
Combinatory Array Logic with Sums
Rodrigo Raya

School of Computer and Communication Science, École Polytechnique Fédérale de Lausanne, Switzerland

Abstract
We prove an NP upper bound on a theory of integer-indexed integer-valued arrays that extends combi-
natory array logic with an ordering relation on the index set and the ability to express sums of elements.
We compare our fragment with seven other fragments in the literature in terms of their expressiveness
and computational complexity.

Keywords
array theories, computational complexity, model theory

1. Introduction

Decision procedures for array theories have been widely investigated in the last decades
motivated by their application in software verification. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] Despite
the variety of array theories available mainstream SMT solvers such as Z3 [13] and the CVC
family [14] focus on the theory of combinatory array logic [6].

The reason why these solvers focus on this particular fragment may lie on the fact that it
retains completeness guarantees for satisfiability checking of quantifier-free formulae even
in the presence of model-based theory combination [15] with other decidable theories. This
property has been exploited to develop verification algorithms for imperative programs that
report counterexamples [16]. It is thus natural to ask to what extent the NP complexity upper
bound proved by de Moura and Bjorner extends when combining combinatory array logic to
other theories of interest.

In [12], we lifted the restrictions mentioned in [6] showing that combinatory array logic can
be extended with a cardinality operator while still retaining a NP complexity upper bound. In
essence, the results of [12] can be seen as a decomposition theorem in the style of Feferman
and Vaught [17], with the remarkable difference that the results hold for the complexity class
NP rather than for the decidable class. In particular, we proved that the existential first-order
theory of a power structure [18] whose index set contains the equicardinality operator can
be decomposed into the existential first-order theory of the elements and the weak monadic
second-order theory of the indices.

This paper builds on the observation that multiset theories studied for instance in [19], are
representable in combinatory array logic since the basic operations on multisets are pointwise
operations on arrays of natural numbers. We then leverage the techniques of [20] to lift a

Envelope-Open rodrigo.raya@epfl.ch (R. Raya)
Orcid 0000-0002-0866-9257 (R. Raya)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:rodrigo.raya@epfl.ch
https://orcid.org/0000-0002-0866-9257
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org

restriction mentionned in [6]: that cardinalities of multisets cannot be encoded in combinatory
array logic. When viewed as arrays of integers, the cardinalities of multisets correspond to the
sum of the elements in the arrays, a very useful specification construct in applications such
as the verification of smart contracts [21]. We then show that we can combine the resulting
fragment with classical combinatory array logic and that the satisfiability problem of the
resulting combination is in the complexity class NP.
Organisation of the paper. Section 2 introduces the logical theories that we use in our

developments, previously obtained theory combination results and fixes notation for the re-
maining of the paper. Section 3 describes the language tackled and the strategy used to prove
the complexity bound. Section 6 gives the extension with sums and proves the NP-complexity
result. Section 7 compares the resulting theory with other seven existing array theories in the
literature. Section 8 concludes the paper.

2. Preliminaries

2.1. Basic Logical Theories

Our result builds upon the quantifier-free theory of Boolean algebra and Presburger arithmetic
[22], QFBAPA, which has been studied in the context of data structure verification [23]. The
syntax of QFBAPA is given in Figure 1. The meaning of the syntax is as follows. 𝐹 presents the
Boolean structure of the formula, 𝐴 stands for the top-level constraints, 𝐵 gives the Boolean
restrictions and 𝑇 the Presburger arithmetic terms. 𝒰 represents the universal set

𝐹 ∶∶= 𝐴 | 𝐹1 ∧ 𝐹2 | 𝐹1 ∨ 𝐹2 | ¬𝐹
𝐴 ∶∶= 𝐵1 = 𝐵2 | 𝐵1 ⊆ 𝐵2 | 𝑇1 = 𝑇2 | 𝑇1 ≤ 𝑇2 | 𝐾 dvd 𝑇
𝐵 ∶∶= 𝑥 | ∅ |𝒰 | 𝐵1 ∪ 𝐵2 | 𝐵1 ∩ 𝐵2 | 𝐵𝑐

𝑇 ∶∶= 𝑘 | 𝐾 | 𝑇1 + 𝑇2 | 𝐾 ⋅ 𝑇 | |𝐵|
𝐾 ∶∶= … | − 2 | − 1 | 0 | 1 | 2 | …

Figure 1: QFBAPA’s syntax

The satisfiability problem of this logic is reducible to propositional satisfiability in polynomial
time.

Theorem 1 ([22]). The satisfiability problem for QFBAPA is in NP.

2.2. Previously Obtained Combination Results

In [12], we observed that combinatory array logic [6] can be encoded in the existential fragment
of the first-order theory of a power structure ℳ𝐼 [18], i.e. a structure whose elements are
functions from an index set 𝐼 to a carrier set 𝑀 and where the function and relation symbols are
interpreted point-wise. We proved the following result

Theorem 2 ([12]). 𝑇ℎ∃∗(ℳ) ∈ NP if and only if 𝑇ℎ∃∗(ℳ𝐼) ∈ NP.

We then extended this language with the ability to express cardinalities of sets of indices,
which resulted in a new theory termed QFBAPAI (interpreted QFBAPA) and whose formulae
are of the form

∃𝑐1, … , 𝑐𝑚.∃𝑥1, … , 𝑥𝑛.

𝐹 (𝑆1, … , 𝑆𝑘) ∧
𝑘
⋀
𝑖=1

𝑆𝑖 = {𝑟 ∈ 𝐼 ∣ 𝜑𝑖(𝑥1(𝑟), … , 𝑥𝑛(𝑟), 𝑐1, … , 𝑐𝑚)}

where the letters 𝑐𝑖 represent constants, the letters 𝑥𝑖 represent power structure variables and 𝜑𝑖
are formulae interpreted over the theory of the elements. By analogy to Theorem 2, we proved
that

Theorem 3 ([12]). 𝑇ℎ∃∗(ℳ) ∈ NP if and only if QFBAPAI ∈ NP.

Finally, we showed how to encode combinatory array logic (CAL) in QFBAPAI with a worst-
case log-quadratic increase in formula size.

Proposition 4 ([12]). A CAL formula 𝜓 can be encoded in QFBAPAI as a formula of size
𝑂(|𝜓 |2 log2(|𝜓 |)).

In this paper, we reuse this encoding and show that in the target language, one may also
support a summation operator. This allows to effectively support such summation operators in
the language of combinatory array logic.

2.3. Further Notations for the Rest of the Paper

Tuples and powers. We will abbreviate tuples (𝑥1, … , 𝑥𝑚) as 𝑥. We fix a structure ℳ for the
contents of power structure variables and an index set 𝐼 for the indices. If 𝑥 denotes a power
structure variable, we will denote by 𝑥(𝑛) the 𝑛-th column of 𝑥(𝑛), i.e. the tuple (𝑥1(𝑛), … , 𝑥𝑚(𝑛)).
Set and multiset constructions. As usual, set comprehension is denoted with curly braces
{𝑖|𝜑(𝑖)} where 𝜑𝑖 is a formula written in first-order logic. Multiset comprehension is written by
L𝑖|𝜑(𝑖)M where 𝜑 is a formula written in first-order logic.

Given a set of integers 𝐴 and an integer 𝑚 ∈ ℕ, its 𝑚-th sum iteration [24] is the set

𝐴𝑚 = {𝑢 | 𝑥1, … , 𝑥𝑚 ∈ 𝐴.𝑢 =
𝑚
∑
𝑖=1

𝑥𝑖}

Similarly, the arbitrary sum iteration is the set

𝐴∗ = {𝑢 | ∃𝑚 ≥ 0, 𝑥1, … , 𝑥𝑚 ∈ 𝐴.𝑢 =
𝑚
∑
𝑖=1

𝑥𝑖}

Cardinalities of sets andmultisets. If 𝑆 is a set then |𝑆| is the number of elements in 𝑆 and if 𝑆
is a multiset then |𝑆| is the number of elements in 𝑆 counted with the corresponding multiplicity.

3. Overview of the Reduction Procedure

Our decision procedure works by reduction to QFBAPAI, that is, we perform a sequence
of transformations on the input formula which preserve equivalence, until we arrive to an
equivalent formula in the language of interpreted QFBAPA. Note that similar ideas appear in
the literature under the name of BAPA reduction [25].

Our first step is thus defining the input language to be transformed into QFBAPAI.

Definition 5. The theory QFBAPA-Power-Sum consists of formulae of the form

𝐹(𝑆1, … , 𝑆𝑘, 𝜎) ∧
𝑘
⋀
𝑖=1

𝑆𝑖 = {𝑖 ∈ 𝐼 |𝜑𝑖(𝑐(𝑖))} ∧ 𝜎 = ∑
𝑖∈𝐼

L𝑐(𝑖) | 𝜑0(𝑐(𝑖))M (1)

where 𝐹 is a formula fromQFBAPA, 𝜑0, … , 𝜑𝑘 are formulae from a logic whose satisfiability problem
is decidable in NP and 𝑐 is a tuple of arrays of natural numbers.

Note that the assumption of the formulae 𝜑0, … , 𝜑𝑘 having a satisfiability problem in NP can
be removed [26, 27]. But this assumption is standard in satisfiability modulo theories solvers.

Our reduction will first transform the sum operator into the finite power of a set (see Sec-
tion 2.3). Then, this finite power will be converted into a formula of Presburger arithmetic.
The resulting constraint will be in the language of QFBAPAI and by the results in [12, 28] its
satisfiability problem will be decidable in NP.

4. Elimination of the Summation Operator

We write equation 1 as:
𝐻(𝑆1, … , 𝑆𝑘, 𝑐, 𝜎) ∧ 𝜎 = ∑

𝑖∈𝐼
L𝑐(𝑖)|𝜑0(𝑐(𝑖)M

For handling the summation construct, we will adapt some of the techniques developed in [19,
Chapter 2] to the case where, as in the case of combinatory array logic, the index set is arbitrary.

Proposition 6 (Multiset elimination). The formula

𝐻(𝑆1, … , 𝑆𝑘, 𝑐, 𝜎) ∧ 𝜎 = ∑
𝑖∈𝐼

L𝑐(𝑖) | 𝜑0(𝑐(𝑖))M (2)

and the formula

𝐻(𝑆1, … , 𝑆𝑘, 𝑐, 𝜎) ∧ ∃𝑥.𝜎 ∈ {𝑘 | 𝜑0(𝑘)}𝑥 ∧ ((𝑥 < |𝐼 | ∧ ∃𝑐0.¬𝜑0(𝑐0)) ∨ 𝑥 = |𝐼 |) (3)

are equivalent.

Proof. ⇒) If 2) is satisfied there are 𝜎, 𝑆1, … , 𝑆𝑘 and 𝑐 such that:

𝐻(𝑆1, … , 𝑆𝑘, 𝑐, 𝜎) ∧ 𝜎 = ∑
𝑖∈𝐼

L𝑐(𝑖) | 𝜑0(𝑐(𝑖))M

We claim that 𝜎 satisfies formula 3). By hypothesis, 𝐻(𝑆1, … , 𝑆𝑘, 𝑐, 𝜎) is true. Moreover, from the
equality 𝜎 = ∑

𝑖∈𝐼
L𝑐(𝑖) | 𝜑(𝑐(𝑖))M follows that 𝜎 is the sum of some number 𝑥 ∈ ℕ of terms 𝑐 satisfying

𝜑(𝑐), since 𝜎 is a natural number. Thus, 𝜎 ∈ {𝑘 | 𝜑(𝑘)}𝑥. If 𝑥 = |𝐼 | we are done. Otherwise, 𝑥 < |𝐼 |,
and it must be that the remaining positions of 𝑐 are filled with values 𝑐0 that do not satisfy 𝜑0.
Thus, ∃𝑐0.¬𝜑0(𝑐0).
⇐) If formula 3) is satisfied then there are values 𝜎, 𝑆1, … , 𝑆𝑘, 𝑥 such that:

𝐻(𝑆1, … , 𝑆𝑘, 𝑐, 𝜎) ∧ ∃𝑥.𝜎 ∈ {𝑘 | 𝜑0(𝑘)}𝑥 ∧ ((𝑥 < |𝐼 | ∧ ∃𝑐0.¬𝜑0(𝑐0)) ∨ 𝑥 = |𝐼 |)

It follows that there is a list of 𝑥 elements 𝑐𝑖 such that 𝜎 = ∑𝑥
𝑖=1 𝑐𝑖 and such that 𝜑𝑖(𝑐𝑖) holds for

each 𝑖 ∈ {1, … , 𝑥}. If 𝑥 = |𝐼 | then we define

𝑐(𝑖) = {𝑘𝑖 if 1 ≤ 𝑖 ≤ 𝑥

Otherwise, 𝑥 < |𝐼 | and by hypothesis, there exist 𝑐0 such that ¬𝜑(𝑐0). In this case, we define:

𝑐(𝑖) = {
𝑐𝑖 if 1 ≤ 𝑖 ≤ 𝑥
𝑐0 otherwise

It is immediate that 𝜎, 𝑆1, … , 𝑆𝑘 and 𝑐 satisfy 𝐻(𝑆1, … , 𝑆𝑘, 𝑐, 𝜎) ∧ 𝜎 = ∑
𝑖∈𝐼

L𝑐(𝑖) | 𝜑0(𝑐(𝑖))M.

Note that, in the proof of Proposition 6 it is key that the values of 𝑐 are natural numbers,
because then, by the finiteness of the total sum value 𝜎, we can deduce that there are a finite
number of addends 𝑥. If the values of the arrays were arbitrary integers we could have an array
whose 𝑖-th entry was 𝑥[𝑖] = (−1)𝑖 for each 𝑖 ∈ ℕ. Here the sum is finite but the number of
addends is infinite.

On the other hand, observe that this is not actually limiting since we could impose a finiteness
restriction on L𝑐(𝑖) | 𝜑(𝑐(𝑖))M. But we will continue to assume that the entries are natural numbers
to simplify the presentation.

Finally, note the term 𝑥 = |𝐼 | in the formula formula 3) can be removed if |𝐼 | is infinite, since
𝑥 is always a finite value.

5. Elimination of the Exponent Cardinalities

So far, we have transformed our formula into the form

𝐻(𝑆1, … , 𝑆𝑘, 𝑐, 𝜎) ∧ ∃𝑥.𝜎 ∈ {𝑘 | 𝜑0(𝑘)}𝑥 ∧ ((𝑥 < |𝐼 | ∧ ∃𝑐0.¬𝜑0(𝑐0)) ∨ 𝑥 = |𝐼 |)

distributing the existential quantifiers, we have equivalently

𝐻(𝑆1, … , 𝑆𝑘, 𝑐, 𝜎) ∧ ∃𝑥, 𝑐0.𝜎 ∈ {𝑘 | 𝜑0(𝑘)}𝑥 ∧ ((𝑥 < |𝐼 | ∧ ¬𝜑0(𝑐0)) ∨ 𝑥 = |𝐼 |)

Next, we show that

Proposition 7. The formula ∃𝑥, 𝑐0.𝜎 ∈ {𝑘|𝜑0(𝑘)}𝑥∧𝜙(𝑥, 𝑐0)where 𝜙(𝑥, 𝑐0) is a formula of quantifier-
free Presburger arithmetic is equivalent to a polynomial sized quantifier-free Presburger arithmetic
formula 𝜓(𝜎).

The proof is essentially that of [19, Theorem 2.23] with the necessary adaptations to account
for the integer variables on the exponents. We use the left to right implication to find what
should the formula 𝜓 be and the right to left implication to confirm that it is indeed equivalent.

⇒) If formula 3) is satisfied then we first use the semilinear normal form theorem [19, Theo-
rem 2.13] to express the condition 𝜑0(𝑘) equivalently as

∃𝜆11, … , 𝜆𝑚𝑞𝑚 .
𝑚
⋁
𝑖=1

(𝑘 = 𝑎𝑖 +
𝑞𝑖
∑
𝑗=1

𝜆𝑖𝑗𝑏𝑖𝑗) (4)

where 𝑚, 𝑞1, … , 𝑞𝑚 ∈ ℕ and vectors 𝑎𝑖, 𝑏𝑖𝑗 ∈ ℕ𝑛 for 1 ≤ 𝑗 ≤ 𝑞𝑖, 1 ≤ 𝑖 ≤ 𝑚, ‖𝑎𝑖‖1, ‖𝑏𝑖𝑗‖1 ≤ 2𝑝(𝑠) and 𝑝
is a polynomial. Next, we eliminate the star operator using [24, Proposition 2], obtaining that
the condition 𝜎 ∈ {𝑘 ∣ 𝜑0(𝑘)}𝑥 is equivalent to

∃𝜇, 𝜆.𝜎 =
𝑞
∑
𝑖=1

(𝜇𝑖𝑎𝑖 +
𝑞𝑖
∑
𝑗=1

𝜆𝑖𝑗𝑏𝑖𝑗) ∧
𝑞
⋀
𝑖=1

(𝜇𝑖 = 0 ⟹
𝑞𝑖
∑
𝑗=1

𝜆𝑖𝑗 = 0) ∧ 𝑥 =
𝑞
∑
𝑖=1

𝜇𝑖 (5)

We express the resulting vector 𝜎with polynomiallymany generators using [19, Theorem 2.20]
and [19, Lemma 2.21]. We get that (5) is equivalent to

∃𝜆, 𝑣.𝜎 =
𝑝(𝑠)
∑
𝑖=1

𝜆𝑖𝑣𝑖 ∧
𝑝(𝑠)
⋀
𝑖=1

𝜑0(𝑣𝑖)

where 𝑝 is a polynomial in the size 𝑠 of the original formula. Using the results of [19, The-
orem 2.22] and [19, Theorem 2.23], we can further eliminate the product 𝜆𝑖𝑣𝑖. The resulting
formula is of the form

∃𝜆, 𝑣.𝜎 =
𝑝(𝑠)
∑
𝑖=1

𝑡𝑖 ∧
𝑝(𝑠)
⋀
𝑖=1

𝜑0(𝑣𝑖) ∧ 𝜙(𝑐0, 𝑥)

where 𝑡𝑖 = ∑𝑡(𝑠)
𝑗=0 2𝑗𝑖𝑡𝑒(𝜆𝑖𝑗, 𝑥𝑖, 0) where 𝑡(𝑠) is a polynomial in the size 𝑠 of the original formula and

𝜆𝑖𝑗 is the 𝑗-th bit of the number 𝜆𝑖. This formula is in quantifier-free Presburger arithmetic and
its equivalent to the original so we conclude by setting

∃𝜆, 𝑣, 𝑐0, 𝑥.𝜓 (𝜎) =
𝑝(𝑠)
∑
𝑖=1

𝑡𝑖 ∧
𝑝(𝑠)
⋀
𝑖=1

𝜑0(𝑣𝑖) ∧ 𝜙(𝑐0, 𝑥) (6)

By construction, a solution of formula (6) readily gives a solution of the original formula.

6. Combination with Power Structures

Using the previous reductions, we have arrived at a formula of the form.

𝐻(𝑆1, … , 𝑆𝑘, 𝑐, 𝜎) ∧ 𝜓 (𝜎)

However, this formula falls in the fragmentQFBAPAI studied in [12, 28], and thus we conclude

Theorem 8. The complexity of deciding satisfiability of QFBAPA-Power-Sum is in NP.

7. Comparison with other Array Theories

Traditionally, research on decision procedures for array theories has focused on providing
concrete algorithms for syntactically presented theories. As a result, works on, in particular,
combinatory array logic, are often unaware of each other which results in duplicated engineering
work and the lack of a comparison between potentially different implementation techniques.
Meseguer [29] has also expressed similar remarks about syntactically presented theories.

One advantage of our semantic approach is that one has a clear comparison criteria between
the different theories proposed in the literature. Figure 2 lists some related theories of arrays in
the literature ordered by expressivity. The satisfiability problem of these logics is in NP for all
but the array fold logic (AFL) fragment which in general lies in PSPACE.

An important characteristic of these theories is the intended interpretation of the index and
element set theories. As presented in [10, 11] it could seem that the flat array subfragment and
the Π-logic theory are restricted to integer indices or elements. The results on QFBAPAI show
that this restriction is not necessary. However, RegExp-QFBAPA-Power already requires the
index set to be the integers numbers and RegExp-QFBAPA-Power-Sum and AFL require both
the index and element set to be the integers.

It seems that sum constraints were of interest to the authors of [9] since the repository of the
tool AFOLDER [30] contains some examples using sums. However, array fold logic as presented
in [9] cannot express sums since counters can only be updated adding constants. Thus, to the
best of our knowledge, the theory of arrays that we present in this paper is the first array theory
whose satisfiability problem is decidable in non-deterministic polynomial time and is able to
express sum constraints.

RegExp-QFBAPA-Power-Sum AFL

RegExp-QFBAPA-Power

QFBAPAI

Combinatory Array Logic Flat Array Subfragment

Extensional Theory of Arrays #Π-logic

Figure 2: Treated theories of arrays sorted by expressivity.

Although we have not focused our discussion on applications it seems that users of combina-
tory array logic (for instance [31, 32]) could benefit of support for sum constraints in a variety
of scenarios. One possible application of such constraints could be in the verification of smart
contracts [33, 34, 21, 35, 36].

Finally, it is worth noting that there has been recent progress in the automation of linear
arithmetic with stars [37]. An adaption of those techniques could be a good starting point for
the implementation of decision procedures for QFBAPA-Power-Sum.

8. Conclusion

We have described an extension of combinatory array logic that is able to express sums of
elements and proved that the associated satisfiability problem of the fragment lies in the
NP complexity class. Our result combines the method of [12] with those in [38] and [19,
Chapter 2]. Our focus has been on the semantic characterisation of the fragments rather than in
providing deterministic decision procedures. Future work could include exploring the practical
implementation of the fragment as well as extending the classification of Figure 2 to other
theories considered in the literature.

More broadly, our paper completes the observations made in [12, 28, 26, 27, 39] that the
calculus of data structures can be extended to support the verification of structures holding data,
as opposed to sets and multisets, by demonstrating how other aggregators, besides cardinalities,
can be supported by the calculus. In unpublished work [40] Suter and Szajkó have discussed
the introduction of other operators such as minimum and maximum, which further confirms
our thesis that the calculus is an adequate framework for designing decision procedures for the
automatic verification of real-world data structures.

References

[1] James Cornelius King, A program verifier, Ph.D. thesis, Carnegie-Mellon University, Pitts-
burgh Pennsylvania USA, 1969. URL: https://apps.dtic.mil/sti/citations/AD0699248, section:
Technical Reports.

[2] A. Stump, C. Barrett, D. Dill, J. Levitt, A decision procedure for an extensional theory
of arrays, in: Proceedings 16th Annual IEEE Symposium on Logic in Computer Science,
IEEE Comput. Soc, Boston, MA, USA, 2001, pp. 29–37. URL: http://ieeexplore.ieee.org/
document/932480/. doi:10.1109/LICS.2001.932480 .

[3] A. R. Bradley, Z. Manna, H. B. Sipma, What’s Decidable About Arrays?, in: Verification,
Model Checking, and Abstract Interpretation, Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2006, pp. 427–442. doi:10.1007/11609773_28 .

[4] S. Ghilardi, E. Nicolini, S. Ranise, D. Zucchelli, Decision procedures for extensions of the
theory of arrays, Annals of Mathematics and Artificial Intelligence 50 (2007) 231–254.
URL: https://doi.org/10.1007/s10472-007-9078-x. doi:10.1007/s10472- 007- 9078- x .

[5] P. Habermehl, R. Iosif, T. Vojnar, What Else Is Decidable about Integer Arrays?, in:
Foundations of Software Science and Computational Structures, Lecture Notes in Computer

https://apps.dtic.mil/sti/citations/AD0699248
http://ieeexplore.ieee.org/document/932480/
http://ieeexplore.ieee.org/document/932480/
http://dx.doi.org/10.1109/LICS.2001.932480
http://dx.doi.org/10.1007/11609773_28
https://doi.org/10.1007/s10472-007-9078-x
http://dx.doi.org/10.1007/s10472-007-9078-x

Science, Springer, Berlin, Heidelberg, 2008, pp. 474–489. doi:10.1007/978- 3- 540- 78499- 9_
33 .

[6] L. de Moura, N. Bjorner, Generalized, efficient array decision procedures, in: 2009 Formal
Methods in Computer-Aided Design, IEEE, Austin, TX, 2009, pp. 45–52. doi:10.1109/FMCAD.
2009.5351142 .

[7] F. Alberti, S. Ghilardi, N. Sharygina, Booster: An Acceleration-Based Verification Frame-
work for Array Programs, in: F. Cassez, J.-F. Raskin (Eds.), Automated Technology for
Verification and Analysis, Lecture Notes in Computer Science, Springer International
Publishing, Cham, 2014, pp. 18–23. doi:10.1007/978- 3- 319- 11936- 6_2 .

[8] F. Alberti, S. Ghilardi, N. Sharygina, Decision Procedures for Flat Array Properties, Journal
of Automated Reasoning 54 (2015) 327–352. doi:10.1007/s10817- 015- 9323- 7 .

[9] P. Daca, T. A. Henzinger, A. Kupriyanov, Array Folds Logic, in: Computer Aided Verifica-
tion, Lecture Notes in Computer Science, Springer International Publishing, Cham, 2016,
pp. 230–248. doi:10.1007/978- 3- 319- 41540- 6_13 .

[10] K. v. Gleissenthall, N. Bjørner, A. Rybalchenko, Cardinalities and universal quantifiers for
verifying parameterized systems, in: Proceedings of the 37th ACMSIGPLANConference on
Programming Language Design and Implementation, PLDI ’16, Association for Computing
Machinery, New York, NY, USA, 2016, pp. 599–613. URL: https://doi.org/10.1145/2908080.
2908129. doi:10.1145/2908080.2908129 .

[11] F. Alberti, S. Ghilardi, E. Pagani, Cardinality constraints for arrays (decidability results
and applications), Formal Methods in System Design 51 (2017) 545–574. URL: https:
//doi.org/10.1007/s10703-017-0279-6. doi:10.1007/s10703- 017- 0279- 6 .

[12] R. Raya, V. Kunčak, NP Satisfiability for Arrays as Powers, in: Verification, Model Checking,
and Abstract Interpretation, Lecture Notes in Computer Science, Springer International
Publishing, Cham, 2022, pp. 301–318. URL: https://link.springer.com/chapter/10.1007/
978-3-030-94583-1_15. doi:10.1007/978- 3- 030- 94583- 1_15 .

[13] L. de Moura, N. Bjørner, Z3: An Efficient SMT Solver, in: Tools and Algorithms for
the Construction and Analysis of Systems, volume 4963 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 337–340. doi:10.1007/
978- 3- 540- 78800- 3_24 .

[14] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed, M. Mo-
hamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli,
Y. Zohar, cvc5: A Versatile and Industrial-Strength SMT Solver, in: D. Fisman, G. Rosu
(Eds.), Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science, Springer International Publishing, Cham, 2022, pp. 415–442.
doi:10.1007/978- 3- 030- 99524- 9_24 .

[15] L. de Moura, N. Bjørner, Model-based Theory Combination, Electronic Notes in Theoretical
Computer Science 198 (2008) 37–49. URL: https://linkinghub.elsevier.com/retrieve/pii/
S1571066108002946. doi:10.1016/j.entcs.2008.04.079 .

[16] G. S. Schmid, Scaling Language Features for Program Verification, Ph.D. thesis, EPFL,
Lausanne, 2022. doi:10.5075/epfl- thesis- 8030 .

[17] S. Feferman, R. Vaught, The first order properties of products of algebraic systems,
Fundamenta Mathematicae 47 (1959) 57–103.

[18] W. Hodges, Model Theory, Encyclopedia of Mathematics and its Applications, Cambridge

http://dx.doi.org/10.1007/978-3-540-78499-9_33
http://dx.doi.org/10.1007/978-3-540-78499-9_33
http://dx.doi.org/10.1109/FMCAD.2009.5351142
http://dx.doi.org/10.1109/FMCAD.2009.5351142
http://dx.doi.org/10.1007/978-3-319-11936-6_2
http://dx.doi.org/10.1007/s10817-015-9323-7
http://dx.doi.org/10.1007/978-3-319-41540-6_13
https://doi.org/10.1145/2908080.2908129
https://doi.org/10.1145/2908080.2908129
http://dx.doi.org/10.1145/2908080.2908129
https://doi.org/10.1007/s10703-017-0279-6
https://doi.org/10.1007/s10703-017-0279-6
http://dx.doi.org/10.1007/s10703-017-0279-6
https://link.springer.com/chapter/10.1007/978-3-030-94583-1_15
https://link.springer.com/chapter/10.1007/978-3-030-94583-1_15
http://dx.doi.org/10.1007/978-3-030-94583-1_15
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-030-99524-9_24
https://linkinghub.elsevier.com/retrieve/pii/S1571066108002946
https://linkinghub.elsevier.com/retrieve/pii/S1571066108002946
http://dx.doi.org/10.1016/j.entcs.2008.04.079
http://dx.doi.org/10.5075/epfl-thesis-8030

University Press, Cambridge, 1993.
[19] R. Piskac, Decision Procedures for Program Synthesis and Verification, Ph.D. thesis, EPFL,

Lausanne, 2011.
[20] R. Piskac, V. Kunčak, Linear Arithmetic with Stars, in: Computer Aided Verification,

Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2008, pp. 268–280. doi:10.
1007/978- 3- 540- 70545- 1_25 .

[21] N. Elad, S. Rain, N. Immerman, L. Kovács, M. Sagiv, Summing up Smart Transitions,
in: A. Silva, K. R. M. Leino (Eds.), Computer Aided Verification, Lecture Notes in Com-
puter Science, Springer International Publishing, Cham, 2021, pp. 317–340. doi:10.1007/
978- 3- 030- 81685- 8_15 .

[22] V. Kunčak, M. Rinard, Towards Efficient Satisfiability Checking for Boolean Algebra with
Presburger Arithmetic, in: Automated Deduction – CADE-21, Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 2007, pp. 215–230. doi:10.1007/978- 3- 540- 73595- 3_
15 .

[23] V. Kunčak, Modular Data Structure Verification, Ph.D. thesis, Massachusetts Institute of
Technology, 2007.

[24] D. Lugiez, S. D. Zilio, Multitrees Automata, Presburger’s Constraints and Tree Logics,
Technical Report 08-2002, Laboratoire d’Informatique Fondamentale de Marseille, 2002.

[25] T. Wies, R. Piskac, V. Kunčak, Combining Theories with Shared Set Operations, in:
Frontiers of Combining Systems, Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 2009, pp. 366–382. doi:10.1007/978- 3- 642- 04222- 5_23 .

[26] R. Raya, J. Hamza, V. Kunčak, On the Complexity of Convex and Reverse Convex Pre-
quadratic Constraints, in: EPiC Series in Computing, volume 94, EasyChair, 2023, pp.
350–368. URL: https://easychair.org/publications/paper/T6kG. doi:10.29007/wdd7 , iSSN:
2398-7340.

[27] R. Raya, The Complexity of Checking Non-Emptiness in Symbolic Tree Automata, 2023.
URL: http://arxiv.org/abs/2311.05250, arXiv:2311.05250 [cs].

[28] R. Raya, V. Kunčak, On algebraic array theories, Journal of Logical and Algebraic Methods
in Programming 136 (2024) 100906. URL: https://www.sciencedirect.com/science/article/
pii/S2352220823000603. doi:https://doi.org/10.1016/j.jlamp.2023.100906 .

[29] J. Meseguer, Lecture Notes on Topics in Automated Reasoning, 2017.
[30] pdaca, AFolder - Solver for Array Folds Logic., 2022. URL: https://github.com/pdaca/

AFolder, original-date: 2016-03-22T15:29:30Z.
[31] G. S. Schmid, V. Kunčak, Generalized Arrays for Stainless Frames, in: Verification, Model

Checking, and Abstract Interpretation, Lecture Notes in Computer Science, Springer
International Publishing, Cham, 2022, pp. 332–354. doi:10.1007/978- 3- 030- 94583- 1_17 .

[32] S. Pirelli, A. Valentukonytė, K. Argyraki, G. Candea, Automated Verification of Network
Function Binaries, USENIX Association, Renton, WA, 2022, pp. 585–600. URL: https:
//www.usenix.org/conference/nsdi22/presentation/pirelli.

[33] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, M. Vechev, VerX: Safety
Verification of Smart Contracts, in: 2020 IEEE Symposium on Security and Privacy (SP),
2020, pp. 1661–1677. doi:10.1109/SP40000.2020.00024 , iSSN: 2375-1207.

[34] E. Albert, J. Correas, P. Gordillo, G. Román-Díez, A. Rubio, GASOL: Gas Analysis and
Optimization for Ethereum Smart Contracts, in: Tools and Algorithms for the Con-

http://dx.doi.org/10.1007/978-3-540-70545-1_25
http://dx.doi.org/10.1007/978-3-540-70545-1_25
http://dx.doi.org/10.1007/978-3-030-81685-8_15
http://dx.doi.org/10.1007/978-3-030-81685-8_15
http://dx.doi.org/10.1007/978-3-540-73595-3_15
http://dx.doi.org/10.1007/978-3-540-73595-3_15
http://dx.doi.org/10.1007/978-3-642-04222-5_23
https://easychair.org/publications/paper/T6kG
http://dx.doi.org/10.29007/wdd7
http://arxiv.org/abs/2311.05250
https://www.sciencedirect.com/science/article/pii/S2352220823000603
https://www.sciencedirect.com/science/article/pii/S2352220823000603
http://dx.doi.org/https://doi.org/10.1016/j.jlamp.2023.100906
https://github.com/pdaca/AFolder
https://github.com/pdaca/AFolder
http://dx.doi.org/10.1007/978-3-030-94583-1_17
https://www.usenix.org/conference/nsdi22/presentation/pirelli
https://www.usenix.org/conference/nsdi22/presentation/pirelli
http://dx.doi.org/10.1109/SP40000.2020.00024

struction and Analysis of Systems, volume 12079, Springer International Publishing,
Cham, 2020, pp. 118–125. URL: http://link.springer.com/10.1007/978-3-030-45237-7_7.
doi:10.1007/978- 3- 030- 45237- 7_7 , series Title: Lecture Notes in Computer Science.

[35] L. Alt, M. Blicha, A. E. J. Hyvärinen, N. Sharygina, SolCMC: Solidity Compiler’s Model
Checker, in: S. Shoham, Y. Vizel (Eds.), Computer Aided Verification, Lecture Notes in
Computer Science, Springer International Publishing, Cham, 2022, pp. 325–338. doi:10.
1007/978- 3- 031- 13185- 1_16 .

[36] R. Otoni, M. Marescotti, L. Alt, P. Eugster, A. Hyvärinen, N. Sharygina, A Solicitous
Approach to Smart Contract Verification, ACM Transactions on Privacy and Security 26
(2023) 15:1–15:28. URL: https://doi.org/10.1145/3564699. doi:10.1145/3564699 .

[37] M. Levatich, N. Bjørner, R. Piskac, S. Shoham, Solving LIA* Using Approximations, in:
D. Beyer, D. Zufferey (Eds.), Verification, Model Checking, and Abstract Interpretation,
Lecture Notes in Computer Science, Springer International Publishing, Cham, 2020, pp.
360–378. doi:10.1007/978- 3- 030- 39322- 9_17 .

[38] R. Piskac, V. Kunčak, Decision Procedures for Multisets with Cardinality Constraints, in:
Verification, Model Checking, and Abstract Interpretation, Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 2008, pp. 218–232. doi:10.1007/978- 3- 540- 78163- 9_
20 .

[39] R. Raya, Decision Procedures for Power Structures, Ph.D. thesis, EPFL, 2023.
[40] A. Szajkó, P. Suter, Complete Procedures for Ordered Data Structures, Technical Report,

2012.

http://link.springer.com/10.1007/978-3-030-45237-7_7
http://dx.doi.org/10.1007/978-3-030-45237-7_7
http://dx.doi.org/10.1007/978-3-031-13185-1_16
http://dx.doi.org/10.1007/978-3-031-13185-1_16
https://doi.org/10.1145/3564699
http://dx.doi.org/10.1145/3564699
http://dx.doi.org/10.1007/978-3-030-39322-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_20
http://dx.doi.org/10.1007/978-3-540-78163-9_20

	1 Introduction
	2 Preliminaries
	2.1 Basic Logical Theories
	2.2 Previously Obtained Combination Results
	2.3 Further Notations for the Rest of the Paper

	3 Overview of the Reduction Procedure
	4 Elimination of the Summation Operator
	5 Elimination of the Exponent Cardinalities
	6 Combination with Power Structures
	7 Comparison with other Array Theories
	8 Conclusion

