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Dimitri Goutaudier1,2Jürg Schiffmann1, Fabio Nobile2

1Department of Mechanical Engineering, Laboratory for Applied Mechanical Design, EPFL, Neuchâtel, 2000, Switzerland
2Department of Mathematics, Chaire de Calcul Scientifique et Quantification de l’Incertitude, EPFL, Lausanne, 1015, Switzerland

Emails: dimitri.goutaudier@gmail.com, jurg.schiffmann@epfl.ch,fabio.nobile@epfl.ch

ABSTRACT
Gas bearings use pressurized gas as a lubricant to support and
guide rotating machinery. These bearings have a number of ad-
vantages over traditional lubricated bearings, including higher
efficiency in a variety of applications and reduced maintenance
requirements. However, they are more complex to operate and
exhibit nonlinear behaviors. This paper presents a parametric
hyper Reduced Order Model (h-ROM) of a gas bearings sup-
ported rotor enabling to speed up the computations up to a factor
100 while preserving satisfactory accuracy. A Galerkin projec-
tion setting is employed to reduce the dimension of the governing
equations and the nonlinear terms are efficiently tackled with a
sparse sampling technique. The performances of the h-ROM are
compared to a high fidelity model both in terms of accuracy and
computation time, demonstrating the potential for future anomaly
detection applications.
Keywords: gas bearings, dynamical system, reduced order
model, parametric adaptation

1. INTRODUCTION
Real-time simulation of gas bearings supported turbomachinery
could force a breakthrough in smart monitoring with physically
interpretable anomaly detection techniques. In contrast to
purely data-driven predictive maintenance frameworks [1], the
ultimate goal of this research work is to monitor a complex
dynamical system with an accurate physics-based surrogate
model, empowered with data assimilation techniques only where
needed. This is the so-called hybrid twin paradigm gaining more
and more importance in a variety of mechanical engineering
applications [2]. We focus herein on the first step toward a
hybrid twin, that is the development of a surrogate model
directly based on the governing equations of the dynamical
system. In this study, a major scientific challenge is the
real-time simulation of gas bearings supported rotors that may
operate at extremely high speeds to maximize their performances.

Projection-based model order reduction is a promising frame-
work to perform fast simulations accounting for nonlinear
behaviors while preserving satisfactory accuracy [3]. In this

context, Galerkin projection settings have been successfully
employed in a variety of situations. The idea is to project
the governing equations of the dynamical system onto a low
dimensional linear subspace, and to approximate the system’s
state variables in this same subspace. In many situations, it
is indeed observed that the numerical solution of a problem,
seemingly evolving in a high dimensional space related to some
fine spatial discretization, can often be described with a reduced
number of degrees of freedom. An established method to identify
a suitable low dimensional subspace is the Proper Orthogonal
Decomposition (POD) combined with the method of snapshots
[4, 5]. It extracts the most energetic dynamical modes of the
system from snapshots of the true solution picked at different
times of the physical problem. However, even if a Galerkin pro-
jection setting reduces the number of unknowns, the evaluation
of a projected nonlinear term might still be too expensive to
evaluate. It then becomes necessary to tackle the nonlinear terms
with a dedicated technique based on sparse sampling. Several
methods are available such as the MPE [6], the GNAT [7] or
the DEIM methods [8]. Such a surrogate model is referred as
a hyper-reduced order model (h-ROM) in the scientific litterature.

An additional difficulty arises when it comes to predict the
response of a system to various inputs, such as external loads
or changes in operating conditions. Indeed, a projection-based
reduced order model is by construction obtained from snap-
shots of the solution computed with a high fidelity model at
user-selected values of the system’s parameters (training points).
Consequently, the reduced order model is not expected to provide
accurate predictions away from these training points. Common
approaches to solve this problem are the construction of a global
reduced basis with the concatenation method [3], the clustering
of the parameter space with multiple local bases [9, 10], and
dedicated interpolation techniques resorting to differential
geometry to preserve the structure of a basis [11, 12]. To the best
of the authors knowledge, this study presents the first application
of a hyper reduced order modelling framework to a gas bearings
dynamical system. Other model reduction approaches have been
studied on similar technologies in [13–15].
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This paper is organized as follows. In section 2 we present
the governing equations of a rigid rotor supported by two gas-
lubricated Herringbone Grooved Journal Bearings (HGJB). In
section 3 we present our methodology to derive a computationally
efficient hyper-reduced order model (h-ROM). In section 4 we
briefly present the method employed to adapt the reduced bases
of the h-ROM to any rotor speed and compressibility number
in user-defined ranges of interest. In section 5 we compare the
performances of the developed h-ROM with a high fidelity model,
both in terms of accuracy and computation time. Last, in section
6 we present the main limitations of the proposed framework.

2. GOVERNING EQUATIONS
The studied system consists in a rotor supported by two gas-
lubricated Herringbone Grooved Journal Bearings (HGJB). The
gas inside the bearings is dragged by the rotative motion of the
rotor and accumulates near the locations with smallest clearance,
generating a repulsive aerodynamic force with an inward normal
component, see Figure 1.

We assume that the two bearings are fixed, identical and perfectly
aligned. The rotor is modelled as a rigid body with four degrees of
freedom chosen to be the 𝑥, 𝑦 coordinates of its geometrical center
and the tilting angles in the (𝑦, 𝑧)− and (𝑧, 𝑥)−planes. The forces
acting on the rotor are its weight, the total aerodynamic force,
and an imbalance force due a mismatch between the inertial and
geometrical axes of the rotor. Using the same non-dimensional
parameters as in [16], the rotor-dynamics equations in the fixed
reference frame of the bushings are given by:

�̄�𝑟 𝜖𝑥 = �̄�𝑟 �̄� + �̄�1
𝑥 + �̄�2

𝑥 + �̄�1
𝑥_𝑖𝑚 + �̄�2

𝑥_𝑖𝑚

�̄�𝑟 𝜖𝑦 = �̄�1
𝑦 + �̄�2

𝑦 + �̄�1
𝑦_𝑖𝑚 + �̄�2

𝑦_𝑖𝑚

𝐼𝑇 𝜁 + 𝐼𝑃 �̇� = �̄�1
𝑦 𝑙1 − �̄�2

𝑦 𝑙2 + �̄�𝜁 _𝑖𝑚

𝐼𝑇𝜙 − 𝐼𝑃 �̇� = −�̄�1
𝑥 𝑙1 + �̄�2

𝑥 𝑙2 + �̄�𝜙_𝑖𝑚

(1)

where �̄�𝑖
𝑥 , �̄�

𝑖
𝑦 are the components of the non-dimensional aerody-

namic force generated in bearing 𝑖 = 1, 2. The available clearance
between the rotor and the bushings being negligible compared to
the rotor’s length, the pressure distribution can be assumed sym-
metrical about the bearing mid-planes. The aerodynamic force
generated in bearing 𝑖 = 1, 2 is then given by:[︃

�̄�𝑖
𝑥

�̄�𝑖
𝑦

]︃
= −2

∫ 𝐿/𝐷

0

∫ 2𝜋

0
(�̄�𝑖 − 1)

[︃
cos(𝜃)
sin(𝜃)

]︃
𝑑𝜃𝑑𝑧 (2)

where �̄�𝑖 is the non-dimensional pressure distribution in bearing
𝑖 = 1, 2. It is computed from the Narrow Groove Theory (NGT),
a homogenized version of Reynold’s equation assuming an infi-
nite number of grooves [17]. The NGT simplifies the numerical
treatment since the grooves do not longer need to be resolved.
One would otherwise have to resort to an advanced spatial dis-
cretization scheme describing the saw-toothed waviness of the
local pressure distribution caused by the periodic geometric dis-
continuities [18]. Omitting the superscript (.)𝑖 for the sake of
clarity, and assuming an ideal gas and an isothermal compres-
sion, the NGT equation governing the gas film dynamics in a

bearing writes as in [16]:

𝜕𝜃 [�̄�( 𝑓𝜃𝜕𝜃 �̄� + 𝑓𝑐𝜕�̄� �̄�)] + 𝜕�̄� [�̄�( 𝑓𝑐𝜕𝜃 �̄� + 𝑓𝑧𝜕�̄� �̄�)]
+𝑐𝑠 [sin 𝛽𝜕𝜃 (�̄� 𝑓𝑠) − cos 𝛽𝜕�̄� (�̄� 𝑓𝑧)] =

Λ𝜕𝜃 (�̄� 𝑓𝑣) + 𝜎𝜕𝑡 (�̄� 𝑓𝑣)
(3)

where the 𝑓𝑎 functions with 𝑎 = 𝜃, 𝑧, 𝑐, 𝑠, 𝑣 depend on geomet-
rical parameters and on the clearance distribution, hence on the
rotor position governed by (1). This nonlinear Partial Differential
Equation (PDE) is spatially defined for (𝜃, 𝑧) ∈ [0, 2𝜋]×[0, 𝐿/𝐷]
with the cyclic condition �̄�(𝑡, 𝜃 + 2𝜋, 𝑧) = �̄�(𝑡, 𝜃, 𝑧). At 𝑧 = 0 the
non-dimensional pressure is set to 1 and at 𝑧 = 𝐿/𝐷 the mass
flow normal to the bearing mid-plane interface is set to 0.

The complete set of equations governing the system’s dynamics
is therefore (1) coupled with two PDEs (3) to compute the aero-
dynamic forces (2) generated in each bearing, with the boundary
conditions defined above, along with an appropriate set of initial
conditions. After discretizing in space the PDEs as described
hereafter, the governing equations are ultimately written under
the form of a Differential Algebraic Equation (DAE) solved with
the ode15s solver of Matlab [19]:⎧⎪⎪⎨⎪⎪⎩

ẏ = f (y, yΓ, 𝑡)
0 = g(y, yΓ)
y(0) = y0

(4)

FIGURE 1: LEFT: ROTOR-BEARINGS SYSTEM, COURTESY OF [16].
RIGHT: AERODYNAMIC FORCE GENERATED IN A BEARING BY
THE GAS FLOW AROUND THE ROTOR.

3. HYPER-REDUCED ORDER MODEL
3.1 Spatial discretization with finite differences
We consider the change of variable �̄� = �̄� 𝑓𝑣 in equation (3).
A uniform rectangular grid of 𝑛𝜃 × 𝑛𝑧 nodes is used with the
numbering 𝐼 (𝑖, 𝑗) = 𝑖 + ( 𝑗 − 1)𝑛𝜃 , where 1 ≤ 𝑖 ≤ 𝑛𝜃 and 1 ≤
𝑗 ≤ 𝑛𝑧 . Given the cyclic condition at 𝜃 = 2𝜋, the nodal values
of �̄� and its partial derivatives at nodes (𝑛𝜃 , 𝑗) are equal to the
nodal values at nodes (1, 𝑗). We then define an effective grid by
removing the nodes at 𝑖 = 𝑛𝜃 and the ones at 𝑗 = 1, 𝑛𝑧 constrained
by the boundary conditions. Let 𝝍 and 𝜕𝑑

𝑎𝝍 (with 𝑎 = 𝜃, 𝑧 and
𝑑 = 1, 2) be the vectors obtained by stacking the nodal values
of �̄� and 𝜕𝑑

𝑎 �̄� on this effective grid, respectively. Let also h𝜃

be the 𝑛𝜃 − 1 vector obtained by stacking the nodal values of
the non-dimensional clearance distribution along the effective
circumferential grid. The vector h of the clearance values over
the complete effective grid can be recovered as h = Bh𝜃 , with
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B an appropriate Boolean matrix. Using a central difference
scheme, the discretized in space NGT equation is written as an
Ordinary Differential Equation (ODE) under the form:

𝜎�̇� = −ΛA�̄� + 𝑐𝑠

3∑︂
𝑖=1

B𝑢𝑖 (h𝜃 ).*C𝑖�̄�

+
9∑︂
𝑖=1

B𝑣𝑖 (h𝜃 ).*D𝑖�̄�.*E𝑖�̄�

(5)

where �̄� = [�̄�𝐼 (𝑖, 𝑗 ) ] with 𝑖 = 1 : 𝑛𝜃 − 1 and 𝑗 = 1 : 𝑛𝑧 . Note
that �̄� = [ 𝑓𝑣 (h𝜃 );𝝍;𝝍Γ] with 𝝍Γ the nodal values at the bearing
mid-plane interface, that is at 𝑗 = 𝑛𝑧 . The 𝑢𝑖 , 𝑣𝑖 functions are
component-wise evaluated and .* denotes the component-wise
product. It can be appreciated that the above formulation distin-
guishes terms that are linear and quadratic in �̄�, which will be
exploited in the reduced order model.

3.2 Vectorized formulation
The computational cost is driven by the dimension 𝑛 = 𝑛𝜃𝑛𝑧
of the two discretized in space NGT equations (one for each
bearing). To circumvent this issue, we define a single equation
for 𝚿 = [𝝍1;𝝍2] that we vectorize prior applying the Galerkin
projection and the sparse sampling method described in next
subsection. More precisely, the idea is to rewrite the sums in (5) as
matrix-vector products for which the reduction techniques apply
more efficiently. This is done by using the mixt product property
Ax.*By = (A•B) (x⊗y), where ⊗ is the Kronecker product and •
denotes the row-wise Kronecker product. Let H𝜃 = [h1

𝜃
; h2

𝜃
] and

�̄� = [�̄�1; �̄�2]. Let also u(.) = [𝑢1 (.); 𝑢2 (.); 𝑢3 (.)] and similarly
v(.) = [𝑣1 (.); . . . ; 𝑣9 (.)]. All calculations done, the vectorized
equation governing 𝝍1 and 𝝍2 can be written under the form:

𝜎�̇� = −ΛA�̄� + 𝑐𝑠F(u(H𝜃 ) ⊗ �̄�)
+G(v(H𝜃 ) ⊗ �̄� ⊗ �̄�)

(6)

where A = blkdiag(A,A) and the matrices F, G are obtained
from the mixt product property described above. It must be
mentioned that this formulation is intractable at this point because
of the high dimensional matrix-vector products involved in the
equation. A similar treatment is performed on the boundary
condition equations at each bearing mid-plane interface, but it is
not described here for the sake of brevity.

3.3 Hyper-reduction
We first perform a Galerkin projection of equation (6) onto a re-
duced basis obtained with the Proper Orthogonal Decomposition
(POD - [5]). This technique uses a Singular Value Decompo-
sition (SVD) to extract the most significant uncorrelated modes
of a system from a set of snapshot data. In our case, we use
snapshots of the 𝜓 distributions in each bearing to identify a re-
duced basis V of rank 𝑟 ≪ 2𝑛 so that 𝚿 ≈ V𝚿𝑟 . We proceed
similarly to identify a reduced basis VΓ of rank 𝑟Γ ≪ 2𝑛𝜃 so
that 𝚿Γ ≈ VΓ𝚿Γ𝑟 . Although this Galerkin projection reduces
the dimension of the gas films equations, the nonlinear terms
are still too expensive to evaluate. We propose to tackle them
with the Discrete Empirical Interpolation Method (DEIM - [8]).

This technique states that a vector-valued function may accurately
be recovered from a sparse selection of its components. More
precisely, given 𝑓 (.) a nonlinear function to be component-wise
evaluated at some vector x of size 𝑛, the algorithm computes
a reduced basis V𝑓 of rank 𝑚𝑓 ≪ 𝑛 and inductively identifies
𝑚𝑓 distinct entries 𝑖1, · · · , 𝑖𝑚𝑓

, so that 𝑓 (x) ≈ V𝑓 𝑓 (P𝑇
𝑓
x) with

P𝑇
𝑓
x = [𝑥𝑖1 ; ...; 𝑥𝑖𝑚𝑓

]. The DEIM is applied to the nonlinear func-
tions 𝑓𝑣, u and v evaluated at H𝜃 . Then a reduced basis V̄ is
defined using V𝑓𝑣 , V and VΓ so that �̄� ≈ V̄�̄�𝑟 , with �̄�𝑟 a reduced
vector of size 𝑚𝑓𝑣 + 𝑟 + 𝑟Γ ≪ 2(𝑛 + 2𝑛𝜃 ). All calculations done,
a hyper-reduced equation governing the gas films dynamics is
written under the form:

𝜎�̇�𝑟 = −ΛA𝑟 �̄�𝑟 + 𝑐𝑠F𝑟 (u(P𝑇
u H𝜃 ) ⊗ �̄�𝑟 )

+G𝑟 (v(P𝑇
v H𝜃 ) ⊗ �̄�𝑟 ⊗ �̄�𝑟 )

(7)

with A𝑟 = V𝑇AV̄ and where the matrices F𝑟 , G𝑟 are obtained
using the property Ax ⊗ By = (A ⊗ B) (x ⊗ y). Again, a similar
treatment is performed on the interface conditions at the bearing
mid-planes. A DEIM is also performed on 𝑓 −1

𝑣 (H𝜃 ) to compute
the pressure distributions in (2). Ultimately, it can be appreciated
that the dimensions of the matrices involved in this hyper reduced
order model (h-ROM) do not longer depend on the initial finite
difference grid. These matrices are then computed prior the time
integration allowing to significantly speed up the calculations.

4. PARAMETRIC ADAPTATION
In operational conditions, the speed of the rotor 𝜔 and the com-
pressibility number Λ may be controlled to reach targeted perfor-
mances. The reduced bases involved in the h-ROM are however
obtained from snapshots of the solution computed at user-defined
values of the system’s parameters (training points). Accuracy is
thus only expected in the neighbourhood of these training points.
To circumvent this issue, we implement in this work the so-called
Interpolation in the Tangent Space to the Grassmann Manifold
(ITSGM - [11]). The Grassmann manifold G(𝑛, 𝑟) is the set of
all the 𝑟-dimensional linear subspaces of R𝑛. In a projection-
based model reduction framework, the range of a POD basis
V ∈ R𝑛×𝑟 is then viewed as an element of G(𝑛, 𝑟). Given
𝑞 ≥ 2 POD bases of rank 𝑟 computed at distinct parameters,
say V(𝝁1), · · · ,V(𝝁𝑞), the ITSGM method suitably outputs for
a new parameter 𝝁 = [𝜔,Λ] a new reduced basis V(𝝁) of rank 𝑟.
Implementation-friendly formulas render this method attractive
for fast reduced bases adaptation to new parameters. A com-
prehensive description can be found in [20]. In this work, the
ITSGM method is used to adapt the reduced bases used in the
Galerkin projection framework, and also to adapt the reduced
bases involved in the approximation of the nonlinear terms with
the DEIM method.

5. H-ROM PERFORMANCES
5.1 System parameters
The parameters of the studied system are the following: rotor
mass 𝑚𝑟 = 0.2357 kg, rotor radius 𝑅 = 7 mm, rotor polar inertia
𝐼𝑃 = 7.8×10−6 kg·m2, rotor transverse inertia 𝐼𝑇 = 2.1775×10−4

kg·m2, groove width ratio 𝛼 = 0.65, groove angle 𝛽 = 19◦,
clearance at null eccentricity ℎ𝑟0 = 4.5 𝜇m, groove depth 𝛿 = 10
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𝜇m, bearing length on diameter 𝐿/𝐷 = 1. The rotor-bearings
system is operated in air with a viscosity 𝜇 = 1.95× 10−5 Pa and
the gravity constant is set to 𝑔 = 9.81 m·s−2. The radial growth
of the rotor due to the high rotation speed is taken into account
with the following formula:

𝑟𝑔 =
1 − 𝜈

4𝐸
𝜌𝜔2𝑅3 (8)

with the material parameters 𝐸 = 593 GPa, 𝜌 = 14500 kg/m3

and 𝜈 = 0.22. The imbalance forces and moments computed
in subsection 5.5 use the following parameters defined in [16]:
𝑙1 = 0.0248 m,𝑈1 = 3×10−8 kg·m, 𝑙2 = 0.0207 m,𝑈2 = 3×10−8

kg·m. All the calculations are performed with Matlab R2022b
on a laptop with a single Intel(R) Core(TM) i7-7600U 2.80GHz
CPU 16Go RAM.

The initial conditions used for the time integration of the gov-
erning equations are computed as follows. For a given rotation
speed and compressibility number, the steady state of the dynam-
ical system is computed by zeroing the time derivative and the
imbalance forces and moments in the governing equations (4).
The initial state y0 is then set equal to the steady state except the
state variables corresponding to the initial rotor position that are
modified.

5.2 h-ROM parameters and test points
The h-ROM reduced bases are computed for 9 sets of parameters
on the tensor grid [𝜔𝑖 ,Λ𝑗 ] ∈ {50, 100, 150}krpm × {10, 25, 50}
(training points) . Let 𝝐0 = [𝜖𝑥 (0), 𝜖𝑦 (0), 𝜁 (0), 𝜙(0)] denote the
perturbed rotor position used in the initial conditions. For each
training point, the reduced bases are obtained from snapshots of
the solution of equation (4) computed on a time interval of 20
rotor revolutions, with 50 time steps per revolution, and with an
initial rotor position 𝝐0 = [0; 0; 0; 0]. The ranks used for V and
VΓ are 26 and 16, respectively, and the ranks used for the DEIM
approximations of 𝑓𝑣 (H𝜃 ), u(H𝜃 ) and v(H𝜃 ) are 6, 16 and 30,
respectively. The performances of the h-ROM are studied on the
four following sets of simulation parameters, see Figure 2:

#1: 𝜔 = 100krpm, Λ = 25, 𝝐0 = [0; 0; 0; 0] (training point)

#2: 𝜔 = 100krpm, Λ = 25, 𝝐0 = [0.2; 0.2; 3◦;−3◦] (test point)

#3: 𝜔 = 87krpm, Λ = 38, 𝝐0 = [0; 0; 0; 0] (test point)

#4: 𝜔 = 87krpm, Λ = 38, 𝝐0 = [0.2; 0.2; 3◦;−3◦] (test point)

The h-ROM solutions are compared to the Full Order Model
(FOM) solutions, that is to the numerical solutions of (4) obtained
without using the reduction techniques. We focus in this study
on the rotor orbit predictions [𝜖 𝑖𝑥 (𝑡), 𝜖 𝑖𝑦 (𝑡)] in each bearing on a
time interval of 20 rotor revolutions with a relative error indicator
based on the Frobenius norm.

5.3 Stability analysis
We first perform a stability analysis to check if the system can
be safely operated for any [𝜔,Λ] ∈ [50,150]krpm×[10,50]. We
proceed as in [13] by studying the sign of the real part of the
leading eigenvalue of the Jacobian of the dynamical system (4).

The latter is numerically computed for different values of the
rotor speed and of the compressibility number, and the highest
real part of its eigenvalues is reported in Figure 3. Except for
rotation speeds higher than 130krpm at Λ = 50, the real part of
the leading eigenvalue remains negative. The dynamical system
is then stable outside this range in the linear sense, that is without
external forces or imbalance the rotor will come back to its steady
state position after any slight perturbation.

5.4 Mesh sensitivity
Figures 4 and 5 show the influence of the mesh on the h-ROM and
FOM solutions computed with the set #1 of simulation parameters
(100krpm) without taking into account the imbalance forces and
moments. The h-ROM predictions are in close agreement with
their FOM counterparts, with a relative error lower than 1% for
the rotor orbits in each bearing, see Table 1. The speeding up
factor obtained on the time integration of the h-ROM compared
to the FOM ranges from 4 with the 20-by-20 mesh to almost
400 with the 60-by-60 mesh. This important speeding up factor
obtained by refining the mesh is the consequence of using reduced
matrices that do not depend on the grid. It is however important
to mention that the cost for computing the h-ROM matrices prior
the time integration scales with the number of grid points. In
addition, given the errors committed for test points far from the
training points, see subsection 5.5, it is sufficient to use the 40-
by-40 mesh.

Grid 20 × 20 40 × 40 60 × 60
Bearing 1 0.0576% 0.429% 0.273%
Bearing 2 0.0473% 0.391% 0.271%

Speeding up ×4 ×50 ×391

TABLE 1: ERROR H-ROM/FOM DEPENDING ON THE MESH AND
SPEEDING UP FACTOR FOR THE TIME INTEGRATION (SET OF SIM-
ULATION PARAMETERS #1).

5.5 Accuracy analysis on test points
Finally, we explore the accuracy of the h-ROM on test points
#1 to #4 considering the imbalance forces and moments. A
40-by-40 grid is used for each bearing. As illustrated on Figure
2, test points #2,3,4 differ from the 9 training points by the
values of the rotation speed, the compressibility number, or the
initial rotor position. We use the ITSGM method described in
section 4 to adapt the reduced bases of the h-ROM with respect
to the rotation speed and the compressibility number only, and
we investigate the extrapolation performances of the h-ROM for
new values of the initial rotor position (test points #2 and #4).

Table 2 presents the h-ROM performances in terms of relative
error and speed up factor with respect to the FOM. As expected,
the error is the lowest (0.06%) at test point #1 which coincides
with a training point. Figure 6 illustrates the close agreement
between the h-ROM and FOM solutions. In addition, it is
observed that the error increases as the test point is moved
away from the training points, with a higher sensitivity when
changing the rotor speed and the compressibility number than
when changing the initial rotor position. Indeed, test point #2
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ING ON THE ROTOR SPEED AND THE COMPRESSIBILITY NUM-
BER

differs from test point #1 by the initial rotor position only, and
the error is 1.1%; while test point #3 differs from test point #1
by the rotor speed and the compressibility number, and the error
reaches 11.6%. Test point #4 confirms that changing the initial
rotor position does not significantly change the accuracy, as
the error difference between test points #3 and #4, which only
differ by the initial rotor position, is 0.4%. This confirms that
it is sufficient to adapt the reduced bases with respect to the
rotor speed and the compressibility number only, as performed
in this study, and not with respect to the initial rotor position.
Last, we notice that for all the simulations the h-ROM computes
the solution much faster than the FOM, with a speed up factor
ranging from 40 to 100 depending on the test point, with relative
errors lower than 12%. This study suggests that the developed
h-ROM is both accurate and efficient even far from the training
points. Figure 7 displays the simulation results for test point #4,
showing that an error level of 12% remains satisfactory.

6. LIMITATIONS
The objective of a hyper-reduced order model (h-ROM) frame-
work is to approximate the behavior of a complex dynamical
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FIGURE 4: H-ROM AND FOM PREDICTIONS DEPENDING ON THE
MESH (SET #1 OF SIMULATION PARAMETERS).

system with fewer degrees of freedom, by reducing the dimen-
sionality of the governing equations while retaining the essential
features. However, this framework has a number of limitations,
especially for gas-bearings supported rotor systems, that must be
mentioned. First, as commonly observed with projection-based
model order reduction techniques, the h-ROM may not capture
the system’s behavior accurately if the ranks of the reduced bases
are too small. It is therefore important to verify the accuracy
obtained with the selected ranks by comparing the results of the
h-ROM to those of the FOM for different values of the system’s
parameters. Second, the developed h-ROM is designed to work
for a specific set of governing equations. Hence it may not be
easily adaptable to flexible rotor models or to other types of gas
bearing technologies such as foil bearings. A dedicated study
should be conducted for any change in the governing equations
to verify if the reduction techniques employed in this study are
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Test point #1 #2 #3 #4
Bearing 1 0.0638% 1.25% 11.1% 11.5%
Bearing 2 0.0640% 1.10% 11.6% 12.0%

Speeding up ×40 ×66 ×86 ×101

TABLE 2: ERROR AND SPEED UP FACTOR H-ROM/FOM DEPEND-
ING ON THE SET OF SIMULATION PARAMETERS.

applicable for the considered system. However, the developed
h-ROM could more easily adapt to different loading scenarios,
such as a shock applied to the rotor or a forced vibration, by com-
puting the reduced bases with snapshots of the FOM associated
to these different scenarios. Last, this h-ROM framework may
fail to describe highly nonlinear behaviors such as bifurcations.
This situation may be encountered if the rotor is operated near
or beyond the so-called onset speed of instability (OSI). In this
situation, it might be necessary to cluster the parameter space
accordingly and to use separate sets of reduced bases, or to use
another reduction approach able to capture such behavior.

7. CONCLUSION
We presented in this study the hyper-reduced order model (h-
ROM) of a gas-bearings supported rotor. The developed h-ROM
is parametric and efficiently adapts to changes in both the rotor
speed and the compressibility number. Numerical experiments
demonstrate that the h-ROM speeds up the calculations up to two
orders of magnitude with relative errors lower than 10% compared
to a high fidelity model. This parametric surrogate model will be
used in future works in the digital twin of a small-scale high-speed
turbomachinery for anomaly detection.
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