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Abstract
Time reversal exploits the invariance of electromagnetic
wave propagation in reciprocal and lossless media to localise
radiating sources. Time-reversed measurements are back-
propagated in a simulated domain and converge to the un-
known source location. The focusing time (i.e., the simu-
lation instant at which the fields converge to the source lo-
cation) and the source location can be identified using field
maxima, entropy, time kurtosis and space kurtosis.

In this paper, we analyse the spatial energy-density distri-
bution of time-reversed electromagnetic fields by introduc-
ing a convergence metric based on the spatial average and
variance of the energy density. We analytically prove that the
proposed metric identifies the focusing time and the source
location, with direct links to the source frequency content.
We verify the analytical results in a free-space numerical sim-
ulation and then compare the proposed metric to existing
ones in a simulated inhomogeneous medium. Next, we ap-
ply and compare this metric in an experimental case study
to localise electromagnetic interference sources. The pro-
posed metric outperforms existing ones to identify the focus-
ing time and can also be used to locate the source. Finally, be-
cause of its tensorial nature, it can handle anisotropic media,
opening the door to quantitative analyses of time-reversal fo-
cusing in metamaterials.

1 Introduction
In the electromagnetic time-reversal cavity, introduced by
[Carminati et al., 2007], a sensor spanning a full solid an-
gle around a source allows to focus electromagnetic fields
at the source location. This principle has been applied for
both wave focusing and imaging. During the direct-time
phase, transient or time-harmonic electromagnetic fields
are recorded on the boundary of the domain of inter-
est on a “time-reversal mirror” (e.g., a few monopole an-

tennas on the boundary of a reverberant chamber, as in
[Lemoult et al., 2011]). The direct-time source is then re-
moved. During the backward propagation phase, the time-
reversed measurements are sent from the time-reversal mir-
ror. Because only a finite number of sensors are available,
the resulting fields are not a perfect copy of their direct-
time counterpart. However, at least a local field maximum
is observed (e.g., in [Lerosey et al., 2007]) at the (unknown)
source location. For imaging problems, the backward prop-
agation is often done in a simulated environment. Contrary
to experimental case studies, the electromagnetic fields are
available at all sampled points in time and space. A focus-
ing time and location can then be obtained by appropriate
metrics.

State-of-the-art metrics to determine the time and lo-
cation of the field focusing involve determining the local
maximum or comparing the maximum to the side lobes
([Karami et al., 2020, Lemoult et al., 2011]), computing the
entropy of the electric field ([Xu et al., 2003]), or its space
and time kurtoses ([Feng et al., 2021, Feng et al., 2022]).
The first two methods might not be appropriate for nar-
rowband signals. Also, the entropy lacks interpretability for
electromagnetic waves. Finally, the field entropy and space
kurtosis might suffer from an oscillating behaviour, which
makes optimal focusing hard to determine. This paper pro-
poses a new spatial convergence metric based on probability
theory and electromagnetic energy density. Our metric dif-
fers from the the state-of-the-art in that it includes weighted
field integrals including the time and space coordinates. As
we will see, this offers three main advantages: first, the re-
sulting metric has clear physical interpretations; second, we
verify that it predicts fewer false positives than the electric
field entropy or kurtoses; third, it directly allows to han-
dle anisotropic case studies. The latter point is central when
metamaterials are analysed as homogeneous media with effec-
tive anisotropic properties, particularly for super-resolution
techniques.

1



The paper is organised as follows: first, Section 2 intro-
duces the metric alongside necessary definitions; Section 3
then shows the consistency of the proposed metric for the
field radiated by an electric dipole; next, Section 4 compares
the metric to existing metrics in a numerical case study; Sec-
tion 5 also applies and compares the proposed metric to an
experimental case study; Section 6 discusses and compares
all results; finally, Section 7 presents the conclusions of the
paper.

2 Definitions
We base our metric on the electromagnetic energy density
uEM, which describes the density of potential energy carried
by the electromagnetic fields. Its instantaneous value at time
t and position r in a homogeneous, isotropic, lossless and
passive medium of permittivity ε and permeability µ is given
by

uEM(t, r) =
1

2
ε|E(t, r)|2 +

1

2µ
|B(t, r)|2 (1)

We write three-dimensional vectors in bold type. As long as
the field potential energy is conserved, the integral

UEM =

∫∫∫
R3

uEM(t, r)d3r (2)

is independent of time. From this, we define the expected
value of a function g with respect to the electromagnetic en-
ergy at time t as

〈g〉tEM
def
=

1

UEM

∫∫∫
R3

g(t, r)uEM(t, r)d3r (3)

This amounts to considering uEM(t, r)/UEM as a probability
density function in a three-dimensional (spatial) probability
space. The expected value can also be seen as a weighted aver-
age. We thus call 〈x〉tEM the average x-coordinate of energy at
time t, and similarly for the y and z coordinates. In turn, the
energy-location standard deviation σtxx for the x coordinate
at time t is

(σtxx)2
def
=
〈

(x− 〈x〉tEM)2
〉t

EM
(4)

In general, we define the energy-location covariance matrix
ΣtEM as usual in probability theory:

e>v ΣtEMeu
def
=
〈

(u− 〈u〉tEM)(v − 〈v〉tEM)
〉t

EM
(5)

where u, v ∈ {x, y, z}. This corresponds to our definition
of the inverse of the “quality of focusing” of electromagnetic
fields. The trace of the energy-location covariance matrix
defines a scalar aggregate metric

(σt)2
def
= Tr

(
ΣtEM

)
= (σtxx)2 + (σtyy)2 + (σtzz)

2 (6)

3 Case of an electric dipole
This section applies the metric defined above to a simple the-
oretical case. In the direct-time phase, we assume that a point
dipole of moment p(t) polarised along the z-axis and placed

at the origin radiated electromagnetic fields. Far from the
source, we record the fields

EDT(t, r) = −µ sin(θ)
p′(t− r/c)

4πr
eθ +O(r−2) (7)

BDT(t, r) = −µ sin(θ)
p′(t− r/c) + p(t− r/c)c/r

4πcr
eφ (8)

where r = |r|, θ and φ are the polar and azimuthal angles,
c is the speed of light, O(r−2) includes terms asymptotically
bounded by r−2, and the (current) dipole moment is given
by

p(t) =

∫∫∫
Jz(t, r)d3r (9)

This can be obtained from [Jackson, 1999] by performing in-
verse Fourier transforms and switching between charge and
current moments thanks to the conservation of charge equa-
tion.

Next, during the back-propagation phase, the source is re-
moved (indeed, it is unknown in imaging problems), and
the fields are propagated from a surface enclosing the region
of interest, as in [Carminati et al., 2007]. The far-field time-
reversed fields are thus the sum of a converging and diverging
wave:

ETR,ff(t, r) = µ sin(θ)
p′(t− r/c)− p′(t+ r/c)

4πr
eθ (10)

BTR,ff(t, r) = µ sin(θ)
p′(t− r/c) + p′(t+ r/c)

4πcr
eφ (11)

+ µ sin(θ)
p(t− r/c)− p(t+ r/c)

4πr2
eφ (12)

A Taylor series expansion of a twice-continuously-
differentiable dipole moment p shows that these expressions
are regular at the origin. Incidentally, this expansion shows
why we did not neglect the 1/r2 contribution for the mag-
netic field. Also, the polarity of the direct-time electric field
matches that of the converging wave of the time-reversed
field. As explained in [Rubinstein et al., 2017], the magnetic
field is odd under time-reversal symmetry.

In turn, by direct computation from Equation (1), the
time-reversed energy density is given by

uEM(t, r) = µ

[
sin(θ)

4πcr

]2 [
p′(t− r/c)2 + p′(t+ r/c)2

]
(13)

plus terms involving the powers higher than r−2, which we
neglect because of the far-field approximation†. In this for-
malism, assuming that the source is only active during the
interval [−T, T ] for some T > 0, it is visible that for t < T ,
the energy is carried by the converging wave alone. For
−T ≤ t ≤ T , the energy is absorbed by a point source at
the origin and immediately re-emitted by a diverging wave to
satisfy energy conservation. Likewise, for t > T , the energy
is carried by the diverging wave alone. This is illustrated in
Figure 1.

We now apply the proposed metric to the derived en-
ergy density. The detailed calculations are presented in Ap-
pendix A. We show that the average energy-location is the

†As a consequence, the energy density we work with in this section does
not correspond to electromagnetic fields near the origin. Indeed, the far-field
approximation cannot be directly used to construct time-reversed solutions
at the origin – we need to use the complete expressions. However, as we
will see in the next section, the derived properties still hold for simulations.
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Figure 1: Conservation and exchange of energy during the
time-reversal operation.

origin (i.e., the source location):

〈r〉tEM = 0 (14)

for all t, which shows the consistency of the proposed metric.
Indeed, this shows that the average energy-location can be
used to locate the source location. Furthermore, the energy-
location variances for all components x, y and z are convex-
quadratic functions of time given by

(σtxx)2 = (σtyy)2 =
2c2

5

[
σ2
s + (t− ts)2

]
(15)

(σtzz)
2 =

c2

5

[
σ2
s + (t− ts)2

]
(16)

where we have introduced the average source-power time

ts
def
=

∫
R tp
′(t)2dt∫

R p
′(t)2dt

= 〈t〉(p′)2 (17)

and the source-power variance

σ2
s

def
=
〈
(t− ts)2

〉
(p′)2

(18)

The energy-location variance depends on the source excita-
tion and attains its global minimum at the focusing time t?,
equal to the average source-power time ts. Indeed, the dura-
tion of the source excitation is mirrored in that of the time-
reversed fields (longer-duration signals take longer to con-
verge than short-duration signals). Moreover, this metric
shows how broadband sources (i.e., with low source-power
variance) are more focused than narrowband sources. For
example, a purely harmonic signal possesses a high source-
power variance and is thus expected to be poorly focused.
On the other hand, an impulse-like source (i.e., whose en-
ergy is deployed at a single instant) – whose source-power
variance is zero – exhibits no energy-location variance. Such
a field is, however, an idealisation.

In turn, the minimum value of the trace of the energy-
location covariance matrix is conveniently given by

(σt)2|t=t?
def
= (σ?)2 = (cσs)

2 (19)

It becomes apparent that the energy-location variance de-
pends on the speed of light in the medium; slower waves,
with reduced wavelengths, focus in a smaller volume.
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Figure 2: The dipole moment p(t) used to validate the pro-
posed metric. The filled graph indicates the source power-
density (p′)2. The horizontal line has a length of 3σs and is
centred at the average source-power time ts.

The energy-location covariance matrix at the focusing
time t? is given by

Σ?EM = (cσs)
2

 2
5 0 0
0 2

5 0
0 0 1

5

 (20)

More generally, we show in Appendix A that the energy-
location covariances are zero for all times. This diagonal-
ity results from the dipole being aligned with the z axis; for
tilted polarisations, the covariances might be non-zero, but
the trace remains constant.

3.1 The effect of the dipole moment
In the theoretical derivation, we neglected high-order con-
tributions to the time-reversed fields. In this section, we
first verify numerically that the theoretical results hold for
the numerical time-domain simulation of a dipole. To this
end, we run a set of two-dimensional (2D) axis-symmetric
finite-difference, time domain (FDTD) simulations using the
Meep solver introduced by [Oskooi et al., 2010]. The simu-
lation domain is a homogeneous, lossless, isotropic and pas-
sive medium with a z-polarized dipole source at the origin.
We test a smooth, nearly compactly-supported asymmetric
dipole moment given by

p(t) = f ′′ [(t− t0) /γ] +
1

2
f ′′ [(t− 2t0) /γ] in A m (21)

where f(s) = e−s
2

, t0 = 1/f0, γ = (πf0)−1, and f0 is the
main frequency component. This moment is illustrated in
Figure 2. We vary the normalized frequencies f0/c in the
range 0.5 m−1 to 2 m−1.

To perform the time reversal, we modify the Meep source
code to efficiently scale the magnetic fieldsH andB by a fac-
tor−1, thus reversing the Poynting vector. This scaling cor-
responds to time reversal under two conditions: first, there
is no active source and no charge accumulation. Second, the
domain is large enough to accommodate the entire signal.

During the time reversal and at each time step, we com-
pute the average energy-locations rt0, then the aggregate
energy-location standard deviation σt from Equation (6).
The integrals are approximated using the trapezoidal method
on the FDTD grid points. In all simulations, the shape of σt
as a function of time is nearly quadratic, allowing to deter-
mine the optimal focusing-time t? and the optimal aggregate
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Figure 3: Example data used to derive the results in Figure 4
for f0/c = 1 m−1. The markers indicate, at each simulation
time-step, a numerical computation of the energy-location
variance as in Equation (4). Because of the rotational sym-
metry around the z axis, we combine the xy-plane metrics as
(σtxx)2 + (σtyy)2. The quadratic least-squares fit is shown as
a solid-and-dashed line. The solid markers indicate the min-
imum of the fit.

energy-location standard deviation σ? from the coordinates
of the minimum of the quadratic fit. An example of such a
fit is shown in Figure 3.

The results show that the average energy-location is al-
ways the origin, up to numerical errors. As seen in Fig-
ure 4, there is an excellent agreement between t? and ts. If a
source delivers a delayed signal, we can expect the same from
the time-reversed field. Moreover, the energy-location stan-
dard deviation σ? and the source-power standard deviation
σs match closely. They have the same inverse frequency de-
pendence. Thus, the proposed metric depends on the source-
power standard deviation and average source-power time.
As the main frequency component increases, the focusing
time and the energy-location standard deviation decrease in-
versely.

4 Comparison with existing conver-
gence metrics

The previous section showed that the proposed metric is con-
sistent (i.e., the average energy-location is the source loca-
tion), relates the energy-location variance with the source-
power variance in the case of a dipole source, and can pre-
dict the focusing time. In this section, we apply the proposed
metric to a numerical case study and compare it to existing
metrics.

4.1 Time-reversal convergence metrics
We now move to a comparison of the presented metric to
existing ones. These metrics yield a time- (resp. space-) de-
pendent quantity, which attains an extremum at the focusing
time (resp. source location). The analysis of the fields at the
focusing time can also determine the source location.

4.1.1 Determination of the focusing time

The following metrics can be used to determine the focusing
time.

Figure 4: FDTD validation of the proposed spatial conver-
gence metric as a function of the normalised main frequency
component. (a) Focusing time t? given by the simulation and
the corresponding average source-power time ts. (b) Energy-
location standard deviation σ? and source-power standard
deviation σs.

Spatial maximum electric field norm The maximum of
the electric field norm is taken over the simulated (or mea-
sured) spatial domain at every point in time:

Emax(t) = max
r
|E(t, r)| (22)

This maximum is expected to find a temporal maximum
close to the focusing time.

Electric field entropy The electric field entropy
([Wiggins, 1978]), a function of time, is given by

S(t) =

[∫∫∫
V
|E(t, r)|2d3r

]2
∫∫∫

V
|E(t, r)|4d3r

(23)

where V is the spatial domain considered. The entropy is
expected to be minimal at the focusing time.

Space kurtosis Very similar to the electric field entropy,
the space kurtosis, introduced by [Feng et al., 2021], is given
by

Kurt(t) = |V |

∫∫∫
V

[
|E(t, r)| − 〈|E|〉t

]4
d3r{∫∫∫

V

[
|E(t, r)| − 〈|E|〉t

]2
d3r
}2 (24)

where V is the spatial domain considered, |V | is its volume,
and

〈|E|〉t =
1

|V |

∫∫∫
V

|E(t, r)|d3r (25)

is the spatial average of the electric field norm at a given time
t. It is expected to be maximum at the focusing time.
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Energy-location standard deviation The energy-location
standard deviation σt, as defined in Equation (6), is expected
to be minimised at the focusing time, as shown in the theo-
retical analysis above.

4.1.2 Determination of the source location

The following metrics can be used to determine the source
location.

Temporal maximum electric field norm The maximum
of the electric field norm is taken over the simulated (or mea-
sured) time at every location in space:

Emax(r) = max
t
|E(t, r)| (26)

This maximum is expected to find a spatial maximum close
to the source location.

Time kurtosis [Feng et al., 2022] introduced the time kur-
tosis of the electric field norm (a function of space):

Kurt(r) = |T |
∫
T

[
|E(t, r)| − 〈|E|〉r

]4 dt{∫
T

[
|E(t, r)| − 〈|E|〉r

]2 dt
}2 (27)

where T is the time interval considered, |T | is the length of
the interval, and

〈|E|〉r =
1

|T |

∫
T

|E(t, r)|dt (28)

is the time average of the electric field norm at a given po-
sition in space r. The time kurtosis is also expected to be
maximal close to the source location.

Average energy-location The theoretical analysis pre-
sented in Section 3 hints towards the use of the average
energy-location 〈r〉tEM to find the source location. Since this
metric depends on time, it is reasonable to consider the aver-
age energy-location at the time t? where the energy-location
standard deviation is minimised. In other words, we expect
the source location to be close to 〈r〉t

?

EM.

4.2 Simulation of inhomogeneous media
In Section 3.1, we verified that the theoretical properties
hold in numerical simulations for different dipole moments.
We now assess the metric’s performance in inhomogeneous
media by comparing it to the metrics introduced in the last
section. The 2D simulation domain consists of a rectangular
metallic cavity including two spherical and metallic scatter-
ers (see Figure 5). A horizontally-polarised dipole radiates
the second-order derivative of a Gaussian pulse whose main
frequency component is 243 MHz. The resulting transient
electric field is measured on an eight-channel time-reversal
mirror consisting of monopole antennas located as indicated
in Figure 5. Four of these antennas are located 13 cm (respec-
tively 30 cm) to the right of (respectively above) the consid-
ered domain. Indeed, to avoid biasing the different metrics
towards the location of the time-reversal mirror, a region
including this mirror is excluded from the computation do-
main.

Figure 5: Simulation setup to compare the metrics in inho-
mogeneous media. A source placed at the marked location
radiates in a closed 2D cavity including three spherical scat-
terers. The fields are recorded and re-emitted from the eight
antennas of the time-reversal mirror. The source region is
masked and excluded from computations.

Figure 6: Spatial maximum electric field norm as a func-
tion of time applied to the 2D inhomogeneous medium case
study. The red dot indicates the global maximum.

Next, the measurements are time-reversed and back-
propagated from the time-reversal mirror.

Figures 6 to 10 present the results obtained using the pro-
posed and the considered existing metrics. The spatial max-
imum electric field norm (Figure 6) and the energy-location
standard deviation (Figure 7 (a)) can determine the focusing
time. Both the entropy (Figure 8 (a)) and the space kurtosis
(Figure 9 (a)) are minimised or maximised at times where
the field is localised (i.e., not spread over the entire domain),
but not at the source location (Figure 8 (b)). Moreover, the
average energy-location is close to the source location (Fig-
ure 7 (b)). The time kurtosis (Figure 9 (b)) and maximum
electric field norm (Figure 10) are high at the original loca-
tion. However, the field enhancement caused by the scat-
terers introduces spurious local maxima far from the source
location.

5 Experimental validation
In this section, we compare the proposed metric to exist-
ing ones in an experimental setup similar to the one used
in [Karami et al., 2021]. Contrary to the previous section,
the direct-time data is acquired experimentally, and the back-
propagation is performed in a simulation.
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Figure 7: Proposed metric applied to a 2D inhomogeneous
medium. (a) Energy-location standard deviation as a func-
tion of time. The average source-power time is indicated.
The dashed line (right-hand side axis) also indicates the do-
main energy

∫∫
ue(t, r)d2r. The red dot indicates the global

minimum, and the energy density at the corresponding time
is displayed in (b). In the same plot, the path of the average
energy-location at all times is displayed in a colour scheme
corresponding to (a).

5.1 Experimental setup
The experimental setup includes a rectangular cavity with
two monopole antennas, each measuring 5.7 cm in length,
mounted on a wall of the cavity, as shown in Figure 11. The
excitation signal considered in this study is a Gaussian pulse
within a frequency range of 0 GHz to 10 GHz, applied to the
source antenna (lower x-coordinate in Figure 11). To apply
the time-reversal method, the frequency response of the cav-
ity between the two monopole antennas is measured using a
vector network analyser. Subsequently, to obtain the signal
received by the time-reversal mirror, the Fourier transform
of the excitation signal is multiplied by the measured fre-
quency response. Finally, an inverse Fourier transform is ap-
plied to the result, illustrated in Figure 12. In the backward
propagation phase, the geometry of the problem is modelled
in CST Studio Suite. The received signal is time-reversed
and numerically injected back into the model from the time-
reversal mirror. Then, the metrics presented in Section 4.1
are applied to the simulated electric and magnetic fields. To
reduce the effect of the back-propagating antenna near-field,
a cylinder around the antenna (illustrated in Figure 16 (b))
is excluded from the computation domain.

Figure 8: Entropy-based metric applied to a 2D inhomoge-
neous medium. (a) The electric field entropy as a function
of time. The red dot indicates the global minimum. (b) plots
the energy density distribution at the corresponding time of
lowest entropy.

5.2 Results
Figures 13 to 17 present the results obtained using the pro-
posed and the considered existing metrics. Again, the spatial
maximum electric field norm (Figure 13) and the energy-
location standard deviation (Figure 14 (a)) can identify the
focusing time. Indeed, the energy density at the correspond-
ing instant (Figure 14 (b)) is localised at the source loca-
tion. Nevertheless, the path described by the average loca-
tion of energy is contained in a narrow central region and
cannot identify the source location. As in the simulated case,
both the entropy (Figure 15 (a)) and the space kurtosis (Fig-
ure 16 (a)) yield spurious focusing times, as can be seen in
Figure 15 (b). Also, as seen in Figure 16 (b), the time kur-
tosis is maximal at the source location. However, it also fea-
tures a spurious local maximum close to the source. Finally,
the maximum electric field norm in Figure 17 identifies the
source location but also contains many local maxima caused
by numerous reflections in the cavity.

6 Discussion
The findings, summarised in Table 1, show that the pro-
posed metric can always determine the focusing time. In
the simulated case study, the average energy-location can also
estimate the source location. The proximity between the
time-reversal mirror and the source can explain the locali-
sation failure for the average energy-location metric in the
experimental case. Indeed, in this case, the field enhance-
ment induced by the time-reversal mirror antenna attracts
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Figure 9: Kurtosis-based metrics applied to a 2D inhomoge-
neous medium. (a) Space kurtosis as a function of time. A
red dot indicates the global maximum. (b) Time kurtosis as
a function of space. The scatterers correspond to the white
ellipses.

the average energy-location. The fact that the total energy
is not constant in the considered domain (see Figure 7 (a)
and Figure 14 (a)) might also have an effect. Nevertheless,
contrary to other metrics (e.g., the spatial maximum electric
field norm, which fares comparably), it is not affected by the
field enhancement caused by the scatterers.

7 Conclusion
In source localisation using time reversal, a backward-
propagation stage is required to identify the source location.
The data from this stage is post-processed to determine the
focusing time and source location. Several metrics to quan-
tify this process have been proposed in the literature, includ-
ing the electric field maximum, the field entropy, time kurto-
sis, and space kurtosis. We introduced a novel metric based
on the spatiotemporal distribution of the electromagnetic en-
ergy density. In a theoretical analysis, we showed that the
proposed metric can identify the focusing time through the
minimum of the energy-location variance (or standard devi-
ation). The focusing time and the minimum energy-location
variance (i.e., the best achievable field focusing) can be pre-
dicted by the source excitation waveform through the av-
erage source-power time and the source-power variance. We
then applied the proposed metric to a numerical case study in
inhomogeneous media and compared it to the existing met-
rics. Finally, we applied the metrics to an experimental case
study to locate an electromagnetic interference source.

To conclude, in the studied cases, the focusing time is
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Figure 10: Time maximum of the electric field norm applied
to the 2D inhomogeneous-medium case study. A red cross
indicates the source location.

Figure 11: Experimental setup. (a) A copper-walled rever-
berant chamber is fitted with a single-antenna time-reversal
mirror. The electromagnetic interference source is intro-
duced by a similar antenna shifted in the negative-x direc-
tion. Both antennas are shown in (b).
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Figure 12: Time-domain representation of the signal mea-
sured at the time-reversal mirror.

predicted significantly more reliably by the proposed met-
ric compared to existing ones. This time alone can suffice
to determine the source location by observing the field dis-
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Metric Inhomogeneous medium case study Experimental case study
Focusing time error (ns) Source location error (cm) Focusing time error (ns) Source location error (cm)

Spatial max. E-field Emax(t) 0.03 10.4†,‡ 0.01* 0.6‡

Temporal max. E-field Emax(r) N/A 10.4† N/A 0.6
Entropy 3.37 58.3†,‡ 1.10* 16.3‡

Space kurtosis 4.68 58.3†,‡ 1.10* 16.3‡

Time kurtosis N/A 14.9† N/A 1.1
Average energy-location N/A 7.3 N/A 7.7
Energy-location variance 0.07 7.6†,‡ 0.01* 0.6‡

Table 1: Summary of the metric results in both case studies (simulated 2D inhomogeneous medium and 3D experimental
reverberant cavity). In both cases, the time reversal stage is performed in a simulation. We separately assess the metrics’
ability to determine the focusing time and the source location. The comparison between the experimental and simulated
case studies is irrelevant as the dimensionality, geometries, and source signals differ.
†Ignoring two 20 cm squares centred at the scatterers. ‡Obtained by determining the energy density maximum at the focusing time. *Focusing time
reference obtained by visual inspection of the energy density.

Figure 13: Spatial maximum electric field norm as a function
of time applied to the 3D experimental case study. The red
dot indicates the global maximum.

tribution at the corresponding time. The entropy and the
kurtosis only consider the statistical distribution of the field
values, irrespective ofwhere these values are placed. This lack
is filled by the proposed metric, which combines the spatial
and temporal information of the field. In applications such
as electromagnetic interference source localisation, combin-
ing several metrics to mitigate the adverse effect of a single
metric’s disadvantages seems advisable. Finally, the metric
allows the study of anisotropic media by considering the en-
tire energy-location covariance matrix (not only its trace). It
opens the path to analysing wave focusing in complex media,
such as metamaterials.
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A Energy-location covariance of a
dipole

In this appendix, we look at the time dependence of the pro-
posed metric in the case of a time-reversed dipole, yielding
the results presented in Section 3.

We first compute the energy UEM in spherical coordinates,
from Equation (13):

UEM =
µ

(4πc)
2

∫ ∞
0

[
p′(t− r/c)2 + p′(t+ r/c)2

]
dr∫ π

0

sin3(θ)dθ
∫ 2π

0

dφ (29)

to get∫ ∞
0

[
p′(t− r/c)2 + p′(t+ r/c)2

]
dr =

6πc2

µ
UEM (30)

Next, let us compute the average energy-location. By rota-
tional symmetry around the z-axis, 〈x〉tEM = 〈y〉tEM; we thus
focus on

〈x〉tEM =
µ

UEM (4πc)
2∫ ∞

0

[
p′(t− r/c)2 + p′(t+ r/c)2

]
dr∫ π

0

sin4(θ)dθ
∫ 2π

0

cos(φ)dφ = 0 (31)

Likewise,

〈z〉tEM =
µ

UEM (4πc)
2

∫ ∞
0

[
p′(t− r/c)2 + p′(t+ r/c)2

]
dr∫ π

0

sin3(θ) cos(θ)dθ
∫ 2π

0

dφ = 0 (32)

In summary, the average energy-location is the origin, i.e.,
〈r〉tEM = 0 for all t.

We turn our attention to the energy-location variance. We
have

(σtxx)2 =
〈
x2
〉t

EM − (〈x〉tEM︸ ︷︷ ︸
0

)2 (33)

As above,

(σtxx)2 =
µ

UEM (4πc)
2∫ ∞

0

r2
[
p′(t− r/c)2 + p′(t+ r/c)2

]
dr∫ π

0

sin5(θ)dθ
∫ 2π

0

cos2(φ)dφ

=
µ

15πc2UEM

∫ ∞
0

r2
[
p′(t− r/c)2 + p′(t+ r/c)2

]
dr

(34)

We now show that this is a convex quadratic function of
time. To this end, we calculate the time derivatives by dif-
ferentiating under the integral sign:

d(σtxx)2

dt
=

2µ

15πc2UEM
·∫ ∞

0

r2 [p′(t− r/c)p′′(t− r/c) + p′(t+ r/c)p′′(t+ r/c)]︸ ︷︷ ︸
∂r[−c/2p′(t−r/c)2+c/2p′(t+r/c)2]

dr

=
2µ

15πcUEM

∫ ∞
0

r
[
p′(t− r/c)2 − p′(t+ r/c)2

]
dr (35)

by integration by parts and the support of p. Further differ-
entiating,

d2(σtxx)2

dt2
=

4µ

15πcUEM
·∫ ∞

0

r [p′(t− r/c)p′′(t− r/c)− p′(t+ r/c)p′′(t+ r/c)]︸ ︷︷ ︸
∂r[−c/2p′(t−r/c)2−c/2p′(t+r/c)2]

dr

=
2µ

15πUEM

∫ ∞
0

[
p′(t− r/c)2 + p′(t+ r/c)2

]
dr =

4c2

5
> 0

(36)

by Equation (30). Similarly, for the z-component, we obtain

d2(σtzz)
2

dt2
=

2c2

5
> 0 (37)

Therefore, the energy-location variance for the x, y, and
z components is a convex-quadratic function of time. It
reaches its global minimum at some time t? satisfying, by
Equation (35),

d(σtxx)2

dt
= 0

⇐⇒
∫ ∞
0

r
[
p′(t? − r/c)2 − p′(t? + r/c)2

]
dr = 0

⇐⇒
∫ ∞
0

rp′(t? − r/c)2dr =

∫ ∞
0

rp′(t? + r/c)2dr (38)

By the changes of variable u = t? ∓ r/c, the criterion be-
comes∫ t?

−∞
(t? − u)p′(u)2du =

∫ ∞
t?
(u− t?)p′(u)2du

⇐⇒ t?
∫
R
p′(u)2du =

∫
R
up′(u)2du (39)
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⇐⇒ t? =

∫
R tp
′(t)2dt∫

R p
′(t)2dt

= ts = 〈t〉(p′)2 (40)

by grouping integrals. We also recognised the expected value
of t given the density (p′)2, i.e., the average source-power
time ts. Note that this time t? is the same for all coordinates.

Finally, the minimum energy-location variance is obtained
by evaluating Equation (34) at the time t? obtained above:

(σ?xx)2 =
µ

15πc2UEM∫ ∞
0

r2
[
p′(t? − r/c)2 + p′(t? + r/c)2

]
dr

=
µc

15πUEM[∫ t?

−∞
(t? − u)2p′(u)2du+

∫ ∞
t?

(u− t?)2p′(u)2du

]

=
µc

15πUEM

∫
R

(u− t?)2p′(u)2du (41)

where we performed the changes of variable u = t ∓ r/c
and regrouped the resulting integrals. Again, we recognise a
variance in terms of source power:

(σ?xx)2 =
µc

15πUEM
σ2
s

∫
R
p′(t)2dt (42)

For some t0 > T , the total energy is given by the outgoing
component alone:

UEM =
µ

(4πc)
2

∫ ∞
0

p′(t0 − r/c)2dr
∫ π

0

sin3(θ)dθ
∫ 2π

0

dφ

=
µ

6πc

∫ t0

−∞
p′(t)2dt =

µ

6πc

∫
R
p′(t)2dt (43)

by the change of variable t = t0 − r/c and because t0 > T .
Introducing into Equation (42), we obtain

(σ?xx)2 = (σ?yy)2 =
2c2

5
σ2
s (44)

Similarly, for the z component,

(σ?zz)
2 =

c2

5
σ2
s (45)

Finally, it is straightforward to check from Equation (34)
that the covariances are zero for all t, i.e.,

〈xy〉tEM = 〈xz〉tEM = 〈yz〉tEM = 0 (46)
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