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Abstract
VR (Virtual Reality) is a real-time simulation that creates the subjective illusion of being in a
virtual world. This thesis explores how integrating the user’s body and fingers can be achieved
and beneficial for the user to experience VR.
At the advent of VR, the original idea was to completely transpose users’ bodies, including
hands and fingers, so that we could still be able to see our own movements in the VE (Virtual
Environment). However, technological limitations prevented the full integration of the body,
hence negatively impairing the subjective user experience. Hands-tracking devices were replaced
by controllers and the body integration was, for a time, forsaken. Recently, Mocap (Motion
Capture) systems became more reliable, more convenient, and the concern for body integration
came back. Body movements can be tracked in real-time with trackers strapped on the body
limbs, and IK (Inverse Kinematic) can be used to animate avatars’ skeletons from the MoCap data.
However, MoCap techniques were not still sufficiently robust to reliably track finger motion,
hence preventing our primary way to interact with the environment from being visible in the VE.
To address this critical issue, we proposed an approach relying on an active camera-based MoCap
(Motion Capture) system to animate virtual hands and fingers in real-time. Here, a first neural
network was used to fill the gaps in the input due to occlusions, while a second one was used
to provide an IK (Inverse Kinematic) solution handling the animation of the hand and fingers.
This method focused on maintaining plausible poses (eventually with slight distortions in the
movements) to compensate for tracking errors rather than seeking a perfect MoCap system that
would not present any drawback.
To confirm the usability of our approach, we investigated, through a user study, whether one
could tolerate those errors in the finger animation through the evaluation of an even more distinct
type of distortion than motion amplification in the context of succeeding interactions: finger
swaps. Our results showed that participants mostly took credit for introduced finger swaps, to
the point where participants could bearly notice when they were helped, allowing us to provide
guidelines to avoid disrupting the SoE when animating avatar fingers.
The learned mechanisms of the cognitive functioning of the SoE at the finger levels combined
with the knowledge from the literature on arm/leg reaching movements were then integrated
together to provide an approach aiming to avoid BiE (Break in Embodiment) when embodying
avatars, with different shapes and proportions, animated at both the body and finger levels.
This approach relies on an active optical MoCap system (to acquire the user’s movements), a
user’s body calibration procedure (to construct a numerical model of the user’s morphology),
and an animation pipeline to transfer the original motion from the user onto an avatar with
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Abstract

different shapes and sizes in real-time. The proposed approach was evaluated through a subjective
evaluation procedure comparing the proposed approach against a full-body animation using direct
forward kinematics and our results showed that the retargeted approach outperformed the direct
kinematics forward one. Despite the smaller effect size observed than initially expected, the
evaluation highlighted the necessity of adapting the motion, even if the avatar and the user look
similar.
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Résumé
La Réalité Virtuelle (VR) est une simulation en temps réel qui crée l’illusion subjective d’un
monde virtuel pour l’utilisateur. La thèse suivante explore l’intégration du corps et des doigts
de l’utilisateur dans l’environnement virtuel (VE) ainsi que ses bénéfices pour l’expérience
utilisateur en VR.
À l’aube de la réalité virtuelle (VR), l’idée originale était de transposer complètement le corps
des utilisateurs, y compris les mains et les doigts, de sorte que nous puissions toujours voir nos
propres mouvements dans l’environnement virtuel (VE). Cependant, des limites technologiques
ont empêché l’intégration complète du corps, affectant négativement l’expérience subjective de
l’utilisateur. Les dispositifs d’acquisition de mouvement des mains ont été remplacés par des
contrôleurs et l’intégration du corps a été mise de coté pendant un certain temps. Récemment,
les systèmes de capture de mouvement (MoCap) sont devenus plus fiables, plus pratiques, et
l’intégration du corps est revenue un sujet de premier plan. Les mouvements du corps peuvent
être capturés en temps réel à l’aide de capteurs attachés sur les différentes parties du corps, et la
cinématique inverse (IK) est utilisée pour animer les squelettes des avatars à partir des données
de la capture de mouvement (MoCap). Cependant, les techniques de MoCap ne sont pas encore
suffisamment robustes pour suivre de manière fiable les mouvements des doigts, empêchant ainsi
notre principal moyen d’interaction avec l’environnement d’être visible dans l’environnement
virtuel (VE).
Pour résoudre ce problème critique, nous avons proposé une approche reposant sur un système
de capture de mouvement (MoCap) basé sur des marquers actifs et suivi par des caméras, afin
d’animer en temps réel les mains et les doigts virtuels de l’utilisateur. Ici, un premier réseau
neuronal est utilisé pour combler les données manquantes de la capture liées aux occlusions,
tandis qu’un deuxième réseau est utilisé pour fournir une solution de cinématique inverse (IK)
gérant l’animation de la main et des doigts. Cette méthode se concentre sur le maintien de poses
plausibles (éventuellement avec de légères distorsions dans les mouvements) pour compenser
les erreurs de capture à la place de rechercher une solution technologique de MoCap qui ne
présenterait aucun inconvénient.
Pour confirmer l’utilisabilité de notre approche, nous avons étudié, à travers une étude utilisateur,
à savoir si l’on pouvait tolérer ces erreurs d’animation des doigts à via l´évaluation d’un type de
distorsion encore plus marqué que l’amplification d’un mouvement dans le contexte de réussir
une interaction : la permutation de l’animation de deux doigts. Nos résultats ont montré que
dans la grande majorité des cas les participants se sont attribué les mouvements permutés des
doigts, au point où les participants ne se sont pratiquement pas rendu compte d’avoir été aidé,
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Résumé

nous permettant ainsi de fournir directives pour éviter de perturber le sens d’incarner le corps
virtuel (SoE) lors de l’animation des doigts de l’avatar.
La compréhension des mécanismes de ce fonctionnement cognitif au niveau des doigts combinés
aux connaissances de la littérature sur les mouvements de bras/jambes visant à atteindre un objet,
ont ensuite été intégrés pour proposer une approche visant à éviter le rejet de l’avatar, animé au
niveau du corps et des mains, lorsque ce dernier présente différentes formes et proportions.
Cette approche repose sur un système actif de MoCap optiques (pour acquérir les mouvements
de l’utilisateur), une procédure de calibrage du corps de l’utilisateur (pour construire un modèle
numérique de la morphologie de l’utilisateur) et un pipeline d’animation pour transférer le
mouvement d’origine de l’utilisateur sur un avatar avec des formes et des tailles différentes en
temps réel. L’approche proposée a été comparée, à travers une procédure d’évaluation subjective,
à une animation du corps reposant sur l’application directe des rotations des joints du model sur
l’avatar, et nos résultats ont montré que l’approche de retargeting surpassait la seconde méthode.
En dépit d’une taille d’effet inférieure à ce qui était initialement prévu, l’évaluation a souligné la
nécessité de l’adaptation du mouvement, même si l’avatar et l’utilisateur se ressemblent.
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1 Introduction

Jaron Lanier is credited with introducing the term VR (Virtual Reality), which refers to a real-time
simulation that creates the subjective illusion of a virtual world for the user. Lanier advocated
that VR had the potential to let you "being you in the Virtual Reality" with a "virtual version of
your body" allowing users to interact with virtual environments using their entire body. Back at
the advent of VR, he collaborated with Thomas G. Zimmerman, with whom they built a hand
gesture interface device that was not only able to acquire hands and fingers motions but also to
provide haptic feedback to the users wearing the gloves. Those devices, the DataGlove™ and
the Z-Glove™ (Zimmerman et al., 1986) were connected to a computer and were intended for
object manipulation in 3D as, e.g., a clinical tool to evaluate hand function, a music controller, or
a finger spelling interface. This consideration for the hands, fingers, and overall body tracking
system was seen as a clothing required to be put on in order to enter VR (Lanier, 1988). Due to
their technological limitations, limited accuracy in determining the rotation (Quam et al., 1989),
and combined with high cost, data gloves, however, remained limited to specific application cases
of VR.

Compared to gloves, hand-held controllers are typically simpler in design, more cost-effective,
more robust, and provide greater accuracy and reliability when tracking positions and orientation
in 3D space. Additionally, holding a controller provides a resting position for the hand, which
can help prevent fatigue, whereas not holding an object while maintaining a virtual object in front
of us can often lead to hand fatigue (Falcao et al., 2015). Furthermore, the metaphor presented
by using controllers is quite similar to the computer mouse: the selection and movement of an
object can be as straightforward as placing the controller near the object, pressing the trigger
with firm click feedback, and releasing the object where desired. In spite of the lack of realism,
controllers have inherited the benefits of the widespread familiarity with mouse usage, whereas
the inaccuracies in finger tracking or in the detection of a grasp for virtual objects reduced the
overall effectiveness of gloves compared to controllers (Boban et al., 2020).

Thanks to technological advancement in computer vision, allowing for real-time finger tracking,
there has been a recent change resulting in shifting away from the use of controllers. Nowadays,
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with devices such as the Oculus Quest (Oculus, 2019), LeapMotion (LeapMotion, 2019) providing
finger tracking capabilities, or Vive Trackers (Vive, 2022) capable of tracking user’s limbs and
hands, we can see a regain of interest for the original idea to providing users with direct hands
and fingers interactions. This is an additional clue relating to the importance of the role of hands
and fingers in human interaction with the real world and, most importantly, the lack induced
using only controllers.

1.1 VR use and limitations

1.1.1 VR field of applications

The review from Radianti et al. (2020) describes the main trends in using VR for skill training
applications. Among those fields, they identified the training for the military; the military was
the leading actor in the development of VR at its dawn, First Responders (e.g., police officers,
firefighters, and emergency medical services), Transportation, Workforce Training, Interpersonal
Skills Training, and Medical Training. Simulation training in surgery is an excellent illustration
of how VR technology allows the development of surgical skills in a controlled environment,
reducing risks to patient safety, optimizing the use of operating theaters, and minimizing financial
costs (Aggarwal et al., 2010). However, using simulations involves raising the question of the
fidelity of the proposed experience and its influence on the quality of the training. Consequently,
it was shown that the level of realism and fidelity in the training experience would enhance skills
acquisition compared to low-fidelity systems (Sidhu et al., 2007).

In 1999, Gallagher et al. investigated ways to address simulation training for laparoscopy. This
type of operation involves placing a tool equipped with a camera at its tip in a patient’s abdomen.
Here, a hardware simulator (MIST VR simulator) was replicating the real tool used during the
surgery, and the goal was to train the fulcrum effect of the abdominal wall on the manageability
of the instrument with inexperienced subjects (Gallagher et al., 1999; Seymour et al., 2002). With
advancements in the level of immersion, the metaphor of controllers heavily contributed to the
reduction of the hardware costs, and new elements were introduced to enhance the realism and the
involvement of trainees. For instance, Papagiannakis et al. (2018) introduced an environment that
is easily and broadly accessible, including scenarios, tracked virtual characters, and interactive 3D
medical simulation training, hence relating the importance of the whole environment rather than
not only focusing on the surgery task in itself. Furthermore, tracking users’ full-body movements
while displaying a plausible scenario within a virtual world might help participants behave as
if they were experiencing the actual situation (Manganas et al., 2005). In line with this vision,
Pfeifer and Bongard (2006) argued that "the body is required for intelligence" (intelligence in
the sense of the ability to think). Computed-mediated interactions evolved from the traditional
desktop metaphor to integrate embodied interaction (Ullmer et al., 2022) (i.e., the interaction
involves the user’s virtual body) as a powerful means to achieve new classes of tasks leveraging
our full-body synergies and skills (Dourish, 2001).
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1.1.2 Training in VR with tangible haptic elements: When controllers become a
limitation

In this context of tangible applications with objects (applications with the integration of real
elements from the real world into the VE), many interactions may occur and produce haptic
feedback while using hands to interact with tools, systems, or bodies. Thus, it becomes impossible
to use regular controllers as those would hit the tangible elements and prevent hand interactions.

In the study Delahaye et al. (2021) (Appendix A), we investigated the importance of providing
tangible haptic feedback on the quality of CPR (Cardiopulmonary Resuscitation) training in
VR. Providing CPR simulation in VR is useful for training individuals to react correctly to
stressful situations, e.g., an emergency requiring to perform first aid in case of sudden cardiac
arrest (Lemaire, 2018). To that aim, we developed a VR scenario with a physical dummy
mannequin (BraydenManikin, 2019) equipped with an electric probe (only used for control) that
was successfully integrated into the VE using a tracker to locate it in the VE where a virtual body
was laying down on the floor at the same location Figure 1.1.

Figure 1.1 – Cardiopulmonary Resuscitation training in VR: setup with the tracked mannequin
device and tracked hand (left) and first PV (Person Viewpoint) with performance feedback

provided in the HMD (right)

Due to the presence of a tangible haptic surface (the dummy), controllers were replaced with a
single tracker. The minimal immersive setup used was chosen for its previously proven sufficiency
at eliciting presence (Cummings and Bailenson, 2016). The presence of the dummy mannequin
providing a tangible haptic response was a factor shown to significantly increase the quality
of the amplitude target to perform the correct movement. It was concluded that the sole visual
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immersion is insufficient for the correct skill training and relating the importance of the haptic
component to be provided, hence the limitation of using controllers in such training.

1.2 Immersion, presence, and embodiment in VR (Virtual Reality)

1.2.1 Immersion: the characteristics of the display to the Virtual Environment

Before discussing interactions within a VE (Virtual Environment), one must first allow users to
perceive this virtual world. An interface device is necessary to display a virtual world to the user,
and a wide range of devices and configurations can immerse users in VEs. For instance, in the
past, when the DataGlove ™was released, a typical interface that users could use was a regular
2D screen, as shown in Figure 1.2.

Figure 1.2 – Illustration of the DataGlove ™from Zimmerman et al. (1986) used to move 3D
objects in a virtual scene.

The characteristics of these interfaces determine the level of immersion, such as the "visual
fidelity" of the devices in rendering a VE (Sanchez-Vives and Slater, 2005). These characteristics
include the frame rate of the screens in the device, its field of view (FoV), and color fidelity,
among others. These differences in characteristics provide a continuum of the level of immersion,
known as Milgram’s Virtuality Continuum (Milgram and Kishino, 1994), illustrated in Figure 1.3.

For instance, when Ivan Sutherland designed the first HMD (Head-Mounted Display) in 1965
(Sutherland et al., 1965), the display could only output monochromatic lines, resulting in a lower
level of immersion compared to modern HMDs that offer high refresh rates and a larger field of
view. In that way, a static display is less immersive than a configuration of a set of displays (e.g.,
(Manjrekar et al., 2014)), themselves, less immersive than HMD.
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Figure 1.3 – Milgram’s Virtuality continuum with on the left the real world as we perceive it,
and on the full right the immersive VR where the user can believe he is in another world.

Illustration adapted schema from Zlatanova (2002)

1.2.2 Presence

In reaction to the technical immersion provided by the system, one may experience the subjective
feeling of "being there" in the virtual world. When such a feeling occurs, we talk about presence
illusion, also commonly shortened as presence. This term was progressively anchored in the
literature by Slater et al. (Slater and Wilbur, 1997). It is widely accepted in the scientific
literature (Heeter, 1999; Slater, 2003) and can be measured through questionnaires (Schwind
et al., 2019). When this feeling is disrupted, we talk about a BiP (Break in Presence) (Slater
and Steed, 2000). Common factors leading to those disruptions are breaks in the PI (Place
Illusion) (defined as "the illusion of being in the place depicted by the VR") or breaks in the
PSI (Plausibility Illusion) (defined as "the illusion that the virtual situations and events are really
happening"). These definitions were introduced to extend the definitions of presence (Slater et al.,
2009). For instance, those breaks can occur when a glitch moves us through the boundary walls
and show a sky box that was not intended to be seen by a player. It is consequently crucial to
avoid such non-plausible situations to maintain the Place Illusion.

1.2.3 The SoE (Sense of Embodiment) and the role of the body

The construction of our body is deeply engraved into us; it serves as an anchor that connects us to
the environment and enables us to interact with it (Slater et al., 2022). In particular, a prominent
way to interact with the real world is through our hands and fingers.

In the case of fully immersive devices, such as HMDs, the headset hides the real world and the
user’s body, only to allow the user to see what is displayed on the virtual screens. If the body
of the user is not represented in the scene, a conflict occurs between the user’s expectation of
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having a body and the absence of a body in the virtual environment, negatively affecting the
user’s experience (Porssut et al., 2019; Gao et al., 2020).

Self-Location, body ownership and Sense of Agency

To solve the conflict arising from the lack of the body, it is required that the system provides
the user with a virtual body toward which, provided that some criteria are met, the user could
experience a strong SoE (Sense of Embodiment). According to Kilteni et al. (2012), the SoE
requires the conjunction of three components: the sense of self-location ("refers to one’s spatial
experience of being inside a body" (Kilteni et al., 2012)), the sense of body ownership ("refers to
one’s self-attribution of a body" (Kilteni et al., 2012)) and finally, the SoA (Sense of Agency)
(the "global motor control, including the subjective experience of action, control, intention, motor
selection and the conscious experience of will" (Blanke and Metzinger, 2009)). Any disruption
of any of the three components would be sufficient to induce a BiE (Break in Embodiment)
(Kokkinara and Slater, 2014), therefore reducing the quality of user experience.

Body ownership The "rubber hand illusion" experiment (Botvinick and Cohen, 1998) and its
virtual counterpart (Slater and Wilbur, 1997) provide a clear example of what body ownership is.
In those experiments, researchers investigated the multi-sensory integration of bodily perception
by placing a dummy/virtual limb nearby the location of the real limb of the user. Despite knowing
that the limb is not their own limb, participants experienced a sense of ownership toward the
virtual limb when it is stimulated synchronously with a sequence of successive strokes on both
the real and virtual limb. This subjective experience is measured with questionnaires, and the
questionnaire proposed by Gonzalez-Franco (Gonzalez-Franco and Peck, 2018), inspired by
this experiment, aims to provide a standardized version to allow balanced comparison between
studies.

Self-location According to Kilteni et al., "Self-location is a determinate volume in space where
one feels to be located" (Kilteni et al., 2012). This subjective experience is usually perceived
within the limits of a physical body Blanke (2012); however, this sense could be manipulated
through experimental setup or illness, resulting in the out-of-body experience Blanke and Mohr
(2005). Under normal circumstances, the full-body illusion in immersive VR was shown to be
higher at the first-person viewpoint Galvan Debarba et al. (2017). This subjective experience is
commonly measured using questionnaires, but more recent approaches can use a mental imagery
task to measure changes in self-location (Nakul et al., 2020).

6



1.3. Providing a virtual body in immersive VR

Sense of Agency When one performs a voluntary movement, the brain makes a copy of the
planned movement (known as the efference copy) and compares it to the actual movement
observed (namely, the afferent copy). This is known as the comparator model (Wolpert et al.,
1995), and the comparison result is useful to adjust the current intended movement. If both
copies yield similar information, one will self-attribute the authorship of the performed action
(Jeannerod, 2003; Blakemore et al., 2000): the SoA (Sense of Agency). Conversely, here, if the
arm remains static while the real arm moves, there is a significant difference between both copies,
and a loss of SoA can occur (Engbert et al., 2008; Jeannerod, 2009b). This is even stronger
when the discrepancy appears suddenly, in which case a violation of agency can be observed
(Haggard, 2017; Jeannerod, 2009a). Among the factors that influence agency, latency beyond
hundreds of milliseconds was shown to significantly reduce the SoA (Farrer et al., 2008; Wen,
2019). Formulated differently, the SoA is the subjective feeling that one is controlling his body
and that the body reacts reasonably quickly to his commands.

Within this framework, the subject of this thesis aims to provide to the users, regardless of their
morphology or the morphology of the avatar, an animated avatar respecting their movements
down to the finger level Figure 1.4.

Figure 1.4 – On the left is the source position of the user, and on the right, the pose retargeted
on different avatars produced respecting the self-contact with the body.

1.3 Providing a virtual body in immersive VR

Providing a virtual body to a user leverages the user’s immersion level, but this does not neces-
sarily imply that the user will embody the avatar. To allow someone to embody an avatar, we
previously observed in particular that the avatar’s body should be co-located with the user’s body
and react to the user’s movement in real-time.

One way to achieve this consists of 3D scanning in real-time the user’s body and displaying
the scan in the VE (Albert et al., 2019). This technique is straightforward and very effective,
but it does not provide a direct representation of the skeleton structure. The difference between
providing the streamed surface and knowing the internal structure is the same as the difference
between a PNG image (array of pixels) and an SVG image (vectorial description of the image): in
one case, the visible external shape is displayed to the user, while in the second case, the structure
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is first rendered using an avatar, and then displayed to the user, hence allowing automated
manipulations of the output based on the modification of the underlying structure, while in the
first case, all manipulations must be done manually. Furthermore, having a body scan is likely to
induce a different level of detail compared to the one present in the VE, or the light exposure
might differ from the one from the scene, for instance.

1.3.1 The virtual body as an animated 3D character

To ensure uniformity in the rendering and to support interactions with the VE, it is common to
rig 3D models of characters. Those are structures composed of a skeleton and a mesh. The mesh
is a 3D structure rendered and displayed to the user by the rendering pipelines of game engines.
The mesh is attached to the skeleton through the process of rigging. This process corresponds to
attaching vertices (points constituting the mesh) to the bones of the skeleton. Usually, vertices
can be attached to up to four different bones at the same time. The rigging is usually performed
only once when designing the avatar.

3D models can be manually drawn or scanned using pictures of the different sides of the body
with cameras, controlled lighting, and triangulation.

In the case of a 3D scan, the texture can be directly applied to the created mesh, and pseudo-
automation can accelerate the rigging of the avatar (Shapiro et al., 2014; Feng et al., 2015; Baran
and Popovi, 2007). Using a scan provides the advantage that the generated model corresponds
to the one from the user in terms of dimension, appearance, or skin details (vein location, mole,
tattoos, skin tone), on which the user can rely to recognize their own body. As a result, in terms of
animation, the user’s skeleton motion can mostly be directly applied to the avatar with a limited
risk that the final avatar’s pose would present animation errors due to a difference in limb lengths,
for instance. However, in most situations, VR users are not offered the choice to have their body
scanned and therefore have to use or choose an avatar among a pre-defined set of characters, and
users can have the body of someone else (Banakou et al., 2018; Osimo et al., 2015), change their
body size (Banakou et al., 2013), their skin tone (Maister et al., 2015), their gender (Neyret et al.,
2020) or even have a supplementary limb (Steptoe et al., 2013; Hoyet et al., 2016).

When the user’s morphology differs from the avatar’s in terms of volume and/or proportions,
it is no longer possible to remap the raw movements from the user directly. Let’s assume one
is placing the hand on the belly and that one’s body and avatar share the same skeleton and
morphology. Applying the same angles from the raw user’s skeleton onto the avatar will result in
the same skeleton pose, which, given the same morphology, will ultimately result in the same
self-contacts between the hand and the belly. Now, from this state, let’s progressively increase the
belly size of the avatar without changing anything else. Then, the avatar’s belly will progressively
overlap, hiding the virtual’s hand. Such a phenomenon is so-called inter-penetrations. Similarly,
in the opposite direction, this may result in gaps that are known to break the SoE (Bovet et al.,
2018).
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The computer must first acquire the user’s motion through MoCap (Motion Capture) to generate
the avatar’s animation. Those systems are interfaces allowing to capture the motion of objects or
living beings. Different methods exist to achieve this goal.

1.3.2 Motion Capture technologies

Mechanical capture uses physical devices to capture the motion. The DataGlove ™from
Zimmerman et al. (1986), the Manus VR (Manus-VR, 2018) or VR Free (Sensoryx, 2019) are
devices that illustrate this for the tracking of local finger’s motion in the hand’s referential. Full
body tracking can also be performed with this technique; however, those devices can be bulky
and suffer poor accuracy, as this was the case for the Datasuit from (Sturman and Zeltzer, 1994).
By construction, such devices provide consistent output over time. The measurement is often
performed over the modulation of flexible PCBs (circuit boards, here used as gauges) resistance,
the time required for the light to pass through a fiber, or through mechanical measurement
of angles using potentiometers/coders attached to an armature, which are sensors providing
continuity in their measurements. Due to the nature of resisting materials (potentiometers or
gauges), those devices are often subject to drifts and might also present a sensitivity to the heat in
the measurement. Consequently, those devices should commonly be calibrated to get accurate
output.

IMU uses a set of multiple accelerometers attached to critical locations of the structure to be
tracked. The Perception Neuron suit (NeuronMocap, 2018) is a typical example of this technology
applied to full body tracking. Accelerations only provide relative information on the movement
of the accelerometer; a null acceleration could either be attributed to a continuous displacement
at a consistent speed and direction or as a static position in the world coordinates. Hence, to be
able to locate a position, calibration is first required, and then the acceleration measurements are
accumulated to compute the traveled displacement since the calibration point. Due to the nature
of the integration of measurements, a drift easily occurs over time, making the measurements
no longer viable (Tian et al., 2015), despite the fact that filters, like the Kalman filter (Kalman,
1960), are present to reduce the drift.

Proximity Sensors is a technique using distance sensors to locate the proximity of an object.
Valve uses this technique in the Valve Index controllers (Valve, 2019) to give users finger-tracking
capabilities. It is, however, less common to use it to measure the full body motion, and a controller
has to be held at hand for the motion to be recorded, which can become an issue.
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Electromagnetic sensors works by using sensors to detect changes in magnetic fields generated
by an electromagnetic field generator. These sensors provide the position and the orientation
of the object being tracked, as this was the case for the DataGlove ™. As it was observed in
Bodenheimer et al. (1997); Molet et al. (1999), this technology suffers from a high sensibility to
electromagnetic noises, while their range of action may be limited, making it impractical to be
used for getting reliable positions.

Markerless optical tracking does not require the user to wear a specific device to acquire its
motion and instead relies on external cameras. It is, as a consequence, more convenient for the
users but comes at the cost of a sensibility to occlusions, a phenomenon occurring when the
system cannot see the tracked item. The Kinect (Microsoft, 2019) (which also embeds a depth
camera) was probably the most famous example of the implementation of this technique before
the recent arrival of the Oculus Quest (Oculus, 2019) that is a standalone HMD that directly
embeds the cameras on it. This technology can easily be mixed with prior knowledge, such as a
silhouette, or trained models, to track users’ movements (Ballan and Cortelazzo, 2008; Mathis
et al., 2018), such as fingers, as this is the case for both the Oculus Quest and Leap Motion
(LeapMotion, 2019). However, Shao (2016) showed that the LeapMotion, at that time (the Oculus
was not released yet), had trouble dealing with two hands when those were close to each other.
An advantage of this technology is that it can be applied through transfer learning to objects on
which it is difficult to attach trackers, such as mice (Yosinski et al., 2014; Insafutdinov et al.,
2016). It is still observed that this technology struggles to acquire fast movements in real-time,
such as finger pinching (Li et al., 2022).

Passive optical tracking is a solution that also uses external cameras to acquire motion. The
difference is that some markers (usually made of reflective materials for infrared) are placed on
the structure to be tracked. This enhances the quality of the tracking in both refresh rate and
precision, but there, only the marker’s positions are captured; there is no overall knowledge of the
structure status that could be used to recover the input in case of an occlusion occurring. One of
the main actors in this field is Vicon, which also sells software for their technology that provides
a model of full body skeleton tracked, that also includes fingers (Vicon, 2019).

Active optical tracking is similar to passive optical tracking; however, the reflective markers
are replaced with active LEDs. On the one hand, this requires cables to be placed on the user,
while on the other hand, this allows the system to put a unique ID to each of the markers, which
cannot be mixed if one is about to disappear and reappear later on. This technology is commonly
used in scientific research (Holden, 2018; Aristidou and Lasenby, 2013; Herda et al., 2000) It is
to be noted that this remains insufficient to alleviate the missing data induced by the occlusions.
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Phasespace Inc. implements this technology in their Impulse X2 (PhaseSpace, 2019) and provides
an acquisition speed of up to 480Hz with an accuracy in the millimeter range.

Overall, none of the technologies presented here can be used without a drawback, and the perfect
tracking system does not exist yet, and some mitigation techniques must be employed to track
movements reliably.

1.3.3 Mitigation techniques for unreliable MoCap input

To mitigate the risk of tracking losses, a combination of several technologies with different
weaknesses can be used to enhance the tracking reliability of the system. For instance, an IMU
system suffering from drift can be coupled with an absolute system suffering from occlusion
(Tian et al., 2015). By coupling technologies suffering from different issues, the input source
can alternate based on the available information, which can be used to re-calibrate the other
system failing to provide the position: The IMU drift is then corrected each time there is no
occlusion. This is typically used in the Vive Trackers (Vive, 2022) that embeds a large set of
active LEDs combined with internal IMUs to mitigate the risk of losing the tracking. Furthermore,
the numerous LEDs create a referential from which the tracker’s orientation can be retrieved,
constituting valuable information for the animation. However, those devices are a bit bulky and
cannot be used to track finger movements.

To recover the missing information due to occlusions on optical tracking solutions, one can
interpolate the missing positions from the last known position and the position from the first
frame where the tracker came back (Wiley and Hahn, 1997; Rose et al., 1998; Nebel, 1999).
This provides good precision on the recovered points, but this cannot be used in real-time as
we don’t know in advance the position of the marker when the occlusion stops. To make the
approach real-time compliant, a prediction on the missing position needs to be made. Predictions
can be extrapolations of a mix between linear and circular motion (Piazza et al., 2009), but the
observed coherence of the predicted markers’ positions difficulty goes over 150ms. In their work
Li et al. (2010); Herda et al. (2000), the authors took advantage of the human skeleton to infer
constraints into a model used to improve the prediction quality. In Li et al. (2010), Junlei Li
et al. use the length of the bone to define hard and soft constraints and deal with black-outs
(when many markers are occluded at the same time) by extrapolating the current moving trend.
Soft constraints allow the system to deal with the fact that markers slightly move in the joint
referential; thus, the soft constraints can be violated to improve the quality of pose reconstruction.
Aristidou et al. also exploited the fact that the distance between markers on the same segment is
approximately constant (rigid body) to estimate in real-time the joint CoR (Center of Rotation)
(Aristidou et al., 2008) and used a constant velocity model in the Kalman filter (Kalman, 1960)
to predict the occluded state. Observed results show that this approach can run up to 350 frames
per second and yield an error on the CoR position of approximately 6.5mm with one missing
marker out of three or 9mm with two missing markers after 500 frames with occlusions. This
was even more enhanced in Aristidou and Lasenby (2013), where the pipeline was improved
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using partial camera information when a marker is seen from only one camera. Those results
show that occlusions do not necessarily lead to the impossibility of animating an avatar.

1.3.4 From MoCap data to the animation of a 3D model with inverse kinematics
(IK)

Having all the markers’ positions is already a challenge, but this is insufficient to animate a rigged
skeleton of a 3D avatar with many DoF (Degree of Freedom). The inputs from the MoCap need to
be processed, considering the kinematic description of the joints and the position of the markers
to generate the joints’ rotations. In the engineering field and industry, this is a common problem
for the control of robotic arms known as IK (Inverse Kinematic), but the solutions proposed are
mostly transferable to the domain of animation. It is to be noted, though, that the whole human
skeleton presents the singularity of having a complex structure composed of 206 bones (Kamina,
2009), and some techniques might struggle to be real-time compliant. A good description of
the state of the art of IK is provided in Aristidou et al. (2017), highlighting the pros and cons
of the different methods. Among them, one of the most established methods is using Jacobians
to reverse the kinematic chain thanks to its ability to easily handle the high number of DoFs of
animated avatars (usually around 70) while highlighting the risk of having some instabilities. It
is also described how dampening the least squares helps stabilize the pseudo-inverse kinematic
solution in the neighborhood of singularities (Baerlocher and Boulic, 2004) at the cost of a
slower convergence rate, which could be palliated using a GPU implementation to obtain the best
damping factor (Harish et al., 2016). With the rise of machine learning, the review Aristidou
et al. (2017) highlights the new trend for data-driven IKs. Robotics arms were successfully
controlled using neural networks (Waegeman and Schrauwen, 2011; Hasan et al., 2010; Das
and Deb, 2016; Vladimirov and Koceski, 2019), with sometime millimeter error precision for
simple kinematic structure with only two degrees of freedom (Vladimirov and Koceski, 2019).
One of the pros of neural networks is their ability to take extra input to improve their output, as
this was the case in Das and Deb (2016), where the input was extended with the current joint
rotations, whereas, in the traditional methods, only the targeted position was given as an input of
the model trained for the specific kinematic chain. Some solutions are also designed on purpose
for character animation, such as for the spine (Unzueta et al., 2008) or the hands (Aristidou et al.,
2017; Aristidou, 2018; Kim, 2014). It is noted that some simplifications can also be made in the
structural representation of the human body. For instance, hands can be reasonably represented
with a structure containing only 24 DoFs as a good compromise (Cobos et al., 2008).

1.3.5 Retargeting: the adaptation of one’s body pose to a different virtual body

Once the user’s skeleton model is animated, the final step is to apply the animation to the target
character. When the user shares the same skeleton structure, volume, and proportions as the
animated avatar, the mapping is mostly the direct application of the skeleton model onto the
avatar. However, when any of these characteristics differ, applying the raw angles from the model
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to the avatar might lead to gaps when there should be contacts or interpenetrations when there
should be self-contacts, thus hampering the SoE for the user (Bovet et al., 2018). Additionally, it
was observed that differences in self-contacts are considered as different poses by third-person
viewpoint observers in most cases, this being even stronger for hand contacts compared to arms
contact (Basset et al., 2022) relating the importance of hands in the animation.

In consequence, an additional process is required to transform the original motion to adapt it to
the destination avatar when a difference exists in morphologies/skeleton between the user and the
3D character. This process is called retargeting or sometimes remapping, and the literature offers
a large panel of techniques on this topic (Guo et al., 2015; Mourot et al., 2022b).

In the seminal work from Gleicher (1998), the authors considered the discrepancy that can
occur from the difference in limb lengths; however, the approach required some pre-processing
where constraints needed to be specified to get the correct animation. Furthermore, the body
surface was not considered in the approach; hence the self-interactions with the body were not
addressed, leading to possible interpenetrations. In their approach Choi and Ko (2000), Choi
et al. investigated an online approach, without the need for constraints to be set, to retarget the
animation from one character to another. However, this method relying on a closed-loop control
was shown to present some instabilities near singularities. Shin et al. also proposed a real-time
approach used in television to animate characters, which had an essential role in preserving the
semantics of the posture (Shin et al., 2001); however, as for the work from Gleicher et al. or Choi
et al., those method does not address changes in morphology other than limb length (e.g., large
belly vs. small belly with the same skeleton)

A higher level abstract method arose with the work from Kulpa et al. (2005) in which the authors
used an internal representation of the structure of the limbs to adapt a limb motion onto another
character’s motion easily. This representation represents a limb as a combination of a half-plane
(whose origin is the root’s joint of the limb, its leading axis, the axis passing by the root and the
effector’s joint, and the second axis orienting the plan so that the intermediate joint is contained),
and the normalized distance, concerning the bones length, between the effector and the root
position. The authors also allowed the user to add constraints such as orientation, exclusions area,
position, or distance constraint to ensure self-contact when clapping hands. Special care was
provided to address the foot contact with the floor surface. Given the nature of the implementation,
their approach can be used with elements that can evolve on-the-fly (e.g., the floor can bend, the
limb can shrink or extend, etc.). The approach for the constraints was then layered in Multon
et al. (2009) and featured an additional response to external forces applied by the environment.
However, not all of the constraints are known in advance, and this work focuses more on the
interaction with the rest of the environment than on the interaction with the body itself. Al-Asqhar
et al. introduced in Al-Asqhar et al. (2013) an approach based on surface descriptor to tackle
the problem of maintaining contact congruency with close proximity of the skeleton with mesh
surfaces. Mesh surfaces are discretized in triangles, and contribution weights are computed for
the vectors separating the body joints and their projection on the discretized mesh. Then, those
vectors are iteratively reapplied on the avatar as a sum of forces to adjust the positions of the body
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joints. In their work Molla et al. (2017), Molla et al. combined this approach with elements from
Kulpa et al. (2005); Multon et al. (2009) to provide a body-independent retargeting animation
pipeline that can handle self-contact congruency in real-time.

More recently, several new approaches were presented with the new rise of machine learning. In
the method from Celikcan et al. (Celikcan et al., 2015), equivalent poses between the user and
the avatar needed to be calibrated to train the correspondence of posses, and the animation of the
avatar was performed through a mesh deformation rather than applying rotation on a skeleton.
This is particularly useful for facial animation or motion retargeting (Zhang et al., 2022), where
the animation through a skeleton is complex; it broadens the method’s applicability on a larger
set of non-rigged avatars but drops the internal structure representation. Mesh deformation was
also investigated in Basset et al. (2020) to produce convincing avatar poses robust to body shape
differences; however, the proposed approach is not real-time compliant making it impossible to be
used in VR for avatar animation. Machine learning was also applied for rigged virtual character
motion retargeting with approaches such as the ones from Villegas et al. (2018); Aberman et al.
(2020) using neural networks to animate target avatars; however, only the skeleton is considered;
hence the difference in morphologies remains not fully covered.

Overall, to address the issue of the importance of self-contact congruence between the users’
movement and the avatars (Bovet et al., 2018; Basset et al., 2022), an additional process must be
put in place to transform the modelized source motion of a person into the avatar’s motion. We
observed that some approaches address interactions with the ground (Shin et al., 2001; Gleicher,
1998; Kulpa et al., 2005; Multon et al., 2009), other interactions with objects (Kim and Park,
2016) or self-contact with the body interactions (Molla et al., 2017); however, none of these
methods appear to address finger-level interactions, which play a crucial role in interacting with
the virtual world.

1.4 Research plan

We interact with the world through our body, hands, and fingers. In an immersive Virtual
Environment, this physical body is no longer visible to the user, which conflicts with the
expectation to see our body. Consequently, presenting a virtual body, called an avatar, is an
important step to improve the user experience in VR. When the avatar is a 3D character, its
skeleton and morphology might differ from the user, and the direct application of the captured
user motion on the avatar’s skeleton might induce self-contact conflicts. This is why it is
essential to edit on-the-fly the animation to be applied on the avatar to prevent mismatches
that would break the embodiment. Currently, the literature only addresses part of this problem
separately, but without addressing the subjective user experience, especially regarding providing
both finger-tracking capabilities and self-contact congruency in real-time. Therefore, This thesis
focuses on providing the user with a real-time animated avatar, with both finger and body-
level animation, whose morphology might differ from the user, while placing the accent on the
subjective experience of the user.
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In order to accomplish this objective, we followed the following research plan:

• First, in line with our observations on the limitation of controllers and rigid hands in
Delahaye et al. (2021), we aimed to provide a way to animate hands and fingers in real-
time. Rather than prioritizing the pursuit of a solution that is exact and accurate under
occlusions, we designed a system focusing on producing plausible hands and finger poses
learned from a recorded dataset in chapter 2.

• Then, we performed a user study that examined the thresholds of human motion perception
and embodiment at the finger level in chapter 3. This characterization was investigated
through an experimental paradigm involving a finger-based task in which participants
had to validate buttons using only their fingers. During the game task, the machine
introduced finger swaps to correct or impede the user’s actions, and the experimental task
for participants was to press a pedal when noticing those introduced swaps.

• The observations from the outcome of the previous study, combined with the knowledge
from recent literature on embodiment at the body level, highlighted an opportunity to
introduce controlled distortions to ensure self-contact consistency at the finger level. Here,
using the knowledge of the limits of embodiment, we developed an approach to provide
users with a virtual body, not necessarily with the same morphology as the user. This
approach took advantage of movement distortions to provide body animation, at both finger
and body levels, and self-contact congruency (chapter 4).

• The contribution from this technique was evaluated against the direct forward kinematic
animation, with various avatars presenting different morphologies and sizes in chapter 5.

• Finally, a synthesis of this thesis is discussed, and a conclusion is drawn from the observa-
tions in chapter 6.
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2 Providing users with finger animation
in VR

2.1 Introduction

VR is becoming increasingly popular owing to a new generation of affordable HMDs and
machines to run and render VE in real-time. However, interactions with the environment can be
challenging due to the overly simplified avatar representation leading to a sub-optimal experience,
as observed in Delahaye et al. (2021). When present in the VE, the avatars used to be static
meshes or animated characters that used to move according to predefined patterns or actions.

In recent years, trackers such as the Vive trackers Vive (2022) (relying on active optical tracking
and on IMU to mitigate the risk of occlusions) have become accessible to the public, allowing
MoCap to be integrated for consumer-grade oriented setups, hence, making it compelling for
leveraging the level of immersion to the user: Thanks to IKs, such as the bundle FinalIK
RootMotion (2020) regrouping different types of IK, it is now possible to have avatars animated
by the captured user’s movements at the body level. However, those device remains too bulky to
be placed on fingers to allow them to track finger movements, and no real equivalent is offered to
replace those for tracking finger movements.

With the speed limitations from computer vision (Li et al., 2022), the drift and loss of precision
requiring regular re-calibrations of IMU and mechanical tracking (Sturman and Zeltzer, 1994;
Tian et al., 2015), we investigated an approach using an active optical tracking solution. This
tracking technique still suffers from occlusions, and increasing the number of cameras is not
always feasible and does not solve the problem entirely. However, studies have shown that it
is possible, to a certain extent, to recover and predict marker positions during those occlusions
Piazza et al. (2009); Li et al. (2010); Herda et al. (2000); Aristidou et al. (2008); Aristidou and
Lasenby (2013).

In this chapter, we discuss an approach using this MoCap technique in combination with neural
networks to mitigate occlusions and provide IKs to animate hands and fingers in real-time. In
the first part (section 2.2), we discuss the state-of-the-art and analyze how our method relates to
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other approaches. In subsection 2.3.1, we describe the dataset’s features for training our model.
In subsection 2.3.2, we recall three baseline methods for correcting occlusions, and we introduce
a more complex model based on neural networks for handling both occlusions and inverse
kinematics. The section 2.4 describes our experimental methodology while subsection 2.3.5
details the context of bimanual tracking. Finally, we present our results in subsection 2.4.2 before
the concluding discussion.

2.2 Related work

Occlusion robustness The most common approach for correcting occlusions is to use interpola-
tion algorithms. In this regard, some data-based interpolation techniques have been specifically
designed for human body tracking and skeleton animation Wiley and Hahn (1997). However,
interpolation algorithms require knowledge of past and future data and can only be applied
in post-processing. More recently, denoising neural networks have been proposed for offline
cleaning of motion capture data Holden (2018), producing results comparable to hand-cleaning.

Aristidou et al. proposed an approach based on Kalman filters for estimating the positions of
occluded markers in real-time Aristidou et al. (2008). Their method does not require prior knowl-
edge of the skeleton but assumes that the distance between neighboring markers is approximately
constant. The algorithm builds a skeleton model by estimating the centers of rotation between
two sets of points. When an occlusion occurs, the marker position is predicted using a Kalman
filter, which considers velocity and the positions of neighboring markers. Piazza et al. developed
a real-time extrapolation algorithm that assumes that motion can be either linear, circular, or a
combination of both Piazza et al. (2009). As before, it does not rely on a predefined skeleton
model. The prediction is performed through a moving average of the marker’s velocity to mini-
mize the effect of noise. An interesting optimization employed in this approach is the so-called
constraint matrix (CM), which stores the minimum/maximum pairwise distances between all
markers. At inference, the estimates are adjusted according to the constraints described in the
CM. Both Aristidou et al. (2008) and Piazza et al. (2009) focus their work on limbs and do not
address the particular case of fingers. Finally, a large portion of research in this field exploits
the assumption that an underlying skeleton model is available, thereby allowing the algorithm
to put some constraints on the solution. Recently Alexanderson et al. addressed the problem
of labeling markers in a passive system for the fingers and the face Alexanderson et al. (2017).
Instead of tracking markers in the temporal domain, it estimates the most likely assignments
using Gaussian Mixture Models (GMMs). This allows fast recovery from occlusions and avoids
the so-called ghost markers, i.e., detection of markers that do not exist. However, this approach
does not address the problem of predicting the marker positions during occlusions.

Current real-time machine-learning-based approaches for handling occlusions are restricted to
the sub-problem of posture and gesture recognition Mousas and Anagnostopoulos (2017). In
our case, we do not perform such classification tasks; rather, we aim to achieve a complete
reconstruction of the hand posture.
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2.2. Related work

Tracking and reconstruction A common framework for capturing movement is to perform
body or hand reconstruction through images and depth cameras. These approaches leverage
computer vision and machine learning algorithms Moeslund et al. (2006) and aim at providing an
affordable consumer-ready alternative to complex motion capture systems. Solutions focusing
on hand and finger movements have made significant progress in tracking isolated hands in
free space. These techniques are designed for the context of desktop-range interactions using
specialized devices (a noteworthy example is the Leap Motion controller). When mounted on a
HMD, these types of finger-tracking devices can offer an interesting compromise for immersive
VR Rafferty et al. (2017). Nevertheless, their field of view is still limited when compared to the
range of motion of the hands, and they present weaknesses when the hand palm is not facing
the head of the user, thereby resulting in self-occlusions. Previous work has tried to address this
problem. For instance, Tkach et al. fit the hand posture using a combination of sphere meshes
Tkach et al. (2016) while Mueller et al. use a cascade of convolutional neural networks (CNNs)
to first localize the hand center and then regress 3D joint locationsMueller et al. (2017). They
also employ a synthesized dataset that simulates cluttered environments via a merged reality
approach, allowing the model to generalize better. These approaches, however, are still very
limited in terms of the range of motion as they are optimized for user-facing the camera.

As for tracking with motion capture, Han et al. frame the problem as a key point estimation
task, which is tackled with CNNs Han et al. (2018). While their approach allows using a passive
system, the authors highlight some shortcomings with multiple occlusions. Other frameworks
based on motion capture typically employ some sort of sensor fusion from multiple data sources.
Andrews et al. propose a tracking system that uses IMUs and a physics model to recover from
sensor dropout Andrews et al. (2016). Our approach is related to Andrews et al. (2016) in the
sense that we combine IMUs with motion capture to record a robust dataset, but differs in the
fact that we use only motion capture at inference.

Machine learning for inverse kinematics As an improvement over existing techniques, Zhou
et al. (2016b,a) proposed a deep learning framework in which a forward kinematics layer is added
to a neural network to constrain the output to feasible postures. Specifically, Zhou et al. (2016b)
focuses on hand pose estimation and Zhou et al. (2016a) on full-body pose estimation. As with
the MS Kinect, these techniques rely on regular cameras and computer vision algorithms. As
such, they are unable to exploit the potential that a full motion capture system has to offer in
terms of both precision and range of motion.

A recent survey classifies inverse kinematics techniques into several categories, which can
be summarized as “traditional” (analytic, Jacobian-based) and “data-driven”, often based on
machine learning, and recently, on deep neural networks Aristidou et al. (2017). Most related
work focuses on inverse kinematics in the most general setting, which consists in defining the
desired positions of the end effectors and having the model find a configuration that achieves
the desired result. This particular problem has already been tackled with machine learning in
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Chapter 2. Providing users with finger animation in VR

an industrial control setting, i.e., robot arm Almusawi et al. (2016); Waegeman and Schrauwen
(2011), and in humanoid fingers Kim (2014).

2.3 Our Approach

We propose a compromise between skeleton-less methods (i.e., zero knowledge) and those with
skeletons. Despite being closely related to data-driven inverse kinematics, it is more correctly
referred to as “reconstruction”. We map the captured markers to the transformations of a virtual
hand, but the end effectors do not need to be aligned with the corresponding markers. In fact,
markers and joints belong to two different sets whose correlation is exploited by the model.
Instead of defining constraints manually (as in IK systems), all the necessary information is
automatically inferred from the data so as to obtain the most precise and naturally-looking
prediction. Our work focuses on motion capture with active markers and proposes a machine-
learning-based alternative to analytic IK algorithms, as well as a method for correcting occlusions
whose pipeline is illustrated in Figure 2.1.

MARKER
INPUT

AVATAR 3D
MODEL

HAND MODEL

MARKER
PREDICTION

Calibration
(Triggered once)

JOINT
PREDICTION

Figure 2.1 – Conceptual full prediction pipeline.

In this chapter, we show how we acquired a dataset from a number of subjects and devised
an efficient two-stage pipeline that first corrects occlusions in the motion capture stream and
then reconstructs all the transformations of the hand joints. Both stages are based on neural
networks, which are trained on the aforementioned dataset. We evaluate our model at different
levels: reconstruction error of occlusions, end-to-end reconstruction error of joint positions, and
computational cost in terms of CPU and memory usage, crucial factors for real-time applications.
The preliminary version of this approach Pavllo et al. (2018) has been extended as follows. First,
we add a calibration process to increase the fidelity of the reconstruction of the model. Second,
we handle bimanual occlusions in real-time. The system is also re-evaluated with a broader range
of use cases.
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2.3.1 Training dataset acquisition

We start by briefly introducing the characteristics of the motion capture pipeline and the final
goal that our model is expected to meet. The user wears a pair of gloves equipped with LED
markers. The positions of these markers are collected by a motion capture system and passed to
the pipeline, which outputs the transformations necessary for animating the virtual hands in a
VE. The mapping is depicted in Figure 2.2. More formally, the pipeline comprises the following
inputs and outputs:

Inputs The absolute positions (i.e., 3D points) of the markers. Given that we employ an active
motion capture system, each marker is tagged with its own unique ID. Some positions
can be missing from the data stream if the corresponding markers are not visible from a
minimum number of cameras, i.e., they are occluded.

Outputs The angles of each joint within the hand and the absolute position and orientation of
the latter.

As mentioned, this mapping is learned from a dataset that we have collected for this specific
task. The next section shows how we acquired the data and how we built our ground truth for the
purposes of training and evaluating the model.

Figure 2.2 – The virtual hand (left) and the mocap glove (right).

Motion capture

We acquired the data using two devices:

• PhaseSpace ImpulseX2 motion capture system, based on active LED markers. Each marker
is tagged separately with a unique ID via a frequency modulation mechanism. This system
can track the entire body by means of a suit equipped with markers.

• Noitom Perception Neuron, a low-cost hand-tracking device based on IMUs.
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Chapter 2. Providing users with finger animation in VR

The two were combined on the custom glove shown in Figure 2.3 and used simultaneously for
computing the ground truth through a sensor fusion algorithm, which we describe in Figure 2.3.1.

The original PhaseSpace glove, prior to customization, comprised eight markers (denoted as
“Original markers” in Figure 2.3). The positions of some markers are not optimal, especially
due to the lack of a marker at the wrist level, a crucial location for estimating the orientation
of the hand. For this reason, we discarded two markers on the original glove and decided to
add three additional markers (referred to as “Alignment Marker” in Figure 2.3). The secondary
system (Perception Neuron) served the role of collecting the mapping between marker positions
and joint positions/angles. It consists of a flexible glove with several 9-axis IMUs placed on
top of the fingers. Due to its nature, this system is immune to occlusions but presents the issue
of drifting over time. This is an inherent problem of inertial tracking; it cannot be corrected
without an absolute reference. Additionally, although the IMUs can, in theory, detect all degrees
of freedom, their particular finger reconstruction algorithm can sense only one axis: the finger
flexion-extension. As a consequence, finger spread/crossing cannot be detected.

We solved these issues by combining the readings from the Perception Neuron with the ones from
the PhaseSpace, in a process known as sensor fusion. The details are explained in Figure 2.3.1.
Accordingly, we also moved the Perception Neuron’s sensors to our custom PhaseSpace glove
(Figure 2.3). The IMUs were used only during the dataset recording phase, and they were
removed afterward.

(a) Hand template in a
neutral pose, with marker

IDs

(b) The glove with all the trackers (IMUs and LEDs).

Figure 2.3 – Illustration of the ground truth system (right), with its numerical model (left), used
to create the training dataset.

Sensor Fusion

The PhaseSpace motion capture system provides absolute tracking, whereas the Perception
Neuron offers relative tracking. As the data streams between these sources differ, it is crucial to
devise a sensor fusion algorithm that yields plausible results. From a high-level perspective, the
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algorithm is divided into a series of steps.

Setup Each marker is assigned to one of the joints of a hand template (the rigged 3D model in
Figure 2.3) with the possibility of specifying an offset relative to the joint (i.e., in object space).
The offsets are static and must be known in advance because they depend on where the markers
have been physically placed on the glove. Three extra markers, visible on Figure 2.3, are tagged
as alignment markers as they are used for estimating the location of the hand in space. Our choice
was to form a triangle on the back of the hand, namely the markers corresponding to the wrist,
the base of the index, and the base of the pinky.

Estimation of hand position/orientation We compute an optimal rigid motion transformation
(which comprises only a rotation and a translation) from the hand template in local space to the
hand in world space. More formally, we denote the positions of the joints in the hand template
(Figure 2.3) as U and the positions of the markers as V. The algorithm takes the two lists of
points U and V (which have the same number of points and the same dimension) as input and
returns a transformation T such that:

T (u) = uR+ t (2.1)

where R is a rotation matrix and t is an offset. We assume that all vectors are in row-major order.
This transformation minimizes the mean squared error (MSE) between the source positions and
the target positions, defined as:

MSE(U,V) =
1
N

N

∑
i=1

∥∥∥Vi−T (Ui)
∥∥∥2

(2.2)

Fortunately, there exists a closed-form solution for this problem, which is also very efficient. It is
based on the singular value decomposition (SVD) and can be computed using Kabsch’s algorithm
Kabsch (1976). In our case, the transformation is calculated using only the alignment markers
(i.e., the three markers on the back of the hand).

Joints calibration An additional calibration stage is necessary to make the proposed approach
more robust to hand variety (Figure 2.5). The user has to adopt an occlusion-free flat pose corre-
sponding to the default pose of the animated avatar with the identity transformation for all the
joints (Figure 2.4). While performing this pose, we record all the predicted joint transformations
and store their inverse as the (constant) calibration offset transformation. By construction, com-
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bining each joint prediction with its calibration offset produces the desired identity transformation
for that pose (Figure 2.5). This calibration offset is then applied systematically to the prediction at
run-time to partially handle the variety of users’ hands. It is completed with the post-processing
stage described below.

Figure 2.4 – Illustration of the hand calibration pose

(a) Before (b) After

Figure 2.5 – Illustration of the simple calibration

Post-processing In Figure 2.6b, one can notice a gap between the fingertips and their associated
markers. This is caused by inaccuracies in the Perception Neuron. We mitigate this issue by
applying an artificial rotation to every finger so that, after the transformation, every finger points
in the direction of the corresponding marker. Specifically, we denote with p0 the position of the
base of the finger (metacarpophalangeal joint), with p3 the position of the fingertip (returned by
the Perception Neuron), and with pm the position of the marker (returned by the PhaseSpace). We
are not interested in modifying intermediate joints as they have no associated marker. However,
of course, the position p3 depends on the orientation of p2 and p1 (the intermediate joints, see
Figure 2.6). Ideally, we would want p3 = pm, and this is what a traditional IK (Inverse Kinematic)
solver achieves. However, this constraint is too strong since it would force unnatural postures in
certain cases. On the other hand, our aim is just to apply a small correction to the data already
obtained from the Perception Neuron, and therefore a simple rotation is sufficient. The approach
adopted in Pavllo et al. (2018) limited our ability to reproduce contact between the thumb and
other fingertips. Figure Figure 2.6d illustrates the principle of the proposed approach to reduce
such a gap. We first compute the position of the last finger mid-segment pm′ = (p3 +p2)/2
to better reflect the marker location. Then we rotate the finger by the shortest-arc quaternion
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rotation from vector pm′−p0 to vector pm−p0. At this point, all the limitations of the Perception
Neuron have been overcome: all possible gestures/postures can be detected, including the most
problematic ones (e.g., finger spread and finger crossing).

Occluded Marker

Predicted Marker

Visible Marker

(due to occlusion)

Spotted Area

P0

1DOF

2DOF

Real
Marker
Position

Virtual
Marker
Position

Bone

Point
Name

Finger Tip

(a) Legend

P0

P1

P2

Pm

Pm'

P3

(b) No finger alignment; a gap may exist
between the marker position and its
virtual position on the virtual finger

P0

P1P2

Pm
Pm'

P3

(c) Alignment from Pavllo et al. (2018)

P0

P1P2
Pm Pm'

P3

(d) Proposed alignment

Figure 2.6 – Finger alignment post-processing.

25



Chapter 2. Providing users with finger animation in VR

2.3.2 Occlusion recovery model

Pipeline

We adopt a two-stage model: the first step (marker predictor) predicts the positions of the
occluded markers, and the second step (subsection 2.3.3) infers the angles of all joints from
the output of the first step, assuming that there are no occlusions. We train the two models
separately and not in an end-to-end fashion, as our approach for enforcing temporal consistency
(described in Figure 2.3.2) is not differentiable. Having two stages presents some advantages
from a flexibility standpoint. If occlusion correction is not required by a particular task, the
joint predictor could be used out of the box as if it were an IK solver. Moreover, a potential
developer could use different algorithms for each system: the occlusion manager could be based
on neural networks, linear models, or anything else, and it would not affect the behavior of the
second model. Similarly, the marker prediction model could be used solely for the purpose of
handling occlusions, and a traditional IK solver could be added on top of it. Note, however, that
this requires a one to one correspondence between markers and joints, which is not a requirement
of our system. We show a block diagram of our full pipeline in Figure 2.7.

MARKER INPUT

AVATAR 3D MODEL

HAND MODEL

MARKER PREDICTION JOINT PREDICTION
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Figure 2.7 – Conceptual full prediction pipeline
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Marker Predictor

Before presenting our model based on neural networks, we recall the three simple baselines that
are evaluated against our method.

It is worth mentioning an important property that this step must implement: temporal consistency.
The model should enforce a “smoothness” condition between subsequent frames so as to avoid
discontinuities (sudden jumps in the joint transformations). We can identify two types of
discontinuities:

Discontinuity on occlusion: when a marker is visible at time t and becomes occluded at time
t +1.

Re-entry discontinuity: when a marker that was previously occluded at time t becomes avail-
able again at time t +1.

While discontinuities on occlusions can be corrected explicitly by enforcing temporal consistency
in the model, re-entry discontinuities cannot be solved without having future knowledge of the
data. In a real-time system like ours, this means that they must be smoothed manually as a
post-processing step.

Baselines

We now introduce the three aforementioned baselines in order of increasing complexity:

Last known position The simplest baseline consists in keeping the last known position of an
occluded marker. With regard to discontinuities on occlusions, this method is temporal consistent.

Moving average Inspired by Piazza et al. (2009), we take velocity into account. We keep a
moving average of the velocities of each marker over the last k frames (we use k = 20, i.e., a third
of a second) to minimize the effect of noise. When a marker is occluded, this baseline simply
moves the marker along the trajectory defined by the average velocity.

Affine combination model Finally, we propose an improvement over the previous baselines.
Another simple (yet effective) method consists in expressing an occluded marker as an affine
combination of the other available markers, i.e., a linear combination with weights that sum up to
1. The computation is performed using the data from the previous frame, where the occlusion
was not present. In order to enforce the affine property, it is sufficient to add a homogeneous
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coordinate to each point and fix it to 1. More formally, we denote with Xi (i = 1..N) the set of
all known positions (X is a N×4 matrix), Yj ( j = 1..M) the set of occluded points that must be
predicted (the result Y would be a M× 4 matrix), and W the weight matrix of size M×N. It
must follow that:

Y = WX (2.3)
N

∑
i=1

W j,i = 1 ∀j (2.4)

where Xi = [Xix, Xiy, Xiz, 1] and Yj = [Yjx, Yjy, Yjz, 1]. We are again assuming a row-major vector
notation. This problem can be solved using exactly four non-coplanar markers. If more markers
are available, the problem is underdetermined, as there are infinite solutions to the linear system.
Therefore, we apply L2 regularization, which means that among all possible solutions, we choose
the one that minimizes the squared norm of the weight vector. In other words, the predicted
position should depend on all the other markers, each of which has a small weight; this leads to
better robustness to noise. We minimize the loss function:

L (W) =
M

∑
j=1

(∥∥∥Y j−W jX
∥∥∥2

+ λ

∥∥∥W j

∥∥∥2
)

(2.5)

=
∥∥∥Y−WX

∥∥∥2

F
+ λ

∥∥∥W
∥∥∥2

F
(2.6)

where ‖M‖F denotes the Frobenius norm of M, and λ is a small positive regularization constant
(λ = 10−8 is suitable in our case; in general, one should choose the smallest value that does
not cause numerical precision issues). Fortunately, the function is convex, and there exists a
closed-form solution for its minimum. We derive the gradient with respect to W and equal it to
zero:

∇L (W) =−2(Y−WX)XT +2λW = 0 (2.7)

Solving for W we obtain:

W = YXT (XXT +λ IN)
−1 (2.8)

where IN is the N×N identity matrix. This approach is closely related to ridge regression Hoerl
and Kennard (1970).
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As before, discontinuities on occlusions are avoided by design. Furthermore, this baseline is
intrinsically invariant to translations and rotations. Since Yj is expressed as an affine combination
of all Xi, any rigid transformation applied to X would be applied to Y as well, i.e., f (T (X)) =

T ( f (X)) (where T is a rigid transformation). From a practical standpoint, if the hand is kept
in a static posture and moved around the capture space, the occluded markers are reconstructed
perfectly. We also found this baseline to perform relatively well on gestures that do not involve
complex movements.

Marker Regressor

In theory, neural networks (NNs) can approximate any function (provided that a sufficient number
of neurons is available) Hornik et al. (1989), but, in practice, the result is strongly dependent on
how the data is pre-processed.

Similarly to the affine combination model, we want our prediction to be spatially invariant in the
sense that any translation/rotation transformation applied on the input points should not affect the
output of the neural network. Therefore, we enforce, for this step, a pre/post-processing scheme
that allows the network to learn proper mapping thanks to the reduced search space. These are
named:

Marker position extraction in hand referential (registration): The rotation and translation
of the hand in space are removed. This can be achieved by aligning the hand to the standard
template, which is centered on the world’s origin and is oriented toward a predefined
axis. The alignment can again be performed by finding the lowest-error rigid motion
transformation. This process can be regarded as the inverse operation of the hand position
estimation presented earlier: instead of moving the hand template towards the markers,
here, the markers are moved towards the hand template. The only difference is that here
we use all available markers, and not only the three alignment markers (since they may be
occluded). The hand template is kept in a neutral pose (see Figure 2.3), and therefore this
step is dependent on the hand posture, but this does not represent a problem as the goal of
this step is to perform spatial normalization.

Reconstruction of the positions of the markers (de-registration): The inverse transformation
is applied to the predicted points; that is, the markers are put back to their original positions
in world space.

With regard to how occlusions are handled, it is important to note that neural networks cannot
operate on missing data. Hence, a special architecture and/or training procedure is required. A
thorough approach consists in building an ensemble of different models Jiang et al. (2005), one
for each possible set of available markers, and training them independently from each other. It
is clear that this method presents a severe limitation: the number of models to train increases
exponentially as more markers are added, not to mention the tremendous computational (and
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memory) cost both at training and inference.

Instead, we employ a single feed-forward neural network configured as an autoencoder, i.e.,
a topology that maps the identity function x −→ x, as depicted in Figure 2.8. The network
comprises 3N input neurons and 3N output neurons, where N is the total number of markers (9 in
our case). Each group of 3 neurons encodes the XYZ positions of a particular marker after the
pre-processing step described above.

The structure of the neural network is shown in Table 2.1. All layers except the last one use ReLU
(Rectified Linear Unit) activation functions Nair and Hinton (2010), defined as y = max(0, x),
as they have been shown to yield the best results in a wide range of tasks Glorot et al. (2011);
Krizhevsky et al. (2012). The output layer uses a linear activation function, thereby allowing
an unbounded output range. All hyperparameters were chosen to minimize the reconstruction
error on the validation set, also taking into account performance and latency constraints. We also
experimented with varying numbers of layers and discovered that more layers lead to overfitting
on this specific task (regardless of regularization).

Our mechanism for handling occlusions is closely related to Dropout Srivastava et al. (2014),
a training technique traditionally used to avoid overfitting the training set. Dropout works as
follows: during training, at each iteration, a random fraction of neurons are disconnected (which
is equivalent to setting their output values to 0). At inference, all neurons are used. We apply a
procedure similar to Dropout on the input layer. The model is trained using a data augmentation
procedure: the dataset is generated in real-time by setting a random number of points (groups of 3
neurons) to 0 from frames containing exclusively all visible markers, according to the distribution
observed in Figure 2.14 (with a number of occlusions between 1 and 4). The exact distribution
is not crucial, but it helps with improving the error in realistic cases. It is worth noting that the
pre/post-processing scheme still applies to this approach. The inputs must be disconnected after
the positions are registered (i.e., are transformed into object space). The prediction algorithm
is trivial: all available (non-occluded) points are registered and passed as inputs to the neural
network, whereas the inputs corresponding to missing values are set to 0; the relevant outputs
(i.e., the ones corresponding to the occluded markers) are extracted and de-registered.

Autoencoders learn a compressed representation of the data Bourlard and Kamp (1988), instead of
just copying the input to the output. In our particular case, the bottleneck layer learns a positional
embedding, i.e., a vector that encodes a particular posture. Our representation is overcomplete,
meaning that the number of neurons in the bottleneck is greater than the number of input neurons.
However, our training procedure acts as a regularizer, effectively forcing the model to learn a
sparse representation that is suitable for reconstructing missing values. ReLU activations also
contribute to sparsity Glorot et al. (2011).

Discontinuities Unlike the affine model discussed earlier, the feed-forward neural network
approach tends to suffer from discontinuities because it does not enforce temporal consistency
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Table 2.1 – Full list of layers in the marker regressor.

Type Shape
Input 9×3
Flatten 27 neurons
Fully connected + ReLU 200 neurons
Fully connected + ReLU 150 neurons
Fully connected + ReLU 200 neurons
Fully connected + Linear 27 neurons
Reshape (output) 9×3

Figure 2.8 – An autoencoder with three hidden layers. In a scenario where a and c are available,
and b is occluded, we disconnect the inputs corresponding to b, and we get the prediction of b in

the output. Here, only three markers are depicted; in practice, we would have nine markers.

explicitly. Since a feed-forward model does not contain any state information, it simply finds a
solution that minimizes the error in the average case without being able to take into account any
previous context. From the user’s point of view, this results in a bad experience. Other neural
network architectures, such as recurrent neural networks (RNNs), can exploit past information.
However, even with them, handling missing values is a non-trivial task that could still result in
discontinuities. Our preliminary experiments showed that this is indeed the case. Hence, we stick
with feed-forward networks due to their lower computational cost and ease of training, and we
adopt special measures to correct discontinuities. When a marker becomes occluded, we compute
an offset term, and we apply it to all subsequent outputs until the occlusion is resolved. More
specifically, given an occlusion at time t, we perform a prediction with the data from the previous
frame t−1 (where the real position was known). Afterward, we calculate an offset that cancels
out the discontinuity; this offset is retained as state information and is modified only if another
occlusion happens or if the occlusion is resolved. The offset is applied to the output of the marker
predictor network before the points are de-registered. To calculate the offset, we simply compute
the difference between the predicted position and the actual position in local space. We also
explicitly correct re-entry discontinuities using the same technique; the only difference is that the
offset is decayed to zero over time (using a linear decay function) in order to remove the bias.
We observed that a decaying speed of 25 cm/s offers a good compromise between reactivity and
smoothness. Figure 2.9 depicts this process.
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(a) Frame t−1 (b) Frame t (c) Frame ≥ t

Figure 2.9 – Handling of discontinuities. (a) At t−1 no marker is occluded. (b) At t the index
marker is occluded. The NN predicts its hypothetical position at t−1 (green), which results in a
small discontinuity from the true position (red). (c) From t onwards, the discontinuity is explicitly
canceled by moving the marker by the offset vector (black arrow). For re-entry discontinuities,

the process is reapplied in the opposite direction, but the offset vector is progressively shrunk to
remove the bias.

2.3.3 Finger animation model

The joint regressor predicts the angles of the fingers, given the marker positions as input. It solves
a task similar to that of an IK solver, but instead of using a calibrated skeleton, it adapts to the
user’s hand according to a dataset of realistic motions. Furthermore, it does not need to handle
missing values, as they are assumed to be predicted by the previous stage of the pipeline. We
adopt a dense neural network for this task, which takes the marker positions as inputs (9×3 = 27
neurons), and predicts the Euler angles of all relevant joints for a total of 26 Euler angles. The
use of Euler angles instead of other representations, such as exponential maps Grassia (1998) or
quaternions, is motivated by the observation that our fingers have limited degrees of freedom.
We need to predict only certain angles, thereby obtaining a smaller neural network. Figure 2.10
shows the degrees of freedom that are modeled, while Table 2.2 shows the structure of the neural
network. As before, all layers except the last one use ReLU activation functions Nair and Hinton
(2010). Moreover, we used Dropout Srivastava et al. (2014) in the intermediate layers (with a
probability of 0.1, meaning that 10% of neurons are randomly dropped at each training iteration)
to avoid overfitting. This proved effective in improving the validation error.

During both training and inference, the inputs are registered (all rotations/translations are re-
moved). Additionally, we found the same post-processing technique employed in the sensor
fusion (i.e., artificial joint rotation, Figure 2.3.1) to be effective.

2.3.4 Training

For both models, we optimize the mean squared error (MSE) loss using the Adam optimizer
Kingma and Ba (2014) with an initial learning rate η = 0.001. The learning rate is automatically
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Figure 2.10 – Degrees of freedom of the hand joints (26 in total).

Table 2.2 – Full list of layers in the joint regressor.

Type Shape/Notes
Input 9×3
Flatten 27 neurons
Fully connected + ReLU 200 neurons
Dropout p = 0.1
Fully connected + ReLU 200 neurons
Dropout p = 0.1
Fully connected + ReLU 200 neurons
Fully connected + Linear (output) 26 neurons

adjusted once the error reaches a plateau; more specifically, it is halved if the error has not
improved over the last five epochs. The model is trained only on simulated occlusions, as they
are the only ones for which a reliable ground truth can be obtained, and with a batch size of 32
samples.

2.3.5 Second hand pipeline mirroring

The reconstruction of the right-hand pose exploits the model trained for the left hand. For this, we
simply transpose the behavior of the left-hand pipeline to the right hand, using the natural plan of
symmetry of our skeleton to flip the coordinates of the marker according to this plan. The new
pipeline handling both hands is a composition based on the pipeline described in subsection 2.3.2.

Then the set of mirrored coordinates is given as an input to the pipeline with the neural network
for the prediction of the positions of the markers. The neural network trained on the left-hand
dataset now sees an input matching a left hand and predicts the occlusions for this virtual left
hand.

These data are stored in the hand model object in order to be accessed for the hand pose estimation
and for the next step. The next step consists in filling these predicted markers to the neural
network trained on the left hand to predict the joint rotations of each finger, and as above, it sees
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Chapter 2. Providing users with finger animation in VR

a left hand.

As for the marker position prediction, the output is also stored in the hand model object and is
forwarded to the 3D model for its animation.

This design allows us to train only once the neural network with the dataset of one hand and use
it as many times as required for the number of hands required in the simulation. Also, we were
able to use four hands in our simulation environment.

LEFT HAND MODEL

MARKER
PREDICTION

JOINT
PREDICTION

Raw Markers
Positions

Marker
Dispatcher

MARKER INPUT

RIGHT HAND MODEL

AVATAR 3D MODEL

Hands Position
and Rotation

Fingers
Rotations

LEFT HAND MODEL

MARKER
PREDICTION

JOINT
PREDICTION

Flip
Coordinates

Flip
Coordinates

and Rotations

Flip
Rotations

Figure 2.11 – Main steps of the pipeline used to transform raw markers position from VRPN to
the position of the avatar’s body. Refer to Figure 2.7 for details of the left-hand model

2.4 Approach validation

2.4.1 Evaluation dataset

First evaluation: Single Hands Dataset The dataset was recorded from four subjects (three
males and one female, age range between 22 and 30), all right-handed and with different hand
sizes. Every subject underwent eight recording sessions of approximately 60/80 seconds each, and
the Perception Neuron was calibrated before each session (with a quick follow-up check). This
approach ensures that IMU drifts do not degrade the dataset’s accuracy. As for the movements,
the subjects were left free to execute any movement but were also instructed to perform at least
some key gestures. In order to evaluate the model, the dataset was partitioned into a training set
(2 subjects), a validation set (1 subject), and a test set (1 subject). The validation set was used for
tuning the hyperparameters and testing different architectures, whereas the test set was used only
for the final evaluation.
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2.4. Approach validation

Figure 2.12 – Left: a person wearing the recording equipment (PhaseSpace glove and
Perception Neuron). Right: a person testing the application in a VR environment with an Oculus

HMD.

Second evaluation: Two Hands Dataset A second dataset was recorded from five subjects
(four men and one female, age range 24-42), all right-handed with different hand sizes. Each
subject spent 100 seconds wearing the two gloves but this time without the perception neuron
system as it was no longer required. The subjects had to achieve three tasks (both hands finger
crossing, palms in contact, fingers in contact) and were free to move the rest of the time. This
dataset was used in order to compute the rate of occlusions per hand in comparison with a system
with only one hand.

Figure 2.13 – A subject wearing the two gloves during the recording phase of the dataset
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2.4.2 Results

Left hand dataset

The training set consists of ≈30 minutes of data recorded at 60 FPS. In theory, the PhaseSpace
system can record at up to 480 FPS, but we limited the sample rate to 60 FPS to avoid collecting
too many redundant samples. Figure 2.14 reveals some insights: most occlusions involve a small
number of markers, that is, the probability that multiple markers are occluded at once is low.
Moreover, the duration of an occlusion follows a heavy-tailed distribution (90% of occlusions
last less than 0.36s).

Figure 2.14 – Probability of N occlusions at once (Left). / Occlusion duration histogram (Right).

Two hands dataset

This dataset is used to compute the number of occlusions occurring with two hands instead of
one hand. We used the same frame rate for this comparison. As we can see in Figure 2.15, the
probability to have more than one or two occluded markers is higher than in the single-hand
case. The occlusion duration is likely to be longer too. This can be explained by the fact that
interacting hands may temporarily hide each other.

Reconstruction error

Marker predictor error Table 2.3 and Figure 2.16a reveal the error of the first stage of the
pipeline (the marker prediction model). We compare the three baselines with our neural network
approach, and we report statistics over varying occlusion durations and the number of markers
occluded simultaneously. For each trial, we report the average Euclidean distance between the
predicted position and the ground truth on the last frame before the occlusion is resolved, and
only for the occluded markers. For instance, in the scenario “2 markers after 100 ms”, we occlude
two random markers at once and measure their error after 100 ms. The errors are evaluated
across the entire test set and repeated five times with different random seeds to smooth out their
variance.
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2.4. Approach validation

(a) Left Hand

(b) Right Hand

(c) Both Hands

Figure 2.15 – Probability of N occlusions at once (Left). / Occlusion duration histogram (Right).
Plots represent the same as in Figure 2.14

Our evaluation methodology addresses both short-term occlusions (100 ms, 200 ms, 500 ms) and
long-term occlusions (1 s and 2 s). Each method is tested on a number of occlusions between 1
and 4, except for the first two baselines (last known position and moving average), which are
independent of this parameter. We observe that the moving average baseline exhibits the worst
performance, which is caused by the markers drifting away on long-term occlusions. The affine
combination model is better than the simplest baseline (last known position) except when many
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markers are occluded at once. Finally, our neural network approach consistently outperforms all
the other methods.

Table 2.3 – Evaluation of the error on the marker neural network (error units=centimeters,
lower=better). Legend: LK last known position, MA moving average, AC affine combinations,

NN neural network.

# Occlusion duration (seconds)
Method Occlusions 0.1 0.2 0.5 1.0 2.0

LK Any 1.54 2.58 4.43 5.15 8.06
MA Any 2.23 4.28 9.99 20.19 44.28

AC

1 0.97 1.54 2.42 2.92 3.67
2 1.06 1.69 2.61 3.47 4.12
3 1.22 1.96 2.95 3.65 4.52
4 1.66 2.68 4.06 5.34 5.45

NN

1 0.56 0.84 1.19 1.46 2.09
2 0.60 0.91 1.33 1.57 2.08
3 0.68 1.03 1.48 1.81 2.32
4 0.79 1.20 1.78 2.14 2.72
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Figure 2.16 – (a) Comparison between the baselines and our method for the marker predictor
error. The moving average baseline is not included because of its excessive error. (b) End-to-end

error: our approach at varying conditions versus an IK baseline.

End-to-end error In Table 2.4 and Figure 2.16b, we report the error relative to the joint positions
by running the entire pipeline. As in the previous section, we measure the average Euclidean
distance between the predicted joint positions and the ground truth. The averages are computed
only over the finger joints, i.e., p1, p2, and p3 (as described in Figure 2.3.1). All errors are relative
to the test set. We do not report angle errors because they would not be easily interpretable; errors
in the first joints would accumulate along the kinematic chain.

We compare our work to an IK library, “Final IK” by RootMotion (RootMotion, 2020). We
fine-tuned the IK configuration to the best of our ability: we use a Cyclic Coordinate Descent
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(CCD) solver, with an angle constraint (3 degrees of freedom, max. 45° for flexion-extension
/ abduction-adduction, and 20° for the twist) on the root finger joints, and a hinge constraint
(1 degree of freedom (flexion-extension) from -90° to 10°) on middle joints. We show that
our approach achieves a significantly lower error (0.07 cm) than inverse kinematics (1.87 cm
unconstrained, 1.08 cm fine-tuned) when there are no occlusions. This suggests that a data-driven
approach is better at modeling the angle distributions/constraints than a handcrafted setup, thus
producing a more naturally-looking reconstruction. For the occlusion scenario, we report only the
statistics associated with our method, as IK solvers cannot handle occlusions (some IK approaches
such as Schröder et al. (2015) enable a reduced set of markers, but not a dynamically-changing
one).

Table 2.4 – Evaluation of the error on the final joint positions (error units=centimeters,
lower=better). Legend: IK inverse kinematics, FT fine-tuned, NN neural networks.

# Occlusion duration (seconds)
Method Occlusions 0.1 0.2 0.5 1.0 2.0

IK 0 1.87 (no occlusions)
IK FT 0 1.08 (no occlusions)

NN

0 0.07 (no occlusions)
1 0.11 0.14 0.17 0.19 0.29
2 0.17 0.23 0.29 0.35 0.41
3 0.26 0.36 0.48 0.57 0.79
4 0.38 0.55 0.79 0.89 1.32

2.4.3 Performance

Our reference implementation is written in C# and runs on Unity Engine. Running the entire
pipeline for a single hand on an Intel Core i5-4460 CPU requires less than 1.2 ms (≈ 833 frames
per second). Additionally, the two neural networks (for the occlusion recovery and the finger
animation) have a minimal memory footprint (300 kB each). With an Intel Core i9-9900K, the full
pipeline takes 2.2 ms on average for both hands integration, a result based on a simulation of 5 min-
utes (≈ 455 frames per second). In the video, hosted at https://www.youtube.com/watch?v=S8c-
F2kvqZ8, our approach is used, without physical simulation or collision detection nor enforced
kinematic constraints when objects are touched, to illustrates the fitness of the results from our
approach.

2.5 Discussion and future work

Having both hands in VR gives the user a more natural way to interact with elements of the
virtual world. It allows us to perform simultaneous actions, like changing gears while driving, but
also to achieve more complex tasks, like handling large objects. The provided video illustrates
the actions of opening a drawer to grab an object, crossing fingers, and shaking hands.

Concerning related work on this subject, previous methods have mainly addressed passive motion
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capture and limb reconstruction. Out of the few occlusion-handling solutions targeted at active-
marker technologies, we investigated Aristidou et al. (2008), which has already been employed
in some studies Molla et al. (2017). However, this method requires at least three markers for each
segment, which follows from the assumption that the distance between neighboring markers is
approximately constant. Given that our hand model comprises at most two markers per finger (tip
and, optionally, base), we suggest that a data-driven approach is more suited to this task because
it adapts better to the specific domain that should be addressed (hand and fingers reconstruction
with only 1 or 2 markers per finger, in our case). This might also explain why, in our setting,
analytic inverse kinematics perform significantly worse: in the absence of intermediate markers,
the algorithm does not know the priors that constitute a good-looking posture.

2.5.1 Limitations

Limited training dataset During the training phase of the autoencoders, some complex hand
postures might not have been trained due to the likelihood of occlusions, thus excluding these
frames from the training dataset. Consequently, the integration of both hands might increase the
number of mutual occlusions for which the system was not trained. For instance, in the edge
case of too many simultaneous occlusions, the pipeline might give unplausible poses such as
illustrated in Figure 2.17.

Figure 2.17 – Too many occlusions

In that regard, we expect that training a new neural network handling both hands simultaneously
could help to predict their correct relative position in contexts where one hand is hidden by the
other one. It also has to be noted that the thumb has a more complex structure than the other
fingers, and the post-processing that simply applies a rotation on the base joint could be improved
for that finger.

Absence of physical hand model Another disadvantage of our approach lies in the feed-forward
neural network architecture, which does not model an internal state.

On a collision side, this means that the self-contacts might not be congruent with the actual pose
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of the user’s hands, with nothing preventing interpenetration or unexpected gaps as illustrated in
Figure 2.18. Consequently, the results obtained from the animation only rely on the precision of
the generated pose by the approach.

Figure 2.18 – An illustration of the gap between the two fingers

On the temporal side, discontinuities, when occlusions occur or vanish, are corrected in post-
processing after the prediction from the model. Indeed, our neural model does not embed
temporal continuity as it performs deterministic predictions in the sense that equivalent postures
(same input with different outputs) are averaged to minimize the reconstruction error. However,
recurrent neural networks can produce an output that is conditioned on the previous frames,
therefore, potentially handling discontinuities without a post-processing stage, although it is
not trivial to enforce temporal consistency on occlusions while keeping the target function
differentiable.

Hardware Finally, on a hardware note, we noticed that, depending on the environment (number
of cameras, reflective surfaces, etc.), the PhaseSpace tracking system might give wrong marker
positions for fast movements (Figure 2.19) rather than yielding occluded ones.

However, compared to the other available tracking methods, this solution remains with greater
precision than its passive counterpart, and the labeling of the markers easily allows for tracking
multiple hands and, possibly, multiple people. Nevertheless, our method would seamlessly adapt
to passive systems if a robust tagging layer were integrated into the pipeline, such as the one
proposed by Han et al. (2018); Alexanderson et al. (2017).
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Figure 2.19 – Fast movement inducing a bad marker position

2.5.2 Future works

In the future, we would like to experiment with convolutional, long short-term memory (LSTM),
and gated recurrent unit (GRU) architectures. The architecture could also be extended with
a second neural network trained with a dataset of two interacting hands rather than having a
single-hand neural network exploited independently for each hand and, therefore, might help
maintain self-contact consistency known to be critical to support embodiment at the body level as
this was covered in the literature Bovet et al. (2018). However, the existing literature presents
a dearth regarding the characterization of the finger embodiment, and our finger animation
technique can be used to broaden our understanding of the mechanism at stake in the human
perception and attribution of finger movements.

2.6 Conclusion

To sum up, we present a hand-tracking pipeline addressing the issue of occlusions from active
optical tracking that also provides an animation pipeline of virtual hands through the use of neural
networks. This method of mapping markers to joint angles does not require the process of setting
up an IK solver.

Our system provides a natural reconstruction of the hands in most real-case scenarios, which
we demonstrate by comparing the reconstruction error with a traditional solver based on inverse
kinematics. Occlusions are corrected with good accuracy in most cases and with minimal latency,
and our data-driven approach does not require defining a set of rules or constraints, as these are
learned automatically from data. From an interaction perspective, our finger animation is suitable
for object grasping and manipulation, but we observe that the behavior of the thumb, which falls
short on pinching gestures, could be improved by using a 3D hand model that resembles the
glove more closely.
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3 How are errors in finger animation
perceived?

3.1 Introduction

We feel responsible for the actions we do and for the mistakes we make. In computer games, as
in sports or at work, missing a button press under time pressure is self-attributed as a failure to
succeed in the task. But if our avatar in VR (Virtual Reality) would automatically correct for it,
pretending the mistake never occurred, would we still feel responsible for that mistake, or simply
ignore it, or even not notice it at all?

The self-attribution of authorship for voluntary actions is defined as the SoA (Sense of Agency),
which corresponds to the subjective feeling to be responsible for the action of our body Gallagher
(2007); Haggard (2008); Salomon (2017). The representation in VR of an avatar replicating a
user’s movements thanks to motion capture is known to induce a strong SoA for the movement
of the virtual body. This is illustrated at the body level through the adaptation from Slater et al.
Slater et al. (2008) of the "Rubber Hand Illusion" from Botvinick et al. (Botvinick and Cohen
(1998)) with the difference that the limb is not a physical limb, but a virtual one displayed using
immersive technologies. Those immersive setups can also induce a sense of self-location in the
VE (i.e., I am located where the virtual body is located), which, carefully combined with the SoA
can lead to the subjective experience of body ownership SoE (i.e., this virtual body is my body).
This feeling of the embodiment is beneficial for the user experience in VR, but any disruption of
one of them can potentially lead to a break in embodiment Porssut et al. (2019). However, we are
poor at locating our limbs using only the proprioceptive feedback Burns and Brooks (2006) and
consequently, we do tolerate motion distortions at the body level, provided that those are below a
certain threshold Galvan Debarba et al. (2018); Porssut et al. (2019). Exceeding this threshold
would lead to a loss of agency, breaking off the SoE. Therefore, it is crucial not to disrupt the
SoA to maintain the user’s experience.

It is assumed that to perform this SoA judgment, an underlying neural process would compare a
prediction of the sensory consequences of a movement with the actual feedback from our senses
Wolpert et al. (1995); De Vignemont and Fourneret (2004); David et al. (2008); Engbert et al.
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(2008). If both match, the SoA is high, but if a mismatch occurs, there is a loss of SoA. It was
thus surprising to observe that humans could self-attribute actions that were distorted (i.e., When
the user’s movement differs from the avatar’s motion) or performed by others Nielsen (1963)
or when the final result was altered by the machine Logan and Crump (2010). Prior results
typically showed that, beyond a few hundred milliseconds of delay, people do not self-attribute
the response Farrer et al. (2008); Wen (2019); therefore, only real-time feedback is considered in
this study.

In the seminal study of Nielsen et al., subjects were asked to draw a line while the experimenter
secretly placed a mirror to replace the subject’s real hand with someone else’s hand doing the
same task Nielsen (1963). When both actions were synchronous, subjects experienced the alien
limb (i.e., the limb that does not belong to the user) and its movements as their own. When
the alien limb drew a curve instead of a line, subjects compensated for the error by making
involuntary corrections in their movement while still considering the limb to be their own. With
more advanced techniques using computer graphics, Burns et al. managed to introduce motion
discrepancy in the middle of a movement and showed that users are much less sensitive to a
visual-proprioceptive discrepancy (distortions) than to a visual artifact such as the interpenetration
of the hand in an object Burns and Brooks (2006). Interestingly, informing participants of the
possibility of a mismatch was shown to influence their tolerance to discrepancies. Burns’ research
hence showed that 45 degrees offset in the arm rotation could be unnoticed if the participant was
not previously warned about the gradual introduction of this deformation, but only of around
18 degrees when the subject was informed Burns and Brooks (2006). Independently of such
factors, this tolerance has been shown to be quite useful to progressively remove discrepancies
between a real hand position and its virtual counterpart, such as for recovering a gap due to virtual
constraints or to rub out tracking and animation imperfections Burns and Brooks (2006).

Concerning finger movements, Krugwasser et al. observed that introducing angular distortions
or temporal delays gradually reduces the SoA similarly to other effectors Krugwasser et al.
(2019). Importantly, they also report that spatial and temporal distortions affect less the SoA
than anatomical distortions (the limb displayed moving is not the actual limb the user moves).
They thus suggest that this higher sensitivity arises from the combination of a spatial discrepancy
(the moving finger is not located where the displayed moving finger is) with an anatomical
discrepancy, accumulating to a larger overall conflict.

To investigate anatomical distortion, Caspar et al. used a robotic hand placed on an over-raised
wood plank Caspar et al. (2015). The actual participant’s hand was located just below, and both
real and mechanical hands were placed above a physical keyboard. Through a mix of conditions
where the motion was either congruent or incongruent (by transposing the movement of the index
finger to the little finger), the authors evaluated participants’ SoA. They observed that having a
congruent mechanical hand leads to an SoA similar to the one experienced for the real hand while
introducing the anatomical conflict significantly reduced it. They thus concluded that matching
the effector to achieve an outcome is a strong factor influencing the agency’s judgment, as it links
with the sense of embodiment for that effector.
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Using a VR display apparatus, Salomon et al. further investigated the link between the swapping
of finger motion and the impact on the self-attribution of the performed movement Salomon et al.
(2016). They also report the importance of embodiment for the judgment of SoA and, of primary
importance for our question, they further showed that participants’ accuracy was strongly affected
by the movement they had viewed when asked to judge which movement they performed. This
conflict elicits the possibility for self-attributing finger-swapped actions in VR.

In fact, the seminal work of Logan et al. previously demonstrated the possibility of a cognitive
illusion of authorship, without VR, by asking skilled typists to type words on a computer while
the visual feedback was either automatically corrected for typos or with inserted errors Logan
and Crump (2010). Their results show that typists typically took credit for correct output on the
screen (i.e., interpreting corrected errors as their correct responses) and, more interestingly, that
typists, who were unaware of the possible introduction of mistakes by the computer, also blamed
themselves for inserted errors, considering the visual output resulted from their action.

Those observations seem to corroborate the idea that the cognitive illusion of authorship could be
manipulated in VR such that participants would self-attribute a correction or a mistake introduced
in VR. However, it is not known if the real-time feedback of the error (i.e., the participant does
not wait for the end of the word to get the typed word displayed on the screen) would prevent
such expectations from happening.

It has been shown that a continuous distortion introducing a spatial discrepancy between the real
(hidden) and the virtual (visible) arm in a reaching task is rather well-tolerated Galvan Debarba
et al. (2018); Porssut et al. (2019); Porssut et al. (2021). More specifically, participants still report
being the agent performing the action despite a relatively large distortion, typically when it helps
them to reach a goal (around +2dB change in movement’s speed in the study from Debarba et al.
Galvan Debarba et al. (2018)) as opposed to when it prevents them from doing so. This tolerance
for amplified or reduced movement cannot be interpreted solely as a limit in detection threshold,
as it is influenced by other factors linked to the achievement of a task and to a more global SoE
(Sense of Embodiment). Therefore, the authors revealed that distortions helping users were more
accepted than distortions hindering the movement and that those distortions can be thus used to
help (or penalize) users reach their goals. It can thus be expected that even stronger distortions,
such as changing the motion of a body part for another one, could also be tolerated, although it is
not yet proven.

Jeunet et al. evaluated three aspects of the SoA through fingers’ animation manipulations as
viewed in the first-person perspective in an HMD Jeunet et al. (2018). In this experiment, the
authors manipulated the priority principle (i.e., the intention immediately precedes the action) by
introducing temporal delays, the consistency principle (i.e., what is expected to be observed is
observed) by swapping finger motion, and the exclusivity principle (i.e., one is the only apparent
cause of the outcome) by randomly animating the hand. In line with former literature, they
confirm a decrease in SoA when any manipulation was introduced, with the lowest agency score
when consistency was altered (i.e., finger swaps). Interestingly, they also observe a correlation
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between the agency score and the level of immersion in VR, outlining the mutual interaction
between immersion conditions and the level of SoA. However, these observations were made for
isolated movements (not specific to fingers) independently of the execution of a goal-oriented
task.

Overall, these studies show that introducing finger swaps reduces the SoA and that visual feedback
tends to dominate over motor perception during these conflicts. However, it is unknown if, as
for movement distortion in a reaching task, this would still apply to goal-oriented tasks. More
specifically, it could be expected that helping or hindering the participant would influence their
SoA differently for finger-swapped actions (as is the case for Debarba et al.’s reaching study
Galvan Debarba et al. (2018)).

Thus, the present study evaluates the impact of finger swaps during a goal-oriented situation
through a challenging VR game in which participants have to validate buttons with fingers. More
specifically, this paper analyzes whether participants would detect these anatomical swaps in two
contexts: without and with SE (spontaneous errors). In the context without SE, we assess the
condition of error introduction (EI: the subject does the right action, but the swap prevents the
user from validating the button), whereas, in the with SE context, we assess the condition of error
correction (EC: the subject makes SE, and the system corrects for them).

3.2 Setup

The VR apparatus used for this experiment involves hardware and tangible objects as well as
a representation of the user’s avatar inside a 3D simulation running with Unity3D 3D (2019)
(Figure 3.1a). To study finger swaps and to support the avatar’s embodiment, the visible parts of
the body are animated thanks to a Mocap (Motion Capture) system and an animation pipeline. As
finger swaps must be introduced, the hands’ animation pipeline is adapted to allow the permutation
of fingers’ motions as illustrated in Figure 3.2. The details of the swap implementation are
available in Table C.1.

The Mocap system is a Phasespace Impulse X2 PhaseSpace (2019). This tool converts markers
(red LEDs) attached to the glove (Figure 3.1a) into 3D points in space. As optical Mocap is
sensitive to visual occlusions, in particular for fingers tracking, we used the occlusion recovery
process from chapter 2. For animating the avatar, marker positions are fed to analytical IK
(Inverse Kinematic) algorithms (Table C.1). Lower body parts are not visible (under the table)
and thus not animated. Participants are immersed in VR with an HTC Vive Pro Eye HMD
(Head-Mounted Display) and see their avatar body in first person PV (Person Viewpoint).

Finally, to allow the user to report an event or validate steps, an M-Audio SP-2 pedal (connected
via an Arduino Uno Arduino (2019) to the computer) is placed under the participants’ foot.
This system detects pedal press when the pedal reaches its mid-travel, triggering a falling edge
detection on the microcontroller.
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HMD

White noise

Tracking gloves

Pedal

Calibrated

environment

(a) Participants are comfortably seated in front of
a table that is calibrated and replicated in the
virtual environment. They are immersed in VR

using an HMD. An active tracking solution with
gloves was used to acquire fingers’ motion in

real-time. According to instructions, participants
press a foot pedal to report some specific events.

(b) When participants do the task, they see height
vertical colored lines on the virtual table: one per
finger except for thumbs (four on the left and four

on the right). Little white buttons are sliding
down along the lines and eventually pass above a
finger. The goal is to lift the corresponding finger
to validate the buttons in the white area. When

validated, the button disappears. In this
illustration, the subject should be ready to lift the
left index as the button is about to pass over it.

Figure 3.1 – Experimental context

(a) Subject’s real movement from the real
source finger

(b) What the subject sees, i.e., the displayed
destination finger

Figure 3.2 – Schematic illustration of a swap in fingers’ motion. The original motion of the
index (i.e., the real motion from the user, the dashed arrow) is redirected onto the middle finger

the user sees (i.e., the displayed motion, the cyan arrow).

3.3 Task

A gamified finger-movement task was implemented in order to provide participants with a
stimulating and challenging task, for which the level of difficulty can be adjusted to maintain an
overall success with occasional SE (spontaneous errors). While playing the game, participants
are also asked to perform a perception task, consisting in detecting if they noticed the animated
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finger was not the same as the finger they moved.

Participants’ gaming task is to hit buttons that move downwards towards them as they pass over
their fingers within the validation area (see Figure 3.1b). When successfully hitting a button, a
short validation sound is played (0.235s) and the button disappears. The movement chosen is
a lift to ensure that, except for the actuated finger, all the other fingers remain static owing to
the table contact. The challenge of the task comes from the difficulty of following the activity
on both sides (for the left and right hands) and for keeping the pace as the speed progressively
augments during the game.

The speed of the button is automatically and smoothly adjusted by the system to maintain the
experience’s flow and the difficulty of the task: When the subject performs correctly, the speed
continuously increases so that at the highest speed, the subject cannot cope with the game’s pace
and makes mistakes (missing buttons or mixing fingers). Conversely, when the subject makes
mistakes, the speed is reduced drastically to avoid overflowing participants.

Buttons are randomly distributed on each line, and the distance between those buttons remains
consistent. The vertical lines laterally follow fingers’ positions to ease the task by reducing the
amount of attention required and the physical fatigue (movements are not physically guided like
on a piano). No physical touch is simulated, and no scores are registered. The game ensures there
is always only one button to hit at a time. Therefore, to prevent incidental multiple fingers lifts,
the game is interrupted when more than one finger is actuated (followed by a reset of the table
with buttons spawning from the beginning of the table).

The important specificity of this game for our experimental manipulation is that the machine
will decide at some points to introduce finger swaps (Figure 3.2), and participants are asked to
press the foot pedal when they detect such an event. Subjects are informed that they have two
seconds to react after they see a finger swap (during which the system cannot introduce more
finger swaps) but are not specifically asked to press the pedal as fast as possible. During the
experiment’s tutorial, participants are trained to recognize such swaps (they must test finger
swaps at least three times per hand). Once the pedal is pressed, the game immediately stops, and
participants report their confidence level about their perception of the swap on a discrete scale
within J0,10K. (N.B., To reduce bias while answering the question, the scene is made empty, and
the selection is made by maintaining the selection cursor, attached to the gaze direction, in one
of the eleven values). Zero means ’I am not sure that the machine introduced a swap’, and ten
means ’I am sure the machine introduced a swap’. Once the value is validated, the questionnaire
disappears, and the game restarts with new buttons at the top of the table.
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3.4 Implementation

3.4.1 Speed regulation

To provide an environment maintaining the flow of the experience Csikszentmihalyi and Csikzent-
mihaly (1990), the game’s speed is continuously adjusted through a system inspired by propor-
tional integral derivative controllers (PIDs) aiming to ensure a sufficient amount of SE (targeted
value set in the algorithm loop: 10% of the total amount of button press). Preliminary practice
and speed assessment sessions are used to establish a reference speed for each user. Speed is
contained between 0.35m/s and 1.5m/s, and the acceleration is capped between +0.05m/s2 and
−0.15m/s2 to avoid yanks and surprise effects. Those values were assessed with a few pilots
to ensure that the game remains engaging, not too demotivating, and to ensure that the needed
minimal count required for the analysis could be reached within a 1h long session for the subject.

Automatic introduction of finger swaps

To decide when a swap should be introduced, the system must first detect when a finger is
moved (lifted) by the participant. A calibration process inspired by the work from the finger
animation calibration (Figure 2.4) was used to store all fingers’ vertical position reference when in
contact with the table. Then, an offset hysteresis filter continuously compares fingertips’ vertical
positions to the reference to detect which finger is moved. Before the filter raises this event, no
finger swaps can be introduced. This is also used to detect SE and tell the speed regulator when
the user made a mistake.

When a SE occurs (i.e., the moving finger is not on the button’s line), the system randomly decides
to trigger (or not) a correction of the movement. If the correction is triggered, the expected
finger movement is swapped with the wrongly moved one. To distribute these error corrections
over time, the algorithm enforces that every consecutive chunk of six decisions is balanced (i.e.,
it triggers randomly three among six cases of corrections and lets the three other movements
uncorrected). Of note, pilots showed that six was enough to make sure participants could not
predict a pattern. Maintaining a low chunk size ensures that conditions are continuously balanced
instead of accumulating unbalance that would need to be fixed toward the end.

When the participant correctly hits buttons without SE, the system introduces five swaps per 100
trials. In such EI condition, the swapped finger is randomly chosen.

3.5 Experimental design

The study was undertaken in accordance with the ethical standards as defined in the Declaration
of Helsinki and was approved by our local Ethical commission. No minors were involved in this
study, and consent was collected on written sheets before the beginning of the experiment. The
protocol for this experiment is presented in Figure 3.3 and detailed in the following sections.
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Figure 3.3 – Timeline illustration of the experimental protocol of the experiment.

Participants are welcomed before giving their informed consent and filling out a demographic
questionnaire (detailed in section C.1) and are equipped with tracking gloves (Figure 3.1a) and
HMD. Once the experiment starts, the room’s lights are turned off, and all the explanations are
given in VR to ensure that all participants receive the same instructions.

Explanations and tutorials

The first step explains to the participants how to calibrate their hands to provide them with virtual
hands during the tutorial. Then the game is explained to the participants and they can practice
briefly (20 seconds). This is followed by a speed-assessment practice run during which the
automatic speed adjustment of the game is monitored: the speed increases as the participant is
successful (and reduces upon mistakes), enabling the system to store a personalized initial speed
for each participant. The experimenter also observes the participants’ ability to do the task.

Participants then undergo a multitask-assessment practice run to ensure they can do both the
game and the experimental tasks simultaneously. Here, the goal is to play the game and press the
pedal when a validated button turns red (500ms) instead of disappearing. Of note, the confidence
question is introduced here to stagger instructions and ease comprehension, therefore, once the
pedal is pressed, subjects give their confidence level in the observed presence of a red button
(similar to the real task).

To ensure subjects understand the expected phenomenon to be reported, they are explained finger
swaps and can try those by lifting their fingers while the swap alternates between enable/disable
to highlight the effect (with an indicator displayed in the scene). At this point, subjects are invited
to ask questions to ensure all instructions are fully understood.

Finally, participants go through a dry run to ensure that everything works and that the participant
can perform the task correctly. At this point, a continuous white noise sound is added (to prevent
the participant from hearing sounds from the real environment) and the participant is ready to
perform the task for this study.

Of note, warnings are automatically raised and displayed to the user when multiple fingers are
lifted simultaneously or when the subject moves his hand off the table. Also, the experimenter
can trigger a message to stop the experiment in case of need.
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Trial block

During a trial block, participants perform the game task (hit buttons) and the experiment task
(press pedal when detecting a swap) until 20 occurrences of each condition are reached (Table 3.1).
Each trial block is followed by a break when participants can remove the HMD, gloves, and
leave the chair before re-calibrating their hands for the next trial. On average, trial blocks lasted
roughly 18min and presented 2788 buttons. Among those buttons, on average 38 are EI, and 50
are SE of which 31 are EC.

At the end of the experiment, feedback is considered, and participants receive monetary compen-
sation for their time. The average session duration was designed to last 1h30 for roughly 3000
buttons presented.

3.6 Hypotheses, measurements, and analysis

3.6.1 Formal hypotheses

The translation of the research question through the experimental setup can be formalized with
the following hypotheses with the different conditions described in Table 3.1.

The experimental conditions for our study are EI (error introduction) and EC (error correction).
The EI condition represents the case where a participant moved the correct finger, and the
system remapped this movement onto another finger, thus preventing the participant from
succeeding. Conversely, the EC condition represents the case where the participant moved the
wrong finger, and the system remapped this movement to the finger facing the button, thus
helping the participant to succeed. Other conditions represent congruent visual feedback and are
used to help maintain the game’s flow.

The buttons’ speed regulation is expected to push participants to make approximately 10% of SE
over the total number of cases. The experimental system then introduces EC conditions for half
of the detected SE cases and introduces EI conditions for 5% of the cases.

To elicit whether or not the motor conflict from finger-swaps Salomon et al. (2016) could lead to
the self-attribution of finger-swapped actions in immersive VR, and to assess if the direction of the
distortion (i.e., hindering or helping) at achieving a goal-oriented task Logan and Crump (2010);
Galvan Debarba et al. (2018) affects the former self-attribution, we formulated the following
hypotheses:
H1 - Introducing a swap in fingers’ motion to prevent users from reaching the goal is more
rejected than a swap helping to reach the goal.
As Henmon et al. showed that high confidence levels are correlated with faster reaction times
Henmon (1911), our second hypothesis, expecting a higher confidence level at detecting penaliz-
ing finger swap compared to the ones helping the user, was extended with a shorter reaction time
for the former condition, and therefore formulated as:
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Table 3.1 – Experimental conditions: Hatched areas indicate which finger is (sometimes
wrongly) moved by subjects while cyan areas indicate the finger which is actually animated by

the system. Illustrations represent an example case when a subject should move the index to
validate the button (in the game, buttons can arrive on any vertical line). The arrow in the swap
conditions represents the swap count. Here its value is one as swapped fingers are next to each

other.

No SE SE

No
swap

Swap

Error Introduction Error Correction

H2a. - Introducing a swap penalizing the user is reported with a higher confidence level
than a swap helping the user
H2b. - Introducing a swap penalizing the user is reported with a shorter reaction time than
a swap helping the user.

3.6.2 Measurements

As per the instructions, participants press the foot pedal when they observe a finger swap. In such
an event, the game immediately stops, and the system stores the pedal press time, allowing to
measure (post-analysis) the amount of time elapsed since the previous experimental condition
(EI or EC).

Of note, the condition is ignored for further analysis if the participant did another mistake
in the time between the introduction of the experimental condition and the pedal press. This
applies for SE as well as for conditions followed with a warning (e.g., multiple fingers moved
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simultaneously).

In addition, the amount of swap (swp), referring to the number of hops between the finger moved
and the animated one, is also stored for post-analysis (a swap count of 0 means there is no swap,
a swap count of 1 means that the swapped finger is the direct neighbor of the moving finger such
as on Figure 3.2, and so on).

Finally, after a pedal press, a questionnaire asks the participant about their confidence in the
observation of a finger swap.

3.6.3 Statistical analysis

As our hypotheses only concern EI and EC conditions the dataset was filtered to remove other
conditions (no mistake without error introduction and mistakes without error correction). The
experimental design considers that a pedal pressed under no swap condition with no spontaneous
error is assumed to be attached to the previous experimental condition unless the time window is
closed. The analysis was conducted using .

We expect that introducing a swap in fingers’ motion to prevent users from reaching the goal
will be more rejected than a swap helping one to reach the goal. This can be formalized as
Equation 3.1.

P(pedal_pressed| EC)< P(pedal_pressed| EI) (3.1)

Therefore, a mixed model providing the pedal pressed outcome (pp) as a factor of the fixed
effects of the amount of swap (swp) and SE (se) was used to fit our filtered dataset (3256 points)
to assess this hypothesis. The logit function, defined as logit : x 7→ ln

( x
1−x

)
, was used as the

outcome pp is binary (the pedal is either pressed or not within the two second time window after a
condition). Plot observations hinted at a square factor for the swp predictor and did not highlight
interaction factors. Therefore we considered the outcome as a mean (I) plus the impact of se,
swp and swp2 (Equation 3.2).

P(pp) = logit
(
I +β1 ·se+β2 ·swp+β3 ·swp2) (3.2)

Random effects from the subject id, the elapsed time since the last condition (to relate the speed
of actions), and the number of minutes elapsed since the experiment began (to relate fatigue)
were also considered (although not displayed in the formula).

The model’s fitness was assessed using the residual analysis using ’s DHARMa package with a
0.18 p-value for the KS test of deviation, 0.66 for the dispersion test, and 0.77 for the outliers
test.
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We expect that introducing a swap penalizing the user would be reported with a higher confidence
level than a swap helping the user through a higher confidence level and a shorter reaction time.
This is equivalent to Equation 3.3 and Equation 3.4.

E(confidence_level| EC)< E(confidence_level| EI) (3.3)

E(response_time| EI)< E(response_time| EC) (3.4)

Only conditions with a pedal pressed were retained (783 entries) as the confidence level question-
naire and the reaction time (time elapsed between the button’s validation and the pedal press) are
only defined after a pedal was pressed.

A two-sided two-sample median permutation test (with 50 000 iterations) was used to compare
confidence levels and reaction time medians between both groups (EI and EC) followed by the
one-sided test to retrieve the direction of the difference.

3.7 Results
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Figure 3.4 – Plots of the results from the Analysis section
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3.7.1 Demographics

20 participants aged between 18 and 44 years old (median: 24, std: 5.62), including 10 women,
participated in this experiment. One participant stopped the session due to the difficulty of
wearing the HMD. Most participants came from anonymous area and were all students or people
working in academics. One participant was left-handed. The demographic questionnaire indicates
that participants mostly experienced VR a few times, were healthy and were comfortable with
typing.

Over 52,977 buttons pressed 3,256 entries were retained to assess the first hypothesis (sum of all
swap conditions, in red and green in Table 3.2). The assessment of the second hypothesis used
the subset of the filtered dataset where the pedal was pressed, a subset composed of 783 entries
(sum of all swap conditions where pp 6= 0).

Table 3.2 – Detailed count of each case occurrence. The No Swap cases (blue) do not count for
the experimental condition evaluation as they represent the large majority of ’normal’ events
when playing the game. The pp columns represent the sub pedal pressed count per condition

while the % pp represents its percentage share. In total, on the experimental conditions, 24% of
the swaps were noticed with a pedal press (sum of pp over totals from red and green cells from

the last line).

No SE (' 95%) SE (' 5%)
swp Total pp %pp Total pp %pp

No swap 0 47955 20 0.04 % 1766 238 13.48 %

Swap
1 1187 370 31.17 % 1021 44 4.31 %
2 567 215 37.91 % 35 2 5.71 %
3 442 152 34.39 % 4 0 0 %

Total 2196 737 33.6% 1060 46 1.63%

3.7.2 Finger swap detection

Fitted coefficients for the model (defined in Equation 3.2) are displayed in Table 3.3.

Table 3.3 – Predictors values for the fitted mixed model. We can observe the very significant
impact of the se predictor on the observed outcome.

Fixed effect Equation factor Estimate p-value
Intercept I −1.72 2.54 ·10−05

se β1 −2.37 < 2 ·10−16

swp β2 0.94 0.0322
I( swp2 ) β3 −0.28 0.0536

The p-value associated with the se predictor coefficient is low (p < 2 ·10−16); thus, the odds of
the observed effect from this predictor being due to chance are almost null. Since the se predictor
coefficient is negative (and the logit transform function is an increasing function), the odds of
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pedal pressed are significantly lower when se = 1 (EC) compared to when se = 0 (EI) given the
model used (Equation 3.2). This translates into the red curve of EI being above the green one of
EC in Figure 3.4a. Finally, the R2 was measured at 0.21 (interpreted as low Cohen (1988)) for
the whole model and at 0.16 for the only effect size from the se factor (also interpreted as low).
Therefore, introducing a swap in fingers’ motion to prevent users from reaching the goal will be
more rejected than a swap helping one to reach the goal, hence validating our first hypothesis.

Additionally, we observed that the amount of swap (i.e., swp) also significantly impacts the odds
of having a pedal pressed. A possible explanation could be that swaps of neighboring fingers are
harder to observe than those from distant fingers (e.g., index and pinky).

3.7.3 Confidence level and reaction time analysis

A significant difference was measured between the two samples’ median through the two-sided
test (a 0.001 p-value). Cohen’s D effect size for the raw influence of the self-error on the
confidence level was measured at 0.87 (high). The confidence level median for the EI is 10 with
a mean of 8.39 and a standard deviation of 2.19. In comparison, for the EC, the median is at 7,
the mean is 6.46 and the standard deviation is 2.66. This difference is oriented with a higher
median for the EI condition compared to the EC condition (a 0.001 p-value). Those results are
plotted in Figure 3.4b and validate the first part of our second hypothesis (H2a., Equation 3.3).

The same procedure yields a 0.00456 p-value for the two-sided test, revealing a significant
difference between both samples’ medians, with a shorter reaction time for the EI condition
compared to the EC (0.0042 p-value, Figure 3.4c) which validates H2b. (Equation 3.4). Cohen’s
D effect size for the raw influence of the self-error on the reaction time was measured at 0.24
(low). The reaction time median for the EI is 0.91s with a mean of 1.02s and a standard deviation
of 0.51s. In comparison, for the EC, the median is at 1.09, the mean is 1.15s and the standard
deviation is 0.41s.

It is to be noted that in the EI condition, many outliers were observed. A possible explanation
might be the fact that in case of doubts, people might take a bit longer to decide whether a swap
was introduced or not, and in such a case, they would more easily recognize an error introduction
and press the pedal while in the other case, they might just accept it.

This does not contradict the relation from Henmon (1911) and, together, those results support our
second hypothesis.

3.8 Discussion and future work

Based on prior results from the literature (Galvan Debarba et al., 2018; Porssut et al., 2019), we
expected that introducing finger swaps in an engaging game would induce a different behavior
when the swap helps rather than hinders participants in their task. More specifically, we expected
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lower odds of perceiving the swaps when helping compared to when hindering the user. Addition-
ally, we expected that the latter case would be detected with higher confidence. This study was
designed to answer those two questions by providing subjects with an engaging task performed
in immersive VR, with an avatar following users’ movements. Confidence levels and reaction
times were measured to assess the subject’s confidence in the reported swap.

Results validate our two hypotheses: participants are less sensitive with lower confidence levels
and lower odds of detecting when swaps help them than when they hinder their movements.

Up to an offset of ∼55%, we observed the same detection rate of an alteration of the user’s action
as in the work from Logan et al. (Logan and Crump, 2010). In their study investigating the
self-attribution of corrections/inserted errors, authors reported a detection rate of altered actions
of approximately 85% for an inserted error against 55% for a corrected error. In comparison,
in our study, the values observed were 33% for error introduction to the 1.63% in the error
correction, and a similar drop of ∼30% was measured in the perception rate between those two
conditions.

Since the discrepancy we introduce in both cases (i.e., a finger swap with the same algorithm on
the same game) is the same, a purely sensory-motor comparison with the visual feedback should
raise the same warning for any type of swap introduced. Therefore, the comparator model for
self-attribution of movement (Wolpert et al., 1995) does not fully explain the observed behavior.
Our results rather corroborate the work of Logan et al. Logan and Crump (2010), showing that
the authorship illusion is composed of at least two stages (referred to as the inner and outer loop),
and consistent with a hierarchical error-detection mechanism.

3.8.1 Relation with agency and embodiment

Although the levels of SoA and SoE were not evaluated during this experiment, the experimental
setup with its immersive technology, the self-location of the virtual avatar, and the animation of
upper limbs was assumed to provide users with relatively good levels of embodiment and agency,
at least comparable to those in similar experiments Salomon et al. (2016); Jeunet et al. (2018).
Conversely, a pedal press at the detection of a finger swap thus indicates a disruption of the user’s
SoA (and probably of SoE).

Results can therefore be interpreted in terms of agency in the following way: finger-swaps in the
EI condition are more likely to disrupt SoA than in the EC condition. Furthermore, considering
the low probability of detection of EC, our results suggest that error correction with finger swap
has a limited impact on the SoA.

In practice, to avoid disrupting the SoA, it is important to prevent users from noticing finger
swaps, and EI should be avoided. A system can introduce swaps in finger motion in immersive
VR in order to help participants achieve a task without them noticing (most of the time) and with
a limited impact on SoA and SoE. Such results can be useful for controlling the flow in a training
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task and maintaining motivation (e.g., learning the piano, typing) or for compensating for finger
tracking errors (i.e., in the absence of correct tracking, trigger the expected finger movement).

3.8.2 Limitations and future works

Our experimental manipulation required to place participants in a situation leading to spontaneous
errors. Other approaches, with a question following each trial (as in the work from Salomon et al.
Salomon et al. (2016) or Balslev et al. Balslev et al. (2007)), could not be used as participants
would have constantly been interrupted, breaking the flow of the game Csikszentmihalyi and
Csikzentmihaly (1990). Instead, using a method similar to the one from Kokkinara et al.’s
study Kokkinara and Slater (2014), we asked subjects to self-report the introduction of finger
swaps through a pedal press. Our design can thus only assess perceived swaps and cannot reveal
behaviors based on non-observed finger swaps. It is indeed possible that participants deeply
engaged in the game might have forgotten to report some swaps or that their attention might have
been temporarily disrupted. Using eye-tracking might help reveal some unexpected behaviors
and/or disentangle some conflicting cases (e.g., measuring eye saccades when a swap occurs or
not). However, current HMDs do not provide fast enough eye-tracking capabilities to measure
those saccades (requiring a sampling frequency to be above 500Hz) Stein et al. (2021), and
knowing participants’ gazes is not necessarily sufficient to relate the actual perception of the
change by the user (e.g., movements can very well be perceived in peripheral vision).

Another differentiation with traditional approaches is that the participant’s attention is shared
between two tasks (the game with validating buttons and reporting finger swaps). Although
all participants underwent multitasking training and assessment sessions, it remains unknown
how much our results are influenced by their ability to perform the dual-task for the specific
experimental manipulation. Further testing and evaluation of participants could be conducted to
achieve a more detailed understanding of the interactions between the ability to multitask and the
experience of embodiment.

Compared to the study from Burns et al. Burns and Brooks (2006), the subject’s task is more
complex in our case; hence, all participants had to be trained on the type of distortion to recognize
(finger swaps). As a consequence, given that warning the participants about distortions influences
the experiment outcome Logan and Crump (2010); Burns and Brooks (2006), it is normal to have
higher odds of swap notifications in our context. It could be expected that, without previously
informing participants of the possibility of finger swap, the detection rate would be much lower.
To study such cases, a system monitoring brain activity with electroencephalography could be
used to monitor the brain’s spontaneous reactions to error, known as Error Related Potential
Falkenstein et al. (1991); Gehring et al. (1993). As previously done for detecting violations
of agency in VR Padrao et al. (2016); Pavone et al. (2016), it would probably be possible to
directly detect the brain reaction to error correction or error introduction without interrupting the
participant, and with the possibility to answer to mechanistic and neurological questions on the
agency of error correction.
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3.9 Conclusion

Our study shows that virtual distortions of finger movements (swaps) that help users to reach a
target with their fingers are more tolerated than distortions hindering their action. This extends
the previously observed effect of distortions for full arm reaching tasks in VR Galvan Debarba
et al. (2018); Porssut et al. (2019), thus generalizing the observation that some carefully designed
discrepancies between real and virtual body movements can be well tolerated as far as they help
in achieving a goal in VR.

More specifically, our experimental setup successfully elicited the self-attribution of finger-swaps
in immersive VR, with a significant difference between swaps helping or not the subject to
accomplish a challenging task. Our results support the hierarchical error-detection mechanism
proposed by Logan et al. Logan and Crump (2010), with inner loops taking care of the details
of performance (here finger swaps) and outer loops ensuring that intentions are fulfilled, thus
leading to the authorship illusion for avatar-corrected actions.

Finally, one take-home message for designers of embodied interaction in VR involving finger
movements is that a system can introduce finger swaps without disrupting the SoA as long as
those swaps help users in achieving the task at hand.
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4 Integration of finger and full body an-
imation with self-contact consistency

4.1 Introduction

We live through our bodies which allows us to interact with the environment. When someone
wears an immersive HMD (Head-Mounted Display), the real world around disappears, and
the user’s physical body is no longer visible. To avoid a conflict occurring between the user’s
expectation of having a body and the absence of a body in the VE (Virtual Environment), which
would negatively affect the user’s experience (Porssut et al., 2019; Gao et al., 2020), it is required
to provide a user with a virtual body, called an avatar. To allow one to embody such an avatar, the
following senses need to be elicited to the user (Kilteni et al., 2012): the sense of self-location
("refers to one’s spatial experience of being inside a body"), the sense of body ownership "refers
to one’s self-attribution of a body" and the SoA (Sense of Agency) (the "global motor control,
including the subjective experience of action, control, intention, motor selection and the conscious
experience of will" (Blanke and Metzinger, 2009)). It is crucial not to disrupt any of those three
components to prevent breaks from occurring, which would lead to a break in embodiment
(Kokkinara and Slater, 2014) that would significantly reduce the user experience.

A common way, proven to be effective at eliciting a strong sense of self-location in immersive
VR is to provide the user with the full body illusion at the first PV (Person Viewpoint) (Gal-
van Debarba et al., 2017). This is achieved by using a tracked HMD to allow the user to have a
virtual viewpoint placed at the position of the virtual head of the avatar. In the same vein, the
SoA and the body ownership can be provided through the animation of a plausible human avatar
animated in real-time using MoCap (Motion Capture) systems. However, MoCap systems are not
perfect and can be subject to artifacts in the measured movements performed (Tian et al., 2015).
Conveniently, it was shown in Burns and Brooks (2006) that humans’ proprioception is relatively
poor in providing good limb position feedback for static poses. Furthermore, studies on move-
ment distortions in immersive VR showed that the visual feedback was actually more relevant
and could be manipulated with amplified or reduced displayed avatar limb movements (Galvan
Debarba et al., 2018; Porssut et al., 2019), to a certain extent, without having the user noticing
the alteration of the movement. The same phenomenon was observed at the finger level in the
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previous chapter, and this was also the case for head movements (Jaekl et al., 2002).Consequently,
we are pretty tolerant regarding the exactness of the provided animation.

However, it should be noted that these tolerances do not mean that the user will accept any
movement that is displayed. Recent research has emphasized the stronger acuity of perceiving
virtual touches when a virtual body is provided to the user (Gonzalez-Franco and Berger, 2019),
and failing at providing self-contact consistency (i.e., there is a conflict between the perceived
skin contact and the absence of the contact in the VE (Virtual Environment) and conversely)
was shown to induce breaks in embodiment (Bovet et al., 2018). Despite the importance for the
user of providing self-contact congruence, many existing approaches in the literature primarily
focus on interactions with objects. As a consequence, in this chapter, we propose integrating the
finger animation pipeline discussed in chapter 2 with an adapted version of the real-time body
animation pipeline developed by Molla (Molla et al., 2017), specifically designed to address the
issue of self-contacts consistency in real-time.

4.2 System overview

Similarly to the original approach from Molla et al. (2017), our system takes advantage of our
tolerance to motion distortion. As for the original method, our solution relies on an initial
calibration of both the user’s body and the virtual character’s one, used to determine when
contacts are about to occur, and an online animation procedure as illustrated in Figure 4.1.

User Calibration
Mocap

User Calibrator User Calibration
File

USER'S BODY
CALIBRATION

Woman

Child

Man 

Ogre

Avatar Calibration
Dataset

... +

OFFLINE AVATAR
PRE-CALIBRATION

Avatar

Avatar Calibrator

Occlusion
Free and Unified

User Mocap

SKELETON
MODEL

ANIMATION

Avatar
Final Pose

EGOCENTRIC
COORDINATES
COMPUTATION

AVATAR
POSTURE

ADAPTATION
LOOP

ONLINE
RETARGETING

Figure 4.1 – System overview: the upper stage on the schema represents the avatar calibration;
this step can be performed once using the Avatar Calibrator, and the calibration file can be

stored for future use. The middle stage corresponds to the user’s calibration process. Here the
user performs several gym motions and self-contacts to calibrate its virtual skeleton and
approximation body. Finally, with the user’s virtual skeleton calibrated and the avatar’s

calibration profile, the third and lower stage computes in real-time the instantaneous pose to be
applied to the avatar.

The avatar calibration needs to be performed only once and can be stored in a database. Con-
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4.3. Setup

versely, the user calibration must be performed each time the user is equipped with the tracking
setup, as the trackers are not required to be placed at exact body locations. During this calibration,
the user must perform gym movements to retrieve the internal structure of the joints and touch
a few specific points on the body to define a simplified crude trunk mesh representation of his
body surface, as initially proposed in Molla et al. (2017). However, this method is insufficient to
calibrate the fingers, and the original method was extended with an additional calibration phase
for the hands and fingers. This fine-level procedure was made available to extend the gym motion
calibration optionally and involves touching the body on several joint locations with a fingertip to
enhance the accuracy of locating the joints’ locations and limbs’ radius.

Once both the target (avatar) and source (user) skeleton/body shapes are calibrated, the live
performance phase is composed of three steps with: the Motion capture (to animate the model of
the user’s structure), the computation of egocentric normalization (to account for a normalized
representation of the user pose, invariant from the user morphology), and finally, the animation is
applied to the character through a gradual limb posture adaptation.

The motion capture is mostly performed with a direct application of the trackers’ position on
the different bones of the user’s limb. The computation of egocentric normalization involves
computing the coordinates of effector positions using an egocentric coordinates system in which
a position is measured as the sum of the normalized contribution of vectors toward each surface
element from the source structure (user’s body shape, subsection 4.6.2). Finally, an adaptation
loop progressively attracts each avatar’s targets towards its retro-projected egocentric coordinates
on the virtual character (subsection 4.6.3) to produce the final avatar’s pose. The half-plane used
in the original animation from Molla et al. (2017) was replaced with an adapted IK taking as
an input both the current limb kinematic chain and the original orthogonal vector defining the
limb flexion’s axis. In addition, a second animation convergence loop was added to handle the
animation of hands and fingers.

The whole pipeline relies on the transformed inputs from the SteamVR and PhaseSpace environ-
ment, with the occlusion recovery stage from chapter 2 applied upstream. Therefore, the user’s
calibration and online retargeting pipeline described here assume that the input is complete and
reliable.

4.3 Setup

Animating an avatar requires identifying the current pose of the user. To allow our pipeline to be
used with a simple consumer-grade setup, and unlike in the original approach from Molla et al.
(2017), the motion capture system for the body tracking is composed of Vive Trackers Figure 4.2
Vive (2022).

However, those devices are too bulky to be placed on fingertips, preventing finger motion tracking.
To integrate the finger layer in the animation pipeline, we re-used the technology proposed in
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Chapter 4. Integration of finger and full body animation with self-contact consistency

Figure 4.2 – Vive Tracker 3.0 are consumer-grade devices whose 3D localization can be
retrieved through SteamVR. Those trackers are well suited for the gaming experience, for

tracking limbs (e.g., feet, knees, etc.) or objects to interact with (e.g., tracking a dummy gun).
However, their dimensions prevent them from being placed on each finger.

Picture sourced and edited from https://www.vive.com/fr/accessory/tracker3/

chapter 2 relying on the PhaseSpace (PhaseSpace (2019)) tracking with the occlusion recovery
pipeline to acquire missing information from hands and fingertips. LEDs were placed on new
gloves Figure 4.3 to track fingertips positions, and, to reduce the jitter due to the glove’s flexibility,
a wooden support was added to hold the three LEDs defining the hand’s rigid body in place.

LED

Wooden

support

Figure 4.3 – The gloves’ black texture helps to reduce light reflections from the tracking LED to
enhance tracking. Each fingertip has a LED to track its position in the 3D space. The wooden

support provides a rigid body reference to reduce the LED lateral motion due to the gloves’
flexibility.

The complete set of trackers is illustrated in Figure 4.4 and comprises twelve Vive Trackers and
two motion capture gloves. Motion capture gloves can be replaced with Vive Trackers for a
configuration without finger-tracking capabilities.

Using several tracking systems requires consistency of both tracking spaces; therefore, the two
body level referential must be realigned. Our procedure to perform such a realignment is to place
a tracker on three reference points printed on the room’s floor: The origin (0,0,0), front (0,0,1),
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Hand Tracking Full Body Tracking+ =

+ =

Body Trackers

Figure 4.4 – The setup involves a mix of Vive Trackers 3.0 with homemade tracking gloves,
therefore mixing tracking solutions. Vive Trackers are wireless, reducing the user’s constraints,

while the tracking gloves are still wired to receivers that users keep in their pockets.

and right (1,0,0) which is then used to compute the input’s system positional and rotational offsets.
Then, those computed offsets are inverted and directly applied to the input through an abstraction
input layer that feeds the animation pipeline.

4.4 Users’ body calibration

Similarly to the approach from Molla et al. (2017), our limb calibration uses CoR (Center of
Rotation) computation starting from the effectors and tracking back towards the trunk with the
difference that a second pass is used to increase the accuracy of joints positions and to measure
limb radius.

As our pipeline also involves the animation of fingers, the calibration process starts with the
calibration of hands and fingers.
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Chapter 4. Integration of finger and full body animation with self-contact consistency

4.4.1 Hands and fingers calibration

Calibrating the user’s hand is a task that involves measuring many parameters, and rather than
repeating similar poses several times, we chose to measure multiple parameters simultaneously.
The first pose consists in placing both hands’ palms in contact with each other (Figure 4.5) to
calibrate:

• the hands’ referential as a regular rigid body tracked using three LEDs to determine its
position and rotation in space

• the hands’ surface plans: Each position from each LED of one hand is averaged with its
opposite position from the other hand, and those averaged points are used to fit a plan that
defines each hand’s palm surface measured in each hand’s referential.

• fingers radius: Knowing the surface plan in each hand’s referential and the position of the
LED on top of the finger, the finger radius is computed as half the length between the LED
position and its projection on the hand’s palm surface plan.

• fingers extended position: Local extended fingertip positions are stored in the hands’
referential to be used later as a reference to compute the angular rotation to apply on each
finger.

The critical information required in the hand structure for its animation is the location of its
joints (i.e., the wrist and the fingers’ proximal root joints). The wrist position is measured by
successively placing the index fingertip from the opposite hand on top and below the wrist
(Figure 4.6a) to calibrate its position as the mean of the two measured positions in the hand’s
referential.

Unlike the method proposed by Aristidou (2018), our approach does not require precise placement
of tracking LEDs on the pinky and index finger base joints. However, the counterpart is that
those finger base joints must be calibrated.

Our initial tests showed that recording extended finger motion to calibrate the finger base joint
yielded unrealistic data. Therefore a manual calibration method was designed to calibrate the
finger base’s joints precisely.

Once the wrist is calibrated, each finger’s base location is measured by placing the opposite
index on each finger’s base joint. The joint base location is then computed as the measured
LED position projected on the hand’s palm surface, on which the radius of the finger is added
toward the top of the hand. Digits are then initialized as capsules with a radius corresponding to
the measured finger radius and placed in the alignment between the joint base position and the
extended fingertip position (green bones in Figure 4.6a). As bones’ motion within the hand is
relatively small, a simplified structure as a rigidly attached bone to the hand preferential is used
to attach the fingers’ base joint (i.e., proximal’s root) to the wrist.
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Computed Le�
Hand Plam Plan

Computed Right
Hand Plam Plan

Le� Hand
Referen�al

Marker LED

Middle Marker
Posi�on

Finger Diameter

Figure 4.5 – The middle plan that separates both hands is illustrated in cyan. Its location is
computed locally to both hands referential (i.e., computed left-hand palm plan and computed
right-hand palm plan) so that each hand model knows where is its contact surface. This pose

also determines the fingertips’ radius and local positions of extended fingers used in the
animation stage to animate fingers’ kinematic chains.

The last information to identify about the hand is the crude approximation of its palm surface.
This information is measured as the projection of the other hand’s fingertip on the palm surface
(Figure 4.6b).

4.4.2 Feet calibration

Similarly to the hands, feet embed a referential: the tracker attached to each foot, a crude mesh
representing the contact surface under the sole of the foot, and an anchor joint.

The local positions of the contact surface are measured as the fingertip’s projection to the floor
and then stored in the foot’s referential (c.f., Figure 4.7). The ankle’s local position is measured
by placing the fingertip on both sides of the ankle and averaging the two positions.

4.4.3 Limb calibration

Once the effectors are calibrated, the next step is to retrieve the user’s skeleton structure by
progressing proximally toward the trunk.
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Upper Wrist
Calibration

Finger Base
Calibration

(a) Finger base calibration

Lower Wrist
Calibration

Crude Mesh
Calibration

(b) Hands’ palm’s crude mesh calibration

Figure 4.6 – To calibrate a point, one must place the other hand’s fingertips (the index by
default) on top of the point of interest (e.g., joint) The order in which the user calibrates points is

irrelevant, as all calibration points are first stored. The actual computation can be triggered
later, hence avoiding flipping the hand several times to calibrate the wrist, surfaces, and finger

base joint.

Therefore the next step is to calibrate the four limbs linking the effectors to the trunk: the arms
and the legs.

Limbs are kinematic chains composed of two bones: one close to the trunk, which we call here
the anchored bone, and the other one chained to it and attached to the effector joint, called here
intermediate bone.

Linear bones are fully constrained once the length, axis direction, and local right directions are
determined (two orthogonal vectors are enough to fully constrain the three degrees of rotations
from the bone’s orientation, and the root point fixes the three remaining degrees of freedom for
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Ankle
Calibration

Crude Mesh
Calibration

Figure 4.7 – The foot calibration process expects the user to place their fingertips on the edges
of his foot to calibrate the foot’s planar surface in contact with the floor, with a projection

applied (small oranges arrow) to ensure the measured position is on the floor. The user also
places the fingertip on both sides of the malleolus to calibrate the ankle’s joint position.

the bone’s placement) as illustrated in Figure 4.8.

Therefore, the intermediate bone is calibrated by determining the intermediate joint position
(elbow/knee) with its local right.

Based on the methodology from Molla et al. (2017), the user performs gym motion by flexing
arms/legs. At the same time, the relative displacement of the anchored bone tracker is recorded
in the intermediate bone’s referential (Figure 4.9).

Intermediate joint and bone calibration Knowing the topology of the intermediate joint, the
expected shape of the recorded set of point shapes is a circle in a plan. However, knowing the
plan is insufficient to determine which normal side should be used as the local right of the limb’s
kinematic chain.

Therefore, we rely on the knee and the elbow’s articular limit, which prevents the joint’s angle
from exceeding 180 degrees. This means that the average position of the recorded set is necessarily
on one side of the half-plan passing by the tracker position and the joint location as illustrated in
Figure 4.9.

A first approximation of the joint location used in this computation is performed by fitting a
plan from the recorded set of points and then projecting the points on this plan to fit a circle and
compute its center.

The plan’s fitting is performed by extracting the average positions from the dataset constituting
the plan’s origin and removing this computed origin from each dataset point. The two main
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z

x

y

rk

ek

bk

Figure 4.8 – The linear bone bk has a structure containing an origin (rk) and a bone vector
−→
bk

that links the proximal joint to the distal joint ek. Each bone has its referential in which the bone
axis is along the local forward direction −→z . The bone consequently also has a local right (−→x )

and a local up (−→y ). The local right is set as the joint flexion axis (right-sided) for limbs.
Constraining the axis direction and its local right (or up) is enough to constrain its world

orientation fully. Setting the origin’s position fixes the remaining degrees of freedom that fully
constrain the bone’s placement.
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Figure 4.9 – The position of the parent bone’s tracker is recorded on a time window of 150
frames (this allows a sufficient average for measurements of the CoR when the user moves the

limb). It generates a cloud of points illustrated in black, covering the history of the tracker
positions, which is used to retrieve the unique normal corresponding to the joint direction’s local

right. N.B. Unity uses a left-handed referential. Thus, the output of the cross-product is the
opposite of what is expected with a right-handed referential.
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directions of the plan are extracted from the two eigenvectors with the largest eigenvalues of the
product of the transposed matrix of the dataset with itself.

Once the plan is determined, a circular regression retrieves the circle center and radius. A second
pass is applied to remove the contribution from points whose distance is outside two times the
standard deviation in terms of distance toward the center.

However, this method can only retrieve the axis on which the joint is located but not the joint
location itself, as this relies on the radius of the limbs that cannot be inferred from this motion as
only one tracker is placed on the user’s bone, unlike the approach from Molla et al. (2017) where
multiple LEDs are placed around the arm and helps to retrieve the location of the joint.

Therefore, to calibrate more precisely the intermediate joint location and the limb radius si-
multaneously, the user places the fingertip from the other hand on each side of the elbow to
calibrate its position as the average position between both points. The intermediate limb radius is
computed as the average between the measured radius at the effector’s joint (c.f., subsection 4.4.1,
subsection 4.4.2) and the current measure of the limb’s radius at the joint.

Anchor joint and bone calibration The shoulders and hips are joints that provide more degrees
of freedom than the elbows and knees. Thus, rather than having a tracker distribution be a circle,
the distribution can now be extended to a sphere that fully constrains the location of the CoR.

Users, therefore, move their arms, paying attention not to lift the arm above the horizontal
line and not to mobilize the clavicle. The algorithm records the root’s tracker position in the
brachium/thigh trackers’ referential to locate the joint position.

The CoR is computed as the sphere’s center of the recorded dataset using spherical regression.
The radius is the average distance between each recorded point and the computed center. The
second pass excludes points whose distance to the center is larger than two times the standard
deviation, and the same process is reapplied with the filtered input.

This is followed by measuring two points diametrically opposed at the anchor joint to average the
anchored limb’s radius.

4.4.4 Head calibration

The jaw’s surface is calibrated with six calibration points located at the left and right ear, on the
upper lip, at the chin, and on the middle of the left and right side of the jaw, as illustrated in
magenta. The calibration is performed by placing fingertips on the illustrated locations. This
crude mesh is rigidly attached to the HMD’s tracker referential; therefore, it does not consider
when users open their mouths.

71



Chapter 4. Integration of finger and full body animation with self-contact consistency

The crude mesh topology differs slightly from the one from Molla et al. (2017) as the user does
not wear an HMD in their approach; hence, their crude mesh can also cover the rest of the face,
which is impossible here due to the presence of the HMD.

Also, here, we approximated the back of the head as a sphere rather than using the crude mesh;
the sphere was calibrated by placing the fingertips on the skull’s top, right, left, and back (blue
dots on Figure 4.10). Those calibration points are stored locally in the head’s referential: the
HMD. The same fitting procedure is used to fit a sphere passing through those calibration points
to approximate the back of the head surface. Two additional measurements, illustrated in green,
are performed behind the jaw to measure the skull base where the spine is attached to the head.

(a) Front view (b) Right view

Figure 4.10 – Except for the spine, which might contain a different number of joints compared
to the user’s skeleton model, the calibrated avatar contains the same structure as the user’s
skeleton. This means that each surface element has an equivalent in the source user model.

4.4.5 Trunk calibration

With all limb anchors and the head calibrated, we can perform the trunk calibration. When
standing straight up, the sacrum bone width is measured as the distance between both hip joints.
According to Langner et al. (2020), the sacrum height is, on average, 11.4 cm for men (standard
deviation of 1.1 cm) and 10.9 cm, with a standard deviation of 1.0 cm, for women. Therefore,
given the relatively small range of scale of this bone compared to the user’s morphology, the root
of the spine is statically set to be 10cm above the defined origin of the sacrum (the sacrum bone’s
model is constructed in a way that both hips are symmetrically placed from the origin) and 5cm
backward, and its initial rotation along the hips axis is set so that the spine is vertically aligned as
the user stands straight. Then, its position is stored in the back’s tracker referential. Additionally,
the height of the user’s sacrum when standing up is also stored.
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Knowing the location of the spine root on the sacrum bone and the skull’s base joint, we compute
the extended spine distance (used later to compute its flexion) and each vertebra length. Our
model uses a spine composed of 12 vertebras and the clavicular bones are calibrated to link the
5th vertebra to each shoulder.

Finally, the user calibrates the torso shape by placing his hand palm on different key points of the
torso marked as yellow spheres on Figure 4.12a to measure its body shape. Those crude mesh
calibration points are stored in the closest’s vertebra referential so that when the user moves, the
crude mesh can be deformed accordingly.

4.5 Offline avatar pre-calibration

The retargeting pipeline relies on measuring distances toward each surface element and re-
applying those scaled distances onto the targetted avatar. Therefore, the avatar structure must
comply with the one from the user’s skeleton model. Here, the calibration of skeleton bones is
direct through the skeleton’s rig of the avatar; only the local right directions for knees, elbows,
and fingers must be specified to know along which axis joints flex.

The evaluation of the body shape uses the same principle as the user’s body surface calibration,
except those surface measurements are performed using ray cast hit points on the collider mesh
of the avatar, crude mesh calibration points are stored as the position on the avatar’s mesh, and
the number of vertebrae can differ from the user’s skeleton model.

It was observed that the simple mesh representation of a character’s belly in Molla et al. (2017),
which consists of only seven points on the front and three on the back, is not suitable for
accurately representing rounded surfaces, such as an ogre’s large belly. This is because there may
be interpenetration caused by the gap between the spherical surface and the crude mesh surface
that is its chord, as illustrated in Figure 4.11.

To mitigate this issue, we have included four additional points in the center of the crude mesh’s
belly to reduce the distance between the chord and the surface itself (Figure 4.12a). By default,
these points are interpolated from the four corners that are used to define the user’s belly, unless
the user has a large belly that necessitates more refined calibration. These points remain calibrated
manually once for the targeted avatars. Figure 4.12 illustrates a calibrated avatar with the new
topology of the crude mesh and the whole set of surface elements.

This process generates a configuration file that can be stored for each avatar; hence this process
needs to be applied only once per avatar.
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(a) Illustration of the pose with interpenetrations (b) View of the inner structure used to animate the
avatar; the right hand is correctly placed on the

surface of the crude mesh but the latter being
within the belly, the hand is also within the belly

Figure 4.11 – Example demonstrating the problem that can arise when the polygon count in the
crude mesh is too low. In this case, the right hand is positioned correctly on the surface of the

crude mesh, but since the crude mesh represents is a chord of the belly’s rounded shape, the hand
interpenetrates with the belly.

4.6 Online retargeting

Both the user’s dimensions and their current posture are necessary for computing the distances
named egocentric coordinates. Therefore this section describes the animation pipeline used
to animate the user’s skeleton model, followed by the computation of the user’s egocentric
coordinates that are finally iteratively applied to the avatar’s skeleton to animate it.

4.6.1 Skeleton model animation

As for the calibration process, our animation pipeline starts from the effectors and moves toward
the user’s trunk, with the first stage consisting of animating hands and fingers.

Finger motion capture

The inputs from the transformed mocap data combined with the occlusion recovery pipeline
from chapter 2 are used to provide a set of ordered points for the animation of the hand’s model
structure. This is used in both the skeleton reconstruction (to acquire the reference finger poses
of the user) and the reconstruction stage of the avatar’s hands in the retargeting stage.
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(a) Front view with the new crude mesh topology

(b) Top view

Figure 4.12 – Capsule bones are calibrated to represent the user’s limb shape, and finger digits
bones, while the crude mesh represents the shape of the torso, hand and feet, palm surfaces, jaw,

and a sphere approximates the back of the skull’s surface.

With the information retrieved from the hand’s calibration stage, and assuming that the flexion
angle is the same between the intermediate-distal joint and the proximal-intermediate joint
Aristidou (2018), we can compute the flexion angle of each finger based on the distance between
the fingertip and the finger proximal’s joint location that can later be applied on the finger’s
kinematic chain as illustrated in Figure 4.13. The computation firstly computes and caches the
coefficients from Equation 4.1 and then calculates the flexion angle following the steps from
Equation 4.1.

a = 4 · l1 · l3, b =−2 · (l1 + l3), ·l2 c1 = l2
1 + l2

2 + l2
3 −2 · l1 · l3 (4.1)
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c = c1−d2, ∆ = b2−4 ·a · c, x1 =
−b−

√
∆

2 ·a

x̂1 =


−0.9999 if x1 ≤−0.9999

x1 if −0.9999 < x1 < 0.9999
0.9999 if 0.9999≤ x1

α = π− arccos(x̂1)

(4.2)

Before its application, the finger is realigned with the artificial bone linking the wrist to the base
joint, the angle α is constrained not to exceed 90°, and then finally applied to the finger. For the
thumb, the bone linking the wrist to the base joint is rotated along its axis by 45°.

Relaxed distance measured at calibra�on

Measured distance

α

d

α

Effector

posi�on

l1 l2 l3

Figure 4.13 – Flexing finger based on the effector-finger base joint distance. Flexing the finger
is insufficient to enforce the effector’s position to match the finger’s kinematic chain extremity.

A second pass is then applied to enforce the alignment of fingertips with the expected effectors’
positions. The realignment is performed by measuring the pitch and yaw from the expected
effector position in the metacarpal bone’s referential centered on the proximal’s root (Figure 4.14)
As flexion induces pure pitch in the finger’s tip location in the bone attached to the wrist
referential’s (e.g., metacarpal for the index), we already know that the current yaw of the flexed
finger is zero; therefore, only the pitch of the animated finger is computed before computing the
realignment rotation.

The differences in yaw and pitch are then applied to the proximal’s root joint and forwarded
to the rest of the chain (Figure 4.14). To prevent impossible positions, the measured targeted
yaw and pitch from the direction of the expected effector’s position is capped using values from
Aristidou (2018) for the base joints: The yaw is constrained within [−15°;15°] and the pitch
within [−85°;+10°] for the index, middle, ring, and pinky fingers, whereas the yaw is constrained
within [−30°;40°] and the pitch within [−15°;+15°] for the thumb.
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Figure 4.14 – In the realignment process, the algorithm measures the difference in yaw and pitch
between the position of the user’s fingertip and the only flexed finger model. Then, the rotation
required to align the reference axis with the user’s finger is computed as the rotation that rotates

the reference axis by the differences in yaw and pitch. This rotation is then applied to all the
joints of the finger, and the position of the distal end of each digit segment is computed to update

the origin of the next proximal digit side.

Limb animation

During the calibration process, joint locations were recorded in each tracker’s referential; there-
fore, the computation of joint positions is done by expressing calibrated joint positions in world
coordinates. Local directions of the bones’ axis and local right are also stored during the
calibration process allowing for direct placement in the space of each individual limb bone.

However, trackers’ locations are not perfectly rigidly attached to the user’s bone, and some
offsets may occur, leading to structural gaps. Therefore, anchored and intermediate limb bones
(brachium/thigh and forearm/crus) are scaled to ensure a junction of the kinematic chains.

This process is performed by computing the intermediate joint location in both the intermediate
and anchored bones’ trackers and to average the computed position of the joint. As we gave
priority to the effector over the intermediate joints location, the effector position is solely
determined using the effector’s referential and is not averaged with the intermediate’s bone
extremity.
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The anchored bone is then scaled and oriented to align it with its previously computed anchor
position and the newly average intermediate joint position. The intermediate bone is scaled and
aligned to make the junction between the intermediate joint position and the effector’s joint
position.

The realignment is performed while maintaining the local right direction to prevent the twist of
bones. This process is illustrated in Figure 4.15.

Anchor
Joint

Effector
Joint

(a) Initial limb’s structure

Intermediate
Joint

Anchor
Joint

Effector
Joint

(b) Adapted limb’s structure with continuity
enforcement

Figure 4.15 – Illustration of the process of linking bones on a limb

Trunk animation

The last component to animate before animating the trunk is the head. As a simple rigid body
attached to the head tracker (i.e., the HMD), the head animation is a simple placement of a rigid
body in space. This placement determines the skull base corresponding to the spine’s targetted
effector position IK.

At this point, all four limb anchors’ positions are determined, and the root trackers’ positions and
orientation are known as the targeted position of the skull base and its local right.

The animation of the trunk is performed in two passes:

• The first places the sacrum as a rigid body attached to the root’s tracker. To accommodate
the back tracker’s potential lateral displacement compared to the sacrum bone, the sacrum’s
bone lateral rotation is averaged with the lateral direction computed from the hips using
the thigh trackers. The same is also applied to the root position of the sacrum. Once the
sacrum is placed, the approach from Unzueta et al. (2008) is used to animate the spine
flexion as illustrated in Figure 4.16. The spine is then realigned with the targeted effector
position, inducing an unrealistically large joint rotation between the sacrum and the first
vertebra, according to biomechanics Unzueta et al. (2008).

• Therefore, a second pass is applied by rotating the sacrum along its hip flexion axis to
align its up direction with the first vertebra’s direction. This changes the root position of
the spine, hence the distance between the anchor (sacrum) and the effector (skull base);
therefore, a second pass is applied to compute the new flexion and the new realignment of
the spine producing the final position from Figure 4.16.
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Finally, vertebrae are uniformly twisted along their axis to account for the hips-shoulders and
shoulders-head twists.
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Figure 4.16 – The spine animation process comprises a first resolution of the spine using the IK
method from Unzueta et al. (2008), followed by a realignment and a second pass.

Once the spine state is determined, the clavicle bones are computed to link the 5th vertebra (for
our spine model) to the evaluated shoulder anchor positions.

For the later stage of kinematic path normalization, shortcut bones are added, in addition to the
bones used to animate the user’s skeleton (Figure 4.17), to link: The sacrum root to the left and
right hips links the sacrum to the clavicle root and links the clavicle root to the head, similarly to
what was proposed by the normalized skeleton representation from Kulpa et al. (2005). Those
bones have no constraints on the twist, as their contribution is only used to compute kinematic
path normalization, which only considers the bone’s axis vector. Those bones can be easily
spotted in black down to Figure 4.22.

4.6.2 User egocentric coordinates computation

Here, the value of interest is the distance between each target and each body surface element.
Therefore, our approach re-uses the egocentric coordinates from Molla et al. (2017) with the
difference that relative rotations between surfaces and effectors are not computed and are replaced
by having three targets, forming a rigid body Figure 4.26, used to determine the effector’s
orientation as described in §Effector position and orientations.

Notations The body’s coarse surface structure, including fingers, supporting the computation
of egocentric coordinates, consists of 65 surface elements: 26 Triangles (2 per hand and foot, 4
for the face, and 14 for the trunk), 38 Capsules Bones (3 per finger and two per limb), and one
sphere for the head. We note the set of surface elements: (si)i∈S

The structure also comprises 28 target points (p j, Figure 4.18) attached to the skeleton’s structure:
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Figure 4.17 – Illustration, in black, of the shortcut bones used to skip intermediate bones for the
normalization computation process.

three per limb effector (hands and feet), one per intermediate limb joint (elbow, knee), and one
per fingertip. Those targets are uniquely indexed in a set we note T. (p j) j∈T is the notation of
the set of targets.

Unless specified differently, i refers to the surface element index and j to the target point’s index.

Coordinates decomposition A self-contact occurs when the distance between two surface
elements becomes null. Therefore, the relative distance between a surface element and a target
point attached to another surface is one of the most critical components that must be stored.

Rather than using Cartesian coordinates to represent the positions of each point p j, we represent
p j as a sum of the contribution from each surface element si named Egocentric Coordinate. In
such a system, the distances and directions (i.e., vectors) between a point p j and its projection xi

on the surface si are noted −→vi, j and each p j position is computed as in Equation 4.3, which can be
illustrated in Figure 4.18.

∀i ∈ S,∀ j ∈ T, p j = xi, j +
−→vi, j (4.3)

To account for avatars with different sizes (e.g., bones can be longer), xi are represented in a
normalized form, all noted x̂i regardless of the surface element, though, each surface elements
yield a different representation for the normalized form:
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,j

,j

Figure 4.18 – Illustration, adapted from Molla et al. (2017), representing the decomposition of a
point’s position into a surface contact point and a vector.

• xi on triangles are stored as barycentric coordinates

• xi on cylinders are stored as cylindrical coordinates

• xi on the sphere is stored as a spherical coordinate

Furthermore, the contribution of bones on the contributing vector −→vi, j are also considered with the
length of the bones that contribute to the kinematic chain, as detailed later in subsubsection 4.6.2.
This overall contribution of the kinematic chain on −→vi, j is noted τi, j.

Finally, to prioritize self-contacts over global positioning targets in space, each contributing
vector −→vi, j is weighted according to its relevance to a self-contact. For instance, if the contribution
indicates that the target is close to surface elements, its weight would be high, while conversely,
when the contributing vector does not either help reconstruct the pose or when its information is
less relevant than another contributing vector, its weight would be lighter. We note λi, j such a
weight for the importance of the vector −→vi, j in the reprojection process detailed in §Target point
reprojection (The actual implementation embeds different sets of weights, but this relates more
of the low-level implementation than the high-level logic).

Therefore, in the end, for each target point p j, the contributions comprise the following elements
that are illustrated in Figure 4.19:

• The set of normalized surface projection points (x̂i, j)i∈S

• The set of normalized vector contributions from the surface projection (−→vi, j)i∈S.

• The set of normalization factor (τi, j)i∈S that represents the effective displacement induced
by each bone of the kinematic chain linking p j to xi, j
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• The set of the importance of the contribution of −→vi, j denoted (λi, j)i∈S

With such a system of coordinates, the opposite operation to compute the retro-projected target
point p′j is done through the analog equation Equation 4.4 with x′i, j the transposition of x̂i, j on the
avatar’s surface element s′i, and τ ′i, j the normalization factor computed on the avatars’ kinematic
chain.

p′j = ∑
i∈S

(
x′i, j +

−→vi, j ·
τ ′i, j
τi, j

)
·λi, j (4.4)

Computing target’s projections and contributing vectors

For each frame, we must compute all p j egocentric coordinates. The computation thus involves
first projecting p j on each element surface as illustrated in Figure 4.19 to firstly determine a set
of (xi, j)i∈S and (−→vi, j)i∈S.

pj

x2,j

Projection
on a sphere

Projection on a
triangle surface

Projection on
a cylinder

x0,j

v0,j

v1,j

v2,j

x1,j
s1

s0

(xi,j) kinematic chains

s0

Figure 4.19 – In the egocentric coordinate system, each point position p j is decomposed into a
sum of contributions from each element surface si. Those surface elements can either be a sphere

(on the left), a mesh triangle (middle), or a cylinder (on the right). The contribution for each
surface element to the jth target point is denoted −→vi, j (in red) and represents the vector between

p j and the closest projection point of p j on si that is noted xi, j (in green). Finally, a
normalization factor τi, j is computed as the sum of the dot product of each bone’s length and −→vi, j.

When si is a sphere, the projection is directly performed by measuring p j in spherical coordinates
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in the referential of si and setting its radius to the sphere’s radius to measure xi, j, while the same
spherical coordinates already represent x̂i, j the normalized coordinate of xi, j on the sphere (the
radius coordinate is not relevant as it is replaced with the avatar’s sphere radius later on the
projection stage described in the next section).

When si is a cylinder, we measure p j’s cylindrical coordinates in si’s referential and set its radius
to the cylinder’s radius. The axial height (component along the blue axis on Figure 4.19) is
capped to maintain the point on the cylinder surface. xi, j is computed as the retro projection of
this capped cylindrical coordinate in the cylinder’s surface. Its normalized representation x̂i, j is
the cylindrical coordinate whose height is divided by the length of the cylinder so that it is always
between 0 and 1. As for the spherical coordinate, the radius is irrelevant, as it is later overridden
by the avatar’s corresponding radius.

Finally, when si is a crude mesh’s triangle, the point p j is projected on the surface. If the
projection falls outside the surface, it is computed as the closest point on the edge of the triangle.
The normalized coordinates of x̂i, j are then computed as the barycentric coordinate of xi, j in the
triangle si.

In addition to the user’s surface, the distance toward the floor is also considered. Here, only the
contribution from the vertical component h j is retrieved. Hence the projection consists in taking
only the height of p j.

With the set of (xi, j)i∈S computed, (−→vi, j)i∈S is easily computed as the difference −→vi, j = p j− xi, j.
Figure 4.20 illustrates this process of computing the contribution vectors from each surface
element of the user.

Computing contribution weights

For each contribution vector −→vi, j, we defined a contribution weight (λi, j) such that the retro-
projection of the point is performed as Equation 4.4. To compute this relative contribution of
each vector, we first compute a set of raw weights Λi, j that only relies on the surface element and
the target point to be computed. Then, a normalization process described below yields the λi, j.

As detailed in subsection 4.6.3, the animation pipeline is performed through two separate conver-
gence loops, at first the limb level, followed by the finger level (as the finger position requires
the hand’s position to be computed first). To prevent artifacts in the attraction of the limbs due to
the finger’s contribution, two sets of weights are computed; one set with the contribution of the
fingers’ surface elements set to zero (i.e., as if the finger were not integrated), and one set with
the full contribution of all surface elements to address the fingers’ self-contacts.
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Figure 4.20 – Illustration of the set of vector contributions (−→vi, j)i∈S for a single target point p j.
N.B. The thumb wireframe layer overlaps the extremities of the contribution vectors.

Removing trivial contributions Prior to computing the weight of the contributions, we already
know that the hand, for instance, is always located close to the forearm’s extremity. Therefore the
importance of the associated contribution vector should be small, not to erase the contribution
from other vectors in the weights normalization process. Consequently, the weights from the
same limb on which a target point p j is attached are always set to zero, and their associated
computations are skipped in the rest of the pipeline.

Raw contributions weights computation The raw Λi, j weights are computed as:

• 1
‖−→vi, j‖2 for spherical coordinates

• 1
‖−→vi, j‖2 ·

∣∣∣sin
(
∠(−→vi, j,

−→
bi )
)∣∣∣ for cylindrical coordinates with

−→
bi the axis of si cylindrical

referential.

• 1
‖−→vi, j‖2 · cos(∠(−→vi, j,

−→ni )) for crude mesh elements with −→ni the normal of si’s triangle

• 1
h2

j
for the floor’s height contribution.
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Weights contributions normalization Once the raw weights are computed, the process de-
scribed in this paragraph is executed twice: once to generate the sets of weights used for the limb
convergence loop and once for the fingers one, to ensure the stability of the limb convergence
first and then the animation of the fingers. The difference between the two executions is that, for
limbs’ weight computation, the weights associated with fingers’ surface elements are set to zero
and thus skipped.

In both cases, the raw weights Λi, j are normalized into normalized weights (λi, j, with ∑i∈S λi, j = 1)
such that the reprojection yields the target point p′j.

However, the floor contribution presents a singularity: It only contributes to the vertical height
of p′j but not the lateral location on the ground plan. Hence, when a target point is close to the
ground, the weight contribution of the floor λfloor_id, j would tend to 1, erasing all the other
contributions, which are the only ones contributing to the planar lateral position. Ultimately, it
would result in a retro-projected point to the origin of the space rather than just only on the floor,
not to mention the precision issues when dealing with vectors with tiny amplitude to determine a
direction.

Consequently, two sets of weights are actually computed (for both executions): (λi, j)i∈S and(
λgi, j

)
i∈S. The last one (

(
λgi, j

)
i∈S) is computed by normalizing the set of all raw contributions

(i.e., including the one from the ground) while the former ((λi, j)i∈S) skips the contribution of the
ground in its normalization process.

The retro-projection formula of p′j Equation 4.4 is therefore adapted into Equation 4.5 to address
this singularity (with −→e1 , −→e2 and −→e3 the x (right), y (up), and z (front) world axis respectively).



p′j ·−→e1 =

(
∑
i∈S

(
x′i, j +

−→vi, j ·
τ ′i, j
τi, j

)
·λi, j

)
·−→e1

p′j ·−→e2 =

 ∑
i∈S\{floor_id}

(
x′i, j +

−→vi, j ·
τ ′i, j
τi, j

)
·λgi, j +h j ·λgfloor_id, j

 ·−→e1

p′j ·−→e3 =

(
∑
i∈S

(
x′i, j +

−→vi, j ·
τ ′i, j
τi, j

)
·λi, j

)
·−→e3

(4.5)

Kinematic path normalization

In their approach Molla et al. (2017), the authors stressed the importance of normalizing the
contribution vectors based on the kinematic chain to avoid introducing deviations in limb positions.
This can be illustrated in the mismatch of arm pose from Figure 4.21a.

Therefore, each vector contribution−→vi, j must be scaled before the avatar adaptation loop procedure.
Here, the idea is to measure each source bone’s contribution alongside the kinematic chain to
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(a) Retargeting animation without kinematic chain normalization

(b) Retargeting animation with kinematic chain normalization

Figure 4.21 – Illustration of the same pose on different avatars with and without the
normalization enabled. The structure on the left is the modelized user’s skeleton. On top, the

non-normalized animation produces flexions in the characters with long arms (the two avatars
on the right), while for the child, the arm is completely extended, although this was not the case

on the source skeleton. On the bottom, the normalization of effector positions straightens the
arms of the two characters on the right and reduces the extension of the child’s arms.

then scale up (or down) the contribution of the avatar’s bone.

The scaling factor for the source kinematic chain linking the target point p j to its projection xi, j

on the surface element si is noted τi, j. Those chains are pre-computed and stored so that the tree
search is not performed in every frame.

Let
(−→

bk

)
k∈J0,nK

be the list of n bones axis vectors that comprise this kinematic chain, with ri the

root of the surface element si and e j the root of the bone to which the target point is attached. We
have Equation 4.6

τi, j =
n

∑
k=0

−→̂
vi, j ·
−→
bk +
−→̂
vi, j ·
−−−−−→
(xi, j− ri)+

−→̂
vi, j ·
−−−−−→
(p j− e j) (4.6)

This is illustrated in Figure 4.22 where the contribution vector −→vi, j is displayed in red, the
kinematic chain in black, and the extremity segments in blue and cyan. The kinematic path
computation uses the trunk’s simplified kinematic chain to accelerate the process.
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(a) Kinematic chain with the whole skeleton
structure (without the crude mesh)

ri

pj ej

vi,j

xi,j

(b) Kinematic chain only with the surface
reference points and extremity segments

detailed

Figure 4.22 – Illustration of the kinematic chain used to compute the normalization factor τ .
The spine model was simplified to reduce the computational cost.

When the associated lambda for a kinematic chain is null, the computation of the kinematic chain
is skipped, as the associated vector will not contribute to the reprojection stages. An example of
a normalization process enhancing the final result is illustrated in Figure 4.21.

Performance optimization

The heavy computations described in this section must be iterated in each frame and for each
target point p j (Figure 4.20). Therefore, its computational cost is not to be neglected and sums
up into the entire animation pipeline computation time. With the real-time constraints required to
allow the embodiment of an avatar, our observations showed us that this process struggled to be
computed sequentially in C# with Unity Figure 4.23a.

Therefore, before any egocentric coordinate computation is performed, all the pertinent informa-
tion from the structure is computed and placed in cache (e.g., vectors directions, points, bones
rotations, or world up, right, and forward directions).
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(b) CPU Multi threaded
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(c) GPU
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Figure 4.23 – Performance measurements between parallelized (CPU and GPU) and sequential
pipeline processing for egocentric computation. We can observe that the largest time
consumption is drawn by the computation of xi, j, x̂i, j, vi, j and Λi, j. Consequently, we

implemented several pipelines using CPU and GPU parallelization to reduce the latency. Values
measured on a desktop equipped with an Intel Core i7-4790 CPU (4 Cores at 3.6GHz, boosting
at 4GHz) with 8GB of DDR3 RAM and an NVIDIA GeForce GTX 970 GPU with 4GB of DDR5

SDRAM

Here, the computation of the projection and normalized surface elements represents the heaviest
part of the egocentric computation. To address this issue, most of the memory was set to be
allocated once and updated rather than conveniently instantiating and freeing objects in each
frame. Mutexes were added to prevent concurrent access to the same memory blocs when running
in CPU multithreaded mode (Figure 4.23c).

However, those improvements did not produce a sufficient significant difference to be used in
the animation and a final implementation was made using GPU acceleration through Compute
Shaders written in HLSL for DirectX12. Those parallelized pipelines are compared to the
sequential pipeline in Figure 4.23 with measured performance improvement by roughly 200% for
the GPU-based version compared to the CPU-based one.

4.6.3 Avatar posture adaptation loop

The computation of the avatar’s pose from the set of egocentric coordinates is composed of
several stages illustrated in Figure 4.24. The first one places and directly applies the raw angles
captured from the source user’s skeleton model onto the avatar’s structure (further noted "direct
kinematics" in the evaluation section 5).
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Table 4.1 – Performance comparison between parallelized and sequential pipeline processing
for egocentric computation

Measure Mean Elapsed Time (ms) Standard Deviation (ms)
Occlusion Recovery

Pipeline for
both Hands

0.498 0.640

Skeleton Animation 1.089 0.752

Egocentric
Projections

Single-Threaded 10.6 1.428
Multi-Threaded 8.7 1.067

GPU 2.95 0.353

Then, an iteration loop (with a fixed number of iterations, here set to three) is used to animate
the body at the limb level to place and orient the limb effectors (i.e., wrists and ankles). Finally,
a second iteration loop, also fixed in terms of iterations with a value of two, handles the finger
animations to produce the final avatar’s pose.

Avatar
Final Pose

Avatar 3D
Model

AVATAR
POSTURE

ADAPTATION
LOOP

Root Placement
and Orientation

Direct
Kinematic

Animation
Pipeline

SKELETON
MODEL

ANIMATION

Target Points
Retro-projection

Attracting
Limbs

x3

LIMB CONVERGENCE LOOP

EGOCENTRIC
COORDINATES
COMPUTATION

Finger Direct
Kinematic

Target Points
Retro-projection

Attracting
Fingers

x2

FINGER CONVERGENCE LOOP

Figure 4.24 – The posture adaptation pipeline is applied for each frame. It resets the placement
of the avatar and pre-orient limbs using direct kinematic forward. Limbs are then progressively
attracted toward their retro-projected target points (p′j). Fingers are then initialized using direct

kinematics and are also progressively attracted toward their retro-projected target points to
produce the final avatar pose.

Avatar pose initialization

In this process, the root of the avatar’s skeleton is placed at the scaled height of the user’s root.
With hcu the height of the user’s sacrum calibrated when standing up, hac the height of the avatar’s
sacrum when standing up, the location of the avatar’s sacrum is initialized at the height ha as
defined based on the current height of the user’s skeleton hu in Equation 4.7.

ha =
hac

huc

·hc (4.7)

Once the height is adjusted, the avatar’s sacrum is aligned with the user’s sacrum, followed by
the animation of the spine to account for the twist of the source skeleton. Such a design choice
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might lead to the footskate phenomenon; however, this is out of the scope of this research, and
addressing this issue is discussed below in the limitation section.

Once the trunk is placed and animated, the limbs are animated by orienting the anchor bones first
to match the orientation of the source skeleton’s structure. This process then continues toward the
limbs’ extremities with the orientation of intermediates bones and, finally, effectors’ orientation.
The head is also oriented to match the original head orientation.

This constitutes the baseline for the progressive attraction of effectors toward their expected
reprojection location.

Limb animation convergence loop

The progressive attraction of effectors’ positions towards their final position is performed by
iteratively updating the surface elements of the avatar and computing the retro-projection of the
position of the target points from the current pose (§Target point reprojection), computing the
new effectors’ position and their orientation (§Effector position and orientations) before finally
progressively attracting the current effector position toward the new effector position and animate
the limbs to reach the effector position (§Limb inverse kinematic).

Target point reprojection Based on the current avatar pose, the calibrated surface elements
are updated to match the avatar’s skeleton structure. This corresponds to the source location
and orientation for the capsule bone and the sphere from the current avatar’s skeleton. For the
crude mesh, this corresponds to updating its vertices from the location of the avatar’s mesh
corresponding vertices (i.e., the avatar’s crude mesh is attached to the avatar’s skin and not to an
internal model of the spine, although the avatar’s skin is rigged to the spine).

Once the surface elements are placed, the formula from Equation 4.5 is applied to determine the
set of reprojected target points

(
p′j
)

j∈T
onto the avatar as illustrated for a single p′j in Figure 4.25.

However, to compute p′j, Equation 4.5 expects all τ ′i, j to be known. In the Equation 4.6 the

last term to compute τi, j is
−→̂
vi, j ·
−−−−−→
(p j− e j). However, p′j is unknown at the first pass during the

retro-projection stage; hence, the computation cannot be performed.

Therefore the actual computation of all τi, j is performed in parallel with the computations of a
set of

(
τeli, j

)
(i, j)∈S×T using the formula from Equation 4.6 but without the final term, i.e., the

effectors’ kinematic chain normalization, computed from Equation 4.8.

τeli, j =
n

∑
k=0

−→̂
vi, j ·
−→
bk +
−→̂
vi, j ·
−−−−−→
(xi, j− ri) (4.8)
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To be noted, individual dot products are also stored not to recompute those intermediates several
times.

This alternate computation is only used on the first pass. After that, the p′j from the previous
frame is known and fed to the original equation with the effector’s term Equation 4.6.
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(a) Raw angle application from the source skeleton onto the avatar

(b) Contribution vectors applied onto the avatar surface elements with the computed target point p′j
illustrated with the red sphere.

(c) Attraction process illustrated for the first of the three limb passes. In red, the retro-projected target
point p′j, in blue, the source position a j before the attraction, and in blue, the same target point a j after

the attraction.

(d) Attraction process after the three passes and two passes for limb and limbs retargeting convergence
loops.

Figure 4.25 – Illustration of the computation of the contribution vectors and their normalized
re-application on the destination avatar to compute the avatar’s position.
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Once the complete set of target points
(

p′j
)

j∈T
is computed, each current target point (a j) j∈T is

progressively attracted towards its reprojection, in proportion to the pass number over the total
number of passes (set to three), following Equation 4.9 with w the ratio factor current iteration

total iterations count .

a j← (1−w) ·a j +w · p′j (4.9)

Effector position and orientations Once the complete set of target points for the avatar (a j) j∈T
is computed, the effectors’ positions (i.e., wrist and ankles) are then extracted from the rigid body
composed of the three reprojected target points from the hand’s palms or the feet illustrated in
Figure 4.26.

Calibrated
Crude Mesh

Hands Targets
Referential

Figure 4.26 – Three target points are assigned to each effector used as a rigid body referential
that allows the expression of the wrist location in this referential and to measure a rotation.

Unlike Molla et al. (2017), when the effector position is far from any surface, the effector’s
orientation is directly sourced from the raw user’s skeleton model to help at respecting the
semantic meaning of the pose. When the effector gets closer to a surface element, using the raw
orientation may induce interpenetrations if a close surface is present nearby with, for instance, a
different orientation than the source surface.

For this reason, the avatar effector orientation is computed as the average between the user
effector orientation and the one defined by the three retro-projected target points. The ratio
selection uses the maximum weight of the lambdas computed in section 4.6.2, and the rotation
average is performed using the method from Markley et al. (2007), with the selection ratio varying
from 0 (the effector orientation is the user’s skeleton effector orientation) to 1 (the orientation
is entirely defined by the three retro-projected attracted target points). The value chosen for
this selection ratio is max

(
(λi, j)(i, j)∈S×{a,b,c}

)
, with (a,b,c) ∈ T3 the indexes of the three target

points attached to the effector, as λi, j represents the importance of the link, and subsequently,
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relates also the importance of the contribution vector to the orientation.

Limb inverse kinematic To finish the limb’s animation, an analytical IK is used with the newly
computed location of the retargeted effector and intermediate joint position. This is applied to
produce the animation of the four avatar’s limbs.

The IK works as follow: Knowing each bone’s length (l1 and l2), this information is combined
with the measurement of the distance effector base joint (d) to retrieve the intermediate flexion
angle α (Figure 4.27a) using the formulas Equation 4.10 and Equation 4.11.

cosα = l2
1 + l2

2 −
d2

2 · l1 · l2
(4.10)

α =


π if cosα ≥ 1
0 if cosα ≤−1

π− arccos(cosα) otherwise
(4.11)

Once the flexion angle is computed, it is applied to the intermediate joint as a rotation along its
right (conversely left for the legs) axis to produce the flexion. The second stage then aligns the
produced effector position with the expected one.

At that stage, the swivel angle along the root-effector axis remains to be determined (Figure 4.27b);
logically, one expects to infer it from the location of the reprojected intermediate joint target
point. However, this approach becomes unstable the closer the retro-projected intermediate joint
is to the root-effector axis, as three aligned points cannot constrain a plan.

Therefore, the swivel angle is adjusted using an interpolation between the source skeleton model
limb swivel angle (used for unstable cases) and the angle to align the limb intermediate joint in
the half-plane determined by the reprojected intermediate joint position (used when its distance
to the swivel axis is sufficient to avoid instabilities). The alignment swivel angle δ is computed
using Equation 4.12 and Equation 4.13 with r the radial distance of the reprojected intermediate
joint’s target point onto the root-effector axis (Figure 4.27b).

t =


0 if r ≤ 0.05

(r−0.05) ·10 if 0.05 < r < 0.15
1 if 0.15≤ r

(4.12)

δ = t ·β +(1− t) · γ (4.13)

Finally, the angle δ is applied through a rotation along the effector axis to end the process.
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Figure 4.27 – The process computes limb flexion followed by limb realignment. Once the flexion
is determined and the realignment applied, the twist is adjusted. For a large eccentricity of the

intermediate joint reprojected position from the anchor effector axis, the swivel angle is
determined by the radial direction of the retro-projected joint (not necessarily on the same disc
as the current bone’s right). Conversely, when the retro projection of the intermediate joint is

close to the effector anchor axis, the swivel retained is the one from the source skeleton to avoid
instabilities in the animation. In between, a linear interpolation is performed.

Finger animation convergence loop

The finger animation pipeline is mainly similar to the one for the user’s skeleton animation
subsection 4.6.1; to the difference that this pipeline also uses inputs from the user’s skeleton’s
hand model. Each finger possesses its animation pipeline composed of an inverse kinematic
with the flexion determined by the effector base joint distance and a realignment based on the
yaw-pitch of the target point’s position (p j).

As for the effector orientation, the avatar finger animation is either sourced from the raw user’s
skeleton hand animation or computed based on the avatar’s fingers’ IK fed with the retro-projected
fingertips input.

The value chosen for this selection ratio is max
(
(λi, j) j∈S

)
for j the fingertip’s target’s index.

Rule chosen for the same reason as for the effector orientation, which is that high λi, j highlights
an essential contribution to the pose to reconstruct.

This finalizes the pose reconstruction of the avatars. Figure 4.28 presents some of the results
obtained from a different set of poses involving self-contacts and shows the results alongside those
obtained using forward kinematics. In this figure, the source model from the user is illustrated
through its surface elements.
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Figure 4.28 – This figure shows a set of poses in pairs of two rows, with the upper row
representing animations using forward kinematics and the lower row (the one with the source

user skeleton model on the left) representing the retargeted animations.
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4.7 Discussion and future works

Instabilities One of the primary issues observed in the animation pipeline is the instability of
the resulting animation. The instability in the animation sequence is due to the fact that each
frame is generated independently of the previous one and only relies on the transformed input
from the MoCap systems. This is compounded by the fact that target points are the result of an
iterative process (the retro-projection of target points followed by the application of IKs), which
can amplify even a small change in the input at each sub-iteration. In the end, this produces
a result lacking continuity with the previous frame, hence resulting in the unstable character’s
motion and noticeable jitters in the animation sequence.

To address this continuity issue, the inputs from the MoCap could be filtered using approaches
to avoid a jitter propagation across the whole pipeline. Low-pass filtering could also be applied
to each iteration of retro-projected target points to enforce the animation’s stability. However,
using a low-pass filter would inherently introduce a slight delay in the animation but still might
improve the user experience.

Limiting the displacement of each retro-projected target point in regard to the source target’s
motion would be another possible option to damp potential instabilities. This would keep static
points on the source avatar static on the retargeted character and limit jitter to a small amount
of inter frames variations. This technique could also be valuable for addressing the second and
common issue observed in the avatar animation, which is the phenomenon of "Footskate".

Footskate This issue refers to the problem of feet sliding or floating unnaturally across the
ground during movements rather than making proper contact with the ground (Glardon et al.,
2006), hence negatively impacting the realism and believability of character movements. In our
current approach, only the vertical height of the feet is constrained; therefore, nothing prevents
the characters’ feet from sliding on the floor surface.

The solution proposed in Lyard and Magnenat-Thalmann (2007); Mourot et al. (2022a) to increase
the overall naturalness of the pose is to permit an offset to exist between the user and the avatar
location, a difference that could go unnoticed if the gain in displacement remains reasonable
(Steinicke et al., 2010).

Crude mesh resolution Another limitation of the current approach is the small density of the
crude mesh used to animate the avatar. Even after increasing the density of the crude mesh
on the lower belly, we observed that the surface area of the belly still exhibited some slight
inter-penetrations. Addressing the remaining small gaps between approximated surfaces and
the actual surface could involve another topology that could switch surface elements based on
specific needs, such as using triangular-based elements for flat surfaces and spheres for rounded
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Figure 4.29 – Example demonstrating a missed ground contact due to the target point for the
right ankle being out of reach.

surfaces. A mapping between these surfaces would also need to be established. For example, a
user with a flat belly could have a triangular surface approximation, while the avatar could have a
spherical belly approximation when having a large one. In this case, the triangular coordinates
from the source character would need to be mapped to spherical coordinates before being applied
to the avatar. To optimize this process, a partial pre-computation of the mapping could be done to
assign triangles to spherical subsections and vice versa.

Another possible solution to address this issue is to implement an iterative sub-division of the
defined triangles to better approximate the surface of interest from avatars or users. For instance,
the current representation of the upper chest of avatars only uses a single point which might not
be sufficient to represent prominent upper chests. This sub-division could be done iteratively
until a desired level of accuracy is achieved while also considering computational efficiency.

Kinematic path normalization and movement correlations It was observed that the legs’
target points could be drawn to the sides during large arm movements when the user’s legs
remained stationary or that the target points for legs could become unreachable during extended
leg movements, causing the loss of self-contact consistency with the floor Figure 4.29.

To address this limitation, a more conservative approach comparing the limb extension of
the source and targeted characters could be adopted. It would balance the priority between
maintaining self-contact consistency in near-contact situations and preserving the overall semantic
correspondence otherwise.

Setup and calibration Equipping a user and performing the calibration requires around 20
minutes despite the semi-automated process. However, this process could be greatly improved
by calibrating the user using computer vision to infer joint locations and body surface elements
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during a single (or a few) static pose(s). Furthermore, four of the trackers used in the tracking
setup (those placed on forearms and lower legs) provide redundant information that could be
removed to lighten the setup for the users.

4.8 Conclusion

In summary, we proposed an animation method, extending the work from Molla et al. (2017), tak-
ing advantage of human tolerance to motion discrepancies to address the issue of interpenetrations
in the animation of an avatar now with both body and finger levels. With pre-calibrated avatars,
our approach only requires retrieving the user’s skeleton structure and body shape through a
calibration process. Once the user’s model is calibrated, the posture is stored in a normalized
form of joint angles and normalized relative vectors between target points and the body surface.
This normalized form is then used to iteratively attract the avatar’s posture toward the applied
normalized posture on the avatar’s structure at the limb level to provide a posture that respects
self-contact consistency at the body level, followed by a second iteration loop dealing with the
convergence of fingers pose. Finally, this method’s observed drawbacks were discussed, and we
proposed solutions to address those issues in future work.
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5 Subjective evaluation of the full body
animation

Our movements convey semantics and meanings that are easily perceived by others. Failing to
remap the user’s movement onto the avatar might lead to failure at the interaction and convey the
wrong semantics to the other. In particular, it was shown that the self contact consistency was an
important factor in producing a convincing avatar animation (Bovet et al., 2018; Basset et al.,
2022). In immersive VR, the small field of view combined with the opacity of the virtual body
limits our ability to observe all of the movement of the virtual avatar, hence allowing mismatches
to occur while remaining invisible to the user wearing the HMD.

Therefore, it is essential to know whether our approach provides a plausible animation that
conveys the correct intended semantics. Consequently, we compared it to direct kinematics (i.e.,
where the avatars’ joint angles are directly sourced from the source model) through a subjective
evaluation using the third PV (Person Viewpoint). This evaluation consisted of showing three
videos to naive observers: one showing a recorded source pose through a camera and two recorded
videos using each approach with a similar viewpoint, and then asking the participants to evaluate
both animations. This setup was similar to the one proposed by Molla et al. (2017) and maximized
the overall view of the virtual body, hence the ability for participants to spot inconsistencies in
the animations.

5.1 Video dataset

To construct the database used in the comparison, we asked two persons to be equipped with the
tracking system, to perform their body calibration, and then to be recorded while performing
movements to reach predefined poses. Those poses were chosen to carry semantics (e.g., placing
the finger in front of the mouth, placing the hand near the ear, placing the hand in front of the
mouth to express surprise Figure 5.1a), poses with self-contacts (e.g., both hands touching each
other, hand foot contact Figure 5.1b), or poses with contacts with the floor (e.g., crouching with
one hand on the floor Figure 5.1c).

The two persons recorded were a man and a woman, on the thinner side of what can be considered
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(a) Shussing pose (b) Hand-foot contact (c) Floor contact

Figure 5.1 – Example of semantic poses conveying different types of interactions

regularly shaped, and the list of the recorded poses is illustrated in Table 5.1.

With the recorded samples, we applied the recorded MoCap using both methods on four avatars: a
tall male, a woman, a small child, and an ogre with a large belly (Figure 2.2). All of the animations
were recorded simultaneously at a lower capped framerate to avoid timestamps mismatches in the
processing of extracting video segments later displayed in a randomized order to the participants.
Then, those segments were sliced into separate video streams for each avatar with each animation
method and then cut at the manually annotated timestamps placed at the beginning and end of
each movement. Each of the movements is then presented four times to the participant, not
necessarily in consecutive order, each time with a different avatar, hence producing a total of 152
individual motion clips. In addition to the recorded animations, the real movements of the user
were recorded using a camera and sliced together with the generated animations to produce the
corresponding reference video.

The animation was rendered using an orthographic projection. Due to the physical dimension of
the room, using a telelens to approximate an orthographic view was not possible. Therefore, we
framed the view of the camera so that the viewing direction is the same and that, when placed
in the center, the participant would cover most of the captured zone, with a bit of padding to
accommodate for displacements.

5.2 Subjective evaluation procedure

Before participating in this study, participants were informed about the task of the study and
were asked to give their written informed consent and filled out an anonymous demographic
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Table 5.1 – Illustration of the targeted poses used for the evaluation
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questionnaire. Participants were then placed in front of a large monitor (to enlarge the videos), the
room was then set in the dark to remove potential reflections or distracting elements to provide the
best viewing conditions, and an interface was presented to the participants, explaining that two
animation motion clips are presented side-by-side and that the participants’ role would consist
of "Carefully analyzing each animated motion clip and decide with the sliders how faithfully it
replicates the performed pose and action in the provided video clip" (Figure 5.2).

Figure 5.2 – The participants were seated comfortably in front of a large screen that displayed
the videos. They were given the option to take breaks, and to avoid any potential issues with light

reflections, the room lights were turned off (unlike what is depicted in the picture).

The retargeted clip and the non-retargeted one were randomly swapped, and the continuous
sliders were used to collect the evaluation scores. Participants could also replay the clips as many
times as required to ensure they could consider every detail from the clips.

The interface used a regular desktop mouse placed on a low table for more convenience. Partic-
ipants were finally told that they could ask questions during the experiment, such as querying
the experimenter for the number of remaining clips or if they had any questions related to the
experiment.

Once the experiment started, the clips were presented in a pseudo-randomized order (each pair
of motions and avatar was only presented once) and the scores were recorded (with their time
stamps) to constitute the analysis dataset for comparing the two approaches.
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Figure 5.3 – Screenshot of the displayed interface to the user on the full right: the original
action performed by a person, on the two middle and right: the animated avatar using either the
approach with the retargeting pipeline enabled or with only raw angles provided by the user’s

skeleton input. The order between the two animation methods is randomized, hence unknown to
the participant. Two continuous sliders are displayed below the videos to allow participants for
individual video evaluations. Finally, the participant can replay the videos as much as they want

and validate their choice using buttons from the interface.

At the end of the experiment, we asked participants to report which criteria they used, by order
of priority, to evaluate the proposed motion clips and received their overall feedback from the
experiment. Ultimately, participants collected their financial compensation for their time of
CHF20/h and were offered a small snack.
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5.3 Analysis

The analysis was conducted using . To verify the presence of an effect linked to the animation
method factor, we performed a pair-wised comparison between both samples drawn from the
retargeted approach and the direct kinematic one. The analysis pipeline was performed on both
the full dataset as a whole and on targeted avatar subsets. The test used for the comparison
was the parametric pair-wised two-sample, two-sided Student’s t-Test, which evaluates the null
hypothesis of the equality of the two means of the samples. Therefore, before applying the test,
we verified the required hypothesis for this test to be performed. We first verified that each
sample was normally distributed using the Shapiro tests, hence allowing parametric methods to be
used, and assessed the homogeneity of the variances through the parametric Hartley’s Maximum
F-Ratio test. Finally, a test on the direction of the difference was performed in post-hoc using the
one-sided version of the t-test, and the effect sizes were measured using Cohen’s D.

5.4 Results

Demographics In total, 20 participants (15 women), aged between 20 and 30 years old (average:
21.7, std: 2.43), participated in this study. Those participants were mostly not used to playing
video games (75% reported never or rarely playing action video games). Participants often
practiced sports such as dance and were in the large majority (17 out of 20) right-handed. On
average, the experiment took one hour to be completed.

Evaluation scores The results from the Shapiro tests, presented in Table 5.2, indicate that all
samples were normally distributed, allowing parametric tests to be performed.

Table 5.2 – p-Values for Shapiro tests on evaluations scores; we can observe that all data were
normally distributed

Condition All Ogre Child Men Woman
Direct Kinematic 2.90 ·10−25 3.82 ·10−12 2.05 ·10−12 8.13 ·10−11 4.90 ·10−12

Retargeting 1.20 ·10−28 3.56 ·10−11 1.03 ·10−15 4.97 ·10−13 1.15 ·10−14

The homogeneity test did not reveal any significant difference in the variance distribution across
the different paired samples between the retargeted approach and the direct kinematic animation.
Therefore t-test comparisons were performed, and the effect sizes were measured using Cohen’s
D formula. Due to the observed significant differences, the post-hoc analysis was conducted.
All of the test values and effect size measurements are reported in Table 5.3 and illustrated in
Figure 5.4.

Here, we can observe that, among all situations, the score given by the participants were on
the upper side of the range and, in all situations except the ground interaction, the scores for
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Table 5.3 – Test and measure results for the scores of the evaluations between the Direct
Kinematic and the Retargeting evaluation scores

Test / Measure All Ogre Child Man Woman Semantics Self-Contact Ground

Hartley’s
maximum F-ratio 0.92 1.00 1.00 1.00 1.00 1.00 0.99 1.00

t-Test
(two-sided) 2.98 ·10−25 1.30 ·10−12 3.73 ·10−11 1.01 ·10−2 1.75 ·10−6 < 2.2 ·10−16 < 2.2 ·10−16 2.28 ·10−11

t-Test
(greater) 1.49 ·10−25 6.50 ·10−12 1.87 ·10−11 5.07 ·10−3 8.75 ·10−7 < 2.2 ·10−16 < 2.2 ·10−16 1.00

Cohen’s D 0.27 0.37 0.34 0.13 0.25 0.38 0.31 0.63

Figure 5.4 – Normalized boxplots of the participants’ evaluation scores.

the approach with the retargeting enabled were higher for all the postures and across all of the
destination avatars.

In addition to the measured data, the collected participants’ spontaneous feedback highlighted the
role of instabilities in some of the animations, and only nine participants, out of the twenty who
participated in this study, placed the interpenetration as their first concern when evaluating the
animation, while the rest were more focused on the fluidity of the movement, and on the overall
posture semantic associated with the pose.
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5.5 Discussion

The subjective evaluation showed that, except for the ground interaction, our retargeting approach
was significantly preferred over the direct kinematic animation pipeline. Consequently, and
despite the small effect size, given the limitations of our approach in terms of smoothness, we
can expect the observed preference towards our retargeted approach to be driven by the ability of
the system to maintain the self-contact consistency known to be a critical point for the animation
of a 3D character Bovet et al. (2018); Basset et al. (2022).

Additionally, we can notice a link between the measured effect size (Table 5.3) and the discrepancy
between the performer and the avatar’s body: when both the avatar and the user share more or
less the same morphology and proportions, the contribution of the retargeting might become less
relevant (small effect size for the man and the woman avatars), and those conditions can therefore
act as a kind of control condition. However, even in this case, the retargeted approach was
preferred over the direct kinematic one, hence suggesting that simply relying on direct kinematic
animation may not be adequate, despite the similarity between the avatar and the user. Conversely,
when the avatar’s body differed more (for the child or the ogre), the observed effect size was
higher.

Finally, this study addresses the evaluation of the animations using a third PV to provide par-
ticipants with the maximum amount of details on the animation. However, when provided
with an avatar from the first PV, one might have more trouble seeing all of their limbs, hence
reducing the risk of being bothered by some error in the animation if those are not visible, in
particular, if the HMD (Head-Mounted Display) provides only a small field of view. Hence, this
might further stress the importance of hand interactions and dim the concern about the overall
body posture representation reinforcing the observed trend, especially considering the expected
stronger multisensory integration of tactile sensation with visual feedback.

5.6 Conclusion

To summarize, we conducted a subjective assessment to compare our retargeting method with
direct kinematics in generating believable avatar animations based on the movements of the source
character. Participants were asked to evaluate motion clips produced using both approaches,
and we performed a statistical analysis of the gathered scores. The results revealed that our
approach significantly enhanced the perceived overall quality of the animations compared to
direct forward kinematics. The participant feedback emphasized the role of smoothness in the
animation, which was not sufficiently addressed in our approach, hence providing an opportunity
for improvement. Ultimately, this user evaluation sets the stage for conducting an immersive first
PV user evaluation in the future.
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VR (Virtual Reality) is a real-time simulation that creates the subjective illusion of a virtual world
for the user. Failing at integrating a plausible virtual body responding to the users’ moves comes
at the cost of diminishing the user experience Slater et al. (2022). Tracking technologies are, of
this day, imperfect and cannot accurately transcribe users’ motions, especially for fingers. As a
consequence, one of the standard ways to track users’ movements is through the use of controllers,
which, given their large size, can embed more sensors and be less subject to occlusions. However,
most of the controllers do not track finger movements and, consequently, can only propose
metaphoric finger animations. For those controllers equipped with proximity sensors (e.g., Valve
(2019)), being held in hands inherently diminishes the allowed range of finger movements.
Furthermore, controllers cannot be used in all situations. For instance, when a training requires
tangible interactions with objects to correctly train the trainee (e.g., CPR (Cardiopulmonary
Resuscitation) in VR Delahaye et al. (2021)), having a controller at hand can induce collisions or
prevent the movement to be performed. Therefore, in this thesis, we first addressed this limitation
by providing users with a hand and finger tracking solution that is real-time compliant.

6.1 Finger animation and user perception

Optical active tracking systems provide millimeter precision of markers’ positions in the 3D
space and have low latency Tian et al. (2015), making those solutions particularly suited to track
fine levels of motions, such as fingers’ one. However, markers might suffer from occlusions,
making them impractical in a situation where they can easily be hidden, like on fingertips. This
issue finds a solution in our approach where we rely on the predictability of finger poses to
train a neural network (autoencoder) to recover the markers’ positions due to occlusions. This
training was performed using a ground truth system composed of the combination of IMU
(Inertial Measurement Unit) placed on the tracking glove equipped with the optical tracking
LEDs (IMU (Inertial Measurement Unit)s provided positions during occlusions and the optical
system corrected the drift when there were no occlusions). In addition, some random occlusions
were added to the training to reinforce the system for handling occlusions. In parallel, a second
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autoencoder was used to provide an IK (Inverse Kinematic) solution to animate hand fingers.

Our observations show that the neural networks autoencoder could handle reasonable changes in
hand morphology for handling occlusions. The approach yielded convincing recoveries in the
occlusions up to one or two markers occluded simultaneously for up to a second of continuous
occlusion. However, we observed that the animation could still produce artifact poses with
fingers pointing toward implausible positions. Consequently, we later replaced the second stage
of the finger animation pipeline, which plays the role of IKs for finger, with an analytical
solution described in subsection 4.6.1. This analytical solution considers the biomechanical
constraints of the hands to prevent unnatural hand postures from being generated. Concerning
the occlusion recovery pipeline, its autoencoder’s overall topology could be adapted to extend
the input with binary inputs representing the occlusion state of the markers rather than replacing
occluded markers’ positions with zeros. This would likely help the neural network better learn
the semantics of the meaning of occlusions and therefore address those in a better way. Long
short-term memory and gated recurrent unit topologies could also be investigated in parallel
to take advantage of the history of the marker position to predict its next state when occluded;
however, a more extensive sample set might be required to cover motion directions in addition to
the simple poses.

On the other side, we also know that humans are relatively poor at locating limbs using only
proprioception (Burns and Brooks, 2006). Furthermore, at the finger level, the work from Logan
et al. Logan and Crump (2010) showed that, in conditions of word typing with a keyboard, one
could experience the illusory authorship for the correction of typos made by the machine, but
also, in a smaller measure for the introduced ones. This was observed with no visual alteration of
the participants’ fingers as the task was performed without VR on a regular keyboard. This higher
tolerance in distortion helping user was also observed when combined with visually introduced
movement distortions at the limb level in immersive VR Galvan Debarba et al. (2018); Porssut
et al. (2021). Also, with the introduction of a live modulation of the visual feedback, this time
at the finger level and using a non-immersive VR setup, Salomon et al. Salomon et al. (2016)
showed that visual judgments were not affected by the introduction of swaps, but conversely, that
participants were getting confused at saying which finger they actually moved when a swap was
introduced.

Therefore, with the new possibilities offered by our finger animation pipeline, we investigated
with an immersive VR setup whether users could tolerate an extremely distinct distortion: finger
swaps. Assuming that if users can accommodate finger swaps, they could also accommodate
two finger motion alterations at once, hence also a simple motion alteration. To also observe the
effect of going in the direction or against the goal of the participant, our experimental protocol
involved a game task to be performed with fingers (validating virtual buttons sliding over virtual
lanes by lifting the fingers), a manipulation (the machine pseudo-randomly introduced finger
swap to help or penalize the participant), and an experimental task (participants had to press a
pedal each time they noticed a finger swap was introduced).
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The observed results showed that participants could easily take credit for both types of finger
swaps, especially when those help participants with the game task, where participants reported
significantly less accuracy at noticing the introduced finger swaps. Unsurprisingly, the lower
odds of perceiving the swaps compared to the reduced, but still high, accuracy at identifying the
finger moved in Salomon et al. (2016) could be explained by the fact that users were no longer
only focusing on a simple task but also actually playing a game, making the detection task even
harder. Through the acceptance of the visually impaired feedback of the wrong finger movements,
the results from Logan and Crump (2010) were replicated as the authorship of the action differed
in the same direction when the swap helped or penalized the participant at achieving the task.
Similarly, the lower swap detection scores compared to the scores from Logan and Crump (2010)
could be due to the added incongruent visual feedback matching the expected output, making the
task harder to notice finger swaps.

Overall, this study allowed us to extend the characterization of the SoE at the finger level. We
observed that the tolerance to motion distortions gains, especially when it helps, for arm/leg
reaching tasks (Galvan Debarba et al., 2018; Porssut et al., 2021) worked in a similar way for
finger swaps, where helping the participant is more accepted than penalizing him. However,
unlike the experiment performed in those studies for leg/arm-reaching movements, here, the
nature of the distortion was a finger swap. Although we cannot compare the swapping of a limb
movement with its opposite to the swapping of two fingers on the same hand, it is interesting
to observe how different these distortions impact the embodiment. For the former, Boban et al.
(2023b) observed that limb swaps in the animation would drastically diminish the scores of
embodiment, while in our study, those finger swaps were bearly even noticed.

Finally, in this study, participants were primed to recognize the manipulation of finger movements.
However, as this was shown in Burns and Brooks (2006), priming participants at noticing motion
discrepancy makes them better at detecting those. Therefore, we can make the assumption that
the observed tolerance to finger swaps would be even higher if participants were not instructed
and trained to observe and notice those, hence providing guidelines to avoid disrupting the SoE
when animating avatar fingers.

6.2 Full body animation down to the finger level

The learned mechanisms of the cognitive functioning of the SoE at the finger levels for finger
swaps, combined with the recent knowledge from the literature on arm/leg reaching movements
(Galvan Debarba et al., 2018; Porssut et al., 2021) constitute a set of guidelines to be followed
if one wants to introduce distortions without having the used rejecting the animated body.
Consequently, on the one hand, we can introduce distortions in the displayed movements to adjust
the movements of a virtual body to better suit the user morphology, but on the other hand, we
know that users are quite sensitive to self-contact consistency, both for first (Bovet et al., 2018)
and third (Basset et al., 2022) PV (Person Viewpoint), making those points crucial to produce a
convincing animation. Therefore, providing an avatar to the user in the VE (Virtual Environment),
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regardless of their morphologies, must prioritize the self-contact constraints first, especially for
effectors such as hands (Basset et al., 2022), and could consequently be more tolerant on the rest
of the limb’s position to accommodate this essential constraint. Such an approach was designed at
the body level to address those constraints through the work from Molla et al. Molla et al. (2017).
Here, the authors relied on an active optical MoCap system (to acquire the user’s movements), a
user’s body calibration procedure (to construct a numerical model of the user’s morphology), and
an animation pipeline to transfer the original motion from the user onto an avatar with different
shapes and sizes in real-time. However, this approach did not cover the integration of the finger
for the avatar.

This issue is addressed in the integration of our finger animation pipeline described in chapter 2
that extends the original approach from Molla et al. (2017). Technical switch from the original
MoCap system to a consumer-grade solution implied some redesigns of the pipeline to adapt to
the technology used and to take advantage of redundant information to enhance the reliability
of the tracking. In this process, the topology of the calibrated user’s morphology was also
adapted to fit more precisely avatars with large bellies as it was observed that the initial topology
couldn’t handle such large cases. Finally, and more importantly, larger changes were at stake
when addressing the integration of the finger-level animation on the avatar’s body: The original
animation pipeline did not account for finger in the model calibration, nor in the animation
pipeline. Consequently, a fine-level calibration was implemented to calibrate the hand’s surfaces,
fingers’ radius, lengths, or root joint locations. On the animation side, the original animation
process, performed through a single pose convergence loop for the limbs’ movements, was
extended with a second loop addressing the fingers’ animations using the finger animation
pipeline described earlier.

The proposed technique was then assessed in a subjective evaluation comparing its output to
the output obtained using just the direct forward kinematic method (i.e., where the avatars’
joint angles are directly sourced from the source model). The evaluation was performed with
participants evaluating pre-recorded videos of animation clips generated using both approaches,
with the recorded camera video displayed as a reference. The viewpoint was set at the third PV
to maximize the overall view of the virtual body, hence maximizing the ability for participants to
spot inconsistencies in the animations. The results showed that the retargeted approach yielded
significantly better scores than the approach using only direct kinematics, hence confirming
previous results from the literature. However, the measured effect size was not as large as initially
expected, indicating that improvements could be adapted to our method. Nevertheless, the results
highlighted the necessity of adapting the motion, even if the avatar and the user look similar.

Among the improvements that can be applied to the method, it was first observed that the
retargeted approach could induce some jitter in the animation, diminishing the fluidity of the
motion. Indeed, the current pipeline generates each frame only using the sole (filtered and
transformed) MoCap positions from the current frame without considering the previous frames.
One efficient way to ensure smooth temporal consistency is to use low-pass filters in the animation
convergence loops. Low-pass filters inherently induce latency, but this might be negligible
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compared to the benefits of a smooth animation. A second method to reduce the jitter could limit
the avatar’s limbs and finger movements based on the user’s one (with a scaling to accommodate
limb length differences). Consequently, if the user is standing still, the avatar would be constrained
to remain also still regardless of the output of the retargeting approach. This technique could also
be highly valuable for addressing another common issue in avatar animation: the phenomenon of
"Footskate".

This is observed when characters’ feet slide on the ground during movements where they were
supposed to remain grounded (Glardon et al., 2006). In our approach, only the vertical height of
the targeted feet position is constrained, subjecting our approach to this issue. Several approaches
Lyard and Magnenat-Thalmann (2007); Mourot et al. (2022a) investigated this issue and proposed
solutions to mitigate this effect. However, enforcing a foot’s position on the ground implies
that the pelvis is no longer the root of the character animation; hence the user and the avatar
might move in the 3D space at different speeds. To our advantage, it was shown that we could
tolerate gain in our displacement, especially when it helps to go faster, provided that those remain
reasonable (Steinicke et al., 2010) hence allowing those methods to be investigated in future
works.

On the self-interaction size, despite having increased the density of the crude mesh on the lower
belly, we could still observe some areas of the belly exhibiting slight inter-penetrations. This
issue comes from the approximation of rounded surfaces using small triangles; maintaining a
small maximum distance between the discretized surface and the original one might require a
lot of triangles. As the pipeline computes many projections, coordinates, or kinematic chain
normalization factors, on both the user’s surface and the avatar’s one for each surface element,
increasing the number of elements linearly augments the execution time of a heavy workload on
a CPU. Using a GPU, the hardware-implemented parallelized processing structure allows, up to
the maximum set of parallel threads, to maintain the temporal complexity of the computations
constant. However, the cost of transmitting the data between the CPU and the GPU linearly
increases as the number of elements transmitted increases. Consequently, attention should be put
on not using too many surface elements and, therefore, identifying correctly the areas of interest
where a higher density of surface elements is required.

Finally, the long calibration process combined with a heavy MoCap setup (eleven trackers are
required for the calibration, seven for the runtime, plus two pairs of tracking gloves) makes
this approach a bit heavy to set up. To this day, this MoCap (Motion Capture) setup cannot
yet be replaced with computer vision due to its limitation at tracking fast movements (Li et al.,
2022). However, with a static calibration pose, an adaptation module could be implemented
to use computer vision to replace the current tedious calibration process. In the same vein, by
anticipation of advancements in computer vision technology, the pipeline was implemented to
accept a different set of MoCap input so that, when computer vision would be sufficiently fast
and reliable, it could be used instead to make the setup simpler.
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6.3 What about first-person viewpoint subjective experience?

Through the evaluation presented in chapter 5, we addressed the subjective experience from the
third PV in a passive context where the participant had no motor control over the animations of
the 3D characters. When switching to the context of embodying an avatar in the first PV, the
multisensory integration of the tactile sensation with the visual feedback is much richer; thus,
maintaining self-contact congruence would become even more important (Bovet et al., 2018;
Gonzalez-Franco and Berger, 2019). However, additional parameters must be taken into account
in the first PV context.

For instance, in real life as in immersive VR, having a (virtual) body is a source of occlusions
as we cannot see through our own body and some body parts might potentially hide others.
Consequently, if an animation method was expected to fail in those situations, the errors would be
unnoticed by the user, hence not penalizing the user experience. Therefore, in a similar way that
foveated rendering only renders at high resolution the elements in the eye focus and the rest at a
lower resolution, our approach could benefit from a similar technique to increase performances
with a high-resolution mesh to address interactions elements in the field of view, and a low
resolution one for elements the elements that are non directly visible at the first PV. This could
be particularly useful as self-interactions occur relatively close to the eyes of the user in first PV
(the maximum distance cannot exceed the body’s size), hence making it easier for the user to
spot even slight discrepancies that would go unnoticed at the third PV.

Another point that could be considered when switching from the first PV to the third PV is the
head’s movements. Our eyes are anchored in the head thus, manipulating the head’s movement
implies manipulating the viewpoint. Therefore, discrepancies between the two views (the one the
user would have without the HMD and the one from the avatar) might be introduced in a context
where an avatar would have a longer neck than the user’s one. If discrepancies can go unnoticed
for users seated in a simple environment in terms of translations or rotations (Jaekl et al., 2002),
in the long term, those inconsistencies can possibly induce motion sickness to occur, making the
system impractical. Typically, we already know that introducing rotations in the yaw axis induces
more motion sickness than translational motions (Tian et al., 2023), the reason for which, in the
implemented animation pipeline, we enforced the head orientation to be precisely the same as the
user’s head. However, another discrepancy in the viewpoint can occur: the feet’s motion is an
important aspect of the plausibility of an avatar (Debarba et al., 2020), and fixing the footskate
issue comes on par with introducing displacement discrepancy. However, if both distortions can
be individually accepted (Jaekl et al., 2002; Steinicke et al., 2010), it is not guaranteed that the
combination of both would not result in a situation where the user would lose the sense of balance,
feel sick or simply reject the PSI (Plausibility Illusion). Therefore, further studies need to be
performed to relate to the acceptance of such a combination of discrepancies. In the meantime, it
is essential to set the priority on colocating the virtual head’s position with the actual user’s head
one within the body referential.

Assuming the practicability of the approach, the possibilities of the retargeting approach are
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numerous. Firstly, this approach could be used to determine how far a user can embody an
avatar whose morphology is larger, thinner, shorter, or taller, but also test different body/legs or
body/arms ratios, genders, and skin tones, to create a map of the effects and ranges of acceptance.
Those maps could be put in regard to the original user’s morphology to know if the transfer can
be performed in both ways or if the user could more easily accept thinner avatars than larger ones,
for instance, and see if this could be linked with societal acceptance factors.

In another direction, it was observed that user immersed in VR could synchronize their movements
based on the ones from the avatar (Kannape and Blanke, 2013; Boban et al., 2023a), raising the
question of the consequence of embodying an avatar with a different morphology on our own
movements; would we perform actions differently with a different virtual body than we would
normally do?

In the study Appendix D, we investigated a locomotion technique where the user could scale
up and down to ease navigation in the virtual environment without teleportation. But what if
we could actually continuously morph our avatar, through an adapted version of the retargeting
approach, to allow the user to progressively scale in size, or even between completely distinct
morphologies? Would this allow us to further extend the limits of embodiment?

6.4 Conclusion

In conclusion, we explored the perspective of integrating the user’s body and fingers into the VE
(Virtual Environment) on the user’s subjective side. We investigated an approach relying on an
active camera-based MoCap (Motion Capture) system, combined with trained auto-encoders, to
address the important animation of virtual hands and fingers in real-time.

To confirm the usability of our approach, we investigated, through a user study, whether one could
tolerate those errors in the finger animation through the evaluation of an even more distinct type
of distortion than motion amplification in the context of succeeding interactions: finger swaps.
Our experimental protocol involved a game task to be performed with fingers, a manipulation
(finger swaps), and an experimental task. The analysis of the data showed that participants could
easily take credit for finger swaps, in particular when those swaps help the participants with the
game task, under which condition, participants bearly noticed the finger swaps. This extended
the knowledge on the characterization of the SoE (Sense of Embodiment) at the finger level and
allowed us to provide guidelines to avoid the disruption of the SoE when dealing with fingers
animation.

This knowledge was then combined with the one from the literature on arm/leg reaching move-
ments to extend a full-body animation pipeline addressing the critical issue of self-contact
consistency for both the limb and the finger levels. In the integration process, the topology of the
calibrated user’s morphology was adapted to address more pronounced morphology variations,
and more importantly, the original animation process, performed through a single pose conver-
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gence loop for the limbs’ movements, was extended with a second loop addressing the fingers’
animations.

The proposed technique was assessed in a subjective evaluation, comparing it to direct forward
kinematics. Twenty participants performed the evaluation of pre-recorded videos of animation
clips generated using both approaches, with the reference user’s motion. The analysis reported
that the retargeted approach outperformed the direct kinematics forward one. Despite the smaller
effect size observed than initially expected, the evaluation highlighted the necessity of adapting
the motion, even if the avatar and the user look similar.

Finally, we discussed the potential implications of this approach when used in first PV. For
example, how it could be used to help characterize the limits of embodiment with huge motion
discrepancies, how one could self-attribute and change their behavior depending on the target
character, and why not, what could happen if their avatar would progressively morph into another
one?
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B Training in VR with tangible haptic
elements: when controllers become a
limitation (e.g., CPR)
B.1 Introduction

It is now well accepted that human intelligence relies on Embodiment as defined in Pfeifer and
Bongard (2006) as "the idea that the body is required for intelligence". Likewise, computed-
mediated interaction has evolved from the traditional desktop metaphor to integrate embodied
interaction as a powerful means to achieve new classes of tasks leveraging on our full-body
synergies and skills Dourish (2001). This is one of the core contributions of VR to take advantage
of users’ full-body movements while displaying a plausible scenario within a virtual world; the
goal is to make them behave as if they were experiencing the real situation Manganas et al.
(2005). Such an approach is particularly useful to train individuals to react correctly to stressful
situations, e.g., an emergency requiring to perform first aid in case of sudden cardiac arrest
Lemaire (2018). In that specific context, the full training includes mastering two types of
knowledge: the procedural knowledge of the correct sequence of actions to perform, e.g., first
calling the emergency service if the victim is not responding, and the coordinated movement
knowledge (skill), e.g., the cardiac massage. However, the question remains as to whether the
sole visual immersion is sufficient for the skill training or whether the haptic component provided
by a tangible mannequin is necessary.

The feasibility of such skill training has been shown to be possible in Semeraro et al. (2009). In
the present paper, we focus on cardiac massage skill training in immersive VR by examining the
impact of the two following factors: Haptic feedback (with/out) with the mannequin device from
Brayden BraydenManikin (2019) (Figure B.1) and Real-time Performance feedback (with/out)
in the HMD (Figure B.2 right). The performance criteria mainly consist of the amplitude and
frequency of the cardiac massage during a standardized two minutes duration. This duration is
recognized by rescuers as the best duration to reduce turnovers breaks while maintaining a good
quality of movement.

Beyond assessing the impact of training with a tangible mannequin, we wish to ensure that, if
really necessary for ensuring a correct skill transfer, such a piece of hardware remains the simplest
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possible. In that frame of mind, we chose to track the location of the top hand (Figure B.2 left) with
an HTC-Vive tracker so that the same low-cost measurement system can be used independently
from the mannequin device. Many studies used such an approach using trackers to acquire
performance data, but surprisingly, few studies took care to assess the fidelity of the measured
data. For instance, Buttussi et al. (2020) used an instrumented mannequin tracked in VR but did
not analyze the probe data assuming the match between the tracker data and the probe one as
proposed by Semeraro et al. (2019). Thus, to address this lack of validation, we calibrated the
internal probe of the mannequin and compared its results with the one from the HTC tracker.

The mannequin location itself is tracked with a second tracker (Figure B.1) to ensure consistency
with the victim’s virtual body location.

Figure B.1 – The CPR mannequin BraydenManikin (2019) is tracked through the HTC-Vive
tracker mounted on the wooden support to align the virtual victim’s body with the mannequin.
The same type of tracker is attached to the dominant hand. Finally, an HTC controller is only

used to launch the application.

The purpose of the chosen setup is twofold. Firstly we want users to benefit from a sufficient
level of presence Schwind et al. (2019) through the HMD visual immersion by cutting them from
the potential distractions of their real surroundings. As advocated in Lemaire (2018), the presence
dimension is critical for training to reduce fears and taboos related to the action of resuscitation.
Secondly, we want to ensure that users also feel a high level of agency, i.e., the Embodiment
component characterizing the feeling of being in control Kilteni et al. (2012) of the user avatar
hand movement. This is achieved by tracking and displaying the top hand during the massage
performance (Figure B.2 left). With only two trackers, our approach contributes to reducing the
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Figure B.2 – Cardiopulmonary Resuscitation training in VR: setup with the tracked mannequin
device and tracked hand (left) and 1PP view with performance feedback provided in the HMD

(right)

cost and the complexity of the complete setup as only a non-instrumented, hence more affordable,
mannequin with a regular VR kit is then sufficient.

Inspired by Cummings and Bailenson (2016), we expect this minimal immersive setup to be suf-
ficient to elicit presence. Likewise, we expect it to elicit a sufficiently high level of Embodiment
through the agency component.

Our additional hypotheses associated with the evaluation experiment are the following: First
that the use of the tangible mannequin benefits the quality of the performance, second that the
combination of the mannequin use with performance feedback in VR leads to a performance
increase and third that the performance display reduces the level of presence compared to the
context without the performance feedback.

The remainder of the paper is organized as follows: After the related work section, section B.3
presents the system overview with a special emphasis on the validation of the tracked hand
measurements for evaluating cardiac massage performance. It is followed by the pilot evaluation
experiment description and results in section B.4 prior to the concluding discussion.
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B.2 Related work

In 2004 the pioneering work from Manganas et al. (2005) demonstrated the interest of VR for
first aid training in a virtual environment populated with virtual agents. The immersive display
consisted of a vertical stereo retro-projected 3m x 3m screen. The user could navigate, interact
with virtual agents and react to events representative of a stressful situation under the global
supervision of an external operator. An evaluation based on two scenarios demonstrated the
ability of the system to instill a sense of presence. However, at the time, the technology was
not mature enough to involve the user to the point of performing first aid actions on the virtual
victim. Instead, they would interact with other virtual agents present in the scene to instruct one
of them to perform the CPR. As a consequence, this system was more suited for training the first
aid procedural knowledge rather than the CPR skill itself.

The medical education field has offered a wide range of simulation solutions Maran and Glavin
(2003) with some degree of success in offering applications displaying haptic feedback in VR
such as with laparoscopic simulators or for training breast exams by employing a mannequin
together with a virtual agent in VR Raij et al. (2009). Yet CPR training has been limited to the
non-immersive manipulation of instrumented mannequin BraydenManikin (2019) or immersive
VR without mannequin Lemaire (2018). In 2014 Kwon et al. (2014) proposed to use a mannequin
with Augmented Reality to deliver information about the scenario and the user performance.
However, the solution remains mostly 2D hence reducing the sense of presence. A similar
approach was also proposed in Javaheri et al. (2018).

More immersed simulations were studied in Khanal et al. (2014) where authors compared a
regular face-to-face team training against VR enhanced approaches and observed a similar
learning experience. However, this study focuses more on the team training rather than on the
CPR massage in itself. Almousa et al. (2019) mixed VR with a real mannequin but focused more
on benefits from gamification and training availability rather than technical validation of the
approach or on the training quality. In Yang et al. (2020), authors also used a similar approach
but replaced the mannequin with a tangible "force sensitive model" and only used a piezoelectric
element to capture compression rate; thus, they do not have access to the real depth compression
range.

The contributions of the approach we propose are the following: ensure a sufficient level of
presence while allowing correct skill training through the interaction with a mannequin dedicated
to CPR training, prevent break in presence by applying a deformation to the virtual victim torso
consistent with the user hand movement, ensure a high level of agency over the interaction with
the virtual victim body through a minimal embodiment while using only a consumer ready VR
setup plus a generic mannequin providing haptic feedbacks.

To ensure the fidelity of the system, we took advantage of the integrated probe inside of the
mannequin to use it as a ground truth. Compared to Bergeron (2019), where an external visual
motion analyzer is used as a reference, using the inner side of the mannequin gives more
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straightforward information with less risk of errors due to occlusions and is more natural in
the sense that the heart, during CPR is compressed by the inner side of the body. In the same
paper, authors provide a higher granularity for hand and finger movement using a Leap motion.
However, they do not use this information to compute performance. Instead, their setup uses an
additional accelerometer to achieve this goal.

B.3 System overview

In immersive VR, the users are visually cut from the real world, i.e., they do not even see their
own bodies. For cost and efficiency reasons, we adopted a minimal embodiment strategy of
tracking a single hand to allow users to adopt the standardized CPR hand postures that include
both hands. For this reason, the tracker was attached to the back of the top hand (Figure B.2 left).
This choice guarantees good stability and visibility of the tracker without impeding the user’s
comfort.

Likewise, the alignment of the virtual victim body with the CPR mannequin from Brayden
BraydenManikin (2019) was enforced through the same type of tracker. Initial tests revealed
that the cardiac massage performance would transmit oscillations to the tracker when attached
directly to the mannequin. Hence it was decided to attach both the mannequin and the tracker to
a wooden plate to prevent this issue (Figure B.1).

The main idea of these initial design decisions is that a simple non-instrumented mannequin is
sufficient to infer the user massage performance. The remaining requirement for the mannequin
is to offer a similar resistance/deformation and shape as a real human for CPR training. The
information of location, amplitude, and frequency of the massage can then be deduced from the
tracker data as detailed now in subsection B.3.1.

B.3.1 Data acquisition

Our use of the HTC Vive trackers is compatible with their latency of 22ms (sampling frequency
of roughly 45Hz) as measured by Niehorster et al. (2017). This paper also reported their relatively
good accuracy and precision without occlusions for static positions, at least for our quite small
and well-located interaction area, preventing tracking loss Niehorster et al. (2017) and allowing
us to obtain hands height in the referential of the mannequin (Figure B.3).

Frequency

Once the heart stops beating, the blood circulation ceases immediately. If we consider that the
heartbeat of a healthy person is near 60bpm, the expected heartbeat during a CPR massage is
around 120bpm (i.e., 2 Hz) to compensate for the fact that it is externally induced. So it is
mandatory to provide the user an accurate and stable frequency feedback for proper training.
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Figure B.3 – Hand height and allowed interaction area are deduced from the tracker’s data

Despite the good aforementioned tracker characteristics, we nevertheless observed some tracker
measurement variations when the cardiac massage was changing direction (actual measurements
are provided in subsection B.3.2). We explain these artifacts by the movement dynamics that
may induce some wobbles to the tracker through the hand tracker fixation (Figure B.2 left).
The immediate consequence is that using a single threshold on the hand height signal is not
appropriate for robustly counting the massage periods. This is illustrated on the conceptual
drawing of Figure B.4a where each successive pair of green-red vertical lines delimit a trigger
to compute a beat. To fix this issue, we applied a hysteresis filter with two fixed thresholds
(Figure B.4b): one used to set the trigger and the other one for the release. Thus, to start counting
a period, the height signal has to fall below a low triggering value first. Conversely, the period
end is reached when the next trigger is reached.

(a) Hand height data artifacts induce false positive
beat detection when using a single threshold

(b) A two-threshold hysteresis approach makes the
massage frequency measurement robust to

reasonable artifacts induced by the movement
dynamics

Figure B.4 – Conceptual illustration of the frequency count without (a) and with (b) a hysteresis
filter
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Amplitude

This information requires a short user-specific calibration stage to define the highest hand location
while in contact with the virtual victim’s torso, as each user may have a different hand thickness.
The resulting hand height defines the zero of the depression signal plotted in black in Figure B.4.
The amplitude is computed by subtracting the current hand height from the calibrated zero height
and retaining only positive values.

B.3.2 Hand tracking validation

In order to ensure that the hand height data acquired using the HTC Vive trackers match the
actual torso compression depth, we conducted a validation study to compare our tracker-based
measurement with the output of the mannequin internal depth sensor. For this, we connected
the output of the integrated depth sensor to an external microcontroller. In our case, we used a
simple atMega328 MicroChip (2018) connected on a development board (an Arduino Uno) to
use the integrated power section, resonator, and USB ⇐⇒ Serial adapter Arduino (2019). The
integrated depth sensor is an analogical Time-Of-Flight sensor: it is a Laser device composed
of an emitter and a receiver. It measures the time required for the light to achieve the way out,
way back between the sensor and the inner part of the mannequin torso. As the datasheet of this
sensor does not give the manufacturer tolerance, we had to perform a test to calibrate our ground
truth (Figure B.5a).

In order to link the analog value and the distance measured by the sensor, we measured sev-
eral times the equivalence Distance ⇐⇒ Analog value on the whole range of distance al-
lowed by the mannequin, computed point means, and fit a second-order polynomial using
scipy.optimize.curve_fit. We obtained

h =
(
1.708 ·10−3) · v2−1.373 · v+346.8

where v is the analog value and h the associated distance in millimeters. The regression plot
is illustrated in Figure B.5b. As the sensor is fixed on the bottom of the mannequin h directly
represents the height of the inner part of the torso. The compression depth induced by the hand
movement is then d = r−h, with r the rest position height described in Figure B.3.1.

Tracker data evaluation setup

We programmed the microcontroller to output the raw computed height through the serial port
clocked at 115200 bauds in a continuous stream used as an input for the Unity3D application.
As the data stream from the microcontroller and the Unity3D application are not synchronized
and have different refresh rates, we run the algorithm handling sensor values in a separate thread
to avoid completely filling the Serial port buffer or introducing time mismatching (Figure B.6).
The raw data are then exported into two separate files, but with the same time reference shared
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(a) Calibration bench used to calibrate the integrated mannequin depth sensor used as ground truth

(b) The calibration curve of the Time Of Flight Sensor. Analog values refer to the image of the voltage
with the linear mapping 0 = 0V and 1023 = 5V .

Figure B.5 – Calibration of the internal probe covering the whole set of possible compression
for this mannequin

between the two output files.

These data from this sensor are only used to assess our setup and are just stored for post-analysis.

As we can see in Figure B.7b, we configured a refresh rate for the integrated sensor much higher
(∼ 887 Hz) than the one we have from the HTC Vive tracker (∼ 40 Hz). As both samples have a
different refresh rate and as a short delay still exists between the two samples, pre-processing
had to be applied to these raw data. To temporally re-synchronize both samples, we started by
under-sampling the sensor data and extracted a short sub-sample of 5s from the tracker and sensor
data at the beginning of the sample. Then we computed the cross-correlation between these two
curves and kept the maximum point defining the best number of frames to shift to get the best
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Figure B.6 – System architecture

alignment (corresponds to the orange dashed curve from Figure B.7a ). A second pass removes
the vertical offset by subtracting the difference of the means over the sub-sample (in dashed green
Figure B.7a).

Then we went back to raw inputs and, as the values from the internal probe are over-sampled
compared to the tracker values, they are uniformly averaged for a second time, but this time
around, each synchronized tracker sensor values timestamp to smooth the curve and get a sample
with only one-time grid reference shared by both sensors curves (in orange on Figure B.7b). For
a fair comparison, the tracker value is capped to zero (dashed green Figure B.7b) when hands
are above the mannequin surface, as the internal probe cannot measure their position in such a
context. As we measured the same frequency information with both sensors, we were able to
slice samples into single "pushes" sub-samples using local lower extrema from the sensor probe
as a "push" delimitation (vertical orange lines in Figure B.7b). Then we computed each push
amplitude from both sensors and obtained an average absolute error of 1.20 cm (i.e., the tracker
measures an amplified movement) with a standard deviation of 0.60 cm based on a dataset of
1758 pushes. This represents a mean ratio Tracker Amplitude over Sensor Amplitude of 1.30
with a standard deviation of 0.18.

A noticeable artifact visible on the tracking curves (Figure B.8a) is the presence of spikes,
especially when the direction of the movement changes as previously described in Figure B.3.1.
Indeed, spikes are visible on the tracker curves (in orange) when the direction of the movement
changes, whereas the reference value (in blue) does not present this issue.

This might be explained by the fact that when we wear the tracker, it is fixed with a slightly
deformable strap, and when we change the direction of the movement, we can see that the tracker
moves due to its inertia.

The difference between the maximum value read from the reference and the tracker for each push
is plotted in red in Figure B.8b. Likewise, the difference between the minima of both sensors
is plotted in green, and the filling areas represent the standard deviation. As we can see, both
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(a) Realignment process. The black horizontal line represents the height when the
mannequin is not pressed.

(b) Under-sampling and splitting process. The black horizontal line represents the
height when the mannequin is not pressed.

Figure B.7 – Illustration of the pre-processing applied on the raw data from the analysis of the
results of the experiment
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curves follow a similar trend giving hints about a drift occurring over the number of pushes; the
tracker erroneously reports getting closer to the ground as the number of pushes increases. These
drifts led us to change the computation of frequencies for the offline analysis using the extrema
delimitation described in Figure B.3.2 as it is more robust than the hysteresis method (Figure B.4)
used to display the online feedback.

(a) Spikes

(b) Extrema drifts between mannequin integrated probe values and tracker data on
seven sessions

Figure B.8 – Illustration of artifacts on the tracker curve

B.3.3 Visualization

We use Unity3D for integrating the components of our CPR training system (Figure B.6). Our
system offers two visualization choices depending on the training focus on either emphasizing
the sense of presence or finely guiding the CPR skill acquisition process. The minimal scene
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consists of the 3D environment, including at least the virtual victim’s body and the user-tracked
virtual hand. An additional display of performance indicators for the frequency and the amplitude
can be generated in real-time within the first PV (Figure B.2 right).

Motivation for computing the virtual victim torso deformation

We consider that displaying a moving user’s virtual hand during the massage is critical for
inducing a strong agency. Indeed seeing such a movement is the main information the user has
about the massage process; for this reason, we chose to display the user’s virtual hand colocated
with the actual hand location. An immediate consequence is the necessity to deform the virtual
victim’s torso accordingly to prevent the virtual hand to sink-in into a rigid virtual torso, thus
potentially creating a break in presence Burns et al. (2006).

Torso deformation

The amplitude signal is used to drive the torso deformation as it faithfully expresses the compres-
sion depth achieved by the user on the virtual torso. We retained a purely geometric approach for
the compression as the searched key effect is to prevent interpenetration rather than computing a
physically-realistic shape deformation (Figure B.9). The full deformation reflecting the current
amplitude is only applied to the torso mesh center.

Figure B.9 – Hand-torso interaction without (left) and with the simplified geometric
deformation (right). Note that the displayed hand is on top of the (undisplayed) other hand for

performing the cardiac massage. See the video for the first PV.

Performance indicators

The cardiac massage amplitude and frequency can be displayed on-the-fly with individual gauges
fixed above the virtual victim, as visible in Figure B.2 right. The optimal values are centered
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for gauges and colored green. Gauge markers are initialized at zero and are refreshed after each
compression. If the user stops to perform CPR, a timer will automatically reset these markers to
zero. Gauges indicate values between 100 and 140 compressions per minute and between 1 and
11 cm for the amplitude.

B.4 Experimental evaluation

B.4.1 Hypotheses

The purpose of this study is firstly to assess whether the minimal immersive setup that we have
retained is sufficient to elicit a sufficient level of presence and Embodiment (through the agency
score). We used the IPQ (I-group Presence Questionnaire) presence questionnaire Schwind et al.
(2019) and the embodiment questionnaire, adapted from Gonzalez-Franco and Peck (2018), to
match our specific haptic interaction context (available in appendix) to assess these hypotheses.
Scores are then normalized by summing and dividing the result by the maximum score possible
to ensure that normalized scores are within [0,1].

The second goal of the study is to determine the impact of two factors on the massage skill
Performance (frequency and amplitude): Haptic feedback with a CPR mannequin (without and
with) and CPR Performance feedback (without and with) in the HMD (Figure B.10b).

Thus we formulate the following hypotheses :
H1 - We expect a normalized presence score to be ≥ 0.5
H2 - We expect a normalized agency score to be ≥ 0.5
H3 - The use of the mannequin leads to better performance than without the mannequin because
the haptic interaction induced by the mechanical property of the mannequin sustains more the
regularity of the movement compared to a movement in free-space
H4 - The combination of the mannequin use with the real-time performance indicators leads to a
better performance compared to no performance indicators
H5 - Displaying the performance within the HMD reduces the level of presence compared to the
context without the performance indicators

B.4.2 Method

Given the potentially wide differences among subjects in terms of initial expertise in CPR
massage, we decided to first provide a training session to all of them with the CPR mannequin
in the regular context of such training, i.e., without VR. We then measured the performance
(amplitude and frequency) in two successive contexts, with and without the mannequin, to
establish their baseline (Figure B.10a top line).

After establishing the two baselines (A0 and B0), the subjects enter a sequence of four CPR
massage sessions in VR, each consisting of a two minutes massage (corresponding to A1, A2,
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(a) Experimental protocol

Visual Feedback

Haptic Feedback
(Mannequin) Without With

Baseline (no VR)
No live performance display A0 B0

Trial (in VR)
No live performance display A1 B1
Live performance displayed A2 B2

(b) Experimental evaluation with two factors: Haptic feedback (without and with the physical mannequin)
and Performance feedback (without and with the amplitude and frequency gauges)

Figure B.10 – Experimental main timeline and conditions

B1 or B2 from Figure B.10b) followed by 8 minutes rest (Figure B.10a bottom line). Massage
order is counterbalanced in order to prevent bias from a potential training effect. Each rest period
is dedicated to the filling of questionnaires described previously.

B.5 Results

A total of twelve subjects participated in the experimental evaluation (age within [16,56], median
27.5, four female). One subject sample was corrupted, and one female subject stopped the
experiment due to insufficient physical force to interact with the CPR mannequin. All subjects
were right-handed, and six reported being familiar with VR while only two indicated an average
experience of CPR massage. The experience is part of a project approved by the Swiss National
Science Foundation, and subjects signed a consent form and received CHF20 as compensation
for their time.
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B.5.1 Presence and embodiment levels

We used non-parametric RankSum tests with a Bonferroni correction on p−values to determine
whether the aforementioned hypotheses were verified.

Results of these tests are plotted in Figure B.11a for the assessment of the haptic feedback,
Figure B.11b for the agency (both based on Gonzalez-Franco and Peck (2018)), and Figure B.11c
for the three presence components from the IPQ Schwind et al. (2019).

As expected, significant differences found for haptic scores (A1 - B1, p = 0.025 and A2 - B2,
p = 0.004 ) show the positive impact of the physical mannequin on haptic feedbacks perceived by
participants. Surprisingly, haptic scores in non-mannequin conditions are higher than expected.
We suspect that a combination of multiple factors, including the deformable avatar and the self
hands contact, might explain such scores.

B.5.2 Performance quality

Concerning the evaluation of the performance: the Shapiro test rejected the hypothesis of the
normality of samples across all conditions from the dataset (cf. Appendix). Thus we also
applied non-parametric tests (RankSum) with corrections for p−values (Bonferroni). Results are
displayed in Figure B.12.

In all conditions without the live displayed performances, we observed a significant difference
between with and without the tangible mannequin (A0 - B0, p = 0.0039 and A1 - B1, p =

0.0126). Conversely, when live performance is displayed, we did not observe a significant
difference (i.e. A2 - B2). This suggests that whenever guided with the displayed performances,
the performed frequency is closer to the target value.

For the amplitude, the difference observed (A1 - B1, p = 0.0019 and A2 - B2, p = 0.0003)
shows that even guided, used still struggles to reach the correct amplitude without the help of the
mannequin.

B.6 Discussion

Regarding the experimental evaluation with subjects, our hypotheses were partially confirmed as
follows:

H1 - The presence level delivered by the IPQ questionnaire is decomposed into three components:
experience realism, spatial presence, and involvement. Only the scores of spatial presence and
involvement succeed to be in the upper half (i.e., ≥ 0.5) of the presence scale hence offering only
a partial confirmation of H1. Indeed, the proof of concept design was far from being realistic
(e.g., single-hand display).
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(a) Haptic SensoriMotor scores (b) Agency scores

(c) Presence scores

Figure B.11 – Distributions of normalized scores from questionnaires (labels from Figure B.10b)

H2 - As this single-hand representation did not penalize the embodiment score through its agency
component, showing a consistently high level across all conditions, this hypothesis is accepted.

H3 - This hypothesis was validated as the integration of the real CPR mannequin in VR has a
significantly positive impact on the massage performance quality compared to the conditions
without mannequin (cf Figure B.12). Indeed, in a real-world context, the weight of the user
combined with the resistance of the victim’s torso constitute a dynamic system where the user
only needs to give downward impulses to perform CPR. Additionally, this system links frequency
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(a) Frequency distribution of the result by groups

(b) Amplitude distribution of the results by groups

Figure B.12 – Plot of scores obtained by group (labels from Figure B.10b). Horizontal green
lines represent the targeted value for the best CPR, and noches represent the 95% confidence

interval of the median (the red line, dashed blue one represents the mean).

and amplitude; thus, given the right frequency, it is easier to achieve the right amplitude as the
former is more easily mastered. In the non-mannequin conditions, there is no such dynamic
coupling; thus, after each impulse, users have to use their back muscles to lift up. Also, the
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amplitude/frequency link is different, explaining the observed wrong amplitude range while the
frequency was correct. Thus even in the presence of the live displayed performance factor, it
remains difficult to reach both targets (amplitude and frequency) at the same time.

Finally, no significant differences were found between the performance baseline B0 and the
mannequin conditions (B1 and B2). This should not be interpreted negatively, though; simply
put, one can see that performances were as good without and with VR, hence VR does not
degrade performance. On the other hand, the presence scores show that VR has some potential to
immerse the participant in a situation much closer to real life (but this was out of the scope of the
present submission).

H4 - This hypothesis was initially hinted from the outcome of prior works from Semeraro
et al. (2013) where authors noticed a significant difference between CPR performance with and
without performance feedback. Surprisingly it was not validated in the mannequin condition
as the performance display in the HMD was not bringing any added value to the performance
quality.

H5 - Only the frequency performance quality shows a correct target value in the no-haptic
condition, which suggests this partial benefit from the displayed information. Likewise, no
significant reduction of presence level can be linked to the display of the massage information in
the user field of view; this invalidates this hypothesis.

B.7 Conclusion

As this study is a proof of concept, many scenario events were not implemented (e.g., warnings
if the hand is badly placed). Moreover, we only secured a minimal embodiment level with a
single rigid hand representation rather than dealing with whole-body integration. Furthermore,
performing CPR remains a physically demanding task, a point this study was not designed to
address.

Our results show that the proposed minimal setup with single-hand tracking is sufficient to
provide accurate frequency feedback. Unlike Semeraro et al. (2019), our results also show that
the raw amplitude from the tracker needs to be scaled down by 0.77 (in our setup) to achieve
a sufficient level of fidelity for the amplitude measurement. Thus, if we take this into account,
the measurement of both performance criteria of a CPR massage can be done with a low-cost
non-instrumented mannequin that offers the standardized haptic response.

As expected, this experiment clearly shows that the presence of a tangible mannequin provides
better haptic feedback than without.

Finally, unlike our observation that a tangible mannequin is not necessary for training the correct
frequency, this study strongly implies that a mannequin is required to train the correct amplitude
range for a CPR massage.
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C How errors involving a finger swap in
finger animation are perceived?

C.1 Demographic questionnaire

Question Possible answers

Gender

Male
Female
Other

I don’t want to answer
Age Integer

Height Integer (centimeters)
Weight Integer (kilograms)

Handedness
Right handed
Left handed

Ambidextrous
Main occupation Text
Have you ever

experienced "virtual
reality" before?

Linear scale between
0 (No experience) and 7 (Daily use)

Do you practice sport?
Linear scale between

0 (No) and 7 (Daily practice)
Do you often type

(piano/keyboards/etc.)?
Linear scale between
0 (No) and 7 (A lot)

Inverse Kinematics

Both arms and fingers IKs relies on the same principle: with known bones lengths (through
a calibration process) and mechanical constraints (single joint for the elbow, the same flexion
rotation for both proximal-intermediate and intermediate-distal joints Aristidou (2018)), we can
determine joints rotations in the plan (the elbow or finger joints can only bend alongside a single
axis). The final hand animation step is to realign the fingertips with their associated marker as
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described in chapter 2. This additional rotation follows a predefined curve based on the lateral
position of the hand was added alongside the elbow-wrist axis (the elbow is not constantly stuck
near the ribs when the target is within range). Finally, half of the swivel angle of the wrist is
applied to the elbow joint to avoid mesh rigging issues.

Finger swap animation

When a swap is introduced, only the vertical motion of the real source finger (the finger the
subject moves) is redirected onto the displayed destination finger (the finger the subject sees
moving) to avoid potential lateral interpenetration.

At the beginning of the swap, the fingers’ markers’ positions are stored. Then, the lateral
motion of the displayed source finger’s (i.e., what the users see for the source finger) motion is
progressively shifted back to its initial position while the vertical motions used to animate both
displayed fingers are progressively permuted. A custom anatomical correction is applied to scale
the measured vertical movement to the size of the moving finger (e.g., when swapping the middle
finger with the little finger).

The progressive removal of the lateral motion prevents the user from visually spotting the source
finger while the swap is enabled and the lateral motion of the destination finger is not altered.
Thus, if the subject moves the real destination finger (i.e., the finger initially not supposed to be
moved by the user but still animated by the swap) laterally while the swap is active, the displayed
destination finger will also move laterally, but its vertical motion will be the one of the real
source finger. Conversely, if the user moves the real source finger laterally, nothing will move on
screens, and if it moves vertically only the displayed destination finger will move.

The displayed fingers’ positions are computed using Equation C.1 with :

• t refers to the rate of swap introduced and varies from 0 (motions are still fully congruent)
to 1 (motions are fully permuted) with a step set to 0.4 per frame (' 31ms) for the activation
and 0.02 for the release (' 625ms).

• ~Pxzref is the planar position of the real source finger tip when the swap is triggered

• ~Pxz is the planar position of the real source finger tip and ~Pxzd the one for the displayed
source finger

• hsrc is the vertical component of the real source finger tip position and hdst the vertical
component of the real destination finger tip, with hsrcd and hdstd

the displayed ones
respectively
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~Pxzd = (1− t) ·~Pxz+ t ·~Pxzref
hsrcd = (1− t) ·hsrc+ t ·hdst
hdstd

= (1− t) ·hdst+ t ·hsrc

(C.1)

The swap ends when the moving finger is placed back on the table or when the current button
leaves the activation area. Such a method does not introduce any additional delay in the fingers’
animation when a swap is introduced.
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ABSTRACT
This study attempts to evaluate whether a navigation technique
based on scaling the user’s avatar impacts the user’s ability to
correctly assess the size of virtual objects in a virtual environment.
This study was realized during the CERN Open Days with data
from 177 participants over eighteen years old. We were able to
observe well-established phenomena such as the effect of inter-
pupillary distance (IPD) on perception of scale, as well as original
results associated with scaling factor and avatar embodiment. We
observed that the user is more prone to overestimate object sizes
from the Virtual Environment (VE) when provided with an avatar,
while scaling the IPD according to the scale of the user’s avatar
contributes to a reduction in the overestimation of object sizes
within the VE.

Figure 1: Illustration of locomotion in "Giant Mode" while
navigating around the a virtual representation of CERN’s

main site
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1 INTRODUCTION
Virtual Reality (VR) experiences often demand that players navigate
in order to discover and interact with the environment. However,
current technical limits prevent players from navigating over long
distances while maintaining a link between the real, physical move-
ment performed and the one displayed in the headset. Different
techniques have attempted to bridge the gap between the physical
movement of the user and the locomotion of the player within the
VE, from treadmills [Fung et al. 2006], rolling spheres, and sliding
on a curved floor with slippers [Warren and Bowman 2017] to
traditional techniques like navigating with joysticks, as in tradi-
tional video games, or teleportation [Bozgeyikli et al. 2016]. But
all of these techniques have serious drawbacks. Solutions that re-
quire additional hardware limit the potential number of users who
can experience them, and teleportation does not allow continuous
movement, which can be fatiguing and disorienting when traveling
over long virtual distances.

Several researchers and developers have recently begun to exper-
iment with a novel navigation technique which attempts to mitigate
these disadvantages. This technique involves allowing the user to
change scale, or euphemistically, to become a Giant, in order to be
able to continuously traverse more distance with less disruption.
One such early system, named GulliVR [Krekhov et al. 2018] is used
as the basis for this paper. While GulliVR used the "Giant mode"
technique, it did not employ an avatar, which many subsequent
studies have done, including a hybrid approach by the same authors
which combines a Giant avatar with teleportation [Cmentowski
et al. 2019].
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Other researchers have also found that the "Giant Mode" nav-
igation technique is particularly promising. [Abtahi et al. 2019]
examined three means of boosting a user’s navigation speed: speed
gain, walking as a Giant, and scaling up the user (as a Giant) while
maintaining the head at the ground level; users preferred the sim-
ple Giant mode. A variant of walking as a Giant involves flying
like Superman, which puts the user’s eyeline at the same level, but
with somewhat different characteristics - i.e. no Giant avatar and
an inter-pupilary distance (IPD) that would be associated with a
human. This technique, examined in [Piumsomboon et al. 2018],
found that scaling IPD when changing a user’s eye-height more
strongly modifies the user’s perception of scale of the environment;
effectively, to be a Giant, one must see like a Giant. The researchers
involved did not use an avatar in their study, but did highlight
the value it would have in giving natural cues to the user during
navigation.

With the advent of new, low-cost devices, VR experiences are
now accessible to a broader public than ever before, and with less
hardware investment, making the technique of navigating like a
Giant attractive to an increasing number of users.

Due to the perceptual manipulations necessary to use this tech-
nique, however, we decided to study whether it would impact the
user’s judgement of the scale in the VE compared to the typical
scale distortion observed in VEs in general.

2 RELATEDWORK
2.1 Scale in a Virtual Environment
Perception in virtual environments, and specifically judgement of
distance and scale within those environments, has been studied for
decades. It has long been observed that a user’s judgement of scale
is impaired when using a virtual environment. While there is little
commonality in the numerous experiments that have evaluated this
effect, the overwhelming conclusion is that users underestimate
distance (and by extension scale) in a virtual environment relative
to the real world. The magnitude of this effect varies heavily with
experimental conditions, technology used to view the virtual en-
vironment (type of device, field of view, binocularity, resolution),
and the details of the virtual environment (image quality, richness,
texture, lighting, real-world visual cues, and experience). The under-
estimation of scale ranges from a factor of 2, as observed through
egocentric observations of distance to an object by untrained ob-
servers [Knapp 1999], to roughly 20%, as determined by a study of
architects that were given virtual or real tours of a museum, and
then asked to evaluate distances (height of a ceiling, length of a
wall) [Henry and Furness 1993].

2.2 The Body (or Avatar) as a Scale Reference
It has been shown that the body acts as a scale reference for the out-
side world, both in near personal space and beyond [Van Der Hoort
et al. 2011]. In the “Being Barbie. . . ” study, the user is attributed,
through a video-relay system, the body of a mannequin ranging
in size from 30cm to 4m. The user is asked to judge both distance
and object scale, and the results show that the user mis-estimates
scale based on the body that is attributed. The smallest body results
in an over-estimation of real-world scale, while the largest body
results in an under-estimation. The results vary from approximately

a factor of 2 mis-estimation in the small-body case, to a factor of
about 1.5 in the large-body case. Interestingly, even the normal case
results in an under-estimation of scale (though slightly lower than
the amount measured in the large-body case), echoing other studies
that have shown that it is not the qualities of the environment that
affect this error, but the intrinsic nature of representation through
a virtual display.

2.3 Vision Characteristics as a Scale Reference
(Superman)

The roles of eye height and inter-pupillary distance (IPD) have
also been studied in the literature in the context of estimation
of scale of a virtual environment [Kim and Interrante 2017]. In
a simulation with no bodily representation (i.e. no avatar) there
are two possibilities for assuming an eye level above the normally-
expected human height: either flying (if the IPD is conserved at
normal human size, i.e. Superman) or growing (if the IPD scales with
the position above ground level, i.e. Giant). These two conditions are
compared in the study “Superman vs. Giant,” [Piumsomboon et al.
2018] where it is found that, in the mode without IPD manipulation
(Superman) half of the users felt that their body size was larger
(even though no body is visible) and half thought that it was normal,
yet flying. Conversely, in the mode with IPD manipulation, users
judged themselves to have a Giant body more than 90% of the time
[Piumsomboon et al. 2018].

In examining whether this estimation of body size (even though
no body was visible) had an effect on the estimation of environment
sizes, it was found that indeed the manipulation of IPD led to a skew
in the estimation of scale; smaller IPD resulting in over-estimation,
and larger IPD resulting in under-estimation, as is congruent with
the previously discussed experiments. This effect has also been
found in other studies where IPD and height have beenmanipulated
both up and down, i.e. Dwarf vs. Giant, which show that indeed
manipulation of height as well as IPD result in a change in ability to
estimate scale. However, with relatively small changes in height (i.e.
plus or minus 50cm), the effect of increasing eye height seems to
have small effects, whereas decreasing it is more pronounced [Kim
and Interrante 2017]. The opposite effect was found in a similar
study which used the same 50cm offset, where the significance was
found in reducing eye height and not increasing it [Leyrer et al.
2015]. This second study also analysed the role of an avatar in these
two conditions, and it found no significant effect.

While these studies of eye height and IPD show some conflicting
results, they all used relatively modest adjustments in IPD and
height, as well as feature rich virtual environments, where many
environmental size cues were available.

2.4 Summary and Contributions
Prior research shows one clear conclusion: a user’s ability to judge
the scale of an environment presented through virtual means can
be manipulated through three key variables:

• The size of the user’s inferred or visibly-attributed body
(avatar)

• The user’s eye height above ground level
• The user’s IPD
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While some elements, like magnitude of the manipulation, visual
richness of the environment, placement of objects in the visual field,
etc., may have an impact on magnitude and sensitivity of the results,
it is almost universally observed that increasing the key variables
listed above leads to an under-estimation of the scale of the virtual
environment, whereas decreasing them has the opposite effect.

Our contributions hinge on assessing the impact of the "Giant
mode" as a means of effective navigation. For this purpose we
propose a system based on GulliVR [Krekhov et al. 2018]. This
system allows the user to navigate in a VE in the direction of
regard, which is intrinsically intuitive, by simply pressing a button
on the hand controller. In order to move more quickly through the
environment, and to obtain a reference point for the layout of the
surroundings, a simple function allows the user to scale their avatar
to Giant scale (and to move correspondingly faster through the
environment, unimpeded by buildings and terrain). A controlled
experiment evaluates user performance in a size assessment task
within a between-group design including five combinations of the
following three factors: avatar, Giant mode and IPD scaling.

3 EXPERIMENTAL DESIGN
3.1 Question
In order to make a technique like Giant navigation interesting, it
must entertain scale shifts larger than those attempted in previous
studies. Scale ratios of 20-40 have not been studied in depth. In
addition, the effect of an avatar in such a large scale offset has
not been studied, and by incorporating it as an additional vari-
able, allows the comparison of five distinct groups. Lastly, such a
navigation technique is naturally episodic and temporal. In this
respect, there is no existing research which examines the effect of
time, and changeability, on a user’s estimation of scale in a virtual
environment.

As such, the research question can be simply stated as: to what
extent do the factors of avatar, eye height, IPD, and time have on a
user’s estimation of scale in a feature-rich, openly navigable virtual
environment?

3.2 Hypotheses
Based on the literature, we expect to verify several well-supported
hypotheses, as well as investigate new, untested ones related to
time and avatar.

(1) H1 - Users in the control groups (no Giant mode) will under-
estimate the scale of the VE as observed in general in virtual
environments

(2) H2 - Users in Giant modes will underestimate the scale of
the VE in higher proportions than the control groups

(3) H3 - Users with an avatar will show more under-estimation
effect than those without an avatar

(4) H4 - Users with larger IPD will show more under-estimation
effect than those with normal IPD

(5) H5 - Users who spend more time in Giant mode will show a
stronger under-estimation effect

3.3 Groups
To study the impact of these factors, we divided the experiment
into 5 groups as shown in Table 1. Time was studied as a fourth,
pseudo-independent variable.

Table 1: List of the different groups used during the
experiment

Group Name Avatar Giant Mode IPD Scaling
Control No No N/A
Avatar Control Yes No N/A
Superman No Yes No
Avatar Scale Yes Yes Yes
Without Avatar Scale No Yes Yes

3.4 Evaluation
In order to evaluate the accuracy of the perception of size within
the virtual environment, we implemented several binary questions
constructed as illustrated in Figure 3. The user is faced with a choice
between a small figure and a large one. Neither response is correct,
but one response is closer to the correct answer than the other.
The user is informed of this fact at the outset, and is requested to
make the choice that is closest to the correct answer. A response is
considered correct when it corresponds to the figure that is closest
to the true scale. When the contrary choice is made, it is considered
incorrect, and the error direction is defined as either under or over,
depending on which way the question is skewed. The list of the
eight questions and their correct and incorrect answers, as well as
error direction, is given in annex.

3.5 Experimental Protocol
The design of the VR experience allows users to navigate freely
within a virtual environment and to decide (with the exception of
the control groups) the amount of time that they spend in either
normal or Giant scale. At the outset, the user is given a short tutorial,
and for those in a group that allows scaling, is prompted to scale
up and down once so that they are aware of this capability.

Once inside the VR experience, the user is guided by prompts,
which invite the user to move through a series of checkpoints,
each indicated by a directional arrow and a column of blue light,
which is visible from either normal or Giant scales (Figure 2). Each
checkpoint is associated with a virtual object in the VE.

Once at a checkpoint, the user is reduced to normal scale and ori-
ented towards the object of interest at that checkpoint (or maintains
normal scale in the control group) so that there is an equivalence
of perspective between all experimental groups at this stage. The
user is asked to judge the scale of the object in question, following
the binary choice as previously described in Figure 3 according to
subsection 3.4.

4 EXPERIMENTAL RESULTS
4.1 Results
We conducted our study at the CERN main site located in Meyrin,
during the week-end of the CERN Open Days. During this period
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(a) From the Normal Perspective (b) From the Giant Perspective

Figure 2: Navigation Markers

Figure 3: Scale question prompt, showing the binary choice
between a small figure and a large one

we collected data from 342 participants, aged between 5 and 99,
running twelve Oculus Go headsets in one room simultaneously.

4.1.1 Data preprocessing. In order to eliminate inconsistent data
from the population, we applied three different filters. We removed
results from participants under the age of 18, participants that
did not complete the outdoor phase of the experience, and only
considered responses and time spent at Giant scale for the outdoor
part of the experiment, as the size scaling in indoor areas is non-
uniform and depends on the height of the room’s ceiling.

After filtering, the dataset contains 177 entries (96 male and 81
female).

Size accuracy was computed as the rate of correct answers over
total questions. Given that each question had a designated "correct"
answer and designated "error" (cf. annex) we were able to determine
a normalized error direction for the user’s size evaluation. A user
that judges the correct object size for every question would receive
an error direction of 0. Otherwise for each error we added +1 or -1
to the error trend depending on the direction of the error and then
divided it by the number of errors.

As results are drawn from discrete values we only considered
non parametric tests for the analysis.

Boxplot representations show the median (large red line in the
middle of the notch), the mean (small dotted blue line), first and
last quartile (colored area). Whiskers represent the contained popu-
lation between𝑄1− 1.5 · (𝑄3−𝑄1) up to𝑄3− 1.5 · (𝑄3−𝑄1) while
circles represent outliers (values beyond these whiskers). Finally,
notches represent the 95% confidence interval of the median.

4.1.2 H1. To assess that the direction of the error of the scale
estimation in control groups is lower than zero we started by ag-
gregating data from the "Control" group with the "Avatar Control"

group. Then we applied aWilcoxon test to reject the null hypothesis
that the evaluation error trend is not null. We obtained a 𝑝-value
of 0.86 meaning that we cannot consider a significant difference in
the obtained value from 0. Thus our data does not support the first
hypothesis of the paper.

4.1.3 H2. In order to determine the potential effect of Giant mode
we concatenated samples from the "Control" group with the "Avatar
Control" group (the two without access to Giant mode) in one
sample with the remaining groups in another sample. Then we
compared both samples using the Ranksum test and obtained a
𝑝-value of 0.17. As as result we find that Giant mode alone is not
sufficient to validate our second hypothesis.

4.1.4 H3. We used the same approach to check for a more pro-
nounced scale underestimation for groups where subjects were
provided with a virtual body (avatar). Thus we aggregated data
from "Avatar Scale" and "Avatar Control" into one sample and the
other groups in the comparative sample, obtaining a 𝑝-value of
0.040 (Ranksum) highlighting a significant difference between the
two samples for the direction of the evaluation error. To retrieve
which direction we performed a one-tailed Mann-Whitney U test
giving us a 𝑝-value of 0.016, indicating that groups with an avatar
presented a higher overestimation of virtual object sizes relative to
non-avatar groups, soundly rejecting our third hypothesis. A plot
of scores from these two samples are available in Figure 4.
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Figure 4: Comparison of normalized score of evaluation
error direction between groups with an avatar and those

without

4.1.5 H4. As above, to determine the effect from IPD on the under-
estimation of object size we concatenated data from "Avatar Scale"
and "Without Avatar Control" groups into a first sample and re-
maining ones into a comparative sample. With a 𝑝-value of 0.010 for
the Ranksum test we were able to highlight a significant difference
between these samples. As before, the direction was then assessed
using a one-tailed Mann-Whitney U test with a 𝑝-value of 0.004,
showing that the group with IPD scaling (with or without avatar)
tended to overestimate less the sizes of objects, thus validating our
fourth hypothesis. These results can be seen in Figure 5.

4.1.6 H5. To test our final hypothesis we aggregated data from all
groups where subjects experienced the Giant mode (i.e. all groups
except "Control" and "Avatar Control"). This sample was split into
two samples using the median of the time spent as Giant as a
delimiter, which was calculated as approximately 60 seconds.
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Figure 5: Comparison of normalized score of evaluation
error direction between groups with variable IPD and those

with a fixed IPD

The Ranksum test didn’t provide us a 𝑝-value low enough (0.21)
to highlight a significant difference between these two samples
which doesn’t allow us to validate our last hypothesis.

4.1.7 Other results.

Group - Size evaluation error trend. We also compared the dis-
tribution of error direction of the scale estimation between each
group using Ranksum tests (10 in total). Using the Bonferonni cor-
rection we observed one significant difference between "Control"
and "Avatar Scale" groups with an uncorrected 𝑝-value of 0.0022.
With a one-tailed Mann-Whitney U test with a 𝑝-value of 7.3 · 10−4
we found that subjects from the avatar scale group tended to over-
estimate object sizes more than ones from the control group. Plots
of these scores are available in Figure 6.
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Figure 6: Comparison of normalized score of evaluation
error direction between experimental groups

Grouped groups - Size evaluation error trend. In order to assess
some of the more complex interactions at play between study vari-
ables, we compared the distribution of error direction amongst
concatenated subgroups. Namely, we compared the avatar groups
"Avatar Control", "Avatar Scale" and the remaining non-avatar
groups using Ranksum tests (3 in total). Using the Bonferonni cor-
rection we observed one significant difference between the "Avatar
Scale" and the remaining groups with an uncorrected 𝑝-value of
0.010. With a one-tailed Mann-Whitney U test with a 𝑝-value of
0.004 we found that subjects from the avatar scale group tended
to overestimate object sizes more than ones from the remaining
groups, as shown in Figure 7.
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Figure 7: Comparison of normalized score of evaluation
error direction between concatenated groups

5 DISCUSSION AND CONCLUSION
Most studies on the estimation of scale in virtual environments have
been performed in highly controlled conditions. Our intention was
to take an increasingly popular navigation technique - traveling at
Giant scale - and assess whether it induces similar effects on scale
estimation when employed in an open, real-world, self-directed,
and feature-rich environment.

In contrast to our initial expectations, we showed that some
commonly observed effects did not always present themselves. For
instance, our first hypothesis assuming a general underestimation
of object size for control groups (i.e. no Giant size) wasn’t observed
in this experiment. While we were not able to demonstrate uni-
form scale underestimation, as might have been expected, we did
witness that users only showed about 60% size accuracy in their
judgements, even though there was no predictable error direction.
As presented earlier, it has been observed that in feature-rich en-
vironments [Henry and Furness 1993], size estimations may be
skewed by as little as 20 percent. Given the feature-richness of our
environment, and the wide range of self-direction allowed, it is per-
haps not surprising that users demonstrated a less one-directionally
skewed understanding of the scale of the environment.

Our second hypothesis, that scaling to Giant mode would skew
size estimation more strongly, was not observed either. While at
first glance this may seem surprising, given the large scale of the
Giant mode we employed, it is perhaps to be expected in an experi-
ence where the user continually shifts from small to large scale. In
addition, we forced users to return to 1:1 scale at every experimen-
tal question. While this ensured a uniform reference point, it meant
that those using Giant mode were suddenly asked to evaluate the
size of something from a vastly reduced relative scale, whereas
the users who had been navigating at 1:1 scale witnessed no such
change. The Giant mode users may have therefore interpreted their
Giant size as the reference, and the 1:1 size as a "shrunken" body.
This effect would have directly counteracted the underestimation
effect, obscuring the role of Giant mode in size estimation, or, more
importantly, showing that if a user can control their scale, per-
haps they are not subject to the same scale distortion as might be
expected.

Curiously, we showed the opposite of our third hypothesis, that
subjects provided with an avatar would show more size under-
estimation than those without. This effect may again be explained
by the construction of the experimental questions, as previously
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described. When the user is provided with an avatar, its presence
may accentuate this effect. In order to test this hypothesis, we com-
pared avatar subgroups which included this potential "shrinking"
effect (Avatar Scale), without it (Avatar Control) and the remain-
ing non-avatar groups. Indeed, we found that the Avatar Control
group, see Figure 7, tended to overestimate, while the remaining
groups did not demonstrate this effect, thus suggesting that our
explanation for this effect is plausible.

Our hypothesis that variable IPD would result in decreased over-
estimation was readily validated by our experiment. In practical
terms, this means that user scaling, as compared to the superman
technique, maintains a better estimation of the true scale of the
environment. This result may be unsurprising, given what we know
about binocular vision, but its verification nonetheless reinforces
the validity of the user-scaling approach to maintaining the most
natural navigation in a virtual environment.

Moreover, the two previous results above agree with the addi-
tional observation that there is a statistically significant difference
between the "Control" and "Avatar Scale" groups in terms of the
error direction of size evaluation, as both differ in terms of the two
relevant variables: IPD and the presence of an avatar.

Our last hypothesis, that the amount of time spent as a Giant
would have an effect on size estimation, was not demonstrated.
There may be a few reasons for that. First of all, users did not
spend a large amount of time in Giant mode, with an average of
approximately 47 seconds, out of an average total experience time
of more than 6.5 minutes (so only approximately 10 percent time
on average). Secondly, they were clustered quite narrowly around
the mean, so distinctions between users may be difficult to observe.
Lastly, the design of the experience, with constant switching from
one scale to another, may in fact counteract the effect of time. Once
a user becomes familiar with the two scales at play, they may not
need to be exposed for a longer period in order for it to have a
significant effect on their size judgement.

Conclusion. We observed trends which both contradicted and
confirmed some well-known phenomena. Users with variable IPD
showed a tendency to underestimate the VE scale compared to those
with fixed IPD (Giant vs. Superman), but the net results amounted
to over-estimation, rather than the underestimation taken to be the
norm for users in a VE. The presence of an avatar indeed increased
the magnitude of over-estimation, but again in the opposite sense
to that predicted by the literature. Indeed, only the presence of
both avatar and scalable IPD (Avatar scale group) provided results
statistically significant when compared to the controls.

We presented a plausible explanation for the results we observed,
namely an inversion of reference frame between normal and Giant,
which suggests further work that could be done to better understand
the variables at play in this novel navigation technique, particularly
in the real-world case of feature-rich, open, freely-navigable virtual
environments.

6 FUTUREWORK
The design of the experiment could be modified by including exper-
imental groups where the user is not forced to normal scale at the
time of experimental questioning, thereby examining the potential
inversion of reference effect that was discussed. Time-based effects

could also be examined by enforcing a specific amount of time in
Giant mode for different experimental groups.

The complex nature of the interactions between the key variables
examined here leaves ample room for re-imagining this experiment
in different forms. With the increasing interest in viable navigation
techniques in VR experiences, it seems that the utilisation of Giant
scale navigation may increase, and that its effect on user perception
and behaviour will become an increasingly interesting area for
study.
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BiP Break in Presence. 5
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IPQ I-group Presence Questionnaire. 131, 133

MoCap Motion Capture. iii, v–vii, 9, 11, 12, 17, 61, 97, 102, 112, 113, 115

Mocap Motion Capture. iii, vii, 9, 46

PI Place Illusion. 5

PSI Plausibility Illusion. 5, 114

PV Person Viewpoint. xi, xvi, 3, 46, 61, 101, 108, 111, 112, 114, 116, 130

SE spontaneous errors. 46, 47, 49, 51–53, 55
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