of the lens galaxy, for which wave effects (Çalışkan et al.
2022) and polarisation distortions (Dalang et al. 2022) can be at
play5.

We assume the total mass of the system to be fixed Mtot =
M1 + M2 = 1.6 · 108M� and let the mass ratio q ≡ M1/M2 ∈
[1, 10] such that M2(q) = Mtot/(1+q) and M1(q) = q·M2(q). The
time evolution of the observed GW frequency for a binary sys-
tem in quasi-circular orbit that is slowly losing energy to GWs is
given by (see e.g. Maggiore 2007)

ḟgw(q) =
96
5
π8/3

(
GMz(q)

c3

)5/3

f 11/3
gw , (21)

where the ‘redshifted chirp mass’ is defined as

Mz(q) = (1 + z)
[M1(q)M2(q)]3/5

(M1(q) + M2(q))1/5 . (22)

A PTA experiment is sensitive to a linear combination of the
plus and cross polarisations h(t) = F+h+(t) + F×h×(t), where
the factors F+ and F× are combinations of trigonometric func-
tions that depend on the geometry of the pulsar array and satisfy
F+, F× ∈ [−1, 1] (Moore et al. 2015). The two independent and
magnified polarisations of a GW emitted by a binary system in
quasi-circular orbit, expressed in terms of observed quantities,
read (Maggiore 2007; Schneider et al. 1992)

h+(t) =
√
|µ|Ao(q)

(
1 + cos2(ι)

2

)
cos[Φ(t)] (23)

h×(t) =
√
|µ|Ao(q) cos ι sin[Φ(t)], (24)

where cos ι = L̂ · n̂ is the cosine of the angle between the orbital
plane L̂ and the line of sight n̂, µ is the magnification of the
considered image, Φ(t) is the phase of the GW and Ao(q) is the
amplitude of the unlensed GW at the observer, which reads

Ao(q) =
4
(

GMz(q)
c2

)5/3 (
π fgw

c

)2/3

DL(zs)
. (25)

The luminosity distance at redshift zs = 1.29 can be computed
using a flat ΛCDM cosmology and we find DL(zs) = 9.3 Gpc.

5 Since the wavelength is of the order of the Schwarzschild radius of
the lens galaxy and therefore much larger than the Schwarzschild radius
of the microlens, we do not expect microlensing to affect the GW.

A77, page 13 of 18



A&A 668, A77 (2022)

<latexit sha1_base64="qRAUJ+/hP3IJ/YoX1j1QmAhW20A="></latexit> C
h
ar
ac
te
ri
st
ic

st
ra
in

<latexit sha1_base64="58M9vkF4enzs5sOZD8n8ffncZpM="></latexit>

frequency [Hz]

Fig. 12. Adapted from Moore et al.
(2015). The approximate characteristic
strain of the GW signal is depicted by
the star at fgw ' 1.34 · 10−7 [Hz], falling
in the PTA band [10−9, 10−6] [Hz], and
lying above the approximate sensitivity
curve of SKA but below that of Euro-
pean PTA (EPTA) and International PTA
(IPTA). The detectability with SKA will
depend on the exact details of the pulsar
array.

The (squared) characteristic strain is defined as (Moore et al.
2015)

[hc( f )]2 ≡ 4 f 2
∣∣∣h̃( f )

∣∣∣2 . (26)

For a binary in quasi-circular motion, the GW is nearly
monochromatic, such that the Fourier transform h̃( f ) of h(t) can
be computed using a saddle point approximation (Finn & Thorne
2000; Moore et al. 2015) and we find

h̃( f ) =

√
|µ|
ḟ
Ao(q)

2

(
F+

1 + cos2(ι)
2

+ F× cos(ι)
)
, (27)

where each term inside the brackets belongs to the interval
[−1, 1]. Therefore, we estimate the characteristic strain at fre-
quency fgw and mass ratio q to be of order

hc( fgw, q) ∼
√

f 2
gw|µ|
ḟgw
Ao(q). (28)

For image A with lensing macro-magnification µA = 2.27, this
implies hc( fo, q) ∈ [1.4×10−15, 2.5×10−15] for q ∈ [1, 10], which
is above the approximate sensitivity curve of the Square Kilo-
metre Array (SKA) and below that of the European Pulsar Tim-
ing Array (EPTA). Here, we chose a low estimate of the lensing
magnification µA from the models of Morgan et al. (2008) but
the lensing magnification could be up to five times larger if the
stellar mass fraction is rather of the order of fM/L = 0.3 instead
of 0.9. The exact details of the pulsar array will be needed to
estimate if the signal is observable with the SKA. This prevents
a more precise conclusion on the detectability of this GW sig-
nal. Figure 12 shows how the frequency and the characteristic
strain of the signal compare with estimated sensitivity curves of
the current and future PTA experiments.

6. Summary and conclusion

We report the first detection of periodic oscillations in the flux
ratios of multiple images of a lensed quasar. These oscillations
are visible in the microlensing curve of Q J0158−4325 over
the period 2003–2010, corresponding to a high magnification

event of image B. Their amplitude decreases as image B is less
and less magnified by microlensing. We measure from a simple
sinusoidal model a period of 172.6 ± 0.9 days in the observer
frame, corresponding to 75.4± 0.4 days in the quasar rest frame.
The same period is detected in each of the Euler and SMARTS
microlensing curves as well as in the joint Euler and SMARTS
curve. This period is also confirmed by the Lomb-Scargle anal-
ysis, with a large peak at 171 days.

From these observations, we have developed several
hypotheses to explain the origin of this periodicity. We rank our
hypotheses from the most probable to the least probable:
1. Q J0158−4325 hosts a SMBBH: we have demonstrated from

a simple model that a binary black hole naturally reproduces
both the amplitude and period of the observed signal if the
mass ratio is of the order q . 10. Assuming the black hole
mass estimate from Peng et al. (2006), we derive a coales-
cence time due to GW emission of ∼1000 yr, extremely short
compared to the age of the quasar. However, the transfer of
angular momentum from a circumbinary disk to the binary
system could significantly increase the lifetime of such close
binaries, making them much more likely to be observed.

2. The accretion disk contains a large inhomogeneity: this sce-
nario also fits our observations but it requires one-fifth of the
total UV luminosity to be emitted by a compact, hotter region
of the disk. If not bound by gravity, this scenario also faces
the problem of Keplerian shear, which would disrupt the hot-
ter region of the accretion disk on short timescales. Accre-
tion seems the only plausible mechanism to produce such an
amount of UV flux over a sufficiently compact region to be
microlensed. If the hotspot in the disk is powered by accre-
tion, then this hypothesis is similar to our first scenario.

3. The accretion disk is in precession: the short period of the
signal means that the inner part (r < 30rg) of the disk must
be in precession. In this scenario the disk would be subject
to a strong differential precession, leading to a rapid circu-
larisation of the orbit in the case of an eccentric disk, or to
a rapid alignment of the accretion disk with the black hole
spin, in the case of Lense-Thirring precession.

4. Microlensing by binary stars: this last scenario is ruled out
by the small separation between the stars that is imposed
by the observed period. A pair of 1 M� would need to be

A77, page 14 of 18



M. Millon et al.: Periodicity in quasar microlensing light curves

separated by 1.01 AU to produce the observed period. Such
small separations in the lens plane only produce an extremely
small motion of the micro-caustic in the source plane, mak-
ing it impossible to reproduce the amplitude of the observed
signal.

In the absence of the zoom-in effect produced by microlensing,
these oscillations will likely no longer be observed in photo-
metric light curves, but they might reappear if a high magnifi-
cation microlensing event reoccurs in either of the two images.
Over the ten years of the Rubin Observatory’s Legacy Survey of
Space and Time, it is likely that this system will again approach
a microlensing caustic, opening the possibility to trigger spectro-
scopic follow-up to confirm or rule out different scenarios. Even
in the absence of a strong microlensing magnification, a periodic
change in the emission lines’ profiles might still be detectable.

Finally, the best way to confirm the presence of a SMBBH
might very well be the detection of GWs emitted by this source.
We show that the mass of this system should be sufficient to
be above the noise level of upcoming PTA experiments. This
is speculative for the moment, but it might be possible, in the
future, to obtain an extremely precise measurement of the time
delay from the GW signal, with strong implications for cosmol-
ogy. This system might be an extraordinary laboratory to test
Einstein’s theory of general relativity at the crossroad of two of
its most famous predictions: the gravitational lensing effect and
the propagation of GWs.
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Appendix A: Reverberated signal in the
microlensing curve

Sluse & Tewes (2014) have suggested that, in the presence of
microlensing, a deformed imprint of the intrinsic variability sig-
nal could appear in the difference light curve of a pair of lensed
images because emission arising from differently microlensed
regions are mixed in a given observing filter. The two main
sources of differentially microlensed emission present in the R
band are the power-law continuum emission, and the emission
arising from the broad emission lines. The continuum emission
region is smaller than a microlens Einstein radius, and is there-
fore most prone to microlensing, while the emission from the
broad line is much less microlensed. As explained in Paic et al.
(2022), the spectra of Q J0158−4325 observed by Faure et al.
(2009) indicate that ∼ 40% of the R−band flux arises from
the BLR (Fig. A.1). Based on this estimate of the fraction of
non-microlensed flux in the R band, we generated mock light
curves of the lensed images and evaluated the amplitude of the
flickering introduced by the above effect. Following Paic et al.
(2022), we emulated the continuum signal Fc using a DRW
model (Kelly et al. 2009; MacLeod et al. 2010), and added to it
a reverberated BLR signal responding to the intrinsic variations
with a lag of τ = 65 days through a top-hat transfer function
Ψ(t, τ). Following this procedure, the flux of image i (i.e. A or
B), already corrected from the cosmological time delay, can be
written as

Fi(t) = Miµi(t)Fc(t) + Mi fBLR[ψ(t, τ) ∗ Fc(t)], (A.1)

where Mi is the absolute value of the macro-magnification of
the image, µi(t) the time variable microlensing magnification
and fBLR is the fraction of reverberated flux. We consider a con-
stant microlensing amplification of image B fixed to the max-
imal micro-magnification observed in 2005 (i.e. µB(t) = 2),
and we assume that A is unaffected by microlensing by fixing
µA(t) = 1. We also fix the non-microlensed flux ratio to the
macro model prediction, MB/MA = 0.44. We use this physically
motivated model to generate 5000 microlensing curves from dif-
ferent DRW realisations, with the same sampling and the same
photometric noise as the real data. The mean flux level of Fc(t)
is arbitrarily fixed to 100 and the DRW timescale parameter,
τDRW = 817 days, is obtained by fitting the light curve of image
A with JAVELIN (Zu et al. 2013). The amplitude of the DRW,
σDRW = 20 (in flux units), is adjusted so that the variations of the
total (i.e. reverberated + continuum) flux in image A matches the
observed variations. An example of light curves generated from
this model is shown in Fig. A.2.

First, we find a maximum peak to peak amplitude of the
flickering of, at most, 0.10 mag. This corresponds to half of the
observed amplitude of the observed periodic signal. We note
that the detailed structure of the BLR signal does not matter
much. For instance, a similar signal is observed if we assume
a constant BLR contribution with time. The scattered emission
from the continuum (e.g. Sluse et al. 2015; Hutsemékers et al.
2020), would produce a similar effect as long as it arises from
a region large enough to remain non microlensed. This simula-
tion shows that, even under conservative assumptions, the signal
arising from a larger region than the continuum, may produce
red-noise with too low amplitude to mimic the observed signal.

Second, we compute the GLS periodogram over a frequency
range [20−1 − 1000−1] days−1 for each of the simulated light
curves and compare the power of the highest peak in the peri-
odogram with that of the observed data. Here, we restrict our
analysis over the period 2005-2011, where the periodic signal is

Fig. A.1. Spectrum of image A of Q J0158−4325 (black). The blue and
red curve correspond to the best fitted model of continuum and Fe ii
emission. The green curve shows the transmission curve of the Euler
R−band filter.
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Fig. A.2. Simulated light curves generated from a DRW realisation,
including the echoed signal of the BLR (top panel) and difference light
curve between image B and image A (bottom panel).

clearly seen in the data. The results of this test are shown on Fig.
A.3.

As discussed in O’Neill et al. (2022), peaks at any frequen-
cies should be considered since we have no a priori reason to
select the particular frequency observed in the real data. We thus
conclude from these simulations that a spurious detection of the
periodicity due to the intrinsic variability of the quasar echoed
in the microlensing curve is rejected at 99.4% confidence level
(3.7σ).

Finally, we test alternative micro and macro-magnification
models, selected to match approximately the minimum mag-
nitude difference between image A and image B, mB − ma ∼
0.3mag, as observed in 2005. These models are rejected with
a significance ranging from 1.9 to 6σ as summarised in Table
A.1. We also consider different sizes of the BLR by varying
the lag τ from 35 to 130 days. Although the model with a
longer lag can only be excluded at 1.2σ when all light curves
are considered, this model cannot explain the short observed
period as none of the simulated curves with a highest peak period
below 200 days have more power at these frequencies than the
observed data. Considering only the curves with a highest peak
period within the range 165–175 days, this model is excluded at
7.2σ.
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Fig. A.3. Power of the highest peak in the GLS periodogram as a function of the peak period for 5000 simulated microlensing curves. The highest
peak power and the period observed in the Euler data over the period 2005-2011 are indicated as dashed red lines. The 1σ (dashed orange line)
and 2σ level (dashed black line) are computed in 80 different period bins of width 18.5 days.

Table A.1. Rejection significance, σr, for alternative magnification and reverberation models. Model parameters, fBLR, τ, MA, MB, µA, and µB, are
defined in Appendix A. They are selected to match approximately the minimal magnitude difference, mB −mA, observed in 2005. The last column
detail the rejection significance σr,165−175 when considering only the simulated light curves with highest peak period within the range 165-175
days.

Model fBLR τ [days] MA MB µA µB mB − mA [mag] σr σr,165−175

fiducial 0.4 65 2.26 1.01 1.0 2.0 0.29 3.7σ 5.2σ
alternative micro-model 0.4 65 2.26 1.01 0.5 1.1 0.32 2.4σ 3.3σ
alternative micro-model 0.4 65 2.26 1.01 1.5 2.8 0.34 6.0σ 8.0σ
alternative macro-model 0.4 65 5.00 1.01 1.0 4.8 0.31 1.9σ 2.7σ
alternative reverberation model 0.4 130 2.26 1.01 1.0 2.0 0.29 1.2σ 7.2σ
alternative reverberation model 0.4 35 2.26 1.01 1.0 2.0 0.29 8.6σ 8.0σ
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Chapter 2 Quasar structure study

2.4 Forecast of microlensing events in the incoming wide field moni-
toring surveys.

As discussed in Section 2.1, microlensing light curves give valuable constraints on the mass distribution
of stars in the lensing galaxy and the size of the quasar accretion disk. In addition, the original works
presented in this thesis show that it is possible also to measure the size of the Broad Line Region and detect
SMBBH. Increased sampling of the parts of the light curve where a microlensing event is happening,
as well as follow-up observations such as X-ray, UV or multiple optical waveband, would significantly
improve the constraints obtained. These supplementary data are even more crucial at the peak of the
microlensing event where, as shown by Fig. 2.6, the light curve is the most impacted by the shape of the
source and by the physics of the accretion disk (e.g., Vernardos & Tsagkatakis 2019; Best et al. 2022).
The probability of observing microlensing events in a given system depends on its stellar convergence
κ∗. So far, in the most furnished microlensing light curves data set released by COSMOGRAIL (∼ 30
decade-long microlensing light curves Millon et al. 2020b), only three microlensing light curves display
microlensing events with a magnitude higher than 1 mag.

The advent of wide-field monitoring surveys such as the Rubin-LSST will multiply this sample 10-fold as
it will simultaneously monitor hundreds to thousands of strongly lensed quasars (as forecasted by Oguri
& Marshall 2010) in six wavebands (ugrizy) covering the optical spectrum from 320 nm to 1080 nm.
According to Neira et al. (in prep.), 10 to 20% of these quasars should undergo microlensing events of
more than 1mag within the first ten years of the survey. Depending on the observing strategy chosen, the
cadence of each band can go from 3 days in the most accessible r and g band to 15 days in the u band.
Even though the science cases previously mentioned necessitate a daily cadence, these light curves still
allow us to detect the characteristic steady rise of a microlensing event occurring years before the peak as
displayed in Fig. 2.7. Moreover, the fact that the apparent size of the disk is smaller in blue bands than
in red bands makes the corresponding light curves consistently intercept before the peak of an event, as
shown in Fig. 2.10, which gives a constraint on the time at which a peak is reached given the size of the
source RS and its effective velocity ve. While the first can be roughly estimated based on the flux and
strong assumptions on the accretion disk light profile, the latter can be constrained statistically but not
measured independently for every light curve. Therefore, this project aims to create a neural network able
to predict if a microlensing event will reach a peak in the near future using the multiband microlensing
light curves of LSST. This tool will be crucial to optimize follow-up observation of such events.

I lead this project with Favio Neira, Joshua Fagin and Henri Best. Together with FN, we created a realistic
training set of microlensing light curves corresponding to the Rubin-LSST observing characteristics,
including non-microlensing phenomena that alter their shape and smoothness. JF and HB elaborated a
Recurrent Neural Network architecture to predict based on a 1000-day part of a light curve if a microlensing
event peak was reached within the next 150 days.

2.4.1 Training set

As described in Section 2.1.2, the microlensing properties of a system are set by the mass model of the lens
(κ, γ, κ∗, IMF), the light profile of the source (RS) and the effective velocity of the microlenses ve. For the
aim of this project, we generate a microlensing light curve using the parameters of three pairs of images
in systems knowingly prone to microlensing events based on previous studies and their COSMOGRAIL
light curves: images B and C of Q2237+030 (the "Einstein cross" Anguita et al. 2008), images C and D
of RXJ1131−1231 (Sluse et al. 2007) and images A and C of HE0435−1223 (Millon et al. 2020b). The
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Parameter Q2237+030 RXJ1131−1231 HE0435−1223

zl 0.034 0.52 0.454
zs 1.695 0.658 1.693
[κ1,κ2] [0.38, 0.73] [0.44, 0.95] [0.45, 0.44]
[γ1,γ2] [0.39, 0.72] [0.46,1.02] [0.38, 0.40]
[M1,M2] [4.3, 2.2] [16.7, 0.97] [6.2,6.5]
RS

r[1014cm] 10.4 2.1 93.1

Table 2.1: Physical parameters used to generate the microlensing light curves. The mass parameter are
taken respectively from Pooley et al. (2012), Chen et al. (2019) and Wong et al. (2017). We use the size of
the accretion disk measured in r-band by Mosquera & Kochanek (2011).

physical parameters are shown in Table 2.1. Because of the differences in microlensing properties, the
events are not equally discernable in each image pair. For example, the HE0435 has a larger source; hence,
consecutive microlensing events are more likely to blend than in other systems. To minimize the blending
of events, we compute κ∗ in each image, assuming that κ∗/κ = 0.1. Using the magnification maps with
appropriate κ, γ and κ∗, and Salpeter IMF from the GERLUMPH database (Vernardos & Fluke 2014), we
apply the tool presented in Neira et al. (2020) to generate simulated multi-waveband microlensing light
curves of these systems. Assuming that the accretion disk follows the thin disk model presented in Section
1.2, we compute the apparent size of the disk in the ugrizy LSST wave bands using Eq. 1.31. We refer to
Section 3.3 of Neira et al. (2020) for the derivation of the model, set by the redshift and sky coordinates of
the system, from which ve is drawn.

We have generated 10 000 light curves for each pair of images in the six photometric bands of the LSST;
an example is shown in Fig. 2.10.

These light curves are then subtracted by pair to match real observation conditions.

Figure 2.10: Example of a microlensing light curve generated for image A of Q2237. Left panel: Part of
the magnification map and trajectory of the source used. Dedicated colours highlight the apparent size of
the source in each band. Middle panel: Light curve continuously sampled. Right panel: Light curve as
sampled by Rubin-LSST. We note that no photometric noise was added in this simulation. Adapted from
Neira et al. (2020)

In addition, we identify the micro magnification events by computing the inflexion points in the light curve.
If two consecutive inflexion points are separated by more than 0.3 mag, we mark the enclosed maximum
as the position of the microlensing event’s peak. We then set the label curve of any simulated microlensing
light curve as a time series with the same length as the light curve, which is equal to 1 if the center of the
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Figure 2.11: Top panel: : COSMOGRAIL r band microlensing light curve RXJ 1131−1231 over a period
of 18 years computed by subtracting B from A after shifting it by the time delay ∆tAB= 2.8 days (Millon
et al. 2020b). A spline fit is done with η = 300 days. Bottom panel: : Residuals of the spline fits to the
microlensing light curve. The correlated noise present in the light curve appears clearly.

source is within range of the peak position in the u-band and 0 on the contrary case.

Red noise generation As demonstrated in Section 2.2, the reverberation of the continuum by the BLR
with a time lag induces an echo of the intrinsic variability within the observed light curve. If a broad
emission line falls in the observed waveband and the microlensing is not identical in both images, this echo
will appear in the microlensing light curve. The frequency and amplitude of this imprint are characterized
by the BLR’s size and the continuum’s stochastic variability. Additionally, the variability of the light curve
can be affected by observational effects such as the seasonal change of airmass and contamination by the
lensed arc or the lensing galaxy when measuring the photometry of the images. Since these effects all
require precise knowledge about the physical properties of the lens system, we choose to assimilate the
combination of those to red noise that is added to the immaculate microlensing light curve.

We quantify this physically agnostic red noise on each system’s observed COSMOGRAIL light curves to
add statistically similar realizations to LSST-like light curves.

We present the method applied to the RXJ1131 microlensing light curve. As shown by Fig. 2.11, the
microlensing light curve is first fitted with a free-knot spline using the PyCS package (see Millon et al.
2020b, for details of the implementation). These piece-wise polynomials allow for a smooth fit of a
targeted time scale of variation by constraining the distance η between two consecutive knots.

Since microlensing events are supposed to occur on times scales longer than several years (e.g. Mosquera
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& Kochanek 2011), we choose η = 300 days to prevent the spline from fitting intra-season features while
recovering the microlensing variations, the fit obtained is displayed in the top panel of Fig. 2.11. The
residuals, which we consider as the observed correlated noise, are shown on the lower panel. As shown in
Fig. 2.12, the data’s power spectrum and the spline fit are identical for frequencies below 1/200 days−1,
which sets the boundary between high and low frequencies. At higher frequencies, the power spectrum of
the data is identical to the residual one. The change in slope of the power spectrum of the residual above
1/10 days−1 is likely due to the power spectrum reaching the sampling limit of the light curve (3 to 10
days between 2 points). We aim to generate time series with the same power spectrum as the residuals to
add it to the simulated microlensing light curves. We use the red noise generator implemented in PyCS to
fit the slope β and amplitude σ of the residuals’ power spectrum. The addition of a generated red noise to
the spline fit is shown in the left panel of Fig. 2.12 and has a power spectrum compatible with original
data in the high-frequency range. As shown in the right panel of Fig. 2.12, the same parameters are then
used to add red noise to the simulated microlensing light curve in every band.

Dependance of the red noise on the band As stated previously, the presence of red noise and its
characteristics depend on the observed band. In this work, the evaluation of the red noise relies on
RG-band (equivalent to LSST’s r-band) data, which represents the longest part of the monitoring. The
analysis of the spectrum of the quasar (Fig 2 of Sluse et al. 2003) reveals that the BLR contribution BLR
should be heavier in the bluer u and g bands dominated by the Mg ii emission while it should be similar in
the i, z and y bands. Moreover, the contribution of the lensed arc (i.e the host galaxy) as well as the lensing
galaxy should differ for each band. However, as we are limited by the available data, we use the same
noise parameters for each band. We expect that since the r and i bands have a higher cadence than the blue
bands, this assumption does not significantly hinder the subsequent machine learning predictions made.

93



Chapter 2 Quasar structure study

0 500 1000 1500 2000 2500 3000 3500
HJD

18.25

18.50

18.75

19.00

19.25

19.50

19.75

Re
la

tiv
e 

m
ag

ni
tu

de

u Microlensing + Red noise
g
r
i
z
y
Microlensing

Figure 2.12: Left panel: Power spectrum fitting of the data. Vertical dashed lines at 1/200 days−1 and
1/10 days−1 delimit the frequency range on which the red noise is added. Adding residual-like noise to the
spline fit creates a new realization of the data with the same power spectrum. Right panel: When adding
noise with the same power spectrum as the residuals of the left panel to a simulated microlensing light
curve, we obtain realistic light curves for each wave band. 94
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2.4.2 Machine learning algorithm

The first application of machine learning to microlensed quasar light curves was conducted by Vernardos
& Tsagkatakis (2019) to assess accretion disk structure. They employed a one-dimensional convolutional
neural network (CNN) to categorize accretion disk size and wavelength power law. In this study, we
employ a recurrent neural network (RNN) for binary classification to detect caustic crossings. Contrary to
Vernardos & Tsagkatakis (2019), we use an RNN due to the presence of season gaps in our light curves, a
limitation that a standard CNN cannot address. Our network is trained on a 1000-days subset of the overall
light curve. Specifically, it predicts microlensing events within a 150-day window around the last time step
in the light curve subset. The normalization process involves subtracting the minimum value across all
bands at the first time step. As caustic crossings are infrequent in light curves, we balance the training set
by focusing on subsections with positive labels. From a pool of 500,000 light curves, we extract 2,500,000
subsections, of which approximately 20% hold positive labels while 80% are marked negative.

The architecture of the RNN is depicted in Table 2.2. The RNN’s input encompasses the relative brightness
at each time step, covering all six LSST-like bands. The neural network’s design commences with a
masking layer to emulate the actual LSST sampling of a given light curve, which is affected by weather
conditions and season gaps. Subsequently, two layers of gated recurrent units (GRU; Chung et al. 2014) are
employed, which are a type of recurrent neural network layer akin to long short-term memory layers(LSTM;
Hochreiter & Schmidhuber 1997). Each GRU layer comprises 128 units and operates with a hyperbolic
tangent (tanh) activation function.

The GRU layers are known for their capability to retain memory over long sequences and are hence crucial
for modelling the temporal patterns and dependencies present in microlensing light curves.

Following each GRU layer, a dropout layer with a 10% dropout rate is applied. Dropout is a regularization
technique that randomly sets a fraction of the input units to zero during training, helping to prevent
overfitting and improving the network’s generalization ability.

The network continues with batch normalization (Ioffe & Szegedy 2015) and two fully-connected layers,
each consisting of 128 units. A 10% dropout layer, ReLU activation function (Nair & Hinton 2010), and
batch normalization are applied before each fully-connected layer. Batch normalization helps stabilize and
accelerate the training process by normalizing the activations of the previous layer.

At each time step, the network outputs both is the probability of a microlensing event being observed and
not being observed in the next 150 days and using a soft-max activation to ensure that the two outputs
represent the probabilities summing up to 1.

The network is trained using a binary cross-entropy loss function given by:

L(y, ŷ) = − 1
N

N∑

i=1

yi log(ŷ) + (1 − yi) log(1 − ŷi), (2.16)

where yi is the training label, ŷi is the prediction of the network, and N is the number of training examples.
We minimize the loss function using an Adam optimizer (Kingma & Ba 2014) with a batch size of 1,024
and a learning rate of 0.001. We train the network for 20 epochs, i.e., the number of times the network
processed the whole training set. The evolution of Loss and accuracy with epoch displayed in Fig. 2.13
shows that more epochs would be required for the network to converge, but the overall accuracy is good.

95



Chapter 2 Quasar structure study

Table 2.2: Architecture of the RNN.

Type Output shape Number of Trainable parameters

Input (142,6) -
Masking (142,6) -

GRU (142,128) 52224
tanh (142,128) -

Dropout (142,128) -
GRU 128 99072
tanh 128 -

Dropout 128 -
Batch Norm 128 -

Fully Connected 128 16512
Batch Norm 128 -

ReLU 128 -
Dropout 128 -

Fully Connected 128 16512
Batch Norm 128 -

ReLU 128 -
Dropout 128 -

Fully Connected 2 258
Soft-max 2 -

Total 185,346

However, we should recall that positive and negative labels are not represented equally, hence a constant
negative prediction would already be 80% accurate.
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Figure 2.13: Loss and accuracy of the RNN as a function of epoch. Those are evaluated both on the
training set and the validation set unknown to the network during the training. Figure credits: Josh Fagin
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Application to light curves

We introduce a three-stage triggering mechanism to facilitate swift follow-up actions upon microlensing
event forecasts. To establish a positive prediction, we assess whether the mean prediction value minus two
times the standard deviation of its uncertainty surpasses the 0.5 threshold. These triggers are colour-coded
in order of escalating alert levels: green, yellow, and red.

As shown in Fig. 2.14, the green alert is activated upon any positive prediction from the network.
Subsequently, the yellow alert is engaged if a green alert persists consecutively for 50 days. The red
alert is initiated when a yellow alert lasts 50 consecutive days. This tiered structure ensures a cautious
approach to minimize false positive predictions, especially in scenarios where the uncertainty is notably
high. Continuous positive predictions across multiple weeks are vital to maintain the validity of alerts and
avoid unnecessary alerts triggered by temporary fluctuations.

We hence get an alternate metric of the network by counting an event as correctly predicted if the red
trigger is activated within the label. This metric shows that 55% of the events and 98% of non-events are
correctly predicted while 2% of false positives are reported and 45% of th events are missed.
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Figure 2.14: Example prediction with three staged triggering systems on a realistic LSST-like microlensing
light curve. Top panel: Activated trigger as a function of time. Middle panel: Predicted probability as
a function of time, the first 600 days are shaded because the preceding light curve is too short for the
network to predict. The "peak" curve highlights the position of the microlensing event maximum in the
input light curve. Bottom panel: Input 6 waveband microlensing light curve. Figure credits: Josh Fagin

Additionnal tests

The network’s performance is primarily influenced by the hyperparameters used in constructing the training
set. For example, the threshold employed to classify a magnitude difference between successive inflexion
points as an event determines the training set’s completeness. We adopt a threshold of 0.3 mag, excluding
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events where correlated noise could overshadow the microlensing event and lead to false positives. We
will also explore the impact of higher thresholds on the accuracy metrics.

The selection of image pairs aimed to create a versatile training set encompassing a broad spectrum of
source sizes, lens convergence, and microlens velocity. This strategy ensures the network’s adaptability,
which we will test by facing it with unfamiliar systems’ light curves.

The trigger threshold of 0.5 was set to limit the False positive rate and maximize the True positive rate. We
will investigate how increasing this threshold can focus the prediction on only the highest microlensing
peak which are the most physically interesting. This adjustment is unlikely to increase the false positive
rate but it will surely decrease the completeness of the prediction.

Although the network might not surpass expert visual inspection in terms of performance, the high rate
of True negative prediction demonstrates the network’s robustness to noise. It will help to significantly
reduce the number of microlensing event candidates necessitating visual examination before triggering
follow-up observations.

2.5 Summary
This chapter showcases advanced techniques for studying quasar structures. After reviewing conventional
approaches to assess accretion disk size through reverberation mapping and microlensing light curves, we
introduce two innovative methods to extract insights from microlensing light curves.

In Paic et al. (2022), we detect for the first time that high-frequency fluctuations in microlensing light
curves can arise from accretion disk light reverberation within the Broad Line Region, an aspect often
overlooked by standard time-domain fitting techniques (Kochanek 2004). Instead, we match data to
simulated light curves using power spectra in the frequency domain, recovering the overall light curve
behaviour. We apply this to QJ 0158−4325’s microlensing light curve, accurately measuring RBLR, the
BLR size. Additionally, we highlight that previous microlensing measurements likely skew towards high
values incompatible with the thin-disk model due to neglecting these high-frequency traits.

In Millon et al. (2023), we scrutinize the 2006-2012 segment of the same microlensing light curve,
attributing visible periodic oscillations to a Super Massive Binary Black Hole. This hypothesis awaits
confirmation from independent observations such as spectroscopic monitoring, potentially revealing
periodic Doppler shifting of emission lines. Eventually, the upcoming Pulsar Timing array with the Square
Kilometer Array will be sensitive enough to detect the gravitational waves of this SMBBH. If confirmed,
this discovery would give unprecedented insights into how SMBBH systems can quickly reach the third
stage of their evolution. Moreover, it also could mean that the models underestimate the coalescence time
of such systems, and unknown mechanisms are at play.

Both methods will find extensive application with Rubin-LSST’s abundance of microlensing light curves,
potentially unveiling BLR reverberation or periodic oscillations. These approaches will span various
quasar luminosities and redshifts, thoroughly investigating the luminosity-RBLR relation and Super Massive
Binary Black Hole populations.

During microlensing events, these phenomena and features of the source light profile become more visible,
especially when the micro magnification reaches its maximum. To improve our understanding of these
events, I have led the development of a neural network that can identify lensed quasar images that are
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likely to undergo microlensing and forecast the time at which the micromagnification peaks. This tool uses
multi-waveband light curves from Rubin-LSST and will aid in optimized follow-up observations, allowing
for better extraction of physical constraints and a deeper understanding of the underlying processes.
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3 Time Delay Cosmography

3.1 Overview of the technique

3.1.1 A long list of ingredients

The determination of H0 using the time delay ∆tABobservable between two images A and B of a strong
lens system was first suggested by Refsdal (1964) and further developed by Schneider et al. (1992).

It relies on the measurement of the time delay distance D∆t∝ H−1
0 which, as presented in Section 1.3, can

be measured using ∆tAB, the redshifts of the source and the lens and the lens potential materialized by the
Fermat potential difference ∆ϕ.

As pointed out by Falco et al. (1985), the observables of a strong lensing system, such as the image
positions, are invariant under the mass-sheet transform (MST). This transformation of the convergence
κ(θ) and the source plane coordinates β can be written as:

κλ (θ) = λκ (θ) + 1 − λ, (3.1)

βλ = λβ. (3.2)

This mass-sheet degeneracy (MSD), however, impacts the Fermat potential difference and time delay:

∆ϕAB,λ = λϕAB, (3.3)

∆tAB,λ = λ∆tAB, (3.4)

(3.5)

which in turn impacts the inference of D∆tand H0:

D∆t,λ = λ
−1D∆t, (3.6)

H0,λ = λH0, (3.7)

In practice, there are two main components to the mass sheet in a lensing system: 1- the mass of the
deflectors along the line of sight (LOS) other than the main lens treated as equivalent to a mass sheet with
a density κext at the position of the lens and 2- the change of the shape of the lens mass profile referred as

101



Chapter 3 Time Delay Cosmography

internal mass sheet which affects the radial profile of the convergence materialized by the λint. The MST λ

parameter can therefore be expressed as

λ = (1 − κext)λint. (3.8)

As introduced by Birrer et al. (2020), the relation between the angular diameter distance along specific
line-of-sights affected by LOS structures (Dlensed) and the corresponding unperturbed background angular
diameter distances (Dbkg) can be expressed using convergence terms as follows:

Dℓ
lensed = (1 − κd)Dℓ

bkg, (3.9)

Ds
lensed = (1 − κs)Ds

bkg, (3.10)

Dℓs
lensed = (1 − κds)Dℓs

bkg (3.11)

Here, κℓ, κs, and κℓs represent the external convergence terms for the specific line-of-sight distances.

From which we can express the total external convergence as:

1 − κext =
(1 − κℓ)(1 − κs)

1 − κℓs . (3.12)

Therefore, we can generalize the computation of the time delay given in Eq. 1.60 as:

∆tAB = (1 − κext)λint
D∆t

c
∆ϕAB, (3.13)

and the modelled time delay distance D∆t’ is then corrected, giving the final:

D∆t =
D∆t

′

1 − κext
. (3.14)

As presented later in this section, the kinematics of the lens galaxy σLOS give a lensing-independent
constrain on its 3D mass, i.e. the deprojected convergence (e.g. Sonnenfeld et al. 2012; Cappellari 2020;
Shajib et al. 2020, 2023) and therefore contribute to lifting the MSD within the main deflector.

We now see all the required ingredients to measure H0 using a strongly lensed quasar:

• The redshift of the source zs and the lens zl,

• The time delay between each image ∆tAB,

• The mass model of the lens to determine ∆ϕAB,

• The kinematic analysis to measure σLOS,

• The line of sight analyses to obtain κext.
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Redshifts

The spectroscopic redshift of the quasar source, zs, is commonly obtained using the frequent emission lines
present in quasars, for instance C iii, C iv or Mg ii. Accurately measuring zl requires high signal-to-noise
ratio spectra taken under optimal seeing conditions to effectively separate the lensing galaxy from the
quasar and identify absorption or emission lines which massive elliptical galaxies generally have few of.

Time delay

Time delay cosmography is only applicable to strong lensing systems with a luminosity-varying source.
Even though Sjur Refsdal dream was to measure H0 using a strongly lensed Supernova, the unfolding
of gravitational lens discoveries (around 300 known systems to this day, e.g. Lemon et al. 2018, 2020;
Chan et al. 2022; Lemon et al. 2023) put quasars on the forefront of time delay cosmography applications.
Following the main goal of this work, we will mainly discuss how the time delay is measured in strongly
lensed quasars but it is interesting to note that important efforts are put towards the precise measurement
of time delays of strongly lensed supernovae (e.g. Pierel & Rodney 2019; Bayer et al. 2021; Huber et al.
2022).

Typically found in the redshift range zs ∼ 1 - 3, quasars are lensed by massive early-type galaxies situated
at redshifts zl ∼ 0.2 - 0.8. This lensing configuration typically generates multiple quasar images separated
by a few arcseconds, which can be resolved with small ground-based telescopes. In any light curve,
the measurement of the time delay relies on the identification of features that can be matched in all
individual image light curves. This task is, however, complicated by various astrophysical, observational,
and instrumental factors:

• Photometric accuracy: Variations of about 0.2 mag are common within one visibility season,
requiring accuracy within a few milli-mags to identify critical inflexion points in the light curves.
Achieving such precision is challenging as quasar images are often blended with extended sources
like gravitational arcs or the lens galaxy, necessitating careful PSF reconstruction and handling of
contaminating light.

• Monitoring cadence and duration: The monitoring cadence should match the timescale of the targeted
variations, and the campaign’s total duration must cover the lensing time delays. Additionally,
enough quasar variations must be recorded for multiple images at different relative delayed times.
Such light curves necessitate continuous telescope access for at least one visibility season, typically
lasting 6 to 8 months.

• Seasonal gaps are common in optical light curves as only circumpolar targets remain observable
throughout the year. These gaps can introduce windowing effects, requiring careful consideration
when using cross-correlation techniques for time delay measurements. Removing or accounting
for the periodic signal from missing data is essential. Additionally, correlated noise, resulting from
uncertainties in flux assignment from different quasar images, must be addressed. If variations
cannot be unambiguously matched in both light curves, statistical methods are unlikely to measure a
time delay robustly.

• Extrinsic variations: As presented in Chapter 2, microlensing of individual images independently
alters the observed luminosity of each image and may incorporate reverberated continuum emission
in the light curve. While these effects present a great opportunity to study the source and the lens,
they deform the shape of the light curves and their inflexion points, which are critical to measuring
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the time delay. As Vernardos (2022) showed, they can significantly hinder the time delay precision
when not appropriately modelled.

Over the past two decades, significant progress has been made in addressing these challenges. Advance-
ments in photometric instrumentation in the late 1990s allowed for accurate light curves, leading to robust
time-delay measurements (e.g. Kundić et al. 1997; Burud et al. 2000; Hjorth et al. 2002; Kochanek et al.
2006).

These early measurements with ∼ 10-15% errors, prompted systematic monitoring by the COSmological
MOnitoring of GRAvItationnal Lenses (COSMOGRAIL) program, designed to measure time delays of
the brightest objects within five years thanks to regular cadence over long periods (Eigenbrod et al. 2005;
Courbin et al. 2011). However, obtaining time delays for less variable and fainter targets required more
than a decade of monitoring (Millon et al. 2020b) with a 1-m class telescope. As a result, about 40 lensed
quasars now have known time delays, albeit with varying precision.

With an increasing number of lensed quasars being discovered annually, time-delay cosmography faces a
new phase where rapid measurements are essential to utilize these systems as cosmological constraints.
Using high signal-to-noise ratio (SNR) and daily cadence light curves obtained with a larger 2-m class
telescope, Courbin et al. (2018) demonstrated the possibility of accurate time-delay measurements within
a single monitoring season, thanks to small amplitude variations of quasars, typically 10 to 50 millimag,
occurring over weeks or months, faster than microlensing variability. Detecting these variations at sufficient
SNR allows easier disentangling of intrinsic and microlensing variability, reducing the need for long light
curves. This new strategy has enabled the measurement of 6 new time delays in a single season (Millon
et al. 2020a).

While some methods rely on the light-curve cross-correlations to give a direct measure of the time delay
without modelling the extrinsic variations (e.g. Pelt et al. 1996; Aghamousa & Shafieloo 2015), various
curve-shifting algorithms have been proposed to separately fit the intrinsic variation of the quasar and
the extrinsic variation of the microlensing. As mentioned in Section 1.2, the intrinsic variations can be
modelled by a DRW (e.g., Kelly & Siemiginowska 2009), or CARMA processes (e.g., Kelly et al. 2014)
with microlensing variations modelled by an additive polynomial (e.g. Tak et al. 2016; Meyer et al. 2023).
It is also possible to use flexible tools such as splines (PyCS, Tewes et al. 2013) or Gaussian regressions
(e.g. Hojjati et al. 2013) to marginalize over a range of possible fits.

The "Time Delay Challenge" (TDC Dobler et al. 2015) aimed at evaluating the precision and accuracy
of each technique by handing simulated but realistic blind data to different teams. The detailed results
and conclusions were presented in Liao et al. (2015) and other individual papers (e.g. Bonvin et al. 2016).
The challenge proved to be more complex than anticipated, with many participating teams failing to meet
the precision and accuracy requirements in the first and simplest stages. However, among the qualified
teams for the more advanced stages of the TDC, the aforementioned techniques demonstrated overall
good performance considering the actual data quality. Nevertheless, further investigations are needed to
determine if this performance level remains valid when more realistic accretion disk emission mechanisms
and source-size effects are incorporated into the simulations.

For example, the microlensing time delay described by Tie & Kochanek (2017), poses a subtle challenge as
a potential nuisance for time delay measurements. While it has not been directly detected in lensed quasar
light curves yet (Bonvin et al. 2018), this effect arises when different emission regions of the accretion
disk experience varying magnification due to microlensing.
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Lens modeling

As presented in Section 1.3, the Fermat potential difference needed in time delay cosmography is deter-
mined by the mass distribution of the lens galaxy. The modelling of the mass is done simultaneously
with the modelling of the source shape and position. By mapping the source to the image plane with
the lens equation (Eq. 1.33), we aim to reproduce the observed image of the strong lens system along
with the lens’s light. Understanding all the phenomena that alter the imaging of strong lens systems is
necessary to do so. Both the telescope’s internal structure and Earth’s atmosphere blur the observation,
which is equivalent to the convolution of the image with a point spread function (PSF) of the observation.
Furthermore, the discretization of the simulated image and the addition of noise accounts for the pixelized
nature of CCD camera observations. As illustrated in Fig. 3.1, a simulated model is hence expressed as a
series of linear operations:

d = RB
[
Lψs + l

]
+ n (3.15)

where d represents the data, ψ the lens potential, s the unlensed source light, and l the lens light. The
lensing operator Lψ is based on the lens potential and generates the lensed source when applied to the
source model. The blurring operator B models seeing effects involving a convolution operation with the
PSF. The binning operator R models the pixel discretization on the detector, and sources of noise are
accounted for by the term n.

lens light

image model

PSF

source light

seeing effects

lensing
(lens potential    )

simulated observation
detector pixelization

Figure 3.1: Example of the simulation of a strongly lensed system observation starting from an unlensed
source light profile s, the potential of the lens galaxy ψ distorts the source through the operator Lψ. The
result is then blurred and pixelized with the operators B and R. Illustration taken from Aymeric Galan’s
thesis

Therefore, modelling a strong lens system consists in sampling the posterior probability of the mass and
light parameters ξlight and ξmass by maximizing their likelihood. Following the Bayes theorem, we have:
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P(ξlight, ξmass | Data) ∝ L(Data | ξlight, ξmass)p(ξlight, ξmass), (3.16)

where L(Data | ξlight, ξmass) is the likelihood of the parameters given the data and p(ξlight, ξmass) is the prior
on the parameters. The data used to constrain the posterior are the imaging data (Img) in as many bands as
possible and, if available, the time delay, ∆tAB. The likelihood maximized by the sampling is therefore
computed with:

L(Data | ξlight, ξmass) = L(Img | ξlight, ξmass) +L(∆tAB | ξlight, ξmass) (3.17)

=

Npix∑

i

(DImg,i − MImg,i)2

σ2
i

+
1
2

(∆tAB − M∆tAB )2

σ∆tAB

, (3.18)

where DImg,i and MImg,i are the observed and modelled image, σi is the pixels’s noise and σ∆tAB the
uncertainty on the time delay.

Imaging modelling is primarily conducted using high-resolution data from space-based instruments like
the Hubble Space Telescope (HST) (e.g. Wong et al. 2017; Shajib et al. 2019; Birrer et al. 2019) or
ground-based adaptive optics (AO) systems (e.g. Chen et al. 2019). As shown by Eq. 3.15, the shape of
the source and the lens potential are degenerate when it comes to reproducing the shape of the observed
distorted source. Therefore, the difficulty of accurate lens modelling resides in the parametrization of the
lens mass and source and lens light profiles. Typically, the modelling process starts with a simple model
and progressively increases the complexity of different model components until a satisfactory fit to the
data is achieved. Criteria such as the Bayesian Information Criteria (BIC) (e.g., Birrer et al. 2019) and the
Bayesian Evidence (e.g., Shajib et al. 2020) are used to assess the goodness of fit during this iterative
process.

In the following paragraphs, we will present some of the common choices to parameterize the different
light and mass components that will be used in this work.

PSF characterization is an essential step of any modelling endeavour as it fixes the astrometric position
of the time-variable source images, i.e. the part of the convergence profile probed to compute ∆ϕAB (e.g.,
Birrer & Treu 2019). It also allows the modelling of the extended source structure without contamination
from bright quasar images. Current methods for obtaining a precise PSF model involve a first guess
based on stars of the field (e.g., Suyu et al. 2014; Birrer et al. 2016, 2022a; Michalewicz et al. 2023)
followed by iterative procedures during the model fitting process to extract improved constraints of the
PSF directly from the data (Birrer et al. 2016). As shown by Ertl et al. (2022) and Shajib et al. (2022),
different treatments of the PSF modelling can significantly change the best fit found, such as the slope of
the convergence radial profile, hence impacting the cosmographic inferences.

Lens light: Elliptical galaxies are commonly described by the elliptical Sersic profile, which gives the
light intensity at the position (θ1, θ2) following:

Isersic (θ1, θ2) = Ieff


−bn





√
θ2

1 + θ
2
2/q

2

θeff



1/n

− 1




(3.19)
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with θeff the effective radius, also defined as the half-light radius thanks to the normalizing factor bn, Ieff

the intensity at θeff . q is its axis ratio and n the sersic index.

Setting n = 1 gives an exponential profile while n = 4 falls back on the De Vaucouleur profile, which is
particularly effective in fitting the light distribution of galaxies with a smooth and extended structure.

The chameleon profile can also model the light profile of a galaxy (e.g., Suyu et al. 2014) as the difference
between two non-singular isothermal ellipsoid (NIE) profiles:

IChm(θ1, θ2) =
Ieff

1 + q


1√

θ2
1 + θ

2
2/q

2 + 4w2
c/(1 + q)2

− 1√
θ2

1 + θ
2
2/q

2 + 4w2
t /(1 + q)2


(3.20)

where q is the axis ratio and wc and wt are sizes of the cores of the two NIE with wt > wq.

Source light: Given its compactness, the quasar remains unresolved and is parametrized as a Dirac
profile added to the light profile of its host galaxy. In practice, the amplitude of each Dirac profile is fitted
independently on each quasar image and is not linked to the lens mass predicted flux ratio (see Eq. 1.47).
In the same way as the lens light, the host galaxy can be modelled with a Sersic profile. However, various
reconstruction techniques such as regularized pixelated grid (e.g. Warren & Dye 2003; Treu & Koopmans
2004; Suyu & Blandford 2006; Vernardos 2022; Galan et al. 2022), basis functions like shapelets (e.g.
Birrer & Amara 2018) or wavelets (Galan et al. 2021) have been developed to account for potentially
complex morphology.

Lens mass: The total mass of the massive elliptical galaxy can be modelled with a power-law elliptical
mass distribution (PEMD) for which the convergence at the position (θ1, θ2) in the frame aligned with the
major and minor axis of the deflector is given by:

κPL (θ1, θ2) =
3 − γPL

2


θE√

qmθ
2
1 + θ

2
2/qm



γPL−1

, (3.21)

where θE is the Einstein radius, γ the slope of the profile and qm its axis ratio. This convergence map is
then rotated by the position angle ϕm to belong to the on-sky coordinate frame.

Simpler parametrization fixes the slope of such power law to γ = 2 to obtain a Single Isothermal Ellipsoids
(SIE). By forcing the sphericity of the model, it is possible to simplify further the parametrization now
denominated Single Isothermal Spheroids (SIS).

Alternatively, the mass of an elliptical galaxy can be decomposed into its baryonic and dark matter
components to create a composite profile. In this case, the chameleon profile models the baryonic mass
(see Eq. 3.20 Suyu et al. 2014) and the dark matter component follows a Navarro-Frenck-White (NFW)
profile whose volumic density is given by:

ρ(r) =
ρ0(

r
Rs

) (
1 + r

Rs

)2 (3.22)
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where ρ0 is a normalization and Rs is the scale radius.

To incorporate the effects of external perturbers on the observed characteristics of the lensing system,
we extend the lens mass model by introducing two supplementary parameters. These parameters are
the magnitude denoted as γext and the direction represented by ψext. These additions are essential for
quantifying and considering the influence of external perturbing factors within the context of the lensing
model.

Even though a pure mass sheet along the lens plane is unphysical, the potential existence of a dark matter
core can cause similar effects. Blum et al. (2020) proposed the following parameterization of such core:

κc(θ) =
θ2

c

θ2
c + θ

2 , (3.23)

with θc the size of the core at which κc(θ) drops from 1 − λc to 0. It induces the following MST:

κλc = λcκ(θ) + (1 − λc)κc(θ). (3.24)

λc embodies the mathematical internal MST parameter λint associated to an infinite mass sheet. This
formulation of the MST tends toward an infinite mass sheet for θc → ∞, but it ensures that the MST
convergence κλc converges to 0 as we go away from the lens when θc is finite.

Examples of the various light and mass profiles presented are shown in Fig. 3.2.
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Figure 3.2: Left panel: Examples of the De Vaucouleurs, exponential and chameleon light profiles
expressed in Eqs 3.19 and 3.20 with θeff = 1′′. Right panel: Examples of a PEMD profile with γ = 2 and
a composite profile, sum of the NFW and Chameleon profile with θE =1 ′′, highlighted by the dotted line.
An example of a core with θc = 8′′ is also shown.

In practice, the imaging data puts direct constraints on the Einstein radius θE and the following ratio, which
is invariant under the MST (Kochanek 2002):

ξrad ≡
θEα

′′
E

(1 − α′E)
∝ θEα

′′
E

(1 − κE)
, (3.25)

where α′E and α′′E are the first and second derivatives of the deflection angle at the Einstein radius θE and κE

is the corresponding convergence. When assuming that a given lens follows a power-law profile, this ratio
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tightly constrains its slope γPL = ξrad + 2 and therefore the Fermat potential difference, which depends
on the convergence of the lens at the position of the image (see Eq. 1.41). However, when including a
core to the model to consider the MST, the radial profile significantly deviates from the power law as
shown by the left panel of Fig. 3.3. Since ξrad is invariant under the MST, the slope inferred by a simple
power-law will ignore the core, and the Fermat potential difference will be biased (e.g., Kochanek 2020;
Blum et al. 2020). Fortunately, the right panel of Fig. 3.3 shows that the velocity dispersion depends on
MST parameter λc, hence offering a way to break the MSD by independently measuring σLOS.
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Figure 3.3: Left panel: Effect of adding a core on a PEMD profile with varying λc, following Eq. 3.24.
Vertical dotted lines show positions of the image of fiducial source positions, creating two images (in red)
or four images (in blue), and the black dashed line highlights the Einstein radius of the uncored PEMD.
Right panel: Central velocity dispersion of the lens dependence on λc. The core size, however, does not
impact the velocity dispersion. (Reproduced from Birrer et al. 2020)

Kinematic modelling

As shown by Fig. 3.3, the assumptions made about the radial density profile of the primary lensing galaxy
to constrain the internal MSD can lead to biases, and kinematic modelling of the stars inside the galaxy
is a powerful way to avoid these bias. The observable kinematic parameter is the luminosity-weighted
line-of-sight stellar velocity dispersion, denoted as σLOS. It is measured by targeting stellar absorption
lines and quantifying their width with high-resolution spectra.

Following Binney & Tremaine (1987), the orbital distribution f (x, v) of position and velocity, of the stars
in 3D motion in the galactic potential Φ is described by the steady-state collisionless Boltzmann equation:

3∑

i=1

(
vi
∂ f
∂xi
− ∂Φ
∂xi

∂ f
∂vi

)
= 0. (3.26)

While the actual mass distribution may not be perfectly spherical, assuming spherical symmetry ( ∂Φ
∂ϕ
=

∂ f
∂ϕ
= ∂Φ

∂r =
∂ f
∂r = 0 ) is not oversimplifying with ∼ 10% uncertainty in kinematic measurement (Sonnenfeld

et al. 2012). We then obtain a single spherical Jeans equation:

∂(ρ∗(r)σr(r))
∂r

+
2βani(r)ρ∗(r)σ2

r (r)
r

= −ρ∗ ∂Φ(r)
∂r

, (3.27)
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with ρ∗(r) the stellar density distribution and βani the orbital anisotropy, defined as the ratio of radial to
tangential velocity dispersion components, σr and σt:

βani ≡ 1 − σ
2
t

σ2
r
. (3.28)

Given σLOS, the values of σr and σt are totally degenerate, leaving βani unconstrained. This introduces
a degeneracy between σLOS and the 3D mass profile known as the mass-anisotropy degeneracy (MAD)
(Binney & Mamon 1982; Merritt 1985).

Therefore, a prior assumption is often made on the anisotropy profile, such as isotropic or Osipkov-Merritt
profiles. The Osipkov-Merritt profile allows the anisotropy to be isotropic near the center (βani = 0) and
gradually more radial away from the center (βani = 1), based on observed properties of stellar orbits in
local elliptical galaxies (Osipkov 1979; Merritt 1985):

βani(r) =
r2

r2
ani + r2

, (3.29)

with reff is the half-light radius of the deflector and rani is the anisotropy scale radius.

A solution of Eq. 3.27 is given by:

σr(r) =
G
ρ∗(r)

∫ ∞

r

M(s)ρ∗(s)
s2 Jβ(r, s)ds, (3.30)

with M(r) the mass enclosed within the radius r and Jβ(r, s) = exp
(∫ s

r 2βani(r′) dr′
r′

)
.

We then get the modelled velocity dispersion along the LOS, σLOS
model with:

σmodel2
LOS =

2
Σ∗(R)

∫ ∞

R

(
1 − βani(r)

R2

r2

)
ρ∗(r)σ2

r (r)√
r2 − R2

rdr, (3.31)

with R the projected radius and Σ∗ the enclosed surface stellar density, which can be constrained from the
luminosity profile of the lens I(R) assuming a constant mass-to-light ratio fM/L Σ∗(R) = fM/LI(R).

To compare this with the observed velocity dispersion along the LOS, σLOS, we weigh σmodel
LOS with PSF

convolved light profile of the lens:

σLOS =

∫
A I(R)σmodel2

LOS ∗ PS FdA

I(R) ∗ PS FdA
(3.32)

The prediction of the observed line-of-sight velocity dispersion from any model, irrespective of the
approach, can be decomposed into a cosmology-dependent and a cosmology-independent part:

σ2
LOS =

Ds

Dℓs

c2

J(ξlens, ξlight, βani)
, (3.33)

where the dimensionless quantity J relies on the deflector model parameters (ξlens and ξlight) and βani. More-
over, J considers observational conditions and luminosity-weighting within the dispersion measurement
aperture, as previously demonstrated in studies like Binney & Mamon (1982) and Treu & Koopmans
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(2004). When including λint in the mass-model, we can approximate (Teodori et al. 2022):

J(ξlens, ξlight, βani, λint) = λintJ(ξlens, ξlight, βani). (3.34)

Therefore, by combining kinematic and lensing constraints with Eqs. 3.13 and 3.33, we yield constraints
on the angular diameter distance of the lens (e.g. Birrer et al. 2019):

Dℓ =
1

1 − κd

∆tABc
σ2

LOS

λint

J(ξlens, ξlight, βani, λint)
(3.35)

The specific choice of functional model and the adopted priors on parameters like the anisotropy scale
radius, rani, can significantly impact the kinematics prediction (Shajib et al. 2018; Birrer et al. 2020).
Various forms of the radial anisotropy distribution exist, and the specific choice of the functional model
can significantly influence the outcomes, along with the priors adopted. To address this degeneracy, a
potential solution is to acquire spatially resolved velocity dispersion measurements with IFU instruments
rather than relying on unresolved (or integrated) velocity dispersion measurements with slit instruments
(Shajib et al. 2018; Yıldırım et al. 2020). As shown by Fig. 3.4, this approach can help disentangle the
degeneracy and provide more accurate estimates of the mass and anisotropy profiles by offering detailed
kinematic information across different spatial regions.
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Figure 3.4: Simulated σLOS radial profile measurements with slit and IFU spectrographs. In both
simulations, the PEMD fiducial lens model was done with γ = 2, θE = 1.5′′, and a 5% error was
assumed in both cases. The dashed lines show the analytical profiles. Left panel: Changes in the
anisotropy profile are not distinguished by the single aperture measurement whereas the spatially resolved
ones give good constraints. In this case we fixed λint= 1 Right panel: Similarly, spatially resolved
kinematics give better constraint on λint than single aperture ones. In this case we fixed βani= 0.6.

Line-Of-Sight (LOS) analysis

The impact of mass density fluctuations along the line of sight on the lensed source is typically a few per
cent, often remaining below 10% of the total lens convergence. While this might seem small, it becomes
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significant when estimating the Hubble parameter with percent-level accuracy. The constant effective
contribution from the LOS can be represented as an external mass-sheet κext presented by Eq. 3.12.

The specific influence of line-of-sight objects depends on whether the dominant-lens approximation holds,
indicating that the critical density of these objects is much smaller than that of the primary deflector. The
flexion shift was introduced by McCully et al. (2017) to determine which line-of-sight galaxies should be
explicitly included in the lens modelling and which ones should be implicitly accounted for through the
computation of κext. The difference in lens image position induced by a given nearby galaxy is given by:

∆3x = f (β)

(
θE,lens · θE,pert

)2

θ3 , (3.36)

with θE,lens and θE,pert the lens and perturber einstein radii, θ the angular separation on the between them
and f (β) is determined by:

f (β) =


(1 − β)2 if the perturber is behind the lens

1 otherwise
(3.37)

β =
DℓpDos

DopDℓs
, (3.38)

with Dij the angular distance between the lens (ℓ), perturber (p), observer (o), and source (s), which are
calculated assuming H0 = 70 km s−1Mpc−1. The lens modelling explicitly includes perturbers with a
flexion shift above 10−4. Such cases often involve solving the multi-plane lens equation (e.g. Wong et al.
2020; Shajib et al. 2020).

Below this threshold, line-of-sight objects can be treated as small perturbations that introduce nearly
constant convergence across the lensed system κext, a statistical treatment suffices (e.g., Sluse et al. 2017;
Buckley-Geer et al. 2020; Wells et al. 2023).

However, computing the value of κext is challenging because direct information on the total matter
distribution in the universe at the relevant scales is limited. While McCully et al. (2017) showed that an
explicit mass model of all perturbers is possible, it requires extensive spectroscopic observation of the
considered field of view, which is very costly. Therefore, the two main measurement techniques, number
counts and weak lensing, rely on assumptions about how mass traces light, which is well-motivated by
large-scale structure probes but validated only statistically.

Number counts involves measuring the galaxy number density near the lens as a summary statistic and
comparing it to reference fields. This comparison helps determine whether the line of sight is over- or
under-dense compared to the average background (e.g. Fassnacht et al. 2011; Greene et al. 2013; Wells
et al. 2023). It can be summed up in 4 main steps:

• Lines of sight (typically several arcminutes wide squares) are drawn from a large comparison field
and compared to the LOS of the lens. Modern survey datasets covering hundreds to thousands of
square degrees ensure a sufficiently large comparison field to avoid sampling bias. The photometric
catalogues of the fields are cleared from objects more distant than the lensed source and fainter than
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the used magnitude cut on the i < 24 (e.g., Fassnacht et al. 2011). This cut is designed to consider
only object with a reliable photometry.

• The weight value of a given LOS Wi is then computed as the ratio of the weighted number counts
for galaxies in the lens field to the same statistic in the reference field.

Wi =
Σjwj,lens

Σjwj,i
(3.39)

where j indexes the galaxies in a given LOS and w is the weight of a galaxy. Different types of
weights can be considered (e.g., Greene et al. 2013; Rusu et al. 2017; Wells et al. 2023) such as the
galaxy’s distance to the center (1/rj), its potential (mj/rj), its redshift (zj(zs − zj)) or simply be the
same for each galaxy (wj = 1). The weight value obtained, therefore act as a tracer of the external
convergence of the lens LOS.

• Similar weight values are computed in simulated fields with known κext. Previous work, such as
Rusu et al. (2017), has shown that using the Millennium Simulation yields a reliable estimate of
κext because it provides catalogues of galaxies for several values of the external convergence at
sufficient points to represent the Universe accurately. Since the weight value relies on ratios, many
dependencies on the simulation’s underlying cosmological parameters are expected to cancel out.

• The posterior probability of κext can hence be computed as follows:

p(κext|d) =
∫

psim(κext|W)p(W |d)ΠidWi. (3.40)

Here, p(W |d) represents the probability distribution of the weighting scheme W given the data,
and psim(κext|W) denotes the probability distribution of κextin the simulated dataset, conditioned on
a specific value of the weight W. Greene et al. (2013) showed that the combination of multiple
evaluation relying on different weights and on the external shear γext measured by the lens modelling
(while adequately taking into account covariances between estimates) significantly improves the
precision and robustness of the measurement.

Weak lensing causes shape distortion of background galaxies due to foreground structures (see Section
1.3), providing a direct probe of the line of sight (LOS) structure. At first order, cosmic shear measurements
can be translated to convergence, offering a unique mapping without relying on priors from numerical
simulations (Kaiser & Squires 1993). Nevertheless, this method is limited to an angular scale determined
by the density of lensed sources. While it effectively characterizes large-scale cosmic density distributions,
it is not well-suited for capturing smaller-scale density perturbations, such as those on the order of arc
seconds. Furthermore, differences in redshift between the weak lensing source population and the strongly
lensed source require the translation of the weak lensing convergence map to a different lensing kernel and
adds sources of uncertainties (Kuhn et al. 2021). Recent studies on quadruply lensed quasars HE0435-1223
and B1608+656 (Tihhonova et al. 2018, 2020) use weak lensing techniques in combination with HST
imaging to reconstruct convergence maps and found estimates with a comparable precision with the
number count approach of (Rusu et al. 2017).
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3.1.2 Current status

TDCOSMO sample: 7 fully analyzed systems

In the last 15 years, breakthroughs in lens modelling allowed by flexible parametrizations and Bayesian
Inference (e.g. Suyu et al. 2009; Birrer & Amara 2018) along with long monitoring of dozens of strongly
lensed quasars by the COSMOGRAIL program (Eigenbrod et al. 2005; Courbin et al. 2005) allowed
the H0 Lenses in COsmograil’s Wellspring (H0LiCOW) collaboration to conduct analyses of six lensed
quasar systems (Suyu et al. 2010, 2014; Wong et al. 2017; Birrer et al. 2019; Chen et al. 2019; Rusu et al.
2020). As displayed in Fig. 3.5, merging with the STRong lensing Insight into the Dark Energy Survey
(STRIDES) collaboration estimate (Shajib et al. 2019), the Time-Delay COSMOgraphy (TDCOSMO)
sample inferred a 2% precision Hubble constant measurement of H0 = 73.7 ± 1.5 km s−1Mpc−1. This
measurement was obtained using parametric mass density profiles for the deflector, represented by both a
power-law (Eq. 3.21) or stars with constant mass-to-light ratio (Eq. 3.20), along with dark matter halos
following an NFW profile (Eq. 3.22) with priors based on galaxy population studies (Gavazzi et al. 2007).

Main critics of this measurement regarded the rigidity of the radial profile of the lens mass parametrization
used, which implicitly breaks the internal MST (Kochanek 2020). In the presence of a dark matter core in
the lens, these assumptions on the radial profile could significantly bias the measurement of the Fermat
potential difference and H0. To quantify the sensitivity of the TDCOSMO method to this problem, Millon
et al. (2020c) simulated systems either with a power law, a cored power law or a composite and modelled
them with power laws and composites. The results showed that a simple power law can not perfectly model
the presence of a core. The goodness of fit metric used, such as the BIC and predicted velocity dispersion,
would guide the modeller toward more complex models. Moreover, this experiment showed that agreement
between composite and power-law models of a given lens ensures an accurate measurement of H0. This
agreement is observed in the seven TDCOSMO lenses and attributed to the "bulge-halo conspiracy". It
states that even though stars and dark matter exhibit distinct density profiles, which differ significantly
from an isothermal profile, they appear to conspire in generating a combined density profile that closely
resembles an isothermal one (i.e. a power law) (Treu & Koopmans 2004; Dutton & Treu 2014).

Other investigations of Millon et al. (2020c) showed that bias in the measurement of the lens velocity
dispersion, σLOS potentially caused by the MAD does not bias the H0 inference at the population level.
Similarly, the treatment of the external convergence κext contribution is accurate. Additionally, Van de
Vyvere et al. (2022a,b) showed that multipoles, twists and other expected azimuthal deformation of the
mass distribution do not affect the TDCOSMO measurement of H0.

Relaxing assumptions

"Extraordinary claims require extraordinary evidence". To be able to confirm the H0-tension unambigu-
ously, the TDCOSMO collaboration decided to work toward relaxing most assumptions regarding the
radial profile of the lens mass model by adding a core component to the mass model as suggested by
Blum et al. (2020) (see Eq. 3.23). To compensate for the expected loss in precision, two extensions to
the TDCOSMO methodology were implemented: the hierarchical analysis using a large population of
galaxies and spatially resolved kinematics.

The hierarchical analysis performed by Birrer et al. (2020) aimed at simultaneously fitting λint and rani

in a large sample of galaxies by assuming that they are drawn from the same parent population. Indeed,
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Figure 3.5: Top panel: HST imaging of the current sample of fully analyzed strongly lensed quasars
systems. WGD J2038-4008 is the only system for which the time delay is not yet available hence without
an H0 inference. (Reproduced from Aymeric Galan’s thesis) Bottom panel: Current state of the H0
measurement with strongly lensed quasars, adapted from Wong et al. (2020).

as shown by the right panel of Fig. 3.3, a 5 to 10% precision on the velocity dispersion measurement is
insufficient to constrain λint on a single lens. Moreover, the MAD prevents the fitting of rani, which further
dilutes the constraining power of a single central σLOS measurement.
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Therefore, the use of a large sample of galaxies is necessary. To do so, the MST and rani parameters are
adapted to each lens galaxy through their effective and Einstein radius θeff and θE:

λint(θeff , θE) = λint,0 + αλ

(
θeff

θE
− 1

)
, (3.41)

rani(θeff) = aaniθeff , (3.42)

with αλ and aani the slope of the scaling relations.

By combining the lensing and kinematic constraints of the 7 TDCOSMO systems, λint = 1.02 ± 0.09
was obtained, which is compatible with the absence of a core as presumed by the use of power law and
composite models. While the median value of H0 inferred did not change, the precision dropped to 8%.
To compensate, the sample of galaxies was enlarged using 42 galaxy-galaxy lenses from the Sloan Lens
ACS (SLACS) survey, which, by nature, do not have a time delay but for which mass models are available
(Auger et al. 2010; Shajib et al. 2021) along with central (33 galaxies) or resolved (9 galaxies) σLOS

measurements. This enhanced sample inferred λint = 0.91 ± 0.04, which, following Eq. 3.7, induced a 9%
shift of the H0 = 67.44.1

−3.2km s−1Mpc−1. While in agreement with previous inferences of the TDCOSMO
collaboration, this new measurement is not in tension with early Universe measurements (presented in
Section 1.4). It is important to note that this shift in H0 may be real or due to differences between the
TDCOSMO and SLACS samples. While Gomer et al. (2022) showed that redshift disparities between
both samples do not bias the hierarchical inference, some undetected selection effects can still be at play
between the two samples.

Spatially resolved kinematics of a the lens are able to constraint βani and by extension λint (Yıldırım
et al. 2020). Using high signal-to-noise ratio IFU data obtained with the Keck telescope, Shajib et al.
(2023) was able to measure σLOS in 41 separate spatial bins, dividing the radius of the lens into at least 7
bins. This allowed to measure λint = 1.01+0.05

0.2 , which is in agreement with the hierarchical analysis on the
TDCOSMO sample and results in a 9.4% measurement H0 = 77.17.3

−7.1km s−1Mpc−1 with a single lens. As
shown by Fig. 3.6, the different strategies to mitigate the MSD agree.

Future prospects

Following the methodology of the hierarchical analysis and spatially resolved kinematics, Birrer & Treu
(2021) showed that adding the spatial kinematics of each lens of the current TDCOSMO sample would
yield a 3% precision. Eventually, an extended sample of 40 TDCOSMO-type lenses combined with
200 non-time-delay lenses (i.e. galaxy-galaxy) will allow a precision of 1.2%. The recent launch of the
Euclid space telescope and the Rubin-LSST survey at the beginning of 2024 will facilitate the discovery of
hundreds of new strongly lensed quasars and galaxies (Oguri & Marshall 2010). Moreover, the efforts to
reduce the computational and human-time costs of modelling a system (Ertl et al. 2022; Schmidt et al.
2023) will allow a quick increase of the sample. Alternatively, new modelling techniques relying on
free-form lens potential and source light regularized with wavelets (Galan et al. 2021, 2022) or Gaussian
process regression (Vernardos 2022) could open new efficient ways to deal with the MSD but still need to
be tested on real data.

Finally, the upcoming wide-field surveys such as LSST will also discover hundreds on strongly lensed
supernovae (Oguri & Marshall 2010; Goldstein et al. 2019; Wojtak et al. 2019). In particular, strongly
lensed Type Ia supernovae provide two extra information that alleviate the MSD and improve the lens
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Figure 3.6: Comparison of the different techniques used to break the MSD. From top to bottom, the
measurements were given by Shajib et al. (2023), Birrer et al. (2020) (hierarchical analysis using TD-
COSMO+SLACS and TDCOSMO with single aperture kinematics samples), Wong et al. (2020) and Chen
et al. (2019). With an equally flexible mass parameterization as in the hierarchical analysis of Birrer et al.
(2020), spatially resolved kinematics achieve the same precision with a single lens as single aperture do
with seven combined lenses. We also see that, for this system, PEMD and composite models of Chen et al.
(2019) are self-consistent.

model precision: 1) with proper treatment of the potential micro magnification, the known intrinsic
luminosity of the source allows us to constrain the macro-magnification of each image which breaks the
MSD (Birrer et al. 2022b), and 2) the fading of the SN provides a clear picture of the lensed host Einstein
ring (otherwise partially masked by the bright images).

Until now, only 6 strongly lensed supernovae have been discovered so far in configurations that are not
favourable to a time delay cosmography analysis either because the time delay is near 0 (e.g. Goobar
et al. 2022) or because the lens is a galaxy cluster which amplifies the MSD problem (Kelly et al. 2023).
State-of-the-art forecasts anticipate that 10 strongly lensed SNIa suitable for TDC analysis should be
discovered yearly with LSST (Sainz de Murieta et al. 2023). Thanks to this significant boost, strongly
lensed supernovae will soon become the most fruitful probe of time delay cosmography (Suyu et al. 2023).

3.2 COSMOGRAIL lightcurves
As mentioned earlier, the COSMOGRAIL collaboration has been overseen by the Laboratory of Astro-
physics of EPFL (LASTRO) since 2003 and coordinates the monitoring of strongly lensed quasars to
measure precise time delay. Since 2020, it is a core element of the TDCOSMO collaboration, which uses

117



Chapter 3 Time Delay Cosmography

the time delays measured to determine H0 with Time delay Cosmography.

Initially, the program used 4 telescopes worldwide: Leonhard Euler 1.2m Swiss Telescope I, Himalayan
Chandra TelescopeII, Mercator TelescopeIII and the Liverpool Robotic Telescope IV.

During this PhD I participated in the effort of data reduction to compile 18 years of monitoring into
decade-long light-curvesV which led to the measurement of time delays in 18 systems published in Millon
et al. (2020b) (see Fig. 3.7).

Figure 3.7: Cover page of Millon et al. (2020b), the largest COSMOGRAIL public data release.

With the advent of telescopes such as Gaia and PanSTARRs, able to map wide portions of the sky, the
number of strongly lensed quasar discoveries increased dramatically (e.g., Lemon et al. 2018, 2023)
reaching now a few hundred known instances. The recent launch of the Euclid telescope together with the

Ihttps://www.eso.org/public/teles-instr/lasilla/swiss/
IIhttps://www.iiap.res.in/iao/cycle.html

IIIhttps://www.mercator.iac.es/
IVhttps://telescope.livjm.ac.uk/
VThese light curves are publicly accessible on https://obswww.unige.ch/~millon/d3cs/COSMOGRAIL_public/
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incoming LSST, will bring this number to the thousands. It became clear that COSMOGRAIL needed to
change its monitoring strategy to turn all the newly discovered systems into cosmological probes.

Following its initial success (Millon et al. 2020a), the high cadence program was extended with the addition
of two 2m class telescopes: the Nordic Optical Telescope (NOT) VI and the VLT Survey Telescope (VST)
VII. During this thesis I managed the target selection and data collection of both facilities and performed
the data reduction for the NOT data.

3.2.1 Target selection

To focus the monitoring effort on strongly lensed quasars, we select the systems according to their
suitability to Time Delay Cosmography:

• Visibility of the lensed arc and number of images: as discussed in Section 1.3, the deformed
image of the lensed source offers valuable constraints on the mass model. For a similar reason,
quadruply-imaged quasars are prioritized over doubly lensed ones.

• Image separation: the photometric measurement requires deblending the quasar images from the
lensing galaxy and the extended source arc. We select targets with more than 1′′separation to ease
this process.

• Brightness of the images should be above 21 mag to ensure high SNR observations with a minimal
exposure time.

• Ancillary data: we prioritize targets for which high-resolution imaging or spectroscopic data are
secured.

Following this precepts, five targets were selected for the Nordic Optical Telescope: two quadruple lenses
J1817+2729 and J2145+6345, two doubles SDSS 0806+2006, SDSSJ0921+2854 and the first discovered
case of a lensed dual quasar PSJ1721+8842. The latter is particularly powerful for cosmographic inferences
but also opens a new way to study high redshift dual quasars (Lemon et al. 2022). The length of an
observational season is set by the time of the year when a given object is observable with an airmass of
less than 1.5, and it depends on its declination.

3.2.2 Photometric measurement

We primarily gather data in the R-band due to its balanced advantages: quasar variability is more
pronounced in bluer bands MacLeod et al. (2010), while the sky brightness is lower compared to bluer
optical bands, particularly when the moon is present. Our typical approach involves capturing 4 or 5
dithered exposures per epoch, each lasting 300 or 360 seconds. This strategy prevents saturation of
calibration stars and addresses camera defects such as cosmic rays and bad pixels.

The data reduction follows the standard approach detailed in Tewes et al. (2013) and Millon et al. (2020b).
The bias and flat are corrected, and the sky is subtracted using the SEXTRACTOR software (Bertin & Arnouts
1996). Then, each exposure’s Point Spread Function (PSF) is modelled thanks to a simultaneous Moffat

VIhttps://www.not.iac.es/
VIIhttps://www.eso.org/sci/facilities/paranal/telescopes/vst.html
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Figure 3.8: Exemple of the MCS deconvolution applied to Nordical Optical Telescope observation of
SDSSJ0921+2854, a doubly lensed quasar monitored at the NOT. The top row displays the raw image, the
deconvolved point sources, the modeled lens and extended source light. The bottom row displays the PSF
modeled using stars of the field, the residuals of the fit and the high-resolution HST imaging of the system,
which shows that the extended source and lens are modeled accurately.

profile combined with regularized pixel adjustments fit of ∼ 6 stars with similar luminosity as the lens in
the field. The MCS deconvolution algorithm (Magain et al. 1998) is then applied to the lensed images in
order to deblend the flux of an image from its counterpart, the lensing galaxy and the arc. As shown in Fig
3.8, the MCS algorithm produces a model consisting of an improved resolution Gaussian point sources for
each image and a "pixel channel" containing extended features like the lens galaxy and the lensed host
galaxy. The process fixes the pixel channel and relative astrometry of the quasar images for all exposures,
allowing variations in image intensities to yield the photometry of each exposure.

The median and standard deviation of the photometry computed from the several exposures at a given
epoch gives us the value of the photometry of the lensed images or this epoch.

Finally, a deconvolution of reference stars is carried out using the previously built PSF. Stars displaying
the most photometric stability are chosen to calculate a median photometric normalization coefficient for
each exposure. This step helps to correct image-to-image systematics resulting from PSF variations across
epochs. The resulting light curves are shown for the 5 targets monitored at the NOT, which configurations
are shown in Fig. 3.9

These light curves have a mean photometric error of 10 milli-mag, an example of measurement that is
comparable to the precision of the 2.2m telescope. The apparent features in J1817, J2145 and PSJ1721 will
allow the determination of the time delays using the PyCS method. A time-delay measurement example is
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Figure 3.9: Deconvolved images of the NOT targets.

Figure 3.10: NOT light curves of Left panel: J1817+2729, Right panel: J2145+6345.
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Figure 3.11: NOT light curves of SDSSJ0921+2854.

thoroughly presented in Section 3.3.2.
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Figure 3.12: NOT light curves of PSJ1721+8842. The rapid rise of C suggests an undergoing fast
microlensing event. Figure credits: Frédéric Dux
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3.3 Measurement of H0 with the doubly lensed quasar HE 1104−1805
As shown by Fig. 3.3, since doubly lensed quasars are likely to be more asymmetric and have wider
separations than quadruply lensed ones, they probe different regions of the radial convergence profile.
In light of the mass sheet degeneracy, doubles provide a complementary test of mitigation strategies
mentioned in Section 3.1. Furthermore, for a given source position, two or four images can be created
depending on the morphology of the lens (ellipticity, azimuthal structures) or the impact of additional
perturbers (external shear). Quadruply imaged quasars offer more constraints on the lens mass model, yield
more precise measurements of H0 and have therefore been the focus of previous time-delay cosmography
studies (see Fig. 3.5). Nevertheless, restraining the TDCOSMO sample to quads may expose the H0

measurement to unknown selection biases related to the morphology or environment of the lens galaxy.
Building a sample of fully analyzed doubly-lensed quasar offers a way to unveil and mitigate such biases.

Whether or not a bias is discovered, doubles are far more abundant than quads VIII; the extension of the
TDCOSMO sample to reach the 1% precision will hence rely on the joint use of doubles and quads. So far,
only one H0-measurement was done with a double (Birrer et al. 2019). Using the SDSS 1206+4332 system
it yielded H0 = 68.8+5.4

−5.1km s−1Mpc−1 using parametric models to break the MSD. During this thesis, I
implemented the first time-delay cosmography inference of H0 with the double HE 1104−1805 while
using spatially resolved kinematics to break the MSD. While Lidman et al. (2000) gave a first estimate
of H0 with this double using a time delay based on sparse light curves and oversimplified models, I here
present a new measurement of the time delay based on 15 years of monitoring, a new modelling of the
lens mass model using state-of-the-art modelling tools to which I add the measurement of κextand σLOS.

3.3.1 Lens redshift

HE 1104−1805 is a doubly imaged quasar discovered by Wisotzki et al. (1993) who determined the
redshift of the source zs = 2.32 whereas the main lens one was more challenging to determine. First
measurements by Wisotzki et al. (1993) and Courbin et al. (1998) relied on a damped Lyα (DLA) system
at z = 1.66, but the first time delay estimate by Wisotzki et al. (1998) proved that the lens redshift could
not be above 1, hence discarding this first measurement. Eventually, Lidman et al. (2000) measured
zl = 0.729, and a detailed comparison of the metallicity and ionisation of the DLA in A and B by Lopez
et al. (1999) concluded that a protogalaxy lies in the line of sight between the source and the main lens. As
this protogalaxy is not visible in the imaging of the system (see Fig. 3.26), it will not be included in the
modelling.

3.3.2 Time Delay measurement

Light curve

As one of the first discovered strongly lensed quasars, multiple attempts at measuring its time-delay with
different observations have emerged. First, Wisotzki et al. (1998) published 18 spectroscopic observations
with the 3.6m ESO telescope spanning over 5 years and estimated that the time delay between images A
and B, ∆tAB, should be within [109-292]days. Re-analysis of these data by Gil-Merino et al. (2002) and
Pelt et al. (2002) show that this sampling is insufficient for a precise delay. With a better sampling of the

VIIIFor now, about 56 quads and 164 doubles are listed on the publicly available database
https://research.ast.cam.ac.uk/lensedquasars/index.html
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R-band photometry between 1997 and 2006 with the OGLE and SMARTS programs IX, Poindexter et al.
(2007) estimated ∆tAB = 152 ± 3 days using a Legendre-polynomial fit technique. Later, Morgan et al.
(2008) re-estimated to ∆tAB = 162.2± 6.1 days by jointly fitting the time delay and accretion disk size with
the Monte Carlo microlensing fitting method presented in Section 2.1.2. However, this method depends on
physical assumptions such as the size of the source or mass-profile of the lens (i.e all parameters related to
microlensing described in Section 2.1.2) that could bias the measurement if incorrect.

WFI

SMARTS

ECAM

Figure 3.13: Top panel: HE 1104−1805 R-band light curve obtained by joining three datasets: SMARTS,
ECAM and WFI whose time spans are highlighted by dashed lines. For clarity, the light curve of B was
shifted by -1 mag. The inset zooms on the WFI dataset (orange and blue), showcasing its superior sampling
to the ECAM dataset (green and magenta). Bottom panel: Microlensing light curve obtained by shifting
the B light curve by ∆tAB = 178.7 days and subtracting B to A where the observed light curves overlap.

In this work, we use 3 new unpublished datasets and apply the established PyCS spline-fitting method to
re-estimate the time delay of HE 1104−1805. The first dataset is provided by The SMARTS program,
which monitored it from 2003 to 2016 with a ∼ weekly cadence. Next, the COSMOGRAIL program
(Courbin et al. 2005) observed it every ∼ 4 days with ECAM at the Leonhard Euler 1.2m Swiss Telescope
from 2013 to 2018 and during the 2017 season with WFI at the MPG/ESO 2.2m Telescope every ∼ 2 days.
These three data sets will be called SMARTS, ECAM and WFI. The light curve shown in the upper panel

IXhttp://www.astro.yale.edu/smarts/
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of Fig. 3.13 was obtained with the same methodology as in Millon et al. (2020a) and described in Section
3.2.

The three monitoring datasets presented are merged into a single light curve by fitting for eventual
magnitude and flux shifts between instruments that could cause disparities in the level and shape of the
light curves. The resulting dataset will be referred to as "ECAM+SMARTS+WFI".

∆tAB measurement

The time delay was computed using the method described extensively in Millon et al. (2020b) relying on
free knot spline fitting implemented in the PyCS python package (Millon et al. 2020d). Free-knot splines
are piecewise polynomials where the mean number of days between two consecutive knots is controlled
by the parameter η which filters out variation with shorter time scales. A single free-knot spline is used to
model the intrinsic variability of the quasar visible in both light curves meanwhile an additional spline per
light curve (parametrized respectively by ηml and ηintr) models the extrinsic variability caused mainly by
microlensing. A simultaneous fit of these three components with the time shift needed to match the curves
is done using a visual first guess of the time delay as a starting point X. Fig. 3.14 shows an example of
such fit, giving us a point estimate of the time delay.
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Figure 3.14: Example of a simultaneous fit of an intrinsic lightcurve with ηintr = 35 days and ηml = 300
days. The time shift obtained by this fit gives a point estimate of the system’s time delay.

It is important to note that since the three variability components are degenerate and not physically

XThis is done on the publicly available D3CS tool: https://obswww.unige.ch/ millon/d3cs/COSMOGRAIL_public/
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informed, the resulting splines can not be interpreted as the true source and microlensing variations.
However, a visual inspection shows that the magnitude scales of the extrinsic variations are below 0.5 mag
over several years, consistent with expected microlensing behaviour (see Section 2.1.2). We, however,
note that the number of features in the extrinsic splines is higher than in most systems, which hints toward
a more complex microlensing behaviour, such as noticed by Schechter et al. (2003) already suggested with
previously published lightcurves, making the extrinsic fit sensitive to hyper-parameter changes.

This fit is then used as a generative model to create a set of mock light curve pairs with the same noise
properties as the data and the same time delay. After running the time delay estimation on a set of light
curves with starting points randomized uniformly around the first guess value, we take the median value as
the final time delay value for a given (ηml, ηintr).

To assess the uncertainty of this measurement in a data-driven way, a set of mock light curves is generated
with built-in time delays uniformly drawn in an interval of ±20days around the median value obtained
previously. The distribution of the difference between the measurement and the truth for each of the mocks
gives an estimation of the systematic error (mean of the distribution) and the random error (standard
deviation) of the time delay estimation. The final uncertainty of the time delay estimation is the sum in
quadrature of these two sources of errors.

The choice of values for ηintr and ηml is guided by the fact that quasars vary much faster than microlensing
(see Section 1.2.3). Moreover, whether a given feature is mathematically attributed to the intrinsic or
extrinsic splines depends on the flexibility balance between the splines. We, therefore, reproduce the same
measurement for different values of these two hyper-parameters. Following Millon et al. (2020b), we take
ηintr ∈ [25, 35, 45, 55] days and ηml ∈ [150, 300, 450, 600] days when fitting the SMARTS, ECAM and the
merged data sets. In contrast, the microlensing in the much shorter WFI data set is fitted with a spline
having either 1 or 2 knots (ηml ∈ [1, 2]) since the microlensing variability is expected to alter the light
curve on time scales longer than a year.

The top panel of Fig. 3.15 shows the time-delay measurements obtained by each hyper-parameter
configuration (ηintr,ηml) considered. We can note that as ηml is decreased, the uncertainty of the time
delay measurement is increased as the extrinsic spline becomes flexible enough to fit more The outlier
(55,150) can be explained by the unbalanced rigidity of the intrinsic spline and flexibility of the extrinsic
ones relative to the time scale each one is designed to address. Apart from this outlier, the measurements
obtained are consistent with each other with variable precision. We gradually marginalize the most precise
measurement with the others in precision-increasing order until the tension with the rest of the sample is
lower than the threshold τ. Following the methodology of Millon et al. (2020b), we use τ = 0.5 (i.e. no
individual measurement is in a tension higher than 0.5σ with the final measurement) to have a conservative
error estimation without being biased by outlier measurements.

The same experiment is carried out separately with each other dataset. The particular case of WFI is
challenging because it covers only 253 days: given the long time delay, the light curves overlap on
less than 100 days. Even though distinct features are visible and well-sampled in the WFI data, the
complexity of the microlensing noticed previously cannot be adequately modelled with a single season.
The bottom panel of Fig. 3.15 demonstrates that when the extrinsic variations are modelled by a single
knot, the measurements are bi-modal, whereas allowing more flexibility with a second knot yields more
self-consistent measurements. The precision of the combined values with the different subsets reflect this,
and we hence chose to use the second subset’s value: ∆tAB=180.2+12.0

−13.0 days, as the final measure with
WFI.
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Figure 3.15: Top panel: Measurements of the time delay for different configurations of (ηintr, ηml) with
the merged ECAM+SMART+WFI dataset. Bottom panel: Same with the WFI dataset. The difference
between the combination over the separate ηml showcases the instability of the time-delay measurement
with this dataset and the unreliability of the combination over the total set.
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Figure 3.16: Measurement of ∆tAB for the different data sets. Since they are not independent of the first
three estimates, the estimate with ECAM+SMARTS+WFI in green is not used to compute the marginalized
measurement.

Fig. 3.16 shows the time delay measured on the three separate data sets, the combined value, and the
measurement on the merged ECAM+SMARTS+WFI data set. The marginalization over the three data
sets is relevant if we assume that each dataset is subject to different sources of systematic errors in the
photometric measurement. However, the photometry was computed with the same method for each data
set, and no discrepancies were observed between time delays measured with ECAM and WFI data on
other lens systems (e.g. Millon et al. 2020b,a). As shown by the lower panel of Fig 3.13, the extrinsic
variations are particularly complex during the 2017 season. As discussed previously, the WFI dataset
cannot properly model the extrinsic and intrinsic variations. The time delay with the WFI data set is, thus,
not robust enough for the marginalized time delay value to be trusted. By assuming that the sources of
systematic errors in the photometry are equivalent in every dataset, we use the ECAM+SMARTS+WFI
dataset, which allows us to use the entire period of the light curve to constrain the microlensing behaviour
as well as to take advantage of the high cadence and high signal-to-noise display of the WFI dataset. The
time delay measurement on this merged dataset of ∆tAB = 178.7+7.9

−8.8 days will be used in the rest of the
cosmography analysis. We do not take into account an eventual microlensing time delay (Tie & Kochanek
2017) because its existence is yet to be observed, and it impacts the time delay only by a day in the worst
cases (Bonvin et al. 2018), which is negligible given the length of the time delay.
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3.3.3 Resolved kinematics measurement

MUSE Integral Field Unit spectroscopy

An Integral Field Unit (IFU) observation of the system was carried out with the Multi Unit Spectroscopic
Explorer (MUSE) instrument on March 13th 2019, in wide field mode with adaptative optics. The
observation wavelength ranges from 4700.03 Å to 9351.28 Å with a spectral resolution of R ∼ 2500. To
have the effective resolution of a spectrum, we need to model the Line Spread Function (LSF), which
describes the shape and width of the spectral lines produced by an instrument. To do this, we fit a Gaussian
to several sky emission lines found in the spectra of an empty region of the datacube. We find that the
observed mean FWHM across the observed (lens rest-frame) wavelength range is 2.89Å (1.67 Å). This
range includes the lens redshifted lines Ca H and Ca K lines at 3933Å and 3968Å along with the G-band at
4304Å while 5806Å to 5965 Å wavelengths were cut out due to the notch filter. The integrated cube along
wavelength is shown in the top panel of Fig. 3.17. To ease spectral deblending of the quasar images from
the lens galaxy, we subtract the point source light at each wavelength of the data cube. To do so, the point
sources and lens galaxy light are fitted simultaneously with a Moffat and Sersic profile. As shown on the
bottom panel of Fig. 3.17, we first perform the fit on 10 stacked wavelengths to constrain the parameters as
a function of wavelength when performing the frame-by-frame fit. The wavelength change of the Moffat
index β and the Full-Width-Half-Maximum (FWHM) are consistent with expected MUSE PSF modelling
(e.g. Fusco et al. 2020; Weilbacher et al. 2020). The relative instability of the ellipticity of the PSF can be
attributed to the abrupt changes in the quasar and lens light shape due to emission and absorption lines.
For each wavelength frame, the Moffat part of the fit is then subtracted from the data to obtain the data
cube displayed in the inset of Fig. 3.17.

The spectrum of the center of the lens galaxy obtained from this subtracted cube is shown in Fig. 3.18 and
displays high SNR observation of the absorption lines Ca H, Ca K and g-band will be used to measure
σLOS in Section 3.3.3. This data also contains new high-quality quasar spectra thanks to a small aperture
integration on images A and B and the spectra of many of some perturbers annotated on Fig. 3.26 shown
in Fig. 3.18.

Finally, we extract the spectra of the two brightest perturbers (P5 and P6) with a high enough SNR to
measure the redshift.

σLOS measurement

As shown by the left panel of Fig. 3.19, we mask the pixels from the lens light cube further than 1.8 ′′from
the center of the galaxy as well as an area of 0.8 ′′around the position of images A and B. In order to
maximize the number of constraint on the radial velocity profile (see Fig. 3.4), the frame is then divided
into three concentric rings of 0.6′′width with a minimum signal-to-noise ratio of 15 to allow precise
measurement of σLOSin these bins. The integrated spectra of each bin is then fitted using the penalized
pixel fitting (pPXF) method (Cappellari 2016). This method models the galaxy spectrum with a weighted
linear combination of stellar spectra, broadened by a convolution with the galaxy line-of-sight velocity
distribution (LOSVD). Additive and multiplicative Legendre polynomials are included in the model to
improve the robustness to template mismatch and dust reddening. Any contaminating signal from residuals
of the quasar images blended with the galaxy is accounted for by including a scaled quasar spectrum
presented in Fig. 3.18.

As shown in Fig. 3.18, the most constraining features of the lens galaxy spectrum for theσLOS measurement
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Figure 3.17: Top panel: MUSE data cube summed over all wavelengths. The apertures used to extract
individual spectra of the quasar images, lens center and perturbers shown in Fig. 3.18 are represented by
orange circles. The inset displays the point-source subtracted cube revealing the lens galaxy light. Bottom
panel: PSF parameters fitted across wavelength. The values obtained when using stacks of 10 consecutive
wavelengths are used as constraining prior for the wavelength-by-wavelength fit. The shaded area indicates
the range of wavelength used for the σLOS measurement, and the dotted lines highlight the mean value of
the parameters in this range.
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Figure 3.18: Integrated spectra from the MUSE data cube with apertures shown in Fig. 3.17. The binned
flux is computed by imposing a minimal SNR of 5 per wavelength bin. From top to bottom, Lens
center: from left to right the stellar absorption lines Ca H, Ca K, H δ and g-band (orange dashed lines)
are consistent with the previously determined zl = 0.729. P5: from left to right, the galactic emission
lines Ne iii, He i, H ϵ and H δ are highlighted with green dashed lines and allow us to measure z5 = 0.3575.
We also identify the stellar absorption lines H γ, HE i, Ca H and Ca K allowing a velocity dispersion
measurement. P6: from left to right the lines Mg i, Ca ii O ii, H β and O iii doublet allow us to measure
z6 = 0.505. Quasar images: from left to right, we recognize the C iv, C iii, C ii and Mg ii emission lines.
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are the Ca H, Ca K and g-band absorption lines identified respectively at 6800 Å, 6828 Å and 7395 Å in the
observed frame. To focus the fit on these lines and avoid regions of the spectrum that could be dominated
by the C iv and C iii emission of the quasars, we restrict the wavelength range to [6000:9000] Å (in the
rest-frame [3530:5260]Å).

The stellar templates used for this fit are the high-resolution spectra (R∼9700 and FWHM= 0.43 Å) of 628
stars in the UVB range (3000-5560 Å) released as the X-Shooter Spectral Library (Gonneau et al. 2020).
To make these templates compatible with the observations, we degrade their resolution with a convolution
leading to the same FWHM of the LSF in the galaxy’s rest frame.

Following Westfall et al. (2019) we choose an additive polynomial degree of 10, to have sufficient flexibility
to fit the data without introducing bias by overfitting it as this study observed when taking higher degrees.
To complete the fitting setup, we include the modelling of galactic gas emission lines within the considered
range that do not appear in the stellar templates and could bias the measurement. An example of the σLOS

estimate in each bin given by a fit with this fiducial setup is shown in Fig. 3.19. However, this arbitrary
choice together with the choices of the fitting range and stellar template choice, can significantly bias the
estimate (e.g., Westfall et al. 2019; Mozumdar et al. 2023; Shajib et al. 2023).

To estimate systematic and statistical uncertainty of the σLOS measurement in a given bin, we create 50
hyper-parameter configurations with different:

• wavelength ranges, with extreme values uniformly drawn from ([6000,6150]:[8850,9000])Å,

• stellar templates used, following Shajib et al. (2023), 3 different sets of 40 X-shooter spectra are
created and used alternatively,

• degree of the additive polynomial, following the recommendation of Westfall et al. (2019), we use
degrees between 4 and 10 XI,

For each fitting setup, we create 50 realizations of Gaussian noise with the same standard deviation as
the difference between the observed and binned spectra. The measurement of σLOS is therefore based on
2’500 different estimates of σLOS for a given bin. Additionally, the estimate displayed in the right panel
of Fig. 3.19 shows that the depth of observed Ca K and g-band lines can be altered by the presence of
sky gas emission lines. To test the robustness of the measurement against this disturbance, we repeat the
measurement while masking the Ca K ([6794;6862] Å), g-band ([7361;7430] Å) or both.

The different measurements in each bin are displayed in Fig. 3.20. The final value of σLOS for each bin
is marginalized over these four cases and yields σ1

LOS = 282 ± 21 km s−1, σ2
LOS = 250 ± 36 km s−1 and

σ3
LOS = 189 ± 49 km s−1. Ultimately, the whole set of estimates of the 3 bins σLOS allows us to build the

covariance matrix between each bin’s velocity measurement.

Furthermore, we apply the same process to the stellar absorption lines identified on the spectrum of P5
shown in Fig. 3.18. In this case, we use the observed wavelength range [(4600,4700):(5600,5700)]ÅȦs
shown by the top panel of Fig. 3.21, the absorption lines are not altered by the sky but by galactic gas
emission lines. We thus incorporate those in the model without testing different masks. The final value
obtained is σP5

LOS = 123 ± 71 km s−1.

XIFor more details, we refer the reader to Fig.14 of this paper.
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Figure 3.19: Velocity dispersion point-estimate in the 3 radial bins of HE 1104−1805’s lens galaxy. Top
panel: Mean of the MUSE data cube after PSF subtraction and masking with overlayed bin numbers and
contours. Bottom panel: Example of a pPXF fit of the integrated spectra of each bin using the fiducial
setup, 3 − σ outliers from the binned spectrum marked in grey are apparented to sky emission lines and
are therefore masked for the fitting.
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Figure 3.20: Histograms of 2’500 estimates obtained with different ranges of wavelength, realization of
the noise, set of stellar template and degree of the additive polynomial used. This experiment was repeated
with a mask on the Ca K line, a mask on both Ca K line and g-band and while masking regions of the
spectrum affected by sky lines. The marginalization over these four cases gives us our final measurement.
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Figure 3.21: Measurement of the P5 stellar kinematics. Top panel: Point-estimate of σLOS
P5 using the

fiducial setup with the updated wavelength range. Bottom panel: Histograms of 2’500 estimates obtained
with different ranges of wavelength, realization of the noise, set of stellar template and degree of the
additive polynomial used.
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3.3.4 Line-Of-Sight analysis

Wide-Field imaging

The area covered by the lens field is encompassed by the Subaru Hyper Suprime-Cam (HSC) Strategic
Survey Program region. Fig. 3.22 shows this program’s i-band wide-field imaging. In addition, we use
the g and r band observation made by the same telescope and the u band imaging made with the Canada
France Hawaii Telescope (CFHT). Using the bright star masks and photometric redshift probability density
functions furnished by the HSC team, we measure the photometry of each galaxy in the field brighter than
26 mag and with z ≤ zsource. This allows us to create a catalogue of position, magnitude and photometric
redshifts for the objects of interest.

Due to the significant presence of nearby perturbers around the lens (as shown in Figure 3.26), our initial
step involves identifying the perturbers that are explicitly incorporated into the lens model thanks to the
flexion shift criterion, leaving the remaining ones for computation through the external convergence κext.

Perturbers explicitly included in the lens model

We use the M∗ − σLOS relation obtained Zahid et al. (2016) on galaxies up to redshift 0.7 to estimate
the mass-to-light ratio, M/L, with σLOS

P5 previously measured. The flux determined with a circular
aperture around P5 in the F160W band converted into luminosity using a fiducial cosmology with H0 =70
km s−1Mpc−1and Ωm = 0.3 XII. By applying the same M/L ratio to the other perturbers, we estimate their
mass and σLOS. By approximating their mass distributions with an SIS we compute their Einstein radius,
θE,SIS with :

θE,SIS = 4π
(
σLOS

c

)2 Dps

Ds
(3.43)

with Dps and Ds the angular diameter between the source and perturber and between the observer and the
source, respectively.

Perturber Redshift θE,SIS [′′] log(∆3x)
P1 - 0.2+0.5

−0.2 −4.2+0.5
−1.9

P2 - 0.2+0.6
−0.2 −3.1+0.5

−1.9

P3 - 0.1+0.1
−0.1 −4.5+0.6

−1.4

P4 - 0.3+0.3
−0.3 −4.1+0.4

−1.2

P5 0.3575 0.37+0.16
−0.16 −3.0+0.5

−0.5

P6 0.505 0.35+0.26
−0.27 3.3+0.4

−1.3

P7 - 0.2+0.7
−0.2 −4.2+0.5

−1.8

P8 - 0.3+0.4
−0.3 −3.7+0.5

−2.0

Table 3.1: Estimations of the perturbers’ Einstein radii and flexion shifts based on their luminosity and the
M/L ratio computed with P5.

Because of the luminosity of the perturbers without a redshift measurement, we assume they lie between
the closest perturber P5 and the source. We therefore repeat the computation with redshifts uniformly
drawn between z5 and zs and take the mean and the extreme 0.3 percentiles (3−σ in a Gaussian distribution)
of the resulting distribution as the final estimate.

XIIGiven the uncertainty of the σLOS
P5 measurement, the uncertainty on the fiducial cosmological parameters can be neglected
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Figure 3.22: Wide-Field Imaging of HE 1104−1805 in the i-band. Red circles denote regions within 8 ′′,
45′′and 120 ′′of the center of the lens.
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Figure 3.23: Detection of a 9th perturber near image B. Left panel: F160W band observation with PSF
and lens light subtracted. Right panel: PSF, lens and source light subtracted, the luminous component is
circled in white. Because of its proximity with image B (∼ 0.6 ′′away) and its position within the source
light, we include it in the lens light model.

We can then estimate the flexion shift caused by each perturber using Eq. 3.36. The results presented in
Table 3.1 show that even when marginalizing on their redshift, the flexion shift of these perturbers are all
potentially superior to 10−4. They can therefore significantly influence the image’s position and should be
included in the mass model.

In addition, the subtraction of the PSF, lens and source light with a preliminary SIE model, shown in
Fig. 3.23 revealed the presence of a luminous component ∼ 0.6′′ from image B. Without a counter-image
indicating that this feature belongs in the source, we treat this component as a perturber, hereafter P9.
Because of its faintness, the spectra of P9 can not be extracted from the MUSE data cube and its mass
cannot be estimated with the same technique employed for all other perturbers.

κext measurement

We use the number count method described in Section 3.1.1. As detailed previously, the treatment of
perturbers within 8′′from the lens is part of the explicit lens model. We, therefore, mask this region from
the number counting. Similarly to Wells et al. (2023), the weights used are: the inverse distance w1/r,
the potential wp, the redshift wz and the distance weighted redshift wz/r = wz/r. Their computation is
displayed in Fig.3.24.

As detailed in Wells et al. (2023), we compare the obtained distribution of weights to similar fields in the
Millenium simulation (Springel 2005) to determine the relative density of the observed galaxy field. The
final measurement κext = −0.0360.35

−0.034 is used for the rest of the cosmographic analysis in compliance
with the perturber inclusion strategy.
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Figure 3.24: Position and weight (size of the dot) of galaxies between us and the source. Black circles
indicate the 45′′and 120′′apertures. Blue dots correspond to objects with i-magnitudes less than 23, while
red dots correspond to those with magnitudes between 23 and 24. Figure credit: Patrick Wells
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Figure 3.25: Left panel: Correlation between each weight computed in the observed field. Right panel:
κext measurement yielded by masking either 4′′or 8 ′′around the lens. The latter shows that the LOS of
HE 1104−1805 is along an underdense region of the Universe. The alternative κext measurement shows
that multiple perturbers near the main lens are coincidental. Figure credit: Patrick Wells
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3.3.5 Lens modelling

HST Imaging for mass modeling

As a part of the H0liCOW program (Suyu et al. 2017), Program 12889 (P.I: S.H Suyu) took deep HST data
of HE 1104−1805 with Wide Field Camera 3 (WFC3) in bands F160W, F555W and F814W. The infra-red
imaging displayed in Fig. 3.26 showcases the main challenges for modelling this system. First, the point
source images are particularly bright with the PSF wings of both images aligned with the center of the
galaxy; accurate modelling of the PSF is, therefore, crucial to model the lens light correctly. Secondly, the
lensing arc is very dim and distinguishable only after proper subtraction of the lens light (see Fig. 3.30).
This makes the lens light fitting a primordial and sensitive step to properly reconstruct the shape of the
arc, an essential constraint to mass modelling. Thirdly, the system’s environment is particularly crowded
with 8 luminous galaxies within 15′′ of the main lens. Careful considerations will be given to assess the
impact of these companions on the modelled mass of the main lens. The system is also characterized by
a large and asymmetric separation of images A and B positions from the lens center of 1.17′′and 2.05′′,
respectively.

1"
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B

G

N

E

P1

P2

P3 P4
P5

P7

P8

P6

Figure 3.26: HE 1104−1805 imaging in the filter F160W band using HST WFC3. The main lensing galaxy
is denoted as G, whereas the main perturbers considered in the analysis are numbered from P1 to P8.

Setup and workflow

Main lens model: Following the recommendation of Millon et al. (2020c) and the methodology of the
most recent TDCOSMO lens models (e.g., Shajib et al. 2020, 2022), we model the lens galaxy with two
families of models: power law and a composite alternatively. In the first case, the mass is parametrized as
a PEMD (Eq. 3.21); the lens light is modelled by a Sersic profile (Eq. 3.19) in the F814W and F555W
bands and by a De Vaucouleur profile (i.e. two superposed Sersic with n = 1 and n = 4 in Eq. 3.19) in the
F160W band. The position of the mass component’s center is fixed on the light component, which is fit
jointly in the three bands.

For the composite, the baryonic mass with a double chameleon profile (i.e. two superposed chameleon
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profiles presented in Eq. 3.20 with an additional parameter encapsulation the ratio between the two).
As in the first case, the lens light is modelled by a Sersic profile (Eq. 3.19) in the F814W and F555W
bands. In the F160W, we use a double chameleon profile to model the light, and the fitted parameters
fix the parameters of the baryonic mass model. The dark matter halo is modelled with an elliptical NFW
profile (Eq. 3.22), whose position is tied to the baryonic mass. Similarly to previous lens modelling with
composite works (e.g., Rusu et al. 2017; Wong et al. 2017; Shajib et al. 2022), we constrain the NFW’s
scale radius Rs = 58 ± 8 kpc based on the measurement of Gavazzi et al. (2007) on galaxies that have a
similar σLOS as the one measured in this system.

To simplify the light fitting, we mask pixels further than 5′′from the lens in the F814W and F555W bands
and 4.3′′in the F160 band. We adjust the mask locally to mask the light of all the perturbers and mask
the lens’s central pixels because the light is not fitted perfectly in this region. Even though this does not
physically constrain the mass, the optimizer is tempted to create a central image by creating a core to
compensate for the induced residuals.

Source light: The source light is visible only in the F160W band, and we model it with a single Sersic
profile in both families of model. No apparent structure in the lensed arc motivates the need for more
complex shapes, contrary to previous TDCOSMO studies.

Perturbers model: To include the perturbers in the mass model, we use two strategies:

1. We add an SIS component to the mass model for each perturber considered. Even though we do not
fit their light in the final model, an independent sersic fit gives us their position. Since P5 and P6
have different redshifts than the lens, we use the multi lens-plane formalism introduced in Eqs. 1.63
and 1.65. For the other perturbers considered, we assume that they lie in the same plane as the lens.
In this scenario, we consider the perturbers P2, P5 and P6 as they have the highest flexion shifts and
P9 because of its proximity to image B. We alternatively test the scenario where we include P5; P5
and P6; P5, P6, and P2; P5, P6, P2 and P9.

2. To account for all the perturbers at once without depending on redshift assumptions, we add a flexion
term in the lens model. As described in Eqs. 1.45 and 1.46 the flexion F models the perturbation to
the third derivative of the lens potential as a polynomial with four coefficients fxxx, fxxy, fxyy and
fyyy. To put a prior on these, we draw a population of perturbers with the same position but different
redshifts (except for P5 and P6) and θE,SIS within the values shown in Table 3.1 and measure the
flexion induced by the combined influence of the eight perturbers at the position of the lens. We
repeat this experiment 50’000 times to get a Gaussian prior on the 4 terms displayed in Fig. 3.27.

PSF Modelling: To complete the light model, each component is convolved by the PSF of the corre-
sponding band.

In the optical bands F555W and F814W, the PSF and its noise map were modelled using the only star in
the field of the exposure, while in the F160 band, 5 stars of the field were stacked together using the PSFr
software (Birrer et al. 2022a).

Since the temperature profile of the stars in the field used for the PSF initial guess do not match the
quasar one, we finalize the PSF model with 4 successive repetitions of the following sequence with the
Lenstronomy software (Birrer et al. 2016):
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0.01 0.00 0.01 0.02 0.03
Coefficient value

fxxx = (9.0 ± 3.1) 10 3

fxxy = ( 8.5 ± 27.3) 10 4
fxyy = ( 3.8 ± 2.3) 10 3

fyyy = (2.0 ± 0.5) 10 2

Figure 3.27: Prior on the four flexion coefficients computed using 50’000 different realizations of the 8
perturbers redshift and mass configurations.

1. alignment of the F160W and F555W exposure with the F814W one

2. lens model (mass and light) parameter optimization using the Particle Swarm Optimizer (PSO)
routine of COSMOHAMMER (e.g., Eberhart & Kennedy 1995; Birrer & Amara 2018)

3. iterative reconstruction of the PSF on lens and source subtracted residuals. In the latter, we also
adjust the PSF noise map in a radius of 0.5′′around its center to adapt the constraining power of
these pixels.

Posterior sampling and combination of different models: After obtaining a satisfactory PSF, shown
in Fig. 3.28, we use the EMCEE software (Foreman-Mackey et al. 2013) to perform an MCMC sampling
of the light and mass parameters (ξlight and ξmass) posterior by maximizing the likelihood expressed in
Eq.3.18

We use 10 times as many walkers as there are parameters in the model, and we use the last 1 000 out of
20 000 iterations to construct the posterior of a given modelling setup. The best reconstruction of the HST
imaging with power-law and composite models shown in Figs. 3.29, 3.30 and 3.32 demonstrate that all
relevant features in the light are correctly predicted. Figures 3.31 and 3.33 display the convergence profile
and magnification models obtained by each model family in every perturber-inclusion scenario. In both
cases, we notice that the convergence of the perturber P5 drops significantly when adding P6 and reaches a
much lower value than P6, even though the estimation for the Einstein radii based on the luminosity given
in Table 3.1 predict a similar value for both. Nevertheless, since these two perturbers are very close, only
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Figure 3.28: From left to right: Initial guess of the PSF from stacked stars in the field, final PSF obtained
and the difference between both. We display the results for the band F55W, F814W and F160W from top
to bottom.

the combined total convergence impacts the central lens mass, and this quantity is conserved throughout
the different scenarios. As flexion does not consider the position of the perturbers and models the third
derivative of the lensing potential, the added convergence is smoothly spread over the lens plane, which is
unphysical but expected. Still, we note that the added convergence follows the direction of the perturbers
P2, P3 and P4 and in a lower measure, the directions of P5 and P6 are also represented which proves the
flexion term is a valid way to deal with the perturbers in this system.

The posterior probability of the lens mass model and the induced Fermat potential difference and time
delay distance for both families of models are shown in Figs 3.34 and 3.35. In the power-law case, we see
that the lens mass is generally compatible with a sphere, which explains the wide range of possible position
angles not always in agreement between each scenario. The posterior probability of the other parameters
is consistent throughout all configurations. More importantly, thanks to the 4% relative precision on the
time delay, we reach a precision of 10% on the time delay distance.

The composite model is not as straightforward; each modelling configuration seems to end up in different
local maxima of the likelihood function with precision too high to make different models compatible.
This can be explained by the fact that 43 to 46 variables parametrize the composite model, whereas the
power-law ones require 37 to 40. The lack of constraint from the imaging (only two images and a dim
Einstein ring) cannot sufficiently restrict the number of solutions found. The size of the NFW profiles is
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Figure 3.29: Reconstructed image of HE 1104−1805 using the best power-law model (PEMD + Shear
+ Flexion). From left to right: The imaging data, reconstructed image and normalized residuals are
displayed in each HST filter. The residuals show no particular feature and demonstrate a precise image
reconstruction.
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Figure 3.30: HE 1104−1805 reconstructed light component with power-law. From left to right: The light
component unconvolved and then convolved with the PSF and its corresponding feature in the imaging data.
The top row shows the lens light profile, and the bottom row shows the lensed source light profile. This
figure shows that the two light-components model corresponds to expectations based on the observation.
The center of the PSF and of the lens are not ideally modelled, which justifies the noise map increase in
the first region and the masking of the second region.

Figure 3.31: HE 1104−1805 modelled potential with power-law and different satellite inclusion strategies.
The top row shows the convergence κ, and the bottom row shows the magnification induced by each model.
From left to right, we show the models obtained by including P5; P5 and P6; P2, P5 and P6; P2, P5, P6,
P9 and flexion.
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Figure 3.32: Same as Figs. 3.29 and 3.30 with the composite model. 148



Time Delay Cosmography Chapter 3

1" E
N

Composite + P5

1" E
N

Composite + P5+P6

1" E
N

Composite + P2+P5+P6

1" E
N

Composite + P2+P5+P6+P9

1" E
N

Composite + flexion

1" E
N

A
B

1" E
N

A
B

1" E
N

A
B

1" E
N

A
B

1" E
N

A
B

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

lo
g 1

0

3

2

1

0

1

2

3

de
t(

A
1 )

Figure 3.33: Same as Fig.3.31 for the composite model.

consistent with prior established by Gavazzi et al. (2007) but their mass is discrepant from one model to the
other with no apparent correlation with the number of perturbers included. Moreover, the two chameleon
components are elliptical and anti-aligned (∆ψcham ≈ 60◦). While this allows the central region to appear
spherical in the center, it appears that the position angle of the external shear and the second chameleon
profile (the most elliptical one) significantly impact the slope of the convergence. As these parameters
are naturally affected by the number and position of perturbers, we obtain a bi-modal distribution for γ,
reflected in the ∆ϕABand D∆t posterior distributions. Finally, the positional offset is around 0.1 ′′between
the baryonic and dark matter profiles, confirming that the "bulge-halo conspiracy" holds also in this system.

The Bayesian Information Criterion (BIC, Schwarz 1978) allows us to compare two models with different
parametrizations; it is defined as:

BIC = k · ln(nData) − 2ln(L̂), (3.44)

where L̂ is the maximized value of the likelihood function of the model M, i.e. L̂ = p(Data | ξmax), where
ξ̂max are the parameter values that maximize the likelihood function, nData is the number of data points
(i.e. the number of unmasked pixels across the three bands + 1 for the time delay), k is the number of
parameters in the model.

The BIC values computed with the maximal likelihood of each model are presented in Table 3.2. The
variance of the BIC within one family of models is σ∆BIC = 14.

Similarly to Birrer et al. (2019) and Shajib et al. (2022), we determine the weight of each posterior
distribution following:

W =
1√

2πσ∆BIC

∫ ∞

−∞
f (x)exp

(
− (BIC − x)2

2σ∆BIC

)
dx, (3.45)

where f(x) is the evidence ratio function given by:

f (x) ≡


1 if x < BICmin,

exp(BICmin − x) if x > BICmin,
(3.46)

(3.47)

with BICmin the BIC of the reference model.
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Figure 3.34: Top panel: Posterior distribution of the ellipticity parameters, axis ratio q and position angle
ψ of the PEMD component along with the magnitude and position angle of the external shear γextand
ψext. Following Lenstronomy’s convention, the position angle origin is defined along the North axis and
increases clockwise. Bottom panel: Posterior distribution of the Einstein radius θE, convergence profile
slope γ, induced Fermat potential difference ∆ϕABand time delay distance D∆t. The last two parameters
are blinded until all investigations are complete.
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Figure 3.35: Same as Fig. 3.34 for the composite model. The normalization of the NFW profile, ρ0, is
computed with the deflection angle at scale radius of the core Rs, αRs with ρ0 =

αRs

4R2
s (1+ln(1/2)) . We also

display the offset between the center of the NFW and the chameleon profile.
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Table 3.2: Every modelling scenario considered and their weight in the final posterior.

Lens model Perturbers included BIC Relative Weight
Power-law P5 36844 0.80
Power-law P5, P6 36794 1.
Power-law P5, P6, P2 36796 0.99
Power-law P5, P6, P2, P9 37028 0.24
Power-law Flexion 36834 0.84
Composite P5 39097 0.76
Composite P5, P6 39297 0.38
Composite P5, P6, P2 39312 0.356
Composite P5, P6, P2, P9 38992 1.0
Composite Flexion 39213 0.52

To create a single posterior out of N multiple models, we sum all the posteriors using their normalized
weight: ∑

n

Wn

max(Wn)
p(ξlight, ξmass | Data). (3.48)

This procedure is done separately for the composite and power law models, and we compare the results
in Fig. 3.36. The disparities between the two families on γ induce a 29% shift of the Fermat potential
and 22% for the time delay distance between the two families. The external shear is higher than all the
other TDCOSMO lenses but agrees with previous estimates from Wisotzki et al. (1998) and Courbin
et al. (2000). Etherington et al. (2023), suggests that in power-law + shear models, the external shear is
overestimated and aligned or anti-aligned with the main lens mass to compensate for the lack of flexibility
of the model. While we indeed observe a decrease in the external shear when using the more flexible
composite models, we do not observe a particular alignment of the PEMD mass with the external shear
in the most rigid models (P5, P5 + P6 and P5+P6+P2) and conclude that the values of γextfound are
physically motivated.

3.3.6 Combining lensing, kinematics and external convergence for cosmographic
inference

Following the methodology of Shajib et al. (2023), we use the spatially resolved kinematics measured
in Section 3.3.3 to mitigate the mass sheet degeneracy. To do so, we sample the posterior distribution
of the lens model, ξlight, ξmass, MST coefficient λint, and cosmological distances Dℓ and D∆t given all the
observables: imaging, the time-delay ∆tAB, the radial bins of the velocity dispersion σLOS

1,2,3 and the
external convergence κext measured:

P(ξlight, ξmass, λint,Dℓ,D∆t | Img,∆tAB, σLOS, κext) ∝ L(σLOS | σmodeled
LOS )p(λint, κext) (3.49)

The likelihood of the modelled 3-bin velocity dispersion is computed with the following:

L(σLOS | σmodeled
LOS ) ∝ exp

(
−1

2
(σLOS − σmodeled

LOS )TΣ(σLOS − σmodeled
LOS )

)
, (3.50)

where σmodeled
LOS is the 3-bins velocity-dispersion computed with the JamPy package through Eqs. 3.31 and

152



Time Delay Cosmography Chapter 3

Figure 3.36: BIC weighted comparison of the power-law and composite models. We obtain θPL
E =

1.35 ± 0.01, γPL = 1.93 ± 0.02, γPL
ext = 0.14 ± 0.01, θComp

E = 1.35 ± 0.05, γComp = 2.25 ± 0.11 and
γ

Comp
ext = 0.10 ± 0.02
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Figure 3.37: Correlation between λint and θc in the posterior of a fiducial cored power-law. We used the
ξlight and ξlens with the highest likelihood on top of which a core with θc = 8′′ was added.

3.32. Σ is the covariance matrix between σLOS measured in each bin determined in Section 3.3.3. In
practice, the software uses Multi-Gaussian-Expansions (Emsellem et al. 1994, MGE) fits of the mass and
light profiles to be able to deproject these surface densities into 3D ones in a straightforward way (Monnet
et al. 1992). The light MGE fit is based on the lens light profile corresponding to the ξlight with maximum
likelihood. The PSF is modelled as a Moffat with β = 1.96 and FWHM = 0.54′′ based on the mean value
of these parameters along the wavelength range used for the σLOS measurement (i.e. [6000-9000] Å) that
is shown in in the bottom panel of Fig. 3.17.

For each sample, we compute the MST-affected convergence by combining Eqs. 3.8 and 3.24:

κλ(θ = (1 − κext)(λint ∗ κ(θ) + (1 − λint)
θ2

c

θ2
c + θ2

. (3.51)

As this MST is not parametrized in the imaging-based part of the modelling, we need the size of the core
θc to be large enough so that λint cannot be constrained by the imaging data. To find the minimal value of
θc, we simulate a lensing system with parameters identical to the maximum likelihood system without
the perturbers (i.e. a PEMD with external shear) and add a core with a fiducial size of θc = 8′′which we
fit using only imaging and time delay data. The correlation between λint and θc in the obtained posterior
distribution displayed in Fig. 3.37 shows us that for cores larger than 18′′, λint is unconstrained. We
therefore use θc = 18 ′′. A uniform prior U(0.5, 1.13) on λint ensures that the MST transformed mass
model is monotonic; this is necessary to allow an accurate MGE representation (Shajib 2019). We also use
the measurement of κext presented in Section 3.1.1 as prior to disentangle the internal from the external
MSTs expressed in Eq.3.8. The anisotropy is modelled with the Osipkov-Merritt parametrization (see
Eq 3.29) where we compute the anisotropy scale radius with a uniform priorU(0.1, 5) on aani as it is a
standard choice in previous studies (e.g., Birrer et al. 2016; Shajib et al. 2022). The resulting posterior
distribution for these parameters based on the power-law and composite models is shown in Fig. 3.38. In
both families of model we obtain a λint compatible with 1. However, given the ∼ 10% precision on this
measurement, meaning that the MST does not have a strong effect on this system. Because the anisotropy
scale aani is better constrained by the composite model, we obtain a more precise value for DComp

ℓ
than for
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Figure 3.38: Posterior of λint, D∆t and Dℓ using kinematics based on the power-law and composite mass
models. We measure λint

PL = 0.97+0.11
−0.16, and λint

Comp = 1.03+0.07
−0.10. The precision on the cosmological

distance are ∆D∆t
D∆t

PL
= 8%, ∆Dℓ

Dℓ

PL
= 21%, ∆D∆t

D∆t

Comp
= 9% and ∆Dℓ

Dℓ

PL
= 16%. We observe a 16% relative

difference between DPL
∆t and DComp

∆t , and 67% between DPL
ℓ and DComp

ℓ
.

DPL
ℓ with a tension of nearly 2-σ. While the precision on D∆t did not change, the prediction of the two

families are in agreement within 1-σ

Using the posterior distribution of Dℓ and D∆t we then infer H0 in a flat-ΛCDM cosmology with a uniform
prior U(0, 150)km s−1Mpc−1 and for Ωm = U(0.05, 0.5). These prior are voluntarily conservative and
follow the current cosmological paradigm described in Section 1.1. The resulting posterior distributions
obtained for both models are displayed in Fig. 3.39. As the more precise D∆t measurement dominates
the likelihood of this sampling, we obtain H0 measurement with both families compatible within 1-σ.
We combine both measurement by weighting the posterior of each family prediction by their kinematic
likelihood and see that the power-law model dominates the result. We hence obtain an 11% precision on H0.
As discussed in Section 1.4, the angular diameter distances are sensitive to Ωm only to the second order;
it is therefore expected to not yield any constraint on this parameter through Time Delay Cosmography
alone.

3.3.7 Discussion and conclusion

The Table 3.3 regroups all the cosmography-related measurements achieved for HE 1104−1805.

The measurement of the time delay, even though higher than previous estimates (e.g. Poindexter et al.
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Figure 3.39: H0 measurement with HE 1104−1805 obtained with the powerlaw and composite models.
The precision of the different measurements of H0 are ∆H0

H0

PL
= 8%, ∆H0

H0

Comp
= 9% and ∆H0

H0

Combined
= 11%.

Table 3.3: Summary of all the relevant measurements on HE 1104−1805. The relative difference was
computed using regarding the power-law model.

Lens modelling measurements

Power-law Composite Relative difference [%]
θE 1.35 ± 0.01 1.35 ± 0.05 0
γ 1.93 ± 0.02 2.25 ± 0.11 16
γext 0.14 ± 0.01 0.10 ± 0.02 28
λint 0.99 ± 0.13 1.06 ± 0.08 6
∆D∆t
D∆t

7% 9% 13
∆Dℓ

Dℓ
20% 12% 67

Ancillary measurements
∆tAB 178.7+7.9

−8.8 days
κext −0.0360.35

−0.034

σ1
LOS, σ

2
LOS, σ

3
LOS 282 ± 21, 250 ± 36, 189 ± 49 km s−1

2007; Morgan et al. 2008), relies on the longest and best-sampled data. It was estimated with a data-driven
algorithm whose accuracy was assessed on multiple simulated and observed light curves, which is crucial
as we saw that the extrinsic variability is particularly challenging to model in this system. Physical
constraints could introduce bias to the measurement. We are, therefore, ensured to have the most robust
estimate for this object.

The measurements of the velocity dispersion σLOS
1,2,3 and the external convergence κext are robust to the
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systematic checks and are therefore accurate.

The lens mass modelling was performed with the two main parametrization families: power-law and
composite. The nearby perturbers were accounted for both individually with successive addition of SIS
models and globally using the flexion term. The power-law models are robust to the different perturber
configurations and yield an 7% precision on D∆t, 20% precision on Dℓ and 10% on H0. Similarly, the
composite model yields a 9% precision on D∆t and 12% on Dℓ. We however note a discrepancy between
the two families of model of 13% ∼ 1.1 σ distributions between D∆tpredicted by the two model families.
Such discrepancy was already observed in modelling the quadruply lensed quasar WGD 2038−4008
(Shajib et al. 2022) because the system’s compactness only allowed to probe the inner regions of the
mass profile. In our case, the fact that we have only two images and a dim arc does not provide enough
containing power to completely lift the degeneracy created by the multiple perturbers. Nevertheless, as
shown by Fig.3.39, the weighted combination of the two H0 measurements favors the power-law estimate
and enables to discriminate between the two families and yields a 12% precision on H0. The complete
analysis presented is now under review by the TDCOSMO collaboration. The unblinding of the H0

value will reveal if the relative difference of 13 % between both measurements makes one measurement
agree with the early Universe and the other with the late Universe values of H0. In any case, despite the
challenges raised by the faintness of the lensing arc, the brightness of the PSF and the numerous perturbers
near the main lens the most conservative H0 measurement yields a marginalized precision of 11%. This
precision is not as good as with J1206 (8%), the other TDCOSMO double, which displays a brighter arc
as shown in Fig. 3.5. Nevertheless, this work is a cornerstone analysis for the upcoming comparison of the
H0 measurement with doubles and quadruples, as it shows that H0 can be measured in not ideal conditions
with reasonable precision.

3.4 Summary
In this chapter, I have presented my contribution to the measurement of H0 through Time Delay Cosmog-
raphy. The results of the NOT monitoring campaign have been displayed, which will provide time delay
data for six new systems. Additionally, I have showcased the detailed Time delay cosmography analysis of
the double-lensed quasar HE 1104−1805, which involved measuring the time delay, the resolved velocity
dispersion, external convergence, and the mass model. While the first two measurements are robust, the
low number of imaging constraints lead to a discrepancy between the power-law and composite models.
Even if this affects the precision of the H0 measurement, we obtain a final 12% precision. This work has
set the stage for the TDCOSMO collaboration to analyze more doubly lensed quasars, as their focus has
primarily been on quadruply lensed ones up until now.
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Conclusion
In the first part of this work, we fructify the monitoring efforts led by COSMOGRAIL during the last
20 years to obtain high signal-to-noise and well-sampled light curves to unveil new probes of the quasar
structure. In Paic et al. (2022), we show that high-frequency features of the QJ 0158−4325 microlensing
light-curve can measure the Broad Line Region. This novelty completes the standard light-curve fitting
method of Kochanek (2004), which measures the size of the accretion disk, as it exposes sources of
systematic bias and opens the possibility of a formalism able to determine the size of the accretion disk
and the Broad Line Region with a single light curve. Additionally, Millon et al. (2023) shows that the
same microlensing light curve suggests the existence of a small separation Super Massive Binary Black
Hole (SMBBH) in QJ 0158−4325. The imminent Rubin-LSST program will simultaneously monitor
thousands of lensed quasars with different filters, multiplying the number of observed microlensing light
curves 100-fold. To focus the follow-up observations and human resources on the most interesting systems
(i.e. the ones undergoing the most intense micro-magnification), I led the development of a neural network
able to forecast pairs of lensed quasar images that are likely to reach a micro-magnification peak 150 days
in advance.

The next decade of microlensing light curve studies will be the turning point for several outstanding
challenges the quasar studies raise. The new techniques presented will allow a large sample study of the
accretion disk and BLR size. Our understanding of these components’ geometry is still heavily debated
and the interaction with the host galaxy is still poorly understood. Moreover, additional discoveries of
small separation SMBBH (≤0.01 pc) could question the coalescence time prediction of such systems
which are supposed to collapse rapidly.

The past decade saw the transformation of Time delay Cosmography from a convoluted idea requiring
large amounts of data to a mature technique aware of its flaws with observational resources to tackle them,
making this technique one of the most precise tool to inquire the so-called H0 tension. In the second
part of this work, I contribute to investigating the validity of the H0-tension by measuring H0 with the
double-lensed quasar HE 1104−1805. To do so, I computed each key component of the Time Delay
Cosmography method: the time delay, the lens stellar kinematics, the lens mass model and the external
mass contribution. Despite the complexity of the system and the low constraining power of the imaging
data we reach a 12% precision on H0. Even though the unblinded value will not alone infirm or confirm
the tension, this study shows that reasonable precision can be attained with doubles. In the quest to reach a
1% precision on the H0 measurement with this technique, the doubles must be better represented in the
TDCOSMO sample. Even though their constraining power is not as high as the quadruples, the population
of double is much larger than the quadruples and favouring the latter could lead to selection biases. This
endeavour will be supported by the ever-increasing number of strong lenses, which will be discovered by
Euclid and Rubin-LSST and enhanced observation, improving each strong lens’s accuracy. For instance,
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the James Webb Telescope will yield high-resolution imaging in redder bands than the currently used
Hubble Space Telescope, giving clearer observations of the lensed host galaxy.

The measurement of H0 and the study of distant quasars have revolutionized our understanding of the
Universe multiple times. This work contributes to the future resolution of some of the outstanding questions
in cosmology and astrophysics, such as the co-evolution of galaxies with their central SMBH and the
existence of dark energy.
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