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Abstract

Synaptic plasticity underlies our ability to learn and adapt to the constantly changing en-

vironment. The phenomenon of synapses changing their efficacy in an activity-dependent

manner is often studied in small groups of neurons in vitro or indirectly through its effects

on behavior in vivo. Investigating synaptic plasticity at an intermediate microcircuit level

relies on simulation-based approaches, which offer a framework to reconcile fragmented and

sparse experimental observations. Since Hebb’s initial postulate, theoreticians have provided

valuable insights about the role of cell assemblies, strongly interconnected groups of co-firing

neurons, in learning and memory. However, most of these studies were limited in their scale,

biological realism, and therefore generality. To overcome these limitations, we further im-

proved and validated our previously published large-scale cortical network model featuring

short-term plasticity and equipped it with a recently developed calcium-based model of long-

term plasticity between excitatory cells. We calibrated the network to mimic an in vivo state

characterized by low synaptic release probability and low-rate asynchronous firing and ex-

posed it to ten different stimuli. By virtue of the model’s non-random, biorealistic connectivity

we could detect cell assemblies from the stimulus-evoked spiking activity of 186,665 neurons

even in the naïve circuit, before the long-term plastic changes. This detection employed a

combination of methods established by experimentalists. Leveraging the in silico nature of our

setup, we then studied how the structure of synaptic connectivity underlies assembly compo-

sition ranging from feedforward thalamic innervation to intricate high-dimensional network

motifs of the recurrent connectivity. Notably, we found that long-term plasticity sparsely and

specifically strengthened synapses between cell assemblies: among 312 million synapses,

only 5% experienced noticeable plasticity in 10 minutes of biological time and cross-assembly

synapses underwent three times more changes than average. As our model neurons featured

realistic morphologies and dendritic ion channels, we could also investigate how nonlinear

dendritic processes influence assembly membership and the effects of long-term plasticity on

synapses forming spatial clusters on postsynaptic dendrites. A comparative analysis of the

network’s responses to the different stimuli before and after the long-term changes revealed a

network-level redistribution of efficacy from the superficial to the deep cortical layers. This

shift led to prolonged stimulus-specific responses and more assemblies activating exclusively

for a single pattern. In summary, using a state-of-the-art, bottom-up model of the cortical

microcircuit we found sparse and specific plastic changes that reconfigured network dynamics

while preserving its stability.
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Résumé

La plasticité synaptique est à la base de notre capacité à apprendre et à nous adapter à un

environnement en constante évolution. La modification de l’efficacité de la transmission

synaptique dépendante de l’activité neuronale est souvent étudiée dans de petits groupes de

neurones in vitro, ou indirectement, par ses effets sur le comportement in vivo. L’étude de la

plasticité synaptique au sein d’un microcircuit néocortical repose sur des approches basées

sur la simulation, qui offrent un cadre permettant de réconcilier des observations expérimen-

tales fragmentées et éparses. Depuis le postulat initial de Hebb, les théoriciens ont approfondi

notre compréhension du rôle des assemblage de neurones (« cell assemblies »), des groupes

de neurones activés conjointement et fortement interconnectés, dans l’apprentissage et la

mémoire. Cependant, la plupart de ces études étaient limitées en terme d’échelle, de réalisme

biologique et donc dans leur capacité à généraliser leurs résultats. Pour surmonter ces limites,

nous avons amélioré et validé le modèle du microcircuit néocortical à grande échelle et équipé

de plasticité à court terme que nous avions précédemment publié. Nous l’avons augmenté

d’un modèle récemment développé de plasticité à long terme, entre les cellules excitatrices,

basé sur le calcium. Nous avons calibré le réseau pour reproduire la faible probabilité de

libération synaptique de neurotransmetteurs ainsi que le faible taux de décharge asynchrone

observés in vivo, et nous l’avons exposé à dix stimuli différents. En raison de la connectivite

structurelle, biologiquement réaliste du modèle, nous avons pu détecter des assemblage de

neurones à partir de l’activité simulée de 186,665 neurones même au sein du circuit naïf. Notre

méthode de détection se base sur une combinaison de méthodes établies par les expérimen-

tateurs. Tirant parti de notre accès à l’entière connectivité du réseau in silico, nous avons

ensuite étudié le lien entre l’organisation de la connectivité synaptique et la composition des

assemblage de neurones, de l’innervation thalamique jusqu’aux motifs complexes à haute

dimension de la connectivité récurrente du réseau. Nous avons notamment constaté que

la plasticité à long terme renforçait de manière éparse et spécifique les synapses entre les

assemblage de neurones : sur 312 millions de synapses, seules 5% ont subi une plasticité

notable en 10 minutes de temps biologique et les synapses inter-assemblées ont subi trois

fois plus de changements que la moyenne. Comme nos neurones modèles présentaient des

morphologies et des canaux ioniques dendritiques réalistes, nous avons également pu étudier

l’influence des processus dendritiques non linéaires sur l’appartenance à une assemblée et

les effets de la plasticité à long terme sur les synapses. Nous avons montré que celle-ci induit

un regroupement des synapses sur les dendrites post-synaptiques. Une analyse comparative

des réponses du circuit aux différents stimuli, avant et après les changements à long terme
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Résumé

induit par la plasticité, a révélé une redistribution de l’efficacité synaptique, allant des couches

corticales superficielles du réseau aux couches corticales profondes. Cette redistribution a

eu pour effet de prolonger les réponses spécifiques au stimulus et d’augmenter le nombre

d’assemblées s’activant exclusivement pour un seul motif. En résumé, en utilisant l’état de l’art

de la modélisation du microcircuit néocortical, nous avons révélé des changements plastiques

épars et spécifiques qui reconfigurent la dynamique du réseau tout en préservant sa stabilité.

Mots clefs : néocortex, microcircuit, simulation, connectivité, efficacité synaptique, plasticitée

a court-terme, plasticitée a long-terme, assemblage de neurones, apprentissage
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Introduction

All living organisms face an ongoing challenge to adapt to the ever-changing environment that

surrounds them. Among higher life forms, mammals stand out for their remarkable ability to

learn and recall memories when necessary. These essential cognitive processes find their roots

in synaptic plasticity, the ability of synapses to change their efficacy in an activity-dependent

manner. The term "plastic" comes from the Greek "plastikós" meaning "fit for molding" and

its introduction to neuroscience dates back to the turn of the twentieth century (see Markram

et al., 2011; Mateos-Aparicio and Rodríguez-Moreno, 2019 for reviews).

It became evident from early experiments at the neuromuscular junction that synaptic efficacy

is indeed not static but changes over hundreds of milliseconds reflecting recent activity (Eccles

et al., 1941). This form of synaptic plasticity was termed short-term plasticity (STP) and was

later shown to be a prominent property of neocortical synapses as well (Thomson et al.,

1993; Thomson and West, 1993; Deuchars and Thomson, 1996; Markram and Tsodyks, 1996).

Its origin is presynaptic, i.e., it depends on the probability of transmitter release from the

presynaptic axon (Dobrunz and Stevens, 1997). When the baseline release probability also

know as utilization of synaptic efficacy1 (USE ) is high, consecutive postsynaptic potentials

(PSPs) depress (the synaptic efficacy decreases). On the other hand, when USE is low PSPs

facilitate. USE in turn depends on other factors, chief among them is the extracellular calcium

concentration ([C a2+]o). A decrease in [C a2+]o leads to a nonlinear decrease in USE (Ohana

and Sakmann, 1998; Rozov et al., 2001; parametrized with a Hill coefficient of 4, Hill, 1910).

Therefore, the difference between the [C a2+]o = 2−2.5 mM used in slice preparations in vitro

and the physiological [C a2+]o = 1−1.3 mM in vivo (Jones and Keep, 1988; Massimini and

Amzica, 2001) can cause drastic changes in STP profiles, turning depressing profiles into

pseudo-linear2, or even facilitating ones (Zucker and Regehr, 2002; Borst, 2010).

While providing evidence for the plasticity of synapses, the effect of STP vanishes after a

second and thus cannot serve as a substrate for stable memories. One of the early theories

about how learning and memory might manifest in the brain was formulated by Canadian

psychologist Donald O. Hebb, who, in his influential book wrote: "When an axon of cell A

1While release probability is perhaps easier to understand, in the articles presented in this thesis we follow the
Tsodyks and Markram (1997) nomenclature and call is USE .

2Pseudo-linear STP profiles follows the nomenclature of Markram et al. (2015) and it describes an STP profile
that is neither clearly depression, nor facilitating. Sometimes the same profile is referred to as "augmentation".
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is near enough to excite a cell B and repeatedly and persistently takes part in firing it, some

growth process or metabolic change takes place in one or both cells such that A’s efficiency,

as one of the cell firing B, is increased." (Hebb, 1949). The highly quoted postulate of Hebb

came to life from combining Golgi stainings, his experience in brain surgery, and psychology

practice and was revolutionary in his time, as it stood in striking contrast to the views of Pavlov,

Freud, and the Gestalt school of psychology. Its experimental validation came more than two

decades later thanks to the technological advancement of slice electrophysiology and the

discovery of long-term potentiation (LTP; an increase in synaptic efficacy that lasts for hours;

Bliss and Lømo, 1973; Schwartzkroin and Wester, 1975). The molecular substrate of Hebbian

coincidence detection is the N-methyl-D-aspartate (NMDA) receptor, which upon removal

of the M g 2+ block conducts C a2+ as well (Mayer et al., 1984, but see Nicoll and Malenka,

1995; Egger et al., 1999 for NMDA independent forms). The calcium-control hypothesis

postulates, that prolonged, moderate amounts of C a2+ lead to long-term depression (LTD; a

long-lasting decrease in synaptic efficacy) while large transients of C a2+ lead to LTP (Lisman,

1989). The entry of C a2+ leads to the "growth process . . . in one or both cells" speculated by

Hebb, and at the Schaffer collaterals between areas CA3 and CA1 of the hippocampus it is the

insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors into the

postsynaptic side of synapses (Malinow and Malenka, 2002). It took another two decades and

another technological advancement, paired recordings from connected neurons, to prove the

importance of not only the firing rates but the precise timing of the pre- and postsynaptic

spikes (Markram et al., 1997b; Bi and Poo, 1998; Debanne et al., 1998). In these experiments,

presynaptic spikes preceding the postsynaptic ones resulted in LTP, whereas LTD was observed

when postsynaptic spikes occurred first, and this form of synaptic plasticity was christened

spike-time dependent (STDP; Song et al., 2000). As C a2+ plays a key role in long-term plasticity,

this form of plasticity also depends on the [C a2+]o . Low, physiological levels of [C a2+]o were

recently shown to completely abolish STDP (Inglebert et al., 2020). Unlike the postsynaptically

expressed plasticity of the Schaffer collaterals in the hippocampus, cortical plasticity affects

the presynaptic USE as well, and therefore tightly couples short- and long-term plasticity

(Markram and Tsodyks, 1996; Selig et al., 1999; Sjöström et al., 2003; but see Yasui et al., 2005;

Enoki et al., 2009; Bliss and Collingridge, 2013). Markram and Tsodyks (1996) pointed out

that cortical LTP is not necessary an increase in synaptic efficacy when multiple spikes are

considered within a short interval, but rather a redistribution of efficacy towards the earlier

spikes.

In parallel with neuroscientists, mathematicians and physicists also took up Hebb’s postulate

and formulated plenty of learning rules, by which artificial neural networks update the efficacy

of connections based on the covariance of pre- and postsynaptic activity (Rochester et al.,

1956; Sejnowski, 1977; Bienenstock et al., 1992; Hopfield, 1982; Oja, 1982). They coined the

term "computational neuroscience" in a few years, and learning and memory are still among

the main foci of the field. Rate-based models were translated to spike-based ones (Amit and

Tsodyks, 1991; Gerstner et al., 1993) and a plethora of STDP rules were developed (Gerstner

et al., 1996; Kempter et al., 1999; Song et al., 2000; Pfister and Gerstner, 2006). When STDP
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proved to be synapse location- and therefore pathway-dependent (Sjöström and Häusser,

2006; Letzkus et al., 2006; Froemke et al., 2010), plasticity rules also evolved to feature voltage

and calcium-dependence (Clopath et al., 2010; Graupner and Brunel, 2012) and a selected few

even took into account the effects of the in vivo [C a2+]o (Higgins et al., 2014; Chindemi et al.,

2022; Rodrigues et al., 2022). STP was also proposed to contribute to a range of functions,

including temporal processing (Buonomano and Merzenich, 1995; Tsodyks and Markram,

1997; Markram et al., 1998; Goldman et al., 2002; Carvalho and Buonomano, 2011; Naud and

Sprekeler, 2018), gain control, working memory, network stability, and compartment specific

inhibition (Abbott et al., 1997; Maass and Markram, 2002; Sussillo et al., 2007; Keijser and

Sprekeler, 2022). Of particular interest is the biophysically detailed model of (Markram et al.,

2015), in which modeling the pathway-specific [C a2+]o dependence of USE was crucial for

understanding the transition from the in vitro-like synchronous activity, to the in vivo-like

asynchronous firing regime. Combinations of diverse sets of plasticity rules (including, but not

exclusively short- and long-term plasticity) have been recently used to model the formation

and maintenance of cell assemblies, groups of neurons that Hebb hypothesized to develop

a co-firing pattern after frequently repeated stimulation (Zenke et al., 2015; Fauth and Van

Rossum, 2019).

While complex phenomena like plasticity are best studied under controlled laboratory ex-

periments and in simplified models, the long-term goal of neuroscience is to characterize

the rules governing plasticity under behaviorally relevant conditions. There was tremendous

progress in the past decades in understanding cell assembly formation, or as the field calls it,

in the identification and reactivation of "engram cells" in the hippocampus in vivo (Tonegawa

et al., 2015). While these studies highlight the need to study Hebbian plasticity at the network

level, most changes happen at the synapse level. The expression of synaptic proteins like

PSD95 and AMPA subunit GluA1 are highly correlated with the efficacy of a synapse, and high-

throughput methods tracking their levels are currently under development (Graves et al., 2021;

Kim et al., 2023; Ray et al., 2023). While readily applicable to monitor the efficacy of millions

of synapses in vivo, currently, these techniques cannot be supplemented with recordings of

neural activity, thus the causes of the observed changes in efficacy remain unknown. Thus,

while it is possible to control pre- and postsynaptic activity and measure subsequent changes

in synaptic efficacy in vitro, no such tool exists for in vivo experiments. The bridge between

them is often provided by complementary, in silico approaches (see above), and "simulation

neuroscience" is emerging as a powerful tool to undertake tasks that require modeling high lev-

els of detail (Markram et al., 2015; Fan and Markram, 2019). What distinguishes this approach

from computational neuroscience is the scale and the attention to biophysical detail. By

building models in a bottom-up manner, they can systematically integrate observations from

hundreds of published articles and large, seemingly disconnected data sets (Markram et al.,

2015; Fan and Markram, 2019; Billeh et al., 2020; Egger et al., 2020; Dura-Bernal et al., 2023).

The present thesis aims to illustrate the integration of diverse set of experimental findings into

a coherent biophysically detailed multi-scale model and then use it to study cell assemblies

and the effects of plasticity under in vivo low [C a2+]o .
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Outline of the thesis

The rest of the thesis is structured as follows:

• Chapter 1 introduces the synaptic data-integration pipeline (including STP parameters)

for the hippocampal area CA1 as a use case. It is a postprint of a "Methods first" pub-

lication, therefore offering a detailed view of the biophysical realism we use to model

synapses in our group.

• Chapter 2 applies the methodology of Chapter 1 (not developed for but refined and

published for the hippocampus) to parametrize the synaptic physiology of the latest

release of our somatosensory cortex model. It also includes a high-level validation of

synaptic pathways by reproducing an in vivo signal propagation experiment in silico.

• Chapter 3 describes in detail Hebbian cell assemblies, detected from spikes of cortical

simulations under in vivo-like conditions. It mainly focuses on the structural connec-

tivity rules underlying the assemblies’ co-firing function and provides a foundation for

Chapter 4.

• Chapter 4, in a true bottom-up fashion, is the main body of the thesis. It equips the

cortical model with a calcium-based long-term plasticity model and studies the induced

plastic changes in a network state that mimics in vivo activity. It emphasizes the stability

of the network without explicitly modeling any homeostatic plasticity mechanism. Fur-

thermore, it highlights that most of the sparse changes happen between cell assemblies

and in synapses that form spatial clusters on the postsynaptic dendrites.

At the end, a general Conclusion section summarizes the key findings with respect to the

network-level effects of short and long-term plasticity. This short summary is followed by a

list of current limitations and possible future directions (not strictly restricted to plasticity).
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1 CA1 synapse physiology in silico

This chapter is a postprint (with Wiley’s permission and under the same CC-BY-NC

license) of: A. Ecker, A. Romani, S. Sáray, S. Káli, M. Migliore, J. Falck, S. Lange, A. Mercer,

A.M. Thomson, E. Muller, M.W. Reimann, S. Ramaswamy (2020) Data-driven integration

of hippocampal CA1 synaptic physiology in silico. Hippocampus 30(11):1129–1145; doi:

10.1002/hipo.23220.

Contribution: I reviewed the literature (based on A. Romani’s initial sweep), helped A.

Romani to derive and validate the structural connectome, fitted STP model parameters

using open data sets, contributed to the soon to be open source software that calibrates

and validates synaptic physiology parameters, created all the figures, and participated

in writing the article. (A more detailed author contribution can be found at the end of

the chapter.)

Abstract

The anatomy and physiology of monosynaptic connections in rodent hippocampal CA1 have

been extensively studied in recent decades. Yet, the resulting knowledge remains disparate and

difficult to reconcile. Here, we present a data-driven approach to integrate the current state-

of-the-art knowledge on the synaptic anatomy and physiology of rodent hippocampal CA1,

including axo-dendritic innervation patterns, number of synapses per connection, quantal

conductances, neurotransmitter release probability, and short-term plasticity into a single

coherent resource. First, we undertook an extensive literature review of paired-recordings

of hippocampal neurons and compiled experimental data on their synaptic anatomy and

physiology. The data collected in this manner is sparse and inhomogeneous due to the

diversity of experimental techniques used by different groups, which necessitates the need

for an integrative framework to unify these data. To this end, we extended a previously

developed workflow for the neocortex to constrain a unifying in silico reconstruction of the

synaptic physiology of CA1 connections. Our work identifies gaps in the existing knowledge
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and provides a complementary resource towards a more complete quantification of synaptic

anatomy and physiology in the rodent hippocampal CA1 region.

Keywords: hippocampus, CA1, data integration, in silico modeling, synapse

1.1 Introduction

The hippocampal formation, notably the CA1 region, is one of the most exhaustively studied

regions in the mammalian brain and is thought to play a role, for example, in the acquisition

of memory, recognition of place and language (Bliss and Collingridge, 2013; Buzsáki, 1989).

Neuronal microcircuits in the hippocampal CA1 region process and store information through

a myriad of cell-type-specific monosynaptic connections. Previous studies have shown that

hippocampal cell-types are connected through multiple synaptic contacts, which are posi-

tioned across distinct axo-dendritic domains with a wide diversity in their physiology. Despite

the wealth of data, we lack an integrative framework to reconcile the diversity of synaptic

physiology, and therefore, identify knowledge gaps. There have been several noteworthy

attempts to integrate knowledge on the cellular and synaptic components of hippocampal

CA1 microcircuitry, which have provided a solid foundation to bring together anatomical

properties and kinetic parameters of cell-type-specific connections - including the number of

synapses per connection, connection probabilities, neurotransmitter release probabilities,

and amplitudes of synaptic responses (Bezaire and Soltesz, 2013; Wheeler et al., 2015; Moradi

and Ascoli, 2019). As a complementary endeavor, we extended a previously developed frame-

work to reconstruct neocortical microcircuitry at the cellular and synaptic levels of detail

(Markram et al., 2015), by integrating disparate data on the physiology of short-term dynamics

of depression and facilitation of cell-type-specific synaptic transmission in hippocampal CA1.

Using this framework, we identified and extrapolated organizing principles to predict missing

knowledge for a repertoire of connection types, for example, the short-term dynamics and

peak conductance of synaptic connections between inhibitory interneurons (Klausberger and

Somogyi, 2008; Pelkey et al., 2017), which remain largely uncharacterized, and could, therefore,

require high-throughput strategies that employ multiple whole-cell patch-clamp recordings

to surmount the relatively low yield obtained through conventional paired recordings (Perin

et al., 2011; Jiang et al., 2015; Espinoza et al., 2018).

We accounted for the dynamic and probabilistic nature of synaptic transmission by fitting

experimental traces using a stochastic generalization of the Tsodyks-Markram (TM) short-term

plasticity (STP) model (Tsodyks and Markram, 1997; Markram et al., 1998; Fuhrmann et al.,

2002), and also considered temperature and extracellular calcium concentration ([C a2+]o)

differences, which were adjusted using Q10 and Hill scaling factors, respectively.

Measuring peak quantal conductances directly at individual synaptic contacts remains very

difficult, if not impossible with current experimental techniques. While theoretically the peak

synaptic conductance can be calculated from voltage-clamp recordings by simply dividing

the peak post-synaptic current (PSC) by the liquid junction potential (LJP)-corrected driving
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force, this approach does not take into account the space-clamp artifact (Spruston et al.,

1993; Williams and Mitchell, 2008; Gulyás et al., 2016). We have recently demonstrated that

space-clamp corrected peak synaptic conductances in neocortical connections are at least

two-three-fold higher than estimated previously (Markram et al., 2015). As a connection is

formed by several synaptic contacts, each subject to a different space-clamp effect, a purely

theoretical correction is challenging. We, therefore, used an alternative approach, where we

calibrated peak synaptic conductances in the in silico model of connected pairs such that the

resulting postsynaptic potential (PSP) amplitudes match in vitro recordings. This yielded an

estimate of peak synaptic conductance since other factors affecting the PSP amplitude – such

as number and location of synapses, release probability and reversal potential, depression,

facilitation, and synaptic conductance rise and decay time constant - were independently

validated beforehand.

The resulting models for a subset of hippocampal connection types were applied predictively

to the remaining uncharacterized connection types by clustering them into nine groups

based on synapse types and neuronal biomarkers and applying the estimated parameters

within each group. Curated and predicted parameters presented here should serve as a

resource to researchers aiming to model hippocampal synapses at any level, while the detailed

methodology intends to give a guideline to utilize such a framework to integrate data from

other brain regions or species.

1.2 Methods

1.2.1 Circuit building and synapse anatomy

A detailed model of the rat hippocampal CA1 area was built by adapting a previously described

pipeline for reconstructing neocortical microcircuitry (Markram et al., 2015). In brief, detailed

axo-dendritic morphological reconstructions and electrophysiological traces obtained from

the dorsal part of hippocampal CA1 were used to build single cell-type-specific computational

models (Migliore et al., 2018; see Supplementary Methods). The resulting single-cell models

were assembled in an atlas-based volume corresponding to the dimensions of the hippocam-

pal CA1 region (Ropireddy et al., 2012), cell-densities and proportions, which yielded a tissue

model consisting about 400,000 cells, ∼90% pyramidal cells (PCs) and ∼10% interneurons

comprising 11 distinct morphology types (m-types; see Supplementary Methods and Sup-

plementary Figure 1.6; Bezaire and Soltesz, 2013). Structural appositions between axons

and dendrites were detected based on touch distance criteria and subsequently pruned to

yield a functional connectome through an algorithmic process, which was constrained with

experimentally reported bouton density, number of synapses per connections and connection

probability (Reimann et al., 2015). A previous study suggests targeted innervation of interneu-

rons from PCs (Takács et al., 2012). Therefore, to recreate this tendency, touch distances

from PCs to interneurons were set to 6µm as against 1µm for connections between PCs.

Furthermore, touch distances of 6µm for connections between all interneurons and 1µm for
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connections between interneurons and PCs were assumed. In this manner, the number and

location of synapses for each cell-types specific connection were derived in a data-driven man-

ner. When reproducing paired recordings in silico (see below), monosynaptically connected

pairs of neurons were sampled from this reconstructed circuit based on their inter-somatic

distance as sampling criterion.

1.2.2 Dendritic features of single cell models

Detailed, multicompartmental morpho-electrical models with 3D reconstructed dendrites

from Migliore et al. (2018) were used in the present study (see Supplementary Methods and

Supplementary Figure 1.6). The attenuation of synaptic responses along the dendrites with

varying diameters was validated against experimental data from Magee and Cook (2000) using

the HippoUnit framework (see Supplementary Methods). To this end, excitatory postsynaptic

current (EPSC) like currents were injected into the apical trunk of PCs with varying distance

from the soma and PSPs were simultaneously measured at the local site of the injection and in

the soma.

1.2.3 Model of postsynaptic conductance and current

Synaptic conductances were modeled with bi-exponential kinetics:

g (t ) = ĝ A(e−t/τdecay −e−t/τr i se ) (1.1)

where ĝ (nS) is the peak synaptic conductance and τr i se and τdecay (ms) are PSC rise and

decay time constants respectively. The A = −e−tp /τr i se + e−tp /τdecay normalization constant

ensures that synapses reach their peak conductance at

tp = (τdecayτr i se )/((τdecay −τr i se )log (τdecay /τr i se )) (ms). (Equation (1.1) is modified below

to take stochastic release of multiple vesicles into account.) AMPAR and GABAR synaptic

currents are then computed as:

I (t ) = g (t )(Vm(t )−Er ev ) (1.2)

where Vm (mV) is the membrane potential and Er ev (mV) is the reversal potential of the given

synapse. NMDAR currents depend also on M g 2+ block:

IN MD A(t ) = g (t )mg (Vm(t ))(Vm(t )−Er ev ) (1.3)

where mg (Vm) is the LJP-corrected (see below) Jahr-Stevens nonlinearity (Jahr and Stevens,

1990):

mg (Vm) = 1

1+e−c1Vm (CM g 2+/c2)
(1.4)

where CM g 2+ (mM) is the extracellular magnesium concentration and c1 = 0.062 (1/mV) and

c2 = 2.62 (mM) are constants (the difference from the original Jahr and Stevens, 1990 constant
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is because the authors did not correct for the LJP offset of ∼ 5 mV). PC to PC NMDAR rise and

decay time constants are Q10 corrected (see below; Q10 = 2.2 ms for rise and 1.7 ms for decay

time constants Hestrin et al., 1990; Korinek et al., 2010) values from Andrasfalvy and Magee

(2001): τr i se = 3.9 ms, τdecay = 148.5 ms. All, but the CCK+ interneuron excitatory afferents

have the same NMDAR time constants as the PC to PC ones, while the PC to CCK+ interneuron

NMDAR conductance decays with a slower time constant: τdecay = 298.75 ms (Le Roux et al.,

2013; Matta et al., 2013; Cornford et al., 2019). Peak NMDAR conductance ĝN MD A (nS) is

calculated from the AMPAR one by multiplying it with NMDAR/AMPAR peak conductance

ratio. PC to PC NMDAR/AMPAR peak conductance ratio = 1.22 was taken from Groc et al.

(2002); Myme et al. (2003). PC to CCK+ interneuron NMDAR/AMPAR ĝ ratio was set to 0.86, as

against 0.28 for PC to other interneurons (Le Roux et al., 2013; Matta et al., 2013). Synaptic

currents are individually delayed based on axonal path length and conduction velocity of

300µm/ms (Stuart et al., 1997) and an additional 0.1 ms delay of neurotransmitter release

(Ramaswamy et al., 2012).

1.2.4 Short-term plasticity parameter fitting

STP of synapse dynamics was fit by the TM model (Tsodyks and Markram, 1997; Markram

et al., 1998). The model assumes that each synapse has a pool of available neurotransmitter

resources (R) that is utilized by a presynaptic action potential (AP) with a release probability

(U ). The utilization of resources leads to postsynaptic conductance that is proportional to the

amount utilized. R decreases and U increases after an AP and both R and U recover between

spikes to a steady-state value. The speed of recovery is parameterized by time constants D

and F (ms) that together determine the short-term dynamics of the synapse. This is described

by the following differential equations:

dR(t )

d t
= 1−R(t )

D
−U (t )R(t )δ(t − tspi ke ) (1.5)

dU (t )

d t
= USE −U (t )

F
+USE (1−U (t ))δ(t − tspi ke ) (1.6)

where USE is the utilization of synaptic efficacy or absolute release probability (also known as

the release probability in the absence of facilitation), δ(t ) is the Dirac delta function and tspi ke

indicates the timing of a presynaptic spike. Each AP in a train elicits an ASEU (tspi ke )R(tspi ke )

amplitude PSC, where ASE is the absolute synaptic efficacy. R = 1 and U =USE are assumed

before the first spike.

The USE , D , F and ASE free parameters of the model were fit to amplitudes of experimentally

recorded trains of PSCs. In the case of Losonczy et al. (2002), amplitudes were already extracted

by the authors, while in the case of Kohus et al. (2016) custom-written Python routines were

used to extract them from the averaged postsynaptic traces. Fitting the 10+1 recovery spikes

(Table 1.1) was done by using a multiobjective genetic algorithm from BluePyOpt (Van Geit

et al., 2016). For Kohus et al. (2016) different frequency stimulations (10, 20 and 40 Hz) were fit
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together for better generalization. Thus, the optimized error function contained 3 (frequencies)

x 11 (peak amplitudes) points. For the event-based version of the equations above see Maass

and Markram (2002) and Supplementary Methods. The Python source code fitting amplitudes

from multiple frequencies is available on GitHub under /BluePyOpt/examples.

1.2.5 Stochastic Tsodyks-Markram model with multi-vesicular release

For the simulation of synapses, the canonical TM model (introduced above and used for

fitting experimental traces) was modified to include stochastic release of multiple vesicles, and

connected to the model of postsynaptic conductance described above. To take multi-vesicular

release (MVR) into account in the postsynaptic conductance model, the classical "quantal

model" of Del Castillo and Katz (1954) was used. In this model, synapses are assumed to

be composed of NRRP (size of the readily releasable pool) release sites, each of which has

a probability of release U (see deterministic TM model above) and contributes a 1/NRRP

quanta to the postsynaptic response (Loebel et al., 2009; Ramaswamy et al., 2012, 2015;

Markram et al., 2015; Barros-Zulaica et al., 2019). Unlike in the deterministic TM model above,

individual quanta were assumed to be released in an all-or-none fashion with probability

U (t) (Fuhrmann et al., 2002). Vesicle availability is also an all-or-none process where only

available vesicles can be released. To this end, synaptic vesicles were implemented as 2-state

(available:1 and unavailable:0) Markov processes. After release, the state is set to unavailable

and the probability of staying in the unavailable state at time t was described as a survival

process, with the time constant D . The state transitions are described by the following set of

equations:
P1→0 =U (t ) see equation (1.6)

P1→1 = 1−P1→0

P0→0 = e−(t−tspi ke )/D

P0→1 = 1−P0→0

(1.7)

The above-described model converges to the canonical TM model in the limit (number of

trials →∞). In this formalism a presynaptic AP releases only a fraction Nr ≤ NRRP fraction of

vesicles, which follows a Bernoulli distribution. Equation (1.1) is thus updated as follows:

g (t ) = ĝ (d(t )− r (t )) (1.8)

dd(t )

d t
=− d(t )

τdecay
+ A

Nr

NRRP
δ(t − tspi ke ) (1.9)

dr (t )

d t
=− r (t )

τr i se
+ A

Nr

NRRP
δ(t − tspi ke ) (1.10)

where r and d are the rising and decaying components of the postsynaptic conductance

respectively. The implementation of the above described stochastic synapse model is available

at the open-access NMC portal (Ramaswamy et al., 2015).
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These changes to the canonical TM model introduce variability of the postsynaptic traces,

where the magnitude of the variability depends on the additional NRRP parameter (Loebel

et al., 2009; Barros-Zulaica et al., 2019). In vitro this variability is typically assessed by the

coefficient of variation (CV, std/mean) of the peak PSC (or PSP) amplitudes. Therefore, the

NRRP was calibrated to match the CVs of the first PSCs extracted from the raw traces of Kohus

et al. (2016). For a better comparison, artificial membrane noise was added to the simulated

traces (see Barros-Zulaica et al., 2019 and Supplementary Methods).

1.2.6 Calibrating peak synaptic conductances through in silico paired recordings

Paired recordings were replicated in silico as follows: Firstly, pairs were selected from the

circuit based on pathway specific distance criteria used by experimentalist (100µm3 for cells

in the same layer and 200µm3 for cell pairs from different layers). Secondly, postsynaptic cells

were current-clamped to match the LJP-corrected (see below) steady-state potential specified

in the experiments. It is important to note, that in the case of PCs sodium channels were

blocked (in silico TTX application) when clamping above -58 mV to avoid spontaneous firing

of the cell models (see Figure 5 in Migliore et al. (2018)), whereas sodium channels were not

blocked in in vitro experiments. Next, the presynaptic cell was stimulated by somatic current

injection, which resulted in a PSP recorded in the soma of the postsynaptic neuron. This

protocol was repeated for 50 monosynaptic connections of the same pre-post combination

with 35 repetitions for each neuron pair. Finally, the mean PSP amplitude was compared

against experimentally data and the peak conductance value was calibrated using the formula:

ĝ = ĝ
PSPexp (1−PSPmodel /d f )

PSPmodel (1−PSPexp /d f )
(1.11)

where PSPexp (mV) and PSPmodel (mV) are the experimental and modeled PSPs amplitudes

respectively and d f = |Er ev −VSS | (mV) is the driving force. For all the experiments we aimed

to reproduce, Er ev =−8.5 mV was calculated for excitatory connections, while Er ev =−73 mV

for inhibitory connections (Moradi and Ascoli, 2019). All simulations were run using the

NEURON simulator as a core engine (Hines and Carnevale, 1997) with the Blue Brain Project’s

collection of hoc and NMODL (Hines and Carnevale, 2000) templates for parallel execution on

supercomputers (Hines et al., 2008a,b). The default temperature in all simulations was set to

34 °C, and the integration time step to 0.025 ms.

1.2.7 Correcting for calcium ion concentration, temperature and liquid junction
potential

Before integrating published parameters from different sources into the in silico synapse

model, they were corrected for differences in experimental protocols. This included scalings

for [C a2+]o levels different from 2 mM, temperatures different from 34 °C and the correction

of holding and steady-state potentials by the theoretical LJP.
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Levels of [C a2+]o impact the neurotransmitter release probability. The corresponding in silico

correction was applied by scaling the absolute release probability USE parameter (see above) of

the synapses, using the Hill isotherm with n = 4 (Hill, 1910). The Hill equation below describes

the non-linear increase in release probability as a function of increasing [C a2+]o :

USE =USEmax

[C a2+]4
o

K 4
1/2 + [C a2+]4

o
(1.12)

where USEmax is the maximum value of the release probability (≤ 1) at high [C a2+]o and K1/2 is

the [C a2+]o at which USE is one-half of USEmax . USEmax and K1/2 parameters can be fit to data

points (e.g. an indicator of release probability – the ratio between PSP amplitudes) measured

at different [C a2+]os. K1/2 values were taken from Rozov et al. (2001), 2.79 (mM) for steep

and 1.09 (mM) for shallow calcium dependence and were shown to generalize well for other

characterized pathways of the neocortex (see Supplementary Figure S11 in Markram et al.

(2015)). In the absence of hippocampus specific data, we followed the approach of Markram

et al. (2015) and assumed a steep dependence in PC to PC and PC to distal dendrite targeting

inhibitory (O-LM) cells, and a shallow dependence between PC to proximal targeting cells

(PVBC (PV+ basket cell), CCKBC (CCK+ basket cell), and axo-axonic cell). For experimentally

uncharacterized pathways an intermediate calcium dependence was used, as the average of

the steep and shallow ones. This intermediate curve was in agreement with the few relevant

data points for specific hippocampal synaptic connections (Price et al., 2008; Tyan et al., 2014).

The temperature dependence of kinetic parameters such as rise and decay time constants

were corrected by dividing them with Q10 scaling factors:

τsi m = τexp /Q10(Tsi m−Texp )/10 (1.13)

where τ is the time constant, Q10 is an empirically determined, receptor-specific parameter,

Tsi m = 34°C is the temperature used in the simulations, while Texp (< Tsi m) is the temperature

of the experiment. The Q10 correction was only needed for the NMDA current between

connected PCs (see above) because all other kinetic values that we used were recorded at near

physiological temperature (∼ 34°C).

Holding and steady-state potentials were corrected by the theoretical LJP (Neher, 1992). These

potentials arise from the differences in solutions in the pipette and bath and are in 2-12 mV

range for the standard solutions. Theoretical LJPs, calculated from the reported pipette and

bath solutions were obtained from Moradi and Ascoli (2019).
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1.2.8 Statistical analysis

R values for validating matching experimental and model values are Pearson correlations.

Data are presented as mean±std to yield comparable values to the experimental ones. USE , D ,

F distributions from two different sources (e.g. found in the literature vs. fitted here) are said

to be comparable if the mean of the second distributions is not further away than one-half of

the std of the first distribution.

1.3 Results

1.3.1 Literature curation

First, we undertook an extensive literature review of paired recording experiments, and com-

piled data on the various parameters (Figure 1.1, step 1; Tables 1.1 and 1.2 for the data inclusion

and exclusion criteria, and a list of data and modeling assumptions, respectively; see also

Supplementary Tables 1.4 for voltage-clamp data from rat hippocampal CA1, and 1.5 for

current-clamp recordings). The data collected in this manner is sparse and inhomogeneous,

due to the disparate experimental conditions used by different groups and were, therefore, cor-

rected for various aspects (Figure 1.1, step 2). For example, [C a2+]o is known to affect release

probability and, therefore, an additional Hill scaling had to be considered while parametrizing

short-term plasticity (STP) models (see Methods). Rise and decay time constants of synaptic

currents are influenced by temperature differences but can be corrected with Q10 factors (see

Methods). For electrophysiological recordings patch pipettes have become the method of

choice over sharp electrodes, which necessitates applying an LJP correction for voltage traces

(see Methods).

Paired recordings:
- Kinetic parameters (ms)
- PSP amplitudes (mV)
- Holding/SS potentials (mV)
- Calcium concentrations (mM)
- Raw traces

Tsodyks-Markram model
fitting to traces/amplitudes
- USE, D (ms), F (ms)

Calcium 
correction
 (of USE)

Liquid-junction
potential correction
(of Vhold/VSS)

Synaptic conductance calibration
- peak synaptic conductances (nS)

PSPs of experimentally characterized pathways

PSPs of uncharacterized pathways

Time (ms) [Ca] (mM)

Po
st

 I 
(p

A)

N
or

m
 P

SP
 (m

V)

LJP (mV)

?

?

? ?

Pre Im
Pre Vm

Postsoma Vm

Postdend Vm

4. Parameter extrapolation3. In silico experiments2. Data integration1. Experimental data

Figure 1.1: In silico data integration pipeline. 1: 51 peer-reviewed papers, spanning 21 years were
used to compile data on various parameters of connected neurons in rat CA1 including connection
probability, number of synapses per connections, axo-dendritic innervation profile, kinetics, STP
profiles, calcium and temperature sensitivity. 2: Parameters were integrated into a common framework
and experimental paradigm, including temperature, [C a2+]o and LJP corrections. TM models of STP
were fit to publicly available raw traces. 3: In silico paired recordings were run to correctly adjust the
unitary peak conductance of connections with experimentally characterized PSP amplitudes. 4: The
resulting parameters were averaged within each of the 9 classes of synapses and used predictively to
describe experimentally uncharacterized pathways.
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Chapter 1. CA1 synapse physiology in silico

Table 1.1: Data inclusion and exclusion criteria.

Data inclusion criteria
1 For the characterization of number of the synapses per connections we used published

values from anatomical studies employing electron and light microscopy; in rat CA1
slices.

2 For the validation of our axo-dendritic innervation patterns, we used figures from
published studies with biocytin filled pairs; under light microscopy; in rat CA1 slices.

3 For the characterization of synaptic physiology, we prioritized data from: paired
recordings from identified m-types; in rat CA1 slices; at 2 mM [C a2+]o ; and 34 °C; with
reported holding/steady-state potential; and reported LJP or recording solutions.

4 For the parametrization the decay time constant of single PSCs we used published
decay time constant fits (independent of the model e.g. single vs. bi-exponential fit).

5 For fitting the TM model we used average raw PSC traces as well as published peak
PSC amplitudes; with 10 spikes at different frequencies plus a recovery spike.

6 For the validation of the TM model we used published fits from the neocortex
(Markram et al., 2015) in order to compare USE , D, F values of the corresponding
pathways.

7 For the estimation of the NRRP we used raw PSC traces (all trials) to estimate the CV of
the first peak PSC amplitude as well as published NRRP estimates.

8 For the calibration of peak synaptic conductance amplitudes, we used published peak
PSP amplitudes (see Supplementary Table 1.5).

9 For the validation of the peak synaptic conductances, we used single-receptor conduc-
tance and receptor number estimates.

Data exclusion criteria
10 In the case of multiple reports of a single parameter or reference data, we prioritized

publications which were already used for other parameters and excluded the others
(see e.g. Pawelzik et al. (2002) in Supplementary Table 1.5).

11 When we had access to individual PSP amplitudes beyond the usually reported
mean±std, we excluded outliers and used the updated mean±std as target PSP ampli-
tude (see Supplementary Table 1.8).

1.3.2 Synaptic model parameters

We integrated the collected and corrected data into a model of synaptic transmission that

includes STP and stochastic neurotransmitter release. We found that for some connection

types the parameters of this model could be fully determined by employing in silico paired

recordings (Figure 1.1, step 3). Yet, for the majority of connection types parameters had to

be extrapolated (Figure 1.1, step 4). We use "synapse" to refer to a single anatomical synaptic

contact and "connection" to indicate the collection of all synaptic contacts between a given

presynaptic and postsynaptic neuron, comprising one or more synapses.

The underlying synapse model consisted of several parts, each with their associated param-

eters, which we determined in a 6 step procedure: We modeled synaptic connections with

bi-exponential conductances requiring 8 parameters. Three parameters (Er ev , τr i se , τdecay )
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Table 1.2: List of assumptions. All the assumptions that were made to arrive at model parameters from
a sparse set of raw data and published values.

1 We assume that after all the listed correction in this paper, all parameters coming from
different sources can be used together to parameterize the synapse models.

2 When using data from Kohus et al. (2016) we assumed that CCK+ DTIs (dendrite-
targeting interneurons) are SCA cells in SR. Furthermore, we assumed that synaptic
currents measured in mouse CA3 are representative of similar pathways in rat CA1.

3 In the lack of representative data and our lack of neurogliaform cells we assumed that
all inhibitory synapses are mediated purely by G AB A A receptors.

4 For calculating release probabilities at different [C a2+]o , we assumed that Hill func-
tions parameterized with cortical data generalize well for hippocampal connections.

5 For modeling synaptic currents, we assumed that all CA1 synapses can be described
with bi-exponential conductances, with vesicle release kinetics governed by the
stochastic TM model. When modeling dendritic PSC decays, we assumed a single expo-
nential function, parametrized with a time constant extracted from somatic recording.

6 In the process of calibrating synaptic peak conductances we simulated only the
synapses mediating the given connection and thus we assume that the background
activity does not matter.

7 Some of the biggest assumptions are inherited from the network model: In this work,
we assumed that the published electrical models of single cells (Migliore et al., 2018)
capture the behavior of different neurons in rat CA1. (The fact that unlike experi-
mentalists, we cannot clamp PC models to potentials above -58 mV without blocking
sodium channels seems to violate this assumption.) We also assumed that the cell
composition and cell density within each layer are homogeneous and the constrained
connectivity reflects the connectivity of rat CA1.

8 Kinetic parameters for a given pathway are drawn from a distribution, but since
(almost) all experimental data used to derive these parameters are representative for a
given connection and not for individual synapses per se, we use the same parameters
for all synapses mediating a single connection.

9 The biggest assumption is that one can extrapolate parameters from experimentally
characterized pathways, to fill in missing values. When generalizing our parameters
for similar, experimentally uncharacterized pathways we group CA1 interneurons
based on only one chemical marker. However, cells express many of these and the
markers overlap (see hippocampome.org (Wheeler et al., 2015)). By PV+ cells we
mean: SP_PVBCs, SP_BS cells, and SP_AA cells. By CCK+ cells we mean: SP_CCKBCs,
SR_SCA cells and SLM_PPA cells. The only interneurons in our NOS+ class are SP_Ivy
cells. (Neurogliaform cells would belong here as well.) We assume all neurons in SO:
SO_OLM cells, SO_BS cells, SO_Tri cells, and SO_BP cells to be SOM+.

10 A usually unspoken, implicit assumption on communication between neurons is
used here as well, namely, we model only glutamatergic and GABAergic synapses
between presynaptic axons and postsynaptic somata and dendrites. Thus, we leave
out co-transmission and neuromodulators acting on different receptors, retrograde
messengers, any kind of gap-junctions and any axonal receptors.
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Chapter 1. CA1 synapse physiology in silico

were directly obtained from the literature (see Supplementary Table 1.4 for AMPAR and GABAR

rise and decay time constants, Methods for NMDAR time constants, and Supplementary Table

1.5 for reversal potentials (Moradi and Ascoli, 2019)). In particular, for the τdecay (Supplemen-

tary Table 1.4) with the exception of Maccaferri et al. (2000) who used either single or weighted

bi-exponential fits, none of the other studies we considered explicitly reported how τdecay was

extracted. Therefore, we extrapolated single exponential fits for τdecay of all pathways, which

were measured through somatic voltage-clamp recordings. We used these measurements

directly as dendritic PSC time constants without any correction for attenuation (Table 1.2).

STP was modeled with the Tsodyks-Markram (TM) model, which added three parameters

(USE , D , F ) to a synaptic connection type. They were fit in conjunction to the experimentally

observed STP behavior (Figure 1.2, step 4; see Methods). Stochastic synaptic transmission

was modeled by extending the TM model to include quantal release from multiple sites. This

added another parameter (NRRP ) that was fit to the observed variability of PSC amplitudes of

experimental traces in terms of their coefficient of variation (CV std/mean; Figure 1.2, step 5;

see Methods). Finally, the mean amplitude of PSPs depended on three of the parameters and

thus could be fit to the peak synaptic conductance (ĝ ) only after the other two parameters had

been determined (Figure 1.2, step 6).

In addition to the parameters of synaptic models, the physiology of PSPs is also dependent

on several anatomical parameters, which result from the single-cell and tissue modeling

workflow (see Methods; Supplementary Figure 1.6). To ensure the accuracy of the fitted

synaptic parameters we independently validated aspects of the modeled anatomy (Figure

1.2, steps 1, 2). In the following sections, we present the results of the anatomical validations,

followed by the results of the various fits of synaptic parameters.

1.3.3 Validation of synaptic anatomy and dendritic attenuation

The anatomical properties of synaptic connections such as number of synapses per connec-

tion and axo-dendritic innervation patterns, along with the dendritic properties of single cell

models were validated against experimental data (Figure 1.3). Pairs of synaptically connected

neurons were sampled from a dense tissue-level reconstruction of the rat hippocampal CA1 re-

gion (see Methods; Supplementary Figure 1.6; Figures 1.3A and 1.4A). The number of synapses

per connection for the handful of experimentally characterized pathways (Ali, 2011; Biro et al.,

2005; Buhl et al., 1994a,b; Deuchars and Thomson, 1996; Földy et al., 2010; Maccaferri et al.,

2000; Sik et al., 1995; Vida et al., 1998) were consistent with biological data (r = 0.98; Figure

1.3B and Supplementary Table 1.6). The mean number of synapses per connection for the

in silico pathways that have been experimentally characterized are as follows: Excitatory to

excitatory (E-E): 1.26±0.6; inhibitory to excitatory (I-E): 8.2±2.1; excitatory to inhibitory (E-I);

only connections between PC to O-LM cells): 2.8±1.2; inhibitory-inhibitory (I-I): 2.8±0.2

(Supplementary Table 1.6). A systematic, quantitative characterization of axo-dendritic in-

nervation profiles for hippocampal CA1 synaptic connections is largely lacking. Therefore,

although we derived many predictions of axo-dendritic innervation profiles from in silico

16



1.3 Results

Latency

Rise time

τdecayPSP

Amplitude

CV

g

τdecayPSC

USE

DF

NRRP

Nsyn/conn.

Innervation

Anatomy

Physiology

Erev

τrisePSC

Neuron model

Synaptic anatomy

Synaptic model parametersPhysiology of PSPs

TM model

Quantal model

STP

Latency

Amplitude

Rise time

Pre
Vm

Post
Vm

τdecay

M
od

el
 c

om
pl

ex
ity

Post
Vm

Post
Vm

ST Depression

ST FacilitationCV

5

6

4

3

3

2

1

Conductance
model

3

2

Figure 1.2: In silico synapse model and parameter fitting: Properties of the network (left) and the
parameters synapse model (right) determine certain features of the emergent PSPs (middle). (These
PSP features are schematized at the bottom of the figure. Individual trials are shown in gray and their
average postsynaptic voltage trace in black.) These dependencies between properties/parameters and
PSP features (indicated by arrows, and dots where they join and continue as a single arrow) were used
to fit the synapse model parameters to data in 6 steps. Left: Parts of the network model that affect these
features such as biophysical and anatomical neuron models via dendritic attenuation (1) as well as
dendritic innervation and the number of synapses per connection (2) are independently validated. Top
right: Parameters of the model of postsynaptic conductance are taken from averaged experimental
PSC traces (3). Middle right: The TM model of STP adds three parameters that are fit to observed STP
behavior (4). Bottom right: The model of stochastic quantal release adds another parameter fit to
the observed CV of PSP amplitudes (5). In the last step, peak synaptic conductances are calibrated
to match PSP amplitudes from data (6). Numbers on arrows indicate that the given parameter was
validated against - or fitted to data, while numbers on boxes indicate that the parameters were taken
from literature and directly plugged in into the model.

synaptic pathways, these could, however, only be validated based on anecdotal evidence

(Figures 1.3A and 1.4A). In addition, we sampled neuron pairs at inter-somatic distances of

0−200µm to predict their connection probability and number of synapses per connection

(Figure 1.3C, D). The upper bound of 200µm ensured that we obtained a sufficient number

(100 ≤ n ≤ 5000) of pairs for all connections, even where the pre-post neurons were in different

layers e.g. Schaffer collateral-associated and O-LM cells to PC connections. Although the

perforant path-associated cell to PC connections occur in our model, they were excluded in

these analyses since their somata are farther apart than the general 200µm distance criteria

chosen for these predictions.

Finally, we also validated the dendritic attenuation profile of PSPs in single neuron models of

PCs, which were also found to be consistent with experimental data (Magee and Cook, 2000)

(τmodel = 235.2, τexp = 155.6; Supplementary Figure 1.7).
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Figure 1.3: In silico synapse anatomy. A: A representative in silico O-LM (purple) to PC (blue) pair, with
synapses visualized in red. 3D morphologies were reconstructed with the Neurolucida software by the
members of the Thomson/Mercer lab (Migliore et al., 2018). A1: Branch order distribution (n = 5000
connections) of the presynaptic (O-LM) axons. A2: Branch order distribution of the postsynaptic (PC)
tuft dendrites. A3: Distribution of the number of synapses per connection of the in silico O-LM to PC
pathway. In vitro experimental data is indicated in red. A4: Distance dependent connection probability
of the in silico O-LM to PC pathway. B: Validation of the number of synapses per connection against
experimental data. (E: excitatory, I: inhibitory, e.g.: I-E: inhibitory to excitatory pathways.) Dashed gray
line represents perfect correlation between experimental and model values. C: Predicted mean number
of synapses per connections for all pathways in the full-scale CA1 network model. Only connections
with ≤ 200µm intersomatic distance were used to calculate the average. Averages were calculated
from 100 ≤ n ≤ 5000 pairs. White boxes represent connections that are not present in the circuit model
due to the lack of axo-dendritic overlap (given the ≤ 200µm intersomatic distance sampling criteria).
Experimentally measured values (same as on its left) are highlighted with black rectangles. (Caption
continues on the next page.)
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Layer abbreviations: SR: stratum radiatum, SP: stratum pyramidale, SO: stratum oriens. M-type ab-
breviations: AA: axo-axonic cell, BP: back-projecting cell, BS: bistratified cell, CCKBC: CCK+ basket
cell, Ivy: ivy cell, OLM: oriens-lacunosum moleculare cell, PC: pyramidal cell, PVBC: PV+ basket cell,
PPA: performant path-associated cell, SCA: Schaffer collateral-associated cell, Tri: trilaminar cell (see
Supplementary Methods). D: Predicted mean connection probability (within 200µm intersomatic dis-
tance) for all pathways in the CA1 network model. M-type abbreviations, white boxes, black rectangles
and number of pairs are as in C.

1.3.4 Short-term plasticity of synapses

The synaptic physiology of hippocampal CA1 connections express a rich diversity of STP

profiles in response to presynaptic AP trains at different stimulus frequencies (Ali et al., 1998,

1999; Ali and Thomson, 1998; Losonczy et al., 2002; Pouille and Scanziani, 2004; Kohus et al.,

2016; Éltes et al., 2017). However, to the best of our knowledge, only Losonczy et al. (2002)

reported TM model parameters for CA1 pathways and used an additional recovery spike

elicited about 500−100 ms after the last spike in the train, which is crucial to characterize

frequency-dependent STP profiles of depression and facilitation (Gupta et al., 2000). Published

STP parameters from Losonczy et al. (2002) were used for PC to BC pathways, after refitting a

subset of their data, and ensuring their consistency with our resulting USE , D, F values (see

Methods). The dataset from Kohus et al. (2016) were obtained in the mouse CA3 region at

1.6 mM [C a2+]o , which differs from the rest of the datasets we considered, we nevertheless

made use of this resource due to the availability of their raw data, which was subsequently used

in our procedure of fitting TM model parameters (see Methods; Table 1.1 for data inclusion

and exclusion criteria; Table 1.2 for a list of data and modeling assumptions).

The resulting TM model parameters following the fitting procedure were consistent with

those in the source dataset (Kohus et al., 2016). In addition, we were able to match the CVs

of the first PSC amplitudes (r = 0.8; Figure 1.4B, Supplementary Table 1.7), by calibrating

NRRP (see Loebel et al., 2009; Barros-Zulaica et al., 2019 and Methods) with the resulting

values of NRRP in a biologically plausible range. An elegant study demonstrated that under

experimental conditions to induce high neurotransmitter release probability (high Mg/Ca)

CCKBC to PC connections in CA3 are characterized by MVR (with NRRP = 5− 7 vesicles)

(Biró et al., 2006). However, uni-vesicular release (UVR, NRRP = 1) is more prevalent under

physiological conditions (Biró et al., 2006). The in silico CV of CCKBC to PC PSCs with NRRP = 1

compared well against experimental data obtained under physiological conditions. In the

cases of synaptic connections from PVBC to PC and PVBC a value larger than 1 (NRRP = 6)

vesicles were required (see Methods; Figure 1.4B). For pathways not present in the Kohus et al.

(2016) dataset, the NRRP could not be calibrated and was thus assumed. The assumption of

MVR with NRRP = 2 vesicles at each excitatory to excitatory connections was used in this study

(Tong and Jahr, 1994; Conti and Lisman, 2003; Christie and Jahr, 2006; Barros-Zulaica et al.,

2019), while UVR was assumed at all other non-calibrated pathways (see Biro et al. (2005);

Gulyás et al. (1993) suggesting UVR for certain PC to interneuron connections).
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Figure 1.4: In silico synapse physiology. A: In silico paired recording experiment with the STP protocol
used in Kohus et al. (2016). Presynaptic (PVBC) voltage trace is shown on top. In silico PVBC (green)
to PC (blue) pair, with synapses visualized in red in the middle. 3D morphologies were reconstructed
with the Neurolucida software by the members of the Thomson/Mercer lab (Migliore et al., 2018).
Postsynaptic (PC) experimental traces recorded in vitro (in gray) and their mean in red, as well as model
traces recorded in silico (in gray) and their mean in blue, are presented at the bottom panel. Insets show
the variance of the first IPSCs. B: Validation of the CV of the first PSC amplitudes (excluding failures)
against experimental data. (E: excitatory, I: inhibitory, e.g.: I-E: inhibitory to excitatory pathways.)
Dashed gray line represents perfect correlation between experimental and model values. C: Validation
of the PSP amplitudes against experimental data. D: Predicted CVs of first PSC amplitudes (excluding
failures) for all pathways in the CA1 network model after synapse parameter generalization. As in
Figure 1.3C, only connections with ≤ 200µm intersomatic distance were used to calculate the average
postsynaptic response from n = 20 pairs with 35 repetitions for each pair. Postsynaptic cells were held
at -65 mV in in silico voltage-clamp mode. M-type abbreviations, white boxes, and black rectangles are
as in Figure 1.3C. E: Predicted PSP amplitudes for all pathways in the CA1 network model after synapse
parameter generalization. 20 pairs with 35 repetitions for every possible connection. Postsynaptic cells
were held at -65 mV steady-state potential in in silico current-clamp mode. Consistent with Gulyás et al.
(1993), PC to interneurons are the strongest. M-type abbreviations, white boxes, black rectangles and
number of pairs are as in D. (Caption continues on the next page.)
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F: Properties of postsynaptic (PC) IPSPs from 100 PVBC to PC pairs with 35 repetitions each. F1:
Distribution of in silico PSP amplitudes. In vitro experimental data from Pawelzik et al. (2002) is
indicated in red. F2: Distribution of in silico PSP 10-90% rise times. (10-90% rise time constants of PSCs
are fixed to 0.2 ms in the model, but the PSP rise times wary.) F3: Distribution of in silico PSP decay
time constants (single exponential fit). F4: Distribution of in silico PSP latencies. F5: Distribution of
the CVs of the first in silico PSP amplitudes (excluding failures). F6: Distribution of in silico failures (0
measurable PSP amplitude from 35 repetitions).

Based on the literature and our model-fitting we identified several rules to group STP profiles.

The mapping of STP profiles for all pathways is as follows: PC to O-LM cells (Ali and Thomson,

1998; Biro et al., 2005; Losonczy et al., 2002; Pouille and Scanziani, 2004) and other interneu-

rons in stratum oriens (Éltes et al., 2017) E1 (excitatory facilitating). PC to PC (Deuchars and

Thomson, 1996), PC to all SOM- interneurons (Ali et al., 1998; Losonczy et al., 2002; Pouille

and Scanziani, 2004) E2 (excitatory depressing). CCK+ interneurons to CCK+ interneurons

(Ali, 2007, 2011; Kohus et al., 2016) I1 (inhibitory facilitating), PV+ and SOM+ interneurons

to PC (Ali et al., 1998, 1999; Bartos et al., 2002; Buhl et al., 1995; Daw et al., 2009; Kohus et al.,

2016; Maccaferri et al., 2000; Pawelzik et al., 2002) as well as interneurons to interneurons

(except the CCK+ ones) (Bartos et al., 2002; Daw et al., 2009; Elfant et al., 2008; Karayannis

et al., 2010; Kohus et al., 2016; Price et al., 2005) I2 (inhibitory depressing). CCK+ and NOS+

(only Ivy cells, since we lack NGF morphologies) to PC (Fuentealba et al., 2008; Kohus et al.,

2016; Price et al., 2008) I3 (inhibitory pseudo linear). The parameters of the groups and the

resulting dynamics are summarized in Table 1.3 and Figure 1.5.

Neurotransmitter release probability and the STP profile are not only sensitive to the recording

temperature and the developmental age but also [C a2+]o (Rozov et al., 2001; Williams and

Atkinson, 2007; Guzman et al., 2016). Therefore, we modeled [C a2+]o sensitivity with a highly

non-linear scaling of USE (baseline release probability) values (see Methods). As an exemplar

result of this additional modeling detail, the PC to PC pathway exhibits an E3 (excitatory

pseudo-linear) STP profile characterized by low PSP amplitudes with high trial-by-trial vari-

ability and failures at in vivo like [C a2+]o levels (1.1−1.3 mM) compared to the in vitro levels

(2−2.5 mM) E2 (excitatory depressing) profile (Supplementary Figure 1.7B). USE values are

scaled by a Hill isotherm (see Methods) parameterized with data from PSP amplitudes in

neocortex (Supplementary Figure S11 in Markram et al. (2015)), which is an indirect measure

of the release probability. Here, we have shown that applying this Hill isotherm directly to the

USE values indeed results in the same scaling profile of PSP amplitudes in the case of PC to PC

connection (Supplementary Figure 1.8A).

1.3.5 Calibration of peak synaptic conductances to match PSP amplitudes

There is a dearth of studies characterizing both the PSC and PSP amplitudes for the same

connections in rat hippocampal CA1 (compare Supplementary Tables 1.4 and 1.5). Therefore,

we only used PSP amplitudes that were measured experimentally to calibrate the in silico peak

synaptic conductances in order to match the in vitro PSPs (Ali et al., 1998; Ali and Thomson,
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1998; Cobb et al., 1997; Deuchars and Thomson, 1996; Fuentealba et al., 2008; Pawelzik et al.,

1999, 2002) (see Figure 1.4D and Table 1.3). Having parameterized all relevant anatomical

and physiological synaptic properties including the number of synapses per connections,

axo-dendritic innervation patterns, PSC rise and decay time constants, STP parameters, NRRP ,

NMDA/AMPA peak conductance ratio, and reversal potential, we undertook in silico paired-

recordings by following a sequence of steps. A connected pair of neurons within a pathway

specific intersomatic distance (usually ∼ 100µm) for a given pathway was sampled from the

hippocampal CA1 model, the postsynaptic neuron was current-clamped to a pathway-specific

steady-state potential (see Supplementary Table 1.5), an AP was elicited in the presynaptic

neuron, which caused a postsynaptic response, measured in the soma. After repeating this

sequence for multiple pairs of the same pathway (n = 50) with many trials (n = 35), we

derived the peak synaptic conductance value that yielded the reference mean experimental

PSP amplitude (see Methods). Next, we repeated the same protocol on a set of 50 randomly

selected pairs with the calibrated peak conductance values as a validation of our approach

(r = 0.99; Figure 4C and Supplementary Table 1.8).

As an independent external validation of the peak conductances, we compared them against

sparse published data estimating single-receptor conductance and receptor numbers in

excitatory synapses on PCs. Hippocampal CA1 PCs receive most of their inputs from CA3

PCs through the Schaffer collaterals (Megías et al., 2001; Takács et al., 2012), whereas in this

study we only considered intrinsic connections - e.g. excitatory connections between local

CA1 PCs - and not long-range extrinsic projections. Thus, single-receptor conductances and

receptor number estimates from the Schaffer collateral synapses were assumed to generalize

for the intrinsic PC to PC connections. Using non-stationary fluctuation analysis on EPSCs

recorded in outside-out dendritic membrane patches, Spruston et al. (1995) estimated peak

single-receptor conductances of 10.2 pS and 43.5 pS for AMPARs and NMDARs, respectively.

Based on these numbers, our calibrated values resulting in a peak AMPAR conductance of

0.6±0.1 nS is the net result of ∼ 59 AMPARs per synaptic contact. Based on an experimentally

measured NMDAR/AMPAR peak conductance ratio of 1.22 (Myme et al., 2003), we predict

that there are about ∼ 18 NMDARs constituting a single synaptic contact between CA1 PCs.

Our in silico predictions are consistent with experimental studies that estimate ∼ 58-70 AMPA

and ∼ 5-30 NMDA receptors (Jonas et al., 1993; Spruston et al., 1995; Nusser et al., 1998;

Matsuzaki et al., 2001). Taken together, these experimental datasets enable an independent

validation of the calibrated peak conductance of PC to PC connections in CA1. In addition,

we also predict an average GABA peak conductance of 2±1 nS at a single inhibitory synaptic

contact comprising ∼ 100 GABAergic receptors, which is also in good agreement with previous

estimates (Mody and Pearce, 2004).

1.3.6 Parameter extrapolation

By integrating all the synaptic parameters and performing paired recordings in silico, we

procured a dataset of 16 pathways (Table 1.3). The number of theoretically possible pathways
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(based on 12 m-types) in our CA1 circuit model is 144, however, only 102 of these are bio-

logically viable based on the extent of axo-dendritic overlap (Figure 1.3C, D). Therefore, the

parameters of the remaining 90% of the pathways had to be extrapolated. We generalized the

anatomical properties of synapses (number of synapses per connection, connection proba-

bility, bouton density, innervation profile) obtained from the fraction of characterized to the

remainder of uncharacterized pathways as shown previously (Reimann et al., 2015; Markram

et al., 2015). However, for STP profiles of hippocampal connections obtained from studies

that reported measurements of paired-pulse ratios, but did not provide the raw experimental

traces with ≥ 2 presynaptic spikes (Deuchars and Thomson, 1996; Ali and Thomson, 1998;

Fuentealba et al., 2008), we applied analogous parameters from the somatosensory cortex

(Markram et al., 2015). We performed a prior consistency check of the parameter ranges for

similar connection types - perisomatic inhibitory (BCs) to PC, and inhibitory to inhibitory -

that have been experimentally characterized in both somatosensory cortex and hippocampus

and found them to be comparable. Therefore, our rationale to generalize 4 sets of USE , D,

F values from the somatosensory cortex to the hippocampus (Tables 3) could be justified.

Thereafter, we approximated the missing parameters with averaged values across specific

connection types that were grouped according to neurochemical markers that appear to have

similar STP parameters and peak conductances (Table 1.3). For example, it is known that

excitatory synapses on distal dendrite targeting interneurons, which predominantly express

SOM - such as PC to O-LM connections - are mostly facilitating, and on the contrary inhibitory

synapses from SOM+ neurons to PCs are strongly depressing (Ali and Thomson, 1998). This

exercise resulted in 9 synaptic classes, covering all connection types in the CA1 region (Table

1.3 and Figure 1.5). Most of these classes contain few experimentally characterized examples,

especially between inhibitory interneurons (Table 1.3). We have previously shown that aver-

aging STP parameters and peak conductances within synaptic classes is a valid method to

extrapolate missing values (Markram et al., 2015; Ramaswamy et al., 2015).

With the integrated and calibrated, but mostly generalized set of parameters (ĝ , τdecay , USE ,

D , F parameters of STP and NRRP ; Figure 1.2) for all pathways in the CA1 model we predicted

the CVs of the first PSCs (Figure 1.4D) and the first PSP amplitudes (Figure 1.4E), based on

previously published cell models (Migliore et al., 2018) and statistically derived connectivity.

In addition, we performed in silico paired recordings in all possible pre-post combinations

of m-type-specific pathways (n = 102 biologically viable pathways) to generate detailed pre-

dictions of the physiological properties of synaptic transmission including PSP amplitudes,

10-90% rise times, decay time constants, latencies, CV of first PSP amplitude, and percentage

of failures (Figure 1.4F). Although these predictions could provide preliminary insights into the

organizing principles of synaptic transmission in hippocampal CA1 - in particular, inhibitory

pathways, which remain mostly uncharacterized - they require further validation through tar-

geted experiments e.g. employing state-of-the-art multiple whole-cell patch-clamp recordings

(Perin et al., 2011; Guzman et al., 2016; Espinoza et al., 2018).
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Table 1.3: Parameters and generalization to 9 classes. Synapse parameters either taken from the
literature (τdecay (ms)), fitted directly to data (USE , D (ms), F (ms)), calibrated in silico (ĝ (nS), NRRP )

or taken from the somatosensory cortex ((Markram et al., 2015) marked with †). Values in the τdecay

column which neither appear in Supplementary Table S1 (summarizing rat PSCs) nor are taken from
the somatosensory cortex, are from mouse recordings (Daw et al., 2009; Lee et al., 2014). Average class
parameters are marked in bold and are used predictively for the remaining pathways belonging to the
same class. The PC to Ivy ĝ was not taken into account for the PC to SOM- class average. For cells
belonging into the same class see Table 1.2, assumption 9. M-type abbreviations are as in Figure 1.3C.

Pre Post ĝ τdecay USE D F NRRP

PC to PC (E2)
PC PC 0.6±0.1 3±0.2 0.5±0.02† 671±17† 17±5† 2

PC to SOM+ (E1)
PC O-LM 0.8±0.05 1.7±0.14† 0.09±0.12† 138±211† 670±830† 1
PC SOM+ 0.8±0.05 1.7±0.14† 0.09±0.12† 138±211† 670±830† 1

PC to SOM- (E2)
PC PVBC 2±0.05 4.12±0.5 0.23±0.09 410±190 10±11 1
PC CCKBC 3.5±0.4 4.12±0.5 0.23±0.09 410±190 10±11 1
PC BS 1.65±0.1 4.12±0.5 0.23±0.09 410±190 10±11 1
PC Ivy 6.5±0.5 4.12±0.5 0.23±0.09 410±190 10±11 1
PC SOM- 2.4±0.8 4.12±0.5 0.23±0.09 410±190 10±11 1

PV+ to PC (I2)
PVBC PC 2.15±0.2 5.94±0.5 0.16±0.02 965±185 8.6±4.3 6
AA PC 2.4±0.1 11.2±0.9 0.1±0.01 1278±760 10±6.7 1
BS PC 1.6±0.1 16.1±1.1 0.13±0.03 1122±156 9.3±0.7 1
PV+ PC 2±0.35 11.1±4.1 0.13±0.03 1122±156 9.3±0.7 1

CCK+ to PC (I3)
CCKBC PC 1.8±0.3 9.35±1 0.16±0.04 153±120 12±3.5 1
SCA PC 2.15±0.3 8.3±0.44 0.15±0.03 185±32 14±5.8 1
CCK+ PC 2±0.15 8.8±0.25 0.16±0.01 168±15 13±0.5 1

SOM+ to PC (I2)
Tri PC 1.4±0.3 7.75±0.9 0.3±0.08† 1250±520† 2±4† 1
SOM+ PC 1.4±0.3 8.3±2.2† 0.3±0.08† 1250±520† 2±4† 1

NOS+ to PC (I3)
Ivy PC 0.48±0.05 16±2.5 0.32±0.14† 144±80† 62±31† 1

CCK- to CCK- (I2)
PVBC PVBC 4.5±0.3 2.67±0.13 0.26±0.05 930±360 1.6±0.6 6
PVBC AA 4.5±0.3 2.67±0.13 0.24±0.15 1730±530 3.5±1.5 1
CCK- CCK- 4.5±0.3 2.67±0.13 0.26±0.05 930±360 1.6±0.6 1

CCK+ to CCK+ (I1)
CCKBC CCKBC 4.5±0.3 4.5±0.55 0.11±0.03 115±110 1542±700 1
CCK+ CCK+ 4.5±0.3 4.5±0.55 0.11±0.03 115±110 1542±700 1
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τdAMPA = 3 ± 0.2
τdNMDA = 148.5
g = 0.6 ± 0.1
NMDA/AMPA = 1.22
USE = 0.5 ± 0.02
D = 671 ± 17
F = 17 ± 5
NRRP = 2

τdAMPA=  1.7 ± 0.14
τdNMDA = 148.5
g = 0.8 ± 0.05
NMDA/AMPA = 0.28
USE = 0.09 ± 0.02
D = 138 ± 221
F = 670 ± 930
NRRP = 1

τdAMPA= 4.12 ± 0.5
τdNMDA = 148.5
g = 1.65 ± 0.1
NMDA/AMPA = 0.28
USE = 0.23 ± 0.09
D = 410 ± 190
F = 10 ± 11
NRRP = 1 

τd=  4.5 ± 0.55
g = 4.5 ± 0.3
USE = 0.11 ± 0.03
D = 115 ± 110
F = 1542 ± 700
NRRP = 1 

τdAMPA= 4.12 ± 0.5
τdNMDA = 298.75
g = 3.5 ± 0.4
NMDA/AMPA = 0.86
USE = 0.23 ± 0.09
D = 410 ± 190
F = 10 ± 11
NRRP = 1 

τd=  9.35 ± 1
g = 1.8 ± 0.3
USE = 0.16 ± 0.04
D = 153 ± 120
F = 12 ± 3.5
NRRP = 1

τd=  16 ± 2.5
g = 0.48 ± 0.05
USE = 0.32 ± 0.14
D = 144 ± 80
F = 62 ± 31
NRRP = 1 

τd=  8.3 ± 2.2
g = 1.4 ± 0.3
USE = 0.3 ± 0.08
D = 1250 ± 520
F = 2 ± 4
NRRP = 1

τd=  5.94 ± 0.5
g = 2.15 ± 0.1
USE = 0.16 ± 0.2
D = 965 ± 185
F = 8.6 ± 4.3
NRRP = 6

τd=  2.67 ± 0.13
g = 4.5 ± 0.3
USE =0.26 ± 0.05
D = 930 ± 360
F = 1.6 ± 0.6
NRRP = 6
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Figure 1.5: Summary of synapse diversity in the CA1 network model. Panels represent exemplar in
silico pairs from the 9 generalized pathways (2 for PC to SOM- interneurons). Presynaptic voltage traces
are shown in the upper traces of each panel (A-J), while the postsynaptic potentials elicited in 35 trials
(in gray) and the average of these trials are superimposed in the lower traces of each panel. Postsynaptic
cells were held at -65 mV steady-state potential in in silico current-clamp mode. Physical dimensions
are as follows: decay time constant τd and D , F depression and facilitation time constants: ms, peak
synaptic conductance ĝ : nS, while the absolute release probability USE and NMDA/AMPA conductance
ratios are dimensionless. A: PC to PC (E2). B: PC to O-LM cell (E1). C: PC to (SP) bistratified cell (E2). D:
PC to CCKBC (E2). E: O-LM cell to PC (I2). F: CCKBC to CCKBC (I1). G: Ivy cell to PC (I3). H: CCKBC to
PC (I3). I: PVBC to PC (I2). J: PVBC to PVBC (I2). Vertical scale bars on each panel represent 0.25 mV.
Connectivity in the schematic CA1 microcircuit in the middle is simplified for clarity (for example
most of the interneuron to interneuron connections are missing). Simplified synapses of the pathways
shown in the panels around are indicated with gray circles. M-type abbreviations are as in Figure 1.3C.

1.4 Discussion

Recent advances in high-performance computing have enabled biologically detailed, data-

driven reconstructions and large-scale simulations of brain regions (Bezaire and Soltesz, 2013;

Bezaire et al., 2016; Markram et al., 2015; Wheeler et al., 2015). Here, we demonstrate that a

data-driven workflow grounded in biological first-principles, which was used to reconstruct

a biologically detailed model of rat neocortical tissue digitally, can be extended to model

other brain regions such as the hippocampal CA1, to reconcile disparate cellular and synap-
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tic data, and to extrapolate from the sparse set of experimentally obtained parameters to

predict those of synaptic connections not yet characterized experimentally. In this study,

we chose a previous implementation of the phenomenological TM model of STP, which is

based on the quantal model of neurotransmitter release. The approach was able not only to

extract relevant parameters from raw experimental traces, but scaled well to simulate dynamic

transmission (Ramaswamy et al., 2012; Markram et al., 2015; Ramaswamy et al., 2015). In

addition, this version of the TM model also enabled us to simulate trial-to-trial fluctuations to

recreate, validate and predict a broad spectrum of synaptic properties for cell-type-specific

hippocampal connections including amplitudes, rise and decay times, latency, variability and

response failures (Figure 1.4F). It is known that [C a2+]o regulates the neurotransmitter release

probability, and therefore, the amplitudes of PSPs. In this study, we adapted the existing

data-driven digital reconstruction workflow to reconcile differences in synaptic dynamics

that were characterized at different [C a2+]o levels. Therefore, we scaled the neurotransmitter

release probabilities for all pathways that were characterized at 1.6−2 mM [C a2+]o (Kohus

et al., 2016; Losonczy et al., 2002; Markram et al., 2015) before calibrating peak conductances

to match PSP amplitudes that were measured at 2.5 mM [C a2+]o , which is more representative

of baseline values for hippocampal slice experiments (Ali et al., 1998; Ali and Thomson, 1998;

Deuchars and Thomson, 1996; Fuentealba et al., 2008; Pawelzik et al., 1999, 2002).

In the continuing spirit of bringing together hippocampal synaptic electrophysiology from

published literature a recent complementary study leveraged text-mining techniques to extract

the properties of synaptic connections in hippocampal CA1, including PSP amplitudes and

peak conductances (Moradi and Ascoli, 2019). The authors have also open-sourced their

collection of papers and parameters alongside useful cloud-based tools to calculate reversal

potentials and LJPs, of which we took advantage for this paper. However, our approach

to data integration from literature demonstrates that synaptic properties reported in the

literature such as peak conductances should not be interpreted at face value but require further

corrections to account for inadequate space-clamp errors, which could severely underestimate

their value by two-three fold (Markram et al., 2015). Furthermore, when integrating data

from whole-cell patch-clamp recordings, the interaction between the extracellular bath and

intracellular pipette solutions, and their influence on the kinetics of ion channel mechanisms

used in the in silico single-cell models becomes paramount. The presence of blockers such

as TTX, QX314, cesium and gluconate among many others, alter the kinetics of dendritic ion

channels, which are active in the subthreshold regime, and thus, are key factors in governing

the attenuation of PSPs in active dendrites. However, in our study, the core experimental

dataset that was used to calibrate the peak synaptic conductances (Supplementary Tables

1.5 and 1.8) were derived exclusively from sharp-electrode recordings where the intracellular

medium is devoid of any of the above blockers, and therefore, the subthreshold regime of

the single-cell models are not unduly influenced. Indeed, the effects of blockers on the

subthreshold regime will not only become important for future refinements of single-cell

models but also when more experimental data from whole-cell patch clamp recordings are

available.
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1.4 Discussion

The results we report, to the best of our knowledge, probably constitute a comprehensive

resource, not only for the anatomy but also the kinetic and short-term dynamic physiological

properties of the rat hippocampal CA1 region. Consolidation of the state of the literature not

only facilitates building detailed models but also highlights knowledge gaps and could help

in prioritizing the identification of missing data on CA1 connections, such as PC to interneu-

rons, and between interneurons, which could form diverse pre-postsynaptic combinations

of potential CA1 connection types that are crucial in regulating hippocampal oscillations

(Klausberger and Somogyi, 2008; Pelkey et al., 2017). Our modeling approach predicts rela-

tively high connection probabilities for interneuron to interneuron connections, and low IPSP

amplitudes (see Figure 1.3D and Figure 1.4E). However, these predictions need further experi-

mental validation, probably through multiple patch-clamp recordings, which have enabled

high-throughput mapping of inhibitory circuits not only in the neocortex (Jiang et al., 2015),

but also in the dentate gyrus of the hippocampal formation (Espinoza et al., 2018). Indeed,

the parameter set presented here should be considered a first draft, with many assumptions

and limitations. For example, we assume somatically measured PSC decay time constants

for dendrtic synapses without any correction for attenuation, use USE , D , F values obtained

in CA3, generalize NMDA/AMPA peak ratios characterized between PCs to all other excita-

tory pathways, and do not model G AB AB receptors. We plan to refine these assumptions

systematically in future versions of our model and overcome limitations by integrating new

experimental data when available (see Table 1 for all data inclusion criteria and Table 2 for all

explicit limitations).

By detailing all the integration steps in this study, we had two main objectives. First, we aimed

to demonstrate that published parameters should not be taken at face value without rigorously

checking their consistency within any modeling framework and the necessity of being abreast

of the state-of-the-art experimental techniques. Second, we attempted to emphasize the fact

that a growing diversity of experimental standards combined with published literature that

provides access to only processed data sets but not raw experimental traces could lead to

an inconsistent picture of a fundamental mechanism such as synaptic transmission. The

bottom-up modeling framework presented as a resource in this article could facilitate the

integration of disparate datasets and provide a platform within which a community-driven

consensus of the synaptic organization of the hippocampal formation could develop.
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1.5 Supplementary Methods

1.5 Supplementary Methods

1.5.1 Single cell models

Detailed biophysical models of PCs and interneurons of the CA1 region from Migliore et al.

(2018) were used in the present study. The models are publicly available on ModelDB:244688

and as a "live paper" of the Human Brain Project’s (HBP’s) Brain Simulation Platform (BSP),

where they can be interrogated in a web browser without installing anything locally. Along the

excitatory PCs, they modeled 11 inhibitory interneurons.

The full list of the interneurons - and their mapping to the morphological-types (m-types) de-

fined on hippocampome.org (Wheeler et al., 2015) are as follows: stratum lacunosum molecu-

lare (SLM): perforant path-associated (PPA) cell - Perforant Path-Associated; stratum radiatum

(SR): Schaffer collateral-associated (SCA) cell - Schaffer Collateral-Associated; stratum pyrami-

dale (SP): axo-axonic (AA) cell - Axo-axonic, bistratified (BS) cell - Bistratified, CCK+ basket

cell (BC) - Basket CCK+, Ivy cell - Ivy, PV+ BC - Basket; stratum oriens (SO): back-projection

(BP) cell - Back-Projection, BS - Oriens-Bistratified, O-LM cell - O-LM, trilaminar (Tri) cell -

Trilaminar (Supplementary Figure S1A). Electrical types (e-types), based on the Petilla conven-

tion (Ascoli et al., 2008) were assigned to traces recorded in vitro and modeled accordingly. All

PCs were classified as continuous accommodating cells (cAC). Interneurons were classified as

cAC, bursting accommodating cells (bAC) and continuous non-accommodating cells (cNAC).

Combining m- and e-types yielded 16 morpho-electrical types (me-types) (Supplementary

Figure S1C) (Markram et al., 2015; Migliore et al., 2018).

Channel kinetics were based on those used in many previously published papers on hip-

pocampal neurons (Migliore et al., 1999, 2005; Ascoli et al., 2010; Morse et al., 2010), and

validated against a number of experimental findings on CA1 pyramidal neurons. Cell models

were equipped with the following active membrane properties: transient sodium current (Na);

A, D, and M types and a delayed rectifier potassium currents (K A , KD , KM , and KDR ); L, N,

and T types of calcium currents (C aL , C aN and C aT ); the nonspecific Ih ; and two types of

calcium-dependent potassium currents (slow: KC as and voltage-dependent: KC a). A simple

calcium extrusion mechanism, with a single exponential decay of 100 ms, was also included in

all compartments containing calcium channels.

All models were constrained with active dendritic conductances but were optimized using only

somatic features. While the somatic responses to various step-current injections were correct,

the dendrites of the single-cell models turned out to be too excitable, namely, single synaptic

inputs (gs yn = 1 nS) were leading to spikelets and somatic spikes. For this reason, single-cell

models were slightly re-optimized. The amplitude of the back-propagating action potential

(in the apical trunk, 150 and 250µm from the soma) as a dendritic feature was added to the

list of objectives for PCs. As for the interneurons, homogeneous dendritic sodium channel

densities were replaced with one that decays exponentially with distance from the soma (with

a length constant of 50µm) based on Hu et al. (2010). A-type potassium channels in the
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dendrites of interneurons were also replaced with one that activates at a more hyperpolarized

potential (see kinetics of "kad" for distal vs. "kap" for proximal A-type K + channels in Migliore

et al. (1999)). Furthermore, the upper bounds (used by the multi-objective optimization

algorithm) of dendritic sodium channel densities were reduced for all cell types. See re-

optimized ion channel conductance in Supplementary Figure S1 B. After the re-optimization,

single cells qualitatively reproduced the behavior presented in Migliore et al. (2018), assessed

by HippoUnit, our single-cell model comparison framework.

The HippoUnit package contains standardized validations of biophysically detailed, multi-

compartmental single hippocampal PC models and is publicly available on Github under

/KaliLab/hippounit. Moreover, a demo validation of the re-optimized cell models was added

as a use case in the BSP and is publicly available (again in a web browser without downloading

and installing anything) upon registration to the HBP collaboratory.

1.5.2 Different versions of the Tsodyks-Markram model

The Tsodyks-Markram (TM) model of short-term plasticity (STP) underwent many changes in

the last twenty years. For a recent and consistent review see Hennig (2013). Furthermore, the

equations are sometimes shown in the form of differential equations (Tsodyks and Markram,

1997; Tsodyks et al., 2000; Fuhrmann et al., 2002, 2004; Loebel et al., 2009; Hennig, 2013),

while in other papers the iterative solution evaluated at spike arrivals is presented (Markram

et al., 1998; Maass and Markram, 2002). The version used in this article follows the formalism

presented in Hennig (2013):

dR(t )

d t
= 1−R(t )

D
−U (t )R(t )δ(t − tspi ke )

dU (t )

d t
= USE −U (t )

F
+USE (1−U (t ))δ(t − tspi ke )

where R(t) is the fraction of available resources, U (t) is the release probability, D, and F

are depression and facilitation time constants respectively. USE is the utilization of synaptic

efficacy or absolute release probability (also known as the release probability in the absence

of facilitation). δ(t ) is the Dirac delta function and tspi ke indicates the timing of a presynaptic

spike. Each action potential in a train elicits an ASEU (tspi ke )R(tspi ke ) amplitude PSC, where

ASE is the absolute synaptic efficacy and is linked to the N q part of the quantal model, where

N is the number of release sites and q is the quantal amplitude. R = 1, and U = USE are

assumed before the first spike. In our simulations, we implement Fuhrmann et al. (2002)

as the stochastic generalization of the model. (Where the value of U (t) is actually used as a

probability.) The equation of the release probability is slightly different in that article and it

reads as follows:
dU (t )

d t
=−U (t )

F
+USE (1−U (t ))δ(t − tspi ke )

According to this equation U (t) decays to 0 (the wording of the articles suggest a decay to

"the baseline"). To recover the definition of USE as the release probability in absence of
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spikes (or U as the constant release probability in the first Tsodyks and Markram (1997) paper

concentrating only on depressing connections) the +USE (1−U (t )) has to be evaluated before

the release happens. On the other hand, the −U (t )R(t ) jump in the equation of R still has to

be evaluated after the event in order to be consistent with R being 1 in the absence of spikes.

In this view U (t ) is mostly zero and at spike arrivals, before release happens it jumps to USE .

From the biophysical point of view, this can be seen as a calcium-based model, where a quick

calcium influx leads to release. On the other hand, in the Hennig (2013) version U (t ) decays

to its baseline USE value and the USE (1−U (t )) jump happens after the release. When fitting

the deterministic TM model to experimental data as well as when simulating the stochastic

version we use an event-based solution, meaning that the equations are only evaluated at

spike times (as opposed to the ODE form). For the Fuhrmann et al. (2002) version the iterative

update is:

Rtmp = 1+ (Rn −1)exp(−∆t

D
)

Utmp =Unexp(−∆t

F
)

Un+1 =Utmp +USE (1−Utmp )

An+1 = ASEUn+1Rtmp

Rn+1 = Rtmp −Un+1Rtmp

where ∆t is the the time between the (n +1)th and nth spike and An is the nth amplitude. On

the other hand, the Hennig (2013) version (used to fit models in Kohus et al. (2016)) is:

Rtmp = 1+ (Rn −1)exp(−∆t

D
)

Utmp =USE + (Un −USE )exp(−∆t

F
)

An+1 = ASEUtmp Rtmp

Rn+1 = Rtmp −Utmp Rtmp

Un+1 =Utmp +USE (1−Utmp )

None of these forms are presented in the literature per se. Both Markram et al. (1998) and

Maass and Markram (2002) integrate the ODEs in a single step:

Rn+1 = 1+ (Rn −1−UnRn)exp(−∆t

D
)

Un+1 =USE + (Un −USE +USE (1−Un))exp(−∆t

F
)

=USE +Un(1−USE )exp(−∆t

F
)

=Unexp(−∆t

F
)+USE (1−Unexp(−∆t

F
))

An+1 = ASEUn+1Rn+1

31



Chapter 1. CA1 synapse physiology in silico

Using the initialization R1 = 1, U1 =USE and calculating the first two amplitudes with all 3

versions (Fuhrmann et al. (2002), Hennig (2013) and Maass and Markram (2002)) one gets:

A1 = ASEUSE

A2 = ASE [USE + (USE −U 2
SE )exp(−∆t

F
)](1−USE exp(−∆t

D
))

With simulations, it is also possible to show that all the other amplitudes in response to a

spike train will be the same for all versions. Thus, the three event-based models presented

above are equivalent. We present the Hennig (2013) formalism in the article since we find it

more intuitive that both Dirac deltas are evaluated at the same point (after the PSC amplitude

is calculated) and is more in line with the wording of the papers, but emphasize that it is

consistent with the other version Fuhrmann et al. (2002) and the fits presented in Markram

et al. (2015).

1.5.3 Membrane noise

In order to correctly compare the coefficient of variation (CV, std/mean) of first PSC amplitudes,

measurement noise was added to the simulated traces (Barros-Zulaica et al., 2019). To this

end, noise parameters of in vitro traces were fitted and averaged for every different connection

types and then stochastic noise generated with these extracted parameters was added to the

corresponding in silico traces. Noise was described as an Ornstein-Uhlenbeck (OU) process.

The OU process is a stationary Gauss-Markov process, which describes the velocity of the

movement of a Brownian particle and is used in physics to describe noise relaxation (Bibbona

et al., 2008). Mathematically it can be described with the following iterative equation:

X (i ) = X (i −1)− X (i −1)

τ
d t +σ

√
2d t

τ
N (0,1)

where d t is the time step of the signal, τ is the time constant fit to the exponential decay of

the signal’s autocorrelation function, σ is the standard deviation of the signal and N (0,1) is a

draw from the normal distribution.

1.6 Supplementary Figures and Tables
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Supplementary Figure 1.6: Single cell models. A: Examplar 3D reconstructions of the 12 m-types in
the CA1 network model. 3D morphologies were reconstructed with the Neurolucida software by the
members of the Thomson/Mercer lab (Migliore et al., 2018). Axons are shown in blue, while dendrites
in red. Rendering and visualization was done with NeuroMorphoVis (Abdellah et al., 2018). Diameters
are scaled (x3) for better resolution. B: Re-optimized ion channel conductances for all e-types (6 bAC,
13 cAC (PC), 7 cAC (IN) and 13 cNAC). Where non-uniform channel distribution was used (e.g. h current
in PC dendrites) the maximal values are shown.C: Fraction of e-types (4) recorded and modeled in each
of the 12 m-types.

33



Chapter 1. CA1 synapse physiology in silico

Distance from soma (μm)

At
te

nu
at

io
n 

(d
en

dr
iti

c/
so

m
at

ic
 P

SP
)

0.2 mV

BA

τ = 235.2 (μm)
τ = 155.6 (μm)

Supplementary Figure 1.7: PSP attenuation. Validation of PSP attenuation against experimental data
from Magee and Cook (2000). A: EPSC like currents were injected to the apical dendrites of the different
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Supplementary Table 1.4: Summary of paired recording experiments from rat CA1 in voltage-clamp
mode (PSCs in pA). Liquid junction potentials (LJPs) and reversal potentials (Er ev s) are taken from
Moradi and Ascoli (2019). Holding potentials (Hold.) are corrected for the indicated LJP with the correct
sign. † in the rise time constant (τr i se ) column indicates 20-80% rise time, instead of 10-90%. M-type
abbreviations are as in Figure 1.3C.
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Supplementary Table 1.5: Summary of paired recording experiments from rat CA1 in current-clamp
mode (PSPs in mV). Liquid junction potentials (LJPs) and reversal potentials (Er ev s) are taken from
Moradi and Ascoli (2019). M-type abbreviations are as in Figure 1.3C.
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1.6 Supplementary Figures and Tables

Supplementary Table 1.6: Validation of number of synapses per connections (see Figure 1.3B). M-type
abbreviations are as in Figure 1.3C.

Pre Post Reference data Model Reference

PC PC 1.2±0.4 1.26±0.6 Deuchars and Thomson (1996)

AA PC 6.1 7±4.4 Buhl et al. (1994b)
BS PC 6 6.5±3.2 Buhl et al. (1994a)
CCKBC PC 8.3±0.8 8.6±3.9 Földy et al. (2010)
O-LM PC 10±7 11±5.2 Maccaferri et al. (2000)
PVBC PC 11±0.6 11.3±5.4 Földy et al. (2010)
SCA PC 5.3±1.2 5±1.8 Vida et al. (1998)

PC O-LM 2.8±0.8 2.8±1.2 Biro et al. (2005)

PVBC PV+ 1.54±1.08 2.6±1.3 Sik et al. (1995)
SCA SCA 3.5±1.5 3±1.4 Ali (2011)

Supplementary Table 1.7: Validation of the CV of first PSC amplitudes (see Figure1.4B). M-type
abbreviations are as in Figure 1.3C.

Pre Post Reference data Model Reference

AA PC 0.29±0.11 0.28±0.13 Kohus et al. (2016)
CCKBC PC 0.43±0.14 0.36±0.1 Kohus et al. (2016)
PVBC PC 0.26±0.06 0.28±0.07 Kohus et al. (2016)
SCA PC 0.38±0.11 0.31±0.08 Kohus et al. (2016)

CCKBC CCKBC 0.18±0.16 0.18±0.1 Kohus et al. (2016)
PVBC AA 0.45±0.11 0.17±0.09 Kohus et al. (2016)
PVBC PVBC 0.17±0.05 0.22±0.02 Kohus et al. (2016)

Supplementary Table 1.8: Validation of PSP amplitudes (see Figure1.4C). PC to CCKBC and Ivy are
not shown on the figure for visualization purpose. In some cases (indicated with †) outliers were
removed from the reference data (see published reference data in Supplementary Table 1.5). M-type
abbreviations are as in Figure 1.3C.

Pre Post Reference data (mV) Model (mV) Reference

PC PC 0.7±0.5 0.68±0.43 Deuchars and Thomson (1996)

AA PC 0.51±0.07 0.51±0.21 Pawelzik et al. (1999)
BS PC 0.55±0.15 0.55±0.24 Pawelzik et al. (2002)
CCKBC PC 0.7±0.5 0.68±0.26 Pawelzik et al. (2002)
Ivy PC 0.8±0.4 0.82±0.35 Fuentealba et al. (2008)
PVBC PC 0.83±0.37 0.83±0.23 Pawelzik et al. (2002)
SCA PC 0.38 0.39±0.17 Pawelzik et al. (2002)
Tri PC 0.8 0.81±0.36 Pawelzik et al. (2002)

PC BS 0.95±0.3 0.96±0.54 Pawelzik et al. (2002)
PC CCKBC 2±2.1 1.85±0.67 Pawelzik et al. (2002)
PC Ivy 2.9±2.2 2.65±2 Fuentealba et al. (2008)
PC O-LM 0.3±0.13† 0.3±0.21 Ali and Thomson (1998)
PC PVBC 1±0.4† 1±0.75 Ali et al. (1998)

(PV)BC (PV)BC 0.25 0.25±0.15 Cobb et al. (1997)
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2 Cortical synapse physiology in silico

The data presented in this chapter is taken from our preprint: J.B. Isbister*. A. Ecker*, C.

Pokorny*, S. Bolaños-Puchet*, D. Egas Standander* et al. (2023) Modeling and Simulation

of Neocortical Micro- and Mesocircuitry. Part II: Physiology and Experimentation. bioRxiv;

doi: 10.1101/2023.05.17.541168

Contribution: As the preprint covers diverse topics and has 40 authors, I did not include

the entire manuscript, but cut out the parts I have contributed most to. (A detailed

author contribution can be found at the end of the preprint.) Technically, I applied the

pipeline presented in Chapter 1 to the synapses of an other brain region. This included a

literature review, synapse physiology parameter calibration and validation, creation of

the figures (except the first one shown in this Chapter) and tables and writing the first

version of the corresponding sections in the manuscript. Since the pipeline is motivated,

described, and discussed in the previous Chapter, this one only has a Results section

(and a short one with the additional methodology). The Abstract is not the preprint’s but

newly written to reflect the aboves.

Abstract

Alongside their many strengths, detailed, large-scale models are excellent tools for integrating

data from different sources. As the flow of experimental data is continuous, data integration

has to be a regular exercise as well. Therefore, when building the latest version of our bio-

physically detailed, multi-scale model of the rat non-barrel primary somatosensory cortex, we

took into account recently published experimental results about synaptic physiology and the

propagation of activity across cortical layers. This process allowed us to update some of our

general synapse parameters to pathway-specific ones and to provide a high-level validation of

the anatomy and physiology of both the thalamocortical and the recurrent cortico-cortical

synapses. By recreating a recent laboratory experiment in silico, we not only validated the flow

of thalamus-evoked activity from layer 4 to layer 2/3 in our circuit, but also went beyond the
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Chapter 2. Cortical synapse physiology in silico

original experiment and provided predictions about how the other cortical layers influence

the subthreshold activity of layer 2/3 excitatory cells. In summary, as many other elements

of the new version of the model, the physiology of its synapses also improved. Furthermore,

inspired by recent experiments, we set up a paradigm which led to new predictions about the

interactions of cortical layers.

2.1 Results

The workflow for determining a dense parameter set for all synaptic pathways, starting with

sparse data from the literature, is described for the use case of hippocampal CA1 in Chapter 1

(Figure 1.1).

2.1.1 Cortico-cortical synapse physiology

To parametrize the cortico-cortical synapses with the non-barrel primary somatosensory

cortex (nbS1; Figure 2.1), we enriched the paired-recording data sources used in Markram

et al. (2015) with recently published ones. To further constrain the variance of excitatory

postsynaptic potential (EPSP) amplitudes in layer 5 thick-tufted pyramidal cells (L5 TTPCs),

we used parameters from Barros-Zulaica et al. (2019). Furthermore, the dataset was also

enriched with recent recordings from L6 (Qi and Feldmeyer, 2016; Yang et al., 2020, 2022).

Compared to the hexagonal bounding boxes used in Markram et al. (2015), we built the new

version of the model in an atlas-based manner (Figure 2.1;Reimann et al., 2022a). In order

to follow the curvature of the cortical atlas, morphologies had to be tilted, which shifted the

locations of synapses between them to an unknown degree. Furthermore, single cell models

were re-optimized with additional ion channels (Figure 2.1 step 2, Supplementary Figure

4.7A for exemplary conductance densities; Reva et al., 2022). Although, the propagation of

EPSPs along the dendrites of L5 TTPCs were validated as part of the re-optimization process

(Supplementary Figure 4.7B2), PSP attenuation in other cell types might have changed. As

somatic PSP amplitudes depend not only on the calibrated peak synaptic conductances, but

on the location of synapses and on the physiology of the postsynaptic cells as well (Figure

1.2) not all synapse parameters from Markram et al. (2015) could be used as they were, but

had to be re-adjusted (Figure 2.1 step 3). The resulting pathway-specific parameters are

listed in Tables 2.1, 2.2, and 2.3, the most common short-term dynamics are depicted in

Figure 2.2A1-2, and the assignment of STP profiles to different pathways are shown in Figure

2.2A3. PSP amplitudes and their coefficient of variation (CV; std/mean) closely matched their

biological counterparts (r = 0.99, n = 27; Figure 2.2B1; Supplementary Table 2.4 and r = 0.63,

n = 10; Figure 2.2C1; Supplementary Table 2.5, respectively). The dense parameter set also

allowed prediction of PSP amplitudes and CVs for all cortical pathways (Figure 2.2B2, C2).

The frequency of miniature postsynaptic currents (mPSCs) were also in line with in vitro

measurements (r = 0.92, n = 5; Figure 2.2D; Supplementary Table 2.6; see Methods).

40



2.1 Results

4.2M
NEURONS

13.2B
SYNAPSES

8CORTICAL
SUB-REGIONS

36mm3

1. ANATOMICAL MODEL

LOCAL
THALAMIC
INTER-REGIONAL

CONNECTIVITY:

Reimann et al., 2022

Reva et al., 2022 DATA

3. SYNAPTIC PHYSIOLOGY

Amplitude

τ
c.v.

Kinetics Dynamics

Paired in vitro somatic recordings
(30 pathways)

Pre Vm

Post Vm

AMPA, NMDA, GABA

5 types of dynamics

Multi-vesicular release

Parameters fit to
in vitro recordings

gsyn

Facilitating

Depressing

MODELING

5. IN VIVO-LIKE ACTIVITY

LAYER-WISE VALIDATION +
CHARACTERIZATION:

Firing rates
Emergent dynamics

PSTHs
Latencies
Response magnitude

Spontaneous

Stimulus-evoked

4. COMPENSATION FOR
MISSING SYNAPSES

X

X

66% of synapses missing from
the rest of the brain

Algorithm finds layer-specific
compensation

7. OPEN SOURCE

210K neuron subvolume

Simulation software openly available

6. IN SILICO EXPERIMENTATION

RECREATING/EXTRAPOLATING IN VIVO:
HYPOTHESES LINKING STRUCTURE TO FUNCTION

Varani et al., 2022 Yu et al., 2019
Shapiro et al., 2022 Reyes-Puerta
Prince et al., 2021 et al., 2015

MODELINGDATA

2. NEURON PHYSIOLOGY

ION CHANNELS

MORPHOLOGY ELECTRICAL MORPHO-ELECTRICAL

Somatic Dendritic

1,017 unique
morphologies

60 m-types

208 me-types

Ion channel
conductances optimized
to match recordings

Standardized in vitro
recordings

11 e-types

Kinetics & distributions

K+...

Mouse
Rat

Adult
Juvenile

Region
Other region

DATA GENERALIZATIONS

Figure 2.1: Overview of the physiology workflow of the cortical network model: The rendering of the
whole nbS1 in the middle was done in Brayns. The "pulled out" seven column subvolume corresponds
in size to our previous model (Markram et al., 2015). The boxes around it schematize the steps of the
physiology workflow. Blue boxes correspond to the whole preprint (Isbister et al., 2023), while the
pink ones to the parts that are described in detail in this Chapter. 1. Anatomical model: Summary
of the anatomical nbS1 model described in Reimann et al. (2022a). 2. Neuron physiology: Neurons
were modeled as multi-compartment models with ion channel densities optimised using previously
established methods and data from somatic and dendritic recordings of membrane potentials in
vitro (Reva et al., 2022). 3. Synaptic physiology: Models of synapses were built using previously
established methods and data from paired recordings in vitro (Markram et al., 2015; Ecker et al., 2020).
4. Compensation for missing synapses: Excitatory synapses originating from outside nbS1 were
compensated with noisy somatic conductance injection, parameterized by a novel algorithm. 5. In
vivo-like activity: We calibrated an in silico activity regime compatible with in vivo spontaneous and
stimulus-evoked activity. 6. In silico experimentation: Five laboratory experiments were recreated.
Two were used for calibration and three of them were extended beyond their original scope. 7. Open
Source: Simulation software and a seven column subvolume of the model are available on Zenodo.
Data generalisations: Three data generalisation strategies were employed to obtain the required data.
Left: Mouse to rat, middle: Adult to juvenile rat, right: Hindlimb and barrel field subregions to the
whole nbS1. Corresponding purple icons throughout the figure show where these strategies were used.

41



Chapter 2. Cortical synapse physiology in silico

Pair of L5 TTPCs and
pre- and postsynaptic voltage traces

100 μm

A1

M
ea

n 
PS

P 
am

pl
itu

de
 (m

V)
M

ea
n 

C
V 

of
 P

SP
 a

m
pl

itu
de

E1

E2

I1

I2

I3

ST
P 

ty
pe

Postsynaptic cell type

Pr
es

yn
ap

tic
 c

el
l t

yp
e

Pr
es

yn
ap

tic
 c

el
l t

yp
e

Pr
es

yn
ap

tic
 c

el
l t

yp
e

in
 s

ilic
o

PS
P 

am
pl

itu
de

 (m
V)

PSP amplitude (mV)
in vitro

CV of first PSp amplitude
in vitro

in
 s

ilic
o

C
V 

of
 fi

rs
t P

SP
 a

m
pl

itu
de

Pr
es

yn
. V

m
Po

st
yn

. V
m

E depressing: E2 I depressing: I2

I facilitating: I1

I pseudo-linear: I3

Additional synapse classes

PSP amplitude validation

PSP amplitude CV validation PSP amplitude CV predictions

PSP amplitude predictionsB1 B2

C1 C2

r = 1.0
(n = 21)

r = 0.6
(n = 10)

A3 Synapse classes

mPSC frequency (Hz)
in vitro

in
 s

ilic
o

m
PS

C
 fr

eq
ue

nc
y 

(H
z)

mPSC frequency validation

r = 0.9
(n = 5)

D

A2

E facilitating: E1

300 ms

Figure 2.2: In silico synapse physiology. A: Exemplary pair of L5 TTPCs (visualized with NeuroMorpho-
Vis (Abdellah et al., 2018)). Presynaptic cell in gray, postsynaptic cell in red, synapses between them
in purple. Neurite diameters are enlarged (x3) for visibility and axons were cut to fit into the figure.
Pre- and postsynaptic voltage traces on the top right. A2: Exemplary postsynaptic traces with different
STP profiles. A3: Assignment of STP profiles to viable pathways. (Pathways were considered viable
if there were at least 10 connections in all eight subregions of the model.) B1: Validation of first PSP
amplitudes. Dashed gray line represents perfect correlation between experimental and model values.
Error bars show one standard deviation (also for C1 and D). B2: Predicted PSP amplitudes of all viable
pathways in the circuit. Postsynaptic cells were held at -70 mV using an in silico voltage-clamp. Means
were calculated over 100 pairs of neurons with 35 repetitions each. C1 and C2: same as B1 and B2, but
showing the CV of the first PSP amplitude. D: Validation of mPSC frequencies.

2.1.2 Thalamocortical synapse physiology

The model includes fibers from the thalamus, based on fibres projecting to the barrel cortex

from the ventral posteriomedial (VPM) and posteriormedial (POm) thalamic nuclei (Reimann

et al., 2022a). These fibres make synaptic contacts within a radius of the fiber probabilisti-

cally based on laminar innervation profiles (Figure 2.3A). To improve the physiology of VPM
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synapses, synaptic peak conductances were constrained using EPSP amplitude measurements

from thalamocortical slices (Figure 2.3B; Beierlein and Connors, 2002; Beierlein et al., 2003),

instead of generalizing cortico-cortical L4 excitatory parametersets as in Markram et al. (2015).

Latencies of layer-wise EPSPs increased with distance from the thalamus (Figure 2.3C). Ad-

ditionally, thalamocortical EPSP amplitudes normalized relative to a single population were

compared to normalized EPSPs in response to optogenetic stimulation targeting bundles of

thalamic fibers in mice (Sermet et al., 2019). This provided contrasting insights, however.

For example, whilst VPM to L6 inhibitory EPSPs match the initial validation data (Figure

2.3B), VPM to L6 parvalbumin (PV+) interneuron responses appear too strong relative to other

populations (Figure 2.3D1). The results suggest that the model’s POm to L5 excitatory pathway

is too weak, when compared to other POm to excitatory and all POm to PV+ pathways (Figure

1.4H2, right).
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Figure 2.3: In silico synapse physiology. A: Location of synapses from VPM fibers (purple) and POm
fibers (red) on 38 neurons (dark gray) in a 5µm radius column (visualized with BioExplorer). B:
Validation of thalamocortical EPSP amplitudes (as in Figure 2.2B1). The four pathways used for the
validation are marked with a black rectangle on D1 to its right. C: EPSP latencies (time from presynaptic
spike to the rise to 5% of peak EPSP amplitude in the postsynaptic trace). D1 Left: mean VPM evoked
EPSP amplitudes on postsynaptic cell types (over 50 pairs). Right: Comparison of normalized in silico
amplitudes (normalized by L4 excitatory as in Sermet et al., 2019) to in vitro reference data from Sermet
et al. (2019). Heatmap shows model minus reference values, thus positive values indicate a higher
normalized EPSP amplitude in our model than in the reference experimental dataset. D2: same as D1
but for POm (normalized by L5 excitatory as in Sermet et al., 2019).
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Table 2.1: Excitatory synaptic pathways. Average class parameters are marked in bold and are used
predictively (in lack of reference in vitro data) for the remaining pathways belonging to the same class.
Physical dimensions are as follows: peak conductance ĝ : nS, depression and facilitation time constants
D and F : ms, the release probability USE and the average number of vesicles in the release-ready pool
NRRP are dimensionless. All excitatory synaptic currents have a decay time constant of 1.74±0.18 ms.
(Proximal Targeting (PT) inhibitory mtypes: N/L/SBC, CHC. N/LBC etypes: cACint, cIR, bAC, bIR,
cNAC have E1, while the rest of etypes; and SBC and CHC mtypes have E2 short-term dynamics. Distal
Targeting (DT) inhibitory mtypes: MC, BP, DBC, BTC, of which MCs and the cACint e-type of BTC and
DBC mtypes are Sst+. L1_GABAB- comprise all non NGC mtypes in L1)

Pre Post ĝ USE D F NRRP

PC to Sst+IN (E1)

PC MC 0.2±0.1 0.09±0.12 138±211 670±830 1.5
PC PT 0.6±0.5 0.02±0.00 194±18 507±37 4.5
PC DT 0.2±0.1 0.02±0.00 194±18 507±37 1.5

PC to PC (E2)

L23_PC L23_PC 1.0±0.5 0.46±0.26 671±17 17±5 2.6
L4_PC L4_PC 0.6±0.3 0.86±0.09 671±17 17±5 1.0
L4_SSC L23_PC 0.2±0.1 0.79±0.04 671±17 17±5 1.8
L5_STPC L5_STPC 0.9±0.3 0.39±0.03 690±90 44±21 1.0
L5_TTPC L5_TTPC 1.9±1.0 0.38±0.10 365±100 25±45 2.8
L23_PC L5_TTPC 0.5±0.2 0.50±0.02 671±17 17±5 1.5
L4_SSC L5_STPC 0.6±0.3 0.50±0.02 671±17 17±5 1.2
L4_SSC L6_PC 0.4±0.2 0.50±0.02 671±17 17±5 1.0
L6_TPC:A L6_TPC:A 1.0±0.5 0.37±0.11 280±90 90±80 1.0
L6_TPC:C L6_TPC:C 0.5±0.2 0.23±0.06 420±340 200±130 1.0
L6_IPC L6_IPC 0.9±0.3 0.23±0.06 420±340 200±130 1.0
L6_PC to same L6_PC 0.8±0.2 0.23±0.06 420±340 200±130 1.0
L6_TPC:A L6_TPC:C 1.2±0.5 0.23±0.06 420±340 200±130 1.0
L6_TPC:A L6_BPC 0.3±0.1 0.23±0.06 420±340 200±130 1.0
L6_TPC:C L6_IPC 0.2±0.1 0.23±0.06 420±340 200±130 1.0
L6_IPC L6_BPC 0.4±0.1 0.23±0.06 420±340 200±130 1.0
L6_BPC L6_TPC:A 0.2±0.1 0.23±0.06 420±340 200±130 1.0
L6_PC to diff. L6_PC 0.5±0.4 0.23±0.06 420±340 200±130 1.0
PC PC 0.7±0.4 0.50±0.02 671±17 17±5 1.5

PC to Sst-IN (E2)

PC NBC 0.6±0.4 0.72±0.12 227±70 13±24 4.5
PC PT 0.6±0.5 0.50±0.02 671±17 17±5 4.5
PC L1_GABAB- 0.3±0.1 0.50±0.02 671±17 17±5 1.5
L6_TPC:A L6_BC 0.4±0.1 0.58±0.13 240±80 70±90 1.5
L6_TPC:C L6_BC 0.4±0.1 0.36±0.21 380±310 280±340 1.5
L6_IPC L6_BC 0.3±0.1 0.51±0.20 440±300 100±50 1.5
L6_PC L6_BC 0.4±0.1 0.47±0.21 370±290 155±215 1.5
PC IN 0.4±0.1 0.50±0.02 671±17 17±5 1.5
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Table 2.2: Inhibitory synaptic pathways. Bold entries and physical dimensions as in Table 2.1 +τdecay :
ms. (Proximal Targeting (PT) inhibitory mtypes: N/L/SBC, CHC. N/LBC etypes: cNAC, dSTUT, cSTUT,
bSTUT have I3, while the rest of etypes; and SBC (except: cACint and dNAC) and CHC mtypes have I2
short-term dynamics. DT and L1_GABAB- as in Table 2.1.

Pre Post ĝ USE D F NRRP τdecay

IN to PC (I1)

L6_BC L6_BC 2.3±0.5 0.16±0.10 45±21 376±253 1.0 10.40±6.20
SBC (cACint) PC 1.9±1.0 0.16±0.10 45±21 376±253 3.3 10.40±6.20

IN to PC and IN (I2)

MC PC 3.0±1.5 0.30±0.08 1250±520 2±4 1.0 8.30±2.20
DT PC 3.0±1.5 0.25±0.13 706±405 21±9 1.0 8.30±2.20
NBC PC 1.9±1.0 0.14±0.05 875±285 22±5 3.3 8.30±2.70
NGC PC 0.2±0.1 0.25±0.13 706±405 21±9 1.0 36.50±1.30
L1_GABAB- PC 0.3±0.1 0.25±0.13 706±405 21±9 1.0 8.30±2.20
SBC (dNAC) PC 1.9±1.0 0.25±0.13 706±405 21±9 3.3 8.30±2.20
IN * 2.3±0.5 0.25±0.13 706±405 21±9 1.0 8.30±2.20

IN to PC (I3)

L6_BC L6_PC 1.9±1.0 0.44±0.25 195±190 200±320 1.0 10.40±6.20
PT PC 1.9±1.0 0.32±0.14 144±80 62±31 3.3 6.40±1.70

Table 2.3: Thalamocortical synaptic pathways. Values taken from the internal connectivity (Table 2.1)
are marked in bold. Physical dimensions are the same as in Table 2.1. Sst+ inhibitory mtypes: MC and
DBC, BTC (cACint etype only). PV+ inhibitory mtypes: N/LBC, CHC. 5HT3aR+ mtypes: the rest of the
mtypes not listed above (e.g. NGC, SBC, and everything in L1).

Pre Post ĝ USE D F NRRP

VPM, POm to Sst+IN (E1)

* Sst+ 0.2±0.1 0.09±0.12 138±211 670±830 1.5

VPM, POm to PC (E2)

VPM L23_PC 1.7±0.6 0.75±0.1 671±17 17±5 1.5
VPM L4_PC 1.1±0.4 0.75±0.1 671±17 17±5 1.5
VPM L56_PC 2.4±0.9 0.75±0.1 671±17 17±5 1.5
POm PC 1.7±0.6 0.75±0.1 671±17 17±5 1.5

VPM, POm to PV+IN (E2)

VPM L4_PV+ 1.4±0.4 0.72±0.12 227±70 13±24 4.5
VPM L6_PV+ 3.1±1.0 0.72±0.12 227±70 13±24 4.5
VPM L235_PV+ 2.2±0.4 0.72±0.12 227±70 13±24 4.5
POm PV+ 2.2±0.4 0.72±0.12 227±70 13±24 4.5

VPM, POm to 5HT3aR+IN (E2)

* 5HT3aR+ 0.4±0.1 0.50±0.02 671±17 17±5 1.5
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2.1.3 L4’s contribution to L2/3 responses during whisker hold stimulus

In the canonical model of the cortex (reviewed e.g., in Lübke and Feldmeyer, 2007; Feldmeyer,

2012) information from the thalamus arrives to L4, then propagates to L2/3, from there to L5

(which serves as the main cortico-cortical output layer) and lastly to L6 (which projects back

to the thalamus). The coordinated action of all layers of the primary somatosensory cortex is

required for high-level behavioral tasks (Park et al., 2020). As the canonical model is based

on the highest layer-wise density of axons, it cannot describe all interactions in the cortex.

For example VPM does not only innervate L4, but also the border of L5 and L6, as well as the

bottom of L2/3 (Figure 2.3A; Meyer et al., 2010; Constantinople and Bruno, 2013; Sermet et al.,

2019).

To study how L4 contributes to the stimulus preference of L2/3 PCs, Varani et al. (2022) used

optogenetic inactivation of L4 PCs during whisker stimulation and quantified the changes in

the subthreshold response of L2/3 PCs. They found, that the early phase of the subthreshold

response significantly differed from the control condition, if the whisker was deflected in

either the most or the least preferred direction (see the top and bottom rows of their Figure

5B, C). From this they concluded that both L4 and VPM contribute to the direction tuning of

L2/3 PCs. After reproducing their experimental conditions in silico (Figure 2.1 step 6; Figure

2.4A-D; see Methods) we confirmed that we can reproduce their results, i.e., subthreshold

responses of L2/3 PCs decreased, when L4 PCs were inhibited (Figure 2.4E for preferred

direction whisker stimulation; see Methods). This exercise can also be seen as a high-level,

independent validation of the model’s synaptic anatomy and physiology.

We then leveraged our in silico setup to study what Varani et al. (2022) could not, because of

methodological limitations. In our reading, the authors aimed to test how direct excitatory

connections from L4 PCs to L2/3 PCs influence the stimulus representation in L2/3. This

connection can not specifically be blocked in vivo, instead (95% of) the L4 PC population

is inhibited (as well as some lower L3 PCs). In our setup we could selectively block the

connection and found almost the same result (compare Figure 2.4E and F, left). This extends

the conclusion of Varani et al. (2022): L4 PCs contribute to the stimulus preference of L2/3 PCs

via direct excitatory connections, and not via disynaptic inhibition.

The authors also discussed studying L5 PCs’ contribution to L2/3 responses (as a large fraction

of L5 PC axons terminate in L2/3), but this is infeasible with current mouse lines. Leveraging

our model, we found that L5 contributes much less to subthreshold L2/3 traces than L4 (Figure

2.4F, right). Extending to other presynaptic layers, we found that the contribution of L2/3 is

similar to that of L4, whereas inputs from L6 are negligible (Figure 2.4F, right). Whilst mouse

lines targeting L5 PCs might might arrive soon (which could validate our predictions), blocking

L2/3 connections between L2/3 cells without hyperpolarizing the same L2/3 population seems

only achievable in silico.
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Figure 2.4: Reproducing and extending Varani et al. (2022) in silico. A: Schematics of whisker kinetics
and VPM fiber rates during 500 ms long whisker hold stimulus. Fraction of VPM fibers coding for each
kinetic feature are taken from Petersen et al. (2008). B: Mimicking the effect of activation of the Halo
inhibitory opsin in silico. Injected somatic hyperpolarizing current mimicking opsin activation (top),
and the resulting somatic voltage trace from a combination of injected conductance, current, and
synaptic PSPs from the network (bottom). C: Raster plots of the microcircuit’s activity and population
firing rates below. C1: Control conditions, C2: 95% of L4 excitatory cells inhibited (by direct somatic
current injection depicted in B above). D: Voltage traces of all L2/3 (top) and all L4 (bottom) excitatory
cells. Panels show spiking traces (top), and subthreshold traces (bottom). D1 and D2 depict the same
conditions as C above. E:: Comparison of average traces from selected L2/3 PCs in control (black) and
optogenetically inhibited (green) conditions. F: Same as E, but instead of mimicking the optogenetic
inhibition of L4 excitatory cells, only the connections to L2/3 PCs are "cut" (compare inset with the one
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L4 only for a better visual comparison with the conditions of Varani et al. (2022) in E.
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2.2 Methods

2.2.1 Parametrization of spontaneous vesicle release

As an additional source of biorealistic variability to the network simulations, single vesicles

spontaneously released with a low frequency. To calibrate the mPSC frequencies of different

pathways, single cell simulations with different values of the spontaneous release frequency

for all synapses of a set of 1000 cells in a given pathway were run. In these simulations, in

silico voltage-clamp recordings were performed to measure the resulting mPSC frequency

at the soma. This data was then fitted with a logarithmic function and the value of the

spontaneous release frequency matching the in vitro reference value for the mPSC frequency

was interpolated. As in vitro paired recording data is sparse, all available sources to determine

synaptic parameters were re-used for validation.

2.2.2 Reproducing Varani et al. (2022) in silico

To study how input from L4 contributes to L2/3 subthreshold responses Varani et al. (2022)

used a 500 ms long whisker hold paradigm, while patch-clamping PCs in L2/3 in anesthetized

and awake mice. The whisker hold stimulus was encoded as a step function (1, if 2000 ms ≤ t

< 2500 ms, 0 otherwise) in 10% of the VPM fibers. One of four transfer functions were assigned

to each fiber, based on the types of kinetic response properties of thalamic neurons identified

in (Petersen et al., 2008). The types were selective for whisker position (υpos), velocity (υvel ),

acceleration (υacc ), or direction (υdi r ), and were implemented as:

υpos(t ) = rmax · x(t )

υvel (t ) = rmax ·
(
x(t +1)−x(t )

)
υacc (t ) = rmax ·

(
x(t +1)−2x(t )+x(t −1)

)
υdi r (t ) = rmax · |x(t +1)−x(t )|+

(2.1)

where rmax = 150 Hz is the firing rate of a thalamic fiber when its associated feature property is

at the fiber’s preferred value and x(t ) is the whisker position. Transfer functions were randomly

assigned to fibers with the fractions identified in Petersen et al. (2008) (Figure 2.4A, 11% coding

for position and acceleration, 58% for velocity and 20% for direction). The spiking process was

an adapting Markov process (Muller et al., 2007) with an adaptation time constant of 100 ms

evaluated at every 0.1 ms.

The optogenetic inhibition in Varani et al. (2022) targeted 95% of excitatory cells in L4. The

authors found a few cells which also tested positive for the inhibitory opsin Halo at the bottom

of L3 as well, but as they did not quantify it, lower L3 PCs were not targeted in the in silico

version of the experiment. Optogenetic inhibition of the target L4 excitatory population was

modeled through a current injection at the soma of these cells, with an intensity proportional

to the cell’s threshold current (see Reva et al., 2022). To mimic the conditions of surface
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illumination, the dependence of effective depolarization strength on cortical depth using a

modified Beer-Lambert law approximation was considered (Al-Juboori et al., 2013; Azimipour

et al., 2014):

I (d) = I0 exp(−µe f f d) (2.2)

where I (d) describes the light intensity at depth d (in mm), with a maximum light intensity I0

(on the surface of the cortex) and an effective attenuation coefficient given by:

µe f f =
√

3µa(µa +µ′
s) (2.3)

Based on the 595 nm wavelength (yellow light) the absorption coefficient µa ≈ 0.49 mm−1 and

reduced scattering coefficient µ′
s ≈ 4.12 mm−1 were used (Mesradi et al., 2013). L4 excitatory

cells were binned into 5 depth bins and for all cells belonging to the given bins the light

intensity at the center of the bin was used. After scanning several values, I0 was set to -200%

as that reproduced the ≈ 10 mV hyperpolarization of L4 PCs observed in vivo. In line with the

in vivo experiment, the optogenetic stimulus ended in a (100 ms long) ramp to avoid rebound

spikes (Figure 2.4B).

When going beyond reproducing the same experimental conditions and instead leveraging

the in silico nature of our setup, synaptic pathways were lesioned by selecting the excitatory

population in a given layer as the presynaptic population and the excitatory population in

L2/3 as the postsynaptic population and not instantiating the connecting synapses during the

simulation.

L2/3 PCs had to meet three criteria to be included in the subsequent analysis. Firstly, their

activity was required to remain subthreshold during the 500 ms long whisker hold stimulus

and in 200 ms long time windows before and after the stimulus, both in control and in silico

optogenetic runs. Second, they had to be innervated by at least one (active) VPM fiber. Third,

the derivative of their voltage trace had to cross the 1 mV/ms threshold in a 20 ms time window

after stimulus onset in the control simulation. The last two were motivated by comparing

subthreshold voltages to voltage traces from Varani et al. (2022) that showed large, stimulus

evoked EPSPs. Around 8% of L2/3 PCs in the central column met all the above criteria and

their voltages were averaged to arrive to the traces shown in Figure 2.4E-F. Thus, unlike in the

original analysis, cells rather than trials were averaged. The motivation for this approach is

that while in vivo it is easier to repeat the same paradigm after establishing stable recording

conditions in a given cell, in silico it is quicker to record from all cells in a single simulation,

instead of repeating the stimulus several times.

2.3 Supplementary Tables
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Supplementary Table 2.4: Validation of PSP amplitudes. Thick-tufted (TT) mtypes: L5_TPC:A,
L5_TPC:B. Slender-tufted (ST) mtypes: L5_TPC:C, L5_UPC.

Pre Post in vitro (mV) in silico (mV) Reference

L23_PC L23_PC 1.00±0.70 0.99±0.67 Feldmeyer et al. (2006)
L23_PC L5_TTPC 0.30±0.30 0.30±0.24 Reyes and Sakmann (1999)
L4_EXC L4_EXC 1.59±1.51 1.62±1.31 Feldmeyer et al. (1999)
L4_SSC L23_PC 0.70±0.60 0.66±0.34 Feldmeyer et al. (2002)
L4_SSC L5_STPC 0.60±0.40 0.59±0.33 Feldmeyer et al. (2005)
L4_SSC L6_PC 0.29±0.16 0.30±0.30 Qi and Feldmeyer (2016)
L5_TTPC L5_TTPC 1.30±1.10 1.24±0.73 Markram et al. (1997a)
L5_STPC L5_STPC 0.80±0.20 0.75±0.40 Le Bé et al. (2007)
L6_BPC L6_TPC:A 0.21±0.00 0.22±0.15 Berger (2009)
L6_IPC L6_BPC 0.42±0.18 0.42±0.21 Berger (2009)
L6_IPC L6_IPC 1.05±0.31 1.09±0.81 Berger (2009)
L6_TPC:C L6_IPC 0.18±0.00 0.19±0.13 Berger (2009)
L6_TPC:C L6_TPC:C 0.43±0.22 0.43±0.29 Berger (2009)
L6_TPC:A L6_BPC 0.32±0.27 0.31±0.17 Berger (2009)
L6_TPC:A L6_TPC:C 1.19±0.15 1.10±0.63 Berger (2009)
L6_TPC:A L6_TPC:A 1.51±0.98 1.45±1.11 Berger (2009)

L23_PC L1_GABAB- 1.10±0.30 1.09±0.83 Wozny and Williams (2011)
L4_EXC L4_FS 2.20±2.20 2.17±2.46 Beierlein et al. (2003)
L5_TTPC L5_MC 0.28±0.30 0.28±0.33 Silberberg and Markram (2007)
L6_IPC L6_BC 1.59±1.60 1.56±1.48 Berger (2009)
L6_TPC:A L6_BC 2.20±3.28 2.02±1.44 Berger (2009)
L6_TPC:C L6_BC 1.29±1.65 1.28±0.84 Berger (2009)
L6_PC L6_MC 0.20±0.12 0.15±0.14 Berger (2009)

L1_NGC L23_PC 0.58±0.10 0.54±0.41 Wozny and Williams (2011)
L1_GABAB- L23_PC 0.27±0.04 0.26±0.13 Wozny and Williams (2011)
L4_FS L4_EXC 1.10±0.80 1.14±0.81 Beierlein et al. (2003)
L5_MC L5_TTPC 0.50±0.40 0.47±0.25 Silberberg and Markram (2007)

VPM L4_EXC 2.40±2.00 2.51±2.10 Beierlein et al. (2003)
VPM L4_FS 4.10±3.20 4.09±2.52 Beierlein et al. (2003)
VPM L6_EXC 1.20±0.80 1.28±1.96 Beierlein and Connors (2002)
VPM L6_FS 3.90±3.50 3.11±2.57 Beierlein and Connors (2002)

50



2.3 Supplementary Tables

Supplementary Table 2.5: Validation of first PSP amplitudes’ CVs. (TT and ST as in Supplementary
Table 2.4)

Pre Post in vitro (mV) in silico (mV) Reference

L4_EXC L4_EXC 0.37±0.16 0.25±0.06 Feldmeyer et al. (1999)
L4_EXC L4_FS 0.27±0.13 0.38±0.25 Beierlein et al. (2003)
L4_FS L4_EXC 0.25±0.11 0.28±0.09 Beierlein et al. (2003)
L4_SS L5_STPC 0.33±0.20 0.43±0.06 Feldmeyer et al. (2005)
L4_SS L6_PC 0.50±0.11 0.51±0.06 Qi and Feldmeyer (2016)
L4_SS L23_PC 0.27±0.13 0.32±0.07 Feldmeyer et al. (2002)
L5_TTPC L5_TTPC 0.31±0.14 0.39±0.09 Barros-Zulaica et al. (2019)
L5_STPC L5_STPC 0.58±0.24 0.51±0.06 Le Bé et al. (2007)
L23_PC L23_PC 0.33±0.18 0.43±0.15 Feldmeyer et al. (2006)
L234_PC L234_NBC 0.32±0.08 0.21±0.08 Wang et al. (2002)

Supplementary Table 2.6: Validation of mPSC frequency. (Cortico-cortical (CC) mtypes: L6_UPC,
L6_IPC, L6_HPC. Cortico-thalamic (CT) mtypes: L6_TPC:A, L6_TPC:C.)

Pre Post in vitro (Hz) in silico (Hz) Reference

E L23_PC 8.20±2.90 9.36±4.38 Brasier and Feldman (2008)
E L4_PC 11.90±2.40 15.64±7.84 Brasier and Feldman (2008)
E L6_CC 2.80±0.80 3.87±2.14 Yang et al. (2020)
E L6_CT 0.95±0.36 1.41±0.74 Yang et al. (2020)
I L5_PC 21.10±4.80 16.06±6.74 Ling and Benardo (1999)
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3 Cell assemblies and their underlying
connectivity

This chapter is indentical to our preprint: A. Ecker*, D. Egas Standander*, S. Bolaños-

Puchet, J.B. Isbister, M.W. Reimann (2023) Cortical cell assemblies and their underlying

connectivity: an in silico study. bioRxiv; doi: 10.1101/2023.02.24.529863

Contribution: I came up with the concept of detecting assemblies in our simulations

after reviewing the literature, set up and ran all the simulations, wrote the biggest part of

the open source analysis package, created all the figures and the open source data set,

and participated in writing the manuscript. (A more detailed author contribution can be

found at the end of the chapter.)

Abstract

Recent developments in experimental techniques have enabled simultaneous recordings from

thousands of neurons, enabling the study of functional cell assemblies. However, determining

the patterns of synaptic connectivity giving rise to these assemblies remains challenging. To

address this, we developed a complementary, simulation-based approach, using a detailed,

large-scale cortical network model. Using a combination of established methods we detected

functional cell assemblies from the stimulus-evoked spiking activity of 186,665 neurons. We

studied how the structure of synaptic connectivity underlies assembly composition, quantify-

ing the effects of thalamic innervation, recurrent connectivity, and the spatial arrangement of

synapses on dendrites. We determined that these features reduce up to 30%, 22%, and 10% of

the uncertainty of a neuron belonging to an assembly. The detected assemblies were activated

in a stimulus-specific sequence and were grouped based on their position in the sequence.

We found that the different groups were affected to different degrees by the structural features

we considered. Additionally, connectivity was more predictive of assembly membership if its

direction aligned with the temporal order of assembly activation, if it originated from strongly

interconnected populations, and if synapses clustered on dendritic branches. In summary,

reversing Hebb’s postulate, we showed how cells that are wired together, fire together, quanti-
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Chapter 3. Cell assemblies and their underlying connectivity

fying how connectivity patterns interact to shape the emergence of assemblies. This includes

a qualitative aspect of connectivity: not just the amount, but also the local structure matters;

from the subcellular level in the form of dendritic clustering to the presence of specific network

motifs. This connectivity-based characterization of cell assemblies creates an opportunity to

study plasticity at the assembly level, and beyond strictly pairwise interactions.

Keywords: Cell assemblies, simulation, connectivity, network topology, synapse clustering

3.1 Introduction

The formulation of the cell assemblies concept goes back to Hebb (1949), who defined them

loosely as "a diffuse structure comprising cells in the cortex". In the past 70 years, the sequential

activation of groups of neurons, the Hebbian "phase sequence" was linked to several complex

cognitive processes, reviewed in Harris (2005) and Buzsáki (2010). Hebb’s idea was later para-

phrased as "cells that fire together, wire together" (Shatz, 1992), giving it both a structural, and

a functional side. In this article we will concentrate on quantifying how the cortical structure

underlies its neurons’ co-firing function, but linking these groups of co-active neurons to

cognitive processes is outside of our scope.

Cell assembly research rejuvenated in the hippocampus field when spikes could be reliably

sorted from recordings with tetrodes and therefore neurons could be grouped to co-firing

ensembles (Harris et al., 2003; Dragoi and Buzsáki, 2006; Sasaki et al., 2006; Lopes-dos Santos

et al., 2013). The introduction of modern in vivo two-photon calcium imaging into the field,

with its improved scalability and stability over time, allowed Bathellier et al. (2012) and Carrillo-

Reid et al. (2015) to detect cell assemblies in auditory and visual cortices, where they showed

how even a small set of them can serve as a backbone for cortical coding. These, and studies

that followed (Miller et al., 2014; Montijn et al., 2016; Pérez-Ortega et al., 2021) contributed

greatly to our understanding of the functional role of the Hebbian cell assemblies, but they

could not make claims about the patterns of synaptic connectivity they originate from, as they

could only predict functional connectivity from correlations in neuronal activity, but did not

have access to the underlying structural connectivity of the neurons recorded. Additionally,

results based on calcium imaging are limited to the superficial layers of the cortex, missing

potential assemblies in the deeper layers, which would be of great interest as they serve as the

output of the cortex (Feldmeyer, 2012; Harris and Shepherd, 2015).

Early theoretical work in the field explored the potential link between memories and cells

that fire and therefore wire together, concentrating on the storage and retrieval of memories

in strongly recurrent networks, such as the CA3 area of the hippocampus (Hopfield, 1982).

Theories evolved and improved, but modeling studies about cell assemblies still concentrate

on plasticity rules underlying the learning, storage and recall of various patterns (Fusi and

Abbott, 2007; Zenke et al., 2015; Krotov and Hopfield, 2016; Fauth and Van Rossum, 2019;

Kossio et al., 2021; Gastaldi et al., 2021). Thus, their focus lies on how function shapes structure,

with little or no emphasis on the biologically accurate aspects of structural connectivity, such
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as low connection probabilities and an abundance of directed motifs (Song et al., 2005; Perin

et al., 2011; Reimann et al., 2017b).

On the other hand, the perspective can be reversed: how does a more bio-realistic structural

connectivity influences a neuron’s membership in one or more assemblies, or on a more

general level: how does structure determine function? Additionally, how does innervation

from different sources, such as local connectivity and various thalamic afferents, interact

to shape assembly membership? Finally, are the afferent synapses from fellow assembly

neurons scattered across the dendritic tree, or clustered on single branches, employing the

nonlinear computational capabilities of dendrites (Poirazi et al., 2003; Stuart and Spruston,

2015; Kastellakis and Poirazi, 2019).
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Figure 3.1: Pipeline summary. A: Schematics and quick facts about the detailed, large-scale cortical
microcircuit that was used several times before to study the relationship of cortical structure and
function (Reimann et al., 2017b, 2022b; Nolte et al., 2020). B: Schematics of the assembly detection
pipeline from the spiking activity of 186,665 excitatory neurons in the circuit. C: Analysis of the
connectivity of cell assembly neurons. D: Derivation of assembly membership probability based on
different features of structural connectivity.

In order to provide insights into these questions, we employed an in silico approach, using

an improved version of the detailed, large-scale (somatosensory) cortical circuit model of

Markram et al. (2015) (Figure 3.1A), simulating the activity of tens of thousands neurons in

response to a stream of thalamic input patterns. In the model, we have access not only to

the spiking activity of every neuron, but also to the entire connectome, including dendritic

locations of synapses. We then considered the established, purely functional definition of cell

assemblies as neurons that fire together more than expected. Therefore, functional assemblies

across all cortical layers were detected using a combination of previously published methods

(Pérez-Ortega et al., 2021; Herzog et al., 2021; Figure 3.1B). We then analyzed their underlying

structural connectivity, searching for rules that could explain assembly membership (Figure

3.1C, D). This analysis of the structure-function relation could be readily applied to assemblies

detected with other methods (Lopes-dos Santos et al., 2013; Isbister et al., 2021; van der Plas

et al., 2023).
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We found that the structural strengths of afferents from various sources explained significant

portions of the uncertainty of a neuron’s membership in an assembly (Figure 3.1D). Specifi-

cally, innervation from VPM (ventral posteriomedial nucleus of the thalamus) explained up to

30%, and up to 10% from POm (posteriomedial nucleus of the thalamus). Strength of inner-

vation through recurrent local connectivity explained up to 22%. The relative magnitudes of

these effects differed between assemblies, with assemblies active immediately upon stimulus

presentation being mostly determined by the structure of the thalamic innervation, and as-

semblies active 50 ms after stimulus onset being mostly determined by recurrent connectivity.

Additionally, the effect of innervation strength on assembly membership can be much larger

if the innervating population is highly interconnected within itself, and if the synapses are

tightly clustered on the targeted dendrites (Figure 3.1D). The highly non-random structure

of this connectome provides a more efficient wiring; implementing ensembles of reliably

co-firing neurons with fewer synaptic connections than expected by chance.

3.2 Results

3.2.1 Diverse set of assemblies can be detected from network simulations

We simulated the electrical activity of a model of 2.4 mm3 of cortical tissue, comprising 211,712

neurons in all cortical layers in an in vivo-like state. The model is a version of Markram et al.

(2015) with anatomical improvements outlined in Reimann et al. (2022a) and physiological

ones in Isbister et al. (2023) (Figure 3.1A). We consider the activity to be in vivo-like, based on

a comparison of the ratios of spontaneous firing rates of sub-populations, and responses to

brief thalamic inputs to in vivo results from Reyes-Puerta et al. (2015) (as described in Isbister

et al., 2023). A stream of thalamic input patterns was applied to the model (see Methods), and

the neuronal responses recorded (Figure 3.2A1). The circuit reliably responded to the brief

stimuli with a transient increase in firing rate. This led to a slight shift to the right of the tail of

the firing rate distribution from the spontaneous state (Figure 3.2A2), in line with experiments

(Wohrer et al., 2013). The stream consisted of repeated presentations of ten different input

patterns in random order (Reimann et al., 2022b). We designed the stimuli as 10 patterns with

varying degrees of overlap (Figure 3.2B): 4 base patterns with no overlap (A, B, C, D), 3 patterns

as combinations of two of the base ones (E, F, G), 2 patterns as combinations of three of the

base ones (H, I), and 1 pattern as a combination of all four base ones (J). The overlap of these

patterns can also be seen through the raster plots of their corresponding VPM fibers (Figure

3.2B bottom). For example the fibers corresponding to pattern A peak when stimulus A is

presented, but also with 50% of the amplitude when E is presented.
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Figure 3.2: In vivo-like activity in silico. A1: Raster plot of the microcircuit’s activity with 628,620
spikes from 98,059 individual neurons and the population firing rates below. The y-axis shows cortical
depth. (As cortical layers do not have the same cell density, the visually densest layer is not necessarily
the most active - see A2 bottom.) A2: Single cell firing rates (in excitatory and 3 classes of inhibitory
cells) and layer-wise inhibitory and excitatory population firing rates in evoked (showed in A1) and
spontaneous (not shown) activity. B: Top: pyramid-like overlap setup of VPM patterns, then the centers
of the VPM fibers in flat map space. Bottom: raster plots of VPM fibers forming each of the patterns for
the stimulus stream in A1 (i.e., from pattern A at 2000 ms to pattern J at 6500 ms). On the right: same
for non-specific (POm) input.

Using a combination of the algorithms of Carrillo-Reid et al. (2015) and Herzog et al. (2021),

we detected functional assemblies in 125 second-long recordings of simulated neuron ac-

tivity while receiving the random input stream (25 repetitions of all 10 patterns with 500 ms

inter-stimulus interval, see Methods). Briefly, the assembly detection algorithm first groups

neuronal activity into 20 ms time bins, and identifies those with significantly increased firing

rates (Sasaki et al., 2006; Carrillo-Reid et al., 2015; see Methods; Figure 3.3A). Then, these time

bins are hierarchically clustered based on the cosine similarity of their activation vector, i.e.,

the vector of the number of spikes fired in the time bin for each neuron (Montijn et al., 2016;

Pérez-Ortega et al., 2021; Supplementary Figure 3.8A, Figure 3.3B1). The threshold for cutting

the clustering tree into clusters is determined by minimizing the resulting Davies-Bouldin

index (Davies and Bouldin, 1979; see Methods; Supplementary Figure 3.9 and Supplementary

Figure 3.8B for lower dimensional representations). Finally, these clusters correspond to the

functional assemblies, with a neuron being considered a member if its spiking activity corre-

lates with the activity of an assembly significantly more strongly than chance level (Montijn
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Chapter 3. Cell assemblies and their underlying connectivity

et al., 2016; Herzog et al., 2021). This means that in each time bin only a single assembly is

considered active, but neurons can be part of several assemblies (see Methods, Figure 3.1B,

Figure 3.3B2).

De
pt

h

A

PC
 ra

te
 (H

z)
Si

gn
ifi

ca
nt

 ti
m

e 
bi

ns

Significant time bins

C
os

in
e 

si
m

ila
rit

y

Pa
tte

rn
 o

cc
ur

an
ce

Time bins (ms)

Time (s)

Number and location of assembly neurons

Detection of significant time bins in PC population rate

Clusters of significant time bins (ordered by patterns)

A B C D E

F G H I J

Clustering of significant time bins
B1

C

B2
Pa

tte
rn

Pattern Pattern

Ea
rth

 m
ov

er
’s 

di
st

an
ce

of
 in

pu
t p

at
te

rn
s

N
or

m
al

ize
d 

Eu
cl

id
ea

n
di

st
an

ce
 o

f c
lu

st
er

 c
ou

nt
s

As
se

m
bl

y

Assembly

Ja
cc

ar
d 

si
m

ila
rit

y

Input distance

O
ut

pu
t d

is
ta

nc
e

Nr. of assemblies
a neuron is part of

C
ou

nt

Similarity of assemblies Distances of input patterns and output cluster sequencesD e

r = 0.44, p = 0.002

Input distance Output distance

Assembly 1 
(n = 7645)

Assembly 2 
(n = 9069)

Assembly 5 
(n = 7744)

Assembly 3 
(n = 13364)

Assembly 4 
(n = 8894)

Assembly 6 
(n = 9349)

Assembly 7 
(n = 15051)

Assembly 8 
(n = 12138)

Assembly 10
(n = 13841)

Assembly 9 
(n = 12562)

Assembly 11
(n = 28772)

Early assemblies Middle assemblies Late assembly

Figure 3.3: Cell assembly detection. A: Population firing rate of excitatory neurons with the determined
significance threshold. B1: Hierarchical clustering of the cosine similarity matrix of activation vectors
of significant time bins (above threshold in A, see Methods). B2: Clustered significant time bins ordered
by patterns presented. C: Number and location of neurons in each cell assembly: flat map view on top,
depth-profile below. D: Jaccard similarity of cell assemblies and number of neurons participating in
different number of assemblies. E: Input-output map: Input distance is calculated as the Earth mover’s
distance of the VPM fiber locations (see Figure 3.2B and Methods), while the output distance is the
(normalized) Euclidean distance of pattern evoked time bin cluster counts (counts of different colors
in the matrices above in B2, Methods).

We found that assemblies were activated in all stimulus repetitions and a series of two to

three assemblies remained active for 110±30 ms (Figure 3.3B2). Activation probability and

duration depended on stimulus identity; the stimulus associated with the strongest response

elicited 1.6 times as many significant time bins than the stimulus associated with the weakest
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response. Not only were individual assemblies associated with only a subset of stimuli, but

they also had a well-preserved temporal order, with some of them appearing early during a

stimulus, and others later. Based on this, from now on we will refer to them as early, middle,

and late assemblies, and will order them in the figures accordingly.

An assembly comprised on average 7±3.1% of the simulated excitatory neurons, with late

assemblies being about 3.7 times larger than early ones (Figure 3.3C). In terms of spatial

distribution of assembly neurons, the early assemblies appear more "patchy" (small distin-

guishable clusters), and by visual inspection can be mapped back to the locations of VPM

fibers corresponding to the stimuli that activated them (Figures 3.2B and 3.3C top). Moreover,

their layer profile mimics that of VPM fiber innervation (Reimann et al., 2022a; Meyer et al.,

2010; Supplementary Figure 3.11A), indicating that these assemblies may be determined by

direct thalamic innervation. On the other hand, the late assembly neurons are more evenly

distributed, and cover the entire surface of the simulated circuit, even beyond the range of

VPM fiber centers, and are found mostly in deeper layers of the cortex. Middle assembly

neurons are somewhat in-between, both in spatial distribution and depth profile. Although we

found late assemblies to be nonspecific (at the chosen clustering threshold), early and middle

assemblies belonging to the same stimulus occupy similar regions in space and can be shown

to have a relatively high (25%) overlap of neurons (Figure 3.3D left). This also means that single

neurons belong to several assemblies (up to 7 out of 11, Figure 3.3D right). In conclusion, the

time course of stimulus responses are well-preserved and reliable enough (although with some

temporal jitter) to be simplified into a sequence of distinct sets of functional cell assemblies.

Although stimulus-specific, the time courses are not unique (see the responses to patterns

H and I in Figure 3.3B2). Thus, we wondered to what degree is the overlap of assemblies

associated with the overlap of the input patterns given as stimuli? When we compared the

distances between the locations of the VPM fibers making up an input pattern, and the

assembly sequences detected from the network activity, we found a significant linear trend, i.e.,

patterns that are close in the input space (e.g. H and I) are close in the "output space" defined

as the counts of individual assemblies popping up for a given stimuli across repetitions (Figure

3.3E). Thus, the activation sequence of cell assemblies can be seen as a low-dimensional

representation of the complex, high-dimensional activity of the circuit’s response to different

stimuli. The data points are highly variable for mid-sized input distances, and the linear trend

gets weaker with increasing number of assemblies (Supplementary Figure 3.9C). In summary,

increasing the number of assemblies by cutting the clustering tree differently improves the

separation of inputs at the cost of reducing the correlation between input and output distance.

As our aim was not to build an ideal decoder of input patterns, in the following steps we

analyze the assemblies resulting from a clustering that minimized the Davis-Bouldin index

(Supplementary Figure 3.9A2).
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Chapter 3. Cell assemblies and their underlying connectivity

Assemblies detected only in the superficial layers, are reminiscent of those detected across

all layers of the cortex

Due to the limitations of traditional two-photon microscopy, in vivo experiments in the cortex

can only detect cell assemblies in layer 2/3 (L2/3) (Bathellier et al., 2012; Carrillo-Reid et al.,

2015; Miller et al., 2014; Montijn et al., 2016; Pérez-Ortega et al., 2021), whereas in silico

we detect assemblies across all layers. This begs the question: are we detecting different

assemblies, or do they just cover more depth but contain the L2/3 ones? To answer this

question, we used the same data and methodology as before, but restricted our analysis

to L2/3 neurons only (Supplementary Figure 3.10). When detecting assemblies exclusively

from the spiking activity of L2/3 pyramidal cells, we got the same results overall, but with

some specific differences. First, we found significant time bins for a shorter range (up to

100 ms, which corresponds to our definition of early and middle assembly time windows). And

second, stimuli could be distinguished better, e.g. stimuli H and I correspond to different early

assemblies in L2/3 (compare Figure 3.3B2 and Supplementary Figure 3.10A2). We compared

the L2/3 assemblies to the original full assemblies and found that the early ones can get

mapped to the L2/3 ones relatively well, in terms of the Jaccard similarity of their respective

intersections with L2/3 neurons, and by visual inspection of the spatial locations of assembly

neurons (Supplementary Figure 3.10D). Thus, we predict that assemblies detected in vivo are

the superficial subset of full assemblies, and may not include late assemblies with only a small

fraction of neurons in superficial layers.

3.2.2 Functional assemblies are determined by structural features

It appears as if the spatial structure of the thalamic input stimuli strongly determines assembly

membership. At the same time, neuronal assemblies are thought to be strongly recurrently

connected (Song et al., 2005; Perin et al., 2011).

We generally observe that some features of structural connectivity can be predictive of the

probability of assembly membership. Here, we consider features related to thalamic innerva-

tion, recurrent connectivity and synaptic clustering. We quantify the strength of this effect

by means of a thresholded and signed version of the mutual information which we call their

normalized mutual information and denote by nI ; this allows us to compare the individual

contributions (for details, see Methods). Its value has three basic properties: First, it is positive

if the probability of assembly membership increases as the value of the structural feature

increases, and is negative otherwise. Second, its absolute value is one if assembly membership

can be completely predicted from the structural feature and it is only defined if the mutual

information between the two processes is significantly larger than for randomly shuffled

controls. Third, its absolute value does not require any assumptions about the shape of the

dependency (e.g., linear, monotonic, etc.) between the structural feature and the probability

of assembly membership.
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Thalamic innervation explains early and middle assemblies

We began by considering the effect of direct thalamic innervation. Having confirmed that

strong direct thalamic innervation facilitated assembly membership (Figure 3.4A, left), we

formulated the following hypothesis: pairs of neurons are more likely to belong to the same

assembly if they are innervated by overlapping sets of thalamic fibers. To test this, we first

consider the common thalamic indegree of a pair of neurons, i.e., the number of thalamic

fibers innervating both of them. Then, for each neuron, we use its mean common thalamic

indegree over all cells in assembly An , as the structural feature to predict its membership in

An . We performed this analysis separately for innervation from the VPM and POm nuclei.

In both cases, mean common thalamic indegree with an assembly increased the probability

that a neuron is part of it (Figure 3.4A, second, olive curve for common thalamic indegree with

the same assembly). The nI of the mean common thalamic indegree and membership in the

same assembly was on average 0.165 for VPM and 0.054 for POm (Figure 3.4A, right, entries

along the diagonals). More specifically, 0.157 and 0.034 for early assemblies, 0.198 and 0.087

for middle, and 0.082 and 0.037 for the late assembly. In addition, cross-assembly interactions

were also observed, albeit at lower levels (Figure 3.4A, right, off-diagonal entries). The effect

was strongest for pairs of early and middle assemblies that responded to the same stimuli, e.g.

assemblies 1, and 2, responding to pattern A.

The lower nI values for the late assembly are expected, as it contains many neurons in layers

not directly innervated by thalamus (Figure 3.3C, Supplementary Figure 3.11A), and its activity

is largely restricted to time bins in which the thalamic input is only weakly active (80−140 ms

after onset; Figure 3.3B2 vs. 3.2A1). Interestingly, common innervation with POm has the

highest nI for middle assemblies, which seems related to the prevalence of L5 neurons in

them (2.3 times more L5 cells, than in the early ones). POm targets the upper part of L5, and

more importantly L1 (Reimann et al., 2022a; Meyer et al., 2010; Supplementary Figure 3.11A),

where the apical tuft dendrites of thick-tufted L5 pyramidal cells reside (Harris and Shepherd,

2015; Ramaswamy et al., 2015). The delay caused by the long synapse to soma path distances

(Supplementary Figure 3.11B) may explains the importance of common POm innervation

40−60 ms after stimulus onset.

Having confirmed that common innervation by thalamic fibers links pairs of neurons to the

same assemblies, we then considered how much more assembly membership is determined

by the identity of the specific patterns used. We hypothesized that direct innervation by fibers

used in a pattern increases membership probability in assemblies associated with the same

pattern. Specifically, we used as a structural feature the pattern indegree i.e., the total indegree

of a neuron from VPM fibers used in each of the patterns.
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Figure 3.4: Connectivity determines cell assembly membership. A: First: Effect of thalamic inner-
vation (from VPM and POm nuclei) on participation in cell assemblies. Solid lines indicate the mean
and the shaded areas indicate 95% confidence intervals. Second: probability of membership in an
exemplary middle assembly against mean common POm indegrees with respect to all assemblies. Third
and fourth: nI (normalized mutual information, see Methods) of mean common thalamic indegree
and assembly membership. B: Probability of membership in exemplary early (first), middle (second),
and late (third) assemblies against indegree with respect to all patterns. Fourth: nI of pattern indegree
and assembly membership. C: Simplex counts within assemblies and random controls (same number
of neurons with the same cell type distribution). (Caption continues on the next page.)
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D: Probability of membership in exemplary early (first), middle (second) and late (third) assemblies
against indegree with respect to all assemblies. Fourth: nI of indegree and assembly membership. E:
First: Probability of membership in an exemplary early assembly against k-indegree with respect to the
same assembly. Inset: k-indegree is given by the number of k-simplices within an assembly (orange
nodes) completely innervating a given neuron (black). nI of k-indegree and assembly membership for
k = 1 (second), k = 2 (third) and k = 3 (fourth). (White: nI not defined.)

As predicted from the previous results, probability of assembly membership grew rapidly

with pattern indegree for early assemblies associated with the same pattern (Figure 3.4B, left).

Every pattern had one early assembly strongly associated with it (except for pattern E, which

only had middle and late assemblies Figure 3.3B2). On average, the nI of pattern indegree

and assembly membership reached 0.26 (Figure 3.4B, right). A similar trend was observed for

middle assemblies (mean: 0.215), while the late assembly was again an exception, with no

value above 0.04, for reasons outlined above (Figure 3.4B third and fourth). In total, taking

the stimulus patterns into account gives a 33% higher nI over the less specific mean common

VPM innervation.

Recurrent connectivity explains late assemblies

Even with perfect knowledge of thalamic innervation and pattern identity the nI did not

exceed values of 0.3, leading to the question: What other factors determine the rest? The most

commonly accepted structural correlate of cell assemblies is the overexpression of recurrent

connectivity motifs between participating neurons (Harris, 2005; Buzsáki, 2010; Song et al.,

2005; Perin et al., 2011). One particular class of motifs that has been linked to neuronal function

are directed simplices of dimension k (k-simplicesReimann et al., 2017b). A k-simplex is a

motif on k +1 neurons, which are all-to-all connected in a feed-forward fashion (Figure 3.4E

left, inset), in particular 1-simplices are directed edges and 0-simplices are single cells. Indeed,

we found a strong overexpression of directed simplices in the connectivity submatrices of

cells within an assembly. In particular, the maximal simplex dimension found in assembly

subgraphs is at least one higher than in the corresponding controls. Moreover, the peak of

simplex counts in assembly graphs is in general one order of magnitude above the controls

(Figure 3.4C).

Based on this we define the k-indegree with respect to an assembly of a neuron i , as the number

of k-simplices in the assembly such that all the cells in the simplex innervate i (see Figure

3.4E left, inset). For the case k = 0, i.e., the number of cells in the assembly innervating i ,

we found that it is a good predictor of membership in the same assembly, with an average

nI value of 0.143 (Figure 3.4D). This time, late assembly membership could be predicted

the best, with an nI of 0.224, compared to an average of 0.118 and 0.16 for early and middle

assemblies, respectively (Figure 3.4D). Additionally, probability of late assembly membership

also increased with 1-indegree with respect to all other assemblies. Conversely, 0-indegree

with respect to the late assembly decreases the membership probability for early, and most
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Chapter 3. Cell assemblies and their underlying connectivity

of the middle assemblies (blue curves with negative slope on the first and second panels of

Figure 3.4D). This reflects the temporal order of their activation and the fact that neurons in

the deeper layers, that dominate the late assembly, mostly project outside the cortex and not

back to superficial layers (Feldmeyer, 2012; Harris and Shepherd, 2015).

The nI values across the diagonals for k = 1,2 are larger than for k = 0, for all assemblies

except the late one. More precisely, we found nI averages of 0.152 and 0.161 for early, and

0.18 and 0.188 for middle assemblies for k = 1 and k = 2 respectively (Figure 3.4E second and

third). On the other hand, off diagonal nI values drop for increasing k. This shows that not

only the size of the presynaptic population has an effect on the activity of a neuron, but also

the connectivity patterns between them. However, the effect of these non-local interactions

are stronger within an assembly than across. For k = 3 the nI values drops, which can be

explained by the narrower range of values the 3-indegree takes (Figure 3.4E first and fourth).

As 0-indegree is the same as the general notion of indegree (the number of neurons in the

afferent population) we will drop k = 0 and simply call it indegree in the following sections.

Synaptic clustering explains late assemblies

So far, we have only considered features which can be extracted from the connectivity matrix

of the system. However, our model also offers subcellular resolution, specifically, the dendritic

locations of all synapses (Markram et al., 2015; Kanari et al., 2019), which we have demon-

strated to be crucial for recreating accurate post-synaptic potentials (Ramaswamy et al., 2012;

Ecker et al., 2020), and long-term-plasticity (Chindemi et al., 2022). This allowed us to explore

the impact of co-firing neurons potentially sending synapses to the same dendritic branch

i.e., forming synapse clusters (Kastellakis and Poirazi, 2019; Wilson et al., 2016; Iacaruso et al.,

2017; Ujfalussy and Makara, 2020). We hypothesized that innervation from an assembly is

more effective at facilitating membership in an assembly if it targets nearby dendritic locations.

We therefore defined the synaptic clustering coefficient (SCC ) with respect to an assembly

An , based on the path distances between synapses from An on a given neuron (see Methods

and Supplementary Figure 3.12). The SCC is a parameter-free feature, centered at zero. It is

positive for intersynaptic distances that are lower than expected (indicating clustering) and

negative otherwise (indicating avoidance).

Overall, we found similar trends as for the recurrent connectivity, although with a lower impact

on assembly membership. Late assembly membership was explained the best by the SCC

with 0.114 nI , while early and middle assemblies had an average nI of only 0.048 and 0.061

(Figure 3.5A). Although SCC was not that powerful by itself, we found that a given value of

indegree led to a higher assembly membership probability if the innervation was significantly

clustered (Figure 3.5B, first). This lead us to explore the correlation between indegree and the

SCC (Figure 3.5B second), finding a weak but significant correlation between these measures.

Note that the SCC controls for the decrease in distance between synapses expected from a

higher indegree (see Methods), therefore we conclude that this is non-trival feature of the

model. However, this means that the effects of indegree and SCC on assembly membership
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are partially redundant. To dissociate these effects, we compute the nI between SCC and

assembly membership conditioned by indegree (see Methods), which is on average 0.025,

reaching values up to 0.045 (Figure 3.5B third and fourth). This shows that indegree and SCC

affect assembly membership both independently but more so in conjunction.
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Figure 3.5: Synapse clustering coefficient determines cell assembly membership. A: Probability of
membership in exemplary early (first), middle (second), and late (third) assemblies against synapse
clustering coefficient (SCC , see Methods) with respect to all assemblies. Fourth: nI (normalized
mutual information, see Methods) of SCC and assembly membership. B: Combined effect of SCC and
indegree (as in Figure 3.4D). First: Probability of membership in an exemplary early assembly, against
indegree with respect to the same assembly, grouped by SCC significance (see Methods). Second:
Joint distribution of SCC and indegree. Third: nI of SCC and assembly membership conditioned by
indegree. (White: nI not defined.) Fourth: Relation of nI and conditional nI grouped by postsynaptic
early, middle, and late assemblies (i.e., rows of the matrices in A fourth, and B third). C: Simulation
results for 10 selected neurons per assembly (with the highest indegree and significant clustering;
red arrow in B left) with modified physiological conditions. Left: correlation of spike times with the
assembly. Right: Single cell firing rates.

The observed effect of SCC can only be explained by nonlinear dendritic integration of synap-

tic inputs (Stuart and Spruston, 2015; Kastellakis and Poirazi, 2019; Goetz et al., 2021) Specifi-

cally, our model has two sources of nonlinearity: First, active ion channels on the dendrites

(Stuart and Spruston, 2015; Ujfalussy and Makara, 2020; Goetz et al., 2021), causing N a+ and

C a2+ spikes. Second, NMDA conductances, which open in a voltage dependent manner,
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leading to NMDA-spikes (Stuart and Spruston, 2015; Goetz et al., 2021). To show that these are

the mechanisms by which the SCC acts, we studied how the removal of these non-linearities

affects assembly membership of selected neurons. From each assembly we chose ten neurons

whose probability of membership was most affected by their SCC i.e., those with highest

indegree combined with significant clustering (red arrow in Figure 3.5B first). We subjected

these neurons to the same input patterns they received in the simulations (see Methods), but

with passive dendrites (Figure 3.5C green) or blocked NMDA receptors (Figure 3.5C orange).

These modifications altered the neurons spiking activity, causing a non-negligible portion

of them to drop out of their assembly, as their activity was no longer significantly correlated

with it (Figure 3.5C first, see Methods). The manipulations resulted in a 45% drop in assembly

membership for passive dendrites and 36% for blocking NMDA channels. Although, the

manipulation resulted in an overall reduction of firing rate (Figure 3.5C second), this did not

explain the drop in assembly membership (Figure 3.5C second: red dots with higher rate

then black ones). We conclude that these nonlinearities contribute to the synchronization of

activity within assemblies, underlying the observed effect of the SCC .

3.2.3 Assemblies are robust across simulation instances

The results of our simulations are stochastic (Nolte et al., 2019), leading to different outcomes

for repetitions of the same experiment, as in biology. To assess the robustness of our results, we

repeated our in silico experiment 10 times with the same thalamic inputs but different random

seeds. Changing the seed mostly affects the stochastic release of synaptic vesicles (Markram

et al., 2015; Nolte et al., 2019) especially at the low, in vivo-like extracellular C a2+ concentration

used. The assemblies detected in the repetitions were similar to the ones described so far,

in term of member neurons (Figure 3.6A), temporal structure (early and middle groups and

a non-specific late one, not shown), and their determination by connectivity features (not

shown).

We hypothesize that cell assemblies in cortical circuits are inherently stochastic objects,

partially determined by the structural connectivity, input stimuli, and neuronal composition.

Thus, each repetition yields a different (but overlapping) set of assemblies and neurons

contained in them. In order to get an approximation of these stochastic objects we pooled

the assemblies detected in all repetitions and determined which best corresponded to each

other by clustering them based on the Jaccard distance of their constituent neurons (see

Methods, Figure 3.6A). According to this distance, nearby assemblies have a large intersection

relative to their size. We called the resulting clusters consensus assemblies, and the assemblies

contained in each its instances. We assigned to neurons different degrees of membership in

a consensus assembly, based on the fraction of instances they were part of, normalized by a

random control, and called it its coreness (see Methods). We found, that as coreness increased

so did the neurons’ spike time reliability (defined across the repetitions of the experiment

(Nolte et al., 2019; Schreiber et al., 2003; see Methods), especially for the thalamus driven early

assemblies (Figure 3.6B). We call the union consensus assembly the union of all its instances;
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and the core consensus assembly the set of cells whose coreness is significantly higher than

expected (see Methods and union vs. core distinction of Figure 3.6C).

When repeating our structural analysis on the core consensus assemblies, we found higher

values of nI than before in all cases, except for the SCC (Figure 3.6D and Figure 3.7). This

indicates that assembly membership in this model is not a binary property but exists on a

spectrum from a highly reliable and structurally determined core to a more loosely associated

and less connected periphery. The notion of consensus assemblies is a way of accessing this

spectrum.
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Figure 3.6: Consensus assemblies. A: Jaccard similarity based hierarchical clustering of assemblies
from different simulation instances. B: Spike time reliability (see Methods) of neurons belonging to
given fraction of assembly instances. C: Locations of neurons in the union (all instances) and core (at
least 9/10 instances, see Methods) of exemplary (pattern A responsive) early consensus assembly. D:
nI (normalized mutual information, see Methods) of connectivity features and consensus assemblies
membership.

Another way to take all ten repetitions into account would be to average the time-binned

spike trains of the simulated neurons. Thus, we averaged the input instead of the output of

the assembly detection pipeline and we call these the average assemblies. We first compared

these to the assemblies obtained in a single repetition. The similarity of significant time bins

was higher for average assemblies (Supplementary Figure 3.13B1), and their sizes were larger

(Supplementary Figure 3.13D second panel), with neurons belonging to up to 10 assemblies

out of the 13 detected (Supplementary Figure 3.13D third panel). On the other hand, the nI of

the structural features and membership remained the same as for a single repetition (compare

matrices in Figures 3.4 and 3.5 to Supplementary Figure 3.13C).
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Chapter 3. Cell assemblies and their underlying connectivity

When contrasting the average and consensus assemblies, we found pairs with high Jaccard

similarity (Supplementary Figure 3.13D and E1). A detailed comparison showed that all

neurons that are part of at least 6 out of 10 assembly instances were all contained in their

matching average assembly. Further lowering the cutoff began admitting neurons that were

not part of the corresponding average assembly (Supplementary Figure 3.13E2). On the other

hand, there are barely any cells in the average that are not contained in the union consensus

assembly. This demonstrates how assembly membership becomes less determined towards

the periphery, mirroring the reduced nI with the structural connectivity features. Furthermore,

a neuron in a consensus assembly will most likely belong to all instances (Supplementary

Figure 3.13E2), unlike for the binomial distribution expected by chance.

In summary, while average assemblies give similar results to the union consensus assemblies,

the coreness values used in the consensus assembly framework assign different degrees of

membership to its neurons that can be taken into account in downstream analyses, e.g., by

considering only the functionally reliable core. Furthermore, for this core the determination

by most structural features, measured by nI , is stronger (Figure 3.7).
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3.3 Discussion

Using a detailed, large-scale cortical network model we examined the link between cortical

structure and function. Our principal findings from analyzing the connectivity of functional

cell assemblies are as follows: (1) Different afferents dominated determination of membership

in assemblies linked to different time windows: VPM innervation affected membership in early

assemblies, POm innervation in middle assemblies, while recurrent innervation in the late

assembly (Figure 3.7 red, yellow, green). (2) Recurrent innervation more strongly facilitated

assembly membership the more the innervating neurons were wired among themselves,

adding a non-local component to the structure-function relation. (3) Similarly, the innervation

of a neuron by an assembly was significantly more powerful in facilitating membership when

its synapses were clustered on the dendrites (Figure 3.7 blue). (4) In conjunction with the

structure of cortical connectivity, features of subcellular physiology such as active dendritic

channels and NMDA receptors, also influence assembly membership. (5) Interactions between

assemblies emerged, where innervation by one assembly explained membership in another.

Positive interactions (with increased membership probability) were found when the direction

of innervation reflected the temporal order of assembly activation; otherwise, weaker or even

negative interactions were found.

Point (1) above confirms our previous findings that, while the presence of an external stimulus

makes the circuit much more reliable, this effect is not merely driven by direct innervation,

but also requires recurrent connectivity (Nolte et al., 2019). Point (2) predicts a functional

consequence for non-random features of neuronal connectivity, such as nodes with high

centrality values and the presence of a rich club, that have been characterized in many species

and regions, at various levels of resolution (Bassett and Bullmore, 2017). Points (3) and (4) link

the theory of neuronal assemblies to the literature on active dendritic computation (Poirazi

et al., 2003; Stuart and Spruston, 2015; Kastellakis and Poirazi, 2019). Point (5) strengthens

the case that the topology of connectivity is best studied in a directed way, since undirected

networks (although more amenable to network science methods) miss an essential part of the

picture. In particular, the relationship between the structural directionality of the connection

and the temporal direction of the flow of activity (Reimann et al., 2017b).

Our analysis supports the idea that neuronal activity revolves around activation of assemblies.

We have shown that assembly membership is determined by certain structural prerequisites,

mostly amounting to increased membership probability when more afferent synapses from

various sources are formed on a neuron. These may be costly to fulfill, both in terms of energy

(Harris et al., 2012) and space taken up by wiring. Chklovskii et al. (2002) considered efficient

layouts of wiring, i.e., axons and dendrites, given a certain connectivity matrix. They found

that the layout is tightly constrained by the available space and close to a theoretical optimum.

Here, we expanded on that idea, demonstrating that on top of it, the structure of the connectiv-

ity matrix is efficient. Indeed, on the sub-cellular level, we have shown, that synaptic clustering

on dendrites increases efficiency, in that the same probability of assembly membership can

be obtained with about 50% of the indegree when the synapses are highly clustered (Figure

69



Chapter 3. Cell assemblies and their underlying connectivity

3.5B, Supplementary Figure 3.14A). Furthermore, on the connectivity level, another potential

mechanism lies in the non-local interaction of the presynaptic population measured by the

k-indegree. We have shown that for higher values of k, a given membership probability is

attained for lower k-indegree values, suggesting higher efficiency (Figure 3.4E, left). However,

as k grows, k-indegree counts the innervation by larger and larger motifs, potentially requiring

more incoming synaptic connections (Supplementary Figure 3.14B2). Here, we control for

this by repeating our analysis not with respect to the number of motifs but the size of the

presynaptic subpopulation forming them. When going up from k = 0 to k = 1, k = 2, and

k = 3 the same membership probability can be obtained for a given neuron with about 80%,

34% and 6% of the incoming connections (Supplementary Figure 3.14B1), confirming that

non-local interactions in the presynaptic population make afferent innervation more efficient.

This can be explained by our earlier finding that the simplicial motifs we considered increase

the correlations and reliability of the spiking activity of participating neurons (Reimann et al.,

2017b).

It is possible that wiring efficiency can be optimized further, based on experience, through

structural and functional plasticity. Recent modelling studies investigated how starting from a

random initial connectivity, plasticity rules and network activity lead to assembly formation,

maintenance and competition for member neurons (Fauth and Van Rossum, 2019; Kossio

et al., 2021; Gastaldi et al., 2021). Conversely, our network model has strongly non-random

connectivity, constrained by neuronal morphology (Reimann et al., 2015, 2017a), and can

thus be viewed as a circuit in a non-random plastic state, but unshaped by experience. The

presence of assemblies in such a naive circuit is in line with the belief that the brain is not a

tabula rasa (Buzsáki, 2019). It is also in line with the recent in vivo experiments of Bathellier

et al. (2012) and Trägenap et al. (2022), who found endogenous cell assemblies in mouse

auditory and ferret visual cortices. Furthermore, Trägenap et al. (2022) also found that these

endogenous assemblies solidify and become more reliable after eye opening. These points

lead to the question: How does long-term plasticity affect the three aspects discussed above,

i.e., assembly wiring efficiency, competition for member neurons and assembly solidification?

To address this question, we are integrating the functional plasticity model of Chindemi

et al. (2022) into our network simulations. We can then analyze these with the methods we

have introduced here, which provide new, quantitative ways to characterize assemblies, their

temporal evolution and the connectivity underlying them.

3.4 Methods

3.4.1 Network simulations

The most recent version of the detailed, large-scale cortical microcircuit model of Markram

et al. (2015) was used for the in silico experiments in this study. Updates on its anatomy,

e.g., atlas-based cell densities are described in Reimann et al. (2022a), while updates on its

physiology e.g., improved single cell models and missing input compensation in Isbister et al.
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(2023). The 2.4 mm3 subvolume of the juvenile rat somatosensory cortex, containing 211,712

neurons is freely available at: https://zenodo.org/record/7930275.

Although large-scale with bio-realistic counts of synapses originating from the local neurons,

the neurons in the circuit still lacked most of their synapses (originating from other, non-

modeled regions; Markram et al., 2015). In order to compensate for this missing input, layer

and cell-type specific somatic conductances following an Ornstein-Uhlenbeck process were

injected to the cell bodies of all neurons (Destexhe et al., 2001). The algorithm used to

determine the mean and variance of the conductance needed to put the cells into an in

vivo-like high-conductance state, and the network as whole into an in vivo-like asynchronous

firing regime with low rates and realistic responses to short whisker stimuli is described in

Isbister et al. (2023). The in vivo-like state used in this article is the same as [C a2+]o = 1.05 mM,

percentage of reference firing rates = 50%, CV of the noise process = 0.4 from Isbister et al.

(2023).

Simulations of selected cells with modified physiological conditions (active dendritic channels

blocked or NMDA conductance blocked) used the activity replay paradigm of Nolte et al. (2019).

In short, for each of these cells, spike times of its presynaptic population were recorded in the

original network simulation. Then the selected cells were simulated in isolation by activating

their afferent synapses according to the recorded spike times in the network simulation. Thus,

the modified activity of the isolated cell did not affect the rest of the network.

Simulations were run using the NEURON simulator as a core engine with the Blue Brain Project’s

collection of hoc and NMODL templates for parallel execution on supercomputers (Hines and

Carnevale, 1997; Kumbhar et al., 2019; Awile et al., 2022). Simulating 2 minutes of biological

time took 100,000 core hours, on our HPE based supercomputer, installed at CSCS, Lugano.

3.4.2 Distance metrics

This section gives a brief overview and justification of the various distance metrics used below.

Population activity in time bins were compared using their cosine similarity Carrillo-Reid

et al. (2015). Two time bins with high cosine similarity have similar sets of firing neurons, thus

detecting co-firing. Note that there is an increasing relationship between firing rate and cosine

similarity (Cutts and Eglen, 2014; Supplementary Figure 3.8A2).

Input patterns were defined using the Hamming distance between the sets of VPM fiber

bundles involved to have specific values and thus specific sizes of intersections (Figure 3.2B).

Input patterns were compared using Earth mover distances between the flat map locations of

their contained fibers (Figure 3.3E).

Assemblies of neurons were compared using their Jaccard distances. Like Hamming, this

also compares sizes of intersections but it is normalized with respect to the sizes of the sets

involved.
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Assembly sequences i.e., vectors of size the number of assemblies, with each entry counting

the number of time bins the corresponding assembly was active in response to an input

pattern, were compared using their normalized Euclidean distances. This is the Euclidean

distance between vectors of normalized length.

Finally, afferent synapses were compared using their path distances. Specifically, the dendritic

tree was represented as a graph with nodes being its branching points and edges between them

weighted according to the length of sections connecting them. Distances between synapses

was computed as the path distance in this graph.

3.4.3 Thalamic input stimuli

The VPM input spike trains were similar to the ones used in Reimann et al. (2022b). In detail,

the 5388 VPM fibers innervating the simulated volume were first restricted to be ≤ 500µm

from the middle of the circuit in the horizontal plane to avoid boundary artefacts. To measure

these distances we use a flat map, i.e., a two dimensional projection of the volume onto the

horizontal plane, orthogonal to layer boundaries (Reimann et al., 2022a). Second, the flat

map locations of the resulting 3017 fibers were clustered using k-means to form 100 bundles

of fibers. The base patterns (A, B, C, and D) were formed by randomly selecting four non-

overlapping groups of bundles, each containing 12% of them (corresponding to 366 fibers

each). The remaining 6 patterns were derived from these base patterns with various degrees

of overlap (see beginning of Results, Figure 3.2B). Third, the input stream was defined as a

random presentation of these ten patterns with 500 ms inter-stimulus intervals, such that

in every 30 second time intervals every pattern was presented exactly six times. Last, for

each pattern presentation, unique spike times were generated for its corresponding fibers

following an inhomogeneous adapting Markov process (Muller et al., 2007). When a pattern

was presented, the rate of its fibers jumped to 30 Hz and decayed to 1 Hz over 100 ms. For

the non-specific POm stimuli, a randomly selected 12% of the (unclustered) 3864 POm fibers

were activated each time any pattern was presented (in every 500 ms). The spike trains were

designed with the same temporal dynamics as described above for VPM, but with half the

maximum rate (15 Hz). The implementation of spike time generation was based on Elephant
(Denker et al., 2018).

3.4.4 Assembly detection

Our assembly detection pipeline was a mix of established techniques and consisted of five

steps: binning of spike trains, selecting significant time bins, clustering of significant times

bins via the cosine similarity of their activity, and determination of neurons corresponding to

a time bin cluster and thus forming and assembly. Note, that time bins instead of neurons

were clustered because this allows neurons to belong to several assemblies.
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Spikes of excitatory cells were first binned using 20 ms time bins, based on Harris et al. (2003),

which takes a postsynaptic reader neuron specific point of view. They suggest 10-30 ms as

an ideal integration time window of the presynaptic (assembly) spikes (Harris et al., 2003;

Buzsáki, 2010). Next, time bins with a significantly high level of activity were detected. The

significance threshold was determined as the mean activity level plus the 95th percentile of

the standard deviation of shuffled controls. The 100 random controls were rather strict, i.e., all

spikes were shifted only by one time bin forward or backward, based on Sasaki et al. (2006);

Carrillo-Reid et al. (2015). Next, a similarity matrix of significant time bins was built, based

on the cosine similarity of activation vectors, i.e., vectors of spike counts of all neurons in the

given time bins (Carrillo-Reid et al., 2015). The similarity matrix of significant time bins was

then hierarchically clustered using Ward’s linkage (Montijn et al., 2016; Pérez-Ortega et al.,

2021). Potential number of clusters were scanned between five and twenty, and the one with

the lowest Davis-Bouldin index was chosen, which maximizes the similarity within elements

of the cluster while maximizing the the between cluster similarity (Davies and Bouldin, 1979).

These clusters corresponded to potential assemblies.

As the last step, neurons were associated to these clusters based on their spiking activity, and it

was determined whether they formed a cell assembly or not. In detail, the correlations between

the spike trains of all neurons and the activation sequences of all clusters were computed

and the ones with significant correlation selected. Significance was determined based on

exceeding the 95th percentile of correlations of shuffled controls (1000 controls with spikes

of individual cells shifted by any amount Montijn et al., 2016; Herzog et al., 2021). In relation

to Figure 3.5C left, it is important to note, that these correlation thresholds were specific to

a pair of a neuron and an assembly. Finally, it is possible to have a group of neurons that is

highly correlated with one part of the significant time bins in a cluster, and another that is

highly correlated with the rest, while the two groups of neurons have uncorrelated activity.

To filter out this scenario, it was required that the mean pairwise correlation of the spikes of

the neurons with significant correlations was higher than the mean pairwise correlation of

neurons in the whole dataset (Herzog et al., 2021). Clusters passing this test were considered

to be functional assemblies and the neurons with significant correlations their constituent

cells.

For a test of the methods on synthetic data and comparison with other ways of detecting

cell assemblies please consult Herzog et al. (2021). Assembly detection was implemented in

Python and is publicly available as assemblyfire.

3.4.5 Calculation of information theoretical measurements

To quantify the structural predictability of assemblies, mutual information of assembly mem-

bership (Yn) and a structural feature of a neuron (Xm) was used, which is a measure of the

mutual dependence between the two variables (Gray, 2011). More precisely, Yn is a binary

random variable that takes the value 1 if a neuron belongs to an assembly An , and 0 otherwise.
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On the other hand, Xm is a random variable determined by a structural property of the neuron

with respect to the assembly Am , e.g., the number of afferent connections into the neuron

from all neurons in Am .

To asses the dependence between these two variables, first the dependence of the probability

of a neuron belonging to assembly An given a specific value of the structural feature measured

by Xm was studied. More precisely, the function fn,m whose domain is the values of Xm and is

given by:

fn,m(x) = P (Yn = 1|Xm = x) (3.1)

was considered. If this function has an increasing or decreasing trend, then the random

variables Yn and Xm can not be independent.

Their dependence was quantified by means of their mutual information. The value of mutual

information is always non-negative and it is zero when the random variables are independent.

In order to restrict this value to [0, 1] it was divided by the entropy of Yn , which measures

the level of inherent uncertainty of the possible outcome of the values of Yn (Shannon, 1948).

The calculation of mutual information is based on the probabilities of Xm and Yn across all

possible outcomes. If the number of possible values of Xm is large compared to the number of

samples, there can be errors in determining these probabilities, possibly leading to inflated

values of the mutual information. Therefore, the values of Xm were binned into 21 bins

between the 1st and 99th percentile of all sampled values. The number of bins was determined

such that the resulting value of mutual information in a shuffled control did not exceed 0.01.

Shuffled controls (one per pair) were also used to threshold the mutual information values by

considering only the pairs (n,m) whose mutual information was larger than the mean plus one

standard deviation of all pairs in the shuffled controls. Finally, a negative sign was added to the

significant mutual information value if the function fn,m was decreasing i.e., the probability of

membership in An decreased as the values of Xm increased. This was assessed by the slope

of a weighted (by the number of samples in each bins) linear fit of the function fn,m . This

normalized, thresholded and signed mutual information value was called normalized mutual

information and denoted nI (Yn , Xm).

All the statements above can be made conditional with respect to a third random variable,

yielding the conditional normalized mutual information, which was used when two structural

features were inherently believed to be interacting as in the case of the SCC and indegree.

Calculations were done with the pyitlib package.

3.4.6 Synaptic clustering coefficient

To quantify the co-localization of synapses on the dendrites of a neuron i from its presynaptic

population Pi with a single, parameter-free metric, synaptic clustering coefficient SCC was

defined and calculated for all excitatory neurons in the circuit with respect to all assemblies.

Based on these locations, Di , the matrix of all pairwise path distances between synapses on i
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from Pi were calculated. Let Di ,p be the submatrix for pairs of synapses originating from a

subpopulation p ⊆ Pi . Then the nearest neighbour distance for p can be written as:

nnd(i , p) = mean
(
min
r ow s

(
Di ,p

))
(3.2)

In particular, for the subpopulation of Pi of neurons in the assembly An , denoted by pn ,

nnd(i , An) = nnd(i , pn) was defined, where pn = Pi ∩ An . This value was normalized, using

the nnd values of 20 random presynaptic populations from Pi of the same size as pn . In

summary, the SCC was defined as the negative z-score of nnd(i , An) with respect to the

distribution of control nnds (Supplementary Figure 3.12). Additionally, the significance of the

clustering or avoidance of the synapse locations was determined with a two-tailed t-test of

nnd(i , An) against the 20 random samples with an alpha level of 0.05. SCC was implemented

using NeuroM and ConnectomeUtilities.

3.4.7 Determination of consensus assemblies

Consensus assemblies were defined over multiple repetitions of the same input stream. These

were groups of assemblies with similar sets of neurons. Additionally, all assemblies in a

group were required to originate from a different repetition; noted as the repetition separation

criterion. The Jaccard distance matrix between all pairs of assemblies from all repetitions were

computed and modified by setting the distances between pairs of assemblies from the same

repetition to twice the maximum of the whole matrix. The matrix was then hierarchically

clustered using Ward’s linkage, and the lowest number of clusters that satisfied the repetition

separation criterion was chosen. The resulting clusters were the consensus assemblies, and the

assemblies within them their instances.

The union consensus assembly was defined as the set of neurons given by the union of all

instances. Its member neurons were assigned a membership degree based on number of

instances they were part of in two ways. First, by simply using the fraction of the instances a

neuron was part of. Second, in what was called the coreness value of a neuron, which is the

number of instances a neuron is part of normalized by its expected value, given the number

and sizes of its instances. This was calculated as a binomial distribution with n set to the

number of instances and p to the mean size of the instances, divided by the size of the union

consensus assembly. Based on this, the coreness of a neuron contained in r instances was

defined as −l og10(1−Bn,p (r )), where B is the cumulative binomial distribution. Neurons with

a coreness value exceeding 4 were considered to be part of the corresponding core consensus

assembly.
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3.4.8 Calculation of spike time reliability

Spike time reliability was defined as the mean of the cosine similarities of a given neuron’s

mean centered, smoothed spike times across all pairs of repetitions (Schreiber et al., 2003;

Cutts and Eglen, 2014). To smooth the spike times, they were first binned to 1 ms time bins,

and then convolved with a Gaussian kernel with a standard deviation of 10 ms.
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The 2.4 mm3 subvolume of the juvenile rat somatosensory cortex (containing 211,712 neurons

and their connectivity) used for the in silico experiments in this study has been deposited

at Zenodo in SONATA format (Dai et al., 2020) and is publicly available at the following

DOI: 10.5281/zenodo.7930275. The simulator front-end that loads the SONATA model, and

instantiates the simulation to be run in CoreNEURON (Kumbhar et al., 2019) is also publicly

available at GitHub or under the following DOI: 10.5281/zenodo.8075202. Assemblies from

10 simulation repetitions (with different random seeds), their consensus, and underlying

significant spike times, and the whole excitatory connectivity matrix have been deposited at

Zenodo and is publicly available at the following DOI: 10.5281/zenodo.8052721. Analysis code

that created (and can easily open the dataset above) is publicly available at GitHub or under

the following DOI: 10.5281/zenodo.8112725.
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Supplementary Figure 3.8: Spikes of (significant) time bins. A1 Cosine similarity matrix (same as
in Figure 3.2B1, but unsorted). A2: Joint distribution of pair-wise mean firing rate (of time bins) and
cosine similarity. B1: 2D linear projection of mean centered and normalized spike matrix. B2: 2D
nonlinear projection of spike matrix (using cosine distance).
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Supplementary Figure 3.11: Anatomy of thalamocortical synapses. A: Density profile of VPM and
POm synapses, digitized from Meyer et al. (2010). B: Synapse-to-soma path distances of different
thalamocortical synapses on L5 neurons in an exemplary middle assembly (A8). Ratios of box widths’
represent the ratios of the number of synapses’ from the inputs (e.g. most synapses on A8 L5 pyramidal
cells are coming from pattern G, in line with the indegree based A8 membership probability on Figure
3.4B second).
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Supplementary Figure 3.12: Synaptic clustering coefficient. A1: Exemplary L5 pyramidal cell and all
its afferent synapses from A11 (in blue) and from a control group (one out of the twenty) with the same
number of presynaptic neurons (in gray). A2: Zoom in on A1. Soma, basal dendrites, and proximal
apical dendrites are visible. Axon is not shown. The rendering was done with the BioExplorer package.
B1: Distance matrix between all pairs of A11 synapses and distribution of nearest neighbour distances
(minimum over the rows of the matrix) on its right (see Methods). B2: same as B1 but for the control
group. The equations on the righmost part of the figure are motivated and explained in the Methods.
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Supplementary Figure 3.13: Assemblies detected from averaged spike matrices. A, B: as in Figure
3.3A, B. C: as in Figure 3.6C. D: Left: Jaccard similarity of consensus assemblies and average assemblies.
Middle: Number of neurons in conesensus assemblies’ union and core and average assemblies. Right:
As middle, but number of neurons participating in given number of assemblies. E1: Jaccard similarity
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and average assemblies. E2: Detailed comparison of the pair with the highest similarity in E1 at given
number of assembly instances contained. (10 means that the consensus assembly neuron is part of
10/10 assembly instances, thus consensus assembly sizes grows to the right again.) Average\consensus
is negligible (419 neurons) and is not shown.
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4 Long-term plasticity induced sparse
and specific synaptic changes

This chapter is an improved version (based on the thesis examiner’s comments) of our re-

cent preprint: A. Ecker*, D. Egas Standander*, M. Abdellah, J. Blanco Alonso, S. Bolaños-

Puchet, G. Chindemi, J.B. Isbister, J.G. King, P. Kumbhar, I. Magkanaris, E.B. Muller, M.W.

Reimann (2023) Long-term plasticity induces sparse and specific synaptic changes in a

biophysically detailed cortical model. bioRxiv; doi: 10.1101/2023.08.07.552264

Contribution: I have parametrized the plastic synapses with the help of G. Chindemi,

and helped J. Blanco Alonso, P. Kumbhar, J.G. King, and I. Magkanaris to make the

plasticity model compatible with our simulator. I set up and ran all of the simulations,

scripted most of the analysis based on input from D. Egas Standander, S. Bolaños-Puchet

and M.W. Reimann, created all the figures and the open source data set, wrote the first

version of the manuscript and participated in its rewriting. (A more detailed author

contribution can be found at the end of the chapter.)

Abstract

Synaptic plasticity underlies the brain’s ability to learn and adapt. This process is often studied

in small groups of neurons in vitro or indirectly through its effects on behavior in vivo. Due

to the limitations of available experimental techniques, investigating synaptic plasticity at

the microcircuit level relies on simulation-based approaches. Although modeling studies

provide valuable insights, they are usually limited in scale and generality. To overcome these

limitations, we extended a previously published and validated large-scale cortical network

model with a recently developed calcium-based model of functional plasticity between excita-

tory cells. We calibrated the network to mimic an in vivo state characterized by low synaptic

release probability and low-rate asynchronous firing, and exposed it to 10 different stimuli.

We found that synaptic plasticity sparsely and specifically strengthened synapses forming

spatial clusters on postsynaptic dendrites and those between populations of co-firing neurons,

also known as cell assemblies: among 312 million synapses, only 5% experienced noticeable
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plasticity and cross-assembly synapses underwent three times more changes than average.

Furthermore, as occasional large-amplitude potentiation was counteracted by more frequent

synaptic depression, the network remained stable without explicitly modeling homeostatic

plasticity. When comparing the network’s responses to the different stimuli before and af-

ter plasticity, we found that it became more stimulus-specific after plasticity, manifesting

in prolonged activity after selected stimuli and more unique groups of neurons responding

exclusively to a single pattern. Taken together, we present a plasticity rule that leads to sparse

change and analyze the rules governing those changes.

4.1 Introduction

Learning and memory are orchestrated by synaptic plasticity, the ability of synapses to change

their efficacy in an activity-dependent manner. Donald O. Hebb’s postulate about how synaptic

plasticity might manifest was paraphrased to the well known mantra: "cells that fire together,

wire together" (Hebb, 1949; Shatz, 1992). The first proof of coincident pre- and postsynaptic

population activity leading to potentiation (an increase in efficacy) came from pathway stimu-

lation in hippocampal slices (Bliss and Lømo, 1973). It was later confirmed at the neuron pair

level (Markram et al., 1997b; Bi and Poo, 1998), and spike-time dependent plasticity (STDP)

became a quintessential protocol to study Hebbian plasticity in vitro. In the early 2000’s a

plethora of cortical pathways were studied and plasticity proved to be synapse location- and

therefore pathway-dependent (Sjöström and Häusser, 2006; Letzkus et al., 2006; Froemke et al.,

2010). The molecular substrate of Hebbian coincidence detection is the N-methyl-D-aspartate

(NMDA) receptor, which upon removal of the M g 2+ block by depolarization, conducts C a2+

as well (Mayer et al., 1984). The calcium-control hypothesis, put forward by Lisman (1989)

postulates that prolonged, moderate amounts of C a2+ lead to depression (a decrease in effi-

cacy) while large transients of C a2+ lead to potentiation. By putting these together, it became

evident that it is not necessarily the timing of the postsynaptic spike, but the depolarization of

the postsynaptic dendrite is important to evoke changes in synaptic efficacy (Goldberg et al.,

2002; Lisman and Spruston, 2005).

In parallel with slice electrophysiology, Hebbian plasticity was also studied through its effect

on behaviour via fear conditioning experiments (McKernan and Shinnick-Gallagher, 1997)

and this line of research lead to a plethora of new techniques for tagging and re-activating

cells that participate in newly formed memories (Tonegawa et al., 2015). While these studies

highlighted the need to study plasticity at the network level, most changes are expected to

happen at the synapse level. Therefore, high-throughput methods tracking synaptic proteins

like PSD95 (Ray et al., 2023) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)

subunit GluA1 (Graves et al., 2021; Kim et al., 2023) are currently being developed. While

readily applicable to monitor synaptic efficacy in vivo, currently, these techniques cannot be

supplemented with recordings of neural activity thus the reason for the changes in efficacy

can only be speculated.
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The bridge between in vitro pairs of neurons and in vivo behavior is often provided by com-

plementary simulation based-approaches. Early theoretical work explored the potential link

between memories and cells that fire and therefore wire together, concentrating on the storage

and retrieval of memories in strongly recurrent networks (Hopfield, 1982), which remained

an active topic of research (Fusi and Abbott, 2007; Krotov and Hopfield, 2016; Widrich et al.,

2020). In parallel with the STDP experiments, modelers developed plenty of learning rules that

could explain the most recent pathway-specific findings (Gerstner et al., 1996; Kempter et al.,

1999; Song et al., 2000; Pfister and Gerstner, 2006; Clopath et al., 2010). Of particular interest

is the calcium-based model of Graupner and Brunel (2012), which models the evolution of

intracellular calcium concentration ([C a2+]i ) given the pre- and postsynaptic spike trains

and updates the efficacy of the synapse, upon [C a2+]i crossing thresholds for depression

and potentiation. Linking memory storage, recall and bioplausible learning rules together,

combinations of diverse sets of plasticity rules have been used to model the formation and

maintenance of Hebbian cell assemblies, i.e., groups of neurons that fire together (Litwin-

Kumar and Doiron, 2014; Zenke et al., 2015; Fauth and Van Rossum, 2019; Kossio et al., 2021).

A common theme in these models is the necessity of fast homeostatic plasticity, that keeps the

networks stable (Zenke et al., 2017a), however experimental evidence for those mechanisms is

lacking (Turrigiano and Nelson, 2004). While these studies provided mechanistic explanation

of learning and memory, they used point-neuron models, therefore neglecting the structural

and functional importance of dendrites and other subcellular components (but see Bono et al.,

2017; Kastellakis and Poirazi, 2019). The compartmentalized nature of dendritic trees gives

rise to spatial clustering of synapses (Farinella et al., 2014; Iacaruso et al., 2017; Kastellakis

and Poirazi, 2019) and local, non-linear voltage events (Poirazi et al., 2003; Stuart and Sprus-

ton, 2015) both of which are thought to contribute to removing the M g 2+ block from NMDA

receptors and therefore gating plasticity.

To go beyond networks of point neurons stabilized with homeostatic plasticity, we equipped

the biophysically detailed, large-scale cortical network model of Markram et al. (2015) with

our recently developed, calcium-based model of functional plasticity (Chindemi et al., 2022)

between excitatory cells (Figure 4.1). This way, we had access to more realistic pre- and

postsynaptic activity and efficacy of millions of synapses and could characterize the rules

governing plasticity at the microcircuit level. To make our predictions more relevant, we

calibrated the circuit’s activity to mimic an in vivo state, characterized by low synaptic release

probability and low firing rates (Isbister et al., 2023). Thanks to the biophysical detail of the

model, we could also take the effect of low extracellular calcium concentration ([C a2+]o)

into account (Chindemi et al., 2022), which was experimentally shown to reduce plasticity

(Inglebert et al., 2020; Figure 4.1E). As we followed a bottom-up framework and did not

model any specific task, we will refer to the effects of plasticity as changes in synaptic efficacy

instead of learning. Changes in synaptic efficacy were sparse, affecting 5% of all synapses

in 10 minutes of biological time. On the other hand, this was still enough to reorganize the

network’s dynamics, manifesting in more pattern-specificity after plasticity than before. We

found an increased likelihood of changes within and across cell assemblies and in synapses
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forming spatial clusters on postsynaptic dendrites. Among 312 million synapses, potentiation

dominated in amplitude and depression counteracted it in frequency, which lead to stable

firing rates without explicitly introducing any homeostatic terms (Turrigiano and Nelson, 2004;

Zenke et al., 2017a). To support future, potentially more task-related studies of learning in the

cortex, we made the model and the simulator available to the community.

4.2 Results

To achieve a continuous readout of plastic changes in synaptic efficacy of millions of excitatory

synapses, we used a biophysically detailed, large-scale cortical model of the rat non-barrel

somatosensory cortex (nbS1). The model improves on Markram et al. (2015) in terms of

both anatomical, e.g., atlas based cell composition and placement (described in Reimann

et al., 2022a), and physiological properties, e.g., improved single cell models, multi-vesicular

synaptic release, and layer-wise compensation for missing synapses (described in Isbister

et al., 2023). For this study, we used a seven column subvolume comprising 211,712 neurons

in 2.4 mm3 of tissue (Figure 4.1A) to keep the complexity of simulation and analysis man-

ageable. In line with the biological variability, excitatory cells are modeled as a diverse set of

morphologies (Kanari et al., 2019; Reimann et al., 2022a; Figure 4.1B) equipped with conduc-

tances distributed across all compartments (Reva et al., 2022; Supplementary Figure 4.7A).

The connectivity and synaptic physiology of these cells were extensively validated (Reimann

et al., 2022a; Isbister et al., 2023; Figure 4.1C; Supplementary Figure 4.7C). The model is also

equipped with fibers from the ventral posteriomedial nucleus of the thalamus (VPM) and the

high-order posteriomedial nucleus of the thalamus (POm; Figure 4.1D; Meyer et al., 2010). We

use these fibers to deliver inputs with spatio-temporal precision.

4.2.1 Calcium-based, biophysically detailed model of long-term plasticity

In previous versions of the circuit model, synapses were only equipped with short-term

plasticity (STP; Figure 4.1C). In the remainder of the manuscript we will call this the non-

plastic version, as our scope here is long-term plasticity. To model long-term plasticity we

integrated our recently published calcium-based plasticity model that was used to described

functional long-term potentiation and depression between pairs of pyramidal cells (PCs;

Chindemi et al., 2022). In short, the model follows the formalism of Graupner and Brunel

(2012), where pre- and postsynaptic spikes lead to changes in synaptic [C a2+]i (Figure 4.1E).

Calcium entering though NMDA receptors and voltage-dependent calcium channels (VDCCs)

contributes to [C a2+]i (equation (4.2) in Methods). When the integrated calcium trace of

a synapse crosses the threshold for depression (θd ) or the higher one for potentiation (θp ),

synaptic efficacy (ρ, exhibiting a bistable dynamics Lisman, 1985) is updated (Figure 4.1E left;

equation (4.1) in Methods).
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Figure 4.1: Overview of the network model. A: Visualisation of the seven column subvolume of rat
nbS1. Rendering of 10% of the cells was done with Brayns. B: Representative morphologies for the
18 excitatory m-types and their typical firing pattern (e-type, top left). C: Exemplary connections to
L5 TTPCs (top) and their STP profiles (bottom). Thin gray represent the 20 individual repetitions,
while the thicker black ones their means. Renderings of morphologies (on B as well) were done with
NeuroMorphoVis (Abdellah et al., 2018). Neurite diameters are scaled (x3) for better resolution. D:
Bouton density profiles of thalamocortical fibers, and locations of VPM (black) and POm (purple)
synapses on neurons (in a 5µm radius subvolume). Rendering was done with BioExplorer. The scale
bar on B applies to the whole figure. (Similar panels have been shown in Reimann et al., 2022a, Isbister
et al., 2023, and Chindemi et al., 2022.) E: Variables of the plasticity model during coincident activation
of the pre- and postsynaptic neurons. Left: under in vitro-like conditions (taken from Chindemi et al.,
2022). Right: same pair of neurons under in vivo-like conditions. Schematics on their lefts illustrate the
difference between in vitro- and in vivo-like conditions.
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As Graupner and Brunel (2012) modeled [C a2+]i of synapses on point neurons phenomeno-

logically, they had to refit their plasticity model parameters to explain different experimental

datasets. On the other hand, Chindemi et al. (2022) has shown that a generative model, op-

timized against STDP protocols from only two pathways can explain a large array of other

experimentally measured pathways, thanks to the biophysically detailed model of [C a2+]i

and the morphological complexity of the neurons. The finding of Chindemi et al. (2022), that

one unique plasticity rule can rule them all, crucially depends on the location of synapses

on the dendrites. The generative model converts location dependent pre- and postsynaptic

[C a2+]i peaks into synapse-specific θd and θp parameters for all excitatory to excitatory (E to

E) synapses in the circuit. In our model, we found presynaptically evoked [C a2+]i peaks to be

three orders of magnitude larger, than the ones evoked by postsynaptic spikes (Supplementary

Figure 4.8A). Postsynaptically evoked [C a2+]i peaks had a multimodal distribution in the

apical dendrites (Supplementary Figure 4.8A right), in line with Landau et al. (2022).

Changes in ρ are then converted into changes in the utilization of synaptic efficacy (USE ), a

variable of the Tsodyks-Markram model of STP describing the baseline release probability

(Tsodyks and Markram, 1997) and the peak AMPA receptor conductance (ĝ AMPA ; equations

(4.5) and (4.6) in Methods). As a results of updating USE as well, short- and long-term plasticity

are tightly coupled in the model (Markram and Tsodyks, 1996; Costa et al., 2015; Deperrois and

Graupner, 2020). In our network model USE is also modulated by [C a2+]o , where a reduction

in [C a2+]o leads to pathway-specific, non-linear reduction in USE (Figure 4.1E right; Markram

et al., 2015; Ecker et al., 2020). At initiation, synapses are assumed to be at one of the two fixed

points (fully depressed ones at ρ = 0 and fully potentiated ones at ρ = 1) and their assignment

to these states is pathway-specific (Supplementary Figure 4.7C3).

4.2.2 Achieving in vivo-like network activity

After equipping the circuit with the extra parameters required for long-term plasticity, it

was ready to be simulated. To drive network activity, we compensated for missing synaptic

input arriving through long-range projections from other brain areas not included in the

circuit model (Isbister et al., 2023) and provided inputs through the thalamocortical fibers.

Complex phenomena like plasticity are traditionally studied under controlled laboratory

conditions in vitro, but classical STPD protocols were shown to not induce any plastic changes

under in vivo-like low [C a2+]o (Figure 4.1E, Inglebert et al., 2020; Chindemi et al., 2022). As

our broad interest is understanding the rules governing plasticity in living brains, and our

modeling pipeline is capable of taking the effects of low [C a2+]o into account (Markram

et al., 2015), we calibrated the network’s activity to mimic in vivo conditions. To that end,

we calibrated layer-wise spontaneous firing rates and evoked activity to brief VPM inputs

matching in vivo data from Reyes-Puerta et al. (2015). Spontaneous activity was driven by

somatic injection of a layer- and cell type-specific noisy conductance signal (see Isbister et al.,

2023 and Methods). By introducing plasticity at all E to E synapses, an additional depolarizing

current from VDCCs was added to the model, which made the network more active than its
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non-plastic counterpart (Supplementary Figure 4.9A). This required an algorithmic lowering

the amplitude of injected conductances from Isbister et al. (2023) to achieve the same in

vivo-like layer-wise spontaneous firing rates (Supplementary Figure 4.9B).

Evoked activity was driven by a thalamocortical input stream already described in Ecker et al.

(2023b). In short, ten VPM input patterns were repeatedly presented in random order with a

500 ms inter-stimulus interval, together with a non-specific POm input. The ten VPM patterns

were defined with varying degrees of overlap in the sets of activated fibers (Figure 4.2A; see

Methods). Spike trains delivered on the pattern fibers followed a 100 ms-long inhomogeneous

adapting Markov process (Muller et al., 2007). The overlap of the patterns is clearly visible in

the firing pattern of each group of fibers corresponding to them (Supplementary Figure 4.10).

An exemplary raster plot, characterizing the evoked state of the plastic network is shown on

Figure 4.2B.

4.2.3 Sparse synaptic changes induced by long-term plasticity

After achieving in vivo-like network activity, we simulated 10 minutes of biological time and

measured the changes in synapses with respect to their initial states. The distribution of

ĝ AMPA remained lognormal, in line with biology (Buzsáki and Mizuseki, 2014; Rößler et al.,

2023), and its mean shifted by only 0.07% (+0.5 pS, Figure 4.2C1). This minimal strength-

ening was achieved by less frequent, but stronger potentiation, and at the same time the

network remained stable because of the more frequent, but weaker depression (Figure 4.2C2),

without needing to model homeostatic plasticity (Turrigiano and Nelson, 2004; Zenke et al.,

2017a). Changes in ĝ AMPA are difficult to interpret, as the overall scale of its values is pathway-

dependent (Supplementary Figure 4.7C3), i.e., the change associated with full potentiation in

one pathway would indicate only partial potentiation in another. Therefore, in the rest of the

article we will analyse ρ instead, as it always lies in the [0, 1] interval. While ρ is changing on

a faster time scale than ĝ AMPA (see equations (4.5) and (4.6) in Methods), the propensity of

changes at the end of a 10 minute-long simulation was virtually identical (Figure 4.2C3 vs. D3).

When comparing the amount of changes in ρ across time steps, we found that most of the

plastic changes happened in the first 1-2 minutes of the simulation, after which they stabilized

(Figure 4.2D1). While small changes were still apparent towards the end of the simulation,

by visualizing individual synaptic traces we confirmed that most of them oscillated around a

dynamic fix point (Figure 4.12A) and the amount of changes in the second half of the simula-

tion were negligible (Figure 4.12B). By splitting synapses at the end of the simulation based

on their target neurite type and layer, we learned that an order of magnitude more synapses

changed on basal dendrites compared to apical ones, although there are roughly the same

amount of apical synapses in the circuit (Figure 4.2D2). Layer 5 (L5) PCs contributed mostly to

changes on the basal dendrites, while apical changes happened mostly on L6 PCs.

In addition to looking at changes in individual synapses, we also performed analyses at the

connection level. To do so, we averaged ρ values of all (4.1± 2.3; Supplementary Figure
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Figure 4.2: Synaptic changes in large-scale plastic simulations. A: Centers of the VPM fibers associated
with the ten input patterns in flat map space. Bottom row 3r d : pyramid-like overlap setup of VPM
patterns, 4th centers of POm fibers associated with all stimuli. B: Raster plot of the microcircuit’s
activity and the population firing rates below. The y-axis shows cortical depth. (As cortical layers do not
have the same cell density, the visually densest layer is not necessarily the most active. Similar panels
have been shown in Ecker et al. (2023b). C: Evolution of ĝ AMPA during the 10 minute-long simulation.
C1: Distribution of ĝ AMPA in the beginning and end of the plastic simulation. C2: Plastic changes that
lead to the shift in the distributions shown in C1 (blue: depression, red: potentiation throughout the
figure). C3: Layer-wise propensity of changes. D: Evolution of synaptic efficacy (ρ). D1: L2 norm of
changes in ρ across time. Similarly to C1, insert shows distribution of ρ values in the beginning and
end of the simulation. D2: Layer- and neurite type-wise distribution of non-trivial (neither 0: totally
depressed, nor 1: totally potentiated) ρ at the end of the simulation. D3: As C3. E: Evolution of mean ρ

(aggregated over connections). E1: L2 norm of changes in mean ρ across time against STDP control
(insert, see Methods). E2: Plastic changes (in mean ρ) vs. mean pairwise firing rates. E3: Same as C3.
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4.7C1) synapses mediating a connection and analyzed the propensity of changes as before. As

expected, changes at the connection level became more frequent than at the synapse level

(Figure 4.2E3 vs. D3). By plotting the propensity of changes against the pairwise mean firing

rates of the pre and postsynaptic neurons, we found that the percentage of changes increased

as the pairwise firing rates increased (Figure 4.2E2), in line with previous modeling insights

(Litwin-Kumar and Doiron, 2014; Graupner et al., 2016). Although, previous theoretical work

has shown that embedding simple STDP rules in spiking networks without homeostatic

plasticity leads to pathological behavior (Morrison et al., 2007), they relied on higher firing rates.

To better understand if only the scale of the simulated network, its biorealistic connection

probabilities and the low, in vivo-like rates contribute to the sparsity of changes observed in

our simulation, we took the 36 M excitatory spikes from our simulation and characterized

the propensity of changes resulting from a traditional spike pair-based STDP rule (Gerstner

et al., 1996; Kempter et al., 1999; Song et al., 2000; see Methods). While our calcium-based

rule stabilized in two minutes after the initial transient, the STDP rule kept inducing the same

magnitude of changes throughout all 10 minutes of the simulation (Figure 4.2E1).

To test to what degree was presynaptic transmission required to trigger plasticity, we ran

simulations without intrinsic connectivity between the neurons but keeping their extrinsic

inputs, or parts thereof, intact (Supplementary Figure 4.11). When neurons received only the

somatic conductance injection representing noisy background inputs, we did not observe

any changes in mean ρ. When they additionally received the thalamic inputs patterns, we

observed changes in ρ, albeit an order of magnitude fewer than in the baseline condition

(Supplementary Figure 4.11). Therefore, while the calcium-based plasticity model of Chindemi

et al. (2022) is not strictly Hebbian since the effect of postsynaptic firing alone could change

synaptic efficacy, presynaptic release was required for most of the observed changes. Lastly,

we ran control simulations in connected networks but instead of presenting the patterns,

delivered random Poisson spikes on the same VPM fibers at a rate that resulted in the same

thalamic spike count. This case was the closest in terms of changes to our baseline case,

but still 25% fewer connections underwent plastic changes (Supplementary Figure 4.11),

demonstrating the importance of the spatiotemporal structure of the stimuli over simply the

firing of the pre- and postsynaptic neurons.

In summary, we observed that ∼ 5% of synapses undergo long-term plasticity under realistic

in vivo-like conditions in 10 minutes, and most of these synapses are on above-average firing

rate L5 PC’s basal dendrites. Potentiation dominated in amplitude, while depression counter-

acted it in frequency, keeping the network stable amidst ongoing plasticity without explicitly

considering any homeostatic mechanisms.

4.2.4 More frequent plastic changes within and across cell assemblies

With 95% of synapses remaining unchanged, synaptic plasticity appears to be a highly specific

mechanism. We therefore tried to understand the rules that determined which synapses
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changed. We specifically hypothesized that plasticity of connections may be structured by the

membership of participating neurons in Hebbian cell assemblies, i.e., groups of neurons that

fire together (Hebb, 1949; Harris, 2005). Our reasoning was as follows: from the parametriza-

tion of our plasticity model, we learned that presynaptic spikes contribute orders of magnitude

higher calcium than postsynaptic ones (Supplementary Figure 4.8A) if the NMDA receptors

are fully unblocked; thus, in order to effectively depolarize the dendrites and unblock NMDA

receptors, spikes at low, in vivo-like rates must be synchronized in time, as in Hebbian assem-

blies. Thus, we detected cell assemblies from the in silico spiking activity of the 10 minute-long

plastic simulation using methods established by experimentalists (Carrillo-Reid et al., 2015;

Herzog et al., 2021). In modeling studies, assemblies are usually defined based on their strong

internal connectivity, i.e., their structure (Litwin-Kumar and Doiron, 2014; Zenke et al., 2015;

Fauth and Van Rossum, 2019; Kossio et al., 2021), but we wanted to use them to restrict our

analysis of plastic changes and therefore detected them based on their co-firing function. The

rationale for combining the methods above and the full pipeline is described in detail in our

previous article, Ecker et al. (2023b) and briefly in the Methods. In short, spikes were binned

and bins with significantly high firing rates (Figure 4.3A) were hierarchically clustered based

on the cosine similarity of their activation vector (Figure 4.3B1). These clusters correspond

to the functional assemblies, with a neuron being considered a member if its spiking activity

correlates with the activity of an assembly significantly stronger than chance level (Figure

4.3C). Since time bins and not neurons, were clustered in the first place, this method yields one

assembly per time bin and single neurons can be part of several assemblies (Figure 4.3B, D).

Assemblies were activated in all stimulus repetitions and a series of three to four assemblies re-

mained active for 190±30 ms, similar to our previous results (Ecker et al., 2023b, Figure 4.3B2).

Pattern A elicited the strongest response, while pattern B the weakest, and the responses of

patterns H and I were the most similar to each other, as expected, since they share 66% of the

VPM fibers (Figure 4.2A). Assembly activations had a well-preserved temporal order - with

some of them always appearing early during a stimulus, while others later - and from now on

we will refer to them as early, middle, and late assemblies, and will order them in the figures

accordingly (Figure 4.3C-E and 4.4A, B).

In line with in vivo experiments, these assemblies were detected from functional activity

(spikes). However, in our in silico approach we have access to the full biorealistic connectome

(Reimann et al., 2022a) and can thus investigate how the underlying structure constrains func-

tion. In Ecker et al. (2023b) we presented an in-depth analysis of this question (in a non-plastic

circuit), so here we will only give an overview of the findings important for this study. Dating

back to Hebb (1949), the most commonly accepted structural correlate of cell assemblies is

the abundance of recurrent connectivity motifs between participating neurons (Harris, 2005;

Song et al., 2005; Perin et al., 2011). In our analysis we also observed that assembly-indegree,

i.e., the number of afferent connections from an assembly, is a great predictor of a neuron’s

membership in an assembly (Supplementary Figure 4.13A1). Strong positive interactions

were also found across assemblies, but only when the direction of innervation reflected the

temporal order of assembly activation, e.g., assembly 8 to assembly 12 (A8 and A12 in Figure
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Figure 4.3: More frequent changes in cell assembly synapses. A: Firing rate of excitatory cells with
the determined significance threshold. B1: Hierarchical clustering of the cosine similarity matrix of
activation vectors of significant time bins (i.e., above threshold in A). B2: Clustered significant time
bins ordered by the patterns presented. C: Number and location of neurons in each cell assembly: flat
view on top, depth-profile below. D: Jaccard similarity of cell assemblies. E: Propensity of changes in
cell assemblies. E1: Initial mean efficacy (ρ) of within- and cross-assembly synapses. E2: Propensity of
depression and potentiation of within- and cross-assembly synapses. As assemblies are overlapping
(see D) single synapses are taken into account for many different pre- and postsynaptic assembly
pairings. (Similar panels (except E) have been shown in Ecker et al., 2023b).

4.3B2 responding to patterns H and I). These results, combined with the biophysics of the plas-

ticity model, suggest that connections within an assembly and the ones between temporarily

ordered assemblies, are expected to undergo plastic changes with a higher probability.

When checking the propensity of changes within and across assemblies, we indeed found

more synapses undergoing long-term plasticity (Figure 4.3E2). While only 3.5% of synapses

depressed in the whole dataset, we found up to 10.5% when restricting the analysis to assem-

blies. Similarly, compared to 1.5% of all synapses potentiating, we observed up to 4.2% when
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restricting to assemblies. Interestingly, large values were found in the off-diagonal entries

(Figure 4.3E2), i.e., synapses across assemblies underwent more plastic changes than the

synapses within these assemblies. In our model, the initial ρ values are pathway-specific and

highest in L4 pathways (Brémaud et al., 2007; Supplementary Figure 4.7C3). Therefore, early

assemblies, with large number of L4 cells have a higher than average initial ρ (Figure 4.3C

and E1 respectively), thus their synapses are more likely to depress (Figure 3.3E2). As early

assemblies are stimulus specific, and thus not part of a Hebbian phase-sequence, synaptic

depression between these cells can be seen as some kind of orthogonalization of the stimulus

responses. On the other hand, late assemblies, that are predominantly composed of cells from

the deep layers, have a low initial ρ (Figure 4.3E1; Supplementary Figure 4.7C3) and synapses

towards them are more likely to potentiate. These assemblies are mostly non-specific and

participate in all phase-sequences, thus the potentiation of their efferents means a general

strengthening of the stimulus response as a whole.

Together these results indicate that, in line with 70 years old predictions, cells that fire together

wire together (Hebb, 1949). Our contribution lies in making the qualitative statement above

into a quantitative one: Under in vivo-like conditions cells that fire together more than

expected have three times higher chances of changing the efficacy of their connections.

4.2.5 Synapse clustering contributes to the emergence of cell assemblies, and
facilitates plasticity across them

In addition to co-firing, a group of innervating neurons is more effective in depolarizing a

given dendritic branch if they all send synapses to the same branch, i.e., they form a spatial

synapse cluster (Farinella et al., 2014; Iacaruso et al., 2017; Kastellakis and Poirazi, 2019).

To quantify this trend, we previously defined the synaptic clustering coefficient (SCC ) with

respect to an assembly, based on the path distances between synapses from that assembly on

to a given neuron (see Ecker et al., 2023b and Methods). For the assemblies detected in this

study, we also found SCC to be a good predictor of a neuron’s membership in an assembly

(Supplementary Figure 4.13A2), although the effect was less than half as strong as that of

assembly-indegree. We used assembly-indegree and SCC to select the 10 most innervated

L5 TTPCs (thick-tufted pyramidal cells) within a cell assembly and then explicitly detected

spatial clusters of synapses, defined as at least 10 synapses within a 20µm stretch of a single

dendritic branch (see Methods).

For our next analysis, we grouped all synapses on these 10 selected neurons per assembly into

four categories based on assembly membership of the presynaptic neuron and whether the

synapse was part of a cluster or not (see exemplary clustered assembly synapses on Figure

4.4E1). Then, we quantified the likelihood of plastic change in each category by contrasting

the conditional probability of observing it in a given category with the probability of observing

any change irrespective of the category (see equation (4.9) in Methods; Figure 4.4A2). Note

that a nonzero value for one category always has to be compensated by a nonzero value with
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opposite sign in another. Surprisingly, clustered within-assembly synapses were not likely

to undergo any changes. When we repeated the analysis on the initial ρ values, we found

that early and middle assembly synapses, especially the clustered ones, are very likely to be

initialized as fully potentiated (Figure 4.4A1). On the other hand, synapses within the late

assemblies were likely to be initialized in the fully depressed state, but were likely to change.

Furthermore, when comparing the amplitude of changes across conditions with a 2-way

ANOVA, we found that clustered within-assembly synapses depress to a smaller degree than

the other ones (Figure 4.4C). When we checked the temporal evolution of within-assembly

synapse cluster ρ values, we saw that while some of the synapses underwent small constant

changes, most of them changed at the same time (vertical stripes on Figure 4.4E2). Thus the

picture emerging is as follows: early and middle assemblies are partially defined by clustered

(both spatial and functional) synapses that are initialized as fully potentiated. These synapses

are unlikely to change, but when they do, they depress less than the others, and would converge

back to ρ = 1.0 in absence of activity, as they do not cross the ρ = 0.5 unstable fix point. These

stable early assemblies can therefore function as a stable backbone amid ongoing synaptic

plasticity.

In our previous investigation, we found that most changes happened across assemblies, so

we extended the analysis described above to cross-assembly synapses. Here, the picture

was reversed: cross-assembly synapses that were part of a spatial cluster were likely to be

initiated as fully depressed and then had a high chance of undergoing potentiation (Figure

4.4B). Interestingly, the amplitude of this potentiation was significantly less than that of the

other groups’ (Figure 4.4D), but on average, still enough to cross the ρ = 0.5 unstable fix point.

Together with the previous results, this suggests that synapses between assemblies are more

likely to change, which is even more pronounced if these synapses form a cluster on the

postsynaptic dendrite.
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(Caption continues on the next page.)
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E1: Changes in within-assembly, clustered synapse on an examplary A13 neuron. Rendering was done
with NeuroMorphoVis Abdellah et al. (2018). Neurite diameters are scaled (x2) for better resolution.
(Synapse diameters are arbitrary.) E2: Temporal evolution of the (∼ 1000) synapses on basal dendrites
shown on E1.

4.2.6 Redistribution of assembly efficacies and prolonged stimulus-specific re-
sponses characterize the network after plasticity

In the beginning of our study we used cell assemblies only as a powerful tool to restrict our

analysis of plastic changes to biophysically motivated subpopulations of neurons. On the

other hand, the evolution of assemblies in terms of their composition and association with

stimuli is used to examine the functional consequences of plasticity and the stability of the

neural code in contemporary literature (Fauth and Van Rossum, 2019; Kossio et al., 2021;

Pérez-Ortega et al., 2021). From our investigation we have learned that the early assemblies

are defined by clustered fully potentiated synapses at initialization. As ongoing plasticity

strengthens their connections to the late assemblies we wondered what would happen to the

assemblies if we detected them after the plastic changes.

To study this, we stabilized the network’s state after our 10 minute-long plastic simulation, i.e.,

based on the ρ values in the last time step, assigned synapses to either fully potentiated (last

ρ ≥ 0.5) or fully depressed states and updated not only the USE and ĝ AMPA values, but also

the peak NMDA conductances (ĝN MD A) accordingly. Then we ran 2 minute-long, non-plastic

simulations of this network and compared the resulting assemblies to the ones detected in

a non-plastic simulation of the network before plasticity, i.e., in its naive state. Note that

the stimulus streams presented were identical between the two cases. From a high level

comparison of the network states before vs. after plasticity we learned that the firing rates

increased (Supplementary Figure 4.14A1 left) but the pairwise spike correlations only slightly

increased in line with recent findings (Oby et al., 2019; Feulner et al., 2022). Nonetheless spike

time reliability of individual neurons increased (Figure 4.5A; see Methods). The observed

increase in firing rate might explain the increase in spike time reliability after plasticity, as the

two measures are correlated (Cutts and Eglen, 2014). Plotting pattern-specific peri-stimulus

time histograms (PSTHs) before and after plasticity revealed a general lengthening of the late

phases of the response and increased amplitudes for selected patterns (Figure 4.5B).

For a better comparison of assemblies, we ran five repetitions of both cases, and compared

consensus assemblies, i.e., the sets of neurons that were reliably part of a given assembly

across repetitions (Figure 4.5C1 and D1; see Ecker et al., 2023b and Methods). We found more

consensus assemblies after plasticity than before (twelve vs. nine, compare Figure 4.5C2 and

D2). The emergence of more consensus assemblies after plasticity is not an artefact of grouping

assemblies together, as the optimal number of assemblies (assessed by Davis-Bouldin index

(Davies and Bouldin, 1979); see Methods) was higher in four out of five repetitions after

plasticity, and equal in one repetition (Supplementary Figure 4.14C). On the other hand,

both the Davis-Bouldin index of the resulting clusters and the cosine similarity of consensus
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assembly counts across repetitions decreased after plasticity (Supplementary Figure 4.14D2).

The sizes of consensus assemblies were similar before and after plasticity (Supplementary

Figure 4.14E). Further comparing consensus assemblies before and after plasticity has revealed

that corresponding pairs had more than 50% of their neurons shared (Figure 4.5E).

To gauge the functional consequences of plastic changes, we studied the functional and

structural connectivity of consensus assemblies detected before and after plasticity. When

comparing the mean pairwise spike correlations (a method usually applied to derive functional

connectivity; see Methods) of neurons belonging to consensus assemblies, we observed a

general decrease in the early ones and an increase in middle and late ones (Figure 4.5F). This

was accompanied by the same arrangement of changes in the structural connectivity of the

same consensus assemblies (assessed by comparing ρ values). We saw similar trends in the

spike time reliability (see Methods) of individual neurons, i.e., a decrease for early, and an

increase for middle and late consensus assembly neurons. More generally, we found that

early assemblies grew less correlated with weaker internal connectivity through plasticity,

which trend was weakened in the subset of neurons that remained part of the assembly

(compare columns of Figure 4.5F). Conversely, in middle and late assemblies correlations and

connections grew stronger, especially so in the neurons that were members of the consensus

after plasticity.

As plasticity in the cortex changes not only ĝ AMPA as in the hippocampus but also USE

(Markram and Tsodyks, 1996; Selig et al., 1999; Sjöström et al., 2003; Costa et al., 2015; Chin-

demi et al., 2022), there is a redistribution of synaptic efficacy towards earlier spikes during

high-frequency firing. This redistribution happens because the increased USE makes the

STP profile of potentiated connections more depressing (Supplementary Figure 4.14B left;

Markram and Tsodyks, 1996). However, in our simulation, we rarely observed high-frequency

firing and also found the STP profile of potentiated connections to be facilitating at the low in

vivo [C a2+]o (Supplementary Figure 4.14A2 and B right respectively). Thus, while Markram

and Tsodyks (1996) showed a redistribution of synaptic efficacy after plasticity at the single

connection level in vitro, we found a redistribution at the network level under in vivo like

conditions: efficacy shifted towards synapses targeting the deeper layers of the cortex. Interest-

ingly, while the firing rates only increased slightly in the significant time bins, there was a more

pronounced increase when we compared them during the whole 2 minute-long simulation

(compare Supplementary Figure 4.14A1 left to right). This strongly suggests that this network

level redistribution of efficacy and the strengthening of late consensus assemblies lead to their

reactivation during spontaneous activity, in line with experimental findings (Miller et al., 2014;

Carrillo-Reid et al., 2015; Stringer et al., 2019; Herzog et al., 2021; Trägenap et al., 2022).
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Figure 4.5: Changes in cell assemblies after plasticity. A: Functional network features extracted from
spike times of non-plastic simulations before plasticity, i.e., in the naive circuit vs. after the 10 minute-
long plastic simulation. Left: Pairwise spike correlation. Right: Spike time reliability (rspi ke ) measured
over five repetitions of the same 2 minute-long simulations with the same input (see Methods). B:
PSTHs by patterns before vs. after. (Only significant time bins are take into account, see assembly
detection in Methods). C: Non-plastic consensus assemblies before plasticity. C1: Jaccard similarity
based hierarchical clustering of assemblies from the five simulation instances. C2: Significant time bins
from one of the repetitions, ordered by patterns presented, and colored by the consensus assemblies
(not the ones detected from that instance). D: Same as B, but for non-plastic consensus assemblies
after plasticity. (Caption continues on the next page.)
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E: Jaccard similarity of consensus assemblies detected before and after plasticity. F: From left to right:
Changes in pairwise spike correlation, ρ, and rspi ke of within consensus assembly neurons. Colors
indicate changes (after - before), while columns indicate at which point the consensus assembly was
detected. Right: Changes in total consensus assembly counts per patter. Error bars are over the five
repetitions. G: Input-output map: G1: Input distances as the Earth mover’s distance of the VPM fiber
locations (see Figure 4.2A). Insert shows the overlap (based on Hamming distance) of pattern fibers. G2:
Output distances are calculated as the (normalized) Euclidean distance of pattern evoked consensus
assembly cluster over repetitions (see Supplementary Figure 4.14B). G3: Correlation of distances from
G1 and G2. (Similar panels (except A, B, and F) have been shown in Ecker et al., 2023b.)

Lastly, we further analyzed the total duration of consensus assembly responses to different

patterns. In line with the prolonged PSTHs, we found a general increase (consensus assemblies

active for 190±45 ms before vs. 200±60 ms after plasticity), and could trace it back to selected

patterns A, E, H, and I (Figure 4.5D right). This provides the most likely explanation for the

increased number of assemblies after plasticity: the higher number of significant time bins

simply lead to a higher number of optimal clusters (given our metric). The activation sequence

of consensus assemblies can be seen as a low-dimensional representation of the complex,

high-dimensional activity of the network’s response to different patterns. Following our

previously established methods (Ecker et al., 2023b), we correlated the Earth mover’s distances

between the locations of the VPM fibers making up the input patterns (Figure 4.5C1), and the

normalized Euclidean distances of output consensus assembly sequences across repetitions

(Figure 4.5G2). We observed an increase in the input-output distance correlation after plasticity

(r = 0.443 vs. r = 0.357; Figure 4.5G3). This increased input-output correlation after plasticity

can partially be explained by the prolonged stimulus-specific assembly sequences.

In summary, when comparing assemblies before and after plasticity, we found that the network

became more specific to the patterns it was exposed to. This manifested in assemblies splitting,

weakening of early and strengthening of the late assemblies and the consequent prolonged

assembly responses to specific patterns.

4.2.7 Network topology changes are parametrized by input stimuli

Increased pattern specificity after plasticity indicates that the plastic changes are indeed

not random, but stimulus-driven. To better characterize this, we ran 2 minute-long plastic

simulations in which we only presented a single pattern (with the same 500 ms inter-stimulus

interval as before). We repeated this paradigm three times, for all 10 patterns, and analysed

changes in mean ρ matrices as before. The propensity of changes in the connections was

in line with the baseline ones (compare Supplementary Figures 4.11B and 4.15). While the

number of connections changing was similar across patterns, we wondered if there is any

pattern-specific information in them.

To investigate this, we used an input-output distance correlation analysis, similar to the

one employed to compare consensus assemblies before and after plasticity. In detail, we
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correlated the Earth mover’s distance of the input patterns (Figure 4.5C1 as before) with the

Euclidean distance of the steady state (last time step) mean ρ values and found a clear and

strong correlation between them (r = 0.666, p < 0.0001; Figure 4.6A left). As controls we ran

the analysis with other distance metrics as well. Neither Hamming distance (taking only the

identity of changing connection into account) nor Earth mover’s distance (taking only the

distribution of steady state mean ρ values into account) showed a clear correlation with the

distance of pattern fibers (Figure 4.6A middle and right respectively), indicating, that the

whole network structure needs to be taken into account to describe the relationship between

its steady state and the input patterns.

To further explore the structure of the changes, we focused on the plastic connections that

evolved in the same direction (i.e, potentiation or depression) across all three repetitions

for all patterns, which was around 40% of all changing connections (Supplementary Figure

4.15). As we found pattern-specific information in the changing connections, in the next step

we analyzed to what degree the subnetworks they defined are determined only the neurons

composing them. We did this by comparing them to random subnetworks of the entire circuit

with the same pre- and post-synaptic populations and the same number of connections

between them. We observed, that distributions of the changing pathways are different than

expected from the network structure and the pre- and postsynaptic populations alone (Figure

4.6B1). To quantify this difference, we counted a particular class of motifs, directed simplices

of dimension k, which are motifs on k +1 neurons, which are all-to-all connected in a feed-

forward fashion (Figure 4.6B2 inset). These motifs have previously shown to be linked to

network function (Reimann et al., 2017b) as well as quantify complexity of the network’s

topology (Kahle, 2009; Bobrowski and Kahle, 2018). We found strong overexpression of these

simplices in the subgraphs, compared to their random controls. In particular, the maximal

simplex dimension found in the subgraphs was always one higher than in the corresponding

controls (Figure 4.6B1).

While we learned that different connections change when different patterns are presented and

the connections and the network topology they define are not entirely defined by the pre- and

postsynpatic populations, so far have not linked the changes to individual patterns. To do so,

we used methods developed in Ecker et al. (2023b) and first studied the propensity of changes

against pattern-indegree i.e., the number of VPM fibers belonging to a pattern that innervate a

neuron. The propensity of changes increased as either the pre- or the postsynaptic side of the

connection’s pattern-indegree increased (Figure 4.6C). Moreover, we confirmed that the effect

of pattern-indegree of the pre- and postsynaptic neurons are not independent by computing

the conditional mutual information between them and the probability of their connection to

change. As expected, the mutual information is non-zero (between 0.0126 and 0.0291) and

much larger than the one obtained for corresponding random controls (between 2.27×10−7,

4.52×10−7). Thus, in our last analysis we investigated the joint distribution and characterized

the propensity of changes against pattern-indegree of both pre- and postsynaptic neurons.

The propensity of both depression and potentiation grew rapidly with patter-indegree (Figure

4.6D1 and D2 respectively). While depressing and potentiating connections totaled to only
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Figure 4.6: Topology of changing subnetworks in response to single pattern presentations. A: Input-
output distance correlations. A1: Different (from left to right: Euclidean, Hamming, Earth mover’s)
distances of mean ρ matrices. Three repetitions for each of the 10 input patterns. A2: Correlation
of input distances (as in Figure 4.5C1) and distances of mean ρ matrices above on A1. B1: Layer-
wise distribution of consistently changing (three out of three repetition) connections in response to
presenting pattern A. Below its control, which was generated by taking the same number of connections
between the same pre- and postsynaptic populations. B2: Directed simplex counts in subnetworks
from B1 (but for all patterns). Colors correspond to simplex counts of the consistently changing
subnetworks, while black to their controls. Note that by construction the controls must have the
same number of 0- and 1-simplices which correspond to the number of cells and connections in the
subnetwork. Insert illustrates simplex dimension. C: Propensity of changes vs. pattern-indegree of the
presynaptic (left) or postsynaptic (right) neurons. D: Propensity of changes (split for depression D1
and potentiation D2) against the pattern indegree of both pre- and postsynaptic neurons.
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3% in the whole network, the amount of depressing connections was above 15%, and above

5% for potentiation when both sides of the connection were highly innervated by the VPM

fibers. They reach the highest values for patterns A, H, and I, the same ones whose responses

were strengthened by plasticity when all patterns were presented. Curiously, pattern-indegree

of the presynaptic side was less important for potentiation, where pattern-indegree of the

postsynaptic side was more predictive. The intuitive explanation for this is the following: if

input from the VPM fibers depolarized the postsynaptic dendrites enough, then a successful

release from any presynaptic neuron (independent of their pattern-indegree) caused C a2+

entering though the at least partially opened NMDA receptors.

In summary, the network evolved differently when single patterns were presented, and the

distance between the steady states achieved reflected the geometric distance between the

patterns. Moreover, the steady state reached for each pattern could not be determined only

by the pre- and postsynaptic populations of the changing connections, but by their precise

location within the network as well as their pattern-indegree. The propensity of depression

increased in connection in which both pre- and postsynaptic neurons was strongly innervated

by pattern fibers, while for potentiation postsynaptic pattern-indegree dominated. Moreover,

these effects are not independent.

4.3 Discussion

Using a detailed, large-scale cortical network model equipped with a calcium-based model of

long-term functional plasticity, we have examined changes in synaptic efficacy in response

to repeated presentation of 10 different stimuli over 10 minutes of biological time, under in

vivo-like conditions. Our principal observations in this bottom-up simulation framework

are as follows: (1) Plastic changes were sparse, affecting only 5% of the synapses. A balance

between occasional large-amplitude potentiation and more frequent depression kept the net-

work stable without explicitly modeling homeostatic plasticity. (2) Plastic changes were largely

determined by the anatomical structure of synaptic connectivity and its relation to functional

units, i.e., changes were most likely between co-firing cell assemblies and at clustered synapses.

(3) Early-responding cell assemblies were defined by clustered synapses initialized as fully

potentiated and remained fairly stable. In contrast, their synapses to late-responding assem-

blies underwent three times more changes than expected, resulting in prolonged and more

reliable responses to selected patterns after plasticity. (4) Changes in the network evoked by

the presentation of individual patterns reflected the geometric distance between the patterns

themselves. The structure of these changes could be partially explained by the innervation of

the pre- and postsynaptic neurons by the pattern fibers, though the populations alone are not

enough to determine these changes, since the changing connections between them are not

random.
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The first observation (1) is quite significant considering that we did not design the learning

rule to be sparse and stable. In previous models of plastic networks, additional mechanisms

were needed to keep the network’s activity stable, not to mention the sparsity of changes

(Turrigiano and Nelson, 2004; Litwin-Kumar and Doiron, 2014; Zenke et al., 2015, 2017a; Fauth

and Van Rossum, 2019; Kossio et al., 2021). The machine learning community is also aware

of the importance of sparse changes, as in continual learning one has to balance plasticity

and stability to avoid catastrophic forgetting (McCloskey and Cohen, 1989; Ratcliff, 1990).

In recent years, they have come up with impressive techniques that mask connections to

improve the performance of deep neural networks (Zenke et al., 2017b; Mallya and Lazebnik,

2018; Frankle and Carbin, 2019), whereas in our model it emerged naturally from the high

level of biophysical detail. Of course, the amount of data that deep networks are expected to

store far exceeds the 10 patterns used here, and it is outside of our scope to find the maximal

capacity of our network. On the other hand, we know from theoretical work that for bistable

synapses operating on multiple time scales, capacity scales with the square root of the number

of synapses (Crick, 1984; Fusi et al., 2005).

The second observation (2) can be explained from the biophysics of the plasticity model

and links our results to the classical work of Hebb (1949) as well as the recent literature on

synapse clustering (Farinella et al., 2014; Iacaruso et al., 2017; Kastellakis and Poirazi, 2019).

With respect to the latter, we would highlight that our synapses are stochastic and the release

probability between PCs is ∼ 0.04 at the simulated low [C a2+]o = 1.05 mM (Jones and Keep,

1988; Borst, 2010; Markram et al., 2015; Ecker et al., 2020). Therefore, care should be taken

when comparing our results with either glutamate uncaging experiments, which bypass the

presynaptic machinery (Pettit et al., 1997; Losonczy and Magee, 2006), or with other modeling

studies that use deterministic synapses (Poirazi et al., 2003; Farinella et al., 2014; Ujfalussy

and Makara, 2020). In relation to observations (2-4): While we were able to use cellular and

subcellular features of the model’s biorealistic structural connectivity (Reimann et al., 2022a)

to predict plastic changes to a certain degree, this process also highlighted that many other

rules govern plasticity at the network level. Further analysis considering the embedding of

a connection in the entire network and thus the state of the whole network may be able to

provide that explanation.

According to the contemporary view of L5 PCs, sensory bottom-up inputs target their basal

dendrites, and top-down information arrives at the apical ones, and the coincidence activation

of basal and apical inputs is encoded by bursts of action potentials (Larkum, 2013; Naud

and Sprekeler, 2018). During bursts of action potentials, the bAPs propagate to the distal

apical dendrites better (Williams and Stuart, 1999), enough to turn apical depression into

potentiation (Letzkus et al., 2006). Therefore, bursts are not only important for coding, but for

plasticity as well. L5 TTPC bursts were rare in our simulations, as the model is based on an

early developmental stage (P14-16: juvenile rats) and burst firing only becomes prominent as

the animals mature (Zhu, 2000). On the other hand, burst firing could probably be rescued

with stronger top-down input. As the top-down input represents context/brain state and is

thought to serve as an error/target signal for learning, it has to be highly specific (Makino,
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2019). Although we added inputs from POm fibers as they were shown to gate plasticity in

L2/3 PCs in vivo via dis-inhibiting the distal dendrites (Gambino et al., 2014; Williams and

Holtmaat, 2019), we only used randomly distributed fibers, to keep our setup simple in this

first investigation. For a profound understanding of the role of bursts in apical plasticity,

more learning/task-related studies with more precise top-down input would be needed in the

future.

We presented here what we believe to be a new way of studying unsupervised learning and

plasticity in the cortex by taking the diversity of cell types and morphologies into account,

modeling connections as multi-synaptic, validating synapse anatomy and physiology, model-

ing synapses with bistable dynamics, and simulating the network in an in vivo-like state. On

the other hand, building a model of this scale and detail required gathering and systematic

integration of a large amount of data over several years (Markram et al., 2015; Chindemi et al.,

2022; Reimann et al., 2022a; Isbister et al., 2023). As the first of its kind, the work presented

here did not exhaust all the additional understanding one could possibly gain from the high

level of detail. To facilitate that process, we are open-sourcing our model alongside detailed

instructions to launch simulations and analyze the results (see Data and code availability).

As any other model, it has several assumptions (listed in Table 4.1) and limitations and can

best be proven wrong and iteratively updated in a community-driven manner. Simulating the

model requires a performant hardware and software infrastructure (e.g., we needed 16.5M

core hours to run the simulation presented in this manuscript). With respect to the second

part we are continuously improving the performance and efficiency of the simulator (Kumbhar

et al., 2019).

Table 4.1: List of assumptions

1 As we combined the models of Isbister et al. (2023) and Chindemi et al. (2022) all
assumptions therein are inherited. Of particular interest:

2 Extracellular recordings are assumed to have to same bias across layers and neuron
populations. Furthermore it is assumed that different inhibitory subpopulations require
the same ammount of input compensation.

3 The extracellular magnesium concentration of 1 mM used in vitro is assumed to be
representative of the in vivo level.

4 As the plasticity model of Chindemi et al. (2022) is based on [C a2+]i , by using it we
assumed that other factors, like metabotropic glutamate receptors, endocannabinoid
release, BDNF signaling are negligible for the network-level effects of plasticity that we
investigated.

5 Spines are assumed to be separate biochemical compartments, i.e., [C a2+]i of the
dendrites does not influence that of the synapses.

6 By detecting a single set of assemblies in the 10 minute-long plastic simulation we
assumed that assemblies are stable on that time scale.
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4.4 Methods

4.4.1 Calcium-based plasticity model

The calcium-based plasticity model is fully described in Chindemi et al. (2022), but a minimal

description of it can be found below. Synaptic efficacy (ρ) is based on the Graupner and

Brunel (2012) formalism, which exhibits a bistable dynamics (ρ = 0 fully depressed, ρ = 1 fully

potentiated, and ρ = 0.5 unstable fix point) described as:

τ
dρ

d t
=−ρ(1−ρ)(ρ∗−ρ)+γp (1−ρ)Θ

(
C a∗(t )−θp

)−γdρΘ
(
C a∗(t )−θd

)
(4.1)

where τ is the time constant of convergence, θd and θp are depression and potentiation

thresholds, γp and γp are depression and potentiation rates andΘ is the Heaviside function.

The dynamics of [C a2+]i in spines was modeled as:

d [C a2+]i

d t
= (

I∗N MD AR + IV DCC
) η

2F X
− [C a2+]i − [C a2+](0)

i

τC a
(4.2)

where I∗N MD AR and IV DCC are calcium currents through NMDA receptors and VDCCs, η is the

fraction of unbuffered calcium, F is the Faraday constant, X is the spine volume, [C a2+](0)
i is

the resting value of [C a2+]i , and τC a is the time constant of free (unbuffered) calcium clearance.

I∗N MD AR depends on the state of the M g 2+ block. This nonlinear voltage dependence is

described with the Jahr and Stevens (1990) formalism, with parameters fitted to cortical

recordings from Vargas-Caballero and Robinson (2003).

Inspired by previous theoretical insights (Rubin et al., 2005), a leaky integrator of [C a2+]i was

introduced (C a∗) to slow down its time course instead of modeling enzymes downstream of

calcium (e.g. CamKII as others did (Mäki-Marttunen et al., 2020; Rodrigues et al., 2022)):

dC a∗

d t
=−C a∗

τ∗
+ [C a2+]i − [C a2+](0)

i (4.3)

where τ∗ is the time constant of the integrator. Updates in ρ were done based on this C a∗

variable crossing θd and/or θp (see equation (4.1)). The two synapse-specific threshold were

derived based on peaks in [C a2+]i caused by pre- and postsynaptic spikes, cpr e and cpost

respectively. To measure these parameters for all 312,709,576 synapses, simulations of single

cells were run, in which either the pre- or the postsynaptic cell was made to fire a single action

potential and the local [C a2+]i was monitored in each synapse. Since 8% of L6 PCs could not

be made to fire a single action potential (only bursts), synapses on those cells (10,995,513

in total) were assumed to be non-plastic, i.e., their thresholds were set to a negative value

that could not be crossed. Similarly, as the plasticity of connections between L4 spiny stellate

cells was shown to be non-NMDA dependent (Egger et al., 1999; Chindemi et al., 2022) those

connections were made non-plastic. For the remainder of cells, θd and θp were derived as
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follows: [
θd

θp

]
=

[
a00 a01

a10 a11

]
×

[
cpr e

cpost

]
or

[
b00 b01

b10 b11

]
×

[
cpr e

cpost

]
(4.4)

where ai , j and bi , j are constants optimized during model fitting for apical and basal dendrites

respectively. Changes in ρ were then converted by low-pass filtering into changes USE and

ĝ AMPA as follows:

dUSE

d t
= U SE −USE

τchang e
where U SE =U (d)

SE +ρ
(
U (p)

SE −U (d)
SE

)
(4.5)

d ĝ AMPA

d t
= g AMPA − ĝ AMPA

τchang e
where g AMPA = ĝ (d)

AMPA +ρ
(
ĝ (p)

AMPA − ĝ (d)
AMPA

)
(4.6)

where U (d)
SE , U (p)

SE , ĝ (d)
AMPA , and ĝ (p)

AMPA are the fully depressed (d) and fully potentiated (p) values

of the given variables, in-between which they evolve. All values (fixed and optimized alike)

are listed in Chindemi et al. (2022). Just to give a rough idea of time scales: [C a2+]i evolves at

the timescale of tens of ms, C a∗ on the hundreds of ms, while changes in ρ are converted to

changes in USE and ĝ AMPA in seconds.

4.4.2 In vivo-like spontaneous and evoked activity

The calibration process that leads to the in vivo-like spontaneous activity is fully described in

Isbister et al. (2023), but a minimal description and a list of the parameters used in this article

can be found below. As extracellular recordings are known to overestimate firing rates (Wohrer

et al., 2013), a spectrum of spontaneous states at fixed percentage of the rates reported in

Reyes-Puerta et al. (2015) were calibrated (Isbister et al., 2023). Matching specific firing rates

in silico was achieved by iterative adjustments of layer and cell-type (excitatory/inhibitory)

specific somatic conductance injection (following an Ornstein-Uhlenbeck process Destexhe

et al., 2001). The spontaneous state used in the article is characterized by the parameters:

[C a2+]o = 1.05 mM (Jones and Keep, 1988), percentage of reported firing rates = 40%, the

coefficient of variation (CV; std/mean) of the noise process = 0.4.

The thalamic input patterns, and the spike trains delivered on them are fully described in Ecker

et al. (2023b), but a minimal description, highlighting the changes applied in this study, can be

found below. First, the flat map location of VPM fibers avoiding the boundaries of the network

were clustered with k-means to form 100 bundles of fibers. Second, the four base patterns (A,

B, C, and D) were formed by randomly selecting four non-overlapping groups of bundles, each

containing 12% of them. The remaining six patterns were derived from these base patterns

with various degrees of overlap: three patterns as combinations of two of the base ones (E, F, G),

two patterns as combinations of three of the base ones (H, I), and one pattern as a combination

of all four base ones (J). Third, the input stream was defined as a random presentation of

these 10 patterns, in a balanced way. Last, for each pattern presentation, unique spike times

were generated for its corresponding fibers following a 100 ms-long inhomogeneous adapting
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Markov process (Muller et al., 2007). The maximal rate of the VPM fibers was set to 17.5 Hz

(compared to 30 Hz for the non-plastic circuit in Ecker et al., 2023b) and half of that for POm.

4.4.3 Network simulations

Simulations were run using the NEURON simulator as a core engine with the Blue Brain Project’s

collection of hoc and NMODL templates for parallel execution on supercomputers (Hines

and Carnevale, 1997; Kumbhar et al., 2019; Awile et al., 2022; see Data and code availability).

Simulating 10 minutes of biological time with reporting the state of all synapses (in every

second) took 2,350,000 core hours (∼ 4x more than the corresponding non-plastic circuit

without reporting), on our HPE based supercomputer, installed at CSCS, Lugano. Simulations

were always repeated at least three times to assess the consistency of the results.

4.4.4 Evaluating control STDP rules

To compare the amount of changes induced by Chindemi et al. (2022) with classical plasticity

rules, the 36,573,737 excitatory spikes from the 10 minute-long simulation were evaluated with

pair-based STDP rules (Gerstner et al., 1996; Kempter et al., 1999; Song et al., 2000). Synaptic

weights evolved as follows under the STDP rule:

∆w+ = A+ exp
(
− ∆t

τ+

)
at tpost if tpr e < tpost (4.7)

∆w− = A− exp
(∆t

τ−

)
at tpr e if tpr e > tpost (4.8)

where tpr e and tpost are the times of pre- and postsynaptic spikes, ∆t = tpost − tpr e is the

difference between them; A± = 0.05 describe the weight update, which decayed exponentially

with time constants τ± = 20 ms. The STDP rule was implemented in Brian2 (Stimberg et al.,

2019).

4.4.5 Cell assembly detection

The combination of methods from Carrillo-Reid et al. (2015) and Herzog et al. (2021) yielding

the assembly detection pipeline is fully described in Ecker et al. (2023b), but a minimal

description, highlighting the changes applied in this study, can be found below. First, spikes of

excitatory cells were binned using 20 ms time bins (Harris et al., 2003). Second, time bins with

significantly high firing rates were determined as crossing a threshold defined as the mean

activity level plus the 95th percentile of the standard deviation of 100 shuffled controls. These

shuffled controls were less strict than in Ecker et al. (2023b). Unlike in the original study, where

spikes were only shifted by one time bin forward or backward (Carrillo-Reid et al., 2015), spikes

were shifted by any amount. This change was introduced because the network’s response

to the same patterns was more variable in the plastic simulations, and to not miss any of

them, a lower threshold was more fitting. Third, based on the cosine similarity of activation
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vectors, i.e., vectors of spike counts of all neurons in the given significant time bins, a similarity

matrix was built (Carrillo-Reid et al., 2015). Fourth, this similarity matrix was hierarchically

clustered using Ward’s linkage (Montijn et al., 2016; Pérez-Ortega et al., 2021). Like for any other

unsupervised clustering method, the number of optimal clusters cannot be known beforehand,

thus potential number of clusters were scanned between five and twenty. In Ecker et al. (2023b),

the one with the lowest Davis-Bouldin index was chosen, which maximizes the similarity

within elements of the cluster while maximizing the the between cluster similarity (Davies

and Bouldin, 1979). For assemblies detected over the 10 minutes-long plastic simulation,

this optimal value was overwritten, to have at least one pattern-specific assembly for all

10 patterns. For the assemblies detected over the 2 minutes-long non-plastic simulation,

the optimal value was chosen, to avoid biasing the before vs. after assembly comparisons.

Fifth, neurons were associated to these clusters based on their spiking activity, and it was

determined whether they formed a cell assembly or not. The correlations between the spike

trains of all neurons and the activation sequences of all clusters were computed and the ones

with significant correlation selected to be part of the potential assemblies. Significance was

determined based on exceeding the 95th percentile of correlations of shuffled controls (1000

controls with spikes of individual cells shifted by any amount as above; Montijn et al., 2016;

Herzog et al., 2021). Finally, it was required that the mean pairwise correlation of the spikes of

the neurons with significant correlations was higher than the mean pairwise correlation of

neurons in the whole dataset (Herzog et al., 2021). Clusters passing this last criterion were

considered to be functional assemblies and the neurons with significant correlations their

constituent cells. Assemblies of neurons were compared using their Jaccard distances. The

assemblyfire package, developed for Ecker et al. (2023b) is publicly available on GitHub.

4.4.6 Determination of consensus assemblies

Consensus assemblies, resulting from the hierarchical clustering of the Jaccard similarity matrix

of assemblies across repetitions of the same input stream, are fully described in (Ecker et al.,

2023b), but a minimal description of them can be found below. It was ensured that assemblies

from the same repetition did not cluster together, first by setting their distances to twice the

maximum, and second, by cutting the tree in a way that resulted in the lowest number of

cluster in which two assemblies from the same repetition did not cluster together. Membership

of neurons in these consensus assemblies was based on the fraction of assembly instances

they were part of, normalized by a binomial control and thresholded. As shown in Ecker et al.

(2023b), consensus assemblies are similar to assemblies detected over the average spike trains

across repetitions, but with the added benefit of the membership threshold. In rough terms,

this threshold can be understood as follows: if a neuron was part of 80% of assembly instances

that made up the consensus, then it was also a member of the consensus assembly.

In order to assess the functional connectivity of consensus assemblies before and after plastic-

ity, the spike trains of their neurons across the five repetitions were first averaged and then
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binned (using the same 20 ms bins as above). Last, the Pearson correlation of all pairs of the

preprocessed spike trains were calculated, and averaged across the population.

4.4.7 Calculation of spike time reliability

Spike time reliability, quantify the reliability of a single neuron across multiple presentations

of the same input, is described in (Ecker et al., 2023b), but the same description of it can be

found below. Spike time reliability was defined as the mean of the cosine similarities of a given

neuron’s mean centered, smoothed spike times across all pairs of repetitions (Schreiber et al.,

2003; Cutts and Eglen, 2014). To smooth the spike times, they were first binned to 1 ms time

bins, and then convolved with a Gaussian kernel with a standard deviation of 10 ms.

4.4.8 Synaptic clustering coefficient and likelihood of plastic changes in synapse
clusters

Synaptic clustering coefficient (SCC ), quantify the co-localization of synapses on the dendrites

of a neuron from its presynaptic assembly with a single number, is fully described in (Ecker

et al., 2023b), but a minimal description of it can be found below. First, the nearest neighbor

distance (along the dendrites) between all pairs of synapses from the presynaptic assembly

were computed and averaged (mean nnd). Second, 20 controls were generated by always

selecting the same number of random presynaptic E cells from the circuit and mean nnds

of the control populations were calculated. Last, SCC was defined as the negative z-score

of assembly mean nnd with respect to the distribution of control mean nnds. SCC is thus a

parameter-free metric, centered at zero, and is positive for intersynaptic distances that are

lower than expected (indicating clustering) and negative otherwise (indicating dispersion).

Additionally, the significance of the clustering or dispersion of the synapse locations was

determined with a two-tailed t-test of assembly mean nnd against the 20 random samples

with an alpha level of 0.05. SCC was implemented using NeuroM and ConnectomeUtilities.

Synapse clusters were also detected based on synapse neighbour distances. In order to be part

of a spatial cluster, a synapse was required to have at least nine other synapses on the same

dendritic branch, i.e., between two branching points of the dendrite, with ≤ 10µm (Euclidean)

distance. Significance of spatial clustering was determined similar to Druckmann et al. (2014).

The distribution of synapse neighbour distances of the 10 selected synapses were compared

with a Poisson model (assuming exponentially distributed inter-synapse distances) based on

all (same branch) synapse neighbour distances on the given neuron. Clusters were merged in

a subsequent step, thus synapse clusters with more than 10 synapses, spanning more than

20µms were also feasible. As plastic changes in synapse clusters were only analyzed for a small

subpopulation of assemblies (10 L5 PCs per assembly), SCC was used to select subpopulations

with high probability of finding synapse clusters. To this end, assembly neurons with positive,

significant SSC values with respect to an assembly (either the same assembly for within-
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assembly analysis, or other ones for analysing cross-assembly interactions) were selected, and

the ones with the 10 highest assembly indegree (with respect to the same assembly) selected

(see Ecker et al., 2023b for the same selection method). Control synapse clusters, originating

from non-assembly neurons were also detected on the same postsynaptic neurons.

The normalized likelihood of changes, conditioned on the four categ or i es a synapse could

fall into (assembly clustered, assembly non-clustered, non-assembly cluster, non-assembly

non-clustered) were quantified using the Michaelson contrast, defined as:

P (chang ed | categ or y)−P (chang ed)

P (chang ed | categ or y)+P (chang ed)
(4.9)

where chang ed was split to be either potentiated or depressed.
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Supplementary Figure 4.7: Physiology of excitatory cells and E to E connections. A: Distribution of
ion-channel densities in the excitatory (cADpyr) electrical type (etype). B: Validation of dendritic
physiology of the cADpyr e-type on L5 TTPC mtypes. B1: Validation of back-propagating action
potential (bAP) amplitude for basal (teal) and apical (blue) dendrites. Reference data (in orange) comes
from Stuart and Sakmann (1994); Larkum et al. (2001) (apical) and Nevian et al. (2007) (basal). Lines
show exponential fits for the in silico (teal and blue) and in vitro (orange) data. Color bar indicates
dendritic diameter. B2: Validation of EPSP attenuation. Reference data comes from Berger et al. (2001)
(apical) and Nevian et al. (2007) (basal). Lines and color bar same as in B2. Data taken from (and
partially shown in) Reva et al. (2022). (A similar panel has also been shown Isbister et al., 2023). C:
Anatomy and physiology of E to E connections. C2: Connection probability and number of synapses
per connections for all E to E connections. White boxes indicate non-feasible connections, or on the
left panel: no pairs found within the 200µm intersomatic distance used. C2: Mean (over 100 pairs) PSP
amplitude (left) and CV (std/mean on the right) of all E to E connections. (Data taken from (and shown
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Supplementary Figure 4.9: Calibration of the in vivo-like network state. A: Same as 4.2B (i.e., raster
plots of the microcircuit’s activity) under different synapse setups. The microcircuit equipped with
the plasticity model of Chindemi et al. (2022) only resembles that of the non-plastic network’s of
Isbister et al. (2023) when VDCCs (voltage-dependent calcium channels) are blocked (last row). B:
Re-calibration of the in vivo-like state using the plasticity model. B1: Left: Euclidean distance of the
measured percentages of firing rates (PF R s) from the target ones in different iterations of the calibration
process. Right: Validation of network states after the final (4th) iteration. Dashed gray line along the
diagonal indicated perfect match. B2 Left: Injected Ornstein-Uhlenbeck (OU) conductances in the
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Supplementary Figure 4.11: Changing connections in plastic control simulations. A: Same as Figure
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Supplementary Figure 4.14: Comparison of cell assemblies before and after plasticity. A1: Firing
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A2 Interspike interval (ISI) distribution (of all excitatory spikes) before and after plasticity on the left. On
the right: Zoom in to low ISIs (≤ 5) ms split by layer. B: STP profiles before and after plasticity. At in vitro
[C a2+]o on the left, and in vivo on the right. Thin lines represent the 20 individual repetitions, while
the thicker ones their means. C: Davis-Bouldin index (see Ecker et al., 2023b and Methods) of different
number of assemblies before and after plasticity across repetitions. (The index is to be minimized
to achieve optimal number of clusters.) D1: Number of times a consensus assembly is active over
repetitions before and after plasticity. E.g. the first rows per patterns are the counts of colored boxes
from Figure 4.5A2 and B2. This representation can be used to judge the grouping of assemblies (see D2),
and also for calculating their normalized Euclidean distance (see Figure 4.5G2). D2: Cosine similarity
of rows of consensus assembly matrices (split by patterns before vs. after plasticity). E: Number and
location of consensus assembly neurons before and after plasticity.
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Supplementary Figure 4.15: Layer-wise propensity of changes per single pattern. As on Figure 4.2E3,
layer corresponds to the soma location of the postsynaptic cells.
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At the beginning of the thesis, we set out to use biophysically detailed, large-scale models of the

cortex to study synaptic plasticity at the network level under physiological [C a2+]o . Our group

has already shown how the pathway-specific [C a2+]o dependence of USE , i.e., STP, contributes

to the transition from in vitro-like synchronous activity, to in vivo-like asynchronous firing

(Markram et al., 2015). In Romani et al. (2023), we extended the synapse parametrization

process of Ecker et al. (2020) to the CA3 input of CA1 and described how parameters of those

synapses (including the USE , D, and F parameters of STP) lead to feedforward inhibition, a

hallmark of that pathway (Pouille and Scanziani, 2001; Pouille et al., 2009). These network-

level effects of STP differ from previous theoretical insights (Abbott et al., 1997; Goldman et al.,

2002; Maass and Markram, 2002; Sussillo et al., 2007; Naud and Sprekeler, 2018; Keijser and

Sprekeler, 2022) because those were all based on short-term depression, which, due to the

drastically decreased USE , is not so prevalent at in vivo low [C a2+]o . Markram and Tsodyks

(1996) showed how the interaction of short- and long-term plasticity leads to a redistribution of

synaptic efficacy towards the early spikes during high-frequency firing. In Ecker et al. (2023a),

we did not observe high frequency firing under in vivo-like conditions and could not study this

effect in detail. On the other hand, long-term plasticity caused a network-level redistribution

of efficacy from the superficial to the deep layers of the neocortex, which resulted in prolonged

stimulus-specific responses. Compared to previous models (Zenke et al., 2015; Fauth and Van

Rossum, 2019; Kossio et al., 2021), efficacy changes were sparse and our network remained

stable without any homeostatic terms (Turrigiano and Nelson, 2004; Zenke et al., 2017a). This

emerged from the combination of our calcium-based model (Chindemi et al., 2022) and the

physiological levels of [C a2+]o used, as under these conditions, not every spikes contributed

to the synaptic efficacy updates in our model, unlike in STDP rules, which take all spikes into

account (Gerstner et al., 1996; Kempter et al., 1999; Song et al., 2000). The sparse changes

were likely to be found at synapses forming spatial clusters of postsynaptic dendrites and

between co-firing Hebbian cell assemblies (Ecker et al., 2023a). In Ecker et al. (2023b), we

described these cell assemblies in detail and leveraged our in silico setup to study the structural

connectivity underlying them.
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Future directions

The remainder is structured into ten points that can be seen as current limitations that could

be improved on or as feasible future avenues that one could pursue based on the results

presented here and pipelines behind them.

1. As emphasized in Chapter 2, data-integration should be a continuous process and CA1

synaptic physiology presented in Chapter 1 is no exception. While in Ecker et al. (2020),

we concentrated to the local, i.e., within CA1 synapses, in Romani et al. (2023), we

parametrized the Schaffer collateral (projecting from CA3 to CA1) synapses as a step

forward. However, there are several parameters in the current version of the CA1 model

that are cortical "placeholders", like the USE , D , and F parameters of several pathways.

Although hippocampal and cortical synapses have similar properties, there are several

known differences. The difference between the NMDA nonlinearities is already taken

into account (Jahr and Stevens, 1990; Vargas-Caballero and Robinson, 2003; Chindemi

et al., 2022), but e.g., synaptic democracy1, a feature of hippocampal, but not cortical

connections, is not (Magee and Cook, 2000; Williams and Stuart, 2002). Thus, while new

CA1 synaptic physiology data is sparse, every piece of it should be included to replace

neocortical placeholder values in the future.

2. A clear next step would be introducing long-term plasticity at the Schaffer collaterals.

This would require extra groundwork, as our model fitting pipeline is based on pairs

of neurons in line with the cortical dual-patch experiments (Chindemi et al., 2022).

On the other hand, as CA3 and CA1 are quite separate in space and the connection

probability between them is low, long-term plasticity is studied using pathway stimula-

tion (Schwartzkroin and Wester, 1975; Bliss and Collingridge, 1993; but see Debanne

et al., 1995 for some heroic dual-patch effort in cultures). Thus, the presynaptic side

is a population of (unknown number of) neurons, not a single one. Once the pipeline

is operational, the model of Chindemi et al. (2022) would serve as an excellent tool

for contributing to the postsynaptic only expression (Selig et al., 1999; Malinow and

Malenka, 2002; Costa et al., 2015) vs. pre- and postsynaptic expression of plasticity

debate (Yasui et al., 2005; Enoki et al., 2009; Bliss and Collingridge, 2013). By making this

pathway plastic, we could also learn weather synaptic democracy results from plastic

changes as suggested by modeling studies (Rumsey and Abbott, 2006) or if the answer

lies elsewhere.

1"Synaptic democracy" means that the activation of any synapse, independent of its location along the dendritic
tree, results in the same somatic EPSP. At the Schaffer collateral synapses this is achieved by a distance dependent
scaling of AMPA (but not NMDA) receptors (Andrasfalvy and Magee, 2001).
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3. Once the plasticity of the Schaffer collaterals is well calibrated in our CA1 model, one

could use it to study the mechanism behind behavioural time scale plasticity (BTSP;

Bittner et al., 2015, 2017). BTSP is lauded as a new non-Hebbian learning rule, as it can

lead to stable place cell2 formation in a single shot (compared to the ∼ 50 repetitions

of spike pairings required in STDP protocols) and the presynaptic spikes can proceed

(or follow) the prolonged postsynaptic depolarization, termed "plateau potentials", by

seconds (compared to the millisecond precision required in STDP protocols). While

patching cells deep in the brains of behaving animals that lead to this discovery is

outstanding and so are the possible experiments one can do with this paradigm, calling

it a profoundly new learning rule might be an overstatement. BTSP is know to require

NMDA receptors (Bittner et al., 2017) and CamKII activation (Jain et al., 2023; Xiao et al.,

2023), the same ingredients as our biophysically detailed plasticity model (Chindemi

et al., 2022; Ecker et al., 2023a). In connected L5 TTPCs, a single in vitro spike pairing

activates 5−7 synapses distributed across the basal dendrites (Markram et al., 1997a)

into which the postsynaptic action potential does not propagate as well as into the apical

ones (Williams and Stuart, 1999; Letzkus et al., 2006; Ecker et al., 2023a). On the other

hand, CA1 PCs have ∼ 30k excitatory synapses, at least three times more than L5 TTPCs

(Megías et al., 2001) and most of these synapses come from the CA3 and form clusters

on CA1 dendrites (Druckmann et al., 2014). Based on the biophysics of Chindemi et al.

(2022), pairing a huge, long-lasting dendritic depolarization with the activation of a

large fraction of these clustered CA3 synapses will indeed lead to remarkable plastic

changes, probably enough for single shot learning. The amount of C a2+ entering during

these events would be enhanced by the higher NMDA/AMPA ratio (Myme et al., 2003)

and the steeper NMDA nonlinearity of the CA3-CA1 synapses (compared to the cortical

L5-L5 ones). Thus, while BTSP is a faster protocol to induce plasticity than STDP is, the

biophysical rule that governs the plastic changes seems to be the same.

4. A weak point of any assembly detection method, not just the one we presented in

Chapter 3, is that the number of assemblies are not known beforehand. Since the

rigorous work of Peyrache et al. (2010), the hippocampus community uses significant

PCA scores3 (Lopes-dos Santos et al., 2013). However, when recording thousands of

neurons, the activity of the sensory cortex is "not so spontaneous", and the explained

variance increases only slowly with the number of PCA components (Stringer et al., 2019;

Avitan and Stringer, 2022). Probably this was amongst the reasons why Carrillo-Reid

et al. (2015) pioneered a new way of detecting cell assemblies from cortical data, but

their method still involved a step of unsupervised clustering. (In the beginning of the cell

assembly project we also used PCA for detecting assemblies, but only got unsatisfactory

2Some CA1 PCs have a spatial receptive field, i.e., they fire preferentially when the animal is at a given position
in space (O’Keefe and Dostrovsky, 1971). CA1 PCs that exhibit this type of behavior are termed "place cells".

3Principal component analysis (PCA) is used to find the dimensions along which the data varies the most. Pro-
jecting the data to the first n components, that explain e.g. 95% of the variance is a commonly used dimensionality
reduction technique. Contrary to this, Peyrache et al. (2010) suggested to use the Marčenko–Pastur distribution as
a null hypothesis for testing the significance of each dimension, making the resulting number of PCA components,
and thus the resulting number of cell assemblies less arbitrary.
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results.) One of the strengths of our work is that contrary to other modeling studies that

define assemblies based on their strong internal connectivity after plasticity (Litwin-

Kumar and Doiron, 2014; Zenke et al., 2015; Fauth and Van Rossum, 2019; Kossio et al.,

2021)), we used methods developed by experimentalists, thus we detect and talk about

assemblies that are relevant to the experimental neuroscientist community. On the other

hand, one could argue that if we were to take into account the structural connectivity

as well, we could detect groups of neurons that are described by both their co-firing

function, and strongly interconnected structure. We could do this the following way in

the future: Instead of determining the number of clusters based on the distance between

the leaves of the clustering tree beforehand, we could progressively cut the tree if the

next cut would result in higher within-assembly indegree nI values, i.e., even better

predicted assembly membership of a neuron based on the number of connections from

assembly neurons.

5. At the beginning of Ecker et al. (2023b), we argue that we are in a good position to study

the connectivity underlying cell assemblies as we have access to both functional and

structural data, while to experimentalists, even if available, these modalities come from

separate data sets. This picture seems to be changing with the release of the MICrONS

data set (MICrONS Consortium, 2021). The data set contains functional (two-photon

calcium imaging) and structural (electron microscopy, EM) data of mouse visual cortices.

At the end of the preprint, the authors flash out possible experiments that take into

account all connections of a functionally identified complex cell and could therefore

test the postulate about their receptive field appearing complex because of inputs from

several different simple cells (Hubel and Wiesel, 1962; Movshon et al., 1978). That would

indeed be wonderful, but we think even more could be done, and a data set like this

begs for population-level analysis. Thanks to our access to a large-scale model, we

have already prototyped a toolchain that can detect cell assemblies and then describe

how they emerge from the connectivity structure. The co-registration of functional and

structural images requires manual work and is still ongoing (MICrONS Consortium,

2021). Once done, it could be used to test our predictions and provide further insights

about how cell assemblies encode information in the sensory cortex.

6. One of the strong points of our bottom-up model of network plasticity presented in

Chapter 4 is that we could put the network in an in vivo-like state, which we defined

as low-rate, asynchronous firing and low release probability. The major driver of this

is undoubtedly the low [C a2+]o (Borst, 2010), but there are several other differences

between in vitro and in vivo conditions. Of special importance are: [M g 2+]o , high

conductance state of the dendrites, and neuromodulation. The M g 2+ block of NMDA

receptors can be removed by local depolarization, but the amount of depolarization

needed depends on the [M g 2+]o , and hippocampal measurements suggest lower than

1 mM concentrations in vivo (Gonzalez et al., 2022). Once reliable cortical measure-

ments become available, our simulation setup should be updated to feature in vivo

[M g 2+]o , instead of the placeholder value taken from in vitro slice experiments. By in-
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jecting noisy conductances to compensate for missing inputs from non-modeled brain

regions we put the cell bodies into an in vivo-like high-conductance state (Destexhe

et al., 2001; Isbister et al., 2023). On the other hand, as excitatory synapses are on the

dendrites, they are mostly influenced by the activity of the local circuit. Modeling all

those missing synapses would require tremendous resources (Cremonesi et al., 2020),

but would put the dendrites into a high-conductance state as well and engage more

dendritic nonlinearities, which might results in more plastic changes (Farinella et al.,

2014; Stuart and Spruston, 2015; Kastellakis and Poirazi, 2019; Gonzalez et al., 2022).

Neuromodulators, such as acetylcholine (ACh), are almost absent in slices, but are

known to alter the shape of STDP kernels and plasticity in general (Brzosko et al., 2019).

Most of these effects are mediated by metabotropic and G-protein coupled receptors,

which would require substantial effort to model, but ACh in particular is know to re-

duce USE (Colangelo et al., 2019). This effect could easily be taken into account in our

pipeline, and in an earlier, non-plastic version of the model it already was (Ramaswamy

et al., 2018). Taken together, the state presented in Ecker et al. (2023a) resembles in

vivo conditions more than any publication of which we know about, but could still be

improved in the future.

7. According to many fellow modelers, an article describing a plastic network that is repeat-

edly exposed to different patterns is not complete without showing pattern completion

from noisy or partial patterns (Hopfield, 1982). On the other hand, the patterns we

present are noisy and "partial" by design. We only fixed the pattern fibers, but the spike

trains delivered on them are stochastic. This stochasticity is further enhanced by the

probabilistic release of vesicles. Moreover, as we designed overlapping patterns (in

terms of the Hamming distance of the pattern fibers), presenting e.g. pattern E, which is

half A and half B, can be seen as testing what would happen if we only presented half

of pattern A. Furthermore, pattern completion requires a readout, i.e., a population

of neurons whose firing rate would signal that the network "converged to" a pattern.

Theoretical work implies that if a network is sufficiently large and has diverse units, then

a simple linear readout, trained on all neurons, can become quite powerful even if the

connections within the network are random (Maass and Markram, 2004). Therefore,

when training the Allen Brain Institute’s point neuron model (Billeh et al., 2020) for visual

processing tasks, Chen et al. (2022) defined a randomly selected population of 30 L5 PCs

as readout. We could do something similar, but as we model biorealistic plasticity and

do not train the network with backpropagation through time (Bellec et al., 2020), I think

this would not work. Another possibility is to use the pipeline of (Reimann et al., 2022b),

which samples neurons based on their topological features and trains decoders based

on the activity of these carefully selected cells. We could restrict it further to sample

neurons from the late assemblies only, as we see those populations as the output of the

cortex. Taken together, although it might raise more questions than provides answers,

we could test pattern separation and pattern completion in the future.
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8. At end of (Ecker et al., 2023a) we highlight the predictability of changes from the in-

nervation of the pre- and postsynaptic neurons (which influence their firing rates),

but also emphasize that these predictions are not perfect and other factors need to be

investigated in the future. We can foresee three ways of doing this. The topologically

inspired one would take into account the embedding of the changing connections into

the whole network and e.g. look for motifs that these connections are part of instead of

the simple pre- and postsynaptic indegree. The classical approach would be to assume

an unknown function F (ρi j ;υi ,υ j ) that governs the changes in synaptic efficacy based

on the initial efficacy and the firing rates of the pre- and postsynaptic neurons (υi and

υ j ). If F is well behaved, one can do a Taylor expansion (about υi = υ j = 0) and fit its

variables to the observed data (Gerstner et al., 2014). This exercise may even link the

learning rule observed in our biophysically detailed model to the classical rate-based

ones (Sejnowski, 1977; Bienenstock et al., 1992; Oja, 1982). The third, more modern way

of doing it would be to identify a large set of features, like pre- and postsynaptic firing

rate, pattern-indegree, assembly-indegree, participation in high-dimensional motifs

etc. and feed it to a machine learning model that predicts either the direction or the

precise amplitude of the plastic changes. Ideally, the model would order the features by

importance, like XGBoost does (Chen and Guestrin, 2016).

9. At the end of (Ecker et al., 2023a) we propose future experiments with our model using

more precise top-down inputs. Top-down inputs are seen as error/target signals and

therefore boost specific plastic changes (Makino, 2019), but the precise pathways medi-

ating this process are still under investigation. POm input was shown to gate plasticity

in L2/3 PCs in vivo via activating vasoactive intestinal peptide (VIP; a subpopulation

of our 5HT3aR+ population; Tremblay et al., 2016) interneurons, which in turn inhibit

Sst+ interneurons and therefore dis-inhibit the distal dendrites of PCs (Gambino et al.,

2014; Williams and Holtmaat, 2019). Sst+ interneurons have low firing rates in our

simulations (thus, there is not much activity to be inhibited), probably because the

calibration algorithm does not distinguish between inhibitory subpopulations and most

of the spikes required to achieve the target layer-wise firing rates are coming from PV+

interneurons (Isbister et al., 2023). Our setup would be readily applicable to calibrate

subpopulation specific firing rates, if those rates were available4. Although we know

about available patch-clamp data from genetically labeled inhibitory neurons (Gentet

et al., 2010, 2012; Yu et al., 2019), we decided not to use them because of the low number

of cells recorded in mice5. If not as target firing rates, we could still have used those

values to fix the ratios between the rates of the inhibitory subpopulations. Once the

Sst+ rates are increased, they could be inhibited by the VIP+ interneurons, but that may

require more targeted inhibitory connectivity (Reimann et al., 2022a). It has been known

4The target firing rates used in Isbister et al. (2023) are from spikes sorted from extracellular recordings (Reyes-
Puerta et al., 2015) in which spikes of inhibitory subpopulations cannot be distinguished.

5The field in general seem to have shifted from rat to mouse, thanks to the recent advances in mouse genetics
(Gurumurthy and Kent Lloyd, 2019; Brown, 2021; Azkona and Sanchez-Pernaute, 2022), which among other things
made those inhibitory subpopulation-specific recordings possible.
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that VIP+ cells inhibit qualitatively more interneurons than they do PCs (Pi et al., 2013;

Karnani et al., 2016), but precise numbers were lacking. A recent prepint analysing EM

data from the MICrONS data set provided those numbers (Schneider-Mizell et al., 2023)

and when compared with our touch-based connectome, we found that we have the

potential to make those VIP+ to interneuron connections, i.e., appositions between

these cells exists (Reimann et al., 2015), but we pruned them in favour of VIP+ to PC

synapses (Reimann et al., 2022a). In future releases of our connectome those precise

targeting rules will be included which will increase the chances of reproducing the

dis-inhibitory effect of VIP+ cells.

10. While this thesis focuses on short- and long-term plasticity, there are several other

forms of synaptic plasticity. In Ecker et al. (2023a), we emphasize that unlike other

modeling studies, we did not have to include homeostatic plasticity to keep our network

stable. By doing so, we are not arguing against the existence of homeostatic plasticity,

but highlight that it operates on slower time scales of hours - days, and we simulated

"only" 10 minutes (Turrigiano and Nelson, 2004). Inhibitory plasticity is a faster form of

synaptic plasticity that is also frequently used to keep the excitatory/inhibitory balance

of network models (Vogels et al., 2011; Hennequin et al., 2017; Zenke et al., 2017a).

Again, no questions about its existence in biology (D’amour and Froemke, 2015; Vickers

et al., 2018; Field et al., 2020), but without a complete understanding of its biophysics,

we cannot include this form of plasticity in our bottom-up model. Lastly, structural

plasticity, in which new synapses are formed (instead of changing the efficacy of existing

ones), was shown experimentally to be able to rewire complete networks in a non-NMDA

receptor dependent manner (Le Bé and Markram, 2006), but just like homeostatic

plasticity, on a slower time scale than what we can currently simulate. We are in a good

position to model this type of rewiring in the future, because our connectome is "built"

by pruning appositions, i.e., close contacts between presynaptic axons and postsynaptic

dendrites (Reimann et al., 2015). The appositions that we do not keep are potential new

synapses and after deleting existing weak ones (Le Bé and Markram, 2006) they could be

added as new synapses, this way keeping the biorealistic bouton densities and forming

new synapses at realistic locations (Reimann et al., 2015).

The motto of the thesis "Beauty is truth, truth (is) beauty, - that is all" is a line from Keats, often

quoted by Hungarian neuroanatomist János Szentágothai. Szentágothai’s ideology revolved

around the concept that intricate nuances within nature bear profound beauty, a beauty

that is uncovered through scientific discoveries (Gulyás and Somogyi, 2013). I think we also

uncovered small, but important details and hope that our work will inspire others to continue

to do so.
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R. A., Newton, A. J., Pereira, F., Săvulescu, A., Carnevale, N. T., Lytton, W. W., Hines, M. L., and

131



Bibliography

Schürmann, F. (2022). Modernizing the NEURON Simulator for Sustainability, Portability, and

Performance. Frontiers in Neuroinformatics, 16(884046).

Azimipour, M., Baumgartner, R., Liu, Y., Jacques, S. L., Eliceiri, K. W., and Pashaie, R. (2014). Extraction

of optical properties and prediction of light distribution in rat brain tissue. Journal of biomedical

optics, 19(7).

Azkona, G. and Sanchez-Pernaute, R. (2022). Mice in translational neuroscience: What R we doing?

Progress in Neurobiology, 217(102330).

Barros-Zulaica, N., Rahmon, J., Chindemi, G., Perin, R., Markram, H., Muller, E., and Ramaswamy, S.

(2019). Estimating the Readily-Releasable Vesicle Pool Size at Synaptic Connections in a Neocortical

Microcircuit. Frontiers in Synaptic Neuroscience, 11(29).

Bartos, M., Vida, I., Frotscher, M., Meyer, A., Monyer, H., Geiger, J. R. P., and Jonas, P. (2002). Fast synaptic

inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. PNAS,

99(20):13222–13227.

Bassett, D. S. and Bullmore, E. T. (2017). Small-World Brain Networks Revisited. Neuroscientist,

23(5):499–516.

Bathellier, B., Ushakova, L., and Rumpel, S. (2012). Discrete Neocortical Dynamics Predict Behavioral

Categorization of Sounds. Neuron, 76(2):435–449.

Beierlein, M. and Connors, B. W. (2002). Short-term dynamics of thalamocortical and intracortical

synapses onto layer 6 neurons in neocortex. Journal of Neurophysiology, 88(4):1924–1932.

Beierlein, M., Gibson, J. R., and Connors, B. W. (2003). Two Dynamically Distinct Inhibitory Networks

in Layer 4 of the Neocortex. Journal of Neurophysiology, 90(5):2987–3000.

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., and Maass, W. (2020). A

solution to the learning dilemma for recurrent networks of spiking neurons. Nature Communications,

11(3625).

Berger, T. (2009). Properties of Neocortical Microcircuits. PhD thesis, Ecole Polytechnique Fédérale de

Lausanne.

Berger, T., Larkum, M. E., and Lüscher, H. R. (2001). High Ih channel density in the distal apical dendrite

of layer V pyramidal cells increases bidirectional attenuation of EPSPs. Journal of Neurophysiology,

85(2):855–868.

Bezaire, M. J., Raikov, I., Burk, K., Vyas, D., and Soltesz, I. (2016). Interneuronal mechanisms of

hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife, 5(e18566):1–106.

Bezaire, M. J. and Soltesz, I. (2013). Quantitative assessment of CA1 local circuits: Knowledge base for

interneuron-pyramidal cell connectivity. Hippocampus, 23(9):751–785.

Bi, G.-q. and Poo, M.-m. (1998). Synaptic Modifications in Cultured Hippocampal Neurons: Depen-

dence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type. The Journal of Neuroscience,

18(24):10464–10472.

Bibbona, E., Panfilo, G., and Tavella, P. (2008). The Ornstein–Uhlenbeck process as a model of a low

pass filtered white noise. Meterologia, 45(6):S117.

Bienenstock, E. E., Cooper, L. N., and Munro, P. W. (1992). Theory for the development of neuron selec-

tivity: orientation specificity and binocular interaction in visual cortex. The Journal of Neuroscience,

2(1):32–48.

Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W., Abbasi-Asl, R., Jia, X., Siegle, J. H.,

Olsen, S. R., Koch, C., Mihalas, S., and Arkhipov, A. (2020). Systematic Integration of Structural and

Functional Data into Multi-Scale Models of Mouse Primary Visual Cortex. Neuron, 106(3):388–403.

Biro, A. A., Holderith, N. B., and Nusser, Z. (2005). Quantal Size Is Independent of the Release Probability

at Hippocampal Excitatory Synapses. Journal of Neuroscience, 25(1):223–232.

132



Bibliography

Biró, A. A., Holderith, N. B., and Nusser, Z. (2006). Release probability-dependent scaling of the

postsynaptic responses at single hippocampal GABAergic synapses. The Journal of neuroscience,

26(48):12487–96.

Bittner, K. C., Grienberger, C., Vaidya, S. P., Milstein, A. D., Macklin, J. J., Suh, J., Tonegawa, S., and

Magee, J. C. (2015). Conjunctive input processing drives feature selectivity in hippocampal CA1

neurons. Nature Neuroscience, 18(8):1133–1142.

Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S., and Magee, J. C. (2017). Behavioral time scale

synaptic plasticity underlies CA1 place fields. Science, 357(6355):1033–1036.

Bliss, T. V. and Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the

hippocampus. Nature, 361(6407):31–39.

Bliss, T. V. and Collingridge, G. L. (2013). Expression of NMDA receptor-dependent LTP in the hip-

pocampus: bridging the divide. Molecular Brain, 6(5).

Bliss, T. V. P. and Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area

of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology,

232(2):331–356.

Bobrowski, O. and Kahle, M. (2018). Topology of random geometric complexes: a survey. Journal of

Applied and Computational Topology, 1:331–364.

Bono, J., Wilmes, K. A., and Clopath, C. (2017). Modelling plasticity in dendrites: from single cells to

networks. Current Opinion in Neurobiology, 46:136–141.

Borst, J. G. G. (2010). The low synaptic release probability in vivo. Trends in Neurosciences, 33(6):259–

266.

Brasier, D. J. and Feldman, D. E. (2008). Synapse-specific expression of functional presynaptic NMDA

receptors in rat somatosensory cortex. Journal of Neuroscience, 28(9):2199–2211.

Brémaud, A., West, D. C., and Thomson, A. M. (2007). Binomial parameters differ across neocortical

layers and with different classes of connections in adult rat and cat neocortex. PNAS, 104(35):14134–

14139.

Brown, S. D. (2021). Advances in mouse genetics for the study of human disease. Human Molecular

Genetics, 30(2):R274–R284.

Brzosko, Z., Mierau, S. B., and Paulsen, O. (2019). Neuromodulation of Spike-Timing-Dependent

Plasticity: Past, Present, and Future. Neuron, 103(4):563–581.

Buhl, E. H., Cobb, S. R., Halasy, K., and Somogyi, P. (1995). Properties of unitary IPSPs evoked by

anatomically identified basket cells in the rat hippocampus. European Journal of Neuroscience,

7(9):1989–2004.

Buhl, E. H., Halasy, K., and Somogyi, P. (1994a). Diverse sources of hippocampal unitary inhibitory

postsynaptic potentials and the number of synaptic release sites. Nature, 368:823–828.

Buhl, E. H., Han, Z.-S., Lörinczi, Z., Stezhka, V. V., Karnup, S. V., and Somogyi, P. (1994b). Physiological

Properties of Anatomically Identified AxoAxonic in the Rat Hippocampus. Journal of Neurophysiol-

ogy, 71(4):1289–1307.

Buonomano, D. V. and Merzenich, M. M. (1995). Temporal information transformed into a spatial code

by a neural network with realistic properties. Science, 267(5200):1028–1030.

Buzsáki, G. (1989). Two-stage model of memory trace formation: A role for "noisy" brain states.

Neuroscience, 31(3):551–570.

Buzsáki, G. (2010). Neural Syntax: Cell Assemblies, Synapsembles, and Readers. Neuron, 68(3):362–385.

Buzsáki, G. (2019). The brain from inside out. Oxford University Press.

Buzsáki, G. and Mizuseki, K. (2014). The log-dynamic brain: How skewed distributions affect network

operations. Nature Reviews Neuroscience, 15(4):264–278.

133



Bibliography

Carrillo-Reid, L., Miller, J. E. K., Hamm, J. P., Jackson, J., and Yuste, R. (2015). Endogenous sequential

cortical activity evoked by visual stimuli. Journal of Neuroscience, 35(23):8813–8828.

Carvalho, T. P. and Buonomano, D. V. (2011). A novel learning rule for long-term plasticity of short-term

synaptic plasticity enhances temporal processing. Frontiers in Integrative Neuroscience, 5(20).

Chen, G., Scherr, F., and Maass, W. (2022). A data-based large-scale model for primary visual cortex

enables brain-like robust and versatile visual processing. Science Advances, 8(44).

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794.

Chindemi, G., Abdellah, M., Amsalem, O., Benavides-Piccione, R., Delattre, V., Doron, M., Ecker, A.,

Jaquier, A. T., King, J., Kumbhar, P., Monney, C., Perin, R., Rössert, C., Tuncel, M. A., van Geit, W.,

DeFelipe, J., Graupner, M., Segev, I., Markram, H., and Muller, E. B. (2022). A calcium-based plasticity

model predicts long-term potentiation and depression in the neocortex. Nature Communications,

13(3038).

Chklovskii, D. B., Schikorski, T., and Stevens, C. F. (2002). Wiring optimization in cortical circuits.

Neuron, 34(3):341–347.

Christie, J. M. and Jahr, C. E. (2006). Multivesicular Release at Schaffer Collateral-CA1 Hippocampal

Synapses. Journal of Neuroscience, 26(1):210–216.

Clopath, C., Büsing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity reflects coding: A model of

voltage-based STDP with homeostasis. Nature Neuroscience, 13(3):344–352.

Cobb, S. R., Halasy, K., Vida, I., Nyíri, G., Tamás, G., Buhl, E. H., and Somogyi, P. (1997). Synaptic effects

of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus.

Neuroscience, 79(3):629–648.

Colangelo, C., Shichkova, P., Keller, D., Markram, H., and Ramaswamy, S. (2019). Cellular, synaptic and

network effects of acetylcholine in the neocortex. Frontiers in Neural Circuits, 13(24).

Constantinople, C. M. and Bruno, R. M. (2013). Deep Cortical Layers Are Activated Directly by Thalamus.

Science, 340(6140):1591–1594.

Conti, R. and Lisman, J. (2003). The high variance of AMPA receptor- and NMDA receptor-mediated

responses at single hippocampal synapses: Evidence for multiquantal release. PNAS, 100(8):4885–

4890.

Cornford, J., Mercier, M. S., Leite, M., Magloire, V., Häusser, M., and Kullmann, D. M. (2019). Dendritic

NMDA receptors in parvalbumin neurons enable strong and stable neuronal assemblies. eLife,

8:e49872.

Costa, R. P., Froemke, R. C., Sjöström, P. J., and van Rossum, M. C. (2015). Unified pre- and postsynaptic

long-term plasticity enables reliable and flexible learning. eLife, 4(e09457).

Cremonesi, F., Hager, G., Wellein, G., and Schürmann, F. (2020). Analytic performance modeling and

analysis of detailed neuron simulations. International Journal of High Performance Computing

Applications, 34(4):428–449.

Crick, F. (1984). Memory and molecular turnover. Nature, 312:101.

Cutts, C. S. and Eglen, X. S. J. (2014). Detecting pairwise correlations in spike trains: An objective

comparison of methods and application to the study of retinal waves. Journal of Neuroscience,

34(43):14288–14303.

Dai, K., Hernando, J., Billeh, Y. N., Gratiy, S. L., Planas, J., Davison, A. P., Dura-Bernal, S., Gleeson,

P., Devresse, A., Dichter, B. K., Gevaert, M., King, J. G., van Geit, W. A., Povolotsky, A. V., Muller,

E., Courcol, J. D., and Arkhipov, A. (2020). The SONATA data format for efficient description of

large-scale network models. PLoS Computational Biology, 16(2):e1007696.

D’amour, J. A. and Froemke, R. C. (2015). Inhibitory and excitatory spike-timing-dependent plasticity

in the auditory cortex. Neuron, 86(2):514–528.

134



Bibliography

Davies, D. L. and Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern

Analysis and Machine Learning, PAMI-1(2):224–227.

Daw, M. I., Tricoire, L., Erdelyi, F., Szabo, G., and McBain, C. J. (2009). Asynchronous Transmitter

Release from Cholecystokinin-Containing Inhibitory Interneurons Is Widespread and Target-Cell

Independent. Journal of Neuroscience, 29(36):11112–11122.

Debanne, D., Gähwiler, B. H., and Thompson, S. M. (1998). Long-term synaptic plasticity between

pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. Journal of Physiology,

507(1):237–247.

Debanne, D., Guérineau, N. C., Gähwiler, B. H., and Thompson, S. M. (1995). Physiology and pharmacol-

ogy of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal

slice cultures. Journal of Neurophysiology, 73(3):1282–1294.

Del Castillo, J. and Katz, B. (1954). Quantal components of the end-plate potential. The Journal of

Physiology, 124(3):560–573.

Denker, M., Yegenoglu, A., and Grün, S. (2018). Collaborative HPC-enabled workflows on the HBP

Collaboratory using the Elephant framework. In Neuroinformatics 2018.

Deperrois, N. and Graupner, M. (2020). Short-term depression and long-term plasticity together tune

sensitive range of synaptic plasticity. PLoS Computational Biology, 16(9):e100826.

Destexhe, A., Rudolph, M., Fellous, J. M., and Sejnowski, T. J. (2001). Fluctuating synaptic conductances

recreate in vivo-like activity in neocortical neurons. Neuroscience, 107(1):13–24.

Deuchars, J. and Thomson, A. M. (1996). CA1 pyramid-pyramid connections in rat hippocampus in

vitro: Dual intracellular recordings with biocytin filling. Neuroscience, 74(4):1009–1018.

Dobrunz, L. E. and Stevens, C. F. (1997). Heterogeneity of release probability, facilitation, and depletion

at central synapses. Neuron, 18(6):995–1008.

Dragoi, G. and Buzsáki, G. (2006). Temporal Encoding of Place Sequences by Hippocampal Cell

Assemblies. Neuron, 50(1):145–157.

Druckmann, S., Feng, L., Lee, B., Yook, C., Zhao, T., Magee, J. C., and Kim, J. (2014). Structured Synaptic

Connectivity between Hippocampal Regions. Neuron, 81(3):629–640.

Dura-Bernal, S., Neymotin, S. A., Suter, B. A., Dacre, J., Moreira, J. V., Urdapilleta, E., Schiemann, J.,

Duguid, I., Shepherd, G. M., and Lytton, W. W. (2023). Multiscale model of primary motor cortex

circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics. Cell Reports,

42(112574).

Eccles, J. C., Katz, B., and Kuffler, S. W. (1941). Nature of the "endplate potential" in curarized muscle.

Journal of Physiology, 4:362–387.

Ecker, A., Romani, A., Sáray, S., Káli, S., Migliore, M., Falck, J., Lange, S., Mercer, A., Thomson, A. M.,

Muller, E., Reimann, M. W., and Ramaswamy, S. (2020). Data-driven integration of hippocampal CA1

synaptic physiology in silico. Hippocampus, 30(11):1129–1145.

Ecker, A., Santander, D. E., Abdellah, M., Alonso, J. B., Bolaños-Puchet, S., Chindemi, G., Isbister, J. B.,

King, J. G., Kumbhar, P., Magkanaris, I., Muller, E. B., and Reimann, M. W. (2023a). Sparse and specific

long-term plasticity emerge without homeostasis in a biophysically detailed cortical model. bioRxiv.

Ecker, A., Santander, D. E., Bolaños-Puchet, S., Isbister, J. B., and Reimann, M. W. (2023b). Cortical cell

assemblies and their underlying connectivity: an in silico study. bioRxiv.

Egger, R., Narayanan, R. T., Guest, J. M., Bast, A., Udvary, D., Messore, L. F., Das, S., de Kock, C. P., and

Oberlaender, M. (2020). Cortical Output Is Gated by Horizontally Projecting Neurons in the Deep

Layers. Neuron, 105:122–137.

Egger, V., Feldmeyer, D., and Sakmann, B. (1999). Coincidence detection and changes of synaptic

efficacy in spiny stellate neurons in rat barrel cortex. Nature Neuroscience, 2(12):1098–1105.

135



Bibliography

Elfant, D., Pal, B. Z., Emptage, N., and Capogna, M. (2008). Specific inhibitory synapses shift the balance

from feedforward to feedback inhibition of hippocampal CA1 pyramidal cells. European Journal of

Neuroscience, 27(1):104–113.

Éltes, T., Kirizs, T., Nusser, Z., and Holderith, N. (2017). Target Cell Type-Dependent Differences in Ca 2+

Channel Function Underlie Distinct Release Probabilities at Hippocampal Glutamatergic Terminals.

The Journal of Neuroscience, 37(7):1910–1924.

Enoki, R., ling Hu, Y., Hamilton, D., and Fine, A. (2009). Expression of Long-Term Plasticity at Individ-

ual Synapses in Hippocampus Is Graded, Bidirectional, and Mainly Presynaptic: Optical Quantal

Analysis. Neuron, 62(2):242–253.

Espinoza, C., Guzman, S. J., Zhang, X., and Jonas, P. (2018). Parvalbumin+ interneurons obey unique

connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus. Nature

Communications, 9(4605).

Fan, X. and Markram, H. (2019). A brief history of simulation neuroscience. Frontiers in Neuroinfor-

matics, 13(32).

Farinella, M., Ruedt, D. T., Gleeson, P., Lanore, F., and Silver, R. A. (2014). Glutamate-Bound NMDARs

Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical

Pyramidal Cell Model. PLoS Computational Biology, 10(4).

Fauth, M. J. and Van Rossum, M. C. (2019). Self-organized reactivation maintains and reinforces

memories despite synaptic turnover. eLife, 8:e43717.

Feldmeyer, D. (2012). Excitatory neuronal connectivity in the barrel cortex. Frontiers in Neuroanatomy,

6(24).

Feldmeyer, D., Egger, V., Lübke, J., and Sakmann, B. (1999). Reliable synaptic connections between

pairs of excitatory layer 4 neurones within a single ’barrel’ of developing rat somatosensory cortex.

Journal of Physiology, 521(1):169–190.

Feldmeyer, D., Lübke, J., and Sakmann, B. (2006). Efficacy and connectivity of intracolumnar pairs of

layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. Journal of Physiology, 575(2):583–602.

Feldmeyer, D., Lübke, J., Silver, R. A., and Sakmann, B. (2002). Synaptic connections between layer 4

spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: Physiology and anatomy of

interlaminar signalling within a cortical column. Journal of Physiology, 538(3):803–822.

Feldmeyer, D., Roth, A., and Sakmann, B. (2005). Monosynaptic connections between pairs of spiny

stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal

afferent pathways converge in the infragranular somatosensory cortex. Journal of Neuroscience,

25(13):3423–3431.

Feulner, B., Perich, M. G., Chowdhury, R. H., Miller, L. E., Gallego, J. A., and Clopath, C. (2022). Small,

correlated changes in synaptic connectivity may facilitate rapid motor learning. Nature Communi-

cations, 13(5163).

Field, R. E., James, A. D., Tremblay, R., Miehl, C., Rudy, B., Gjorgjieva, J., Froemke, R. C., Field, R. E.,

James, A. D., Tremblay, R., Miehl, C., and Rudy, B. (2020). Heterosynaptic Plasticity Determines the

Set Point for Cortical Excitatory-Inhibitory Balance Article Heterosynaptic Plasticity Determines the

Set Point for Cortical Excitatory-Inhibitory Balance. Neuron, 106.

Földy, C., Lee, S.-h., Morgan, R. J., and Soltesz, I. (2010). Regulation of fast-spiking basket cell synapses

by the chloride channel ClC-2. Nature Neuroscience, 13(9):1047–1049.

Földy, C., Lee, S. Y., Szabadics, J., Neu, A., and Soltesz, I. (2007). Cell type–specific gating of perisomatic

inhibition by cholecystokinin. Nature neuroscience, 10(9):1128–1130.

Frankle, J. and Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse, trainable neural

networks. ICLR.

136



Bibliography

Froemke, R. C., Letzkus, J. J., Kampa, B. M., Hang, G. B., and Stuart, G. J. (2010). Dendritic synapse

location and neocortical spike-timingdependent plasticity. Frontiers in Synaptic Neuroscience, 2(29).

Fuentealba, P., Begum, R., Capogna, M., Jinno, S., Márton, L. F., Csicsvari, J., Thomson, A., Somogyi,

P., and Klausberger, T. (2008). Ivy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking

GABAergic Neurons and Their Involvement in Hippocampal Network Activity. Neuron, 57(6):917–

929.

Fuhrmann, G., Cowan, A., Segev, I., Tsodyks, M., and Stricker, C. (2004). Multiple mechanisms govern

the dynamics of depression at neocortical synapses of young rats. Journal of Physiology, 557(2):415–

438.

Fuhrmann, G., Segev, I., Markram, H., and Tsodyks, M. (2002). Coding of Temporal Information by

Activity-Dependent Synapses. Journal of Neurophysiology, 87(1):140–148.

Fusi, S. and Abbott, L. F. (2007). Limits on the memory storage capacity of bounded synapses. Nature

Neuroscience, 10(4):485–493.

Fusi, S., Drew, P. J., and Abbott, L. F. (2005). Cascade models of synaptically stored memories. Neuron,

45(4):599–611.

Gambino, F., Pagès, S., Kehayas, V., Baptista, D., Tatti, R., Carleton, A., and Holtmaat, A. (2014). Sensory-

evoked LTP driven by dendritic plateau potentials in vivo. Nature, 515(7525):116–119.

Gastaldi, C., Schwalger, T., de Falco, E., Quiroga, R. Q., and Gerstner, W. (2021). When shared concept

cells support associations: Theory of overlapping memory engrams. PLoS Computational Biology,

17(12):e1009691.

Gentet, L. J., Avermann, M., Matyas, F., Staiger, J. F., and Petersen, C. C. (2010). Membrane Potential

Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice. Neuron, 65(3):422–435.

Gentet, L. J., Kremer, Y., Taniguchi, H., Huang, Z. J., Staiger, J. F., and Petersen, C. C. (2012). Unique

functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nature

Neuroscience, 15(4):607–612.

Gerstner, W., Kempter, R., Hemmen, J. L. V., and Wagnert, H. (1996). A neuronal learning rule for

sub-milisecond temporal coding. Nature, 383:76–78.

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal Dynamics: From Single Neurons

to Networks and Models of Cognition. Cambridge University Press.

Gerstner, W., Ritz, R., and van Hemmen, J. L. (1993). Why spikes? Hebbian learning and retrieval of

time-resolved excitation patterns. Biological Cybernetics, 69(5-6):503–515.

Goetz, L., Roth, A., and Häusser, M. (2021). Active dendrites enable strong but sparse inputs to

determine orientation selectivity. PNAS, 118(30):e2017339118.

Goldberg, J., Holthoff, K., and Yuste, R. (2002). A problem with Hebb and local spikes. Trends in

Neurosciences, 25(9):433–435.

Goldman, M. S., Maldonado, P., and Abbott, L. F. (2002). Redundancy reduction and sustained firing

with stochastic depressing synapses. Journal of Neuroscience, 22(2):584–591.

Gonzalez, K. C., Losonczy, A., and Negrean, A. (2022). Dendritic Excitability and Synaptic Plasticity In

Vitro and In Vivo. Neuroscience, 489:165–175.

Graupner, M. and Brunel, N. (2012). Calcium-based plasticity model explains sensitivity of synaptic

changes to spike pattern, rate, and dendritic location. PNAS, 109(10):3991–3996.

Graupner, M., Wallisch, P., and Ostojic, S. (2016). Natural firing patterns imply low sensitivity of synaptic

plasticity to spike timing compared with firing rate. Journal of Neuroscience, 36(44):11238–11258.

Graves, A. R., Roth, R. H., Tan, H. L., Zhu, Q., Bygrave, A. M., Lopez-Ortega, E., Hong, I., Spiegel, A. C.,

Johnson, R. C., Vogelstein, J. T., Tward, D. J., Miller, M. I., and Huganir, R. L. (2021). Visualizing

synaptic plasticity in vivo by large-scale imaging of endogenous AMPA receptors. eLife, 10:e66809.

Gray, R. M. (2011). Entropy and information theory. Springer Science & Business Media.

137



Bibliography

Groc, L., Gustafsson, B., and Hanse, E. (2002). Spontaneous unitary synaptic activity in CA1 pyramidal

neurons during early postnatal development: constant contribution of AMPA and NMDA receptors.

The Journal of Neuroscience, 22(13):5552–5562.

Gulyás, A. I., Freund, T. F., and Káli, S. (2016). The Effects of Realistic Synaptic Distribution and 3D

Geometry on Signal Integration and Extracellular Field Generation of Hippocampal Pyramidal Cells

and Inhibitory Neurons. Frontiers in Neural Circuits, 10(88).

Gulyás, A. I., Miles, R., Sík, A., Tóth, K., Tamamaki, N., and Freund, T. F. (1993). Hippocampal pyramidal

cells excite inhibitory neurons through a single release site. Nature, 366:683–687.

Gulyás, B. and Somogyi, P. (2013). János Szentágothai. 31 October 1912—8 September 1994. Biogr Mem

Fellows R Soc.

Gupta, A., Wang, Y., and Markram, H. (2000). Organizing principles for a diversity of GABAergic

interneurons and synapses in the neocortex. Science, 287(5451):273–8.

Gurumurthy, C. B. and Kent Lloyd, K. C. (2019). Generating mouse models for biomedical research:

Technological advances. Disease Models and Mechanisms, 12:dmm029462.

Guzman, S. J., Schlögl, A., Frotsher, M., and Jonas, P. (2016). Synaptic mechanisms of pattern completion

in the hippocampal CA3 network. Science, 335(6304):11117–11123.

Harris, J. J., Jolivet, R., and Attwell, D. (2012). Synaptic Energy Use and Supply. Neuron, 75(5):762–777.

Harris, K. D. (2005). Neural signatures of cell assembly organization. Nature Reviews Neuroscience,

6(5):399–407.

Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsáki, G. (2003). Organization of cell assemblies

in the hippocampus. Nature, 424(6948):552–556.

Harris, K. D. and Shepherd, G. M. (2015). The neocortical circuit: Themes and variations. Nature

Neuroscience, 18(2):170–181.

Hebb, D. O. (1949). The Organization of Behavior; A Neuropsychological Theory. John Wiley & Sons,

Inc., New York.

Hennequin, G., Agnes, E. J., and Vogels, T. P. (2017). Inhibitory Plasticity: Balance, Control, and

Codependence. Annual Review of Neuroscience, 40:557–579.

Hennig, M. H. (2013). Theoretical models of synaptic short term plasticity. Frontiers in Computational

Neuroscience, 7(45).

Herzog, R., Morales, A., Mora, S., Araya, J., Escobar, M. J., Palacios, A. G., and Cofré, R. (2021). Scalable

and accurate method for neuronal ensemble detection in spiking neural networks. PLoS ONE,

16(7):e0251647.

Hestrin, S., Sah, P., and Nicoll, R. A. (1990). Mechanisms Generating the Time Course of Dual Component

Excitatory Synaptic Currents Recorded in Hippocampal Slices. Neuron, 5:247–253.

Higgins, D., Graupner, M., and Brunel, N. (2014). Memory Maintenance in Synapses with

Calcium-Based Plasticity in the Presence of Background Activity. PLoS Computational Biology,

10(10):e1003834.

Hill, A. V. (1910). The possible effects of the aggregation of the molecules of haemoglobin on its

dissociation curves. Journal of Physiology, 40:4–7.

Hines, M. L. and Carnevale, N. T. (1997). The NEURON simulation environment. Neural computation,

9(6):1179–1209.

Hines, M. L. and Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL.

Neural Computation, 12(5):995–1007.

Hines, M. L., Eichner, H., and Schürmann, F. (2008a). Neuron splitting in compute-bound parallel net-

work simulations enables runtime scaling with twice as many processors. Journal of computational

neuroscience, 25(1):203–210.

138



Bibliography

Hines, M. L., Markram, H., and Schürmann, F. (2008b). Fully implicit parallel simulation of single

neurons. Journal of computational neuroscience, 25(3):439–448.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational

abilities. PNAS, 79(8):2554–2558.

Hu, H., Martina, M., and Jonas, P. (2010). Dendritic mechanisms underlying rapid synaptic activation

of fast-spiking hippocampal interneurons. Science, 327(5961):52–58.

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture

in the cat’s visual cortex. The Journal of Physiology, 160:106–154.

Iacaruso, M. F., Gasler, I. T., and Hofer, S. B. (2017). Synaptic organization of visual space in primary

visual cortex. Nature, 547(7664):449–452.

Inglebert, Y., Aljadeff, J., Brunel, N., and Debanne, D. (2020). Synaptic plasticity rules with physiological

calcium levels. PNAS, 117(52):33639–33648.

Isbister, J. B., Ecker, A., Pokorny, C., Bolanos-Puchet, S., Egas Santander, D., et al. (2023). Modeling

and Simulation of Neocortical Micro- and Mesocircuitry. Part II: Physiology and Experimentation.

bioRxiv.

Isbister, J. B., Reyes-Puerta, V., Sun, J.-J., Horenko, I., and Luhmann, H. J. (2021). Clustering and control

for adaptation uncovers time-warped spike time patterns in cortical networks in vivo. Scientific

Reports, 11:15066.

Jahr, C. E. and Stevens, C. F. (1990). Voltage dependence of NMDA-activated macroscopic conductances

predicted by single-channel kinetics. The Journal of neuroscience, 10(9):3178–3182.

Jain, A., Nakahata, Y., Watabe, T., Rusina, P., South, K., Adachi, K., Yan, L., Simorowski, N., Furukawa, H.,

and Yasuda, R. (2023). Dendritic, delayed, and stochastic CaMKII activation underlies behavioral

time scale plasticity in CA1 synapses. bioRxiv.

Jiang, X., Shen, S., Cadwell, C. R., Berens, P., Sinz, F., Ecker, A. S., Patel, S., and Tolias, A. S. (2015).

Principles of connectivity among morphologically defined cell types in adult neocortex. Science,

350(6264):aac9462.

Jonas, P., Major, G., and Sakmann, B. (1993). Quantal components of unitary EPSCs at the mossy fibre

synapse on CA3 pyramidal cells of rat hippocampus. The Journal of Physiology, 472:615–663.

Jones, H. and Keep, R. (1988). Brain Fluid Calcium Concentration and Response To Acute Hypercal-

caemia During Development in the Rat. Journal of Physiology, 402:579–593.

Kahle, M. (2009). Topology of random clique complexes. Discrete Mathematics, 309:1658–1671.

Kanari, L., Ramaswamy, S., Shi, Y., Morand, S., Meystre, J., Perin, R., Abdellah, M., Wang, Y., Hess, K.,

and Markram, H. (2019). Objective Morphological Classification of Neocortical Pyramidal Cells.

Cerebral Cortex, 29(4):1719–1735.

Karayannis, T., Elfant, D., Huerta-Ocampo, I., Teki, S., Scott, R. S., Rusakov, D. A., Jones, M. V., and

Capogna, M. (2010). Slow GABA transient and receptor desensitization shape synaptic responses

evoked by hippocampal neurogliaform cells. The Journal of neuroscience, 30(29):9898–909.

Karnani, M. M., Jackson, J., Ayzenshtat, I., Sichani, X. H., Manoocheri, K., Kim, S., and Yuste, R. (2016).

Opening holes in the blanket of inhibition: Localized lateral disinhibition by vip interneurons.

Journal of Neuroscience, 36(12):3471–3480.

Kastellakis, G. and Poirazi, P. (2019). Synaptic Clustering and Memory Formation. Frontiers in Molecular

Neuroscience, 12(300).

Keijser, J. and Sprekeler, H. (2022). Optimizing interneuron circuits for compartment-specific feedback

inhibition. PLoS Computational Biology, 18(4):e1009933.

Kempter, R., Gerstner, W., and van Hemmen, J. L. (1999). Hebbian learning and spiking neurons.

Physical Review, 59(4):4498–4514.

139



Bibliography

Kim, D., Park, P., Li, X., Wong-Campos, J. D., Tian, H., Moult, E. M., Grimm, J. B., Lavis, L., and Cohen,

A. E. (2023). Mapping memories: pulse-chase labeling reveals AMPA receptor dynamics during

memory formation. bioRxiv.

Klausberger, T. and Somogyi, P. (2008). Neuronal diversity and temporal dynamics: The unity of

hippocampal circuit operations. Science, 321(5885):53–57.

Kohus, Z., Káli, S., Schlingloff, D., Papp, O., Rovira-Esteban, L., Freund, T. F., Hájos, N., and Gulyás, A. I.

(2016). Properties and dynamics of inhibitory synaptic communication within the CA3 microcircuits

of pyramidal cells and interneurons expressing parvalbumin or cholecystokinin. The Journal of

physiology, 594(13):3745–74.

Korinek, M., Sedlacek, M., Cais, O., Dittert, I., and Vyklicky, L. (2010). Temperature dependence of

N-methyl-d-aspartate receptor channels and N-methyl-d-aspartate receptor excitatory postsynaptic

currents. Neuroscience, 165(3):736–748.

Kossio, Y. F. K., Goedeke, S., Klos, C., and Memmesheimer, R. M. (2021). Drifting assemblies for persistent

memory: Neuron transitions and unsupervised compensation. PNAS, 118(46):e2023832118.

Krotov, D. and Hopfield, J. J. (2016). Dense associative memory for pattern recognition. Advances in

Neural Information Processing Systems, 29:1172–1180.

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., and Schürmann, F. (2019).

CoreNEURON : An Optimized Compute Engine for the NEURON Simulator. Frontiers in Neuroinfor-

matics, 13(63).

Landau, A. T., Park, P., Wong-Campos, J. D., Tian, H., Cohen, A. E., and Sabatini, B. L. (2022). Den-

dritic branch structure compartmentalizes voltage-dependent calcium influx in cortical layer 2/3

pyramidal cells. eLife, 11(e76993).

Larkum, M. E. (2013). A cellular mechanism for cortical associations: an organizing principle for the

cerebral cortex. Trends in Neurosciences, 36(3):141–151.

Larkum, M. E., Zhu, J. J., and Sakmann, B. (2001). Dendritic mechanisms underlying the coupling of

the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons.

Journal of Physiology, 533(2):447–466.

Le Bé, J.-V. and Markram, H. (2006). Spontaneous and evoked synaptic rewiring in the neonatal

neocortex. PNAS, 103(35):13214–13219.

Le Bé, J. V., Silberberg, G., Wang, Y., and Markram, H. (2007). Morphological, electrophysiological, and

synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cerebral Cortex,

17(9):2204–2213.

Le Roux, N., Cabezas, C., Böhm, U. L., and Poncer, J. C. (2013). Input-specific learning rules at

excitatory synapses onto hippocampal parvalbumin-expressing interneurons. Journal of Physiology,

591(7):1809–1822.

Lee, S.-H., Földy, C., and Soltesz, I. (2010). Distinct endocannabinoid control of GABA release at

perisomatic and dendritic synapses in the hippocampus. The Journal of neuroscience, 30(23):7993–

8000.

Lee, S.-H., Marchionni, I., Bezaire, M., Varga, C., Danielson, N., Lovett-Barron, M., Losonczy, A., and

Soltesz, I. (2014). Parvalbumin-Positive Basket Cells Differentiate among Hippocampal Pyramidal

Cells. Neuron, 82(5):1129–1144.

Letzkus, J. J., Kampa, B. M., and Stuart, G. J. (2006). Learning rules for spike timing-dependent plasticity

depend on dendritic synapse location. Journal of Neuroscience, 26(41):10420–10429.

Ling, D. S. and Benardo, L. S. (1999). Restrictions on inhibitory circuits contribute to limited recruitment

of fast inhibition in rat neocortical pyramidal cells. Journal of Neurophysiology, 82(4):1793–1807.

Lisman, J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and

memory. PNAS, 86(23):9574–9578.

140



Bibliography

Lisman, J. E. (1985). A mechanism for memory storage insensitive to molecular turnover: A bistable

autophosphorylating kinase. PNAS, 82:3055–3057.

Lisman, J. E. and Spruston, N. (2005). Postsynaptic depolarization requirements for LTP and LTD: A

critique of spike timing-dependent plasticity. Nature neuroscience, 8(7):839–841.

Litwin-Kumar, A. and Doiron, B. (2014). Formation and maintenance of neuronal assemblies through

synaptic plasticity. Nature Communications, 5(5319).

Loebel, A., Silberberg, G., Helbig, D., Markram, H., Tsodyks, M., and Richardson, M. J. E. (2009).

Multiquantal release underlies the distribution of synaptic efficacies in the neocortex. Frontiers in

Cellular Neuroscience, 3(27).

Lopes-dos Santos, V., Ribeiro, S., and Tort, A. B. (2013). Detecting cell assemblies in large neuronal

populations. Journal of Neuroscience Methods, 220(2):149–166.

Losonczy, A. and Magee, J. C. (2006). Integrative Properties of Radial Oblique Dendrites in Hippocampal

CA1 Pyramidal Neurons. Neuron, 50(2):291–307.

Losonczy, A., Zhang, L., Shigemoto, R., Somogyi, P., and Nusser, Z. (2002). Cell type dependence and

variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones. The

Journal of physiology, 542(1):193–210.

Lübke, J. and Feldmeyer, D. (2007). Excitatory signal flow and connectivity in a cortical column: Focus

on barrel cortex. Brain Structure and Function, 212:3–17.

Maass, W. and Markram, H. (2002). Synapses as dynamic memory buffers. Neural Networks, 15(2):155–

161.

Maass, W. and Markram, H. (2004). On the computational power of circuits of spiking neurons. Journal

of Computer and System Sciences, 69(4):593–616.

Maccaferri, G., Roberts, J. D. B., Szucs, P., Cottingham, C. A., and Somogyi, P. (2000). Cell surface domain

specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro.

Journal of Physiology, 524(1):91–116.

Magee, J. C. and Cook, E. P. (2000). Somatic EPSP amplitude is independent of synapse location in

hippocampal pyramidal neurons. Nature neuroscience, 3(9):895–903.

Mäki-Marttunen, T., Iannella, N., Edwards, A. G., Einevoll, G. T., and Blackwell, K. T. (2020). A unified

computational model for cortical post-synaptic plasticity. eLife, 9:e55714.

Makino, H. (2019). Top-down control: A unified principle of cortical learning. Neuroscience Research,

141:23–28.

Malinow, R. and Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual review

of neuroscience, 25(1):103–126.

Mallya, A. and Lazebnik, S. (2018). PackNet: Adding Multiple Tasks to a Single Network by Iterative

Pruning. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition.

Markram, H., Gerstner, W., and Sjöström, P. J. (2011). A history of spike-timing-dependent plasticity.

Frontiers in Synaptic Neuroscience, 3(4).

Markram, H., Lübke, J., Frotscher, M., Roth, A., and Sakmann, B. (1997a). Physiology and anatomy

of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex.

Journal of Physiology, 500(2):409–440.

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997b). Regulation of Synaptic Efficacy by

Coincidence of Postsynaptic APs and EPSPs. Science, 275(5297):213–215.

Markram, H., Muller, E. B., Ramaswamy, S., Reimann, M. W., et al. (2015). Reconstruction and Simula-

tion of Neocortical Microcircuitry. Cell, 163:456–492.

Markram, H. and Tsodyks, M. (1996). Neocortical Pyramidal Neurons. Letters to Nature, 382:807–810.

141



Bibliography

Markram, H., Wang, Y., and Tsodyks, M. (1998). Differential signaling via the same axon of neocortical

pyramidal neurons. PNAS, 95(9):5323–8.

Massimini, M. and Amzica, F. (2001). Extracellular calcium fluctuations and intracellular potentials in

the cortex during the slow sleep oscillation. Journal of Neurophysiology, 85(3):1346–1350.

Mateos-Aparicio, P. and Rodríguez-Moreno, A. (2019). The impact of studying brain plasticity. Frontiers

in Cellular Neuroscience, 13.

Matsuzaki, M., Ellis-Davies, G. C., Nemoto, T., Miyashita, Y., Iino, M., and Kasai, H. (2001). Dendritic

spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons.

Nature Neuroscience, 4(11):1086–1092.

Matta, J. A., Pelkey, K. A., Craig, M. T., Chittajallu, R., Jeffries, B. W., and McBain, C. J. (2013). Develop-

mental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity.

Nature Neuroscience, 16(8):1032–1041.

Mayer, M. L., Westbrookt, G. L., and Guthriet, P. B. (1984). Voltage-dependent block by Mg2+ of NMDA

responses in spinal cord neurones. Nature, 309:261–263.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic Interference in Connectionist Networks: The

Sequential Learning Problem. The Psychology of Learning and Motivation, 24:109–165.

McKernan, M. G. and Shinnick-Gallagher, P. (1997). Fear conditioning induces a lasting potentiation of

synaptic currents in vitro. Nature, 390:607–611.

Megías, M., Emri, Z., Freund, T. F., and Gulyás, a. I. (2001). Total number and distribution of inhibitory

and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience, 102(3):527–540.

Mesradi, M., Genoux, A., Cuplov, V., Abi Haidar, D., Jan, S., Buvat, I., and Pain, F. (2013). Experimental

and analytical comparative study of optical coefficient of fresh and frozen rat tissues. Journal of

Biomedical Optics, 18(11):117010.

Meyer, H. S., Wimmer, V. C., Hemberger, M., Bruno, R. M., De Kock, C. P., Frick, A., Sakmann, B., and

Helmstaedter, M. (2010). Cell type-specific thalamic innervation in a column of rat vibrissal cortex.

Cerebral Cortex, 20(10):2287–2303.

MICrONS Consortium (2021). Functional connectomics spanning multiple areas of mouse visual

cortex. bioRxiv.

Migliore, M., Ferrante, M., and Ascoli, G. A. (2005). Signal Propagation in oblique dendrites of CA1

pyramidal cells. Journal of Neurophysiology, 94(6):4145–4155.

Migliore, M., Hoffman, D. A., Magee, J. C., and Johnston, D. (1999). Role of an A-Type K+ Conductance

in the Back-Propagation of Action Potentials in the Dendrites of Hippocampal Pyramidal Neurons.

Journal of Computational Neuroscience, 7:5–15.

Migliore, R., Lupascu, C. A., Bologna, L. L., Romani, A., Courcol, J.-D., Antonel, S., Van Geit, W. A. H.,

Thomson, A. M., Mercer, A., Lange, S., Falck, J., Rössert, C. A., Shi, Y., Hagens, O., Pezzoli, M., Freund,

T. F., Kali, S., Muller, E. B., Schürmann, F., Markram, H., and Migliore, M. (2018). The physiological

variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using

a unified data-driven modeling workflow. PLoS Computational Biology, 14(9):e1006423.

Miller, J. E. K., Ayzenshtat, I., Carrillo-Reid, L., and Yuste, R. (2014). Visual stimuli recruit intrinsically

generated cortical ensembles. PNAS, 111(38):E4053–E4061.

Mody, I. and Pearce, R. A. (2004). Diversity of inhibitory neurotransmission through GABA A receptors.

Trends in Neurosciences, 27(9):569–575.

Montijn, X. J. S., Olcese, U., and Pennartz, X. C. M. A. (2016). Visual Stimulus Detection Correlates

with the Consistency of Temporal Sequences within Stereotyped Events of V1 Neuronal Population

Activity. The Journal of Neuroscience, 36(33):8624–8640.

Moradi, K. and Ascoli, G. A. (2019). A comprehensive knowledge base of synaptic electrophysiology in

the rodent hippocampal formation. Hippocampus.

142



Bibliography

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent plasticity in balanced

random networks. Neural Computation, 19(6):1437–1467.

Morse, T., Carnevale, N., Mutalik, P., Migliore, M., and Shepherd, G. (2010). Abnormal excitability

of oblique dendrites implicated in early Alzheimer’s: a computational study. Frontiers in Neural

Circuits, 4(16).

Movshon, J. A., Thomson, I. D., and Tolhurst, D. J. (1978). Receptive field organization of complex cells

in cat striate cortex. Journal of Physiology, 283:79–99.

Muller, E., Buesing, L., Schemmel, J., and Meier, K. (2007). Spike-Frequency Adapting Neural Ensembles:

Beyond Mean Adaptation and Renewal Theories. Neural Computation, 19:2958–3010.

Myme, C. I. O., Sugino, K., Turrigiano, G. G., and Nelson, S. B. (2003). The NMDA-to-AMPA Ratio at

Synapses Onto Layer 2/3 Pyramidal Neurons Is Conserved Across Prefrontal and Visual Cortices.

Journal of Neurophysiology, 90(2):771–779.

Naud, R. and Sprekeler, H. (2018). Sparse bursts optimize information transmission in a multiplexed

neural code. PNAS, 115(27):E6329–E6338.

Neher, E. (1992). Correction for liquid junction potentials in patch clamp experiments. Methods in

Enzymology, 207:123–131.

Neu, A., Földy, C., and Soltesz, I. (2007). Postsynaptic origin of CB1-dependent tonic inhibition of GABA

release at cholecystokinin-positive basket cell to pyramidal cell synapses in the CA1 region of the rat

hippocampus. The Journal of physiology, 578(1):233–247.

Nevian, T., Larkum, M. E., Polsky, A., and Schiller, J. (2007). Properties of basal dendrites of layer 5

pyramidal neurons: A direct patch-clamp recording study. Nature Neuroscience, 10(2):206–214.

Nicoll, R. A. and Malenka, R. C. (1995). Contrasting properties of two forms of long-term potentiation

in the hippocampus. Nature, 377(6545):115–118.

Nolte, M., Gal, E., Markram, H., and Reimann, M. W. (2020). Impact of higher order network structure

on emergent cortical activity. Network Neuroscience, 4(1):292–314.

Nolte, M., Reimann, M. W., King, J. G., Markram, H., and Muller, E. B. (2019). Cortical reliability amid

noise and chaos. Nature Communications, 10(3792).

Nusser, Z., Lujan, R., Laube, G., Roberts, J. D. B., Molnar, E., and Somogyi, P. (1998). Cell type and path-

way dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron,

21(3):545–559.

Oby, E. R., Golub, M. D., Hennig, J. A., Degenhart, A. D., Tyler-Kabara, E. C., Yu, B. M., Chase, S. M.,

and Batista, A. P. (2019). New neural activity patterns emerge with long-term learning. PNAS,

116(30):15210–15215.

Ohana, O. and Sakmann, B. (1998). Transmitter release modulation in nerve terminals of rat neocortical

pyramidal cells by intracellular calcium buffers. Journal of Physiology, 513(1):135–148.

Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal of Mathematical

Biology, 15(3):267–273.

O’Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from

unit activity in the freely-moving rat. Brain Research, 34(1):171–175.

Park, J. M., Hong, Y. K., Rodgers, C. C., Dahan, J. B., Schmidt, E. R., and Bruno, R. M. (2020). Deep

and superficial layers of the primary somatosensory cortex are critical for whisker-based texture

discrimination in mice. bioRxiv.

Pawelzik, H., Bannister, A. P., Deuchars, J., Ilia, M., and Thomson, A. M. (1999). Modulation of bistratified

cell IPSPs and basket cell IPSPs by pentobarbitone sodium, diazepam and Zn2+: Dual recordings in

slices of adult rat hippocampus. European Journal of Neuroscience, 11(10):3552–3564.

143



Bibliography

Pawelzik, H., Hughes, D. I., and Thomson, A. M. (2002). Physiological and morphological diversity of

immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1

of the adult rat hippocampus. Journal of Comparative Neurology, 443(4):346–367.

Pawelzik, H., Hughes, D. I., and Thomson, A. M. (2003). Modulation of inhibitory autapses and synapses

on rat CA1 interneurones by GABAA receptor ligands. Journal of Physiology, 546(3):701–716.

Pelkey, K. A., Chittajallu, R., Craig, M. T., Tricoire, L., Wester, J. C., and McBain, C. J. (2017). Hippocampal

GABAergic inhibitory interneurons. Physiological Reviews, 97(4):1619–1747.

Pérez-Ortega, J., Alejandre-García, T., and Yuste, R. (2021). Long-term stability of cortical ensembles.

eLife, 10:e64449.

Perin, R., Berger, T. K., and Markram, H. (2011). A synaptic organizing principle for cortical neuronal

groups. PNAS, 108(13):5419–5424.

Petersen, R. S., Brambilla, M., Bale, M. R., Alenda, A., Panzeri, S., Montemurro, M. A., and Maravall, M.

(2008). Diverse and Temporally Precise Kinetic Feature Selectivity in the VPm Thalamic Nucleus.

Neuron, 60(5):890–903.

Pettit, D. L., Wang, S. S., Gee, K. R., and Augustine, G. J. (1997). Chemical two-photon uncaging: A novel

approach to mapping glutamate receptors. Neuron, 19(3):465–471.

Peyrache, A., Benchenane, K., Khamassi, M., Wiener, S. I., and Battaglia, F. P. (2010). Principal compo-

nent analysis of ensemble recordings reveals cell assemblies at high temporal resolution. Journal of

Computational Neuroscience, 29:309–325.

Pfister, J.-P. and Gerstner, W. (2006). Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity.

Journal of Neuroscience, 26(38):9673–9682.

Pi, H. J., Hangya, B., Kvitsiani, D., Sanders, J. I., Huang, Z. J., and Kepecs, A. (2013). Cortical interneurons

that specialize in disinhibitory control. Nature, 503(7477):521–524.

Poirazi, P., Brannon, T., and Mel, B. W. (2003). Pyramidal Neuron as Two-Layer Neural Network. Neuron,

37:989–999.

Pouille, F., Marin-Burgin, A., Adesnik, H., Atallah, B. V., and Scanziani, M. (2009). Input normalization

by global feedforward inhibition expands cortical dynamic range. Nature Neuroscience, 12(12):1577–

1585.

Pouille, F. and Scanziani, M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic

feed-forward inhibition. Science, 293(5532):1159–1163.

Pouille, F. and Scanziani, M. (2004). Routing of spike series by dynamic circuits in the hippocampus.

Nature, 429(6993):717–723.

Price, C. J., Cauli, B., Kovács, E. R., Kukik, Á., Lambolez, B., Shigemeto, R., and Capogna, M. (2005).

Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area. Journal of

Neuroscience, 25(29):6775–6786.

Price, C. J., Scott, R., Rusakov, D. A., and Capogna, M. (2008). GABAB Receptor Modulation of Feedfor-

ward Inhibition through Hippocampal Neurogliaform Cells. The Journal of Neuroscience, 28(27):6974–

6982.

Qi, G. and Feldmeyer, D. (2016). Dendritic Target Region-Specific Formation of Synapses between

Excitatory Layer 4 Neurons and Layer 6 Pyramidal Cells. Cerebral Cortex, 26(4):1569–1579.

Ramaswamy, S., Colangelo, C., and Markram, H. (2018). Data-Driven Modeling of Cholinergic Modula-

tion of Neural Microcircuits: Bridging Neurons, Synapses and Network Activity. Frontiers in Neural

Circuits, 12(77).

Ramaswamy, S., Courcol, J.-D., et al. (2015). The neocortical microcircuit collaboration portal: a

resource for rat somatosensory cortex. Frontiers in Neural Circuits, 9(44).

144



Bibliography

Ramaswamy, S., Hill, S. L., King, J. G., Schürmann, F., Wang, Y., and Markram, H. (2012). Intrinsic

morphological diversity of thick-tufted layer 5 pyramidal neurons ensures robust and invariant

properties of in silico synaptic connections. Journal of Physiology, 590(4):737–752.

Ratcliff, R. (1990). Connectionist models of recognition memory: constraints imposed by learning and

forgetting functions. Psychological review, 97(2):285–308.

Ray, A., Christian, J. A., Mosso, M. B., Park, E., Wegner, W., Willig, K. I., and Barth, A. L. (2023). Quanti-

tative Fluorescence Analysis Reveals Dendrite-Specific Thalamocortical Plasticity in L5 Pyramidal

Neurons during Learning. Journal of Neuroscience, 43(4):584–600.

Reimann, M. W., Bolaños-Puchet, S., Courcol, J.-D., Egas Santandre, D., et al. (2022a). Modeling and

Simulation of Rat Non-Barrel Somatosensory Cortex. Part I: Modeling Anatomy. bioRxiv.

Reimann, M. W., Horlemann, A. L., Ramaswamy, S., Muller, E. B., and Markram, H. (2017a). Morpholog-

ical diversity strongly constrains synaptic connectivity and plasticity. Cerebral Cortex, 27(9):4570–

4585.

Reimann, M. W., King, J. G., Muller, E. B., Ramaswamy, S., and Markram, H. (2015). An algorithm to

predict the connectome of neural microcircuits. Frontiers in computational neuroscience, 9(120).

Reimann, M. W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi, G., Dłotko, P., Levi, R., Hess,

K., and Markram, H. (2017b). Cliques of neurons bound into cavities provide a missing link between

structure and function. Frontiers in Computational Neuroscience, 11(48).

Reimann, M. W., Riihimäki, H., Smith, J. P., Lazovskis, J., Pokorny, C., and Levi, R. (2022b). Topology of

synaptic connectivity constrains neuronal stimulus representation, predicting two complementary

coding strategies. PLoS ONE, 17(1):e0261702.

Reva, M., Rössert, C., Arnaudon, A., Damart, T., Mandge, D., Tuncel, A., Ramaswamy, S., Markram, H.,

and Werner, V. G. (2022). A universal workflow for creation, validation and generalization of detailed

neuronal models. bioRxiv.

Reyes, A. and Sakmann, B. (1999). Developmental switch in the short-term modification of unitary

EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex. Journal of Neuroscience,

19(10):3827–3835.

Reyes-Puerta, V., Sun, J. J., Kim, S., Kilb, W., and Luhmann, H. J. (2015). Laminar and Columnar Structure

of Sensory-Evoked Multineuronal Spike Sequences in Adult Rat Barrel Cortex in Vivo. Cerebral Cortex,

25(8):2001–2021.

Rochester, N., Holland, J. H., Haibt, L. H., and L, D. W. (1956). Tests on a cell assembly theory of the

action of the brain, using a large digital computer. IRE Trans. Inf. Theory, 2:80–93.

Rodrigues, Y. E., Tigaret, C., Marie, H., O’Donnell, C., and Veltz, R. (2022). A stochastic model of

hippocampal synaptic plasticity with geometrical readout of enzyme dynamics. bioRxiv.

Romani, A. et al. (2023). Community-based Reconstruction and Simulation of a Full-scale Model of

Region CA1 of Rat Hippocampus. bioRxiv.

Ropireddy, D., Bachus, S. E., and Ascoli, G. A. (2012). Non-homogeneous stereological properties of

the rat hippocampus from high-resolution 3D serial reconstruction of thin histological sections.

Neuroscience, 15(205):91–111.

Rößler, N., Jungenitz, T., Sigler, A., Bird, A., Mittag, M., Rhee, J. S., Deller, T., Cuntz, H., Brose, N.,

Schwarzacher, S. W., and Jedlicka, P. (2023). Skewed distribution of spines is independent of presy-

naptic transmitter release and synaptic plasticity and emerges early during adult neurogenesis.

bioRxiv.

Rozov, A., Burnashev, N., Sakmann, B., and Neher, E. (2001). Transmitter release modulation by

intracellular Ca2+buffers in facilitating and depressing nerve terminals of pyramidal cells in layer

2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics.

Journal of Physiology, 531(3):807–826.

145



Bibliography

Rubin, J. E., Gerkin, R. C., Bi, G. Q., and Chow, C. C. (2005). Calcium time course as a signal for

spike-timing-dependent plasticity. Journal of Neurophysiology, 93(5):2600–2613.

Rumsey, C. C. and Abbott, L. F. (2006). Synaptic democracy in active dendrites. Journal of Neurophysi-

ology, 96(5):2307–2318.

Sasaki, T., Kimura, R., Tsukamoto, M., Matsuki, N., and Ikegaya, Y. (2006). Integrative spike dynamics of

rat CA1 neurons: A multineuronal imaging study. Journal of Physiology, 574(1):195–208.

Schneider-Mizell, C. M. et al. (2023). Cell-type-specific inhibitory circuitry from a connectomic census

of mouse visual cortex. bioRxiv.

Schreiber, S., Fellous, J. M., Whitmer, D., Tiesinga, P., and Sejnowski, T. J. (2003). A new correlation-based

measure of spike timing reliability. Neurocomputing, 52-54:925–931.

Schwartzkroin, P. A. and Wester, K. (1975). Long-lasting facilitation of a synaptic potential following

tetanization in the in vitro hippocampal slice. Brain Research, 89:107–119.

Sejnowski, T. J. (1977). Storing covariance with nonlinearly interacting neurons. Journal of Mathematical

Biology, 4(4):303–321.

Selig, D. K., Nicoll, R. A., and Malenka, R. C. (1999). Hippocampal long-term potentiation preserves the

fidelity of postsynaptic responses to presynaptic bursts. Journal of Neuroscience, 19(4):1236–1246.

Sermet, B. S., Truschow, P., Feyerabend, M., Mayrhofer, J. M., Oram, T. B., Yizhar, O., Staiger, J. F., and

Petersen, C. C. (2019). Pathway-, layer-and cell-type-specific thalamic input to mouse barrel cortex.

eLife, 8:e52665.

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal,

27:623–656.

Shatz, C. J. (1992). The Developing Brain. Scientific American, 267(3):60–67.

Sik, A., Penttonen, M., Ylinen, A., and Buzsáki, G. (1995). Hippocampal CA1 Interneurons: An in vivo

Intracellular Labeling Study. Journal of Neuroscience, 10(15):6651–6665.

Silberberg, G. and Markram, H. (2007). Disynaptic Inhibition between Neocortical Pyramidal Cells

Mediated by Martinotti Cells. Neuron, 53(5):735–746.

Sjöström, P. J. and Häusser, M. (2006). A Cooperative Switch Determines the Sign of Synaptic Plasticity

in Distal Dendrites of Neocortical Pyramidal Neurons. Neuron, 51(2):227–238.

Sjöström, P. J., Turrigiano, G. G., and Nelson, S. B. (2003). Neocortical LTD via Coincident Activation of

Presynaptic NMDA and Cannabinoid Receptors. Neuron, 39(4):641–654.

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-

dependent synaptic plasticity. Nature Neuroscience, 3(9):919–926.

Song, S., Sjöström, P. J., Reigl, M., Nelson, S., and Chklovskii, D. B. (2005). Highly nonrandom features

of synaptic connectivity in local cortical circuits. PLoS Biology, 3(3):e68.

Spruston, N., Jaffe, D. B., Williams, S. H., and Johnston, D. (1993). Voltage- and space-clamp errors asso-

ciated with the measurement of electrotonically remote synaptic events. Journal of Neurophysiology,

70(2):781–802.

Spruston, N., Jonas, P., and Sakmann, B. (1995). Dendritic glutamate receptor channels in rat hippocam-

pal CA3 and CAl pyramidal neurons. Journal of Physiology, 482(2):325–352.

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and efficient neural simulator.

eLife, 8(e47314).

Stringer, C., Pachitariu, M., Steinmetz, N., Reddy, C. B., Carandini, M., and Harris, K. D. (2019). Sponta-

neous behaviors drive multidimensional, brainwide activity. Science, 364:eaav7893.

Stuart, G., Schiller, J., and Sakmann, B. (1997). Action potential initiation and propagation in rat

neocortical pyramidal neurons. Journal of Physiology, 505(3):617–632.

Stuart, G. J. and Sakmann, B. (1994). Active propogation of somatic action potentials into neocortical

pyrimidal cell dendrites. Nature, 367(January):69–72.

146



Bibliography

Stuart, G. J. and Spruston, N. (2015). Dendritic integration: 60 years of progress. Nature Neuroscience,

18(12):1713–1721.

Sussillo, D., Toyoizumi, T., and Maass, W. (2007). Self-tuning of neural circuits through short-term

synaptic plasticity. Journal of Neurophysiology, 97(6):4079–4095.

Takács, V. T., Klausberger, T., Somogyi, P., Freund, T. F., and Gulyás, A. I. (2012). Extrinsic and local

glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and

interneurons. Hippocampus, 22(6):1379–1391.

Thomson, A. M. (2000). Facilitation, augmentation and potentiation at central synapses. Trends in

Neurosciences, 23(7):305–312.

Thomson, A. M., Deuchars, J., and West, D. C. (1993). Large, deep layer pyramid-pyramid single axon

EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, medi-

ated presynaptically and self-facilitation, mediated postsynaptically. Journal of Neurophysiology,

70(6):2354–2369.

Thomson, A. M. and West, D. C. (1993). Fluctuations in pyramid-pyramid excitatory postsynaptic

potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired

intracellular recordings in rat neocortex. Neuroscience, 54(2):329–346.

Tonegawa, S., Liu, X., Ramirez, S., and Redondo, R. (2015). Memory Engram Cells Have Come of Age.

Neuron, 87(5):918–931.

Tong, G. and Jahr, C. E. (1994). Multivesicular release from excitatory synapses of cultured hippocampal

neurons. Neuron, 12(1):51–59.

Trägenap, S., Whitney, D. E., Fitzpatrick, D., and Kaschube, M. (2022). Experience drives the develop-

ment of novel, reliable cortical sensory representations from endogenously structured networks.

bioRxiv.

Tremblay, R., Lee, S., and Rudy, B. (2016). GABAergic Interneurons in the Neocortex: From Cellular

Properties to Circuits. Neuron, 91(2):260–292.

Tsodyks, M. and Markram, H. (1997). The neural code between neocortical pyramidal neurons depends

on neurotransmitter release probability. PNAS, 94(2):719–723.

Tsodyks, M., Uziel, A., and Markram, H. (2000). Synchrony generation in recurrent networks with

frequency-dependent synapses. The Journal of neuroscience, 20(RC50).

Turrigiano, G. G. and Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system.

Nature Reviews Neuroscience, 5(2):97–107.

Tyan, L., Chamberland, S., Magnin, E., Camiré, O., Francavilla, R., Suzanne David, L., Deisseroth, K.,

and Topolnik, L. (2014). Dendritic inhibition provided by interneuron-specific cells controls the

firing rate and timing of the hippocampal feedback inhibitory circuitry. Journal of Neuroscience,

34(13):4534–4547.

Ujfalussy, B. B. and Makara, J. K. (2020). Impact of functional synapse clusters on neuronal response

selectivity. Nature Communications, 11(1413).

van der Plas, T. L., Tubiana, J., Le Goc, G., Migault, G., Kunst, M., Baier, H., Bormuth, V., Englitz, B., and

Debrégeas, G. (2023). Neural assemblies uncovered by generative modeling explain whole-brain

activity statistics and reflect structural connectivity. eLife, 11:e83139.

Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J.-D., Muller, E., Schürmann, F., Segev, I.,

and Markram, H. (2016). BluePyOpt: Leveraging open source software and cloud infrastructure to

optimise model parameters in neuroscience. Frontiers in Neuroinformatics, 10(17).

Varani, S., Vecchia, D., Zucca, S., Forli, A., and Fellin, T. (2022). Stimulus Feature-Specific Control of

Layer 2 / 3 Subthreshold Whisker Responses by Layer 4 in the Mouse Primary Somatosensory Cortex.

Cerebral Cortex, 32(7):1419–1436.

147



Bibliography

Vargas-Caballero, M. and Robinson, H. P. (2003). A slow fraction of Mg2+ unblock of NMDA receptors

limits their contribution to spike generation in cortical pyramidal neurons. Journal of Neurophysiol-

ogy, 89(5):2778–2783.

Vickers, E. D., Clark, C., Osypenko, D., Fratzl, A., Kochubey, O., Bettler, B., and Schneggenburger, R.

(2018). Parvalbumin-Interneuron Output Synapses Show Spike-Timing-Dependent Plasticity that

Contributes to Auditory Map Remodeling. Neuron, 99(4):720–735.

Vida, I., Halasy, K., Szinyei, C., Somogyi, P., and Buhl, E. H. (1998). Unitary IPSPs evoked by interneurons

at the stratum radiatum — stratum lacunosum-moleculare border in the CA1. Journal of Physiology,

506(3):755–773.

Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C., and Gerstner, W. (2011). Inhibitory Plasticity Balances

Excitation and Inhibition in Sensory Pathways and Memory Networks. Science, 334(6062):1569–1573.

Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z., and Markram, H. (2002). Anatomical, physiological,

molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cerebral

cortex, 12(4):395–410.

Wheeler, D. W., White, C. M., Rees, C. L., Komendantov, A. O., Hamilton, D. J., and Ascoli, G. A. (2015).

Hippocampome.org: A knowledge base of neuron types in the rodent hippocampus. eLife, 4(e09960).

Widrich, M., Schäfl, B., Pavlovic, M., Ramsauer, H., Gruber, L., Holzleitner, M., Brandstetter, J., Sandve,

G. K., Greiff, V., Hochreiter, S., and Klambauer, G. (2020). Modern hopfield networks and attention

for immune repertoire classification. Advances in Neural Information Processing Systems, 33.

Williams, L. E. and Holtmaat, A. (2019). Higher-Order Thalamocortical Inputs Gate Synaptic Long-Term

Potentiation via Disinhibition. Neuron, 101(1):91–102.

Williams, S. R. and Atkinson, S. E. (2007). Pathway-specific use-dependent dynamics of excitatory

synaptic transmission in rat intracortical circuits. Journal of Physiology, 585(3):759–777.

Williams, S. R. and Mitchell, S. J. (2008). Direct measurement of somatic voltage clamp errors in central

neurons. Nature Neuroscience, 11(7):790–798.

Williams, S. R. and Stuart, G. J. (1999). Mechanisms and consequences of action potential burst firing

in rat neocortical pyramidal neurons. Journal of Physiology, 521(2):467–482.

Williams, S. R. and Stuart, G. J. (2002). Dependence of EPSP efficacy on synapse location in neocortical

pyramidal neurons. Science, 295(5561):1907–1910.

Wilson, D. E., Whitney, D. E., Scholl, B., and Fitzpatrick, D. (2016). Orientation selectivity and the

functional clustering of synaptic inputs in primary visual cortex. Nature Neuroscience, 19(8):1003–

1009.

Wohrer, A., Humphries, M. D., and Machens, C. K. (2013). Population-wide distributions of neural

activity during perceptual decision-making. Progress in Neurobiology, 103:156–193.

Wozny, C. and Williams, S. R. (2011). Specificity of synaptic connectivity between layer 1 inhibitory

interneurons and layer 2/3 pyramidal neurons in the rat neocortex. Cerebral Cortex, 21(8):1818–1826.

Xiao, K., Li, Y., Chitwood, R. A., and Magee, J. C. (2023). A critical role for CaMKII in behavioral timescale

synaptic plasticity in hippocampal CA1 pyramidal neurons. bioRxiv.

Yang, D., Günter, R., Qi, G., Radnikow, G., and Feldmeyer, D. (2020). Muscarinic and Nicotinic Modula-

tion of Neocortical Layer 6A Synaptic Microcircuits Is Cooperative and Cell-Specific. Cerebral Cortex,

30(6):3528–3542.

Yang, D., Qi, G., Ding, C., and Feldmeyer, D. (2022). Layer 6A Pyramidal Cell Subtypes Form Synaptic

Microcircuits with Distinct Functional and Structural Properties. Cerebral Cortex, 32(10):2095–2111.

Yasui, T., Fujisawa, S., Tsukamoto, M., Matsuki, N., and Ikegaya, Y. (2005). Dynamic synapses as archives

of synaptic history: State-dependent redistribution of synaptic efficacy in the rat hippocampal CA1.

Journal of Physiology, 566(1):143–160.

148



Bibliography

Yu, J., Hu, H., Agmon, A., and Svoboda, K. (2019). Recruitment of GABAergic Interneurons in the Barrel

Cortex during Active Tactile Behavior. Neuron, 104(2):412–427.

Zenke, F., Agnes, E. J., and Gerstner, W. (2015). Diverse synaptic plasticity mechanisms orchestrated to

form and retrieve memories in spiking neural networks. Nature Communications, 6(6922).

Zenke, F., Gerstner, W., and Ganguli, S. (2017a). The temporal paradox of Hebbian learning and

homeostatic plasticity. Current Opinion in Neurobiology, 43:166–176.

Zenke, F., Poole, B., and Ganguli, S. (2017b). Continual learning through synaptic intelligence. ICML.

Zhu, J. J. (2000). Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and

layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites. Journal of Physiology, 526(3):571–

587.

Zucker, R. S. and Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review of Physiology,

64:355–405.

149





András Ecker
Curriculum Vitæ

Bajcsy-Zsilinszky u. 32/2
Kőszeg 9730, Hungary
B andras.ecker@epfl.ch

 andrisecker  András Ecker
 andris_ecker  András Ecker

Education
2018.10. -
present

EPFL PhD Program in Neuroscience (EDNE), Blue Brain Project, EPFL (École
polytechnique fédérale de Lausanne), Switzerland.
{ In Silico Neuroscience PhD supervised by Henry Markram and Michael W. Reimann
{ ”Principles of Network Plasticity in Neocortical Microcircuits”
{ Tutor at the EITN Computational Neuroscience Summer School in 2021 and 2022
{ Teaching assistant in Numerical analysis in 2020 and 2021

2016.09. -
2018.08.

Life Science and Technology MSc, EPFL (École polytechnique fédérale de Lausanne)
SV Faculty, Switzerland, GPA: 5.42/6.
{ Minor in Computational Neuroscience
{ Master research scholar of the faculty (2 days/week internship)

2012.09. -
2016.01.

Molecular Bionics Engineering BSc, Pázmány Péter Catholic University, Faculty
of Information Technology and Bionics, Hungary, GPA: 4.87/5.
{ Teaching assistant in Calculus
{ Wrote official lecture notes for Neurobiology I and II
{ Member of the student association responsible for social events

Research/Work Experience
2016.09. -
2018.08.

Blue Brain Project, EPFL (École polytechnique fédérale de Lausanne), Switzerland.
{ In Silico Neuroscience internship in Eilif B. Muller’s group

2018.01. - 03. GE Healthcare, Hungary.
{ Data Science industrial intership with Levente Török

2017.05. - 08. Google Summer of Code, INCF, Sweden (remote working).
{ ”Conversion of a large scale hippocampal network model to NeuroML”

2016.03. - 07. University College London, UK.
{ Neuroinformatics intership with Padraig Gleeson in Angus Silver’s laboratory

2015.07. - 09. Bernstein Center for Computational Neuroscience, Germany.
{ Computational Neuroscience Amgen scholar in Thomas Wachtler’s laboratory

2015.01. -
2016.01.

Institute of Experimental Medicine HAS, Hungary.
{ Computational Neuroscience internship with Szabolcs Káli in Tamás Freud’s laboratory

Preprints
2023 A. Ecker, D. Egas Santander, et al. Long-term plasticity induces sparse

and specific synaptic changes in a biophysically detailed cortical model,
https://doi.org/10.1101/2023.08.07.552264

2023 A. Ecker, D. Egas Santander, et al. Cortical cell assemblies and their underlying
connectivity: an in silico study, https://doi.org/10.1101/2023.02.24.529863

2023 J.B. Isbister, A. Ecker, C. Pokorny, S. Bolaños-Puchet, D. Egas Santander, et al.
Modeling and Simulation of Neocortical Micro- and Mesocircuitry. Part II: Physiology
and Experimentation, https://doi.org/10.1101/2023.05.17.541168

2023 M.W. Reimann, S. Bolaños-Puchet, J-D. Courcol, D. Egas Santander, et al. Mod-
eling and Simulation of Neocortical Micro- and Mesocircuitry. Part I: Anatomy,
https://doi.org/10.1101/2022.08.11.503144

2023 A. Romani, et al. Community-based Reconstruction and Simulation of a Full-scale Model
of Region CA1 of Rat Hippocampus, https://doi.org/10.1101/2023.05.17.541167

151



Publications
2023 E. Iavorne, et al. Thalamic control of sensory processing and spindles in a bio-

physical somatosensory thalamoreticular circuit model of wakefulness and sleep,
https://doi.org/10.1016/j.celrep.2023.112200, Cell Reports, 42(3), 2023

2022 A. Ecker, et al. ”Hippocampal sharp wave-ripples and the associated sequence re-
play emerge from structured synaptic interactions in a network model of area CA3”,
https://doi.org/10.7554/eLife.71850.sa0, eLife, 11:e71850, 2022

2022 G. Chindemi, et al. A calcium-based plasticity model predicts long-term potentiation
and depression in the neocortex https://doi.org/10.1038/s41467-022-30214-w, Nature
Communications, 13(3038), 2022

2020 A. Ecker, et al. ”Data‐driven integration of hippocampal CA1 synaptic physiology in
silico”, https://doi.org/10.1002/hipo.23220, Hippocampus, 30(11):1129-1145, 2020

2019 P. Gleeson, et al. ”Open Source Brain: a collaborative resource for visualizing,
analyzing, simulating and developing standardized models of neurons and circuits”
https://doi.org/10.1016/j.neuron.2019.05.019, Neuron, 103(3):395-411, 2019

Awards and Scholarships
2018 Best master’s thesis of the section (EPFL)
2017 Google Summer of Code
2017 Hungarian Scientific Students’ Association Conference: 2nd place
2016 Honorous BSc degree (PPCU)
2015 Fellowship granted by the (Hungarian) Republic
2015 Erasmus+ scholarship
2015 Amgen Scholar Program

Computer Skills
Programming languages: Python, MATLAB, (C++, SQL)
Neural simulators: NEURON, Brian, LEMS-NeuroML
Other skills: Adobe Illustrator, PhotoShop, InDesign; Unix, Git

Languages
Hungarian: mother tongue English: fluent (C2)
German: intermediate (B2) French: active learner (A1)

152


	Acknowledgements
	Abstract (English/Français)
	Contents
	List of Figures
	List of Tables
	Introduction
	CA1 synapse physiology in silico
	Introduction
	Methods
	Circuit building and synapse anatomy
	Dendritic features of single cell models
	Model of postsynaptic conductance and current
	Short-term plasticity parameter fitting
	Stochastic Tsodyks-Markram model with multi-vesicular release
	Calibrating peak synaptic conductances through in silico paired recordings
	Correcting for calcium ion concentration, temperature and liquid junction potential
	Statistical analysis

	Results
	Literature curation
	Synaptic model parameters
	Validation of synaptic anatomy and dendritic attenuation
	Short-term plasticity of synapses
	Calibration of peak synaptic conductances to match PSP amplitudes
	Parameter extrapolation

	Discussion
	Supplementary Methods
	Single cell models
	Different versions of the Tsodyks-Markram model
	Membrane noise

	Supplementary Figures and Tables

	Cortical synapse physiology in silico
	Results
	Cortico-cortical synapse physiology
	Thalamocortical synapse physiology
	L4's contribution to L2/3 responses during whisker hold stimulus

	Methods
	Parametrization of spontaneous vesicle release
	Reproducing Varani et al. (2022) in silico

	Supplementary Tables

	Cell assemblies and their underlying connectivity
	Introduction
	Results
	Diverse set of assemblies can be detected from network simulations
	Functional assemblies are determined by structural features
	Assemblies are robust across simulation instances

	Discussion
	Methods
	Network simulations
	Distance metrics
	Thalamic input stimuli
	Assembly detection
	Calculation of information theoretical measurements
	Synaptic clustering coefficient
	Determination of consensus assemblies
	Calculation of spike time reliability

	Supplementary Figures

	Long-term plasticity induced sparse and specific synaptic changes
	Introduction
	Results
	Calcium-based, biophysically detailed model of long-term plasticity
	Achieving in vivo-like network activity
	Sparse synaptic changes induced by long-term plasticity
	More frequent plastic changes within and across cell assemblies
	Synapse clustering contributes to the emergence of cell assemblies, and facilitates plasticity across them
	Redistribution of assembly efficacies and prolonged stimulus-specific responses characterize the network after plasticity
	Network topology changes are parametrized by input stimuli

	Discussion
	Methods
	Calcium-based plasticity model
	In vivo-like spontaneous and evoked activity
	Network simulations
	Evaluating control STDP rules
	Cell assembly detection
	Determination of consensus assemblies
	Calculation of spike time reliability
	Synaptic clustering coefficient and likelihood of plastic changes in synapse clusters

	Supplementary Figures

	Conclusion
	Bibliography
	Curriculum Vitae



