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Beauty is truth, truth (is) beauty, - that is all
— John Keats

To Donald O. Hebb, who was brave enough to link the mind to the brain,
in a time when no other psychologist dared to do so.
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Abstract

Synaptic plasticity underlies our ability to learn and adapt to the constantly changing en-
vironment. The phenomenon of synapses changing their efficacy in an activity-dependent
manner is often studied in small groups of neurons in vitro or indirectly through its effects
on behavior in vivo. Investigating synaptic plasticity at an intermediate microcircuit level
relies on simulation-based approaches, which offer a framework to reconcile fragmented and
sparse experimental observations. Since Hebb’s initial postulate, theoreticians have provided
valuable insights about the role of cell assemblies, strongly interconnected groups of co-firing
neurons, in learning and memory. However, most of these studies were limited in their scale,
biological realism, and therefore generality. To overcome these limitations, we further im-
proved and validated our previously published large-scale cortical network model featuring
short-term plasticity and equipped it with a recently developed calcium-based model of long-
term plasticity between excitatory cells. We calibrated the network to mimic an in vivo state
characterized by low synaptic release probability and low-rate asynchronous firing and ex-
posed it to ten different stimuli. By virtue of the model’s non-random, biorealistic connectivity
we could detect cell assemblies from the stimulus-evoked spiking activity of 186,665 neurons
even in the naive circuit, before the long-term plastic changes. This detection employed a
combination of methods established by experimentalists. Leveraging the in silico nature of our
setup, we then studied how the structure of synaptic connectivity underlies assembly compo-
sition ranging from feedforward thalamic innervation to intricate high-dimensional network
motifs of the recurrent connectivity. Notably, we found that long-term plasticity sparsely and
specifically strengthened synapses between cell assemblies: among 312 million synapses,
only 5% experienced noticeable plasticity in 10 minutes of biological time and cross-assembly
synapses underwent three times more changes than average. As our model neurons featured
realistic morphologies and dendritic ion channels, we could also investigate how nonlinear
dendritic processes influence assembly membership and the effects of long-term plasticity on
synapses forming spatial clusters on postsynaptic dendrites. A comparative analysis of the
network’s responses to the different stimuli before and after the long-term changes revealed a
network-level redistribution of efficacy from the superficial to the deep cortical layers. This
shift led to prolonged stimulus-specific responses and more assemblies activating exclusively
for a single pattern. In summary, using a state-of-the-art, bottom-up model of the cortical
microcircuit we found sparse and specific plastic changes that reconfigured network dynamics
while preserving its stability.
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Résumé

La plasticité synaptique est a la base de notre capacité a apprendre et a nous adapter a un
environnement en constante évolution. La modification de I'efficacité de la transmission
synaptique dépendante de I'activité neuronale est souvent étudiée dans de petits groupes de
neurones in vitro, ou indirectement, par ses effets sur le comportement in vivo. Létude de la
plasticité synaptique au sein d'un microcircuit néocortical repose sur des approches basées
sur la simulation, qui offrent un cadre permettant de réconcilier des observations expérimen-
tales fragmentées et éparses. Depuis le postulat initial de Hebb, les théoriciens ont approfondi
notre compréhension du role des assemblage de neurones (« cell assemblies »), des groupes
de neurones activés conjointement et fortement interconnectés, dans I'apprentissage et la
mémoire. Cependant, la plupart de ces études étaient limitées en terme d’échelle, de réalisme
biologique et donc dans leur capacité a généraliser leurs résultats. Pour surmonter ces limites,
nous avons amélioré et validé le modele du microcircuit néocortical a grande échelle et équipé
de plasticité a court terme que nous avions précédemment publié. Nous I’avons augmenté
d’'un modele récemment développé de plasticité a long terme, entre les cellules excitatrices,
basé sur le calcium. Nous avons calibré le réseau pour reproduire la faible probabilité de
libération synaptique de neurotransmetteurs ainsi que le faible taux de décharge asynchrone
observés in vivo, et nous ’avons exposé a dix stimuli différents. En raison de la connectivite
structurelle, biologiquement réaliste du modele, nous avons pu détecter des assemblage de
neurones a partir de I’activité simulée de 186,665 neurones méme au sein du circuit naif. Notre
méthode de détection se base sur une combinaison de méthodes établies par les expérimen-
tateurs. Tirant parti de notre acces a I’entiére connectivité du réseau in silico, nous avons
ensuite étudié le lien entre I'organisation de la connectivité synaptique et la composition des
assemblage de neurones, de I'innervation thalamique jusqu’aux motifs complexes a haute
dimension de la connectivité récurrente du réseau. Nous avons notamment constaté que
la plasticité a long terme renforcait de maniere éparse et spécifique les synapses entre les
assemblage de neurones : sur 312 millions de synapses, seules 5% ont subi une plasticité
notable en 10 minutes de temps biologique et les synapses inter-assemblées ont subi trois
fois plus de changements que la moyenne. Comme nos neurones modeles présentaient des
morphologies et des canaux ioniques dendritiques réalistes, nous avons également pu étudier
I'influence des processus dendritiques non linéaires sur I’appartenance a une assemblée et
les effets de la plasticité a long terme sur les synapses. Nous avons montré que celle-ci induit
un regroupement des synapses sur les dendrites post-synaptiques. Une analyse comparative
des réponses du circuit aux différents stimuli, avant et apres les changements a long terme



Résumé

induit par la plasticité, a révélé une redistribution de I'efficacité synaptique, allant des couches
corticales superficielles du réseau aux couches corticales profondes. Cette redistribution a
eu pour effet de prolonger les réponses spécifiques au stimulus et d’augmenter le nombre
d’assemblées s’activant exclusivement pour un seul motif. En résumé, en utilisant I'état de I'art
de la modélisation du microcircuit néocortical, nous avons révélé des changements plastiques
épars et spécifiques qui reconfigurent la dynamique du réseau tout en préservant sa stabilité.

Mots clefs : néocortex, microcircuit, simulation, connectivité, efficacité synaptique, plasticitée
a court-terme, plasticitée a long-terme, assemblage de neurones, apprentissage
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Introduction

Allliving organisms face an ongoing challenge to adapt to the ever-changing environment that
surrounds them. Among higher life forms, mammals stand out for their remarkable ability to
learn and recall memories when necessary. These essential cognitive processes find their roots
in synaptic plasticity, the ability of synapses to change their efficacy in an activity-dependent
manner. The term "plastic” comes from the Greek "plastikés” meaning "fit for molding" and
its introduction to neuroscience dates back to the turn of the twentieth century (see Markram
etal., 2011; Mateos-Aparicio and Rodriguez-Moreno, 2019 for reviews).

It became evident from early experiments at the neuromuscular junction that synaptic efficacy
is indeed not static but changes over hundreds of milliseconds reflecting recent activity (Eccles
etal,, 1941). This form of synaptic plasticity was termed short-term plasticity (STP) and was
later shown to be a prominent property of neocortical synapses as well (Thomson et al.,
1993; Thomson and West, 1993; Deuchars and Thomson, 1996; Markram and Tsodyks, 1996).
Its origin is presynaptic, i.e., it depends on the probability of transmitter release from the
presynaptic axon (Dobrunz and Stevens, 1997). When the baseline release probability also
know as utilization of synaptic efficacy’ (Usg) is high, consecutive postsynaptic potentials
(PSPs) depress (the synaptic efficacy decreases). On the other hand, when Ugg is low PSPs
facilitate. Ugg in turn depends on other factors, chief among them is the extracellular calcium
concentration ([Ca®*1,). A decrease in [Ca®"], leads to a nonlinear decrease in Usg (Ohana
and Sakmann, 1998; Rozov et al., 2001; parametrized with a Hill coefficient of 4, Hill, 1910).
Therefore, the difference between the [Ca?*], = 2 — 2.5 mM used in slice preparations in vitro
and the physiological [Ca®?*], = 1 —1.3mM in vivo (Jones and Keep, 1988; Massimini and
Amzica, 2001) can cause drastic changes in STP profiles, turning depressing profiles into

2

pseudo-linear”, or even facilitating ones (Zucker and Regehr, 2002; Borst, 2010).

While providing evidence for the plasticity of synapses, the effect of STP vanishes after a
second and thus cannot serve as a substrate for stable memories. One of the early theories
about how learning and memory might manifest in the brain was formulated by Canadian
psychologist Donald O. Hebb, who, in his influential book wrote: "When an axon of cell A

IWhile release probability is perhaps easier to understand, in the articles presented in this thesis we follow the
Tsodyks and Markram (1997) nomenclature and call is Ugg.

2pseudo-linear STP profiles follows the nomenclature of Markram et al. (2015) and it describes an STP profile
that is neither clearly depression, nor facilitating. Sometimes the same profile is referred to as "augmentation".
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is near enough to excite a cell B and repeatedly and persistently takes part in firing it, some
growth process or metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cell firing B, is increased.”" (Hebb, 1949). The highly quoted postulate of Hebb
came to life from combining Golgi stainings, his experience in brain surgery, and psychology
practice and was revolutionary in his time, as it stood in striking contrast to the views of Pavlov,
Freud, and the Gestalt school of psychology. Its experimental validation came more than two
decades later thanks to the technological advancement of slice electrophysiology and the
discovery of long-term potentiation (LTP; an increase in synaptic efficacy that lasts for hours;
Bliss and Lemo, 1973; Schwartzkroin and Wester, 1975). The molecular substrate of Hebbian
coincidence detection is the N-methyl-D-aspartate (NMDA) receptor, which upon removal
of the M g2+ block conducts Ca?* as well (Mayer et al., 1984, but see Nicoll and Malenka,
1995; Egger et al., 1999 for NMDA independent forms). The calcium-control hypothesis
postulates, that prolonged, moderate amounts of Ca?" lead to long-term depression (LTD; a
long-lasting decrease in synaptic efficacy) while large transients of Ca®* lead to LTP (Lisman,
1989). The entry of Ca®" leads to the "growth process ... in one or both cells" speculated by
Hebb, and at the Schaffer collaterals between areas CA3 and CA1 of the hippocampus it is the
insertion of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors into the
postsynaptic side of synapses (Malinow and Malenka, 2002). It took another two decades and
another technological advancement, paired recordings from connected neurons, to prove the
importance of not only the firing rates but the precise timing of the pre- and postsynaptic
spikes (Markram et al., 1997b; Bi and Poo, 1998; Debanne et al., 1998). In these experiments,
presynaptic spikes preceding the postsynaptic ones resulted in LTP, whereas LTD was observed
when postsynaptic spikes occurred first, and this form of synaptic plasticity was christened
spike-time dependent (STDP; Song et al., 2000). As Ca?* plays a key role in long-term plasticity,

241, were

this form of plasticity also depends on the [Ca®*],. Low, physiological levels of [Ca
recently shown to completely abolish STDP (Inglebert et al., 2020). Unlike the postsynaptically
expressed plasticity of the Schaffer collaterals in the hippocampus, cortical plasticity affects
the presynaptic Ugg as well, and therefore tightly couples short- and long-term plasticity
(Markram and Tsodyks, 1996; Selig et al., 1999; Sjéstrom et al., 2003; but see Yasui et al., 2005;
Enoki et al., 2009; Bliss and Collingridge, 2013). Markram and Tsodyks (1996) pointed out
that cortical LTP is not necessary an increase in synaptic efficacy when multiple spikes are
considered within a short interval, but rather a redistribution of efficacy towards the earlier

spikes.

In parallel with neuroscientists, mathematicians and physicists also took up Hebb’s postulate
and formulated plenty of learning rules, by which artificial neural networks update the efficacy
of connections based on the covariance of pre- and postsynaptic activity (Rochester et al.,
1956; Sejnowski, 1977; Bienenstock et al., 1992; Hopfield, 1982; Oja, 1982). They coined the
term "computational neuroscience" in a few years, and learning and memory are still among
the main foci of the field. Rate-based models were translated to spike-based ones (Amit and
Tsodyks, 1991; Gerstner et al., 1993) and a plethora of STDP rules were developed (Gerstner
et al., 1996; Kempter et al., 1999; Song et al., 2000; Pfister and Gerstner, 2006). When STDP
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proved to be synapse location- and therefore pathway-dependent (Sjostrom and Héusser,
2006; Letzkus et al., 2006; Froemke et al., 2010), plasticity rules also evolved to feature voltage
and calcium-dependence (Clopath et al., 2010; Graupner and Brunel, 2012) and a selected few
even took into account the effects of the in vivo [Ca®**], (Higgins et al., 2014; Chindemi et al.,
2022; Rodrigues et al., 2022). STP was also proposed to contribute to a range of functions,
including temporal processing (Buonomano and Merzenich, 1995; Tsodyks and Markram,
1997; Markram et al., 1998; Goldman et al., 2002; Carvalho and Buonomano, 2011; Naud and
Sprekeler, 2018), gain control, working memory, network stability, and compartment specific
inhibition (Abbott et al., 1997; Maass and Markram, 2002; Sussillo et al., 2007; Keijser and
Sprekeler, 2022). Of particular interest is the biophysically detailed model of (Markram et al.,
2015), in which modeling the pathway-specific [C a®*] o dependence of Ugg was crucial for
understanding the transition from the in vitro-like synchronous activity, to the in vivo-like
asynchronous firing regime. Combinations of diverse sets of plasticity rules (including, but not
exclusively short- and long-term plasticity) have been recently used to model the formation
and maintenance of cell assemblies, groups of neurons that Hebb hypothesized to develop
a co-firing pattern after frequently repeated stimulation (Zenke et al., 2015; Fauth and Van
Rossum, 2019).

While complex phenomena like plasticity are best studied under controlled laboratory ex-
periments and in simplified models, the long-term goal of neuroscience is to characterize
the rules governing plasticity under behaviorally relevant conditions. There was tremendous
progress in the past decades in understanding cell assembly formation, or as the field calls it,
in the identification and reactivation of "engram cells" in the hippocampus in vivo (Tonegawa
etal,, 2015). While these studies highlight the need to study Hebbian plasticity at the network
level, most changes happen at the synapse level. The expression of synaptic proteins like
PSD95 and AMPA subunit GluA1 are highly correlated with the efficacy of a synapse, and high-
throughput methods tracking their levels are currently under development (Graves et al., 2021;
Kim et al., 2023; Ray et al., 2023). While readily applicable to monitor the efficacy of millions
of synapses in vivo, currently, these techniques cannot be supplemented with recordings of
neural activity, thus the causes of the observed changes in efficacy remain unknown. Thus,
while it is possible to control pre- and postsynaptic activity and measure subsequent changes
in synaptic efficacy in vitro, no such tool exists for in vivo experiments. The bridge between
them is often provided by complementary, in silico approaches (see above), and "simulation
neuroscience" is emerging as a powerful tool to undertake tasks that require modeling high lev-
els of detail (Markram et al., 2015; Fan and Markram, 2019). What distinguishes this approach
from computational neuroscience is the scale and the attention to biophysical detail. By
building models in a bottfom-up manner, they can systematically integrate observations from
hundreds of published articles and large, seemingly disconnected data sets (Markram et al.,
2015; Fan and Markram, 2019; Billeh et al., 2020; Egger et al., 2020; Dura-Bernal et al., 2023).
The present thesis aims to illustrate the integration of diverse set of experimental findings into
a coherent biophysically detailed multi-scale model and then use it to study cell assemblies
and the effects of plasticity under in vivo low [C a**l,.
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Outline of the thesis

The rest of the thesis is structured as follows:

* Chapter 1 introduces the synaptic data-integration pipeline (including STP parameters)
for the hippocampal area CAl as a use case. It is a postprint of a "Methods first" pub-
lication, therefore offering a detailed view of the biophysical realism we use to model
synapses in our group.

* Chapter 2 applies the methodology of Chapter 1 (not developed for but refined and
published for the hippocampus) to parametrize the synaptic physiology of the latest
release of our somatosensory cortex model. It also includes a high-level validation of
synaptic pathways by reproducing an in vivo signal propagation experiment in silico.

¢ Chapter 3 describes in detail Hebbian cell assemblies, detected from spikes of cortical
simulations under in vivo-like conditions. It mainly focuses on the structural connec-
tivity rules underlying the assemblies’ co-firing function and provides a foundation for
Chapter 4.

¢ Chapter 4, in a true bottom-up fashion, is the main body of the thesis. It equips the
cortical model with a calcium-based long-term plasticity model and studies the induced
plastic changes in a network state that mimics in vivo activity. It emphasizes the stability
of the network without explicitly modeling any homeostatic plasticity mechanism. Fur-
thermore, it highlights that most of the sparse changes happen between cell assemblies
and in synapses that form spatial clusters on the postsynaptic dendrites.

At the end, a general Conclusion section summarizes the key findings with respect to the
network-level effects of short and long-term plasticity. This short summary is followed by a
list of current limitations and possible future directions (not strictly restricted to plasticity).
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This chapter is a postprint (with Wiley’s permission and under the same CC-BY-NC
license) of: A. Ecker, A. Romani, S. Saray, S. Kdli, M. Migliore, J. Falck, S. Lange, A. Mercer,
AM. Thomson, E. Muller, M.W. Reimann, S. Ramaswamy (2020) Data-driven integration
of hippocampal CA1 synaptic physiology in silico. Hippocampus 30(11):1129-1145; doi:
10.1002/hipo.23220.

Contribution: I reviewed the literature (based on A. Romani’s initial sweep), helped A.
Romani to derive and validate the structural connectome, fitted STP model parameters
using open data sets, contributed to the soon to be open source software that calibrates
and validates synaptic physiology parameters, created all the figures, and participated
in writing the article. (A more detailed author contribution can be found at the end of
the chapter.)

Abstract

The anatomy and physiology of monosynaptic connections in rodent hippocampal CA1 have
been extensively studied in recent decades. Yet, the resulting knowledge remains disparate and
difficult to reconcile. Here, we present a data-driven approach to integrate the current state-
of-the-art knowledge on the synaptic anatomy and physiology of rodent hippocampal CAl,
including axo-dendritic innervation patterns, number of synapses per connection, quantal
conductances, neurotransmitter release probability, and short-term plasticity into a single
coherent resource. First, we undertook an extensive literature review of paired-recordings
of hippocampal neurons and compiled experimental data on their synaptic anatomy and
physiology. The data collected in this manner is sparse and inhomogeneous due to the
diversity of experimental techniques used by different groups, which necessitates the need
for an integrative framework to unify these data. To this end, we extended a previously
developed workflow for the neocortex to constrain a unifying in silico reconstruction of the
synaptic physiology of CA1 connections. Our work identifies gaps in the existing knowledge


https://onlinelibrary.wiley.com/doi/10.1002/hipo.23220
https://onlinelibrary.wiley.com/doi/10.1002/hipo.23220

Chapter 1. CAl synapse physiology in silico

and provides a complementary resource towards a more complete quantification of synaptic
anatomy and physiology in the rodent hippocampal CAl region.

Keywords: hippocampus, CAl, data integration, in silico modeling, synapse

1.1 Introduction

The hippocampal formation, notably the CA1 region, is one of the most exhaustively studied
regions in the mammalian brain and is thought to play a role, for example, in the acquisition
of memory, recognition of place and language (Bliss and Collingridge, 2013; Buzsdki, 1989).
Neuronal microcircuits in the hippocampal CA1 region process and store information through
a myriad of cell-type-specific monosynaptic connections. Previous studies have shown that
hippocampal cell-types are connected through multiple synaptic contacts, which are posi-
tioned across distinct axo-dendritic domains with a wide diversity in their physiology. Despite
the wealth of data, we lack an integrative framework to reconcile the diversity of synaptic
physiology, and therefore, identify knowledge gaps. There have been several noteworthy
attempts to integrate knowledge on the cellular and synaptic components of hippocampal
CA1 microcircuitry, which have provided a solid foundation to bring together anatomical
properties and kinetic parameters of cell-type-specific connections - including the number of
synapses per connection, connection probabilities, neurotransmitter release probabilities,
and amplitudes of synaptic responses (Bezaire and Soltesz, 2013; Wheeler et al., 2015; Moradi
and Ascoli, 2019). As a complementary endeavor, we extended a previously developed frame-
work to reconstruct neocortical microcircuitry at the cellular and synaptic levels of detail
(Markram et al., 2015), by integrating disparate data on the physiology of short-term dynamics
of depression and facilitation of cell-type-specific synaptic transmission in hippocampal CALl.
Using this framework, we identified and extrapolated organizing principles to predict missing
knowledge for a repertoire of connection types, for example, the short-term dynamics and
peak conductance of synaptic connections between inhibitory interneurons (Klausberger and
Somogyi, 2008; Pelkey et al., 2017), which remain largely uncharacterized, and could, therefore,
require high-throughput strategies that employ multiple whole-cell patch-clamp recordings
to surmount the relatively low yield obtained through conventional paired recordings (Perin
etal., 2011; Jiang et al., 2015; Espinoza et al., 2018).

We accounted for the dynamic and probabilistic nature of synaptic transmission by fitting
experimental traces using a stochastic generalization of the Tsodyks-Markram (TM) short-term
plasticity (STP) model (Tsodyks and Markram, 1997; Markram et al., 1998; Fuhrmann et al.,
2002), and also considered temperature and extracellular calcium concentration ([Ca®*1y)
differences, which were adjusted using Q10 and Hill scaling factors, respectively.

Measuring peak quantal conductances directly at individual synaptic contacts remains very
difficult, if not impossible with current experimental techniques. While theoretically the peak
synaptic conductance can be calculated from voltage-clamp recordings by simply dividing
the peak post-synaptic current (PSC) by the liquid junction potential (LJP)-corrected driving
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force, this approach does not take into account the space-clamp artifact (Spruston et al.,
1993; Williams and Mitchell, 2008; Gulyas et al., 2016). We have recently demonstrated that
space-clamp corrected peak synaptic conductances in neocortical connections are at least
two-three-fold higher than estimated previously (Markram et al., 2015). As a connection is
formed by several synaptic contacts, each subject to a different space-clamp effect, a purely
theoretical correction is challenging. We, therefore, used an alternative approach, where we
calibrated peak synaptic conductances in the in silico model of connected pairs such that the
resulting postsynaptic potential (PSP) amplitudes match in vitro recordings. This yielded an
estimate of peak synaptic conductance since other factors affecting the PSP amplitude — such
as number and location of synapses, release probability and reversal potential, depression,
facilitation, and synaptic conductance rise and decay time constant - were independently
validated beforehand.

The resulting models for a subset of hippocampal connection types were applied predictively
to the remaining uncharacterized connection types by clustering them into nine groups
based on synapse types and neuronal biomarkers and applying the estimated parameters
within each group. Curated and predicted parameters presented here should serve as a
resource to researchers aiming to model hippocampal synapses at any level, while the detailed
methodology intends to give a guideline to utilize such a framework to integrate data from
other brain regions or species.

1.2 Methods

1.2.1 Circuit building and synapse anatomy

A detailed model of the rat hippocampal CA1 area was built by adapting a previously described
pipeline for reconstructing neocortical microcircuitry (Markram et al., 2015). In brief, detailed
axo-dendritic morphological reconstructions and electrophysiological traces obtained from
the dorsal part of hippocampal CA1 were used to build single cell-type-specific computational
models (Migliore et al., 2018; see Supplementary Methods). The resulting single-cell models
were assembled in an atlas-based volume corresponding to the dimensions of the hippocam-
pal CAl region (Ropireddy et al., 2012), cell-densities and proportions, which yielded a tissue
model consisting about 400,000 cells, ~90% pyramidal cells (PCs) and ~10% interneurons
comprising 11 distinct morphology types (m-types; see Supplementary Methods and Sup-
plementary Figure 1.6; Bezaire and Soltesz, 2013). Structural appositions between axons
and dendrites were detected based on touch distance criteria and subsequently pruned to
yield a functional connectome through an algorithmic process, which was constrained with
experimentally reported bouton density, number of synapses per connections and connection
probability (Reimann et al., 2015). A previous study suggests targeted innervation of interneu-
rons from PCs (Takécs et al., 2012). Therefore, to recreate this tendency, touch distances
from PCs to interneurons were set to 6 um as against 1 um for connections between PCs.
Furthermore, touch distances of 6 um for connections between all interneurons and 1 um for
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connections between interneurons and PCs were assumed. In this manner, the number and
location of synapses for each cell-types specific connection were derived in a data-driven man-
ner. When reproducing paired recordings in silico (see below), monosynaptically connected
pairs of neurons were sampled from this reconstructed circuit based on their inter-somatic
distance as sampling criterion.

1.2.2 Dendritic features of single cell models

Detailed, multicompartmental morpho-electrical models with 3D reconstructed dendrites
from Migliore et al. (2018) were used in the present study (see Supplementary Methods and
Supplementary Figure 1.6). The attenuation of synaptic responses along the dendrites with
varying diameters was validated against experimental data from Magee and Cook (2000) using
the HippoUnit framework (see Supplementary Methods). To this end, excitatory postsynaptic
current (EPSC) like currents were injected into the apical trunk of PCs with varying distance
from the soma and PSPs were simultaneously measured at the local site of the injection and in
the soma.

1.2.3 Model of postsynaptic conductance and current

Synaptic conductances were modeled with bi-exponential kinetics:
g(1) = gA(e™ !/ Taecay — g™ /Trise) (L1

where g (nS) is the peak synaptic conductance and 7,;s, and Tdecay (ms) are PSC rise and
decay time constants respectively. The A = —e~»/Trise 4 ¢=f/Taecay normalization constant
ensures that synapses reach their peak conductance at

tp = TaecayTrise) (Tdecay — Trise) 10g€(Tdecay/ Trise)) (ms). (Equation (1.1) is modified below
to take stochastic release of multiple vesicles into account.) AMPAR and GABAR synaptic
currents are then computed as:

1(2) = (1) (Vi (1) — Erev) (1.2)

where V,, (mV) is the membrane potential and E;., (mV) is the reversal potential of the given
synapse. NMDAR currents depend also on Mg?* block:

Inmpa(2) = 8()ME (Vi () (Vi (2) = Eren) (1.3)

where mg(V},) is the LJP-corrected (see below) Jahr-Stevens nonlinearity (Jahr and Stevens,

1990):
1

l+eQ Vm(CMg2+ /¢2)

mg(Vy,) = (1.4)

where Cpge+ (mM) is the extracellular magnesium concentration and ¢; = 0.062 (1/mV) and
¢y = 2.62 (mM) are constants (the difference from the original Jahr and Stevens, 1990 constant
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is because the authors did not correct for the LJP offset of ~5mV). PC to PC NMDAR rise and
decay time constants are Q10 corrected (see below; Q10 = 2.2 ms for rise and 1.7 ms for decay
time constants Hestrin et al., 1990; Korinek et al., 2010) values from Andrasfalvy and Magee
(2001): Trise =3.9mS, Tgecqy = 148.5ms. All, but the CCK+ interneuron excitatory afferents
have the same NMDAR time constants as the PC to PC ones, while the PC to CCK+ interneuron
NMDAR conductance decays with a slower time constant: 7gecqy = 298.75ms (Le Roux et al.,
2013; Matta et al., 2013; Cornford et al., 2019). Peak NMDAR conductance gxnypa (nS) is
calculated from the AMPAR one by multiplying it with NMDAR/AMPAR peak conductance
ratio. PC to PC NMDAR/AMPAR peak conductance ratio = 1.22 was taken from Groc et al.
(2002); Myme et al. (2003). PC to CCK+ interneuron NMDAR/AMPAR § ratio was set to 0.86, as
against 0.28 for PC to other interneurons (Le Roux et al., 2013; Matta et al., 2013). Synaptic
currents are individually delayed based on axonal path length and conduction velocity of
300 um/ms (Stuart et al., 1997) and an additional 0.1 ms delay of neurotransmitter release
(Ramaswamy et al., 2012).

1.2.4 Short-term plasticity parameter fitting

STP of synapse dynamics was fit by the TM model (Tsodyks and Markram, 1997; Markram
et al., 1998). The model assumes that each synapse has a pool of available neurotransmitter
resources (R) that is utilized by a presynaptic action potential (AP) with a release probability
(U). The utilization of resources leads to postsynaptic conductance that is proportional to the
amount utilized. R decreases and U increases after an AP and both R and U recover between
spikes to a steady-state value. The speed of recovery is parameterized by time constants D
and F (ms) that together determine the short-term dynamics of the synapse. This is described
by the following differential equations:

dR(t) 1-R(1)
dr

—U@R)O(t— tspike) (1.5)

dU(t) _ Usg-U(D)
dr F

where Usg is the utilization of synaptic efficacy or absolute release probability (also known as

+ Usp(1 = U8 (1~ Lopike) (1.6)

the release probability in the absence of facilitation), 6 (¢) is the Dirac delta function and ¢ pike
indicates the timing of a presynaptic spike. Each AP in a train elicits an AspU (£;pike) R(Zspike)
amplitude PSC, where Agg, is the absolute synaptic efficacy. R =1 and U = Ugg, are assumed
before the first spike.

The Ugg, D, F and Agg free parameters of the model were fit to amplitudes of experimentally
recorded trains of PSCs. In the case of Losonczy et al. (2002), amplitudes were already extracted
by the authors, while in the case of Kohus et al. (2016) custom-written Python routines were
used to extract them from the averaged postsynaptic traces. Fitting the 10 + 1 recovery spikes
(Table 1.1) was done by using a multiobjective genetic algorithm from BluePyOpt (Van Geit
etal., 2016). For Kohus et al. (2016) different frequency stimulations (10, 20 and 40 Hz) were fit
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together for better generalization. Thus, the optimized error function contained 3 (frequencies)
x 11 (peak amplitudes) points. For the event-based version of the equations above see Maass
and Markram (2002) and Supplementary Methods. The Python source code fitting amplitudes
from multiple frequencies is available on GitHub under /BluePyOpt/examples.

1.2.5 Stochastic Tsodyks-Markram model with multi-vesicular release

For the simulation of synapses, the canonical TM model (introduced above and used for
fitting experimental traces) was modified to include stochastic release of multiple vesicles, and
connected to the model of postsynaptic conductance described above. To take multi-vesicular
release (MVR) into account in the postsynaptic conductance model, the classical "quantal
model" of Del Castillo and Katz (1954) was used. In this model, synapses are assumed to
be composed of Nrgp (size of the readily releasable pool) release sites, each of which has
a probability of release U (see deterministic TM model above) and contributes a 1/ Nggrp
quanta to the postsynaptic response (Loebel et al., 2009; Ramaswamy et al., 2012, 2015;
Markram et al., 2015; Barros-Zulaica et al., 2019). Unlike in the deterministic TM model above,
individual quanta were assumed to be released in an all-or-none fashion with probability
U(t) (Fuhrmann et al., 2002). Vesicle availability is also an all-or-none process where only
available vesicles can be released. To this end, synaptic vesicles were implemented as 2-state
(available:1 and unavailable:0) Markov processes. After release, the state is set to unavailable
and the probability of staying in the unavailable state at time ¢ was described as a survival
process, with the time constant D. The state transitions are described by the following set of
equations:

Pi_o=U(t) seeequation (1.6)

Pi1=1-P1—

_(t_tspike)/D (17)

Pyo=e
Py—1=1-Py—g
The above-described model converges to the canonical TM model in the limit (number of

trials — co). In this formalism a presynaptic AP releases only a fraction N, < Ngpp fraction of
vesicles, which follows a Bernoulli distribution. Equation (1.1) is thus updated as follows:

g =gd®)—r() (1.8)
dd(1) d(r) N,
dt _Tdecuy ’ ANRRP o= tspzke) (1.9)
dr(t) r(t) N,
=- +A 8(t— tpike) (1.10)
dr Trise NRrrp pik

where r and d are the rising and decaying components of the postsynaptic conductance
respectively. The implementation of the above described stochastic synapse model is available
at the open-access NMC portal (Ramaswamy et al., 2015).
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These changes to the canonical TM model introduce variability of the postsynaptic traces,
where the magnitude of the variability depends on the additional Nrrp parameter (Loebel
et al., 2009; Barros-Zulaica et al., 2019). In vitro this variability is typically assessed by the
coefficient of variation (CV, std/mean) of the peak PSC (or PSP) amplitudes. Therefore, the
Ngrrp was calibrated to match the CVs of the first PSCs extracted from the raw traces of Kohus
et al. (2016). For a better comparison, artificial membrane noise was added to the simulated
traces (see Barros-Zulaica et al., 2019 and Supplementary Methods).

1.2.6 Calibrating peak synaptic conductances through in silico paired recordings

Paired recordings were replicated in silico as follows: Firstly, pairs were selected from the
circuit based on pathway specific distance criteria used by experimentalist (100 um? for cells
in the same layer and 200 um?3 for cell pairs from different layers). Secondly, postsynaptic cells
were current-clamped to match the LJP-corrected (see below) steady-state potential specified
in the experiments. It is important to note, that in the case of PCs sodium channels were
blocked (in silico TTX application) when clamping above -58 mV to avoid spontaneous firing
of the cell models (see Figure 5 in Migliore et al. (2018)), whereas sodium channels were not
blocked in in vitro experiments. Next, the presynaptic cell was stimulated by somatic current
injection, which resulted in a PSP recorded in the soma of the postsynaptic neuron. This
protocol was repeated for 50 monosynaptic connections of the same pre-post combination
with 35 repetitions for each neuron pair. Finally, the mean PSP amplitude was compared
against experimentally data and the peak conductance value was calibrated using the formula:
PSPexp(1=PSPypge1/df)

6 = (1.11)
& gPSPmodel(l_PSPexp/df)

where PSPy, (mV) and PSP,;,54.; (mV) are the experimental and modeled PSPs amplitudes
respectively and d f = |E;¢, — Vss| (mV) is the driving force. For all the experiments we aimed
to reproduce, E;., = —8.5 mV was calculated for excitatory connections, while E;¢, = =73 mV
for inhibitory connections (Moradi and Ascoli, 2019). All simulations were run using the
NEURON simulator as a core engine (Hines and Carnevale, 1997) with the Blue Brain Project’s
collection of hoc and NMODL (Hines and Carnevale, 2000) templates for parallel execution on
supercomputers (Hines et al., 2008a,b). The default temperature in all simulations was set to
34°C, and the integration time step to 0.025 ms.

1.2.7 Correcting for calcium ion concentration, temperature and liquid junction
potential

Before integrating published parameters from different sources into the in silico synapse
model, they were corrected for differences in experimental protocols. This included scalings
for [Ca®*], levels different from 2 mM, temperatures different from 34 °C and the correction
of holding and steady-state potentials by the theoretical LJP.

11
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Levels of [Ca®*], impact the neurotransmitter release probability. The corresponding in silico
correction was applied by scaling the absolute release probability Usg parameter (see above) of
the synapses, using the Hill isotherm with n = 4 (Hill, 1910). The Hill equation below describes

the non-linear increase in release probability as a function of increasing [Ca?*],:
Usg = Usg _[Cal, o (1.12)
S SEmax .
: Kf 2+ [C a**

where Usg,, . is the maximum value of the release probability (< 1) at high [Ca®*], and K7/ is
the [Ca®*], at which Usg is one-half of Usg,,,.- Usk,,, and Kj/» parameters can be fit to data
points (e.g. an indicator of release probability — the ratio between PSP amplitudes) measured
at different [Ca?*1,s. K, values were taken from Rozov et al. (2001), 2.79 (mM) for steep
and 1.09 (mM) for shallow calcium dependence and were shown to generalize well for other
characterized pathways of the neocortex (see Supplementary Figure S11 in Markram et al.
(2015)). In the absence of hippocampus specific data, we followed the approach of Markram
et al. (2015) and assumed a steep dependence in PC to PC and PC to distal dendrite targeting
inhibitory (O-LM) cells, and a shallow dependence between PC to proximal targeting cells
(PVBC (PV+ basket cell), CCKBC (CCK+ basket cell), and axo-axonic cell). For experimentally
uncharacterized pathways an intermediate calcium dependence was used, as the average of
the steep and shallow ones. This intermediate curve was in agreement with the few relevant
data points for specific hippocampal synaptic connections (Price et al., 2008; Tyan et al., 2014).

The temperature dependence of kinetic parameters such as rise and decay time constants
were corrected by dividing them with Q10 scaling factors:

Tsim = Texp/ QLOTsim™Texp)/10 (1.13)

where 7 is the time constant, Q10 is an empirically determined, receptor-specific parameter,
Tsim = 34°C is the temperature used in the simulations, while Ty, (< Ts;p,) is the temperature
of the experiment. The Q10 correction was only needed for the NMDA current between
connected PCs (see above) because all other kinetic values that we used were recorded at near
physiological temperature (~ 34°C).

Holding and steady-state potentials were corrected by the theoretical LJP (Neher, 1992). These
potentials arise from the differences in solutions in the pipette and bath and are in 2-12 mV
range for the standard solutions. Theoretical LJPs, calculated from the reported pipette and
bath solutions were obtained from Moradi and Ascoli (2019).

12
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1.2.8 Statistical analysis

R values for validating matching experimental and model values are Pearson correlations.
Data are presented as meanx+std to yield comparable values to the experimental ones. Usg, D,
F distributions from two different sources (e.g. found in the literature vs. fitted here) are said
to be comparable if the mean of the second distributions is not further away than one-half of
the std of the first distribution.

1.3 Results

1.3.1 Literature curation

First, we undertook an extensive literature review of paired recording experiments, and com-
piled data on the various parameters (Figure 1.1, step 1; Tables 1.1 and 1.2 for the data inclusion
and exclusion criteria, and a list of data and modeling assumptions, respectively; see also
Supplementary Tables 1.4 for voltage-clamp data from rat hippocampal CAl, and 1.5 for
current-clamp recordings). The data collected in this manner is sparse and inhomogeneous,
due to the disparate experimental conditions used by different groups and were, therefore, cor-
rected for various aspects (Figure 1.1, step 2). For example, [Ca?*], is known to affect release
probability and, therefore, an additional Hill scaling had to be considered while parametrizing
short-term plasticity (STP) models (see Methods). Rise and decay time constants of synaptic
currents are influenced by temperature differences but can be corrected with Q10 factors (see
Methods). For electrophysiological recordings patch pipettes have become the method of
choice over sharp electrodes, which necessitates applying an LJP correction for voltage traces
(see Methods).

1. Experimental data 2. Data integration 3. In silico experiments 4. Parameter extrapolation
Paired recordings: ; | Synaptic conductance calibration ~ PSPs of experimentally characterized pathways
- Kinetic parameters (ms) Tsodyks-Markram model  Calcium  Liquid-junction - peak synaptic conductances (nS)

- PSP amplitudes (mv) fitting to traces/amplitudes correction potential correction X
- Holding/SS potentials (mV) U, D (ms), F (ms) (of Uy ©of V. N PSPs of uncharacterized pathways
- Calcium concentrations (mM) SE’ ! SE fold 759
- Raw traces \ Post,_,, v, \
Prel ~ L /
PreV_ ®
> 3 1 A \ Post,..V, |
N EL___ ~ |
% ; 7 o
- % i LJP (mV) i
S 0 0,°
Cal (mM) N ear i

A

1
r >

Figure 1.1: In silico data integration pipeline. 1: 51 peer-reviewed papers, spanning 21 years were
used to compile data on various parameters of connected neurons in rat CAl including connection
probability, number of synapses per connections, axo-dendritic innervation profile, kinetics, STP
profiles, calcium and temperature sensitivity. 2: Parameters were integrated into a common framework
and experimental paradigm, including temperature, [Ca®*], and LJP corrections. TM models of STP
were fit to publicly available raw traces. 3: In silico paired recordings were run to correctly adjust the
unitary peak conductance of connections with experimentally characterized PSP amplitudes. 4: The
resulting parameters were averaged within each of the 9 classes of synapses and used predictively to
describe experimentally uncharacterized pathways.
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Table 1.1: Data inclusion and exclusion criteria.

Data inclusion criteria
For the characterization of number of the synapses per connections we used published
values from anatomical studies employing electron and light microscopy; in rat CA1
slices.
For the validation of our axo-dendritic innervation patterns, we used figures from
published studies with biocytin filled pairs; under light microscopy; in rat CA1 slices.
For the characterization of synaptic physiology, we prioritized data from: paired
recordings from identified m-types; in rat CAl slices; at 2mM [Ca?*],; and 34 °C; with
reported holding/steady-state potential; and reported LJP or recording solutions.
For the parametrization the decay time constant of single PSCs we used published
decay time constant fits (independent of the model e.g. single vs. bi-exponential fit).
For fitting the TM model we used average raw PSC traces as well as published peak
PSC amplitudes; with 10 spikes at different frequencies plus a recovery spike.
For the validation of the TM model we used published fits from the neocortex
(Markram et al., 2015) in order to compare Ugg, D, F values of the corresponding
pathways.
For the estimation of the Nrrp we used raw PSC traces (all trials) to estimate the CV of
the first peak PSC amplitude as well as published Ngrp estimates.
For the calibration of peak synaptic conductance amplitudes, we used published peak
PSP amplitudes (see Supplementary Table 1.5).
For the validation of the peak synaptic conductances, we used single-receptor conduc-
tance and receptor number estimates.

10
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Data exclusion criteria
In the case of multiple reports of a single parameter or reference data, we prioritized
publications which were already used for other parameters and excluded the others
(see e.g. Pawelzik et al. (2002) in Supplementary Table 1.5).
When we had access to individual PSP amplitudes beyond the usually reported
mean+std, we excluded outliers and used the updated mean+std as target PSP ampli-
tude (see Supplementary Table 1.8).

1.3.2 Synaptic model parameters

We integrated the collected and corrected data into a model of synaptic transmission that

includes STP and stochastic neurotransmitter release. We found that for some connection

types the parameters of this model could be fully determined by employing in silico paired

recordings (Figure 1.1, step 3). Yet, for the majority of connection types parameters had to

be extrapolated (Figure 1.1, step 4). We use "synapse" to refer to a single anatomical synaptic

contact and "connection” to indicate the collection of all synaptic contacts between a given

presynaptic and postsynaptic neuron, comprising one or more synapses.

The underlying synapse model consisted of several parts, each with their associated param-

eters, which we determined in a 6 step procedure: We modeled synaptic connections with

bi-exponential conductances requiring 8 parameters. Three parameters (Erey, Trises Tdecay)

14
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Table 1.2: List of assumptions. All the assumptions that were made to arrive at model parameters from
a sparse set of raw data and published values.

10

We assume that after all the listed correction in this paper, all parameters coming from
different sources can be used together to parameterize the synapse models.

When using data from Kohus et al. (2016) we assumed that CCK+ DTIs (dendrite-
targeting interneurons) are SCA cells in SR. Furthermore, we assumed that synaptic
currents measured in mouse CA3 are representative of similar pathways in rat CAl.
In the lack of representative data and our lack of neurogliaform cells we assumed that
all inhibitory synapses are mediated purely by GAB A 4 receptors.

For calculating release probabilities at different [C a**1,, we assumed that Hill func-
tions parameterized with cortical data generalize well for hippocampal connections.
For modeling synaptic currents, we assumed that all CA1 synapses can be described
with bi-exponential conductances, with vesicle release kinetics governed by the
stochastic TM model. When modeling dendritic PSC decays, we assumed a single expo-
nential function, parametrized with a time constant extracted from somatic recording.
In the process of calibrating synaptic peak conductances we simulated only the
synapses mediating the given connection and thus we assume that the background
activity does not matter.

Some of the biggest assumptions are inherited from the network model: In this work,
we assumed that the published electrical models of single cells (Migliore et al., 2018)
capture the behavior of different neurons in rat CAl. (The fact that unlike experi-
mentalists, we cannot clamp PC models to potentials above -58 mV without blocking
sodium channels seems to violate this assumption.) We also assumed that the cell
composition and cell density within each layer are homogeneous and the constrained
connectivity reflects the connectivity of rat CAl.

Kinetic parameters for a given pathway are drawn from a distribution, but since
(almost) all experimental data used to derive these parameters are representative for a
given connection and not for individual synapses per se, we use the same parameters
for all synapses mediating a single connection.

The biggest assumption is that one can extrapolate parameters from experimentally
characterized pathways, to fill in missing values. When generalizing our parameters
for similar, experimentally uncharacterized pathways we group CAl interneurons
based on only one chemical marker. However, cells express many of these and the
markers overlap (see hippocampome.org (Wheeler et al., 2015)). By PV+ cells we
mean: SP_PVBCs, SP_BS cells, and SP_AA cells. By CCK+ cells we mean: SP_CCKBCs,
SR_SCA cells and SLM_PPA cells. The only interneurons in our NOS+ class are SP_Ivy
cells. (Neurogliaform cells would belong here as well.) We assume all neurons in SO:
SO_OLM cells, SO_BS cells, SO_Tri cells, and SO_BP cells to be SOM+.

A usually unspoken, implicit assumption on communication between neurons is
used here as well, namely, we model only glutamatergic and GABAergic synapses
between presynaptic axons and postsynaptic somata and dendrites. Thus, we leave
out co-transmission and neuromodulators acting on different receptors, retrograde
messengers, any kind of gap-junctions and any axonal receptors.
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Chapter 1. CAl synapse physiology in silico

were directly obtained from the literature (see Supplementary Table 1.4 for AMPAR and GABAR
rise and decay time constants, Methods for NMDAR time constants, and Supplementary Table
1.5 for reversal potentials (Moradi and Ascoli, 2019)). In particular, for the Tdecay (Supplemen-
tary Table 1.4) with the exception of Maccaferri et al. (2000) who used either single or weighted
bi-exponential fits, none of the other studies we considered explicitly reported how 7 4ec4y Was
extracted. Therefore, we extrapolated single exponential fits for 7 .4 of all pathways, which
were measured through somatic voltage-clamp recordings. We used these measurements
directly as dendritic PSC time constants without any correction for attenuation (Table 1.2).
STP was modeled with the Tsodyks-Markram (TM) model, which added three parameters
(Usg, D, F) to a synaptic connection type. They were fit in conjunction to the experimentally
observed STP behavior (Figure 1.2, step 4; see Methods). Stochastic synaptic transmission
was modeled by extending the TM model to include quantal release from multiple sites. This
added another parameter (Nggrp) that was fit to the observed variability of PSC amplitudes of
experimental traces in terms of their coefficient of variation (CV std/mean; Figure 1.2, step 5;
see Methods). Finally, the mean amplitude of PSPs depended on three of the parameters and
thus could be fit to the peak synaptic conductance (g) only after the other two parameters had
been determined (Figure 1.2, step 6).

In addition to the parameters of synaptic models, the physiology of PSPs is also dependent
on several anatomical parameters, which result from the single-cell and tissue modeling
workflow (see Methods; Supplementary Figure 1.6). To ensure the accuracy of the fitted
synaptic parameters we independently validated aspects of the modeled anatomy (Figure
1.2, steps 1, 2). In the following sections, we present the results of the anatomical validations,
followed by the results of the various fits of synaptic parameters.

1.3.3 Validation of synaptic anatomy and dendritic attenuation

The anatomical properties of synaptic connections such as number of synapses per connec-
tion and axo-dendritic innervation patterns, along with the dendritic properties of single cell
models were validated against experimental data (Figure 1.3). Pairs of synaptically connected
neurons were sampled from a dense tissue-level reconstruction of the rat hippocampal CAl re-
gion (see Methods; Supplementary Figure 1.6; Figures 1.3A and 1.4A). The number of synapses
per connection for the handful of experimentally characterized pathways (Ali, 2011; Biro et al.,
2005; Buhl et al., 1994a,b; Deuchars and Thomson, 1996; Foldy et al., 2010; Maccaferri et al.,
2000; Sik et al., 1995; Vida et al., 1998) were consistent with biological data (r = 0.98; Figure
1.3B and Supplementary Table 1.6). The mean number of synapses per connection for the
in silico pathways that have been experimentally characterized are as follows: Excitatory to
excitatory (E-E): 1.26+0.6; inhibitory to excitatory (I-E): 8.2+2.1; excitatory to inhibitory (E-I);
only connections between PC to O-LM cells): 2.8+1.2; inhibitory-inhibitory (I-I): 2.8+0.2
(Supplementary Table 1.6). A systematic, quantitative characterization of axo-dendritic in-
nervation profiles for hippocampal CA1l synaptic connections is largely lacking. Therefore,
although we derived many predictions of axo-dendritic innervation profiles from in silico
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Figure 1.2: In silico synapse model and parameter fitting: Properties of the network (left) and the
parameters synapse model (right) determine certain features of the emergent PSPs (middle). (These
PSP features are schematized at the bottom of the figure. Individual trials are shown in gray and their
average postsynaptic voltage trace in black.) These dependencies between properties/parameters and
PSP features (indicated by arrows, and dots where they join and continue as a single arrow) were used
to fit the synapse model parameters to data in 6 steps. Left: Parts of the network model that affect these
features such as biophysical and anatomical neuron models via dendritic attenuation (1) as well as
dendritic innervation and the number of synapses per connection (2) are independently validated. Top
right: Parameters of the model of postsynaptic conductance are taken from averaged experimental
PSC traces (3). Middle right: The TM model of STP adds three parameters that are fit to observed STP
behavior (4). Bottom right: The model of stochastic quantal release adds another parameter fit to
the observed CV of PSP amplitudes (5). In the last step, peak synaptic conductances are calibrated
to match PSP amplitudes from data (6). Numbers on arrows indicate that the given parameter was
validated against - or fitted to data, while numbers on boxes indicate that the parameters were taken
from literature and directly plugged in into the model.

synaptic pathways, these could, however, only be validated based on anecdotal evidence
(Figures 1.3A and 1.4A). In addition, we sampled neuron pairs at inter-somatic distances of
0 —200 um to predict their connection probability and number of synapses per connection
(Figure 1.3C, D). The upper bound of 200 um ensured that we obtained a sufficient number
(100 = n < 5000) of pairs for all connections, even where the pre-post neurons were in different
layers e.g. Schaffer collateral-associated and O-LM cells to PC connections. Although the
perforant path-associated cell to PC connections occur in our model, they were excluded in
these analyses since their somata are farther apart than the general 200 um distance criteria
chosen for these predictions.

Finally, we also validated the dendritic attenuation profile of PSPs in single neuron models of
PCs, which were also found to be consistent with experimental data (Magee and Cook, 2000)
(Tmodel = 235.2, Texp = 155.6; Supplementary Figure 1.7).
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Figure 1.3: In silico synapse anatomy. A: A representative in silico O-LM (purple) to PC (blue) pair, with
synapses visualized in red. 3D morphologies were reconstructed with the Neurolucida software by the
members of the Thomson/Mercer lab (Migliore et al., 2018). Al: Branch order distribution (7 = 5000
connections) of the presynaptic (O-LM) axons. A2: Branch order distribution of the postsynaptic (PC)
tuft dendrites. A3: Distribution of the number of synapses per connection of the in silico O-LM to PC
pathway. In vitro experimental data is indicated in red. A4: Distance dependent connection probability
of the in silico O-LM to PC pathway. B: Validation of the number of synapses per connection against
experimental data. (E: excitatory, I: inhibitory, e.g.: I-E: inhibitory to excitatory pathways.) Dashed gray
line represents perfect correlation between experimental and model values. C: Predicted mean number
of synapses per connections for all pathways in the full-scale CA1 network model. Only connections
with < 200 um intersomatic distance were used to calculate the average. Averages were calculated
from 100 < n < 5000 pairs. White boxes represent connections that are not present in the circuit model
due to the lack of axo-dendritic overlap (given the < 200 um intersomatic distance sampling criteria).
Experimentally measured values (same as on its left) are highlighted with black rectangles. (Caption
continues on the next page.)
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Layer abbreviations: SR: stratum radiatum, SP: stratum pyramidale, SO: stratum oriens. M-type ab-
breviations: AA: axo-axonic cell, BP: back-projecting cell, BS: bistratified cell, CCKBC: CCK+ basket
cell, Ivy: ivy cell, OLM: oriens-lacunosum moleculare cell, PC: pyramidal cell, PVBC: PV+ basket cell,
PPA: performant path-associated cell, SCA: Schaffer collateral-associated cell, Tri: trilaminar cell (see
Supplementary Methods). D: Predicted mean connection probability (within 200 um intersomatic dis-
tance) for all pathways in the CA1 network model. M-type abbreviations, white boxes, black rectangles
and number of pairs are as in C.

1.3.4 Short-term plasticity of synapses

The synaptic physiology of hippocampal CA1 connections express a rich diversity of STP
profiles in response to presynaptic AP trains at different stimulus frequencies (Ali et al., 1998,
1999; Ali and Thomson, 1998; Losonczy et al., 2002; Pouille and Scanziani, 2004; Kohus et al.,
2016; Eltes et al., 2017). However, to the best of our knowledge, only Losonczy et al. (2002)
reported TM model parameters for CAl pathways and used an additional recovery spike
elicited about 500 — 100 ms after the last spike in the train, which is crucial to characterize
frequency-dependent STP profiles of depression and facilitation (Gupta et al., 2000). Published
STP parameters from Losonczy et al. (2002) were used for PC to BC pathways, after refitting a
subset of their data, and ensuring their consistency with our resulting Usg, D, F values (see
Methods). The dataset from Kohus et al. (2016) were obtained in the mouse CA3 region at
1.6 mM [Ca?*],, which differs from the rest of the datasets we considered, we nevertheless
made use of this resource due to the availability of their raw data, which was subsequently used
in our procedure of fitting TM model parameters (see Methods; Table 1.1 for data inclusion
and exclusion criteria; Table 1.2 for a list of data and modeling assumptions).

The resulting TM model parameters following the fitting procedure were consistent with
those in the source dataset (Kohus et al., 2016). In addition, we were able to match the CVs
of the first PSC amplitudes (r = 0.8; Figure 1.4B, Supplementary Table 1.7), by calibrating
Nrrp (see Loebel et al., 2009; Barros-Zulaica et al., 2019 and Methods) with the resulting
values of Nrgp in a biologically plausible range. An elegant study demonstrated that under
experimental conditions to induce high neurotransmitter release probability (high Mg/Ca)
CCKBC to PC connections in CA3 are characterized by MVR (with Nrgp = 5— 7 vesicles)
(Bir6 et al., 2006). However, uni-vesicular release (UVR, Nggrp = 1) is more prevalent under
physiological conditions (Bir6 et al., 2006). The in silico CV of CCKBC to PC PSCs with Nrgp =1
compared well against experimental data obtained under physiological conditions. In the
cases of synaptic connections from PVBC to PC and PVBC a value larger than 1 (Ngrp = 6)
vesicles were required (see Methods; Figure 1.4B). For pathways not present in the Kohus et al.
(2016) dataset, the Ngrrp could not be calibrated and was thus assumed. The assumption of
MVR with Nggp = 2 vesicles at each excitatory to excitatory connections was used in this study
(Tong and Jahr, 1994; Conti and Lisman, 2003; Christie and Jahr, 2006; Barros-Zulaica et al.,
2019), while UVR was assumed at all other non-calibrated pathways (see Biro et al. (2005);
Gulyés et al. (1993) suggesting UVR for certain PC to interneuron connections).
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Figure 1.4: In silico synapse physiology. A: In silico paired recording experiment with the STP protocol
used in Kohus et al. (2016). Presynaptic (PVBC) voltage trace is shown on top. In silico PVBC (green)
to PC (blue) pair, with synapses visualized in red in the middle. 3D morphologies were reconstructed
with the Neurolucida software by the members of the Thomson/Mercer lab (Migliore et al., 2018).
Postsynaptic (PC) experimental traces recorded in vitro (in gray) and their mean in red, as well as model
traces recorded in silico (in gray) and their mean in blue, are presented at the bottom panel. Insets show
the variance of the first IPSCs. B: Validation of the CV of the first PSC amplitudes (excluding failures)
against experimental data. (E: excitatory, I: inhibitory, e.g.: I-E: inhibitory to excitatory pathways.)
Dashed gray line represents perfect correlation between experimental and model values. C: Validation
of the PSP amplitudes against experimental data. D: Predicted CVs of first PSC amplitudes (excluding
failures) for all pathways in the CA1 network model after synapse parameter generalization. As in
Figure 1.3C, only connections with < 200 pum intersomatic distance were used to calculate the average
postsynaptic response from 7 = 20 pairs with 35 repetitions for each pair. Postsynaptic cells were held
at -65mV in in silico voltage-clamp mode. M-type abbreviations, white boxes, and black rectangles are
as in Figure 1.3C. E: Predicted PSP amplitudes for all pathways in the CA1 network model after synapse
parameter generalization. 20 pairs with 35 repetitions for every possible connection. Postsynaptic cells
were held at -65 mV steady-state potential in in silico current-clamp mode. Consistent with Gulyds et al.
(1993), PC to interneurons are the strongest. M-type abbreviations, white boxes, black rectangles and
number of pairs are as in D. (Caption continues on the next page.)
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F: Properties of postsynaptic (PC) IPSPs from 100 PVBC to PC pairs with 35 repetitions each. F1:
Distribution of in silico PSP amplitudes. In vitro experimental data from Pawelzik et al. (2002) is
indicated in red. F2: Distribution of in silico PSP 10-90% rise times. (10-90% rise time constants of PSCs
are fixed to 0.2 ms in the model, but the PSP rise times wary.) F3: Distribution of in silico PSP decay
time constants (single exponential fit). F4: Distribution of in silico PSP latencies. F5: Distribution of
the CVs of the first in silico PSP amplitudes (excluding failures). F6: Distribution of in silico failures (0
measurable PSP amplitude from 35 repetitions).

Based on the literature and our model-fitting we identified several rules to group STP profiles.
The mapping of STP profiles for all pathways is as follows: PC to O-LM cells (Ali and Thomson,
1998; Biro et al., 2005; Losonczy et al., 2002; Pouille and Scanziani, 2004) and other interneu-
rons in stratum oriens (Eltes et al., 2017) E1 (excitatory facilitating). PC to PC (Deuchars and
Thomson, 1996), PC to all SOM- interneurons (Ali et al., 1998; Losonczy et al., 2002; Pouille
and Scanziani, 2004) E2 (excitatory depressing). CCK+ interneurons to CCK+ interneurons
(Ali, 2007, 2011; Kohus et al., 2016) 11 (inhibitory facilitating), PV+ and SOM+ interneurons
to PC (Ali et al., 1998, 1999; Bartos et al., 2002; Buhl et al., 1995; Daw et al., 2009; Kohus et al.,
2016; Maccaferri et al., 2000; Pawelzik et al., 2002) as well as interneurons to interneurons
(except the CCK+ ones) (Bartos et al., 2002; Daw et al., 2009; Elfant et al., 2008; Karayannis
et al., 2010; Kohus et al., 2016; Price et al., 2005) 12 (inhibitory depressing). CCK+ and NOS+
(only Ivy cells, since we lack NGF morphologies) to PC (Fuentealba et al., 2008; Kohus et al.,
2016; Price et al., 2008) 13 (inhibitory pseudo linear). The parameters of the groups and the
resulting dynamics are summarized in Table 1.3 and Figure 1.5.

Neurotransmitter release probability and the STP profile are not only sensitive to the recording
temperature and the developmental age but also [Ca?®*], (Rozov et al., 2001; Williams and
Atkinson, 2007; Guzman et al., 2016). Therefore, we modeled [Ca®*], sensitivity with a highly
non-linear scaling of Usg (baseline release probability) values (see Methods). As an exemplar
result of this additional modeling detail, the PC to PC pathway exhibits an E3 (excitatory
pseudo-linear) STP profile characterized by low PSP amplitudes with high trial-by-trial vari-
ability and failures at in vivo like [Ca®*],
(2 -2.5mM) E2 (excitatory depressing) profile (Supplementary Figure 1.7B). Usg values are
scaled by a Hill isotherm (see Methods) parameterized with data from PSP amplitudes in
neocortex (Supplementary Figure S11 in Markram et al. (2015)), which is an indirect measure
of the release probability. Here, we have shown that applying this Hill isotherm directly to the
Usg values indeed results in the same scaling profile of PSP amplitudes in the case of PC to PC
connection (Supplementary Figure 1.8A).

levels (1.1 — 1.3 mM) compared to the in vitrolevels

1.3.5 Calibration of peak synaptic conductances to match PSP amplitudes

There is a dearth of studies characterizing both the PSC and PSP amplitudes for the same
connections in rat hippocampal CAl (compare Supplementary Tables 1.4 and 1.5). Therefore,
we only used PSP amplitudes that were measured experimentally to calibrate the in silico peak
synaptic conductances in order to match the in vitro PSPs (Ali et al., 1998; Ali and Thomson,
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1998; Cobb et al., 1997; Deuchars and Thomson, 1996; Fuentealba et al., 2008; Pawelzik et al.,
1999, 2002) (see Figure 1.4D and Table 1.3). Having parameterized all relevant anatomical
and physiological synaptic properties including the number of synapses per connections,
axo-dendritic innervation patterns, PSC rise and decay time constants, STP parameters, Ngrp,
NMDA/AMPA peak conductance ratio, and reversal potential, we undertook in silico paired-
recordings by following a sequence of steps. A connected pair of neurons within a pathway
specific intersomatic distance (usually ~ 100 um) for a given pathway was sampled from the
hippocampal CA1 model, the postsynaptic neuron was current-clamped to a pathway-specific
steady-state potential (see Supplementary Table 1.5), an AP was elicited in the presynaptic
neuron, which caused a postsynaptic response, measured in the soma. After repeating this
sequence for multiple pairs of the same pathway (n = 50) with many trials (n = 35), we
derived the peak synaptic conductance value that yielded the reference mean experimental
PSP amplitude (see Methods). Next, we repeated the same protocol on a set of 50 randomly
selected pairs with the calibrated peak conductance values as a validation of our approach
(r =0.99; Figure 4C and Supplementary Table 1.8).

As an independent external validation of the peak conductances, we compared them against
sparse published data estimating single-receptor conductance and receptor numbers in
excitatory synapses on PCs. Hippocampal CA1 PCs receive most of their inputs from CA3
PCs through the Schaffer collaterals (Megias et al., 2001; Tak4cs et al., 2012), whereas in this
study we only considered intrinsic connections - e.g. excitatory connections between local
CA1 PCs - and not long-range extrinsic projections. Thus, single-receptor conductances and
receptor number estimates from the Schaffer collateral synapses were assumed to generalize
for the intrinsic PC to PC connections. Using non-stationary fluctuation analysis on EPSCs
recorded in outside-out dendritic membrane patches, Spruston et al. (1995) estimated peak
single-receptor conductances of 10.2 pS and 43.5 pS for AMPARs and NMDARs, respectively.
Based on these numbers, our calibrated values resulting in a peak AMPAR conductance of
0.6+0.1 nS is the net result of ~ 59 AMPARs per synaptic contact. Based on an experimentally
measured NMDAR/AMPAR peak conductance ratio of 1.22 (Myme et al., 2003), we predict
that there are about ~ 18 NMDARSs constituting a single synaptic contact between CA1l PCs.
Our in silico predictions are consistent with experimental studies that estimate ~ 58-70 AMPA
and ~ 5-30 NMDA receptors (Jonas et al., 1993; Spruston et al., 1995; Nusser et al., 1998;
Matsuzaki et al., 2001). Taken together, these experimental datasets enable an independent
validation of the calibrated peak conductance of PC to PC connections in CAl. In addition,
we also predict an average GABA peak conductance of 2+1 nS at a single inhibitory synaptic
contact comprising ~ 100 GABAergic receptors, which is also in good agreement with previous
estimates (Mody and Pearce, 2004).

1.3.6 Parameter extrapolation

By integrating all the synaptic parameters and performing paired recordings in silico, we
procured a dataset of 16 pathways (Table 1.3). The number of theoretically possible pathways
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(based on 12 m-types) in our CAl circuit model is 144, however, only 102 of these are bio-
logically viable based on the extent of axo-dendritic overlap (Figure 1.3C, D). Therefore, the
parameters of the remaining 90% of the pathways had to be extrapolated. We generalized the
anatomical properties of synapses (number of synapses per connection, connection proba-
bility, bouton density, innervation profile) obtained from the fraction of characterized to the
remainder of uncharacterized pathways as shown previously (Reimann et al., 2015; Markram
et al., 2015). However, for STP profiles of hippocampal connections obtained from studies
that reported measurements of paired-pulse ratios, but did not provide the raw experimental
traces with = 2 presynaptic spikes (Deuchars and Thomson, 1996; Ali and Thomson, 1998;
Fuentealba et al., 2008), we applied analogous parameters from the somatosensory cortex
(Markram et al., 2015). We performed a prior consistency check of the parameter ranges for
similar connection types - perisomatic inhibitory (BCs) to PC, and inhibitory to inhibitory -
that have been experimentally characterized in both somatosensory cortex and hippocampus
and found them to be comparable. Therefore, our rationale to generalize 4 sets of Usg, D,
F values from the somatosensory cortex to the hippocampus (Tables 3) could be justified.
Thereafter, we approximated the missing parameters with averaged values across specific
connection types that were grouped according to neurochemical markers that appear to have
similar STP parameters and peak conductances (Table 1.3). For example, it is known that
excitatory synapses on distal dendrite targeting interneurons, which predominantly express
SOM - such as PC to O-LM connections - are mostly facilitating, and on the contrary inhibitory
synapses from SOM+ neurons to PCs are strongly depressing (Ali and Thomson, 1998). This
exercise resulted in 9 synaptic classes, covering all connection types in the CAl region (Table
1.3 and Figure 1.5). Most of these classes contain few experimentally characterized examples,
especially between inhibitory interneurons (Table 1.3). We have previously shown that aver-
aging STP parameters and peak conductances within synaptic classes is a valid method to
extrapolate missing values (Markram et al., 2015; Ramaswamy et al., 2015).

With the integrated and calibrated, but mostly generalized set of parameters (g, Tgecay, Usk,
D, F parameters of STP and Nggp; Figure 1.2) for all pathways in the CA1 model we predicted
the CVs of the first PSCs (Figure 1.4D) and the first PSP amplitudes (Figure 1.4E), based on
previously published cell models (Migliore et al., 2018) and statistically derived connectivity.
In addition, we performed in silico paired recordings in all possible pre-post combinations
of m-type-specific pathways (n = 102 biologically viable pathways) to generate detailed pre-
dictions of the physiological properties of synaptic transmission including PSP amplitudes,
10-90% rise times, decay time constants, latencies, CV of first PSP amplitude, and percentage
of failures (Figure 1.4F). Although these predictions could provide preliminary insights into the
organizing principles of synaptic transmission in hippocampal CALl - in particular, inhibitory
pathways, which remain mostly uncharacterized - they require further validation through tar-
geted experiments e.g. employing state-of-the-art multiple whole-cell patch-clamp recordings
(Perin et al., 2011; Guzman et al., 2016; Espinoza et al., 2018).
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Table 1.3: Parameters and generalization to 9 classes. Synapse parameters either taken from the
literature (Tdecay (MS)), fitted directly to data (Usg, D (ms), F (ms)), calibrated in silico (§ (nS), Nrrp)
or taken from the somatosensory cortex ((Markram et al., 2015) marked with ). Values in the Tdecay
column which neither appear in Supplementary Table S1 (summarizing rat PSCs) nor are taken from
the somatosensory cortex, are from mouse recordings (Daw et al., 2009; Lee et al., 2014). Average class
parameters are marked in bold and are used predictively for the remaining pathways belonging to the
same class. The PC to Ivy & was not taken into account for the PC to SOM- class average. For cells
belonging into the same class see Table 1.2, assumption 9. M-type abbreviations are as in Figure 1.3C.

Pre Post g Tdecay Usg D F NRgRrp
PC to PC (E2)
PC PC 0.6+0.1 3+0.2 0.5+0.02F 671177 1745 2
PC to SOM+ (E1)
PC 0-LM 0.8+0.05 1.7+0.147 0.09+0.127 138+2117 670+830" 1
PC SOM+  0.8+0.05 1.7+0.147 0.09+0.127 138+211T 670+830F 1
PC to SOM- (E2)
PC PVBC 2+0.05 412405  0.23+0.09  410+190 10+11 1
PC CCKBC 3.5+04  4.12+0.5 0.23+0.09  410+190 10+11 1
PC BS 1.65+0.1 4.1240.5 0.23+0.09  410+190 10+11 1
PC Ivy 6.5+0.5  4.12+0.5 0.23+0.09  410+190 10+11 1
PC SOM- 2.4+0.8 4.12+0.5 0.23+0.09 410+190 10+11 1
PV+ to PC (12)
PVBC PC 2.1540.2 594405 0.16+0.02  965+185 8.6+4.3 6
AA PC 2.4+0.1 11.240.9 0.1+0.01 1278+760 10+6.7 1
BS PC 1.6+0.1 16.1+1.1  0.13+0.03 1122+156  9.3+0.7 1
PV+ PC 2+0.35 11.1+4.1 0.13+0.03 1122+156  9.3+0.7 1
CCK+ to PC (I3)
CCKBC PC 1.840.3 9.35+1 0.16+0.04 153+120 12+3.5
SCA PC 2.15+0.3  8.3+0.44  0.15+0.03 185432 14+5.8
CCK+ PC 2+0.15  8.8+0.25 0.16+0.01 168+15 13+0.5
SOM+ to PC (I12)
Tri PC 1.4+0.3 7.75+0.9  0.3+0.08" 1250+520" 2447
SOM+ PC 1.440.3  8.3+2.2"7  0.3+0.08" 1250+520" 2+4"
NOS+ to PC (I3)
vy PC 0.48+0.05  16+2.5  0.32+0.147  144+80" 62+317 1
CCK- to CCK- (I12)
PVBC  PVBC 45+0.3 2.67+0.13 0.26+0.05  930+360 1.6+0.6
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Figure 1.5: Summary of synapse diversity in the CA1 network model. Panels represent exemplar in
silico pairs from the 9 generalized pathways (2 for PC to SOM- interneurons). Presynaptic voltage traces
are shown in the upper traces of each panel (A-]), while the postsynaptic potentials elicited in 35 trials
(in gray) and the average of these trials are superimposed in the lower traces of each panel. Postsynaptic
cells were held at -65 mV steady-state potential in in silico current-clamp mode. Physical dimensions
are as follows: decay time constant 74 and D, F depression and facilitation time constants: ms, peak
synaptic conductance g: nS, while the absolute release probability Usg and NMDA/AMPA conductance
ratios are dimensionless. A: PC to PC (E2). B: PC to O-LM cell (E1). C: PC to (SP) bistratified cell (E2). D:
PC to CCKBC (E2). E: O-LM cell to PC (I2). F: CCKBC to CCKBC (I1). G: Ivy cell to PC (I3). H: CCKBC to
PC (I3). I: PVBC to PC (12). J: PVBC to PVBC (I2). Vertical scale bars on each panel represent 0.25 mV.
Connectivity in the schematic CA1 microcircuit in the middle is simplified for clarity (for example
most of the interneuron to interneuron connections are missing). Simplified synapses of the pathways
shown in the panels around are indicated with gray circles. M-type abbreviations are as in Figure 1.3C.

1.4 Discussion

Recent advances in high-performance computing have enabled biologically detailed, data-
driven reconstructions and large-scale simulations of brain regions (Bezaire and Soltesz, 2013;
Bezaire et al., 2016; Markram et al., 2015; Wheeler et al., 2015). Here, we demonstrate that a
data-driven workflow grounded in biological first-principles, which was used to reconstruct
a biologically detailed model of rat neocortical tissue digitally, can be extended to model
other brain regions such as the hippocampal CA1l, to reconcile disparate cellular and synap-
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tic data, and to extrapolate from the sparse set of experimentally obtained parameters to
predict those of synaptic connections not yet characterized experimentally. In this study,
we chose a previous implementation of the phenomenological TM model of STP, which is
based on the quantal model of neurotransmitter release. The approach was able not only to
extract relevant parameters from raw experimental traces, but scaled well to simulate dynamic
transmission (Ramaswamy et al., 2012; Markram et al., 2015; Ramaswamy et al., 2015). In
addition, this version of the TM model also enabled us to simulate trial-to-trial fluctuations to
recreate, validate and predict a broad spectrum of synaptic properties for cell-type-specific
hippocampal connections including amplitudes, rise and decay times, latency, variability and
response failures (Figure 1.4F). It is known that [Ca?*], regulates the neurotransmitter release
probability, and therefore, the amplitudes of PSPs. In this study, we adapted the existing
data-driven digital reconstruction workflow to reconcile differences in synaptic dynamics
that were characterized at different [Ca®*], levels. Therefore, we scaled the neurotransmitter
release probabilities for all pathways that were characterized at 1.6 —2mM [C a**1, (Kohus
et al., 2016; Losonczy et al., 2002; Markram et al., 2015) before calibrating peak conductances
to match PSP amplitudes that were measured at 2.5 mM [C a**1,, which is more representative
of baseline values for hippocampal slice experiments (Ali et al., 1998; Ali and Thomson, 1998;
Deuchars and Thomson, 1996; Fuentealba et al., 2008; Pawelzik et al., 1999, 2002).

In the continuing spirit of bringing together hippocampal synaptic electrophysiology from
published literature a recent complementary study leveraged text-mining techniques to extract
the properties of synaptic connections in hippocampal CA1, including PSP amplitudes and
peak conductances (Moradi and Ascoli, 2019). The authors have also open-sourced their
collection of papers and parameters alongside useful cloud-based tools to calculate reversal
potentials and LJPs, of which we took advantage for this paper. However, our approach
to data integration from literature demonstrates that synaptic properties reported in the
literature such as peak conductances should not be interpreted at face value but require further
corrections to account for inadequate space-clamp errors, which could severely underestimate
their value by two-three fold (Markram et al., 2015). Furthermore, when integrating data
from whole-cell patch-clamp recordings, the interaction between the extracellular bath and
intracellular pipette solutions, and their influence on the kinetics of ion channel mechanisms
used in the in silico single-cell models becomes paramount. The presence of blockers such
as TTX, QX314, cesium and gluconate among many others, alter the kinetics of dendritic ion
channels, which are active in the subthreshold regime, and thus, are key factors in governing
the attenuation of PSPs in active dendrites. However, in our study, the core experimental
dataset that was used to calibrate the peak synaptic conductances (Supplementary Tables
1.5 and 1.8) were derived exclusively from sharp-electrode recordings where the intracellular
medium is devoid of any of the above blockers, and therefore, the subthreshold regime of
the single-cell models are not unduly influenced. Indeed, the effects of blockers on the
subthreshold regime will not only become important for future refinements of single-cell
models but also when more experimental data from whole-cell patch clamp recordings are
available.
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1.4 Discussion

The results we report, to the best of our knowledge, probably constitute a comprehensive
resource, not only for the anatomy but also the kinetic and short-term dynamic physiological
properties of the rat hippocampal CA1 region. Consolidation of the state of the literature not
only facilitates building detailed models but also highlights knowledge gaps and could help
in prioritizing the identification of missing data on CA1 connections, such as PC to interneu-
rons, and between interneurons, which could form diverse pre-postsynaptic combinations
of potential CAl connection types that are crucial in regulating hippocampal oscillations
(Klausberger and Somogyi, 2008; Pelkey et al., 2017). Our modeling approach predicts rela-
tively high connection probabilities for interneuron to interneuron connections, and low IPSP
amplitudes (see Figure 1.3D and Figure 1.4E). However, these predictions need further experi-
mental validation, probably through multiple patch-clamp recordings, which have enabled
high-throughput mapping of inhibitory circuits not only in the neocortex (Jiang et al., 2015),
but also in the dentate gyrus of the hippocampal formation (Espinoza et al., 2018). Indeed,
the parameter set presented here should be considered a first draft, with many assumptions
and limitations. For example, we assume somatically measured PSC decay time constants
for dendrtic synapses without any correction for attenuation, use Usg, D, F values obtained
in CA3, generalize NMDA/AMPA peak ratios characterized between PCs to all other excita-
tory pathways, and do not model GABAp receptors. We plan to refine these assumptions
systematically in future versions of our model and overcome limitations by integrating new
experimental data when available (see Table 1 for all data inclusion criteria and Table 2 for all
explicit limitations).

By detailing all the integration steps in this study, we had two main objectives. First, we aimed
to demonstrate that published parameters should not be taken at face value without rigorously
checking their consistency within any modeling framework and the necessity of being abreast
of the state-of-the-art experimental techniques. Second, we attempted to emphasize the fact
that a growing diversity of experimental standards combined with published literature that
provides access to only processed data sets but not raw experimental traces could lead to
an inconsistent picture of a fundamental mechanism such as synaptic transmission. The
bottom-up modeling framework presented as a resource in this article could facilitate the
integration of disparate datasets and provide a platform within which a community-driven
consensus of the synaptic organization of the hippocampal formation could develop.

Acknowledgements

We would like to thank Drs. Giuseppe Chindemi, Natali Barros-Zulaica, Julian M. L. Budd,
Rodrigo Perin and Zoltan Nusser for fruitful discussions as well as Werner Van Geit, Michael
Gevaert, Arseniy Povolotsky, Shailesh Appukuttan, Cyrille Favreau and Marwan Abdellah
for technical assistance. This study was supported by funding to the Blue Brain Project, a
research center of the Ecole polytechnique fédérale de Lausanne, from the Swiss government’s
ETH Board of the Swiss Federal Institutes of Technology. Funding was also provided by The
Human Brain Project through the European Union Seventh Framework Program (FP7/2007-

27



Chapter 1. CAl synapse physiology in silico

2013) under grant agreement no. 604102 (HBP) and from the European Union’s Horizon 2020
Framework Programme for Research and Innovation under the Specific Grant Agreements
No. 720270 (Human Brain Project SGA1) and No. 785907 (Human Brain Project SGA2). The
Blue Brain 5 supercomputer (HPE SGI 8600 system) is financed by ETH Board Funding to
the Blue Brain Project as a National Research Infrastructure and hosted at the Swiss National
Supercomputing Center (CSCS) in Lugano. Paired recordings and reconstructions from A.T’s
lab were also supported by the Medical Research Council, the Wellcome Trust and Novartis
Pharma. S.S was also supported by the UNKP-19-3-III new national excellence program of the
ministry for innovation and technology, the European Union, co-financed by the European
Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

Author contribution

S.R, A.E, and E.M conceptualized the study. S.R supervised the study. J.F and S.L reconstructed
single cells in Neurolucida. A.M, and A.T provided experimental datasets. S.S, S.K, and M.M
optimized and validated single cell models. A.R built the CA1 circuit with inputs from all
authors. A.E performed literature curation, simulations, analyses and generated the figures
with inputs from S.K, M.R and S.R. A.E, M.R, and S.R wrote the manuscript with inputs from
all authors.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Data availability

The data that support the findings of this study are available on request from the corresponding
author.

28



1.5 Supplementary Methods

1.5 Supplementary Methods

1.5.1 Single cell models

Detailed biophysical models of PCs and interneurons of the CA1 region from Migliore et al.
(2018) were used in the present study. The models are publicly available on ModelDB:244688
and as a "live paper" of the Human Brain Project’s (HBP’s) Brain Simulation Platform (BSP),
where they can be interrogated in a web browser without installing anything locally. Along the
excitatory PCs, they modeled 11 inhibitory interneurons.

The full list of the interneurons - and their mapping to the morphological-types (m-types) de-
fined on hippocampome.org (Wheeler et al., 2015) are as follows: stratum lacunosum molecu-
lare (SLM): perforant path-associated (PPA) cell - Perforant Path-Associated; stratum radiatum
(SR): Schaffer collateral-associated (SCA) cell - Schaffer Collateral-Associated; stratum pyrami-
dale (SP): axo-axonic (AA) cell - Axo-axonic, bistratified (BS) cell - Bistratified, CCK+ basket
cell (BC) - Basket CCK+, Ivy cell - Ivy, PV+ BC - Basket; stratum oriens (SO): back-projection
(BP) cell - Back-Projection, BS - Oriens-Bistratified, O-LM cell - O-LM, trilaminar (Tri) cell -
Trilaminar (Supplementary Figure S1A). Electrical types (e-types), based on the Petilla conven-
tion (Ascoli et al., 2008) were assigned to traces recorded in vitro and modeled accordingly. All
PCs were classified as continuous accommodating cells (cAC). Interneurons were classified as
cAC, bursting accommodating cells (bAC) and continuous non-accommodating cells (cNAC).
Combining m- and e-types yielded 16 morpho-electrical types (me-types) (Supplementary
Figure S1C) (Markram et al., 2015; Migliore et al., 2018).

Channel kinetics were based on those used in many previously published papers on hip-
pocampal neurons (Migliore et al., 1999, 2005; Ascoli et al., 2010; Morse et al., 2010), and
validated against a number of experimental findings on CA1 pyramidal neurons. Cell models
were equipped with the following active membrane properties: transient sodium current (Na);
A, D, and M types and a delayed rectifier potassium currents (K4, Kp, Ky, and Kpg); L, N,
and T types of calcium currents (Caj, Cay and Car); the nonspecific Ij; and two types of
calcium-dependent potassium currents (slow: K¢,s and voltage-dependent: K¢,). A simple
calcium extrusion mechanism, with a single exponential decay of 100 ms, was also included in
all compartments containing calcium channels.

All models were constrained with active dendritic conductances but were optimized using only
somatic features. While the somatic responses to various step-current injections were correct,
the dendrites of the single-cell models turned out to be too excitable, namely, single synaptic
inputs (gsy» = 1 nS) were leading to spikelets and somatic spikes. For this reason, single-cell
models were slightly re-optimized. The amplitude of the back-propagating action potential
(in the apical trunk, 150 and 250 um from the soma) as a dendritic feature was added to the
list of objectives for PCs. As for the interneurons, homogeneous dendritic sodium channel
densities were replaced with one that decays exponentially with distance from the soma (with
a length constant of 50 um) based on Hu et al. (2010). A-type potassium channels in the
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dendrites of interneurons were also replaced with one that activates at a more hyperpolarized
potential (see kinetics of "kad" for distal vs. "kap" for proximal A-type K* channels in Migliore
et al. (1999)). Furthermore, the upper bounds (used by the multi-objective optimization
algorithm) of dendritic sodium channel densities were reduced for all cell types. See re-
optimized ion channel conductance in Supplementary Figure S1 B. After the re-optimization,
single cells qualitatively reproduced the behavior presented in Migliore et al. (2018), assessed
by HippoUnit, our single-cell model comparison framework.

The HippoUnit package contains standardized validations of biophysically detailed, multi-
compartmental single hippocampal PC models and is publicly available on Github under
/KaliLab/hippounit. Moreover, a demo validation of the re-optimized cell models was added
as a use case in the BSP and is publicly available (again in a web browser without downloading
and installing anything) upon registration to the HBP collaboratory.

1.5.2 Different versions of the Tsodyks-Markram model

The Tsodyks-Markram (TM) model of short-term plasticity (STP) underwent many changes in
the last twenty years. For a recent and consistent review see Hennig (2013). Furthermore, the
equations are sometimes shown in the form of differential equations (Tsodyks and Markram,
1997; Tsodyks et al., 2000; Fuhrmann et al., 2002, 2004; Loebel et al., 2009; Hennig, 2013),
while in other papers the iterative solution evaluated at spike arrivals is presented (Markram
et al., 1998; Maass and Markram, 2002). The version used in this article follows the formalism
presented in Hennig (2013):

dR(H) 1-R(1)
dr

—U(ORDO(t — tpike)

du(n) Usg—-U(1)

dr
where R(?) is the fraction of available resources, U(?) is the release probability, D, and F
are depression and facilitation time constants respectively. Usg, is the utilization of synaptic

+Usg(1=U(0)0(t ~ Lspike)

efficacy or absolute release probability (also known as the release probability in the absence
of facilitation). 6() is the Dirac delta function and £, indicates the timing of a presynaptic
spike. Each action potential in a train elicits an AsgU (fsp;ke) R(spike) amplitude PSC, where
Agg is the absolute synaptic efficacy and is linked to the N g part of the quantal model, where
N is the number of release sites and g is the quantal amplitude. R =1, and U = Ugg are
assumed before the first spike. In our simulations, we implement Fuhrmann et al. (2002)
as the stochastic generalization of the model. (Where the value of U(¥) is actually used as a
probability.) The equation of the release probability is slightly different in that article and it
reads as follows:

i) = Jdo +Usp(L=U(0)6(t — tspike)
dt F pike

According to this equation U(¢) decays to 0 (the wording of the articles suggest a decay to

"the baseline"). To recover the definition of Usg as the release probability in absence of
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spikes (or U as the constant release probability in the first Tsodyks and Markram (1997) paper
concentrating only on depressing connections) the +Usg(1 — U(t)) has to be evaluated before
the release happens. On the other hand, the —U(¢) R(¢) jump in the equation of R still has to
be evaluated after the event in order to be consistent with R being 1 in the absence of spikes.
In this view U(¢) is mostly zero and at spike arrivals, before release happens it jumps to Usg.
From the biophysical point of view, this can be seen as a calcium-based model, where a quick
calcium influx leads to release. On the other hand, in the Hennig (2013) version U(¢) decays
to its baseline Usg value and the Usg(1 — U (1)) jump happens after the release. When fitting
the deterministic TM model to experimental data as well as when simulating the stochastic
version we use an event-based solution, meaning that the equations are only evaluated at
spike times (as opposed to the ODE form). For the Fuhrmann et al. (2002) version the iterative
update is:

At
Rimp =1+ (Rp - l)exP(—B)

At
Utmp =Upexp(—-—)

F
Un+1 = Utmp +Usp(1- Utmp)
Apt1 = ASEUn+1Rtmp

Ryi1 = Rtmp - Un+lRtmp

where At is the the time between the (n + 1)th and nth spike and A, is the nth amplitude. On
the other hand, the Hennig (2013) version (used to fit models in Kohus et al. (2016)) is:

At
Rimp =1+ (R — l)exp(—f)

At
Utmp =Usg+ Uy — USE)exP(—?)

Ap+1 = Asg UtmpRtmp

Rpy1 = Rtmp - UtmpRtmp
Un+1= Utmp +Usp(1 - Utmp)

None of these forms are presented in the literature per se. Both Markram et al. (1998) and
Maass and Markram (2002) integrate the ODEs in a single step:

At
Ryy1=1+(Ry—-1- Uan)exp(_B)
At
Upi1=Usg+ (U, —Usg + Usg(1 - Un))exn(—F)
At
=Usg+Un(1- USE)exP(_?)

At At
= Unexp(=—)+ Usi(1 = Unexp(=—))

Ap+1=AsgUp+1Rnn1
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Using the initialization R; = 1, U; = Ugg and calculating the first two amplitudes with all 3
versions (Fuhrmann et al. (2002), Hennig (2013) and Maass and Markram (2002)) one gets:

Ay = AsgUsg

5 At At
Az = AsplUsg + (Usg — USE)exP(—?)] 1- USEexP(_B))

With simulations, it is also possible to show that all the other amplitudes in response to a
spike train will be the same for all versions. Thus, the three event-based models presented
above are equivalent. We present the Hennig (2013) formalism in the article since we find it
more intuitive that both Dirac deltas are evaluated at the same point (after the PSC amplitude
is calculated) and is more in line with the wording of the papers, but emphasize that it is
consistent with the other version Fuhrmann et al. (2002) and the fits presented in Markram
etal. (2015).

1.5.3 Membrane noise

In order to correctly compare the coefficient of variation (CV, std/mean) of first PSC amplitudes,
measurement noise was added to the simulated traces (Barros-Zulaica et al., 2019). To this
end, noise parameters of in vitro traces were fitted and averaged for every different connection
types and then stochastic noise generated with these extracted parameters was added to the
corresponding in silico traces. Noise was described as an Ornstein-Uhlenbeck (OU) process.
The OU process is a stationary Gauss-Markov process, which describes the velocity of the
movement of a Brownian particle and is used in physics to describe noise relaxation (Bibbona
etal., 2008). Mathematically it can be described with the following iterative equation:

. . X(i-1) 2dt
X@)=XG-1)- .

dt+o TJV(O,D

where dt is the time step of the signal, 7 is the time constant fit to the exponential decay of
the signal’s autocorrelation function, o is the standard deviation of the signal and .A47(0,1) is a
draw from the normal distribution.

1.6 Supplementary Figures and Tables
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Supplementary Figure 1.6: Single cell models. A: Examplar 3D reconstructions of the 12 m-types in
the CA1 network model. 3D morphologies were reconstructed with the Neurolucida software by the
members of the Thomson/Mercer lab (Migliore et al., 2018). Axons are shown in blue, while dendrites
in red. Rendering and visualization was done with NeuroMorphoVis (Abdellah et al., 2018). Diameters
are scaled (x3) for better resolution. B: Re-optimized ion channel conductances for all e-types (6 bAC,
13 cAC (PC), 7 cAC (IN) and 13 cNAC). Where non-uniform channel distribution was used (e.g. h current
in PC dendrites) the maximal values are shown.C: Fraction of e-types (4) recorded and modeled in each

of the 12 m-types.
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Supplementary Figure 1.7: PSP attenuation. Validation of PSP attenuation against experimental data
from Magee and Cook (2000). A: EPSC like currents were injected to the apical dendrites of the different
pyramidal cell models from Migliore et al. (2018) and PSPs were measured at the injection site and at
the soma. B: Summary of PSP attenuation (dendritic PSP/somatic PSP) in all PC models injected at
different distances from the soma (in blue) and comparison to experimental data (in red).
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Supplementary Figure 1.8: Calcium sensitivity of synaptic physiology. A: PC to PC PSP amplitudes at
different extracellular calcium concentrations (normalized to 2 mM). Red curve indicates the experi-
mentally measured scaling function which was applied to scale the Usg parameter of the TM model.
Shaded light blue area indicates the in vivorange 1.1 — 1.3 mM. B: Same in silico PC to PC pair at two
different extracellular calcium concentrations. In vitro like is shown on top, while the in vivo one at the
bottom. Single trials (n = 35) are shown in gray and their average in blue. Postsynaptic cells were held
at -65 mV steady-state potential in in silico current-clamp mode. Vertical scale bar on the bottom panel
represents the same value as the one on top.
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Summary of paired recording experiments from rat CAl in voltage-clamp

mode (PSCs in pA). Liquid junction potentials (LJPs) and reversal potentials (E,.,s) are taken from

Supplementary Table 1.4

Moradi and Ascoli (2019). Holding potentials (Hold.) are corrected for the indicated LJP with the correct

sign. T in the rise time constant (7,;s.) column indicates 20-80% rise time, instead of 10-90%. M-type

abbreviations are as in Figure 1.3C.
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Chapter 1. CAl synapse physiology

Summary of paired recording experiments from rat CAl in current-clamp

mode (PSPs in mV). Liquid junction potentials (LJPs) and reversal potentials (E,,s) are taken from

Moradi and Ascoli (2019). M-type abbreviations are as in Figure 1.3C.

Supplementary Table 1.5
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1.6 Supplementary Figures and Tables

Supplementary Table 1.6: Validation of number of synapses per connections (see Figure 1.3B). M-type
abbreviations are as in Figure 1.3C.

Pre Post Reference data Model Reference

PC PC 1.2+04 1.26+0.6 Deuchars and Thomson (1996)
AA PC 6.1 7+4.4 Buhl et al. (1994b)

BS PC 6 6.5+3.2 Buhletal. (1994a)
CCKBC PC 8.3+0.8 8.6+3.9 Foldyetal. (2010)
O-LM PC 107 11+£5.2  Maccaferri et al. (2000)
PVBC PC 11+0.6 11.3+5.4 Foldy et al. (2010)

SCA PC 5.3+1.2 5+1.8 Vida et al. (1998)

PC O-LM 2.84+0.8 2.8+1.2 Biro et al. (2005)

PVBC PV+ 1.54+1.08 2.6+1.3 Siketal. (1995)

SCA SCA 3.5+15 3+1.4 Ali (2011)

Supplementary Table 1.7: Validation of the CV of first PSC amplitudes (see Figurel.4B). M-type
abbreviations are as in Figure 1.3C.

Pre Post Reference data Model Reference

AA PC 0.29+0.11 0.2840.13 Kohus et al. (2016)
CCKBC PC 0.43+0.14 0.36+0.1 Kohus et al. (2016)
PVBC PC 0.26+0.06 0.28+0.07 Kohus et al. (2016)
SCA PC 0.38+0.11 0.31+0.08 Kohus et al. (2016)
CCKBC CCKBC 0.18+0.16 0.18+0.1 Kohus et al. (2016)
PVBC AA 0.45+0.11 0.17£0.09 Kohus et al. (2016)
PVBC PVBC 0.17+0.05 0.2240.02 Kohus et al. (2016)

Supplementary Table 1.8: Validation of PSP amplitudes (see Figurel.4C). PC to CCKBC and Ivy are
not shown on the figure for visualization purpose. In some cases (indicated with ) outliers were
removed from the reference data (see published reference data in Supplementary Table 1.5). M-type
abbreviations are as in Figure 1.3C.

Pre Post Reference data (mV) Model (imV) Reference

PC PC 0.7+0.5 0.68+0.43 Deuchars and Thomson (1996)
AA PC 0.51+0.07 0.51+0.21 Pawelzik et al. (1999)
BS PC 0.55+0.15 0.55+0.24 Pawelzik et al. (2002)
CCKBC PC 0.7+0.5 0.68+0.26 Pawelzik et al. (2002)
vy PC 0.8+0.4 0.82+0.35 Fuentealba et al. (2008)
PVBC PC 0.83+0.37 0.83+0.23 Pawelzik et al. (2002)
SCA PC 0.38 0.39+0.17 Pawelzik et al. (2002)
Tri PC 0.8 0.81+0.36 Pawelzik et al. (2002)
PC BS 0.95+0.3 0.96+0.54 Pawelzik et al. (2002)
PC CCKBC 24+2.1 1.854+0.67 Pawelzik et al. (2002)
PC Ivy 2.9+2.2 2.65+2 Fuentealba et al. (2008)
PC O-LM 0.3+0.13" 0.3+0.21 Ali and Thomson (1998)
PC PVBC 1+0.4F 1+0.75 Ali et al. (1998)

(PV)BC (PV)BC 0.25 0.25+0.15 Cobb et al. (1997)
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¥4 Cortical synapse physiology in silico

The data presented in this chapter is taken from our preprint: J.B. Isbister*. A. Ecker*, C.
Pokorny*, S. Bolafios-Puchet*, D. Egas Standander* et al. (2023) Modeling and Simulation
of Neocortical Micro- and Mesocircuitry. Part II: Physiology and Experimentation. bioRxiv;
doi: 10.1101/2023.05.17.541168

Contribution: As the preprint covers diverse topics and has 40 authors, I did not include
the entire manuscript, but cut out the parts I have contributed most to. (A detailed
author contribution can be found at the end of the preprint.) Technically, I applied the
pipeline presented in Chapter 1 to the synapses of an other brain region. This included a
literature review, synapse physiology parameter calibration and validation, creation of
the figures (except the first one shown in this Chapter) and tables and writing the first
version of the corresponding sections in the manuscript. Since the pipeline is motivated,
described, and discussed in the previous Chapter, this one only has a Results section
(and a short one with the additional methodology). The Abstract is not the preprint’s but
newly written to reflect the aboves.

Abstract

Alongside their many strengths, detailed, large-scale models are excellent tools for integrating
data from different sources. As the flow of experimental data is continuous, data integration
has to be a regular exercise as well. Therefore, when building the latest version of our bio-
physically detailed, multi-scale model of the rat non-barrel primary somatosensory cortex, we
took into account recently published experimental results about synaptic physiology and the
propagation of activity across cortical layers. This process allowed us to update some of our
general synapse parameters to pathway-specific ones and to provide a high-level validation of
the anatomy and physiology of both the thalamocortical and the recurrent cortico-cortical
synapses. By recreating a recent laboratory experiment in silico, we not only validated the flow
of thalamus-evoked activity from layer 4 to layer 2/3 in our circuit, but also went beyond the
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Chapter 2. Cortical synapse physiology in silico

original experiment and provided predictions about how the other cortical layers influence
the subthreshold activity of layer 2/3 excitatory cells. In summary, as many other elements
of the new version of the model, the physiology of its synapses also improved. Furthermore,
inspired by recent experiments, we set up a paradigm which led to new predictions about the
interactions of cortical layers.

2.1 Results

The workflow for determining a dense parameter set for all synaptic pathways, starting with
sparse data from the literature, is described for the use case of hippocampal CAl in Chapter 1
(Figure 1.1).

2.1.1 Cortico-cortical synapse physiology

To parametrize the cortico-cortical synapses with the non-barrel primary somatosensory
cortex (nbS1; Figure 2.1), we enriched the paired-recording data sources used in Markram
et al. (2015) with recently published ones. To further constrain the variance of excitatory
postsynaptic potential (EPSP) amplitudes in layer 5 thick-tufted pyramidal cells (15 TTPCs),
we used parameters from Barros-Zulaica et al. (2019). Furthermore, the dataset was also
enriched with recent recordings from L6 (Qi and Feldmeyer, 2016; Yang et al., 2020, 2022).
Compared to the hexagonal bounding boxes used in Markram et al. (2015), we built the new
version of the model in an atlas-based manner (Figure 2.1;Reimann et al., 2022a). In order
to follow the curvature of the cortical atlas, morphologies had to be tilted, which shifted the
locations of synapses between them to an unknown degree. Furthermore, single cell models
were re-optimized with additional ion channels (Figure 2.1 step 2, Supplementary Figure
4.7A for exemplary conductance densities; Reva et al., 2022). Although, the propagation of
EPSPs along the dendrites of L5 TTPCs were validated as part of the re-optimization process
(Supplementary Figure 4.7B2), PSP attenuation in other cell types might have changed. As
somatic PSP amplitudes depend not only on the calibrated peak synaptic conductances, but
on the location of synapses and on the physiology of the postsynaptic cells as well (Figure
1.2) not all synapse parameters from Markram et al. (2015) could be used as they were, but
had to be re-adjusted (Figure 2.1 step 3). The resulting pathway-specific parameters are
listed in Tables 2.1, 2.2, and 2.3, the most common short-term dynamics are depicted in
Figure 2.2A1-2, and the assignment of STP profiles to different pathways are shown in Figure
2.2A3. PSP amplitudes and their coefficient of variation (CV; std/mean) closely matched their
biological counterparts (r = 0.99, n = 27; Figure 2.2B1; Supplementary Table 2.4 and r = 0.63,
n = 10; Figure 2.2C1; Supplementary Table 2.5, respectively). The dense parameter set also
allowed prediction of PSP amplitudes and CVs for all cortical pathways (Figure 2.2B2, C2).
The frequency of miniature postsynaptic currents (mPSCs) were also in line with in vitro
measurements (r = 0.92, n = 5; Figure 2.2D; Supplementary Table 2.6; see Methods).
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2.1 Results
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Figure 2.1: Overview of the physiology workflow of the cortical network model: The rendering of the
whole nbS1 in the middle was done in Brayns. The "pulled out" seven column subvolume corresponds
in size to our previous model (Markram et al., 2015). The boxes around it schematize the steps of the
physiology workflow. Blue boxes correspond to the whole preprint (Isbister et al., 2023), while the
pink ones to the parts that are described in detail in this Chapter. 1. Anatomical model: Summary
of the anatomical nbS1 model described in Reimann et al. (2022a). 2. Neuron physiology: Neurons
were modeled as multi-compartment models with ion channel densities optimised using previously
established methods and data from somatic and dendritic recordings of membrane potentials in
vitro (Reva et al., 2022). 3. Synaptic physiology: Models of synapses were built using previously
established methods and data from paired recordings in vitro (Markram et al., 2015; Ecker et al., 2020).
4. Compensation for missing synapses: Excitatory synapses originating from outside nbS1 were
compensated with noisy somatic conductance injection, parameterized by a novel algorithm. 5. In
vivo-like activity: We calibrated an in silico activity regime compatible with in vivo spontaneous and
stimulus-evoked activity. 6. In silico experimentation: Five laboratory experiments were recreated.
Two were used for calibration and three of them were extended beyond their original scope. 7. Open
Source: Simulation software and a seven column subvolume of the model are available on Zenodo.
Data generalisations: Three data generalisation strategies were employed to obtain the required data.
Left: Mouse to rat, middle: Adult to juvenile rat, right: Hindlimb and barrel field subregions to the
whole nbS1. Corresponding purple icons throughout the figure show where these strategies were used.
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Figure 2.2: In silico synapse physiology. A: Exemplary pair of L5 TTPCs (visualized with NeuroMorpho-
Vis (Abdellah et al., 2018)). Presynaptic cell in gray, postsynaptic cell in red, synapses between them
in purple. Neurite diameters are enlarged (x3) for visibility and axons were cut to fit into the figure.
Pre- and postsynaptic voltage traces on the top right. A2: Exemplary postsynaptic traces with different
STP profiles. A3: Assignment of STP profiles to viable pathways. (Pathways were considered viable
if there were at least 10 connections in all eight subregions of the model.) B1: Validation of first PSP
amplitudes. Dashed gray line represents perfect correlation between experimental and model values.
Error bars show one standard deviation (also for C1 and D). B2: Predicted PSP amplitudes of all viable
pathways in the circuit. Postsynaptic cells were held at -70 mV using an in silico voltage-clamp. Means
were calculated over 100 pairs of neurons with 35 repetitions each. C1 and C2: same as B1 and B2, but
showing the CV of the first PSP amplitude. D: Validation of mPSC frequencies.

2.1.2 Thalamocortical synapse physiology

The model includes fibers from the thalamus, based on fibres projecting to the barrel cortex
from the ventral posteriomedial (VPM) and posteriormedial (POm) thalamic nuclei (Reimann
et al., 2022a). These fibres make synaptic contacts within a radius of the fiber probabilisti-
cally based on laminar innervation profiles (Figure 2.3A). To improve the physiology of VPM
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2.1 Results

synapses, synaptic peak conductances were constrained using EPSP amplitude measurements
from thalamocortical slices (Figure 2.3B; Beierlein and Connors, 2002; Beierlein et al., 2003),
instead of generalizing cortico-cortical L4 excitatory parametersets as in Markram et al. (2015).
Latencies of layer-wise EPSPs increased with distance from the thalamus (Figure 2.3C). Ad-
ditionally, thalamocortical EPSP amplitudes normalized relative to a single population were
compared to normalized EPSPs in response to optogenetic stimulation targeting bundles of
thalamic fibers in mice (Sermet et al., 2019). This provided contrasting insights, however.
For example, whilst VPM to L6 inhibitory EPSPs match the initial validation data (Figure
2.3B), VPM to L6 parvalbumin (PV+) interneuron responses appear too strong relative to other
populations (Figure 2.3D1). The results suggest that the model’s POm to L5 excitatory pathway
is too weak, when compared to other POm to excitatory and all POm to PV+ pathways (Figure
1.4H2, right).
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Figure 2.3: In silico synapse physiology. A: Location of synapses from VPM fibers (purple) and POm
fibers (red) on 38 neurons (dark gray) in a 5 ym radius column (visualized with BioExplorer). B:
Validation of thalamocortical EPSP amplitudes (as in Figure 2.2B1). The four pathways used for the
validation are marked with a black rectangle on D1 to its right. C: EPSP latencies (time from presynaptic
spike to the rise to 5% of peak EPSP amplitude in the postsynaptic trace). D1 Left: mean VPM evoked
EPSP amplitudes on postsynaptic cell types (over 50 pairs). Right: Comparison of normalized in silico
amplitudes (normalized by L4 excitatory as in Sermet et al., 2019) to in vitro reference data from Sermet
et al. (2019). Heatmap shows model minus reference values, thus positive values indicate a higher
normalized EPSP amplitude in our model than in the reference experimental dataset. D2: same as D1
but for POm (normalized by L5 excitatory as in Sermet et al., 2019).
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Chapter 2. Cortical synapse physiology in silico

Table 2.1: Excitatory synaptic pathways. Average class parameters are marked in bold and are used
predictively (in lack of reference in vitro data) for the remaining pathways belonging to the same class.
Physical dimensions are as follows: peak conductance g: nS, depression and facilitation time constants
D and F: ms, the release probability Usg and the average number of vesicles in the release-ready pool
Ngrp are dimensionless. All excitatory synaptic currents have a decay time constant of 1.74 + 0.18 ms.
(Proximal Targeting (PT) inhibitory mtypes: N/L/SBC, CHC. N/LBC etypes: cACint, cIR, bAC, bIR,
cNAC have E1, while the rest of etypes; and SBC and CHC mtypes have E2 short-term dynamics. Distal
Targeting (DT) inhibitory mtypes: MC, BP, DBC, BTC, of which MCs and the cACint e-type of BTC and
DBC mtypes are Sst+. L1_GABAB- comprise all non NGC mtypes in L1)
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Pre Post g‘ Usg D F Ngrrp
PC to Sst+IN (E1)
PC MC 0.2+0.1 0.09+0.12 138+211 670+830 1.5
PC PT 0.6+0.5 0.02+0.00 194+18 507+37 4.5
PC DT 0.2+0.1 0.02+0.00 194+18 507+37 1.5
PCto PC (E2)
L23_PC L23_PC 1.0+£0.5 0.46+0.26 671+17 1745 2.6
L4_PC L4_PC 0.6£0.3 0.86+0.09 671+17 1745 1.0
L4_SSC L23_PC 0.2+0.1 0.79+0.04 671+17 1745 1.8
L5_STPC L5_STPC 0.9+0.3 0.39+0.03 690+90 44+21 1.0
L5_TTPC L5_TTPC 1.9+1.0 0.38+0.10 365+100 25+45 2.8
L23_PC L5_TTPC 0.5+0.2 0.50+0.02 671+17 1745 1.5
L4_SSC L5_STPC 0.6+0.3 0.50+0.02 671+17 1745 1.2
L4_SSC L6_PC 0.4+0.2 0.50+0.02 671+17 1745 1.0
L6_TPC:A L6_TPC:A 1.0+£0.5 0.37+0.11 280490 90+80 1.0
L6_TPC:C L6_TPC:C 0.5+0.2 0.23+£0.06 420+340 200+130 1.0
L6_IPC L6_IPC 0.9+0.3 0.23+0.06 420+340 200+130 1.0
L6_PC to same L6_PC 0.8+0.2 0.23+0.06 420+340 200+130 1.0
L6_TPC:A L6_TPC:C 1.2+£0.5 0.23£0.06 420+340 200+130 1.0
L6_TPC:A L6_BPC 0.3+£0.1 0.23+£0.06 420+340 200+130 1.0
L6_TPC:.C Le6_IPC 0.2+0.1 0.23+£0.06 420+340 200+130 1.0
L6_IPC L6_BPC 0.4+0.1 0.23+0.06 420+340 200+130 1.0
L6_BPC L6_TPC:A 0.2+0.1 0.23+£0.06 420+340 200+130 1.0
L6_PC to diff. L6_PC 0.5+0.4 0.23+0.06 420+340 200+130 1.0
PC PC 0.7+0.4 0.50+0.02 671+17 17+5 1.5
PC to Sst-IN (E2)
PC NBC 0.6+0.4 0.72+0.12 227470 13+24 4.5
PC PT 0.6+£0.5 0.50+0.02 671+17 1745 4.5
PC L1_GABAB- 0.3+0.1 0.50%+0.02 671+17 1745 1.5
L6_TPC:A L6_BC 0.4+0.1 0.58+0.13 240480 70+90 1.5
L6_TPC:C L6_BC 0.4+0.1 0.36+£0.21 380+310 280+340 1.5
L6_IPC L6_BC 0.3+£0.1 0.51+£0.20 4404300 100+50 1.5
L6_PC L6_BC 0.4+0.1 0.47+0.21 370+290 1554215 1.5
PC IN 0.4+0.1 0.50+0.02 671+17 1745 1.5




2.1 Results

Table 2.2: Inhibitory synaptic pathways. Bold entries and physical dimensions as in Table 2.1 +7 gecqy:
ms. (Proximal Targeting (PT) inhibitory mtypes: N/L/SBC, CHC. N/LBC etypes: cNAC, dSTUT, cSTUT,
bSTUT have I3, while the rest of etypes; and SBC (except: cACint and dNAC) and CHC mtypes have 12
short-term dynamics. DT and L1_GABAB- as in Table 2.1.

Pre Post g Usg D F NRRrp Tdecay
IN to PC (I1)

L6_BC L6_BC 2.3+0.5 0.16%+0.10 45+21 376+253 1.0 10.40+6.20
SBC (cACint) PC 1.9+1.0 0.16+0.10 45+21 376+253 3.3 10.40+6.20
IN to PC and IN (12)

MC PC 3.0+1.5 0.30+0.08 1250+520 2+4 1.0 8.30+2.20
DT PC 3.0+1.5 0.25+0.13 706+405 21+9 1.0 8.30+2.20
NBC PC 1.9+1.0 0.14+0.05 875+285 2245 3.3 8.30+2.70
NGC PC 0.2+0.1 0.25+0.13 706+405 2149 1.0 36.50+1.30
L1_GABAB- PC 0.3+0.1 0.25+0.13 706+405 2149 1.0 8.30+2.20
SBC (dNAC) PC 1.941.0 0.25+0.13 706+405 21+9 3.3 8.30+2.20
IN * 2.3+0.5 0.25+0.13 706+405 21+9 1.0 8.30+2.20
IN to PC (I3)

L6_BC L6_PC 1.9+1.0 0.44+0.25 195+190 200+320 1.0 10.40+6.20
PT PC 1.9+1.0 0.32+0.14 144+80 62+31 3.3 6.40+1.70

Table 2.3: Thalamocortical synaptic pathways. Values taken from the internal connectivity (Table 2.1)
are marked in bold. Physical dimensions are the same as in Table 2.1. Sst+ inhibitory mtypes: MC and
DBC, BTC (cACint etype only). PV+ inhibitory mtypes: N/LBC, CHC. 5HT3aR+ mtypes: the rest of the
mtypes not listed above (e.g. NGC, SBC, and everything in L1).

A

Pre Post g Usg D F Ngrp

VPM, POm to Sst+IN (E1)

* Sst+ 0.2+0.1 0.09+0.12 138+211 670+830 1.5
VPM, POm to PC (E2)

VPM L23_PC 1.74£0.6  0.75+0.1 671+17 1715 1.5

VPM 14_PC 1.1+£0.4  0.75+0.1 67117 17+5 1.5

VPM L56_PC 2.4+09  0.75+0.1 67117 17+5 1.5

POm PC 174206  0.75+0.1 671+17 17+5 1.5

VPM, POm to PV+IN (E2)

VPM L[4 _PV+ 14404 0.72+0.12 227470 13124 4.5
VPM L6_PV+ 3.1+1.0 0.72+0.12  227+70 13+24 4.5
VPM L235_PV+ 22404 0.72+0.12 227470 13+24 4.5
POm PV+ 22404 0.72+£0.12 227+70 13+24 4.5

VPM, POm to 5HT3aR+IN (E2)

* 5HT3aR+ 0.4+0.1 0.50+0.02 671+17 1745 1.5
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Chapter 2. Cortical synapse physiology in silico

2.1.3 L4’s contribution to L2/3 responses during whisker hold stimulus

In the canonical model of the cortex (reviewed e.g., in Liibke and Feldmeyer, 2007; Feldmeyer,
2012) information from the thalamus arrives to L4, then propagates to L2/3, from there to L5
(which serves as the main cortico-cortical output layer) and lastly to L6 (which projects back
to the thalamus). The coordinated action of all layers of the primary somatosensory cortex is
required for high-level behavioral tasks (Park et al., 2020). As the canonical model is based
on the highest layer-wise density of axons, it cannot describe all interactions in the cortex.
For example VPM does not only innervate L4, but also the border of L5 and L6, as well as the
bottom of 1L.2/3 (Figure 2.3A; Meyer et al., 2010; Constantinople and Bruno, 2013; Sermet et al.,
2019).

To study how L4 contributes to the stimulus preference of L2/3 PCs, Varani et al. (2022) used
optogenetic inactivation of L4 PCs during whisker stimulation and quantified the changes in
the subthreshold response of L2/3 PCs. They found, that the early phase of the subthreshold
response significantly differed from the control condition, if the whisker was deflected in
either the most or the least preferred direction (see the top and bottom rows of their Figure
5B, C). From this they concluded that both L4 and VPM contribute to the direction tuning of
L2/3 PCs. After reproducing their experimental conditions in silico (Figure 2.1 step 6; Figure
2.4A-D; see Methods) we confirmed that we can reproduce their results, i.e., subthreshold
responses of L2/3 PCs decreased, when L4 PCs were inhibited (Figure 2.4E for preferred
direction whisker stimulation; see Methods). This exercise can also be seen as a high-level,
independent validation of the model’s synaptic anatomy and physiology.

We then leveraged our in silico setup to study what Varani et al. (2022) could not, because of
methodological limitations. In our reading, the authors aimed to test how direct excitatory
connections from L4 PCs to L2/3 PCs influence the stimulus representation in L.2/3. This
connection can not specifically be blocked in vivo, instead (95% of) the L4 PC population
is inhibited (as well as some lower L3 PCs). In our setup we could selectively block the
connection and found almost the same result (compare Figure 2.4E and E left). This extends
the conclusion of Varani et al. (2022): L4 PCs contribute to the stimulus preference of L.2/3 PCs
via direct excitatory connections, and not via disynaptic inhibition.

The authors also discussed studying L5 PCs’ contribution to L2/3 responses (as a large fraction
of L5 PC axons terminate in 1.2/3), but this is infeasible with current mouse lines. Leveraging
our model, we found that L5 contributes much less to subthreshold L2/3 traces than L4 (Figure
2.4F right). Extending to other presynaptic layers, we found that the contribution of L2/3 is
similar to that of L4, whereas inputs from L6 are negligible (Figure 2.4F right). Whilst mouse
lines targeting L5 PCs might might arrive soon (which could validate our predictions), blocking
L2/3 connections between 1.2/3 cells without hyperpolarizing the same L.2/3 population seems
only achievable in silico.
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Figure 2.4: Reproducing and extending Varani et al. (2022) in silico. A: Schematics of whisker kinetics
and VPM fiber rates during 500 ms long whisker hold stimulus. Fraction of VPM fibers coding for each
kinetic feature are taken from Petersen et al. (2008). B: Mimicking the effect of activation of the Halo
inhibitory opsin in silico. Injected somatic hyperpolarizing current mimicking opsin activation (top),
and the resulting somatic voltage trace from a combination of injected conductance, current, and
synaptic PSPs from the network (bottom). C: Raster plots of the microcircuit’s activity and population
firing rates below. C1: Control conditions, C2: 95% of L4 excitatory cells inhibited (by direct somatic
current injection depicted in B above). D: Voltage traces of all L2/3 (top) and all L4 (bottom) excitatory
cells. Panels show spiking traces (top), and subthreshold traces (bottom). D1 and D2 depict the same
conditions as C above. E:: Comparison of average traces from selected L2/3 PCs in control (black) and
optogenetically inhibited (green) conditions. F: Same as E, but instead of mimicking the optogenetic
inhibition of L4 excitatory cells, only the connections to L2/3 PCs are "cut"” (compare inset with the one
in E). The right part depicts connections systematically cut from PCs in all layers, while the left shows
L4 only for a better visual comparison with the conditions of Varani et al. (2022) in E.
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Chapter 2. Cortical synapse physiology in silico

2.2 Methods

2.2.1 Parametrization of spontaneous vesicle release

As an additional source of biorealistic variability to the network simulations, single vesicles
spontaneously released with a low frequency. To calibrate the mPSC frequencies of different
pathways, single cell simulations with different values of the spontaneous release frequency
for all synapses of a set of 1000 cells in a given pathway were run. In these simulations, in
silico voltage-clamp recordings were performed to measure the resulting mPSC frequency
at the soma. This data was then fitted with a logarithmic function and the value of the
spontaneous release frequency matching the in vitro reference value for the mPSC frequency
was interpolated. As in vitro paired recording data is sparse, all available sources to determine
synaptic parameters were re-used for validation.

2.2.2 Reproducing Varani et al. (2022) in silico

To study how input from L4 contributes to L2/3 subthreshold responses Varani et al. (2022)
used a 500 ms long whisker hold paradigm, while patch-clamping PCs in L2/3 in anesthetized
and awake mice. The whisker hold stimulus was encoded as a step function (1, if 2000 ms < t
< 2500 ms, 0 otherwise) in 10% of the VPM fibers. One of four transfer functions were assigned
to each fiber, based on the types of kinetic response properties of thalamic neurons identified
in (Petersen et al., 2008). The types were selective for whisker position (vy,s), velocity (vye;),
acceleration (vg4¢(), or direction (vg4;,), and were implemented as:

Upos(t) = 'max - x(f)
Upel () = 'max - (x(t"' 1) —x(t))

2.1
Vace() = Tmax - (x(£+1) —2x(8) + x(t - 1))

Vair(8) = rmax - |x(t+1) — x(8)|+

where 7,4 = 150 Hz is the firing rate of a thalamic fiber when its associated feature property is
at the fiber’s preferred value and x(¢) is the whisker position. Transfer functions were randomly
assigned to fibers with the fractions identified in Petersen et al. (2008) (Figure 2.4A, 11% coding
for position and acceleration, 58% for velocity and 20% for direction). The spiking process was
an adapting Markov process (Muller et al., 2007) with an adaptation time constant of 100 ms
evaluated at every 0.1 ms.

The optogenetic inhibition in Varani et al. (2022) targeted 95% of excitatory cells in L4. The
authors found a few cells which also tested positive for the inhibitory opsin Halo at the bottom
of L3 as well, but as they did not quantify it, lower L3 PCs were not targeted in the in silico
version of the experiment. Optogenetic inhibition of the target L4 excitatory population was
modeled through a current injection at the soma of these cells, with an intensity proportional
to the cell’s threshold current (see Reva et al., 2022). To mimic the conditions of surface
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illumination, the dependence of effective depolarization strength on cortical depth using a
modified Beer-Lambert law approximation was considered (Al-Juboori et al., 2013; Azimipour
etal., 2014):

I(d) =1 exp(—Heff d) 2.2)

where I(d) describes the light intensity at depth d (in mm), with a maximum light intensity I
(on the surface of the cortex) and an effective attenuation coefficient given by:

Herf =1\/3talta+ ps) 2.3)

1

Based on the 595 nm wavelength (yellow light) the absorption coefficient u, = 0.49 mm™" and

reduced scattering coefficient u}, ~ 4.12 mm™!

were used (Mesradi et al., 2013). L4 excitatory
cells were binned into 5 depth bins and for all cells belonging to the given bins the light
intensity at the center of the bin was used. After scanning several values, Iy was set to -200%
as that reproduced the = 10 mV hyperpolarization of L4 PCs observed in vivo. In line with the
in vivo experiment, the optogenetic stimulus ended in a (100 ms long) ramp to avoid rebound

spikes (Figure 2.4B).

When going beyond reproducing the same experimental conditions and instead leveraging
the in silico nature of our setup, synaptic pathways were lesioned by selecting the excitatory
population in a given layer as the presynaptic population and the excitatory population in
L2/3 as the postsynaptic population and not instantiating the connecting synapses during the
simulation.

L2/3 PCs had to meet three criteria to be included in the subsequent analysis. Firstly, their
activity was required to remain subthreshold during the 500 ms long whisker hold stimulus
and in 200 ms long time windows before and after the stimulus, both in control and in silico
optogenetic runs. Second, they had to be innervated by at least one (active) VPM fiber. Third,
the derivative of their voltage trace had to cross the 1 mV/ms threshold in a 20 ms time window
after stimulus onset in the control simulation. The last two were motivated by comparing
subthreshold voltages to voltage traces from Varani et al. (2022) that showed large, stimulus
evoked EPSPs. Around 8% of L.2/3 PCs in the central column met all the above criteria and
their voltages were averaged to arrive to the traces shown in Figure 2.4E-E Thus, unlike in the
original analysis, cells rather than trials were averaged. The motivation for this approach is
that while in vivo it is easier to repeat the same paradigm after establishing stable recording
conditions in a given cell, in silico it is quicker to record from all cells in a single simulation,
instead of repeating the stimulus several times.

2.3 Supplementary Tables
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Supplementary Table 2.4: Validation of PSP amplitudes. Thick-tufted (TT) mtypes: L5_TPC:A,
L5_TPC:B. Slender-tufted (ST) mtypes: L5_TPC:C, L5_UPC.

Pre Post invitro(mV) insilico(mV) Reference

L23_PC 1L23_PC 1.00+£0.70 0.99+0.67 Feldmeyer et al. (2006)
L23_PC L5_TTPC 0.30+0.30 0.30+0.24 Reyes and Sakmann (1999)
L4_EXC L4_EXC 1.59+1.51 1.62+1.31 Feldmeyer et al. (1999)
L4_SSC L23_PC 0.70+0.60 0.66+0.34 Feldmeyer et al. (2002)
L4_SSC L5_STPC 0.60+0.40 0.59+0.33 Feldmeyer et al. (2005)
L4_SSC L6_PC 0.29+0.16 0.30+0.30 Qi and Feldmeyer (2016)
L5_TTPC L5_TTPC 1.30+1.10 1.24+0.73 Markram et al. (1997a)
L5_STPC L5_STPC 0.80+0.20 0.75+0.40 Le Bé et al. (2007)

L6_BPC L6_TPC:A 0.21+0.00 0.22+0.15 Berger (2009)

L6_IPC L6_BPC 0.42+0.18 0.42+0.21 Berger (2009)

L6_IPC L6_IPC 1.05+0.31 1.09+0.81 Berger (2009)

L6_TPC:C L6_IPC 0.18+0.00 0.19+0.13 Berger (2009)

L6_TPC:C L6_TPC:C 0.43+0.22 0.43+0.29 Berger (2009)

L6_TPC:A L6_BPC 0.32+0.27 0.31+0.17 Berger (2009)

L6_TPC:A L6_TPC:C 1.1940.15 1.10+0.63 Berger (2009)

L6_TPC:A L6_TPC:A 1.51+0.98 1.45+1.11 Berger (2009)

L23_PC L1_GABAB- 1.10+0.30 1.09+0.83 Wozny and Williams (2011)
L4_EXC L4_FS 2.20+2.20 2.17+2.46 Beierlein et al. (2003)
L5_TTPC L5_MC 0.28+0.30 0.28+0.33 Silberberg and Markram (2007)
L6_IPC L6_BC 1.59+1.60 1.56+1.48 Berger (2009)

L6_TPC:A L6_BC 2.20+3.28 2.02+1.44 Berger (2009)

L6_TPC:C L6_BC 1.29+1.65 1.28+0.84 Berger (2009)

L6_PC L6_MC 0.20+0.12 0.15+0.14 Berger (2009)

L1_NGC L23_PC 0.58+0.10 0.54+0.41 Wozny and Williams (2011)
L1_GABAB- 123_PC 0.27+0.04 0.26+0.13 Wozny and Williams (2011)
L4_FS L4_EXC 1.10+0.80 1.14+0.81 Beierlein et al. (2003)

L5_MC L5_TTPC 0.50+0.40 0.47+0.25 Silberberg and Markram (2007)
VPM L4_EXC 2.40+2.00 2.51+2.10 Beierlein et al. (2003)

VPM L4_FS 4.10+3.20 4.09+2.52 Beierlein et al. (2003)

VPM L6_EXC 1.20+0.80 1.28+1.96 Beierlein and Connors (2002)
VPM L6_FS 3.90+3.50 3.11+2.57 Beierlein and Connors (2002)
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Supplementary Table 2.5: Validation of first PSP amplitudes’ CVs. (TT and ST as in Supplementary
Table 2.4)

Pre Post invitro(mV) insilico(mV) Reference

L4_EXC L4_EXC 0.37+0.16 0.25+0.06 Feldmeyer et al. (1999)
L4_EXC L4_FS 0.27+0.13 0.38+0.25 Beierlein et al. (2003)
L4_FS L4_EXC 0.25+0.11 0.28+0.09 Beierlein et al. (2003)
L4_SS L5_STPC 0.33+0.20 0.43+0.06 Feldmeyer et al. (2005)
L4_SS L6_PC 0.50+0.11 0.51+0.06 Qi and Feldmeyer (2016)
L4_SS L23_PC 0.27+0.13 0.32+0.07 Feldmeyer et al. (2002)
L5_TTPC L5_TTPC 0.31+0.14 0.39+0.09 Barros-Zulaica et al. (2019)
L5_STPC L5_STPC 0.58+0.24 0.51+0.06 Le Bé et al. (2007)
L23_PC L23_PC 0.33+0.18 0.43+0.15 Feldmeyer et al. (2006)
L234_PC L234_NBC 0.32+0.08 0.21+0.08 Wang et al. (2002)

Supplementary Table 2.6: Validation of mPSC frequency. (Cortico-cortical (CC) mtypes: L6_UPC,
L6_IPC, L6_HPC. Cortico-thalamic (CT) mtypes: L6_TPC:A, L6_TPC:C.)

Pre Post invitro(Hz) insilico(Hz) Reference

E L23_PC 8.20+2.90 9.36+4.38 Brasier and Feldman (2008)
E L4_PC 11.90+2.40 15.64+7.84  Brasier and Feldman (2008)
E L6_CC 2.80+0.80 3.87+2.14 Yang et al. (2020)

E L6_CT 0.95+0.36 1.41+0.74 Yang et al. (2020)

I L5_PC 21.10+4.80 16.06+6.74 Ling and Benardo (1999)
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8] Cell assemblies and their underlying
connectivity

This chapter is indentical to our preprint: A. Ecker*, D. Egas Standander*, S. Bolafios-
Puchet, J.B. Isbister, M.W. Reimann (2023) Cortical cell assemblies and their underlying
connectivity: an in silico study. bioRxiv; doi: 10.1101/2023.02.24.529863

Contribution: I came up with the concept of detecting assemblies in our simulations
after reviewing the literature, set up and ran all the simulations, wrote the biggest part of
the open source analysis package, created all the figures and the open source data set,
and participated in writing the manuscript. (A more detailed author contribution can be
found at the end of the chapter.)

Abstract

Recent developments in experimental techniques have enabled simultaneous recordings from
thousands of neurons, enabling the study of functional cell assemblies. However, determining
the patterns of synaptic connectivity giving rise to these assemblies remains challenging. To
address this, we developed a complementary, simulation-based approach, using a detailed,
large-scale cortical network model. Using a combination of established methods we detected
functional cell assemblies from the stimulus-evoked spiking activity of 186,665 neurons. We
studied how the structure of synaptic connectivity underlies assembly composition, quantify-
ing the effects of thalamic innervation, recurrent connectivity, and the spatial arrangement of
synapses on dendrites. We determined that these features reduce up to 30%, 22%, and 10% of
the uncertainty of a neuron belonging to an assembly. The detected assemblies were activated
in a stimulus-specific sequence and were grouped based on their position in the sequence.
We found that the different groups were affected to different degrees by the structural features
we considered. Additionally, connectivity was more predictive of assembly membership if its
direction aligned with the temporal order of assembly activation, if it originated from strongly
interconnected populations, and if synapses clustered on dendritic branches. In summary,
reversing Hebb’s postulate, we showed how cells that are wired together, fire together, quanti-
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Chapter 3. Cell assemblies and their underlying connectivity

fying how connectivity patterns interact to shape the emergence of assemblies. This includes
a qualitative aspect of connectivity: not just the amount, but also the local structure matters;
from the subcellular level in the form of dendritic clustering to the presence of specific network
motifs. This connectivity-based characterization of cell assemblies creates an opportunity to
study plasticity at the assembly level, and beyond strictly pairwise interactions.

Keywords: Cell assemblies, simulation, connectivity, network topology, synapse clustering

3.1 Introduction

The formulation of the cell assemblies concept goes back to Hebb (1949), who defined them
loosely as "a diffuse structure comprising cells in the cortex". In the past 70 years, the sequential
activation of groups of neurons, the Hebbian "phase sequence"” was linked to several complex
cognitive processes, reviewed in Harris (2005) and Buzsdaki (2010). Hebb’s idea was later para-
phrased as "cells that fire together, wire together"” (Shatz, 1992), giving it both a structural, and
a functional side. In this article we will concentrate on quantifying how the cortical structure
underlies its neurons’ co-firing function, but linking these groups of co-active neurons to
cognitive processes is outside of our scope.

Cell assembly research rejuvenated in the hippocampus field when spikes could be reliably
sorted from recordings with tetrodes and therefore neurons could be grouped to co-firing
ensembles (Harris et al., 2003; Dragoi and Buzsdki, 2006; Sasaki et al., 2006; Lopes-dos Santos
etal, 2013). The introduction of modern in vivo two-photon calcium imaging into the field,
with its improved scalability and stability over time, allowed Bathellier et al. (2012) and Carrillo-
Reid et al. (2015) to detect cell assemblies in auditory and visual cortices, where they showed
how even a small set of them can serve as a backbone for cortical coding. These, and studies
that followed (Miller et al., 2014; Montijn et al., 2016; Pérez-Ortega et al., 2021) contributed
greatly to our understanding of the functional role of the Hebbian cell assemblies, but they
could not make claims about the patterns of synaptic connectivity they originate from, as they
could only predict functional connectivity from correlations in neuronal activity, but did not
have access to the underlying structural connectivity of the neurons recorded. Additionally,
results based on calcium imaging are limited to the superficial layers of the cortex, missing
potential assemblies in the deeper layers, which would be of great interest as they serve as the
output of the cortex (Feldmeyer, 2012; Harris and Shepherd, 2015).

Early theoretical work in the field explored the potential link between memories and cells
that fire and therefore wire together, concentrating on the storage and retrieval of memories
in strongly recurrent networks, such as the CA3 area of the hippocampus (Hopfield, 1982).
Theories evolved and improved, but modeling studies about cell assemblies still concentrate
on plasticity rules underlying the learning, storage and recall of various patterns (Fusi and
Abbott, 2007; Zenke et al., 2015; Krotov and Hopfield, 2016; Fauth and Van Rossum, 2019;
Kossio et al., 2021; Gastaldi et al., 2021). Thus, their focus lies on how function shapes structure,
with little or no emphasis on the biologically accurate aspects of structural connectivity, such
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as low connection probabilities and an abundance of directed motifs (Song et al., 2005; Perin
etal., 2011; Reimann et al., 2017b).

On the other hand, the perspective can be reversed: how does a more bio-realistic structural
connectivity influences a neuron’s membership in one or more assemblies, or on a more
general level: how does structure determine function? Additionally, how does innervation
from different sources, such as local connectivity and various thalamic afferents, interact
to shape assembly membership? Finally, are the afferent synapses from fellow assembly
neurons scattered across the dendritic tree, or clustered on single branches, employing the
nonlinear computational capabilities of dendrites (Poirazi et al., 2003; Stuart and Spruston,
2015; Kastellakis and Poirazi, 2019).

In silico Assembly detection Analysis of assembly ~ Connectivity based prediction
cortical microcircuit from spiking activity connectivity of a neuron’s membership
in any cell assembly
significant =
g ety ]
o .. y
e
7 columns of rat nb-S1
2.4 mm volume ofaj1fojojo i
210K cells, across 6 layers !
88% excitatory o e 1]10]0]0 ; E
12% inhibitory (PV+, Sst+, 5HT3aR+) ololololo]o . i
Slofo]ofala]o i
18 excitatory m-types, 1 e-type g o b
42 inhibitory m-types, 10e-types 2 | 0 |4 11| 1] 1] 0 )
208 unique 2 {
Slofal1]o]ofo {
& » i\
84.7M connections, mediated by oj1l11f1jo0|o0
, with [Ca™],
AT tont sochast olafofo]o]o
Tsodyks-M:; model of
STP with multi-vesicular olololalalo \) [P
release, and minis e -~ =
Time bins (20 ms each) ~—
[H [ clusters of time bins [0 neuron belonging to [] synapse custer

multiple assemblies

Figure 3.1: Pipeline summary. A: Schematics and quick facts about the detailed, large-scale cortical
microcircuit that was used several times before to study the relationship of cortical structure and
function (Reimann et al., 2017b, 2022b; Nolte et al., 2020). B: Schematics of the assembly detection
pipeline from the spiking activity of 186,665 excitatory neurons in the circuit. C: Analysis of the
connectivity of cell assembly neurons. D: Derivation of assembly membership probability based on
different features of structural connectivity.

In order to provide insights into these questions, we employed an in silico approach, using
an improved version of the detailed, large-scale (somatosensory) cortical circuit model of
Markram et al. (2015) (Figure 3.1A), simulating the activity of tens of thousands neurons in
response to a stream of thalamic input patterns. In the model, we have access not only to
the spiking activity of every neuron, but also to the entire connectome, including dendritic
locations of synapses. We then considered the established, purely functional definition of cell
assemblies as neurons that fire together more than expected. Therefore, functional assemblies
across all cortical layers were detected using a combination of previously published methods
(Pérez-Ortega et al., 2021; Herzog et al., 2021; Figure 3.1B). We then analyzed their underlying
structural connectivity, searching for rules that could explain assembly membership (Figure
3.1C, D). This analysis of the structure-function relation could be readily applied to assemblies
detected with other methods (Lopes-dos Santos et al., 2013; Isbister et al., 2021; van der Plas
etal., 2023).
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We found that the structural strengths of afferents from various sources explained significant
portions of the uncertainty of a neuron’s membership in an assembly (Figure 3.1D). Specifi-
cally, innervation from VPM (ventral posteriomedial nucleus of the thalamus) explained up to
30%, and up to 10% from POm (posteriomedial nucleus of the thalamus). Strength of inner-
vation through recurrent local connectivity explained up to 22%. The relative magnitudes of
these effects differed between assemblies, with assemblies active immediately upon stimulus
presentation being mostly determined by the structure of the thalamic innervation, and as-
semblies active 50 ms after stimulus onset being mostly determined by recurrent connectivity.
Additionally, the effect of innervation strength on assembly membership can be much larger
if the innervating population is highly interconnected within itself, and if the synapses are
tightly clustered on the targeted dendrites (Figure 3.1D). The highly non-random structure
of this connectome provides a more efficient wiring; implementing ensembles of reliably
co-firing neurons with fewer synaptic connections than expected by chance.

3.2 Results

3.2.1 Diverse set of assemblies can be detected from network simulations

We simulated the electrical activity of a model of 2.4 mm3 of cortical tissue, comprising 211,712
neurons in all cortical layers in an in vivo-like state. The model is a version of Markram et al.
(2015) with anatomical improvements outlined in Reimann et al. (2022a) and physiological
ones in Isbister et al. (2023) (Figure 3.1A). We consider the activity to be in vivo-like, based on
a comparison of the ratios of spontaneous firing rates of sub-populations, and responses to
brief thalamic inputs to in vivo results from Reyes-Puerta et al. (2015) (as described in Isbister
etal., 2023). A stream of thalamic input patterns was applied to the model (see Methods), and
the neuronal responses recorded (Figure 3.2A1). The circuit reliably responded to the brief
stimuli with a transient increase in firing rate. This led to a slight shift to the right of the tail of
the firing rate distribution from the spontaneous state (Figure 3.2A2), in line with experiments
(Wohrer et al., 2013). The stream consisted of repeated presentations of ten different input
patterns in random order (Reimann et al., 2022b). We designed the stimuli as 10 patterns with
varying degrees of overlap (Figure 3.2B): 4 base patterns with no overlap (A, B, C, D), 3 patterns
as combinations of two of the base ones (E, E G), 2 patterns as combinations of three of the
base ones (H, I), and 1 pattern as a combination of all four base ones (J). The overlap of these
patterns can also be seen through the raster plots of their corresponding VPM fibers (Figure
3.2B bottom). For example the fibers corresponding to pattern A peak when stimulus A is
presented, but also with 50% of the amplitude when E is presented.
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Figure 3.2: In vivo-like activity in silico. Al: Raster plot of the microcircuit’s activity with 628,620
spikes from 98,059 individual neurons and the population firing rates below. The y-axis shows cortical
depth. (As cortical layers do not have the same cell density, the visually densest layer is not necessarily
the most active - see A2 bottom.) A2: Single cell firing rates (in excitatory and 3 classes of inhibitory
cells) and layer-wise inhibitory and excitatory population firing rates in evoked (showed in A1) and
spontaneous (not shown) activity. B: Top: pyramid-like overlap setup of VPM patterns, then the centers
of the VPM fibers in flat map space. Bottom: raster plots of VPM fibers forming each of the patterns for
the stimulus stream in Al (i.e., from pattern A at 2000 ms to pattern J at 6500 ms). On the right: same
for non-specific (POm) input.

Using a combination of the algorithms of Carrillo-Reid et al. (2015) and Herzog et al. (2021),
we detected functional assemblies in 125 second-long recordings of simulated neuron ac-
tivity while receiving the random input stream (25 repetitions of all 10 patterns with 500 ms
inter-stimulus interval, see Methods). Briefly, the assembly detection algorithm first groups
neuronal activity into 20 ms time bins, and identifies those with significantly increased firing
rates (Sasaki et al., 2006; Carrillo-Reid et al., 2015; see Methods; Figure 3.3A). Then, these time
bins are hierarchically clustered based on the cosine similarity of their activation vector, i.e.,
the vector of the number of spikes fired in the time bin for each neuron (Montijn et al., 2016;
Pérez-Ortega et al., 2021; Supplementary Figure 3.8A, Figure 3.3B1). The threshold for cutting
the clustering tree into clusters is determined by minimizing the resulting Davies-Bouldin
index (Davies and Bouldin, 1979; see Methods; Supplementary Figure 3.9 and Supplementary
Figure 3.8B for lower dimensional representations). Finally, these clusters correspond to the
functional assemblies, with a neuron being considered a member if its spiking activity corre-
lates with the activity of an assembly significantly more strongly than chance level (Montijn
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et al., 2016; Herzog et al., 2021). This means that in each time bin only a single assembly is
considered active, but neurons can be part of several assemblies (see Methods, Figure 3.1B,
Figure 3.3B2).
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Figure 3.3: Cell assembly detection. A: Population firing rate of excitatory neurons with the determined
significance threshold. B1: Hierarchical clustering of the cosine similarity matrix of activation vectors
of significant time bins (above threshold in A, see Methods). B2: Clustered significant time bins ordered
by patterns presented. C: Number and location of neurons in each cell assembly: flat map view on top,
depth-profile below. D: Jaccard similarity of cell assemblies and number of neurons participating in
different number of assemblies. E: Input-output map: Input distance is calculated as the Earth mover’s
distance of the VPM fiber locations (see Figure 3.2B and Methods), while the output distance is the
(normalized) Euclidean distance of pattern evoked time bin cluster counts (counts of different colors
in the matrices above in B2, Methods).

We found that assemblies were activated in all stimulus repetitions and a series of two to
three assemblies remained active for 110 + 30 ms (Figure 3.3B2). Activation probability and
duration depended on stimulus identity; the stimulus associated with the strongest response
elicited 1.6 times as many significant time bins than the stimulus associated with the weakest
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response. Not only were individual assemblies associated with only a subset of stimuli, but
they also had a well-preserved temporal order, with some of them appearing early during a
stimulus, and others later. Based on this, from now on we will refer to them as early, middle,
and late assemblies, and will order them in the figures accordingly.

An assembly comprised on average 7 + 3.1% of the simulated excitatory neurons, with late
assemblies being about 3.7 times larger than early ones (Figure 3.3C). In terms of spatial
distribution of assembly neurons, the early assemblies appear more "patchy"” (small distin-
guishable clusters), and by visual inspection can be mapped back to the locations of VPM
fibers corresponding to the stimuli that activated them (Figures 3.2B and 3.3C top). Moreover,
their layer profile mimics that of VPM fiber innervation (Reimann et al., 2022a; Meyer et al.,
2010; Supplementary Figure 3.11A), indicating that these assemblies may be determined by
direct thalamic innervation. On the other hand, the late assembly neurons are more evenly
distributed, and cover the entire surface of the simulated circuit, even beyond the range of
VPM fiber centers, and are found mostly in deeper layers of the cortex. Middle assembly
neurons are somewhat in-between, both in spatial distribution and depth profile. Although we
found late assemblies to be nonspecific (at the chosen clustering threshold), early and middle
assemblies belonging to the same stimulus occupy similar regions in space and can be shown
to have a relatively high (25%) overlap of neurons (Figure 3.3D left). This also means that single
neurons belong to several assemblies (up to 7 out of 11, Figure 3.3D right). In conclusion, the
time course of stimulus responses are well-preserved and reliable enough (although with some
temporal jitter) to be simplified into a sequence of distinct sets of functional cell assemblies.

Although stimulus-specific, the time courses are not unique (see the responses to patterns
H and I in Figure 3.3B2). Thus, we wondered to what degree is the overlap of assemblies
associated with the overlap of the input patterns given as stimuli? When we compared the
distances between the locations of the VPM fibers making up an input pattern, and the
assembly sequences detected from the network activity, we found a significant linear trend, i.e.,
patterns that are close in the input space (e.g. H and I) are close in the "output space" defined
as the counts of individual assemblies popping up for a given stimuli across repetitions (Figure
3.3E). Thus, the activation sequence of cell assemblies can be seen as a low-dimensional
representation of the complex, high-dimensional activity of the circuit’s response to different
stimuli. The data points are highly variable for mid-sized input distances, and the linear trend
gets weaker with increasing number of assemblies (Supplementary Figure 3.9C). In summary,
increasing the number of assemblies by cutting the clustering tree differently improves the
separation of inputs at the cost of reducing the correlation between input and output distance.
As our aim was not to build an ideal decoder of input patterns, in the following steps we
analyze the assemblies resulting from a clustering that minimized the Davis-Bouldin index
(Supplementary Figure 3.9A2).
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Assemblies detected only in the superficial layers, are reminiscent of those detected across
all layers of the cortex

Due to the limitations of traditional two-photon microscopy, in vivo experiments in the cortex
can only detect cell assemblies in layer 2/3 (L2/3) (Bathellier et al., 2012; Carrillo-Reid et al.,
2015; Miller et al., 2014; Montijn et al., 2016; Pérez-Ortega et al., 2021), whereas in silico
we detect assemblies across all layers. This begs the question: are we detecting different
assemblies, or do they just cover more depth but contain the 1.2/3 ones? To answer this
question, we used the same data and methodology as before, but restricted our analysis
to L2/3 neurons only (Supplementary Figure 3.10). When detecting assemblies exclusively
from the spiking activity of L2/3 pyramidal cells, we got the same results overall, but with
some specific differences. First, we found significant time bins for a shorter range (up to
100 ms, which corresponds to our definition of early and middle assembly time windows). And
second, stimuli could be distinguished better, e.g. stimuli H and I correspond to different early
assemblies in L.2/3 (compare Figure 3.3B2 and Supplementary Figure 3.10A2). We compared
the L2/3 assemblies to the original full assemblies and found that the early ones can get
mapped to the L.2/3 ones relatively well, in terms of the Jaccard similarity of their respective
intersections with 1.2/3 neurons, and by visual inspection of the spatial locations of assembly
neurons (Supplementary Figure 3.10D). Thus, we predict that assemblies detected in vivo are
the superficial subset of full assemblies, and may not include late assemblies with only a small
fraction of neurons in superficial layers.

3.2.2 Functional assemblies are determined by structural features

It appears as if the spatial structure of the thalamic input stimuli strongly determines assembly
membership. At the same time, neuronal assemblies are thought to be strongly recurrently
connected (Song et al., 2005; Perin et al., 2011).

We generally observe that some features of structural connectivity can be predictive of the
probability of assembly membership. Here, we consider features related to thalamic innerva-
tion, recurrent connectivity and synaptic clustering. We quantify the strength of this effect
by means of a thresholded and signed version of the mutual information which we call their
normalized mutual information and denote by nI; this allows us to compare the individual
contributions (for details, see Methods). Its value has three basic properties: First, it is positive
if the probability of assembly membership increases as the value of the structural feature
increases, and is negative otherwise. Second, its absolute value is one if assembly membership
can be completely predicted from the structural feature and it is only defined if the mutual
information between the two processes is significantly larger than for randomly shuffled
controls. Third, its absolute value does not require any assumptions about the shape of the
dependency (e.g., linear, monotonic, etc.) between the structural feature and the probability
of assembly membership.
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Thalamic innervation explains early and middle assemblies

We began by considering the effect of direct thalamic innervation. Having confirmed that
strong direct thalamic innervation facilitated assembly membership (Figure 3.4A, left), we
formulated the following hypothesis: pairs of neurons are more likely to belong to the same
assembly if they are innervated by overlapping sets of thalamic fibers. To test this, we first
consider the common thalamic indegree of a pair of neurons, i.e., the number of thalamic
fibers innervating both of them. Then, for each neuron, we use its mean common thalamic
indegree over all cells in assembly A, as the structural feature to predict its membership in
Ay. We performed this analysis separately for innervation from the VPM and POm nuclei.

In both cases, mean common thalamic indegree with an assembly increased the probability
that a neuron is part of it (Figure 3.4A, second, olive curve for common thalamic indegree with
the same assembly). The n! of the mean common thalamic indegree and membership in the
same assembly was on average 0.165 for VPM and 0.054 for POm (Figure 3.4A, right, entries
along the diagonals). More specifically, 0.157 and 0.034 for early assemblies, 0.198 and 0.087
for middle, and 0.082 and 0.037 for the late assembly. In addition, cross-assembly interactions
were also observed, albeit at lower levels (Figure 3.4A, right, off-diagonal entries). The effect
was strongest for pairs of early and middle assemblies that responded to the same stimuli, e.g.
assemblies 1, and 2, responding to pattern A.

The lower nI values for the late assembly are expected, as it contains many neurons in layers
not directly innervated by thalamus (Figure 3.3C, Supplementary Figure 3.11A), and its activity
is largely restricted to time bins in which the thalamic input is only weakly active (80 — 140 ms
after onset; Figure 3.3B2 vs. 3.2A1). Interestingly, common innervation with POm has the
highest nI for middle assemblies, which seems related to the prevalence of L5 neurons in
them (2.3 times more L5 cells, than in the early ones). POm targets the upper part of L5, and
more importantly L1 (Reimann et al., 2022a; Meyer et al., 2010; Supplementary Figure 3.11A),
where the apical tuft dendrites of thick-tufted L5 pyramidal cells reside (Harris and Shepherd,
2015; Ramaswamy et al., 2015). The delay caused by the long synapse to soma path distances
(Supplementary Figure 3.11B) may explains the importance of common POm innervation
40 — 60 ms after stimulus onset.

Having confirmed that common innervation by thalamic fibers links pairs of neurons to the
same assemblies, we then considered how much more assembly membership is determined
by the identity of the specific patterns used. We hypothesized that direct innervation by fibers
used in a pattern increases membership probability in assemblies associated with the same
pattern. Specifically, we used as a structural feature the pattern indegree i.e., the total indegree
of a neuron from VPM fibers used in each of the patterns.

61



Chapter 3. Cell assemblies and their underlying connectivity

Assembly membership predictions from thalamic innervation
Common innervation Mean common POm indegree Mean common VPM indegree
Thalamic input 08 with assembly 1 0.10
> > 0.2
g ron O 2 z
° — POm ] —2 — 8 3
29 08 g 064 __ 9 2 . 005 8 0.1
€ 8 8
3t g — 4 10 e ° <
£ g € 04 5 — 11 § 6 0.00 2 00 T
52 08 < 6 c 7 S
=6 5 § /\/ S g S 01
° 2 . 02 ) E 4 005 E -0.
52 04 8 £ £
2 0.0 1 -0.10
0 20 40 60 00 01 02 03 04 1234567809101 1234567809101
Indegree Mean common POm indegree Assembly Assembly
Assembly membership predictions from innervation by (thalamic) input patterns
Pattern indegree
— —— —
0.8 Input pattern Early 0.8 Middle 0.8 Late A 03
o — A F |assembly| £ assembly | 2 assembly B
s g —eg — % { - ( J : 0.2
g 06 c —n 3 06 g 08 c 0 o4
E | —5 i 5 § g e |
E 04 — E 04 £ 04 g 00 ¢
< < < 5 I
5 s < g ¢ -01
g 02 g 02 S 02 = n
° o g | -02
QO | e e 0. o T
00— - 0.0 0.0 J -03
0 10 20 30 0 10 20 30 1234567891011
Indegree Assembly
Simplex counts in assembly subgraphs
Early assemblies Middle assemblies Late assembly
y 1 2 3 y 4 y 5 y 6 y 7 y 8 y 9 10 y 11
—— assembly 16 1e6 1e7
£ 1eb control s A 4 1 2
5,9 1e6 4 166 165 / 166 166 166 5%
3 } 1 } 1 } 5 1 5 2
x
a \
Eo 0 0 0 Y S 0 0/~ o 0
0 5 0 5 0 5 0 5 0 5 0 50 0 5 0 5 0 5 0 5) 0 5
Simplex dimension
Assembly membership predictions from recurrent innervation
Presynaptic —— Indegree
(aman ) loreveunn)
08 assembly Early 08 Middle 08 Late 1 02
) —1 — 7 assembly . assembly : assembly )
2 o, g 2 — g — ) z 2
% 06{ — 3 9 G 06 % 06 £ 3 01
@ 1] @ S 4
8 — 4 — 10 8 2 2
5 5 " 5 04 5 0.4 7 s 2 00 €
2 o4 . 2 £ Z / g e 0
< < < FhAN g !
5 02 5 02 s 02y /S Z 0.1
8 § g Overall mean T 10
T o0 & 00 [ 1" -02
0 100 200 300 0 100 200 300 1234567891011
Indegree Assembly
Assembly membership predictions from generalied recurrent innervation
1-indegree 2-indegree 3-indegree
[<% > ! 0.2 0.2
£ 5 2
4] E 3 0.1
2 g 4 0.1 0.1
aE> S 5
£ -g_ 6 0.0 0.0 00 =
< g 7
- g
5 > 8 -0.1 -0.1
‘3 g 9 -0.1
[ 10
o b -02 -02
1234567891011 1234567891011 1234567891011
k-indegree Assembly

Figure 3.4: Connectivity determines cell assembly membership. A: First: Effect of thalamic inner-
vation (from VPM and POm nuclei) on participation in cell assemblies. Solid lines indicate the mean
and the shaded areas indicate 95% confidence intervals. Second: probability of membership in an
exemplary middle assembly against mean common POm indegrees with respect to all assemblies. Third
and fourth: nI (normalized mutual information, see Methods) of mean common thalamic indegree
and assembly membership. B: Probability of membership in exemplary early (first), middle (second),
and late (third) assemblies against indegree with respect to all patterns. Fourth: nI of pattern indegree
and assembly membership. C: Simplex counts within assemblies and random controls (same number
of neurons with the same cell type distribution). (Caption continues on the next page.)
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D: Probability of membership in exemplary early (first), middle (second) and late (third) assemblies
against indegree with respect to all assemblies. Fourth: nI of indegree and assembly membership. E:
First: Probability of membership in an exemplary early assembly against k-indegree with respect to the
same assembly. Inset: k-indegree is given by the number of k-simplices within an assembly (orange
nodes) completely innervating a given neuron (black). nI of k-indegree and assembly membership for
k=1 (second), k =2 (third) and k = 3 (fourth). (White: nI not defined.)

As predicted from the previous results, probability of assembly membership grew rapidly
with pattern indegree for early assemblies associated with the same pattern (Figure 3.4B, left).
Every pattern had one early assembly strongly associated with it (except for pattern E, which
only had middle and late assemblies Figure 3.3B2). On average, the nI of pattern indegree
and assembly membership reached 0.26 (Figure 3.4B, right). A similar trend was observed for
middle assemblies (mean: 0.215), while the late assembly was again an exception, with no
value above 0.04, for reasons outlined above (Figure 3.4B third and fourth). In total, taking
the stimulus patterns into account gives a 33% higher nI over the less specific mean common
VPM innervation.

Recurrent connectivity explains late assemblies

Even with perfect knowledge of thalamic innervation and pattern identity the nI did not
exceed values of 0.3, leading to the question: What other factors determine the rest? The most
commonly accepted structural correlate of cell assemblies is the overexpression of recurrent
connectivity motifs between participating neurons (Harris, 2005; Buzséki, 2010; Song et al.,
2005; Perin et al., 2011). One particular class of motifs that has been linked to neuronal function
are directed simplices of dimension k (k-simplicesReimann et al., 2017b). A k-simplex is a
motif on k + 1 neurons, which are all-to-all connected in a feed-forward fashion (Figure 3.4E
left, inset), in particular 1-simplices are directed edges and 0-simplices are single cells. Indeed,
we found a strong overexpression of directed simplices in the connectivity submatrices of
cells within an assembly. In particular, the maximal simplex dimension found in assembly
subgraphs is at least one higher than in the corresponding controls. Moreover, the peak of
simplex counts in assembly graphs is in general one order of magnitude above the controls
(Figure 3.4C).

Based on this we define the k-indegree with respect to an assembly of a neuron i, as the number
of k-simplices in the assembly such that all the cells in the simplex innervate i (see Figure
3.4E left, inset). For the case k = 0, i.e., the number of cells in the assembly innervating i,
we found that it is a good predictor of membership in the same assembly, with an average
nl value of 0.143 (Figure 3.4D). This time, late assembly membership could be predicted
the best, with an nI of 0.224, compared to an average of 0.118 and 0.16 for early and middle
assemblies, respectively (Figure 3.4D). Additionally, probability of late assembly membership
also increased with 1-indegree with respect to all other assemblies. Conversely, 0-indegree
with respect to the late assembly decreases the membership probability for early, and most
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of the middle assemblies (blue curves with negative slope on the first and second panels of
Figure 3.4D). This reflects the temporal order of their activation and the fact that neurons in
the deeper layers, that dominate the late assembly, mostly project outside the cortex and not
back to superficial layers (Feldmeyer, 2012; Harris and Shepherd, 2015).

The nI values across the diagonals for k = 1,2 are larger than for k = 0, for all assemblies
except the late one. More precisely, we found nI averages of 0.152 and 0.161 for early, and
0.18 and 0.188 for middle assemblies for k = 1 and k = 2 respectively (Figure 3.4E second and
third). On the other hand, off diagonal nI values drop for increasing k. This shows that not
only the size of the presynaptic population has an effect on the activity of a neuron, but also
the connectivity patterns between them. However, the effect of these non-local interactions
are stronger within an assembly than across. For k = 3 the nI values drops, which can be
explained by the narrower range of values the 3-indegree takes (Figure 3.4E first and fourth).
As 0-indegree is the same as the general notion of indegree (the number of neurons in the
afferent population) we will drop k = 0 and simply call it indegree in the following sections.

Synaptic clustering explains late assemblies

So far, we have only considered features which can be extracted from the connectivity matrix
of the system. However, our model also offers subcellular resolution, specifically, the dendritic
locations of all synapses (Markram et al., 2015; Kanari et al., 2019), which we have demon-
strated to be crucial for recreating accurate post-synaptic potentials (Ramaswamy et al., 2012;
Ecker et al., 2020), and long-term-plasticity (Chindemi et al., 2022). This allowed us to explore
the impact of co-firing neurons potentially sending synapses to the same dendritic branch
i.e., forming synapse clusters (Kastellakis and Poirazi, 2019; Wilson et al., 2016; Iacaruso et al.,
2017; Ujfalussy and Makara, 2020). We hypothesized that innervation from an assembly is
more effective at facilitating membership in an assembly if it targets nearby dendritic locations.
We therefore defined the synaptic clustering coefficient (SCC) with respect to an assembly
A;, based on the path distances between synapses from A, on a given neuron (see Methods
and Supplementary Figure 3.12). The SCC is a parameter-free feature, centered at zero. It is
positive for intersynaptic distances that are lower than expected (indicating clustering) and
negative otherwise (indicating avoidance).

Overall, we found similar trends as for the recurrent connectivity, although with a lower impact
on assembly membership. Late assembly membership was explained the best by the SCC
with 0.114 nI, while early and middle assemblies had an average nI of only 0.048 and 0.061
(Figure 3.5A). Although SCC was not that powerful by itself, we found that a given value of
indegree led to a higher assembly membership probability if the innervation was significantly
clustered (Figure 3.5B, first). This lead us to explore the correlation between indegree and the
SCC (Figure 3.5B second), finding a weak but significant correlation between these measures.
Note that the SCC controls for the decrease in distance between synapses expected from a
higher indegree (see Methods), therefore we conclude that this is non-trival feature of the
model. However, this means that the effects of indegree and SCC on assembly membership
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are partially redundant. To dissociate these effects, we compute the nI between SCC and
assembly membership conditioned by indegree (see Methods), which is on average 0.025,
reaching values up to 0.045 (Figure 3.5B third and fourth). This shows that indegree and SCC
affect assembly membership both independently but more so in conjunction.
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Figure 3.5: Synapse clustering coefficient determines cell assembly membership. A: Probability of
membership in exemplary early (first), middle (second), and late (third) assemblies against synapse
clustering coefficient (SCC, see Methods) with respect to all assemblies. Fourth: nI (normalized
mutual information, see Methods) of SCC and assembly membership. B: Combined effect of SCC and
indegree (as in Figure 3.4D). First: Probability of membership in an exemplary early assembly, against
indegree with respect to the same assembly, grouped by SCC significance (see Methods). Second:
Joint distribution of SCC and indegree. Third: nI of SCC and assembly membership conditioned by
indegree. (White: nI not defined.) Fourth: Relation of nI and conditional nI grouped by postsynaptic
early, middle, and late assemblies (i.e., rows of the matrices in A fourth, and B third). C: Simulation
results for 10 selected neurons per assembly (with the highest indegree and significant clustering;
red arrow in B left) with modified physiological conditions. Left: correlation of spike times with the
assembly. Right: Single cell firing rates.

The observed effect of SCC can only be explained by nonlinear dendritic integration of synap-
tic inputs (Stuart and Spruston, 2015; Kastellakis and Poirazi, 2019; Goetz et al., 2021) Specifi-
cally, our model has two sources of nonlinearity: First, active ion channels on the dendrites
(Stuart and Spruston, 2015; Ujfalussy and Makara, 2020; Goetz et al., 2021), causing Na* and
Ca* spikes. Second, NMDA conductances, which open in a voltage dependent manner,
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leading to NMDA-spikes (Stuart and Spruston, 2015; Goetz et al., 2021). To show that these are
the mechanisms by which the SCC acts, we studied how the removal of these non-linearities
affects assembly membership of selected neurons. From each assembly we chose ten neurons
whose probability of membership was most affected by their SCC i.e., those with highest
indegree combined with significant clustering (red arrow in Figure 3.5B first). We subjected
these neurons to the same input patterns they received in the simulations (see Methods), but
with passive dendrites (Figure 3.5C green) or blocked NMDA receptors (Figure 3.5C orange).
These modifications altered the neurons spiking activity, causing a non-negligible portion
of them to drop out of their assembly, as their activity was no longer significantly correlated
with it (Figure 3.5C first, see Methods). The manipulations resulted in a 45% drop in assembly
membership for passive dendrites and 36% for blocking NMDA channels. Although, the
manipulation resulted in an overall reduction of firing rate (Figure 3.5C second), this did not
explain the drop in assembly membership (Figure 3.5C second: red dots with higher rate
then black ones). We conclude that these nonlinearities contribute to the synchronization of
activity within assemblies, underlying the observed effect of the SCC.

3.2.3 Assemblies are robust across simulation instances

The results of our simulations are stochastic (Nolte et al., 2019), leading to different outcomes
for repetitions of the same experiment, as in biology. To assess the robustness of our results, we
repeated our in silico experiment 10 times with the same thalamic inputs but different random
seeds. Changing the seed mostly affects the stochastic release of synaptic vesicles (Markram
etal., 2015; Nolte et al., 2019) especially at the low, in vivo-like extracellular Ca®* concentration
used. The assemblies detected in the repetitions were similar to the ones described so far,
in term of member neurons (Figure 3.6A), temporal structure (early and middle groups and
a non-specific late one, not shown), and their determination by connectivity features (not
shown).

We hypothesize that cell assemblies in cortical circuits are inherently stochastic objects,
partially determined by the structural connectivity, input stimuli, and neuronal composition.
Thus, each repetition yields a different (but overlapping) set of assemblies and neurons
contained in them. In order to get an approximation of these stochastic objects we pooled
the assemblies detected in all repetitions and determined which best corresponded to each
other by clustering them based on the Jaccard distance of their constituent neurons (see
Methods, Figure 3.6A). According to this distance, nearby assemblies have a large intersection
relative to their size. We called the resulting clusters consensus assemblies, and the assemblies
contained in each its instances. We assigned to neurons different degrees of membership in
a consensus assembly, based on the fraction of instances they were part of, normalized by a
random control, and called it its coreness (see Methods). We found, that as coreness increased
so did the neurons’ spike time reliability (defined across the repetitions of the experiment
(Nolte et al., 2019; Schreiber et al., 2003; see Methods), especially for the thalamus driven early
assemblies (Figure 3.6B). We call the union consensus assembly the union of all its instances;
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and the core consensus assembly the set of cells whose coreness is significantly higher than
expected (see Methods and union vs. core distinction of Figure 3.6C).

When repeating our structural analysis on the core consensus assemblies, we found higher
values of nl than before in all cases, except for the SCC (Figure 3.6D and Figure 3.7). This
indicates that assembly membership in this model is not a binary property but exists on a
spectrum from a highly reliable and structurally determined core to a more loosely associated
and less connected periphery. The notion of consensus assemblies is a way of accessing this
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Figure 3.6: Consensus assemblies. A: Jaccard similarity based hierarchical clustering of assemblies
from different simulation instances. B: Spike time reliability (see Methods) of neurons belonging to
given fraction of assembly instances. C: Locations of neurons in the union (all instances) and core (at
least 9/10 instances, see Methods) of exemplary (pattern A responsive) early consensus assembly. D:
nl (normalized mutual information, see Methods) of connectivity features and consensus assemblies
membership.

Another way to take all ten repetitions into account would be to average the time-binned
spike trains of the simulated neurons. Thus, we averaged the input instead of the output of
the assembly detection pipeline and we call these the average assemblies. We first compared
these to the assemblies obtained in a single repetition. The similarity of significant time bins
was higher for average assemblies (Supplementary Figure 3.13B1), and their sizes were larger
(Supplementary Figure 3.13D second panel), with neurons belonging to up to 10 assemblies
out of the 13 detected (Supplementary Figure 3.13D third panel). On the other hand, the nI of
the structural features and membership remained the same as for a single repetition (compare
matrices in Figures 3.4 and 3.5 to Supplementary Figure 3.13C).
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When contrasting the average and consensus assemblies, we found pairs with high Jaccard
similarity (Supplementary Figure 3.13D and E1). A detailed comparison showed that all
neurons that are part of at least 6 out of 10 assembly instances were all contained in their
matching average assembly. Further lowering the cutoff began admitting neurons that were
not part of the corresponding average assembly (Supplementary Figure 3.13E2). On the other
hand, there are barely any cells in the average that are not contained in the union consensus
assembly. This demonstrates how assembly membership becomes less determined towards
the periphery, mirroring the reduced n with the structural connectivity features. Furthermore,
a neuron in a consensus assembly will most likely belong to all instances (Supplementary
Figure 3.13E2), unlike for the binomial distribution expected by chance.

In summary, while average assemblies give similar results to the union consensus assemblies,
the coreness values used in the consensus assembly framework assign different degrees of
membership to its neurons that can be taken into account in downstream analyses, e.g., by
considering only the functionally reliable core. Furthermore, for this core the determination
by most structural features, measured by nl, is stronger (Figure 3.7).
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Figure 3.7: Summary of nls of all connectivity features and assembly membership. Assemblies from
single simulation on top and consensus assemblies from 10 simulations on the bottom. Only within-
assembly interactions (diagonals of nI matrices) shown, except for the patterns, where for each column
(postsynaptic assembly) we used the maximum value (strongest innervating pattern). Not only the
colors, but the radii of the pies code for features: Red (VPM) longer one depicts common-innervation
(as yellow for POm) while the shorter one direct innervation from patterns. Green: Simplex dimension
increases as length decreases (longest: indegree, shortest: 3-indegree). Blue: longer one is the SCC
conditioned on indegree, while the shorter one is the same, but unconditioned (and that is why it
always overlaps with indegree).
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3.3 Discussion

Using a detailed, large-scale cortical network model we examined the link between cortical
structure and function. Our principal findings from analyzing the connectivity of functional
cell assemblies are as follows: (1) Different afferents dominated determination of membership
in assemblies linked to different time windows: VPM innervation affected membership in early
assemblies, POm innervation in middle assemblies, while recurrent innervation in the late
assembly (Figure 3.7 red, yellow, green). (2) Recurrent innervation more strongly facilitated
assembly membership the more the innervating neurons were wired among themselves,
adding a non-local component to the structure-function relation. (3) Similarly, the innervation
of a neuron by an assembly was significantly more powerful in facilitating membership when
its synapses were clustered on the dendrites (Figure 3.7 blue). (4) In conjunction with the
structure of cortical connectivity, features of subcellular physiology such as active dendritic
channels and NMDA receptors, also influence assembly membership. (5) Interactions between
assemblies emerged, where innervation by one assembly explained membership in another.
Positive interactions (with increased membership probability) were found when the direction
of innervation reflected the temporal order of assembly activation; otherwise, weaker or even
negative interactions were found.

Point (1) above confirms our previous findings that, while the presence of an external stimulus
makes the circuit much more reliable, this effect is not merely driven by direct innervation,
but also requires recurrent connectivity (Nolte et al., 2019). Point (2) predicts a functional
consequence for non-random features of neuronal connectivity, such as nodes with high
centrality values and the presence of a rich club, that have been characterized in many species
and regions, at various levels of resolution (Bassett and Bullmore, 2017). Points (3) and (4) link
the theory of neuronal assemblies to the literature on active dendritic computation (Poirazi
et al., 2003; Stuart and Spruston, 2015; Kastellakis and Poirazi, 2019). Point (5) strengthens
the case that the topology of connectivity is best studied in a directed way, since undirected
networks (although more amenable to network science methods) miss an essential part of the
picture. In particular, the relationship between the structural directionality of the connection
and the temporal direction of the flow of activity (Reimann et al., 2017b).

Our analysis supports the idea that neuronal activity revolves around activation of assemblies.
We have shown that assembly membership is determined by certain structural prerequisites,
mostly amounting to increased membership probability when more afferent synapses from
various sources are formed on a neuron. These may be costly to fulfill, both in terms of energy
(Harris et al., 2012) and space taken up by wiring. Chklovskii et al. (2002) considered efficient
layouts of wiring, i.e., axons and dendrites, given a certain connectivity matrix. They found
that the layout is tightly constrained by the available space and close to a theoretical optimum.
Here, we expanded on that idea, demonstrating that on top of it, the structure of the connectiv-
ity matrix is efficient. Indeed, on the sub-cellular level, we have shown, that synaptic clustering
on dendrites increases efficiency, in that the same probability of assembly membership can
be obtained with about 50% of the indegree when the synapses are highly clustered (Figure
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3.5B, Supplementary Figure 3.14A). Furthermore, on the connectivity level, another potential
mechanism lies in the non-local interaction of the presynaptic population measured by the
k-indegree. We have shown that for higher values of k, a given membership probability is
attained for lower k-indegree values, suggesting higher efficiency (Figure 3.4E, left). However,
as k grows, k-indegree counts the innervation by larger and larger motifs, potentially requiring
more incoming synaptic connections (Supplementary Figure 3.14B2). Here, we control for
this by repeating our analysis not with respect to the number of motifs but the size of the
presynaptic subpopulation forming them. When going up from k =0to k =1, k =2, and
k = 3 the same membership probability can be obtained for a given neuron with about 80%,
34% and 6% of the incoming connections (Supplementary Figure 3.14B1), confirming that
non-local interactions in the presynaptic population make afferent innervation more efficient.
This can be explained by our earlier finding that the simplicial motifs we considered increase
the correlations and reliability of the spiking activity of participating neurons (Reimann et al.,
2017b).

It is possible that wiring efficiency can be optimized further, based on experience, through
structural and functional plasticity. Recent modelling studies investigated how starting from a
random initial connectivity, plasticity rules and network activity lead to assembly formation,
maintenance and competition for member neurons (Fauth and Van Rossum, 2019; Kossio
et al., 2021; Gastaldi et al., 2021). Conversely, our network model has strongly non-random
connectivity, constrained by neuronal morphology (Reimann et al., 2015, 2017a), and can
thus be viewed as a circuit in a non-random plastic state, but unshaped by experience. The
presence of assemblies in such a naive circuit is in line with the belief that the brain is not a
tabula rasa (Buzsdki, 2019). It is also in line with the recent in vivo experiments of Bathellier
et al. (2012) and Trdgenap et al. (2022), who found endogenous cell assemblies in mouse
auditory and ferret visual cortices. Furthermore, Tragenap et al. (2022) also found that these
endogenous assemblies solidify and become more reliable after eye opening. These points
lead to the question: How does long-term plasticity affect the three aspects discussed above,
i.e., assembly wiring efficiency, competition for member neurons and assembly solidification?
To address this question, we are integrating the functional plasticity model of Chindemi
et al. (2022) into our network simulations. We can then analyze these with the methods we
have introduced here, which provide new, quantitative ways to characterize assemblies, their
temporal evolution and the connectivity underlying them.

3.4 Methods

3.4.1 Network simulations

The most recent version of the detailed, large-scale cortical microcircuit model of Markram
et al. (2015) was used for the in silico experiments in this study. Updates on its anatomy,
e.g., atlas-based cell densities are described in Reimann et al. (2022a), while updates on its
physiology e.g., improved single cell models and missing input compensation in Isbister et al.
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(2023). The 2.4 mm?3 subvolume of the juvenile rat somatosensory cortex, containing 211,712
neurons is freely available at: https://zenodo.org/record/7930275.

Although large-scale with bio-realistic counts of synapses originating from the local neurons,
the neurons in the circuit still lacked most of their synapses (originating from other, non-
modeled regions; Markram et al., 2015). In order to compensate for this missing input, layer
and cell-type specific somatic conductances following an Ornstein-Uhlenbeck process were
injected to the cell bodies of all neurons (Destexhe et al., 2001). The algorithm used to
determine the mean and variance of the conductance needed to put the cells into an in
vivo-like high-conductance state, and the network as whole into an in vivo-like asynchronous
firing regime with low rates and realistic responses to short whisker stimuli is described in
Isbister et al. (2023). The in vivo-like state used in this article is the same as [C a2+]0 =1.05mM,
percentage of reference firing rates = 50%, CV of the noise process = 0.4 from Isbister et al.
(2023).

Simulations of selected cells with modified physiological conditions (active dendritic channels
blocked or NMDA conductance blocked) used the activity replay paradigm of Nolte et al. (2019).
In short, for each of these cells, spike times of its presynaptic population were recorded in the
original network simulation. Then the selected cells were simulated in isolation by activating
their afferent synapses according to the recorded spike times in the network simulation. Thus,
the modified activity of the isolated cell did not affect the rest of the network.

Simulations were run using the NEURON simulator as a core engine with the Blue Brain Project’s
collection of hoc and NMODL templates for parallel execution on supercomputers (Hines and
Carnevale, 1997; Kumbhar et al., 2019; Awile et al., 2022). Simulating 2 minutes of biological
time took 100,000 core hours, on our HPE based supercomputer, installed at CSCS, Lugano.

3.4.2 Distance metrics
This section gives a brief overview and justification of the various distance metrics used below.

Population activity in time bins were compared using their cosine similarity Carrillo-Reid
et al. (2015). Two time bins with high cosine similarity have similar sets of firing neurons, thus
detecting co-firing. Note that there is an increasing relationship between firing rate and cosine
similarity (Cutts and Eglen, 2014; Supplementary Figure 3.8A2).

Input patterns were defined using the Hamming distance between the sets of VPM fiber
bundles involved to have specific values and thus specific sizes of intersections (Figure 3.2B).
Input patterns were compared using Earth mover distances between the flat map locations of
their contained fibers (Figure 3.3E).

Assemblies of neurons were compared using their Jaccard distances. Like Hamming, this
also compares sizes of intersections but it is normalized with respect to the sizes of the sets
involved.
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Assembly sequences i.e., vectors of size the number of assemblies, with each entry counting
the number of time bins the corresponding assembly was active in response to an input
pattern, were compared using their normalized Euclidean distances. This is the Euclidean
distance between vectors of normalized length.

Finally, afferent synapses were compared using their path distances. Specifically, the dendritic
tree was represented as a graph with nodes being its branching points and edges between them
weighted according to the length of sections connecting them. Distances between synapses
was computed as the path distance in this graph.

3.4.3 Thalamic input stimuli

The VPM input spike trains were similar to the ones used in Reimann et al. (2022b). In detail,
the 5388 VPM fibers innervating the simulated volume were first restricted to be < 500 ym
from the middle of the circuit in the horizontal plane to avoid boundary artefacts. To measure
these distances we use a flat map, i.e., a two dimensional projection of the volume onto the
horizontal plane, orthogonal to layer boundaries (Reimann et al., 2022a). Second, the flat
map locations of the resulting 3017 fibers were clustered using k-means to form 100 bundles
of fibers. The base patterns (A, B, C, and D) were formed by randomly selecting four non-
overlapping groups of bundles, each containing 12% of them (corresponding to 366 fibers
each). The remaining 6 patterns were derived from these base patterns with various degrees
of overlap (see beginning of Results, Figure 3.2B). Third, the input stream was defined as a
random presentation of these ten patterns with 500 ms inter-stimulus intervals, such that
in every 30 second time intervals every pattern was presented exactly six times. Last, for
each pattern presentation, unique spike times were generated for its corresponding fibers
following an inhomogeneous adapting Markov process (Muller et al., 2007). When a pattern
was presented, the rate of its fibers jumped to 30 Hz and decayed to 1 Hz over 100 ms. For
the non-specific POm stimuli, a randomly selected 12% of the (unclustered) 3864 POm fibers
were activated each time any pattern was presented (in every 500 ms). The spike trains were
designed with the same temporal dynamics as described above for VPM, but with half the
maximum rate (15 Hz). The implementation of spike time generation was based on Elephant
(Denker et al., 2018).

3.4.4 Assembly detection

Our assembly detection pipeline was a mix of established techniques and consisted of five
steps: binning of spike trains, selecting significant time bins, clustering of significant times
bins via the cosine similarity of their activity, and determination of neurons corresponding to
a time bin cluster and thus forming and assembly. Note, that time bins instead of neurons
were clustered because this allows neurons to belong to several assemblies.
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Spikes of excitatory cells were first binned using 20 ms time bins, based on Harris et al. (2003),
which takes a postsynaptic reader neuron specific point of view. They suggest 10-30 ms as
an ideal integration time window of the presynaptic (assembly) spikes (Harris et al., 2003;
Buzséki, 2010). Next, time bins with a significantly high level of activity were detected. The
significance threshold was determined as the mean activity level plus the 95th percentile of
the standard deviation of shuffled controls. The 100 random controls were rather strict, i.e., all
spikes were shifted only by one time bin forward or backward, based on Sasaki et al. (2006);
Carrillo-Reid et al. (2015). Next, a similarity matrix of significant time bins was built, based
on the cosine similarity of activation vectors, i.e., vectors of spike counts of all neurons in the
given time bins (Carrillo-Reid et al., 2015). The similarity matrix of significant time bins was
then hierarchically clustered using Ward’s linkage (Montijn et al., 2016; Pérez-Ortega et al.,
2021). Potential number of clusters were scanned between five and twenty, and the one with
the lowest Davis-Bouldin index was chosen, which maximizes the similarity within elements
of the cluster while maximizing the the between cluster similarity (Davies and Bouldin, 1979).
These clusters corresponded to potential assemblies.

As the last step, neurons were associated to these clusters based on their spiking activity, and it
was determined whether they formed a cell assembly or not. In detail, the correlations between
the spike trains of all neurons and the activation sequences of all clusters were computed
and the ones with significant correlation selected. Significance was determined based on
exceeding the 95" percentile of correlations of shuffled controls (1000 controls with spikes
of individual cells shifted by any amount Montijn et al., 2016; Herzog et al., 2021). In relation
to Figure 3.5C left, it is important to note, that these correlation thresholds were specific to
a pair of a neuron and an assembly. Finally, it is possible to have a group of neurons that is
highly correlated with one part of the significant time bins in a cluster, and another that is
highly correlated with the rest, while the two groups of neurons have uncorrelated activity.
To filter out this scenario, it was required that the mean pairwise correlation of the spikes of
the neurons with significant correlations was higher than the mean pairwise correlation of
neurons in the whole dataset (Herzog et al., 2021). Clusters passing this test were considered
to be functional assemblies and the neurons with significant correlations their constituent
cells.

For a test of the methods on synthetic data and comparison with other ways of detecting
cell assemblies please consult Herzog et al. (2021). Assembly detection was implemented in
Python and is publicly available as assemblyfire.

3.4.5 Calculation of information theoretical measurements

To quantify the structural predictability of assemblies, mutual information of assembly mem-
bership (Y,) and a structural feature of a neuron (X;;) was used, which is a measure of the
mutual dependence between the two variables (Gray, 2011). More precisely, Y}, is a binary
random variable that takes the value 1 if a neuron belongs to an assembly A, and 0 otherwise.
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On the other hand, X, is a random variable determined by a structural property of the neuron
with respect to the assembly A,;, e.g., the number of afferent connections into the neuron
from all neurons in A,,.

To asses the dependence between these two variables, first the dependence of the probability
of a neuron belonging to assembly A,, given a specific value of the structural feature measured
by X, was studied. More precisely, the function f}, ,, whose domain is the values of X,;, and is
given by:

Jam(x) =P(Yp =1 X = x) 3.1

was considered. If this function has an increasing or decreasing trend, then the random
variables Y}, and X;,, can not be independent.

Their dependence was quantified by means of their mutual information. The value of mutual
information is always non-negative and it is zero when the random variables are independent.
In order to restrict this value to [0, 1] it was divided by the entropy of Y,,, which measures
the level of inherent uncertainty of the possible outcome of the values of Y, (Shannon, 1948).
The calculation of mutual information is based on the probabilities of X, and Y}, across all
possible outcomes. If the number of possible values of X, is large compared to the number of
samples, there can be errors in determining these probabilities, possibly leading to inflated
values of the mutual information. Therefore, the values of X,,, were binned into 21 bins
between the 1/ and 99'” percentile of all sampled values. The number of bins was determined
such that the resulting value of mutual information in a shuffled control did not exceed 0.01.
Shuffled controls (one per pair) were also used to threshold the mutual information values by
considering only the pairs (n, m) whose mutual information was larger than the mean plus one
standard deviation of all pairs in the shuffled controls. Finally, a negative sign was added to the
significant mutual information value if the function f;, ;, was decreasing i.e., the probability of
membership in A, decreased as the values of X, increased. This was assessed by the slope
of a weighted (by the number of samples in each bins) linear fit of the function f;, ;,. This
normalized, thresholded and signed mutual information value was called normalized mutual
information and denoted nI(Yy,, X;,).

All the statements above can be made conditional with respect to a third random variable,
yielding the conditional normalized mutual information, which was used when two structural
features were inherently believed to be interacting as in the case of the SCC and indegree.

Calculations were done with the pyit1ib package.

3.4.6 Synaptic clustering coefficient

To quantify the co-localization of synapses on the dendrites of a neuron i from its presynaptic
population P; with a single, parameter-free metric, synaptic clustering coefficient SCC was
defined and calculated for all excitatory neurons in the circuit with respect to all assemblies.
Based on these locations, D;, the matrix of all pairwise path distances between synapses on i
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from P; were calculated. Let D; ;, be the submatrix for pairs of synapses originating from a
subpopulation p < P;. Then the nearest neighbour distance for p can be written as:

nnd(i, p) = mean (%lgu% (Di,p)) 3.2)

In particular, for the subpopulation of P; of neurons in the assembly A,, denoted by p,,
nnd(i, A,) = nnd(i, p,) was defined, where p, = P; n A,. This value was normalized, using
the nnd values of 20 random presynaptic populations from P; of the same size as p,. In
summary, the SCC was defined as the negative z-score of nnd(i, A,) with respect to the
distribution of control nnds (Supplementary Figure 3.12). Additionally, the significance of the
clustering or avoidance of the synapse locations was determined with a two-tailed t-test of
nnd(i, A,) against the 20 random samples with an alpha level of 0.05. SCC was implemented
using NeuroM and ConnectomeUtilities.

3.4.7 Determination of consensus assemblies

Consensus assemblies were defined over multiple repetitions of the same input stream. These
were groups of assemblies with similar sets of neurons. Additionally, all assemblies in a
group were required to originate from a different repetition; noted as the repetition separation
criterion. The Jaccard distance matrix between all pairs of assemblies from all repetitions were
computed and modified by setting the distances between pairs of assemblies from the same
repetition to twice the maximum of the whole matrix. The matrix was then hierarchically
clustered using Ward’s linkage, and the lowest number of clusters that satisfied the repetition
separation criterion was chosen. The resulting clusters were the consensus assemblies, and the
assemblies within them their instances.

The union consensus assembly was defined as the set of neurons given by the union of all
instances. Its member neurons were assigned a membership degree based on number of
instances they were part of in two ways. First, by simply using the fraction of the instances a
neuron was part of. Second, in what was called the coreness value of a neuron, which is the
number of instances a neuron is part of normalized by its expected value, given the number
and sizes of its instances. This was calculated as a binomial distribution with n set to the
number of instances and p to the mean size of the instances, divided by the size of the union
consensus assembly. Based on this, the coreness of a neuron contained in r instances was
defined as —logio(1 — By, p(r)), where B is the cumulative binomial distribution. Neurons with
a coreness value exceeding 4 were considered to be part of the corresponding core consensus
assembly.
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3.4.8 Calculation of spike time reliability

Spike time reliability was defined as the mean of the cosine similarities of a given neuron’s
mean centered, smoothed spike times across all pairs of repetitions (Schreiber et al., 2003;
Cutts and Eglen, 2014). To smooth the spike times, they were first binned to 1 ms time bins,
and then convolved with a Gaussian kernel with a standard deviation of 10 ms.
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Data and code availability

The 2.4 mm? subvolume of the juvenile rat somatosensory cortex (containing 211,712 neurons
and their connectivity) used for the in silico experiments in this study has been deposited
at Zenodo in SONATA format (Dai et al., 2020) and is publicly available at the following
DOI: 10.5281/zenodo.7930275. The simulator front-end that loads the SONATA model, and
instantiates the simulation to be run in CoreNEURON (Kumbhar et al., 2019) is also publicly
available at GitHub or under the following DOI: 10.5281/zenodo0.8075202. Assemblies from
10 simulation repetitions (with different random seeds), their consensus, and underlying
significant spike times, and the whole excitatory connectivity matrix have been deposited at
Zenodo and is publicly available at the following DOI: 10.5281/zenodo.8052721. Analysis code
that created (and can easily open the dataset above) is publicly available at GitHub or under
the following DOI: 10.5281/zenodo.8112725.
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Supplementary Figure 3.8: Spikes of (significant) time bins. Al Cosine similarity matrix (same as
in Figure 3.2B1, but unsorted). A2: Joint distribution of pair-wise mean firing rate (of time bins) and
cosine similarity. B1: 2D linear projection of mean centered and normalized spike matrix. B2: 2D
nonlinear projection of spike matrix (using cosine distance).
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Supplementary Figure 3.11: Anatomy of thalamocortical synapses. A: Density profile of VPM and
POm synapses, digitized from Meyer et al. (2010). B: Synapse-to-soma path distances of different
thalamocortical synapses on L5 neurons in an exemplary middle assembly (Ag). Ratios of box widths’
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Supplementary Figure 3.12: Synaptic clustering coefficient. A1: Exemplary L5 pyramidal cell and all
its afferent synapses from A;; (in blue) and from a control group (one out of the twenty) with the same
number of presynaptic neurons (in gray). A2: Zoom in on Al. Soma, basal dendrites, and proximal
apical dendrites are visible. Axon is not shown. The rendering was done with the BioExplorer package.
B1: Distance matrix between all pairs of A;; synapses and distribution of nearest neighbour distances
(minimum over the rows of the matrix) on its right (see Methods). B2: same as B1 but for the control
group. The equations on the righmost part of the figure are motivated and explained in the Methods.
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Supplementary Figure 3.13: Assemblies detected from averaged spike matrices. A, B: as in Figure
3.3A, B. C: as in Figure 3.6C. D: Left: Jaccard similarity of consensus assemblies and average assemblies.
Middle: Number of neurons in conesensus assemblies’ union and core and average assemblies. Right:
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and average assemblies. E2: Detailed comparison of the pair with the highest similarity in E1 at given
number of assembly instances contained. (10 means that the consensus assembly neuron is part of
10/10 assembly instances, thus consensus assembly sizes grows to the right again.) Average\consensus
is negligible (419 neurons) and is not shown.
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Puchet, G. Chindemi, J.B. Isbister, J.G. King, P Kumbhar, I. Magkanaris, E.B. Muller, M.W.
Reimann (2023) Long-term plasticity induces sparse and specific synaptic changes in a
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Contribution: I have parametrized the plastic synapses with the help of G. Chindemi,
and helped J. Blanco Alonso, P Kumbhar, J.G. King, and I. Magkanaris to make the
plasticity model compatible with our simulator. I set up and ran all of the simulations,
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and M.W. Reimann, created all the figures and the open source data set, wrote the first
version of the manuscript and participated in its rewriting. (A more detailed author
contribution can be found at the end of the chapter.)

Abstract

Synaptic plasticity underlies the brain’s ability to learn and adapt. This process is often studied
in small groups of neurons in vitro or indirectly through its effects on behavior in vivo. Due
to the limitations of available experimental techniques, investigating synaptic plasticity at
the microcircuit level relies on simulation-based approaches. Although modeling studies
provide valuable insights, they are usually limited in scale and generality. To overcome these
limitations, we extended a previously published and validated large-scale cortical network
model with a recently developed calcium-based model of functional plasticity between excita-
tory cells. We calibrated the network to mimic an in vivo state characterized by low synaptic
release probability and low-rate asynchronous firing, and exposed it to 10 different stimuli.
We found that synaptic plasticity sparsely and specifically strengthened synapses forming
spatial clusters on postsynaptic dendrites and those between populations of co-firing neurons,
also known as cell assemblies: among 312 million synapses, only 5% experienced noticeable
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plasticity and cross-assembly synapses underwent three times more changes than average.
Furthermore, as occasional large-amplitude potentiation was counteracted by more frequent
synaptic depression, the network remained stable without explicitly modeling homeostatic
plasticity. When comparing the network’s responses to the different stimuli before and af-
ter plasticity, we found that it became more stimulus-specific after plasticity, manifesting
in prolonged activity after selected stimuli and more unique groups of neurons responding
exclusively to a single pattern. Taken together, we present a plasticity rule that leads to sparse
change and analyze the rules governing those changes.

4.1 Introduction

Learning and memory are orchestrated by synaptic plasticity, the ability of synapses to change
their efficacy in an activity-dependent manner. Donald O. Hebb’s postulate about how synaptic
plasticity might manifest was paraphrased to the well known mantra: "cells that fire together,
wire together" (Hebb, 1949; Shatz, 1992). The first proof of coincident pre- and postsynaptic
population activity leading to potentiation (an increase in efficacy) came from pathway stimu-
lation in hippocampal slices (Bliss and Lemo, 1973). It was later confirmed at the neuron pair
level (Markram et al., 1997b; Bi and Poo, 1998), and spike-time dependent plasticity (STDP)
became a quintessential protocol to study Hebbian plasticity in vitro. In the early 2000’s a
plethora of cortical pathways were studied and plasticity proved to be synapse location- and
therefore pathway-dependent (Sjostrém and Héusser, 2006; Letzkus et al., 2006; Froemke et al.,
2010). The molecular substrate of Hebbian coincidence detection is the N-methyl-D-aspartate
(NMDA) receptor, which upon removal of the M g?* block by depolarization, conducts Ca?*
as well (Mayer et al., 1984). The calcium-control hypothesis, put forward by Lisman (1989)
postulates that prolonged, moderate amounts of Ca?* lead to depression (a decrease in effi-
cacy) while large transients of Ca®* lead to potentiation. By putting these together, it became
evident that it is not necessarily the timing of the postsynaptic spike, but the depolarization of
the postsynaptic dendrite is important to evoke changes in synaptic efficacy (Goldberg et al.,
2002; Lisman and Spruston, 2005).

In parallel with slice electrophysiology, Hebbian plasticity was also studied through its effect
on behaviour via fear conditioning experiments (McKernan and Shinnick-Gallagher, 1997)
and this line of research lead to a plethora of new techniques for tagging and re-activating
cells that participate in newly formed memories (Tonegawa et al., 2015). While these studies
highlighted the need to study plasticity at the network level, most changes are expected to
happen at the synapse level. Therefore, high-throughput methods tracking synaptic proteins
like PSD95 (Ray et al., 2023) and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)
subunit GluAl (Graves et al., 2021; Kim et al., 2023) are currently being developed. While
readily applicable to monitor synaptic efficacy in vivo, currently, these techniques cannot be
supplemented with recordings of neural activity thus the reason for the changes in efficacy
can only be speculated.
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The bridge between in vitro pairs of neurons and in vivo behavior is often provided by com-
plementary simulation based-approaches. Early theoretical work explored the potential link
between memories and cells that fire and therefore wire together, concentrating on the storage
and retrieval of memories in strongly recurrent networks (Hopfield, 1982), which remained
an active topic of research (Fusi and Abbott, 2007; Krotov and Hopfield, 2016; Widrich et al.,
2020). In parallel with the STDP experiments, modelers developed plenty of learning rules that
could explain the most recent pathway-specific findings (Gerstner et al., 1996; Kempter et al.,
1999; Song et al., 2000; Pfister and Gerstner, 2006; Clopath et al., 2010). Of particular interest
is the calcium-based model of Graupner and Brunel (2012), which models the evolution of
intracellular calcium concentration ([Ca®*];) given the pre- and postsynaptic spike trains

and updates the efficacy of the synapse, upon [Ca®*];

crossing thresholds for depression
and potentiation. Linking memory storage, recall and bioplausible learning rules together,
combinations of diverse sets of plasticity rules have been used to model the formation and
maintenance of Hebbian cell assemblies, i.e., groups of neurons that fire together (Litwin-
Kumar and Doiron, 2014; Zenke et al., 2015; Fauth and Van Rossum, 2019; Kossio et al., 2021).
A common theme in these models is the necessity of fast homeostatic plasticity, that keeps the
networks stable (Zenke et al., 2017a), however experimental evidence for those mechanisms is
lacking (Turrigiano and Nelson, 2004). While these studies provided mechanistic explanation
of learning and memory, they used point-neuron models, therefore neglecting the structural
and functional importance of dendrites and other subcellular components (but see Bono et al.,
2017; Kastellakis and Poirazi, 2019). The compartmentalized nature of dendritic trees gives
rise to spatial clustering of synapses (Farinella et al., 2014; Iacaruso et al., 2017; Kastellakis
and Poirazi, 2019) and local, non-linear voltage events (Poirazi et al., 2003; Stuart and Sprus-
ton, 2015) both of which are thought to contribute to removing the Mg?* block from NMDA
receptors and therefore gating plasticity.

To go beyond networks of point neurons stabilized with homeostatic plasticity, we equipped
the biophysically detailed, large-scale cortical network model of Markram et al. (2015) with
our recently developed, calcium-based model of functional plasticity (Chindemi et al., 2022)
between excitatory cells (Figure 4.1). This way, we had access to more realistic pre- and
postsynaptic activity and efficacy of millions of synapses and could characterize the rules
governing plasticity at the microcircuit level. To make our predictions more relevant, we
calibrated the circuit’s activity to mimic an in vivo state, characterized by low synaptic release
probability and low firing rates (Isbister et al., 2023). Thanks to the biophysical detail of the
model, we could also take the effect of low extracellular calcium concentration ([Ca®*1],)
into account (Chindemi et al., 2022), which was experimentally shown to reduce plasticity
(Inglebert et al., 2020; Figure 4.1E). As we followed a bottom-up framework and did not
model any specific task, we will refer to the effects of plasticity as changes in synaptic efficacy
instead of learning. Changes in synaptic efficacy were sparse, affecting 5% of all synapses
in 10 minutes of biological time. On the other hand, this was still enough to reorganize the
network’s dynamics, manifesting in more pattern-specificity after plasticity than before. We
found an increased likelihood of changes within and across cell assemblies and in synapses
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forming spatial clusters on postsynaptic dendrites. Among 312 million synapses, potentiation
dominated in amplitude and depression counteracted it in frequency, which lead to stable
firing rates without explicitly introducing any homeostatic terms (Turrigiano and Nelson, 2004;
Zenke et al., 2017a). To support future, potentially more task-related studies of learning in the
cortex, we made the model and the simulator available to the community.

4.2 Results

To achieve a continuous readout of plastic changes in synaptic efficacy of millions of excitatory
synapses, we used a biophysically detailed, large-scale cortical model of the rat non-barrel
somatosensory cortex (nbS1). The model improves on Markram et al. (2015) in terms of
both anatomical, e.g., atlas based cell composition and placement (described in Reimann
etal., 2022a), and physiological properties, e.g., improved single cell models, multi-vesicular
synaptic release, and layer-wise compensation for missing synapses (described in Isbister
et al., 2023). For this study, we used a seven column subvolume comprising 211,712 neurons
in 2.4 mm3 of tissue (Figure 4.1A) to keep the complexity of simulation and analysis man-
ageable. In line with the biological variability, excitatory cells are modeled as a diverse set of
morphologies (Kanari et al., 2019; Reimann et al., 2022a; Figure 4.1B) equipped with conduc-
tances distributed across all compartments (Reva et al., 2022; Supplementary Figure 4.7A).
The connectivity and synaptic physiology of these cells were extensively validated (Reimann
et al., 2022a; Isbister et al., 2023; Figure 4.1C; Supplementary Figure 4.7C). The model is also
equipped with fibers from the ventral posteriomedial nucleus of the thalamus (VPM) and the
high-order posteriomedial nucleus of the thalamus (POm; Figure 4.1D; Meyer et al., 2010). We
use these fibers to deliver inputs with spatio-temporal precision.

4.2.1 Calcium-based, biophysically detailed model of long-term plasticity

In previous versions of the circuit model, synapses were only equipped with short-term
plasticity (STP; Figure 4.1C). In the remainder of the manuscript we will call this the non-
plastic version, as our scope here is long-term plasticity. To model long-term plasticity we
integrated our recently published calcium-based plasticity model that was used to described
functional long-term potentiation and depression between pairs of pyramidal cells (PCs;
Chindemi et al., 2022). In short, the model follows the formalism of Graupner and Brunel
(2012), where pre- and postsynaptic spikes lead to changes in synaptic [Ca?*]; (Figure 4.1E).
Calcium entering though NMDA receptors and voltage-dependent calcium channels (VDCCs)
contributes to [Ca®"]; (equation (4.2) in Methods). When the integrated calcium trace of
a synapse crosses the threshold for depression (64) or the higher one for potentiation (6,),
synaptic efficacy (p, exhibiting a bistable dynamics Lisman, 1985) is updated (Figure 4.1E left;
equation (4.1) in Methods).
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Figure 4.1: Overview of the network model. A: Visualisation of the seven column subvolume of rat
nbS1. Rendering of 10% of the cells was done with Brayns. B: Representative morphologies for the
18 excitatory m-types and their typical firing pattern (e-type, top left). C: Exemplary connections to
L5 TTPCs (top) and their STP profiles (bottom). Thin gray represent the 20 individual repetitions,
while the thicker black ones their means. Renderings of morphologies (on B as well) were done with
NeuroMorphoVis (Abdellah et al., 2018). Neurite diameters are scaled (x3) for better resolution. D:
Bouton density profiles of thalamocortical fibers, and locations of VPM (black) and POm (purple)
synapses on neurons (in a 5 um radius subvolume). Rendering was done with BioExplorer. The scale
bar on B applies to the whole figure. (Similar panels have been shown in Reimann et al., 2022a, Isbister
etal., 2023, and Chindemi et al., 2022.) E: Variables of the plasticity model during coincident activation
of the pre- and postsynaptic neurons. Left: under in vitro-like conditions (taken from Chindemi et al.,
2022). Right: same pair of neurons under in vivo-like conditions. Schematics on their lefts illustrate the
difference between in vitro- and in vivo-like conditions.
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As Graupner and Brunel (2012) modeled [C a2+],~ of synapses on point neurons phenomeno-
logically, they had to refit their plasticity model parameters to explain different experimental
datasets. On the other hand, Chindemi et al. (2022) has shown that a generative model, op-
timized against STDP protocols from only two pathways can explain a large array of other
experimentally measured pathways, thanks to the biophysically detailed model of [Ca?®*];
and the morphological complexity of the neurons. The finding of Chindemi et al. (2022), that
one unique plasticity rule can rule them all, crucially depends on the location of synapses
on the dendrites. The generative model converts location dependent pre- and postsynaptic
[Ca®*]; peaks into synapse-specific 8, and 0 p parameters for all excitatory to excitatory (E to
E) synapses in the circuit. In our model, we found presynaptically evoked [Ca?*]; peaks to be
three orders of magnitude larger, than the ones evoked by postsynaptic spikes (Supplementary
Figure 4.8A). Postsynaptically evoked [Ca®*); peaks had a multimodal distribution in the

apical dendrites (Supplementary Figure 4.8A right), in line with Landau et al. (2022).

Changes in p are then converted into changes in the utilization of synaptic efficacy (Usg), a
variable of the Tsodyks-Markram model of STP describing the baseline release probability
(Tsodyks and Markram, 1997) and the peak AMPA receptor conductance (§aprpa; equations
(4.5) and (4.6) in Methods). As a results of updating Usg as well, short- and long-term plasticity
are tightly coupled in the model (Markram and Tsodyks, 1996; Costa et al., 2015; Deperrois and
Graupner, 2020). In our network model Usg, is also modulated by [Ca®*],,
in [Ca®*], leads to pathway-specific, non-linear reduction in Usg (Figure 4.1E right; Markram

where a reduction

etal., 2015; Ecker et al., 2020). At initiation, synapses are assumed to be at one of the two fixed
points (fully depressed ones at p = 0 and fully potentiated ones at p = 1) and their assignment
to these states is pathway-specific (Supplementary Figure 4.7C3).

4.2.2 Achieving in vivo-like network activity

After equipping the circuit with the extra parameters required for long-term plasticity, it
was ready to be simulated. To drive network activity, we compensated for missing synaptic
input arriving through long-range projections from other brain areas not included in the
circuit model (Isbister et al., 2023) and provided inputs through the thalamocortical fibers.
Complex phenomena like plasticity are traditionally studied under controlled laboratory
conditions in vitro, but classical STPD protocols were shown to not induce any plastic changes
under in vivo-like low [Ca®*], (Figure 4.1E, Inglebert et al., 2020; Chindemi et al., 2022). As
our broad interest is understanding the rules governing plasticity in living brains, and our
modeling pipeline is capable of taking the effects of low [Ca®*], into account (Markram
et al., 2015), we calibrated the network’s activity to mimic in vivo conditions. To that end,
we calibrated layer-wise spontaneous firing rates and evoked activity to brief VPM inputs
matching in vivo data from Reyes-Puerta et al. (2015). Spontaneous activity was driven by
somatic injection of a layer- and cell type-specific noisy conductance signal (see Isbister et al.,
2023 and Methods). By introducing plasticity at all E to E synapses, an additional depolarizing
current from VDCCs was added to the model, which made the network more active than its
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non-plastic counterpart (Supplementary Figure 4.9A). This required an algorithmic lowering
the amplitude of injected conductances from Isbister et al. (2023) to achieve the same in
vivo-like layer-wise spontaneous firing rates (Supplementary Figure 4.9B).

Evoked activity was driven by a thalamocortical input stream already described in Ecker et al.
(2023b). In short, ten VPM input patterns were repeatedly presented in random order with a
500 ms inter-stimulus interval, together with a non-specific POm input. The ten VPM patterns
were defined with varying degrees of overlap in the sets of activated fibers (Figure 4.2A; see
Methods). Spike trains delivered on the pattern fibers followed a 100 ms-long inhomogeneous
adapting Markov process (Muller et al., 2007). The overlap of the patterns is clearly visible in
the firing pattern of each group of fibers corresponding to them (Supplementary Figure 4.10).
An exemplary raster plot, characterizing the evoked state of the plastic network is shown on
Figure 4.2B.

4.2.3 Sparse synaptic changes induced by long-term plasticity

After achieving in vivo-like network activity, we simulated 10 minutes of biological time and
measured the changes in synapses with respect to their initial states. The distribution of
gampa remained lognormal, in line with biology (Buzsaki and Mizuseki, 2014; RoBler et al.,
2023), and its mean shifted by only 0.07% (+0.5 pS, Figure 4.2C1). This minimal strength-
ening was achieved by less frequent, but stronger potentiation, and at the same time the
network remained stable because of the more frequent, but weaker depression (Figure 4.2C2),
without needing to model homeostatic plasticity (Turrigiano and Nelson, 2004; Zenke et al.,
2017a). Changes in §4npa are difficult to interpret, as the overall scale of its values is pathway-
dependent (Supplementary Figure 4.7C3), i.e., the change associated with full potentiation in
one pathway would indicate only partial potentiation in another. Therefore, in the rest of the
article we will analyse p instead, as it always lies in the [0, 1] interval. While p is changing on
a faster time scale than g4ppa (see equations (4.5) and (4.6) in Methods), the propensity of
changes at the end of a 10 minute-long simulation was virtually identical (Figure 4.2C3 vs. D3).
When comparing the amount of changes in p across time steps, we found that most of the
plastic changes happened in the first 1-2 minutes of the simulation, after which they stabilized
(Figure 4.2D1). While small changes were still apparent towards the end of the simulation,
by visualizing individual synaptic traces we confirmed that most of them oscillated around a
dynamic fix point (Figure 4.12A) and the amount of changes in the second half of the simula-
tion were negligible (Figure 4.12B). By splitting synapses at the end of the simulation based
on their target neurite type and layer, we learned that an order of magnitude more synapses
changed on basal dendrites compared to apical ones, although there are roughly the same
amount of apical synapses in the circuit (Figure 4.2D2). Layer 5 (L5) PCs contributed mostly to
changes on the basal dendrites, while apical changes happened mostly on L6 PCs.

In addition to looking at changes in individual synapses, we also performed analyses at the
connection level. To do so, we averaged p values of all (4.1 + 2.3; Supplementary Figure
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Figure 4.2: Synaptic changes in large-scale plastic simulations. A: Centers of the VPM fibers associated
with the ten input patterns in flat map space. Bottom row 3”¢: pyramid-like overlap setup of VPM
patterns, 4/ centers of POm fibers associated with all stimuli. B: Raster plot of the microcircuit’s
activity and the population firing rates below. The y-axis shows cortical depth. (As cortical layers do not
have the same cell density, the visually densest layer is not necessarily the most active. Similar panels
have been shown in Ecker et al. (2023b). C: Evolution of §4ppa during the 10 minute-long simulation.
C1: Distribution of g4prp4 in the beginning and end of the plastic simulation. C2: Plastic changes that
lead to the shift in the distributions shown in C1 (blue: depression, red: potentiation throughout the
figure). C3: Layer-wise propensity of changes. D: Evolution of synaptic efficacy (p). D1: L2 norm of
changes in p across time. Similarly to C1, insert shows distribution of p values in the beginning and
end of the simulation. D2: Layer- and neurite type-wise distribution of non-trivial (neither 0: totally
depressed, nor 1: totally potentiated) p at the end of the simulation. D3: As C3. E: Evolution of mean p
(aggregated over connections). E1: L2 norm of changes in mean p across time against STDP control
(insert, see Methods). E2: Plastic changes (in mean p) vs. mean pairwise firing rates. E3: Same as C3.
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4.7C1) synapses mediating a connection and analyzed the propensity of changes as before. As
expected, changes at the connection level became more frequent than at the synapse level
(Figure 4.2E3 vs. D3). By plotting the propensity of changes against the pairwise mean firing
rates of the pre and postsynaptic neurons, we found that the percentage of changes increased
as the pairwise firing rates increased (Figure 4.2E2), in line with previous modeling insights
(Litwin-Kumar and Doiron, 2014; Graupner et al., 2016). Although, previous theoretical work
has shown that embedding simple STDP rules in spiking networks without homeostatic
plasticity leads to pathological behavior (Morrison et al., 2007), they relied on higher firing rates.
To better understand if only the scale of the simulated network, its biorealistic connection
probabilities and the low, in vivo-like rates contribute to the sparsity of changes observed in
our simulation, we took the 36 M excitatory spikes from our simulation and characterized
the propensity of changes resulting from a traditional spike pair-based STDP rule (Gerstner
et al.,, 1996; Kempter et al., 1999; Song et al., 2000; see Methods). While our calcium-based
rule stabilized in two minutes after the initial transient, the STDP rule kept inducing the same
magnitude of changes throughout all 10 minutes of the simulation (Figure 4.2E1).

To test to what degree was presynaptic transmission required to trigger plasticity, we ran
simulations without intrinsic connectivity between the neurons but keeping their extrinsic
inputs, or parts thereof, intact (Supplementary Figure 4.11). When neurons received only the
somatic conductance injection representing noisy background inputs, we did not observe
any changes in mean p. When they additionally received the thalamic inputs patterns, we
observed changes in p, albeit an order of magnitude fewer than in the baseline condition
(Supplementary Figure 4.11). Therefore, while the calcium-based plasticity model of Chindemi
et al. (2022) is not strictly Hebbian since the effect of postsynaptic firing alone could change
synaptic efficacy, presynaptic release was required for most of the observed changes. Lastly,
we ran control simulations in connected networks but instead of presenting the patterns,
delivered random Poisson spikes on the same VPM fibers at a rate that resulted in the same
thalamic spike count. This case was the closest in terms of changes to our baseline case,
but still 25% fewer connections underwent plastic changes (Supplementary Figure 4.11),
demonstrating the importance of the spatiotemporal structure of the stimuli over simply the
firing of the pre- and postsynaptic neurons.

In summary, we observed that ~ 5% of synapses undergo long-term plasticity under realistic
in vivo-like conditions in 10 minutes, and most of these synapses are on above-average firing
rate L5 PC’s basal dendrites. Potentiation dominated in amplitude, while depression counter-
acted it in frequency, keeping the network stable amidst ongoing plasticity without explicitly
considering any homeostatic mechanisms.

4.2.4 More frequent plastic changes within and across cell assemblies

With 95% of synapses remaining unchanged, synaptic plasticity appears to be a highly specific
mechanism. We therefore tried to understand the rules that determined which synapses
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changed. We specifically hypothesized that plasticity of connections may be structured by the
membership of participating neurons in Hebbian cell assemblies, i.e., groups of neurons that
fire together (Hebb, 1949; Harris, 2005). Our reasoning was as follows: from the parametriza-
tion of our plasticity model, we learned that presynaptic spikes contribute orders of magnitude
higher calcium than postsynaptic ones (Supplementary Figure 4.8A) if the NMDA receptors
are fully unblocked; thus, in order to effectively depolarize the dendrites and unblock NMDA
receptors, spikes at low, in vivo-like rates must be synchronized in time, as in Hebbian assem-
blies. Thus, we detected cell assemblies from the in silico spiking activity of the 10 minute-long
plastic simulation using methods established by experimentalists (Carrillo-Reid et al., 2015;
Herzog et al., 2021). In modeling studies, assemblies are usually defined based on their strong
internal connectivity, i.e., their structure (Litwin-Kumar and Doiron, 2014; Zenke et al., 2015;
Fauth and Van Rossum, 2019; Kossio et al., 2021), but we wanted to use them to restrict our
analysis of plastic changes and therefore detected them based on their co-firing function. The
rationale for combining the methods above and the full pipeline is described in detail in our
previous article, Ecker et al. (2023b) and briefly in the Methods. In short, spikes were binned
and bins with significantly high firing rates (Figure 4.3A) were hierarchically clustered based
on the cosine similarity of their activation vector (Figure 4.3B1). These clusters correspond
to the functional assemblies, with a neuron being considered a member if its spiking activity
correlates with the activity of an assembly significantly stronger than chance level (Figure
4.3C). Since time bins and not neurons, were clustered in the first place, this method yields one
assembly per time bin and single neurons can be part of several assemblies (Figure 4.3B, D).
Assemblies were activated in all stimulus repetitions and a series of three to four assemblies re-
mained active for 190 + 30 ms, similar to our previous results (Ecker et al., 2023b, Figure 4.3B2).
Pattern A elicited the strongest response, while pattern B the weakest, and the responses of
patterns H and I were the most similar to each other, as expected, since they share 66% of the
VPM fibers (Figure 4.2A). Assembly activations had a well-preserved temporal order - with
some of them always appearing early during a stimulus, while others later - and from now on
we will refer to them as early, middle, and late assemblies, and will order them in the figures
accordingly (Figure 4.3C-E and 4.4A, B).

In line with in vivo experiments, these assemblies were detected from functional activity
(spikes). However, in our in silico approach we have access to the full biorealistic connectome
(Reimann et al., 2022a) and can thus investigate how the underlying structure constrains func-
tion. In Ecker et al. (2023b) we presented an in-depth analysis of this question (in a non-plastic
circuit), so here we will only give an overview of the findings important for this study. Dating
back to Hebb (1949), the most commonly accepted structural correlate of cell assemblies is
the abundance of recurrent connectivity motifs between participating neurons (Harris, 2005;
Song et al., 2005; Perin et al., 2011). In our analysis we also observed that assembly-indegree,
i.e., the number of afferent connections from an assembly, is a great predictor of a neuron’s
membership in an assembly (Supplementary Figure 4.13A1). Strong positive interactions
were also found across assemblies, but only when the direction of innervation reflected the
temporal order of assembly activation, e.g., assembly 8 to assembly 12 (A8 and A12 in Figure
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Figure 4.3: More frequent changes in cell assembly synapses. A: Firing rate of excitatory cells with
the determined significance threshold. B1: Hierarchical clustering of the cosine similarity matrix of
activation vectors of significant time bins (i.e., above threshold in A). B2: Clustered significant time
bins ordered by the patterns presented. C: Number and location of neurons in each cell assembly: flat
view on top, depth-profile below. D: Jaccard similarity of cell assemblies. E: Propensity of changes in
cell assemblies. E1: Initial mean efficacy (p) of within- and cross-assembly synapses. E2: Propensity of
depression and potentiation of within- and cross-assembly synapses. As assemblies are overlapping
(see D) single synapses are taken into account for many different pre- and postsynaptic assembly
pairings. (Similar panels (except E) have been shown in Ecker et al., 2023b).

4.3B2 responding to patterns H and I). These results, combined with the biophysics of the plas-
ticity model, suggest that connections within an assembly and the ones between temporarily
ordered assemblies, are expected to undergo plastic changes with a higher probability.

When checking the propensity of changes within and across assemblies, we indeed found
more synapses undergoing long-term plasticity (Figure 4.3E2). While only 3.5% of synapses
depressed in the whole dataset, we found up to 10.5% when restricting the analysis to assem-
blies. Similarly, compared to 1.5% of all synapses potentiating, we observed up to 4.2% when
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restricting to assemblies. Interestingly, large values were found in the off-diagonal entries
(Figure 4.3E2), i.e., synapses across assemblies underwent more plastic changes than the
synapses within these assemblies. In our model, the initial p values are pathway-specific and
highest in L4 pathways (Brémaud et al., 2007; Supplementary Figure 4.7C3). Therefore, early
assemblies, with large number of L4 cells have a higher than average initial p (Figure 4.3C
and E1 respectively), thus their synapses are more likely to depress (Figure 3.3E2). As early
assemblies are stimulus specific, and thus not part of a Hebbian phase-sequence, synaptic
depression between these cells can be seen as some kind of orthogonalization of the stimulus
responses. On the other hand, late assemblies, that are predominantly composed of cells from
the deep layers, have a low initial p (Figure 4.3E1; Supplementary Figure 4.7C3) and synapses
towards them are more likely to potentiate. These assemblies are mostly non-specific and
participate in all phase-sequences, thus the potentiation of their efferents means a general
strengthening of the stimulus response as a whole.

Together these results indicate that, in line with 70 years old predictions, cells that fire together
wire together (Hebb, 1949). Our contribution lies in making the qualitative statement above
into a quantitative one: Under in vivo-like conditions cells that fire together more than
expected have three times higher chances of changing the efficacy of their connections.

4.2.5 Synapse clustering contributes to the emergence of cell assemblies, and
facilitates plasticity across them

In addition to co-firing, a group of innervating neurons is more effective in depolarizing a
given dendritic branch if they all send synapses to the same branch, i.e., they form a spatial
synapse cluster (Farinella et al., 2014; Iacaruso et al., 2017; Kastellakis and Poirazi, 2019).
To quantify this trend, we previously defined the synaptic clustering coefficient (SCC) with
respect to an assembly, based on the path distances between synapses from that assembly on
to a given neuron (see Ecker et al., 2023b and Methods). For the assemblies detected in this
study, we also found SCC to be a good predictor of a neuron’s membership in an assembly
(Supplementary Figure 4.13A2), although the effect was less than half as strong as that of
assembly-indegree. We used assembly-indegree and SCC to select the 10 most innervated
L5 TTPCs (thick-tufted pyramidal cells) within a cell assembly and then explicitly detected
spatial clusters of synapses, defined as at least 10 synapses within a 20 um stretch of a single
dendritic branch (see Methods).

For our next analysis, we grouped all synapses on these 10 selected neurons per assembly into
four categories based on assembly membership of the presynaptic neuron and whether the
synapse was part of a cluster or not (see exemplary clustered assembly synapses on Figure
4.4E1). Then, we quantified the likelihood of plastic change in each category by contrasting
the conditional probability of observing it in a given category with the probability of observing
any change irrespective of the category (see equation (4.9) in Methods; Figure 4.4A2). Note
that a nonzero value for one category always has to be compensated by a nonzero value with
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opposite sign in another. Surprisingly, clustered within-assembly synapses were not likely
to undergo any changes. When we repeated the analysis on the initial p values, we found
that early and middle assembly synapses, especially the clustered ones, are very likely to be
initialized as fully potentiated (Figure 4.4A1). On the other hand, synapses within the late
assemblies were likely to be initialized in the fully depressed state, but were likely to change.
Furthermore, when comparing the amplitude of changes across conditions with a 2-way
ANOVA, we found that clustered within-assembly synapses depress to a smaller degree than
the other ones (Figure 4.4C). When we checked the temporal evolution of within-assembly
synapse cluster p values, we saw that while some of the synapses underwent small constant
changes, most of them changed at the same time (vertical stripes on Figure 4.4E2). Thus the
picture emerging is as follows: early and middle assemblies are partially defined by clustered
(both spatial and functional) synapses that are initialized as fully potentiated. These synapses
are unlikely to change, but when they do, they depress less than the others, and would converge
back to p = 1.0 in absence of activity, as they do not cross the p = 0.5 unstable fix point. These
stable early assemblies can therefore function as a stable backbone amid ongoing synaptic
plasticity.

In our previous investigation, we found that most changes happened across assemblies, so
we extended the analysis described above to cross-assembly synapses. Here, the picture
was reversed: cross-assembly synapses that were part of a spatial cluster were likely to be
initiated as fully depressed and then had a high chance of undergoing potentiation (Figure
4.4B). Interestingly, the amplitude of this potentiation was significantly less than that of the
other groups’ (Figure 4.4D), but on average, still enough to cross the p = 0.5 unstable fix point.

Together with the previous results, this suggests that synapses between assemblies are more
likely to change, which is even more pronounced if these synapses form a cluster on the
postsynaptic dendrite.
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Figure 4.4: Changes in synapses participating in spatial clusters. A: Michelson contrast (equation
(4.9) in Methods) of probabilities of plastic changes within assembly synapses. Depression on top
(blue colormap) and potentiation below (red colormap). Grey parts of the colormaps indicate lower
than expected probabilities of observing synapses in a given state, given that it falls into the indicated
category, while neon green means no synapses found in the given category. Al: Inital ps, A2: plastic
changes in p. B: Same as A, but for cross-assembly synapses (postsynaptic assembly fixed to A15). C:
Distribution of within-assembly Aps across the four conditions. Boxes show all values, while black dots
are 1000 samples from each. Significance test was run on the balanced samples (1000 each): 2-way
ANOVA and post-hoc Tukey’s test: *: p < 0.05, **: p <0.01, ***: p <0.001, ****: p <0.0001. D: Same as C,
but for cross-assembly synapses (data from several postsynaptic assemblies, not only A15 shown on B).
(Caption continues on the next page.)
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El: Changes in within-assembly, clustered synapse on an examplary A13 neuron. Rendering was done
with NeuroMorphoVis Abdellah et al. (2018). Neurite diameters are scaled (x2) for better resolution.
(Synapse diameters are arbitrary.) E2: Temporal evolution of the (~ 1000) synapses on basal dendrites
shown on E1.

4.2.6 Redistribution of assembly efficacies and prolonged stimulus-specific re-
sponses characterize the network after plasticity

In the beginning of our study we used cell assemblies only as a powerful tool to restrict our
analysis of plastic changes to biophysically motivated subpopulations of neurons. On the
other hand, the evolution of assemblies in terms of their composition and association with
stimuli is used to examine the functional consequences of plasticity and the stability of the
neural code in contemporary literature (Fauth and Van Rossum, 2019; Kossio et al., 2021;
Pérez-Ortega et al., 2021). From our investigation we have learned that the early assemblies
are defined by clustered fully potentiated synapses at initialization. As ongoing plasticity
strengthens their connections to the late assemblies we wondered what would happen to the
assemblies if we detected them after the plastic changes.

To study this, we stabilized the network’s state after our 10 minute-long plastic simulation, i.e.,
based on the p values in the last time step, assigned synapses to either fully potentiated (last
p = 0.5) or fully depressed states and updated not only the Usg and g4ppa values, but also
the peak NMDA conductances (§npa) accordingly. Then we ran 2 minute-long, non-plastic
simulations of this network and compared the resulting assemblies to the ones detected in
a non-plastic simulation of the network before plasticity, i.e., in its naive state. Note that
the stimulus streams presented were identical between the two cases. From a high level
comparison of the network states before vs. after plasticity we learned that the firing rates
increased (Supplementary Figure 4.14A1 left) but the pairwise spike correlations only slightly
increased in line with recent findings (Oby et al., 2019; Feulner et al., 2022). Nonetheless spike
time reliability of individual neurons increased (Figure 4.5A; see Methods). The observed
increase in firing rate might explain the increase in spike time reliability after plasticity, as the
two measures are correlated (Cutts and Eglen, 2014). Plotting pattern-specific peri-stimulus
time histograms (PSTHs) before and after plasticity revealed a general lengthening of the late
phases of the response and increased amplitudes for selected patterns (Figure 4.5B).

For a better comparison of assemblies, we ran five repetitions of both cases, and compared
consensus assemblies, i.e., the sets of neurons that were reliably part of a given assembly
across repetitions (Figure 4.5C1 and D1; see Ecker et al., 2023b and Methods). We found more
consensus assemblies after plasticity than before (twelve vs. nine, compare Figure 4.5C2 and
D2). The emergence of more consensus assemblies after plasticity is not an artefact of grouping
assemblies together, as the optimal number of assemblies (assessed by Davis-Bouldin index
(Davies and Bouldin, 1979); see Methods) was higher in four out of five repetitions after
plasticity, and equal in one repetition (Supplementary Figure 4.14C). On the other hand,
both the Davis-Bouldin index of the resulting clusters and the cosine similarity of consensus
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assembly counts across repetitions decreased after plasticity (Supplementary Figure 4.14D2).
The sizes of consensus assemblies were similar before and after plasticity (Supplementary
Figure 4.14E). Further comparing consensus assemblies before and after plasticity has revealed
that corresponding pairs had more than 50% of their neurons shared (Figure 4.5E).

To gauge the functional consequences of plastic changes, we studied the functional and
structural connectivity of consensus assemblies detected before and after plasticity. When
comparing the mean pairwise spike correlations (a method usually applied to derive functional
connectivity; see Methods) of neurons belonging to consensus assemblies, we observed a
general decrease in the early ones and an increase in middle and late ones (Figure 4.5F). This
was accompanied by the same arrangement of changes in the structural connectivity of the
same consensus assemblies (assessed by comparing p values). We saw similar trends in the
spike time reliability (see Methods) of individual neurons, i.e., a decrease for early, and an
increase for middle and late consensus assembly neurons. More generally, we found that
early assemblies grew less correlated with weaker internal connectivity through plasticity,
which trend was weakened in the subset of neurons that remained part of the assembly
(compare columns of Figure 4.5F). Conversely, in middle and late assemblies correlations and
connections grew stronger, especially so in the neurons that were members of the consensus
after plasticity.

As plasticity in the cortex changes not only ganmpa as in the hippocampus but also Usg
(Markram and Tsodyks, 1996; Selig et al., 1999; Sjostrém et al., 2003; Costa et al., 2015; Chin-
demi et al., 2022), there is a redistribution of synaptic efficacy towards earlier spikes during
high-frequency firing. This redistribution happens because the increased Usr makes the
STP profile of potentiated connections more depressing (Supplementary Figure 4.14B left;
Markram and Tsodyks, 1996). However, in our simulation, we rarely observed high-frequency
firing and also found the STP profile of potentiated connections to be facilitating at the low in
vivo [Ca®*],
and Tsodyks (1996) showed a redistribution of synaptic efficacy after plasticity at the single

(Supplementary Figure 4.14A2 and B right respectively). Thus, while Markram

connection level in vitro, we found a redistribution at the network level under in vivo like
conditions: efficacy shifted towards synapses targeting the deeper layers of the cortex. Interest-
ingly, while the firing rates only increased slightly in the significant time bins, there was a more
pronounced increase when we compared them during the whole 2 minute-long simulation
(compare Supplementary Figure 4.14A1 left to right). This strongly suggests that this network
level redistribution of efficacy and the strengthening of late consensus assemblies lead to their
reactivation during spontaneous activity, in line with experimental findings (Miller et al., 2014;
Carrillo-Reid et al., 2015; Stringer et al., 2019; Herzog et al., 2021; Tragenap et al., 2022).
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Figure 4.5: Changes in cell assemblies after plasticity. A: Functional network features extracted from
spike times of non-plastic simulations before plasticity, i.e., in the naive circuit vs. after the 10 minute-
long plastic simulation. Left: Pairwise spike correlation. Right: Spike time reliability (7;p;t.) measured
over five repetitions of the same 2 minute-long simulations with the same input (see Methods). B:
PSTHs by patterns before vs. after. (Only significant time bins are take into account, see assembly
detection in Methods). C: Non-plastic consensus assemblies before plasticity. C1: Jaccard similarity
based hierarchical clustering of assemblies from the five simulation instances. C2: Significant time bins
from one of the repetitions, ordered by patterns presented, and colored by the consensus assemblies
(not the ones detected from that instance). D: Same as B, but for non-plastic consensus assemblies
after plasticity. (Caption continues on the next page.)
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E: Jaccard similarity of consensus assemblies detected before and after plasticity. F: From left to right:
Changes in pairwise spike correlation, p, and rp;k. of within consensus assembly neurons. Colors
indicate changes (after - before), while columns indicate at which point the consensus assembly was
detected. Right: Changes in total consensus assembly counts per patter. Error bars are over the five
repetitions. G: Input-output map: G1: Input distances as the Earth mover’s distance of the VPM fiber
locations (see Figure 4.2A). Insert shows the overlap (based on Hamming distance) of pattern fibers. G2:
Output distances are calculated as the (normalized) Euclidean distance of pattern evoked consensus
assembly cluster over repetitions (see Supplementary Figure 4.14B). G3: Correlation of distances from
G1 and G2. (Similar panels (except A, B, and F) have been shown in Ecker et al., 2023b.)

Lastly, we further analyzed the total duration of consensus assembly responses to different
patterns. In line with the prolonged PSTHs, we found a general increase (consensus assemblies
active for 190 + 45 ms before vs. 200 + 60 ms after plasticity), and could trace it back to selected
patterns A, E, H, and I (Figure 4.5D right). This provides the most likely explanation for the
increased number of assemblies after plasticity: the higher number of significant time bins
simply lead to a higher number of optimal clusters (given our metric). The activation sequence
of consensus assemblies can be seen as a low-dimensional representation of the complex,
high-dimensional activity of the network’s response to different patterns. Following our
previously established methods (Ecker et al., 2023b), we correlated the Earth mover’s distances
between the locations of the VPM fibers making up the input patterns (Figure 4.5C1), and the
normalized Euclidean distances of output consensus assembly sequences across repetitions
(Figure 4.5G2). We observed an increase in the input-output distance correlation after plasticity
(r =0.443 vs. r = 0.357; Figure 4.5G3). This increased input-output correlation after plasticity
can partially be explained by the prolonged stimulus-specific assembly sequences.

In summary, when comparing assemblies before and after plasticity, we found that the network
became more specific to the patterns it was exposed to. This manifested in assemblies splitting,
weakening of early and strengthening of the late assemblies and the consequent prolonged
assembly responses to specific patterns.

4.2.7 Network topology changes are parametrized by input stimuli

Increased pattern specificity after plasticity indicates that the plastic changes are indeed
not random, but stimulus-driven. To better characterize this, we ran 2 minute-long plastic
simulations in which we only presented a single pattern (with the same 500 ms inter-stimulus
interval as before). We repeated this paradigm three times, for all 10 patterns, and analysed
changes in mean p matrices as before. The propensity of changes in the connections was
in line with the baseline ones (compare Supplementary Figures 4.11B and 4.15). While the
number of connections changing was similar across patterns, we wondered if there is any
pattern-specific information in them.

To investigate this, we used an input-output distance correlation analysis, similar to the
one employed to compare consensus assemblies before and after plasticity. In detail, we
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correlated the Earth mover’s distance of the input patterns (Figure 4.5C1 as before) with the
Euclidean distance of the steady state (last time step) mean p values and found a clear and
strong correlation between them (r = 0.666, p < 0.0001; Figure 4.6A left). As controls we ran
the analysis with other distance metrics as well. Neither Hamming distance (taking only the
identity of changing connection into account) nor Earth mover’s distance (taking only the
distribution of steady state mean p values into account) showed a clear correlation with the
distance of pattern fibers (Figure 4.6A middle and right respectively), indicating, that the
whole network structure needs to be taken into account to describe the relationship between
its steady state and the input patterns.

To further explore the structure of the changes, we focused on the plastic connections that
evolved in the same direction (i.e, potentiation or depression) across all three repetitions
for all patterns, which was around 40% of all changing connections (Supplementary Figure
4.15). As we found pattern-specific information in the changing connections, in the next step
we analyzed to what degree the subnetworks they defined are determined only the neurons
composing them. We did this by comparing them to random subnetworks of the entire circuit
with the same pre- and post-synaptic populations and the same number of connections
between them. We observed, that distributions of the changing pathways are different than
expected from the network structure and the pre- and postsynaptic populations alone (Figure
4.6B1). To quantify this difference, we counted a particular class of motifs, directed simplices
of dimension k, which are motifs on k + 1 neurons, which are all-to-all connected in a feed-
forward fashion (Figure 4.6B2 inset). These motifs have previously shown to be linked to
network function (Reimann et al., 2017b) as well as quantify complexity of the network’s
topology (Kahle, 2009; Bobrowski and Kahle, 2018). We found strong overexpression of these
simplices in the subgraphs, compared to their random controls. In particular, the maximal
simplex dimension found in the subgraphs was always one higher than in the corresponding
controls (Figure 4.6B1).

While we learned that different connections change when different patterns are presented and
the connections and the network topology they define are not entirely defined by the pre- and
postsynpatic populations, so far have not linked the changes to individual patterns. To do so,
we used methods developed in Ecker et al. (2023b) and first studied the propensity of changes
against pattern-indegreei.e., the number of VPM fibers belonging to a pattern that innervate a
neuron. The propensity of changes increased as either the pre- or the postsynaptic side of the
connection’s pattern-indegree increased (Figure 4.6C). Moreover, we confirmed that the effect
of pattern-indegree of the pre- and postsynaptic neurons are not independent by computing
the conditional mutual information between them and the probability of their connection to
change. As expected, the mutual information is non-zero (between 0.0126 and 0.0291) and
much larger than the one obtained for corresponding random controls (between 2.27 x 1077,
4.52 x 10~7). Thus, in our last analysis we investigated the joint distribution and characterized
the propensity of changes against pattern-indegree of both pre- and postsynaptic neurons.
The propensity of both depression and potentiation grew rapidly with patter-indegree (Figure
4.6D1 and D2 respectively). While depressing and potentiating connections totaled to only
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Figure 4.6: Topology of changing subnetworks in response to single pattern presentations. A: Input-
output distance correlations. Al: Different (from left to right: Euclidean, Hamming, Earth mover’s)
distances of mean p matrices. Three repetitions for each of the 10 input patterns. A2: Correlation
of input distances (as in Figure 4.5C1) and distances of mean p matrices above on Al. B1: Layer-
wise distribution of consistently changing (three out of three repetition) connections in response to
presenting pattern A. Below its control, which was generated by taking the same number of connections
between the same pre- and postsynaptic populations. B2: Directed simplex counts in subnetworks
from B1 (but for all patterns). Colors correspond to simplex counts of the consistently changing
subnetworks, while black to their controls. Note that by construction the controls must have the
same number of 0- and 1-simplices which correspond to the number of cells and connections in the
subnetwork. Insert illustrates simplex dimension. C: Propensity of changes vs. pattern-indegree of the
presynaptic (left) or postsynaptic (right) neurons. D: Propensity of changes (split for depression D1
and potentiation D2) against the pattern indegree of both pre- and postsynaptic neurons.
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3% in the whole network, the amount of depressing connections was above 15%, and above
5% for potentiation when both sides of the connection were highly innervated by the VPM
fibers. They reach the highest values for patterns A, H, and I, the same ones whose responses
were strengthened by plasticity when all patterns were presented. Curiously, pattern-indegree
of the presynaptic side was less important for potentiation, where pattern-indegree of the
postsynaptic side was more predictive. The intuitive explanation for this is the following: if
input from the VPM fibers depolarized the postsynaptic dendrites enough, then a successful
release from any presynaptic neuron (independent of their pattern-indegree) caused Ca?*
entering though the at least partially opened NMDA receptors.

In summary, the network evolved differently when single patterns were presented, and the
distance between the steady states achieved reflected the geometric distance between the
patterns. Moreover, the steady state reached for each pattern could not be determined only
by the pre- and postsynaptic populations of the changing connections, but by their precise
location within the network as well as their pattern-indegree. The propensity of depression
increased in connection in which both pre- and postsynaptic neurons was strongly innervated
by pattern fibers, while for potentiation postsynaptic pattern-indegree dominated. Moreover,
these effects are not independent.

4.3 Discussion

Using a detailed, large-scale cortical network model equipped with a calcium-based model of
long-term functional plasticity, we have examined changes in synaptic efficacy in response
to repeated presentation of 10 different stimuli over 10 minutes of biological time, under in
vivo-like conditions. Our principal observations in this bottom-up simulation framework
are as follows: (1) Plastic changes were sparse, affecting only 5% of the synapses. A balance
between occasional large-amplitude potentiation and more frequent depression kept the net-
work stable without explicitly modeling homeostatic plasticity. (2) Plastic changes were largely
determined by the anatomical structure of synaptic connectivity and its relation to functional
units, i.e., changes were most likely between co-firing cell assemblies and at clustered synapses.
(3) Early-responding cell assemblies were defined by clustered synapses initialized as fully
potentiated and remained fairly stable. In contrast, their synapses to late-responding assem-
blies underwent three times more changes than expected, resulting in prolonged and more
reliable responses to selected patterns after plasticity. (4) Changes in the network evoked by
the presentation of individual patterns reflected the geometric distance between the patterns
themselves. The structure of these changes could be partially explained by the innervation of
the pre- and postsynaptic neurons by the pattern fibers, though the populations alone are not
enough to determine these changes, since the changing connections between them are not
random.
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The first observation (1) is quite significant considering that we did not design the learning
rule to be sparse and stable. In previous models of plastic networks, additional mechanisms
were needed to keep the network’s activity stable, not to mention the sparsity of changes
(Turrigiano and Nelson, 2004; Litwin-Kumar and Doiron, 2014; Zenke et al., 2015, 2017a; Fauth
and Van Rossum, 2019; Kossio et al., 2021). The machine learning community is also aware
of the importance of sparse changes, as in continual learning one has to balance plasticity
and stability to avoid catastrophic forgetting (McCloskey and Cohen, 1989; Ratcliff, 1990).
In recent years, they have come up with impressive techniques that mask connections to
improve the performance of deep neural networks (Zenke et al., 2017b; Mallya and Lazebnik,
2018; Frankle and Carbin, 2019), whereas in our model it emerged naturally from the high
level of biophysical detail. Of course, the amount of data that deep networks are expected to
store far exceeds the 10 patterns used here, and it is outside of our scope to find the maximal
capacity of our network. On the other hand, we know from theoretical work that for bistable
synapses operating on multiple time scales, capacity scales with the square root of the number
of synapses (Crick, 1984; Fusi et al., 2005).

The second observation (2) can be explained from the biophysics of the plasticity model
and links our results to the classical work of Hebb (1949) as well as the recent literature on
synapse clustering (Farinella et al., 2014; Iacaruso et al., 2017; Kastellakis and Poirazi, 2019).
With respect to the latter, we would highlight that our synapses are stochastic and the release
probability between PCs is ~ 0.04 at the simulated low [Ca?*], = 1.05mM (Jones and Keep,
1988; Borst, 2010; Markram et al., 2015; Ecker et al., 2020). Therefore, care should be taken
when comparing our results with either glutamate uncaging experiments, which bypass the
presynaptic machinery (Pettit et al., 1997; Losonczy and Magee, 2006), or with other modeling
studies that use deterministic synapses (Poirazi et al., 2003; Farinella et al., 2014; Ujfalussy
and Makara, 2020). In relation to observations (2-4): While we were able to use cellular and
subcellular features of the model’s biorealistic structural connectivity (Reimann et al., 2022a)
to predict plastic changes to a certain degree, this process also highlighted that many other
rules govern plasticity at the network level. Further analysis considering the embedding of
a connection in the entire network and thus the state of the whole network may be able to
provide that explanation.

According to the contemporary view of L5 PCs, sensory bottom-up inputs target their basal
dendrites, and top-down information arrives at the apical ones, and the coincidence activation
of basal and apical inputs is encoded by bursts of action potentials (Larkum, 2013; Naud
and Sprekeler, 2018). During bursts of action potentials, the bAPs propagate to the distal
apical dendrites better (Williams and Stuart, 1999), enough to turn apical depression into
potentiation (Letzkus et al., 2006). Therefore, bursts are not only important for coding, but for
plasticity as well. L5 TTPC bursts were rare in our simulations, as the model is based on an
early developmental stage (P14-16: juvenile rats) and burst firing only becomes prominent as
the animals mature (Zhu, 2000). On the other hand, burst firing could probably be rescued
with stronger top-down input. As the top-down input represents context/brain state and is
thought to serve as an error/target signal for learning, it has to be highly specific (Makino,
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2019). Although we added inputs from POm fibers as they were shown to gate plasticity in
L2/3 PCs in vivo via dis-inhibiting the distal dendrites (Gambino et al., 2014; Williams and
Holtmaat, 2019), we only used randomly distributed fibers, to keep our setup simple in this
first investigation. For a profound understanding of the role of bursts in apical plasticity,
more learning/task-related studies with more precise top-down input would be needed in the
future.

We presented here what we believe to be a new way of studying unsupervised learning and
plasticity in the cortex by taking the diversity of cell types and morphologies into account,
modeling connections as multi-synaptic, validating synapse anatomy and physiology, model-
ing synapses with bistable dynamics, and simulating the network in an in vivo-like state. On
the other hand, building a model of this scale and detail required gathering and systematic
integration of a large amount of data over several years (Markram et al., 2015; Chindemi et al.,
2022; Reimann et al., 2022a; Isbister et al., 2023). As the first of its kind, the work presented
here did not exhaust all the additional understanding one could possibly gain from the high
level of detail. To facilitate that process, we are open-sourcing our model alongside detailed
instructions to launch simulations and analyze the results (see Data and code availability).
As any other model, it has several assumptions (listed in Table 4.1) and limitations and can
best be proven wrong and iteratively updated in a community-driven manner. Simulating the
model requires a performant hardware and software infrastructure (e.g., we needed 16.5M
core hours to run the simulation presented in this manuscript). With respect to the second
part we are continuously improving the performance and efficiency of the simulator (Kumbhar
etal., 2019).

Table 4.1: List of assumptions

1 As we combined the models of Isbister et al. (2023) and Chindemi et al. (2022) all
assumptions therein are inherited. Of particular interest:

2 Extracellular recordings are assumed to have to same bias across layers and neuron
populations. Furthermore it is assumed that different inhibitory subpopulations require
the same ammount of input compensation.

3 The extracellular magnesium concentration of 1 mM used in vitro is assumed to be
representative of the in vivolevel.

4 As the plasticity model of Chindemi et al. (2022) is based on [Ca?'];, by using it we
assumed that other factors, like metabotropic glutamate receptors, endocannabinoid
release, BDNF signaling are negligible for the network-level effects of plasticity that we
investigated.

5 Spines are assumed to be separate biochemical compartments, i.e., [Ca®"]; of the
dendrites does not influence that of the synapses.

6 By detecting a single set of assemblies in the 10 minute-long plastic simulation we
assumed that assemblies are stable on that time scale.
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4.4 Methods

4.4.1 Calcium-based plasticity model

The calcium-based plasticity model is fully described in Chindemi et al. (2022), but a minimal
description of it can be found below. Synaptic efficacy (p) is based on the Graupner and
Brunel (2012) formalism, which exhibits a bistable dynamics (p = 0 fully depressed, p = 1 fully
potentiated, and p = 0.5 unstable fix point) described as:

dp

== —pA=p)(p«—p)+yp1—p)O(Ca™ (1) —0,) —yapO®(Ca™ (1) —0,) (4.1)

where 7 is the time constant of convergence, 6, and 0, are depression and potentiation
thresholds, y, and y, are depression and potentiation rates and O is the Heaviside function.

The dynamics of [Ca?*]; in spines was modeled as:
diCa®*); _ . [Ca®*); - [Ca®*1}”
ar (INmpar + Ivee) SEX _— (4.2)

where I35, 4z and Iy pcc are calcium currents through NMDA receptors and VDCCs, 7 is the

fraction of unbuffered calcium, F is the Faraday constant, X is the spine volume, [Ca®*] 5.0) is

the resting value of [Ca®*];, and T, is the time constant of free (unbuffered) calcium clearance.
Iyvpar depends on the state of the M g?* block. This nonlinear voltage dependence is
described with the Jahr and Stevens (1990) formalism, with parameters fitted to cortical

recordings from Vargas-Caballero and Robinson (2003).

Inspired by previous theoretical insights (Rubin et al., 2005), a leaky integrator of [Ca®*]; was

introduced (Ca™) to slow down its time course instead of modeling enzymes downstream of

calcium (e.g. CamKII as others did (Mdki-Marttunen et al., 2020; Rodrigues et al., 2022)):
dCa* Ca*

dr —  1*

+[Ca**); - [Ca*")V (4.3)
where 77 is the time constant of the integrator. Updates in p were done based on this Ca*
variable crossing 6, and/or 6, (see equation (4.1)). The two synapse-specific threshold were
derived based on peaks in [Ca®"]; caused by pre- and postsynaptic spikes, Cpre and Cpost
respectively. To measure these parameters for all 312,709,576 synapses, simulations of single
cells were run, in which either the pre- or the postsynaptic cell was made to fire a single action
potential and the local [Ca®*]; was monitored in each synapse. Since 8% of L6 PCs could not
be made to fire a single action potential (only bursts), synapses on those cells (10,995,513
in total) were assumed to be non-plastic, i.e., their thresholds were set to a negative value
that could not be crossed. Similarly, as the plasticity of connections between L4 spiny stellate
cells was shown to be non-NMDA dependent (Egger et al., 1999; Chindemi et al., 2022) those

connections were made non-plastic. For the remainder of cells, 6,; and 6, were derived as
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follows:
04
Op

dpo Aol Cpre

(4.4)

boo  bor y
bio b

c
% pre or
Cpost
where a;,j and b; ; are constants optimized during model fitting for apical and basal dendrites
respectively. Changes in p were then converted by low-pass filtering into changes Usr and

ay an Cpost

gampa as follows:

dUsg _ Usg—U. U
se_Use=Use oo Ty U@ +p(Ué’;-) _ Ué’?) (4.5)
dt Tchange
I _ . B R . .
EAMPA _ 8AMPAT EAMPA 0 g ArpA = g%\),IPA + P(g%\)/m B gz(‘\dl\)4PA) @9
dt Tchange

where Ué’é), Ué’g, g%\} paand gjﬁ\)d pa are the fully depressed (d) and fully potentiated (p) values

of the given variables, in-between which they evolve. All values (fixed and optimized alike)

241, evolves at

are listed in Chindemi et al. (2022). Just to give a rough idea of time scales: [Ca
the timescale of tens of ms, Ca* on the hundreds of ms, while changes in p are converted to

changes in Usg and gapp4 in seconds.

4.4.2 Invivo-like spontaneous and evoked activity

The calibration process that leads to the in vivo-like spontaneous activity is fully described in
Isbister et al. (2023), but a minimal description and a list of the parameters used in this article
can be found below. As extracellular recordings are known to overestimate firing rates (Wohrer
et al., 2013), a spectrum of spontaneous states at fixed percentage of the rates reported in
Reyes-Puerta et al. (2015) were calibrated (Isbister et al., 2023). Matching specific firing rates
in silico was achieved by iterative adjustments of layer and cell-type (excitatory/inhibitory)
specific somatic conductance injection (following an Ornstein-Uhlenbeck process Destexhe
et al,, 2001). The spontaneous state used in the article is characterized by the parameters:
[Ca**], = 1.05mM (Jones and Keep, 1988), percentage of reported firing rates = 40%, the
coefficient of variation (CV; std/mean) of the noise process = 0.4.

The thalamic input patterns, and the spike trains delivered on them are fully described in Ecker
et al. (2023b), but a minimal description, highlighting the changes applied in this study, can be
found below. First, the flat map location of VPM fibers avoiding the boundaries of the network
were clustered with k-means to form 100 bundles of fibers. Second, the four base patterns (A,
B, C, and D) were formed by randomly selecting four non-overlapping groups of bundles, each
containing 12% of them. The remaining six patterns were derived from these base patterns
with various degrees of overlap: three patterns as combinations of two of the base ones (E, E G),
two patterns as combinations of three of the base ones (H, I), and one pattern as a combination
of all four base ones (J). Third, the input stream was defined as a random presentation of
these 10 patterns, in a balanced way. Last, for each pattern presentation, unique spike times
were generated for its corresponding fibers following a 100 ms-long inhomogeneous adapting
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Markov process (Muller et al., 2007). The maximal rate of the VPM fibers was set to 17.5 Hz
(compared to 30 Hz for the non-plastic circuit in Ecker et al., 2023b) and half of that for POm.

4.4.3 Network simulations

Simulations were run using the NEURON simulator as a core engine with the Blue Brain Project’s
collection of hoc and NMODL templates for parallel execution on supercomputers (Hines
and Carnevale, 1997; Kumbhar et al., 2019; Awile et al., 2022; see Data and code availability).
Simulating 10 minutes of biological time with reporting the state of all synapses (in every
second) took 2,350,000 core hours (~ 4x more than the corresponding non-plastic circuit
without reporting), on our HPE based supercomputer, installed at CSCS, Lugano. Simulations
were always repeated at least three times to assess the consistency of the results.

4.4.4 Evaluating control STDP rules

To compare the amount of changes induced by Chindemi et al. (2022) with classical plasticity
rules, the 36,573,737 excitatory spikes from the 10 minute-long simulation were evaluated with
pair-based STDP rules (Gerstner et al., 1996; Kempter et al., 1999; Song et al., 2000). Synaptic
weights evolved as follows under the STDP rule:

At .
Awy = Ay, exp(— T—) at tposr if tyre < tpost 4.7)
+
At .
Aw_ = A_exp (T—) at tyre if tpre > tpost (4.8)

where #y,. and £, are the times of pre- and postsynaptic spikes, At = t5¢ — Ipre is the
difference between them; A, = 0.05 describe the weight update, which decayed exponentially
with time constants 7. = 20 ms. The STDP rule was implemented in Brian2 (Stimberg et al.,
2019).

4.4.5 Cell assembly detection

The combination of methods from Carrillo-Reid et al. (2015) and Herzog et al. (2021) yielding
the assembly detection pipeline is fully described in Ecker et al. (2023b), but a minimal
description, highlighting the changes applied in this study, can be found below. First, spikes of
excitatory cells were binned using 20 ms time bins (Harris et al., 2003). Second, time bins with
significantly high firing rates were determined as crossing a threshold defined as the mean
activity level plus the 95" percentile of the standard deviation of 100 shuffled controls. These
shuffled controls were less strict than in Ecker et al. (2023b). Unlike in the original study, where
spikes were only shifted by one time bin forward or backward (Carrillo-Reid et al., 2015), spikes
were shifted by any amount. This change was introduced because the network’s response
to the same patterns was more variable in the plastic simulations, and to not miss any of
them, a lower threshold was more fitting. Third, based on the cosine similarity of activation
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vectors, i.e., vectors of spike counts of all neurons in the given significant time bins, a similarity
matrix was built (Carrillo-Reid et al., 2015). Fourth, this similarity matrix was hierarchically
clustered using Ward’s linkage (Montijn et al., 2016; Pérez-Ortega et al., 2021). Like for any other
unsupervised clustering method, the number of optimal clusters cannot be known beforehand,
thus potential number of clusters were scanned between five and twenty. In Ecker et al. (2023b),
the one with the lowest Davis-Bouldin index was chosen, which maximizes the similarity
within elements of the cluster while maximizing the the between cluster similarity (Davies
and Bouldin, 1979). For assemblies detected over the 10 minutes-long plastic simulation,
this optimal value was overwritten, to have at least one pattern-specific assembly for all
10 patterns. For the assemblies detected over the 2 minutes-long non-plastic simulation,
the optimal value was chosen, to avoid biasing the before vs. after assembly comparisons.
Fifth, neurons were associated to these clusters based on their spiking activity, and it was
determined whether they formed a cell assembly or not. The correlations between the spike
trains of all neurons and the activation sequences of all clusters were computed and the ones
with significant correlation selected to be part of the potential assemblies. Significance was
determined based on exceeding the 95" percentile of correlations of shuffled controls (1000
controls with spikes of individual cells shifted by any amount as above; Montijn et al., 2016;
Herzog et al., 2021). Finally, it was required that the mean pairwise correlation of the spikes of
the neurons with significant correlations was higher than the mean pairwise correlation of
neurons in the whole dataset (Herzog et al., 2021). Clusters passing this last criterion were
considered to be functional assemblies and the neurons with significant correlations their
constituent cells. Assemblies of neurons were compared using their Jaccard distances. The
assemblyfire package, developed for Ecker et al. (2023b) is publicly available on GitHub.

4.4.6 Determination of consensus assemblies

Consensus assemblies, resulting from the hierarchical clustering of the Jaccard similarity matrix
of assemblies across repetitions of the same input stream, are fully described in (Ecker et al.,
2023b), but a minimal description of them can be found below. It was ensured that assemblies
from the same repetition did not cluster together, first by setting their distances to twice the
maximum, and second, by cutting the tree in a way that resulted in the lowest number of
cluster in which two assemblies from the same repetition did not cluster together. Membership
of neurons in these consensus assemblies was based on the fraction of assembly instances
they were part of, normalized by a binomial control and thresholded. As shown in Ecker et al.
(2023b), consensus assemblies are similar to assemblies detected over the average spike trains
across repetitions, but with the added benefit of the membership threshold. In rough terms,
this threshold can be understood as follows: if a neuron was part of 80% of assembly instances
that made up the consensus, then it was also a member of the consensus assembly.

In order to assess the functional connectivity of consensus assemblies before and after plastic-
ity, the spike trains of their neurons across the five repetitions were first averaged and then
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binned (using the same 20 ms bins as above). Last, the Pearson correlation of all pairs of the
preprocessed spike trains were calculated, and averaged across the population.

4.4.7 Calculation of spike time reliability

Spike time reliability, quantify the reliability of a single neuron across multiple presentations
of the same input, is described in (Ecker et al., 2023b), but the same description of it can be
found below. Spike time reliability was defined as the mean of the cosine similarities of a given
neuron’s mean centered, smoothed spike times across all pairs of repetitions (Schreiber et al.,
2003; Cutts and Eglen, 2014). To smooth the spike times, they were first binned to 1 ms time
bins, and then convolved with a Gaussian kernel with a standard deviation of 10 ms.

4.4.8 Synaptic clustering coefficient and likelihood of plastic changes in synapse
clusters

Synaptic clustering coefficient (SCC), quantify the co-localization of synapses on the dendrites
of a neuron from its presynaptic assembly with a single number, is fully described in (Ecker
et al., 2023b), but a minimal description of it can be found below. First, the nearest neighbor
distance (along the dendrites) between all pairs of synapses from the presynaptic assembly
were computed and averaged (mean nnd). Second, 20 controls were generated by always
selecting the same number of random presynaptic E cells from the circuit and mean nnds
of the control populations were calculated. Last, SCC was defined as the negative z-score
of assembly mean nnd with respect to the distribution of control mean nnds. SCC is thus a
parameter-free metric, centered at zero, and is positive for intersynaptic distances that are
lower than expected (indicating clustering) and negative otherwise (indicating dispersion).
Additionally, the significance of the clustering or dispersion of the synapse locations was
determined with a two-tailed t-test of assembly mean nnd against the 20 random samples
with an alpha level of 0.05. SCC was implemented using NeuroM and ConnectomeUtilities.

Synapse clusters were also detected based on synapse neighbour distances. In order to be part
of a spatial cluster, a synapse was required to have at least nine other synapses on the same
dendritic branch, i.e., between two branching points of the dendrite, with < 10 um (Euclidean)
distance. Significance of spatial clustering was determined similar to Druckmann et al. (2014).
The distribution of synapse neighbour distances of the 10 selected synapses were compared
with a Poisson model (assuming exponentially distributed inter-synapse distances) based on
all (same branch) synapse neighbour distances on the given neuron. Clusters were merged in
a subsequent step, thus synapse clusters with more than 10 synapses, spanning more than
20 ums were also feasible. As plastic changes in synapse clusters were only analyzed for a small
subpopulation of assemblies (10 L5 PCs per assembly), SCC was used to select subpopulations
with high probability of finding synapse clusters. To this end, assembly neurons with positive,
significant SSC values with respect to an assembly (either the same assembly for within-
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assembly analysis, or other ones for analysing cross-assembly interactions) were selected, and
the ones with the 10 highest assembly indegree (with respect to the same assembly) selected
(see Ecker et al., 2023b for the same selection method). Control synapse clusters, originating
from non-assembly neurons were also detected on the same postsynaptic neurons.

The normalized likelihood of changes, conditioned on the four categories a synapse could
fall into (assembly clustered, assembly non-clustered, non-assembly cluster, non-assembly
non-clustered) were quantified using the Michaelson contrast, defined as:

P(changed|category)— P(changed)
P(changed|category)+ P(changed)

(4.9)

where changed was split to be either potentiated or depressed.
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The 2.4 mm? subvolume of the juvenile rat somatosensory cortex, containing 211,712 neurons
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detected and can be analyzed with assemblyfire. Exemplary Jupyter notebooks using
the packages above were deposited in the same repository on Zenodo.
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Supplementary Figure 4.7: Physiology of excitatory cells and E to E connections. A: Distribution of
ion-channel densities in the excitatory (cADpyr) electrical type (etype). B: Validation of dendritic
physiology of the cADpyr e-type on L5 TTPC mtypes. B1: Validation of back-propagating action
potential (bAP) amplitude for basal (teal) and apical (blue) dendrites. Reference data (in orange) comes
from Stuart and Sakmann (1994); Larkum et al. (2001) (apical) and Nevian et al. (2007) (basal). Lines
show exponential fits for the in silico (teal and blue) and in vitro (orange) data. Color bar indicates
dendritic diameter. B2: Validation of EPSP attenuation. Reference data comes from Berger et al. (2001)
(apical) and Nevian et al. (2007) (basal). Lines and color bar same as in B2. Data taken from (and
partially shown in) Reva et al. (2022). (A similar panel has also been shown Isbister et al., 2023). C:
Anatomy and physiology of E to E connections. C2: Connection probability and number of synapses
per connections for all E to E connections. White boxes indicate non-feasible connections, or on the
left panel: no pairs found within the 200 ym intersomatic distance used. C2: Mean (over 100 pairs) PSP
amplitude (left) and CV (std/mean on the right) of all E to E connections. (Data taken from (and shown
in) Isbister et al., 2023). C3: Initial synaptic physiology parameters. From left to right: p, §4ppa, and
Usg.
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Supplementary Figure 4.8: Synapse-specific parameters of the plasticity model. A: Layer- and neurite
type-wise distribution of measured [Ca?*]; peaks (used to derive parameters of the plasticity model
shown in B). Synapses are grouped based on the soma location of the postsynaptic cell. 10% of all
synapses are shown. Schematics on their lefts illustrate the measurement protocols. B: Layer- and
neurite type-wise distribution of depression and potentiation thresholds (6, and 8,) of the plasticity
model. Synapses grouped and shown as in A. C: Correlations of the parameters shown in A and B.
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Supplementary Figure 4.9: Calibration of the in vivo-like network state. A: Same as 4.2B (i.e., raster
plots of the microcircuit’s activity) under different synapse setups. The microcircuit equipped with
the plasticity model of Chindemi et al. (2022) only resembles that of the non-plastic network’s of
Isbister et al. (2023) when VDCCs (voltage-dependent calcium channels) are blocked (last row). B:
Re-calibration of the in vivo-like state using the plasticity model. B1: Left: Euclidean distance of the
measured percentages of firing rates (Pggs) from the target ones in different iterations of the calibration
process. Right: Validation of network states after the final (4'") iteration. Dashed gray line along the
diagonal indicated perfect match. B2 Left: Injected Ornstein-Uhlenbeck (OU) conductances in the
non-plastic model of Isbister et al. (2023) vs. the plastic one for Prr = 40% (the state used in the current
article). Dashed gray line along the diagonal indicated perfect match. Right: Layer-wise (absolute)
firing rates of excitatory (E) and inhibitory (I) subpopulations at Prr = 40%. Legend on the bottom
applies to the last three panels in B.
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Spike trains of thalamic fibers
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Supplementary Figure 4.10: Activity of the thalamic fibers. Raster plots of VPM fibers forming each
of the ten input patterns (Figure 4.2A) for the stimulus stream in (i.e., from pattern A at 2000 ms to
pattern J at 6500 ms). Bottom row shows the same for non-specific POm fibers. (A similar panel has
been shown in Ecker et al., 2023b.)
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Network activity Firing rate vs. changes in mean(p)
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Supplementary Figure 4.11: Changing connections in plastic control simulations. A: Same as Figure
4.2B and E2 (i.e., raster plots of the microcircuit’s activity and plastic changes in mean(p) vs. firing
rates under different conditions. The last row of A2 is not an exact replica of Figure 4.2E2 as these
simulations were run for 2 minutes. B: Similar to Figure 4.2E3 (i.e., layer-wise propensity of changes in
mean(p)) but split across conditions. C: Similar to Figure 4.2D1 (i.e., L2 norm of changes) but for mean
p values of connections (not synapses) for all conditions.
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Supplementary Figure 4.12: Changes in synaptic efficacy during plasticity. A: Individual p traces
(10 per panel) during plasticity. B: L2 norm of changes in p (similar to Figure 4.2D1, but) compared to
rhot=5minures- Insert shows the distribution of individual changes in each time steps (for 10 million
samples).
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Supplementary Figure 4.13: Connectivity features underlying cell assembly membership. A: Selected
connectivity features of assemblies. Al: Left: Probability of membership in an exemplary assembly
(A13) against assembly-indegree with respect to all assemblies. Solid lines indicate the mean and the
shaded areas indicate 95% confidence interval. Right: nI (normalized mutual information, see Ecker
et al., 2023b) of assembly-indegree and assembly membership (blue arrow indicates postsynaptic
assembly A13, shown in detail on its left). A2: Probability of membership in the same exemplary
assembly against synapse clustering coefficient (SCC, see Methods and Ecker et al., 2020) with respect
to all assemblies; nI of SCC and assembly membership. White boxes indicate non-significant nI.
B: Summary of within-assembly interactions (diagonals of nI matrices) for all connectivity features
considered in Ecker et al. (2023b). (Similar panels have been shown in Ecker et al., 2023b.)
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Supplementary Figure 4.14: Comparison of cell assemblies before and after plasticity. Al: Firing
rates before and after plasticity. In all time bins on the left, and only in significant ones (see Methods)
on the right. (Caption continues on the next page.)
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4.5 Supplementary Figures

A2 Interspike interval (ISI) distribution (of all excitatory spikes) before and after plasticity on the left. On
the right: Zoom in to low ISIs (< 5) ms split by layer. B: STP profiles before and after plasticity. At in vitro
[Ca®*], on the left, and in vivo on the right. Thin lines represent the 20 individual repetitions, while
the thicker ones their means. C: Davis-Bouldin index (see Ecker et al., 2023b and Methods) of different
number of assemblies before and after plasticity across repetitions. (The index is to be minimized
to achieve optimal number of clusters.) D1: Number of times a consensus assembly is active over
repetitions before and after plasticity. E.g. the first rows per patterns are the counts of colored boxes
from Figure 4.5A2 and B2. This representation can be used to judge the grouping of assemblies (see D2),
and also for calculating their normalized Euclidean distance (see Figure 4.5G2). D2: Cosine similarity
of rows of consensus assembly matrices (split by patterns before vs. after plasticity). E: Number and
location of consensus assembly neurons before and after plasticity.
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Supplementary Figure 4.15: Layer-wise propensity of changes per single pattern. As on Figure 4.2E3,
layer corresponds to the soma location of the postsynaptic cells.
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Conclusion

At the beginning of the thesis, we set out to use biophysically detailed, large-scale models of the
2*],. Our group
has already shown how the pathway-specific [Ca®*], dependence of Usg, i.e., STP, contributes

cortex to study synaptic plasticity at the network level under physiological [Ca

to the transition from in vitro-like synchronous activity, to in vivo-like asynchronous firing
(Markram et al., 2015). In Romani et al. (2023), we extended the synapse parametrization
process of Ecker et al. (2020) to the CA3 input of CAl and described how parameters of those
synapses (including the Usg, D, and F parameters of STP) lead to feedforward inhibition, a
hallmark of that pathway (Pouille and Scanziani, 2001; Pouille et al., 2009). These network-
level effects of STP differ from previous theoretical insights (Abbott et al., 1997; Goldman et al.,
2002; Maass and Markram, 2002; Sussillo et al., 2007; Naud and Sprekeler, 2018; Keijser and
Sprekeler, 2022) because those were all based on short-term depression, which, due to the
drastically decreased Usgg, is not so prevalent at in vivo low [Ca?*],. Markram and Tsodyks
(1996) showed how the interaction of short- and long-term plasticity leads to a redistribution of
synaptic efficacy towards the early spikes during high-frequency firing. In Ecker et al. (2023a),
we did not observe high frequency firing under in vivo-like conditions and could not study this
effect in detail. On the other hand, long-term plasticity caused a network-level redistribution
of efficacy from the superficial to the deep layers of the neocortex, which resulted in prolonged
stimulus-specific responses. Compared to previous models (Zenke et al., 2015; Fauth and Van
Rossum, 2019; Kossio et al., 2021), efficacy changes were sparse and our network remained
stable without any homeostatic terms (Turrigiano and Nelson, 2004; Zenke et al., 2017a). This
emerged from the combination of our calcium-based model (Chindemi et al., 2022) and the
physiological levels of [Ca®*], used, as under these conditions, not every spikes contributed
to the synaptic efficacy updates in our model, unlike in STDP rules, which take all spikes into
account (Gerstner et al., 1996; Kempter et al., 1999; Song et al., 2000). The sparse changes
were likely to be found at synapses forming spatial clusters of postsynaptic dendrites and
between co-firing Hebbian cell assemblies (Ecker et al., 2023a). In Ecker et al. (2023b), we
described these cell assemblies in detail and leveraged our in silico setup to study the structural
connectivity underlying them.
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Future directions

The remainder is structured into ten points that can be seen as current limitations that could
be improved on or as feasible future avenues that one could pursue based on the results

presented here and pipelines behind them.

1. As emphasized in Chapter 2, data-integration should be a continuous process and CA1

synaptic physiology presented in Chapter 1 is no exception. While in Ecker et al. (2020),
we concentrated to the local, i.e., within CA1l synapses, in Romani et al. (2023), we
parametrized the Schaffer collateral (projecting from CA3 to CAl) synapses as a step
forward. However, there are several parameters in the current version of the CA1 model
that are cortical "placeholders", like the Usg, D, and F parameters of several pathways.
Although hippocampal and cortical synapses have similar properties, there are several
known differences. The difference between the NMDA nonlinearities is already taken
into account (Jahr and Stevens, 1990; Vargas-Caballero and Robinson, 2003; Chindemi
et al., 2022), but e.g., synaptic democracy’, a feature of hippocampal, but not cortical
connections, is not (Magee and Cook, 2000; Williams and Stuart, 2002). Thus, while new
CA1 synaptic physiology data is sparse, every piece of it should be included to replace
neocortical placeholder values in the future.

A clear next step would be introducing long-term plasticity at the Schaffer collaterals.
This would require extra groundwork, as our model fitting pipeline is based on pairs
of neurons in line with the cortical dual-patch experiments (Chindemi et al., 2022).
On the other hand, as CA3 and CAl are quite separate in space and the connection
probability between them is low, long-term plasticity is studied using pathway stimula-
tion (Schwartzkroin and Wester, 1975; Bliss and Collingridge, 1993; but see Debanne
et al., 1995 for some heroic dual-patch effort in cultures). Thus, the presynaptic side
is a population of (unknown number of) neurons, not a single one. Once the pipeline
is operational, the model of Chindemi et al. (2022) would serve as an excellent tool
for contributing to the postsynaptic only expression (Selig et al., 1999; Malinow and
Malenka, 2002; Costa et al., 2015) vs. pre- and postsynaptic expression of plasticity
debate (Yasui et al., 2005; Enoki et al., 2009; Bliss and Collingridge, 2013). By making this
pathway plastic, we could also learn weather synaptic democracy results from plastic
changes as suggested by modeling studies (Rumsey and Abbott, 2006) or if the answer
lies elsewhere.

LrSynaptic democracy” means that the activation of any synapse, independent of its location along the dendritic
tree, results in the same somatic EPSP. At the Schaffer collateral synapses this is achieved by a distance dependent
scaling of AMPA (but not NMDA) receptors (Andrasfalvy and Magee, 2001).
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3. Once the plasticity of the Schaffer collaterals is well calibrated in our CA1 model, one
could use it to study the mechanism behind behavioural time scale plasticity (BTSP;
Bittner et al., 2015, 2017). BTSP is lauded as a new non-Hebbian learning rule, as it can
lead to stable place cell? formation in a single shot (compared to the ~ 50 repetitions
of spike pairings required in STDP protocols) and the presynaptic spikes can proceed
(or follow) the prolonged postsynaptic depolarization, termed "plateau potentials”, by
seconds (compared to the millisecond precision required in STDP protocols). While
patching cells deep in the brains of behaving animals that lead to this discovery is
outstanding and so are the possible experiments one can do with this paradigm, calling
it a profoundly new learning rule might be an overstatement. BTSP is know to require
NMDA receptors (Bittner et al., 2017) and CamKII activation (Jain et al., 2023; Xiao et al.,
2023), the same ingredients as our biophysically detailed plasticity model (Chindemi
et al., 2022; Ecker et al., 2023a). In connected L5 TTPCs, a single in vitro spike pairing
activates 5 — 7 synapses distributed across the basal dendrites (Markram et al., 1997a)
into which the postsynaptic action potential does not propagate as well as into the apical
ones (Williams and Stuart, 1999; Letzkus et al., 2006; Ecker et al., 2023a). On the other
hand, CA1 PCs have ~ 30k excitatory synapses, at least three times more than L5 TTPCs
(Megias et al., 2001) and most of these synapses come from the CA3 and form clusters
on CA1 dendrites (Druckmann et al., 2014). Based on the biophysics of Chindemi et al.
(2022), pairing a huge, long-lasting dendritic depolarization with the activation of a
large fraction of these clustered CA3 synapses will indeed lead to remarkable plastic
changes, probably enough for single shot learning. The amount of Ca®* entering during
these events would be enhanced by the higher NMDA/AMPA ratio (Myme et al., 2003)
and the steeper NMDA nonlinearity of the CA3-CA1 synapses (compared to the cortical
L5-L5 ones). Thus, while BTSP is a faster protocol to induce plasticity than STDP is, the
biophysical rule that governs the plastic changes seems to be the same.

4. A weak point of any assembly detection method, not just the one we presented in
Chapter 3, is that the number of assemblies are not known beforehand. Since the
rigorous work of Peyrache et al. (2010), the hippocampus community uses significant
PCA scores® (Lopes-dos Santos et al., 2013). However, when recording thousands of
neurons, the activity of the sensory cortex is "not so spontaneous”, and the explained
variance increases only slowly with the number of PCA components (Stringer et al., 2019;
Avitan and Stringer, 2022). Probably this was amongst the reasons why Carrillo-Reid
et al. (2015) pioneered a new way of detecting cell assemblies from cortical data, but
their method still involved a step of unsupervised clustering. (In the beginning of the cell
assembly project we also used PCA for detecting assemblies, but only got unsatisfactory

2S0me CA1 PCs have a spatial receptive field, i.e., they fire preferentially when the animal is at a given position
in space (O’Keefe and Dostrovsky, 1971). CA1 PCs that exhibit this type of behavior are termed "place cells".

3principal component analysis (PCA) is used to find the dimensions along which the data varies the most. Pro-
jecting the data to the first n components, that explain e.g. 95% of the variance is a commonly used dimensionality
reduction technique. Contrary to this, Peyrache et al. (2010) suggested to use the Marcenko—-Pastur distribution as
a null hypothesis for testing the significance of each dimension, making the resulting number of PCA components,
and thus the resulting number of cell assemblies less arbitrary.
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results.) One of the strengths of our work is that contrary to other modeling studies that
define assemblies based on their strong internal connectivity after plasticity (Litwin-
Kumar and Doiron, 2014; Zenke et al., 2015; Fauth and Van Rossum, 2019; Kossio et al.,
2021)), we used methods developed by experimentalists, thus we detect and talk about
assemblies that are relevant to the experimental neuroscientist community. On the other
hand, one could argue that if we were to take into account the structural connectivity
as well, we could detect groups of neurons that are described by both their co-firing
function, and strongly interconnected structure. We could do this the following way in
the future: Instead of determining the number of clusters based on the distance between
the leaves of the clustering tree beforehand, we could progressively cut the tree if the
next cut would result in higher within-assembly indegree nI values, i.e., even better
predicted assembly membership of a neuron based on the number of connections from
assembly neurons.

. At the beginning of Ecker et al. (2023b), we argue that we are in a good position to study

the connectivity underlying cell assemblies as we have access to both functional and
structural data, while to experimentalists, even if available, these modalities come from
separate data sets. This picture seems to be changing with the release of the MICtONS
data set (MICrONS Consortium, 2021). The data set contains functional (two-photon
calcium imaging) and structural (electron microscopy, EM) data of mouse visual cortices.
At the end of the preprint, the authors flash out possible experiments that take into
account all connections of a functionally identified complex cell and could therefore
test the postulate about their receptive field appearing complex because of inputs from
several different simple cells (Hubel and Wiesel, 1962; Movshon et al., 1978). That would
indeed be wonderful, but we think even more could be done, and a data set like this
begs for population-level analysis. Thanks to our access to a large-scale model, we
have already prototyped a toolchain that can detect cell assemblies and then describe
how they emerge from the connectivity structure. The co-registration of functional and
structural images requires manual work and is still ongoing (MICrONS Consortium,
2021). Once done, it could be used to test our predictions and provide further insights
about how cell assemblies encode information in the sensory cortex.

. One of the strong points of our bottom-up model of network plasticity presented in

Chapter 4 is that we could put the network in an in vivo-like state, which we defined
as low-rate, asynchronous firing and low release probability. The major driver of this

2*+1, (Borst, 2010), but there are several other differences

is undoubtedly the low [Ca
between in vitro and in vivo conditions. Of special importance are: [Mg?*],, high
conductance state of the dendrites, and neuromodulation. The Mg?* block of NMDA
receptors can be removed by local depolarization, but the amount of depolarization
o,

needed depends on the [M g and hippocampal measurements suggest lower than
1 mM concentrations in vivo (Gonzalez et al., 2022). Once reliable cortical measure-
ments become available, our simulation setup should be updated to feature in vivo

(M g2+] o, instead of the placeholder value taken from in vitro slice experiments. By in-
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jecting noisy conductances to compensate for missing inputs from non-modeled brain
regions we put the cell bodies into an in vivo-like high-conductance state (Destexhe
et al., 2001; Isbister et al., 2023). On the other hand, as excitatory synapses are on the
dendrites, they are mostly influenced by the activity of the local circuit. Modeling all
those missing synapses would require tremendous resources (Cremonesi et al., 2020),
but would put the dendrites into a high-conductance state as well and engage more
dendritic nonlinearities, which might results in more plastic changes (Farinella et al.,
2014; Stuart and Spruston, 2015; Kastellakis and Poirazi, 2019; Gonzalez et al., 2022).
Neuromodulators, such as acetylcholine (ACh), are almost absent in slices, but are
known to alter the shape of STDP kernels and plasticity in general (Brzosko et al., 2019).
Most of these effects are mediated by metabotropic and G-protein coupled receptors,
which would require substantial effort to model, but ACh in particular is know to re-
duce Ugg (Colangelo et al., 2019). This effect could easily be taken into account in our
pipeline, and in an earlier, non-plastic version of the model it already was (Ramaswamy
et al,, 2018). Taken together, the state presented in Ecker et al. (2023a) resembles in
vivo conditions more than any publication of which we know about, but could still be
improved in the future.

. According to many fellow modelers, an article describing a plastic network that is repeat-
edly exposed to different patterns is not complete without showing pattern completion
from noisy or partial patterns (Hopfield, 1982). On the other hand, the patterns we
present are noisy and "partial” by design. We only fixed the pattern fibers, but the spike
trains delivered on them are stochastic. This stochasticity is further enhanced by the
probabilistic release of vesicles. Moreover, as we designed overlapping patterns (in
terms of the Hamming distance of the pattern fibers), presenting e.g. pattern E, which is
half A and half B, can be seen as testing what would happen if we only presented half
of pattern A. Furthermore, pattern completion requires a readout, i.e., a population
of neurons whose firing rate would signal that the network "converged to" a pattern.
Theoretical work implies that if a network is sufficiently large and has diverse units, then
a simple linear readout, trained on all neurons, can become quite powerful even if the
connections within the network are random (Maass and Markram, 2004). Therefore,
when training the Allen Brain Institute’s point neuron model (Billeh et al., 2020) for visual
processing tasks, Chen et al. (2022) defined a randomly selected population of 30 L5 PCs
as readout. We could do something similar, but as we model biorealistic plasticity and
do not train the network with backpropagation through time (Bellec et al., 2020), I think
this would not work. Another possibility is to use the pipeline of (Reimann et al., 2022b),
which samples neurons based on their topological features and trains decoders based
on the activity of these carefully selected cells. We could restrict it further to sample
neurons from the late assemblies only, as we see those populations as the output of the
cortex. Taken together, although it might raise more questions than provides answers,
we could test pattern separation and pattern completion in the future.
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8. At end of (Ecker et al., 2023a) we highlight the predictability of changes from the in-
nervation of the pre- and postsynaptic neurons (which influence their firing rates),
but also emphasize that these predictions are not perfect and other factors need to be
investigated in the future. We can foresee three ways of doing this. The topologically
inspired one would take into account the embedding of the changing connections into
the whole network and e.g. look for motifs that these connections are part of instead of
the simple pre- and postsynaptic indegree. The classical approach would be to assume
an unknown function & (p; j;v;,v;) that governs the changes in synaptic efficacy based
on the initial efficacy and the firing rates of the pre- and postsynaptic neurons (v; and
vj). If & is well behaved, one can do a Taylor expansion (about v; = v; = 0) and fit its
variables to the observed data (Gerstner et al., 2014). This exercise may even link the
learning rule observed in our biophysically detailed model to the classical rate-based
ones (Sejnowski, 1977; Bienenstock et al., 1992; Oja, 1982). The third, more modern way
of doing it would be to identify a large set of features, like pre- and postsynaptic firing
rate, pattern-indegree, assembly-indegree, participation in high-dimensional motifs
etc. and feed it to a machine learning model that predicts either the direction or the
precise amplitude of the plastic changes. Ideally, the model would order the features by
importance, like XGBoost does (Chen and Guestrin, 2016).

9. Atthe end of (Ecker et al., 2023a) we propose future experiments with our model using
more precise top-down inputs. Top-down inputs are seen as error/target signals and
therefore boost specific plastic changes (Makino, 2019), but the precise pathways medi-
ating this process are still under investigation. POm input was shown to gate plasticity
in L2/3 PCs in vivo via activating vasoactive intestinal peptide (VIP; a subpopulation
of our 5HT3aR+ population; Tremblay et al., 2016) interneurons, which in turn inhibit
Sst+ interneurons and therefore dis-inhibit the distal dendrites of PCs (Gambino et al.,
2014; Williams and Holtmaat, 2019). Sst+ interneurons have low firing rates in our
simulations (thus, there is not much activity to be inhibited), probably because the
calibration algorithm does not distinguish between inhibitory subpopulations and most
of the spikes required to achieve the target layer-wise firing rates are coming from PV+
interneurons (Isbister et al., 2023). Our setup would be readily applicable to calibrate
subpopulation specific firing rates, if those rates were available*. Although we know
about available patch-clamp data from genetically labeled inhibitory neurons (Gentet
etal., 2010, 2012; Yu et al., 2019), we decided not to use them because of the low number
of cells recorded in mice®. If not as target firing rates, we could still have used those
values to fix the ratios between the rates of the inhibitory subpopulations. Once the
Sst+ rates are increased, they could be inhibited by the VIP+ interneurons, but that may
require more targeted inhibitory connectivity (Reimann et al., 2022a). It has been known

4The target firing rates used in Isbister et al. (2023) are from spikes sorted from extracellular recordings (Reyes-
Puerta et al., 2015) in which spikes of inhibitory subpopulations cannot be distinguished.

5The field in general seem to have shifted from rat to mouse, thanks to the recent advances in mouse genetics
(Gurumurthy and Kent Lloyd, 2019; Brown, 2021; Azkona and Sanchez-Pernaute, 2022), which among other things
made those inhibitory subpopulation-specific recordings possible.
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10.

that VIP+ cells inhibit qualitatively more interneurons than they do PCs (Pi et al., 2013;
Karnani et al., 2016), but precise numbers were lacking. A recent prepint analysing EM
data from the MICrONS data set provided those numbers (Schneider-Mizell et al., 2023)
and when compared with our touch-based connectome, we found that we have the
potential to make those VIP+ to interneuron connections, i.e., appositions between
these cells exists (Reimann et al., 2015), but we pruned them in favour of VIP+ to PC
synapses (Reimann et al., 2022a). In future releases of our connectome those precise
targeting rules will be included which will increase the chances of reproducing the
dis-inhibitory effect of VIP+ cells.

While this thesis focuses on short- and long-term plasticity, there are several other
forms of synaptic plasticity. In Ecker et al. (2023a), we emphasize that unlike other
modeling studies, we did not have to include homeostatic plasticity to keep our network
stable. By doing so, we are not arguing against the existence of homeostatic plasticity,
but highlight that it operates on slower time scales of hours - days, and we simulated
"only" 10 minutes (Turrigiano and Nelson, 2004). Inhibitory plasticity is a faster form of
synaptic plasticity that is also frequently used to keep the excitatory/inhibitory balance
of network models (Vogels et al., 2011; Hennequin et al., 2017; Zenke et al., 2017a).
Again, no questions about its existence in biology (D’amour and Froemke, 2015; Vickers
et al., 2018; Field et al., 2020), but without a complete understanding of its biophysics,
we cannot include this form of plasticity in our bottom-up model. Lastly, structural
plasticity, in which new synapses are formed (instead of changing the efficacy of existing
ones), was shown experimentally to be able to rewire complete networks in a non-NMDA
receptor dependent manner (Le Bé and Markram, 2006), but just like homeostatic
plasticity, on a slower time scale than what we can currently simulate. We are in a good
position to model this type of rewiring in the future, because our connectome is "built"
by pruning appositions, i.e., close contacts between presynaptic axons and postsynaptic
dendrites (Reimann et al., 2015). The appositions that we do not keep are potential new
synapses and after deleting existing weak ones (Le Bé and Markram, 2006) they could be
added as new synapses, this way keeping the biorealistic bouton densities and forming
new synapses at realistic locations (Reimann et al., 2015).

The motto of the thesis "Beauty is truth, truth (is) beauty, - that is all" is a line from Keats, often

quoted by Hungarian neuroanatomist Janos Szentdgothai. Szentagothai’s ideology revolved

around the concept that intricate nuances within nature bear profound beauty, a beauty

that is uncovered through scientific discoveries (Gulyds and Somogyi, 2013). I think we also

uncovered small, but important details and hope that our work will inspire others to continue

to do so.
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