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Abstract

Homomorphic Encryption (HE) enables computations to be executed directly on encrypted
data. As such, it is an auspicious solution for protecting the confidentiality of sensitive
data without impeding its usability. However, HE does not provide any guarantees that
the cryptographic material used has been honestly generated and that the computation
was executed correctly on the encrypted data. Thus, even though many practical systems
rely on HE to achieve strong privacy guarantees, they consider only an honest-but-curious
threat model in their constructions.
Although several efforts have been conducted to analyze and improve the security of
HE-based systems against stronger threat models, these works have remained mostly
theoretical and are still insufficient to be applicable to practical HE pipelines and real-life
scenarios. Therefore, in our work, we propose and build solutions to protect HE pipelines
against malicious adversaries and evaluate their performance over a wide range of use
cases.
We first propose VERITAS, an efficient solution that proves the correctness of homomor-
phic computations, without compromising the expressiveness of the HE scheme. Then,
we introduce PELTA, a set of building blocks that secure HE pipelines in the multiparty
setting. Our constructions can be used to verify, in a practical manner, the correctness of
distributed operations without any compromise on the HE scheme. Finally, we propose
CRISP to secure input verification and to prove correct encryption in settings where the
client who encrypts the data is untrusted.
All our constructions are a first step for evaluating the impact of the change of threat
model in HE pipelines with real-life implementation constraints.

Keywords: Homomorphic Encryption, Secure Multiparty Computation, Malicious
Adversary, Proof Systems.
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Résumé

Le chiffrement homomorphe (HE) permet d’exécuter des calculs sur des données chiffrées
sans avoir à les déchiffrer. Cette technique est donc prometteuse afin d’assurer la confi-
dentialité des données tout en permettant leur potentielle utilisation lors d’analyses.
Cependant, l’encryption homomorphe ne fournit aucune garantie que le matériel cryp-
tographique utilisé ait été généré honnêtement ni que les calculs aient été exécutés
correctement sur les données chiffrées. Ainsi, bien que de nombreuses constructions s’ap-
puient sur ce type d’encryptions afin d’obtenir de solides garanties de confidentialité, elles
considèrent uniquement un modèle de menace honnête mais curieux.
Les premiers efforts pour étudier et améliorer les garanties de sécurité sont restés prin-
cipalement théoriques et sont encore insuffisants pour être applicables aux pipelines
HE.
Ainsi, dans notre travail, nous cherchons à réduire cet écart en considérant des adversaires
malveillants et nous construisons différents systèmes qui protègent le pipeline homomorphe
contre de tels adversaires.
Nous proposons d’abord VERITAS, une solution efficace pour prouver l’exactitude des
opérations homomorphes effectuées par un serveur sans compromettre l’expressivité du
chiffrement homomorphe.
Ensuite, nous introduisons PELTA, un ensemble d’outils pour sécuriser les pipelines
HE dans le cadre multipartite. Nos constructions peuvent être utilisées pour vérifier
de manière efficace l’exactitude des opérations distribuées sans aucun compromis sur le
schéma HE.
Enfin, nous proposons CRISP pour sécuriser la vérification des données d’entrée et le
chiffrement correct dans des contextes où le client qui chiffre ses données n’est pas fiable.
Toutes nos constructions fournissent des éléments de base afin d’évaluer l’impact du
changement de modèle de menace dans les pipelines homomorphes avec des contraintes
d’implémentation réelles.

Mots-clés : Chiffrement Homomorphe, Calculs Multipartites Sécurisées, Adversaire
Malveillant, Systèmes de Preuve.
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Introduction

Homomorphic encryption (HE) schemes enable computations to be executed directly
on ciphertexts, without decryption. They are an auspicious solution to protecting
confidentiality during data processing. Contrary to their classic encryption counterparts,
such as AES [DBN+01], HE schemes can protect data not only in transit and at rest but
also during computation.

Since their introduction in the 80s, HE schemes have undergone several breakthroughs
increasing their practicality. While the initial HE schemes supported only a single type of
operations [ElG85, RSA78, Pai99], in 2009 Gentry introduced a new HE scheme supporting
the evaluation of arbitrary circuits [Gen09b, Gen09a]. Such HE schemes that support
the evaluation of any arithmetic circuit are called fully homomorphic encryption (FHE)
schemes. Following Gentry’s idea, numerous works have developed novel constructions
and made HE schemes practical by supporting a wide range of operations and input
data [CGGI20, CKKS17, BGV14, CHK+18b].

Nowadays, HE schemes have become functional and their implementation into several
open-source libraries [EPF21, PRR17, SEA18], as well as the development of tools such
as compilers [VJH21, Via23], facilitate their adoption. Overall, HE is an opportune
solution for a plethora of applications where confidentiality of the data is paramount:
e.g., confidential computing and privacy-preserving analytics [Ama21, Goo20, Goo18,
IBM21b, Mic21]. For instance, in federated learning [MMR+17, KMRR16], where a set
of parties interact to build a collective machine learning model, HE enables the parties to
execute the learning process fully under encryption thus avoiding any data leakage during
the training [SPTP+21, SBTP+22, FTPP+21, LKS17, ZPGS19, HTGW18]. Similarly,
machine learning inference can be conducted under encryption thus protecting the
confidentiality of the client’s data [GLN12, BGBE19]. In addition to machine learning, HE
schemes find wide applicability in medical research [CJLL17, KL15, LYS15, RTPM+18],
smart grids [LLL10, BCIV17, CLL22], and database queries [BGH+13, MW22, CGHK22].

In practice, HE enables a computing server to perform operations on encrypted data
offloaded by one [CGBH+18, CJLL17, KL15] or more clients [MTPBH21, CZW17,
CDKS19]. Using state-of-the-art HE schemes, an HE pipeline can be instantiated as a
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2 Introduction

Encryptionm ct

Public Key

Key Generation Evaluation

Evaluation Key

ct′ Decryption

Secret Key

m′

Figure 1: Illustration of an HE pipeline

cryptographic system operating in several steps as depicted in Figure 1. The first step
consists in generating the cryptographic keys for each of the involved parties: secret
keys for the data holders, public keys for data offloading, and public evaluation keys
for the computing server. In the second step, the data holder encrypts the data. The
third step is the evaluation, by a computing server, of a function over the encrypted
data. While the computing server (represented in grey on the figure) typically performs
the computation on its own, it can also be assisted by the parties using interactive
protocols [MTPBH21, MBH22]. The final step is the decryption of the evaluation result
using the secret key.

From a system model perspective, HE trivially supports computation delegation to a
computing server but also enables efficient multiparty computation (MPC). In HE-based
MPC, several parties collaborate to generate collective keys and to decrypt the final result.
The encryption and evaluation can be executed by a single entity. Overall, HE-based
MPC unites the benefits of both MPC and HE techniques (see Chapter 4).

Malicious Adversaries in HE Pipelines

Most of the practical applications of HE so far assume settings with honest-but-curious
adversaries: i.e., legitimate participants that do not deviate from the protocol but attempt
to infer as much as possible from the information derived from the execution. However,
as HE becomes practical enough to be deployed to real-life applications, the potential for
attacks increases and this threat model assumption becomes less realistic. Firstly, HE
schemes do not provide any guarantees about the correctness of the result. A malicious
computing server can return a false result that destroys the utility of the process and
can engage in key-recovery attacks that compromise confidentiality [CT14, CGG16]
without being detected [VKH23]. Secondly, when considering HE-based multiparty
computations, malicious clients can generate improperly formatted key material, create
incorrect encryption of the data, and/or even alter the plaintext data, thus rendering
unsafe and useless the result of the homomorphic computation. For example, in cloud-
assisted machine-learning settings, a malicious cloud could insert a backdoor, when
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training a model for a security-critical application, e.g.,malware detection, or return a
wrongful prediction that could lead to a misdiagnosis in a medical application. Conversely,
a malicious client could create improper cryptographic keys that would destroy the utility
of the whole HE pipeline. Furthermore, a malicious client can disrupt the HE analytics
pipeline by creating wrongly formatted encryption or by tampering with the data. This
would leave useless the result of the overall pipeline.

Contribution of this thesis

Due to the aforementioned threats, it is necessary to create new constructions that can
ensure the protection, in all the steps, of HE pipelines against malicious adversaries. Whilst
numerous works have addressed some aspects of these problems, as discussed in Chapter 2,
they lack the practicality, compatibility, and expressiveness to be entirely satisfactory.
Therefore, in this dissertation, we provide the following technical contributions:

• Chapter 3 – Verifiable Encodings for Secure Homomorphic Analytics. In
this chapter, we propose two error-detection encodings for homomorphic encryp-
tion messages; these encodings enable practical client-verification of cloud-based
homomorphic computations without reducing the functionalities of the encryption
scheme. We implement our solution in VERITAS and demonstrate its versatility
and low overhead, on several use cases.

• Chapter 4 – Securing HE-based Multiparty Computation against Ma-
licious Adversaries. In this chapter, we introduce PELTA, the first practical
building blocks that enable the correctness verification of homomorphic multiparty
operations under the malicious threat model. Our solution relies on a combination
of lattice-based proof systems [ENS20, LNS20] adapted to support the peculiarities
of lattice-based homomorphic encryption schemes and their implementations.

• Chapter 5 – Verifiable Encryption and Trustworthy Data Release. In this
chapter, we present a generic approach to enable the authenticity verification of
encrypted data offloaded to service providers for evaluation. By relying on lattice-
based commitments and multi-party-computation in-the-head [IKOS09, GMO16,
CDG+17], our solution preserves the utility, security, and privacy that HE provides.
We implement our solution, named CRISP , and demonstrate its performance via
three use-cases.

Combined, the contributions of this thesis protect all steps of the HE pipelines: during
the key generation, the encryption, the evaluation, and the decryption.
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Summary

Overall, the high-level contributions presented in this dissertation are as follows:

• We systematize homomorphic encryption pipelines and identify the weak components
vulnerable to a shift in the threat model from honest-but-curious participants to
malicious adversaries (Chapter 1).

• We propose a practical solution for verifying, without compromising on the HE
functionalities, the correctness of the HE computation (Chapter 3).

• We design an efficient construction for verifying the correctness of distributed
operations in multiparty HE pipelines (Chapter 4).

• We introduce a solution for verifying the correctness, with respect to some authenti-
cated inputs, of the HE encryption (Chapter 5).

Software. Our three technical constructions preserve the functionality of the HE scheme
and do not compromise its parameterization. In addition, to increase the potential
adoption of our contributions, we provide open-source prototype implementations of
our solutions together with thorough benchmark evaluations. VERITAS is available
at [LDS21]. The implementation of PELTA is available at [LDS23]. The code for
CRISP can be found at [LDS20].
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J.P. Hubaux, “Multiparty-FHE against Malicious Adversaries”, to appear at CCS
2023, Cryptology ePrint Archive, Paper 2023/642, 2023.

• Chapter 5: S. Chatel, A. Pyrgelis, J.R. Troncoso, and J.P. Hubaux, “Privacy and
Integrity Preserving Computations with CRISP”. In USENIX Security Symposium,
2021.

Other Contributions. In addition to the contributions outlined in this dissertation,
we have also worked on other problems related to homomorphic encryption and privacy-
preserving technologies.
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Helium [MCP+23] Another contribution to the front of HE-based multiparty compu-
tation is Helium. This system provides the first end-to-end implementation of an HE-based
multiparty computation among participants with limited computing and communication
resources. By leveraging on an honest-but-curious helper, Helium supports multiparty
computation with cost linear in the number of parties without non-collusion assumption.
As this work was spear-headed by one of our co-authors, it is not discussed in this thesis.

SoK: Privacy-Preserving Collaborative Tree-based Model Learning [CPTPH21b]
HE has been acting as the key cryptographic block in many scenarios and in particular
in machine learning [SPTP+21, FTPP+21]. Among the wide range of machine learning
approaches, tree-based models are one of the most efficient techniques for data mining
nowadays due to their accuracy, interpretability, and simplicity. As such, we surveyed
the literature on collaborative tree-based model learning from a privacy perspective
considering starting from HE-based solutions, but eventually extending to additional
privacy-enhancing techniques (multiparty computation, differential privacy, perturbation,
and hardware solutions). We consolidated this survey by creating a systematization
of knowledge based on four axes: the learning algorithm, the collaborative model, the
protection mechanism, and the threat model. We use this to identify the strengths and
limitations of these works and provide a framework for analyzing the information leakage
occurring in distributed tree-based model learning. We find that tensions arise as the
learning, distributed environment, and privacy protections introduce new constraints.
Elegant and efficient solutions exist but often at the cost of some information leakage,
and the few end-to-end protected solutions are not amenable to all scenarios. Therefore,
we also provide a framework that identifies the information leakage occurring during the
collaborative training of tree-based models. Our systematization enables us to identify
limitations such as relaxed threat models and the lack of end-to-end confidentiality, and
overall highlights avenues for future work.

Thesis Outline

In Chapter 1, we introduce the notations and the background on the different components
used in this thesis. Specifically, we briefly recall the definition of homomorphic encryption,
the different systems and threat models of HE pipelines, and the challenges HE creates. In
Chapter 2, we present the relevant existing literature introducing protection mechanisms
against malicious adversaries for HE pipelines. In Chapter 3, we show how to verify
the correct execution of specified computation on homomorphically encrypted data. In
Chapter 4, we introduce techniques that enable the correctness verification of homomorphic
multiparty operations, under the malicious threat model. In Chapter 5, we sketch a
solution for guaranteeing the correct encryption of authenticated data offloaded to a
service provider. We conclude in Chapter 6.





Chapter 1

Background

In this chapter, we introduce the main building blocks used throughout the remaining
chapters. We first present the background on homomorphic encryption (HE). Then, we
expand on the different systems and threat models used with HE.

1.1 Notations

We define here the useful notation used throughout this dissertation.

Set, Integers, and Other Functions. Denote by Zq the set of integers modulo q.
Let [n] refer to the set of integers {k; 0<k⩽n} and [0:n] the set {0}∪[n]. For a prime
t, denote Zt its finite field and Z∗

t its non-zero elements. Let R be the field of the reals
and C the one of complex numbers. For a complex number z ∈ C, we denote by z̄ its
conjugate. For a set S, we note by |S| its size. In the remainder of this thesis, we denote
by log the logarithm base 2.

Vectors and Polynomials. A vector (resp. polynomial) be denoted by a boldface
letter, e.g.,x, with x[i] its i-th element (resp. coefficient) and xT its transpose. Moreover,
let ∥ denote the concatenation operation. For two polynomials a and b we denote by
a · b the polynomial multiplication. For two vectors m and m′ we denote by m ◦m′ the
Hadamard (i.e., component-wise) multiplication. In some rare cases, a vector of scalars
or polynomials will be denoted with an arrow to distinguish it from other polynomials.

Matrices. Let In be the identity matrix of size n, and 0k a vector of k zeros. We
denote by diag(p⃗) the diagonal matrix made from the coefficients in p⃗.

Distributions and Probabilities. Let a ← χ denote that a is sampled from a

7
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distribution χ. Unless otherwise explicitly stated, we consider the sampling uniform. We
denote by Pr[X = x] the probability that the random variable X has value x.

Boolean Logic. In the remainder of this thesis, we consider that the value “true” is
represented by the bit 1 and the value “false” by the bit 0.

1.2 Lattices

A full-rank n-dimensional lattice is defined as a discrete subgroup of Rn. An element in
the lattice can be represented from a basis of independent vectors B = (⃗b1, . . . , b⃗n) ∈ Rn

as a linear combination. As such,

L = L(B) =

{
n∑
i=1

ci⃗bi; c1, . . . , cn ∈ Z

}
.

In this dissertation, we work with ideal lattices: For f : X 7→ XN + 1 an integer monic
irreducible polynomial of degree a large power-of-two N , we define by R the ring of
integer polynomials modulo f (i.e.,R = Z[X]/⟨XN + 1⟩). The ring R comprises integer
polynomials elements of degree at most N − 1 whose coefficients can be seen as integer
vectors in ZN . Let I be a subset of R closed under addition and multiplication in R –
i.e., an ideal of R. Because I is additively closed in R, the vectors corresponding to its
polynomials’ coefficients form a lattice. The term ideal lattice is employed to describe I,
as it is both an algebraic ideal and a lattice [GH11]. The product of two ideals I and J is
defined as the additive closure of the set {v ·w : v ∈ I,w ∈ J}. The ideal lattice generated
by the polynomial p ∈ R is (p) = {pi = p · xi mod XN + 1; i ∈ [0:n− 1]}. We refer the
reader to the work of Gentry for a more detailed introduction to lattices [GH11, Gen09a].

1.3 Fully Homomorphic Encryption

Homomorphic Encryption (HE) is a specific type of encryption that enables operations to
be executed on ciphertexts and be reflected on the plaintexts directly. Examples of such
schemes include RSA [RSA78], ElGamal [ElG85], and the Paillier [Pai99] cryptosystems.
However, those schemes are homomorphic with respect to only a single type of operation.
In 2009, Gentry proposed the first Fully HE (FHE) scheme able to support two types of
operations (addition and multiplication) and, as such, can evaluate arbitrary arithmetic
circuits [Gen09a, Gen09b, GH11]. Following Gentry’s blueprint building on lattice-based
problems, numerous constructions have been proposed: e.g.,BGV [BGV14, KPZ21],
BFV [Bra12, FV12, HPS19], CKKS [CKKS17], and TFHE [CGGI20, CGGI16]. We refer
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the reader to Marcolla et al. ’s recent survey about HE for more details about FHE
schemes since their debuts [MSM+22].

Overall, an FHE scheme can be formally defined as:

Definition 1 (FHE Scheme). An FHE scheme E is a tuple of probabilistic polynomial
time algorithms E = (KGen, Enc, Eval, Dec) such that:

• KGen(1λ) → skHE,pkHE, evkHE is a randomized algorithm that, for a security
parameter λ, generates a secret key skHE, public key pkHE, and an evaluation key
evkHE for a security level λ.

• Enc(m;pkHE) → c is a randomized algorithm that returns an encryption of the
plaintext polynomial m ∈ P.

• Eval(F (·),Cin; evkHE)→ cout is an algorithm that, from a set of permitted circuits
C, evaluates the homomorphic evaluation of a circuit F ∈ C on the list of input
ciphertexts Cin by using the evaluation keys evkHE and that returns the encrypted
result cout. The decryption of cout returns the evaluation of F (·) on the plaintexts
encrypted in Cin.

• Dec(c; sk)→m returns the decryption of the ciphertext c to a plaintext m.

We now recall some key properties achieved by a correctly instantiated FHE scheme (see
§2.1 [Gen09a]):

• Encryption Correctness. A homomorphic encryption scheme E is correct if for a
key-pair (sk,pk)← KGen(1λ), a plaintext m ∈ P , and an encryption c← Enc(m; r),
then Dec(c; sk)→m.

• Evaluation Correctness. A homomorphic encryption scheme E is correct for
circuits in C if for any key-pair (sk,pk) ← KGen(1λ) and evaluation keys evkHE,
any plaintexts m1, . . .mn ∈ P , any ciphertexts c1, . . . cn such that ci ← Enc(mi; ri),
and any circuit F ∈ C it is the case that:

If cout ← Eval(F, {c1, . . . cn}, evkHE), then Dec(c; sk)→m = F (m1, . . . ,mn)

except with negligible probability over the random coins in Eval.

• Compactness. A homomorphic encryption scheme E is compact if there exists a
polynomial f such that for any security parameter λ, for a set C of circuits of depth
at most d, Dec algorithm can be expressed as a circuit of size at most f(λ, d) and
the scheme is also correct for circuits in C.

• Semantic Security. A homomorphic encryption scheme E is semantically secure
if it is secure against chosen plaintext attacks (CPA security).
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1.3.1 Overview of Lattice-Based FHE Schemes

Since 2009, various variants of Gentry’s schemes have emerged. A first generation of
schemes extended Gentry’s original work [GH11, SV10] or based the security on the
approximate-GCD problem [VDGHV10]. A second generation of schemes was introduced
by Brakerski et al. [BV11a, BV11b, BGV14] then optimized [GHPS12, GHS12b, GHS12a,
GHS12c, KPZ21] into the BGV scheme. Other variants include the BFV [FV12, HPS19]
and CKKS [CKKS17] schemes increasing the practicality and efficiency. These schemes can
evaluate circuits of limited depth and hence are called somewhat homomorphic encryption
(SHE) schemes. A bootstrapping operation evaluates a decryption/re-encryption homomor-
phically and transforms the schemes into fully homomorphic encryption (FHE) schemes.
This second generation of schemes is based on the learning with errors (LWE) [Reg05]
problems or its variant over rings (RLWE) [LPR10]. We recall the RLWE distribution
and the two seemingly hard associated computational problems [LPR10, Pei14]:

The RLWE distribution For a security parameter λ, let f : X 7→ XN + 1 where
N = N(λ) is a power of two. Let q = q(λ) ⩾ 2 be an integer. Let R = Z[X]/⟨f(X)⟩ and
let Rq = R/qR. Let χ = χ(λ) be a distribution over R of polynomials with coefficients
sampled from a bounded discrete Gaussian distribution of small variance σ2 and small
bound B (w.r.t. q).

For a secret s ∈ Rq, a sample from the RLWEλ,χ,s distribution is a pair of polynomials in
R generated by choosing a← Rq uniformly at random, choosing e← χ, and outputting
(a,a = a · s+ e).

The search-RLWE problem The search RLWE problem is to discover the secret s

given access to m = poly[n] independent samples (ai, bi)← RLWEλ,χ,s.

The decision-RLWE problem The decision RLWE problem is to distinguish with
non-negligible advantage between independent samples from RLWEλ,χ,s and the same
number of uniformly random independent samples from R2

q .

In practice, the BFV, BGV, and CKKS schemes work over a polynomial ring Rq =

Zq[X]/⟨XN+1⟩ where N is a power of two and q is a big integer (e.g., logN = 13 and
log q = 218). We recall a variant of the BFV [FV12, HPS19] scheme that is part of the
FHE standardization effort [ACC+18].

The ciphertext space is the polynomial ring Rq. The plaintext space is the polynomial
ring Rt = Zt[X]/⟨XN + 1⟩, where the modulus t < q. We denote by ∆ = ⌊q/t⌋ a
scaling factor. Let χk be a key distribution of ternary secrets over Rq: i.e., polynomials
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Rq in with coefficients in {−1, 0, 1} modulo q. Let χe be an error distribution over Rq
with coefficients distributed according to a centered discretized Gaussian distribution of
standard deviation σerr and bounded in infinity norm by a parameter Berr. The main
BFV algorithms are

BFV.KeyGen(1λ)→ skHE,pkHE, evkHE: Choose a low-norm secret key s←χk and set
skHE:=(1, s). The public key is defined as pkHE :=(b,a) where a is sampled uniformly
at random from Rq and b:=[−(a · s+ e)]q∈Rq with e←χe sampled uniformly at random.
For the evaluation, define an evaluation key evkHE that comprises the relinearization
and the rotation keys. The use of those keys will be made clearer below in Section 1.3.3
and details about their generation will be presented in Chapter 4. Output skHE, pkHE,
and evkHE.

BFV.Enc(p;pkHE)→ c: For a message m⃗ ∈ ZNt encoded as a polynomial p ∈ Rt,
sample u ← χk and e′0, e

′
1 ← χe. Output c:=[u · pkHE+(e′0 + ⌈q/t⌋ · p, e′1)]q. Thus, a

fresh ciphertext comprises two polynomials in Rq, i.e., c=(c0, c1).

BFV.Dec(c; skHE)→m: Output m = [⌈t/q ·[⟨skHE, c⟩]q⌋]t.

Other schemes, such as BGV and CKKS, share a similar structure. BGV [BGV14, KPZ21]
has a slightly different scaling and CKKS [CKKS17] enables approximate arithmetic
computation. In the remainder of this dissertation, we focus mainly on BFV (chapters 3,
4) and CKKS (chapter 5) but our approaches could be generalized to the family of schemes
described as above.

1.3.2 FHE Plaintext Space

The plaintext space P is, by construction, the polynomial ring Rt. However, to enable
more efficient and flexible circuit evaluations, a single instruction multiple data (SIMD)
approach is favoured [SV14]. A plaintext encoding, named batching, transforms a plaintext
vector m⃗ ∈ ZNt into a polynomial plaintext m ∈ Rt. Due to the isomorphism of the
encoder, the evaluation of the circuit on the polynomial representation ports to the vector
representations:

m⃗1 + m⃗2 ↔m1 +m2 and m⃗1 ◦ m⃗2 ↔m1 ·m2.

This transformation is obtained by relying on a number theoretic transformation (NTT)
of the plaintext polynomial such that m⃗ = NTT(m). This transformation can be
represented by a matrix-vector multiplication between the vector of coefficients of the
polynomial and the Van Der Monde matrix that comprises 2N -th primitive roots of
unity [SV14, CHK+18b]. The different components of the plaintext vector m⃗ are named
slots. Henceforth, unless specified, we will interchangeably use the plaintext vector or
plaintext polynomial representations.
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1.3.3 FHE Operations

FHE schemes are malleable by design and can support the evaluation of specific circuits
over encryption. Overall, the scheme described in the previous section (§1.3.1) can
support a bounded number of additions and multiplications. An additional operation,
called bootstrapping, enables the refreshing of the ciphertext – i.e., to homomorphically
re-encrypt the message with fresh noises. We briefly detail the different FHE operations
below.

A homomorphic circuit is a bounded depth-directed acyclic graph of gates. The most
common gates include:

• BFV.Add(c,ĉ): A homomorphic addition simply adds the ciphertext vectors in
R2
q . Given c and ĉ, it outputs [c+ĉ]q.

• BFV.Mul(c, ĉ; evkHE): The multiplication requires a relinearization procedure.
Given two ciphertexts c=(c0, c1) and ĉ=(ĉ0, ĉ1), it does the following:

1. Tensoring and Rescale: Computes c′0:=c0ĉ0, c′1:=c0ĉ1+c1ĉ0, and c′2 :=

c1ĉ1 ∈ R without modular reduction. Note that this represents the convolution
between the two input ciphertexts i.e., leading to an additional polynomial. Then
it rescales each component to c∗i :=[⌈t/q · c′i⌋]q, for i ∈ {0, 1, 2}.

2. Relinearization: Uses the relinearization key stored in evkHE to convert
the ciphertext c∗ of three polynomials to a ciphertext comprising only two
polynomials. This operation is not arithmetic and cannot be performed over Rq
(see [HPS19]).

• BFV.Rot(c, k; evkHE): A homomorphic rotation operates on a single ciphertext
using the rotation key for k stored in evkHE and returns an encryption of the
plaintext polynomial with shifted slots by a step k.

• BFV.Bootstrap(c; evkHE): The bootstrapping operation refreshes the ciphertext
by homomorphically decrypting and re-encrypting the ciphertext. The resulting ci-
phertext has a noise level similar to a fresh encryption of the plaintext (see [KDE+21]
for more details).

In the following, we denote by HE.Eval(f(·), (c1,..., cn); evkHE) the SIMD evaluation of
the plaintext function f(·) on the ciphertexts (c1,..., cn).

We note that both bootstrapping and key-switching cannot be represented by an arithmetic
circuit in Rq, because they require arithmetic over an extended ring or require rounding
operations.
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1.3.4 FHE in Practice

Due to their increasing practicality, several libraries have implemented BFV, BGV, and
CKKS schemes [IBM21a, SEA18, EPF21, PRR17], thus augmenting their applicability.
These implementations introduce additional optimizations, for the sake of efficiency.

• RNS: As, for correctness reasons, the polynomial ring modulus q is very big
(i.e., hundreds of bits) it is incompatible as-is with standard efficient CPU instruc-
tions. In order to alleviate this issue, the modulus is decomposed into a chain of
moduli by using the Chinese remainder theorem (CRT). The modulus is chosen
to be a composite number q =

∏L
i=0 qi with prime factors of smaller size (usually

around 30 − 60 bits). Any element in x ∈ Zq can be decomposed into its CRT
components {xi = x mod qi ∈ Zqi}. Operations in Zq can be conducted in parallel
on all the different CRT components over their respective sub-fields (i.e., Zqi). This
decomposition is called the residue number system (RNS) and provides an execution
faster than when handling big integer arithmetic [HPS19].

• NTT: For efficiency reasons, the prime factors of q are selected to support the
number theoretic transform (NTT). The prime moduli need to satisfy qi = 1

mod 2N such that the polynomial XN +1 splits fully into linear terms modulo each
qi (see [Sei18, CHK+19]). The NTT transform can be seen as a Fourier transform
for polynomials. This enables efficient polynomial multiplication.

• Montgomery: Additional optimizations, such as the Montgomery transforma-
tion [Mon85], can be employed to enable fast modular arithmetic. It corresponds
to a linear transformation of the polynomial coefficients.

1.4 FHE System and Threat Models

Homomorphic encryption, initially introduced by Rivest et al. as a privacy homomorphism
[RAD+78] was originally considered to enable information systems, which store encrypted
data offloaded by a client, to also be able to compute on the encrypted data. More
recently, this system model was generalized to account for settings with multiple clients
who offload their local data and who seek computations to be executed on their joint-data:
i.e.,multiparty computation (MPC) [LATV12, CCS19, CDKS19, CZW17, PS16, BP16,
Par21, MTPBH21, MBH22].

This covers more real-life applications, where data is not always centralized but can be
distributed among different parties such as in distributed analytics [FTPR+21, CSS+22,
YZW+22] and machine learning [CDKS19, SBTP+22, SPTP+21, ATP21, XHX+22,
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Figure 1.1: FHE pipeline with an encrypting client, a computing server, and a decrypting client.

XLG+23, AHWC19, AJLA+12, MTPBH21]. We will present, in more detail, the different
approaches, in Section 4.2.

1.4.1 System Model

In the remainder of this thesis, we consider the following system model illustrated in
Figure 1.1.

• Clients : One or more clients offload their data encrypted and subsequently want to
have computations executed on them.

• Computing server : A server is tasked with performing computations requested by
the client(s) on the offloaded data. It is supposed to return to a decrypting client a
ciphertext holding the result of this computation.

• Data source: In some scenarios, the data is generated by a third party that we call
the data source.

As we will see in Section 4.2, clients can interact with the computing server and assist
during the FHE operation to accelerate the computations. This creates a trade-off between
communication and computation costs but still remains realistic in real-life scenarios and
more effective than classic MPC techniques [MTPBH21].

We define by homomorphic pipeline a process that comprises the FHE scheme setup,
the data offloading, the homomorphic operations, and the decryption, as can be seen
in Figure 1.1. Clients are involved in the FHE pipeline during the key generation, the
encryption, the decryption, and in potential client-aided operations occurring during the
homomorphic evaluation. The evaluation server potentially operates on the ciphertext
and can ask the key owner for some assistance (i.e., the curvy arrow), as we will see in
Chapter 4.
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1.4.2 Threat Model

Two key properties of FHE are the correctness and the semantic security [Gen09a] (see
Section 1.3). Although all the different FHE schemes introduced in the literature ensure
both of them, they are only guaranteed in the honest-but-curious threat model. In other
words, the correctness of the homomorphic pipeline and the security against chosen-
plaintext attacks are ensured against only passive adversaries that abide completely by
the protocol.

This constraining assumption becomes less realistic to achieve when the number of involved
parties in the FHE pipeline increases. The malleability-by-design of FHE creates a new
potential vulnerability against malicious computing servers that might return erroneous
ciphertexts to the client(s). In addition to destroying the application-level utility of FHE,
these attacks could potentially be used in key-recovery attacks [CT14].

As a result, this honest-but-curious threat model becomes a shortcoming to creating prac-
tical applications of FHE, as it cannot account for realistic attacks, e.g., the introduction
of backdoors into distributed machine-learning [BVH+18], private-key recoveries [CT14],
and selective censorship [GLL+20].

Thus, in this dissertation, we will propose solutions to ensure FHE pipelines’ correctness
and confidentiality in the presence of malicious but rational adversaries. Such adver-
saries, also known as covert in the literature, can actively cheat but do not want to be
detected [AL07]. This adversarial model, initially introduced in the context of multiparty
computation, discards arbitrarily malicious behavior (e.g.,denial of service, byzantine
attacks) and is used to model realistic adversaries [AL07].





Chapter 2

Related Work

In this chapter, we present the state of the art in protection mechanisms against malicious
adversaries for FHE pipelines. We begin by summarizing the literature on verifying the
correctness of FHE evaluation in Section 2.1. Then, we look into the verification of client
operations, in Section 2.2.

Our contributions in Chapters 3, 4, and 5 enable us to efficiently protect FHE pipelines
during the set up, the encryption, the evaluation, and the collaborative phases. By design
(and contrary to prior works), we work with state-of-the-art FHE implementations and
optimizations, and we thoroughly evaluate the performance of our solutions.

2.1 Verifying FHE Evaluation

We first review the literature on the verification of FHE operations when offloading
computations to an untrusted entity. The general concept of non-interactive verifiable
computation (VC) was formalized by Gennaro et al. [GGP10], in the context of data
offloading and computation outsourcing to an untrusted server. Applying this notion to
FHE computations can help thwart malicious behavior from the computing server [VKH23].
However, the algebraic structure of FHE schemes and the required operations render
the integration of VC with FHE difficult. We identify, from prior works, four major
approaches: (i) generic MPC techniques, (ii) message authentication codes, (iii) proof
systems, and (iv) trusted execution environments. We present each of them, with their
strengths and limitations.
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2.1.1 Multiparty Computation

Secure multiparty computation (MPC) techniques enable multiple entities to compute
functions on their joint data, with strong confidentiality guarantees. Yao introduce the
notion of garbled circuits [Yao86] that enable two parties to collaboratively evaluate
a function on their private inputs. This protocol is the building stone of many MPC
protocols. Both the original introduction of VC by Gennaro et al. [GGP10] and their
multi-client variant rely on heavy MPC techniques (e.g.,Yao garbled circuits [Yao86],
proxy oblivious transfer [NPS99]) combined with FHE. Other MPC techniques [DPSZ12]
rely on secret sharing such as the one proposed by Shamir [Sha79]. Shamir’s technique
enables a client to divide a secret into shares that reveal nothing about the secret and such
that the secret can only be reconstructed by re-combining at least a determined number
of shares. Using computational techniques, such as the one introduced by Beaver [Bea91]
for the multiplication of shared data, it is possible to construct an MPC protocol for
securely computing arithmetic circuits.

Several efforts have been made to ensure the security of MPC techniques in the presence of
malicious adversaries using cut-and-choose [Cha84], zero-knowledge proofs [GMW87], or
authenticated secret-sharing [BDOZ11, DPSZ12]. Although MPC techniques are a generic
technique for circuit evaluation, they induce a high computation and communication
overhead. In more detail, the most common MPC protocols require linear communication
in the size of the circuit (see [EKR+18]). Their setup also often relies on a trusted third
party to generate additional information.

Still, the complex structure of FHE makes compatibility with those approaches difficult.
As seen in Chapter 1, FHE constructions use high-degree polynomials with very large
coefficients. As such, secret sharing or other MPC techniques – whilst technically feasible –
would remain highly impractical. Furthermore, MPC techniques are inherently interactive
and not always aligned with the purpose of classic FHE in offloading scenarios.

2.1.2 Message Authentication Codes and Signatures

Homomorphic Message Authentication Codes (MAC) [GW13] are cryptographic primi-
tives that enable anyone to compute over authenticated data and generate a short tag
that authenticates the result. They can be viewed as a symmetric-key variant of fully
homomorphic signatures [BF11]. Due to their homomorphic properties, they appear
to be ideal primitives to be combined with FHE. In the literature, we identify three
ways of doing so: Encrypt-and-MAC, Encrypt-then-MAC, and MAC-then-Encrypt. For
completeness, we also briefly discuss the use of homomorphic signatures in the context of
FHE.
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2.1.2.1 Encrypt-and-MAC

In these works, the client encrypts her data and concurrently generates a homomorphic
MAC of her plaintext data. She offloads both to the server for computation. Lai et
al. [LDPW14] introduced first the concept of homomorphic encrypted authenticators that
requires the MAC to not leak any information about the plaintext. As the choice of
MAC and FHE are independent, their construction offers good flexibility. However, their
initial construction suffered from poor verification efficiency. This was addressed by Li
et al. [LWZ18, LWX22] building on a MAC proposed by Catalano et al. [CFW14]. But
their improvement supports only the verifiable evaluation of bounded degree polyno-
mials. However, to preserve confidentiality, the homomorphic authenticator needs to
provide semantic security. As their constructions rely on the Diffie-Hellman problem
and multilinear maps, they provide only a security that is weaker than the FHE scheme
itself that is plausibly quantum-secure. Overall, these solutions work for only bounded
degree polynomials, cannot cope with non-algebraic FHE operations (e.g., relinearization,
key-switching), and are only as secure as the underlying MAC.

2.1.2.2 Encrypt-then-MAC

In a different paradigm, Encrypt-then-MAC approaches consider directly generating a
MAC for the ciphertext. Due to the semantic security of the FHE scheme, the MAC is no
longer required to provide strong confidentiality properties. Catalano et al. [CMP14] au-
thenticate linear ciphertext operations by using a previously introduced MAC [CF13]. By
modifying this authenticator and relying on different security assumptions (e.g., structure-
preserving signatures [LPJY13], on the error-free approximate greatest common divisor
problem [JY14], and on functional encryption [GKP+13]), other works support quadratic
functions and arithmetic circuit evaluations [TPD16, XHZ17]. Fiore et al. [FGP14]
propose the first solution tailored to an RLWE-based scheme similar to BV [BV11a]:
Ciphertexts are integrity-protected via a homomorphic MAC [BFR13] and a novel hash-
ing technique compresses them to save storage and computational resources. Their
instantiation, however, works for a simplified version of BV without relinearization and
key-switching (thus, without rotations or SIMD) and supports only quadratic functions. In
practice, this Encrypt-then-MAC approach was successfully employed in real-life scenarios:
Cheon et al. [CHH+18] provide a linear homomorphic authenticated-encryption scheme
tailored for real-time drone systems, and Fiore et al. ’s MAC [FGP14] was employed for
verifiable federated learning [XLL+19, HKKH21].

However, as we have seen in Section 1.3, the FHE ciphertexts are represented by high-
degree polynomials with large coefficients. The ciphertext expansion induces a significant
overhead that the MAC has to be able to cope with. Although works can rely on hashing
techniques and polynomial compression, these tricks render impossible the evaluation of
some FHE operations such as relinearization, bootstrapping, and key-switching.



20 Chapter 2. Related Work

2.1.2.3 MAC-then-Encrypt

This technique considers that the plaintext data’s integrity is protected by embedding
the homomorphic MAC in the plaintext space (i.e., using the FHE encoder – see §1.3.2)
before the encryption under FHE. If the homomorphic MAC and the FHE scheme support
the same homomorphisms, then this approach guarantees that FHE modification of
the plaintext ports directly to the MAC. Gennaro and Wichs pioneered this approach
when they introduced their homomorphic MAC [GW13]. The use of FHE was mandated
by the need to hide challenge-values from the server, and their MAC-then-Encrypt
approach was a byproduct. More recently, Catalano and Fiore proposed a different
approach that reduces the number of required challenges [CF13]. We will see in Chapter 3
how these MACs work in practice. The two limitations of these lines of work are that
(i) the verifier needs to evaluate challenges and (ii) that the constructions are secure
only without verification queries. The first point can easily be remedied by additional
succinct non-interactive arguments (SNARG), whereas the second point can be acceptable
in computation outsourcing scenarios, as we will see in Chapter 3. Contrary to the
previous approaches, MAC-then-Encrypt supports any FHE operation and, hence, is
far more practical than any other technique. We will discuss the trade-off that this
technique induces in Chapters 3 and 6. Recently, Dolev and Kalma [DK21] proposed
an encoding-based approach where a detection code is embedded in the low significant
bits of the plaintext. However, to avoid overflowing, they are limited in the number of
operations admitted.

2.1.2.4 Homomorphic Signatures

We note that Homomorphic signatures [BF11, CFN18, GVW15, ABC+15, JMSW02,
PST13, CFW14] are a public-key variant of homomorphic authenticators. Although
they enable public verifiability, these constructions still remain constrained, cannot
evaluate non-ring arithmetic operations of FHE, and are not practically embedded in the
polynomial plaintext. Consequently, homomorphic signatures remain, at least for now,
disjoint from FHE in the literature.

2.1.3 Zero-Knowledge Proofs

Initially introduced by Goldwasser, Micali, and Rackoff in the 1980s [GMR85], proof sys-
tems have become crucial building blocks for cryptographic constructions. Zero-knowledge
arguments enable a computationally bounded prover to convince a verifier that an instance
is in a language. A cheating prover has only a negligible probability of fooling the prob-
abilistic verifier [BCC88, BCY91]. A stronger concept of zero-knowledge was captured
by the notion of zero-knowledge proof/arguments of knowledge ensuring that the prover
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knows at least one witness that the instance is in the language [GMR89]. Since then,
considerable efforts have been made by the cryptographic community to increase their
efficiency, practicality, and security. Recent improvements in the front of both succinct
non-interactive arguments (SNARG) and succinct non-interactive arguments of knowl-
edge (SNARK) [Lip12, Gro10, GGPR13, PHGR13, BSCG+13, Gro16, GKM+18] and
other proof systems [BSCTV14, GKR15, BFH+20, BBB+18, COS20, CFH+15, KPS18,
MBKM19, ZGK+17, Set20, VSBW13, WTS+18, WYKW21] render them ideal candidates
for generic verifiable computations.

In the context of FHE, such SNARK techniques were recently considered to provide
proof of correct computation on encrypted data. The server, in addition to computing
on the input ciphertexts, also generates a proof of knowledge of the different wires in
the homomorphic evaluation circuit leading to the claimed output. Fiore et al. [FNP20]
proposed first to use commitments and SNARKs to achieve public verifiability for bounded
polynomial operations over the ciphertexts. They reduce the overhead induced by
the ciphertext expansion by relying on two blocks: (i) a commit-and-prove SNARK
for arithmetic circuits and (ii) a commit-and-prove SNARK for multiple polynomial
evaluations. Informally, their solution shows the correct relationship between the input
and output polynomial ciphertexts of the homomorphic computation. A SNARK first
shows the correct evaluation of the polynomials on a random point to obtain a compressed
version of the polynomials and that each of the evaluations is committed to. For a second
step, the correctness of the circuit evaluation is verified for the compressed polynomial
with one SNARK; and a second SNARK ensures that the previous commitment opens
to the evaluated polynomials on the random point. However, their solution does not
support key ciphertext operations: e.g.,modulus switches and rounding operations. As
a result, their solution cannot support several state-of-the-art schemes (e.g.,BFV and
BGV). Furthermore, it requires the SNARKs and the FHE scheme to share the same
cryptographic parameters, which can result in an unwanted overhead; the FHE modulus
should match the SNARK’s which is usually much larger. Although this latter constraint
is lifted by Bois et al. [BCFK21], the resulting approach still limits the admissible FHE
pipelines (as it does not support modular reduction). Their construction also relies on
the GKR [GKR15] protocol that admits only log-space uniform and layered circuits with
low depth for efficient verification. Hence, it can potentially limit the expressiveness of
the FHE scheme. Ganesh et al. propose Rinocchio [GNSV21] as a new SNARK for rings
that can be used for verifiable computations on encrypted data. Compared to [FNP20],
Rinocchio supports common lattices used by FHE schemes. In particular, it supports
generic polynomial rings Rq constructed from a composite modulus chain matching those
used by FHE. But Rinocchio is still not as expressive as FHE and cannot practically
support core operations involving non-ring arithmetic (e.g., relinearization, key-switch,
and bootstrapping). Their SNARK-based approach also still induces a non-negligible
memory and computation cost for the prover, as we will see in Chapters 3. Although
SNARK approaches benefit from succinct proofs and efficient verification procedures,
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the prover still has a significant computational overhead. Whereas it is acceptable in a
single client-cloud scenario, it becomes less realistic in multiparty settings. In Chapter 4,
we will see that the prover overhead can become too constraining in practical instances.
Overall, notwithstanding the tremendous efforts conducted to increase the practicality of
generic SNARKs, the concrete structure of FHE renders interfacing SNARKs and FHE
difficult and practically infeasible.

2.1.4 Trusted Hardware

A radically different approach to addressing VC is to rely on trusted execution environ-
ments (TEEs) [DL21]. To ensure computation integrity, this line of research employs
trusted hardware, such as Intel SGX [AGJS13, HLP+13, MAB+13]. A TEE enables the
isolation of the code running from the rest of the server. Through attestation techniques,
it can also provide guarantees of the correct execution. Therefore, TEEs have been con-
sidered in numerous cases: secure two-party function evaluation [FKSW19], cloud-based
machine-learning training [HWA21], MapReduce [SCF+15], database queries [PVC18],
and search indices [MPC+18]. Natarajan et al. [NLDD21] were the first to employ
TEEs combined with FHE for privacy-preserving machine learning between two clients
and an entrusted computing server. More recently, Viand et al. [VKH23] proposed a
new method combining some techniques from Rinocchio [GNSV21] with TEEs. They
observe that, even though TEEs are more easily compatible with FHE, ciphertext size
and FHE operations are still a bottleneck. As a result, their experimental evaluation is
not considering relinearization (which is required for compact FHE multiplication) or
bootstrapping (which is required for evaluating circuits of large multiplicative depth).

Additionally, TEEs rely on different trust assumptions, as they put the trust in the TEE
manufacturer. TEEs also suffer from several vulnerabilities that range from side-channel
privacy leakages [LKO+21, WCP+17, XCP15] to denial of service (DoS) by using the
integrity-based DoS attacks [FYDX21, Ran21].

For these reasons, we consider the TEE approach orthogonal to our work. And it would
be interesting to see what advances in this field could bring to FHE operation verification.
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Overview of FHE Operation Verification and Contribution.
In this subsection, we have seen that the literature proposes different approaches
for verifying the correctness of FHE operations. MPC protocols have high com-
munication overhead, thus clashing with the compactness and non-interactivity
benefits of FHE. Proof systems/arguments and TEE, though promising, are still
limited in their expressiveness and not fully compatible with FHE operations
and parameterizations. Similar observations are valid for most homomorphic
authenticators in the Encrypt-then-MAC paradigm.
Therefore, in Chapter 3, we propose to follow the approach for verifiable compu-
tation sketched by Gennaro et al. [GW13] and Catalano and Fiore [CF13] and
to design two new polynomial plaintext encoders. Our technique supports any
FHE evaluation and is compatible off-the-shelf with trending integer-based FHE.

2.2 Verifying FHE Client’s Operations

As discussed in Section 1.3, several parts of the FHE pipeline involve the client: e.g., the
key generation, the encryption, the client-aided evaluation, and the decryption. A client
interacts with the FHE pipeline in different phases. At minima, to create a valid ciphertext,
the client is in charge of generating the FHE key material and encrypting her data. In the
client-assisted setting, a client can also be employed to speed up some computations such
as bootstrapping (see Chapter 4 and [MTPBH21, MBH22]). Therefore, we identify three
major operations to be verified: key generation, encryption, and online client-assisted
operations. However, in practice, these three operations share very similar operations in
lattice-based FHE. Indeed, simply put, they all generate a linear relation under constraint
as we will see in Chapter 4 (§4.3.2). Hence, we recall the related literature on proving
the knowledge of inputs to such constrained equations (§2.2.1). Then we survey another
important aspect specific to encryption: input verification (§2.2.2).

2.2.1 Proving Correctness of Linear Relations

As discussed in the introduction, proving the correctness of the client’s operations is
paramount to securing FHE pipelines and particularly in HE-based MPC settings. As
we will expand in Chapter 4, proving the FHE key generation operation boils down to
proving exact knowledge of a short solution to a linear relation (and the same holds for
the encryption and client-assisted operations). Several works dealt with proving the exact
knowledge of a small-norm solution s to the linear equation As = u. The first protocols
to prove such linear relation with a short norm secret [KTX08, LNSW13] involved the
combinatorial approach from Stern [Ste93]. The main drawback of their approach is the
large soundness error that forces many repetitions of the protocol to achieve acceptable
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soundness error. Libert et al. [LLNW18] also employed a Stern-proof for lattices but this
led to prohibitive proof sizes (see [LNS20]). More recently, to decrease the soundness
error at the cost of higher run-times, Beullens [Beu20] combined it with a cut-and-choose
approach. To verify the relation, Del Pino et al. [dPLS18] employed the ‘Bulletproof’
proof system [BCC+16, BBB+18]. In summary, their approach relies on the hardness
of the discrete logarithm problem and, though offering short proofs, suffers from long
running times (see [BLNS21]). In a different paradigm, Baum and Nof proposed a solution
based on Multiparty Computation-in-the-head combined with cut-and-choose [BN20],
thus leading to proofs at least an order of magnitude larger than commitment-based
approaches [Beu20]. Boschini et al. [BCOS20] proposed a solution that uses the generic
proof system Aurora [BSCR+19]. Although it generates very short proofs, their system
still imposes a major overhead for the prover. We will see in Chapter 4 that, for a small
lattice (logN = 13), it takes 845s and more than 80GB of RAM to generate a proof
of a single RLWE sample over one single sub-ring, and that it takes an additional 312s
to verify the proof. By relying on lattice-based commitments and their corresponding
zero-knowledge proofs, several protocols were able to prove the correctness of the linear
relation with low-norm secret [BLS19, YAZ+19, ESLL19a, ESS+19]. However, these
initial works had prohibitive costs, required specific polynomial rings not compatible with
trending FHE, and considered only simple linear relations. Improvements on the front
of the commitment scheme were made by Attema et al. [ALS20], Esgin et al. [ENS20],
and Lyubashevsky et al. [LNS21b, LNS20, LNS21a, LNP22] to provide more efficient
product proof, to support NTT optimizations, and to reduce the proof size. In a way
very similar to our construction, Yang et al. [YAZ+19], and Beullens [Beu20] rely on the
BDLOP commitment scheme [BDL+18a] and its improvements, but this still requires
a specific structure for the polynomial ring that is not compatible with current FHE
implementations. The work of Bootle et al. [BLS19] works in the NTT domain and
was improved by Attema et al. [ALS20], Esgin et al. [ENS20], and Lyubashevsky et
al. [LNS20] to obtain more efficient proofs.

Overview and Contribution.
This line of thinking paved the way for proofs that can be combined with FHE
efficiently. In Chapter 4, we show how we can extend these works to prove
statements pertaining to HE-based MPC. By combining these works, we achieve
a practical solution that outperforms approaches with generic proof systems.

2.2.2 Input Verification

As we have seen in Section 1.4.1, FHE can often be employed in scenarios where multiple
clients provide data. This can, for instance, be the case where clients collaborate to obtain
the result of the computation on their joint data e.g., in federated learning [SPTP+21]
but also in crowdsourcing scenarios where clients offload their data encrypted and an
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additional entity seeks to obtain the result of the computation [Int19a, San19]. However,
by design, FHE ciphertexts cannot provide any guarantees about the plaintext inputs
(due to semantic security and malleability). This problem, also present in MPC, has
forced researchers to assume that all inputting clients provide properly-formed and honest
inputs [ZPGS19, CKR+20, PKY+21]. Homomorphic signatures e.g., [ABC+15] are, in
theory, a solution to this problem. The data source would, before handing it over to the
users, authenticate the data by using such signatures. However, the way to practically
homomorphically evaluate the encryption circuit using them is still under investigation.
Furthermore, it would imply that the signer uses such signature schemes that are not yet
widely deployed.

Three lines of work have looked into this specific problem. The first one considers binary
or ternary plaintext space, whereas the second one checks that the plaintext data satisfies
some properties. The final line of research relies on external authentication.

Verifiable Encryption. The first category of works solved the problem of verifiable
encryption for FHE. Although they prove the correct encryption, these works also
prove that the plaintext is small (i.e., binary [BCOS20], ternary [ENS20], or with small
coefficients [LN17]). However, it is far from the reality of FHE applications with plaintexts
that are potentially bigger than 16 bits.

Statistical Tests. In the second category, Chen et al. [CSC+23] recently proposed
Holmes, a set of techniques built into a platform for executing a wide range of statistical
tests on inputs of MPC protocols. Their contribution is use-case agnostic and can be seen
as a toolbox to verify inputs. It combines zero-knowledge proof with MPC protocols.

External Authentication. Finally, the third category considers that a third party
has generated and authenticated the inputs. In Chapter 5, we call this entity a data
source. Backes et al. [BBFR15] introduced this problem as having a client proving
computations on authenticated data to a third party oblivious of the data. Their solution,
named ADSNARK, relies on SNARKs [BSCTV14] and directly embeds the authentication
verification in the proof system. However, ADSNARK does not support the feature of
data offloading and every new computation on the data requires a new proof. And, by
relying on SNARKs [PHGR13, BSCTV14] their approach suffers from the need for a
trusted setup and relies on different cryptographic assumptions. Finally, as with any
other SNARK approach, it is unclear how feasible the proof system will cope with the
large dimensionality of trending FHE based on polynomial lattices without affecting the
proving time. Consequently, because ADSNARK does not provide circuit privacy, the
client cannot prove the correct encryption of the authenticated data.
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Overview and Contributions.
Due to the limitations of prior works when combined with FHE, in Chapter 5,
we present a solution based on multiparty computation in the head to generate
concurrently a proof of correct FHE encryption of authenticated inputs.

In the following chapters, we propose three different constructions to address the challenges
unaddressed by prior works. In Chapter 3, we explore how to practically verify the
computing server’s evaluation. In Chapter 4 we propose a construction to efficiently verify
the client’s operations. Finally, in Chapter 5, we introduce a solution to verify the correct
encryption of authenticated inputs. Overall, our contributions enable us to efficiently
protect FHE pipelines without compromising on the FHE scheme and optimizations, and
we thoroughly evaluate the performance of our solutions.



Chapter 3

Verifiable Encodings for Secure
Homomorphic Analytics

Homomorphic encryption has become a practical solution for protecting the privacy of
computations on sensitive data. However, existing homomorphic encryption pipelines do
not guarantee the correctness of the computation result in the presence of a malicious
adversary. We propose two encodings compatible with state-of-the-art fully homomorphic
encryption schemes that enable practical client-verification of homomorphic computations,
while enabling all the operations required for modern privacy-preserving analytics. Based
on these encodings, we introduce VERITAS, a ready-to-use library for the verification of
computations executed over encrypted data. VERITAS is the first library that supports
the verification of any homomorphic operation. We demonstrate its practicality for
various applications such as ride-hailing, genomic-data analysis, encrypted search, and
machine-learning training and inference.
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3.1 Overview

With HE gaining in popularity, it becomes crucial to ensure its security against malicious
actors and, in particular, during HE evaluations. However, existing HE schemes [FV12,
HPS19, BGV14, KPZ21] do not provide clients with any guarantees about the correctness
of the computations performed by the computing server. Thus, a malicious adversary can
break the security and privacy of the HE computation without being detected [CMS+23,
VKH23]. For instance, clients can be fooled into accepting a wrongful computation result
and potentially leak unintended information from the decryption [CT14]. In current HE
applications, the lack of computational integrity can lead to catastrophic consequences.
For example, in medical applications, an adversary inducing a wrongful prediction might
cause a misdiagnosis, and in machine learning an adversary able to inject backdoors during
training can create vulnerabilities when the model is deployed [BS21, BR18, BNL12].

A trivial way for clients to check the correctness of the computation would be to recompute
the result in plaintext. However, this is not always feasible, e.g., in multi-client scenarios
where not all the input data is available to the clients. To address this problem, researchers
have proposed generic verifiable computation techniques, e.g., [BFH+20, BBB+18, GKR15,
GGP10, PHGR13, WYKW21], to check the integrity of server computations. These
techniques, however, are hard to integrate with lattice-based HE. This is because the
efficiency gains that make modern HE practical (e.g., for medical research [CJLL17,
KL15, LYS15] and ML [BGBE19, CGBH+18, GLN12, LKS17, SPTP+21, SBTP+22])
stem from the use of (i) specific polynomial constructions and algebraic parameters, and
(ii) non-linear operations (e.g., relinearization and rotation) and parallel processing over
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Table 3.1: Comparison between VERITAS and prior work w.r.t. the supported HE
operations (linear, multiplicative, rotation, relinearization, bootstrapping) and parame-
terization.

Scheme Linear Mult.
depth Relin. Rot. Bootstrap. Flex. params.

[FGP14] ✓ 1 ✗ ✗ ✗ ✗

[FNP20] ✓ any ✗ ✗ ✗ ✗

[BCFK21, GNSV21] ✓ any ✗ ✗ ✗ ✓

Ours ✓ any ✓ ✓ ✓ ✓

encrypted data (Single Input, Multiple Data; SIMD). Generic verification techniques
cannot cope with all these constraints efficiently.

To date, only a handful of verification works are tailored to homomorphically encrypted
data. Fiore et al. [FGP14] pioneered a solution based on homomorphic Message Au-
thentication Codes (MACs) to verify encrypted computations. Their work focuses only
on verifying quadratic functions over a constrained version of the BV scheme [BV11b].
Thus, it cannot support flexible parameterization (e.g., large-degree polynomials) and
complex operations (e.g., rotations) required to implement modern HE-based applications.
Subsequent works rely on generating a proof-of-correct computation using succinct non-
interactive arguments of knowledge (SNARKs) [FNP20, BCFK21, GNSV21]. But, due to
incompatibilities of SNARKs with the algebraic structure of recent HE schemes and their
non-algebraic operations (e.g., rounding) these works also do not support variable HE
parameters [FNP20] and core HE operations [BCFK21, GNSV21] such as relinearization,
rotation, and bootstrapping. Without support for flexible HE parameters and critical HE
operations, these works have very limited application in practice.

Our Contribution. We provide in this chapter the first practical solution that enables the
verifiability of all the operations supported by state-of-the-art lattice-based HE schemes
over the integers (see Table 3.1). Therefore, our solution supports any existing privacy-
preserving application that employs such HE schemes and can protect its computation
integrity against a malicious computing server.

The key idea behind our solution is to shift the verification from the ciphertext do-
main, where the constraints imposed by the algebraic structure of HE ciphertexts limit
the practicality of previous solutions, to the plaintext space. To this end, we design
two new plaintext HE-encoders that, combined with HE schemes, instantiate homo-
morphic authenticators [CF13, CKV10, GW13], i.e., efficient constructions to verify
homomorphically-executed computations. These authenticators permit the verification of
the computations by checking a set of challenge values that can be pre-computed without
access to the original input data (i.e., this pre-computation can be assigned to any entity
that does not collude with the computing server). This makes our solution suitable for
multi-party scenarios [CZW17, CDKS19, MTPBH21] and computationally constrained
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clients. Our first encoding is based on replication and takes advantage of the batching
encoder supported by modern HE to introduce error-detection and redundancy in the
data. The second one, achieves more compact authentications and requires less challenge
values to be verified by encoding the data using a polynomial information-theoretic MAC.
The two encoders achieve different tradeoffs depending on the volume of input data and
the depth of the computation, hence, they can support various application settings.

Using our novel encodings, we design VERITAS, an open-source library that facilitates
the conversion of existing HE computing pipelines, that assume an honest-but-curious
computing server, into pipelines that can resist a malicious-but-rational server [AL07].
We benchmark VERITAS on native HE operations and evaluate its performance on five
use cases: ride-hailing, genomic-data analysis, encrypted search, and machine-learning
training and inference, where computation integrity is crucial. Our results demonstrate
that VERITAS provides verification capabilities that were out of reach using prior work,
at minimal costs for the client and the server. For instance, our solution is the first to
practically enable the verifiability of a two-layer neural network evaluation for image
recognition, with less than 1× computation overhead for the client and server, compared
to the HE baseline. It also enables the verifiability of a disease prediction result on
genomic data with less than 3×. In both cases, the communication overhead is at most
2×.

In summary, our contributions are the following:

• The design of two error-detecting HE encodings that support all the operations enabled
by efficient HE schemes over integer plaintexts. We provide an in-depth study of their
respective utility tradeoffs.

• Several optimizations that reduce the communication and computation overhead induced
by our encodings. We present, in particular, a new communication-efficient polynomial
compression protocol and a client-aided re-quadratization technique that reduces both
the server’s computation overhead and the overall communication overhead.

• The implementation of VERITAS, a library that clients can use to detect with high
probability a malicious server attacking the HE pipeline. VERITAS is the first open-
source and ready-to-use library that enables off-the-shelf secure homomorphic analytics
under malicious-but-rational adversaries. We evaluate VERITAS’ performance on five
use-cases and show that it outperforms the state of the art [FGP14, GNSV21].

3.2 Problem Statement

In this section, we present our system and threat models and the desired objectives,
before presenting an overview of our solution.
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Figure 3.1: HE pipeline. It returns the homomorphic evaluation of a function f(·) over
the encryption of a message m.

System & Threat Model. We consider an HE-based computation scenario where
one or more clients desire to perform computations on their sensitive data, which they
encrypt with an HE scheme. The clients employ a computing server that is responsible
for carrying out the computations; these range from the entirety of the computation in
the case of a single-client [CGBH+18, CJLL17, KL15], to aiding in the homomorphic
evaluation for multiparty scenarios [CZW17, CDKS19, MTPBH21, CZW17, CDKS19].
We consider a malicious-but-rational server [AL07] (i.e., covert) that tampers with the
computations only if it has a high probability of not being detected. We assume that the
clients and the server are authenticated to each other. We do not consider network faults
in the communication.

Objectives. The client wants (i) to guarantee the privacy of its input data and the
computation output vis-à-vis the server. In particular, the server should learn nothing
about the input data and the computation result. The client also wants (ii) to ensure
the correctness of the result with respect to the agreed-upon computation and inputs:
the client must be able to detect a cheating server with probability at least 1− 2−λ for a
security parameter λ.

Solution Overview. To protect data privacy during outsourcing and the subsequent
server computation (i.e., Objective (i)), the client uses state-of-the-art lattice-based HE to
encrypt it (§3.3.1). This protects also the privacy of the output, as long as the decryption
key remains secret on the client side. To ensure the correctness of the server’s computation
on the outsourced data (i.e., Objective (ii)), we embed the verification of the computations
into the plaintext space. During outsourcing, the client encodes its data using an error-
detection encoder, encrypts and sends it (see Figure 3.2). We design two encoders with
error-detecting capabilities that respect the homomorphic operations in the plaintext
space. Combined with the HE scheme, they emulate homomorphic authenticators (§3.3.3)
that enable client-based verification capabilities and act in lieu of the classic HE pipeline
(by adapting the HE evaluation and decryption to the new plaintext encoders – see
Figure 3.1 vs. Figure 3.2). After the server computation, the client decrypts and verifies
the integrity of the encodings, thus vouching for the computation correctness with high
probability. The first encoder, which is based on replication, mixes replicas of the data
with challenge values in an extended vector (see Figure 3.3) that is encrypted by the client.
After the server computation, the client can check its correctness by decrypting and
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Figure 3.2: Enhanced HE pipeline. The square boxes correspond to the original HE
pipeline (see §3.3.1 and Fig. 3.1) and the dotted boxes are the new components offering
verification capabilities. The grey box represents the computing server. For a message m
associated with a label τ and for a function f(·), the verification pipeline checks if the
Eval. step performed by the computing server was executed correctly. skHE and evk are
the HE secret key and evaluation key respectively. K is the encoder’s secret key.

inspecting the resulting extended vector. This encoder is detailed in §3.4. The second one,
which is based on a polynomial encoding, encodes the message as a bivariate polynomial
(see Figure 3.4) that is encrypted by the client. After the server computation, the client
verifies its correctness by decrypting and evaluating the resulting polynomial on a secret
point. This is presented in §3.5. The two encodings support any HE operation and
prevent malicious servers from tampering with the requested computations undetected
while achieving different efficiency trade-offs that we analyze in §3.6.3.

3.3 Preliminaries

We introduce some key components used in this work. We refer the reader to Chapter 1
for a description of our notation and the background on FHE.

3.3.1 Homomorphic Encryption Encoders

In this section, we work with FHE schemes that support modular arithmetic in a field
Zt, e.g., the BGV and BFV schemes. These schemes share the same plaintext algebra
and differ only in the plaintext data-representation and encryption-noise management
(see [KPZ21]). In the remainder of this section, we will work with the BFV scheme we
described in Chapter 1.

HE Encoders. As shown in Figure 3.1, a plaintext encoder converts a vector of scalar
values into a polynomial element in Rt. Several encoders exist: e.g., scalar, integer, and
fractional ones (see [Lai17, §7]). In this work, we employ an encoder called batching that
enables Single Instruction, Multiple Data (SIMD) operations. It converts a vector in ZNt
to a polynomial in Rt. To enable server-computation verifiability (see §3.2), we extend
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this encoder to introduce error-detection capabilities (see §3.4, §3.5). We term slot a
component of the plaintext vector before its encoding as a polynomial.

3.3.2 Verifiable Programs

To enable computation verification, it is necessary to clearly identify the inputs, the
output, and the function being evaluated. We briefly recall here a formalization of
identifiers and programs for verifiable computation [BFR13, GW13]. Any possible input
message m is represented by an identifier τ . This identifier can be seen as a string
uniquely identifying the data in a database. A program corresponds to the application of
a function (i.e., circuit) f(·) to inputs associated with specific identifiers: it is labeled as a
tuple P=(f(·), (τ1,..., τn)). The correctness of a program ensures that, given the identified
inputs, the output of the function is the expected one without corruption. A program is
said to be well-defined if all inputs contributing to the computation are authenticated.

3.3.3 Homomorphic Authenticators

Homomorphic authenticators (HA) [GW13] are cryptographic schemes used to verify
computation integrity. They consist of four probabilistic-polynomial time (PPT) proce-
dures: the key generation (HA.KeyGen), the authentication (HA.Auth) of the input
data, the evaluation (HA.Eval) of an agreed-upon function on authenticated data, and
the verification (HA.Ver) of the claimed output. Correctly instantiated homomorphic
authenticators provide authentication and evaluation correctness as well as security (see
Appendix A.1 for a formal description). In the following sections, we show how to instan-
tiate an HA using a verifiable HE-encoding. As mentioned in §3.2, by adapting the HE
pipeline to work with our new plaintext encoders, we emulate the HA procedures for the
authentication, the evaluation, and the verification. Figure 3.2 displays the modifications
performed to the original HE pipeline as dashed boxes.

3.4 Replication Encoding

We first design a replication-based verifiable encoding (§3.4.1) that takes advantage
of the native HE batching to introduce error-detection and redundancy in the data.
Then, we construct an authenticator (§3.4.2) following the footprint of homomorphic
MACs [GW13, CKV10].
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m, τ M = m m m m· · · · p
∈ Rt

FK(τ, 2)FK(τ, 3) FK(τ, 5) FK(τ, 8)

/∈ S

Figure 3.3: Replication Encoding. A message m with identifier τ is encoded as a vector M with
challenge values (using the PRF FK(·)) for indices in the challenge set S and replications of m
for all the others. For ease of presentation, here m ∈ Zt and λ = 8.

Scheme 1: Replication-Based Encoder in Rt=Zt[X]/⟨XN+1⟩

ReplicationEncoder(m, τ ;λ, S, FK(·)):
1. Set an empty vector M=().
2. For the message m∈ZN

t with identifiers in τ . ∀i∈[N ]:
• Set a vector Mi ∈ Zλ

t s.t. Mi[j] = m[i] if j /∈ S and Mi[j]=FK(τ [i], j)
otherwise.

• Set the concatenations M=M|Mi.
3. Process M ∈ ZλN

t as (p1|...|pλ)∈Rλ
t using the batching encoder.

4. Return (p1| . . . |pλ).

3.4.1 Replication-Based Encoding

On input a vector m with identifier τ , a power-of-two security parameter λ, a challenge
set S ⊂ [λ] of size λ/2, and a pseudorandom function (PRF) FK(·), the replication-based
encoder returns an encoding as follows: For each scalar value of m (say the i-th), an
extended vector Mi of length λ is created. For all indices of Mi in S, the vector is filled
with a challenge value obtained from the PRF and the identifier τ [i] associated with m[i].
The remaining empty elements of Mi are filled with replicas of the initial message m[i].
All the extended vectors are then concatenated to create the encoding M. The encoding
is then parsed as a concatenation of HE plaintexts and encoded in Rt. A simplified
version of the replication encoding for one scalar value is presented in Figure 3.3, and the
encoder details are shown in Scheme 1.

3.4.2 Replication-Based Authenticator

We combine the replication-based encoding with an HE scheme to obtain a homomorphic
authenticator [GW13]. As we change the plaintext encoder, the evaluation and decryption
algorithms of the HE pipeline need to be adapted. We present how in the following.

Let FK :I→Zt be a variable length pseudorandom function (PRF) and HE a secure
homomorphic encryption scheme as in §3.3.1 with plaintext space Rt=Zt[X]/⟨XN+1⟩ of
degree N . We define a Replication Encoding-based authenticator (REP) as in Scheme 2
that we describe here.
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REP.KeyGen(1λ)→(evk, sk): For a power-of-two security parameter λ, this procedure
sets up the PRF with key K and instantiates the HE scheme such that both achieve at
least λ-bits security. It also generates the encryption and evaluation keys. The latter
comprise the relinearization key and the rotation keys. It randomly picks a challenge
set of indices S ⊂ [λ] subject to |S|=λ

2 . Finally, it sets the authenticator evaluation and
secret keys.

REP.Auth(m, τ ; sk)→ σ: For an input vector m∈ZNt with identifier τ it proceeds
sequentially. It first encodes m by calling ReplicationEncoder(m, τ ;λ, S, FK(·)) which
returns a list of plaintexts over Rt (Encode). Then, it encrypts each encoded plaintext
and appends it to a list of ciphertexts c (Encrypt). Finally, it outputs the authentication
σ:=c.

REP.Eval(f(·), σ⃗; evk)→ σ′: For a function f(·) and n authenticated input vectors
represented by σ⃗=(σ1,...,σn), it computes c′ by evaluating homomorphically the corre-
sponding SIMD circuit on the ciphertexts (c1,..., cn). All operations are executed slot-wise,
and rotations steps are increased by a factor λ. It outputs σ′:=c′.

REP.Ver(P,σ′; sk)→ {0, 1}: It parses the labeled program P=(f(·), (τ 1,..., τn)). Of-
fline, it pre-computes the challenge values by using both the identifier and the PRF, and it
evaluates on them the function f(·) in the plaintext space. If all the challenge evaluations
return the same value, abort. Online, it decrypts the ciphertext c′ in σ′ to the plaintext
vector M∗ and checks if for all slots j∈S the output matches the pre-computed challenge
for this slot. Moreover, it ensures that all the other slots j∈[λ] \ S evaluate to the same
value. If the above checks pass, it outputs 1 (i.e., it accepts).

Correctness. Authentication correctness follows directly from the correctness of the HE
scheme, and evaluation correctness follows from the canonical property and correctness
of the HE scheme: i.e., the HE scheme supports circuit evaluation and composition
(see [GW13]).

Security. The following theorem states that a misbehaving computing server has only
a negligible probability of tampering, without getting caught, with the computation
requested by the client.

Theorem 3.4.1. Let λ be a power-of-two security parameter. If the pseudorandom
function FK and the canonical HE scheme are at least λ-bit secure, then for any program
P , REP as in Scheme 2 is a secure authenticator and a PPT adversary has a probability
of successfully cheating the verification negligible in λ.

Proof Intuition: The security holds by the security of the PRF and by the semantic
security of the HE scheme: the server cannot distinguish which slots hold a replicated
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Scheme 2: Replication Encoding-Based Authenticator

• REP.KeyGen(1λ): For a power-of-two security parameter λ.
1. Choose a PRF key K←{0, 1}∗ for at least λ-bits security.
2. Set the HE keys (pkHE, evkHE, skHE)=HE.KeyGen(1λ) for at least

λ-bits security.
3. Randomly sample a challenge set S ⊂ [λ] s.t. |S|=λ/2.
4. Return evk=(evkHE,H) and sk=(K,S, skHE).

• REP.Auth(m, τ ; sk): For m ∈ ZN
t with identifiers in τ .

– Encode:(p1|...|pλ)=ReplicationEncoder(m,τ ;λ,S,FK(·))
– Encrypt:

1. Set an empty list c=().
2. ∀i ∈ [λ], set c = c|HE.Enc(pi;pkHE)
3. Return σ:=c.

• REP.Eval(f(·), σ⃗; evk): For a function f(·) to be computed over previously
authenticated encrypted inputs stored in σ⃗:

1. Parse the authenticated inputs σ⃗=(σ1,...,σn)=(c1,..., cn).
2. Evaluate c′ = HE.Eval(f(·), (c1,..., cn); evkHE).
3. Return σ′:=c′.

• REP.Ver(P,σ′; sk): Parse the target program P=(f, (τ 1,..., τn)) and
c′ = σ′. Pre-compute the challenge values:

1. ∀i∈S, ∀j∈[n], ∀k∈[N/λ], set ri,j,k=FK(τ j [k], i).

2. ∀i∈S compute on the challenges r̃i = f({ri,j,k}k∈[N/λ]
j∈[n] ) (w.l.o.g. the

output is a scalar value stored in the first extended vector).
3. If ∀i∈S r̃i = r̃, then abort.

In the online phase:
1. Set M∗=(M1,...,Ml)=HE.Dec(c′; skHE) with l=N/λ.
2. ∀i∈S, check if M1[i]=r̃i. If not, return 0.
3. Check that ∀i∈[λ] \ S, all M1[i] have the same value. If not, return 0.
4. Return 1 (i.e., accept).

value or what the challenge values are. In fine, the adversary can cheat without being
detected with only a negligible probability. The formal proof is presented in Appendix A.2.

Overhead. We observe that REP induces, in the worst case, communication and
computational overhead that is linear in the security parameter λ for both the client and
the server. Indeed, a vector of N values needs to be encoded as λ separate ciphertexts
and λ/2 challenges need to be pre-computed before the verification. In comparison with
the original homomorphic MAC [GW13], REP does not modify the encryption procedure.
Compared to computation delegation [CKV10], REP enables verification of computations
over unknown but identified by τ inputs.
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Figure 3.4: Polynomial Encoding. A message m∈ZN
t identified by τ is encoded as P using the

secret α and the challenge vector rτ .

3.4.3 Optimizing the Verification

REP relies on both the generation of challenges and the circuit evaluation on these
values. As these are independent of the inputs (only their identifiers are required), they
can be pre-processed and computed offline. The computation on the challenges can be
outsourced to any entity that does not collude with the computing server. Any standard
verifiable computation techniques, such as interactive proofs [GKR15], SNARKs [BBB+18]
or STARKs [BSCR+19], could be employed to ensure the correct computation (see
Appendix 3.7.1). Additionally, similarly to prior work on computation verification [BFR13,
FG12], one can rely on a closed-form PRF [BGV11] to enable the partial re-use of the
challenges for evaluation over different datasets. Depending on the function under
evaluation, this could accelerate the verification at increased costs for generating the
encoding and the challenges. This also holds for the second encoder that we present next.

3.5 Polynomial Encoding

We design a more compact encoding (§3.5.1) and construct an authenticator that requires
fewer challenge values to be verified (§3.5.2) following Catalano and Fiore’s information-
theoretic MAC [CF13].

3.5.1 Polynomial-Based Encoding

On input a vector m∈ZNt with identifier τ , a secret key α, and a pseudorandom function
(PRF) FK(·), the polynomial-based encoder outputs a polynomial P such that P (0)=m

and P (α)=rτ , with rτ the challenge vector obtained from the PRF FK(·). Then, each
component of P is encoded using batching. A simplified version of the encoding is
represented in Figure 3.4 and the details of the encoder are shown in Scheme 3.

3.5.2 Polynomial-Based Authenticator

We combine the polynomial-based encoding with an HE scheme and show that it instan-
tiates a homomorphic authenticator [CF13]. Similar to REP, we describe the complete
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Scheme 3: Polynomial-Based Encoder in Rt=Zt[X]/⟨XN+1⟩

PolynomialEncoder(m, τ ;α, FK(·)):
1. Compute rτ∈ZN

t s.t. ∀i∈[N ], rτ [i]=FK(τ [i]).
2. Set y0 and y1 to be the batching encoding of m and [ rτ−m

α ]t.
3. Return P = (y0,y1).

pipeline.

Let FK :I→Zt be a variable length PRF and HE a secure homomorphic encryption scheme
as in §3.3.1 with plaintext space Rt=Zt[X]/⟨XN+1⟩ of degree N . We define a Polynomial
Encoding-based authenticator (PE) in Scheme 4 and briefly describe it here.

PE.KeyGen(1λ)→(evk, sk): For t a λ-bit prime number, it samples a random invertible
point α in Z∗

t . It sets up the PRF with key K and the HE scheme such that both achieve
at least λ-bit security. It generates the encryption and evaluation keys for the HE scheme.
Finally, it outputs the authenticator evaluation and secret keys.

PE.Auth(m, τ ; sk)→ σ: On input a plaintext vector m ∈ ZNt with identifiers τ (and N
the degree of the plaintext polynomial ring), it calls PolynomialEncoder(m, τ ;α, FK(·))
that returns (y0,y1)∈R2

t (Encode). Then, it encrypts y0 and y1 to c0 and c1 respectively
using the HE scheme. It returns the authentication σ=(c0, c1). Note that initially, a
message is encoded as a degree-one polynomial in Rq (i.e., a length 2 list of polynomials)
identified by its coefficients c0 and c1. Through the evaluation process, this degree
can increase. We denote by d the polynomial encoding’s degree (e.g., d=1 after a fresh
authentication).

PE.Eval(f(·), σ⃗; evk)→σ′: A function f(·) represented by an arithmetic circuit C over
the ciphertexts is evaluated gate by gate on the n previously authenticated input vectors in
σ⃗=(σ1,...,σn). The output of each gate in C depends on its functionality: Additive gates
execute the corresponding HE operation component-wise on the input authentications, and
the multiplicative ones perform a convolution. Rotation gates execute the corresponding
homomorphic rotation on each component of the input authentication. After the circuit
evaluation, this procedure returns σ′, the authentication output of the final gate in C.

PE.Ver(P,σ′; sk)→ {0, 1}: It parses the labeled program P=(f, (τ 1, ..., τn)) and
σ′=(c0,..., cd). Offline, it pre-computes the value ρ =f(FK(τ 1),..., FK(τn)). Online, it
decrypts the encrypted vector σ′ to (y0,...,yd) and checks if ρ=

∑d
i=0 yi ·αi. If the check

passes, it accepts the result y0.

Correctness. Authentication correctness follows from the correctness of the HE scheme
(§1.3). The evaluation correctness holds from the construction. For linear gates (additions,
multiplication by constant, and rotations), correctness follows from the correctness of the



Chapter 3. Verifiable Encodings for Secure Homomorphic Analytics 39

Scheme 4: Polynomial Encoding-Based Authenticator

• PE.KeyGen(1λ): Let t be a λ-bit prime number.
1. Sample a random invertible point α←Z∗

t .
2. Choose a PRF key K←{0, 1}∗ for at least λ-bits security.
3. Initialise the HE keys (pkHE, evkHE, skHE)=HE.KeyGen(1λ) for at

least λ-bits security.
4. Return evk=(evkHE, t) and sk=(K,α, skHE).

• PE.Auth(m, τ ; sk): For m ∈ ZN
t with identifiers in τ .

– Encode: (y0,y1) = PolynomialEncoder(m, τ ;α, FK(·))
– Encrypt:
1. Create ci=HE.Enc(yi;pkHE), ∀i∈[0:1].
2. Return σ:=(c0, c1).

• PE.Eval(f(·), σ⃗; evk): Let C be the HE arithmetic circuit of a function
f(·) to be computed over previously authenticated encrypted inputs stored
in σ⃗.

1. Parse σ⃗=(σ1,...,σn).
2. Evaluate homomorphically each gate in C and output σ=(c0,..., cd),

an authentication of degree d, s.t.:

–Addition: On input two authentications σ1 and σ2 of degree d1
and d2 resp., set d=max(d1, d2) and σ=σ1 + σ2, i.e., ∀k∈[d+1],
σ[k]=HE.Add(σ1[k],σ2[k]).

–Multiplication: On input σ1 and σ2 of degree d1 and d2
resp., set d=d1+d2 and perform a convolution, i.e., ∀k∈[d+1],
σ[k]=

∑k
i=1 HE.Mul(σ1[i],σ2[k−i+1]; evkHE).

–Rotation by r: On input an authentication σ1 of degree d1,
set d=d1 and rotate all components of σ, i.e., ∀k∈[d+1],
σ[k]=HE.Rotr(σ1[k]; evkHE).

3. Return σ′, the authentication output of the final gate in C.
• PE.Ver(P,σ′; sk): Parse the target program P=(f, (τ 1,..., τn)). Pre-

compute the challenge values:
1. ∀i∈[n], ∀j∈[N ], set rτ i∈ZN

t s.t. rτ i [j]=FK(τ i[j]).
2. Compute ρ=f(rτ1

,..., rτn
).

Then, during the online phase, parse σ′=(c0, . . . , cd) obtained from the
evaluation and:

1. Set the result to y0=HE.Dec(c0; skHE).
2. Set yi=HE.Dec(ci; skHE), ∀i∈[0:d].
3. Check if ρ ?

=
∑d

i=0 yi · αi, else return 0.
4. Return 1 (i.e., accept).

HE scheme encrypting the encoding of the input. The multiplicative gate is a convolution
between the inputs: When executed on the ciphertext it ports to the plaintexts by the
correctness of the HE scheme. By the definition of polynomial convolution, this leads to
an encoding of the product of scalar inputs. PE differs from the original authenticator by
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Catalano and Fiore [CF13] by injecting, before encryption, the encoding in the native
plaintext polynomial ring.

Security. The following theorem states that a misbehaving server has only a negligible
probability of cheating without being detected.

Theorem 3.5.1. If the pseudorandom function FK and the canonical HE scheme are
at least λ-bit secure and if t is a λ-bit prime number, then, for any program P with
authentications of bounded degree, PE is a secure authenticator and a PPT adversary
has a probability of successfully cheating the verification negligible in λ.

Proof Intuition. The security holds from the security of the PRF and the polynomial
identity lemma for various polynomials over the field Zt (as t is a prime number); the
probability of the adversary cheating without being detected is negligible in λ. The formal
proof is presented in Appendix A.3.

Overhead. After the evaluation, the size of the resulting PE authentication σ′ grows
linearly with respect to the degree of the polynomial computation due to the convolution
between the authentications. Hence, for programs with large multiplicative depth, PE
might introduce a significant communication overhead between the client and the server
and become less communication efficient than REP. This growth can also affect the
client’s computational overhead due to the cost of pre-computing the challenges plus the
cost of the polynomial evaluation (Step 3 in PE.Ver). To account for this issue, we design
a polynomial compression protocol (§3.5.3). Moreover, the convolutions introduced by the
multiplicative gates during the evaluation phase yield a non-negligible computational and
communication overhead for the computing server (see §3.6). For client-aided scenarios,
we mitigate the effects on the computation and communication overheads, by introducing
a new technique called re-quadratization (§3.5.4).

3.5.3 Polynomial Compression Protocol

As seen in §3.5.2, the size of the PE authentication σ′ grows linearly with the degree
of the function represented by the evaluated circuit (i.e., it comprises more and more
ciphertexts). This can cause a significant communication overhead between the server and
the client. To mitigate this overhead, we design a polynomial compression protocol (PoC)
that compresses the authentication from d+1 ciphertexts to only two, for authentications
of degree d. Informally, once the computing server (i.e., the prover) has sent the claimed
output y0, the client (i.e., the verifier) challenges the server with a hash function. The
server responds with the hash digest and the intermediate results {wi}di=0. A sketch of our
PoC can be seen in Figure 3.5. This protocol is made non-interactive in the ROM using
the Fiat-Shamir heuristic. As we will see in §3.6.3, the PoC reduces the communication
and verifier overhead at the cost of higher runtimes for the prover.
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Server (Prover) Client (Verifier)ρ(α)

σ′=(y0,...,yd)
m1=y0 1○ y0=m

2○ δ, β δ, β ←$ Zt

{wi=yi(δ)}di=0

Hδ,β(σ
′) ∈ Zt

m2=(Hδ,β(σ
′), {wi}i) 3○ w0

?
= m(δ)

Hδ,β(σ
′)

?
=

d∑
i=0

wi·βi

4○
∑d

i=0 wi·αi ?
= ρ(α)

Figure 3.5: Polynomial Compression Protocol (PoC, §3.5.3). For clarity, polynomials are
represented in the plaintext space.

The combination of PE with PoC leads to a secure authenticator. Informally, the
compression uses a polynomial hashing mechanism that by the polynomial identity lemma
gives a negligible soundness error for an appropriate choice of parameters. We provide
the full proof in Appendix A.4.

3.5.4 Interactive Re-Quadratization

As discussed in §3.5.2, PE executes a convolution for every multiplication gate of the
evaluation circuit. Hence, due to the growing number of homomorphic multiplications
and ciphertexts, the longer the input encodings are, the heavier the server’s operations
are. When interactions between the server and the client are possible (i.e., in client-aided
settings), we propose a re-quadratization (ReQ) (similar to the relinearization used in
HE). It converts an authentication comprising five ciphertexts (i.e.,σ′=(c0,..., c4) for the
authentication of a depth-two computation) to one of three ciphertexts (i.e., related to a
depth-one). In a nutshell, ReQ evaluates part of the verification procedure for the terms
of higher degree (i.e., c3 and c4) and embeds the result in the lower terms (i.e., c1 and
c2). Our interactive protocol bounds the authentication to, at most, three ciphertexts,
thus limiting the computational burden of computing the convolution of high-degree
polynomials for the server (see §3.6.3).

Figure 3.6 presents our protocol in detail. In a nutshell, the client decrypts the higher
term ciphertexts sent by the server (i.e., c3 and c4) and returns to the server encryptions
of two masked random linear combinations of the plaintexts. The random masks create
an offset of the encoding that is removed by the shift value ∆G that keeps track of the
offset up to the re-quadratization after the G-th multiplication gate. The correctness of
PE combined with ReQ holds directly by construction. The security of the combination
is guaranteed by the random maskings. A full description of ReQ and its security proof
are presented in Appendix A.5.
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Server(Pk, τ ) Client(sk,Pk, τ , skHE)

σ′=(c0,..., c4)
c3, c4 yi:=HE.Dec(ci; skHE), i∈{3,4}

∆G:=Shift(PG, τ , sk,Ω)
κ1, κ2 ←$ Zt and r, r̄←$Rt
ȳ2=ακ1y3 + α2κ2y4 + r

ȳ1=α3y4+α2y3−αȳ2−∆G+r̄

Ω:=Ω ∪ {(r, r̄)}

c̄i:=ci+c̄i, i∈{1,2} c̄1, c̄2 c̄i:=HE.Enc(ȳi;pkHE), i∈{1,2}

σ̄=(c0, c̄1, c̄2)

Figure 3.6: Interactive Re-Quadratization (ReQ) for gate G (§3.5.4).

Similar to other client-aided operations [JVC18, AGHV22, AFS18], ReQ trades-off inter-
activity for higher performance. The theoretical communication complexity of ReQ is the
exchange of four ciphertexts per re-quadratization. This leads to a linear overhead in the
degree of the function as in the original PE. The memory complexity for the client is to
keep the state of the blinding list Ω (storing two new polynomials per re-quadratization).
The computation complexity for the client is to execute two HE encryption/decryption
operations and to compute the offset ∆G (i.e., a plaintext convolution). Overall, ReQ
requires that (i) both client and server be online, and (ii) the client engages in some
computations. Nevertheless, ReQ has the major advantage of maintaining a σ′ of at
most degree-two, which implies (i) lower communication overhead to obtain the result,
and (ii) lower computation overhead for the server compared to the original PE (as the
convolution now involves at most two degree-two polynomials).

3.6 VERITAS

We introduce VERITAS, a new library that implements the two encodings and au-
thenticators (and their optimizations) described in §3.4 and §3.5. We first present our
implementation (§3.6.1), before benchmarking native HE operations (§3.6.2) and evalu-
ating it over several use-cases (§3.6.3). We then compare VERITAS’ performance with
prior work (§3.6.4) and summarize the main takeaways (§3.6.5).

3.6.1 Implementation and Hardware

VERITAS facilitates the transition from a standard HE pipeline (Figure 3.1) to a pipeline
enhanced with computation verification capabilities (Figure 3.2) by implementing (i) our
two encoders and (ii) the corresponding authenticators. VERITAS instantiates REP
and PE with the BFV homomorphic encryption scheme, and Blake2b [SA15] as a PRF.
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VERITAS offers flexible parameterization of the authenticator security parameter (λ)
to provide sufficient security guarantees, depending on the application requirements
(typically, λ≥32 for malicious-but-rational adversary models [Lin13]), and it sets the
HE and hash function security requirements to max(λ, 128)-bits. By default, using
VERITAS does not provide any feedback to the computing server (see Appendix 3.7.3).
As BFV is a semantically secure canonical homomorphic encryption scheme and Blake2b
yields a secure PRF [LMN16], and as both are parameterized to achieve 128-bits security,
VERITAS securely instantiates REP and PE. Thus, it protects the privacy of the client
data and the computation result; by semantic security of BFV, the ciphertexts and
the authentications reveal nothing about the underlying data before decryption. We
build VERITAS in Golang on top of Lattigo’s BFV implementation [EPF21]. It is
modular and enables developers to seamlessly obtain client verification capabilities in
existing homomorphic encryption pipelines (i.e.,by only changing a few lines of code).
VERITAS can be employed to verify the result correctness of any circuit admissible by
BFV. We show its versatility over various use cases in §3.6.3. All experiments were
conducted on a machine with an Intel Xeon E5-2680 v3 processor and 256 GB of RAM.
VERITAS’ code is available in an open-source repository [LDS21].

3.6.2 Benchmarking BFV Operations

As described in §3.4 and §3.5, both authenticators trivially support the BFV linear
operations (e.g., addition, subtraction, constant multiplication): These operations are
simply executed on all components of the authentication σ. Although both authenticators
support any rotations, REP requires keys with an increase of the rotation step by a factor
of λ to avoid mixing up the various slots. These linear operations do not expand the
size of the authentication. REP naturally supports multiplication operations, whereas
PE requires a convolution for every multiplication. The computation complexity of this
operation depends on the degree d of the input authentication. Both REP and PE
naturally support relinearization. We present benchmarks of the amortized evaluation
costs (over the ciphertext slots) for each BFV operation in Table 3.2 for λ=32, averaged
over 100K runs. The BFV parameters are set to (logN=14, log q=438). We observe that
REP’s linear operation timings are multiplied by λ (as the messages are replicated λ times),
whereas PE less than triples them. Regarding multiplications, REP’s computational
overhead remains constant and the computational overhead of the PE scheme increases
with every depth of the circuit. Furthermore, each multiplication introduces a linear
growth of the authentication size hence affects memory and communication. In terms
of memory requirements, REP has in the worst case a linear overhead in λ (this can
be reduced if the whole encoding fits into a single ciphertext). For PE, the size d

of the authentication is linear in the degree of the evaluated function. We discuss in
Appendix A.6 the influence of the security parameter λ on VERITAS’ overhead.
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Table 3.2: Amortized timings of VERITAS for homomorphic operations evaluation (µs) for an
authenticator’s security parameter λ=32. The baseline is the standard BFV scheme.

Op. Add. Mul. Const. Rot. Relin. Mul. depth
1 2 3

BFV 0.02 0.04 2.3 1.8 2.5 3.5 4.0

REP 1.07 1.4 70 60 105 108 118

PE 0.09 0.1 2.9 4.8 9.3 15.0 30.1

3.6.3 Experimental Case Studies

We now evaluate VERITAS on five use-cases by introducing computation verification
capabilities in existing homomorphic pipelines: ride-hailing (§3.6.3.1), genomic-data
analysis (§3.6.3.2), encrypted search (§3.6.3.3), and machine-learning prediction and
training (§3.6.3.4 and §3.6.3.5, resp.). For each use-case, we first describe the baseline
(i.e., the homomorphic encryption pipeline that protects only privacy) and then analyze
the performance of VERITAS using both authenticators and their optimizations when
relevant. Note that, although the PE operations are embarrassingly parallelizable, we
evaluate them on a single thread for the sake of comparison. VERITAS’ relative (with
respect to the baseline) computation and communication overheads (i.e., (x−xbase)/xbase))
are presented in Figure 3.7; these overheads are averaged over 1K runs. We group the
homomorphic authenticator (HA) procedures into three stages: (a) the Create stage
represents the HA.KeyGen() and HA.Auth() procedures executed by the (offloading)
client, (b) the Eval. stage that accounts for the HA.Eval() ran by the computing server,
and (c) the Verify stage which invokes the (decrypting) client HA.Ver() procedure.

3.6.3.1 Ride-Hailing Services

Ride-hailing services enable the matching of a driver to a customer (or rider), depending
on their locations. As location data can leak sensitive information [Her18, VDSKK18], ex-
isting solutions use HE to protect confidentiality against the ride-hailing service [AHHK18,
PDE+17]. Furthermore, it is crucial to verify the correctness of the matching in order to
ensure a fair and transparent process [BH20, LGC+20].

Description. We evaluate an HE pipeline inspired by ORide [PDE+17]. Each driver
encrypts their location into a single ciphertext (each coordinates into a different slot
piloted by the driver ID). The rider encrypts its location into a fully packed ciphertext
(replicating its coordinates through the whole vector). The server computes the squared
difference between the ciphertext of the rider and the ciphertext resulting from the sum of
all drivers’ ciphertexts. It returns the result to all drivers and to the rider who decrypts
to discover the closest match. Using VERITAS, the drivers and the rider collectively
generate the authenticator key and encode their respective location vectors.
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Figure 3.7: VERITAS’ computation overhead (1K runs avg.) for various use-cases (Figs. 3.7a-
3.7e). The x-axis displays the authenticator/optimization employed. The y-axis represents the
relative time delta wrt the HE baseline. The values in parenthesis on top of the bars represent the
actual execution times. The values in parenthesis after each stage (Create, Eval., Verify) correspond
to the HE baseline runtimes. PoC and ReQ are PE’s optimizations from §3.5.3 and §3.5.4, resp.
The various operations are the client encoding (Ecd) and encryption (Enc), the server evaluation
(Eval), the client decryption (Dec), verification of the challenges (Verif), and decoding (Dcd). ReQ
and PoC overheads are included in the (Eval) and (Verif) stages. For each use-case, Table 3.7f
displays VERITAS’ relative communication overhead w.r.t. the HE baseline.

Parameterization. In our use case, we consider 32 drivers, and set the HE cryptographic
parameters to logN=15 and log q=700. With BFV, the client and drivers need in total
2.3s to encrypt their location, and the server’s matching requires 0.5s. The client
decryption/decoding needs 34ms and the client egress/ingress communication per client
is 6.3MB. We parameterize the encodings with a security parameter λ ⩾ 40 (i.e.,λ=64

for REP and t a 56-bit prime for PE). Due to this use-case’s low multiplicative depth, we
do not present the PoC and ReQ optimizations.
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Results. In Figure 3.7a, we observe that both authenticators induce minimal overheads
for the offloading client. With REP, the client’s computation time for the creation of
the encodings is multiplied by 1.6, whereas PE is 1.9× slower than the BFV baseline
for encoding and encryption. This modest overhead is due to the small amount of data
handled: REP’s extended vector fits into a single ciphertext. As a result, the client needs
3.6s and 6.7s to generate, respectively, a REP and a PE authentication. REP has almost
no effect on the evaluation time, whereas the circuit’s multiplication leads to a 2.4×
increase in the server evaluation with PE (1.8s). The effort of the decrypting client for
REP is mainly for the verification of the challenges, whereas for PE this is negligible; its
cost is dominated by the decryption and decoding of the ciphertexts. Indeed, compared
to the baseline (34ms), it takes 3.3× more time for PE to decrypt, decode, and verify
the result of the challenges. Although REP does not affect the communication overhead
between the server and the client, PE doubles the server’s ingress and triples the egress
costs (see Table 3.7f).

3.6.3.2 Genomic-Data Analysis

The emergence of direct-to-consumer and medical services that collect DNA to improve
users’ health and to customize their treatment [23a19, DNA19], along with the immutable
and personal nature of genomic data, raises numerous privacy concerns [EN14]. As a
result, several works consider protecting the confidentiality of the genomic data with
HE [ARHR13, DDC14, DCFT13, WZD+16]. The medical nature of the computations
performed on this data entails the correctness of the outcome to avoid misdiagnosis or
insurance fraud [BBFR15, TAD16].

Description. We apply VERITAS to a disease-susceptibility computation. Users offload
an encrypted version of their DNA (single nucleotide polymorphisms or SNPs) to the
server. Later on, a medical institution offloads encrypted weights to the server; these are
used for a specific disease prediction. The server computes the scalar product between
the weights and the SNPs, and it returns the result to the user. The user can verify the
result, even if it does not have access to the weights in cleartext and has access only to
their identifiers shared by the medical institution.

Parameterization. The user encrypts 215 SNPs of her DNA, and the medical center
encrypts their corresponding weights for breast cancer prediction [BMC+19]. The HE
cryptographic parameters are thus set to (logN=15, log q=700). The baseline client
encoding/encryption time is 0.13s, and the disease susceptibility computation by the
server requires 1.9s. The decryption/decoding needs 39ms, and the server ingress/egress
communication is 6.3/6.3MB, respectively. We set the authenticator security parameters
to λ=64 for REP and to log t=56 for PE.
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Results. Figure 3.7b shows that, as the client offloads a fully packed ciphertext, the
overhead induced by REP’s creation is 70× the baseline (9.2s). In contrast, PE only triples
the creation time (0.4s). The ingress communication to the server and its computations
abide by a similar scaling (404MB for REP and 13MB for PE). The server evaluation time,
compared to the baseline, is tripled in the case of PE (6s) and is 10× for REP (22s). This
is due to an optimized evaluation circuit for REP that only performs the required inner
sum after the 64 SNPs/weights ciphertexts are multiplied slot-wise; a naive evaluation
would lead to a λ-factor overhead. The ingress communication to the decrypting client
is tripled for PE, whereas it remains unchanged for REP. We also observe that REP’s
verification time (123ms) is dictated by the verification of the challenges (λ/2 of them),
whereas the fast verification time of PE’s challenge is shadowed by the decryption and
decoding of 2 additional ciphertexts compared to the baseline (leading to 157ms).

3.6.3.3 Search on Encrypted Data

Encrypted lookups protect the confidentiality of sensitive data while enabling clients to
query a database that stores it [AFS18, CDSG+21, RVVV17, WYXZ20]. As both the
database and the query are encrypted, the executing server does not learn any information.
This can be applied, for instance, to an encrypted DNS search or to a query for the
existence of a password in a list of vulnerable passwords [NPR19]. In such cases, an
unencrypted query would leak information to the server, e.g., the websites a client is
trying to access or their passwords; and an incorrect search result could lead to an
application-level vulnerability, e.g., redirection to a malicious website, or to the use of an
insecure password.

Description. We implement an encrypted DNS search in a database of domains of at most
16 characters in ASCII bit-representation. We follow the blueprints of the lookup use-case
implemented in HElib [IBM21a] that we adapt to BFV. The query’s bit-representation is
XORed with the bit-representation of all database entries. If any of the result’s bits are
null (i.e., this entry did not match the query), its bit representation is multiplied by 0.
The results for each entry are aggregated into a single ciphertext. For efficiency, several
database entries are packed into a single ciphertext. We deliberately choose this use-case
to demonstrate the impact of a large multiplicative depth on VERITAS’ efficiency.

Parameterization. The authenticator parameters are set to λ=64 for REP and to
log t=58 for PE. To support the circuit, we opt for (logN=16, log q=1, 440). We focus
on a fully packed ciphertext that comprises 512 database entries. The client needs 0.9s
to encode and encrypt the search query, and the server requires 30s to run it on the
encrypted database. The decryption/decoding executes at 140ms, and the client in/out
communication is 25MB per ciphertext.
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Results. REP introduces a significant computational and communication overhead for
the offloading client as the extended vector is encrypted into λ ciphertexts. PE, on the
contrary, less than triples the encoding/encryption time and communication overhead
towards the server. The server computational overhead is 51× more important for REP
(1, 500s), compared to the baseline. As the circuit is of depth 7 (with relinearization), the
convolutions required by the PE create significant computation and egress communication
overheads for the server (i.e., 83× or 2, 500s) for computations and 131× more communi-
cation than the baseline). Accordingly, PE’s verifying cost is dominated by the numerous
ciphertexts that store the encoding (21s). We observe that ReQ significantly reduces by
more than 20-fold the server and client computational overhead while minimizing the
communication overhead, compared to the standard PE approach (at the cost of online
client-server interactions). With ReQ, the server evaluation now takes only 120s with a
short client involvement during the interaction (4.9s). The client verification eventually
requires only 550ms (5.5s in total compared to 21s for standard PE). REP does not need
this optimization but needs more challenge values to be verified in the Verify phase.

3.6.3.4 Machine-Learning Prediction

Advances in machine learning (ML) enable new ways for data analytics and several
works explore the use of HE in order to protect, during ML inference, data confidential-
ity [BGBE19, MSS20, NWT+20, XLR+20, ZFW+20]. However, as the correctness of the
prediction can be tantamount to confidentiality, we apply VERITAS to an encrypted
ML inference pipeline. Indeed, misclassification or malicious predictions could render
the application pointless and have dire consequences, such as financial misprediction or
cyberthreat misclassification, for the end users [GGG17, MSS20, WYX+21, XLR+20].

Description. For this use case, we re-implemented the Low-Latency Privacy Preserving
Inference (LoLa) [BGBE19] pipeline in Go. This pipeline uses a neural network composed
of a convolutional layer (with 5 kernel maps of size 5×5 and a stride of 4), followed
by a square activation function and a fully connected layer. The model is pre-trained
on the MNIST hand-written digit dataset (comprising 28×28 grayscale images) and its
weights are offloaded by an ML provider. Following [BGBE19], the client encodes and
packs each image into 25 ciphertexts with different packing approaches that facilitate the
neural-network operations.

Parameterization. We use the HE parameters (logN=15, log q=700). The client
requires 1.6s to encode and encrypt the input image, and the server requires 13s to
perform the inference. The decryption/decoding executes at 330ms and the server
ingress/egress communication is 160/63MB. We set λ=64 for REP and log t=56 for PE.

Results. Figure 3.7d shows that, as the ciphertexts are not fully packed, REP introduces
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a negligible overhead for the offloading client (less than 1×). The PE creation is 2×
slower than the baseline. Whereas REP is seamless for the server, PE introduces an
overhead that is 3× more; the activation function requires a multiplication that introduces
convolutions. The verification cost for REP is piloted by the challenge verification and
the decoding, which leads to a total Verify phase of 0.6s. PE verifies the challenges in
0.06s but introduces decryption and decoding overhead due to the exchange of 3× more
ciphertexts than the baseline. We observe that PoC reduces the communication to only
two ciphertexts assuming an investment from the server (i.e., 8× slower evaluation).

3.6.3.5 Federated Learning

Federated learning has emerged as a technique for improving ML training by relying on
silos of training data distributed amongst several clients. Clients locally train models and
exchange the model updates with a central entity that aggregates them and broadcasts
the result. As the values exchanged during the training of a federated model leak
information about the training data [BDS+21, MSDCS19, NSH19, ZLH19], several works
rely on secure aggregation techniques by using HE to protect confidentiality [FMM+21,
ZPGS19, ZLX+20]. Also, ensuring the correctness of the aggregation is crucial for avoiding
the introduction of backdoors, maliciously biased weights, and/or simply the deliberate
exclusion of some client models by a malicious server [BDS+21, PFA22, TSSJ+22, XLL+19,
ZFW+20].

Description. We adapt the federated averaging pipeline (FedAvg) proposed by McMahan
et al. [MMR+17] for MNIST digit recognition to a cross-silo setting where clients trust
each other but not the aggregator. This pipeline employs a simple multi-layer perceptron
with two hidden layers of 200 units using the ReLu activation function (199, 210 parameters
in total). The dataset is split across 100 clients, and 10 of them are randomly polled at
each epoch for the federated averaging. Weights are locally quantized, by each client, to
integers (16-bits as in [ZLX+20]) before being sent encrypted to the aggregator. After
secure aggregation, the global weights are then decrypted and de-quantized by the clients
and used for the next epoch. After 100 epochs, we obtain an accuracy of 91% (achieving
higher accuracy with more iterations or different parameterization is out of the scope of
this work). As all the clients trust each other, one client is in charge of generating the
cryptographic keys and uses a secure channel (such as TLS) to share them via the server
with the other clients. As the local training datasets are never shared, VERITAS enables
result verification without needing the input data.

Parameterization. We use the HE parameters (logN=15, log q=700) and report results
per epoch. Clients require 4.3s to encode and encrypt their local models, and the server
requires 0.2s to aggregate them. The client decryption/decoding requires 214ms and the
client egress/ingress communication is 44/44MB. We set the authenticator parameters to
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λ=64 for REP and log t=55 for PE.

Results. Figure 3.7e shows that, due to the huge volume of data (199, 210 model
parameters encrypted in 7 ciphertexts per client), REP creation is about 60× slower than
the baseline, thus making the PE encoding much more efficient (255s vs. 11s, resp.).
Similarly, the non-existent multiplicative complexity of secure aggregation showcases
that PE is more efficient for the server; it introduces a 1.5× server evaluation overhead,
compared to REP’s 80× one (0.4s vs. 13s). Accordingly, the client verification with PE
is only 2.2× slower than the baseline, whereas REP introduces an overhead of 70× more
(0.7s vs. 15s resp.). The overall communication overhead of REP is more significant than
PE (2.4GB vs. 88MB).

3.6.4 Comparison With Prior Work

A direct performance comparison between VERITAS and the related work is not straight-
forward due to (i) the different models employed for verifying the integrity of homomorphic
computations, (ii) the related work’s limitations regarding the homomorphic operations
supported (see Table 3.1), and (iii) the lack of implemented solutions. For instance,
Fiore et al. [FNP20] cannot support the HE parameterization used in §3.6.3 and Bois et
al. [BCFK21] cannot evaluate rotation or relinearization operations; neither work has
a public implementation. We implemented Rinocchio [GNSV21] and discovered that it
can practically handle only arithmetic operations: To support the rounding operations
required by modern HE schemes for tensoring and rotations (key-switching) (see §3.3.1),
Rinocchio requires emulating multiple rings which would significantly slow down its per-
formance. Thus, we evaluate Rinocchio only on the federated learning use-case (§3.6.3.5).
Although it yields a succinct proof (118kB), Rinocchio is computationally more expensive
than our solution (23s and 8s for the Create and Verify phases resp. compared to 0.4s
and 0.7s for VERITAS) – and assuming the already expensive setup phase (∼1h). Only
the early work of Fiore et al. [FGP14] has been officially implemented. As their work
is limited to quadratic functions and cannot support rotations, we can compare it with
VERITAS only on the ride-hailing (§3.6.3.1) and federated learning (§3.6.3.5) use-cases.
For a similar HE parameterization, we estimate that their verification would take 180ms
for the ride-hailing (resp. 4.1s for federated learning), whereas VERITAS requires 50ms
with the best encoding (resp. 0.7s for federated learning). Similarly, following Fiore et
al. ’s evaluation, the server’s ride-hailing evaluation takes 0.8s (resp. 0.1s for federated
learning), which is very similar to VERITAS (0.5s and 0.4s, resp.). We stress again that
none of the other use cases evaluated in §3.6.3 can be efficiently achieved by using prior
work.
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3.6.5 Evaluation Take-Aways

Our evaluation shows that VERITAS is suitable for various applications and yields
different trade-offs depending on the setting and the security requirements. When
the volume of input data is small and REP’s (§3.4) extended vector fits in a single
ciphertext, then REP outperforms PE (§3.6.3.1,3.6.3.4). When the application requires
fully packed ciphertexts, PE (§3.5) reduces the load of the client by an order of magnitude
(§3.6.3.3,3.6.3.5). Furthermore, our analysis demonstrates that PE yields a significant
overhead for the server when the circuit multiplicative depth is large (§3.6.3.3). This
is alleviated by ReQ (§3.5.4) which further improves the client verification time when
interactivity is possible. With some computation overhead at the server, the PoC (§3.5.3)
reduces the volume of data sent back to the decrypting client (§3.6.3.4). Both ReQ and
PoC optimizations improve the computation and communication overheads at the client,
thus making the use of VERITAS suitable for constrained clients. Our evaluation also
shows that VERITAS can cope with various use-cases relying on complex homomorphic
operations that were not supported by the state of the art [BCFK21, FNP20, GNSV21].
Overall, we observe that it enables homomorphic computation verifiability with acceptable
overheads for the client and server (and even more considering the overhead of the HE
pipeline itself; see Appendix 3.7.2). For instance, it enables the verifiability of a disease
prediction result on genomic data, with less than 3× computation and communication
overhead for the client and the server, compared to the HE baseline.

3.7 Discussion

We now discuss various aspects related to the authenticators and the developed library
VERITAS.

3.7.1 Challenge Verification

Both authenticators operate in the designated verifier setting, i.e., they require the
challenge computation during the verification procedure by the client (or any holder
of the secret key). In some cases, this might be a limitation because the client has
to spend resources on this computation (§3.6.3). Nonetheless, these challenges do not
leak any information about the initial data (recall that they are computed by the
keyed PRF and the identifiers), and they can be offloaded to another entity that does
not collude with the server. Hence, standard verifiable computation techniques, such
as interactive proofs [GKR15], SNARKs [BBB+18] or STARKs [BSCR+19], could be
employed to ensure the correct computation on these challenges. With state-of-the-art
SNARKs e.g., [BBB+18, MBKM19, PHGR13], this would lead to a sublinear verification
complexity in the size of the circuit, albeit with a modification in our system model (§3.2).
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3.7.2 VERITAS’ Overhead in Perspective

As observed in Figure 3.7, compared to the HE baseline, the use of VERITAS introduces
an overhead factor between 0.5× and 38× for the client upon offloading and decryption
(and verification) and between 0.1× and 3× for the server’s evaluation. Although non-
negligible, this overhead is actually much smaller than the one already induced by the use
of HE. Indeed, compared to a client running the computations directly on its local data,
offloading encrypted data is between one and two orders of magnitude more expensive
(10–100×). At the same time, evaluating the homomorphic circuit on encrypted data at
the server is between one and four orders of magnitude slower (10–15, 000×). For example,
in the disease susceptibility use-case (§3.6.3.2), the client’s offloading work is 600× more
expensive than running the computation locally, whereas its decrypting work is 186× more
costly. Similarly, the server’s operations under encryption are 15, 000× more expensive
compared to the plaintext evaluation which is much more significant than the overhead
created by our encodings. Therefore, VERITAS’ overhead for both the client and the
server is close to a negligible addition to the cost of HE. Further improvements that lower
the overhead of the HE schemes (e.g., hardware accelerators [SFK+22, GVBP+22]) would
directly translate to a reduction in VERITAS’ overhead as well.

3.7.3 Verification Outcome

Using VERITAS, a client is able to detect with very high probability if the server
misbehaves, hence malicious servers (§3.2) are strongly discouraged from tampering
with the requested computations and from using VERITAS as a decryption oracle. By
purposefully modifying the ciphertext, a nosy server could learn a bit of information
about the plaintext based on whether the verification check passes or not. Hence, the
client’s behavior, with respect to the server, should not be affected by the verification bit.
Additional system-level countermeasures, e.g., fresh key generation after every verification
or dummy computation requests, could be employed orthogonally to VERITAS to hide
the verification bit. Some solutions, which directly provide the correctness of computation
on the ciphertext space [BCFK21, FGP14, FNP20] are not constrained to concealing the
verification outcome. However, these are limited in the admissible computations and
hinder the functionalities of the HE scheme.

3.8 Summary

In this work, we have proposed two error-detection encodings that can be used to verify
the integrity of homomorphic computations. With these encodings, a client can augment
existing privacy-preserving pipelines based on homomorphic encryption with computation
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verification at a minimal cost; this way, their threat model can be easily extended from
an honest-but-curious adversary provider to a malicious one. We have also provided
VERITAS, a new open-source library that implements our solution and we demonstrated
its practicality and versatility on several uses-cases.





Chapter 4

Securing HE-based MPC against
Malicious Adversaries

Multiparty variants of FHE have recently emerged to improve the efficiency and practicality
of computing pipelines. However, existing Multiparty FHE (MFHE) schemes guarantee
data confidentiality and the correctness of the computation result only against honest-
but-curious adversaries. In this work, we provide the first practical construction that
enables the verification of MFHE operations in zero-knowledge, protecting MFHE from
malicious adversaries. Our solution relies on a combination of lattice-based commitment
schemes and proof systems which we adapt to support both modern FHE schemes and
their implementation optimizations. We implement our construction in PELTA. Our
experimental evaluation shows that PELTA is one to two orders of magnitude faster than
existing techniques in the literature.
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4.1 Overview

Multiparty Fully Homomorphic Encryption (MFHE) schemes [LATV12, CDKS19, AJLA+12,
BGG+18, Par21, KLSW21, AH19, MTPBH21, MBH22] enable multiple parties to ho-
momorphically compute joint functions, while ensuring that the decryption of the un-
derlying data and results can only be performed collectively. MFHE offers a more
flexible and efficient alternative to classic multiparty computation (MPC) protocols and
(single-party) FHE, and it has been successfully employed for distributed training of
machine-learning models [CDKS19, FMM+21, ATP21, FTPP+21, SPTP+21], medical
analytics [FTPR+21, SBTP+22, CEBC22, CFC+22], and financial audits [YWZ+22].
However, similar to FHE, MFHE schemes are only secure against honest-but-curious
adversaries that follow the protocol specification; this opens up new avenues for malicious
parties to disrupt secure computation pipelines involving high-value data. Indeed, in
MFHE, a single malicious party can compromise the correctness of the computation by
generating improper keys that lead to invalid outputs (e.g., decryption of garbage) or it can
bias the decryption result by excluding the contributions of other parties. Furthermore,
collusions among malicious actors and incorrect homomorphic evaluation can hinder the
confidentiality of honest parties [VKH23, CT14, CGG16]. While these limitations have
been known for a decade [AJLA+12, MW16], the existing literature has focused mostly on
the passive adversary model [LATV12, CDKS19, Par21, MTPBH21, MBH22] and any pro-
posals accounting for malicious adversaries have remained theoretical [AJLA+12, MW16].

A natural approach to secure MFHE pipelines against malicious adversaries is to employ
techniques based on non-interactive zero-knowledge (NIZK) proofs [AJLA+12]. However,
concretely instantiating a NIZK-based solution for maliciously-secure MFHE pipelines
requires overcoming considerable challenges. First, the workflow of MFHE schemes
involves verifying a number of constraints ranging from linear relations between polyno-
mials with small and large coefficient bounds, to consistency of secrets across different
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protocols. Such verification requires tailored constructions that can not be supported
by prior work without hindering the capabilities of the underlying FHE scheme to fit
the constraint of the NIZK proof [BCOS20, DPLS19, BLS19, ENS20, GNSV21]. Sec-
ond, the high dimensionality of the underlying polynomial structures used in modern
FHE schemes (e.g., BFV [FV12, HPS19], BGV [BGV14, KPZ21], and CKKS [CKKS17])
makes interfacing MFHE with most NIZK proofs prohibitively expensive. In particular,
as in MFHE multiple parties execute a series of online protocols, the NIZK proof needs
to have short runtimes. Additionally, implementation-specific optimizations commonly
employed to make FHE schemes practical, e.g., non-prime specific moduli [BEHZ17] and
NTT-transformations [AMBG+16, PG12, GFS+12], drastically limit the set of NIZK
proofs practically compatible with MFHE.

Contributions. In this work, we address these challenges and we provide the first
practical construction that tolerates malicious adversaries in MFHE pipelines. We first
systematize the MFHE variants from a security perspective and show that proving their
correct execution under the malicious threat model involves verifying (a) the appropriate
sampling from specific distributions (e.g., ternary or Gaussian), (b) the accurate generation
of cryptographic keys, and (c) the correct combination of each party’s cryptographic
material. Then, to verify the correctness of these MFHE operations, we propose a
commit-then-prove approach, where each party commits to its execution and proves its
correctness in zero-knowledge. To achieve compatibility between our NIZK approach
and both the underlying structure and security assumptions of modern FHE schemes,
we instantiate our solution using efficient lattice-based commitments [ALS20] and proof
systems [ENS20, LNS20], and we design MFHE operation-specific statements that account
for the theoretical constraints and the implementation optimizations of MFHE. We use
an existing MFHE library [EPF21] and we implement our construction which we dub
PELTA.1 We experimentally evaluate PELTA and show that it induces little overhead
(just a few seconds) for the MFHE parties and acceptable proof sizes (in the order of MB).
To show the superior performance of our approach, we compare it to prior techniques based
on malicious MPC [CP16] and proof systems [BCOS20], and show that PELTA achieves
one to two orders of magnitude faster prover runtimes with 15 times smaller setup time.

4.2 Background on Multiparty FHE

In concrete secure computation scenarios, the input data is not held by a single entity
but it is, instead, distributed among multiple stakeholders (e.g., in medical [JWB+17,
RTPM+18], financial [BCD+09, BTW12, PAD+23], and law enforcement [BJSV15] ap-
plication domains). Multiparty FHE (MFHE) enables the evaluation of functions over en-
crypted data in these scenarios, while enforcing joint cryptographic access-control over the

1A shield protecting MFHE pipelines against malicious adversaries.
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Figure 4.1: An illustration of an MkHE pipeline.

underlying data. As such, MFHE enables secure multiparty computation (MPC) through
a simple protocol: First, the parties encrypt their sensitive input data with the MFHE
scheme, and the function is homomorphically evaluated over the ciphertexts, either by the
parties themselves or by an external evaluator. Then, the parties obtain the computation
output by engaging in a multiparty decryption protocol. Modern MFHE schemes are based
on the ring-learning-with-errors (RLWE) problem [CDKS19, MTPBH21, Par21, KLSW21,
AH19], and recent literature has employed such schemes to build practical systems
for, e.g.,distributed analytics [FTPR+21, CSS+22, YZW+22], and federated machine-
learning [CDKS19, SBTP+22, SPTP+21, ATP21, XHX+22, XLG+23, AHWC19].

MFHE schemes can be divided into three families that mainly differ in whether the set
of parties is pre-determined before the computation begins, or if parties can join the
computation on-the-fly. We briefly introduce these families below, and defer the technical
details to Section 4.3.2.

4.2.1 Multi-key FHE (MkHE)

In multi-key FHE [LATV12, CCS19, CDKS19, CZW17, PS16, BP16], each party encrypts
its data with its own locally generated secret key, and each gate in the homomorphic
circuit outputs a ciphertext that is encrypted under the concatenation of the parties’
secret keys. As a result, the access-control of the intermediate computation values
is updated on-the-fly with new secret keys. The final result decryption requires the
collaboration among all parties that provided an input to the circuit. An illustration
of an MkHE pipeline is presented in Figure 4.1. MkHE schemes are highly flexible as
they do not require to pre-determine the set of participants before the computation can
begin; collaboration is only required for the decryption of the final result. However, all
current constructions have non-compact ciphertexts (i.e., that grow at least linearly with
the number of parties) and induce a significant overhead compared to single-party FHE
schemes [LZY+19, YKHK18].



Chapter 4. Securing HE-based MPC against Malicious Adversaries 59

4.2.2 Threshold FHE (ThHE)

Intuitively, parties in a ThHE scheme emulate a plain, single-party FHE scheme for
which the secret key is secret-shared among them [AJLA+12, BGG+18, MTPBH21,
Par21]. More specifically, the parties first generate, by means of a multiparty protocol, a
collective encryption key. Then, they encrypt their private inputs under this collective key,
and the homomorphic circuit evaluation preserves this secret-key structure throughout
the computation. Finally, the parties obtain the computation result by executing a
decryption protocol (according to the secret-sharing scheme). A visual illustration of
a ThHE pipeline is shown in Figure 4.2. ThHE schemes require defining the set of
parties before the computation can begin, hence they are less flexible than their MkHE
counterparts. However, current ThHE constructions are compact, and the complexity of
their homomorphic evaluation is independent of the number of parties, making them a
much more practical option for settings with a fixed set of participants.

4.2.3 Multi-group FHE (MgHE)

Multi-group FHE [Par21, KLSW21, AH19] is a hybrid construction with a fixed set (a
group) of parties acting as a single party (i.e.,by means of a ThHE scheme) within an
MkHE scheme. In this way, any parts of the homomorphic circuit that only require input
from the fixed, pre-defined set of parties can be evaluated under the more efficient ThHE
homomorphic arithmetic, while leaving the possibility to evaluate parts of the circuit
on-the-fly using MkHE. For example, a machine learning model can be trained, under
ThHE, among a fixed set of training data holders, then queried, under MkHE, by external
parties.

4.3 Towards Malicious Multiparty FHE

In this section, we present the system and threat models considered in our work (§4.3.1).
Then, we propose the first security-oriented systematization of the MFHE families (§4.3.2).
This enables us to identify core MFHE operations that can be exploited by malicious
adversaries and hence, need to be protected. Finally, we present the roadmap of our
solution to achieve this goal (§4.3.3).

4.3.1 System and Threat Model

System Model. We consider a set of parties P that seek to engage in a joint computation
by using multiparty homomorphic encryption [LATV12, CZW17, AJLA+12, BGG+18,
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MTPBH21], and evaluate a function f(·) on sensitive data. To facilitate the protocol
execution, an aggregator combines cryptographic material, and an evaluator executes
the homomorphic circuit on the ciphertexts (Figs. 4.1 and 4.2). These two roles can be
played by any of the parties. The parties are interconnected via authenticated channels
and are available during the protocol execution (see Figures 4.1 and 4.2 for interaction
illustrations).

Threat Model. We consider that the parties are in an anytrust model [WCGFJ12],
i.e., up to all but one of them can behave maliciously and collude to break the correctness
or the confidentiality of the protocol execution. We do not consider denial-of-service
attacks, i.e., the parties do not refuse to participate in the protocol execution. However,
they can attempt to force the secure computation protocol to output an invalid result.
For the sake of abstraction, we consider a verifier whose task is to check the correct
execution of the multiparty protocol and to abort if inconsistencies are detected. We note
that this virtual entity’s role can be executed by, at least, the honest party in the system.

4.3.2 Systematizing Multiparty FHE

To secure MFHE pipelines in the presence of malicious adversaries (§4.3.1), we need to
identify the MFHE operations that can be tampered with and whose correctness needs to
be verified. To this end, we propose a systematization of the MFHE families presented in
§4.2, under a unified model. We observe that the currently implemented RLWE-based
MkHE, ThHE, and MgHE schemes [CDKS19, MTPBH21, Par21, KLSW21, AH19], share
common functionalities in their constructions. We systematize these functionalities by
identifying their common denominators; this enables us to define the building blocks
of a generic method for verifying their correct execution in the presence of malicious
parties. We also highlight how the various constructions of MFHE schemes differ and
show that, from the correctness verification perspective, these differences only affect a
single aggregation functionality.

MFHE schemes can be expressed in terms of their basic operations: (SecKeyGen,
EncKeyGen, EvalKeyGen, Enc, Eval, Dec). In SecKeyGen, each party Pi ∈ P
for i ∈ [1, |P|] generates its local secret key si for the MFHE scheme. In EncKeyGen and
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EvalKeyGen, the parties use their secret keys to generate the public key material
required by the Enc and Eval operations, respectively. Enc performs the encryption
of the input data into ciphertexts, and Eval evaluates a homomorphic circuit on these
ciphertexts. Finally, Dec decrypts MFHE ciphertexts. These MFHE basic operations
can be organized into two types: interactive and non-interactive ones. Operations that
require secret inputs from several parties are implemented as secure interactive protocols ;
their output should be computed while preserving the confidentiality of these secrets.
EvalKeyGen and Dec are such interactive operations. Interestingly, MFHE interactive
protocols have a very similar structure across the different families, which we discuss
in §4.3.2.1. Non-interactive MFHE operations, however, do not require secret inputs
from multiple parties, hence they can be executed locally by each party without any
interaction. SecKeyGen, Enc, and Eval are non-interactive operations and we discuss
such operations in §4.3.2.2. We note that EncKeyGen is a non-interactive operation in
MkHE as each party generates its own encryption key, while it is an interactive one in
ThHE where the parties generate a single collective encryption key.

4.3.2.1 Interactive Operations

These operations are at the core of MFHE schemes because they enable secret-key
functionalities through interaction among the parties; verifying their correct execution
is the main target of our work. For all MFHE families (§4.2), these operations are
single-round protocols which unfold in two steps:

Step 1 - Local Share Generation: In this step, each party uses its local secret key
(as well as additional freshly sampled secrets and error polynomials) to locally generate a
share that can be publicly disclosed. We first observe that these shares have a common
structure across interactive protocols and MFHE families. In particular, a share bi is
computed as a linear equation in Rq of the form:

bi = a · si +X+ ei (4.1)

where a is a publicly known polynomial, si is the secret key of the party Pi ∈ P, ei ← χ

is a freshly sampled error term from some distribution χ, and X ∈ Rq is a polynomial
placeholder that takes different forms in the various interactive protocols.

For EncKeyGen and EvalKeyGen, a is sampled from a common random string (CRS)
and χ=χerr is the short-norm RLWE error distribution (for both ThHE and MkHE). X
is zero for EncKeyGen, and it is a function of the secret key (i.e., its decomposition in
some small-norm vector basis) for EvalKeyGen. For Dec, a is an element in Rq from
the ciphertext being decrypted. In particular, for ThHE schemes, where a ciphertext c⃗

encrypting m has the form c⃗=(c0, c1) such that Dec(s1, . . . , s|P|, c⃗)=c0 + c1
∑|P|

i=1 si=m,
a is the ciphertext element c1. For MkHE schemes, where c⃗=(c0, c1, . . . , c|P|) such that
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Dec(s1, . . . , s|P|, c⃗)=⟨(1, s1, . . . , s|P|), c⃗)⟩=m, a is the element ci for the share of party
Pi. For both ThHE and MkHE families, the error term ei in Dec is sampled from
a higher norm distribution χsmdg to ensure circuit privacy according to the smudging
technique [AJLA+12].

An erroneous execution of the local share generation by malicious parties in any MFHE
protocol would lead to an incorrect decryption at the end of the computation, hence
verifying the correct execution of this protocol step is crucial for MFHE pipelines. However,
as the local share generation involves the parties secret keys, its correct execution needs
to be verified in zero-knowledge. This implies checking that: (i) the secret key and error
polynomials are sampled from specific distributions (e.g., ternary or Gaussian distributions
of variable bounds), (ii) X and the linear relation in Eq. (4.1) are computed correctly,
and (iii) each party uses the same secret key across different MFHE interactive protocols.

Step 2 - Share Aggregation: After the parties complete their local share generation
comes the interactive part of the protocol. Each party sends its share bi to the aggregator,
which aggregates the shares into a collective value from which the final protocol output can
be computed. The aggregation function depends on the MFHE operation as well as on the
scheme family: In MkHE schemes, during EvalKeyGen, the aggregator computes the
public evaluation-key by simply concatenating the parties’ shares. In ThHE schemes, the
aggregator computes the public encryption and evaluation keys (i.e.,EncKeyGen and
EvalKeyGen), by computing the sum of the parties’ shares in Rq. For both scheme
families, the sum is used to combine the parties’ shares during Dec.

Ensuring the correctness of the share aggregation operation is crucial because, without this
capability, the confidentiality or the utility of the MFHE scheme can be compromised by
malicious parties. For instance, during the collective public-key generation (EncKeyGen)
in ThHE schemes, a cheating aggregator could collude with malicious parties and discard
the shares of honest parties. This way, the latter could be tricked into encrypting their
private data with a public key for which they do not hold a secret key share, hence allowing
the colluding parties to decrypt them. Furthermore, during the collective decryption
(Dec) in both MkHE and ThHE schemes, a malicious aggregator could purposefully omit
a specific party’s polynomial in the merging operation leading to an invalid output.

Other Operations. ThHE schemes support additional interactive operations that enable
functionalities such as key switching (KeySwitch) where the parties change the key
under which a ciphertext is encrypted and collective bootstrapping (CollBootstrap)
in which the parties refresh a ciphertext [MTPBH21]. These operations are special cases
of Equation 4.1 and they can be expressed by setting X accordingly. As such, they can
also be decomposed following Step 1 and 2, described above.
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4.3.2.2 Non-interactive Operations

MFHE non-interactive operations are executed by each party without interaction; SecK-
eyGen, Enc, and Eval are such examples. For all MFHE schemes, in SecKeyGen, each
party generates its secret key by sampling the key distribution χk. As seen in §1.3, χk is
a polynomial distribution with ternary coefficients. Ensuring ternarity of the coefficients
is paramount for the correctness of the MFHE scheme and needs to be checked in zero-
knowledge to avoid any confidentiality issues. Moreover, as the secret key is used during
the local-share generation of interactive MFHE operations, its consistency throughout
these needs to be ensured. The encryption operation (Enc) of MFHE schemes is the
standard FHE encryption (see §1.3), i.e., it is very similar to Eq.4.1. In MkHE schemes,
each party encrypts using its own key, and in ThHE, each party encrypts using the collec-
tive public key generated by EncKeyGen. Ensuring correct encryption implies checking
the correctness of the input data; this is a problem already under consideration in the
literature (under standard MPC models; see §4.7.2) [ENS20, LN17, BCOS20, DPLS19].
Finally, during the computation phase (Eval), the evaluator homomorphically executes
the public circuit on the encrypted data. Depending on the setting, this evaluation is
performed over single-key ciphertexts (ThHE) or over extended ciphertexts with multiple
keys (MkHE and hybrid). Wrongful operations can lead to erroneous results or even
to the leakage of the parties’ secret keys, as a malicious evaluator can return a tailored
ciphertext on which performing partial decryption can leak the party’s secret key [CT14].
Recent works have designed promising solutions to verify the correctness of homomorphic
evaluation [GNSV21, CKP+23, FGP14, BCFK21, FNP20, NLDD21] (see §4.7.1). As
these are orthogonal problems receiving independent interest, in this work, we do not
focus on the correctness of Enc and Eval non-interactive operations.

4.3.3 Roadmap of our Solution

To secure MFHE pipelines in the presence of malicious adversaries, we propose a novel
construction that enables the correctness of critical operations executed by the parties
during the various MFHE phases to be proved. We focus, in particular, on interactive
operations (§4.3.2.1), and we ensure that all parties and the aggregator perform the
correct actions. Recall that MFHE interactive operations are executed in two steps:
Local Share Generation and Share Aggregation. The local share generation involves
the creation of secret cryptographic material crucial for the confidentiality and integrity
of the MFHE pipeline. Therefore, to verify the correct creation of the shares, we use
zero-knowledge proofs that ensure the validity of each message generated by the parties,
as proposed and proved secure against malicious adversaries by Asharov et al. [AJLA+12]
but never instantiated. We employ a commit-then-prove approach, where each party
commits to its local share and proves its correctness in zero-knowledge to the verifier.
We enable such proofs by designing statements (or relations), the validity of which can
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be proven using proof systems. To account for the characteristics of RLWE-based FHE
schemes and their implementation optimizations (see §4.2), we tailor our statements for
efficiency and employ lattice-based commitments and proof systems [ENS20, LNS20].
Informally, parties commit to their different secrets, and a Σ-protocol is executed to
ensure that these secrets validate the corresponding MFHE statements. The details are
described in §4.4. To verify the correctness of the share aggregation, we design a novel
verifiable aggregation protocol based on the polynomial identity lemma [Sch80]. This
enables us to extend our statements and to prove, in one shot, both the parties’ correct
local operations and aggregation on committed values. This protocol is discussed in §4.5.

4.4 Verification of MFHE Local Share Generation

As discussed in §4.2 and §4.3.2, at the core of MFHE interactive operations is the local
share generation performed by the parties (i.e.,Step 1 in §4.3.2.1). This is crucial for
the generation of each party’s individual keys and for the MFHE functionalities such as
collective key generation, decryption, key-switching, and bootstrapping. Malicious parties
can tamper with their local share generation and can create improperly formatted keys
that can lead to (i) erroneous decryption, (ii) key leakages, and (iii) broken confidentiality
(see §4.3.2). In this section, we present the details of our commit-then-prove approach
that forces parties to create publicly verifiable proofs that attest to the correct execution
of their local share generation. We first discuss the technical challenges associated with
verifying this operation (§4.4.1) and provide background information on lattice-based
commitments (§4.4.2). Then, we present our techniques for assembling, in a practical
manner, the statement required to verify the correct generation of RLWE samples (§4.4.3)
and the ways this can be extended to various MFHE operations, e.g., local key generation,
collective decryption, public-key switching, and bootstrapping (§4.4.4). In this section,
we take the viewpoint of a single party as the prover. Hence, for the sake of notation, we
omit the subscript i for the party’s secret inputs to Eq. 4.1.

4.4.1 Challenges of Verifying MFHE Local Share Generation

Whereas several works, e.g., [DPLS19, BCOS20, BLS19, ENS20, LNP22, LLNW18], pro-
pose solutions to verify variants of Eq. 4.1 by using proof systems such as Bullet-
proofs [BBB+18] and Aurora [BSCR+19], or commitments and proofs [BDL+18a], they
do not consider their application to (M)FHE pipelines. Indeed, modern MFHE imple-
mentations introduce challenges that none of the prior works have addressed:

1. Residue Number System (RNS): For efficiency reasons, current implementations
set the modulus q =

∏L
j=0 qj such that the ring splits as Rq = Rq0×. . .×RqL , and
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perform the ring arithmetic in the decomposed domain. In the proofs, this requires
the secret elements to be linked across the sub-rings.

2. Sub-ring Compatibility: As the secret s and the noise e need to have the same
representation over the different sub-rings Rqj , committing to them requires the
usage of a sub-ring agnostic commitment scheme.

3. Number Theoretic Transform (NTT): As the moduli {qj}Lj=0 are NTT friendly,
i.e., as the polynomial XN+1 splits into N linear terms modulo each qj , the proof
system must be compatible with this specific composite modulus q (which is not
prime, hence, practically incompatible with most generic proof systems [BBB+18,
BSCR+19, PHGR13]).

4. Infinity Norm: As the secret and noise bounds need to be exactly evaluated
in infinity norm, the proofs cannot rely on approximate results or optimized ℓ2
variants, as in prior work [LNP22].

5. Large Polynomial Noises: The noise polynomials are sampled from a Gaussian
distribution with bounded infinity norm. Depending on the type of noise, this bound
can be large and not easily handled by proof systems, e.g., [BSCR+19, ENS20].

6. Secret Consistency Across Protocols: To guarantee the correctness of the
MFHE pipeline, the same secret key(s) should be reused across different interactive
operations. Consequently, the secret commitments should be persistent across
several protocol executions.

Furthermore, generic proof systems, e.g., [BBB+18, BSCR+19, PHGR13], suffer from
long runtime and memory requirements, are incompatible with the arithmetic structure of
FHE, and rely on security assumptions different than lattice-based problems (e.g., discrete
logarithm and Reed-Solomon codes). To address these issues and the aforementioned
challenges, in this work, we use lattice-based commitments and proofs that preserve
the post-quantum security of the underlying FHE scheme. We do so as such schemes
share the same arithmetic structure as FHE, and we employ recent improvements and
optimizations that have made them more efficient than generic constructions for structured
relations [ENS20] to verify the correctness of statements, such as Eq. 4.1, in the scope
of MFHE. Before describing in depth our tailored statements, we provide background
information on lattice-based commitment schemes and the types of proofs that can be
realized with their constructions.

4.4.2 Background: Lattice-Based Commitments

Lattice-based commitments, e.g., [Ajt96, KTX08, BDL+18a], rely on the hardness of
lattice-based problems such as the module short integer solution problem (MSIS) and
the module learning-with-error problem (MLWE) [LS15, DKL+18] to securely commit
to polynomial values. For instance, the scheme by Ajtai [Ajt96] can be used to commit
to a small norm vector with a commitment size independent of the input’s dimension.
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Committing to vectors of larger norm requires the use of BDLOP [BDL+18a] at the cost
of the commitment’s linear growth with the dimension of the input vector. Recently,
various improvements, e.g.,new sampling techniques, the support for integer relations,
NTT-friendly rings and NTT operations, have boosted the practicality of such construc-
tions [ALS20, ESLL19a, LNS20, LNS21a, LNP22]. Built on such commitments, proof
systems can be used to prove knowledge of committed secrets satisfying specific statements
(called relations).

We recall a variant of the BDLOP [BDL+18a] lattice-based commitment scheme. Suppose
the module ranks κsis and λlwe ensure MSIS and MLWE security [LNP22] and that
we want to commit to a message vector of ℓ polynomials m⃗ = (m1, . . . ,mℓ)

T . The
commitment scheme works as follows:

Com.KeyGen(κsis, λlwe, ℓ)→B0, b⃗1,..., b⃗ℓ: Sample a uniformly random matrix B0
$←−

Rκsis×(λlwe+κsis+ℓ)
q and vectors b⃗1, . . . , b⃗ℓ

$←− Rλlwe+κsis+ℓ
q . Output them as public parame-

ters.

Com.Commit(m⃗)→ t⃗: First, sample a random vector r⃗
$←− χ(κsis+λlwe+ℓ) with χ the

polynomial ternary distribution with coefficients in {−1, 0, 1} such that Pr(0) = 6/16 and
Pr(−1) = Pr(1) = 5/16. Then, compute:

t⃗0 = B0r⃗,

tj = ⟨b⃗j , r⃗⟩+ m⃗j for j = 1, . . . , ℓ.

In this scheme, t⃗0 acts as the binding part and each polynomial tj encodes one message
mj . The commitment is the vector of polynomials t⃗ = (⃗t0, t1, . . . , tℓ). By construc-
tion, the commitment scheme is computationally hiding under the MLWE assumption
and computationally binding under the MSIS assumption [LNP22]. Using commit-
ted values, we can instantiate Σ-protocols and create proofs of opening, i.e.,proofs of
knowledge of the committed value, proofs of linear or quadratic relations, and bound
relations [BDL+18a, ALS20, ENS20, LNS21a]. Whereas the original construction requires
a specific parameterization of the polynomial rings that is incompatible with NTT-friendly
prime modulus [BDL+18a], Attema et al. [ALS20] introduce a variant to alleviate this
issue. In this work, we employ the parameterization from Esgin et al. for the BDLOP
commitment scheme [ENS20] and the aforementioned proofs.

4.4.3 Practically Verifying RLWE Samples

Here, we present the way we combine lattice-based proofs to address the challenges
outlined in §4.4.1 and verify the correctness of Eq. 4.1. In this subsection, we set X=0,
i.e., the local share is an RLWE sample; verifying its correct generation is the basis for all
MFHE operations. In §4.4.4, we will show how to extend our techniques to other MFHE
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operations (that instantiate Eq. 4.1 with a non-zero polynomial X).

Verifying the Linear Relation. Recall that, during Step 1 of the MFHE interactive
operations (§4.3.2.1), each party creates a public polynomial by linearly combining the
secret and noise polynomials sampled from specific distributions (i.e., ternary and bounded
Gaussian, resp.). To prove the correctness of this linear combination, we treat it as proving
the knowledge of a solution to the linear equation and rely on the lattice-based interactive
proof of Esgin et al. [ENS20].

Verifying the Ternarity of the Secret Polynomial. We verify the ternary property
of the secret key polynomial s by checking that its coefficients satisfy the equation
x(x− 1)(x+ 1) = 0 following Esgin et al. [ENS20].

Verifying the Norm of Noise Polynomials. To verify the bound of the noise polyno-
mials, prior works opted for bounds in ℓ2-norm (e.g., [LNP22]), approximate range proofs
(e.g., [BDL+18a, LNP22, LNS21a, BL17]) or simply considered ternary noise [ENS20].
However, these approaches are unsuitable for modern (M)FHE implementations that
cannot tolerate a knowledge gap and that, for security, use large noises in infinity norm.
Our solution is to employ a ternary decomposition of the noise as proof of shortness
in order to avoid any knowledge gap that could compromise the security of the MFHE
pipeline. More precisely, for a noise e ∈ Rq such that ||e||∞ ⩽ B, we follow the observation
made by Ling et al. [LNSW13] that the subset sum of b1=⌈B2 ⌉, b2=⌈B−b1

2 ⌉, b3=⌈B−b1−b2
2 ⌉,

. . . , bk=1 (with k=⌊log(B)⌋+ 1), covers exactly the set {0, . . . , B}. Thus, we perform
the ternary decomposition of e as follows:

e =
k∑
j=1

bjej with ej ∈ {−1, 0, 1}N

Using the ternary proof from Esgin et al. [ENS20], we can prove the bound on the norm
of the noise polynomials exactly.

Conversion between NTT and Polynomial Domains. Recall that for efficiency
reasons, (M)FHE implementations employ the NTT representation and that secret keys
are stored in this form (rather than their polynomial one). However, the bound proofs
need to be executed in the polynomial domain to ensure the key ternarity. To account
for this, and because of the linearity of the NTT transform, we decide to incorporate
the NTT transformation matrix T directly in the statement, i.e.,we make it part of the
linear relation to be proven.

Linking the Secret Polynomial. We use the commitment scheme by Ajtai [Ajt96] to
link the secret polynomial across the different sub-rings (of the RNS representation), and
we commit to the secret polynomials over a smaller space Zp with p ⩽ qj for j ∈ [0, L].
With appropriate parameterization, the commitment coefficients will never exceed qj . As
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Statement 1: RLWE sample over Rq

Public Inputs: a,A1∈Rp,A2∈R1×2
p

Private Inputs: s, {ej}kj=1∈Rq, r∈R2
q, and k⃗∈ZN

q

Outputs: p0, cajtai∈Rq

• Linear Relation:
p0 = a ◦Ts+

∑k
j=1 Tbjej

cajtai = A1 · s+A2 · r− k⃗p
• Ternary Checks: ||s||∞, ||r||∞, ||ej ||∞ ⩽ 1 for j ∈ {1, . . . , k}
• Approximate Bound Proof: ||⃗k||∞ ≪ q

a result, there is no wrap-around modulo qj , and any value in Zqj or in Z (hence, across
the different sub-rings) is the same. In particular, the commitment of a ternary value m

with randomness r has the following form:

A1 ·m+A2 · r = cajtai mod p,

where A1,A2 ∈ ZκsisN×2N
p . Similarly to del Pino et al. [dPLS18], we rewrite it in Z to

ensure no wrap-around mod qj as

A1 ·m+A2 · r = cajtai + k⃗ · p

However, contrary to their approach, ours operates directly in the NTT domain and
there is no quotient modulo XN + 1, thus making the vector k⃗ unique per sub-ring by
Euclid’s Lemma. As both m and s are ternary vectors, ||cajtai + k⃗ · p||∞ ⩽ 2Np. As a
result, ensuring that, for all j ∈ [0, L], qj ≫ 2Np guarantees no wrap-around modulo any
of the qj . This commitment entails that the witness is extended to also comprise the
commitment randomness r and the quotient k⃗. To prove that ||⃗k||∞ ≪ qj , we rely on an
approximate bound proof [LNS20, LNS21a] (see Appendix §B.4). Note that, in practice,
both the ternarity and the consistency of the secret key are checked simultaneously.

Assembling the Statement. We combine the blocks above and build a statement that,
if satisfied, ensures the correct generation of an RLWE sample over Rq, as shown in
Statement 1. In more detail, Statement 1 encompasses a proof of opening that checks
the correctness of the commitments, a linear-relation proof that verifies the RLWE and
commitment relations, a cubic proof that checks if s, e1, . . . , ek, r are ternary, and an
approximate bound proof on k⃗ that ensures there is no wrap-around in creating the Ajtai
commitment. Then, we use a lattice-based proof system [ALS20, ENS20, LNS20] made
non-interactive with the Fiat-Shamir heuristic [FS86], and we obtain a non-interactive zero-
knowledge (NIZK) proof for RLWE samples. We rewrite, in particular, the set of equations
and constraints of Statement 1 as an unstructured linear relation (p0, cajtai)

T = Aw,
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where wT = (s, r, e1, . . . , ek, k⃗) is the witness and A is a sparse matrix of the form:

A=

(
−diag(⃗p1)·T 0 T·Idb1 . . . T·Idbk 0

A1 A2 0 . . . 0 Idp

)
,

with p⃗1 the NTT vector of the polynomial p1 and A1 (resp., A2) the matrix whose product
with the coefficients vector of s returns the NTT form of A1 · s. Note that the proof size
of the non-interactive protocol is affected by the input dimension of the linear relation
but also by the polynomial ring used in the commitment. By carefully crafting the
statements and accounting for the NTT transformations, Statement 1 (over Rq) can be
seen as a linear relation under constraints over Zq. In the remainder of this paper, we
denote by Rq = Zq[X]/(Xd+1) the polynomial ring of degree d used by the commitment
scheme (with same modulus as Rq). Finally, note that using the witness w, further linear
relations can be proven by appending extra rows to the matrix A. In §4.4.4, we extend
Statement 1 and we design tailored statements that can ensure the correctness of the local
share generation in various MFHE operations, such as local key generation, collective
decryption, public-key switching, and bootstrapping.

Security Analysis. The completeness and the computational honest verifier zero-
knowledge of the resulting proof hold by the properties of the underlying proof systems:
[ENS20, Th3.1] and [LNS21a].

4.4.4 Verifying MFHE Local Share Generation

We now describe how we extend Statement 1 to design tailored statements that ensure
the correctness of the local share generation in various MFHE operations such as local
key generation (§4.4.4.1), collective decryption (§4.4.4.2), public-key switching (§4.4.4.3),
and bootstrapping (§4.4.4.4). As the majority of these operations require handling large
polynomials for confidentiality purposes, we first describe how we address this issue.

Handling Large Polynomials. Some MFHE operations require using polynomials with
large coefficients. For instance, the collective decryption, key switching, and bootstrapping
(see §4.2), all use smudging noise [AJLA+12] that is sampled from a distribution of very
large variance to prevent private information leakage.2 Furthermore, the collective
bootstrapping requires an additional masking polynomial sampled from the plaintext
space (i.e.,with 16-bits coefficients). Decomposing such polynomials into a binary or
ternary representation similar to our approach for handling the noise polynomials (§4.4.3)
is impractical: Indeed, such a decomposition would introduce additional polynomial
inputs into the proof system (as many as the decomposition size), and hence affect both
its runtime and proof size. To avoid this issue, we propose a novel trick. Instead of

2Ideally 2λ times the variance of the ciphertext’s noise, with λ the security level. In practical
implementations, it is between 16 and 40 bits.
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sampling these polynomials with large coefficients, we construct them such that they are
indistinguishable from uniformly sampled elements by following the RLWE assumption.
For example, we construct the smudging noiseRqsmdg (with qsmdg configured by the range of
the smudging noise) such that esmdg=a ·s′+e abiding by the smudging lemma [AJLA+12].
Then, we use an observation stemming from the RLWE problem [LS15, DKL+18]: Given
a public value a

$←− Rqsmdg and a ternary secret s′, then (a, a · s′ + e) is indistinguishable
from a uniformly sampled random pair (a,b) ∈ R2

qsmdg
. However, as the noise esmdg is

constructed in Rqsmdg , we need to ensure there is no wrap-around modulo any of the qj
for j∈[0, L] (i.e., similarly to our approach for linking the secret polynomial across the
sub-rings using the Ajtai commitment). For this reason, we commit to the quotient to
enable the reconstruction from Zqsmdg to Z and then to Zqj , under the condition that
there is no wrap-around modulo qj (recall that q=

∏L
j=0 qj). Proving the correctness of

this statement requires an additional linear relation, two bound proofs (i.e., ternarity of
s′ and e < B), as well as adds s′ and e← χerr to the witness. This technique is easily
extended to the plaintext mask required for the collective bootstrapping protocol.

4.4.4.1 Local Key Generation

The MFHE local key generation operation comprises the generation of a private/public
key pair (SecKeyGen and EncKeyGen – §4.3.2), as well as additional evaluation
keys that are useful for the homomorphic evaluation, e.g., rotation and relinearization
keys (EvalKeyGen). Statement 2 assembles the conditions for the correct generation
of a private/public key pair. Each party samples, in particular, a secret key s and
returns the corresponding public key (p0,p1), as well as the Ajtai commitment cajtai

of the secret key. The approximate bound proof ensures no wrap-around modulo each
of the qj in the generation of cajtai. A similar approach can be used to ensure the
correct generation of rotation keys (see [MTPBH21] for details). Then, Statement 3
displays the requirements for the secure generation of the relinearization keys, for a public
parameter a⃗∈Rlq [Par21]. The value l corresponds to the length of a decomposition basis
used to ensure the correctness of the relinearization. Each party recomputes the Ajtai
commitment of the secret (i.e., cajtai) and generates the vectors of public polynomials
h⃗0 and h⃗1. As we will see in §4.5, this statement can be combined with Statement 7 to
verify the correctness of the MFHE collective key-generation protocol.

4.4.4.2 Collective Decryption

To decrypt the computation result, the MFHE parties engage in a collaborative decryption
operation (Dec) that introduces smudging noise to prevent indirect leakage from encryp-
tion noise correlations [AJLA+12]. As seen above, we rely on an additional linear relation
in a different ring Rqsmdg . We also account for the quotient k⃗2 and ensure that there is
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Statement 2: Local Key Generation

Public Inputs: p1∈Rq,A1∈Rp,A2∈R1×2
p

Private Inputs: s, {ej}kj=1∈Rq r∈R2
q,and k⃗∈ZN

q

Outputs: p0, cajtai∈Rq

• Linear Relation:
p0 = −p1 ◦T · s+T ·∑k

j=1 bjej

cajtai = A1 · s+A2 · r− k⃗p
• Ternary Checks: ||s||∞, ||r||∞, ||ej ||∞ ⩽ 1 for j∈{1, . . . , k}
• Approximate Bound Proof: ||⃗k||∞ ≪ q

Statement 3: Relinearization Key Generation

Public Inputs: cpk = (a,b), A1∈Rp,A2∈R1×2
p

Private Inputs: s, u⃗∈Rq, r∈R2
q {e⃗0j}kj=1, {e⃗1j}kj=1∈Rl

q, and k⃗1∈ZN
q

Outputs: h⃗0, h⃗1, cajtai∈Rq

• Linear Relation:
h⃗0 = a ◦T · u⃗+ ω⃗ ◦T · s+T ·∑k

j=1 bj e⃗0j

h⃗1 = b ◦T · u⃗+T ·∑k
j=1 bj e⃗1j

cajtai = A1 · s+A2 · r− k⃗1 · p
• Ternary Checks: ||s||∞, ||u⃗||∞, ||r||∞, ||⃗e0j ||∞, ||⃗e1j ||∞ ⩽ 1 for j∈{1, . . . , k}
• Approximate Bound Proof: ||⃗k1||∞ ≪ q

no wrap-around modulo any of the qj for j∈[0, L] in the reconstruction of the smudging
noise. Statement 4 summarizes, during collective decryption, the conditions for proving
the correctness of the parties’ operations. Each party re-computes the Ajtai commitment
cajtai of the secret key used in previous MFHE protocols, generates a smudging noise
e and, finally, it outputs the partial decryption h. The ternary checks ensure that the
secret polynomials and noise decompositions are well-formed and the two approximate
bound proofs guarantee no wrap-around of e and cajtai modulo each qj (for j∈[0, L]).

4.4.4.3 Collective Public-key Switching

In ThHE and hybrid settings (§4.2), the MFHE parties execute the public-key switching
operation in order to re-encrypt the computation result under the key of an external
computation-result receiver. From high-level, this protocol corresponds to each party
encrypting as (h0,h1) their own partial decryption share under the receiver’s public key.
Hence, the desired statement is similar to the collective decryption one (c.f. Statement 4)
with two additional linear relations to verify the encryption under the receiver key (which
is considered a public input). The resulting statement is given as Statement 5.
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Statement 4: Collective Decryption

Public Inputs: c1∈Rq,A1∈Rp,A2∈R1×2
p ,A3 ∈ Rqsmdg

Private Inputs: s, s′, {ej}kj=1∈Rq, r∈R2
q and k⃗1, k⃗2∈ZN

q

Outputs: h, cajtai∈Rq

• Linear Relation:
h = c1 ◦T · s+ e
e = A3 ◦T · s′ +T ·∑k

j=1 bjej − k⃗2qsmdg

cajtai = A1 · s+A2 · r− k⃗1p
• Ternary Checks: ||s||∞, ||s′||∞, ||r||∞, ||ej ||∞ ⩽ 1 for j∈{1, . . . , k}
• Approximate Bound Proof: ||⃗k1||∞, ||⃗k2||∞ ≪ q

Statement 5: Public-key Switching

Public Inputs: c1,p
′
0,p

′
1 ∈ Rq,A1∈Rp,A2∈R1×2

p ,A3 ∈ Rqsmdg

Private Inputs: s, s′,u, {e0j}kj=1, {e1j}kj=1∈Rq, r∈R2
q and k⃗1, k⃗2∈ZN

q

Outputs: h0,h1, cajtai∈Rq

• Linear Relation:
h0 = c1 ◦T · s+ p′

0 ◦T · u+ e0
h1 = p′

1 ◦T · u+T ·∑k
j=1 bje1j

cajtai = A1 · s+A2 · r− k⃗1p

e0 = A3 ◦Ts′ +T ·∑k
j=1 bje0j − k⃗2qsmdg

• Ternary Checks: s, s′, r,u, e0j , e1j ⩽ 1 for j∈{1, . . . , k}
• Approximate Bound Proof: ||⃗k1||∞, ||⃗k2||∞ ≪ q

4.4.4.4 Collective Bootstrapping

When the ciphertext’s capacity has been exhausted, the MFHE parties execute a collective
bootstrapping protocol to refresh its noise and to enable further homomorphic computa-
tions on it. In a nutshell, during this protocol, each party re-encrypts a masked partial
decryption of the ciphertext. To avoid plaintext leakage, the collective bootstrapping
protocol requires a mask M ∈ Rt and a smudging noise of large norm. Statement 6
summarizes the necessary conditions for ensuring, during the collective bootstrapping
protocol, the correctness of the parties’ local shares.

4.5 Verifiable Share Aggregation for MFHE

MFHE interactive operations, such as public-key generation, decryption, public-key
switching, and bootstrapping, rely on an aggregator to combine together the parties’ local
shares (Step 2 – §4.3.2.1). A malicious aggregator can tamper with the aggregation
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Statement 6: Collective Bootstrapping

Public Inputs: c1,a∈Rq,A1∈Rp,A2∈R1×2
p ,A3∈Rqsmdg ,A4∈Rqpt

Private Inputs: s, s′, s′′, {e0j , e1j , e2j}kj=1∈Rq, r∈R2
q and k⃗1, k⃗2, k⃗3∈ZN

q

Outputs: h0,h1, cajtai∈Rq

• Linear Relation:
h0 = c1 ◦T · s−∆M+ e0
h1 = −a ◦T · s+∆M+T ·∑k

j=1 bje1j

cajtai = A1 · s+A2 · r− k⃗1p

e0 = A3 ◦T · s′ +T ·∑k
j=1 bje0j − k⃗2qsmdg

M = A4 ◦T · s′′ +T ·∑k
j=1 bje2j − k⃗3qpt

• Ternary Checks: s, s′, s′′, r, e0j , e1j , e2j ⩽ 1 for j∈{1, . . . , k}
• Approximate Bound Proof: ||⃗k1||∞, ||⃗k2||∞, ||⃗k3||∞ ≪ q

operation and harm the confidentiality of the honest parties and/or the correctness of the
MFHE pipeline (see §4.3.2); the same holds if MFHE parties collude with the aggregator.
While ensuring the correct concatenation of the parties’ shares (e.g., in MkHE schemes) is
trivially solved by concatenating their verified versions (§4.4), verifying their summation
remains a challenge. Hence, in this section, we design a novel verifiable aggregation
protocol that guarantees the correct combination of the parties’ locally generated key
material. Our protocol uses a probabilistic polynomial equality test to ensure the returned
polynomial is indeed the sum of each of the parties’ local polynomials. Note that, under
our threat model (§4.3.1), existing protocols for maliciously secure aggregation based on
splitting trust among multiple servers [RSWP23] or on verifiable secret sharing [Ben86],
ensure confidentiality but not correctness. As the MFHE aggregation operation sums up
public polynomials, it does not require confidentiality but an efficient transparent proof
of correctness. Other approaches, e.g., using generic proof systems for rings [GNSV21],
would require a designated verifier and lead to significant overhead (setup and prover).

Overview of our Approach. As discussed in §4.3.2, a correct aggregation operation
entails the summation of the public polynomials returned by each party’s local share
generation, i.e., an honest aggregator returns p=

∑
i pi, ∀Pi ∈ P . Hence, verifying aggre-

gation correctness is equivalent to checking for polynomial equality. Using probabilistic
polynomial checks, we build our succinct protocol: Instead of checking the above equality
for all the N coefficients of each polynomial, we verify the correctness of the polyno-
mial evaluation on a random challenge point. By the polynomial identity lemma in Zq
(Schwartz-Zippel) [Sch80], the probability of collision in the aggregation is N/q. In other
words, the probability that the returned aggregate (i.e.,p) indeed sums up the different
local shares (i.e.,pi, ∀Pi ∈ P) is 1−N/q (typically, with logN between 13 and 15 and
log q=54 leading to four points being sampled for soundness of at least 2−128).

Verifiable Aggregation Protocol. As in our threat model all but one MFHE parties
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Prover(P + Agg.) Verifier(V)
For Pi in P :

Local operation returns pi

Commit hi=HCom(pi)
hi

Send pi to aggregator Agg.
Aggregator returns p p

α pick α ∈ Zq

For Pi in P :

pi=pi(α) with proof Πevali
pi,Πevali Verify Πevali

Verify p(α)
?
=
∑
i

pi

Figure 4.3: An illustration of the verifiable aggregation interactive protocol. In practice, this
protocol is made non-interactive using the Fiat-Shamir heuristic, i.e., the challenge α is generated
in the random oracle model (ROM) from the parties’ commitments hi and the aggregate p.
Without loss of generality, we consider that each party’s local share generation returns a single
polynomial pi. The proof Πevali ensures correct evaluation of the polynomial committed in ci on
the challenge value α.

are potentially malicious, we consider the parties and the aggregator as the prover that
generates a proof that can be verified by a verifier with a Σ-protocol. In more detail,
each party Pi first runs its local share generation (§4.4) and obtains a polynomial pi that
it commits to using a standard hash-based commitment scheme (HCom(·)). Then, each
party publishes its commitment and sends pi to the aggregator that, in turn, returns
the aggregate p. The verifier samples a random challenge point α ∈ Zq and publishes
it. Each party evaluates its local polynomial pi on α and publishes a proof of correct
evaluation. Finally, the verifier checks the correctness of the parties’ commitments and
of the polynomial evaluations on the challenge point, and it verifies that their sum is
indeed equal to p(α). An illustration of our verifiable aggregation protocol can be seen in
Figure 4.3. Note that in practice, this Σ-protocol is made non-interactive in the random
oracle model (ROM) by using the Fiat-Shamir heuristic [FS86].

To realize, in a practical manner, the verifiable aggregation protocol for MFHE pipelines,
we combine it with the proofs of local share generation produced by the parties (§4.4.4). In
particular, when creating a proof of correct local share generation, each party also appends
a linear relation to the statements of §4.4.4 to prove the correctness of the polynomial
evaluation on the challenge point for the verifiable aggregation protocol (Statement 7).
Following this approach, our verifiable aggregation protocol (i) only costs one additional
linear relation, (ii) works directly with our cyclotomic rings, (iii) is publicly verifiable,
and (iv) does not rely on extra cryptographic assumptions. In practice, as we show in
§4.6, the addition of this linear relation is negligible to the prover’s runtime and, due
to the properties of the proof system, does not affect the proof size. As a result, in the
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Statement 7: Verifiable Aggregation

Public Inputs: pi, α
Outputs: pi

• Linear Relation: pi = pi(α)

ROM, our aggregation protocol costs only one hash-based commitment digest per party.

Remark. Note that, alternatively, our verifiable aggregation protocol could be realized by
employing a polynomial commitment scheme (PCS) that enables proofs of correct evalua-
tion on committed polynomials, e.g.,KZG [KZG10], Hyrax [WTS+18], FRI [BSBHR18],
or DARK [BFS20]. However, these schemes require a trusted setup, e.g., [KZG10], or rely
on cryptographic assumptions (e.g.,discrete logarithm, Reed-Solomon codes) different
from those made for (M)FHE pipelines. On the contrary, our approach does not require
additional assumptions and introduces minimal communication and computation over-
head, i.e., it comes almost for free in our overall construction for verifying the correctness
of MFHE pipelines.

4.6 Implementation and Evaluation

We introduce PELTA , an implementation of our commit-then-prove construction for
securing MFHE pipelines against malicious adversaries. We evaluate PELTA over different
MFHE protocols and compare its performance with prior work.

4.6.1 Implementation

We implement PELTA in Golang on top of the Lattigo library [EPF21] that supports
MFHE pipelines. We use Lattigo’s polynomial ring package and we create a new lattice-
based commitment library that implements the BDLOP [BDL+18a] and Ajtai [Ajt96]
commitments. Based on this commitment library, we implement the proof systems from
Esgin et al. [ENS20] and Lyubashevsky et al. [LNS21a] to verify the correctness of the
statements proposed in the previous sections (§4.4 and §4.5). Our code is available in an
open source repository [LDS23].

4.6.2 Experimental Setup

We focus on key MFHE protocols, i.e., key generation (§4.4.4.1), collective decryption
(§4.4.4.2), public-key switching (§4.4.4.3), and collective bootstrapping (§4.4.4.4); these
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play a critical role in MFHE pipelines (both MkHE and ThHE – see §4.3.2). By
default, we configure the security parameters of the lattice-based commitment scheme
to achieve at least 128-bit security, as in prior work [ENS20]. We set, in particular, the
MSIS and MLWE parameters to κsis=1 and λlwe=1 for a Rq of degree d=213. Unless
otherwise specified throughout the experiments, we consider FHE parameters with a
polynomial degree of N=213 (log q=218). We display the results for a single sub-ring
of the RNS representation because the benchmark costs are linear in the number of qj
(see Appendix B.2) and, because the sub-rings are independent, they are in practice
parallelizable. All our experiments are conducted on a machine with two Intel Xeon
E5-2680 v3 processors running at 2.5GHz over 12 cores and equipped with 256GB of
RAM, and the results are averaged over 10 repetitions. We report PELTA’s performance
both for a single-threaded implementation (PELTA single-th.) as well as an optimized
version that uses an underlying multi-threaded package for some polynomial operations
(PELTA multi-th.).

Baselines. We compare PELTA with two different approaches from prior work that we
extend to support the different statements presented in §4.4 and §4.5. The first is an
MPC solution based on cut-and-choose (C&C) [CP16]. In more detail, the prover first
commits to K protocol iterations. Then, the verifier picks one of the commitments and
the prover reveals the secrets of the remaining K − 1 protocol executions. Finally, the
verifier checks that the commitment openings and the revealed secrets lead to correct
protocol executions. We set K to 100K to have comparable runtimes with the other
approaches. However, we note that this protocol yields low security (16-bit). The second
baseline is a SNARK-based approach proposed by Boschini et al. [BCOS20] that relies
on the Aurora [BSCR+19] proof system which is configured to achieve 128-bit security.

Evaluation Metrics. We compare the performance of PELTA and the baselines by
measuring their overhead in terms of setup, prover, and verifier runtimes, for both its
single and multi-threaded versions. The setup times comprise the sampling of the input
polynomials, the creation of the linear relations, and the generation of the BDLOP public
parameters. We also measure their proof sizes.

4.6.3 Performance Analysis

We first compare the performance of PELTA and the two baselines for the local key-
generation protocol (§4.4.4.1). Table 4.1 shows that PELTA outperforms both baselines.
In particular, single-threaded PELTA is ∼30× faster than the cut-and-choose protocol
(while achieving much higher security) and one order of magnitude more efficient than the
Aurora-based approach. Although PELTA yields a slightly larger proof than the latter,
we argue that its size is reasonable considering the MFHE communication costs; a single
public key is already 0.45MB and evaluation keys for practical applications can be in the
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Table 4.1: Performance results of the local key-generation protocol (§4.4.4.1) with logN=13

over a single sub-ring of the RNS representation.

Setup Prover (s) Verifier (s) Proof (MB)
C&C - 463 463 6.4

[BCOS20] >5min 845 312 0.463
PELTA (single-th.) 12.2s 14.0 14.9 2.05
PELTA (multi-th.) 10.4s 9.5 10.5 2.05

order of GBs (see [SPTP+21]). Due to the overhead and low security achieved by C&C,
as well as to the fact that this approach can not be used to prove key consistency across
MFHE protocol executions without additional extensions, in the subsequent protocol
evaluations, we focus on the comparison between PELTA and [BCOS20]. We do not
report results for the relinearization key-generation protocol as the Aurora-based approach
required more than 256GB of RAM. We additionally observe that the multi-threading of
the underlying math operations can speed up PELTA by a factor 1.5.

Table 4.2 shows that PELTA (single-threaded) achieves at least one order of magnitude
faster prover runtimes, compared to the Aurora-based approach for the various MFHE
collective protocols. PELTA’s prover execution is, in particular, 87× faster for the
collective decryption (Table 4.2(a)), and 67× and 42× more efficient for the collective
public-key switching and bootstrapping protocols, resp. (Tables 4.2(b) and 4.2(c)).
Whereas the verifier runtimes do not yield a similar gap due to Aurora’s verification
efficiency, PELTA remains at least 14× faster. Then, although [BCOS20] achieve a smaller
proof size due to Aurora’s succinctness, we note that PELTA’s proof sizes per sub-ring are
in similar ranges. Finally, Table 4.2 demonstrates that our approach has a considerably
faster setup phase (15×).

Influence of the Aggregation. We incorporate the aggregation relation into the
different statements of §4.4 as discussed in §4.5. Table 4.3 shows the performance
results for the collective key-generation protocol (Statements 2 and 7), for [BCOS20]
and PELTA. In both cases, we observe that the proof size is only slightly modified
due to Aurora’s succinctness and the lattice-based proof’s construction (c.f.Table 4.1).
Although the runtime of PELTA is almost not affected, the inclusion of the aggregation
relation significantly impacts Boschini et al. ’s approach [BCOS20]. Indeed, for Aurora,
the new polynomial evaluations (used for our compression technique in §4.5) and the
public outputs increase the number of variables and create additional constraints on the
back end. For the lattice-based proof we employ, the addition of the linear constraint
affects only slightly the computation runtime (i.e., the operations involving the matrix
A, §4.4.3 and Figure B.1). As a result, the aggregation comes almost for free due to our
trick of using a polynomial evaluation to verify it (§4.5).
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Table 4.2: Performance results of various MFHE protocols with logN=13 over a single sub-ring
of the RNS representation.

(a) Collective decryption (§4.4.4.2).
Setup Prover (s) Verifier (s) Proof (MB)

[BCOS20] >8min 1, 487 401 0.496
PELTA (single-th.) 16.1s 16.9 17.9 2.37
PELTA (multi-th.) 11.6s 11.3 12.5 2.37

(b) Public-key switching (§4.4.4.3).
Setup Prover (s) Verifier (s) Proof (MB)

[BCOS20] >12min 1, 681 580 0.495
PELTA (single-th.) 25.0s 24.5 26.2 3.15
PELTA (multi-th.) 20.2s 16.6 18.3 3.15

(c) Collective bootstrapping (§4.4.4.4).
Setup Prover (s) Verifier (s) Proof (MB)

[BCOS20] >12min 1, 649 566 0.495
PELTA (single-th.) 48.2s 38.6 40.8 3.9
PELTA (multi-th.) 34.8s 25.3 27.6 3.9

Influence of the FHE Polynomial Ring Rq. We evaluate PELTA’s performance with
various polynomial rings commonly used in FHE pipelines, i.e., rings whose degree ranges
between N=211 and N=215 with the corresponding moduli of the Lattigo library [EPF21].
Recall that the ring degree and the modulus depend on the security requirement and
the hardness of the RLWE problem [ACC+18]. For simplicity, we consider a single
modulus, as we experimentally observe a linear correlation with the number of sub-rings
(see Table B.1 in Appendix §B.2). As expected, we observe in Table 4.4 an exponential
correlation between both computation and communication complexity (for both prover
and verifier) and the FHE-ring degree.

Influence of the Commitment Polynomial Ring Rq. While the proof sizes of
PELTA are acceptable compared to the communication overhead already induced by
MFHE pipelines, Tables 4.1–4.3 show that they are larger than Boschini et al. [BCOS20].
Nonetheless, PELTA’s proof size can be reduced and made on par with [BCOS20] by
opting for a smaller commitment ring Rq and by adapting the parameterization of the
commitment scheme such that the MLWE and MSIS problems remain hard (see Table B.2
in Appendix B.3). For instance, the proof size of the key-generation protocol can be
reduced from 2.05MB to 1.3MB (1.5MB) by using a commitment ring degree log d=7

(log d=10) at the cost of slightly longer runtimes (2× to 3×) due to a higher number
of costly ring operations. As such, PELTA can achieve a tradeoff between runtime and
proof size.
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Table 4.3: Performance of the collective key-generation protocol (i.e., Statements 2 and 7), per
sub-ring (logN=13), with aggregation proof.

Setup Prover (s) Verifier (s) Proof (MB)
[BCOS20] >14min 1, 151 606 0.464

PELTA (single-th.) 12.7s 14.9 15.8 2.05
PELTA (multi-th.) 11.2s 9.8 10.9 2.05

4.7 End-to-End MFHE Pipeline Security

Our construction ensures that, during the MFHE interactive operations, the parties
correctly generate the key material and execute the protocol steps. However, to guarantee
the validity of the computation output and the end-to-end security of the MFHE pipeline
in the presence of malicious adversaries, additional techniques for verifying the correctness
of non-interactive operations (§4.3.2.2) are required. In particular, countermeasures
that ensure (i) the validity of the homomorphic evaluation (§4.7.1), as well as (ii) the
trustworthiness of the input provided to the computation (§4.7.2), should be incorporated.
As discussed in §4.3.2.2, such countermeasures are orthogonal and complementary to
PELTA.

4.7.1 Homomorphic Evaluation Correctness

Verifying the correctness of the homomorphic evaluation (Eval– §4.3.2.2) in MFHE
pipelines is crucial, as a malicious evaluator could tamper with the computation such
that the parties decrypt an invalid result. Although several works propose techniques
for proving the correctness of homomorphic evaluation, we note that several open issues
hinder their practical application and that further research is required. For instance, works
that rely on homomorphic message authentication codes (HMACs) to verify the operations
executed on the ciphertexts are limited to quadratic functions and do not support critical
FHE features such as batching [LDPW14, LWZ18, LWX22, CMP14, TPD16, LPJY13,
CHH+18, JY14]. Whereas our work presented in Chapter 3 generalizes the HMACs
approach to any homomorphic operation by using novel plaintext encoding schemes, their
work is only suitable for settings with trusted clients. Another line of work combines
homomorphic hashing techniques [FGP14] with SNARKs to prove the correctness of
the homomorphic evaluation [FNP20, BCFK21]. These solutions cannot, however, cope
with crucial FHE operations such as key-switching and relinearization (§1.3) due to the
incompatibility of the SNARKs with the rings used by FHE schemes. The recent work
by Ganesh et al. introduced a new SNARK for rings [GNSV21], but their approach is not
directly suitable for MFHE settings, as it operates in the designated verifier model. Finally,
solutions based on trusted execution environments (TEEs), e.g., [NLDD21], introduce
different trust assumptions and are potentially prone to integrity attacks [FYDX21].
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Table 4.4: PELTA’s performance (single-th.) for EncKeyGen (§4.4.4.1) per sub-ring and
variable FHE polynomial ring Rq degree N .

logN = 11 12 13 14 15

Setup (s) 0.9 3.9 11.7 47.6 198.4
Prover (s) 1.3 4.4 13.9 43.9 158.5
Verifier (s) 1.6 3.1 14.8 46.2 163.3

Proof/sub-ring (MB) 1.1 1.4 2.05 3.3 5.8

Therefore, we argue that without novel and efficient techniques for proving the homo-
morphic evaluation correctness, a simple approach to secure this part of MFHE pipelines
(i.e.,Eval – §4.3.2.2) is computation replication by each party. Note that the homomor-
phic evaluation process, in particular, does not involve any private information, hence each
party can locally re-compute the homomorphic evaluation on the ciphertexts. With our
threat model, at least one party is honest (§4.3.1), hence this party can detect a malicious
evaluator and abort the protocol. To offer re-execution accountability, e.g., to prevent
a dishonest party from falsely claiming that the ciphertext returned by the evaluator
is wrong, we could use a hash-based commitment (HCom(·)) approach, as follows: (a)
Each MFHE party publicly commits to the output of their local homomorphic evaluation,
(b) the evaluator reveals the output of its homomorphic computation, then (c) all the
parties open their commitments. If the honest party detects a mismatch between the
commitment openings and the output of its own computation, it aborts the protocol.

4.7.2 Input Correctness

As in any MPC system, active adversaries can also tamper with the MFHE pipeline
output by providing invalid or maliciously crafted inputs to the computation. As a
result, ensuring correct computation output additionally requires verifying both the
validity of the parties’ (plaintext) data and its correct encryption (i.e., the ciphertexts
generated by Enc– §4.3.2.2). Although ensuring the correct encryption operation of a
valid input can be achieved using techniques similar to §4.4.3 and to prior work [ENS20,
LN17, BCOS20, DPLS19], verifying (plaintext) input correctness is a more challenging
problem that requires specialized solutions. We could use commitments and range
proofs [Gro11, BBB+18, CKLR21, ENS20] to prove that the input data originates from
the plaintext space of the FHE scheme. However, we note that (i) such proofs would be
highly inefficient due to the large coefficients (e.g., 16− 32 bits) and (ii) malicious parties
can still craft inputs that are within the valid range but mislead the computation output
(e.g., similar to data poisoning when training a machine-learning model [JOB+18, BNL12]).
Therefore, additional techniques that can verify input correctness based on, e.g., statistical
tests [CSC+23], proofs of correct computation on authenticated data [BBFR15], or
authenticity checks on encrypted data [CPTPH21a], are required.
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4.8 Summary

In this work, we have introduced the first practical construction for thwarting malicious
adversaries in multiparty fully homomorphic encryption (MFHE) pipelines. Built on
lattice-based commitments and zero-knowledge proofs, our solution addresses the chal-
lenges introduced by the structure of modern FHE schemes and their implementation
optimizations. We implemented our construction in PELTA and our experimental results
showed that it achieves more than one order of magnitude faster runtimes than solutions
based on generic proof systems on key MFHE operations. Our solution is a necessary
first step toward building fully malicious-resistant MFHE pipelines.





Chapter 5

Verifiable Encryption and
Trustworthy Data Release

In recent digital scenarios, users share their personal data with service providers to obtain
some utility, e.g., access to high-quality services. Yet, the induced information flows
raise privacy and integrity concerns. Consequently, cautious users may want to protect
their privacy by minimizing the amount of information they disclose to curious service
providers. Service providers are interested in verifying the integrity of the users’ data to
improve their services and obtain useful knowledge for their business. In this chapter,
we present a generic solution to the trade-off between privacy, integrity, and utility, by
achieving authenticity verification of data that has been encrypted for offloading to service
providers. Combining lattice-based homomorphic encryption and commitments, as well
as zero-knowledge proofs, our construction enables a service provider to process and
reuse third-party signed data in a privacy-friendly manner with integrity guarantees. We
evaluate our solution on different use cases such as smart-metering, disease susceptibility,
and location-based activity tracking, thus showing its versatility.

Contents
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Approximate Homomorphic Encryption . . . . . . . . . . . . 88

5.3.2 Zero-Knowledge Circuit Evaluation . . . . . . . . . . . . . . . 89

5.3.3 BLDOP Commitment . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

83



84 Chapter 5. Verifiable Encryption and Trustworthy Data Release

5.4.1 Collection Phase . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.2 Transfer Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.3 Verification Phase . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.4 Computation Phase . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.5 Release Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Privacy and Security Analysis . . . . . . . . . . . . . . . . . . 96

5.5.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.2 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . 97

5.6.2 Smart Metering . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.3 Disease Susceptibility . . . . . . . . . . . . . . . . . . . . . . 100

5.6.4 Location-Based Activity Tracking . . . . . . . . . . . . . . . . 101

5.6.5 Reducing the Communication Overhead . . . . . . . . . . . . 103

5.6.6 Comparison with ADSNARK . . . . . . . . . . . . . . . . . . 105

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7.1 Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7.2 Integrity Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7.3 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1 Overview

As discussed in the Introduction, more and more data flows operate in the three-party
model depicted in Figure 5.1: a user obtains data from a data-source and subsequently
shares it with a service provider to obtain some utility from the data. This is for example
the case in smart metering, personalized health, and location-based activity tracking as
we will see in this chapter.

To avoid any unintended leakage from her data and still enable computations to be
executed, the user employs FHE. Still, some scenarios (e.g., smart metering billing)
require the service provider to access in clear the result of the computation. However, as
we have seen in Chapters 1 and 2, by default, FHE does not provide any guarantee of
correctness in the presence of malicious users.

Thus in this chapter, we investigate how to enable both integrity protection and confiden-
tiality without hindering utility. We consider a model comprising (i) a malicious user, and
(ii) honest-but-curious service providers and data sources. The data source is in charge of
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honestly generating and authenticating data pertaining to the user. This certification
should require minimal to no changes to the data source: using only deployed hardware
and software infrastructure. The user should be able to offload their protected data to
service providers (i.e., transfer a copy of the data only once) in such a way that their
privacy is preserved, the data integrity can be verified, and various flexible computations
are feasible.

Source Service ProviderUser

Collection

Transfer

Verification

Computation

Data Release
f( )=c

mc→m

Figure 5.1: Three-party model and their interaction phases. is the private information
authenticated with . The user protects it via to get . The service provider
computes f(·) on the protected data and obtains an output which is revealed as m.

A simple solution is to establish a direct communication channel between the data source
and the service provider. This way, the data source could compute the operations queried
by the service provider on the user’s data. However, this would prevent the user from
remaining in control of her data and require the data source to bear computations that are
outside of its interests. Another approach is to let the data source certify the user’s data
by using specialized digital signature schemes such as homomorphic signatures [BF11,
CF13, CFGN14, CFN18, GVW15] or homomorphic authenticators [ABC+15, FMNP16,
GW13, SBB19]. Thus, the user could locally compute the queried operation and provide
the service provider with the result and a homomorphic signature attesting to its correct
computation on her data. However, this would require software modifications at the
data source, which would come at a prohibitive cost for existing services, and introduce
significant overhead for the user.

As discussed in Chapter 2, solutions based on generic zero-knowledge proofs and SNARKs
fall short of achieving practicality for this setting. In particular, ADSNARK [BBFR15],
which addresses a problem closest to ours, does not support offloading of data under FHE
and relies on different trust assumptions (e.g., a trusted setup).

In this chapter, we propose a new construction called CRISP to solve this problem. It is
generic, supports data offloading with minimal modification to existing infrastructures
and relaxes the need for a trusted setup. Motivated by the need to protect users’ privacy
and by the offloading requirement to support multiple computations on their data,
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CRISP relies on plausibly quantum-resistant lattice-based approximate homomorphic
encryption (HE) primitives [CKKS17] that support flexible polynomial computations on
encrypted data without degrading utility. To ensure data integrity, we employ lattice-based
commitments [BDL+18a] and zero-knowledge proofs [CDG+17] based on the multi-party-
computation-in-the-head (or MPC-in-the-head) paradigm [IKOS09], which enable users to
simultaneously convince service providers about the correctness of the encrypted data, as
well as the authenticity of the underlying plaintext data, using the deployed certification
mechanism.

We evaluate our solution on three use cases covering a wide range of applications and
computations: smart metering, disease susceptibility, and location-based activity-tracking.
Our experimental results show that our construction introduces acceptable computation
overhead for users to privately offload their data and for service providers to both
verify its authenticity and to perform the desired computations. The magnitude of the
communication overhead compared to the unprotected HE pipeline fluctuates between
tens and hundreds of megabytes per proof and is highly dependent on the use case
and its security requirements. To this end, in Section 5.6.5, we also present different
optimizations that can reduce the proof size, thus making our construction more practical
for real-life scenarios. Compared to the state of the art [BBFR15], we reach comparable
performance and achieve complete outsourcing features with additional post-quantum
security guarantees.

Our contributions are the following:

• A generic solution that enables privacy and integrity preserving computations in
the three-party model of Figure 5.1, with minimal modifications of the existing
infrastructure;

• the necessary primitives to achieve authenticity verification of homomorphically
encrypted data in the random oracle model;

• an implementation of CRISP [LDS20] and its performance evaluation on various
representative use cases that rely on different types of computations and real-world
datasets.

5.2 Model

We describe the model, assumptions, and objectives of CRISP.
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5.2.1 System Model

We consider three entities: a user, a service provider, and a data source, as depicted in
Figure 5.1. The user obtains from the data source certified data about herself and/or her
activities. She subsequently shares this data with the service provider to obtain some
service. The user is interested in sharing (i.e., offloading) her data while protecting her
privacy, i.e., she wants to have full control over it but still obtain utility from the service
provider. The service provider is interested in (i) verifying the authenticity of the user’s
data, and (ii) performing on it multiple computations that are required to provide the
service and/or improve its quality. The data source can tolerate only minimal changes to
its operational process and cannot cope with any heavy modification to the underlying
infrastructure and dependencies of the hardware and software. Finally, we assume the
existence of a public key infrastructure that verifies the identities of the involved parties
as well as secure communication channels between the user and the data source, and
between the user and the service provider.

5.2.2 Threat Model

We present the assumed adversarial behavior for the three entities of our model with
computationally bounded adversaries.

Data Source. The data source is considered honest and is trusted to generate valid
authenticated data about the users’ attributes or activities.

Service Provider. The service provider is considered honest-but-curious, i.e., it abides
by the protocol and does not engage in denial-of-service attacks. However, it might try
to infer as much information as possible from the user’s data and perform computations
on it without the user’s consent.

User. We consider a malicious but rational user. In other words, she engages in the
protocol and will try to cheat only if she believes that she will not get caught – and
hence be identified and banned – by the service provider. This type of adversary is also
referred to as covert in the literature [AL07]. The user is malicious in that she might try
to modify her data, on input or output of the data exchange, in order to influence the
outcome of the service provider’s computations to her advantage. Nonetheless, the user
is rational, as she desires to obtain utility from the service provider and thus engages in
the protocol. We assume that the key generation process has been executed honestly. As
we have seen in Chapter 4, additional countermeasures could be in place to ensure that
the keys are properly formed.
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5.2.3 Objectives

The main objective of our solution is to provide a proof of the correct encryption
of authenticated data. Our construction should enable flexible computations in the
considered three-party model. In particular, the user’s privacy should be protected by
keeping her in control of the data even in a post-quantum adversarial setting, and the
service provider’s utility should be retained by ensuring the integrity of the processed
data. The above objectives should be achieved by limiting the impact on already deployed
infrastructures, thus, by requiring only minimal changes to the data source’s operational
process. More formally, the desired properties are:

(a) Utility: Both user and service provider are able to obtain the correct result of a
public computation on the user’s private data;

(b) Privacy: The service provider does not learn anything more than the output of
the computation on the user’s private data;

(c) Integrity: The service provider is ensured that the computation is executed on
non-corrupted data certified by the data source and that the result is correct; and

(d) Deployability: Only operational changes at the data source are possible; this is
in contrast to data sources deploying new hardware components or novel software
stacks for data certification.

5.3 Preliminaries

We introduce the cryptographic primitives used in Section 5.4 to instantiate CRISP. We
refer the reader to Chapter 1.1 for the explanation of the mathematical notations used in
this chapter.

5.3.1 Approximate Homomorphic Encryption

Cheon et al. recently introduced the CKKS cryptosystem [CKKS17] (improved in [CHK+18b]),
an efficient and versatile leveled homomorphic scheme for approximate arithmetic op-
erations. An approximate homomorphic encryption scheme enables the execution of
approximate additions and multiplications on ciphertexts without requiring decryption.
The structure of the CKKS cryptosystem is very similar to BFV presented in Chapter 1.
For χenc an error distribution over the polynomial ring Rq, the encryption of a polynomial
message p is:
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Encryption(p;pkHE): For a message m ∈ ZNt encoded as a polynomial p, for r0 ← χenc

and e0, e1 ← χerr, output the pair of polynomials ct=(ct0, ct1)=r0 · pkHE + (p+ e0, e1)

mod q.

We present the CKKS scheme in more detail in Appendix C.4.

5.3.2 Zero-Knowledge Circuit Evaluation

As discussed in Chapter 2, verifiable computation (VC) and proof systems enable a
prover to generate a proof of correct execution of a specific computation. Among the
numerous lines of research, zero-knowledge circuit evaluation (ZKCE) protocols based
on MPC techniques enable a user to prove the knowledge of an input that yields a
public output on an arithmetic or Boolean circuit that implements a specific public
function [CDG+17, GMO16, KKW18]. A circuit is defined as a series of gates connected
by wires. Based on the multi-party computation (MPC) in-the-head approach from Ishai
et al. [IKOS09], ZKCE techniques emulate players and create a decomposition of the
circuit (see Figure C.1 in Appendix C.1). The secret is shared among the emulated players,
who evaluate the circuit in an MPC fashion and commit to their respective states. The
prover then reveals the states of a subset of players depending on the verifier’s challenge.
By inspecting the revealed states, the verifier builds confidence in the prover’s knowledge.

In particular, ZKB++ [CDG+17] is a Σ-protocol for languages of the type {y | ∃x s.t.y=Φ(x)},
where Φ(·) is the representation of the circuit. With randomized runs, the verifier builds
confidence in the prover’s knowledge of the secret. The number of iterations is determined
according to the desired soundness: For instance, to prove the knowledge of a message
that yields a specific SHA-256 digest, a security level of 128-bits requires 219 iterations.
The proof size is linked to the number of iterations but also to the number of gates
that require non-local computations (e.g.,AND for Boolean circuits, multiplication for
arithmetic ones). Compared to earlier work, i.e.,ZKBoo [GMO16], ZKB++ reduces the
proof size by not sending information that can be computed by the verifier. The security
of ZKB++ is based on the quantum random oracle model.

Overall, it achieves the following properties:

(a) 2-privacy, opening two out of the three players’ views to the verifier reveals no
information regarding the secret input,

(b) special soundness, a correct execution yields a valid witness with soundness error
linked to the number of iterations, and

(c) completeness, an honest execution of ZKB++ ensures a correct output.

Compared to other approaches such as most succinct non-interactive arguments of
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knowledge (SNARKs) [BSCG+13, CFH+15, GGPR13, Gro16, PHGR13], MPC-in-the-
head ZKCE achieve good prover performance, does not require a trusted setup, and
can be instantiated with plausibly quantum-security. As such, it has been used for
several applications such as signatures [CDG+17] and lattice-based cryptography [BN20].
Because of its design, MPC-in-the-head ZKCE such as ZKB++ [CDG+17] are ideally
combined with lattice-based FHE.1

5.3.3 BLDOP Commitment

The lattice-based commitment scheme due to Baum et al. [BDL+18a] presented in
Section 4.4.2 in Chapter 4 is linearly homomorphic and, thus, compatible with the ZKCE
presented above. In addition to the sigma protocols that we presented in the context
of PELTA in Chapter 4, we present here a simple approximate bound proof due to
Baum et al. [BDL+18b]. Given a commitment c=BDLOP(m, rc) and a proof of correct
opening, the prover additionally computes a commitment for a vector of small values
µ as t=BDLOP(µ, ρ) and commits to this commitment in an auxiliary commitment
caux=Caux(t). The verifier selects a challenge d ∈ {0, 1} and sends it to the prover who
verifies its small norm and eventually opens caux. The prover also opens t + d · c to
z=µ+d·m and rz=ρ+d·rc. Upon reception, the verifier checks that BDLOP(z, rz)=t+d·c
and that the norms are small. More formally, the protocol works as follows:

1. The prover computes a commitment t = BDLOP(µ, ρ) for µ sampled uniformly in
Rq and ρ a valid commitment noise subjected to ∥µ∥∞ ≤ βµ and ∥ρ∥∞ ≤ βρ (see
[BD16] for details about the bounds). Then, the prover commits to this commitment
through an auxiliary commitment and sends caux=Caux(t) to the verifier.

2. The verifier randomly picks and sends a challenge d∈{0, 1}.

3. The prover checks the correctness of the challenge and computes z=µ+ dm as well
as rz=ρ+ drc in order to provide a valid opening of t+dc. The prover aborts if the
resulting commitment is not properly formatted. Otherwise, it sends z, rz, and the
opening of the auxiliary commitment to the verifier.

4. The verifier checks the correctness of the opening and that the norm of z is small.

At the end of the protocol, the verifier is ensured that the norm of the secret m is below
a specific threshold. This protocol can be made non-interactive with the Fiat-Shamir
heuristic and iterated to increase the soundness. We refer the reader to [BD16] for more
details.

1Baum and Nof [BN20] showed concurrently how to apply it to other lattice problems.
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5.4 Architecture

We now present our construction that enables computations on third-party certified data
in a privacy and integrity-preserving manner. It builds on (i) CKKS to encrypt the data
and enable computations on it, and (ii) MPC-in-the-head and BDLOP commitments
to simultaneously verify a custom circuit that checks the integrity of the data and its
correct encryption. Its workflow is decomposed into five phases as in Figure 5.1: collection,
transfer, verification, computation, and release.

Collection Phase: the user obtains data about herself or her activities from the data
source, along with a certificate that vouches for its integrity and authenticity.

Transfer Phase: The user then encrypts the data, generates a proof for correct encryption
of the certified data, and sends it with the ciphertexts to the service provider.

Verification Phase: The service provider verifies the proof in the verification phase.

Computation Phase: It performs the desired computations on it.

Release Phase: Both user and service provider communicate with each other to obtain
the corresponding result in the release phase.

5.4.1 Collection Phase

In this phase, the user (identified by her unique identifier uid) collects from the data
source certified data about herself or her activities. The data source certifies each user’s
data point x using a digital signature σ(·) that relies on a cryptographic hash function H(·)
to ensure integrity. We opt for SHA-256 as the hash function due to its widespread use as
an accepted standard for hash functions [Dan15]; our solution works with any signature
scheme building on it. For example, Bernstein et al. [BHK+19] recently proposed a
quantum-secure signature scheme employing SHA-256. In more detail, the data source
generates a payload msg={nonce, uid,x} and sends to the user a message M0 defined
by: M0={msg, σ(H(msg))}.

5.4.2 Transfer Phase

In this phase, the user protects her certified data points with the CKKS homomorphic
encryption scheme (see Section 5.3.1) and generates a proof of correct protection. To
this end, CRISP employs a ZKCE approach to simultaneously prove the integrity of
the underlying data and its correct encryption, i.e., to convince a service provider that
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Figure 5.2: Overview of the verification circuit C. Its inputs are denoted by rectangles
and its outputs by rounded rectangles.

the noises used for encryption did not distort the plaintexts. In particular, the user
evaluates a tailored circuit C (depicted in Figure 5.2) that (i) computes the encryption
of the data with the CKKS scheme, (ii) generates BDLOP commitments to the noises
used for encryption, and (iii) produces the hash digests of the messages signed by the
data source to verify their integrity. For ease of presentation, we describe the circuit
that processes one data point x. However, this can easily be extended to a vector d

obtained from multiple data points {xi}. The circuit’s structure is publicly known and
its public parameters are the encryption public information pk,U, N , the matrix B0 and
vectors {bj}3j=1 used in the BDLOP commitment scheme and its parameters κsis, λlwe,
and additional information such as the user’s identifier. The circuit’s private inputs are
the user’s secret data point x and nonce, the encryption private parameters r0, e0, and
e1, and the private parameters of the BDLOP commitment scheme rc. These inputs
are arithmetically secret-shared among the three simulated players, according to the
ZKB++ protocol. The outputs of the circuit are the ciphertext ct, the commitment to
the encryption noises CBDLOP=BDLOP((r0, e0, e1)T , rc), and the digest of the message
H(msg) signed by the data source.

For efficiency reasons, CKKS operates over the RNS decomposition of polynomial rings.
Each sub-ring has a prime modulus which is NTT-friendly. While the original lattice-
based commitments required specific moduli, the recent work from Attema et al. [ALS20]
showed how to construct commitments over NTT-friendly polynomial rings used by
encryption schemes such as CKKS.

Moreover, we note that our circuit requires computations to be executed on the underlying
arithmetic ring Zq used for the lattice-based encryption and commitment schemes, as well
as a Boolean ring Z2 for the computation of the SHA-256 hash digests. We also design a
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block that converts MPC-in-the-head arithmetic shares of the input data of the circuit
into Boolean ones.

Overall, our circuit C consists of four blocks, shown in Figure 5.2: encryption, commitment,
conversion, and hash block.

Encryption Block. This block operates in the arithmetic ring Zq and takes as inputs
the vector of integers in Zq derived by quantization from the plaintext x produced during
the data collection phase (see Section 5.4.1), as well as the encryption with private noise
parameters r0, e0, and e1. It first encodes the secret input data x to a polynomial p ∈ Rq
before computing the ciphertext ct=(ct0, ct1)=r0 · pk+ (p+ e0, e1) mod q. This step
requires only affine operations that can be computed locally for each simulated player of
ZKB++ protocol. The encryption block is depicted in the middle part of Figure 5.2.

Commitment Block. This block also operates in the arithmetic ring Zq; its inputs are
the private parameters of the encryption (i.e., r0, e0, and e1) and commitment (i.e., rc)
schemes. As the commitment scheme has the same external structure as the encryption
one, this block operates equivalently and returns BDLOP((r0, e0, e1)T , rc), requiring only
local operations at each simulated player. An overview of the commitment block is shown
in the leftmost part of Figure 5.2.

Conversion Block. This block enables us to interface two types of circuits that would
otherwise be incompatible when following a ZKCE approach. The main idea is to
transform an arithmetic secret sharing into a Boolean secret sharing in the context of
MPC-in-the-head. Let [x]B denote the Boolean sharing of a value x and [x]A its arithmetic
one. An arithmetic additive secret sharing in Zq splits x into three sub-secrets x0, x1, and
x2 such that x=x0+x1+x2 mod q. Let xki , be the k-th bit of the arithmetic sharing of
the secret x for player i. A Boolean sharing [x]B cannot be directly translated from [x]A
as the latter does not account for the carry when adding different bits. Considering that
the modulus q can be represented by |q| bits, the conversion block generates |q| Boolean
sub-secrets [y]jB={y

j
0, y

j
1, y

j
2}B, such that

∀j ∈ [1, |q|] : xj =
2⊕
i=0

yji ,

where ⊕ denotes the XOR operation (i.e., addition modulo 2), and xj is the j-th bit of x.
When designing such a block in the MPC-in-the-head context, we must make the circuit
(2,3)-decomposable (see § 5.3.2) and ensure the 2-privacy property, i.e., revealing two out
of the three players’ views to the verifier should not leak any information about the input.

To reconstruct the secret in zero-knowledge and obtain a bit-wise secret sharing, the
procedure is as follows: For every bit, starting from the least significant one, the conversion
block computes (i) the sum of the bits held by each player, plus the carry from the previous
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bits, and (ii) the carry of the bit. The computation of the carry requires interaction
between the different players (i.e.,making the operation a “multiplicative" one), hence
we design a conversion block with a Boolean circuit that minimizes the number of
multiplicative gates.

More precisely, we design a bit-decomposition block for MPC-in-the-head building on
Araki et al. ’s optimized conversion [ABF+18] between a power-of-two arithmetic ring
and a Boolean ring. Let Maj(·) be the function returning the majority bit among three
elements. Then, the conversion circuit, for every bit k ∈ [1, |x|], does the following:

1. locally reads [αk]B={xk0, xk1, xk2} (i.e., for each player);
2. computes the first carry [βk]B amongst those inputs:

βk=Maj(xk0, x
k
1, x

k
2)=(xk0 ⊕ xk2 ⊕ 1)(xk1 ⊕ xk2)⊕xk1;

3. computes the second carry [γk]B amongst those inputs with γ0=β0=0:

γk=Maj(αk, βk−1, γk−1)=(αk ⊕ γk−1 ⊕ 1)(βk−1 ⊕ γk−1)⊕ βk−1;

4. sets the new Boolean sharing of the secret to

[y]kB=[αk]⊕ [βk−1]⊕ [γk−1].

To the best of our knowledge, this is the first time a bit-decomposition circuit is used for
MPC-in-the-head, which enables to interface circuits working in different rings.

Hash Block. This block uses the SHA-256 circuit presented in [GMO16] to compute
the hash digest of the message msg={nonce, uid,x} signed by the data source in the
collection phase.

Full Circuit. With the above building blocks, and following the ZKB++ protocol, the
user generates a proof that can convince the service provider that she has not tampered
with the data obtained by the data source.

Furthermore, using BDLOP’s approximate bound proof protocol (see Section 4.4.2 in
Chapter 4 and Section 5.3.3) the user produces a proof of correct encryption, i.e., that
the encryption noise has not distorted the underlying plaintext. The cryptographic
material of the combined proofs (ZKCE & BDLOP) is denoted by Π: i.e., it contains
the cryptographic material to verify the circuit C as well as the BDLOP bound proof
(see Section 4.4.2 in Chapter 4). At the end of the transfer phase, the user sends to the
service provider the message:

M1={ct,CBDLOP,Π,H(msg), σ(H(msg))}.

Since the publication of our work, this approximate bound proof has been improved
alleviating the need for repetition [LNS20]. It would be interesting to see the impact on
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the performance this new protocol brings as it trades-off computation for communication
costs.

5.4.3 Verification Phase

Upon reception of a message M1, the service provider verifies the signature using the
provided hash digest. If satisfied, it verifies the proof Π by first evaluating the circuit
C following the ZKB++ protocol and then checking the bound proof for the encryption
noises. Hence, it is assured that ct is the encryption of a data point x giving the hash
that has been certified by the data source.

5.4.4 Computation Phase

Using the homomorphic capabilities of the CKKS encryption scheme, the service provider
can perform any operation with a bounded predefined multiplicative depth (and arbitrary
depth, with bootstrapping [CHK+18a]) on validated ciphertexts received by the user. In
particular, CKKS enables the computation of a wide range of operations on ciphertexts:
additions, scalar operations, multiplications, and a rescaling procedure that reduces the
scale of the plaintexts. Those functions enable the computation of polynomial functions
on the ciphertexts. Moreover, it supports the evaluation of other functions such as expo-
nential, inverse or square root [CKKS17, CHK+18a, CKK+19], by employing polynomial
approximations (e.g., least squares). Hence, the service provider can independently com-
pute any number of operations on the user’s encrypted data simply requiring interactions
with the user to reveal their outputs (see Section 5.4.5).

5.4.5 Release Phase

At the end of the computation phase, the service provider holds a ciphertext of the desired
output that can only be decrypted by the holder of the secret key. To this end, the
service provider and the user engage in a two-round release protocol, which ensures the
service provider that the decrypted output is the expected result of the computation on
the user’s data. The release protocol is depicted in Figure 5.3 and detailed next.

Let ct′ denote the ciphertext obtained by the service provider after performing com-
putations on validated ciphertext(s), and m̂ the corresponding plaintext. First, the
service provider informs the user of the computation f(·) whose result it wants to ob-
tain. Then, the service provider homomorphically blinds ctψ by applying the function
Bν,η(x)=ν·x+η, with ν and η uniformly sampled in ZNq \{0} and ZNq resp., and commits
to the secret parameters used for blinding (i.e.,ν,η) using a hiding and binding crypto-
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User Service Provider

ct′, Bν,η(ct
′), C0, f(·) C0=Com(ν,η)

m̂=HE.Dec(ct′; skHE)

m̂B=HE.Dec(Bν,η(ct
′); skHE)

C1=Com(m̂, m̂B)
C1

Open C0

Bν,η(m̂)
?
= m̂B

Open C1 Bν,η(m̂)
?
= m̂B

Figure 5.3: Release protocol for a computed value m̂. For simplicity, we only focus on
the first scalar entry resulting from the homomorphic decoding procedure.

graphic commitment Com(·) as C0=Com(ν,η). A hash-based commitment scheme can be
used for this purpose [CDG+17]. Subsequently, the service provider sends to the user the
encrypted result ct′, its blinding Bν,η(ct

′), and the commitment C0. Upon reception, the
user checks if the function f(·) is admissible. If the user accepts the computation f(·), she
decrypts both ciphertexts as: HE.Dec(ct′; skHE)=m̂ and HE.Dec(Bν,η(ct

′); skHE)=m̂B.
Then, she commits to the decrypted results, i.e.,C1=Com(m̂, m̂B), and communicates
C1 to the service provider who opens the commitment C0 to the user (i.e., revealing
ν,η). The user verifies that the initial blinding was correct by checking if Bν,η(m̂)

?
=m̂B.

If this is the case, she opens the commitment C1 (i.e., revealing m̂, m̂B) to the service
provider who verifies that the cleartext result matches the blinded information (i.e., by
also checking if Bν,η(m̂)

?
=m̂B). At the end of the release phase, both parties are confident

that the decrypted output is the expected result of the computation, while the service
provider learns only the computation’s result and nothing else about the user’s data.

5.5 Privacy and Security Analysis

CRISP protects the user’s privacy by revealing only the output of the agreed computation
on her data, and it protects the service provider’s integrity by preventing any cheating
or forgery from the user. Here, we present these two properties and their corresponding
proofs.
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5.5.1 Privacy

Proposition 5.5.1. Consider a series of messages {msgi} certified by the data source
with a digital signature scheme σ(·) that uses a cryptographic hash function H(·) with
nonces. Assume that the parameters of the CKKS (N, q, χenc, χkey, χerr) and BDLOP
(δ1, k, κlwe, κsis, q,N) schemes have been configured to ensure post-quantum security, that
the circuit C is a valid (2,3)-decomposition, and that the cryptographic commitment
Com(·) is hiding and binding. Then, our solution achieves privacy by yielding nothing
more than the result m̂ of the computation on the user’s data {xi}.

We provide the full proof in Appendix C.2

5.5.2 Integrity

Proposition 5.5.2. Consider a series of messages {msgi} certified by the data source
with a digital signature scheme σ(·) that uses a cryptographic hash function H(·) with
nonces. Assume that the parameters of the CKKS (N, q, χenc, χkey, χerr) and BDLOP
(δ1, k, κlwe, κsis, q,N) schemes have been configured to ensure post-quantum security, that
the ZKB++ protocol execution of C achieves soundness κZK, that the blinding function
Bν,η is hiding, and that the cryptographic commitment Com(·) is hiding and binding.
Then, our solution achieves integrity as defined in Section 5.2.3, as it ensures with
soundness κZK that the output m̂ is the result of the computation on the user’s data.

We provide the full proof in Appendix C.3

5.6 Evaluation

We evaluate CRISP on three use cases: smart metering, disease susceptibility, and location-
based activity tracking, using public real-world datasets. We detail first the instantiation
and parameterization of our proposed solution, then illustrate its overall performance per
use case, in terms of both overhead and utility. As previously mentioned, CRISP enables
to offload the data and to conduct multiple operations on it. For simplicity, we present
only one operation per dataset.

5.6.1 Implementation Details

We detail how the various blocks of our construction are implemented and configured.
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Implementation. We implement the various blocks of CRISP on top of different libraries.
The homomorphic computations are implemented using the Lattigo library [EPF21].
The commitment and encryption blocks of the circuit are implemented using CKKS
from [SNU19] by employing a ZKB++ approach. The circuit’s Boolean part (i.e., the
hash and conversion blocks) is implemented on top of the SHA-256 MPC-in-the-head
circuit of [GMO16]. All the experiments are executed on a modest Manjaro 4.19 virtual
machine with an i5-8279U processor running at 2,4 GHz with 8GB RAM.

CKKS & BDLOP. For CKKS, we use a Gaussian noise distribution of standard
deviation 3.2, ternary keys with i.i.d. coefficients in {0,±1}N , and we choose q and N
depending on the computation and precision required for each use case, such that the
achieved bit security is always at least 128 bits. Each ciphertext encrypts a vector d

consisting of the data points {xi} in the series of messages {msgi}. Our three use cases
need only computations over real numbers, hence we extend the real vector to a complex
vector with a null imaginary part. The parameterization of CKKS for our three use cases
leads to a computation accuracy higher than 98%. Similarly to CKKS, the BDLOP
parameters for the commitment to the encryption noises are use-case dependent. In
principle, we choose the smallest parameters to ensure a 128-bit security (λlwe = κsis = 1)
and δ1 and k are chosen according to N and q.

ZKB++. We set the security parameter κZK to 128, which corresponds to 219 iterations
of the ZKB++ protocol. We also consider seeds of size 128 bits and a commitment size
of |c|=256 bits using SHA-256 as in [CDG+17]. Overall, considering the full circuit, the
proof size per ZKB++ protocol iteration |pi| is calculated as

|pi|=|c|+ 2κZK + log2 3 +
2

3
(|d|+ |Com|+ |Enc|+ |t|) + bhash + bA2B,

with |d| being the bit size of the secret inputs, |Com| the bit size of the commitment
parameters, |Enc| the bit size of the encryption parameters, bhash the number of multiplica-
tive gates in the SHA-256 circuit, bA2B the number of AND gates in the conversion block,
and |t| the bit size of the additional information required to reconstruct the data source’s
message but not needed for the service provider’s computation (e.g., user identifier, nonce,
timestamps, etc.). We note that according to the NIST specification [Dan15], SHA-256
operates by hashing data blocks of 447 bits. If the size of the user’s input data exceeds
this, it is split into chunks on which the SHA-256 digest is evaluated iteratively, taking
as initial state the output of the previous chunk (see [Dan15]). We adapt the SHA-256
Boolean circuit described in [GMO16], which uses 22,272 multiplication gates per hash
block, to the setting of ZKB++ [CDG+17]. The Boolean part of the circuit is focused on
the |x| least significant bits of the arithmetic sharing of d which is concatenated locally
with a Boolean secret sharing of the additional information (nonce, uid, etc.). In our
implementation, the user needs 182ms to run the Boolean part of the circuit associated
with generating a hash from a 32-bits shared input x. The verifier needs 73ms to verify
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this part of the circuit.

Release Protocol. We use SHA-256 as a commitment scheme Com(·) and a linear
blinding operation Bν,η(·) in Zq.

Evaluation Metrics. We evaluate the performance of our solution on different use cases
with varying complexity in terms of computation (i.e., execution time) and communication
(i.e., proof size) overhead. The proof Π is detailed as the proof for the ZKCE, as well as
the BDLOP bound proof. We also report the optimal ZKCE proof size per datapoint:
i.e., if the ciphertexts are fully packed. To cover a wide range of applications we evaluate
various types of operations on the protected data such as additions, weighted sums, as
well as a polynomial approximation of the non-linear Euclidean distance computation.

5.6.2 Smart Metering

We consider a smart meter that monitors the household’s electricity consumption and
signs data points containing a fresh nonce, the household identifier, the timestamp, and
its consumption. A user’s privacy can be jeopardized as energy consumption patterns can
reveal her habits [CPW10, KLB+19]. The energy authority is interested in estimating
the total household consumption (i.e., the sum over the consumption data points) over
a specified time period I (e.g., a month or a year) for billing purposes and to provide
reliable services [ADMC17]. The computation is

msm =
∑
i∈I

d[i],

where d is the vector of the household consumption per half hour. As our solution offloads
the encrypted data to the service provider, additional computations, e.g., statistics about
the household’s consumption, are possible without requiring a new proof; this improves
flexibility for the service provider.

Dataset & Experiment Setup. We use the publicly available and pre-processed UKPN
dataset [UKP19] that contains the per half-hour (phh) consumption of thousands of
households in London between November 2011 and February 2014. Each entry in the
dataset comprises a household identifier, a timestamp, and its consumption phh. For
our experiment, we randomly sample a subset of 1,035 households and estimate their
total energy consumption over the time span of the dataset with our solution. We set
the parameters as follows: We use a modulus of log q=45 bits and a precision of 25 bits,
which imposes a maximum of 210 slots for the input vectors (logN=11). Hence, each
household’s consumption phh is encoded with multiple vectors dk to cover the time span
of the dataset. To evaluate its proof size, we assume that the messages obtained from the
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Table 5.1: Evaluation summary of CRISP (reported timings are the averages over 50 runs
± their standard deviation).

Use Case Computa-
tion

Mean
Absolute
Relative
Error

tenc (ms) tcomp
(ms)

tdec
(ms)

Proof
Size (MB)

tprove
(s) tver (s)

Smart
Metering Sum 5.1 · 10−5 70± 10 130± 30 0.7±0.3 650.5 200± 10 82± 5

Disease
Susceptibility

Weighted
Sum 2.2 · 10−5 60± 10 22± 5

2.7±0.8 53.9 26± 4 13± 2

Location-
Based Activity
Tracking

Euclidean
Distance 1.5 · 10−2 980± 70 180± 30 7± 2 1, 603 470± 40 210± 10

smart meter include a 16-bit household id, a 128-bit nonce, a 32-bit timestamp, and a
16-bit consumption entry.

Results. The average time for encryption of a vector of 1,024 datapoints at the user
side is tenc=70ms, and the decryption requires tdec=0.7ms. The mean time for the energy
computation at the service provider side is tcomp=130ms. To generate the proof for one
ciphertext, containing 1, 024phh measurements (i.e., 21 days worth of data), the user
requires tprove=3.3min, and its verification at the service provider’s side is executed in
tver=1.4min. The estimated ZKCE proof size for each ciphertext of 1,024 elements is
643.4MB, whereas the bound proof is 9.9MB.

For fully packed ciphertexts (1,024 datapoints), CRISP’s proof generation and verification
respectively take 195ms and 80ms per datapoint, with a communication of 628KB.

5.6.3 Disease Susceptibility

To improve a user’s health and to customize her treatments, medical centers and direct-to-
consumer services [23a19, DNA19] can provide a user with her DNA sequence. Genomic
data can be used for disease-susceptibility tests offered by service providers, e.g., research
institutions that seek to form the appropriate cohorts for their studies. The user wants
to protect her data, because DNA is considered a very sensitive and immutable piece
of information for her and her relatives [EN14]. Correspondingly, service providers are
keen on collecting users’ data and verifying its integrity so that they can use it for
disease-risk estimation or other types of analyses, e.g.,drug-effect prediction or health
certificates. To disrupt this process and/or pass a medical examination, malicious users
could tamper with the genomic data they share. We assume a medical center that
sequences a patient’s genome and certifies batches of single nucleotide polymorphisms
(SNPs) that are associated with a particular disease ∂. A privacy-conscious direct-to-
consumer service is interested in estimating the user’s susceptibility to that disease by
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calculating the following normalized weighted sum

m∂ =
∑
i∈S∂

ωi · d[i],

where S∂ is the set of SNPs associated with ∂ and ωi are their corresponding weights. The
vector d comprises values in {0, 1, 2}, thus indicating the presence of an SNP in 0, 1, or
both chromosomes that can be represented by two bits. This use case illustrates the need
for flexibility in the service provider’s computations, as it may be required to evaluate, at
different times, several diseases on the same input data. Moreover, it accentuates the
need for resistance against quantum adversaries, as genomic data is both immutable and
highly sensitive over generations.

Dataset & Experiment Setup. We employ the 1,000 Genomes Project’s public
dataset [Int19b] that contains the genomic sequences of a few thousand individuals
from various populations. We randomly sample 145 individuals and extract 869 SNPs
related to five diseases: Alzheimer’s, bipolar disorder, breast cancer, type-2 diabetes, and
schizophrenia. We obtain the weight of an SNP, with respect to those diseases from the
GWAS Catalog [BMC+19]. Then, for every individual, we estimate their susceptibility
to each disease. For this use case, we use a precision log p=25, a modulus of log q=56

consumed over two levels, and a polynomial degree of logN=12. The input vector d

(consisting of 211 slots) is an ordered vector of integers containing the SNP values, which
are coded on two bits, associated with the diseases. One vector is sufficient for the
considered diseases. To estimate the proof size, we assume that the message signed by
the data source contains a 16-bit user identifier, a 128-bit nonce, and the entire block of
SNPs.

Results. The average encryption time for up to 2,048 SNPs at the user side is tenc=60ms,
and the decryption is tdec=2.7ms. The computation time of the disease susceptibility at
the service provider is tcomp=22ms. The user needs tprove=26 s to generate the proof for
the arithmetic part of the circuit, and the service provider verifies it in tver=13 s. The
estimated proof size for the ZKCE is 36.6MB, whereas the bound proof is 22MB.

5.6.4 Location-Based Activity Tracking

A user’s wearable device monitors her location by querying location providers. To
obtain activity certificates or discount coupons, the user then shares this information
with service providers, e.g., online fitness social networks [Int19a] or insurance compa-
nies [San19]. As location data can reveal sensitive information, e.g., her home/workplaces
or habits [VDSKK18, Her18], the user is concerned about her privacy. Service providers
want legitimate data to issue activity certificates, provide discounts for performance
achievements, and build realistic user profiles. Malicious users might be tempted to
modify their data in order to claim fake accomplishments and/or to obtain benefits they
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are not entitled to. We assume that a user runs with a wearable device that retrieves
her location points during the activity from a data source, e.g., a cellular network. The
service provider, e.g., an online fitness social network [Int19a], seeks to estimate the total
distance that the user ran during her activity I:

mrun=
∑
i∈I

√
(d[i+1]−d[i])2+(d[

N

4
+i+1]−d[N

4
+i])2,

with d the vector of UTM (Universal Transverse Mercator) inputs packing eastings in
the first half of the vector and northings in the second. Given that Euclidean distance
computations require the evaluation of a non-linear square root function, we consider
its least-squares approximation by a degree seven polynomial on a Legendre polynomial
base.

Dataset & Experiment Setup. We run our experiment on a public dataset from
Garmin Connect [Int19a]. This dataset contains GPS traces of thousands of users engaging
in various activities such as walking, running, and cycling. We randomly sample 2,000
running traces, and we discard traces with less than 15 points and more than 2,000
points. Our initial dataset analysis shows that the traces are very noisy : we identified
unrealistic distances between consecutive points, timestamps, and locations. We use
GPSBabel [Lip19], an open-source software, to interpolate the running traces such that
the following criteria are met: (a) the maximum speed of a runner is less than 10m/s,
(b) the maximum distance between consecutive points is less than 30m, and (c) the time
delta between two points is less than 3s. These criteria are realistic for running activities.
We remove traces of the time samplings that were improperly executed by the data source
(difference more than 10s, standard deviation more than 5, or a zero inter-quartile at
75%), as well as traces with unacceptable idleness.2 We then convert the remaining GPS
traces to UTM to obtain the northings and eastings geographic coordinates. Overall, we
obtain a dataset of 1,608 traces (80% of the initial 2K running trace dataset) that, on
average, contain 1,124 datapoints, and we estimate their total distance with CRISP.

Considering the polynomial approximation required for the square-root function, we set
the size of the polynomial ring N=213 and a modulus log q=184. To calculate the proof
sizes, we assume that the messages obtained from the data source contain a 16-bit user
identifier, a 128-bit nonce, a 32-bit timestamp, and 24-bit easting/northing coordinates.

Results. The encryption and decryption overhead for fully packed ciphertexts of up to
2,048 points at the user side are tenc=980ms and tdec=7ms, respectively; and the Euclidean
distance computation at the service provider requires tcomp=180ms. For 2,048 data points,
the user generates the proof for the arithmetic part of the circuit in tprove=7.9min, and
the service provider verifies it in tver=3.4min. Considering that each message signed by

2Idleness of a trace is a situation where the interquartile at 25% of the instant speed is less than
0.3m/s and where the covered distance is less than 15m.
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the data source is 96-bits, the proof size per trace for the ZKCE is 1, 499.2MB, and the
bound proof is 94.9MB.

For our data set, the average proof size is 922.1MB, considering the mean number of
points in the traces. In Section 5.6.5, we will show how to reduce this proof size. With
fully packed ciphertexts, CRISP’s proof generation requires 230ms per datapoint and
100 ms for its verification, at a communication cost of 732KB.

5.6.5 Reducing the Communication Overhead

Table 5.1 summarizes CRISP’s overhead for three use cases: smart metering, disease
susceptibility, and location-based activity tracking. We observe that it introduces accept-
able computational overhead at the user and service provider sides, and that it achieves
average absolute relative error between 2.2·10−5 and 0.015 for the desired computations.
We remark however that our construction uses post-quantum secure lattice-based cryp-
tographic primitives, such as encryption and commitment and, to ensure the integrity
of the user’s data transfer, the MPC-in-the-head approach. This comes at the price of
increased communication (i.e., proof size). Therefore, to reduce this overhead, we propose
several improvements to be employed, and we illustrate them in Figure 5.4 for the smart
metering and location-based activity-tracking use cases.

Random Integrity Checks (RIC). A first optimization is to reduce the number of
data points whose integrity is checked by the service provider. This introduces a trade-off
between CRISP’s security level and its communication overhead. In particular, a service
provider can decide to check only a subset of the input data hashes in the data verification
phase, as we assume malicious but rational users (Section 5.2.2) who will not cheat if
there is a significant probability of getting caught. Such a strategy enables a service
provider to tune the solution, depending on the level of confidence it has in the user.
In Figure 5.4, we observe how the proof size decreases as the service provider checks
fewer data blocks. For instance, if the service provider checks 20% of the data blocks
in the verification phase (RIC-20%), the proof size for location-based activity tracking
drops from 1, 499.2MB to 497MB (i.e., 243KB/datapoint), whereas for smart metering it
decreases from 643.4MB to 142.2MB (i.e., 139KB/datapoint). This yields a reduction
of more than 66% in the total ZKCE communication overhead. Computation times to
generate and verify the proofs are also more than halved.

Batching (BG). Another improvement is to modify the way data sources certify the
users’ data points. So far, in the smart metering and location-based activity-tracking
use cases, we have assumed that data sources hash and sign every data point generated
by the user. However, another strategy is to hash batches of data points in a single
signed message. This modification is purely operational as it does not require additional
software or hardware deployment. We set the batch size depending on the use case –
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Figure 5.4: ZKCE proof size (MB) for fully packed ciphertexts and various optimizations.

i.e., considering the additional information of each message before signature – such that
the overall batch can fit on a single SHA-256 input block of 447bits. Figure 5.4 shows
a reduction of more than 50% in proof size for the two use cases when batching (BG)
is employed compared to the non-optimized solution. Batching can also be combined
with RIC-20% (BG+RIC-20% in Figure 5.4): For smart metering, the ZKCE proof size
is further reduced to 38.1MB (i.e., 37.2KB/datapoint), whereas for the location-based
activity tracking the proof size drops to 329.7MB (i.e., 161KB/datapoint). For activity
tracking, the tprove is reduced to 2.1min and tver to 1.1min (61 and 32ms per datapoint,
resp.). For smart metering, tprove is reduced to 20s and tver to 9.3s (20 and 9ms per data
point, resp.).

ZKCE Pre-processing (PP). Finally, we can employ a ZKCE pre-processing model,
such as that presented by Katz et al. [KKW18]. The pre-processing model considers that
the user executes offline a series of circuit evaluations on committed values. The service
provider challenges a subsetM of those evaluations and checks their integrity, and the
remaining τ ones are used in an online phase, along with the committed values. The rest
of the protocol is similar to ZKB++. The proof size per iteration is reduced to:

|pi|=2κZK + τ log2
M
τ
3κZK + τ(κZK log2 3+2κZK +(|d|+ |Com|+ |Enc|+ |t|)+2(bhash + bA2B)).

Regarding our three players setting, a 128-bit security level requiresM=300 and τ=81,
thus yielding a significant reduction of 25% on the proof size (see [KKW18] for the
computation details) compared to the non-optimised approach. Pre-processing, batching,
and RIC can also be applied together to obtain smaller proofs (see PP+BG+RIC-20%
in Figure 5.4): For smart metering, the ZKCE proof is reduced to 26.8MB. Similarly,
for location-based activity tracking, the ZKCE proof becomes 203.0MB. This yields an
optimal ZKCE proof size per datapoint of 26.2KB, and 99.1KB for smart metering and
activity-tracking, respectively. Finally, we remark that according to Katz et al. [KKW18],
a trade-off between proof size and prover’s computations could be achieved by increasing
the number of players involved in the MPC-in-the-head protocol. However, such an
improvement would require additional changes in CRISP, e.g., the conversion block that



Chapter 5. Verifiable Encryption and Trustworthy Data Release 105

interfaces the arithmetic and Boolean parts of the circuit should be adapted for a larger
number of players.

5.6.6 Comparison with ADSNARK

ADSNARK [BBFR15] is a generic construction that could be employed to address
the trade-off between privacy, integrity, and utility. In particular, it enables users
to locally compute on data certified by data sources and to provide proof of correct
computation to service providers. However, ADSNARK does not support the feature of
data offloading that enables service providers to reuse the collected data and to perform
various computations. Indeed, ADSNARK and other zero-knowledge solutions [FKDL13,
FL14, BSBHR19], require the user to compute a new proof every time the service provider
needs the result of a new computation. Furthermore, it requires a trusted setup and
relies on different security assumptions that are not secure in the presence of quantum
adversaries [KKW18]. The latter should be taken into account, considering recent
advances in quantum computing [AAB+19] and the long-term sensitivity of some data.

A fair comparison with ADSNARK is not trivial to achieve, as our solution provides post-
quantum security and overcomes the constraint of a trusted setup. Nonetheless, here we
provide hints of their qualitative and quantitative differences. In particular, ADSNARK
considers a smart-metering use case that requires a non-linear cumulative function for
the billing analysis of a month of data. We consider a similar non-linear pricing function
evaluated by a degree-two polynomial, and we evaluate CRISP on the UKPN dataset for
400 households, with N=212 and log q=106. In terms of proof size, our construction yields
889.2MB (verifying all the measurements for a month), whereas the overhead induced
by ADSNARK is 53MB. However, we remark that the latter requires that, every time a
different computation is needed, a new proof is generated and exchanged. In our solution,
this cost is incurred only once; any subsequent operations can be computed locally by the
service provider on the verified data. Furthermore, when using actual signatures (and not
MACs), ADSNARK accounts for only a “theoretical estimate” of the complexity of the
signature circuit (with only one thousand multiplicative gates for signature verification)
and, if we were to evaluate our solution with this circuit, the proof size would be only
104.2MB. Therefore, our analysis shows that our construction offers comparable results
to the state of the art and provides stronger security guarantees.

5.7 Discussion

In this section, we present some interesting considerations that could influence the
deployment of our solution.
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5.7.1 Signature Scheme

As discussed in Section 5.4.1, CRISP is agnostic of the digital signature and is compatible
with any scheme that uses the SHA-256 hash function. We employ SHA-256, as it is
widely deployed in current infrastructures, adopted by various signature schemes (e.g., the
recent post-quantum SPHINCS [BHK+19] or the standard ECDSA schemes), and as
it is a benchmark for the evaluation of ZKBoo [GMO16] and ZKB++ [CDG+17]. This
flexibility enables CRISP to be compliant with currently deployed signature schemes that
might not be quantum resistant (e.g.,ECDSA) at the cost of CRISP’s post-quantum
integrity property. Working with other hash functions (e.g.,SHA-3 that is employed
in [CDG+17]) is possible, with modifications to CRISP’s circuit.

5.7.2 Integrity Attacks

CRISP copes with malicious users that might attempt to modify their data or the
computed result to their benefit. However, some use cases require accounting for additional
threats. For example, for smart metering, users might purposefully fail to report some
data (i.e.,misreport) to reduce their billing costs. Similarly, in location-based activity-
tracking, users might re-use pieces of data certified by the data source to claim higher
performances and to increase their benefits (i.e.,double report). Such attacks can be
thwarted by system-level decisions; e.g., data sources can generate data points at fixed
time intervals known to service providers. Message timestamps can be encrypted, along
with the data points, so that service providers can verify their properties (e.g., their order
or their range). As these attacks are application-specific, we consider them to be out of
the scope of this work.

5.7.3 Usability

Even though CRISP introduces non-negligible communication and computation overhead,
it remains acceptable for modern systems. The independent iterations of the ZKCE make
the proof generation highly parallelizable and require much less memory than the full
proof size (experimentally, as little as 2GB of RAM). CRISP has also the advantage of
being an offline system that requires interaction in only the release protocol: e.g., the
transfer phase can be executed when the user is idle. Additionally, recent communication
systems such as fibre-optic internet or 5G offer high throughput links: With an 80Mb/s
link, the proof for three weeks’ worth of smart-metering data would require only about a
minute to be transferred. For activity tracking, CRISP can be executed when the user
plugs her wearable device into a computer and transfers the data while recharging it.
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5.8 Related Work

Several works are devoted to protecting privacy for smart metering (e.g., see surveys [ETPLPG13,
WL13]). However, only some of them, e.g., [AS16, LL12], by relying on custom homo-
morphic signature schemes, also address the concern of data integrity and authenticity.
The applicability of such solutions is limited as, according to their technical specifica-
tions [Uni18], smart meters cope with standard digital signatures, e.g.,ECDSA [NIS15].
Similarly, a number of works, e.g., [ARHR13, DCFT13, WZD+16], employ homomorphic
encryption to protect genomic privacy and to perform disease-susceptibility computa-
tions. Their model considers a medical unit that sequences the DNA of the user who,
in turn, protects it via homomorphic encryption before sending it for processing to a
third party. These solutions do not address the issue of data integrity or authenticity.
Finally, several works are dedicated to both privacy and integrity in location-based activity
tracking [ZC11, WPZM16, LH10, PHB+15, SW09, HB11]. They also are either peer-
based [ZC11, WPZM16], infrastructure-based [LH10, PHB+15], or hybrid[SW09, HB11].
SecureRun [PHB+15] offers activity proofs for estimating the distance covered in a privacy
and integrity-preserving manner. Nevertheless, the system’s accuracy relies on the density
of access points, thus it achieves at best a median accuracy of 78% (compared to 99.9%
with CRISP on a similar dataset).

5.9 Summary

Data sharing among users and service providers in the digital era incurs a trade-off
between privacy, integrity, and utility. We propose a generic solution that protects
the interests of both users and service providers. Building on state-of-the-art lattice-
based homomorphic encryption and commitments, as well as zero-knowledge proofs, our
construction enables users to offload their data to service providers in a post-quantum
secure, privacy and integrity-preserving manner, yet still enables flexible computations
on it. We have evaluated our solution on three different use cases, thus showing its wide
potential for adoption.
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Conclusion

Even though homomorphic encryption (HE) has become more and more practical over
the last decade, HE-based systems have been mostly envisioned in the honest-but-curious
threat model only. However, this threat model assumption grows to be unrealistic against
real-world adversaries that can render both the security and utility of HE pipelines moot.
Because numerous applications of HE are security sensitive (e.g., medical research, machine
learning, etc.), this limitation is an impediment to actual deployments. Protecting these
systems against malicious attacks requires solutions along the whole HE pipeline: the
setup/key generation, encryption, and decryption phases executed by one or more clients
and the computation phase executed by a computing server.

In this dissertation, we have proposed novel constructions for ensuring the correctness of
different phases of such pipelines against malicious adversaries. By carefully combining
proof systems and integrity protection mechanisms with the complex structure and
operations of lattice-based HE, we provided solutions that convert an HE pipeline in the
honest-but-curious threat model to a malicious one. Our constructions work off-the-shelf
and can be applied as an add-on to the existing HE pipeline.

In Chapter 3, we have explored how to practically verify the computing server’s evaluation.
To achieve this, we have proposed new plaintext encoders that offer error-detection
capabilities to clients when verifying the homomorphic evaluation. We have implemented
our solution into the library VERITAS and showed its practicality over a wide range of
use cases, thus demonstrating its applicability in practice. We show that VERITAS can
be used to port standard HE pipelines to a stronger threat model with a malicious
computing server almost seamlessly. Our experimental evaluation also demonstrated that
VERITAS costs are acceptable for HE pipelines considering the benefits of being able to
detect malicious behavior.

In Chapter 4, we have proposed to use lattice-based proof systems for verifying the correct
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execution of client operations in HE pipelines. Using our system PELTA, clients can
efficiently prove the correctness of their cryptographic keys and any of their operations
involved in the HE pipeline. As such, PELTA is a critical building block to ensure the
security of HE pipelines against a malicious adversary, particularly in multiparty scenarios.
Compared to generic proof systems, PELTA is computationally more than one order of
magnitude more efficient.

Finally, in Chapter 5, we have proposed a new method for verifying the correct encryption
of authenticated data. Our solution enables a verifier to assess the correctness of offloaded
encrypted data in one shot. Our technique carefully combines multi-party computation
in-the-head to simultaneously verify the encryption and the authentication of the data.
Our implementation shows the performance of CRISP and we propose several trade-offs
to reduce the communication overhead.

Overall, in this dissertation, we have shown that the malicious tolerance for HE pipelines
is in the realm of practicality. In addition, we believe that our contributions are significant
first steps towards efficient malicious-tolerant HE pipelines. We trust our open-source
implementations and evaluations will serve as a baseline for future works that will
investigate further malicious-resistant HE pipelines.

6.1 Open Problems and Future Research Directions

Throughout our work, we have identified potential improvements of the works presented
in this thesis and interesting future research directions.

6.1.1 Open Problems for Verifiable Homomorphic Computation

Public verifiability. Our new plaintext encodings, which enable error detection, are
limited to private verifiability. Indeed, VERITAS builds on homomorphic MACs with
symmetric keys. As such, it limits the potential application to multiparty scenarios.
In a recent work, Fernàndez-València extended VERITAS to the multiparty scenario
and proposed that the parties share a common encoding key [FV23]. This approach
is thus limited to the setting with honest clients. A potentially interesting avenue
would be to explore the advances in homomorphic signatures [GVW15] and functional
commitments [WW23] and assess if they could mitigate this limitation.

Protecting ciphertexts. Because VERITAS embeds verification capabilities in the
plaintext space, the result of the decryption needs to be kept private from the computing
server. Performing the verification directly on the ciphertexts alleviates this limitation.
An attractive option would be to build on very recent work on the front of verifiable
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HE [VKH23] and to use lattice-based proofs [ESLL19b, BLNS20] to achieve this without
affecting the HE pipeline operations.

Differential privacy. HE does not provide any privacy guarantees after decryption. Thus,
combining it with differentially private mechanisms [Dwo06] is an interesting avenue for
research. Some works have started exploring how to combine HE with differential privacy
using the encryption noise induced by RLWE construction as a base [LMSS22, Ogi23]. It
would be interesting to explore how to ensure the verifiable use of differentially private
mechanisms in such contexts.

6.1.2 Open Problems for Verifiable Client’s Operations

PELTA’s proof size. A limitation of the lattice-based approach for PELTA is the
relatively large-sized proof, compared to the achievements when using SNARKs, such as
Pinocchio [PHGR13]. Even if we show that PELTA ’s proofs are acceptable compared
to the size of the encryptions themselves, it is worth keeping in mind that HE already
induces a significant communication overhead. As a result, new works on the front of
lattice-based HE could help reduce the additional overhead of malicious protection.

Input verification. The input verification offered by CRISP considered the use of
SHA256. Our experimental evaluation showed that this hash is a clear bottleneck in our
construction, as it leads to large proof sizes. The development of new SNARK-friendly
signatures (i.e.,with low multiplicative complexity) and their deployment could help
reduce CRISP’s proof size increasing its practicality. Furthermore, depending on the
signature type, these signatures could be compatible with lattice-based proofs that would
offer more attractive proof sizes. Additionally to CRISP, an interesting future work would
be to explore techniques to verify properties of the input data directly using for instance
statistical tests [ZPGS19].

Matching rapid advances in HE. Research on the front of HE is a rapidly evolving field.
We have proposed several blocks to protect HE pipelines that use common HE schemes
such as BFV, BGV, or CKKS. It would be interesting to explore how our techniques
could be adapted to different constructions such as TFHE [CGGI20]. Additionally,
several improvements have been proposed since our work. For instance, Belorgey et
al. [BCG+23] recently proposed to decouple the big integer decomposition from the
cyclotomic arithmetic aspect. This could alleviate compatibility issues with some proof
systems that we observed in Chapter 3. Additionally, incorporating protections against
malicious adversaries early on in the development of HE systems and libraries would
increase their usability.
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6.2 Final Remarks

Throughout the different projects that comprise this dissertation, I encountered several
challenges. The first notable observation is that state-of-the-art cryptographic research is
often not translated into practical implementations. However, it is crucial to recognize
that implementation plays a pivotal role in promoting the adoption of new cryptographic
schemes. In the case of the constructions examined in this dissertation, this limitation
hindered straightforward comparisons with prior work. As a valuable lesson, my work
has underscored the significance of publishing code that is well-documented and easily
accessible, facilitating reproducibility, comparisons, and adoption.

Another challenge I encountered in my research was navigating the intersection of two
dynamic and thriving fields: homomorphic encryption and proof systems. Both areas
are currently evolving rapidly, making it a complex task to identify optimal points
of integration. In particular, the progress made on one front could clash with the
requirements of the other leading to incompatibilities. Additionally, as our system models
and problem statements are at the crossroads between two fields, the related work to
practically compare with was limited. Nevertheless, I am delighted by the increasing
number of works addressing this subject in recent years. I am very optimistic that this
important question will continue to receive attention as both homomorphic encryption
and proof systems advance.
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Appendix for VERITAS (§3)

A.1 Homomorphic Authenticators

In this section, we recall the formalism of homomorphic authenticators from Gennaro
and Wichs [GW13].

HA.KeyGen(1λ)→ (evk, sk): Output a secret key sk and an evaluation key evk for the
authenticator.

HA.Auth(m, τ ; sk)→ σ: Create an error-detecting authentication σ for a message m
associated with an identifier τ .

HA.Eval(f(·), σ⃗; evk) → σ′: Evaluate a deterministic function f(·) on authenticated
data where σ⃗=(σ1,..., σn) and each σi authenticates the i-th input mi. σ′ authenticates
the result m′=f(m1,...,mn).

HA.Ver(P, σ′; sk)→{0, 1}: Check that m′ obtained from the authentication σ′ is the
correct output of the program P=(f(·), (τ1,..., τn)); i.e., the evaluation of f(·) on authen-
ticated inputs identified by τ1,..., τn.

We now recall some of the properties of an HA scheme.

• Authentication Correctness: For any message m associated with τ ,

Pr

[
HA.Ver(Iτ,σ; sk)=1

∣∣∣∣∣(evk, sk)←HA.KeyGen(1λ)
σ ← HA.Auth(m, τ ; sk)

]
=1,

with Iτ=(Id, τ) the program associated with the identity function.
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Experiment 1 : ExpA[HA, λ]

1. The challenger generates the keys (sk, evk)← HA.KeyGen(1λ) and initializes the
list of authenticated inputs: T=∅.

2. A asks the challenger for authentication of m with identifier τ . If the identifier was
already queried (i.e., (τ, ·)∈T ), then the challenger aborts. Otherwise, it returns
σ ← HA.Auth(m, τ ; sk) and appends (m, τ) to T .

3. Forgery: The adversary A outputs a forgery (m∗,P∗ = (f, (τ∗1 ,..., τ
∗
n),σ

∗). The
experiment outputs 1 if the verification accepts and that either:

• (i) ∃i∈[n], (τ ∗
i , ·)/∈T (i.e., not authenticated input).

• (ii) ∀i ∈ [n], (τ ∗
i , ·) ∈ T and f(m∗

1,...,m
∗
n) ̸= m∗ (i.e.,wrongful computation).

• Evaluation Correctness: Consider any key pair (evk, sk) generated through the
HA.KeyGen(1λ) procedure. Define any fixed circuit f(·), and any correctly gen-
erated triplet {(Pi,mi, σi)}ni=1. If m∗:=f(m1,...,mn), P∗:=f(P1,...,Pn), and σ∗ :=

HA.Eval(f, (σ1,..., σn); evk), then HA.Ver(P∗, σ∗; sk)=1.

• Authenticator Security: Given the security parameter λ, the probability of a
malicious adversary convincing the verifier to accept a wrongfully computed result is
negligible. More formally, define ExpA[HA, λ] as in Experiment 1. The authenticator
HA is said to be secure if for any PPT adversary A, Pr[ExpA[HA, λ]=1]≤negl(λ).

A.2 Security Proof for REP (§3.4.2)

Theorem 3.4.1: Let λ be a power-of-two security parameter. If the pseudorandom
function FK and the canonical HE scheme are at least λ-bit secure, then for any program
P , REP as in Scheme 2 is a secure authenticator and a PPT adversary has a probability
of successfully cheating the verification negligible in λ.

Proof. We follow Gennaro and Wichs’ Theorem 3.1 on the security of their homomorphic
MAC [GW13]. Let A(1λ) be a probabilistic polynomial time (PPT) attacker. We define
the following game following Experiment 1:

Game0: This game is the forgery game based on Experiment 1 as ExpA[REP, λ]. We
recall that the game outputs 1 if the verification procedure REP.Ver(P∗,σ∗; sk) = 1 and
one of the two conditions holds:

• Type 1: P∗ is not well-defined w.r.t. the set of inputs T (see §3.3.2).

• Type 2: P∗ is well-defined on T and f(m∗
1,...,m

∗
n)̸=m∗ (i.e.,wrongful computation).
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The scheme REP is said secure if for all PPTA,

Pr
[
Game0(1λ)=1

]
⩽negl(λ).

Now let us design hybrid games by modifying Game0.

Game1: We modify Game0 by replacing the PRF FK with random values in the
authentication and verification procedures such that a random oracle outputs random
values on the fly. By the pseudorandomness of FK , it is clear that

Pr
[
Game1(1λ) = 1

]
⩾ Pr

[
Game0(1λ) = 1

]
− negl(λ).

Game2: We change the winning condition of Game1 such that the adversary wins only
if the Type 2 attacks succeed and Type 1 fail. Let E be the event of winning a Type 1
forgery in Game1. We have Pr

[
Game2(1λ) = 1

]
⩾ Pr

[
Game1(1λ) = 1

]
− Pr[E]. Recall

that E occurs when A outputs (m∗,P∗=(f, (τ ∗
1,..., τ

∗
n)),σ

∗) and there exists j∈[n] s.t.
(i) the j-th input is used in the evaluation of the function f and (ii) (τ∗j , ·)/∈T . Because
the challenger directly rejects if ∃(τ∗j , ·)/∈T , Pr[E] = 0. This game is a mere syntactic
change from Game1.

Game3: We modify the winning condition of Game2. Now, the challenger remembers the
authentication σ associated to a message m with identifier τ (i.e., it stores (τ ,m,σ)∈T ).
Consider the adversary outputting a forgery (m∗,P∗=(f(·), (τ ∗

1,..., τ
∗
n)),σ

∗=c∗). Denote
by ĉ the honest ciphertext for the labeled program P∗ (i.e., the homomorphic evaluation of
f(·) on inputs c1,..., cn). Denote by M∗

1 the forgery of the first extended vector decrypted
from c∗1. We modify the verification procedure to:

1. Use the stored ciphertexts in T and decrypt them to obtain the challenge values and
compute f(·) to get the challenge values of the output r̃i. Check if ∀i∈S, M∗

1[i]=r̃i.
Otherwise, reject.

2. ∀i∈[λ] \ S, check if all M∗
1[i] are equal to the honest output obtained from ĉ (say m).

If so, reject.

By construction, any Type 2 forgery accepting in Game2 is also accepting in Game3.
Thus, Pr

[
Game3(1λ) = 1

]
⩾ Pr

[
Game2(1λ) = 1

]
and

Pr
[
Game3(1λ) = 1

]
⩾ Pr

[
Game0(1λ) = 1

]
− negl(λ).

Game4: We modify Game3 such that, when answering the authentication queries, the
challenger encrypts the actual message regardless of the slot index (i.e., regardless of the

1W.l.o.g. we consider only one scalar output. The general case is a trivial extension.
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set S). By the semantic security of the homomorphic encryption scheme, the adversary
cannot distinguish if a specific slot encrypts m or a challenge value ri. Given a plaintext
with slots that either store the original slot message or a challenge value, we can embed
it into the authentication procedure for each position i∈S and simulate either Game3 or
Game4. Suppose Pr

[
Game4(1λ)=1

]
< Pr

[
Game3(1λ) = 1

]
−negl(λ). This would lead

to negl(λ) ⩽ |Pr
[
Game3(1λ) = 1

]
−Pr

[
Game4(1λ) = 1

]
| thus breaking the semantic

security of the HE scheme.

In Game4, S is never used at authentication time. Thus, we can think of the challenger
picking S only at verification time. For any Type 2 forgery (m∗,P∗=(f, (τ ∗

1,..., τ
∗
n)),σ

∗),
decryption leads to HE.Dec(c∗; skHE)=(M∗

1, . . . ,M
∗
N/λ). W.l.o.g consider only one scalar

output (i.e., consider only the first extended vector M∗
1). Denote by M̂1 the first extended

vector of the honestly generated ciphertext. Let S′={i ∈ [λ] : M∗
1[i]=M̂1[i]} be the

indices on which the forged and honest extended vectors match. The adversary wins
if the second and third steps of Game3 pass which only occurs if S = S′ (the protocol
aborts if all the challenges have the same value). This event happens with probability
2−λ. Thus, Pr

[
Game4(1λ) = 1

]
⩽ 2−λ. In turn, we see that

Pr
[
Game0(1λ) = 1

]
⩽ 2−λ+negl(λ) ⩽ negl(λ)

which can be parameterized to be negligible in λ, concluding the proof.

A.3 Security Proof for PE (§3.5.2)

Theorem 3.5.1: If the pseudorandom function FK and the canonical HE scheme are
at least λ-bit secure and if t is a λ-bit prime number, then, for any program P with
authentications of bounded degree, PE is a secure authenticator and a PPT adversary
has a probability of successfully cheating the verification negligible in λ.

Proof. We follow the security analysis sketched in Catalano and Fiore’s information-
theoretic homomorphic MAC [CF13]. We consider a PPT adversary A(1λ). We design
the following series of games.

Game0: This game is the forgery game based on Experiment 1 as ExpA[PE, λ]. The
different types of forgeries (i.e.,Type 1 and 2) are defined in Appendix A.2. Recall that
the scheme PE is said secure if ∀ PPT A,

Pr
[
Game0(1λ) = 1

]
⩽negl(λ).

Now let us design hybrid games by modifying Game0.
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Game1: We modify the verification procedure in Game0 such that the challenger checks
whether the program P is well-formed or not (i.e., all inputs are authenticated) using
probabilistic polynomial identity testing (see [CF13] Prop.1):∣∣∣Pr[Game1(1λ) = 1]− Pr[Game0(1λ) = 1]

∣∣∣ ⩽ 2−λ.

Game2: We modify Game1 by replacing the PRF FK with random values in the
authentication and verification procedures such that a random function outputs random
values on the fly. By the pseudorandomness of FK , it is clear that∣∣∣Pr [Game2(1λ) = 1

]
− Pr

[
Game1(1λ) = 1

]∣∣∣ ⩽ negl(λ).

Game3: We modify only the verification procedure of Game2. For the labeled program
P = (f(·), (τ 1,..., τn)), and a verification query (m,P,σ′), parse σ′ = (c0,..., cd).

• If y0 = HE.Dec(c0; skHE) ̸= m, then reject.

• If P is not well-defined on T , then the challenger sequentially:

1. ∀i ∈ [n], s.t. (τ i, ·) /∈ T , samples uniformly at random rτ i and computes ρ =

f(rτ1 ,..., rτn).

2. Decrypts the ciphertexts s.t. ∀i∈ [0:d], yi = HE.Dec(ci; skHE).

3. Computes Z=ρ−∑d
i=0 yi · αi.

4. If Z=0 mod t then the challenger accepts (i.e., outputs 1), otherwise it rejects.

As it is merely a syntactic change from Game2,

Pr[Game2(1λ) = 1] ≡ Pr[Game3(1λ) = 1].

Game4: We modify the verification procedure of Game3. Consider that P is well-defined
over T . For all i ∈ [n] such that (τ i, ·) /∈ T (i.e., one of the slot values was not in T ), the
challenger chooses a dummy σi generated for a random message for the corresponding
slot. The challenger then computes σ̂′ = (ĉ0,..., ĉd)← PE.Eval(f(·), σ⃗; evk). Now:

• A○ If ∀k∈[0:d] HE.Dec(ck; skHE)=HE.Dec(ĉk; skHE), then accept.

• B○ If ∃k s.t. HE.Dec(ck; skHE)̸=HE.Dec(ĉk; skHE), compute

Z=
d∑
i=0

(HE.Dec(ci; skHE)−HE.Dec(ĉi; skHE))·αi.

If Z=0 mod t then accept, otherwise reject.
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We show that the adversary has the same view as in Game3. Consider (m,P,σ′ =

(c0,..., cd)) with P = (f, (τ 1,..., τn)) well-defined on T . We distinguish two cases:

1. All inputs were authenticated: ∀i ∈ [n], (τ i,mi) ∈ T and σi ← PE.Auth(mi, τ i; sk).
Recall that the challenger computes σ̂′ = (ĉ0,..., ĉd)← PE.Eval(f(·), σ⃗; evk). Now if
A○ occurs, then the answer is correct by the correctness of the HE scheme. If B○ occurs,
as the same values {rτ i} are generated, ρ = PE.Ver(P, σ̂′; sk) = PE.Ver(P,σ′; sk).
So accepting if Z = 0 is the same as returning the output of PE.Ver(P,σ′; sk).

2. Some of the inputs were not authenticated: ∃i ∈ [n], s.t. (τ i, ·) /∈ T (at least in
one of its N components). Thus, by definition of the well-defined program, wires with
those inputs are not used in the computation (i.e., same output regardless of the value
of those wires). This also holds after the homomorphic transformation and thus the
dummy input chosen does not impact the computation.

As Game4 is only a syntactic change from Game3, Pr[Game3(1λ)=1]≡Pr[Game4(1λ)=1].

Game5: We modify the verification procedure of Game4. We define a flag
�� ��Bad initially

set to false. When verifying (m,P,σ′), if the computation Z=0 mod t, then the challenger
rejects and sets

�� ��Bad=True. By definition of the verification procedure, Type 1 and Type 2
forgeries are rejected leading to Pr[Game5(1λ) = 1]=0. Note that Game4 and Game5 are
identical unless the event ξ= “

�� ��Bad is true” occurs. Thus

|Pr[Game4(1λ) = 1]− Pr[Game5(1λ) = 1]| ⩽ Pr[ξ].

For the flag
�� ��Bad to be set, the challenger needs to compute Z. Depending on the definition

of P two cases occur:

1. P is well-defined and Z=
∑d

k=0(yk−ŷk) · αk=0 mod t where ∃k̂ ∈ [0:d] s.t. yk̂ ̸= ŷk̂.
Call this constraint ξ1.

2. P is not well-defined, Z=ρ−∑d
k=0 yk ·αk=0 mod t, and ρ is computed using at least

one value rτ∗ that was not authenticated. Call this constraint ξ2.

This leads to
Pr[ξ] ⩽ Pr[Z = 0|ξ1] + Pr[Z = 0|ξ2]. (A.1)

Observe that before the verification, there exists exactly t possible tuples (α, {rτ}τ∈T )
consistent with the adversary’s view. The first probability in Eq. A.1 is bounded by d/t as
the polynomial

∑d
i=0(yi−ŷi)·xi has at most d zeros and there are at most t possible values

for α. Indeed, finding these values is equivalent to finding the common zeros to N degree
d polynomial equations. By defining the bivariate polynomial Z[X,Y ]=

∑d
k=0((yk[Y ]−
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ŷk[Y ]) ·Xi), we can rewrite the above polynomial as Z[X,Y ]=
∑d

i=0

∑N
j=0 zij ·Y jXi. To

find the zeros in X for all possible values in Y , we can project on the basis generated by
the {Y j}j leading to N polynomial equations of the form

∑d
i=0 zijx

i=0, for j∈[0:N−1],
each with at most d zeros. Thus, the overall number of zeros in the X-dimension of the
bivariate polynomial is the intersection of all these zeros which cannot be more than
d. For the second probability of Eq. A.1, as the program is not well-defined, ρ can
be seen as a non-constant polynomial in {rτ∗}τ /∈T . As no query has involved τ∗, the
adversary can only guess its value with probability 1/t. By the polynomial identity lemma,
Pr[Z=0|ξ2]⩽d

t . Thus, Pr[ξ] ⩽ 2d
t , which in turn leads to

Pr[Game0(1λ) = 1] ⩽
2d

t
+2−λ+negl(λ) ⩽ negl(λ),

which can be parameterized to be negligible in λ, concluding the proof.

A.4 Security Proof for the Polynomial Compression Protocol
(§3.5.3)

In this section, we analyze the security of our polynomial compression protocol (PoC).

Theorem A.4.1. PE achieving the conditions of Th.3.5.1 and combined with the
polynomial compression of Fig. 3.5 is a secure authenticator (§3.3.3 and Appendix A.1).

Proof. We focus on the verification procedure of PE to estimate the probability of check
(3) passing with wrongful polynomials. Let W be the event that the verifier accepts.
Consider a malicious server that deviates from the honest prover. The view of the
malicious prover (denoted by a tilde) is different from that of the honest one, i.e., σ̃ ̸=σ′.
Consider the messages sent by the server (m1 and m2) depend, respectively, on all the
information previously sent by the client. For any message k, we define Ek as the event
that the message m̃k sent by the prover agrees with the message mk that the honest
prover would have sent on the same view σ̃. By the law of total probability, we can write
Pr[W] ⩽ Pr[W|Ē2] + Pr[W|E2]. The probability Pr[W|Ē2] is bounded by

Pr[W|Ē2] ⩽ Pr

[
ρ(α)=

d∑
i=0

w̃i · αi
∣∣∣∣∣m̃2 ̸= m2, α← Z∗

t

]
.

Following the security proof of PE (Appendix A.3), this probability is upper bounded by
d/(t−1) by the polynomial identity lemma. The probability Pr[W|E2] can be decomposed
by the law of total probability as Pr[W|E2] ⩽ Pr[W|E2 ∧ Ē1] + Pr[W|E2 ∧ E1]. The
probability Pr[W|E2 ∧ Ē1] is bounded by

Pr[W|E2 ∧ Ē1]⩽Pr

[
w̃0=m(δ)

Hδ,β(σ
′)

?
=
∑d

i=0 w̃i·βi

∣∣∣∣∣ m̃1 ̸=m1

m̃2=m2

]
⩽
d+N

t
.
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The inequality holds by the property of the hash (which is itself derived from the
polynomial identity lemma); the malicious prover’s knowledge of (δ, β) arrives after m̃1

(see [FGP14, Th.2] for the analysis of such polynomial hash collision probability). The
probability Pr[W|E2 ∧ E1] is upper bounded by Pr[W|E1] which is, by the polynomial
identity lemma on H(·,0)(σ̃), bounded by d+N

t . Overall, the probability that the verifier
accepts the protocol conversing with the malicious prover is bounded by

Pr[W] ⩽
2(d+N)

t
+

d

t−1 .

As a result, with an appropriate choice of parameters, the prover can only cheat the
verifier with negligible probability.

A.5 Security Proof for the Re-Quadratisation Protocol (§3.5.4)

In this section, we describe in more depth our interactive re-quadratization protocol
(ReQ) shown in Fig 3.6 and analyse its security.

Figure 3.6 presents the ReQ protocol in detail. At the G-th multiplicative gate, the server
holds σ′=(c0, c1, c2, c3, c4). It interacts with the client to obtain σ̄=(c0, c̄1, c̄2). The
server sends the client the higher degree terms c3 and c4. The client decrypts them to y3

and y4 by using its secret key skHE. For security reasons, ReQ introduces random blindings
that need to be accounted for in further computations. It samples uniformly two random
numbers κ1, κ2←Zt and two random polynomials r, r̄←Rt. It sets ȳ2=ακ1y3+α

2κ2y4+r.
We introduce the Shift(·) function that takes as input the sub-circuit PG that leads to
gate G, the authenticator secret key sk, the identifiers τ , and the set Ω of previously
used randomness (initially empty). This function returns the polynomial offset that was
introduced by the addition of blindings in previous re-quadratizations. We call ∆G the
result of Shift(PG, τ , sk,Ω). It then evaluates ȳ1 = P̄ (α) = α3y4+α

2y3−αȳ2−∆G+r̄.
It encrypts c̄2 = HE.Enc(ȳ2;pkHE) and c̄1 = HE.Enc(ȳ1;pkHE) and sends them to
the server. It also updates the list Ω with (r, r̄). The server appends them to the
corresponding ciphertexts (i.e., c̄i←ci+c̄i, for i∈{1, 2}). To remove the final offset, the
verification procedure at the client is slightly modified. As a result, the client can pre-
process (at least part) of the offsets and use them directly during the interactive protocol.
Let us now analyze ReQ’s security.

Theorem A.5.1. PE achieving the conditions of Th.3.5.1 and combined with the ReQ
protocol from Fig. 3.6 is a secure authenticator (§3.3.3 and Appendix A.1).

Proof. The security of PE remains unchanged by the correctness of the ReQ that fol-
lows from its construction: evaluated on the secret point α, σ̄ equals the same eval-
uation of the original degree-four σ′ (up to a deterministic shift ∆G). The quantity
∆G = Shift(PG, τ , sk,Ω) enables us to remove the offset introduced by the previous
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Figure A.1: Amortized runtime of the homomorphic addition operation vs. the authenticator
security parameter λ.

randomness. Hence, we subtract it to the term of degree one. As κ1 and κ2 are uniformly
random values in Zt, the quantity ακ1y3+α

2κ2y4 is a random linear combination of y3

and y4. The addition of the random polynomial r ensures perfect secrecy, hence the
result ȳ2, and even more its encryption, reveal nothing about α: ȳ2 is indistinguish-
able from a random value in Rt. The random polynomial r̄ acts again as a blinding
value thus providing perfect secrecy of the polynomial ȳ1. The server knows only
that c̄1 and c̄2 encrypt ȳ1 and ȳ2, respectively. Although the (bivariate) polynomial
X4·y4+X

3·y3+X
2·(y2−ȳ2)+X(y1−ȳ1+r̄−∆G) admits α as one of its roots for all N

dimensions, the server cannot find the roots as it does not know its coefficients; the
random polynomial r̄ is kept secret. Consequently, both ciphertexts c̄1 and c̄2 reveal
nothing about the secrets (i.e., sk,Ω).

A.6 VERITAS Security Configuration vs. Overhead

We analyze VERITAS’ overhead with respect to the authenticator security parameter
λ for a fixed evaluation circuit. Figure A.1 presents our experimental results for the
BFV homomorphic addition operation (logN=14, log q=438) with λ∈{16, 32, 64}. We
observe that REP induces a linear computation (and communication) overhead with
respect to λ. This is unsurprising since with REP there is an expansion factor of λ
due to the replication and the challenges (§3.4.2). On the contrary, PE’s overhead is
constant with respect to λ since its security is linked only to the size of the plaintext
space (§3.5.2). For appropriate parameterization of the HE scheme, increasing λ does not
affect the ciphertexts. However, we remind that PE’s efficiency is directly linked to the
authenticator’s growth at every multiplication (e.g., §3.6.3.4 and 3.6.3.3). Moreover, we
note that in the Lattigo implementation, the HE circuit constraints the plaintext space
and PE can be parameterized to achieve a security level of up to λ=53 (depending on the
ring size and the evaluation circuit). We emphasize that this is only due to the specific
implementation and using arbitrary-precision arithmetic would overcome this issue.
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Appendix for PELTA (§4)

B.1 Lattice-based Hard Problems

We recall the Module versions of the SIS [Ajt96] and LWE [Reg09, PR06] problems
(i.e.,MSIS and MLWE resp.) [LS15, DKL+18]. Both problems are defined over the ring
Rq for q ∈ Z+.

Definition 2. (MSISκsis,m,βSIS ) D2.11 [LNP22] For a Module-SIS problem with parame-

ters m,κsis > 0, and βSIS > q, the objective is to find for a given matrix A
$←− Rκsis×m

q

a vector x ∈ Rmq such that Ax = 0 over Rq and ||x||∞ < βSIS . We say that a PPT
adversary A has advantage ε in solving MSISκsis,m,βSIS if:

Pr
[
0 < ||x||∞ ⩽ βSIS ∧Ax = 0 in Rq|A $←− Rκsis×m

q ;x
$←− A(A)

]
≥ ε

Definition 3. (MLWEm,λlwe,χ) D2.12 [LNP22] For a Module-LWE problem with pa-
rameters m,λlwe > 0, and an error distribution χ over R, the objective is for a PPT
adversary A to distinguish (A, t)

$←− Rm×λlwe
q ×Rmq from (A,As+ e) for a given matrix

A
$←− Rm×λlwe

q , a secret vector s
$←− χλlwe, and an error vector e←− χm. We say that A has

advantage ε in solving MLWEm,λlwe,χ if:∣∣∣∣∣Pr [b = 1|A $←− Rm×λlwe
q ; s

$←− χλlwe; e
$←− χm; b←− A((A,As+ e))

]
−Pr

[
b = 1|A $←− Rm×λlwe

q ; t
$←− Rmq ; b←− A((A, t))

] ∣∣∣∣∣ ≥ ε.
The parameterization of the different constant κsis, λlwe, q, βSIS ,m are chosen to make the
problem resistant to known attacks and as in prior work [BLS19, ALS20, ENS20, LNS21a]
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we set the root Hermite factor δ < 1.0045. This gives a negligible advantage in solving
the MSIS and MLWE problems.

B.2 Influence of the Number of RNS Sub-rings

Table B.1 shows the effect of the number of RNS sub-rings composing Rq (i.e., the number
of levels) on the performance of PELTA. We observe that PELTA’s runtimes increase
linearly with the number of sub-rings.

Table B.1: PELTA’s performance for the local key-generation protocol (§4.4.4.1) and
variable number of Rq sub-rings (logN = 13).

# sub-rings Setup(s) Prover (s) Verifier (s) Proof (MB)
1 12.3 14.3.8 15.4 2.05
2 22.6 28.8 30.6 4.1
3 32.2 43.3 44.5 6.15

B.3 Parameterization

We detail the different parameters used in our construction and present, in Table B.2,
their values. The degree of the commitment ring Rq is d. We denote by krep the repetition
rate used in the proof (see [ALS20]). T denotes the honest prover bound of the challenge
randomness (i.e., c⃗r) and δ1 the width of the uniform distribution for sampling masking
values. M is the number of expected rejections and δH the root Hermite factor; for
security reasons, we ensure δH < 1.0043 following security estimation done in prior
works [ESS+19, ESLL19a]. log qj corresponds to the number of bits of the FHE sub-ring
modulus. κsis and λlwe are respectively the MSIS and MLWE dimensions in the sub-ring
Rqj .

Table B.2: Parameters for the key generation (PN13).

log d κsis λlwe T krep log δ1 log qj δH M
7 8 17 27 4 25 54 1.0038 2.9
10 2 3 210 4 29 54 1.0027 1.75
13 1 1 213 4 32 54 1.0009 2.25

B.4 Lattice-Based Proof

Here, we describe the proof construction for satisfiability of (i) a linear relation, (ii) with
ternary coefficients, (iii) and a check of the approximate bound proof. Note that this
protocol is a combination between the proof of knowledge of a ternary solution to a linear
relation in Zq by Esgin et al. [ENS20] and an approximate bound proof [BL17, BN20,
LNS20]. Figure B.1 presents the prover’s operations while the verifier’s are in Figure B.2.
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Prover(P) Verifier(V)
Inputs:

ŝ1, . . . , ŝn/d−1 ∈ Rq = Z[X]/⟨Xd
+1⟩ A, u⃗,B0, b⃗i

s⃗ = NTT(ŝ1)| . . . |NTT(ŝn/d−1) ∈ {−1, 0, 1}n

A ∈ Z(m−τ)×(n−τ)
q , u⃗ = As⃗

B0 ∈ R
κsis×(λlwe+κsis+n/d+3)
q , b⃗1, . . . , b⃗n/d+3 ∈ R

λlwe+κsis+n/d+3
q

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g ←$ {g ∈ Rq|g0 = · · · = gkrep−1 = 0}

e⃗←$ [−δ′1, δ
′
1]

τ

r⃗←$ χ
λlwe+κsis+n/d+3

t⃗0 = B0r⃗

tn/d+1 = ⟨b⃗n/d+1, r⃗⟩ + g

for j = 1, . . . , n/d− 1 : tj = ⟨b⃗j , r⃗⟩ + ŝj

tn/d = ⟨b⃗n/d, r⃗⟩ + NTT−1
(⃗e)

for i = 0, . . . , krep − 1 :

y⃗i ←$ [−δ1, δ1]
(λlwe+κsis+n/d+3)d

w⃗i = B0y⃗i
t⃗0, {tj}, tn/d+1, {w⃗i} α1, . . . , αkn/d ←$ Rq

R ←$ {−1, 0, 1}τ×n

{αi}, γ⃗µ,R γ⃗0, . . . , γ⃗krep−1 ←$ Zm
q

tn/d+2 = ⟨b⃗n/d+2, r⃗⟩ + ⟨b⃗n/d+3, y⃗0⟩ −
krep−1∑

i=0

n/d−1∑
j=1

αin/d+jσ
−i

(
3ŝj⟨b⃗j , y⃗i⟩

2
)

tn/d+3 = ⟨b⃗n/d+3, r⃗⟩ +
krep−1∑

i=0

n/d−1∑
j=1

αin/d+jσ
−i

(
(3ŝ

2
j − 1)⟨b⃗j , y⃗i⟩

)

v = ⟨b⃗n/d+2, y⃗0⟩ +
krep−1∑

i=0

n/d−1∑
j=1

αin/d+jσ
−i

(
⟨b⃗j , y⃗i⟩

3
)

z⃗
′
= e⃗ + Rs⃗

If ||z′||∞ ≥ δ′1 − T
′ abort, otherwise update:

A := (A|0(m−τ)×τ ,R|Idτ ) ∈ Zm×n
q , s⃗ := (⃗s|⃗e) ∈ Zn

q , u⃗ := (u⃗|⃗z′) ∈ Zm
q A := (A|0(m−τ)×τ ,R|Idτ ), u⃗ := (u⃗|⃗z′)

For µ = 0, . . . , krep − 1 :

A
T
γ⃗µ = NTT(ψ

(µ)
1 )| . . . |NTT(ψ

(µ)
n/d

)

h = g +

krep−1∑
µ=0

1

krep
X

µ
krep−1∑

ν=0

σ
ν

n/d∑
j=1

dψ
(µ)
j ŝj − ⟨u⃗, γ⃗µ⟩


For i = 0, . . . , krep − 1 :

v
′
i = ⟨b⃗n/d+1, y⃗i⟩ +

krep−1∑
µ=0

1

krep
X

µ
krep−1∑

ν=0

n/d∑
j=1

σ
ν
(
⟨dψ(µ)

j b⃗j , y⃗i−ν⟩
)

{tj},h,v, {v
′
i}, z⃗

′

c c←$ C

For i = 0, . . . , krep − 1 : z⃗i = y⃗i + σ
i
(c)⃗r

If ||⃗zi||∞ ≥ δ1 − T, abort {z⃗i} Ver(tj , w⃗i, αi, γ⃗i,h,v,v
′
i, z⃗i, z⃗

′
)

Figure B.1: Interactive proof generation of a ternary solution (of size n inputs in Zq) to an
unstructured linear relation with additional approximate bound proof (ABP). For a polynomial
ring Rq=Zq[X]/⟨Xd+1⟩, N a power-of-two, κsis and λlwe being respectively the MSIS and MLWE
ranks, χ an error distribution in the MLWE problem, krep the repetition rate, δ1 (resp. δ′1)the
width of the distribution of the masks, T (resp. T ′) the bound of honest prover’s c⃗r of the linear
proof (resp. for the ABP), and σ an automorphism of Rq of order krep.
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Ver(tj , w⃗i, αi, γ⃗i,h,v,v
′
i, z⃗i, z⃗

′)

For i = 0, . . . , krep − 1 :

1 : ||⃗zi||∞
?
< β = δ1 − T

2 : B0z⃗i
?
= w⃗i + σi(c)⃗t0

For i = 0, . . . , krep − 1 :

For j = 1, . . . , n/d :

f
(i)
j = ⟨b⃗j , z⃗i⟩ − σi(c)tj

fn/d+2 = ⟨b⃗n/d+2, z⃗0⟩ − c · tn/d+2

fn/d+3 = ⟨b⃗n/d+3, z⃗0⟩ − c · tn/d+3

3 :

krep−1∑
i=0

n/d∑
j=1

αin/N+jσ
−i
(
f
(i)
j · (f

(i)
j + σi(c)) · (f (i)j − σi(c))

)
+ fn/d+2 + cfn/d+3

?
= v

4 : ||z′||∞
?
< q/2p

For µ = 0, . . . , krep − 1 :

5 : hµ
?
= 0

AT γ⃗µ = NTT(ψ
(µ)
1 )| . . . |NTT(ψ

(µ)
n/d)

τ =

krep−1∑
µ=0

1

krep
Xµ

krep−1∑
ν=0

σν

n/d∑
j=1

dψ
(µ)
j tj − ⟨u⃗, γ⃗µ⟩


For i = 0, . . . , krep − 1 :

6 :

krep−1∑
µ=0

1

krep
Xµ

krep−1∑
ν=0

n/d∑
j=1

σν
(
Nψ

(µ)
j ⟨b⃗j , z⃗i−ν mod krep⟩

)
+ ⟨b⃗n/d+1, z⃗i⟩ ?

= v′
i + σi(c)(τ + tn/d+1 − h)

Figure B.2: Verification equations for Figure B.1.



Appendix C

Appendix for CRISP (§5)

C.1 Zero-Knowledge Circuit Evaluation

We now present how ZKB++ [CDG+17] operates in more details:

(2,3)-decomposition of a Circuit from [GMO16, CDG+17] For a function f

represented by a circuit C, a (2,3)-decomposition consists of a series of algorithms
(Share,Output,Rec) ∪ Update, with Share surjective, and allows to create three
separate views of the circuit. Then, ZKB++ enables to prove knowledge of a secret input
x such that f(x) = y, with y the publicly known output. For an iteration k, the views
for player i is denoted by a vector Viewk

i={view0
i , · · ·, viewNg

i }.

• The Share algorithm splits a secret x:(
view0

1, view
0
2, view

0
3

)
= Share(x,k1,k2,k3),

with ki being a random tape, ∀i ∈ {1, 2, 3}.

• F =
Ng⋃
i=1
{ϕj1, ϕj2, ϕj2}, where Ng is the number of gates in C and ϕji is the j-th gate

of player i.
• The Update algorithm evaluates the gates into the views:

viewj+1
i = ϕji (view

j
i , view

j
i+1,ki,ki+1),

where j ∈ [0, Ng − 1], ∀i ∈ {1, 2, 3}.
• The Output algorithm returns the output wires:

yi = Output(viewNgi ),∀i ∈ {1, 2, 3}.

127
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x

x1 x2 x3

Share

Φ1
1

Φ2
1

Φ
Ng
1

Φ1
2

Φ2
2

Φ
Ng
2

Φ1
3

Φ2
3

Φ
Ng
3

...
...

...

view0
1 view0

2 view0
3

view1
1 view1

2
view1

3

viewNg

1 viewNg

2 viewNg

3

y1 y2 y3

Rec

y

view2
1 view2

2 view2
3

Figure C.1: (2,3)-decomposition of a circuit.

• Rec reconstructs the output: y = Rec(y1, y2, y3).

The intermediary functions ϕji are defined by running a linear decomposition on C such
that:

• Each player i has wire wi and w(1)
k + w

(2)
k + w

(3)
k is equal to the wire state of the

k-th gate of C.

• Addition by a constant d: ∀i∈{1, 2, 3}

w
(i)
b =

{
w

(i)
a + d if i = 1,

w
(i)
a otherwise.

• Multiplication by a constant d: ∀i∈{1, 2, 3}

w
(i)
b = d · w(i)

a .

• Binary addition: ∀i ∈ {1, 2, 3}

w(i)
c = w(i)

a + w
(i)
b .
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• Binary multiplication: ∀i ∈ {1, 2, 3}

w(i)
c = w(i)

a · w(i)
b + w(i+1)

a · w(i)
b + w(i)

a · w(i+1)
b +Ri(c)−Ri+1(c),

where Ri(c) is the c-th output of a pseudo-random generator seeded with ki.

The 2-privacy property ensures that revealing two views (i.e., opening two players) does
not leak information about the witness. Overall, the ZKB++ protocol works as follows:

(i) The prover emulates three players. For each iteration i ∈ [1, t], each player j ∈
{0, 1, 2} evaluates the (2,3)-decomposition of the circuit and:

– commits to: [
C

(i)
j , D

(i)
j

]
←
[
H
(
k
(i)
j , x

(i)
j ,Viewi

j

)
, k

(i)
j ∥Viewi

j

]
,

– and lets a(i) =
(
y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3

)
.

(ii) The prover computes the challenge e=H
(
a(1), . . ., a(t)

)
and reads it as a value

e(i)∈{1, 2, 3}, for all i∈[1, t]. For all i∈[1, t], the prover lets b(i)=(
y
(i)

e(i)+2
, C

(i)

e(i)+2

)
and

z(i) ←


(
View(i)

2 ,ki1,k
i
2

)
if e(i) = 1,(

View(i)
3 ,k

(i)
2 ,k

(i)
3 , x

(i)
3

)
if e(i) = 2,(

View(i)
1 ,k

(i)
3 ,k

(i)
1 , x

(i)
3

)
if e(i) = 3.

(iii) Then, the prover computes the proof

p=
[
e,
(
b(1), z(1)

)
,
(
b(2), z(2)

)
, · · ·,

(
b(t), z(t)

)]
.

(iv) The verifier, for each iteration i ∈ [1, t], reconstructs the input and output views
that were not given as part of the proof by:

– running the circuit for player ei with the information in the proof, and
– computing Cij , D

i
j , and ai, with the information provided in bi.

(v) Finally, the verifier computes the challenge e′=H
(
a(1), . . ., a(t)

)
and checks that

e
?
=e′ is true.

In particular, ZKB++ [CDG+17] is a Σ-protocol for languages of the type {y | ∃x s.t.y=Φ(x)},
where Φ(·) is the representation of the circuit. With randomized runs, the verifier builds
confidence in the prover’s knowledge of the secret. The number of iterations is determined
according to the desired soundness: For instance, to prove the knowledge of a message
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that yields a specific SHA-256 digest, a security level of 128-bits requires 219 iterations.
The proof size is linked to the number of iterations but also to the number of gates
that require non-local computations (e.g.,AND for Boolean circuits, multiplication for
arithmetic ones). Compared to earlier work, i.e.,ZKBoo [GMO16], ZKB++ reduces the
proof size by not sending information that can be computed by the verifier. The security
of ZKB++ is based on the quantum random oracle model.

Overall, it achieves the following properties:

(a) 2-privacy, opening two out of the three players’ views to the verifier reveals no
information regarding the secret input,

(b) special soundness, a correct execution yields a valid witness with soundness error
linked to the number of iterations, and

(c) completeness, an honest execution of ZKB++ ensures a correct output.

In the remainder of this chapter, we will refer to the ZKB++ protocol described above as
ZKCE.

C.2 CRISP’s privacy proof (§5.5.1)

Proposition C.2.1. Consider a series of messages {msgi} certified by the data source
with a digital signature scheme σ(·) that uses a cryptographic hash function H(·) with
nonces. Assume that the parameters of the CKKS (N, q, χenc, χkey, χerr) and BDLOP
(δ1, k, κsis, κlwe, q,N) schemes have been configured to ensure post-quantum security, that
the circuit C is a valid (2,3)-decomposition, and that the cryptographic commitment
Com(·) is hiding and binding. Then, our solution achieves privacy by yielding nothing
more than the result m̂ of the computation on the user’s data {xi}.

Proof. To prove the privacy of CRISP, we construct an ideal simulator whose outputs are
indistinguishable from the real outputs of CRISP’s transfer and release phases.

Transfer Phase. In the random oracle model (ROM), consider an ideal-world simulator
St and any corrupted probabilistic polynomial time (PPT) service provider (i.e., the
Verifier). Without loss of generality, we consider only one round of communication
between the user and service provider (i.e., one set of challenges). The simulator St
generates a public-private key pair (pk′

HE, sk
′
HE). Following the encryption protocol, St

samples r′0 ← χenc and e′0, e
′
1 ← χerr and computes the encryption of a random input

vector m′ into ct′. Similarly, it samples a commitment noise vector r′c and commits
(r′0, e

′
0, e

′
1) into C′

BDLOP. Using a random nonce, the simulator also hashes H(m′[1]).
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Without loss of generality, this can be extended to all components of m′. St then sends
{ct′,C′

BDLOP,H(m′[1])} to the service provider. The view of the service provider in
the real protocol comprises {ct,CBDLOP,H(msg)}. By the semantic security of the
underlying encryption scheme [CKKS17], the hiding property of the BDLOP commitment
scheme (see [BDL+18b]), and the hiding and binding properties of the commitments
instantiated by H(·), the simulated view is indistinguishable from the real view.

Following the properties of the BDLOP commitment scheme [BD16], for each iteration
of the bound proof with challenge d∈{0, 1}, the simulator St can randomly draw z′ and
r′z with small norm and set t=BDLOP(z′, r′z)−dCBDLOP (see [BD16]). The simulator
then commits to t in the bound proof protocol. Both ideal and real distributions are
indistinguishable by the hiding property of the auxiliary commitment.

In parallel, following [GMO16], given e ∈ {1, 2, 3}, the simulator St sequentially

• Evaluates the Share function on the vector m′, the encryption noises e′0, e′1, and
r′0 and commitment noises r′c. We denote the result by (view′0

1, view′0
2, view′0

3) (See
§ 5.3.2).

• Samples random tapes k′
e, k′

e+1.

• Evaluates the arithmetic circuit according to: If gate c is linear, it defines view′c
e and

view′c
e+1 using ϕce and ϕce+1. If gate c is a multiplication one, it samples uniformly

at random view′c
e+1 and uses ϕce to compute view′c

e.

• Once all the gates are evaluated and the vectors of views View′
e and View′

e+1 are
defined (see § 5.3.2), the simulator computes the respective outputs y′e and y′e+1.

• Computes y′e+2 = y − (y′e + y′e+1).

• Computes z′e following step (ii) of the ZKB++ protocol using View′
e+1, k′

e, k′
e+1

(and optionally x′e+2 depending on the challenge).

• Outputs (z′e, y′e+2).

The simulator St follows a protocol similar to the original ZKB++ protocol. The only
difference is that for a multiplicative gate c, the simulated view value view′c

e+1 is sampled
uniformly at random, whereas the original view value viewc

e+1 is blinded by adding Ri(c)−
Ri+1(c), with Ri(c) and Ri+1(c) the outputs of a uniformly random function sampled
using the tapes ke and ke+1. Thus, the distribution of viewc

e+1 is uniform and view′c
e+1

follows the same distribution in the simulation. Therefore, the ZKB++ simulator’s output
has the same distribution as the original transcript (ze, ye+2) the output of the simulator
St is indistinguishable from the valid transcript to a corrupted verifier. Following the ideal
functionality of St, the ideal view of the service provider (i.e., {ct′,C′

BDLOP,H(m′[1]), P ′})
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is indistinguishable from the real view (i.e., {ct,CBDLOP,H(msg), P}, with P the real
ZKB++ proof). Thus, the ideal and real outputs are indistinguishable for the corrupted
PPT service provider proving the privacy property of CRISP’s transfer phase.

Release Phase. We construct a second simulator Sr to prove that CRISP’s release
protocol (Section 5.4.5) reveals nothing more than the result m̂ to a honest but curious
verifier. A different simulator is required, as the release phase is independent of the transfer
phase. We consider that Sr knows the blinding function ahead of time (i.e., it knows (ν,η))
for the real conversation leading to the service provider accepting m̂. Upon reception of
the first message {ct′, Bν,η(ct

′), C0, f(·)} such that HE.Dec(ct′; skHE) = m̂, Sr creates
m̂B using the blinding parameters. The simulator commits to C ′

1=Com(m̂, m̂B), which
is indistinguishable from C1 to the curious verifier according to the hiding property of
the commitment scheme. After receiving an opening for C0, the simulator opens C ′

1 to
m̂ and m̂B, which sustain the verifier checks as defined in Section 5.4.5. The binding
property of the commitment scheme asserts that (ν,η) is used for the blinding. The
aforementioned conversation between the prover and verifier is indistinguishable from
the real conversation. By checking the function f(·), and as the service provider is
honest-but-curious, the user is assured that the service provider evaluated f(·) and is
not using her as a decryption oracle. If the user deems the function inadmissible, she
aborts.

C.3 CRISP’s integrity (§5.5.2)

Proposition C.3.1. Consider a series of messages {msgi} certified by the data source
with a digital signature scheme σ(·) that uses a cryptographic hash function H(·) with
nonces. Assume that the parameters of the CKKS (N, q, χenc, χkey, χerr) and BDLOP
(δ1, k, κsis, κlwe, q,N) schemes have been configured to ensure post-quantum security, that
the ZKB++ protocol execution of C achieves soundness κZK, that the blinding function
Bν,η is hiding, and that the cryptographic commitment Com(·) is hiding and binding.
Then, our solution achieves integrity as defined in Section 5.2.3, as it ensures with
soundness κZK that the output m̂ is the result of the computation on the user’s data.

Proof. Let us consider a cheating user as defined in Section 5.2.2. She wants to cheat
the service provider in obtaining from the public SIMD circuit f(·) a result that is not
consistent with the certified data. The public function evaluated by the service provider
is f(·) and returns m̂ on the series {msgi} of data signed by the data source with the
signature scheme σ(·). We interchangeably denote by f(·) the public function in the
plaintext and ciphertext domains. By the property of the CKKS scheme, the ciphertext
ct′ can be decrypted correctly using the secret key sk. As stated in [GMO16] adapted
to [CDG+17], the binding property of the commitments used during the MPC-in-the-head
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guarantees that the proof Π contains the information required to reconstruct Viewe and
Viewe+1. Given three accepting transcripts (i.e., one for each challenge), the verifier can
traverse the decomposition of the circuit from the outputs to the inputs, check every gate
and reconstruct the input. By surjectivity of the ZKB++ decomposition function, the
verifier can reconstruct x′ s.t. f(x′) = y proving the 3-special soundness property (see
proof of Proposition 4.2 in [GMO16]). The completeness property of the ZKCE evaluation
follows directly from the construction of the (2,3)-decomposition of the circuit. Thus,
from a correct execution of τ iterations of the protocol (parameterized by the security
parameter κZK), a user attempting to cheat the ZKB++ execution will get caught by the
service provider with probability at least 1−2−κZK . Hence, a malicious but rational user
can only cheat by tampering with the data before they are input to the circuit, i.e., the
input messages or the encryption parameters. As the user is rational, she samples proper
noise for the BDLOP commitment; otherwise, she would lose either privacy or utility: not
sampling noise from χ(κsis+λlwe+1) would lead to an improperly formatted commitment,
and thus, a potential loss in utility, as the service provider would reject it using a proof of
opening of the commitment. By the collision-resistance property of the hash function, it
is computationally infeasible for the user to find a collision and thus a tampered message
yielding the same hash.

By lemma 10 from Baum et al. [BD16], the bound proof is correct and offers special
soundness: the service provider will detect a cheating user that samples malicious noises
to distort the encryption, with probability at least 1− 2−κZK . Note that in the case of an
abort, the protocol is simply re-executed.

Finally, during the release protocol, the integrity of the computation’s output m̂ is
protected by the hiding property of commitment C0, the hiding property of the blinding
function (seen as a one-time-pad shift cipher in Zq which achieves perfect secrecy of ν·x,
i.e., it is impossible for the user to find ν and blind another result as m̂B), and the binding
property of C1 [GMO16]. Therefore, in CRISP users can only cheat with probability at
most 2−κZK .

C.4 Approximate Homomorphic Encryption

Cheon et al. recently introduced the CKKS cryptosystem [CKKS17] (improved in [CHK+18b]),
an efficient and versatile leveled homomorphic scheme for approximate arithmetic opera-
tions. An approximate homomorphic encryption scheme enables the execution of approxi-
mate additions and multiplications on ciphertexts without requiring decryption. It uses an
isomorphism between complex vectors and the plaintext space Rq=Zq[X]/⟨XN+1⟩, where
q is a large modulus, and N is a power-of-two integer. The decryption of a ciphertext
yields the input plaintext in Rq with a small error. This small error can be seen as an
approximation in fixed-point arithmetic.
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In CKKS, given a ring isomorphism between CN/2 and R[X]/⟨XN+1⟩, a complex vector
z∈CN/2 can be encoded into a polynomial p denoted by a vector p⃗ of its coefficients ∈RN

as
p⃗=

1

N
(ŪT ·z+UT ·z̄),

where U denotes a (N/2)×N portion of the Vandermonde matrix generated by the 2N -th
root of unity ζj=e5

jπi/N . This transformation is extended to Rq by a quantization. Then,
considering a maximum number of levels L, a ring modulus q=

∏L−1
i=0 qi is chosen with {qi}

a set of number theoretic transform (NTT)-friendly primes such that ∀i∈[0, L− 1], qi=1

mod 2N .

Let χerr, χenc, and χkey, be three sets of small distributions over Rq. Then, for an encoded
plaintext p ∈ Rq, the scheme works as follows:

KeyGen(λ,N,L, q): for a security parameter λ and a number of levels L, generate
skHE=(1, s) with s← χkey, pkHE=(b, a) with a←Rq, b=−a · s+ e mod q, and e←χerr.
Additional keys which are useful for the homomorphic computations (i.e., rotation, eval-
uation keys, etc.) are denoted by evkHE. We refer the reader to [HK20] for further
details.

Encryption(p;pkHE): For a message m ∈ ZNt encoded as a polynomial p, for r0 ← χenc

and e0, e1 ← χerr, output the pair of polynomials ct=(ct0, ct1)=r0 · pkHE + (p+ e0, e1)

mod q.

Decryption(ct; skHE): Output m̂=⟨ct, skHE⟩ mod ql, where ⟨·, ·⟩ denotes the canonical
scalar product in Rql and l the current level of the ciphertext.

For brevity, we denote the above three operations as HE.KeyGen(λ,N,L, q), HE.Enc(p;pkHE),
and HE.Dec(ct; skHE), respectively. The scheme’s parameters are chosen according to
the security level required (see [ACC+18]) to protect the inputs and privacy.
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