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Abstract—Solid-State Transformers with Input-Series/Output-
Parallel configuration represent a convenient solution for AC/DC
conversion, thanks to their scalability and modularity. As known,
each module of the ISOP converter is affected by a second-
order harmonic ripple caused by a local single-phase AC/DC
conversion. This ripple can be neutralized by installing active
filters, removing the need to oversize the DC-bus capacitances.
However, standard controls for such active filters are based on
measuring the AC side electrical variables, which can make them
impractical to be installed in pre-existing configurations. This
work presents a control algorithm for active filters that does
not require any external measurement, and that is therefore
suited for a Plug-and-Play installation in a pre-existing ISOP
converter, without additional sensoring or control hardware
modifications. To comply with the complex dynamics generated
in the ISOP configuration, the proposed approach is based on a
real-time Fourier decomposition, that allows precise and selective
real-time control of the second-order harmonic using standard
proportional-integral controllers and a decoupling network. The
approach is particularized and validated experimentally with a
single-phase ISOP SST, showing satisfactory performances.

Index Terms—Input-Series/Output-Parallel (ISOP), Solid-State
Transformer (SST), Active filters, Second-Order Harmonic sup-
pression, Fourier-based harmonic control.

I. INTRODUCTION AND BACKGROUND

SOLID State Transformers (SSTs) are a promising solution
for efficient, reliable, and flexible power conversion in

various applications, including renewable energy integration,
industrial uses, and traction [1]–[5]. They combine the bene-
fits of conventional power transformers (e.g., voltage/current
scaling, galvanic insulation, etc...) with enhanced controlla-
bility and increased flexibility offered by power electronics.
The Input-Series/Output Parallel (ISOP) SST architecture has
gained significant attention due to its scalability and modu-
larity, being able to offer high voltage ratings at the primary
side and high current ratings at the secondary side by properly
combining multiple identical conversion modules [1].

An ISOP SST can be conveniently employed for AC/DC
conversion, and in this case each module typically incorporates
a dedicated single-phase AC/DC conversion stage. However, as
known, their operation introduces a power oscillation at twice
the AC line frequency [6], that could adversely affect the DC-
bus voltage of each module. In single-phase configurations,
this may even propagate to the secondary side of the overall
converter [4], [5], [7].

The mitigation of the second-order harmonic can be
achieved through large capacitor banks or LC trap filters,
but these solutions would lead to increased system bulkiness,
impacting size, weight and power density of the SST. An
alternative solution is represented by Active Power Filters
(APFs): additional conversion structures purposely designed
and controlled to counteract the second-order harmonic ripple
[6], [8]–[10]. In presence of active filters, the DC bus capac-
itors of the ISOP SST modules do not need to be sized for
the second-order harmonic ripple suppression, and therefore
they can be reduced to improve the system compactness [7].
While the use of active filters has found applications in both
single-level [6], [8]–[10] and multilevel converters [11], [12],
their employment for SST configurations is still very limited.

Conventional control algorithms employed in active filters
rely on locally neutralizing the power ripple generated by
the AC/DC conversion stage. This is typically achieved by
computing the ripple based on the AC line voltage and current
measurements [7], while additional closed-loop controls are
only used as a slow steady-state support for the feed-forward
action [8], [9], [11]. However, this requires all active filters
to have access to AC line measurements, which may be
inconvenient for installations into a pre-existing system.

This work investigates the development of a closed-loop
control algorithm for the active filters that would be entirely
based on internal variables, without any need for external
measurements or communication. This would make the active
filters suitable for a plug-and-play implementation on a pre-
existing ISOP SST. The solution provided in this work is an
harmonic controller based on a real-time Fourier decompo-
sition. Compared to other control strategies for active filters
including a closed-loop resonant control [8], [11], with the
proposed approach the second-order harmonic variables of the
system can be analyzed through their time-varying coefficients
and, similarly to a dq transformation in a three-phase AC
system, they can be decoupled and independently controlled as
DC variables. Therefore, both the dynamic performances and
the stability margins of the second-order harmonic controller
can be easily assessed through simple and known tools of
control theory. This helps in simplifying the tuning of the
controllers, which is especially beneficial in ISOP SST con-
figurations because of the complex dynamics arising from the
coupling of multiple modules [13].



II. MATHEMATICAL MODEL

A. Equivalent Model of an ISOP SST Module
The analyzed architecture is an ISOP SST composed of

N identical modules, as represented in Fig.1. Each module
comprises a single-phase AC/DC stage, a DC-bus capacitor,
an isolated DC/DC stage and an active filter.

To guarantee a proper dynamic control of the second-order
harmonic, the mathematical model of the DC-bus equivalent
behavior of an ISOP SST cell must be established.

By focusing on a single cell, and by applying Kirchhoff’s
voltage law, the dynamic of the DC-bus voltage vDC is:

CDC
dvDC

dt
= iAC/DC − iDC/DC − iAPF (1)

where iAC/DC is the current injected into the DC bus by the
AC/DC conversion stage, iDC/DC is the current absorbed by
the DC/DC conversion stage, and iAPF is the current absorbed
by the active filter (as represented in Fig.1).

In the linear approximation, both iAC/DC and iDC/DC can
be replaced by their Norton equivalents, characterized by a
current source and an equivalent shunt impedance. In this
case, it is important to point out that the Norton equivalent
of both the AC/DC and of the DC/DC conversion stages
are characterized by a current source that includes a second-
order harmonic component. Indeed, for an ISOP configuration,
a second-order harmonic current component could not only
be introduced by the AC/DC conversion stage of the same
module, but can be also propagated from other modules
through the DC/DC interfaces [13]. Similarly, the equivalent
shunt impedance of the Norton equivalents should not be
limited to the parameters of a single module, but should also
consider the contribution of the other SST modules.

Finally, in the equivalent circuit, the active filter can be
modeled as a controllable current source. Through a proper
control, its aim is to neutralize the ripple voltage generated on
the DC bus, mimicking the effect of a trap filter.

By grouping the modeled current sources and impedances,
(1) can be analyzed in the Laplace domain as:

VDC(s) = ZDC(s) ·
[
IDC(s)− IAPF (s)

]
(2)

where ZDC(s) and IDC(s) are the equivalent impedance and
the equivalent current source seen at the DC bus terminals of
the module. They take into account the contribution of both the
DC bus capacitor (whose impedance is ZCDC

(s) = 1/sCDC)
and of the Norton equivalents of the other conversion stages.
Fig.1 shows a simplified scheme on how to derive the equiv-
alent circuit corresponding to (2).

B. Dynamic Model of Time-Varying DC-Bus Harmonics
To analyze the dynamic evolution of specific harmonic

components of interest, the variables in (1) can be expressed
as Fourier series in a moving time window of width T0.

As an example, the DC-bus voltage can be decomposed as:

vDC(t) = v
⟨0⟩
DC(t) + · · ·

· · ·+
+∞∑
h=1

[
v
⟨h⟩
DC,c(t) cos(hω0t) + v

⟨h⟩
DC,s(t) sin(hω0t)

] (3)

where ω0 = 2πf0 = 2π/T0 denotes the fundamental angular
frequency of the Fourier decomposition, v⟨0⟩DC is the moving av-
erage of vDC , while

{
v
⟨h⟩
DC,c, v

⟨h⟩
DC,s

}
denote the instantaneous

value of the cosine and sine components of the h-th order
harmonic of vDC , respectively.

The coefficients of the time-varying Fourier decomposition
(3) are expressed through the Fourier integrals in the moving
time window [t− T0, t]:

v
⟨0⟩
DC(t) =

1

T0

∫ t

t−T0

vDC(τ) dτ (4)

v
⟨h⟩
DC,c(t) =

2

T0

∫ t

t−T0

vDC(τ) cos(hω0τ) dτ (5)

v
⟨h⟩
DC,s(t) =

2

T0

∫ t

t−T0

vDC(τ) sin(hω0τ) dτ (6)

and the magnitude of the h-th order harmonic component can
be computed from the sine and cosine components as:

v
⟨h⟩
DC(t) =

√(
v
⟨h⟩
DC,c(t)

)2
+

(
v
⟨h⟩
DC,s(t)

)2
(7)

The same time-moving Fourier decomposition as in (3)-(7)
can be also applied to iDC and iAPF .

When the system is in steady-state operating conditions with
period T0, the results of (4)-(7) are constant, and coincide with
the coefficients of a classic Fourier analysis of periodic signals.
However, in dynamic conditions, these coefficients are time-
varying signals, which can be analyzed through standard tools
of linear system analysis.

By choosing T0 = TAC , the second-order harmonic of
interest is found by setting h = 2. Then, by applying
the frequency shift properties of the Laplace transform, the
dynamic relationship between the time-varying coefficients of
the DC-bus voltage (i.e.,

{
v
⟨2⟩
DC,c, v

⟨2⟩
DC,s

}
) and the time-varying
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Fig. 1. Procedure to derive the equivalent DC-bus circuit of an ISOP
module. The circuit needs to explicitly consider both the effect of the AC/DC
conversion stage and of the mutual interaction with the other SST modules,
that propagates through the DC/DC conversion stage.



coefficients of the DC-bus currents (i.e.,
{
i
⟨2⟩
DC,c, i

⟨2⟩
DC,s

}
and{

i
⟨2⟩
APF,c, i

⟨2⟩
APF,s

}
) is represented in the Laplace domain by the

coupled two-inputs/two-outputs system:[
V

⟨2⟩
DC,c(s)

V
⟨2⟩
DC,s(s)

]
=

[
Z

⟨2⟩
DC,cc(s) Z

⟨2⟩
DC,cs(s)

Z
⟨2⟩
DC,sc(s) Z

⟨2⟩
DC,ss(s)

]
·

[
I
⟨2⟩
DC,c(s)− I

⟨2⟩
APF,c(s)

I
⟨2⟩
DC,s(s)− I

⟨2⟩
APF,s(s)

]
(8)

with the equivalent harmonic impedances defined as:

Z
⟨2⟩
DC,cc(s)=Z

⟨2⟩
DC,ss(s)=

ZDC(s−j2ω0)+ZDC(s+j2ω0)

2
(9)

Z
⟨2⟩
DC,sc(s)=−Z

⟨2⟩
DC,cs(s)=

ZDC(s−j2ω0)−ZDC(s+j2ω0)

2j
(10)

This approach allows analyzing the dynamic behavior of the
second-order harmonic component as the evolution of voltages
and currents in a coupled 2 × 2 system and, similarly to
the effect of a rotational transformation in a three-phase AC
system, makes the steady-state variables to be constant, which
is advantageous for analysis and control purposes.

III. THE FOURIER-BASED HARMONIC CONTROLLER

Through (8), the dynamic evolution of the second-order
harmonic of the DC-bus voltage can be analyzed through
the corresponding cosine and sine coefficients

{
v
⟨2⟩
DC,c, v

⟨2⟩
DC,s

}
.

Then, the neutralization of the second-order harmonic ripple
is aimed at driving v

⟨2⟩
DC,c → 0 and v

⟨2⟩
DC,s → 0 by acting on

the harmonic currents i
⟨2⟩
APF,c and i

⟨2⟩
APF,s of the APF, while the

currents i⟨2⟩DC,c and i
⟨2⟩
DC,s behave as constant disturbances. Since

all these components are driven to constant values, it becomes
feasible to analyze and control them using established tools
of control theory. This offers the advantage of conveniently
specifying dynamic performance characteristics, such as time
constants, overshoot limits, and stability margins.

The proposed control algorithm is based on decoupling the
mutual interaction between v

⟨2⟩
DC,c and v

⟨2⟩
DC,s, in a way that they

would behave as the voltage of the ideal DC-bus capacitor
CDC , which can be regulated through standard Proportional-
Integral (PI) controllers. This is implemented as follows.

Thanks to the symmetry properties (9)-(10), the impedance
matrix in (8) is always invertible, and it is possible to define
an admittance matrix for the second-order harmonic as:[

Y
⟨2⟩
DC,cc(s) Y

⟨2⟩
DC,cs(s)

Y
⟨2⟩
DC,sc(s) Y

⟨2⟩
DC,ss(s)

]
=

[
Z

⟨2⟩
DC,cc(s) Z

⟨2⟩
DC,cs(s)

Z
⟨2⟩
DC,sc(s) Z

⟨2⟩
DC,ss(s)

]−1

(11)

Then, by defining the currents[
I
⟨2⟩
dist,c(s)

I
⟨2⟩
dist,s(s)

]
=sCDC ·

[
Z

⟨2⟩
DC,cc(s) Z

⟨2⟩
DC,cs(s)

Z
⟨2⟩
DC,sc(s) Z

⟨2⟩
DC,ss(s)

]
·

[
I
⟨2⟩
DC,c(s)

I
⟨2⟩
DC,s(s)

]
(12)

and by computing the reference currents for the APF as[
I
⟨2⟩
APF,c(s)

I
⟨2⟩
APF,s(s)

]
=

1

sCDC
·

[
Y

⟨2⟩
DC,cc(s) Y

⟨2⟩
DC,cs(s)

Y
⟨2⟩
DC,sc(s) Y

⟨2⟩
DC,ss(s)

]
·

[
I
⟨2⟩
eq,c(s)

I
⟨2⟩
eq,s(s)

]
(13)

the overall system (8) for the second-order harmonic control
can be rewritten as:[

V
⟨2⟩
DC,c(s)

V
⟨2⟩
DC,s(s)

]
=

1

sCDC
·

[
I
⟨2⟩
dist,c(s)− I

⟨2⟩
eq,c(s)

I
⟨2⟩
dist,s(s)− I

⟨2⟩
eq,s(s)

]
(14)

The system (14) describes the dynamics of two decoupled
DC-buses, with identical DC-bus capacitance CDC , subject to
the (constant) disturbances i

⟨2⟩
dist,c and i

⟨2⟩
dist,s, and controllable

through the equivalent currents i
⟨2⟩
eq,c and i

⟨2⟩
eq,s.

As also previously mentioned, the regulation of v
⟨2⟩
DC,c and

v
⟨2⟩
DC,s to zero can be simply achieved through standard PI

controllers. The reference currents i
⟨2⟩∗
eq,c and i

⟨2⟩∗
eq,c can be

computed from the relationship:

I⟨2⟩∗eq,c (s) = −
(
KP +KI/s

)
·
(
0− V

⟨2⟩
DC,c(s)

)
(15)

I⟨2⟩∗eq,s (s) = −
(
KP +KI/s

)
·
(
0− V

⟨2⟩
DC,s(s)

)
(16)

and the parameters of the PI controllers can be easily chosen
with any well-known tuning technique to achieve the desired
performances in the time and frequency domain.

Then, the corresponding harmonic current components
i
⟨2⟩∗
APF,c and i

⟨2⟩∗
APF,s can be reconstructed via (13), and the overall

APF reference current i∗APF is obtained as:

i∗APF = i
⟨2⟩∗
APF,c cos (2ω0t) + i

⟨2⟩∗
APF,s sin (2ω0t) (17)
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Fig. 2. Schematic block diagram of the proposed Fourier-based harmonic controller.



Overall, the reference i∗APF is only computed based on the
measurement and processing of the DC-bus voltage vDC . It
can be finally applied by using a low-level controller, which
depends on the adopted active filter topology.

The block diagram of the proposed Fourier-based second-
order harmonic controller is represented in Fig.2. Additional
implementation details are discussed in the following.

A. Automatic Frequency Synchronization

The proposed controller, to guarantee proper selectivity,
should have a precise knowledge of the harmonic frequency
2ωAC . However, for a Plug-and-Play active filter, this informa-
tion cannot be acquired in real-time from the measurements on
the AC side of the system, but should instead be automatically
estimated only from the DC-side measurement. Therefore, a
feedback loop should be included in the controller with the
aim to drive (2ω0) → (2ωAC).

A simple solution would be to implement a Phase-Lock-
Loop (PLL) algorithm on the second-order harmonic of the
DC-bus voltage vDC itself, in a way to automatically estimate
the frequency component of interest. However, since the
controller is aimed at the neutralization of v⟨2⟩DC , the estimation
of 2ωAC from vDC would quickly be hampered by the active
filter itself, and would easily fail.

Therefore, the solution adopted in this work consists in
estimating the frequency from the output i∗APF of the con-
troller, which in steady-state conditions would be a sinusoidal
waveform oscillating at 2ωAC , and would provide an increas-
ingly closer approximation of iDC . This implementation is
represented in the block diagram of Fig.2. To avoid dynamic
interactions between the PLL and the Fourier-based controller,
the frequency 2ω0 is updated with a much slower rate com-
pared to the closed-loop dynamics of v⟨2⟩DC .

B. Distortion-free Circular Saturation

As in any closed-loop control algorithm, the computed
reference current i∗APF should be limited to comply with the
maximum capabilities of the active filter itself. Therefore, a
saturation algorithm should be included in the controller itself.

However, if a simple saturation is applied to the output
i∗APF itself, the resulting steady-state output would be non-
sinusoidal, and the active filter would introduce additional
undesired harmonic components to the DC-bus. Additionally,
the resulting signal would be difficult to process to implement
proper anti wind-up strategies for the PI controllers.

Therefore, in the proposed approach, the saturation has been
implemented on the coefficients i

⟨2⟩∗
APF,c and i

⟨2⟩∗
APF,s. With the

aim to limit the magnitude i
⟨2⟩∗
APF to a specific limit i⟨2⟩∗APF,max,

the corresponding coefficients have been processed as:

if
(
i
⟨2⟩∗
APF > i

⟨2⟩∗
APF,max

)
then:

i
⟨2⟩∗
APF,c → i

⟨2⟩∗
APF,c ·

(
i
⟨2⟩∗
APF,max/i

⟨2⟩∗
APF

)
i
⟨2⟩∗
APF,s → i

⟨2⟩∗
APF,s ·

(
i
⟨2⟩∗
APF,max/i

⟨2⟩∗
APF

)
with i

⟨2⟩∗
APF =

√(
i
⟨2⟩∗
APF,c

)2
+
(
i
⟨2⟩∗
APF,s

)2
(18)

In this way, the saturated output will have the same phase
angle as the non-saturated reference.

Using a circular saturation on the sine and cosine coeffi-
cients of i∗APF automatically guarantees a distortion-free out-
put, and also allows to use the difference between the saturated
and non-saturated outputs i

⟨2⟩∗
APF,c and i

⟨2⟩∗
APF,s to implement

standard anti wind-up strategies. The circular saturation is
shown in the corresponding block of Fig.2.

IV. EXPERIMENTAL SETUP

A. The Power Electronics Traction Transformer

The structure analyzed in this work is a single-phase
ISOP SST based on the low voltage prototype of the Power
Electronic Traction Transformer (PETT) described in [4] and
represented in Fig.3. This converter, conceived as a low voltage
SST demonstrator for railway applications, is currently used
as a research platform to analyze and improve the design and
the control of ISOP SST converters.

The circuit architecture of the PETT, schematically repre-
sented in Fig.IV-A), is composed of N = 9 identical modules,
each of which includes a non-isolated AC/DC conversion stage
and a galvanically isolated DC/DC conversion stage.

In the considered setup, the isolated DC/DC conversion
stages are realized with an LLC Series Resonant Conversion
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Fig. 3. The Power Electronics Traction Transformer (PETT), analyzed as
example of an ISOP SST: Top) Circuit Topology; Bottom) Experimental setup.



(SRC) architecture, implemented with a half-bridge leg and a
split-capacitor. The primary-side half-bridge legs are operated
in open-loop with a 50% duty-cycle modulation at a frequency
slightly lower than the resonance frequency of the LLC tank,
in order to achieve soft-switching operation [4]- [5].

The AC/DC conversion stages are based on a full-bridge ar-
chitecture. The AC grid current is controlled in closed-loop by
modulating the AC/DC stages in a way to absorb, with unitary
power factor, a desired power from the AC grid, with the aim
to stabilize the DC-bus voltage on the secondary side of the
overall ISOP converter. A phase shift pulse width modulation
is implemented to control the full-bridge converters. With this
technique, by shifting the carrier of the 9 modules by 1/9 of
their period, it is possible to improve the harmonic content of
the equivalent voltage generated on the AC side, despite the
relatively low switching frequency (317Hz). At the same time,
the switching harmonics generated by the AC/DC converters
on the DC-bus currents of the 9 modules, once combined at
the parallel output of the ISOP structure, cancel one another,
meaning that the switching harmonics do not propagate to the
secondary side of the SST [4], [5].

A Buck-type active filter has been implemented in the
considered setup [7], with the aim to locally neutralize the
introduced second-order harmonic ripple. Fig.IV-B shows the
circuit topology and a picture of one of the units realized and
installed into the PETT.

The parameters of the system are summarized in Table I. As
described in [7], the presence of the active filter allowed the
reduction of the DC-bus capacitance of each ISOP module
from the initial value of 4mF to a final value of 375 µF.
Indeed, thanks to the active filters, the DC-bus capacitance
does not need to be sized for the suppression of the second-
order voltage harmonic ripple, and is instead only subject to
the switching harmonics produced by the conversion stages.

The control algorithm developed for the active filters in

TABLE I
USED PARAMETERS OF THE PETT.

Parameter Value
Power P 8 kW
AC Grid Voltage (RMS) VAC,RMS 800V
AC Grid Frequency fAC 50Hz
Number of ISOP Modules N 9
Primary DC Voltage (single module) VDC 220V
Primary DC Capacitance (single module) CDC 375 µF
Secondary DC Voltage VDC,out 220V
Secondary DC Capacitance (equivalent) CDC,out 20mF
LLC Resonant Inductance Lres 135 µH
LLC Resonant Capacitance Cres 60 µF
LLC Magnetizing Inductance Lmag 13mH
LLC Transformation Ratio N1/N2 1
AC/DC Switching Frequency fAC/DC 317Hz
DC/DC Switching Frequency fDC/DC 1.5 kHz
Active Filter Apparent Power SAPF 1 kVA
Active Filter Inductance LAPF 200 µH
Active Filter Capacitance CAPF 360 µF
Active Filter Capacitor Voltage V ∗

C 160V
Active Filter Switching Frequency fsw,APF 10 kHz

[7] was based on the direct compensation of the second-
order harmonic current generated locally by each AC/DC
conversion stage. As also previously mentioned, this approach,
despite being simple and intuitive, requires each active filter
to access information regarding the AC voltage and current
of the SST, thus needing additional sensing equipment or
communication interfaces between the conversion structures.
It has therefore been replaced by the proposed Fourier-based
control algorithm, in a way to test the potential use of the
active filter as a Plug-and-Play solution.

B. Low-level control of the Buck-type Active Filter

The proposed Fourier-based harmonic control algorithm
provides a reference current i∗APF to be absorbed from the DC-
bus, based on the measured DC-bus voltage vDC . Therefore, it
is independent of the specific architecture of the active filter.
The control of the current iAPF is instead depending on the
specific architecture of the active filter, and can be regarded
as part of a low-level control algorithm.

The low-level control algorithm of the Buck-type is
schematically represented in Fig.IV-B, and is based on the
regulation of the overall energy stored in CAPF , which is
realized through the control of its voltage vC . To be more
specific, the controller features a cascaded scheme, with an
outer control loop regulating the capacitor voltage vC and
an inner control loop regulating the inductor current iL. The
outer control loop compares the measured voltage vC to the
reference voltage v∗C and computes, through a Proportional-
Integral-Resonant (PIR) controller, a reference current i∗L for
the inductor, that is then tracked by the inner loop, which is
also based on a PIR architecture, with the voltage vC added
as a feedforward term. The output of the current controller is
a voltage reference u∗

APF , which is applied through a Pulse
Width Modulation (PWM) technique.

The reference voltage v∗C has been computed as:

v∗C =
√

V ∗
C0

2 +
(
vDC · i′∗APF

)
/
(
ωACCAPF

)
(19)

where V ∗
C0 is the rated offset voltage for the buck capacitor,

while the current i′∗APF defined as the 90◦ shifted version of
the current i∗APF expressed in (17), which can be directly
computed from the coefficients i

⟨2⟩∗
APF,c and i

⟨2⟩∗
APF,s as:

i′∗APF = i
⟨2⟩∗
APF,s cos (2ω0t)− i

⟨2⟩∗
APF,c sin (2ω0t) (20)

In this way, by neglecting the conversion losses and the energy
stored in LAPF , the equivalent current absorbed in steady-state
conditions from the DC-bus is approximately equal to:

iAPF =
pAPF
vDC

≈ 1

vDC
· d
dt

(
1

2
CAPF v∗C

2

)
≈

≈ 1

vDC
· d
dt

(
1

2ωAC
vDC i′∗APF

)
≈ 1

2ωAC
· di

′∗
APF

dt
≈

≈ i
⟨2⟩∗
APF,c cos (2ω0t) + i

⟨2⟩∗
APF,s sin (2ω0t) ≈ i∗APF

(21)
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Fig. 4. Buck-type active filter implemented in PETT. Left) Hardware prototype; Right) Control block diagram.

C. Tuning

To implement the harmonic axes decoupling (13), it is
necessary to estimate the equivalent impedance seen from one
active filter unit at the corresponding DC-bus. As discussed in
Section II, this impedance does not only consist of the DC-bus
capacitance, but needs to take into account also the equivalent
contribution of all the other modules of the ISOP converter,
that can propagate through the LLC conversion stage [13].

The theoretical impedance ZDC seen from one module
of the PETT, and the corresponding impedances ZDC,cc and
ZDC,sc are represented in Fig.5. They have been computed
from the analysis of the equivalent circuit described in [13].

The equivalent impedances Z
⟨2⟩
DC,cc and Z

⟨2⟩
DC,sc, have been

also estimated in the real experimental setup for the low
frequency operation (which corresponds to the equivalent
behavior of ZDC close to 100Hz). This has been done by
applying a step change in the second-order harmonic current
components

{
i
⟨2⟩
APF,c, i

⟨2⟩
APF,s

}
injected by one active filter and

observing the corresponding response of
{
v
⟨2⟩
DC,c, v

⟨2⟩
DC,s

}
. The

results are shown in Fig.6. In this case, the current perturbation
has been injected while the active filters of all the other SST
modules were already functioning based on the open-loop
control algorithm developed in [7]. The results are in line with
the theoretical analysis.

The PI controllers have then been tuned to achieve a closed-
loop behavior of a first-order system with a time constant of
around τ ≈ 100ms (i.e., around 10 periods of the second-

1  (Hz)
1  (Hz)

Fig. 5. Equivalent impedance seen from one module of the PETT.

order harmonic oscillation at 100Hz). Thanks to the harmonic
axes decoupling, the equivalent impedance used for the control
is the same impedance of the ideal DC-bus capacitance of a
single SST module, and the parameters of the PI controllers
have been set as KP = C/τ and KI = KP /20τ .

V. VALIDATION ON A SINGLE ISOP SST MODULE

The proposed control algorithm has been first validated on a
single SST module, to test its performances to locally neutral-
ize the second-order harmonic ripple. This section summarizes
the results obtained in this preliminary configuration.

A. Harmonic Controller Activation

The first test has been conducted by activating the harmonic
controller of the SST cell 1 while the ISOP SST is working in
steady-state conditions at a 220V DC-bus voltage and 6 kW
power. The results are reported in Fig.7. They show the DC-
bus voltage vDC , the current iAPF absorbed by the DC-bus,
and the buck-capacitor voltage vC of the ISOP SST module
1. For comparison, Fig.7 also shows the same variables for
another SST module (i.e., module 2), and the voltage vDC,out

of the secondary-side of the overall converter.
To better appreciate the behaviour of the controller, the right

side graphs in Fig.7 show the magnitude of the second-order
harmonic of the same variables, computed as per (5)-(7).

As can be noted, after the activation of the harmonic
controller (at around 50ms), the current iAPF,1 is controlled
to be sinusoidal at 2ωAC , and a second-order harmonic is

Fig. 6. Results following the activation of one active filter of the SST, used to
derive the equivalent harmonic impedances of the system. Left) Time domain
waveforms; Right) Time-moving coefficients of the second-order harmonic.



Fig. 7. Results following the activation of the harmonic controller on the
active filter of the SST module 1. Left) Time-domain waveforms; Right) Time-
moving magnitude of the second-order harmonic.

imposed on the buck capacitor voltage vC,1. This affects the
DC-bus voltage vDC,1, whose second-order harmonic v

⟨2⟩
DC,1

quickly decreases to zero. As desired, the dynamic evolution of
v
⟨2⟩
DC,1 is approximately equal to the evolution of a first-order

system with a time constant of 100ms.
The harmonic controller can also influence the DC-bus

voltage of the other SST modules (e.g., vDC,2) and of the
output of the overall converter (i.e., vDC,out). However, in the
analyzed scenario, the activation of a single active filter has
negligible effects.

The additional harmonics present on vDC,1 and vDC,2

are related to the low switching frequency of the AC/DC
conversion stages. However, as also previously mentioned,
thanks to the phase shift modulation of the AC/DC stages,
these harmonics do not propagate to vDC,out.

B. Performances during a power transient

To validate the performances of the proposed controller
during different SST operating condition, a test has been
performed considering a power transient in the system.

The system, starting from a steady-state condition at 220V
and around 1.5 kW, is subject to a power step change to a final
value of around 6 kW. During the whole test, the harmonic
controller on the SST module 1 has been kept enabled. The
results are shown in Fig.8.

The effect of the power step change can be immediately
noted on both the DC-bus voltages vDC,1,vDC,2, and on the
overall secondary voltage vDC,out, that show both an average
voltage drop and an increase of the second-order harmonic
oscillation. The drop in the average voltage, of around 5V, is
quickly compensated by the closed-loop control of the AC/DC
stages, while the increase of the magnitude of the second-order
harmonic is only compensated on vDC,1, thanks to the effect
of the active filter.

Fig. 8. Results following a power transient in the ISOP SST, while the har-
monic controller of the module 1 is enabled. Left) Time-domain waveforms;
Right) Time-moving magnitude of the second-order harmonic.

Once again, the dynamic performances of the harmonic
controller are coherent with the desired specifications, and
the second order harmonic ripple v

⟨2⟩
DC,1 is almost completely

suppressed in around 400ms.

VI. VALIDATION ON ALL THE ISOP SST MODULES

The proposed control, successfully validated on a single
module of the ISOP SST, has been finally applied to all the
active filters of the converter. This section summarizes the
results of the test on the complete system.

A. Harmonic Controller Activation

Similarly to SectionV-A, the first test has been conducted
by activating the harmonic controllers while the ISOP SST is
working in steady-state conditions at a 220V DC-bus voltage
and 6 kW power. The results are reported in Fig.9.

As can be noted, in this case the performances of different
SST modules (e.g., module 1 and 2) are perfectly matching.
The simultaneous activation of all the harmonic controllers
not only leads to the neutralization of the harmonic ripple on
the local DC-bus voltages (as can be noted from v

⟨2⟩
DC,1 and

v
⟨2⟩
DC,2), but also leads to the neutralization of the second-order

harmonic ripple on the output of the overall ISOP converter
(as can be seen from v

⟨2⟩
DC,out). This proves that the proposed

controller can effectively operate in the complete setup.

B. Performances during a power transient

Once again, to validate the performances of the proposed
controller in different SST operating conditions, it has been
tested considering a power transient from 1.5 kW to 6 kW.
The results are shown in Fig.10.

Similarly to Section V-B, the power step change affects both
the average DC-bus voltages (that show a temporary drop) and
their second-order harmonic ripple.



Fig. 9. Results following the simultaneous activation of the harmonic
controllers on all the active filters of the ISOP SST. Left) Time-domain
waveforms; Right) Time-moving magnitude of the second-order harmonic.

Thanks to the active filters, the increase of the second-order
harmonic ripple is quickly compensated by the increase of
iAPF,k and vC,k (with k = 1, ..., 9), and is almost completely
neutralized in around 400ms.

VII. CONCLUSIONS

ISOP SST converters suffer a second-order harmonic ripple
caused by a local single-phase AC/DC conversion on each
module. This ripple can be neutralized through active filters.

This paper presented a control algorithm for second-order
harmonic active filters employed in ISOP SST configurations.
The proposed approach does not require any external measure-
ment other than voltages and currents internal to each active
filter, and is therefore suitable for plug-and-play solutions and
for installation on a pre-existing system.

The control algorithm is based on a time-moving Fourier
decomposition of the system variables, and allows a precise
control of the dynamic evolution of the second-order har-
monics of interests. Thanks to the adopted formalism, the
harmonic evolution can be analyzed through time-moving sine
and cosine components, that can be dynamically decoupled
and can be separately regulated using standard PI controllers.

The algorithm has been experimentally validated on a LV
PETT, used as a case example of a single-phase ISOP SST
configuration, showing satisfactory performances.
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