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Abstract

Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm

shift towards data-driven models that learn from and adapt to data. This has resulted in

unprecedented advancements in various domains such as natural language processing and

computer vision, largely attributed to deep learning, a special class of machine learning models.

Deep learning arguably surpasses traditional approaches by learning the relevant features

from raw data through a series of computational layers.

This thesis explores the theoretical foundations of deep learning by studying the relationship

between the architecture of these models and the inherent structures found within the data

they process. In particular, we ask: What drives the efficacy of deep learning algorithms

and allows them to beat the so-called curse of dimensionality—i.e. the difficulty of generally

learning functions in high dimensions due to the exponentially increasing need for data points

with increased dimensionality? Is it their ability to learn relevant representations of the data by

exploiting their structure? How do different architectures exploit different data structures? In

order to address these questions, we push forward the idea that the structure of the data can be

effectively characterized by its invariances–—i.e. aspects that are irrelevant for the task at hand.

Our methodology takes an empirical approach to deep learning, combining experimental stud-

ies with physics-inspired toy models. These simplified models allow us to investigate and in-

terpret the complex behaviors we observe in deep learning systems, offering insights into their

inner workings, with the far-reaching goal of bridging the gap between theory and practice.

Specifically, we compute tight generalization error rates of shallow fully connected networks

demonstrating that they are capable of performing well by learning linear invariances, i.e.

becoming insensitive to irrelevant linear directions in input space. However, we show that

these network architectures can perform poorly in learning non-linear invariances such as

rotation invariance or the invariance with respect to smooth deformations of the input. This

result illustrates that, if a chosen architecture is not suitable for a task, it might overfit, making

a kernel method, for which representations are not learned, potentially a better choice.

Modern architectures like convolutional neural networks, however, are particularly well-fitted

to learn the non-linear invariances that are present in real data. In image classification, for

example, the exact position of an object or feature might not be crucial for recognizing it. This

property gives rise to an invariance with respect to small deformations. Our findings show that

the neural networks that are more invariant to deformations tend to have higher performance,

underlying the importance of exploiting such invariance.

Another key property that gives structure to real data is the fact that high-level features are
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Abstract

a hierarchical composition of lower-level features—a dog is made of a head and limbs, the

head is made of eyes, nose, and mouth, which are then made of simple textures and edges.

These features can be realized in multiple synonymous ways, giving rise to an invariance. To

investigate the synonymic invariance that arises from the hierarchical structure of data, we

introduce a toy data model that allows us to examine how features are extracted and combined

to form increasingly higher-level representations. We show that deep neural networks, unlike

their shallow counterparts, can learn this invariance layer by layer, and this allows beating the

curse. Our analysis within this setting provides an estimate of the number of data samples

needed for learning a task, given its hierarchical structure.

Overall, our research shows that deep learning is able to mitigate the curse of dimensionality

by learning representations that are invariant to aspects of the data irrelevant for the task,

effectively reducing the problem’s dimensionality. Our quantitative characterizations of the

generalization error as a function of the number of training points bring us closer to knowing

a priori how many data points are needed to learn a task, given its structure.

Keywords: artificial neural networks, deep learning, curse of dimensionality, feature learning,

representation learning, data structure.
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Résumé

L’intelligence artificielle, notamment le sous-domaine de l’apprentissage automatique, a

connu un changement de paradigme vers des modèles basés sur les données qui apprennent

et s’adaptent à ces données. Ceci a abouti à des avancées sans précédent dans divers domaines

comme le traitement du langage naturel et la vision par ordinateur, principalement grâce à

l’apprentissage profond, une classe spéciale de modèles d’apprentissage automatique. L’ap-

prentissage profond surpasse apparemment les approches traditionnelles en apprenant les

caractéristiques pertinentes directement à partir des données à travers une série de couches

de calcul.

Cette thèse explore les fondements théoriques de l’apprentissage profond en étudiant la rela-

tion entre l’architecture de ces modèles et les structures inhérentes trouvées dans les données

qu’ils traitent. En particulier, nous nous demandons : Quel est le facteur clé qui rend les

algorithmes d’apprentissage profond efficaces et les aide à surmonter la difficulté d’apprendre

des fonctions dans des espaces à haute dimension, connue sous le nom de malédiction de la

dimensionalité ? Est-ce leur capacité à apprendre des représentations pertinentes des données

en exploitant leur structure? Comment différentes architectures exploitent-elles différentes

structures de données ? Pour aborder ces questions, nous avançons l’idée que la structure des

données peut être efficacement caractérisée par ses invariances—c’est-à-dire les aspects qui

sont non pertinents pour la tâche en question.

Notre méthodologie adopte une approche empirique de l’apprentissage profond, combinant

des études expérimentales avec des modèles jouets inspirés de la physique. Ces modèles

simplifiés nous permettent d’investiguer et d’interpréter les comportements complexes que

nous observons dans les systèmes d’apprentissage profond, offrant des perspectives sur leur

fonctionnement interne, avec l’objectif à long terme de combler l’écart entre la théorie et la

pratique.

Plus précisément, nous calculons les taux d’erreur de généralisation des réseaux a deux

couches totalement connectés, démontrant qu’ils peuvent apprendre des invariances linéaires,

c’est-à-dire devenir insensibles à des directions linéaires dans l’espace d’entrée qui sont non

pertinents pour la tâche. Cependant, nous montrons que ces architectures peuvent mal fonc-

tionner dans l’apprentissage d’invariances non linéaires comme l’invariance rotationnelle

ou l’invariance par rapport aux petites déformations de l’entrée. Ce résultat illustre que si

une architecture choisie n’est pas adaptée à une tâche donnée, elle pourrait être en overfit-

ting, rendant une méthode de kernel, pour laquelle les représentations ne sont pas apprises,

potentiellement un meilleur choix.
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Résumé

Les architectures modernes telles que les réseaux de neurones convolutionnels, en revanche,

sont particulièrement bien adaptées à l’apprentissage des invariances non linéaires présentes

dans les données réelles. Dans la classification d’images, par exemple, la position exacte

d’un objet ou d’une caractéristique peut ne pas être cruciale pour sa reconnaissance. Cette

propriété donne lieu à une invariance par rapport aux petites déformations. Nos résultats

montrent que les réseaux neuronaux les plus invariants aux déformations ont tendance à

avoir des performances supérieures, soulignant l’importance d’exploiter une telle invariance.

Une autre propriété clé qui donne de la structure aux données réelles est le fait que les

caractéristiques de haut niveau sont une composition hiérarchique de caractéristiques de

niveau inférieur—un chien est composé d’une tête et de membres, la tête est composée

d’yeux, de nez et de bouche, qui sont ensuite composés de textures et de contours simples. Ces

caractéristiques peuvent être réalisées de plusieurs manières synonymes, donnant lieu à une

invariance. Pour étudier l’invariance synonymique qui découle de la structure hiérarchique

des données, nous introduisons un modèle de données jouet qui nous permet d’examiner

comment les caractéristiques sont extraites et combinées pour former des représentations de

plus en plus élevées. Nous montrons que les réseaux de neurones profonds sont capable de

apprendre avec succès ces structures hiérarchiques.

Finalement, nos travaux fournissent un aperçu des principaux mécanismes qui rendent les

algorithmes d’apprentissage profond si efficaces. Par le biais d’études empiriques et de l’utili-

sation de modèles jouets, nous mettons en évidence le rôle de la structure des données dans

les performances des algorithmes d’apprentissage profond, nous démontrons que des inva-

riances spécifiques permettent d’obtenir des performances supérieures, et nous fournissons

des orientations pour le choix de l’architecture de réseau la plus appropriée pour une tâche

donnée.

Mots-clés : réseaux de neurones artificiels, apprentissage profond, malédiction de la dimen-

sionalité, apprentissage de caractéristiques, apprentissage de représentations, structure de

données.
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Sommario

L’intelligenza artificiale, e in particolare la branca dell’apprendimento automatico hanno

subito una profonda trasformazione negli ultimi anni, convergendo verso modelli guidati dai

dati, capaci di adattarsi e imparare da essi. Questa evoluzione ha generato progressi notevoli

in diverse aree applicative, come l’elaborazione del linguaggio naturale e la visione artificiale.

Tali avanzamenti sono in larga parte dovuti al deep learning (o apprendimento profondo), una

categoria speciale di modelli di apprendimento.

Questa tesi esplora le basi teoriche del deep learning, con una particolare attenzione alla

relazione tra l’architettura dei modelli e la struttura intrinseca dei dati su cui operano. In

particolare, ci chiediamo: che ruolo svolge la struttura dei dati nel successo degli algoritmi

di Deep Learning, specialmente nel superare la problematica nota come maledizione della

dimensionalità? È nell’abilità di adattare le rappresentazioni interne ai dati il segreto del loro

successo? Come diverse architetture sfruttano differenti tipologie di struttura nei dati? Per

rispondere a queste domande, proponiamo di caratterizzare la struttura dei dati attraverso le

loro invarianze, ovvero aspetti degli input che sono irrilevanti per il task in questione.

La nostra metodologia si basa su un approccio empirico al deep learning, integrando studi

sperimentali con modelli teorici semplificati, ispirati alla fisica. Questi toy models (o modelli

giocattolo) ci consentono di indagare ed interpretare i fenomeni complessi che si manifestano

nei sistemi di deep learning. Con eventualmente l’obbiettivo di avvicinare teoria e pratica.

Nel dettaglio, quantifichiamo l’errore di generalizzazione in reti neurali non profonde, mo-

strando la loro capacità di imparare invarianze lineari. Al contrario, evidenziamo come queste

architetture possano non essere ottimali nell’apprendere invarianze non lineari, come quelle

per rotazioni o deformazioni dell’input. Ciò suggerisce che in certi scenari, metodi kernel,

le cui rappresentazioni interne non si adattano alla struttura dei dati, potrebbero essere più

efficaci.

Esaminiamo poi le architetture moderne, come le reti neurali convoluzionali, dimostrando la

loro predisposizione a cogliere le invarianze non lineari presenti nei dati reali. Ad esempio,

nella classificazione di immagini, una leggera deformazione dell’oggetto in questione non

ne compromette il riconoscimento. Mostrando che reti più invarianti hanno prestazioni

superiori, sottolineiamo l’importanza di questa proprietà.

Infine, discutiamo l’importanza della struttura gerarchica nei dati, dove le caratteristiche di

alto livello emergono come combinazioni di quelle a livelli inferiori—un cane è composto

da una testa e da arti, la testa è composta da occhi, naso e bocca, che sono poi composti

da semplici texture e linee. Queste caratteristiche possono essere realizzate in più modi
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equivalenti, o sinonimi, dando luogo a un’invarianza. Proponiamo un modello di dati che

permette di studiare questa forma di invarianza e dimostriamo come solo le reti neurali

profonde possano apprenderla, superando la maledizione della dimensionalità. In questo

contesto, forniamo una stima quantitativa del numero di dati necessario per l’apprendimento

di un dato compito, considerata la sua struttura gerarchica.

In conclusione, il nostro studio evidenzia come il deep learning sia capace di attenuare la

maledizione della dimensionalità attraverso l’apprendimento di rappresentazioni invarianti.

Le nostre analisi quantitative forniscono un’indicazione sul numero dati di addestramento

necessari per il successo in un determinato task, in relazione alla sua struttura intrinseca.

Parole Chiave: reti neurali artificiali, apprendimento profondo, maledizione della dimensio-

nalità, feature learning, apprendimento delle rappresentationi, struttura dei dati
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Introduction

Machine learning, a cornerstone of artificial intelligence, is driven by algorithms that learn

patterns in data to perform tasks without explicit instructions. This field has brought about

significant advancements across various domains and given rise to specialized branches.

Among these branches, deep learning is arguably the most successful. The goal of this thesis is

to investigate the reasons behind this success.

To set the stage, we begin this introductory chapter with an overview of supervised learning

fundamentals and the challenges inherent to it—particularly the bias-variance tradeoff and,

more crucially for this thesis, the phenomenon known as the curse of dimensionality. It seems

paradoxical that modern supervised learning algorithms perform well in high-dimensional

tasks despite the curse of dimensionality typically impeding such learning. This suggests

that high-dimensional data might be rich in structure in the form of invariances and symme-

tries. Hence, this thesis aims to unravel the nature of this structure and how deep learning

algorithms, using suitable architectures, can exploit it.

To investigate this problem, we will review modern supervised learning algorithms, namely

kernel methods and neural networks—readers familiar with these topics may wish to skip this

discussion, as well as the preliminary one on supervised learning. One significant aspect we

will emphasize is the ability of neural networks to adapt to the features of the data and possibly

learn relevant representations, a capability absent in kernel methods. This leads us to the

following key questions: (i) What features do neural networks learn, are they indeed relevant

for the task at hand?, (ii) Does this feature learning contribute to some kind of dimensionality

reduction, and therefore could it be a factor in overcoming the curse? and (iii) If so, can we

quantify the impact of feature learning on performance in terms of how many data points are

needed for learning a given task?

To address these questions, we first review empirical works, specifically (i) techniques that

allow us to visualize the representations learned by deep networks and (ii) observables to

characterize the learning of task relevant representations in deep network.

For answering the third question, we will go into the theoretical study of the infinite-width

limit of neural networks, which allows establishing a strong link between neural networks and

kernel methods. In fact, the same neural network architecture can be trained in two different
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regimes named feature and lazy, depending on the scale of parameters at initialization. The

feature regime corresponds to standard neural network training where features can be learned,

while the lazy regime to kernel methods, where features are dictated by the architecture and

remain static during training. The joint study of these two training regimes allows us to dissect

the impact of feature adaptation versus the influence of architecture choice, and thus to study

whether feature adaptation truly underpins the success of deep learning.

Having formulated a framework for gauging the benefits of feature learning, the next step

is to identify which features of the data are indeed learned by neural networks. This leads

us to a more in-depth discussion on data structure, which we will examine in terms of data

invariances. We will discuss three types of invariances. The first, linear invariance, is associ-

ated with the observation that some input coordinates may not be relevant for a given task.

The second, deformation invariance, reflects the notion that the precise location of relevant

features within the input might not affect the task. Finally, we will delve into synonymic in-

variance. This invariance builds on the notion that some tasks can be viewed as a hierarchical

composition of features at varying levels, with the property that substituting these features

with their synonyms does not alter the label. We conclude this introduction by providing an

overview of the thesis structure and main results, pointing out chapters that delve into the

topics introduced here. We finish with a note on our methodology.

1.1 Machine Learning

1.1.1 Supervised Learning

Supervised learning is a machine learning paradigm where a model learns to make predictions

based on a set of labeled examples. More formally, given a set of P pairs of data (xi , yi ),

where xi ∈ X represents an input and yi ∈ Y represents the corresponding label or target, the

objective of supervised learning is to approximate the true, yet unknown, function f ∗ : X → Y

that maps the inputs to the outputs.

Regression and Classification Tasks Supervised learning can be broadly divided into two

categories: regression and classification. In regression, Y = R, and the task is to predict a

continuous target variable. In contrast, in classification, Y = {1,2, ...,C } represents a finite set

of C discrete classes, and the goal is to assign each input to one of these classes.

To give a concrete example of a regression setting, consider a scenario where we try to predict

a person’s height (y) based on their age (x). While there exists a general trend or a true function

f ∗ (children grow as they age), the exact height of a person at a certain age is often influenced

by noise factors such as genetics, diet, and lifestyle. We could model this situation as follows:

yi = f ∗(xi )+ϵi , (1.1)

2



1.1 Machine Learning

where f ∗ represents the true underlying function, and ϵi ∼N (0,σ2) is Gaussian noise with

zero mean and σ2 variance. This noise reflects the uncertainty or the individual differences

that cannot be captured by age alone.

A classification task can be modeled similarly, except that the labels are categorical, e.g.

Y = {0,1} and they are given by

yi = sign( f ∗(xi )+εi ) (1.2)

where sign(z) is a function that returns 1 if z ≥ 0, and 0 otherwise.

Building a Model, Training, and Testing In supervised learning, the objective is to find an

accurate approximation to the true function f ∗ typically through a parameterized model,

denoted as fθ. The parameters θ could be coefficients in linear regression, weights in a neural

network, etc., depending on the specific model used. These parameters are tuned using a set

of training examples to produce an optimal function fθ that can accurately predict the labels

of unseen, test examples. This ability of a model to effectively predict unseen data is known

as generalization and, for classification tasks, it is measured as the percentage of errors the

model makes on the test data set, the test error.

Test Error vs. Number of Training Points In this thesis, to evaluate a model’s performance,

we will typically examine its test error as a function of the number of training points, expressed

as ϵ(P ). The characterization of this function is practically valuable as it can provide insights

into the necessary sample size to meet a specified accuracy goal for a given task. In many

real-world settings Hestness et al. (2017); Spigler et al. (2020); Kaplan et al. (2020), this function

exhibits a power-law behavior, that can be characterized by a scaling exponent β with ϵ(P ) ∼
P−β, as illustrated in Figure 1.1(a). Alternatively, one can characterize the test error by a

sample complexity, defined as the number of training points P∗ needed to achieve a given

finite test error, e.g. ϵ∗ = 1%. The use of sample complexity as a characterization is especially

useful when the test error shows a transition in P from random guessing to nearly zero error

(Figure 1.1(b)), as it will be the case in the artificial task introduced in chapter 6, for example.

In such cases, P∗ pinpoints the location of this transition as P∗(ϵ∗) is characterized by a mild

dependence on ϵ∗.

Optimization The process of training involves adjusting the parameters θ in order to mini-

mize the difference between the predictions of fθ and the true output values y on the training

set. This is usually achieved through an optimization procedure that finds the θ’s that mini-

mize a training loss

L = 1

P

∑
i

l ( fθ(xi ), yi ),

where the loss function l quantifies the dissimilarity between predictions fθ(xi ) and true

outputs yi .
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Figure 1.1: Test error vs. number of training points: different scenarios and characteriza-
tions. (a) When the curve follows a power law, ϵ(P ) ∼ P−β, it can be represented as a straight
line in a log-log plot, where the exponent −β defines the slope of the line. (b) Alternative
scenario where ϵ(P ) transitions from a large error, corresponding to random guessing, to
nearly zero error. Both scenarios can be described using the sample complexity, P∗, which
quantifies the number of training points required to achieve a specific finite error, ϵ∗.

At the core of this training process is the definition of a suitable loss function. For instance, in

regression tasks, the mean square error (MSE) is a popular choice. Given the predicted output

ŷ and the true output y , the MSE loss function is defined as:

lMSE = (ŷ − y)2.

For binary classification tasks, the hinge loss is frequently used

lhinge = max(0,1− y ŷ),

where y =±1 and ŷ ∈R.

In the case of multi-class classification, a common choice of loss function is the cross-entropy

loss. For a predicted vector of outputs ŷ and a label y , the cross-entropy loss is defined as:

lCE =−
C∑

c=1
yc log(ŷc ),

where C is the number of classes, y are the true labels encoded as a one-hot vector2 and ŷ

represents the network output, normalized through a Softmax operation,

σsoftmax( fθ(x)) = e( fθ(x))c∑C
c ′=1 e( fθ(x))c′

,

2One-hot encoding of a class refers to a representation method in which the class of interest is assigned a value
of one, while all other class categories are assigned a value of zero, thus creating a binary vector that uniquely
identifies the particular class.
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with ( fθ(x))c denoting the c-th component of the output vector.

The optimization process that reduces the loss, and thus improves the model’s fit, commonly

employs gradient descent, which iteratively adjusts the model parameters in the direction that

minimizes the loss:

θt+1 = θt −η∇L (θt ),

where η is the learning rate controlling the size of optimization steps, t represents the step

number, and ∇L (θt ) is the gradient of the loss function with respect to the parameters, at the

current parameter values.

In this manner, we adjust the function fθ to align as closely as possible with the true function

f ∗ using the available training data. However, we stress again that the aim is not to perfectly

fit the training data, but to generalize well to new, unseen data. This is where the challenges of

supervised learning start to emerge.

Bias-Variance Tradeoff The bias-variance tradeoff Luxburg and Schölkopf (2011) is a key

concept that helps us understand the generalization error of a predictive model. The gener-

alization error can be decomposed into bias, variance, and an irreducible error term due to

noise in the labels.

The bias of a model reflects the error introduced by approximating the true function (which

may be highly complex) by a simpler model. High-bias models oversimplify the problem,

leading to underfitting. The variance, on the other hand, quantifies the sensitivity of our model

to fluctuations in the training data. Models with high variance are likely to be over-complex,

and therefore susceptible to overfitting. As an example, let’s consider the task of fitting a

polynomial function

fθ(x) =
N∑

i=0
θi xi (1.3)

to some data as in Figure 1.2. If we try to fit this data using a high-degree polynomial (a

complex model with many parameters), we may obtain a model that passes exactly through

every point of the training set but fluctuates wildly in between (high variance, overfitting).

However, if we fit a simple linear model (a low-degree polynomial) to the same data, we may

find that our model does not capture the oscillating nature of the true underlying function

at all (high bias, underfitting). In this scenario, a polynomial of intermediate degree may

offer the best bias-variance tradeoff, capturing the broad trends in the data without being

overly sensitive to noise. We see here that the number of parameters of the model affects its

complexity.

Regularization Regularization techniques offer a pragmatic approach to managing this

bias-variance tradeoff by controlling the complexity of the model. Adding a regularization

term to the loss function, for example, places a constraint on the size or sparsity of the model
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N = 1 (underfit)

N = 5 (good fit)
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Figure 1.2: Illustration of the bias-variance tradeoff in polynomial regression. Red crosses
represent data points (xi , yi ), with yi = f ∗(xi )+ εi . The red curve represents f ∗, the true
function. Three different polynomials of degrees N = 1,5,14 are considered. The linear
polynomial (underfitting) exhibits high bias and low variance, failing to capture the complexity
of the true function. The N = 5 polynomial achieves a good balance between bias and variance,
fitting the true function. The N = 14 polynomial (overfitting) shows low bias but high variance,
modeling the noise in the data and deviating significantly from the true function.

parameters. Regularization may allow us to find a balance between bias and variance.

Common regularization methods include L1 and L2 regularization, also known as Lasso

Tibshirani (1996) and Ridge regularization (or weight decay), respectively. These techniques

introduce a term to the loss function that penalizes the size of the model, with L1 regularization

also favoring sparse solutions in which many of the parameters are zeroed. The regularization

term is either the L1 or L2 norm of the parameters:

λ
∑

j
|θ j |, or λ

∑
j
θ2

j ,

where λ controls the regularization strength.

Depending on the model at hand, other regularization techniques may be used—e.g. dropout

Srivastava et al. (2014), early stopping, etc.

Interestingly, the bias-variance tradeoff does not pose the same challenge for deep learning

algorithms. As we will explore in greater detail in subsection 1.2.2, deep learning models are

intrinsically biased towards finding simple, small-norm solutions, even when their number of

parameters diverges.
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1.1.2 The Curse of Dimensionality

While the bias-variance tradeoff manifests itself even in one-dimensional learning scenarios, a

distinct and fundamental challenge arises when we consider high-dimensional data: the curse

of dimensionality Bach (2017); Wainwright (2019). This term refers to the various difficulties

and counterintuitive phenomena that arise when dealing with high-dimensional data.

For instance, consider a dataset containing measurements of d-dimensional vectors. Suppose

we want to cover a fraction of the d-dimensional space with a grid of small hypercubes of side

length ϵ, one for each data point. The number of data points required to cover the space scales

as (1/ϵ)d , which grows exponentially as the number of dimensions d increases. This implies

that even for a moderate value of d , we need a huge number of data points to populate the

space.

The issue is that as the number of dimensions grows, the space itself expands so fast that

our data points start to seem sparse, or spread out. This sparsity can be problematic for any

method trying to estimate a function in this space. Any new data point we use to test our

method will likely be quite far from any other sample. To properly cover the space as the

dimensionality increases we would need an exponentially growing amount of data. More

concretely, for regression tasks where the target is only assumed to be a Lipschitz continuous

function, the test error decays only at a rate of −1/d with respect to the number of training

points Luxburg and Bousquet (2004), making learning impossible when d ≫ 1.

The Surprising Effectiveness of Deep Learning Strikingly, modern supervised learning

algorithms—more specifically, deep learning—are able to beat the curse of dimensionality

and learn tasks even in very high dimensions. Examples of deep learning success range from

computer vision Voulodimos et al. (2018) and natural language processing OpenAI (2023)

to computational biology Jumper et al. (2021) and game playing Silver et al. (2017). Despite

these practical successes, a comprehensive theoretical understanding of how these algorithms

overcome the curse of dimensionality remains elusive.

The Intrinsic Dimensionality of Real Data One possible explanation for this puzzle could

lie in the fact that although our machine learning tasks typically involve high-dimensional

datasets, the actual data often exist in a lower-dimensional subspace.

The term intrinsic dimensionality (ID) is employed to describe the dimensionality of this

subspace and can be thought of as the minimum number of variables needed to characterize

it. For instance, consider a dataset of points lying on a line within a three-dimensional space.

Although they exist in a 3D space, their intrinsic dimensionality is just one, as only one

coordinate along the line accurately describes all points.

The intrinsic dimensionality of a dataset can be estimated by randomly drawing P data points,

and analyzing the typical distance δ between nearest neighbors, typically scaling as δ∼ P−1/dID .
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If these data points are embedded in a d-dimensional space but exist on a dID-dimensional

manifold, the ratio logδ/logP provides an estimate of the intrinsic dimensionality. Advanced

intrinsic dimension estimation methods further use information regarding the neighborhood

of datapoints, other than the nearest neighbor distance alone Levina and Bickel (2004); Granata

and Carnevale (2016); Facco et al. (2017). However, it’s vital to approach these estimations

with caution. Although they can offer insights into the intrinsic dimensionality of a dataset,

they hinge on the assumption that real data reside on a smooth, continuous manifold of fixed

intrinsic dimensionality. This assumption lacks empirical support, as the estimates regarding

real-world datasets can only be based on discrete sets of data points. We will further discuss

intrinsic dimension estimation in subsection 1.2.1, in the context of neural networks’ internal

representations.

With this understanding, we can discuss the intrinsic dimensionality of real datasets, and the

implication on the curse of dimensionality. For a benchmark image classification dataset as

ImageNet Deng et al. (2009), intrinsic dimensionality is estimated to be around fifty Pope et al.

(2021), while it contains about 107 data points. This number is orders of magnitude less than

the expected e50 ∼ 1020 data points needed to adequately sample such a high-dimensional

space and beat the curse. This fact suggests that lower intrinsic dimensionality alone isn’t the

key to deep learning’s success, implying additional structural elements within the data.

Invariances give Structure to Real Data A popular idea is that this additional structure is

due to the presence of invariances, namely transformations of the input that leave the label

unchanged Goodfellow et al. (2009); Bengio et al. (2013); Bruna and Mallat (2013); Mallat (2016).

By developing representations that are invariant to these transformations the dimensionality

of the problem could be effectively lowered and the curse beaten. This thesis centers around

this concept of learning invariances—a phrase we use to describe the process of developing

representations that are invariant to aspects of the data irrelevant to the task at hand. More

specifically, our aim is to address the following set of questions:

• Which invariances are present in real data?

• Are deep learning algorithms able to learn these data invariances?

• If so, how many training examples do they need to achieve that?

• Is learning invariances indeed responsible for breaking the curse of dimensionality?

Before attacking these questions we need to introduce our main objects of study. We will

start with kernel methods that we will use as a proxy for investigating the performance of

algorithms in which features are fixed and hence learning invariances is not possible, and we

will then introduce neural networks, in which feature adaptation allows the learning of data

invariances.
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1.1.3 Kernel methods

Kernel methods Scholkopf and Smola (2001) comprise a family of machine learning techniques

that utilize a fixed feature representation, and determine the optimal weights for these features.

The use of kernel functions facilitates the implicit mapping of data into a potentially higher-

dimensional feature space, sometimes even infinite-dimensional, without having to compute

the coordinates of the data in that space explicitly.

To illustrate this, let’s consider the task of approximating a non-linear function with linear

regression. A common approach to this problem involves creating a feature vector φ(x) that

projects each data point x into a high-dimensional feature space, and fitting a linear model to

these feature vectors:

fθ(x) = θ⊤φ(x). (1.4)

However, the direct computation of these feature vectors can be computationally challenging

when the feature space is large or infinite-dimensional.

This is where the kernel trick comes in. This key technique in kernel methods bypasses

the explicit computation of these high-dimensional feature vectors. It introduces a kernel

function k : X × X → R, which calculates the inner product between feature vectors in the

high-dimensional feature space, k(x, x ′) = 〈φ(x),φ(x ′)〉. The representer theorem Schölkopf

et al. (2001) tells us that, when solving an optimization problem with L2 regularization of the

form

min
θ

1

P

∑
i

l ( fθ(xi ), yi )+λ∥θ∥2,

the predictor fθ(x) of Equation 1.4 can equivalently be written as:

fα(x) =
P∑

i=1
αi k(xi , x),

where xi are the training inputs, and αi are the new (dual) parameters that can be learned

from data. This formulation allows performing linear regression in infinite feature spaces and

hence the application of linear techniques to non-linear problems, making kernel methods a

powerful tool in machine learning.

Smoothness and Curse of Dimensionality The understanding of the generalization capa-

bilities of kernel methods has been a significant subject of investigation. This understanding

involves examining the smoothness of the target function, that is related to its differentiability.

The most favorable situation occurs when the target function resides in the Reproducing Kernel

Hilbert Space (RKHS) of the chosen kernel Scholkopf and Smola (2001). In such a case, the

error decays as O(1/
p

P ) Smola et al. (1998); Rudi and Rosasco (2017). However, in the context

of isotropic kernels of the form k(x, x ′) = k(|x −x ′|), that are commonly used in practice, for
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the target function to belong to the RKHS in dimension d , it must be s-times differentiable,

with s proportional to d . In high-dimensional settings, requiring the smoothness to grow with

d is unreasonable, and this can be seen as a manifestation of the curse of dimensionality. If the

target falls outside of the RKHS, the error rate degrades to O(P−s/d ) Bach (2022), recovering

the scaling of O(P−1/d ) when dealing with Lipschitz continuous functions (s = 1) Luxburg and

Bousquet (2004).

Exact Generalization Error Rates The exact asymptotics of the test error in between the

RKHS and Lipschitz continuity extrema have been computed in Spigler et al. (2020); Bordelon

et al. (2020); Canatar et al. (2021) in the case of isotropic kernel and noiseless target functions—

i.e. function of the form Equation 1.1, without the noise term. More specifically, these works

show the presence of a spectral bias in kernel regression: the projections of the target function

on the eigenfunctions of the kernel with the largest eigenvalues are learned first. For isotropic

kernels in dimension d , if the inputs x are distributed uniformly on the d-sphere, these

eigenfunctions correspond to Fourier modes in d = 1, and to spherical harmonics in larger

dimensions. In particular, P training points allow for learning the first P modes. Extensions of

these results to the noisy case are discussed in Loureiro et al. (2022); Cui et al. (2022); Mei et al.

(2022). Notice that these results rely on statistical assumptions on the predictor function and

kernel features that are rarely satisfied in practice, and can cause the spectral bias prediction

to fail in low-dimensional settings Tomasini et al. (2022b), while it appears to be accurate in

high-dimensions.

In chapter 4, we will use the presence of a spectral bias to compute tight generalization error

rates both for kernel methods and neural networks.

1.1.4 Neural Networks

In kernel methods, the selection of the kernel predetermines the feature vectors. We now

transition to exploring neural networks, which offer the flexibility to learn features directly

from the data.

Neural networks are at the heart of modern machine learning. They are built from intercon-

nected nodes or neurons organized in layers and can learn to perform complex tasks. In this

section, we introduce some fundamental types of neural networks.

Perceptron The perceptron Rosenblatt (1958) is one of the simplest forms of a neural network

and is the basic building block for more complex structures. A single perceptron takes a vector

of inputs x , applies a set of weights w , adds a bias term b, and passes the result through a

non-linear activation function σ(·) to produce an output. Mathematically, this can be written

as

f (x) =σ
(

w⊤xp
d

+b

)
,
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where parameters are initialized with a standard Gaussian distribution N (0,1) and d is the

input dimension. The
p

d factor serves as a normalization to keep the argument of the

activation function O(1) in the limit of large d . Classically, activation functions such as the

step or sigmoid σ(z) = (1−e−z )−1 were employed as they reflect the active-inactive states of

biological neurons. However, in contemporary practice, the Rectified Linear Unit (ReLU),

σReLU(z) = max(0, z),

is most commonly utilized.

Two-layers Neural Networks A 2-layers (or one-hidden-layer) neural network extends the

perceptron by introducing an additional layer of neurons. Each neuron in the hidden layer

performs a similar operation to the perceptron, and their outputs are then linearly combined

to produce the final output. Formally, the operation of a 2-layers neural network can be

described by:

f (x) = 1p
h

w⊤
2 σ

(
w⊤

1 xp
d

+b1

)
, (1.5)

where w 2, w 1, and b1, are the weights and biases of the network, σ(·) is the activation function

and h is the number of hidden neurons or network width. See also a graphical representation

in Figure 1.3. This setup allows the model to learn more complex representations with respect

Figure 1.3: Graphical representation of a 2-layer neural network with an input dimension
d = 5 and h = 9 hidden neurons. The network function, denoted by f , takes as input the vector
x . The activation function is denoted byσ(·) and applied to each hidden neuron independently.
The weights for the two layers are denoted by w 2, w 1, respectively. The different strength of
the lines depicts weights of different magnitude.

to the perception. For example, a 2-layers can solve classification tasks that are not linearly

separable. More generally, the Universal Approximation Theorem states that 2-layer neural

networks can approximate any function to arbitrary precision, provided they have enough

neurons Hornik et al. (1989); Barron (1993).
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Random Features Notice that usually all the network parameters of a 2-layers architecture

are trained. A model in which only the second layer weights w 2 are trained while the others are

kept fixed is called random features model Rahimi and Recht (2007). This is a kernel method

where the features are given by the first layer activations: φ(x) =σ
(

w⊤
1 xp
d

+b1

)
.

Deep Fully Connected Networks (FCNs) Deep fully connected networks (also known as

multilayer perceptrons) consist of multiple layers of neurons, with each layer fully connected

to the next. A L-hidden-layers FCN can be described recursively as

a l =σ
(

w⊤
l a l−1√

hl

+bl

)
for l = 1, . . . ,L, (1.6)

where l is the layer index, wl and bl are the weights and biases for the l-th layer, a l−1 is the

output of the previous layer with a0 being the input x , and hl the number of neurons at layer l ,

with h0 being the input dimension d . The output of the network is then a linear combination

of the last hidden layer activations,

f (x) = 1√
hL+1

w⊤
L+1aL . (1.7)

Deep learning generically refers to solving machine learning tasks with deep neural networks.

Convolutional Neural Networks (CNNs) Convolutional Neural Networks are a type of neural

network designed to process data in which locality is important in the sense that the relevance

of each input coordinate or pixel is closely tied to its neighbors Lecun et al. (1998).

x5

x4

x3

x2

x1

(a) Fully Connected Neuron

x5

x4

x3

x2

x1

(b) Local Neuron

Figure 1.4: Comparison between (a) a Fully Connected Neuron that receives input from every
element of the preceding layer, and (b) a Local Neuron, where each neuron processes data
only from a specific part of the input (in this case, the patch composed by first two pixels x1

and x2).
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Figure 1.5: Graphical representation of a convolutional neural network (CNN) with 4 convo-
lutional layers with many channels each and 2 fully-connected layers. The CNN acts on 2D
images with filters of size 3×3 at each convolutional layer.

Unlike FCNs where neurons respond to all input locations, CNNs have local neurons that

focus on specific patches of the input, see illustration in Figure 1.4. In addition, standard

convolutional layers also use weight sharing, where the same weights are used by neurons

examining different parts of the input. Weight sharing not only reduces the model’s number

of parameters but also introduces translation equivariance into the network architecture.

Translation equivariance means that if the input is translated, the output will change in the

same way. If f is the activation of a particular layer of a CNN, and T is a translation operator,

then the layer is translation equivariant if:

f (T (x)) = T ( f (x)) (1.8)

where x is the input data. This property ensures that if a pattern is learned in one part of

the image, it will be recognized in any other part. Translation invariance can be obtained

by pooling together equivariant representations, i.e. by summing or averaging equivariant

activations over all possible translations:∑
τ

f (Tτ(x)). (1.9)

Here, τ represents a translation, and Tτ is the corresponding translation operator. By sum-

ming over all translations, the response becomes independent of the specific location of the

recognized feature in the input, leading to translation invariance.

Early implementations of CNNs often relied on pooling layers, such as max-pooling or average-

pooling, to achieve approximate translation invariance by aggregating the responses of neu-

rons within a local region. However, the use of pooling layers has diminished in modern

practices and we will demonstrate that contemporary CNNs possess the capability to learn

pooling directly from data, as also noted in Ruderman et al. (2018).

Convolutional layers have proven particularly effective in solving computer vision tasks,

where locality is clearly important as neighboring pixels make sense together, and translation

invariance as well, as the same object or feature can appear in different parts of the image

frame. In these cases, 2D local filters are used, leading to CNNs as the one illustrated in

Figure 1.5. In particular, with the publication of the AlexNet paper by Krizhevsky et al. (2012),

CNNs started the modern deep learning revolution. AlexNet won the ImageNet Large Scale
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Visual Recognition Challenge Deng et al. (2009), a prestigious image recognition competition,

by a significant margin, outperforming the second-best entry by over 10%. This breakthrough

demonstrated the potential of deep CNNs to handle high-dimensional data, and it set the

stage for the widespread adoption of deep learning techniques in a variety of domains.

1.2 Feature Learning in Neural Networks

Our discussion so far has reviewed kernel methods and neural networks, touching upon the

successes of the latter. While kernel methods rely on fixed feature representations, neural net-

works are characterized by their ability to adapt features to the data at hand. This adaptability

is often seen as a fundamental component of their success.

In this section, we discuss the adaptability of neural networks more in depth. First, we focus

on empirical studies to understand the nature of the features that these networks learn, and if

these are relevant for the task at hand. Following that, we survey empirical tools in existing

literature that elucidate how this feature learning process shapes representations in such a

way of discarding irrelevant information. We then discuss how this representation learning

can lead to dimensionality reduction, and to eventually beat the curse. To determine whether

representation learning is indeed a key factor in overcoming the curse of dimensionality, and

thereby contributing to the superior performance of neural networks, we require a framework

that quantifies the impact of feature learning on performance.

As hinted at in the previous section, modern neural networks’ successes also came with

important architectural advancements. This raises the question: is it the adaptability that

is primarily driving the success of deep learning, or is it more about the selection of the

right architecture, or perhaps a combination of both? To answer these questions, we will

explore the deeper ties that link neural networks and kernel methods beyond random feature

models. We will focus on the two distinct training regimes that emerge when we consider the

infinite-width limit of neural network architectures based on the scale of initialization: the

Neural Tangent Kernel (NTK) or lazy regime, akin to kernel methods, and the mean-field or

feature learning regime, mirroring the training of neural networks with feature adaptation.

This discussion will provide a framework to disentangle the respective roles of architectural

choice—–which dictates the features for kernel methods—–and adaptability in driving neural

networks performance.

1.2.1 Empirical Studies of Feature Learning

Visualizing the Learned Features In this paragraph, we discuss the questions: What kind of

features of the data do neural networks learn thanks to their adaptability? Are they relevant

for the task at hand? Empirical research offers some fascinating insights into this matter.

In particular, it has been found that deep networks, especially CNNs, tend to learn relevant

features in a hierarchical manner Zeiler and Fergus (2014); Yosinski et al. (2015); Olah et al.
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Figure 1.6: Feature visualization in deep networks. This figure, adapted from Olah et al.
(2017), uses feature visualization to showcase how GoogLeNet Szegedy et al. (2015), trained on
the ImageNet dataset Deng et al. (2009), builds its understanding of images progressively with
depth. These images are generated via gradient descent in input space such as to maximize
the neurons’ response at each layer. We can observe the images inducing maximal activation
at increasingly deeper layers (left to right), growing in complexity and abstraction with depth.

(2017). Early layers tend to focus on simple, local features, such as edges in an image. As we

move further into the depths of the network, these simple features are progressively combined

to create more complex and abstract representations, including shapes or even entire objects,

see illustration in Figure 1.6.

Several works tried to characterize this process of building more and more abstract represen-

tations empirically. In this context, we review here the information bottleneck framework of

deep learning, and measurements of the intrinsic dimensionality of internal representations.

The Information Bottleneck The information bottleneck provides a framework to analyze

how to compress a random variable X into an intermediate representation T , while keeping

essential information about another related variable Y , given the joint probability distribution

P (X ;Y ) Tishby et al. (2000). This leads to the following optimization problem:

min
P (T |X )

I (T ; X )−βI (T ;Y ) (1.10)

where I (T ; X ) is the mutual information3 between the representation and the original data,

I (T ;Y ) is the mutual information between the representation and the target, and β is a

parameter that controls the trade-off between compression and preservation of relevant

information.

In the context of deep learning, this framework has been used to explore the functioning

3Mutual Information is a measure that quantifies the amount of information gained about one random variable
by observing another. It essentially describes how much knowing one variable reduces uncertainty about the other.
If the variables are independent, the mutual information is zero. If they are identical, the mutual information is
the same as the individual entropy of either variable.
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of neural networks. Shwartz-Ziv and Tishby (2017) argue that the information bottleneck

framework can be used to understand how deep networks progressively compress input

data across successive layers, while maintaining task-relevant information, in order to build

increasingly abstract internal representations. The authors suggest that deep neural networks

internal representations (denoted by T in this context) tend to solve a problem of the form in

Equation 1.10 when trained with stochastic gradient descent. In particular, they argue that the

training process consists in two distinct phases—a fitting phase where it captures the relevant

information about the output and both I (T ; X ) and I (T ;Y ) increase, and a compression phase

where it sheds irrelevant input details, characterized by a decrease of I (T ; X ).

However, Saxe et al. (2019) presents a critical examination of these claims. It posits that the

conclusions drawn by Shwartz-Ziv and Tishby (2017) heavily depend on the activation function

used in their experiments, making their findings not universally applicable. In particular, the

compression phase could not be observed if instead of the sigmoidal activation function,

the more common ReLU is deployed. Additionally, the critique highlights that the concept

of mutual information, a cornerstone of the information bottleneck framework, isn’t well-

defined in deterministic settings. And the output or internal activations of a neural network is

deterministically defined for a given input.

The Intrinsic Dimension of Internal Representations Another way to characterize the

process of learning features with depth is to idealize the data representation at each network

layer as existing on a manifold in the activations space of that layer. By assessing the intrinsic

dimensionality of these manifolds (cf. definition in subsection 1.1.2), we can gain insights into

how the network reduces the dimensionality of the problem at each layer. Ansuini et al. (2019);

Recanatesi et al. (2019) show that the intrinsic dimensionality of internal representations

typically increases with training, in the first part of the network, while decreasing in the

second part. Consequently, after training, the intrinsic dimensionality displays a concave or

hunchback shape, as a function of depth. The reduction of dimensionality with training and

depth in the second part of the networks fits with the idea that learning progressively filters

out irrelevant details to construct increasingly abstract representations. The initial expansion,

however, is harder to parse. The authors interpret it as the neural networks generating a broad

set of features at early stages, and later keeping only those essential for the task.

Although this approach offers insightful observations, it comes with inherent difficulties. One

key issue is that it assumes that real data exist on a smooth manifold, while in practice, the

measurements are based on a discrete set of points. This leads to counter-intuitive results

such as the increase in the intrinsic dimensionality with depth near the input, an effect that is

impossible for continuous smooth manifolds. We resort to an example to illustrate how this

increase with depth can result from spurious effects. Consider a manifold of a given intrinsic

dimension that undergoes a transformation where one of the coordinates is multiplied by

a large factor. This transformation would result in an elongated manifold that appears one-

dimensional. The measured intrinsic dimensionality would consequently be one, despite
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the higher dimensionality of the manifold. In the context of neural networks, a network

that operates on such an elongated manifold could effectively reduce this extra, spurious

dimension. This operation could result in an increase in the observed intrinsic dimensionality

as a function of network depth, even though the actual dimensionality of the manifold did

not change. This phenomenon appears as a plausible explanation for what is observed in

practice. Also, if this interpretation holds, the measures of intrinsic dimensionality of real data

we discussed in subsection 1.1.2 might underestimate the true values.

While these tools provide valuable insights, they also underscore the need for new methodolo-

gies to probe the complex mechanisms responsible for building abstract and task-relevant

representations in deep neural networks. In this thesis, we propose additional tools to this

goal. These include the study of the neural tangent kernel after training (chapter 2), and,

central to our work, the introduction of relative sensitivity measures for network activations

in response to input transformations that leave the label unchanged (chapter 3, 4, 5 and 6).

These sensitivity measures are centered on the concept of data invariances that we discuss

more in depth in section 1.3.

Taking a broader view, the methods we discussed in this section seem to suggest that deep

neural networks are able to learn increasingly abstract representations that are also lower

and lower dimensional with depth, as they disregard irrelevant variability in the input. A key

question arises from this observation:

• Does this dimensionality reduction via learning relevant features enable beating the

curse of dimensionality?

To address this question we need to understand how feature adaptation affects performance—

a matter that the empirical methods reviewed so far do not clarify. To investigate this point,

we will introduce the two different training regimes of neural networks as they have been

characterized in the literature. As already hinted at, this will allow us to isolate the contribution

of feature learning to neural networks’ performance, and to characterize it.

1.2.2 Training Regimes: Feature vs. Lazy

In this section, we will consider highly overparametrized neural networks, in particular, their

infinite-width limit. The significance of this limit lies in the fact that it often corresponds in

practice to the point of optimal performance. We discuss how to easily access this limit in

practice via ensemble averaging, and its potential to elucidate various training regimes of

neural networks, notably the feature and lazy regimes.

Overparametrization and Double Descent Overparametrization in the context of neural

networks refers to the scenario where the number of parameters in the model significantly

exceeds the number of training data points. While we have seen that in traditional machine
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double descent

bias-variance
tradeoff

Figure 1.7: Illustration of the bias-variance trade-off vs. double descent phenomenon.
Test error is reported on the y-axis, number of parameters of the model on the x-axis. The
standard bias-variance trade-off that is present when e.g. fitting a function with a polynomial
as in Figure 1.2, would predict the U-shaped behavior shown in blue (N , in this case, would
correspond to the degree of the polynomial). Deep neural networks, instead, show a behavior
like the one reported in green.

learning settings, such scenario can lead to overfitting due to the bias-variance tradeoff

introduced in section 1.1 (see also illustration in Figure 1.2)—deep learning models have

repeatedly shown that they can generalize well even when highly overparametrized Neyshabur

et al. (2015); Zhang et al. (2017); Advani et al. (2020). Neyshabur et al. (2015) highlight that

this may be the case thanks to an inductive bias or implicit regularization toward small norm

solutions. In this context, a larger number of hidden neurons would allow for solutions of

lower complexity to exist, and training would find them thanks to the inductive bias.

One of the most striking demonstrations of this seemingly counter-intuitive behavior is the

phenomenon of double descent, as described by Spigler et al. (2019); Belkin et al. (2019); Advani

et al. (2020); Nakkiran et al. (2021); Deng et al. (2020); Gerace et al. (2020); Hastie et al. (2020);

Belkin et al. (2020); Mei and Montanari (2020); d’Ascoli et al. (2020a,b). The double descent

curve refines our understanding of the bias-variance trade-off showing that the test error of a

model does not always monotonically increase with overparametrization, as the U-shaped

bias-variance curve would suggest. Instead, the curve exhibits a second descent, starting

from the point where the model becomes overparametrized, see illustration in Figure 1.7. The

double descent is a robust phenomenon that can be observed across a variety or architectures

datasets and optimization procedures Nakkiran et al. (2021).

The second descent starts at the interpolation threshold, this is the minimal number of

parameters for which the network can fit all training data, and is due to the noise coming from

the random initialization of the network parameters Neal et al. (2019); Geiger et al. (2020a).

Indeed, if one uses an ensemble of differently initialized networks as the predictor, the second

peak disappears, and, when it can fit the training data, such a predictor often achieves the

asymptotic test error a single network would display when the number of parameters tends to

infinity Geiger et al. (2020a).
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Having illustrated the significance of the infinite-width limit, and how to access it in practice,

in the next paragraphs we will see how this limit serves as a foundation for the theoretical

understanding of neural networks behavior, both at initialization and in the training process.

Propagation at initialization In the infinite-width limit, the signal propagation at initializa-

tion has been extensively explored Neal (1996); Williams (1997); Lee et al. (2018); de G. Matthews

et al. (2018); Novak et al. (2019). Early foundational work by Neal (1996) and Williams (1997)

demonstrated that a single-layer network with infinite hidden nodes behaves like a Gaus-

sian process Görtler et al. (2019). This was later extended to deep networks Lee et al. (2018),

showing that in the limit of infinite width, a deep neural network with random weights also

behaves like a Gaussian process. These findings have paved the way for more recent studies

investigating the infinite-width dynamics of neural networks.

Neural Tangent Kernel and the Lazy Regime Jacot et al. (2018) showed that in the limit of

infinite width, the dynamics of deep neural networks during training can be exactly described

by a kernel coined the Neural Tangent Kernel (NTK). They observed that the evolution under

gradient descent of the network parameters in parameters space

∂tθ =−∇θL , (1.11)

=− 1

P

P∑
i=1

∇θ f (xi )∇ f l ( f , yi ) (1.12)

could be rewritten in function space via the chain rule as

∂t f (x) = ∂θ f (x)∂tθ (1.13)

=− 1

P

P∑
i=1

∇θ f ⊤(x)∇θ f (xi )∇ f l ( f , yi ) (1.14)

=− 1

P

P∑
i=1
Θ(x , xi )∇ f l ( f , yi ), (1.15)

where we introduced the NTK:

Θ(x , x ′) =∇θ f (x)⊤∇θ f (x ′). (1.16)

Importantly, they discovered that, at large widths, the network’s parameters move little with

respect to initialization. For this reason, this regime has been also coined lazy Chizat and Bach

(2018). As a consequence, the NTK remains constant during training in the infinite width limit,

effectively evolving the network function in a linearized subspace around initialization Lee

et al. (2019).

This work showed that, in this limit, neural networks effectively behave as kernel methods,

19



Introduction

two machine learning approaches previously considered very different. Furthermore, this

connection allowed to prove the convergence of gradient descent to zero loss solutions Li and

Liang (2018); Du et al. (2019a,b); Allen-Zhu et al. (2019); Chizat and Bach (2018); Soltanolkotabi

et al. (2019); Arora et al. (2019a); Zou et al. (2020). Arora et al. (2019b) extended the analysis to

convolutional networks by computing the NTK of these architectures and the diagonalization

Cagnetta et al. (2022) of such kernels allowed for understanding which functions they are able

to efficiently learn.

Feature or Active Regime While the NTK framework sheds light on the lazy training regime of

deep learning, several works have highlighted a distinct, complementary aspect known as the

feature, active, rich or mean-field regime Mei et al. (2018, 2019); Rotskoff and Vanden-Eijnden

(2018); Chizat and Bach (2018); Sirignano and Spiliopoulos (2020); Nguyen (2019).

In this regime, we consider 2-layer neural networks whose width is taken to infinity but with

a crucial modification to the output definition. Specifically, an additional factor 1/
p

h is

introduced in the output of the model as defined in Equation 1.5, leading to a rescaling of the

form:

fθ(x) → 1p
h

fθ(x), (1.17)

This rescaling makes the output ≪ 1 at initialization, hence, to fit a target function of order

one, the weights need to change significantly from their initialization. This limit gives rise to

the so-called feature learning regime as neurons learn how to respond to different aspects of

the input data in a substantial, rather than infinitesimal, manner.

In the feature learning regime and for h →∞, the neural network can be described entirely

in terms of the density ρ(w2, w1,b1) of parameters characterizing each neuron. An integral

effectively replaces the sum in the network’s output, which now takes the form:

fθ(x) =
∫

d w2d w1db1ρ(w2, w1,b1)w⊤
2 σ

(
w⊤

1 xp
d

+b1

)
. (1.18)

Gradient descent dynamics under this limit leads to a dynamical equation on ρ that is the

typical one in physics for conserved quantities: i.e. the divergence of a flux

∂tρ =−∇· J , (1.19)

where J = ρΨ(w2, w1,b1;ρt ) and Ψ is a function that can be expressed in terms of the loss

function Mei et al. (2018).

The term hydrodynamic comes into play due to the analogy between the evolution of ρ and

the hydrodynamics of interacting particles, each representing a neuron, in some external

potential defined by the loss function. This formulation elegantly describes the collective

behavior of the neurons as if they were fluid particles moving in a potential.

20



1.2 Feature Learning in Neural Networks

Despite their value, these studies have limitations. It’s apparent from Figure 1.6 that depth

plays a crucial role in feature learning. However, even though the mean-field limit has been

investigated for deep networks Araújo et al. (2019); Sirignano and Spiliopoulos (2021); Nguyen

and Pham (2023), incorporating depth into the mean-field framework fails to provide a com-

pact description of the training dynamics, making the task of tracking it infeasible.

In sum, the feature learning regime provides a deeper understanding of why and when neural

networks move beyond linear models, and it emphasizes the importance of understanding the

interplay between these two regimes to fully grasp the behavior of deep learning. Specifically,

examining these two regimes could help disentangle the influence of feature adaptation and

architectural choice on the performance of neural networks. This perspective gives rise to a

crucial question for this thesis: Is the future a return to kernel methods, as seen in the lazy

regime, or does the magic of deep learning mainly stem from its ability to learn the relevant

features in the data?

Feature vs Lazy Regimes: Performance Many studies have focused on the transition be-

tween feature and lazy training regimes in deep learning Chizat and Bach (2018); Geiger et al.

(2020b); Woodworth et al. (2020)—see also our review paper Geiger et al. (2021), omitted

from this thesis. These works have shown that, even at finite widths, the scale of initialization

controls the transition between the two regimes. This understanding has facilitated empirical

investigations of performance in different settings as a function of the initialization scale.

Chizat et al. (2019); Geiger et al. (2020b, 2021); Lee et al. (2020); Woodworth et al. (2020) has

shown interesting differences in performance between the two regimes. When learning image

tasks, fully-connected networks trained with gradient descent tend to do better in the lazy

training regime. In contrast, for convolutional neural networks, feature learning generally per-

forms better, see also Arora et al. (2019b); Shankar et al. (2020). This difference in performance

leads to several important questions that we are going to address in the following chapters.

• What causes this performance gap between the two regimes?

• More specifically, can we design simple data models to make sense of the generalization

error difference between feature learning and lazy training (chapter 2)?

• Why do FCNs struggle with image data in the feature learning regime when trained via

gradient descent (chapter 4)?

• Why CNNs succeed in such setting (chapter 3 and 6)?

• Which mechanisms are responsible for successful feature learning in CNNs (chapter 5)?

To provide answers to these questions we need to discuss how to model and characterize the

structure of the data that the feature learning regime can adapt to.
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1.3 Data Structure

Data in the real world comes in various forms, each with its own unique properties and

structures. The ability of a neural network to profitably learn features from data depends on its

capacity to adapt to these particular structures. Therefore, understanding and characterizing

the structure of data becomes a necessary step for assessing the benefits of feature learning

quantitatively.

In particular, in this thesis we push forward the idea that this structure can be better char-

acterized in terms of data invariances, that is aspects of the input data that leave the label

unchanged. For instance, the stylized dog sketch in Figure 1.8 shows how a few lines can

capture the essence of an object. This suggests that pixels at the corner of the frame, or the

exact position of the relevant features, do not matter for recognizing the dog. Likewise, in

hierarchical tasks like text, synonyms can be exchanged without altering the overall content

of a sentence. Understanding which invariances rise from these properties of data, and their

Figure 1.8: Stylized representation of a dog. This figure illustrates the idea of data invariances
within image data, where recognizable features can be represented with a few lines, and small
deformations often do not alter the overall semantic content.

roles across different tasks, is a key step toward comprehending how deep learning models

learn. In the sections that follow, we better define and investigate these different types of

invariances, discussing how neural network architectures are able to exploit them. We will

point to the chapters of this thesis that address these concepts in depth.

1.3.1 Linear Invariance

Arguably the simplest invariance that gives structure to data is linear invariance. This man-

ifests when the target function is highly anisotropic, in the sense that it depends only on a

linear subspace of the input space—i.e. the target function is of the form

f ∗(x) = g (Ax) where A :Rd →Rd ′
and d ′ ≪ d . (1.20)
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This functional form for the target is often referred to as single-index model in the literature.

An example of such linear invariance in real data could be pixels at the corner of an image,

whose content may be irrelevant for the task.

Shallow FCNs can learn Linear Invariance Several works have established that 2-layers fully

connected networks can profitably exploit linear invariance in the feature learning regime

Barron (1993); Bach (2017); Chizat and Bach (2020); Schmidt-Hieber (2020); Yehudai and

Shamir (2019); Ghorbani et al. (2019, 2020); Wei et al. (2019). In particular, Barron (1993);

Mei et al. (2016); Bach (2017) characterize the approximation properties of 2-layer networks,

while Bach (2022); Schmidt-Hieber (2020); Chizat and Bach (2020); Ghorbani et al. (2020)

discuss generalization, showing that these networks in the feature regime can beat the curse

of dimensionality by adapting to the low-dimensional subspace, while this is not the case

for kernel methods. Several results followed showing an advantage of the feature over the

lazy regime, in various specific classification and regression settings with anisotropic target

functions Ghorbani et al. (2019, 2020); Refinetti et al. (2021). Damian et al. (2022); Abbe et al.

(2021, 2023); Bietti et al. (2022) have tackled the problem of determining the required number

of samples to learn anisotropic tasks. They provide upper bounds for the sample complexity

of the feature regime and highlight that it performs better than the lazy regime for similar

problems Ghorbani et al. (2019). It remains unclear whether these bounds are tight in practice.

The work presented in chapter 2 fits in this line of research. Specifically, we revisit the binary

classification task introduced in Paccolat et al. (2021b) and show that, if the target function

only depends on a linear subspace of input space, the weights associated with the relevant

input subspace grow by O(
p

P ) compared to the irrelevant weights, thereby building the right

features for the task. This allows us to estimate the rates of generalization error with P for both

feature and lazy regimes. Notably, we demonstrate that these estimates are tight, in the sense

that they accurately predict generalization error in practice. Importantly, our examination of a

problem where test error versus P follows a power law further enables us to draw qualitative

comparisons with observations from real-world datasets, where power laws behaviors are

ubiquitous Hestness et al. (2017); Spigler et al. (2020); Kaplan et al. (2020).

Limitations of the study of Shallow Networks While this growing body of theoretical work

allows for a better and better understanding of the advantages of learning features in 2-layers

neural networks, we have seen that, for these architectures, learning features is sometimes in

practice a drawback Geiger et al. (2020b); Lee et al. (2020). This implies that linear invariances,

such as those concerning boundary pixels, may not be the most crucial in practical applica-

tions, and other forms of invariances might be at play for beating the curse of dimensionality.
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Figure 1.9: An image of a dog x and its deformed version τx. The deformation τ is sampled
from the distribution we introduce in chapter 3.

1.3.2 Deformation Invariance in Images

It is fascinating to note that we can often identify objects even from simple sketches containing

only a few lines, as shown in Figure 1.8. This ability suggests that the important features in

images are sparse in space, in the sense that they only occupy small portions of the image

frame. As a consequence, the image frame can be slightly deformed, and hence the relevant

features be moved, without altering the overall content of the image. Examples of such small

deformations are shown in Figure 1.9. This hypothesis—–that effective image classifiers should

be stable to deformations–—was advanced in Bruna and Mallat (2013); Mallat (2016). For a

function f , being stable to deformations means that, given an image x and an operator τ that

applies a smooth deformation, then ∥ f (x)− f (τx)∥ is small, if the norm of τ is small. Bruna

and Mallat (2013); Mallat (2016) further propose an architecture, the Scattering Transform, that

is specifically designed to be stable to deformation by the use of localized filters at different

scales and frequencies, providing insights into which kind of filters CNNs may learn to achieve

such stability.

This picture naturally leads to an important question:

• Is this intuitive hypothesis verified in practice? In other words, do the high-performing

modern neural networks actually succeed because they effectively leverage deformation

invariance?

Empirical studies have shown that even slight shifts, rotations, or scale changes in images

can significantly alter the network’s output Azulay and Weiss (2018); Zhang (2019). This

observation seems to contradict the hypothesis that CNNs are robust to minor deformations.

However, the image transformations applied in these works often do not qualify as small

deformations as they led to images with statistical properties dramatically different from the

training set and involved procedures such as image cropping. A class of smooth deformations

is introduced in Ruderman et al. (2018), suggesting that some level of deformation stability

can be learn by deep neural networks. However, similarly to the previous studies, this work

also did not investigate the impact of the learned stability on performance.
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(b) Hierarchy in Text(a) Hierarchy in Images

sentence

main clause sub-clause

subject  predicate subject  predicate
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edges ...

Figure 1.10: Illustrating the hierarchical structure of real data. (a) An example of the hierar-
chical structure of images: the class (dog) consists of high-level features (head, paws), that
in turn can be represented as sets of lower-level features (eyes, nose, mouth, and ear for the
head). (b) A similar hierarchical structure can be found in natural language: a sentence is
made of clauses, each having different parts such as subject and predicate, which in turn may
consist of several words.

Moving forward, we need a more comprehensive empirical examination of deformation

stability in neural networks. This is the aim of chapter 3. In this chapter, we build an empirical

framework to study deformation stability in neural networks. This framework includes both an

ensemble of diffeomorphisms of controlled norm to be applied to images, and an observable

to characterize deformation invariance. We will investigate whether deformation invariance is

learned in neural network, or present from the start, and how different neural networks achieve

different levels of invariance on benchmark image classification tasks. Finally, we establish a

relationship between the learned deformation stability and performance of neural networks.

1.3.3 Hierarchical Tasks and Synonymic Invariance

The invariance discussed in the previous section is related to the fact that relevant features only

occupy a small portion of the whole input. However, this does not address how these features

need to be combined to accomplish a task, nor what is the role of depth in neural networks

architectures. This leads us to another property that is likely relevant for the learnability of

real data: hierarchical compositionality. This property prescribes how different low-level

features are combined in order to produce higher-level features and eventually the label. This

is a concept highlighted in multiple studies Lee et al. (2009); Bruna and Mallat (2013); Patel

et al. (2015); Mossel (2018); Poggio et al. (2017); Mhaskar and Poggio (2016, 2019); Malach

and Shalev-Shwartz (2018); Schmidt-Hieber (2020); Cagnetta et al. (2022), among others. To

give a concrete example, consider an image of a dog—see illustration in Figure 1.10(a). At

the highest level, we recognize the overall form of the dog. Breaking it down, we notice more
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specific features: the head, the body, the tail, and the legs. Each of these elements can be

further divided into even lower-level features, such as the eyes, nose, and mouth on the head,

or the fur patterns on the body. This hierarchical structure, from general to specific, mirrors

how we recognize and interpret complex images. In fact, such a hierarchy can be found both

in the visual cortex Gazzaniga et al. (2006) and in the layers of artificial networks trained on

image classification (Figure 1.6), suggesting a fundamental relevance of these structures in

the processing and understanding of natural visual data. Finally, this hierarchical structure

is not exclusive to vision as it can be also found, for example, in natural language where a

piece of text can be decomposed into paragraphs, sentences, sub-clauses, words, and syllables

(Figure 1.10(b)).

• Can deep neural networks trained by gradient descent efficiently solve hierarchical

tasks?

• How many data points do they need to achieve small generalization error?

• Furthermore, is there an associated invariance with the hierarchical structure, and can

its understanding aid in answering the aforementioned questions?

Previous Works Poggio et al. (2017); Mhaskar and Poggio (2016, 2019) study the approxima-

tion properties of shallow and deep networks of hierarchically local compositional functions

as for example

f (x) = g4(g1(x1, x2, x3), g2(x1, x4), g3(x5)). (1.21)

Even if both shallow and deep networks can approximate any function with enough parame-

ters, deep networks only need a number of parameters linear in d , while shallow networks

need exponentially many. Moreover, deep networks allow for solutions whose generalization

error is controlled by the maximum dimensionality of the constituent functions instead of

the input dimension d Schmidt-Hieber (2020). Gradient descent, though, can efficiently

learn these kinds of tasks only if correlations between input features and the target label exist

Shalev-Shwartz et al. (2017); Mossel (2018). To understand how the magnitude of correla-

tions influence the sample complexity of gradient descent Malach and Shalev-Shwartz (2018,

2020) introduce a class tasks where inputs are a hierarchical composition of multiple levels of

features, starting from a class down to low-level features. They further propose a sequential,

layer-wise algorithm that alternates clustering with gradient descent steps, and are able to

compute the sample complexity of such algorithm as a function of input-label correlations.

These seminal works start to address the questions we highlighted in this section. It still

remains unclear though what is the sample complexity of the standard deep learning algo-

rithms, i.e. vanilla or stochastic gradient descent on modern deep networks like convolutional

neural networks, and if hierarchical compositionality gives rise to some kind of invariance. In

chapter 6 we answer these questions in the context of a generative model of hierarchical data

that falls in the class of Malach and Shalev-Shwartz (2018), but for which we can explicitly
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compute input-output correlations in terms of the model parameters. We show what is the

role of these correlations in determining the sample complexity of standard algorithms, we

introduce the invariance with respect to the exchange of synonymous features as a way to

characterize dimensionality reduction and show that deep networks are able to profitably

learn it.

1.4 Overview of the Thesis

The core focus of this thesis is an exploration of deep neural networks’ ability to adapt to

data structures, specifically focusing on data invariances, and the consequential impacts of

such adaptability on network performance. The various questions raised in this introduction

serve as the central motivations guiding our research. In the first part of this section, we

provide an overview of the content of the thesis, which is divided into four parts. We conclude

this introductory chapter by describing the methodological framework behind our work

(subsection 1.4.2).

1.4.1 Structure of the Thesis and Main Results

In Part I we start our investigation of the role of data invariances in the success of deep

learning, focusing on linear invariance.

• In particular, in chapter 2 we develop a quantitative framework to study how learning

invariant representations can benefit performance, and then use this framework to

gain qualitative understanding of real-world scenarios. We consider a simple model of

linear invariance, where the data points lie in d dimensions while the labels vary within

a linear manifold of lower dimension d ′ < d . We provide evidence that in the feature

learning regime, shallow neural networks can effectively adapt to the data structure,

becoming invariant to the uninformative directions in input space by aligning weights

towards the relevant directions. We quantify the magnitude of this alignment and show

that it depends on the square root of the training set size. Contrarily, we show that

this adaptation is absent in neural networks trained in the lazy regime, resulting in

poorer performance. We quantify this gap with a prediction on the scaling exponent of

generalization error vs. the number of training points, and we empirically verify that

these exponents are tight in practice.

To better understand the benefits of feature learning, we study the evolution of the

Neural Tangent Kernel (NTK) over training time. We find that, as the NTK evolves, only

a few of its eigenvalues become non-negligible, and the corresponding eigenvectors

become more informative and align closely with the labels. This process leads to a

kernel better suited for the task, with a performance matching the one of the feature

regime. This finding applies to both shallow networks trained on the simple model of

linear invariance and to deep CNNs trained on benchmark image datasets, highlighting
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the importance of invariants learning in both settings.

Motivated by the need to study more complex forms of invariances to understand the perfor-

mance of deep neural networks on real data, Part II is devoted to the study of deformation

invariance.

• In chapter 3, we aim to provide empirical evidence to the hypothesis that deep net-

works learn deformation invariance with training, hence reducing the dimensionality

of the problem and leading to improved performance. To do so we introduced a maxi-

mum entropy distribution over diffeomorphisms. This allowed for generating typical

diffeomorphisms with controlled norm.

We then define the relative stability to diffeomorphisms, denoted as R f , which is an

empirical observable that characterizes the stability of the network function f when

transforming the input along a diffeomorphism, relative to the stability to additive noise

of the same amplitude. The need for defining stability in relative terms arises from the

observation that different network architectures exhibit varying levels of stability to

additive noise, with better architectures typically being less stable.

Before training, R f is found to be close to one for various datasets and architectures,

suggesting that the initial network output is as sensitive to smooth deformations as it

is to random perturbations of the image. However, after training, we observe a strong

correlation between R f and the test error, with R f reducing significantly in modern

architectures and benchmark image datasets with training. Contrarily, for FCNs R f

even increases with training, highlighting their inability to learn deformation invariance.

These results support the hypothesis that learning diffeomorphism invariance is key to

achieving good generalization performance in image tasks.

This naturally raises the question of why fully-connected neural networks perform so

poorly, with an R f that even increases with training, and how this invariance is mecha-

nistically achieved by deep neural networks that perform well. These two questions are

addressed in chapter 4 and chapter 5, respectively.

• In chapter 4, we explore the limitations of feature learning in 2-layers neural networks

for settings where non-linear invariances are present. In particular, we argue that if a

given task presents a non-linear invariance, then it is better solved by a predictor that

has little variations (i.e. is smooth) along directions of input space that correspond

to the invariance. A fully-connected network would require a continuous distribution

of neurons to represent such a task. However, in the feature regime and in the limit

of small initialization or with regularization of the weights, neurons become sparse,

i.e. orient themselves along a finite number of input directions Bach (2017); de Dios

and Bruna (2020). In the case where linear invariances are not present, this sparsity

can lead to a predictor that overfits some spurious directions that are not relevant for

the task. We argued that this picture applies to: (i) regression of random functions of

28



1.4 Overview of the Thesis

controlled smoothness on the sphere—where the target is stable to small rotations—

and (ii) classification of benchmark image datasets—where the target is stable to small

deformations.

In particular, we characterize the generalization error of neural networks trained in

the feature and lazy regime in the first setting (i), and find that lazy training leads to

smoother predictors than feature learning. As a result, lazy training outperforms feature

learning when the target function is also sufficiently smooth. We derive generalization

error rates through asymptotic arguments that we systematically back up with numerical

studies.

In the second setting (ii), we build on our observation that good performance in image

classification is associated with the stability or smoothness of the predictor function

along diffeomorphisms. In fact, we show that lazy training, by maintaining a con-

tinuous distribution of neurons, results in predictors with smaller variations along

diffeomorphisms compared to the feature regime, which leads to sparse solutions. This

observation offers an explanation as to why lazy training outperforms feature learning

in the context of image datasets.

This chapter focuses on the drawbacks of feature learning. Why this training regime is

so effective when training modern architectures is still an open question.

• Building on the results of chapter 3, the goal of chapter 5 is to elucidate some of the

mechanisms by which CNNs learn the deformation invariance when classifying images,

and how this surprisingly leads to instability to noise. We discuss two kinds of pooling

mechanisms that can grant deformation invariance, and disentangle their role. The

first, spatial pooling, integrates local patches within the image, thus losing the exact

location of its features. The second, channel pooling, requires the interaction of different

channels, which allows the network to become invariant to any local transformation by

properly learning filters that are transformed versions of one another. Our experiments

on benchmark image datasets reveal that both kinds of pooling are learned by deep

networks and are responsible for improving deformation invariance. In particular, we

show that spatial pooling is learned by making filters low-frequency.

We then focus on understanding how deep networks learn spatial pooling. To do so,

we introduce idealized scale-detection tasks that can be solved by performing spatial

pooling alone. Our findings suggest that the neural networks performing best on real

data tend to excel in these tasks, highlighting their relevance in mirroring real-world

scenarios. These tasks also open the way for theoretical analysis. In particular, they

allow us to understand how deformation stability is achieved layerwise, by developing

low-frequency filters, and how this naturally results in instability to additive noise.

After discussing how neural networks are able to handle the spatial sparsity of features, we

go into the study of how these features are composed in order to solve hierarchically and

compositionally local tasks (Part III).
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• To this end, in chapter 6 we introduce a model for hierarchical data that we name the

Random Hierarchy Model, which is characterized by classes composed of combinations

of high-level features, iteratively constructed from sub-features. Moreover, multiple

combinations of sub-features can construct the same high-level feature. We refer to

these different combinations as synonyms.

One of our key findings is that the number of training data, referred to as sample com-

plexity and denoted as P∗, required by deep convolutional neural networks trained by

gradient descent to learn this task, contrary to what one might expect from dealing with

high-dimensional data, grows only polynomially with the input dimensionality. This

suggests that the curse of dimensionality can indeed be overcome for such hierarchical

tasks. Our study further reveals that the sample complexity of deep CNNs P∗ is closely

linked with the learning of invariant representations. Specifically, P∗ corresponds to the

training set size at which the network’s representations become invariant to exchanges

of synonyms–—in other words, it no longer matters for the internal representations

which specific features are used to represent a class, as long as they are semantically

equivalent. This is a critical aspect of learning hierarchically compositional tasks, as it

shows that deep CNNs are not merely learning to recognize specific features, but are

learning the underlying structure and relationships among the features. Notice that the

picture is very different for shallow neural networks as they can only solve the task with

a number of data points that is exponential in the dimension, hence incurring in the

curse of dimensionality.

Furthermore, P∗ coincides with the number of data at which the correlations between

low-level features and classes become detectable. This finding suggests that deep CNNs

leverage the correlations in the data in order to solve the task, enabling us to rationalize

how the sample complexity depends on the hierarchical and compositional structure of

the task.

This introductory chapter has attempted to highlight the primary outcomes of our research.

The chapters that follow delve deeper into these findings, each representing an individual

research paper that took shape during my doctoral journey. These chapters document my

research progression and contributions to the field, with the aim of providing a basis to inspire

and inform future investigations in this domain. The latter themes are further developed and

expanded upon in the final concluding chapter 7.

1.4.2 Methodology: Empirical Science Approach to Deep Learning

In our research, we have adopted a methodology that combines the experimental approach

used in the natural sciences with theoretical principles akin to those found in physics Zde-

borová (2020). This method is well presented and advocated for in Nakkiran and Belkin (2022).

We summarize their viewpoint in the following paragraph.

Machine learning research falls into two main areas. The first, technological research, works
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on improving learning systems, while the second, scientific research, aims to understand

how learning works. Most current research is technological, focusing on improving practical

performance. Scientific research, although essential, often receives less attention and is judged

using similar standards as technological research, which may not be ideal. Moreover, while

rigorous mathematical theories have gained significant attention in the community, they are

just one part of the picture. The necessity for an empirical approach in machine learning stems

from these shortcomings. Machine learning, especially in its application to deep learning,

often deals with high levels of complexity that are beyond our current analytical capabilities.

In these situations, it becomes essential to build systems and observe them, employing the

principles of empirical inquiry commonly used in natural sciences.

In our research, we have aimed to embrace this empirical approach to machine learning,

focusing on conducting experiments that reveal key insights into the behavior of deep learn-

ing algorithms, despite the scarcity of rigorous mathematical theorems regarding practical

settings. Our goal has been to understand and interpret the patterns that emerge from these

experiments, and subsequently develop theoretical frameworks sometimes in the form of

simplified toy models, that elucidate these patterns. Toy models, borrowed from the practice

of physics, are simplified theoretical constructs that, while not capturing all aspects of the

complex systems they represent, isolate and illustrate critical features or behaviors. In the

context of machine learning, such toy models can offer valuable qualitative insights into the

workings of more complex deep learning algorithms.

This approach echoes the tradition of experimental physics, where empirical data and the-

oretical models, including toy models, engage in a continuous dialogue, each refining and

informing the other. Such a feedback loop between empirical studies and theoretical modeling

can greatly enhance our understanding of deep learning systems, providing a path to bridge

the gap between theory and practice.

We conclude by discussing more practical considerations and challenges regarding our method-

ological approach to the study of deep learning systems.

Hyperparameters Tuning Our methodology crucially involves the efficient handling of

hyperparameters in deep learning models due to their significant impact on performance.

We employ strategies to limit the number of hyperparameters needing tuning. One example

of that is choosing the width of 2-layer networks. We set the width it sufficiently large to

ensure results remain stable when further increased, the goal being to operate in the infinite-

width limit. This choice is driven by observations that the infinite-width limit usually delivers

superior performance in all training regimes—as we highlight in Geiger et al. (2021). Other

examples involve the choice of loss function and training dynamics. For binary classification,

we often use the hinge loss which provides a clear stopping criterion–—zero training loss—that

allows us to avoid tuning training time. Additionally, to avoid tuning the learning rate, we use

a dynamics that mimics gradient flow, corresponding to the zero learning rate limit of gradient

descent.
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Sensitivity to Hyperparameters While we have aimed to reduce the dependence of our

results on hyperparameter tuning by adopting specific experimental settings, we appreciate

the importance of understanding the sensitivity of our models to these choices and we aim

to measure such sensitivity when computational resources allow for it. This is especially

needed in cases where the choice of some of the parameters is not completely justified, or

to check the generality of our findings. For instance, in chapter 3, to thoroughly test the

relationship we find between stability to diffeomorphisms and test errors we examine it across

multiple benchmark image datasets, across different values of the parameters that control

the magnitude and spatial frequencies of the diffeomorphisms, and for varying number of

training points.

Statistical Significance Ensuring statistical significance is also an essential aspect of our

research approach. We maintain full control over all sources of randomness, including the

sampling of the training set, the initialization of network parameters, and the noise of SGD. To

ensure that the variance of the results is under control, we perform multiple experiments in

which we vary all sources of randomness simultaneously and average the results.

Reproducibility Reproducibility is vital in scientific research, including empirical deep

learning studies. Therefore, all the code used in our experiments is publicly available.4 We

also maintain consistency in our experiments by standardizing preprocessing steps of our

datasets and computational constraints during model training. This uniformity ensures fair

comparison across models and setups, minimizing biases from varied conditions. By doing

so, we aim to enhance the transparency and reproducibility of our work, offering a stable

framework within which our results can be replicated.

Limitations of Empirical Research Although empirical research can yield relevant insights

into deep learning systems, it’s worth noting some inherent limitations. A comprehensive

and rigorous validation of empirical claims, as seen in theoretical work, is not possible as no

number of experiments can ever prove a scientific theory. Still, a reproducible experiment or

observation can refute one, and this falsifiability is what gives validity to scientific theories

Popper (1968). In this light, our aim is to support our hypotheses by exposing them to as

diverse and challenging scenarios as possible in order to test their validity. However, this does

not negate the existence of situations, contexts, or datasets where our findings may not apply,

or the possibility of unaccounted confounding factors. As we aim to conduct responsible and

robust research, we want to be transparent about these potential limitations. Moreover, we

value the role of the peer review community in highlighting potential weaknesses and offering

insightful critiques, which are essential to empirical research.

4The code to reproduce the experiments of this thesis is available online at github.com/leonardopetrini and
github.com/pcsl-epfl.
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Abstract

We study how neural networks compress uninformative input space in models where data lie in d
dimensions, but whose label only vary within a linear manifold of dimension d‖ < d. We show that for a
one-hidden layer network initialized with infinitesimal weights (i.e. in the feature learning regime) trained
with gradient descent, the first layer of weights evolve to become nearly insensitive to the d⊥ = d − d‖
uninformative directions. These are effectively compressed by a factor λ ∼ √p, where p is the size of the
training set. We quantify the benefit of such a compression on the test error ε. For large initialization
of the weights (the lazy training regime), no compression occurs and for regular boundaries separating
labels we find that ε ∼ p−β , with βLazy = d/(3d − 2). Compression improves the learning curves so
that βFeature = (2d − 1)/(3d − 2) if d‖ = 1 and βFeature = (d + d⊥/2)/(3d − 2) if d‖ > 1. We test these
predictions for a stripe model where boundaries are parallel interfaces (d‖ = 1) as well as for a cylindrical
boundary (d‖ = 2). Next we show that compression shapes the Neural Tangent Kernel (NTK) evolution
in time, so that its top eigenvectors become more informative and display a larger projection on the
labels. Consequently, kernel learning with the frozen NTK at the end of training outperforms the initial
NTK. We confirm these predictions both for a one-hidden layer FC network trained on the stripe model
and for a 16-layers CNN trained on MNIST, for which we also find βFeature > βLazy. The great similarities
found in these two cases support that compression is central to the training of MNIST, and puts forward
kernel-PCA on the evolving NTK as a useful diagnostic of compression in deep nets.

1 Introduction and related works

Deep neural networks are successful at a variety of tasks, yet understanding why they work remains a
challenge. Specifically, the data from which a rule or classes are learnt often lie in high dimension d where
the curse of dimensionality is expected. Quantitatively, this curse can be expressed on how the test error
ε(p) depends on the training set size p. If mild assumptions are made on the task (for example regressing
a Lipschitz continuous function), then ε(p) cannot be guaranteed to decay faster than ε ∝ p−β with an
exponent β = O (1/d) [1]: learning is essentially impossible. In practice, β is found to be much larger and
to depend on the task, on the dataset and on the learning algorithm [2, 3], implying that learnable data are
highly structured.

Accordingly, success of neural networks is often attributed to their ability to adapt to the structure of
the data, which present many invariances [4]. For example in the context of classification, some pixels at
the edge of the image may be unrelated to the class label. Likewise, smooth deformations of the image may
leave the class unchanged. In that view, neural networks correspond to a succession of non-linear and linear
operations where directions of neural representation for which the label does not vary are compressed. It
is supported by the observations that kernels designed to perform such compression perform well [4]. Yet,
there is no quantitative general framework to describe this compression and its effect on the exponent β.
The information bottleneck framework for deep learning [5] proposes that information is compressed as it
propagates deeper in the network. However, information in such a deterministic setting is ill-defined and
conclusions can depend qualitatively on details of the architecture or on the estimation of information [6].
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Still, more robust measures, such as the effective dimension of the neural representation of the data, support
that compression occurs in deeper layers [7, 8].

Such a framework should include in which learning regime nets operate. Different regimes have recently
been delineated by focusing on the infinite-width limits of neural networks, shown to converge to well-defined
learning algorithms [9, 10, 11, 12]. These are practically useful limits to consider as performance generally
improves with width [13, 14, 15, 16, 17], which simply comes from the fact that convergence to these
asymptotic algorithms removes noise stemming from the random initialization of the weights [18, 19, 20].
Two limits are found, depending on how weights scale with width. In one limit [9], deep learning becomes
equivalent to a kernel method coined Neural Tangent Kernel or NTK. Weights and neuron activities barely
change and dimension reduction cannot occur. In the feature learning regime [10, 11], weights and neuron
activities significantly change, the NTK evolves in time [10, 21] and compression can in principle occur.
Yet understanding this dynamic and its effect on performance remains a challenge. For CNNs the feature
learning regime tends to perform better [22, 19, 23] but it is not so for fully connected nets using vanilla
gradient descent on various benchmarks of images [19]. This state of affairs calls for simple models of data
in which the kernel evolution and its associated compression of invariants can be quantified, together with
its effect on performance.

1.1 Our contribution

Here we consider binary classification and assume that the label does not vary along d⊥ directions of
input space. We will first focus on the stripe model, arguably the simplest model of invariant yet non linearly-
separable data for which d⊥ = d− 1, and later show that our results holds for smaller d⊥. Data consists of
Gaussian random points x in d dimensions, whose label is a function of a single coordinate y(x) = y(x1),
corresponding to parallel planes separating labels. In Section 3, we show for the stripe model that: (i) in the
NTK limit, βLazy = d/(3d−2) as we found earlier for isotropic kernels [24]. (ii) In the feature learning regime,
if the weights are initialized infinitesimally a geometric compression along invariant directions of magnitude
λ ∼ √p occurs at intermediate times. This weight compression is equivalent to a spatial compression of
the data points as illustrated in Fig. 1. (iii) In the NTK limit if data are compressed by λ before learning,
performance closely matches that of the feature learning regime. This observation supports that the main
gain of the latter regime is to perform this compression. Assuming that it is the case leads to the prediction
βFeature = (2d − 1)/(3d − 2). In Section 4 we generalize this result to the case d⊥ < d − 1, and argue that
for sufficiently regular boundaries separating labels βFeature = (d + d⊥/2)/(3d − 2). We test this prediction
when the boundaries separating labels is a cylinder with d⊥ = 1 and d = 3.

In Section 5, we argue that the evolution of the NTK is such that at the end of learning: (iv) The top
eigenvectors of the associated Gram matrix become much more informative on the labels than at initialization.
(v) The projection of the labels on these eigenvectors becomes large for the top eigenvectors and small
otherwise, supporting that the performance of kernel methods using the NTK improves as it evolves during
learning. We confirm these predictions empirically in the stripe model. Finally, we show that these points
hold true in a multi-layer CNN applied to MNIST data, for which various observables are found to behave
very similarly to the stripe model, including the fact that βFeature > βLazy. These observations support that
compression along invariant directions is indeed key to the success of this architecture, and underlines kernel
PCA applied to the evolving NTK as a tool to characterize it.

The code used for this article is available online at https://github.com/mariogeiger/feature_lazy/
tree/compressing_invariant_manifolds.
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Figure 1: Illustration of data compression when the labels do not depend of d⊥ directions in input space, as
exemplified in the left panels. During training, the first layer weights inflate much more in the informative
d‖ directions. In relative terms, the network thus becomes much less sensitive to the d⊥ uninformative
directions. This effect is equivalent to a compression of uninformative directions in data space, as illustrated
on the right panels.

1.2 Related works

In the physics literature, β has been computed in regression or classification tasks for fixed kernels [25,
16, 26, 27, 28]. These results for classification generally consider linearly separable data and apply in the
limit d→∞ and p→∞ with α = p/d fixed. In that limit for specific data it was shown for a regression task
that feature learning can outperform the NTK regime [26]. Here we consider classification of non-linearly
separable data, and take the limit of large training set size p at fixed dimension d which appears appropriate
for common benchmarks 1.

Our work also connects to previous studies on how the anisotropy of the data distribution affects perfor-
mance [3, 29, 24, 30]. For a large anisotropy, the effective dimension of the data is reduced, improving kernel
methods [3]. The effect of a moderate anisotropy was investigated for kernel classification [24] and regression
in neural nets [30]. Here we argue that in the presence of invariant, neural nets in the feature learning regime
perform a compression equivalent to making the data anisotropic, and to our knowledge produce the first
estimates of the training curves rate β for both the lazy training and feature learning regime in the limit of
large training set size p at fixed dimension d.

Guarantees of performance for a one-hidden layer in the feature learning regime exist if some norm
(characterizing the magnitude of the weight representing the function to be learnt) is finite, and if the
dynamics penalizes this norm [10, 31]. In our model that norm is infinite (because there is no margin between
labels of different classes). Instead we focus on vanilla gradient descent without special regularization (such
regularizations are usually not used in practice). For gradient descent, with the logistic loss for a one-hidden
layer can be shown to correspond to a max-margin classifier in a certain non-Hilbertian space of functions
[32]. Dimension-independent guarantees on performance can be obtained if the data can be separated after
projection in a low dimensional space, as occurs in our model. The analysis requires however to go to
extremely long times. Here instead we focus on the hinge loss for which the dynamic stops after a reasonable
time and we estimate the error and β in specific cases instead of providing an upper bound to it.

On the empirical side, the alignment occurring during learning between the function being learnt and the
top eigenvectors of the Gram matrix was noticed in [33] and observed more systematically in [34]. Our work
offers an explanation for these findings in terms of the compression of invariant directions in data space.

2 General considerations on data and dynamics

2.1 Linear invariant data

We consider a binary classification task on data points lying in a d-dimensional space whose labels only
depend on a linear subspace of dimension d‖ < d. Without loss of generality, we write the data points as

1MNIST or CIFAR present an effective dimension dM ∈ [15, 35] [3]and p ≈ 6 · 104.
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x = (x‖, x⊥) ∈ Rd with x‖ = (x1, . . . , xd‖) and x⊥ = x− x‖, so that the label function only depends on the
d‖ first components: y(x) = y(x‖). In this work, we consider data points drawn from the standard normal
distribution. In particular, we refer to the points of a training set of size p as xµ ∼ N (0, Id), for µ = 1, . . . , p.

In Section 3, we shall focus on the simplest case where d‖ = 1, that we call the stripe model. In Section 4,
we then generalize our findings to higher dimensional tasks and we confirm our results on a “cylindrical”
model with d‖ = 2.

2.2 Learning algorithm

We consider the following fully-connected one-hidden layer neural network of ReLU activation,

f(x) =
1

h

h∑

n=1

βn σ

(
ωn · x√

d
+ bn

)
, (1)

where σ(x) =
√

2 max(0, x). In our simulations h = 10000. The trained parameters of the network are
βn, ωn and bn. We use a vanilla gradient descent algorithm with the hinge loss on the predictor function
F (x) = α (f(x)− f0(x)), where f0 is the network function at initialisation and is not affected by gradient
descent. With this trick, the amplitude of the network output is controlled by the scale α. Varying it
drives the network dynamics from the feature regime (small α) to the lazy regime (large α) [22]. The
dynamical evolution of a generic weight W ∈ {βn, bn, ωn}n=1,...,h belonging to the network (1) thus follows
the differential equation

Ẇ =
1

p

p∑

µ=1

∂W f(xµ) y(xµ‖ ) l
′
[
y(xµ‖ )F (xµ)

]
, (2)

where l′(x) = Θ(1−x) is the derivative of the hinge loss. All weights of the network are initialized according to
the standard normal distribution. We show in Appendix A that the network output is statistically invariant
under a rotation of the informative directions. Without loss of generality, we can thus choose the same
basis for the data points as for the first layer weights. In particular, we introduce the following notation:
ωn = (ωn,‖, ωn,⊥).

2.3 Amplification factor

The effect of learning is quantified by the compression of the uninformative weights ωn,⊥ with regard to
the informative weights ωn,‖. Mathematically, the neuron amplification factor λ and the global amplification
factor Λ are defined as

λn =

∣∣∣
∣∣∣ωn,‖

∣∣∣
∣∣∣
d‖∣∣∣∣ωn,⊥
∣∣∣∣
d⊥

and Λ =

√√√√√√

∑h
n=1

∣∣∣
∣∣∣ωn,‖

∣∣∣
∣∣∣
2

d‖∑h
n=1

∣∣∣∣ωn,⊥
∣∣∣∣2
d⊥

, (3)

where d⊥ = d− d‖ and the d-dimensional norm of a vector v = (v1, . . . , vd) is defined as ||v||2d =
∑d
i=1 v

2
i /d,

in order to remove the dimensional bias from the ratio.

2.4 Feature regime vs lazy regime

Throughout this work, it is assumed that the network width h is sufficiently large for the algorithm to
operate in the overparametrized regime [17, 18]. We define the Neural Tangent Kernel (NTK) Θ(x1, x2) =
∂W f(x1) · ∂W f(x2), where the scalar product runs over all weights of the network. The gradient descent
evolution (Eq. (2)) on the functional space then reads

ḟ(x) =
1

p

p∑

µ=1

Θ(x, xµ) y(xµ‖ ) l
′
[
y(xµ‖ )F (xµ)

]
, (4)

where the NTK can in principle evolve over time.
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At initialization, the predictor function is zero. It then grows to fit the training set and doesn’t stop until
it is at least equal to one on all training points. The smaller the network scale α the more the weights need
to evolve.

If α � 1, the condition F (x) ∼ 1 can be fulfilled with infinitesimal weight increments δW , so that the
predictor function is linear in δW . The dynamics thus reduces to a kernel method [9], meaning that the
NTK is frozen to its initial state Θ0. For an isotropic distribution of the weights, the kernel Θ0 is isotropic
and thus blind to the existence of many invariants in the data to be learned. This regime is coined the lazy
regime for finite h or the NTK regime if h→∞.

If α� 1, the weights of the network need to evolve significantly in order to satisfy the condition F (x) ∼ 1
[19]. In that case, the NTK adapts to the data and we shall show that it becomes more and more sensitive
to the informative directions. In particular, the first layer weights ωn aligns toward the informative linear
subspace, as shown in Fig. 2 for the stripe model and in Fig. 7 for the cylinder model. This regime is coined
the feature regime (or sometimes the rich regime) and we study it in the limit h→∞.

The transition between the two regimes is illustrated in Appendix B by learning the stripe model with
different values of α.

2.5 Learning timescales

We now give a general overview of the network evolution in time. We define the characteristic time t?

as the time when the predictor function first becomes of order one. Also, we introduce the neuron vector
z = −

√
dbω/ ||ω||2, which localizes the closest point of the ReLU hyperplane to the origin. We drop the

neuron index for simplicity of notation. In the feature regime, we identify three temporal regimes:

◦ Compressing regime: Before t?, all neuron vectors z converge toward a finite number of fixed points
that we generically call z? [35]. We shall see that the individual weights all diverge exponentially
with a time constant τ? ∼ τ = h

√
d/2, which depends on the fixed point. As a consequence, at t?,

the predictor function scales as et
?/τα ∼ 1. In the mean field limit (α → 0), the characteristic time

t? ∼ τ log(1/α) thus diverges and all neurons effectively reach their fixed point. The logarithmic scaling
of t? is verified numerically in Appendix B.

In the limit of infinite training set size (p→∞), all fixed points are located on the informative subspace,
namely z? = (z?‖, 0). We quantify this compression with the amplification factor λ = ||ω‖||/||ω⊥|| which
is divergent in this limit. For finite p, the compression is saturated by finite size effects: the data
distribution is subject to fluctuations of the order of 1/√p compared to its population expectation.
The fixed points are thus located at a distance of the order O (1/√p) perpendicular to the informative
subspace. In other words, as we show below the amplification factor saturates at λ ∼ √p.

◦ Fitting regime: After t?, a finite fraction of the training points satisfy the condition yµF (xµ) > 1.
Because we consider the hinge loss these training points no longer contribute to the network evolution.
In particular, they drop out of the sum in Eq. (2) [36]. The first points to be excluded are the furthest
from the interfaces separating distinct labels. During this process, the fixed points move within the
informative manifold such as to better fit the data. Relative fluctuations are still of order O (1/√p), thus
one expects the amplification factor to remain of the same order λ ∼ √p, as we confirm empirically.

◦ Over-fitting regime: When the number of points still remaining in the sum of Eq. (2) is of the order
of one, the sum is dominated by fluctuations and the network overfits the remaining constraints. We
check numerically that the previous predictions are not significantly altered during this final regime,
which we don’t study theoretically.

The neuron compression mechanism scales up to the whole network so that the global amplification factor
also saturates with the fluctuations, namely Λ ∼ √p. We expect this scaling to be a general property of
linear invariant problems. In the next section, we describe this process in more details for the stripe model.
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3 Stripe model

We consider the simplest model of linear invariant data, where the label function only depends on d‖ = 1
informative direction, namely y(x) = y(x1). Layers of y = +1 and y = −1 regions alternate along the
direction e1, separated by parallel planes. In particular, we define the single-stripe model, where the labels
are negative if xmin < x1 < xmax and positive otherwise. In our numerical simulations, we use this model
with the parameters xmin = −0.3 and xmax = 1.185492.
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Figure 2: Representation of the weights alignment in the single-stripe model. An instance of the labelled
training set is shown in the background. The arrows represent the quantity βω – properly rescaled to fit the
figure – for a random subset of neurons. Left: At initialization, the weights are distributed isotropically. In
the lazy regime, the same distribution persists during the training. Center / Right: During learning, in the
feature regime, the weights tend to align with the direction e1. An animation of the current figure can be
found at git.io/JJTS9.

3.1 Learning curves

We compare the lazy regime and the feature regime, by computing their respective learning curves,
namely the test error vs the training set size p. Fig. 3 illustrates how the feature regime outperforms the
lazy regime, when applied on the single-stripe model.

In the lazy regime, the algorithm reduces to a kernel method and one can rely on [24] to predict the
learning curve exponent β. In that work, it is shown that for an isotropic kernel of bandwidth larger than the
distance between nearest neighbours of the training set, the learning curve of the Support Vector Classifier
(SVC) algorithm applied to the stripe model in dimension d scales as ε ∼ p−β , with β = (d−1+ξ)/(3d−3+ξ),
where ξ ∈ (0, 2) is an exponent characterizing the kernel cusp at the origin. The NTK is isotropic on data
lying on the sphere, has a bandwidth of order O(1) and its cusp is similar to the one of a Laplace kernel,
namely ξ = 1. Hence, as the SVC algorithm minimizes the hinge loss, the learning curve of the lazy regime
is expected to have an exponent βLazy = d/(3d− 2). This prediction is tested on Fig. 3.

In the same work, it is shown that if the uninformative directions of the data are compressed by a factor

Λ, namely x⊥ → x⊥/Λ, the test error is improved by a factor Λ−
2(d−1)
3d−2 for ξ = 1. In the next section,

we shall argue that, in the feature regime, the perpendicular weights ωn,⊥ are suppressed by a factor
√
p

compared to the informative weights ωn,1 as their growth is governed by fluctuations of the data. Such a
weight compression acts similarly as a data compression with Λ ∼ √p as depicted on Fig. 1. Assuming that
the main effect of feature learning is this compression, we expect the learning curve exponent of the feature
regime to be βFeature = (2d−1)/(3d−2). This scaling is again consistent with the numerical results of Fig. 3.

2The value xmax =
√

2 erf−1(1 + erf(xmin)) ≈ 1.18549 is chosen so that the two labels are equiprobable.
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Figure 3: Test error vs the training set size p for the single-stripe model in dimension d = 5 and d = 10.
Two datasets are considered: points drawn from the standard normal distribution in dimension d and its
compression, where x⊥ → x⊥/Λ

?, where Λ? ∼ √p is the global amplification factor at t? (see Section 3.2
for the definitions). The labels are defined according to the single-stripe model with xmin = −0.3 and
xmax = 1.18549. The task is learned following the dynamics of Eq. (2). In the feature regime (solid blue
lines), the network scale is set to α = 10−6. In the lazy regime, learning is performed with a frozen Gram
matrix (α→∞), computed at initialization for both the original (solid red lines) and compressed (dashed red
lines) datasets. The performance of the frozen Gram matrix at the end of feature training is also computed
(solid orange lines). All results correspond to the median over 20 realizations of both the data distribution
and the network initialization. The benchmark triangles represent the expected power laws.

3.2 Amplification effect

In this section we show that when learning the stripe model in the feature regime, the first layer weights
align along the informative direction e1. In particular, we show that the ratio between the informative
(or parallel) weights ωn,1 and the uninformative (or perpendicular) weights ωn,⊥ scales as Λ ∼ √p. This
section being more technical can be skipped at first reading. For the interested reader, details are given in
Appendix C.

3.2.1 Neuronal dynamics

We first consider the dynamics of a single generic neuron, whose dynamics is obtained from Eq. (2):

ω̇ =
1

hp

p∑

µ=1

σ′
[
ω · xµ√

d
+ b

]
l′ [yµF (xµ)] β

xµ√
d
yµ

ḃ =
1

hp

p∑

µ=1

σ′
[
ω · xµ√

d
+ b

]
l′ [yµF (xµ)] β yµ , (5)

β̇ =
1

hp

p∑

µ=1

σ

[
ω · xµ√

d
+ b

]
l′ [yµF (xµ)] yµ

where the neuron index n is dropped. Because the ReLU activation is homogeneous, σ(x) = xσ′(x), the
equality ββ̇ − ω · ω̇ − bḃ = 0 holds during the whole evolution. Following the discussion of Section 2.5, we
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now solve the above system in the limit α→ 0, so that t? ∼ τ log(1/α)→∞. In the numerical experiments,
we choose the network scale α = 10−6 and define t? as the time when 10% of the training set satisfies the
condition yµF (xµ) > 1.

Compressing regime As long as t � t?, the quantity l′ [yµF (xµ)] = 1, ∀µ, so that the system (5) only
depends on the weights associated to the considered neuron. Each neuron thus evolves independently and
only differs from the other neurons by its initial conditions.

We first consider the limit p→∞ and neglect the finite size effects. Applying the central-limit theorem,
we carry out the integration over the perpendicular space in Appendix C.1. Defining the neuron amplification
factor λ = ω1/ω⊥, where ω⊥ = ||ω⊥||, the neuronal dynamics (5) becomes

ω̇1 =
β

τ
〈y(x1)x1 gλ(x1 − ζ1)〉x1

+ O
(
p−

1/2
)

ω̇⊥ =
β

τ

e−db
2/2ω2

√
2π

ω⊥
ω

〈
y

(
ω⊥
ω
x1 +

ω2
1

ω2
ζ1

)〉

x1

+ O
(
p−

1/2
)
, (6)

ḃ =

√
dβ

τ
〈y(x1) gλ(x1 − ζ1)〉x1

+ O
(
p−

1/2
)

where τ = h
√
d/2, ω = ||ω|| and ζ1 = −

√
db/ω1 is the intercept of the ReLU hyperplane with the e1 axis,

while gλ(x) = 1
2

(
1 + erf(λx/

√
2)
)
. The notation 〈·〉x1

refers to the expectation over the Gaussian variable
x1.

We recall the definition of the neuron vector z = −
√
dbω/ω2. In [35], the authors show that the first layer

weights of a one-hidden layer network of ReLU activation tend to align along a finite number of directions
depending only on the dataset. Relying on the symmetries of the model, we seek solutions on the informative
axis. We thus make the hypothesis that the fixed points are of the form z? = (z?, 0), where z? = z?1 = ζ?1 ,
which is equivalent to assuming that the amplification factor associated to such fixed points is diverging. In
this limit, the system (6) simplifies: the expectation values only depend on the parameter ζ1 and the sign of
λ. We respectively call them C±1 (ζ1), C±⊥ (ζ1) and C±b (ζ1). As a consequence, the dynamics of ζ1,

ζ̇1
λ→±∞−−−−−→ −1

τ

β

ω1
[dC±b (ζ1) + ζ1 C

±
1 (ζ1)], (7)

yields the location of the fixed points as they lie where the above bracket vanishes. For the fixed points
to be stable along the e1 axis, the second derivative of ζ1 needs to be negative. On a given fixed point z?

the expectation values C±1 (z?), C±⊥ (z?) and C±b (z?) are constant and it is straight-forward to see that ω1,
b and β all diverge exponentially with a time constant τ? ∼ τ given in Appendix C.2. Finally, we verify in
Appendix C.2 that the perpendicular weights do not diverge as fast as ω1 as long as λC±1 (z?)y(z?) < 0 or√

2π|C±1 (z?)| − e−z
?2/2 > 0. Under these conditions, the amplification factor λ thus diverges exponentially

in time which justifies our initial hypothesis. We checked numerically that these conditions indeed hold for
the considered models. The panel b of Fig. 4 illustrates ζ̇ for the single-stripe model in d = 2.

We now consider the finite p corrections to a given fixed point z? and show that the amplification factor
saturates at λ? ∼ √p. The finite p effects lead to an additional fluctuation term in each equation of the
system (5). This correction is negligible for the dynamics of ω1, b and β, however for the perpendicular
weights it yields

ω̇⊥ =
β

τ

[
e−z

?2/2

√
2π

ω⊥
ω
C±⊥ (z?) +

N(z?)√
p
D±⊥(z?)

]
, (8)

where D±⊥(z?) = 〈Θ(±(x1 − z?))〉x1
and N(z?) is a vector of random variables of variance one (see Ap-

pendix C.3). The first term in the above bracket is proportional to 1/λ and thus vanishes exponentially with
time until it is of the order of the second term, namely O (1/√p). We call τ⊥ the time when this crossover
occurs. After τ⊥, ω̇⊥ is merely proportional to β/

√
p. Therefore, the perpendicular weights follow the same

exponential growth as the other weights up to a O (1/√p) prefactor and the amplification factor converges to
a finite value λ? that scales as

λ? ∼ √p. (9)
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We test numerically that all neurons converge to one of the above described fixed points by considering
the single-stripe model. The panel c of Fig. 4 illustrates the trajectories of a random selection of neurons
while training the network Eq. (1) until t?. Note that some neurons may not have yet reached a fixed point
for two reasons. First, because p is finite, a neuron initial position may lie too far from the training set
domain. If no training point lies within the positive side of its associated ReLU hyperplane, it won’t feel any
gradient and will thus remain static. Second, the simulation is run with a finite network scale (α = 10−6),
implying that the time t? ∼ τ log(1/α) is also finite. Hence, some neurons may not have reached their
asymptotic regime at t?3.

b

ca

Figure 4: Numerical analysis of the single-stripe model with xmin = −0.3 and xmax = 1.18549 in
dimension d = 2 with a training set of size p = 10000. The location of the two interfaces is illustrated by
the vertical dashed lines. (a) Temporal evolution of the weights of a randomly chosen neuron. The solid
lines illustrate the considered neuron dynamics in the neural network, while the dashed lines correspond
to the numerical solutions of the ODE Eq. (6) and Eq. (8) obtained for the same initial conditions. The
random variables N(z?) is computed numerically. The curves are truncated at the time t?. (b) Function
defining the location of the fixed points along ζ1 in the limit λ → ∞. The two scenarios λ > 0 and λ < 0
are shown. The unstable regions, where the limit λ → ∞ is inconsistent are represented with dashed lines.
(c) Selection of neuronal trajectories in the z-plane for t < t?. The small black dots mark the location of
the initial conditions, while the large black dots lie on the predicted location of the three attractors of the
compressing regime.

Fitting regime After t?, the loss derivative is zero on a finite fraction of the training set. As discussed in
Section 2.5, these training points no longer contribute to the network dynamics. This long time evolution
is beyond the scope of this work, but could be solved numerically in the limit p→∞ following the work of
[36]. It requires to compute the network function at each step in order to decide which training points still
contribute to the dynamics.

In this regime, the neurons are still sparsely distributed on the same number of fixed points [35] as in
the previous regime. The location of the fixed points is however changing to fit the stripe. This process is
shown on Fig. 5 for the stripe model in d = 2. Concerning the amplification factor, the

√
p suppression of

ω̇⊥ compared to ω̇1 remains true until the effective number of training points contributing to the dynamics
becomes of order O(1), as shown on the top panel of Fig. 6.

3Because λ initially grows exponentially, the definition of the perpendicular timescale yields τ⊥ ∼ τ? log p. For the amplifi-
cation factor to reach its plateau λ? ∼ √p during the compressing regime, it is essential that τ⊥ < t? ∼ τ log(1/α). Hence the
larger the training set size, the smaller α needs to be.
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Figure 5: Evolution of the network while fitting the single-stripe model in d = 2 with a training set of
size p = 10000. Left: Neural network decision function along the informative direction e1 at three different
times. The ζ1 variable of each neuron is represented on the x-axis by colored dots. The darker the region,
the larger the point density. On the top plot, the location of the predicted fixed points is marked by black
crosses. The location of the two interfaces is illustrated by the vertical dashed lines. Right: Train loss and
test error vs time. The three times considered on the left plot are indicated with the same color code. The
characteristic time t? is represented by the vertical red line.

3.2.2 Global amplification factor

In the previous discussion, we defined an amplification factor λ = ω1/ω⊥ for each neuron of the network.
Following the definition Eq. (2.3) we now consider the global amplification factor Λ averaged over all neurons,
namely

Λ2 = (d− 1)

∑h
n=1 ω

2
n,1∑h

n=1 ω
2
n,⊥

. (10)

This definition compares the largest parallel weights to the largest perpendicular weights. The prefactor
guarantees that Λ(t = 0) = 1. The top panel of Fig. 6 shows the exponential growth of Λ toward the plateau
at Λ? = Λ(t?). The longer time evolution is subject to fluctuations but doesn’t alter significantly the picture.
On the bottom panel, we confirm the predicted scaling Λ? ∼ √p. We also show that the same scaling applies
to the maximum of the global amplification factor, Λmax = maxt Λ(t), which occurs during the fitting regime.

In this section we illustrated with a particular example how the neurons of the network converge to a
finite set of fixed points. The associated amplification factors are shown to diverge with the dataset size:
λ ∼ √p. At the network scale this effect is equivalent to a data compression of the same amplitude. In the
next section we extend this discussion to other linear invariant datasets.
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Figure 6: Top: Temporal evolution of the global amplification factor while learning the single-stripe
model. Two dimensions d = 5 and d = 10 and two training set sizes p = 411 and p = 4640 are illustrated.
The curves are averaged over 20 realizations of both the data distribution and the network initialization.
The red vertical ticks mark the averaged critical time of the associated setup. Bottom: Global amplification
factor vs the size of the training set p for the single-stripe model in dimensions d = 5 and d = 10. Both the
amplification factor Λ? computed at t? and the maximal amplification factor Λmax are displayed. The curves
correspond to the median over 20 realizations of both the data distribution and the network initialization.
The benchmark triangle of slope 1/2 confirms our scaling predictions for Λ? and Λmax.

4 Generalization and cylinder model

Compression mechanism The compression mechanism illustrated in the stripe model is expected to
occur generically in linear invariant models. If the label function were to depend on d‖ directions, all neuron
vectors z would converge toward fixed points located in the informative subspace of dimension d‖. Similar
finite p effects as in the stripe model would saturate the resolution of the informative subspace, so that
the informative weights ω‖ would be larger than the perpendicular weights ω⊥ by an amplification factor
λ ∼ √p.

Advantage of feature regime As the NTK is blind to the existence of invariants in the data, the
performance of the lazy regime should not depend on d‖. Indeed following the results of [24], the lazy regime
learning curve follows an exponent βLazy = d/(3d−2) for simple boundaries separating labels (such as plane,
spheres or cylinders), a result conjectured to hold more generally for sufficiently smooth boundaries. The
correspondence between the lazy training and the SVC considered in [24] is discussed in Section 3.1.

In [24], it is also shown that for linear invariant models with d‖ > 1, a compression of the perpendicular

space by a factor Λ, x⊥ → x⊥/Λ, improves the performance of the SVC by a factor Λ−d⊥/(3d−2), for a kernel
of exponent ξ = 1. As discussed in Section 3.1, because in the feature regime such a compression occurs with
Λ ∼ √p, we expect the learning curve exponent of the feature regime to be βFeature = (d+ d⊥/2)/(3d− 2).

Cylinder model We test our predictions by considering a cylinder model in d = 3. The data points
are drawn from the standard normal distribution: x ∼ N (0, Id), while the label function is a circle in the
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informative subspace of dimension d‖ = 2, namely y(x) = y(
∣∣∣
∣∣∣x‖
∣∣∣
∣∣∣) = +1 if

∣∣∣
∣∣∣x‖
∣∣∣
∣∣∣ > R and negative otherwise.

For the numerical simulations we use R = 1.17744. We learn this model following the gradient descent
algorithm described in Section 2.2.
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Figure 7: Representation of the amplification effect in the cylinder model with d = 3 and d‖ = 2. An
instance of the labelled training set is shown in the background. The arrows represent the quantity βω –
properly rescaled to fit the figure – for a random subset of neurons. We show the x⊥ = 0 section (first row)
and the x‖2 = 0 section (second row) of data-space. The first column reports the weights distribution at
initialization, the second column at the end of training. An animated version of the current figure can be
found at git.io/JJTS9.

The compression of the weight vectors ω into the informative subspace displayed on Fig. 7 supports the
previous general discussion. Also, we verify both the scaling of the amplification factor and the scaling of
the learning curves on Fig. 8. As in the stripe model the time t? is numerically defined as the time when the
equality yµF (xµ) > 1 first holds for 10% of the training set. On the top panel, both the global amplification
factor at t? and the maximal global amplification factor are shown to scale as Λ? ∼ Λmax ∼ √p. The
advantage of the feature regime over the lazy regime is displayed on the bottom panel. In particular, the
predicted learning curve exponents βLazy = d/(3d − 2) = 3/7 and βFeature = (d + d⊥/2)/(3d − 2) = 1/2 are
shown to be consistent with the numerical results.

4This value is
√

2 log 2 ' 1.1774. It is chosen so that the positive and negative labels are equiprobable.
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Figure 8: Top: Global amplification factor vs the size of the training set p for the cylinder model in
dimension d = 3. Both the amplification factor Λ? computed at t? and the maximal amplification factor
Λmax are displayed. The curves correspond to the median over 49 realizations of both the data distribution
and the network initialization. The benchmark triangle illustrates the expected power law. Bottom: Test
error vs the training set size p for the cylinder model in d = 3. In the feature regime (blue line), the
network scale is set to α = 10−6. In the lazy regime (red line), learning is performed with the frozen Gram
matrix computed at initialization (α → ∞). The curves correspond to the median over 9 realizations of
both the data distribution and the network initialization. The benchmark triangles illustrate the power law
predictions.

5 Signatures of compression in the temporal evolution of the NTK

Previous empirical studies of compression of uninformative directions in data space in neural nets have
focused on the neural representations of the data layer by layer [5, 8]. Here instead we study how compression
affects the evolution of the NTK as learning takes place, and show how this kernel becomes better suited for
the considered task. We start from the stripe model and extend our analysis to a CNN trained on MNIST,
and find striking similarities between the two cases.

5.1 Neural Tangent Kernel Principal Components

General facts The neural tangent kernel reads Θ(x, z) = ψ(x) · ψ(z) where ψ(x) is a vector of N
components ψW (x) := ∂W f(x) and W is one of the N parameters of the model. The kernel can be ex-
pressed in terms of its eigenvalues and eigenfunctions (Mercer’s Theorem) Θ(x, z) =

∑
λ λ φλ(x)φλ(z). The

functions φλ(·) form an orthogonal basis on the space of functions, and satisfy the integral equation [37]∫
Θ(x, z)φλ(z)ρ(z)dz = λφλ(x) where ρ(·) is the distribution of the data. In general, a kernel is expected to

perform well if the RKHS norm ‖y‖θ of the function y(x) being learnt is small [38]. It writes ‖y‖2θ =
∑
λ
ω2
λ/λ

where ωλ :=
∫
y(x)φλ(x)ρ(x)dx. Thus, a kernel performs better if the large coefficients ωλ in the eigenbasis

of the kernel correspond to large λ. We will argue below that such a trend is enforced when the NTK evolves
by compressing uninformative directions.

In practice, for a finite training set {xµ}pµ=1 of size p, the Gram matrix K is accessible empirically. It
is defined as the p × p matrix of scalar products Kµν = ψ(xµ) · ψ(xν). Diagonalizing it corresponds to
performing Kernel PCA [38], which identifies the principal components in the feature representation ψ(xµ)
of the data: Kµν =

∑
λ̃ λ̃ φ̃λ(xµ)φ̃λ(xν). One has λ̃→ λ and φ̃λ(xν)→ φλ(xν) as p→∞ for a fixed λ. Thus
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the coefficients ωλ can be estimated as ω̃λ := 1
p

∑
µ=1...p φ̃λ(xµ)y(xµ). In the following sections, we drop the

tilde for ease of notation.

Effect of compression on the evolution of the NTK At initialization, for fully connected nets the NTK
is isotropic, and its eigenvectors are spherical harmonics [9]. For a fixed dimension d‖ of the informative space,
as the overall dimension d grows, the value of a given spherical harmonics leads to vanishing information
on the specific components x‖. As a consequence, we expect that even for large λ, φλ(x) contains little
information on the label y(x). It follows that the magnitude of the projected signal ωλ is small in that limit.

By contrast, after learning in the limit Λ ∼ √p → ∞, the output function looses its dependence on the
orthogonal space x⊥. The NTK can then generically be rewritten as:

Θ(x, z) = Θ1(x‖, z‖) + Θ2(x‖, z‖)x⊥ · z⊥ (11)

where the second term comes from the derivative with respect to the first layer of weights (see Appendix D).
For a Gaussian data density ρ considered in this paper, eigenvectors with non-vanishing eigenvalues are then
of two kind: φ1λ(x‖) – the eigenvectors of Θ1 – and φ2λ(x‖)u · x⊥ where φ2λ(x‖) is an eigenvector of Θ2 and
u any non-zero vectors. The null-space of the kernel then corresponds to all functions of the orthogonal
space that are orthogonal to constant or linear functions. However for a finite Λ, we expect the associated
eigenvalues to be small but different from zero.

Two qualitative predictions follow:

◦ The eigenvectors φ1λ only depend on x‖ and are thus generically more informative on the label y(x‖)
than spherical harmonics. It is also true, but to a lesser extent, for the eigenvectors φ2λ(x‖)u · x⊥.
Indeed for Gaussian data, they can be considered as a function of x‖ times a random Gaussian noise.
Overall, we thus expect that for large eigenvalues the mutual information between φλ(x) and y(x) to
increase during learning.

◦ As a consequence, the magnitude of ωλ associated to the top eigenvalues also tends to increase. We
thus expect that the performance of kernel learning using the NTK at the end of training to be superior
to that using the NTK at initialization.
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Figure 9: Performance of CNN trained to classify the parity of MNIST digits (binary class problem) as a
function of the trainset size. The network is trained in the feature learning regime (blue line) using vanilla
gradient descent with momentum, leading to βFeature ≈ 0.5. Before and after training the full kernel (i.e. with
respect to all the parameters) and the kernel of the last layer are computed. These four frozen kernels are
then used in a gradient descent algorithm using an independent trainset of the same size. All the measures
are done 5 times with different initialization seeds and averaged. For the full kernel at initialization (dashed
orange) we find βLazy ≈ 0.3 and consequently βLazy < βFeature.

5.2 Empirical tests

Performance of kernel methods based on the NTK In Fig.3 we test our prediction that kernel
methods based on the NTK obtained at the end of training outperforms the NTK at initialization. We
perform kernel learning using different data for the training set than those used to generate the NTK. We
find that it is indeed the case: in fact, performance is found to be very similar to that of the neural net in the
feature learning regime, except for the largest training set size where it even outperforms it. Note that this
similarity is natural, since the features associated to the NTK contain the the last hidden layer of neurons,
which can represent the network output with the last layer of weights.

We test the generality of this result in Fig.9 using a more modern CNN architecture on the MNIST
data set. This architecture is inspired from MnasNet [39] with 16 convolutional layers. It distinguishes from
MnasNet by the absence of batch-normalization. We again find that kernel methods based on the NTK at
infinite time perform as well as the network in the feature learning regime, and even once again slightly
better for the largest p.

Finally, it is interesting to compare this analysis with the kernel whose features correspond to the last
layer of hidden neurons at the end of training. Training such a kernel simply corresponds to retraining the
last layer of weights while fixing the activity of the last hidden neurons. Interestingly, this kernel performs
well but generally less so than the network itself, as illustrated in Fig.9.

Kernel PCA v.s. labels (Information and projection) We now confirm that such improved perfor-
mance of the NTK corresponds to the top kernel principal components becoming more informative on the
task. As we argued in Section 5.1, we expected this to be the case, in the presence of compression. Specif-
ically, we consider the r largest eigenvalues λmax, . . . λr of the NTK Gram Matrix and their corresponding
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eigenvectors. We first compute the mutual information between a given eigenvector magnitude and the label
I(φλr ; y) – for details on the estimator see Appendix E. This mutual information is small and essentially
independent of r in the range studied for the NTK at initialization; both for the stripe model (Fig.10.a) and
MNIST (Fig.10.c). However, at the end of learning, mutual information has greatly improved in both cases,
a fact that holds true for the NTK and for the kernel obtained from the last layer of hidden neurons.
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Figure 10: Mutual Information I(φλr ; y) between each of the first ten NTK eigenvectors and the output
label for the stripe model (a) and MNIST (c), respectively. The eigenvectors projection on the output

labels ω2
λ =

〈φλr |y〉2
p2 is shown in panels (b) – stripe model – and (d) – MNIST. We show in blue the

results for the NTK at initialization, in orange for the NTK after training in the feature regime and in green
for the principal components of last layer post-activations.

As expected, the magnitude of the projection of each of the first r eigenvectors onto the output labels
ω2
λ = 〈φλr |y〉2/p2 also greatly improves during learning. This effect is striking both for the stripe model

(Fig.10.b) and for MNIST (Fig.10.d). At initialization, that projection does not show a significant trend
with rank within the first 10 eigenvectors. Yet after learning, most of the projection occurs along the first
mode of the NTK alone, with the second mode also showing a sizable projection for MNIST.

Overall, the similarities of these plots between MNIST and the stripe model support that compression
is indeed a key effect characterizing learning for MNIST as well. To study further these similarities, we
focus on the first two eigenvectors and plot data points (different labels appear as different colors) in the
(φλ1(x), φλ2(x)) plane as shown in Fig. 11. As expected, these eigenvectors at initialization have essentially
no information on the output label – the scatter plot looks like Gaussian noise both for the stripe model and
MNIST (left column). By contrast, after learning data of different classes appear as well separated clouds of
points in that plane (central column). Strikingly, performing the same analysis for the kernel obtained from
the last layer of hidden neurons shows that data organize into a smaller manifold, which is approximately one-
dimensional (right column). It is expected in the stripe model, since for Λ→∞ the hidden neurons activity
can only depend on a single variable x1. It is interesting that a similar dimension-reduction appears so clearly
in MNIST as well, suggesting the importance of a nearly-one dimensional manifold in the representation of
the last hidden layer. We have checked that such a one-dimensional structure is not apparent in the effective
dimension of this representation 5.

5Computing the effective dimension (based on the scaling of the distance between points in terms of the number of points
[40]) of that representation leads to deff ≈ 6, possibly coming from the finite width of the nearly one-dimensional manifold
apparent in Fig. 11, bottom right.
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Figure 11: Scatter plot of the first two NTK eigenvectors – φλ1 and φλ2 – for the stripe model (first row)
and MNIST (second row). Colors map class labels. Eigenvectors are computed for the NTK at initialization
(first column) and after training (second column). The last column refers to the last layer post-activation
principal components. These results are consistent with Fig. 10: (1) Before learning, the eigenvectors are not
correlated to the labels, while they are after learning. (2) For the stripe model, only the first eigenvector of
the final kernel contains information on the labels, as expected from panel b) of Fig. 10. (3) Two informative
eigenvectors are necessary to linearly separate the stripe data as illustrated on the top-right panel as well
as on panel b) of Fig. 10. The associated unidimensional representation is expected from the effective data
compression for the stripe model where d‖ = 1. (4) For MNIST, the first two eigenvectors of the final kernel
are not sufficient to classify completely the data as expected from panel d) of Fig. 10, but still suggest
a compression along the uninformative directions. This last point is also motivated by the approximate
unidimensional collapse observed in the bottom-right panel.

6 Conclusion

We have shown that in the presence of d⊥ uninformative dimensions of the input, the weights of a one-
hidden layer neural network become orthogonal to them. For a vanishingly small initialization of the weights
and vanilla gradient descent, this effect is limited by the sample noise of the training set, and its magnitude
is of order Λ ∼ √p. For simple geometries of the boundaries separating labels, this effect increases the
exponent β characterizing learning curves with respect to the lazy training regime (in which the neuron
orientation is nearly frozen). This increase depends on both d⊥ and d. Both for the stripe and cylindrical
model, the observed exponents β are consistent with this prediction, supporting that for these models at
least the main advantage of the feature learning regime is to compress invariant directions.

Next we have argued that such a compression shapes the evolution of the neural tangent kernel during
learning, so that its principal components become more informative and display a larger projection on the
label, effectively reducing the RKHS norm of the function being learnt. As a consequence, using gradient
descent with the frozen NTK at the end of training leads to much better performance than at initialization,
and we observe that it even outperforms the neural net in the feature learning regime. The analysis underlines
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that kernel PCA on the NTK is a valuable tool to characterize the compression of invariants. Overall we find
striking similarities between a one-hidden layer FC network trained on the stripe model and a deep CNN
trained on MNIST, supporting that compression is central to the performance of the latter as well.

One challenge for the future is to classify which conditions on the data can guarantee such an improvement
of the NTK during learning – a question directly connected to the relative performance of lazy training v.s.
feature learning, which appears to depend on the architecture for real data [19].

A second challenge is the development of quantitative models for the compression of other symmetries in
the data, including the invariance of the label toward smooth deformations that characterize images. Is this
compression ultimately responsible for the success of deep learning in beating the curse of dimensionality
? Answering this question presumably requires to focus on more modern architectures, in particular deep
CNNs.
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A Rotation invariance

In this appendix we prove that if we rotate the input of the network it doesn’t affect its performance.

Lemma: For a group G and a G-invariant function f , the gradient of f is G-equivariant:

∇f(D(g)x) = D(g)−T∇f(x) ∀g ∈ G and∀x,
where D is the representation of G acting on the space of inputs x and A−T denotes the inverse transpose
of the matrix A.

Proof The derivative of f in the direction u evaluated in D(g)x is given by

u · ∇f(D(g)x) = lim
h→0

f(D(g)x+ hu)− f(D(g)x)

h
(12)

= lim
h→0

f(x+ hD(g)−1u)− f(x)

h
(13)

= (D(g)−1u) · ∇f(x) = u · (D(g)−T∇f(x)). (14)

Since this formula holds for any direction u, it proves the lemma.

In the context of a neural network, if the loss function of a neural network satisfies L(Dw(g)w,Dx(g)x) =
L(w, x) withDw orthogonal, it is easy to see that the lemma applied to the loss reads∇wL(Dw(g)w,Dx(g)x) =
Dw(g)∇wL(w, x). Here w refers to the weights of the network, whose dynamics is given by ẇ(t) =
−∑µ∇wL(w, xµ), where µ is the training set index. If we act with G on w and on the training set,
the derivative ẇ is transformed in the same way as w. A network initialised to Dw(g)w0 instead of w0

and trained on {Dx(g)xµ}µ instead of {xµ}µ during a time t will thus have its weights equal to Dw(g)w(t)
instead of w(t).

In particular, this discussion holds for a network starting with a fully-connected layer: in this case G is
the orthogonal group, Dx is the orthogonal matrix and Dw is acting on the first weights with an orthogonal
matrix and leaves the rest of the weights invariant.

In case of an initialisation distribution of the weights that satisfies ρ(Dw(g)w) = ρ(w), the expected
performance (averaged over the initialisations) will be independent of the global orientation of the inputs.

B α scan in the stripe model

We illustrate the transition from the feature regime to the lazy regime by considering the single-stripe
model in dimension d = 10 with a training set of size p = 1000. We vary the network scale from α = 10−16 to
α = 108 (see Fig. 12). In the limit α→∞, the test error converges to the one obtained by running the kernel
dynamics with the NTK frozen at initialization, the characteristic time scales as t? ∼ 1/α as expected from
[19] and the global amplification factor equals one. In the opposite limit, α→ 0, the test error converges to a
plateau better than the lazy regime performance, the characteristic time grows logarithmically as discussed
in Section 2.5 and the global amplification factor reaches a plateau.

C Stripe model dynamics

In this section, we give additional details to the computation carried in Section 3.2.1. We consider the
large p limit of the system (5), where it is well approximated by the central-limit theorem. For t � t?, the
dynamics of each neuron is governed by the system

ω̇1 =
β

τ

(
µ1 +

σ1√
p
N1

)

ω̇⊥ =
β

τ

(
µ⊥ +

σ⊥√
p
N⊥

)

ḃ =
β

τ

(
µb +

σb√
p
Nb

)
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Figure 12: On each plot, the dots are obtained by averaging the gradient descent results over 5 different data
realizations and network initialization. Left: Test error vs the network scale α. The horizontal dashed line
correspond to the test error of the frozen initial kernel dynamics, also averaged over 5 realizations. Center:
Characteristic time t? vs the network scale α. Right: Global amplification factor vs the network scale α.
Both the amplification factor at t? and the maximal amplification factor are represented.

up toO(p−1) corrections. The last layer weight is obtained from the constant of motion β2−||ω||2−b2 = const.
We compute the averages µ1, µ⊥ and µb in Appendix C.1 and discuss the asymptotic solution in the limit
p→∞ in Appendix C.2. The finite p corrections and the associated standard deviations σ1, σ⊥ and σb are
considered in Appendix C.3.

C.1 Computation of the averages

We compute the averages µ1, µ⊥ and µb for data distributed according to the standard normal distribu-

tion: ρ(x) = ρ(||x||) = (2π)−d/2 exp
(
− ||x||2 /2

)
. For the bias and the informative weights, we get

µ1 =

∫
dxρ(x)x1y(x1)Θ

[
ω · x√
d

+ b

]

=

∫
dx1ρ(x1)x1y(x1)

1

2

[
1 + erf

(
b
√
d+ ω1x1√

2ω⊥

)]

µb =
√
d

∫
dxρ(x)y(x1)Θ

[
ω · x√
d

+ b

]

=
√
d

∫
dx1ρ(x1)y(x1)

1

2

[
1 + erf

(
b
√
d+ ω1x1√

2ω⊥

)]
.

For the perpendicular weights, we treat each components independently, so that for i > 1:

µi =

∫
dxρ(x)xiy(x1)Θ

[
ω · x√
d

+ b

]

=
sgn(ωi)√

2π

∫
dx1ρ(x1)y(x1)

∫
dx⊥ρ(x⊥)e

− (b
√
d+ω1x1+ω̃⊥x⊥)2

2ω2
i

=
1√
2π

ωi
ω

e−
db2

2ω2

∫
dx1ρ(x1)y

(
ω⊥
ω
x1 −

√
dbω1

ω2

)

where we used the notation ω̃⊥ =
√
ω2
⊥ − ω2

i . Using the definition of λ and ζ1, one thus recovers the system
(6).
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C.2 Infinite p

Expectation values in the limit |λ| → ∞ In the limit λ → ±∞, the function gλ becomes a Heaviside

function whose direction depends on the sign of λ: gλ(x)
λ→±∞−−−−−→ Θ(±x). Consequently, the remaining

integrals over the x1 distribution in Appendix C.1 simplifies:

〈y(x1)x1 gλ(x1 − ζ1)〉x1

λ→±∞−−−−−→ 〈y(x1)x1 Θ (±(x1 − ζ1))〉x1
= C±1 (ζ1)

〈y(x1) gλ(x1 − ζ1)〉x1

λ→±∞−−−−−→ 〈y(x1) Θ (±(x1 − ζ1))〉x1
= C±b (ζ1)

〈
y

(
ω⊥
ω
x1 +

ω2
1

ω2
ζ1

)〉

x1

λ→±∞−−−−−→ y(ζ1) = C⊥(ζ1)

Asymptotic solutions We assume that the neuron vector z is set constant and equal to z? = (z?, 0). The
dynamics of ω1, β and b thus no longer depend on the perpendicular weights. In the asymptotic regime, the
sign of ω1β is given by the sign of the constant C±1 (z?). In particular, using the constant of motion and the

definition b = −ω1z
?/
√
d, we get β = sign

(
C±1 (z?)

)√
1 + z?2/dω1, where we neglected the order one value

of the constant of motion. Finally, one finds that the informative weights diverge as

ω1 ∼ et/τ
?

, with τ? =
τ

|C±1 (z?)|
√

1 + z?2/d
. (15)

Inserting the above relations into the perpendicular weights dynamics yields

ω̇⊥ = sign
[
C±1 (z?)ω1y(z?)

] √1 + z?2/d

2πτ
e−

z?2

2 ω⊥. (16)

Hence, if sign
[
C±1 (z?)ω1y(z?)

]
= −1, the perpendicular weights all vanish exponentially. However, if

sign
[
C±1 (z?)ω1y(z?)

]
= +1, they all diverge exponentially with a time constant

τ?⊥ =
2πτ√

1 + z?2/d
e
z?2

2

which still leads to a diverging amplification factor if τ?⊥ > τ?.

C.3 Finite p

We assess the finite p corrections of the asymptotic solutions given in Appendix C.2. Since the bias
and the informative weights are divergent, they are not sensitive to finite p corrections. However, for the
perpendicular weights, it is essential to compute the standard deviations. Since the expectations have been
computed previously, it is sufficient to look at the second non-central moments. For simplicity, we directly
consider the limit |λ| → ∞, so that for i > 1:

µ2
i + σ2

i =

∫
dxρ(x)x2iΘ

[
ω · x√
d

+ b

]
λ→±∞−−−−−→

∫
dx1ρ(x1)Θ [±(x1 − z?)] = D±⊥(ζ1).

For each perpendicular direction, a random variable of variance one quantifies the discrepancy between the
average µi and the exact sum over the dataset. Its value depends on the location of the ReLU hyperplane. In
particular, once the considered neuron has reached its fixed point z?, all random variables can be arranged
into the constant perpendicular vector N⊥(z?).

D NTK decomposition and eigenfunctions

In section 5.1 we argued that, for the setting considered in this paper, the NTK can be decomposed as

Θ(x, z) = Θ1(x‖, z‖) + Θ2(x‖, z‖)x⊥ · z⊥. (17)

In this appendix, we look at this decomposition more in details and derive the eigenfunctions functional
form.
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NTK decomposition Recall the architecture considered in this paper,

f(x) =
1

h

h∑

n=1

βn σ

(
ωn · x√

d
+ bn

)
.

For this architecture, the NTK reads

Θ(x, z) =
1

h2

h∑

n=1

[
σ

(
ωn · x√

d
+ bn

)
σ

(
ωn · z√

d
+ bn

)
+ β2

nσ
′
(
ωn · x√

d
+ bn

)
σ′
(
ωn · z√

d
+ bn

)(
1 +

x · z
d

)]
.

If the input space has only d‖ informative directions, after feature learning (Λ → ∞), the output function
will only depend on x‖. This is because ωn · x→ ωn,‖ · x‖ and the NTK can be rewritten as

Θ(x, z) =
1

h2

h∑

n=1

[
σ

(
ωn,‖ · x‖√

d
+ bn

)
σ

(
ωn,‖ · z‖√

d
+ bn

)

+ β2
nσ
′
(
ωn,‖ · x‖√

d
+ bn

)
σ′
(
ωn,‖ · z‖√

d
+ bn

)(
1 +

x‖ · z‖
d

+
x⊥ · z⊥

d

)]
,

where one can readily identify Θ1(x‖, z‖) and Θ2(x‖, z‖).

NTK eigenfunctions Eigenfunctions satisfy the integral equation
∫

Θ(x, z)φλ(z)ρ(z)dz = λφλ(x),

where ρ(·) is the distribution of the data. We assume here that ρ(x) = ρ‖(x‖)ρ⊥(x⊥) = ρ‖(x‖)Πiρ⊥(x⊥,i)
with zero mean and the same variance in all directions. If we plug in the decomposition (17), we notice that
eigenvectors are of two kinds, they are either eigenvectors of Θ1(x‖, z‖) or of Θ2(x‖, z‖)x⊥ · z⊥ – i.e. they
give zero when the other operator acts on them. The ones coming from Θ1 are solutions of

∫
Θ1(x‖, z‖)φ

1
λ(z)ρ(z)dz = λφ1λ(x).

Given that the l.h.s. only depends on x‖, we have φ1λ(x) = φ1λ(x‖). Integrating out z⊥ we get
∫

Θ1(x‖, z‖)φ
1
λ(z‖)ρ(z‖)dz‖ = λφ1λ(x‖).

The second kind of eigenvectors satisfy
∫

Θ2(x‖, z‖)x⊥ · z⊥φ2λ(z)ρ(z)dz = λφ2λ(x).

Notice that x⊥ can be moved out of the integral. Consequently, eigenfunctions can only linearly depend on
the perpendicular component – i.e. φ2λ(x) = φ2λ(x‖)u · x⊥. The integral equation reads

(∫
Θ2(x‖, z‖)φ

2
λ(z‖)ρ(z‖)dz‖

)
(u · x⊥)

∫
z2⊥ρ(z⊥)dz⊥ = λφ2λ(x‖)u · x⊥,

where u can be any non-zero vector. To back what we stated previously – i.e. that eigenvectors are either of
the two kinds – we show that no other eigenvector, different from linear combinations of φ1λ and φ2λ, exists.
Assume there exists φ∗λ(x) 6= aφ1λ1

(x) + bφ2λ2
(x), this would solve

∫ [
Θ1(x‖, z‖) + Θ2(x‖, z‖)x⊥ · z⊥

]
φ∗λ(z)ρ(z)dz = λφ∗λ(x)

∫
Θ1(x‖, z‖)φ

∗
λ(z)ρ(z)dz +

∫
Θ2(x‖, z‖)x⊥ · z⊥φ∗λ(z)ρ(z)dz = λφ∗λ(x)

λ1φ
1
λ1

(x) + λ2φ
2
λ2

(x) = λφ∗λ(x),

resulting in a contradiction.
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E Mutual Information Estimator

We propose a mutual information estimator Î(x; y) that exploits the information we know about the
binary labels distribution P (y):

P (y = +) = P (y = −) =
1

2
.

The variable x is continuous and can live in high dimension. We define

q+ =
P (x|y = +)

2P (x)
= P (y = +|x), q− =

P (x|y = −)

2P (x)
= P (y = −|x).

We recall the definition of differential entropy for continuous variables,

H(x) = −
∫
ddxP (x) logP (x)

Given that the mutual information can be expressed I(x; y) = H(x)−H(x|y), we compute the conditional
entropy knowing P (y) as6

H(x|y) = −1

2

∫
ddx P (x|y = +) logP (x|y = +)− 1

2

∫
ddx P (x|y = −) logP (x|y = −)

= −
∫
ddx P (x)q+ log(2P (x)q+)−

∫
ddx P (x)q− log(2P (x)q−)

= −
∫
ddx P (x)(q+ + q−) log(2P (x))−

∫
ddx P (x)

[
q+ log(q+) + q− log(q−)

]

= H(x)− 1− Ex
[
q+ log(q+) + q− log(q−)

]
.

Finally, the mutual information is given by

I(x; y) = H(x)−H(x|y)

= 1 + Ex
[
q+ log(q+) + q− log(q−)

]
.

We find the following estimator

Î(x; y) = 1 +
1

p

p∑

i=1

q̂+(xi) log q̂+(xi) + q̂−(xi) log q̂−(xi)

= 1− 1

p

p∑

i=1

h2(q̂+(xi)),

where h2(·) is the binary entropy function7.
We notice that we can rewrite

P (y|x) =
P (x|y)

2
∑
y P (x|y)P (y)

=
P (x|y)

P (x|y = +) + P (x|y = −)
,

hence the MI estimation reduces to estimating P (x|y).
At this stage we propose the following approximation: suppose that P (x|y) is uniform in the ball con-

taining the k nearest neighbors of x which are labelled y, i.e.8

P (x|y) ∼ r−dy (xi).

6All the logarithms of this section are computed in base 2.
7h2(x) = −x log x− (1− x) log(1− x) .
8The estimation depends on the value of k which is omitted to simplify the notation. For the estimations in this paper we

use k = 5.
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The estimation of q̂+ finally reduces to

q̂+(xi) =
r−d+ (xi)

r−d+ (xi) + r−d− (xi)
=

1

1 +
(
r+(xi)
r−(xi)

)d (18)

q̂−(xi) = 1− q̂+(xi).

We tested the estimator on different datasets and identified two main flaws:

◦ For large d, the estimator gets affected by the curse of dimensionality, distances between data-points
become all similar to each other. As a result, the q̂+ estimator gets biased towards 1/2.

◦ If x lives on a manifold of dimension lower than the one of the embedding space, the use of d in Eq. (18)
– instead of the effective local dimension around xi – biases the estimator towards its extrema.

Considering we employ the estimator only in d = 1, we skip the discussion on the possible ways to correct
these flaws.
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Abstract

Understanding why deep nets can classify data in large dimensions remains a chal-
lenge. It has been proposed that they do so by becoming stable to diffeomorphisms,
yet existing empirical measurements support that it is often not the case. We revisit
this question by defining a maximum-entropy distribution on diffeomorphisms, that
allows to study typical diffeomorphisms of a given norm. We confirm that stability
toward diffeomorphisms does not strongly correlate to performance on benchmark
data sets of images. By contrast, we find that the stability toward diffeomorphisms
relative to that of generic transformations Rf correlates remarkably with the test
error εt. It is of order unity at initialization but decreases by several decades during
training for state-of-the-art architectures. For CIFAR10 and 15 known architectures
we find εt ≈ 0.2

√
Rf , suggesting that obtaining a smallRf is important to achieve

good performance. We study how Rf depends on the size of the training set and
compare it to a simple model of invariant learning.

1 Introduction

Deep learning algorithms LeCun et al. (2015) are now remarkably successful at a wide range of
tasks Amodei et al. (2016); Huval et al. (2015); Mnih et al. (2013); Shi et al. (2016); Silver et al.
(2017). Yet, understanding how they can classify data in large dimensions remains a challenge. In
particular, the curse of dimensionality associated with the geometry of space in large dimension
prohibits learning in a generic setting Luxburg and Bousquet (2004). If high-dimensional data can be
learnt, then they must be highly structured.

A popular idea is that during training, hidden layers of neurons learn a representation Le (2013) that
is insensitive to aspects of the data unrelated to the task, effectively reducing the input dimension and
making the problem tractable Ansuini et al. (2019); Recanatesi et al. (2019); Shwartz-Ziv and Tishby
(2017). Several quantities have been introduced to study this effect empirically. It includes (i) the
mutual information between the hidden and visible layers of neurons Saxe et al. (2019); Shwartz-Ziv
and Tishby (2017), (ii) the intrinsic dimension of the neural representation of the data Ansuini et al.
(2019); Recanatesi et al. (2019) and (iii) the projection of the label of the data on the main features of
the network Kopitkov and Indelman (2020); Oymak et al. (2019); Paccolat et al. (2021a), the latter
being defined from the top eigenvectors of the Gram matrix of the neural tangent kernel (NTK) Jacot
et al. (2018). All these measures support that the neuronal representation of the data indeed becomes
well-suited to the task. Yet, they are agnostic to the nature of what varies in the data that need not
being represented by hidden neurons, and thus do not specify what it is.

Recently, there has been a considerable effort to understand the benefits of learning features for one-
hidden-layer fully connected nets. Learning features can occur and improve performance when the
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true function is highly anisotropic, in the sense that it depends only on a linear subspace of the input
space Bach (2017); Chizat and Bach (2020); Ghorbani et al. (2019, 2020); Paccolat et al. (2021a);
Refinetti et al. (2021); Yehudai and Shamir (2019). For image classification, such an anisotropy would
occur for example if pixels on the edge of the image are unrelated to the task. Yet, fully-connected
nets (unlike CNNs) acting on images tend to perform best in training regimes where features are not
learnt Geiger et al. (2021, 2020); Lee et al. (2020), suggesting that such a linear invariance in the data
is not central to the success of deep nets.

Instead, it has been proposed that images can be classified in high dimensions because classes
are invariant to smooth deformations or diffeomorphisms of small magnitude Bruna and Mallat
(2013); Mallat (2016). Specifically, Mallat and Bruna could handcraft convolution networks, the
scattering transforms, that perform well and are stable to smooth transformations, in the sense that
‖f(x)− f(τx)‖ is small if the norm of the diffeomorphism τ is small too. They hypothesized that
during training deep nets learn to become stable and thus less sensitive to these deformations, thus
improving performance. More recent works generalize this approach to more common CNNs and
discuss stability at initialization Bietti and Mairal (2019a,b). Interestingly, enforcing such a stability
can improve performance Kayhan and Gemert (2020).

Answering if deep nets become more stable to smooth deformations when trained and quantifying
how it affects performance remains a challenge. Recent empirical results revealed that small shifts of
images can change the output a lot Azulay and Weiss (2018); Dieleman et al. (2016); Zhang (2019),
in apparent contradiction with that hypothesis. Yet in these works, image transformations (i) led
to images whose statistics were very different from that of the training set or (ii) were cropping
the image, thus are not diffeophormisms. In Ruderman et al. (2018), a class of diffeomorphisms
(low-pass filter in spatial frequencies) was introduced to show that stability toward them can improve
during training, especially in architectures where pooling layers are absent. Yet, these studies do
not address how stability affects performance, and how it depends on the size of the training set. To
quantify these properties and to find robust empirical behaviors across architectures, we will argue
that the evolution of stability toward smooth deformations needs to be compared relatively to that of
any deformation, which turns out to vary significantly during training.

Note that in the context of adversarial robustness, attacks that are geometric transformations of small
norm that change the label have been studied Alaifari et al. (2018); Alcorn et al. (2019); Athalye et al.
(2018); Engstrom et al. (2019); Fawzi and Frossard (2015); Kanbak et al. (2018); Xiao et al. (2018).
These works differ for the literature above and from out study below in the sense that they consider
worst-case perturbations instead of typical ones.

1.1 Our Contributions

◦ We introduce a maximum entropy distribution of diffeomorphisms, that allow us to generate
typical diffeomorphisms of controlled norm. Their amplitude is governed by a "temperature"
parameter T .

◦ We define the relative stability to diffeomorphisms index Rf that characterizes the square
magnitude of the variation of the output function f with respect to the input when it is
transformed along a diffeomorphism, relatively to that of a random transformation of the
same amplitude. It is averaged on the test set as well as on the ensemble of diffeomorphisms
considered.

◦ We find that at initialization, Rf is close to unity for various data sets and architectures,
indicating that initially the output is as sensitive to smooth deformations as it is to random
perturbations of the image.

◦ Our central result is that after training, Rf correlates very strongly with the test error εt:
during training, Rf is reduced by several decades in current State Of The Art (SOTA) archi-
tectures on four benchmark datasets including MNIST Lecun et al. (1998), FashionMNIST
Xiao et al. (2017), CIFAR-10 Krizhevsky (2009) and ImageNet Deng et al. (2009). For more
primitive architectures (whose test error is higher) such as fully connected nets or simple
CNNs, Rf remains of order unity. For CIFAR10 we study 15 known architectures and find
empirically that εt ≈ 0.2

√
Rf .

◦ Rf decreases with the size of the training set P . We compare it to an inverse power 1/P
expected in simple models of invariant learning Paccolat et al. (2021a).
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The library implementing diffeomorphisms on images is available online at github.com/pcsl-
epfl/diffeomorphism.
The code for training neural nets can be found at github.com/leonardopetrini/diffeo-sota and the
corresponding pre-trained models at doi.org/10.5281/zenodo.5589870.

2 Maximum-entropy model of diffeomorphisms

2.1 Definition of maximum entropy model

We consider the case where the input vector x is an image. It can be thought as a function x(s)
describing intensity in position s = (u, v) ∈ [0, 1]2, where u and v are the horizontal and vertical
coordinates. To simplify notations we consider a single channel, in which case x(s) is a scalar
(but our analysis holds for colored images as well). We denote by τx the image deformed by τ ,
i.e. [τx](s) = x(s − τ(s)). τ(s) is a vector field of components (τu(s), τv(s)). The deformation
amplitude is measured by the norm

‖∇τ‖2 =

∫

[0,1]2
((∇τu)2 + (∇τv)2)dudv. (1)

To test the stability of deep nets toward diffeomorphisms, we seek to build typical diffeomorphisms
of controlled norm ‖∇τ‖. We thus consider the distribution over diffeomorphisms that maximizes
the entropy with a norm constraint. It can be solved by introducing a Lagrange multiplier T and by
decomposing these fields on their Fourier components, see e.g. Kardar (2007) or Appendix A. In this
canonical ensemble, one finds that τu and τv are independent with identical statistics. For the picture
frame not to be deformed, we impose fixed boundary conditions: τ = 0 if u = 0, 1 or v = 0, 1. One
then obtains:

τu =
∑

i,j∈N+

Cij sin(iπu) sin(jπv) (2)

where the Cij are Gaussian variables of zero mean and variance 〈C2
ij〉 = T/(i2 + j2). If the picture

is made of n× n pixels, the result is identical except that the sum runs on 0 < i, j ≤ n. For large n,
the norm then reads ‖∇τ‖2 = (π2/2)n2T , and is dominated by high spatial frequency modes. It
is useful to add another parameter c to cut-off the effect of high spatial frequencies, which can be
simply done by constraining the sum in Eq.2 to i2 + j2 ≤ c2, one then has ‖∇τ‖2 = (π3/8) c2T .

Once τ is generated, pixels are displaced to random positions. A new pixelated image can then be
obtained using standard interpolation methods. We use two interpolations, Gaussian and bi-linear1,
as described in Appendix C. As we shall see below, this choice does not affect our result as long as
the diffeomorphism induced a displacement of order of the pixel size, or larger. Examples are shown
in Fig.1 as a function of T and c.

2.2 Phase diagram of acceptable diffeomorphisms

Diffeomorphisms are bijective, which is not the case for our transformations if T is too large. When
this condition breaks down, a single domain of the picture can break into several pieces, as apparent
in Fig.1. It can be expressed as a condition on ∇τ that must be satisfied in every point in space
Lowe (2004), as recalled in Appendix B. This is satisfied locally with high probability if ‖τ‖2 � 1,
corresponding to T � (8/π3)/c2. In Appendix, we extract empirically a curve of similar form in the
(T, c) plane at which a diffeomorphism is obtained with probability at least 1/2 . For much smaller T ,
diffeomorphisms are obtained almost surely.

Finally, for diffeomorphisms to have noticeable consequences, their associated displacement must
be of the order of magnitude of the pixel size. Defining δ2 as the average square norm of the pixel
displacement at the center of the image in the unit of pixel size, it is straightforward to obtain from
Eq.2 that asymptotically for large c (cf. Appendix B for the derivation),

δ2 =
π

4
n2T ln(c). (3)

The line δ = 1/2 is indicated in Fig.1, using empirical measurements that add pre-asymptotic terms
to Eq.3. Overall, the green region corresponds to transformations that (i) are diffeomorphisms with
high probability and (ii) produce significant displacements at least of the order of the pixel size.

1Throughout the paper, if not specified otherwise, bi-linear interpolation is employed.
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100 101 102

cut-off c

10−6

10−5

10−4

10−3

10−2

10−1

T

Average pixel displacement δ = 1

T = 1e− 05, c = 3

T = 7e− 06, c = 10

T = 6e− 06, c = 30

relevant diffeo region

T = 4e− 04, c = 3

T = 1e− 05, c = 3

T = 1e− 02, c = 3

T = 8e− 06, c = 15

T = 4e− 04, c = 15

T = 6e− 06, c = 100

T = 6e− 04, c = 100

Figure 1: Samples of max-
entropy diffeomorphisms
for different temperatures
T and high-frequency cut-
offs c for an ImageNet data-
point of resolution 320 ×
320. The green region cor-
responds to well behav-
ing diffeomorphisms (see
Section 2.2). The dashed
line corresponds to δ = 1.
The colored points on the
line are those we focus our
study in Section 3.

3 Measuring the relative stability to diffeomorphisms

Relative stability to diffeomorphisms To quantify how a deep net f learns to become less sen-
sitive to diffeomorphisms than to generic data transformations, we define the relative stability to
diffeomorphisms Rf as:

Rf =
〈‖f(τx)− f(x)‖2〉x,τ
〈‖f(x+ η)− f(x)‖2〉x,η

. (4)

where the notation 〈〉y can indicate alternatively the mean or the median with respect to the distribution
of y. In the numerator, this operation is made over the test set and over the ensemble of diffeomor-
phisms of parameters (T, c) (on which Rf implicitly depends). In the denominator, the average is on
the test set and on the vectors η sampled uniformly on the sphere of radius ‖η‖ = 〈‖τx− x‖〉x,τ . An
illustration of what Rf captures is shown in Fig.2. In the main text, we consider median quantities,
as they reflect better the typical values of distribution. In Appendix E.3 we show that our results for
mean quantities, for which our conclusions also apply.

Dependence of Rf on the diffeomorphism magnitude Ideally, Rf could be defined for infinites-
imal transformations, as it would then characterize the magnitude of the gradient of f along smooth
deformations of the images, normalized by the magnitude of the gradient in random directions. How-
ever, infinitesimal diffeomorphisms move the image much less than the pixel size, and their definition
thus depends significantly on the interpolation method used. It is illustrated in the left panels of Fig.3,
showing the dependence of Rf in terms of the diffeomorphism magnitude (here characterised by the
mean displacement magnitude at the center of the image δ) for several interpolation methods. We
do see that Rf becomes independent of the interpolation when δ becomes of order unity. In what
follows we thus focus on Rf (δ = 1), which we denote Rf .

SOTA architectures become relatively stable to diffeomorphisms during training, but are not
at initialization The central panels of Fig.3 show Rf at initialization (shaded), and after training
(full) for two SOTA architectures on four benchmark data sets. The first key result is that, at initial-
ization, these architectures are as sensitive to diffeomorphisms as they are to random transformations.
Relative stability to diffeomorphisms at initialization (guaranteed theoretically in some cases Bietti
and Mairal (2019a,b)) thus does not appear to be indicative of successful architectures.
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data-space

r

x+η

x

x τx

Figure 2: Illustrative drawing of the data-space Rn×n around a data-point x (black point). We
focus here on perturbations of fixed magnitude – i.e. on the sphere of radius r centered in x. The
intersection between the images of x transformed via typical diffeomorphisms and the sphere is
represented in dashed green. By contrast, the red point is an example of random transformation. For
large n, it is equivalent to adding an i.i.d. Gaussian noise to all the pixel values of x. Figures on the
right illustrate these transformations, the color of the dot labelling them corresponds to that of the
left illustration. The relative stability to diffeomorphisms Rf characterizes how a net f varies in the
green directions, normalized by random ones.

By contrast, for these SOTA architectures, relative stability toward diffeomorphisms builds up during
training on all the data sets probed. It is a significant effect, with values of Rf after training generally
found in the range Rf ∈ [10−2, 10−1].

Standard data augmentation techniques (translations, crops, and horizontal flips) are employed for
training. However, the results we find only mildly depend on using such techniques, see Fig.12 in
Appendix.

Learning relative stability to diffeos requires large training sets How many data are needed to
learn relative stability toward diffeomorphisms? To answer this question, newly initialized networks
are trained on different training-sets of size P . Rf is then measured for CIFAR10, as indicated in
the right panels of Fig.3. Neural nets need a certain number of training points (P ∼ 103) in order to
become relatively stable toward smooth deformations. Past that point, Rf monotonically decreases
with P . In a range of P , this decrease is approximately compatible with the an inverse behavior
Rf ∼ 1/P found in the simple model of Section 6. Additional results for MNIST and FashionMNIST
can be found in Fig.13, Appendix E.3.

Simple architectures do not become relatively stable to diffeomorphisms To test the universal-
ity of these results, we focus on two simple architectures: (i) a 4-hidden-layer fully connected (FC)
network (FullConn-L4) where each hidden layer has 64 neurons and (ii) LeNet LeCun et al. (1989)
that consists of two convolutional layers followed by local max-pooling and three fully-connected
layers.

Measurements of Rf for these networks are shown in Fig.4. For the FC net, Rf ≈ 1 at initialization
(as observed for SOTA nets) but grows after training on the full data set, showing that FC nets do not
learn to become relatively stable to smooth deformations. It is consistent with the modest evolution of
Rf (P ) with P , suggesting that huge training sets would be required to obtain Rf < 1. The situation
is similar for the primitive CNN LeNet, which only becomes slightly insensitive (Rf ≈ 0.6) in a
single data set (CIFAR10), and otherwise remains larger than unity.

Layers’ relative stability monotonically increases with depth Up to this point, we measured the
relative stability of the output function for any given architecture. We now study how relative stability
builds up as the input data propagate through the hidden layers. In Fig.14 of Appendix E.3, we report
Rf as a function of depth for both simple and deep nets. What we observe is Rf0 ≈ 1 independently

2With the only exception of the ImageNet results (central panel) in which only one trained network is
considered.
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reduced
sensitivity
to diffeo

Figure 3: Relative stability to diffeomorphisms Rf for SOTA architectures. Left panels: Rf vs.
diffeomorphism displacement magnitude δ at initialization (dashed lines) and after training (full lines)
on the full data set of CIFAR10 (P = 50k) for several cut-off parameters c and two interpolations
methods, as indicated in legend. ResNet is shown on the top and EfficientNet on the bottom. Central
panels: Rf (δ = 1) for four different data-sets (x−axis) and two different architectures at initialization
(shaded histograms) and after training (full histograms). The values of c (in different colors) are
(3, 5, 15) and (3, 10, 30) for the first three data-sets and ImageNet, respectively. ResNet18 and
EfficientNetB0 are employed for MNIST, F-MNIST and CIFAR10, ResNet101 and EfficientNetB2
for ImageNet. Right panels: Rf (δ = 1) vs. training set size P at c = 3 for ResNet18 (top) and
EfficientNetB0 (bottom) trained on CIFAR10. The value of Rf0 at initialization is indicated with
dashed lines. The triangles indicate the predicted slope Rf ∼ P−1 in a simple model of invariant
learning, see Section 6. Statistics: Each point in the graphs2 is obtained by training 16 differently
initialized networks on 16 different subsets of the data-sets; each network is then probed with 500
test samples in order to measure stability to diffeomorphisms and Gaussian noise. The resulting Rf
is obtained by log-averaging the results from single realizations.

Figure 4: Relative stability to diffeomorphisms Rf in primitive architectures. Top panels: Rf at
initialization (shaded) or for trained nets (full) for a fully connected net (left) or a primitive CNN
(right) at P = 50k. Bottom panels: Rf (P ) for c = 3 and different data sets as indicated in legend.
Statistics: see caption in the previous figure.

of depth at initialization, and monotonically decreases with depth after training. Overall, the gain
in relative stability appears to be well-spread through the net, as is also found for stability alone
Ruderman et al. (2018).
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4 Relative stability to diffeomorphisms indicates performance

Thus, SOTA architectures appear to become relatively stable to diffeomorphisms after training,
unlike primitive architectures. This observation suggests that high performance requires such a
relative stability to build up. To test further this hypothesis, we select a set of architectures that
have been relevant in the state of the art progress over the past decade; we systematically train them
in order to compare Rf to their test error εt. Apart from fully connected nets, we consider the
already cited LeNet (5 layers and ≈ 60k parameters); then AlexNet Krizhevsky et al. (2012) and
VGG Simonyan and Zisserman (2015), deeper (8-19 layers) and highly over-parametrized (10-20M
(million) params.) versions of the latter. We introduce batch-normalization in VGGs and skip
connections with ResNets. Finally, we go to EfficientNets, that have all the advancements introduced
in previous models and achieve SOTA performance with a relatively small number of parameters
(<10M); this is accomplished by designing an efficient small network and properly scaling it up.
Further details about these architectures can be found in Table 1, Appendix E.2.

The results are shown in Fig.5. The correlation between Rf and εt is remarkably high (corr. coeff.3 :
0.97), suggesting that generating low relative sensitivity to diffeomorphisms Rf is important to obtain
good performance. In Appendix E.3 we also report how changing the train set size P affects the
position of a network in the (εt, Rf ) plane, for the four architectures considered in the previous
section (Fig.18). We also show that our results are robust to changes of δ, c (Fig.21) and data sets
(Fig.20).

What architectures enable a low Rf value? The latter can be obtained with skip connections or not,
and for quite different depths as indicated in Fig.5. Also, the same architecture (EfficientNetB0)
trained by transfer learning from ImageNet – instead of directly on CIFAR10 – shows a large
improvement both in performance and in diffeomorphisms invariance. Clearly, Rf is much better
predicted by εt than by the specific features of the architecture indicated in Fig.5.

nets performance vs relative diffeo stability
CIFAR10 FullConnL2

FullConnL4
FullConnL6

VGG11

AlexNet

VGG11bn

LeNet

EfficientNetB0

VGG19bnVGG16bn

ResNet18
ResNet34

ResNet50

EfficientNetB0

EfficientNetB2

number of layers
2          50

batch-norm

skip connections

transfer learning from ImageNet

10%

3%

30%

Figure 5: Test error εt vs. relative stability to diffeomorphisms Rf computed at δ = 1 and c = 3
for common architectures when trained on the full 10-classes CIFAR10 dataset (P = 50k) with SGD
and the cross-entropy loss; the EfficientNets achieving the best performance are trained by transfer
learning from ImageNet (?) – more details on the training procedures can be found in Appendix E.1.
The color scale indicates depth, and the symbols the presence of batch-norm (�) and skip connections
(†). Dashed grey line: power low fit εt ≈ 0.2

√
Rf . Rf strongly correlates to εt, much less so to

depth or the presence of skip connections. Statistics: Each point is obtained by training 5 differently
initialized networks; each network is then probed with 500 test samples in order to measure Rf . The
results are obtained by log-averaging over single realizations. Error bars – omitted here – are shown
in Fig.19, Appendix E.3.
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5 Stability toward diffeomorphisms vs. noise

The relative stability to diffeomorphisms Rf can be written as Rf = Df/Gf where Gf characterizes
the stability with respect to additive noise and Df the stability toward diffeomorphisms:

Gf =
〈‖f(x+ η)− f(x)‖2〉x,η
〈‖f(x)− f(z)‖2〉x,z

, Df =
〈‖f(τx)− f(x)‖2〉x,τ
〈‖f(x)− f(z)‖2〉x,z

. (5)

Here, we chose to normalize these stabilities with the variation of f over the test set (to which both x
and z belong), and η is a random noise whose magnitude is prescribed as above. Stability toward
additive noise has been studied previously in fully connected architectures Novak et al. (2018) and
for CNNs as a function of spatial frequency in Tsuzuku and Sato (2019); Yin et al. (2019).

The decrease of Rf with growing training set size P could thus be due to an increase in the stability
toward diffeomorphisms (i.e. Df decreasing with P ) or a decrease of stability toward noise (Gf
increasing with P ). To test these possibilities, we show in Fig.6 Gf (P ), Df (P ) and Rf (P ) for
MNIST, Fashion MNIST and CIFAR10 for two SOTA architectures. The central results are that (i)
stability toward noise is always reduced for larger training sets. This observation is natural: when
more data needs to be fitted, the function becomes rougher. (ii) Stability toward diffeomorphisms
does not behave universally: it can increase with P or decrease depending on the architecture and the
training set. Additionally, Gf and Df alone show a much smaller correlation with performance than
Rf– see Figs.15,16,17 in Appendix E.3.

Figure 6: Stability toward Gaussian noise (Gf ) and diffeomorphisms (Df ) alone, and the rela-
tive stability Rf . Columns correspond to different data-sets (MNIST, FashionMNIST and CIFAR10)
and rows to architectures (ResNet18 and EfficientNetB0). Each panel reports Gf (blue), Df (orange)
and Rf (green) as a function of P and for different cut-off values c, as indicated in the legend.
Statistics: cf. caption in Fig.3. Error bars – omitted here – are shown in Fig.22, Appendix E.3.

6 A minimal model for learning invariants

In this section, we discuss the simplest model of invariance in data where stability to transformation
builds up, that can be compared with our observations of Rf above. Specifically, we consider the
"stripe" model Paccolat et al. (2021b), corresponding to a binary classification task for Gaussian-
distributed data points x = (x‖, x⊥) where the label function depends only on one direction in data
space, namely y(x) = y(x‖). Layers of y = +1 and y = −1 regions alternate along the direction
x‖, separated by parallel planes. Hence, the data present d − 1 invariant directions in input-space
denoted by x⊥ as illustrated in Fig.7-left.

When this model is learnt by a one-hidden-layer fully connected net, the first layer of weights can be
shown to align with the informative direction Paccolat et al. (2021a). The projection of these weights

3Correlation coefficient: Cov(log εt,logRf )√
Var(log εt)Var(logRf )

.
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Figure 7: Left: example of the
stripe model. Dots are data-
points, the vertical lines rep-
resent the decision boundary
and the color the class label.
Right: Relative stability Rf
for the stripe model in d = 30.
The slope of the curve is −1,
as predicted.

on the orthogonal space vanishes with the training set size P as 1/
√
P , an effect induced by the

sampling noise associated to finite training sets.

In this model, Rf can be defined as:

Rf =
〈‖f(x‖, x⊥ + ν)− f(x‖, x⊥)‖2〉x,ν

〈‖f(x+ η)− f(x)‖2〉x,η
, (6)

where we made explicit the dependence of f on the two linear subspaces. Here, the isotropic noise
ν is added only in the invariant directions. Again, we impose ‖η‖ = ‖ν‖. Rf (P ) is shown in Fig.
7-right. We observe that Rf (P ) ∼ P−1, as expected from the weight alignment mentioned above.

Interestingly, Fig.3 for CIFAR10 and SOTA architectures support that the 1/P behavior is compatible
with the observations for some range of P . In Appendix E.3, Fig.13, we show analogous results for
MNIST and Fashion-MNIST. We observe the 1/P power-law scaling for ResNets. It suggests that
for these architectures, learning to become invariant to diffeomorphisms may be limited by a naive
measure of sampling noise as well. By contrast for EfficientNets, in which the decrease in Rf is
more limited, a 1/P behavior cannot be identified.

7 Discussion

A common belief is that stability to random noise (small Gf ) and to diffeomorphisms (small Df )
are desirable properties of neural nets. Its underlying assumption is that the true data label mildly
depends on such transformations when they are small. Our observations suggest an alternative view:

1. Figs.6,16: better predictors are more sensitive to small perturbations in input space.

2. As a consequence, the notion that predictors are especially insensitive to diffeomorphisms is
not captured by stability alone, but rather by the relative stability Rf = Df/Gf .

3. We propose the following interpretation of Fig.5: to perform well, the predictor must build
large gradients in input space near the decision boundary – leading to a large Gf overall.
Networks that are relatively insensitive to diffeomorphisms (small Rf ) can discover with
less data that strong gradients must be there and generalize them to larger regions of input
space, improving performance and increasing Gf .

This last point can be illustrated in the simple model of Section 6, see Fig.7-left panel. Imagine
two data points of different labels falling close to the – e.g. – left true decision boundary. These
two points can be far from each other if their orthogonal coordinates differ. Yet, if Rf = 0 (now
defined in Eq.6), then the output does not depend on the orthogonal coordinates, and it will need to
build a strong gradient – in input space – along the parallel coordinate to fit these two data. This
strong gradient will exist throughout that entire decision boundary, improving performance but also
increasing Gf . Instead, if Rf = 1, fitting these two data will not lead to a strong gradient, since they
can be far from each other in input space. Beyond this intuition, in this model decreasing Rf can
quantitatively be shown to increase performance, see Paccolat et al. (2021b).

9

Chapter 3. Deformation Invariance Strongly Correlates to Performance in Image Tasks

74



8 Conclusion

We have introduced a novel empirical framework to characterize how deep nets become invariant to
diffeomorphisms. It is jointly based on a maximum-entropy distribution for diffeomorphisms, and on
the realization that stability of these transformations relative to generic ones Rf strongly correlates to
performance, instead of just the diffeomorphisms stability considered in the past.

The ensemble of smooth deformations we introduced may have interesting applications. It could
serve as a complement to traditional data-augmentation techniques (whose effect on relative stability
is discussed in Fig.12 of the Appendix). A similar idea is present in Hauberg et al. (2016); Shen
et al. (2020) but our deformations have the advantage of being easier to sample and data agnostic.
Moreover, the ensemble could be used to build adversarial attacks along smooth transformations, in
the spirit of Alaifari et al. (2018); Engstrom et al. (2019); Kanbak et al. (2018). It would be interesting
to test if networks robust to such attacks are more stable in relative terms, and how such robustness
affects their performance.

Finally, the tight correlation between relative stability Rf and test error εt suggests that if a predictor
displays a given Rf , its performance may be bounded from below. The relationships we observe
εt(Rf ) may then be indicative of this bound, which would be a fundamental property of a given data
set. Can it be predicted in terms of simpler properties of the data? Introducing simplified models of
data with controlled stability to diffeomorphisms beyond the toy model of Section 6 would be useful
to investigate this key question.
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A Maximum entropy calculation

Under the constraint on the borders, τu and τv can be expressed in a real Fourier basis as in Eq.2. By
injecting this form into ‖∇τ‖2 we obtain:

‖∇τ‖2 =
π2

4

∑

i,j∈N+

(C2
ij +D2

ij)(i
2 + j2) (7)

where Dij are the Fourier coefficients of τv. We aim at computing the probability distributions that
maximize their entropy while keeping the expectation value of ‖∇τ‖2 fixed. Since we have a sum
of quadratic random variables, the equipartition theorem Beale (1996) applies: the distributions are
normal and every quadratic term contributes in average equally to ‖∇τ‖2. Thus, the variance of the
coefficients follows T

i2+j2 where the parameter T determines the magnitude of the diffeomorphism.

B Boundaries of studied diffeomorphisms

Average pixel displacement magnitude δ We derive here the large-c asymptotic behavior of δ
(Eq.3). This is defined as the average square norm of the displacement field, in pixel units:

δ2 = n2
∫

[0,1]2
‖τ(u, v)‖2dudv

= 2Tn2
∑

i2+j2≤c2

1

i2 + j2

∫

[0,1]2
sin2(iπu) sin2(jπv)dudv

=
Tn2

2

∑

i2+j2≤c2

1

i2 + j2

≈ Tn2

2

∫

1≤x2+y2≤c2

1

x2 + y2
dxdy

=
πTn2

4

∫ c

1

1

r
dr

=
π

4
n2T log c,

where we approximated the sum with an integral, in the third step. The asymptotic relations for ‖∇τ‖
that are reported in the main text are computed in a similar fashion. In Fig.8, we check the agreement
between asymptotic prediction and empirical measurements. If δ � 1, our results strongly depend
on the choice of interpolation method. To avoid it, we only consider conditions for which δ ≥ 1/2,
leading to

T >
1

πn2 log c
. (8)
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Figure 8: Left: The characteristic displacement δ(c, T ) is observed to follow δ2 ' π
4n

2T log c. Right:
measurement of maxs Ξ supporting Eq.13.
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(a) (b) (c) (d)

Figure 9: (a) Idealized image at T = 0. (b) Diffeomorphism of the image. (c) Deformation of the
image at large T : colors get mixed-up together, shapes are not preserved anymore. (d) Allowed
region for vector transformations under τ . For any point in the image s and any direction u, only
displacement fields for which all the deformed direction u′ is non-zero generate diffeomorphisms.
The bound in Eq.12 (u′ · u > 0) correspond to the green region. The gray disc corresponds to the
bound ‖∇τ‖∞ < 1.

Condition for diffeomorphism in the (T, c) plane For a given value of c, there exists a tempera-
ture scale beyond which the transformation is not injective anymore, affecting the topology of the
image and creating spurious boundaries, see Fig.9a-c for an illustration. Specifically, consider a curve
passing by the point s in the deformed image. Its tangent direction is u at the point s. When going
back to the original image (s′ = s− τ(s)) the curve gets deformed and its tangent becomes

u′ = u− (u · ∇)τ(s). (9)
A smooth deformation is bijective iff all deformed curves remain curves which is equivalent to have
non-zero tangents everywhere

∀ s, u 6= 0 ‖u′‖ 6= 0. (10)
Imposing ‖u′‖ 6= 0 does not give us any constraint on τ . Therefore, we constraint τ a bit more and
allow only displacement fields such that u · u′ > 0, which is a sufficient condition for Eq.10 to be
satisfied – cf. Fig. 9d. By extremizing over u, this condition translates into

1
2

(√
(∂xτx − ∂yτy)2 + (∂xτy + ∂yτx)2 − ∂xτx − ∂yτy

)
< 1 (11)

or, equivalently,
Ξ = 1

2

(√
||∇τ ||2 − 2 det(∇τ)− Tr(∇τ)

)
< 1, (12)

were we identified by Ξ the l.h.s. of the inequality. We find that the median of the maximum of Ξ
over all the image (‖Ξ(s)‖∞) can be approximated by (see Fig.8b):

max
s

Ξ ' c

2

√
π3T log c. (13)

The resulting constraint on T reads

T <
4

π3c2 log c
. (14)

C Interpolation methods

When a deformation is applied to an image x, each of its pixels gets mapped, from the original pixels
grid, to new positions generally outside of the grid itself – cf. Fig. 9a-b. A procedure (interpolation
method) needs to be defined to project the deformed image back into the original grid.

For simplicity of notation, we describe interpolation methods considering the square [0, 1]2 as the
region in between four pixels – see an illustration in Fig. 10a. We propose here two different ways
to interpolate between pixels and then check that our measurements do not depend on the specific
method considered.

Bi-linear Interpolation The bi-linear interpolation consists, as the name suggests, of two steps of
linear interpolation, one on the horizontal, and one on the vertical direction – Fig. 10b. If we look at
the square [0, 1]2 and we apply a deformation τ such that (0, 0) 7→ (u, v), we have

x(u, v) = x(0, 0)(1− u)(1− v) + x(1, 0)u(1− v) + x(0, 1)(1− u)v + x(1, 1)uv. (15)
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τ
(0,0) (0,1)

(1,1)(1,0)

(u,v)

(0,0) (0,1)

(1,1)(1,0)

x x

(a) (b) (c)
s3 s4

s2s1

s(u,v)

Figure 10: (a) We consider the region between four pixels as the square [0, 1]2 where, after the
application of a deformation τ , the pixel (0, 0) is mapped into (u, v). (b) Bi-linear interpolation:
the value of x in (u, v) is computed by two steps of linear interpolation. First, we compute x in the
red crosses, by averaging values on the vertical axis. Then, a line interpolates horizontally the values
in the red crosses to give the result. (c) Gaussian interpolation: we denote by si the pixel positions
in the original grid. The interpolated value of s in any point of the image is given by a weighted sum
of n× n Gaussian centered in each si – in red.

Gaussian Interpolation In this case, a Gaussian function4 is placed on top of each point in the
grid – cf. Fig.10. The pixel intensity x can be evaluated at any point outside the grid by computing

x(s) =

∑
i x(si)G(s− si)∑

iG(s− si)
. (16)

In order to fix the standard deviation σ of G, we introduce the participation ratio n. Given Ψi =
G(s, si)|s=(0.5,0.5), we define

n =

(∑
i Ψ2

i

)2
∑
i Ψ4

i

. (17)

The participation ratio is a measure of how many pixels contribute to the value of a new pixel,
which results from interpolation. We fix σ in such a way that the participation ratio for the Gaussian
interpolation matches the one for the bi-linear (n = 4), when the new pixel is equidistant from the
four pixels around. This gives σ = 0.4715.

Notice that this interpolation method is such that it applies a Gaussian smoothing of the image even if
τ is the identity. Consequently, when computing observables for f with the Gaussian interpolation,
we always compare f(τx) to f(x̃), where x̃ is the smoothed version of x, in such a way that
f(τ [T=0]x) = f(x̃).

Empirical results dependence on interpolation Finally, we checked to which extent our results
are affected by the specific choice of interpolation method. In particular, blue and red colors in Figs3,
13 correspond to bi-linear and Gaussian interpolation, respectively. The interpolation method only
affects the results in the small displacement limit (δ → 0).

Note: throughout the paper, if not specified otherwise, bi-linear interpolation is employed.

4G(s) = (2πσ2)−1/2e−s
2/2σ2

.
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D Stability to additive noise vs. noise magnitude
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Figure 11: Stability to isotropic noise Gf as a function of the noise magnitude ‖η‖ for CIFAR10
(left) and ImageNet (right). The color corresponds to two different classes of SOTA architecture:
ResNet and EfficientNet. The slope 2 at small ‖η‖ identifies the linear regime. For larger noise
magnitudes, non-linearities appear.

We introduced in Section 5 the stability toward additive noise:

Gf =
〈‖f(x+ η)− f(x)‖2〉x,η
〈‖f(x)− f(z)‖2〉x,z

. (18)

We study here the dependence of Gf on the noise magnitude ‖η‖. In the η → 0 limit, we expect the
network function to behave as its first-order Taylor expansion, leading to Gf ∝ ‖η‖2. Hence, for
small noise, Gf gives an estimate of the average magnitude of the gradient of f in a random direction
η.

Empirical results Measurements of Gf on SOTA nets trained on benchmark data-sets are shown
in Figure 11. We observe that the effect of non-linearities start to be significant around ‖η‖ = 1. For
large values of the noise – i.e. far away from data-points – the average gradient of f does not change
with training.

E Numerical experiments

In this Appendix, we provide details on the training procedure, on the different architectures employed
and some additional experimental results.

E.1 Image classification training set-up:

◦ Trainings are performed in PyTorch, the code can be found here
github.com/leonardopetrini/diffeo-sota.

◦ Loss function: cross-entropy.

◦ Batch size: 128.

◦ Dynamics:

– Fully connected nets: ADAM with learning rate = 0.1 and no scheduling.
– Transfer learning: SGD with learning rate = 10−2 for the last layer and 10−3 for

the rest of the network, momentum = 0.9 and weight decay = 10−3. Both learning
rates decay exponentially during training with a factor γ = 0.975.

– All the other networks are trained with SGD with learning rate = 0.1, momentum
= 0.9 and weight decay = 5× 10−4. The learning rate follows a cosine annealing
scheduling Loshchilov and Hutter (2016).
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◦ Early-stopping is performed – i.e. results shown are computed with the network obtaining
the best validation accuracy out of 250 training epochs.

◦ For the experiments involving a training on a subset of the training date of size P < Pmax,
the total number of epochs is accordingly re-scaled in order to keep constant the total number
of optimizer steps.

◦ Standard data augmentation is employed: different random translations and horizontal flips
of the input images are generated at each epoch. As a safety check, we verify that the
invariance learnt by the nets is not purely due to such augmentation (Fig.12).

◦ Experiments are run on 16 GPUs NVIDIA V100. Individual trainings run in ∼ 1 hour of
wall time. We estimate a total of a few thousands hours of computing time for running the
preliminary and actual experiments present in this work.

The stripe model is trained with an approximation of gradient flow introduced in Geiger et al. (2020),
see Paccolat et al. (2021a) for details.
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ResNet on F-MNIST
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ResNet on CIFAR10

c = 3
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Figure 12: Effect of data augmentation on Rf . Relative stability to diffeomorphisms Rf after
training with different data augmentations: "none" (1st group of bars in each plot) for no data
augmentation, "translation" (2nd bars) corresponds to training on randomly translated (by 4 pixels)
and cropped inputs, and "diffeo" (3rd bars) to training on randomly deformed images with max-
entropy diffeomorphisms (T = 10−2, c = 1). Results are averaged over 5 trainings of ResNet18 on
MNIST (left), FashionMNIST (center), CIFAR10 (right). Colors indicate different cut-off values
when probing the trained networks. Different augmentations have a small quantitative, and no
qualitative effect on the results. As expected, augmenting the input images with smooth deformations
makes the net more invariant to such transformations.

A note on computing stabilities at init. in presence of batch-norm We recall that batch-norm
(BN) can work in either of two modes: training and evaluation. During training, BN computes the
mean and variance on the current batch and uses them to normalize the output of a given layer. At
the same time, it keeps memory of the running statistics on such batches, and this is used for the
normalization steps at inference time (evaluation mode). When probing a network at initialization for
computing stabilities, we put the network in evaluation mode, except for batch-norm (BN), which
operates in train mode. This is because BN running mean and variance are initialized to 0 and 1,
in such a way that its evaluation mode at initialization would correspond to not having BN at all,
compromising the input signal propagation in deep architectures.
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E.2 Networks architectures

All networks implementations can be found at github.com/leonardopetrini/diffeo-
sota/tree/main/models. In Table 1, we report salient features of the network architectures
considered.

Table 1: Network architectures, main characteristics. We list here (columns) the classes of net
architectures used throughout the paper specifying some salient features (depth, number of parameters,
etc...) for each of them.

features FullConn LeNet AlexNet
LeCun et al. (1989) Krizhevsky et al. (2012)

depth 2, 4, 6 5 8
num. parameters 200k 62k 23 M

FC layers 2, 4, 6 3 3
activation ReLU ReLU ReLU
pooling / max max
dropout / / yes

batch norm / / /
skip connections / / /

features VGG ResNet EfficientNetB0-2
Simonyan and Zisserman (2015) He et al. (2016) Tan and Le (2019)

depth 11, 16, 19 18, 34, 50 18, 25
num. parameters 9-20 M 11-24 M 5, 9 M

FC layers 1 1 1
activation ReLU ReLU swish
pooling max avg. (last layer only) avg. (last layer only)
dropout / / yes + dropconnect

batch norm if ’bn’ in name yes yes
skip connections / yes yes (inv. residuals)
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E.3 Additional figures

We present here:

◦ Fig.13: Rf as a function of P for MNIST and FashionMNIST with the corresponding
predicted slope, omitted in the main text.

◦ Fig.14: Relative diffeomorphisms stability Rf as a function of depth for simple and deep
nets.

◦ Figs15,16: diffeomorphisms and inverse of the Gaussian stability Df and 1/Gf vs. test
error for CIFAR10 and the set of architectures considered in Section 4.

◦ Fig.17: Df , 1/Gf and Rf when using the mean in place of the median for computing
averages 〈·〉.

◦ Fig.18: curves in the (εt, Rf ) plane when varying the training set size P for FullyConnL4,
LeNet, ResNet18 and EfficientNetB0.

◦ Figs19, 22: error estimates for the main quantities of interest – often omitted in the main
text for the sake of figures’ clarity.
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Figure 13: Relative stability to diffeomorphisms Rf (P ) at δ = 1. Analogous to Figure 3-right but
here we have MNIST (a-b) and FashionMNIST (c-d) in place of CIFAR10. Stability monotonically
decreases with P . The triangles give a reference for the predicted slope in the stripe model – i.e.
Rf ∼ P−1 – see Section 6. The slopes in case of ResNets are compatible with the prediction. For
EfficientNets, the second panel of Fig.3 suggests that stability to diffeomorphisms is less important.
Here, we also see that it builds up more slowly when increasing the training set size. Finally, blue
and red colors indicate different interpolation methods used for generating image deformations, as
discussed in Appendix C. Results are not affected by this choice.
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Figure 14: Relative stability to diffeomorphisms as a function of depth. Rf as a function of the
layers relative depth (i.e. current layer depth

total depth ) where "0" identifies the output of the 1st layer and "1" the
last. The relative stability is measured for the output of layers (or blocks of layers) inside the nets
for simple architectures (1st column) and deep ones (2nd column) at initialization (dashed) and after
training (full lines). All nets are trained on the full CIFAR10 dataset. Rf0 ≈ 1 independently of
depth at initialization while it decreases monotonically as a function of depth after training. Statistics:
Each point is obtained by training 5 differently initialized networks; each network is then probed
with 500 test samples in order to measure Rf . The results are obtained by log-averaging over single
realizations.
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Figure 15: Test error εt vs. stability to diffeomorphisms Df for common architectures when
trained on the full 10-classes CIFAR10 dataset (P = 50k) with SGD and the cross-entropy loss; the
EfficientNets achieving the best performance are trained by transfer learning from ImageNet (?) –
more details on the training procedures can be found in Appendix E.1. The color scale indicates
depth, and the symbols the presence of batch-norm (�) and skip connections (†). Df correlation
with εt (corr. coeff.: 0.62) is much smaller than the one measured for Rf – see Fig.3. Statistics:
Each point is obtained by training 5 differently initialized networks; each network is then probed
with 500 test samples in order to measure Df . The results are obtained by log-averaging over single
realizations.
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Figure 16: Test error εt vs. inverse of stability to noise 1/Gf for common architectures when
trained on the full 10-classes CIFAR10 dataset (P = 50k) with SGD and the cross-entropy loss; the
EfficientNets achieving the best performance are trained by transfer learning from ImageNet (?) –
more details on the training procedures can be found in Appendix E.1. The color scale indicates
depth, and the symbols the presence of batch-norm (�) and skip connections (†). Gf correlation
with εt (corr. coeff.: 0.85) is less important than the one measured for Rf – see Fig.3. Statistics:
Each point is obtained by training 5 differently initialized networks; each network is then probed
with 500 test samples in order to measure Gf . The results are obtained by log-averaging over single
realizations.
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Figure 17: Test error εt vs. Df , 1/Gf and Rf where 〈·〉 is the mean. Analogous to Figs15-19, we
use here the mean instead of the median to compute averages over samples and transformations.
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Figure 18: Test error εt vs. relative stability to diffeomorphisms Rf for different training set
sizes P . Same data as Fig.5, we report here curves corresponding to training on different set sizes
for 4 architectures. The other architectures considered together with the power-law fit are left in
background. For a small training set, CNNs behave similarly. Statistics: Each point is obtained by
training 5 differently initialized networks; each network is then probed with 500 test samples in order
to measure Rf . The results are obtained by log-averaging over single realizations.
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Figure 19: Test error εt vs. relative stability to diffeomorphisms Rf with error estimates. Same
data as Fig.5, we report error bars here. Statistics: Each point is obtained by training 5 differently
initialized networks; each network is then probed with 500 test samples in order to measure Rf . The
results are obtained by log-averaging over single realizations.
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Figure 20: Test error εt vs. Df , Gf and Rf (on the columns) for different data sets (on the
rows). The corresponding correlation coefficients are shown in Table 2. Lines 1-2: MNIST and
SVHN both contain images of digits and show a similar εt(Rf ). Line 3: FashionMNIST results are
comparable to the CIFAR10 ones shown in the main text. Line 4: Tiny ImageNet32 is a re-scaled
(32x32 pixels) version of ImageNet with 200 classes and 100’000 training points. The task is harder
than the other data sets and is such that we could not train simple networks (FC, LeNet) on it – i.e.
the loss stays O(1) throughout training – so these are not reported here.

Table 2: Test error vs. stability: correlation coefficients for different data sets.

data-set Df Gf Rf

MNIST 0.71 -0.43 0.75
SVHN 0.87 -0.28 0.81

FashionMNIST 0.72 -0.68 0.94
Tiny ImageNet 0.69 -0.66 0.74
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Figure 21: Test error εt vs. Df , Gf and Rf for CIFAR10 and varying δ and cut-off c. Titles
report the values of the varying parameters together with corr. coeffs. Parameters corresponding to
allowed diffeo are indicated by the green background. Red and blue colors correspond to different
interpolation methods. Overall, results are robust when varying these parameters.

25

Chapter 3. Deformation Invariance Strongly Correlates to Performance in Image Tasks

90



102 103 104

P

10−3

10−1

101

R
es

N
et

18

MNIST

Gf

Df

Rf

102 103 104

P

10−3

10−2

10−1

100

F-MNIST

102 103 104

P

10−3

10−2

10−1

100

CIFAR10

102 103 104

P

10−2

10−1

100

E
ffi

ci
en

tN
et

B
0

102 103 104

P

10−2

10−1

100

102 103 104

P

10−2

10−1

100

101

Figure 22: Stability toward Gaussian noise (Gf ) and diffeomorphisms (Df ) alone, and the
relative stability Rf with the relative errors. Analogous to Fig.6 in which error estimates are
omitted to favour clarity. Here we fix the cut-off to c = 3 and show error estimates instead. Columns
correspond to different data-sets (MNIST, FashionMNIST and CIFAR10) and rows to architectures
(ResNet18 and EfficientNetB0). Each panel reports Gf (blue), Df (orange) and Rf (green) as a
function of P and for different cut-off values c, as indicated in the legend. Statistics: Each point
in the graphs is obtained by training 16 differently initialized networks on 16 different subsets of
the data-sets; each network is then probed with 500 test samples in order to measure stability to
diffeomorphisms and Gaussian noise. The resulting Rf is obtained by log-averaging the results from
single realizations. As we are plotting quantities in log scale, we report the relative error (shaded).
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Abstract

It is widely believed that the success of deep networks lies in their ability to learn a
meaningful representation of the features of the data. Yet, understanding when and
how this feature learning improves performance remains a challenge: for example,
it is beneficial for modern architectures trained to classify images, whereas it is
detrimental for fully-connected networks trained on the same data. Here we propose
an explanation for this puzzle, by showing that feature learning can perform worse
than lazy training (via random feature kernel or the NTK) as the former can lead
to a sparser neural representation. Although sparsity is known to be essential for
learning anisotropic data, it is detrimental when the target function is constant or
smooth along certain directions of input space. We illustrate this phenomenon in
two settings: (i) regression of Gaussian random functions on the d-dimensional unit
sphere and (ii) classification of benchmark datasets of images. For (i), we compute
the scaling of the generalization error with the number of training points and show
that methods that do not learn features generalize better, even when the dimension
of the input space is large. For (ii), we show empirically that learning features
can indeed lead to sparse and thereby less smooth representations of the image
predictors. This fact is plausibly responsible for deteriorating the performance,
which is known to be correlated with smoothness along diffeomorphisms.

1 Introduction

Neural networks are responsible for a technological revolution in a variety of machine learning tasks.
Many such tasks require learning functions of high-dimensional inputs from a finite set of examples,
thus should be generically hard due to the curse of dimensionality [1, 2]: the exponent that controls
the scaling of the generalization error with the number of training examples is inversely proportional
to the input dimension d. For instance, for standard image classification tasks with d ranging in
103÷ 105, such exponent should be practically vanishing, contrary to what is observed in practice [3].
In this respect, understanding the success of neural networks is still an open question. A popular
explanation is that, during training, neurons adapt to features in the data that are relevant for the task
[4], effectively reducing the input dimension and making the problem tractable [5, 6, 7]. However,
understanding quantitatively if this intuition is true and how it depends on the structure of the task
remains a challenge.

∗Equal contribution (a coin was flipped).
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Figure 1: Feature vs. Lazy in image classification. Generalization error as a function of the training-
set size n for infinite-width fully-connected networks (FCNs) trained in the feature (blue) and lazy
regime (orange). In the latter case the limit is taken exactly by training an SVC algorithm with the
analytical NTK [23]. In the former case, the infinite-width limit can be accurately approximated for
these datasets by considering very wide nets (H = 103), and performing ensemble averaging on
different initial conditions of the parameters as shown in [24, 25]. Panels correspond to different
benchmark image datasets [26, 27, 28]. Results are averaged over 10 different initializations of the
networks and datasets.

Recently much progress was made in characterizing the conditions which lead to features learning, in
the overparameterized setting where networks generally perform best. When the initialization scale
of the network parameters is large [8] one encounters the lazy training regime, where neural networks
behave as kernel methods [9, 10] (coined Neural Tangent Kernel or NTK) and features are not learned.
By contrast, when the initialization scale is small, a feature learning regime is found [11, 12, 13]
where the network parameters evolve significantly during training. This limit is much less understood
apart from very simple architectures, where it can be shown to lead to sparse representations where
a limited number of neurons are active after training [14]. Such sparse representations can also be
obtained by regularizing the weights during training [2, 15].

In terms of performance, most theoretical works have focused on fully-connected networks. For these
architectures, feature learning was shown to significantly outperform lazy training [16, 17, 18, 19, 11]
for certain tasks, including approximating a function which depends only on a subset or a linear
combination of the input variables. However, when such primitive networks are trained on image
datasets, learning features is detrimental [20, 21], as illustrated in Fig. 1 (see [19, Fig. 3] for the
analogous plot in the case of a target function depending on just one of the input variables, where
learning features is beneficial). A similar result was observed in simple models of data [22]. These
facts are unexplained, yet central to understanding the implicit bias of the feature learning regime.

1.1 Our contribution

Our main contribution is to provide an account of the drawbacks of learning sparse representations
based on the following set of ideas. Consider, for concreteness, an image classification problem: (i)
images class varies little along smooth deformations of the image; (ii) due to that, tasks like image
classification require a continuous distribution of neurons to be represented; (iii) thus, requiring
sparsity can be detrimental for performance. We build our argument as follows.

• In order to find a quantitative description of the phenomenon, we start from the problem of
regression of a random target function of controlled smoothness on the d-dimensional unit
sphere, and study the property of the minimizers of the empirical loss with n observations,
both in the lazy and the feature learning regimes. More specifically, we consider two extreme
limits—the NTK limit and mean-field limit—as representatives of lazy and feature regimes,
respectively (section 2). Both these limits admit a simple formulation that allows us to
predict generalization performances. In particular, our results on feature learning rely on
solutions having an atomic support. This property can be justified for one-hidden-layer
neural networks with ReLU activations and weight decay. Yet, we also find such a sparsity
empirically using gradient descent in the absence of regularization, if weights are initialized
to be small enough.

• We find that lazy training leads to smoother predictors than feature learning. As a result, lazy
training outperforms feature learning when the target function is also sufficiently smooth.
Otherwise, the performances of the two methods are comparable, in the sense that they
display the same asymptotic decay of generalization error with the number of training
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examples. Our predictions are obtained from asymptotic arguments that we systematically
back up with numerical studies.

• For image datasets, it is believed that diffeomorphisms of images are key transformations
along which the predictor function should only mildly vary to obtain good performance [29].
From the results above, a natural explanation as to why lazy beats feature for fully connected
networks is that it leads to predictors with smaller variations along diffeomorphisms. We
confirm that this is indeed the case empirically on benchmark datasets.

Numerical experiments are performed in PyTorch [30], and the code for reproducing experiments is
available online at github.com/pcsl-epfl/regressionsphere.

1.2 Related Work

The property that training ReLU networks in the feature regime leads to a sparse representation was
observed empirically [31]. This property can be justified for one-hidden-layer networks by casting
training as a L1 minimization problem [32, 2], then using a representer theorem [33, 15, 34]. This is
analogous to what is commonly done in predictive sparse coding [35, 36, 37, 38].

Many works have investigated the benefits of learning sparse representations in neural networks.
[2, 16, 17, 18, 19, 39, 40] study cases in which the true function only depends on a linear subspace of
input space, and show that feature learning profitably capture such property. Even for more general
problems, sparse representations of the data might emerge naturally during deep network training—a
phenomenon coined neural collapse [41]. Similar sparsification phenomena, for instance, have been
found to allow for learning convolutional layers from scratch [42, 43]. Our work builds on this body
of literature by pointing out that learning sparse features can be detrimental, if the task does not allow
for it.

There is currently no general framework to predict rigorously the learning curve exponent β defined
as ε(n) = O(n−β) for kernels. Some of our asymptotic arguments can be obtained by other
approximations, such as assuming that data points lie on a lattice in Rd [44], or by using the non-
rigorous replica method of statistical physics [45, 46, 47]. In the case d = 2, we provide a more
explicit mathematical formulation of our results, which leads to analytical results for certain kernels.
We systematically back up our predictions with numerical tests as d varies.

Finally, in the context of image classification, the connection between performance and ‘stability’ or
smoothness toward small diffeomorphisms of the inputs has been conjectured by [29, 48]. Empirically,
a strong correlation between these two quantities was shown to hold across various architectures for
real datasets [49]. In that reference, it was found that fully connected networks lose their stability
over training: here we show that this effect is much less pronounced in the lazy regime.

2 Problem and notation

Task We consider a supervised learning scenario with n training points {xi}ni=1 uniformly drawn
on the d-dimensional unit sphere Sd−1. We assume that the target function f∗ is an isotropic Gaussian
random process on Sd−1 and control its statistics via the spectrum: by introducing the decomposition
of f∗ into spherical harmonics (see App. A for definitions),

f∗(x) =
∑

k≥0

Nk,d∑

`=1

f∗k,`Yk,`(x) with E
[
f∗k,`
]

= 0, E
[
f∗k,`f

∗
k′,`′

]
= ckδk,k′δ`,`′ . (2.1)

We assume that all the ck with k odd vanish apart from c1: this is required to guarantee that f∗ can be
approximated as well as desired with a one-hidden-layer ReLU network with no biases, as discussed
in App. A. We also assume that the non-zero ck decay as a power of k for k � 1, ck ∼ k−2νt−(d−1).
The exponent νt> 0 controls the (weak) differentiability of f∗ on the sphere (see App. A) and also
the statistics of f∗ in real space:

E
[
|f∗(x)− f∗(y)|2

]
= O

(
|x− y|2νt

)
= O ((1− x · y)

νt) as x→ y. (2.2)

Examples of such a target function for d = 3 and different values of νt are reported in Fig. 2.
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xi,c → → 〈wc, h(xi,c)〉 + bc· · ·

hi,c = h(xi,c)

W = {w1, · · · , wC}

Stripe Model Images

Input Space Rd Rn×n×ch

Invariant manifold x⊥ ∈ Rd−1 τx for small ‖∇ξ‖ and x ∈ D
(linear subspace) (manifold of diffeo, locally around data-points)

Isotropic Noise η ∈ Rd η ∈ Rn×n×ch

Invariant Noise ν ∈ Rd−1 τx − x ∈ Mdiffeo ⊂ Rn×n×ch

Compression Ratio R ∼ 1/p ?

Table 1: Comparison: Stripe Model vs. real data.

ψl→m(σl) =
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Zl→m
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σi,σj ,σk

ψi→l(σi)ψj→l(σj)ψk→l(σk) e
−β[δσi,σl

+δσk,σl
+δσk,σl

]

=
1

Zl→m

∏

i∈∂l\m

∑

σi

ψi→l(σi) e
−β δσi,σl

=
1

Zl→m

∏

i∈∂l\m


ψi→l(σl) e

−β +
∑

σi:σi �=σl

ψi→l(σi)
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∏
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[
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Numerical experiments are performed in PyTorch [29], and the code for reproducing experiments is
available online at github.com/pcsl-epfl/regressionsphere.

1.2 Related Work

The property that training ReLU networks in the feature regime leads to a sparse representation was
observed empirically [30]. This property can be justified for one-hidden-layer networks by casting
training as a L1 minimization problem [31, 2], then using a representer theorem [32, 14, 33].

There is currently no general framework to predict rigorously the learning curve exponent β defined
as ε(n) = O(n−β) for kernels. Some of our asymptotic arguments for can be obtained by other
approximations, such as assuming that data points lie on a lattice in Rd [34], or by using the non-
rigorous replica method of statistical physics [35–37]. In the case d = 2, we provide a more explicit
mathematical formulation of our results, which leads to analytical results for certain kernels. We
systematically back up our predictions with numerical tests as d varies.

Finally, in the context of image classification, the connection between performance and ‘stability’ or
smoothness toward small diffeomorphisms of the inputs has been conjectured by [28, 38]. Empirically,
a strong correlation between these two quantities was shown to hold across various architectures
for deep networks and real datasets [39]. In that reference, it was found that during training fully
connected networks lose their stability. Here we show that this effect is much less pronounced in the
lazy regime.

2 Problem and notation

Task We consider a supervised learning scenario with n training points {xi}ni=1 uniformly drawn
on the d-dimensional unit sphere Sd−1. We assume that the target function f∗ is an isotropic Gaussian
random process on Sd−1 and control its statistics via the spectrum: by introducing the decomposition
of f∗ into spherical harmonics (see App. A for definitions),

f∗(x) =
∑

k≥0

Nk,d∑

�=1

f∗
k,�Yk,�(x) with E

[
f∗
k,�

]
= 0, E

[
f∗
k,�f

∗
k′,�′

]
= ckδk,k′δ�,�′ . (2.1)

We assume that all the ck with k odd vanish apart from c1: this is required to guarantee that f∗ can be
approximated as well as desired with a one-hidden-layer ReLU network with no biases, as discussed
in App. A. We also assume that the non-zero ck decay as a power of k for k � 1, ck ∼ k−2νt−(d−1).
The exponent νt > 0 controls the (weak) differentiability of f∗ on the sphere (see App. A) and also
the statistics of f∗ in real space:

E
[
|f∗(x) − f∗(y)|2

]
= O

(
|x − y|2νt

)
= O ((1 − x · y)

νt) as x → y. (2.2)

Neural network representations We consider a one-hidden-layer neural network of width H ,

fξ
H(x) =

1

H1−ξ/2

H∑

h=1

(
whσ(θh · x) − ξw0

hσ(θ0
h · x)

)
, (2.3)

where {θh}Hh=1 (the features) and {wh}Hh=1 (the weights) are the network parameters to be optimized,{
θ0
h

}H

h=1
and

{
w0

h

}H

h=1
are their values at initialization, ξ is a parameters fixed to ξ = 0 for feature

learning and ξ = 1 for lazy training, and σ(x) denotes the ReLU function, σ(x) = max {0, x}. We
assume that

{
θ0
h, w

0
h

}H

h=1
are drawn independently from a distribution µ0 with the properties that: all

moments of µ0 exist; µ0 is absolutely continuous with respect to the Hausdorff measure on Sd−1 ×R;
and µ0 is centered, i.e.

∫
Sd−1×R θdµ0(θ, w) = 0 and

∫
Sd−1×R wdµ0(θ, w) = 0.

Feature Regime (ξ = 0) If we assume that {θh, wh}Hh=1 are independently drawn from a prob-
ability measure µ on Sd−1 × R such that the Radon measure γ =

∫
R wµ(·, dw) exists, then as

H → ∞
lim

H→∞
fξ=0
H (x) =

∫

Sd−1

σ(θ,x)dγ(θ) a.e. on Sd−1. (2.4)

3

x 1

x 2

x 3

0

+1

-1

Figure 2: Gaussian random process on the sphere. We show here two samples of the task intro-
duced in section 2 when the target function f∗(x) is defined on the 3−dimensional unit sphere. (a)
and (b) show samples of large and small smoothness coefficient νt, respectively.

Neural network representation in the feature regime In this regime we aim to approximate the
target function f∗(x) via a one-hidden-layer neural network of width H ,

fH(x) =
1

H

H∑

h=1

whσ(θh · x), (2.3)

where {θh}Hh=1 (the features) and {wh}Hh=1 (the weights) are the network parameters to be optimized,
and σ(x) denotes the ReLU function, σ(x) = max {0, x}. If we assume that {θh, wh}Hh=1 are
independently drawn from a probability measure µ on Sd−1 × R such that the Radon measure
γ =

∫
R wµ(·, dw) exists, then as H →∞,

lim
H→∞

fH(x) =

∫

Sd−1

σ(θ · x)dγ(θ) a.e. on Sd−1. (2.4)

This is the so-called mean-field limit [11, 12], and it is then natural to determine the optimal γ via

γ∗ = arg min
γ

∫

Sd−1

|dγ(θ)| subject to:
∫

Sd−1

σ(θ · xi)dγ(θ)=f∗(xi) ∀i = 1, . . . , n. (2.5)

In practice, we can approximate this minimization problem by using a network with large but finite
width, constraining the feature to be on the sphere |θh| = 1, and minimizing the following empirical
loss with L1 regularization on the weights,

min
{wh,θh}Hh=1

|θh|=1

1

2n

n∑

i=1

(
f∗(xi)−

1

H

H∑

h=1

whσ(θh · xi)
)2

+
λ

H

H∑

h=1

|wh|. (2.6)

This minimization problem leads to (2.5) when H → ∞ and λ → 0. Note that, by homogeneity
of ReLU, (2.6) can be shown to be equivalent to imposing a regularization on the L2 norm of all
parameters [32, Thm. 10], i.e. the usual weight decay.

To proceed we will make the following assumption about the minimizer γ∗:
Assumption 1. The minimizer γ∗ of (2.5) is unique and atomic, with nA ≤ n atoms, i.e. there exists
{w∗i ,θ∗i }nAi=1 such that

γ∗ =

nA∑

i=1

w∗i δθ∗i . (2.7)

The main component of the assumption is the uniqueness of γ∗; if it holds the sparsity of γ∗ follows
from the representer theorem, see e.g. [33]. Both the uniqueness and sparsity of the minimizer can be
justified as holding generically using asymptotic arguments involving recasting the L1 minimization
problem 2.5 as a linear programming one: these arguments are standard (see e.g. [50]) and are
presented in App. B for the reader convenience. In our arguments below to deduce the scaling of
the generalization error we will mainly use that nA = O(n)—we shall confirm this fact numerically
even in the absence of regularization, if the weights are initialized to be small enough. Notice that
from Assumption 1 it follows that the predictor in the feature regime corresponding to the minimizer
γ∗ takes the following form

fFEATURE(x) =

nA∑

i=1

w∗i σ(θ∗i · x). (2.8)
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Neural network representation in the lazy regime. In this regime we approximate the target
function f∗(x) via

fNTK(x) =

n∑

i=1

giK
NTK(xi · x), (2.9)

where the weights {gi}ni=1 solve

f∗(xj) =
n∑

i=1

giK
NTK(xi · xj), j = 1, . . . , n. (2.10)

and KNTK(x · y) is the Neural Tangent Kernel (NTK) [9]

KNTK(x · y) =

∫

Sd−1×R

(
σ(θ · x)σ(θ · y) + w2 x · y σ′(θ · x)σ′(θ · y)

)
dµ0(θ, w). (2.11)

Here µ0 is a fixed probability distribution which, in the NTK training regime [9], is the distribution
of the features and weights at initialization. It is well-known [51] that the solution to kernel ridge
regression problem can also be expressed via the kernel trick as

fNTK(x) =

∫

Sd−1×R
(gw(θ, w)σ(θ · x) + wx · gθ(θ, w)σ′(θ · x)) dµ0(θ, w) (2.12)

where gθ and gw are the solutions of

min
gw,gθ

∫

Sd−1×R

(
g2w(w,θ) + |gθ(w,θ)|2

)
dµ0(θ, w)

subject to:
∫

Sd−1×R
(gw(w,θ)σ(θ · xi) + wxi · gθ(w,θ)σ′(θ · xi)) dµ0(θ, w) = f∗(xi)

∀i = 1, . . . , n.

(2.13)

Another lazy limit can be obtained equivalently by training only the weights while keeping the
features to their initialization value. This is equivalent to forcing gθ(θ, w) to vanish in Eq. 2.13,
resulting again in a kernel method. The kernel, in this case, is called Random Feature Kernel (KRFK),
and can be obtained from Eq. 2.11 by setting dµ0(θ, w) = δw=0dµ̃0(θ). The minimizer can then be
written as in Eq. 2.9 with KNTK replaced by KRFK.

3 Asymptotic analysis of generalization

In this section, we characterize the asymptotic decay of the generalization error ε(n) averaged over
several realizations of the target function f∗. Denoting with dτd−1(x) the uniform measure on Sd−1,

ε(n) = Ef∗
[∫

dτd−1(x) (fn(x)− f∗(x))
2

]
= Adn−β + o(n−β), (3.1)

for some constant Ad which might depend on d but not on n. Both for the lazy (see Eq. 2.9) and
feature regimes (see Eq. 2.8) the predictor can be written as a sum of O(n) terms:

fn(x) =

O(n)∑

j=1

gjϕ(x · yj) :=

∫

Sd−1

gn(y)ϕ(x · y)dτ(y). (3.2)

In the feature regime, the gj’s (yj) coincide with the optimal weights w∗j (features θ∗j ), ϕ with
the activation function σ. In the lazy regime, the yj are the training points xj , ϕ is the neural
tangent or random feature kernel the gj’s are the weights solving Eq. 2. We have defined the density
gn(x) =

∑
j |Sd−1|gjδ(x− yj) so as to cast the predictor as a convolution on the sphere. Therefore,

the projections of fn onto spherical harmonics Yk,` read fnk,` = gnk,`ϕk, where gnk,` is the projection
of gn(x) and ϕk that of ϕ(x · y). For ReLU neurons one has (as shown in App. A)

ϕLAZY
k ∼ k−(d−1)−2ν with ν = 1/2 (NTK), 3/2 (RFK), ϕFEATURE

k ∼ k− d−1
2 −3/2. (3.3)
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Figure 3: Feature vs. Lazy Predictor. Predictor of the lazy (left) and feature (right) regime when
learning the constant function on the ring with 8 uniformly-sampled training points.

Main Result Consider a target function f∗ with smoothness exponent νt as defined above, with
data lying on Sd−1. If f∗ is learnt with a one-hidden-layer network with ReLU neurons in the regimes
specified above, then the generalization error follows ε(n) ∼ n−β with:

βLAZY =
min {2(d− 1) + 4ν, 2νt}

d− 1
with ν =

{
1/2 for NTK,
3/2 for RFK,

, (3.4a)

βFEATURE =
min {(d− 1) + 3, 2νt}

d− 1
. (3.4b)

This is our central result. It implies that if the target function is a smooth isotropic Gaussian field
(realized for large νt), then lazy beats feature, in the sense that training the network in the lazy regime
leads to a better scaling of the generalization performance with the number of training points.

Strategy There is no general framework for a rigorous derivation of the generalization error in the
ridgeless limit λ → 0: predictions such as that of Eq. 3.4 can be obtained by either assuming that
training points (for Eq. 3.4a) and neurons (for Eq. 3.4b) lie on a periodic lattice [44], or (for Eq. 3.4a)
using the replica method from physics [45] as shown in App. F. Here we follow a different route, by
first characterizing the form of the predictor for d= 2 (proof in App. C). This property alone allows
us to determine the asymptotic scaling of the generalization error. We use it to analytically obtain the
generalization error in the NTK case with a slightly simplified function ϕ (details in App. D). This
calculation motivates a simple ansatz for the form of gn(x) entering Eq. 3.2 and its projections onto
spherical harmonics, which extends naturally to arbitrary dimension. We confirm the predictions
resulting from this ansatz systematically in numerical experiments.

Properties of the predictor in d = 2 On the unit circle S1 all points are identified by a polar angle
x ∈ [0, 2π). Hence both target function and estimated predictor are functions of the angle, and all
functions of a scalar product are in fact functions of the difference in angle. In particular, introducing
ϕ̃(x) = ϕ(cos(x)),

fn(x) =
∑

j

gjϕ̃(x− xj) ≡
∫ 2π

0

dy

2π
gn(y)ϕ̃(x− y), (3.5)

where we defined

gn(x) =
n∑

j=1

(2πgj)δ(y − xj). (3.6)

Both for feature regime and NTK limit, the first derivative of ϕ̃(x) is continuous except for two
values of x (0 and π for lazy, −π/2 and π/2 for feature), so that ϕ̃(x)′′ has a singular part consisting
of two Dirac delta functions.

As a result, the second derivative of the predictor (fn)′′ has a singular part consisting of many Dirac
deltas. If we denote with (fn)′′r the regular part, obtained by subtracting all the delta functions, we
can show that (see App. C):
Proposition 1. (informal) As n→∞, (fn)′′r converges to a function having finite second moment,
i.e.

lim
n→∞

Ef∗ [(fn)′′r (x)]2 = const. <∞. (3.7)
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In the large n limit, the predictor displays a singular second derivative at O(n) points. Proposition 1
implies that outside of these singular points the second derivative is well defined. Thus, as n gets
large and the singular points approach each other, the predictor can be approximated by a chain of
parabolas, as highlighted in Fig. 3 and noticed in [47] for a Laplace kernel. This property alone
allows to determine the asymptotic scaling of the error in d= 2. In simple terms, Prop. 1 follows from
the convergence of gn to the function satisfying f∗(x) =

∫
dy
2π g(y)ϕ̃r(x− y), which is guaranteed

under our assumptions on the target function—a detailed proof is given in App. C.

Decay of the error in d= 2 (sketch) The full calculation is in App. D. Consider a slightly
simplified problem where ϕ̃ has a single discontinuity in its derivative, located at x = 0. In this case,
fn(x) is singular if and only if x is a data point. Consider then the interval x ∈ [xi, xi+1] and set
δi = xi+1 − xi, xi+1/2 = (xi+1 + xi)/2. If the target function is smooth enough (νt> 2), then a
Taylor expansion implies |f∗(xi+1/2)− fn(xi+1/2)| ∼ δ2i . Since the distances δi between adjacent
singular points are random variables with mean of order 1/n and finite moments, it is straightforward
to obtain that ε(n) ∼ ∑i(f

∗(xi+1/2) − fn(xi+1/2))2 ∼ ∑i δ
4
i ∼ n−4. By contrast if f∗ is not

sufficiently smooth (νt≤ 2), then |f∗(xi+1/2)− fn(xi+1/2)| ∼ δ2νti , leading to ε(n) ∼ n−2νt . Note
that for this asymptotic argument to apply to the feature learning regime, one must ensure that the
distribution of the rescaled distance between adjacent singularities nδi has a finite fourth moment.
This is obvious in the lazy regime, where the δi’s are controlled by the position of the training points,
but not in the feature regime, where the distribution of singular points is determined by that of the
neuron’s features. Nevertheless, we show that it must be the case in our setup in App. D.

Interpretation in terms of spectral bias From the discussion above it is evident that there is a
length scale δ of order 1/n such that fn(x) is a good approximation of f∗(x) over scales larger
than δ. In terms of Fourier modes2, one has: i) f̂n(k) matches f̂n(k) at long wavelengths, i.e. for
k � kc ∼ 1/n. ii) In addition, since the phases exp(ikxj) become effectively random phases for
k � kc, ĝn(k) =

∑
j gj exp(ikxj) becomes a Gaussian random variable with zero mean and fixed

variance and thus iii) f̂n(k) = ĝn(k)̂̃ϕ(k) decorrelates from f∗ for k � kc. Therefore

ε(n) ∼
∑

|k|>kc
Ef∗

[(
ĝn(k)̂̃ϕ(k)− f̂n(k)

)2]
∼
∑

|k|≥kc
Ef∗

[
(ĝn(k))2

] ̂̃ϕ(k)2 + Ef∗
[
(f̂n(k))2

]
.

(3.8)
For νt> 2, one has

∑
j g

2
j ∼ n−1 limn→∞

∫
gn(x)2dx ∼ n−1. It follows (see App. E for details)

that the sum is dominated by the first term, hence entirely controlled by the Fourier coefficients of
f̂n(k) at large k. A smoother predictor corresponds to a faster decay of f̂n(k) with k, thus a faster
decay of the error with n. Plugging the relevant decays yields ε ∼ n−4 for feature regime and lazy
regime with the NTK, and n−6 for lazy regime with the RFK (which is smoother than the NTK). For
νt≤ 2, the two terms have comparable magnitude (see App. E), thus ε ∼ n−2νt .

Generalization to higher dimensions The argument above can be generalized for any d by replac-
ing Fourier modes with projections onto spherical harmonics. The characteristic distance between
training points scales as n−1/(d−1), thus kc ∼ n−1/(d−1). Our ansatz is that, as in d= 2: i) for
k � kc, the predictor modes coincide with those of the target function, fnk,l ≈ f∗k,l (this corresponds
to the spectral bias result of kernel methods, stating that the predictor reproduces the first O(n)
projections of the target in the kernel eigenbasis [45]); ii) For k � kc, gnk,l is a sum of uncorrelated
terms, thus a Gaussian variable with zero mean and fixed variance; iii) fnk,` = gnk,`ϕ̃k decorrelates
from f∗k,` for k � kc. i), ii) and iii) imply that:

ε(n) ∼
∑

k≥kc

Nk,d∑

l=1

Ef∗
[(
fnk,l − f∗k,l

)2] ∼
∑

k≥kc

Nk,d∑

l=1

Ef∗
[
(gnk,l)

2
]
ϕ2
k + k−2νt−(d−1). (3.9)

As shown in App. E, from this expression it is straightforward to obtain Eq. 3.4. Notice again that
when the target is sufficiently smooth so that the predictor-dependent term dominates, the error is
determined by the smoothness of the predictor. In particular, as d> 2, the predictor of feature learning
is less smooth than both the NTK and RFK ones, due to the slower decay of the corresponding ϕk.

2The Fourier transform of a function f(x) is indicated by the hat, f̂(k).
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4 Numerical tests of the theory

We test successfully our predictions by computing the learning curves of both lazy and feature
regimes when (i) the target function is constant on the sphere for varying d, see Fig. 4, and (ii)
the target is a Gaussian random field with varying smoothness νt, as shown in Fig. G.1 of App. G.
For the lazy regime, we perform kernel regression using the analytical expression of the NTK [52]
(see also Eq. A.19). For the feature regime, we find that our predictions hold when having a small
regularization, although it takes unreachable times for gradient descent to exactly recover the minimal-
norm solution—a more in-depth discussion can be found in App. G. An example of the atomic
distribution of neurons found after training, which contrasts with the initial distribution, is displayed
in Fig. 5a, left panel.

Another way to obtain sparse features is to initialize the network with very small weights [14], as
proposed in [8]. As in the presence of an infinitesimal weights decay, this scheme also leads to
sparse solutions with nA = O(n) – an asymptotic dependence confirmed in Fig. G.3 of App. G. This
observation implies that our predictions must apply in that case too, as we confirm in Fig. G.3.
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Figure 4: Generalization error for a constant function f∗(x) = 1. Generalization error as a
function of the training set size n for a network trained in the feature regime with L1 regularization
(blue) and kernel regression corresponding to the infinite-width lazy regime (orange). Numerical
results (full lines) and the exponents predicted by the theory (dashed) are plotted. Panels correspond
to different input-space dimensions (d = 2, 3, 5). Results are averaged over 10 different initializations
of the networks and datasets. For d = 2 and large n, the gap between experiments and prediction for
the feature regime is due to the finite training time t. Indeed our predictions become more accurate as
t increases, as illustrated in the left.

5 Evidence for overfitting along diffeomorphisms in image datasets

For fully-connected networks, the feature regime is well-adapted to learn anisotropic tasks [16]: if
the target function does not depend on a certain linear subspace of input space, e.g. the pixels at
the corner of an image, then neurons align perpendicularly to these directions [19]. By contrast, our
results highlight a drawback of this regime when the target function is constant or smooth along
directions in input space that require a continuous distribution of neurons to be represented. In
such a case, the adaptation of the weights to the training points leads to a predictor with a sparse
representation. Such a predictor would be less smooth than in the lazy regime and thus underperform.

Does this view hold for images, and explain why learning their features is detrimental for fully-
connected networks? The first positive empirical evidence is that the neurons’ distribution of networks
trained on image data becomes indeed sparse in the feature regime, as illustrated in Fig. 5a, right,
for CIFAR10 [28]. This observation raises the question of which are the directions in input space
i) along which the target should vary smoothly, and ii) that are not easily represented by a discrete
set of neurons. An example of such directions are global translations, which conserve the norm of
the input and do not change the image class: the lazy regime predictor is indeed smoother than the
feature one with respect to translations of the input (see App. H). Yet, these transformations live in a
space of dimension 2, which is small in comparison with the full dimensionality d of the data and
thus may play a negligible role.

A much larger class of transformations believed to have little effect on the target are small diffeomor-
phisms [29]. A diffeomorphism τ acting on an image is illustrated in Fig. 5b, which highlights that
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Figure 5: Features sparsification and example of a diffeomorphism.

our brain still perceives the content of the transformed image as in the original one. Near-invariance
of the task to these transformations is believed to play a key role in the success of deep learning,
and in explaining how neural networks beat the curse of dimensionality [48]. Indeed, if modern
architectures can become insensitive to these transformations, then the dimensionality of the problem
is considerably reduced. In fact, it was found that the architectures displaying the best performance
are precisely those which learn to vary smoothly along such transformations [49].

Small diffeomorphisms are likely the directions we are looking for. To test this hypothesis, follow-
ing [49], we characterize the smoothness of a function along such diffeomorphisms, relative to that
of random directions in input space. Specifically, we use the relative sensitivity:

Rf =
Ex,τ‖f(τx)− f(x)‖2

Ex,η‖f(x+ η)− f(x)‖2 . (5.1)

In the numerator, the average is made over the test set and over an ensemble of diffeomorphisms,
reviewed in App. I. The magnitude of the diffeomorphisms is chosen so that each pixel is shifted
by one on average. In the denominator, the average runs over the test set and the vectors η sampled
uniformly on the sphere of radius ‖η‖ = Ex,τ‖τx− x‖, and this fixes the transformations magnitude.

We measure Rf as a function of n for three benchmark datasets of images, as shown in Fig. 6.
We indeed find that Rf is consistently smaller in the lazy training regime, where features are not
learned. Overall, this observation supports the view that learning sparse features is detrimental
when data present (near) invariance to transformations that cannot be represented sparsely by the
architecture considered. Fig. 1 supports the idea that—for benchmark image datasets—this negative
effect overcomes well-known positive effects of learning features, e.g. becoming insensitive to pixels
on the edge of images (see App. H for evidence of this effect).

6 Conclusion

Our central result is that learning sparse features can be detrimental if the task presents invariance
or smooth variations along transformations that are not adequately captured by the neural network
architecture. For fully-connected networks, these transformations can be rotations of the input, but
also continuous translations and diffeomorphisms.
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Our analysis relies on the sparsity of the features learned by a shallow fully-connected architecture:
even in the infinite width limit, when trained in the feature learning regime such networks behave as
O(n) neurons. The asymptotic analysis we perform for random Gaussian fields on the sphere leads
to predictions for the learning curve exponent β in different training regimes, which we verify. Such
kind of results is scarce in the literature.

Note that our analysis focuses on ReLU neurons because (i) these are very often used in practice
and (ii) in that case, β will depend on the training regime, allowing for stringent numerical tests.
If smooth activations (e.g. softplus) are considered, we expect that learning features will still be
detrimental for generalization. Yet, the difference will not appear in the exponent β, but in other
aspects of the learning curves (including numerical coefficients and pre-asymptotic effects) that are
harder to predict.

Most fundamentally, our results underline that the success of feature learning for modern architectures
still lacks a sufficient explanation. Indeed, most of the theoretical studies that previously emphasized
the benefits of learning features have been considering fully-connected networks, for which learning
features can be in practice a drawback. It is tempting to argue that in modern architectures, learning
features is not at a disadvantage because smoothness along diffeomorphisms can be enforced from
the start—due to the locally connected, convolutional, and pooling layers [53, 29]. Yet the best
architectures often do not perform pooling and are not stable toward diffeomorphisms at initialization.
During training, learning features leads to more stable and smoother solutions along diffeomorphisms
[54, 49]. Understanding why building sparse features enhances stability in these architectures may
ultimately explain the magical feat of deep CNNs: learning tasks in high dimensions.
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A Quick recap of spherical harmonics

Spherical harmonics This appendix collects some introductory background on spherical harmonics
and dot-product kernels on the sphere [55]. See [56, 57] for an expanded treatment. Spherical
harmonics are homogeneous polynomials on the sphere Sd−1 = {x ∈ Rd | ‖x‖= 1}, with ‖.‖
denoting the L2 norm. Given the polynomial degree k ∈ N, there are Nk,s linearly independent
spherical harmonics of degree k on Ss−1, with

Nk,d =
2k + d− 2

k

(
d+ k − 3

k − 1

)
,

{
N0,d = 1 ∀d,
Nk,d � Adkd−2 for k � 1,

(A.1)

where � means logarithmic equivalence for k → ∞ and Ad =
√

2/π(d − 2)
3
2−ded−2. Thus, we

can introduce a set ofNk,d spherical harmonics Yk,` for each k, with ` ranging in 1, . . . ,Nk,d, which
are orthonormal with respect to the uniform measure on the sphere dτ(x),

{Yk,`}k≥0,`=1,...,Nk,d , 〈Yk,`, Yk,`′〉Sd−1 :=

∫

Sd−1

Yk,`(x)Yk,`′(x) dτ(x) = δ`,`′ . (A.2)

Because of the orthogonality of homogeneous polynomials with different degree, the set is a com-
plete orthonormal basis for the space of square-integrable functions on Sd−1. For any function
f : Sd−1 → R, then

f(x) =
∑

k≥0

Nk,d∑

`=1

fk,`Yk,`(x), fk,` =

∫

Sd−1

f(x)Yk,`(x)dτ(x). (A.3)

Furthermore, spherical harmonics are eigenfunctions of the Laplace-Beltrami operator ∆, which is
nothing but the restriction of the standard Laplace operator to Sd−1,

∆Yk,` = −k(k + d− 2)Yk,`. (A.4)

Legendre polynomials By fixing a direction y in Sd−1 one can select, for each k, the only spherical
harmonic of degree k which is invariant for rotations that leave y unchanged. This particular spherical
harmonic is, in fact, a function of x ·y and is called the Legendre polynomial of degree k, Pk,d(x ·y)
(also referred to as Gegenbauer polynomial). Legendre polynomials can be written as a combination
of the orthonormal spherical harmonics Yk,` via the addition theorem [56, Thm. 2.9],

Pk,d(x · y) =
1

Nk,d

Nk,d∑

`=1

Yk,`(x)Yk,`(y). (A.5)

Alternatively, Pk,d is given explicitly as a function of t=x · y ∈ [−1, 1] via the Rodrigues’ for-
mula [56, Thm. 2.23],

Pk,d(t) =

(
−1

2

)k Γ
(
d−1
2

)

Γ
(
k + d−1

2

) (1− t2
) 3−d

2
dk

dtk
(
1− t2

)k+ d−3
2 . (A.6)

Here Γ denotes the Gamma function, Γ(z) =
∫∞
0
xz−1e−x dx. Legendre polynomials are orthogonal

on [−1, 1] with respect to the measure with density (1− t2)(d−3)/2, which is the probability density
function of the scalar product between to points on Sd−1.

∫ +1

−1
Pk,d(t)Pk′,d(t)

(
1− t2

) d−3
2 dt =

|Sd−1|
|Sd−2|

δk,k′

Nk,s
. (A.7)

Here |Sd−1|= 2π
d
2 /Γ(d2 ) denotes the surface area of the d-dimensional unit sphere (|S0|= 2 by

definition).

To sum up, given x,y ∈ Sd−1, functions of x or y can be expressed as a sum of projections on the
orthonormal spherical harmonics, whereas functions of x ·y can be expressed as a sum of projections
on the Legendre polynomials. The relationship between the two expansions is elucidated in the
Funk-Hecke formula [56, Thm. 2.22],
∫

Sd−1

f(x · y)Yk,`(y) dτ(y) = Yk,`(x)
|Sd−2|
|Sd−1|

∫ +1

−1
f(t)Pk,d(t)

(
1− t2

) d−3
2 dt := fkYk,`(x).

(A.8)
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A.1 Expansion of ReLU and combinations thereof

We can apply Eq. A.8 to have an expansion of neurons σ (θ · x) in terms of spherical harmonics [2,
Appendix D]. After defining

ϕk :=
|Sd−2|
|Sd−1|

∫ +1

−1
σ(t)Pk,d(t)

(
1− t2

) d−3
2 dt, (A.9)

one has

σ (θ · x) =
∑

k≥0
Nk,dϕkPk,d (θ · x) =

∑

k≥0
ϕk

Nk,d∑

`=1

Yk,`(θ)Yk,`(x). (A.10)

For ReLU activations, in particular, σ(t) = max(0, t), thus

ϕReLU
k =

|Sd−2|
|Sd−1|

∫ +1

0

tPk,d(t)
(
1− t2

) d−3
2 dt. (A.11)

Notice that when k is odd Pk,d is an odd function of t, thus the integrand tPk,d(t)(1− t2)
d−3
2 is an

even function of t. As a result the integral on the right-hand side of Eq. A.11 coincides with half the
integral over the full domain [−1, 1],

∫ +1

0

tPk,d(t)
(
1− t2

) d−3
2 dt =

1

2

∫ +1

−1
tPk,d(t)

(
1− t2

) d−3
2 dt = 0 for k > 1, (A.12)

because, due to Eq. A.7, Pk,d is orthogonal to all polynomials with degree strictly lower than k. For
even k we can use Eq. A.6 and get [2] (see Eq. 3.3, main text)
∫ +1

0

tPk,d(t)
(
1− t2

) d−3
2 dt =

(
−1

2

)k Γ
(
d−1
2

)

Γ
(
k + d−1

2

)
∫ 1

0

t
dk

dtk
(
1− t2

)k+ d−3
2 dt

= −
(
−1

2

)k Γ
(
d−1
2

)

Γ
(
k + d−1

2

) dk−2

dtk−2
(
1− t2

)k+ d−3
2

∣∣∣∣
t=1

t=0

⇒ ϕReLU
k ∼ k− d−1

2 − 3
2 for k � 1 and even.

(A.13)

Because all ϕReLU
k with k > 1 and odd vanish, even summing an infinite amount of neurons σ(θ · x)

with varying θ does not allow to approximate any function on Sd−1, but only those which have
vanishing projections on all the spherical harmonics Yk,` with k > 1 and odd. This is why we set the
odd coefficients of the target function spectrum to zero in Eq. 2.1.

A.2 Dot-product kernels on the sphere

Also general dot-product kernels on the sphere admit an expansion such as Eq. A.10,

C (x · y) =
∑

k≥0
Nk,dckPk,d (θ · x) =

∑

k≥0
ck

Nk,d∑

`=1

Yk,`(θ)Yk,`(x), (A.14)

with

ck =
|Sd−2|
|Sd|

∫ 1

−1
C(t)Pk,d(t)

(
1− t2

) d−3
2 dt. (A.15)

The asymptotic decay of ck for large k is controlled by the behaviour of C(t) near t= ±1, [58]. More
precisely [58, Thm. 1], if C is infinitely differentiable in (−1, 1) and has the following expansion
around ±1, {C(t) = p1(1− t) + c1(1− t)ν + o ((1− t)ν) near t = +1;

C(t) = p−1(−1 + t) + c−1(−1 + t)ν + o ((−1 + t)ν) near t = −1,
(A.16)

where p±1 are polynomials and ν is not an integer, then

k even: ck ∼ (c1 + c−1)k−2ν−(d−1);

k odd: ck ∼ (c1 − c−1)k−2ν−(d−1),
(A.17)

The result above implies that that if c1 = c−1 (c1 = − c−1), then the eigenvalues with k odd (even)
decay faster than k−2ν−(d−2). Moreover, if C is infinitely differentiable in [−1, 1] then ck decays
faster than any polynomial.
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NTK and RFK of one-hidden-layer ReLU networks Let Eθ denote expectation over a multivari-
ate normal distribution with zero mean and unitary covariance matrix. For any x, y ∈ Sd−1, the RFK
of a one-hidden-layer ReLU network Eq. 2.3 with all parameters initialised as independent Gaussian
random numbers with zero mean and unit variance reads

KRFK(x · y) = Eθ [σ(θ · x)σ(θ · y)]

=
(π − arccos (t))t+

√
1− t2

2π
, with t = x · y.

(A.18)

The NTK of the same network reads, with σ′ denoting the derivative of ReLU or Heaviside function,

KNTK(x · y) = Eθ [σ(θ · x)σ(θ · y)] + (x · y)Eθ [σ′(θ · x)σ′(θ · y)]

=
2(π − arccos (t))t+

√
1− t2

2π
, with t = x · y.

(A.19)

As functions of a dot-product on the sphere, both NTK and RFK admit a decomposition in terms of
spherical harmonics as Eq. A.15. For dot-product kernels, this expansion coincides with the Mercer’s
decomposition of the kernel [55], that is the coefficients of the expansion are the eigenvalues of the
kernel. The asymptotic decay of the eigenvalues of such kernels ϕNTK

k and ϕRFK
k can be obtained

by applying Eq. A.16 [58, Thm. 1]. Equivalently, one can notice that KRFK is proportional to the
convolution on the sphere of ReLU with itself, therefore ϕRFK

k = (ϕReLU
k )2. Similarly, the asymptotic

decay of ϕNTK
k can be related to that of the coefficients of σ′, derivative of ReLU: ϕk(σ′) ∼ kϕ(σ),

thus ϕNTK
k ∼ k2(ϕReLU

k )2. Both methods lead to Eq. 3.3 of the main text.

Gaussian random fields and Eq. 2.2 Consider a Gaussian random field f∗ on the sphere with
covariance kernel C(x · y),

E [f∗(x)] = 0, E [f∗(x)f∗(y)] = C(x · y), ∀x,y ∈ Sd−1. (A.20)

f∗ can be equivalently specified via the statistics of the coefficients f∗k,`,

E
[
f∗k,`
]

= 0, E
[
f∗k,`f

∗
k′,`′

]
= ckδk,k′δ`,`′ , (A.21)

with ck denoting the eigenvalues of C in Eq. A.15. Notice that the eigenvalues are degenerate with
respect to ` because the covariance kernel is a function x · y: as a result, the random function f∗ is
isotropic in law.

If ck decays as a power of k, then such power controls the weak differentiability (in the mean-squared
sense) of the random field f∗. In fact, from Eq. A.4,

∥∥∥∆m/2f∗
∥∥∥ =

∑

k≥0

∑

`

(−k(k + d− 2))
m (

f∗k,`
)2
. (A.22)

Upon averaging over f∗ one gets

E
[∥∥∥∆m/2f∗

∥∥∥
]

=
∑

k≥0
(−k(k + d− 2))

m
∑

`

E
[(
f∗k,`
)2]

=
∑

k≥0
(−k(k + d− 2))

mNk,dck.

(A.23)
From Eq. A.16 [58, Thm. 1], if C(t) ∼ (1−t)νt for t→ 1 and/or C(t) ∼ (−1+t)νt for t→ −1, then
ck ∼ k−2νt−(d−1) for k � 1. In addition, for finite but arbitrary d, (−k(k + d− 2))

m ∼ k2m and
Nk,s ∼ kd−2 (see Eq. A.1). Hence the summand in the right-hand side of Eq. A.23 is ∼ k2(m−νt)−1,
thus

E
[∥∥∥∆m/2f∗

∥∥∥
]
<∞ ∀m < νt. (A.24)

Alternatively, one can think of νt as controlling the scaling of the difference δf∗ over inputs separated
by a distance δ. From Eq. A.20,

E
[
|f∗(x)− f∗(y)|2

]
= 2C(1)− 2C(x · y) = 2C(1) +O((1− x · y)νt)

= 2C(1) +O(|x− y|2νt)
(A.25)
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B Uniqueness and Sparsity of the L1 minimizer

Recall that we want to find the γ∗ that solves

γ∗ = arg min
γ

∫

Sd−1

|dγ(θ)| subject to
∫

Sd−1

σ(θ · xi)dγ(θ)=f∗(xi) ∀i = 1, . . . , n. (B.1)

In this appendix, we argue that the uniqueness of γ∗ which implies that it is atomic with at most
n atoms is a natural assumption. We start by discretizing the measure γ into H atoms, with H
arbitrarily large. Then the problem Eq. B.1 can be rewritten as

w∗ = arg min
w

‖w‖1, subject to Φw = y, (B.2)

with Φ ∈ RH×n, Φh,i = σ(θh · xi) and yi = f∗(xi).

Given w ∈ RH , let u = max(w, 0) ≥ 0 and v = −max(−w, 0) ≥ 0 so that w = u − v. It is
well-known (see e.g. [50]) that the minimization problem in (B.2) can be recast in terms of u and v
into a linear programming problem. That is, w∗ = u∗ − v∗ with

(u∗,v∗) = arg min
u,v

eT (u+ v), subject to Φu−Φv = y, u ≥ 0, v ≥ 0 (B.3)

where e = [1, 1, . . . , 1]T . Assuming that this problem is feasible (i.e. there is at least one solution to
Φu−Φv = y such that u ≥ 0, v ≥ 0), it is known that it admits extremal solution, i.e. solutions
such that at most n entries of (u∗,v∗) (and hence w∗) are non-zero. The issue is whether such
an extremal solution is unique. Assume that there are two, say (u∗1,v

∗
1) and (u∗2,v

∗
2). Then, by

convexity,
(u∗t ,v

∗
t ) = (u∗1,v

∗
1)t+ (u∗2,v

∗
2)(1− t) (B.4)

is also a minimizer of (B.3) for all t ∈ [0, 1], with the same minimum value u∗t + v∗t = u∗1 + v∗1 =
u∗2 + v∗2 . Generalizing this argument to the case of more than two extremal solutions, we conclude
that all minimizers are global, with the same minimum value, and they live on the simplex where
eT (u+ v) = eT (u1 + v1). Therefore, nonuniqueness requires that that this simplex has a nontrivial
intersection with the feasible set where Φu−Φv = y with u ≥ 0, v ≥ 0. We argue that, generically,
this will not be the case, i.e. the intersection will be trivial, and the extremal solution unique. In
particular, since in our case we are in fact interested in the problem (B.1), we can always perturb
slightly the discretization into H atoms of γ to guarantee that the extremal solution is unique. Since
this is true no matter how large H is, and any Radon measure can be approached to arbitrary precision
using such discretization, we conclude that the minimizer of (B.1) should be unique as well, with at
most n atoms.

C Proof of Proposition 1

In this section, we provide the formal statement and proof of Proposition 1. Let us recall the general
form of the predictor for both lazy and feature regimes in d= 2. From Eq. 3.6,

fn(x) =
n∑

j=1

gjϕ̃(x− xj) =

∫
dy

2π
gn(y)ϕ̃(x− y). (C.1)

where n is the number of training points for the lazy regime and the number of atoms for the feature
regime and, for x ∈ (−π, π],

ϕ̃(x) =





max {0, cos (x)} (feature regime),
2(π − |x|) cos(x) + sin(|x|)

2π
(lazy regime, NTK),

(π − |x|) cos(x) + sin(|x|)
2π

(lazy regime, RFK).

(C.2)

All these functions ϕ̃ have jump discontinuities on some derivative: the first for feature and NTK, the
third for RFK. If the l-th derivative has jump discontinuities, the l+ 1-th only exists in a distributional
sense and it can be generically written as a sum of a regular function and a sequence of Dirac masses
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located at the discontinuities. With m denoting the number of such discontinuities and {xj}j their
locations, f (l) denoting the l-th derivative of f , for some cj ∈ R,

f (l+1)(x) = f (l+1)
r (x) +

m∑

j=1

cjδ(x− xj), (C.3)

where fr denotes the regular part of f .
Proposition 2. Consider a random target function f∗ satisfying Eq. 2.1 and the predictor fn obtained
by training a one-hidden-layer ReLU network on n samples (xi, f

∗(xi)) in the feature or in the lazy
regime (Eq. C.1). Then, with f̂(k) denoting the Fourier transform of f(x), one has

lim
|k|→∞

lim
n→∞

(̂fn)′′r (k)

f̂∗(k)
= c, (C.4)

where c is a constant (different for every regime). This result implies that as n→∞, (fn)′′(x)
converges to a function having finite second moment, i.e.

lim
n→∞

Ef∗ [(fn)′′r (x)]
2

= lim
n→∞

Ef∗
[∫

dx ((fn)′′r )
2

(x)

]

= lim
n→∞

Ef∗
[∑

k

(̂fn)′′r
2
(k)

]
= const. <∞,

(C.5)

using the fact that Ef∗ [(fn)′′r (x)]2 does not depend on x and Ef∗ [
∑
k (̂f∗)

2
(k)] = const.

Proof: Because our target functions are random fields that are in L2 with probability one, and the
RKHS of our kernels are dense in that space, we know that the test error vanishes as n→∞ [59].
As a result

f∗(x) = lim
n→∞

fn(x) = lim
n→∞

∫
dy

2π
gn(y)ϕ̃(x− y). (C.6)

Consider first the feature regime and the NTK lazy regime. In both cases ϕ̃ has two jump discontinu-
ities in the first derivative, located at x= 0, π for the NTK and at x= ± π/2, therefore we can write
the second derivative as the sum of a regular function and two Dirac masses,

(ϕ̃FEATURE)′′ = −max {0, cos (x)}+ δ(x− π/2) + δ(x+ π/2),

(ϕ̃NTK)′′ =
−2(π − |x|) cos(x) + 3 sin(|x|)

2π
− 1

2π
δ(x) +

1

2π
δ(x− π).

(C.7)

As a result, the second derivative of the predictor can be written as the sum of a regular part (fn)′′r
and a sequence of 2n Dirac masses. After subtracting the Dirac masses, both sides of Eq. C.1 can be
differentiated twice and yield

(fn)′′r (x) =

∫
dy

2π
gn(y)ϕ̃′′r (x− y). (C.8)

Hence in the Fourier representation we have

(̂fn)′′r (k) = ĝn(k)(−k2 ̂̃ϕr(k)) (C.9)

where we defined

̂̃ϕ(k) =

∫ π

−π

dx√
2π
eikxϕ̃(x), ̂̃ϕr(k) =

∫ π

−π

dx√
2π
eikxϕ̃r(x). (C.10)

and used ̂̃ϕ′′r (k) = −k2̂̃ϕr(k). By universal approximation we have

f̂∗(k) =

∫ π

−π

dx√
2π
eikxf∗(x) = lim

n→∞
ĝn(k)̂̃ϕ(k) ⇒ lim

n→∞
ĝn(k) =

f̂∗(k)

̂̃ϕ(k)
. (C.11)

As a result by combining Eq. C.9 and Eq. C.11 we deduce

lim
n→∞

(̂fn)′′r (k) = −k
2 ̂̃ϕr(k)

̂̃ϕ(k)
f̂∗(k). (C.12)
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To complete the proof using this result it remains to estimate the scaling of ̂̃ϕr(k) and ̂̃ϕ(k) in the
large |k| limit.

For the feature regime, a direct calculation shows that ϕ̃′′r = − ϕ̃, implying that ̂̃ϕr(k) = −̂̃ϕ(k).
This proves that Eq. C.4 is satisfied with c= − 1.

For the NTK lazy regime ϕ̃′′r and−ϕ̃ are different but they have similar singular expansions near x= 0
and π. Therefore their Fourier coefficients display the same asymptotic decay. More specifically,
with t= cos(x) (or x= arccos(t)), so that ϕ̃(x) =ϕ(t), one has





ϕNTK(t) = t− 1√
2π

(1− t)1/2 +O
(

(1− t)3/2
)

near t = +1;

ϕNTK(t) = − 1√
2π

(−1 + t)1/2 +O
(

(−1 + t)3/2
)

near t = −1,

(C.13)

and 



(ϕNTK)′′r (t) = −t+
5√
2π

(1− t)1/2 +O
(

(1− t)3/2
)

near t = +1;

(ϕNTK)′′r (t) = +
5√
2π

(−1 + t)1/2 +O
(

(−1 + t)3/2
)

near t = −1.

(C.14)

Therefore, due to Eq. A.17, Eq. C.4 is satisfied with c= − 5. The same procedure can be applied to
the RFK lazy regime, with the exception that it is the fourth derivative of ϕ̃RFK which can be written
as a regular part plus Dirac masses, but one can still obtain the Fourier coefficients of the second
derivative’s regular part by dividing those of the fourth derivative’s regular part by k2.

D Asymptotics of generalization in d=2

In this section we compute the decay of generalization error ε with the number of samples n in the
following 2-dimensional setting:

fn(x) =

n∑

j=1

gjϕ̃(x− xj), (D.1)

where the xj’s are the training points (like in the NTK case) and ϕ has a single discontinuity on the
first derivative in 0.

Let us order the training points clockwise on the ring, such that x1 = 0 and xi+1 > xi for all
i= 1, . . . , n, with xn+1 := 2π. On each of the xi the predictor coincides with the target,

fn(xi) = f∗(xi) ∀ i = 1, . . . , n. (D.2)

For large enough n, the difference xi+1 − xi is small enough such that, within (xi, xi+1), fn(x) can
be replaced with its Taylor series expansion up to the second order. In practice, the predictors appear
like the cable of a suspension bridge with the pillars located on the training points. In particular, we
can consider an expansion around x+i :=xi + ε for any ε> 0 and then let ε→ 0 from above:

fn(x) = fn(x+i ) + (x− x+i )fn′(x+i ) +
(x− x+i )2

2
(fn)′′(x+i ) +O

(
(x− x+i )3

)
. (D.3)

By differentiability of fn in (xi, xi+1) the second derivative can be computed at any point inside
(xi, xi+1) without changing the order of approximation in Eq. D.3, in particular we can replace
(fn)′′(x+i ) with ci, the mean curvature of fn in (xi, xi+1). Moreover, as ε→ 0, fn(x+i )→ f∗(xi)
and fn(x−i+1)→ f∗(xi+1). By introducing the limiting slope m+

i := limx→0+ f
n′(xi + x), we can

write

fn(x) = f∗(xi) + (x− xi)m+
i +

(x− xi)2
2

ci +O
(
(x− x+i )3

)
(D.4)

Computing Eq. D.4 at x=xi+1 yields a closed form for the limiting slope m+
i as a function of the

mean curvature ci, the interval length δi := (xi+1 − xi) and ∆fi := f∗(xi+1)− f∗(xi). Specifically,

m+
i =

∆fi
δi
− δi

2
ci. (D.5)
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The generalization error can then be split into contributions from all the intervals. If νt > 2, A Taylor
expansion leads to:

ε(n) =

∫ 2π

0

dx

2π
(fn(x)− f∗(x))

2

=
n∑

i=1

∫ xi+1

xi

dx

2π

[
(x− xi)

(
m+
i − (f∗)′(xi)

)
+

(x− xi)2
2

(ci − (f∗)′′(xi)) + o
(
(x− x+i )2

)]2

=
n∑

i=1

∫ δi

0

dδ

2π

[
δ
(
m+
i − (f∗)′(xi)

)
+
δ2

2
(ci − (f∗)′′(xi)) + o

(
δ2
)]2

=
n∑

i=1

1

2π

[
δ3i
3

(
m+
i − (f∗)′(xi)

)2
+
δ5i
20

(ci − (f∗)′′(xi))
2

+
δ4i
4

(
m+
i − (f∗)′(xi)

)
(ci − (f∗)′′(xi)) + o(δ5i )

]
.

(D.6)
In addition, as ∆fi = (f∗)′(xi)δi + (f∗)′′(xi)δ2i /2 +O(δ3i ),

m+
i − (f∗)′(xi) =

δi
2

((f∗)′′(xi)− ci) + o(δi)
2, (D.7)

thus

ε(n) =
1

2π

n∑

i=1

[
δ5i

120
(ci − (f∗)′′(xi))

2
+ o(δ5i )

]
. (D.8)

implying:

ε(n) =
n−4

(
n−1

∑n
i=1(nδi)

5
)

240π
lim
n→∞

∫
Ef∗

[
((fn)′′(x)− (f∗)′′(x))

2
]
dx+ o(n−4) ∼ 1

n4
(D.9)

where we used that (i) the integral converges to some finite value, due to proposition 2. From App. C,
this integral can be estimated as

∑
k Ef∗

[(
cf∗(k)− k2f∗(k)

)2]
, that indeed converges for νt > 2.

(ii)
(
n−1

∑n
i=1(nδi)

5
)

has a deterministic limit for large n. It is clear for the lazy regime since the
distance between adjacent singularities δi follows an exponential distribution of mean ∼ 1

n . We
expect this result to be also true for the feature regime in our set-up. Indeed, in the limit n → ∞,
the predictor approaches a parabola between singular points, which generically cannot fit more than
three random points. There must thus be a singularity at least every two data-points with a probability
approaching unity as n → ∞, which implies that

(
n−1

∑n
i=1(nδi)

5
)

converges to a constant for
large n.

Finally, for νt < 2, the same decomposition in intervals applies, but a Taylor expansion to second
order does not hold. The error is then dominated by the fluctuations of f∗ on the scale of the intervals,
as indicated in the main text.

E Asymptotic of generalization via the spectral bias ansatz

According to the spectral bias ansatz, the first n modes of the predictor fnk,` coincide with the modes
of the target function f∗k,`. Therefore, the asymptotic scaling of the error with n is entirely controlled
by the remaining modes,

ε(n) ∼
∑

k≥kc

Nk,d∑

`=1

(
fnk,` − f∗k,`

)2
with

∑

k≤kc
Nk,d ∼ n. (E.1)

Since Nk,d ∼ kd−2 for k � 1, one has that, for large n, kc ∼ n
1
d−1 . After averaging the error over

target functions we get

ε(n) ∼
∑

k≥kc

Nk,d∑

`=1

{
Ef∗

[(
fnk,`
)2]

+ Ef∗
[(
f∗k,`
)2]− 2Ef∗

[(
fnk,`f

∗
k,`

)]}
. (E.2)
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Let us recall that, with the predictor having the general form in Eq. 3.2, then

fnk,` = gnk,`ϕk with gnk,` =

n∑

j=1

gjYk,`(yj), (E.3)

where the yj’s denote the training points for the lazy regime and the neuron features for the feature
regime. For k� kc, where fnk,` = f∗k,`, g

n
k,` = f∗k,`/ϕk. For k� kc, due to the highly oscillating

nature of Yk,`, the factors Yk,`(yj) are essentially decorrelated random numbers with zero mean and
finite variance, since the values of (Yk,`(yj))

2 are limited by the addition theorem Eq. A.5. Let us
denote the variance with σY . By the central limit theorem, gnk,` converges to a Gaussian random
variable with zero mean and finite variance σ2

Y

∑n
j=1 g

2
j . As a result,

ε(n) ∼
∑

k≥kc

Nk,d∑

`=1








n∑

j=1

g2j


ϕ2

k + Ef∗
[(
f∗k,`
)2]




=




n∑

j=1

g2j


 ∑

k≥kc
Nk,dϕ2

k +
∑

k≥kc
Nk,dck,

(E.4)

where we have used the definition of f∗ (Eq. 2.1) to set the expectation of (f∗k,`)
2 to ck.

Large νt case When f∗ is smooth enough the error is controlled by the predictor term proportional
to
∑n
j=1 g

2
j . More specifically, if

∑

k≥0

Nk,d∑

`=1

ck
ϕ2
k

< +∞, (E.5)

then the function gn(x) converges to the square-summable function g∗(x) such that
f∗(x) =

∫
g∗(y)ϕ(x · y) dτ(y). With ck ∼ k−2νt−(d−1) and Nk,d ∼ kd−2, in the lazy regime

ϕk ∼ k−(d−1)−2ν Eq. E.5 is satisfied when 2νt> 2(d− 1) + 4ν (ν= 1/2 for the NTK and 3/2 for
the RFK). In the feature regime ϕk ∼ k−(d−1)/2−3/2, Eq. E.5 is satisfied when 2νt> (d− 1) + 3. If
gn(x) converges to a square-summable function, then

n∑

j=1

g2j =
1

n

∫
gn(x)2 dτ(x) + o(n−1) =

1

n

∑

k≥0
Nk,d

ck
ϕ2
k

+ o(n−1), (E.6)

which is proportional to n−1. In addition, since Nk,d ∼ kd−2 and kc ∼ n
1
d−1 , one has

n−1
∑

k≥kc
Nk,dϕk ∼





n−1kd−1k−2(d−1)−4ν
∣∣∣
k=n

1
d−1
∼ n−2− 4ν

d−1 (Lazy),

n−1kd−1k−(d−1)−3
∣∣∣
k=n

1
d−1
∼ n−1− 3

d−1 (Feature),
(E.7)

and ∑

k≥kc
Nk,dck ∼ kd−1k−2νt−(d−1)

∣∣∣
k=n

1
d−1
∼ n−

2νt
d−1 . (E.8)

Hence, if νt is large enough so that Eq. E.5 is satisfied, the asymptotic decay of the error is given
by Eq. E.7.

Small νt case If Eq. E.7 does not hold then gn(x) is not square-summable in the limit n → ∞.
However, for large but finite n only the modes up to the kc-th are correctly reconstructed, therefore

n∑

j=1

g2j ∼
1

n

∑

k≤kc
Nk,d

ck
ϕ2
k

∼





n−1k−2νtk2(d−1)+4ν
∣∣∣
k=n

1
d−1
∼ n−

2νt
d−1n1+

4ν
d−1 (Lazy),

n−1k−2νtk(d−1)+3
∣∣∣
k=n

1
d−1
∼ n−

2νt
d−1n

3
d−1 (Feature),

(E.9)

Both for feature and lazy, multiplying the term above by
∑
k≥kc Nk,dϕk from Eq. E.7 yields

∼ n−2νt/(d−1). This is also the scaling of the target function term Eq. E.8, implying that for small νt
one has

ε(n) ∼ n−
2νt
d−1 (E.10)

both in the feature and in the lazy regimes.
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F Spectral bias via the replica calculation

Due to the equivalence with kernel methods, the asymptotic decay of the test error in the lazy regime
can be computed with the formalism of [45], which also provides a non-rigorous justification for
the spectral bias ansatz. By ranking the eigenvalues from the biggest to the smallest, such that ϕρ
denotes the ρ-th eigenvalue and denoting with cρ the variance of the projections of the target onto the
ρ-th eigenfunction, one has

ε(n) =
∑

ρ

ερ(n), ερ(n) =
κ(n)2

(ϕρ + κ(n))2
cρ, κ(n) =

1

n

∑

ρ

ϕρκ(n)

ϕρ + κ(n)
. (F.1)

It is convenient to introduce the eigenvalue density,

D(ϕ) :=
∑

k≥0

Nk,d∑

l=1

δ(ϕ− ϕk) =
∑

k≥0
Nk,dδ(ϕ− ϕk) ∼

∫ ∞

0

kd−2δ(ϕ− k−(d−1)−2ν) for k � 1.

(F.2)
After changing variables in the delta function, one finds

D(ϕ) ∼ ϕ−
2(d−1)+2ν
(d−1)+2ν for ϕ� 1. (F.3)

This can be used for inferring the asymptotics of κ(n),

κ(n) =
1

n

∑

ρ

ϕρκ(n)

ϕρ + κ(n)
∼ 1

n

∫
dϕD(ϕ)

ϕκ(n)

ϕ+ κ(n)

∼ 1

n

∫ κ(n)

0

dϕD(ϕ)ϕ+
κ(n)

n

∫ ϕ0

κ(n)

dϕD(ϕ)

∼ 1

n
κ(n)1−

(d−1)
(d−1)+2ν ⇒ κ(n) ∼ n−1− 2ν

d−1 .

(F.4)

Once the scaling of κ(n) has been determined, the modal contributions to the error can be split
according to whether ϕρ � κ(n) or ϕρ � κ(n). The scaling of ϕρ with the rank ρ is determined
self-consistently,

ρ ∼
∫ ϕ1

ϕρ

dϕD(ϕ) ∼ ϕ−
d−1

(d−1)+2ν
ρ ⇒ ϕρ ∼ ρ−1−

2ν
d−1 ⇒ ϕρ � (�)κ(n)⇔ ρ� (�)n. (F.5)

Therefore
ε(n) ∼ κ(n)2

∑

ρ�n

cρ
ϕ2
ρ

+
∑

ρ�n
cρ. (F.6)

Notice that κ(n)2 scales as n−1
∑
k≥kc Nk,sϕk in Eq. E.7, whereas

∑
ρ�n cρ/ϕ

2
ρ corresponds to

n
∑
j g

2
j in Eq. E.9, so that the first term on the right-hand side of Eq. F.6 matches that of Eq. E.4.

The same matching is found for the second term on the right-hand side of Eq. F.6, so that the replica
calculation justifies the spectral bias ansatz.

G Training wide neural networks: does gradient descent (GD) find the
minimal-norm solution?

In the main text we provided predictions for the asymptotics of the test error of the minimal norm
solution that fits all the training data. Does the prediction hold when solution of Eq. 2.5 and Eq. 2.13
is approximately found by GD? More specifically, is the solution found by GD the minimal-norm
one?

Feature Learning We answer these questions by performing full-batch gradient descent in two
settings (further details about the trainings are provided in the code repository, experiments.md
file),
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1. Min-L1. Here we update weights and features of Eq. 2.3, with ξ = 0, by following the
negative gradient of

LMin-L1 =
1

2n

n∑

i=1

(f∗(xi)− f(xi))
2

+
λ

H

H∑

h=1

|wh|, (G.1)

with λ → 0+. The weights wh are initialized to zero and the features are initialized
uniformly and constrained to be on the unit sphere.

2. α-trick. Following [8], here we minimize

Lα-trick =
1

2nα

n∑

i=1

(f∗(xi)− αf(xi))
2
, (G.2)

with α → 0. This trick allows to be far from the lazy regime by forcing the weights to
evolve to O(1/α), when fitting a target of order 1.

In both cases, the solution found by GD is sparse, in the sense that is supported on a finite number of
neurons – in other words, the measure γ(θ) becomes atomic, satisfying Assumption 1. Furthermore,
we find that

1. For Min-L1, the generalization error prediction holds (Fig. 4 and Fig. G.1) as the the
minimal norm solution if effectively recovered, see Fig. G.2. Such clean results in terms of
features position are difficult to achieve for large n because the training dynamics becomes
very slow and reaching convergence becomes computationally infeasible. Still, we observe
the test error to plateau and reach its infinite-time limit much earlier than the parameters,
which allows for the scaling predictions to hold.

2. α-trick, however, does not recover the minimal-norm solution, Fig. G.2. Still, the solution
found is of the type (2.7) as it is sparse and supported on a number of atoms that scales lin-
early with n, Fig. G.3, left. For this reason, we find that our predictions for the generalization
error hold also in this case, see Fig. G.3, right.

Lazy Learning In this case, the correspondence between the solution found by gradient descent
and the minimal-norm one is well established [9]. Therefore, numerical experiments are performed
here via kernel regression and the analytical NTK Eq. A.19: given a dataset {xi, yi = f∗(xi)}ni=1,
we define the gram matrix K ∈ Rn×n with elements Kij = K(xi,xj) and the vector of target labels
y = [y1, y2, . . . , yn]. The qi’s in Eq. 2.9 can be easily recovered by solving the linear system

y = 1
nKq. (G.3)

Experiments Numerical experiments are run with PyTorch on GPUs NVIDIA V100 (univer-
sity internal cluster). Details for reproducing experiments are provided in the code repository,
experiments.md file. Individual trainings are run in 1 minute to 1 hour of wall time. We estimate
a total of a thousand hours of computing time for running the preliminary and actual experiments
present in this work.

23

Chapter 4. When Feature Learning Fails: Deformation Invariance deteriorates with
training in Fully-Connected Networks

116



Overfitting in Feature Learning

1 2 3 4 5 6

νt

1

2

3

β feature

lazy

target

101 102 103

10−3

10−1

te
st

er
ro

r

feature, νt = 1.5

experiments

fn : n−1.75

f∗ : n−0.75

101 102 103

10−4

10−1

feature, νt = 4.5

experiments

fn : n−1.75

f∗ : n−2.25

101 102 103 104

trainset size, n

10−4

10−1

te
st

er
ro

r

lazy, νt = 1.5

experiments

fn : n−2.50

f∗ : n−0.75

101 102 103 104

trainset size, n

10−6

10−3

100

lazy, νt = 6.5

experiments

fn : n−2.50

f∗ : n−3.25

Figure G.1: Gen. error decay vs. target smoothness and training regime. Here, data-points are
sampled uniformly from the spherical surface in d = 5 and the target function is an infinite-width
FCN with activation function σ(·) = | · |νt−1/2, corresponding to a Gaussian random process of
smoothness νt. 1strow: gen. error decay exponent as a function of the target smoothness νt. The
three curves correspond to the target contribution to the generalization error (black) and the predictor
contribution in either feature (blue) or lazy (orange) regime. Full lines highlight the dominating
contributions to the gen. error. 2ndrow: agreement between predictions and experiments in the feature
regime for a non-smooth (left) and smooth (right) target. In the first case, the error is dominated by
the target f∗, in the second by the predictor fn – predicted exponents β are indicated in the legends.
3rdrow: analogous of the previous row for the lazy regime.
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Figure G.2: Comparing solutions. Solutions to the spherically symmetric task in d = 2 for n = 4
(left) and n = 8 (right) training points. In red the minimal norm solution (Eq. 2.5) as found by
Basis Pursuit [50]. Solutions found by GD in the Min-L1 and α-trick setting are respectively shown
in blue and orange. Dots correspond to single neurons in the network. The x-axis reports their
angular position while the y-axis reports their norm: |wh|‖θh‖2. The total norm of the solutions,
α
H

∑H
h=1 |wh|‖θh‖2, is indicated in the legend.
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Figure G.3: Solution found by the α-trick. We consider here the case of approximating the constant
target function on Sd−1 with an FCN. Training is performed starting from small initialization through
the α-trick. Left: Number of atoms nA as a function of the number of training points n. Neurons that
are active on the same subset of the training set are grouped together and we consider each group a
distinct atom for the counting. Right: Generalization error in the same setting (full), together with
the theoretical predictions (dashed). Different colors correspond to different input dimensions. The
case of d = 2 and large n suffers from the same finite time effects discussed in Fig. 4. Results are
averaged over 10 different initializations of the networks and datasets.

H Sensitivity of the predictor to transformations other than
diffeomorphisms

This section reports experiments to integrate the discussion of section 5. In particular, we: (i) show
that the lazy regime predictor is less sensitive to image translations than the feature regime one (as
is the case for deformations, from Fig. 6); (ii) provide evidence of the positive effects of learning
features in image classifications, namely becoming invariant to pixels at the border of images which
are unrelated to the task.

To prove the above points we consider, as in Fig. 6, the relative sensitivity of the predictors of lazy
and feature regime with respect to global translations for point (i) and corruption of the boundary
pixels for point (ii). The relative sensitivity to translations is obtained from Eq. 5.1 after replacing
the transformation τ with a one-pixel translation of the image in a random direction. For the relative
sensitivity to boundary corruption, the transformation consists in adding zero-mean and unit-variance
Gaussian numbers to the boundary pixels. Both relative sensitivities are plotted in Fig. H.1, with
translations on the left and boundary pixels corruption on the right.

In section 5 we then argue that differences in performance between the two training regimes can
be explained by gaps in sensitivities with respect to input transformations that do not change the
label. For (i), the gap is similar to the one observed for diffeomorphisms (Fig. 6). Still, the space of
translations has negligible size with respect to input space, hence we expect the diffeomorphisms
to have a more prominent effect. In case (ii), the feature regime is less sensitive with respect to
irrelevant pixels corruption and this would give it an advantage over the lazy regime. The fact that the
performance difference is in favor of the lazy regime instead, means that these transformations only
play a minor role.
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Figure H.1: Sensitivity to input transformations vs number of training points. Relative sensitiv-
ity of the predictor to (left) random 1-pixel translations and (right) white noise added at the boundary
of the input images, in the two regimes, for varying number of training points n and when training on
FashionMNIST. Smaller values correspond to a smoother predictor, on average. Results are computed
using the same predictors as in Fig. 1. Left: For small translations, the behavior is the same compared
to applying diffeomorphisms. Right: The lazy regime does not distinguish between noise added at
the boundary or on the whole image (Rf = 1), while the feature regime gets more insensitive to the
former.

I Maximum-entropy model of diffeomorphisms

We briefly review here the maximum-entropy model of diffeomorphisms as introduced in [49].

An image can be thought of as a function x(s) describing intensity in position s = (u, v) ∈ [0, 1]2,
where u and v are the horizontal and vertical (pixel) coordinates. Denote τx the image deformed by
τ , i.e. [τx](s) = x(s− τ(s)). [49] propose an ensemble of diffeomorphisms τ(s) = (τu, τv) with
i.i.d. τu and τv defined as

τu =
∑

i,j∈N+

Cij sin(iπu) sin(jπv) (I.1)

where the Cij’s are Gaussian variables of zero mean and variance T/(i2 + j2) and T is a parameter
controlling the deformation magnitude. Once τ is generated, pixels are displaced to random positions.
See Fig. 5b for an example of such transformation.
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ABSTRACT

A central question of machine learning is how deep nets manage to learn tasks
in high dimensions. An appealing hypothesis is that they achieve this feat by
building a representation of the data where information irrelevant to the task is
lost. For image datasets, this view is supported by the observation that after (and
not before) training, the neural representation becomes less and less sensitive
to diffeomorphisms acting on images as the signal propagates through the net.
This loss of sensitivity correlates with performance, and surprisingly correlates
with a gain of sensitivity to white noise acquired during training. These facts are
unexplained, and as we demonstrate still hold when white noise is added to the
images of the training set. Here, we (i) show empirically for various architectures
that stability to image diffeomorphisms is achieved by both spatial and channel
pooling, (ii) introduce a model scale-detection task which reproduces our empirical
observations on spatial pooling and (iii) compute analitically how the sensitivity to
diffeomorphisms and noise scales with depth due to spatial pooling. The scalings
are found to depend on the presence of strides in the net architecture. We find that
the increased sensitivity to noise is due to the perturbing noise piling up during
pooling, after being rectified by ReLU units.

1 INTRODUCTION

Deep learning algorithms can be successfully trained to solve a large variety of tasks (Amodei et al.,
2016; Huval et al., 2015; Mnih et al., 2013; Shi et al., 2016; Silver et al., 2017), often revolving
around classifying data in high-dimensional spaces. If there was little structure in the data, the
learning procedure would be cursed by the dimension of these spaces: achieving good performances
would require an astronomical number of training data (Luxburg & Bousquet, 2004). Consequently,
real datasets must have a specific internal structure that can be learned with fewer examples. It has
been then hypothesized that the effectiveness of deep learning lies in its ability of building ‘good’
representations of this internal structure, which are insensitive to aspects of the data not related to
the task (Ansuini et al., 2019; Shwartz-Ziv & Tishby, 2017; Recanatesi et al., 2019), thus effectively
reducing the dimensionality of the problem.

In the context of image classification, Bruna & Mallat (2013); Mallat (2016) proposed that neural
networks lose irrelevant information by learning representations that are insensitive to small defor-
mations of the input, also called diffeomorphisms. This idea was tested in modern deep networks
by Petrini et al. (2021), who introduced the following measures

Df =
Ex,τ‖f(τ(x))− f(x)‖2
Ex1,x2‖f(x1)− f(x2)‖2 , Gf =

Ex,η‖f(x+ η)− f(x)‖2
Ex1,x2‖f(x1)− f(x2)‖2 , Rf =

Df

Gf
, (1)

to probe the sensitivity of a function f—either the output or an internal representation of a trained
network—to random diffeomorphisms τ of x (see example in Fig. 1, left), to large white noise
perturbations η of magnitude ‖τ(x)− x‖, and in relative terms, respectively. Here the input images
x, x1 and x2 are sampled uniformly from the test set. In particular, the test error of trained networks

∗Equal contribution.
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τ

*

Figure 1: Left: example of a random diffeomorphism τ applied to an image. Center: test er-
ror vs relative sensitivity to diffeomorphisms of the predictor for a set of networks trained on
CIFAR10, adapted from Petrini et al. (2021). Right: Correlation coefficient between test er-
ror ε and Df , Gf and Rf when training different architectures on noisy CIFAR10, ρ(ε,X) =

Cov(log ε, logX)/
√

Var(log ε)Var(logX). Increasing noise magnitudes are shown on the x-axis
and η∗ = Eτ,x‖τ(x)− x‖2 is the one used for the computation of Gf . Samples of a noisy CIFAR10
datum are shown on top. Notice that Df and particularly Rf are positively correlated with ε, whilst
Gf is negatively correlated with ε. The corresponding scatter plots are in Fig. 10 (appendix).
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Figure 2: Spatial vs. channel pooling. (a) Spatial average pooling (size 2x2, stride 1) computed on
a representation of size 3x3. One can notice that nearby pixel variations are smaller after pooling.
(b) If the filters of different channels are identical up to e.g. a rotation of angle θ, then, averaging
the output of the application of such filters makes the result invariant to input rotations of θ. This
averaging is an example of channel pooling.

is correlated with Df when f is the network output. Less intuitively, the test error is anti-correlated
with the sensitivity to white noise Gf . Overall, it is the relative sensitivity Rf which correlates
best with the error (Fig. 1, middle). This correlation is learned over training—as it is not seen at
initialization—and built up layer by layer (Petrini et al., 2021). These phenomena are not simply due
to benchmark data being noiseless, as they persist when input images are corrupted by some small
noise (Fig. 1, right).

Operations that grant insensitivity to diffeomorphisms in a deep network have been identified
previously (e.g. Goodfellow et al. (2016), section 9.3, sketched in Fig. 2). The first, spatial pooling,
integrates local patches within the image, thus losing the exact location of its features. The second,
channel pooling, requires the interaction of different channels, which allows the network to become
invariant to any local transformation by properly learning filters that are transformed versions of one
another. However, it is not clear whether these operations are actually learned by deep networks
and how they conspire in building good representations. Here we tackle this question by unveiling
empirically the emergence of spatial and channel pooling, and disentangling their role. Below is a
detailed list of our contributions.
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1.1 OUR CONTRIBUTIONS

• We disentangle the role of spatial and channel pooling within deep networks trained on
CIFAR10 (Section 2). More specifically, our experiments reveal the significant contribution
of spatial pooling in decreasing the sensitivity to diffeomorphisms.

• In order to isolate the contribution of spatial pooling and quantify its relation with the
sensitivities to diffeomorphism and noise, we introduce idealized scale-detection tasks
(Section 3). In these tasks, data are made of two active pixels and classified according to
their distance. We find the same correlations between test error and sensitivities of trained
networks as found in Petrini et al. (2021). In addition, the neural networks which perform
the best on real data tend to be the best on these tasks.

• We theoretically analyze how simple CNNs, made by stacking convolutional layers with
filter size F and stride s, learn these tasks (Section 4). We find that the trained networks
perform spatial pooling for most of its layers. We show and verify empirically that the
sensitivities Dk and Gk of the k-th hidden layer follow Gk ∼ Ak and Dk ∼ A−αs

k , where
Ak is the effective receptive field size and αs = 2 if there is no stride, αs = 1 otherwise.

The code and details for reproducing experiments are available online at
github.com/leonardopetrini/relativestability/experiments ICLR23.md.

1.2 RELATED WORK

In the neuroscience literature, the understanding of the relevance of pooling in building invariant
representations dates back to the pioneering work of Hubel & Wiesel (1962). By studying the cat
visual cortex, they identified two different kinds of neurons: simple cells responding to e.g. edges at
specific angles and complex cells that pool the response of simple cells and detect edges regardless of
their position or orientation in the receptive field. More recent accounts of the importance of learning
invariant representations in the visual cortex can be found in Niyogi et al. (1998); Anselmi et al.
(2016); Poggio & Anselmi (2016).

In the context of artificial neural networks, layers jointly performing spatial pooling and strides
have been introduced with the early CNNs of Lecun et al. (1998), following the intuition that local
averaging and subsampling would reduce the sensitivity to small input shifts. Ruderman et al. (2018)
investigated the role of spatial pooling and showed empirically that networks with and without pooling
layers converge to similar deformation stability, suggesting that spatial pooling can be learned in
deep networks. In our work, we further expand in this direction by jointly studying diffeomorphisms
and noise stability and proposing a theory of spatial pooling for a simple task.

The depth-wise loss of irrelevant information in deep networks has been investigated by means of the
information bottleneck framework (Shwartz-Ziv & Tishby, 2017; Saxe et al., 2019) and the intrinsic
dimension of the networks internal representations (Ansuini et al., 2019; Recanatesi et al., 2019).
However, these works do not specify what is the irrelevant information to be disregarded, nor the
mechanisms involved in such a process.

The stability of trained networks to noise is extensively studied in the context of adversarial robust-
ness (Fawzi & Frossard, 2015; Kanbak et al., 2018; Alcorn et al., 2019; Alaifari et al., 2018; Athalye
et al., 2018; Xiao et al., 2018a; Engstrom et al., 2019). Notice that our work differs from this literature
by the fact that we consider typical perturbations instead of worst-case ones.

2 EMPIRICAL OBSERVATIONS ON REAL DATA

In this section we analyze the parameters of deep CNNs trained on CIFAR10 and ImageNet, so as to
understand how they build representations insensitive to diffeomorphisms (details of the experiments
in App. B). The analysis builds on two premises, the first being the assumption that insensitivity is
built layer by layer in the network, as shown in Fig. 3. Hence, we focus on how each of the layers
in a deep network contribute towards creating an insensitive representation. More specifically, let
us denote with fk(x) the internal representation of an input x at the k-th layer of the network. The
entries of fk have three indices, one for the channel c and two for the spatial location (i, j). The
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relation between fk and fk−1 is the following,

[fk(x)]c;i,j = φ


bkc +

Hk−1∑

c′=1

wk
c,c′ · pi,j ([fk−1(x)]c′)


 ∀ c = 1, . . . ,Hk, (2)

where: Hk denotes the number of channels at the k-th layer; bkc and wk
c,c′ the biases and filters of

the k-th layer; each filter wk
c,c′ is a F × F matrix with F the filter size; pi,j ([fk−1(x)]c′) denotes

a F × F -dimensional patch of [fk−1(x)]c′ centered at (i, j); φ the activation function. The second
premise is that a general diffeomorphism can be represented as a displacement field over the image,
which indicates how each pixel moves in the transformation. Locally, this displacement field can be
decomposed into a constant term and a linear part: the former corresponds to local translations, the
latter to stretchings, rotations and shears.1

Invariance to translations via spatial pooling. Due to weight sharing, i.e. the fact that the same
filter wk

c,c′ is applied to all the local patches (i, j) of the representation, the output of a convolutional
layer is equivariant to translations by construction: a shift of the input is equivalent to a shift of the
output. To achieve an invariant representation it suffices to sum up the spatial entries of fk—an
operation called pooling in CNNs, we refer to it as spatial pooling to stress that the sum runs over
the spatial indices of the representation. Even if there are no pooling layers at initialization, they
can be realized by having homogeneous filters, i.e. all the F × F entries of wk+1

c,c′ are the same.
Therefore, the closer the filters are to the homogeneous filter, the more they decrease the sensitivity
of the representation to local translations.

Invariance to other transformations via channel pooling. The example of translations shows
that building invariance can be performed by constructing an equivariant representation, and then
pooling it. Invariance can also be built by pooling across channels. A two-channel example is shown
Fig. 2, panel (b), where the filter of the second channel is built so as to produce the same output as
the first channel when applied to a rotated input. The same idea can be applied more generally, e.g.
to the other components of diffeomorphisms—such as local stretchings and shears. Below, we refer
generically to any operation that build invariance to diffeomorphisms by assembling distinct channels
as channel pooling.

Disentangling spatial and channel pooling. The relative sensitivity to diffeomorphisms Rk of the
k-th layer representation fk decreases after each layer, as shown in Fig. 3. This implies that spatial
or channel pooling are carried out along the whole network. To disentangle their contribution we
perform the following experiment: shuffle at random the connections between channels of successive
convolutional layers, while keeping the weights unaltered. Channel shuffling amounts to randomly
permuting the values of c, c′ in Eq. 2, therefore it breaks any channel pooling while not affecting
single filters. The values of Rk for deep networks after channel shuffling are reported in Fig. 3 as
dashed lines and compared with the original values of Rk in full lines. If only spatial pooling was
present in the network, then the two curves would overlap. Conversely, if the decrease in Rk was
all due to the interactions between channels, then the shuffled curves should be constant. Given that
neither of these scenarios arises, we conclude that both kinds of pooling are being performed.

Emergence of spatial pooling after training. To bolster the evidence for the presence of spatial
pooling, we analyze the filters of trained networks. Since spatial pooling can be built by having
homogeneous filters, we test for its presence by looking at the frequency content of learned filters
wk
i,j . In particular, we consider the average squared projection of filters onto “Fourier modes”
{Ψl}l=1,...,F 2 , taken as the eigenvectors of the discrete Laplace operator on the F × F filter grid.
The square projections averaged over channels read

γk,l =
1

Hk−1Hk

Hk∑

c=1

Hk−1∑

c′=1

[
Ψl ·wk

c,c′
]2
, (3)

1The displacement field around a pixel (u0, v0) is approximated as τ(u, v) ' τ(u0, v0) + J(u0, v0)[u−
u0, v − v0]

T , where τ(u0, v0) corresponds to translations and J is the Jacobian matrix of τ whose trace,
antisymmetric and symmetric traceless parts correspond to stretchings, rotations and shears, respectively.
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and are shown in Fig. 4, 1stand 2nd row. When training a deep network such as VGG11 (with and
without batch-norm) (Simonyan & Zisserman, 2015) on CIFAR10, filters of layers 2 to 6 become
low-frequency with training, while layers 1, 7, 8 do not. Accordingly, larger gaps between dashed
and full lines in Fig. 3 (right) open at layer 1, 7, 8: reduction in sensitivity is not due to spatial pooling
in these layers. Moreover, the fact that the two dashed curves overlap is consistent with the frequency
content of filters being the same for the two architectures after training. In the case of ImageNet,
filters at all layers become low-frequency, except for k = 1.

1 2 3 4 5 6 7 8
convolutional layer index k

100

R k

CIFAR10

VGG11
VGG11bn

original
shuffle ch.

0.0 0.2 0.4 0.6 0.8 1.0
relative depth kK

10 1

100

ImageNet

vgg11
vgg11bn
vgg13

vgg16
original
shuffle ch.

Figure 3: Relative sensitivity Rk as a function of depth for VGG architectures trained on CIFAR10
(left) and ImageNet (right). Full lines refer to the original networks, dashed lines to the ones with
shuffled channels. K is the total depth of the networks. Experiments with different architectures are
reported in App. C.

10 1

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

CIFAR10

k = 8

10 1

Im
ageNet

0 2 4 6 8

10 1

2 × 10 1
3 × 10 1

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

scale-detection

VGG11
VGG11bn

init.
trained

eigenvalue index, l

k,
l

Figure 4: Projections of the network filters for VGG11 and VGG11bn onto the 9 eigenvectors
of the (3 × 3)-grid Laplacian when training on CIFAR10 (1st row), ImageNet, (2nd row) and the
scale-detection task (3rd row): dotted and full lines correspond to initialization and trained networks,
respectively. The x-axis reports low to high frequencies from left to right. Deeper layers are reported
in rightmost panels. Low-frequency modes are the dominant components in layers 2-6 when training
on CIFAR10, in layers 2-8 for ImageNet. The first (constant) mode has most of the power throughout
the network for scale-detection task 1. An aggregate measure of the spatial frequency content of
filters is reported in App. C, Fig. 12.

3 SIMPLE SCALE-DETECTION TASKS CAPTURE REAL-DATA OBSERVATIONS

To sum up, the empirical evidence presented in Section 2 indicates that (i) the generalization
performance of deep CNNs correlates with their insensitivity to diffeomorphisms and sensitivity to
Gaussian noise (Fig. 1); (ii) deep CNNs build their sensitivities layer by layer via spatial and channel
pooling. We introduce now two idealized scale-detection tasks where the phenomena (i) and (ii)
emerge again, and we can isolate the contribution of spatial pooling. Given the simpler structure of
these tasks with respect to real data, we can understand quantitatively how spatial pooling builds up
insensitivity to diffeomorphisms and sensitivity to Gaussian noise, as we show in Section 4.
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Figure 5: Example inputs for the scale-detection tasks. Task 1 (a): the label depends on whether
the euclidean distance d is larger (left) or smaller (right) than the characteristic scale ξ. Task 2
(b): the label depends on whether the active pixels belong to the same patch of size ξ (right) or not
(left)—patches are shown in different colors.

Definition of scale-detection tasks. Consider input images x consisting of two active pixels on an
empty background.

Task 1: Inputs are classified by comparing the euclidean distance d between the two active pixels
and some characteristic scale ξ, as in Fig. 5, left. Namely, the label is y= sign (ξ − d).

Notice that a small diffeomorphism of such images corresponds to a small displacement of the active
pixels. Specifically, each of the active pixels is moved to either of its neighboring pixels or left in
its original position with equal probability.2 By introducing a gap g such that d ∈ [ξ − g/2, ξ + g/2],
task 1 becomes invariant to displacements of size smaller than g. Therefore, we expect that a neural
network trained on task 1 will lose any information on the exact location of the active pixels within
the image, thus becoming insensitive to diffeomorphisms. Intuitively, spatial pooling up to the scale ξ
is the most direct mean to achieve such insensitivity. The result of the integration depends on whether
none, one or both the active pixels lie within the pooling window, thus it is still informative of the
task. We will show empirically that this is indeed the solution reached by trained CNNs.

Task 2: Inputs are partitioned into nonoverlapping patches of size ξ, as in Fig. 5, right. The label y
is +1 if the active pixels fall within the same patch, −1 otherwise.

In task 2, the irrelevant information is the location of the pixels within each of the non-overlapping
patches. The simplest means to lose such information requires to couple spatial pooling with a stride
of the size of the pooling window itself.

Same phenomenology as in real image datasets. Although these scale-detection tasks are much
simpler than standard benchmark datasets, deep networks trained on task 1 display the same
phenomenology highlighted in Section 2 for networks trained on CIFAR10 and ImageNet. First,
the test error is positively correlated with the sensitivity to diffeomorphisms of the network predictor
(Fig. 8, left panel, in App. C) and negatively correlated with its sensitivity to Gaussian noise (middle
panel) for a whole range of architectures. As a result, the error correlates well with the relative
sensitivity Rf (right panel). Secondly, the internal representations of trained networks fk become
progressively insensitive to diffeomorphisms and sensitive to Gaussian noise through the layers, as
shown in Fig. 9 of App. C. Importantly, the curves relating sensitivities to the relative depth remain
essentially unaltered if the channels of the networks are shuffled (shown as dashed lines in Fig. 9).
We conclude that, on the one hand channel pooling is negligible, and, on the other hand, all channels
are approximately equal to the mean channel. Finally, direct inspection of the filters (Fig. 4, bottom
row) shows that the 0-frequency component grows much larger than the others over training for
layers 1-7, which are the layers where Rk decreases the most in Fig. 9. Filters are thus becoming
nearly homogeneous, which means that the convolutional layers become effectively pooling layers.

2We fix the length of these displacements to 1 pixel because (i) is the smallest value that prevents the use of
pixel interpolation, which would make one active pixel an extended object (ii) allows for the analysis of Section 4.
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Figure 6: Hidden layers representations of simple CNNs for a scale-detection input for stride s= 1
and filter size F = 5 (left) and s=F = 2 (right) when having homogeneous filters at every layer. The
effective receptive field size of the last layer in the two different cases is shown in red. (Left) every
active pixel in the input becomes a Gaussian profile whose width increases throughout the network.
(Right) every neuron in layer k has activity equal to the number of active pixels which are present in
its receptive field of width 2k. The dark blue in the last layer indicates that there are 2 active pixels in
its receptive field, while the lighter blue of the precedent layers indicates that there is just 1.

4 THEORETICAL ANALYSIS OF SENSITIVITIES IN SCALE-DETECTION TASKS

We now provide a scaling analysis of the sensitivities to diffeomorphisms and noise in the internal
representations of simple CNNs trained on the scale-detection tasks of Section 3. It allows to
quantitatively understand how spatial pooling makes the internal representations of the network
progressively more insensitive to diffeomorphisms and sensitive to Gaussian noise.

Setup. We consider simple CNNs made by stacking K̃ identical convolutional layers with generic
filter size F , stride s= 1 or F and ReLU activation function φ(x) = max(0, x). In particular, we
train CNNs with stride 1 on task 1 and CNNs with stride F on task 2. For the sake of simplicity, we
consider the one-dimensional version of the scale-detection tasks, but our analysis carries unaltered
to the two-dimensional case. Thus, input images are sequences x = (xi)i=1,...,L of L pixels, where
xi = 0 for all pixels except two. For the active pixels xi =

√
L/2, so that all input images have

‖x‖2 =L. We will also consider single-pixel data δj = (δj,i)i=1,...,L. If the active pixels in x are the
i-th and the j-th, then x=

√
L/2 (δi + δj). For each layer k, the internal representation fk(x) of the

trained network is defined as in Eq. 2. The receptive field of the k-th layer is the number of input
pixels contributing to each component of fk(x). We define the effective receptive field Ak as the
typical size of the representation of a single-pixel input, fk(δi), as illustrated in red in Fig. 6. We
denote the sensitivities of the k-th layer representation with a subscript k (Dk for diffeomorphisms,
Gk for noise, Rk for relative).

Assumptions. All our results are based on the assumption that the first few layers of the trained
network behave effectively as a single channel with a homogeneous positive filter and no bias. The
equivalence of all the channels with their mean is supported by Fig. 9, which shows how shuffling
channels does not affect the internal representations of VGGs. In addition, Fig. 4 (bottom row) shows
that the mean filters of the first few layers are nearly homogeneous. We set the homogeneous value
of each filter so as to keep the norm of representations constant over layers. Moreover, we implement
a deformation of the input x of our scale-detection tasks as a random displacement of each active
pixel at either left or wight with probability 1/2.

4.1 TASK 1, STRIDE 1

For a CNN with stride 1, under the homogeneous filter assumption, the size of the effective receptive
field Ak grows as

√
k. A detailed proof is presented in App. A and Fig. 6, left panel, shows an

illustration of the process. Intuitively, applying a homogeneous filter to a representation is equivalent
to making each pixel diffuse, i.e. distributing its intensity uniformly over a neighborhood of size
F . With a single-pixel input δi, the effective receptive field of the k-th layer fk(δi) is equivalent
to a k-step diffusion of the pixel, thus it approaches a Gaussian distribution of standard deviation√
k centered at i. The size Ak is the standard deviation, thus Ak ∼

√
k. The proof we present
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in App. A requires large depth K̃ � 1 and large image width L� FK̃1/2 and the empirical studies
of Section 3 satisfy these contraints (F ∼ 3, L ∼ 32 and K̃ ∼ 10).

We remark that at initialization, fk(x) behave, in the limit of large number of channels and width (and
small bias), as Gaussian random fields with correlation matrix E [fk(x)fk(y)] ≈ δ(x− y), with δ the
Dirac delta (Schoenholz et al., 2017; Xiao et al., 2018b). This spiky correlation matrix implies that
for any perturbation y = x+ ε, the representation fk(y) changes with respect to fk(x) independently
on ε. This behavior is remarkably different to the smooth case achieved by the diffusion, after training.
Consequently, both Dk and Gk are constant with respect to k at initialization . This is consistent with
the observations reported in Fig. 7.

Sensitivity to diffeomorphisms. Let i and j denote the active pixels locations, so that x ∝ δi + δj .
Since both the elements of the inputs and those of the filters are non-negative, the presence of ReLU
nonlinearities is irrelevant and the first few hidden layers are effectively linear layers. Hence the
representations are linear in the input, so that fk(x) = fk(δi + δj) = fk(δi) + fk(δj). In addition,
since the effect of a diffeomorphism is just a 1-pixel translation of the representation irrespective of
the original positions of the pixels, the normalized sensitivity Dk can be approximated as follows

Dk ∼
‖fk(δi+1)− fk(δi)‖22

‖fk(δi)‖22
. (4)

The denominator in Eq. 4 is the squared norm of a Gaussian distribution of width
√
k, ‖fk(vi)‖22 ∼

k−1/2. The numerator compares fk with a small translation of itself, thus it can be approximated
by the squared norm of the derivative of the Gaussian distribution, ‖fk(δi+1)− fk(δi)‖22 ∼ k−3/2.
Consequently, we have

Dk ∼ k−1 ∼ A−2k . (5)

Sensitivity to Gaussian noise. To analyze Gk one must take into account the rectifying action of
ReLU, which sets all the negative elements of its input to zero. The first ReLU is applied after the
first homogeneous filters, thus the zero-mean noise is superimposed on a patch of F active pixels.
Outside such a patch, only positive noise terms survive. Within the patch, being summed to a positive
background, also negative terms can survive the rectification of ReLU. Nevertheless, if the size of the
image is much larger than the filter size, the contribution from active pixels to Gk is negligible and we
can approximate the difference between noisy and original representations f1(x+ η)− f1(x) with
the rectified noise φ(η). After the first layer, the representations consist of non-negative numbers,
thus we can forget again the ReLU and write

Gk ∼
Eη‖fk(φ(η))‖22
‖fk(δi)‖22

. (6)

Repeated applications of homogeneous filters to the rectified noise φ(η) result again in a diffusion
of the signal. Since φ(η) has different independent and identically distributed non-zero entries for
different realizations of η, averaging over η is equivalent to considering a homogeneous profile for
fk(φ(η)). As a result, the numerator in Eq. 6 is a constant independent of k. The denominator is the
same as in Eq. 4, ‖fk(δi)‖22 ∼ k−1/2, hence

Gk ∼ k1/2 ∼ Ak, (7)

i.e. the sensitivity to Gaussian noise grows as the size of the effective receptive fields. From the ratio
of Eq. 5 and Eq. 7, we get Rk ∼ A−3k .

4.2 TASK 2, STRIDE EQUAL FILTER SIZE

When the stride s equals to the filter size F the number of pixels of the internal representations is
reduced by a factor F at each layer, thus fk consists of L/F k pixels. Meanwhile, the effective size of
the receptive fields grows exponentially at the same rate: Ak = F k (see Fig. 6, left for an illustration).

Sensitivity to diffeomorphisms. For a given layer k, consider a partition of the input image into
L/F k patches. Each pixel of fk only looks at one such patch and its intensity coincides with the
number of active pixels within the patch. As a result, the only diffeomorphisms that change fk are

8

129



100 2× 100 3× 100

10−1

T
A

S
K

1,
s

=
1

D
k

100 2× 100 3× 100

100

6× 10−1

2× 100

3× 100

G
k

100 2× 100 3× 100

10−1

100

R
k

101 102

Ak

10−3

10−2

10−1

100

T
A

S
K

2,
F

=
s

D
k Init

Prediction

Train

Mean channel

101 102

Ak

100

101

102

G
k

101 102

Ak

10−3

10−2

10−1

100

R
k

Figure 7: Sensitivities of internal representations fk of simple CNNs against the k-th layer receptive
field size Ak for trained networks (solid blue) and at initialization (solid gray). The top row refers
to task 1 with s = 1 and F = 3; the bottom row to task 2 with F = s = 2. For a first large part
of the network, the sensitivities obtained by replacing each layer with the mean channel (blue dotted)
overlap with the original sensitivities. Predictions Eq. 5, Eq. 7 for task 1 and Eq. 8, Eq. 9 for task
2 are shown as black dashed lines.

those which move one of the active pixels from one patch to another. Since active pixels move by 1,
this can only occur if one of the active pixels was originally located at the border of a patch, which in
turn occurs with probability ∼ 1/F k. In addition, the norm ‖fk(δi)‖2 at the denominator does not
scale with k, so that

Dk ∼ F−k ∼ A−1k . (8)

Sensitivity to Gaussian noise. Each pixel of fk looks at a patch of the input of size F k, thus fk
is affected by the sum of all the noises acting on such patch. Since these noises have been rectified
by ReLU, by the Central Limit Theorem the sum scales as the number of summands Fk. Thus, the
contribution of each pixel of fk to the numerator of Gk scales as (F k)2. As there are L/F k pixels
in fk, one has

Gk ∼ (F k)2
(
L/F k

)
∼ F k ∼ Ak. (9)

Without rectification, the sum of F k independent noises would scale as the square root of the number
of summands F k, yielding a constant Gk. We conclude that the rectifying action of ReLU is crucial
in building up sensitivity to noise. Rk ∼ A−2k follows from the ratio of Eq. 8 and Eq. 9.

4.3 COMPARING PREDICTIONS WITH EXPERIMENTS

We test our scaling predictions (Eq. 5 to Eq. 9) in Fig. 7, for stride 1 CNNs trained on task 1 and
stride F CNNs trained on task 2 in the top and bottom panels, respectively. Notice that if all the filters
at a given layer are replaced with their average, the behavior of the sensitivities as a function of depth
does not change (compare solid and dotted blue curves in the figure). This confirms our assumption
that all channels behave like the mean channel. In addition, Tables 1 and 2 show that the mean filters
are approximately homogeneous. Further details on the experiments are provided in App. B.

5 CONCLUSION

The meaning of an image often depends on sparse regions of the data, as evidenced by the fact
that artists only need a small number of strokes to represent a visual scene. The exact locations
of the features determining the image class are flexible, and indeed diffeomorphisms of limited
magnitude leave the class unchanged. Here, we have shown that such an invariance is learned in
deep networks by performing spatial pooling and channel pooling. Modern architectures learn these
pooling operations—as they are not imposed by the architecture—suggesting that it is best to let the
pooling adapt to the specific task considered. Interestingly, spatial pooling comes together with an
increased sensitivity to random noise in the image, as captured in simple artificial models of data.
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It is commonly believed that the best architectures are those that extract the features of the data most
relevant for the task. The pooling operations studied here, which allow the network to forget the exact
locations of these features, are probably more effective when features are better extracted. This point
may be responsible for the observed strong correlations between the network performance and its
stability to diffeomorphisms. Designing synthetic models of data whose features are combinatorial
and stable to smooth transformations is very much needed to clarify this relationship, and ultimately
understand how deep networks learn high-dimensional tasks with limited data.
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Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE transactions on
pattern analysis and machine intelligence, 35(8):1872–1886, 2013.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. Exploring
the Landscape of Spatial Robustness. In International Conference on Machine Learning, pp. 1802–
1811. PMLR, May 2019. URL http://proceedings.mlr.press/v97/engstrom19a.
html. ISSN: 2640-3498.

Alhussein Fawzi and Pascal Frossard. Manitest: Are classifiers really invariant? In Procedings of
the British Machine Vision Conference 2015, pp. 106.1–106.13, Swansea, 2015. British Machine
Vision Association. ISBN 978-1-901725-53-7. doi: 10.5244/C.29.106. URL http://www.
bmva.org/bmvc/2015/papers/paper106/index.html.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press, Cambridge,
Massachusetts, November 2016. ISBN 978-0-262-03561-3.

D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the
cat’s visual cortex. The Journal of Physiology, 160(1):106–154.2, January 1962. ISSN 0022-3751.
URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/.

Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayampallil, Mykhaylo
Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue, et al. An empirical evaluation
of deep learning on highway driving. arXiv preprint arXiv:1504.01716, 2015.

10

131



Can Kanbak, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Geometric Robustness of
Deep Networks: Analysis and Improvement. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4441–4449, Salt Lake City, UT, June 2018. IEEE. ISBN 978-1-
5386-6420-9. doi: 10.1109/CVPR.2018.00467. URL https://ieeexplore.ieee.org/
document/8578565/.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998. ISSN 1558-2256. doi:
10.1109/5.726791. Conference Name: Proceedings of the IEEE.

Ulrike von Luxburg and Olivier Bousquet. Distance-based classification with lipschitz functions.
Journal of Machine Learning Research, 5(Jun):669–695, 2004.
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APPENDIX

A TASK 1, STRIDE 1: PROOFS

In Section 4.1 we consider a simple CNN with stride s= 1 and filter size F trained on scale-detection
task 1. We fix the total depth of these networks to be K̃. We postulated in Sec. 4 that this
network displays a one-channel solution with homogeneous filter [1/F, ..., 1/F ] and no bias. We can
understand the representation fk(x) at layer k of an input datum x by using single-pixel inputs δi.
Let us recall that these inputs have all components to 0 except the i-th, set to 1. Then, we have that a
general datum x is given by x ∝ (δi + δj), where i and j are the locations of the active pixel in x.
We have argued in the main text that the representation fk(δi) is a Gaussian distribution with width√
k. In this Appendix we prove this statement.

First, we observe that in this solution, since both the elements of the filters and those of the inputs
are non-negative, the networks behaves effectively as a linear operator. In particular, each layer
corresponds to the application of a L×L circulant matrix M , which is obtained by stacking all the L
shifts of the following row vector,

[1, 1, ..., 1︸ ︷︷ ︸
F

0, 0, 0, ..., 0︸ ︷︷ ︸
L−F

]. (10)

with periodic boundary conditions. The first row of such a matrix is fixed as follows. If F is odd the
patch of size F is centered on the first entry of the first row, while if F is even we choose to have
(F/2) ones at left of the first entry and (F/2)− 1 at its right. The output fk of the layer k is then the
following: fk(δi) = Mkδi.

Proposition A.1 Let’s consider the L× L matrix M and a given L vector δi, as defined above. For
odd F ≥ 3, in the limit of large depth K̃ � 1 and large width L̃� F

√
K̃, we have that

(Mk)abδi =
1

2
√
π
√
D(1)
√
k
e
− (a−i)2

4D(1)k , D(1) =
1

12F
(F − 1)3, (11)

while for even F :

(Mk)abδi =
1

2
√
π
√
D(2)
√
k
e
− (v(2)k+a−i)2

4D
(2)
F

k , D(2) =
1

12F

(
F 3 − 3F 2 + 6F − 4

)
, (12)

with v(2) = (1− F )/(2F ).

Proof: The matrix M can be seen as the stochastic matrix of a Markov process, where at each step
the random walker has uniform probability 1/F to move in a patch of width F around itself. We
write the following recursion relation for odd F ,

p
(k+1)
a,i =

1

F

(
p
(k)
a−(F−1)/2,i + ...+ p

(k)
a,i + ...+ p

(k)
a+(F−1)/2,i

)
, (13)

and even F ,

p
(k+1)
a,i =

1

F

(
p
(k)
a−F/2,i + ...+ p

(k)
a,i + ...+ p

(k)
a+(F/2−1),i

)
. (14)

In any of these two cases, this is the so-called master equation of the random walk (Risken, 1996).
In the limit of large image width L and large depth K̃, we can write the related equation for
the continuous process pi(a, k), which is called Fokker-Planck equation in physics and chemistry
(Risken, 1996) or forward Kolmogorov equation in mathematics (Saloff-Coste & Bremaud, 2000),

∂kp
(k)
a,i = v∂ap

(k)
a,i +D∂2ap

(k)
a,i . (15)

where the drift coefficient v and the diffusion coefficient D are defined in terms of the probability
distribution Wi(x) of having a jump x starting from the location i

v =

∫
dxWi(x)x, D =

∫
dxWi(x)x2. (16)
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In our case we have Wi(x) = 1/F for x ∈ [i − (F − 1)/2, i + (F − 1)/2] for odd F and
x ∈ [i− F/2, i+ F/2− 1] for even F , yielding the solutions for the Fokker-Planck equations for
even and odd F reported in Eq. 11 and Eq. 12.

We can better characterize the limits of large image width L and large network depth K̃ as follows.
The proof relies on the fact that a random walk, after a large number of steps, converges to a diffusion
process. Here the number of steps is given by the depth K̃ of the network. Consequently, we need
K̃ � 1. Moreover, we want that the diffusion process is not influenced by the boundaries of the
image, of width L. The average path walked by the random walker after K̃ steps is given by F

√
K.

Then, we require F
√
K � L.

�

B EXPERIMENTAL SETUP

All experiments are performed in PyTorch. The code with the instructions on how to reproduce
experiments are found here: github.com/leonardopetrini/relativestability/experiments ICLR23.md.

B.1 DEEP NETWORKS TRAINING

In this section, we describe the experimental setup for the training of the deep networks deployed in
Sections 1, 2 and 3.

For CIFAR10, fully connected networks are trained with the ADAM optimizer and learning rate = 0.1
while for CNNs SGD, learning rate = 0.1 and momentum = 0.9. In the latter case, the learning rate
follows a cosine annealing scheduling. In all cases, the networks are trained on the cross-entropy loss,
with a batch size of 128 and for 250 epochs. Early stopping at the best validation error is performed
for selecting the networks to study. During training, we employ standard data augmentation consisting
of random translations and horizontal flips of the input images. On the scale-detection task, we
perform SGD on the hinge loss and halve the learning rate to 0.05. All results are averaged when
training on 5 or more different networks initializations.

For ImageNet, we used pretrained models from Pytorch, torchvision.models.

B.2 SIMPLE CNNS TRAINING

In this section we present the experimental setup for the training of simple CNNs introduced in
Section 4, whose sensitivities to diffeomorphisms and Gaussian noise are shown in Fig. 7.

To learn task 1 we use CNNs with stride s = 1 and filter size F = 3. The width of the CNN is fixed
to 1000 channels, while the depth to 12 layers. We use the Scale-Detection task in the version of
Fig. 5 (b), with ξ = 11 and gap g = 4 and image size L = 32. For the training, we use P = 48
training points and Stochastic Gradient Descent (SGD) with learning rate 0.01 and batch size 8. We
use weight decay for the L2 norm of the filters weights with ridge 0.01. We stop the training after 500
times the interpolation time, which is the time required by the network to reach zero interpolation
error of the training set. The goal of this procedure is to reach the solution with minimal norm. The
generalization error of the trained CNNs is exactly zero: they learn spatial pooling perfectly. We
show the sensitivities of the trained CNNs, averaged over 4 seeds, in the top panels of Fig. 7, where
we also successfully test the predictions (Eq. 5, Eq. 7). We remark that to compute Gk we inserted
Gaussian noise with already the ReLU applied on, since we observe that without it we would see a
pre-asymptotic behaviour for Gk with respect to Ak.

Task 2 is learned using CNNs with stride equal to filter size s = F = 2. For the dataset, we use the
block-wise version of the Scale-Detection task shown in Fig. 5 (c), fixing ξ = 25 and L = 27. We
use 7 layers and 1000 channels for the CNNs. The training is performed using SGD and weight decay
with the same parameters as in task 1, with P = 210 training points. In the bottom panels of Fig. 7
we show that the predictions (Eq. 8, Eq. 9) capture the experimental results, averaged over 10 seeds.
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To support the assumption done in Section 4 that the trained CNNs are effectively behaving as one
channel with homogeneous positive filters, we report the numerical values of the average filter over
channels per layer in Table 1 for Task 1 and Table 2 for Task 2. They are positive in the first 9 hidden
layers, where channel pooling is most pronounced.

Init. After training
k = 1 [0.0132, 0.0023,−0.0068] [0.2928, 0.2605, 0.2928]
k = 2 [0.0014,−0.0007,−0.0009] [0.0039, 0.0035, 0.0039]
k = 3 [−0.0006,−0.0001, 0.0010] [0.0043, 0.0038, 0.0043]
k = 4 [3.4610e− 05, 6.5687e− 04,−9.1634e− 04] [0.0039, 0.0033, 0.0038]
k = 5 [−0.0006, 0.0002,−0.0009] [0.0038, 0.0032, 0.0038]
k = 6 [0.0012,−0.0011,−0.0003] [0.0038, 0.0031, 0.0038]
k = 7 [−0.0006, 0.0004, 0.0003] [0.0041, 0.0032, 0.0040]
k = 8 [0.0005,−0.0012, 0.0010] [0.0036, 0.0024, 0.0035]
k = 9 [0.0005,−0.0012, 0.0010] [0.0021, 0.0016, 0.0017]
k = 10 [−0.0025, 0.0015,−0.0006] [−0.0013,−0.0008,−0.0010]
k = 11 [−0.0006, 0.0005, 0.0009] 0.0002, 0.0002, 0.0002]
k = 12 [3.3418e− 04, 3.3521e− 05, 1.3936e− 03] [0.0009, 0.0008, 0.0009]

Table 1: Average over channels of filters in layer k, before and after training, for simple CNNs with
s = 1 and F = 3 trained on task 1. The network learns filters which are much more homogeneous
than initialization.

Init. After training
k = 1 [−0.0559,−0.0291] [0.3828, 0.3737]
k = 2 [−0.0022, 0.0010] [0.0060, 0.0059]
k = 3 [0.0006,−0.0010] [0.0064, 0.0065]
k = 4 [−0.0020, 0.0009] [0.0059, 0.0060]
k = 5 [0.0002, 0.0008] [9.9935e− 05, 2.1380e− 04]
k = 6 [−0.0003,−0.0010] [−0.0028,−0.0029]
k = 7 [−7.4610e− 04, 8.4595e− 05] [−0.0009,−0.0009]

Table 2: Average over channels of filters in layer k, before and after training, for simple CNNs with
s = F = 2 trained on task 2. The network learns filters which are much more homogeneous than
initialization.
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Figure 8: Generalization error ε versus sensitivity to diffeomorphisms Df (left), noise Gf (center)
and relative sensitivity Rf (right) for a wide range of architectures trained on scale-detection task 1
(train set size: 1024, image size: 32, ξ = 14, g = 2). As in real data, ε is positively correlated with
Df and negatively correlated with Gf . The correlation is the strongest for the relative measure Rf .
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Figure 10: Test error vs. sensitivities (columns) when training on noisy CIFAR10. The different rows
correspond to increasing noise magnitude η. Different points correspond to networks architectures,
see gray labels. The content of this figure is also represented in compact form in Fig. 1, right.
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shuffling channels. K indicates the networks total depth.
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text, Fig. 4.
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6 A Toy Model for the Hierarchical Com-
positionality of Real Data
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Abstract

Learning generic high-dimensional tasks is notably hard, as it requires a number of training data exponential in
the dimension. Yet, deep convolutional neural networks (CNNs) have shown remarkable success in overcoming this
challenge. A popular hypothesis is that learnable tasks are highly structured and that CNNs leverage this structure to
build a low-dimensional representation of the data. However, little is known about how much training data they require,
and how this number depends on the data structure. This paper answers this question for a simple classification task
that seeks to capture relevant aspects of real data: the Random Hierarchy Model. In this model, each of the nc classes
corresponds to m synonymic compositions of high-level features, which are in turn composed of sub-features through
an iterative process repeated L times. We find that the number of training data P ∗ required by deep CNNs to learn
this task (i) grows asymptotically as ncm

L, which is only polynomial in the input dimensionality; (ii) coincides with
the training set size such that the representation of a trained network becomes invariant to exchanges of synonyms;
(iii) corresponds to the number of data at which the correlations between low-level features and classes become
detectable. Overall, our results indicate how deep CNNs can overcome the curse of dimensionality by building invariant
representations, and provide an estimate of the number of data required to learn a task based on its hierarchically
compositional structure.

The achievements of deep learning algorithms [1] are
outstanding. These methods exhibit superhuman perfor-
mances in areas ranging from image recognition [2] to Go-
playing [3], and large language models such as GPT4 [4]
can generate unexpectedly sophisticated levels of reasoning.
However, despite these accomplishments, we still lack a
fundamental understanding of the underlying factors. In-
deed, Go configurations, images, and patches of text lie
in high-dimensional spaces, which are hard to sample due
to the curse of dimensionality [5]: the distance δ between
neighboring data points decreases very slowly with their
number P , as δ = O(P−1/d) where d is the space dimen-
sion. A generic task such as regression of a continuous
function [6] requires a small δ for high performance, imply-
ing that P must be exponential in the dimension d. Such
a number of data is unrealistically large: for example, the
benchmark dataset ImageNet [7], whose effective dimen-
sion is estimated to be ≈ 50 [8], consists of only ≈ 107

data, significantly smaller than e50 ≈ 1020. This immense

*Equal contribution.
†Correspondence to francesco.cagnetta@epfl.ch.

difference implies that learnable tasks are not generic, but
highly structured. What is then the nature of this struc-
ture, and why are deep learning methods able to exploit it?
Without a quantitative answer, it is impossible to predict
even the order of magnitude of the order of magnitude of
the number of data necessary to learn a specific task.

A popular idea attributes the efficacy of deep learning
methods to their ability to build a useful representation of
the data, which becomes increasingly complex across the
layers. In simple terms, neurons closer to the input learn
to detect simple features like edges in a picture, whereas
those deeper in the network learn to recognize more abstract
features, such as faces [9, 10]. Intuitively, if these represen-
tations are also invariant to aspects of the data unrelated to
the task, such as the exact position of an object in a frame
for image classification [11], they may effectively reduce
the dimensionality of the problem and make it tractable.
This view is supported by several empirical studies of the
hidden representations of trained networks. In particular,
measures such as (i) the mutual information between such
representations and the input [12, 13], (ii) their intrinsic
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dimensionality [14, 15], and (iii) their sensitivity toward
transformations that do not affect the task (e.g. smooth
deformations for image classification [16,17]), all eventually
decay with the layer depth. In some cases, the magnitude
of this decay correlates with performance [16]. However,
these studies do not indicate how much data is required to
learn such representations, and thus the task.

Here we study this question for tasks which are hierar-
chically compositional—arguably a key property for the
learnability of real data [18–25]. To provide a concrete
example, consider the picture of a dog (see Fig. 1). The
image consists of several high-level features like head, body,
and limbs, each composed of sub-features like ears, mouth,
eyes, and nose for the head. These sub-features can be
further thought of as combinations of low-level features
such as edges. Recent studies have revealed that: (i) deep
networks represent hierarchically compositional tasks more
efficiently than shallow networks [21]; (ii) the minimal
number of data that contains enough information to recon-
struct such tasks is polynomial in the input dimension [24],
although extracting this information remains impractical
with standard optimization algorithms; (iii) correlations
between the input data and the task are critical for learn-
ing [19, 26] and can be exploited by algorithms based on
the iteration of clustering methods [22, 27]. While these
seminal works offer important insights, they do not directly
address practical settings, specifically deep convolutional
neural networks (CNNs) trained using gradient descent.
Consequently, we currently don’t know how the hierarchi-
cally compositional structure of the task influences the
sample complexity, i.e., the number of data necessary to
learn the task.

In this work, we adopt the physicist’s approach [28–31]
of introducing a simplified model of data, which we then
investigate quantitatively via a combination of theoreti-
cal arguments and numerical experiments. The task we
consider, introduced in Section 1, is a multinomial classifica-
tion where the class label is determined by the hierarchical
composition of input features into progressively higher-
level features (see Fig. 1). This model belongs to the class
of generative models introduced in [22,27], corresponding
to the specific choice of random composition rules. More
specifically, we consider a classification problem with nc
classes, where the class label is expressed as a hierarchy
of L randomly-chosen composition rules. In each rule, m
distinct tuples of s adjacent low-level features are grouped
together and assigned the same high-level feature taken
from a finite vocabulary of size v (see Fig. 1). Then, in Sec-
tion 3, we show empirically that the sample complexity
P ∗ of deep CNNs trained with gradient descent scales as
ncm

L. Furthermore, we find that P ∗ coincides with both
a) the number of data that allows for learning a represen-
tation that is invariant to exchanging the m semantically
equivalent low-level features (subsection 3.1) and b) the

size of the training set for which the correlations between
low-level features and class label become detectable (Sec-
tion 4). Via b), P ∗ can be derived under our assumption
on the randomness of the composition rules.

1 The Random Hierarchy Model

In this section, we introduce our model task, which is a
multinomial classification problem with nc classes, where
the input-output relation is compositional, hierarchical,
and local. To build the dataset, we let each class label
α=1, . . . , nc generate the set of input data with label α as
follows.

i) Each label generates m distinct representations con-
sisting of s-tuples of high-level features (see Fig. 2 for
an example with s=2 and m=nc =3). Each of these
features belongs to a finite vocabulary of size v (v=3
in the figure), so that there are vs possible represen-
tations and ncm≤ vs. We call the assignment of m
distinct s-tuples to each label a composition rule;1

ii) Each of the v high-level feature (level-L) generates m
distinct representations of s sub-features (level-(L−1)),
out of the vs possible ones. Thus, m ≤ vs−1. After
two generations, labels are represented as s2-tuples
and there are m×ms data per class;

iii) The input data are obtained after L generations (level-
1 representation) so that each datum x consists of
d= sL input features xj . We apply one-hot encod-
ing to the input features: each of the xj ’s is a v-
dimensional sequence with one element set to 1 and
the others to 0, the index of the non-zero component
representing the encoded feature. The number of data
per class is

m×ms × · · · ×msL−1

= m
∑L−1

i=0 si = m
sL−1
s−1 , (1)

hence the total number of data Pmax reads

Pmax ≡ ncm
sL−1
s−1 = ncm

d−1
s−1 . (2)

A generic classification task is thus specified by L com-
position rules and can be represented as a s-ary tree—an
example with s=2 and L=3 is shown in Fig. 1(c) as a bi-
nary tree. The tree representation highlights that the class
label α(x) of a datum x can be written as a hierarchical
composition of L local functions of s variables [20,21]. For
instance, with s=L=2 (x=(x1, x2, x3, x4)),

α(x1, . . . , x4) = g2 (g1(x1, x2), g1(x3, x4)) , (3)

where g1 and g2 represent the 2 composition rules.

1Composition rules are called production rules in formal language
theory [32].
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Figure 1: Illustrating the hierarchical structure of real-world and artificial data. (a) An example of the hierarchical
structure of images: the class (dog) consists of high-level features (head, paws), that in turn can be represented as
sets of lower-level features (eyes, nose, mouth, and ear for the head). Notice that, at each level, there can be multiple
combinations of low-level features giving rise to the same high-level feature. (b) A similar hierarchical structure can be
found in natural language: a sentence is made of clauses, each having different parts such as subject and predicate,
which in turn may consist of several words. (c) An illustration of the artificial data structure we propose. The samples
reported here were drawn from an instance of the Random Hierarchy Model for depth L = 3 and tuple length s = 2.
Different features are shown in different colors.

In the Random Hierarchy Model (RHM) the L compo-
sition rules are chosen uniformly at random over all the
possible assignments of m low-level representations to each
high-level feature. As sketched in Fig. 2, the random choice
induces correlations between low- and high-level features.
In simple terms, each of the high-level features—1, 2 or
3 in the figure—is more likely to be represented with a
certain low-level feature in a given position—blue on the
left for 1, yellow for 2 and green for 3. These correlations
are crucial for our predictions and are analyzed in detail
in Appendix B.

Let us remark that the L composition rules can be cho-
sen such that the low-level features are homogeneously
distributed across high-level features for all positions, as
sketched in Fig. 3. We refer to this choice as the Homoge-
neous Features Model. In this model, none of the low-level
features is predictive of the high-level feature. With s=2
and Boolean features v = m = 2, the Homogeneous Fea-
tures Model reduces to the problem of learning a parity
function [33].

Finally, note that we only consider the case where the
parameters s, m and v are constant through the hierarchy
levels for clarity of exposition. It is straightforward to
extend the model, together with the ensuing conclusions, to
the case where all the levels of the hierarchy have different
parameters.

Figure 2: Label to lower-level features mapping in the Ran-
dom Hierarchy Model (RHM). Each of the nc =3 classes
(numbered boxes at the top) corresponds to m=3 distinct
couples (unnumbered boxes at the bottom) of features.
These features belong to a finite vocabulary (blue, orange
and green, with size v=3). Iterating this mapping L times
with the lower-level features as high-level features of the
next step yields the full dataset. Notice that some features
appear more often in the representation of a certain class
than in those of the others, e.g. blue on the left appears
twice in class 1, once in class 2 and never in class 3. As a
result, low-level features are generally correlated with the
label.
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Figure 3: Label to lower-level features mapping in the
Homogeneous Feature Model with v=m=nc =3 and s=2.
In contrast with the case illustrated in Fig. 2, this mapping
is such that each of the 3 possible low-level features appears
exactly once in each of the 2 elements of the representation
of each class. In maths, denoting with Ni(µ;α) the number
of times that the low-level feature µ appears in the i-th
position of the representation of class α, one has that
Ni(µ;α)= 1 for all i=1, 2, for all µ=green, blue, orange
and for all α=1, 2, 3.

2 Characteristic Sample Sizes

The main focus of our work is the answer to the following
question:

Q: How much data is required to learn a typical instance
of the Random Hierarchy Model?

In this section, we first discuss two characteristic scales of
the number of training data for an RHM with nc classes,
vocabulary size v, multiplicity m, depth L, and tuple size
s. The first, related to the curse of dimensionality, rep-
resents the sample complexity of methods that are not
able to learn the hierarchical structure of the data. The
second, which comes from information-theoretic consider-
ations, represents the minimal number of data necessary
to reconstruct an instance of the RHM. These two sample
sizes can be thought of as an upper and lower bound to
the sample complexity of deep CNNs, which indeed lies
between the two bounds (cf. Section 3).

2.1 Curse of Dimensionality (Pmax)

Let us recall that the curse of dimensionality predicts
an exponential growth of the sample complexity with the
input dimension d= sL. Fig. 4 shows the test error of
a one-hidden-layer fully-connected network trained on in-
stances of the RHM while varying the number of training
data P (see methods for details of the training procedure)
in the maximal m case, m= vs−1. The bottom panel
demonstrates that the sample complexity is proportional
to the total dataset size Pmax. Since, from Eq. 2, Pmax

grows exponentially with d, we conclude that shallow fully-
connected networks suffer from the curse of dimensionality.
By contrast, we will see that using CNNs results in a much
gentler growth (i.e. polynomial) of the sample complexity
with d.
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Figure 4: Sample complexity for one-hidden-layer
fully-connected networks, v=nc =m and s=2. Top:
Test error vs. the number of training data. Different
colors correspond to different vocabulary sizes v. Bottom:
number of data corresponding to test error ϵ=0.7 as a
function of Pmax. The black dashed line indicates a linear
relationship: one-hidden-layer fully-connected networks
achieve a small test error only when trained on a finite
fraction of the whole dataset, thus their sample complexity
grows exponentially with the input dimension.

2.2 Information-Theoretic Limit (Pmin)

An algorithm with full prior knowledge of the genera-
tive model can reconstruct an instance of the RHM with
a number of points Pmin ≪Pmax. For instance, we can
consider an extensive search within the hypothesis class of
all possible hierarchical models with fixed nc, m, v, and L.
Then, if nc = v and m= vs−1, so that the model generates
all possible input data, we can use a classical result of
the PAC (Probably Approximately Correct) framework
of statistical learning theory [34] to relate Pmin with the
logarithm of the cardinality of the hypothesis class, that is
the number of possible instances of the hierarchical model.
The number of possible composition rules equals the num-
ber of ways of allocating vs−1 of vs possible tuples to each
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of the v classes/features, i.e., a multinomial coefficient,

# {rules} =
(vs)!

((vs−1)!)v
(4)

Since an instance consists of L independently chosen com-
position rules, we have

# {instances} = (# {rules})L
(

1

v!

)L−1

(5)

where the additional multiplicative factor (v!)1−L takes
into account that the input-label mapping is invariant for
relabeling of the features of the L− 1 internal representa-
tions. Upon taking the logarithm and approximating the
factorials for large v via Stirling’s formula,

Pmin = log (# {instances}) v≫1−−−→ Lvs, (6)

Intuitively, the problem boils down to understanding the
L composition rules, each needing m× v examples (vs for
m= vs−1). Pmin grows only linearly with the depth L—
hence logarithmically in d—whereas Pmax is exponential
in d. Having used full knowledge of the generative model,
Pmin can be thought of as a lower bound for the sample
complexity of a generic supervised learning algorithm which
is agnostic of the data structure.

3 Sample Complexity of Deep
CNNs

In this section, we focus on deep learning methods. In
particular, we ask

Q: How much data is required to learn a typical instance
of the Random Hierarchy Model with a deep CNN?

Thus, after generating an instance of the RHM with fixed
parameters nc, s, m, v, and L, we train a deep CNN with
L hidden layers, filter size and stride equal to s (see Fig. 5
for an illustration) with stochastic gradient descent (SGD)
on P training points selected at random among the RHM
data. Further details of the training are in Materials and
Methods.

By looking at the test error of trained networks as a func-
tion of the training set size (top panels of Fig. 6 and Fig. 7,
see also Fig. 15 in Appendix G for a study with varying nc),
we notice the existence of a characteristic value of P where
the error decreases dramatically, thus the task is learned.
In order to study the behavior of this threshold with the
parameters of the RHM, we define the sample complexity
as the smallest P such that the test error ϵ(P ) is smaller
than ϵrand/10, with ϵrand =1− n−1

c denoting the average
error when choosing the label uniformly at random. The
bottom panels of Fig. 6 (for the case nc =m= v) and Fig. 7

: multiple channels 
+ non-linearity

input

}

hidden layers

output

Figure 5: Neural network architecture that matches the
RHM hierarchy. This is a deep CNN with L hidden layers,
and stride and filter size equal to the tuple length s. Filters
that act on different input patches are the same (weight
sharing). The number of input channels equals v and the
output is a vector of size nc.

(with m<v, see Appendix G for varying nc) show that the
sample complexity scales as

P ∗ = ncm
L ⇔ P ∗

nc
= d ln(m)/ ln(s), (7)

independently of the vocabulary size v. Eq. 7 shows that
deep CNNs only require a number of samples that scales as
a power of the input dimension d= sL to learn the RHM:
the curse of dimensionality is beaten. This evidences the
ability of CNNs to harness the hierarchical compositionality
inherent to the task. The question then becomes: what
mechanisms do these networks employ to achieve this feat?

3.1 Emergence of Synonymic Invariance
in Deep CNNs

A natural approach to learning the RHM would be to
identifying the sets of s-tuples of input features that corre-
spond to the same higher-level feature. Examples include
the pairs of low-level features in Fig. 2 and Fig. 3 which
belong to the same column. In general, we refer to s-tuples
that share the same higher-level representation as syn-
onyms. Identifying synonyms at the first level would allow
us to replace each s-dimensional patch of the input with a
single symbol, reducing the dimensionality of the problem
from sL to sL−1. Repeating this procedure L times would
lead to the class labels and, consequently, to the solution
of the task.
In order to test if deep CNNs trained on the RHM re-

sort to a similar solution, we introduce the synonymic
sensitivity, which is a measure of the invariance of any
given function of the input with respect to the exchange
of synonymic s-tuples. We define Sk,l as the sensitivity of
the k-th layer representation of a trained network with re-
spect to exchanges of synonymous tuples of level-l features.
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Figure 6: Sample complexity for deep CNNs, m =
nc = v and s = 2. Top: Test error vs number of training
points. Different colors correspond to different vocabulary
sizes v. Markers to hierarchy depths L. Deep CNNs
are able to achieve zero generalization error when enough
training points are provided. Bottom: sample complexity
P ∗ corresponding to a test error ϵ∗ = 0.1. Remarkably, the
neural networks can generalize with a number of samples
P ∗ = vL+1 ≪ Pmax.

Namely,

Sk,l =
⟨∥fk(x)− fk(Plx)∥2⟩x,Pl

⟨∥fk(x)− fk(z)∥2⟩x,z
, (8)

where: fk is the vector of the activations of the k-th layer
in the network; Pl is an operator that replaces all the level-l
tuples with synonyms selected uniformly at random; ⟨·⟩
with subscripts x, z denote an average over all the inputs in
an instance of the RHM; the subscript Pl denotes average
over all the exchanges of synonyms.

In particular, Sk,1 quantifies the invariance of the hidden
representations learned by the network at layer k with
respect to exchanges of synonymic tuples of input fea-
tures. Fig. 8 reports S2,1 as a function of the training
set size P for different combinations of the model param-
eters. We focused on S2,1—the sensitivity of the second
layer of the deep CNN to permutations at the first level of
the hierarchy—since synonymic invariance can generally
be achieved at all layers k starting from k = l + 1, and
not before 2 Notice that all curves display a sigmoidal
shape, signaling the existence of a characteristic sample

2To illustrate this, consider a hierarchy of depth L = 2, s = 2, and
a two-hidden-layers CNN. In the general case, synonymic invariance
to permutations at level one, cannot be achieved at the first layer of
the network. This is because, say a level-1 feature can be represented
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Figure 7: Sample complexity for deep CNNs, m < v,
nc = v and s = 2. Top: Test error vs number of training
points. Different colors correspond to different vocabulary
sizes v. Markers to hierarchy depths L. Bottom: sample
complexity P ∗ corresponding to a test error ϵ∗ = 0.1.
Similarly to the previous plot, this confirms that the sample
complexity of deep CNNs scales as P ∗ = ncm

L.

size which marks the emergence of synonymic sensitivity in
the learned representations. Remarkably, by rescaling the
x-axis by the sample complexity of Eq. 7 (bottom panel),
curves corresponding to different parameters collapse. We
conclude that the generalization ability of a network relies
on the synonymic invariance of its hidden representations.

Measures of the synonymic sensitivity Sk,1 for different
layers k are reported in Fig. 9 (blue lines), showing indeed
that small values of Sk,1 are achieved for k≥ 2. Fig. 9
also shows the sensitivities to exchanges of synonyms in
the higher-level representations of the RHM: all levels are
learned together as P increases, and invariance to level-l
exchanges is achieved at layer k = l + 1, as expected. The
figure displays the test error too (gray dashed), to further
emphasize its correlation with synonymic invariance.

at the input as (α, β), (α, α) and (β, α), but not as (β, β). Then, it is
impossible to build a neuron that would have the same response to the
first three pairs but not the fourth. Instead, a simple solution exists
for layer 2 to become invariant to exchanges at level 1. This consists
in building v2 neurons at the first layer k = 1, each responding to one
input pair. Clearly, the representation at k = 1 is not invariant to
the substitution of synonyms. The second layer, though, can assign
identical weights to all the v neurons that encode for the same feature,
hence becoming invariant to permutations at l = 1.
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Figure 8: Sensitivity S2,1 of the second layer of a deep
CNN to permutations in the first level of the RHM with
L = 2, 3, s = 2, nc = m = v, as a function of the training
set size (top) and after rescaling by P ∗ = ncm

L (bottom).
Sensitivity decreases from 1 to approximately zero, i.e. deep
CNNs are able to learn synonymic invariance with enough
training points. The collapse after rescaling highlights that
this can be done with P ∗ training points.

4 Correlations Govern Synonymic
Invariance

We now provide a theoretical argument for understanding
the scaling of P ∗ of Eq. 7 with the parameters of the RHM.
First, we compute a third characteristic sample size Pc,
defined as the size of the training set for which the local
correlation between any of the input patches and the label
becomes detectable. Remarkably, Pc coincides with P ∗

of Eq. 7. Secondly, we demonstrate how a one-hidden-
layer neural network acting on a single patch can use such
correlations to build a synonymic invariant representation
in a single step of gradient descent, so that Pc and P ∗ also
correspond to the emergence of an invariant representation.

4.1 Identify Synonyms by Counting

The invariance of the RHM labels with respect to ex-
changes of synonymous input patches can be inferred by
counting the occurrences of such patches in all the data
belonging to a given class α. Intuitively, tuples of features
that appear with identical frequencies are likely synonyms.
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Figure 9: Permutation sensitivity Sk,l of the layers of a
deep CNN trained on the RHM with L = 3, s = 2, nc =
m = v = 8, as a function of the training set size P . The
permutation of synonyms is performed at different levels,
as indicated in colors. The different panels correspond to
the sensitivity of different layers’ activations, indicated by
the gray box. Synonymic invariance is learned at the same
time for all layers, and most of the invariance to level l is
obtained at layer k = l + 1.

More specifically, let us denote an s-dimensional input
patch with xj for j in 1, . . . , sL−1, a s-tuple of input fea-
tures with µ=(µ1, . . . , µs), and the number of data in
class α which display µ in the j-th patch with Nj(µ;α).
Normalizing this number by Nj(µ)=

∑
αNj(µ;α) yields

the conditional probability fj(α|µ) for a datum to belong
to class α conditioned on displaying the s-tuple µ in the
j-th input patch,

fj(α|µ) := Pr {x ∈ α|xj = µ} =
Nj(µ;α)

Nj(µ)
.3 (9)

If the low-level features are homogeneously spread across
classes, as in the Homogeneous Features Model of Fig. 3,
then f =n−1

c , independently of and α, µ and j. In contrast,
due to the aforementioned correlations, the probabilities
of the RHM are all different from n−1

c (see Fig. 2). We
refer to this difference as signal.4 Distinct level-1 tuples
µ and ν yield a different f (and thus a different signal)
with high probability unless they share the same level-
2 representation. Therefore, this signal can be used to
identify synonymous level-1 tuples.

4.2 Signal vs. Sampling Noise

When measuring the conditional class probabilities with
only P training data, the occurrences in the right-hand side

3The notation xj =µ means that the elements of the patch xj

encode the tuple of features µ
4Cases in which all features are homogeneously spread across

classes can also appear in the RHM, but with vanishing probability
in the limit of large nc and m, see Appendix E.
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signal

noise

Figure 10: Signal vs. noise illustration. The dashed
function represents the distribution of f(α|µ) resulting
from the random sampling of the RHM rules. The solid dots
illustrate the true frequencies f(α|µ) sampled from this
distribution, with different colors corresponding to different
groups of synonyms. The typical spacing between the solid
dots, given by the width of the distribution, represents the
signal. Transparent dots represent the empirical frequencies
f̂j(α|µ), with dots of the same color corresponding to
synonymous features. The spread of transparent dots of
the same color, which is due to the finiteness of the training
set, represents the noise.

of Eq. 24 are replaced with empirical occurrences, which
induce a sampling noise on the f ’s. For the identification
of synonyms to be possible, this noise must be smaller
in magnitude than the aforementioned signal—a visual
representation of the comparison between signal and noise
is depicted in Fig. 10.

The magnitude of the signal can be computed as the ratio
between the standard deviation and mean of fj(α|µ) over
realizations of the RHM. The full calculation is presented
in Appendix B: here we present a simplified argument
based on an additional independence assumption. Given
a class α, the tuple µ appearing in the j-th input patch
is determined by a sequence of L choices—one choice per
level of the hierarchy—of one among m possible lower-level
representations. These mL possibilities lead to all the mv
distinct s-tuples. Nj(µ;α) is proportional to how often
the tuple µ is chosen—mL/(mv) times on average. Under
the assumption of independence of the mL choices, the
fluctuations of Nj(µ;α) relative to its mean are given by
the central limit theorem and read (mL/(mv))−1/2 in the
limit of largem. If nc is sufficiently large, the fluctuations of
Nj(µ) are negligible in comparison. Therefore, the relative
fluctuations of fj are the same as those of Nj(µ;α): the
size of the signal is (mL/(mv))−1/2.

The magnitude of the noise is given by the ratio between
the standard deviation and mean, over independent sam-
plings of a training set of fixed size P , of the empirical
conditional probabilities f̂j(α|µ). Only P/(ncmv) of the
training points will, on average, belong to class α while
displaying feature µ in the j-th patch. Therefore, by the
convergence of the empirical measure to the true proba-
bility, the sampling fluctuations of f̂ relative to the mean
are of order [P/(ncmv)]

−1/2—see Appendix B for details.

Balancing signal and noise yields the characteristic Pc for
the emergence of correlations. For large m, nc and P ,

Pc = ncm
L, (10)

which coincides with the empirical sample complexity of
deep CNNs discussed in Section 3.

4.3 Learning Synonymic Invariance by the
Gradients

To complete the argument, we consider a simplified one-
step gradient descent setting [35,36], where Pc marks the
number of training examples required to learn a synonymic
invariant representation. In this setting (details presented
in Appendix C), we train a one-hidden layer fully-connected
network on the first s-dimensional patches of the data. This
network cannot fit data which have the same features on
the first patch while belonging to different classes. Nev-
ertheless, the hidden representation of the network can
become invariant to exchanges of synonymous patches.

More specifically, as we show in Appendix C, with identi-
cal initialization of the hidden weights and orthogonalized
inputs, the update of the hidden representation fh(µ) of
the s-tuple of low-level features µ after one step of gradient
descent follows

∆fh(µ) =
1

P

nc∑

α=1

ah,α


N̂1(µ;α)−

1

nc

nc∑

β=1

N̂1(µ;β)


 ,

(11)

where fh(µ) coincides the pre-activation of the h-th neuron
and ah =(ah,1, . . . , ah,nc) denotes the associated nc dimen-

sional readout weight. N̂1 is used to denote the empirical
estimate of the occurrences in the first input patch. Hence,
by the result of the previous section, the hidden represen-
tation becomes insensitive to the exchange of synonymic
features for P ≫Pc.

This prediction is confirmed empirically in Fig. 11, which
shows the sensitivity S1,1 of the hidden representation of
shallow fully-connected networks trained in the setting of
this section, as a function of the number P of training data
for different combinations of the model parameters. The
bottom panel, in particular, highlights that the sensitivity
is close to 1 for P ≪Pc and close to 0 for P ≫Pc. In
addition, notice that the collapse of the pre-activations
of synonymic tuples onto the same, synonymic invariant
value, implies that the rank of the hidden weights matrix
tends to v—the vocabulary size of higher-level features.
This low-rank structure is typical in the weights of deep
networks trained on image classification [37–40].

Using all patches via weight sharing. Notice that
using a one-hidden-layer CNN which looks at all patches via
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Figure 11: Synonymic sensitivity of the hidden representa-
tion vs P for a one-hidden-layer fully-connected network
trained on the first patch of the inputs of an RHM with
s=2 and m= v, for several values of L, v, and nc ≤ v. The
top panel shows the bare curves whereas, in the bottom
panel, the x-axis is rescaled by Pc = ncm

L. The collapse
of the rescaled curves highlights that Pc coincides with the
threshold number of training data for building a synonymic
invariant representation.

weight sharing and global average pooling would yield the
same result since the average over patches reduces both the
signal and the noise by the same factor–see subsection C.1
for details.

Improved Performance via Clustering. Note that
our signal-vs-noise argument is based on a single class
α, as it considers the scalar quantity f̂(α|µ). However,
an observer seeking to identify synonyms could in prin-
ciple use the information from all classes, represented
by the nc-dimensional vector of empirical frequencies
(f̂(α|µ))α=1,...,nc . Following this idea, one can devise a
layer-wise algorithm where the representations of each layer
are first updated with a single step of gradient descent (as
in Eq. 82), then clustered into synonymic groups [22,27].
Such an algorithm can solve the RHM with less than
ncm

L training points—
√
ncm

L in the maximal dataset
case nc = v and m= vs−1, as we show empirically and jus-
tify theoretically in Appendix D. Notably, the dependence

on the dimensionality mL is unaffected by the change of
algorithm, although the prefactor reveals the advantage of
the dedicated clustering algorithm over standard CNNs.

5 Conclusions

We have introduced a hierarchical model of classification
task, where each class is identified by a number of equivalent
high-level features (synonyms), themselves consisting of a
number of equivalent sub-features according to a hierarchy
of random composition rules. First, we established via
a combination of extensive esperiments and theoretical
arguments that the sample complexity of deep CNNs is a
simple function of the number of classes nc, the number
of synonymic features m and the depth of the hierarchy L.
This result provides a rule of thumb for estimating the order
of magnitude of the sample complexity of real datasets. In
the case of CIFAR10 [41], for instance, having 10 classes,
taking reasonable values for the RHM parameters such as
m ∈ [5, 15] and L = 3, yields P ∗ ∈ [103, 3×104],comparable
with the sample complexity of modern architectures (see
Fig. 16 in Appendix G).

Secondly, our results indicate a separation between shal-
low networks, which are cursed by the input dimensionality,
and sufficiently deep CNNs, which are not. We thus com-
plement previous analyses based on expressivity [21] or
information-theoretical considerations [24] with a general-
ization result.

Last but not least, we proposed to characterize the qual-
ity of internal representations with their sensitivity toward
transformations of the data which leave the task invari-
ant. This analysis bypasses the issues of previous char-
acterizations. For example, approaches based on mutual
information [12] that is ill-defined when the network rep-
resentations are deterministic functions of the input [13].
Approaches based on intrinsic dimension [14, 15] can dis-
play counter-intuitive results, refer to Appendix F for a
more in-depth discussion on the intrinsic dimension, and
on how this quantity behaves in our setup. Interestingly,
our approach supports that performance should strongly
correlate with the invariance toward synonyms of the inter-
nal representation. This prediction could in principle be
tested in natural language processing models, but also for
image data sets by performing discrete changes to images
that leave the class unchanged.

Looking forward, the Random Hierarchy Model is a
rich but minimal model where open questions in the the-
ory of deep learning could be clarified. For instance, a
formidable challenge such as the description of the gradient
descent dynamics of deep networks, becomes significantly
simpler for the RHM, owing to the simple structure of
the target representations. Other important questions, in-
cluding the ability of fully-connected networks to learn
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local connections [30,42,43], the benefits of residual con-
nections [44] or the advantages of deep learning over kernel
methods [25,45–47] can be studied quantitatively within
this model, as functions of the multiple parameters that
define the hierarchical structure of the task.

Materials and Methods

Experimental Setup

The experiments are performed using the PyTorch deep
learning framework [48]. The code used for the experiments
is available online at https://github.com/pcsl-epfl/

hierarchy-learning.

RHM implementation

The code implementing the RHM is avail-
able online at https://github.com/pcsl-epfl/

hierarchy-learning/blob/master/datasets/

hierarchical.py. The inputs sampled from the
RHM are represented as a one-hot encoding of low-level
features. This makes each input of size sL × v. The inputs
are whitened so that the average pixel value over channels
is equal to zero.

Model Architecture

One-hidden-layer fully-connected networks have input
dimension equal to sL×v, H = 104 hidden neurons, and nc
outputs. The deep convolutional neural networks (CNNs)
have weight sharing, stride equal to filter size equal to s
and L hidden layers. In this case, we set the width H to
be larger than the number of possible s-tuples that can
exist at a given layer, H ≫ vs.

Training Procedure

Neural networks are trained using stochastic gradient
descent (SGD) on the cross-entropy loss, with a batch size
of 128 and a learning rate equal to 0.3. Training is stopped
when the training loss decreases below a certain threshold
fixed to 10−3.

Measurements

The performance of the models is measured as the per-
centage error on a test set. The test set size is chosen to be
min(Pmax−P, 20′000). Synonymic sensitivity, as defined in
Eq. 8, is measured on a test set of size min(Pmax−P, 1′000).
Reported results for a given value of RHM parameters are
averaged over 10 jointly different instances of the RHM
and network initializations.
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[29] Marc Mézard. Mean-field message-passing equations
in the hopfield model and its generalizations. Physical
Review E, 95(2):022117, 2017.

[30] Alessandro Ingrosso and Sebastian Goldt. Data-driven
emergence of convolutional structure in neural net-
works. Proceedings of the National Academy of Sci-
ences, 119(40), 2022.

[31] Yu Feng and Yuhai Tu. The inverse variance–flatness
relation in stochastic gradient descent is critical for
finding flat minima. Proceedings of the National
Academy of Sciences, 118(9), 2021.

[32] Grzegorz Rozenberg and Arto Salomaa. Handbook of
Formal Languages. Springer, January 1997.

[33] Michael Kearns. Efficient noise-tolerant learning from
statistical queries. Journal of the ACM, 45(6):983–
1006, November 1998.

[34] Shai Shalev-Shwartz and Shai Ben-David. Under-
standing machine learning: From theory to algorithms.
Cambridge university press, 2014.

[35] Alexandru Damian, Jason Lee, and Mahdi
Soltanolkotabi. Neural networks can learn rep-
resentations with gradient descent. Proceedings
of Thirty-Fifth Conference on Learning Theory,
178:5413–5452, 02–05 Jul 2022.

[36] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao
Wang, Denny Wu, and Greg Yang. High-dimensional
asymptotics of feature learning: How one gradient

11

Chapter 6. A Toy Model for the Hierarchical Compositionality of Real Data

154



step improves the representation. Advances in Neu-
ral Information Processing Systems, 35:37932–37946,
2022.

[37] Misha Denil, Babak Shakibi, Laurent Dinh, Marc' Au-
relio Ranzato, and Nando de Freitas. Predicting pa-
rameters in deep learning. In C.J. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K.Q. Weinberger,
editors, Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc., 2013.

[38] Emily L Denton, Wojciech Zaremba, Joan Bruna,
Yann LeCun, and Rob Fergus. Exploiting linear struc-
ture within convolutional networks for efficient eval-
uation. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 27.
Curran Associates, Inc., 2014.

[39] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng
Tao. On compressing deep models by low rank and
sparse decomposition. 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
67–76, 2017.

[40] Florentin Guth, Brice Ménard, Gaspar Rochette, and
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Appendix

A Statistics of The Composition Rules

In this section, we consider a single composition rule, that is the assignment of m s-tuples of low-level features to
each of the v high-level features. In the RHM these rules are chosen uniformly at random over all the possible rules,
thus their statistics are crucial in determining the correlations between the input features and the class label.

A.1 Statistics of a single rule

For each rule, we call Ni(µ1;µ2) the number of occurrences of the low-level feature µ1 in position i of the s-tuples
generated by the higher-level feature µ2. The probability of Ni(µ1;µ2) is that of the number of successes when drawing
m (number of s-tuples associated with the high-level feature µ2) times without replacement from a pool of vs (total
number of s-tuples with vocabulary size v) objects where only vs−1 satisfy a certain condition (number of s-tuples
displaying feature µ1 in position i):

Pr {Ni(µ0;µ1) = k} =

(
vs−1

k

)(
vs − vs−1

m− k

)/(
vs

m

)
, (12)

which is a hypergeometric distribution Hgvs,vs−1,m, with mean

⟨N⟩ = m
vs−1

vs
=
m

v
, (13)

and variance

σ2
N :=

〈
(N − ⟨N⟩)2

〉
= m

vs−1

vs
vs − vs−1

vs
vs −m

vs − 1
=
m

v

v − 1

v

vs −m

vs − 1

m≫ 1−−−−→ m

v
, (14)

independently of the position i and the specific low- and high-level features. Notice that, since m≤ vs−1 with s fixed,
large m implies also large v.

A.2 Joint statistics of a single rule

Shared high-level feature. For a fixed high-level feature µ2, the joint probability of the occurrences of two different
low-level features µ1 and ν1 is a multivariate Hypergeometric distribution,

Pr {Ni(µ1;µ2) = k;Ni(ν1;µ2) = l} =

(
vs−1

k

)(
vs−1

l

)(
vs − 2vs−1

m− k − l

)/(
vs

m

)
, (15)

giving the following covariance,

cN := ⟨(Ni(µ1;µ2)− ⟨N⟩) (Ni(ν1;µ2)− ⟨N⟩)⟩ = −m

v2
vs −m

vs − 1

m≫ 1−−−−→ −
(m
v

)2 1

m
. (16)

The covariance can also be obtained via the constraint
∑

µ1
Ni(µ1;µ2)=m. For any finite sequence of identically

distributed random variables Xµ with a constraint on the sum
∑

µXµ =m,

v∑

µ=1

Xµ =m⇒
v∑

µ=1

(Xµ − ⟨Xµ⟩) = 0 ⇒

(Xν − ⟨Xν⟩)
v∑

µ=1

(Xµ − ⟨Xµ⟩) = 0 ⇒
v∑

µ=1

⟨(Xν − ⟨Xν⟩)(Xµ − ⟨Xµ⟩)⟩ = 0 ⇒

Var [Xµ] + (v − 1)Cov [Xµ, Xν ] = 0. (17)

In the last line, we used the identically distributed variables hypothesis to replace the sum over µ ̸= ν with the factor
(v − 1). Therefore,

cN = Cov [Ni(µ1;µ2), Ni(ν1;µ2)] = −Var [Ni(µ1;µ2)]

v − 1
= − σ2

N

v − 1
. (18)
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Shared low-level feature. The joint probability of the occurrences of the same low-level feature µ1 starting from
different high-level features µ2 ̸= ν2 can be written as follows,

Pr {N(µ1;µ2) = k;N(µ1; ν2) = l} = Pr {N(µ1;µ2) = k|N(µ1; ν2) = l} × Pr {N(µ1; ν2) = l} (19)

= Hgvs−m,vs−1−l,m(k)×Hgvs,vs−1,m(l), (20)

resulting in the following ‘inter-feature’ covariance,

cif := Cov [Ni(µ1;µ2), Ni(µ1; ν2)] = −
(m
v

)2 v − 1

vs − 1
. (21)

No shared features. Finally, by multiplying both sides of
∑

µ1
N(µ1;µ2)=m with N(ν1; ν2) and averaging, we get

cg := Cov [Ni(µ1;µ2), Ni(ν1; ν2)] = −Cov [Ni(µ1;µ2), Ni(µ1; ν2)]

v − 1
=
(m
v

)2 1

vs − 1
. (22)

B Emergence of input-output correlations (Pc)

As discussed in the main text, the Random Hierarchy Model presents a characteristic sample size Pc corresponding
to the emergence of the input-output correlations. This sample size predicts the sample complexity of deep CNNs, as
we also discuss in the main text. In this appendix, we prove that

Pc
nc,m→∞−−−−−−→ ncm

L. (23)

B.1 Estimating the Signal

The correlations between input features and the class label can be quantified via the conditional probability (over
realizations of the RHM) of a data point belonging to class α conditioned on displaying the s-tuple µ in the j-th input
patch,

fj(α|µ) := Pr {x ∈ α|xj = µ} , (24)

where the notation xj =µ means that the elements of the patch xj encode the tuple of features µ. We say that the
low-level features are correlated with the output if

fj(α|µ) ̸=
1

nc
, (25)

and define a ‘signal’ as the difference fj(α|µ)−n−1
c . In the following, we compute the statistics of the signal over

realizations of the RHM.

Occurrence of low-level features. Let us begin by defining the joint occurrences of a class label α and a low-level
feature µ1 in a given position of the input. Using the tree representation of the model, we will identify an input position
with a set of L indices iℓ =1, . . . , s, each indicating which branch to follow when descending from the root (class label)
to a given leaf (low-level feature). These joint occurrences can be computed by combining the occurrences of the single
rules introduced in Appendix A of this Appendix. With L=2, for instance,

N
(1→2)
i1i2

(µ1;α) =
v∑

µ2=1

(
ms−1N

(1)
i1

(µ1;µ2)
)
×N

(2)
i2

(µ2;α), (26)

where:

i) N
(2)
i2

(µ2;α)
5 counts the occurrences of µ2 in position i2 of the level-2 representations of α, i.e. the s-tuples

generated from α according to the second-layer composition rule;

5We are using the superscript (ℓ) to differentiate the occurrences of the different composition rules.
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ii) N
(1)
i1

(µ1;µ2) counts the occurrences of µ1 in position i1 of the level-1 representations of µ2, i.e. s-tuples generated
by µ2 according to the composition rule of the first layer;

iii) the factor ms−1 counts the descendants of the remaining s−1 elements of the level-2 representation (m descendants
per element);

iv) the sum over µ2 counts all the possible paths of features that lead to µ1 from α across 2 generations.

The generalization of Eq. 26 is immediate once one takes into account that the multiplicity factor accounting for the

descendants of the remaining positions at the ℓ-th generation is equal to msℓ−1

/m (sℓ−1 is the size of the representation
at the previous level). Hence, the overall multiplicity factor after L generations is

1× ms

m
× ms2

m
× · · · × msL−1

m
= m

sL−1
s−1 −L, (27)

so that the number of occurrences of feature µ1 in position i1 . . . iL of the inputs belonging to class α is

N
(1→L)
i1→L

(µ1;α) = m
sL−1
s−1 −L

v∑

µ2,...,µL=1

N
(1)
i1

(µ1;µ2)× · · · ×N
(L)
iL

(µL;α), (28)

where we used i1→L as a shorthand notation for the tuple of indices i1, i2, . . . , iL.
The same construction allows us to compute the number of occurrences of up to s−1 features within the s-dimensional

patch of the input corresponding to the path i2→L. The number of occurrences of a whole s-tuple, instead, follows a
slightly different rule, since there is only one level-2 feature µ2 which generates the whole s-tuple of level-1 features
µ1 =(µ1,1, . . . , µ1,s)—we call this feature g1(µ1), with g1 denoting the first-layer composition rule. As a result, the
sum over µ2 in the right-hand side of Eq. 28 disappears and we are left with

N
(1→L)
i2→L

(µ1;α) = m
sL−1
s−1 −L

v∑

µ3,...,µL=1

N
(2)
i2

(g1(µ1);µ3)× · · · ×N
(L)
iL

(µL;α). (29)

Coincidentally, Eq. 29 shows that the joint occurrences of a s-tuple of low-level features µ1 depend on the level-2

feature corresponding to µ1. Hence, N
(1→L)
i2→L

(µ1;α) is invariant for the exchange of µ1 with one of its synonyms, i.e.
level-1 tuples ν1 corresponding to the same level-2 feature.

Class probability conditioned on low-level observations. We can turn these numbers into probabilities by
normalizing them appropriately. Upon dividing by the total occurrences of a low-level feature µ1 independently of the
class, for instance, we obtain the conditional probability of the class of a given input, conditioned on the feature in
position i1 . . . iL being µ1.

f
(1→L)
i1→L

(α|µ1) :=
N

(1→L)
i1→L

(µ1;α)
nc∑

α′=1

N
(1→L)
i1→L

(µ1;α
′)

=

v∑

µ2,...,µL=1

N
(1)
i1

(µ1;µ2)× · · · ×N
(L)
iL

(µL;α)

v∑

µ2,...,µL=1

nc∑

µL+1=1

N
(1)
i1

(µ1;µ2)× · · · ×N
(L)
iL

(µL;µL+1)

. (30)

Let us also introduce, for convenience, the numerator and denominator of the right-hand side of Eq. 30.

U
(1→L)
i1→L

(µ1α) =

v∑

µ2,...,µL=1

N
(1)
i1

(µ1;µ2)× · · · ×N
(L)
iL

(µL;α); D
(1→L)
i1→L

(µ1) =

nc∑

α=1

U
(1→L)
i1→L

(µ1;α). (31)

B.1.1 Statistics of the numerator U

We now determine the first and second moments of the numerator of f
(1→L)
i1→L

(µ1;α). Let us first recall the definition
for clarity,

U
(1→L)
i1→L

(µ1;α) =
v∑

µ2,...,µL=1

N
(1)
i1

(µ1;µ2)× · · · ×N
(L)
iL

(µL;α) (32)
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Level 1 L=1. For L=1, U is simply the occurrence of a single production rule Ni(µ1;α),

〈
U (1)

〉
=
m

v
; (33)

σ2
U(1) := Var

[
U (1)

]
=
m

v

v − 1

v

vs −m

vs − 1

v≫1−−−→ m

v
; (34)

cU(1) := Cov
[
U (1)(µ1;α), U

(1)(ν1;α)
]
= −Var

[
U (1)

]

(v − 1)
= −

(m
v

)2 vs −m

vs − 1

1

m

v≫1−−−→
(m
v

)2 1

m
; (35)

where the relationship between variance and covariance is due to the constraint on the sum of U (1) over µ1, see Eq. 17.

Level 2 L=2. For L=2,

U
(1→2)
i1→2

(µ1;α) =
v∑

µ2=1

N
(1)
i1

(µ1;µ2)×N
(2)
i2

(µ3;α) =
v∑

µ2=1

N
(1)
i1

(µ1;µ2)U
(2)
i2

(µ2;α). (36)

Therefore,

〈
U (1→2)

〉
= v

(m
v

)
×
〈
U (1)

〉
= v

(m
v

)2
; (37)

σ2
U(2) := Var

[
U (1→2)

]
=

v∑

µ2,ν1=1

(〈
N (1)(µ1;µ2)N

(1)(µ1; ν2)
〉〈

U (2)(µ2;α)U
(2)(ν2;α)

〉
− ⟨N⟩2

〈
U (1)

〉2)

=
∑

µ2,ν2=µ2

· · ·+
∑

µ2

∑

ν2 ̸=µ2

. . .

= v

(
σ2
Nσ

2
U(1) + σ2

N

〈
U (1)

〉2
+ σ2

U(1) ⟨N⟩2
)
+ v(v − 1)

(
cifcU(1) + cif

〈
U (1)

〉2
+ cU(1) ⟨N⟩2

)

= v
(
σ2
Nσ

2
U(1) + (v − 1)cifcU(1)

)
+ v

〈
U (1)

〉2 (
σ2
N + (v − 1)cif

)
+ v ⟨N⟩2

(
σ2
U(1) + (v − 1)cU(1)

)

= vσ2
U(1)

(
σ2
N − cif

)
+ v

〈
U (1)

〉2 (
σ2
N + (v − 1)cif

)
, (38)

cU(2) = − σ2
U(2)

(v − 1)
(39)

Level L. In general,

U
(1→L)
i1→L

(µ1;α) =
v∑

µ2=1

N
(1)
i1

(µ1;µ2)U
(2→L)
i2→L

(µ2;α). (40)

Therefore,

〈
U (L)

〉
= v

(m
v

)
×
〈
U (L−1)

〉
= vL−1

(m
v

)L
; (41)

σ2
U(L) =

v∑

µ2,ν1=1

(〈
N (1)(µ1;µ2)N

(1)(µ1; ν2)
〉〈

U (2→L)(µ2;α)U
(2→L)(ν1;α)

〉
− ⟨N⟩2

〈
U (1→(L−1))

〉2)

=
∑

µ2,ν2=µ2

· · ·+
∑

µ2

∑

ν2 ̸=µ2

. . .

= v

(
σ2
Nσ

2
U(L−1) + σ2

N

〈
U (L−1)

〉2
+ σ2

U(L−1) ⟨N⟩2
)
+ v(v − 1)

(
σ2
ifcU(L−1) + cif

〈
U (L−1)

〉2
+ cU(L−1) ⟨N⟩2

)

= vσ2
U(L−1)

(
σ2
N − cif

)
+ v

〈
U (L−1)

〉2 (
σ2
N + (v − 1)cif

)
, (42)

cU(L) = − σ2
U(L)

(v − 1)
(43)
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Concentration for large m. In the large multiplicity limit m≫ 1, the U ’s concentrate around their mean value.
Due to m≤ vs−1, large m implies large v, thus we can proceed by setting m= qvs−1, with q ∈ (0, 1] 6 and studying the
v≫ 1 limit. From Eq. 41, 〈

U (L)
〉
= qLvL(s−1)−1. (44)

In addition,

σ2
N

v≫1−−−→ m

v
= qv(s−1)−1, cif

v≫1−−−→ −
(m
v

)2 1

vs−1
= −q2v(s−1)−2, (45)

so that

σ2
U(L) = vσ2

U(L−1)

(
σ2
N − σ2

if

)
+ v

〈
U (L−1)

〉2 (
σ2
N + (v − 1)σ2

if

)

v≫1−−−→ σ2
U(L−1)qv

(s−1) + σ2
U(L−1)q

2v(s−1)−1 + q2L−1(1− q)v(2L−1)(s−1)−2 (46)

The second of the three terms is always subleading with respect to the first, so we can discard it for now. It remains to
compare the first and the third terms. For L=2, since σ2

U(1) =σ2
N , the first term depends on v as v2(s−1)−1, whereas

the third is proportional to v3(s−1)−2. For L≥ 3 the dominant scaling is that of the third term only: for L=3 it can be
shown by simply plugging the L=2 result into the recursion, and for larger L it follows from the fact that replacing
σ2
U(L−1) in the first term with the third term of the precious step always yields a subdominant contribution. Therefore,

σ2
U(L)

v≫1−−−→
{
q2v2(s−1)−1 + q3(1− q)v3(s−1)−2, for L = 2,

q2L−1(1− q)v(2L−1)(s−1)−2, for L ≥ 3.
(47)

Upon dividing the variance by the squared mean we get

σ2
U(L)〈
U (L)

〉2
v≫1−−−→





1

q2
1

v2(s−1)−1
+

1− q

q

1

v(s−1)
, for L = 2,

1− q

q

1

v(s−1)
, for L ≥ 3,

(48)

whose convergence to 0 guarantees the concentration of the U ’s around the average over all instances of the RHM.

B.1.2 Statistics of the denominator D

Here we compute the first and second moments of the denominator of f
(1→L)
i1→L

(µ1;α),

D
(1→L)
i1→L

(µ1) =
v∑

µ2,...,µL=1

nc∑

µL+1=1

N
(1)
i1

(µ1;µ2)× · · · ×N
(L)
iL

(µL;µL+1) (49)

Level 1 L=1. For L=1, D is simply the sum over classes of the occurrences of a single production rule,
D(1) =

∑
αNi(µ1;α),

〈
D(1)

〉
= nc

m

v
; (50)

σ2
D(1) := Var

[
D(1)

]
= ncσ

2
N + nc(nc − 1)cif = nc

(m
v

)2 v − 1

vs − 1

(
vs

m
− nc

)

v≫1−−−→ nc

(m
v

)2 ( v
m

− nc
vs−1

)
; (51)

cD(1) := Cov
[
D(1)(µ1), D

(1)(ν0)
]
= −Var

[
D(1)

]

(v − 1)
= nccN + nc(nc − 1)cg, (52)

where, in the last line, we used the identities σ2
N + (v − 1)cN =0 from Eq. 16 and cif + (v − 1)cg =0 from Eq. 22.

6The minimum m is 1, which corresponds to q= v1−s, but actually there is no stochasticity in the U ’s and D’s in that case. Thus the
minimal q is actually 2v1−s.
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Level 2 L=2. For L=2,

D
(1→2)
i1→2

(µ1) =
v∑

µ2

nc∑

µ3=1

N
(1)
i1

(µ1;µ2)×N
(2)
i2

(µ2;µ3) =
v∑

µ2=1

N
(1)
i1

(µ1;µ2)D
(2)
i2

(µ2). (53)

Therefore,
〈
D(1→2)

〉
= v

(m
v

)
×
〈
D(1)

〉
=
nc
v
m2; (54)

σ2
D(2) := Var

[
D(1→2)

]
=

v∑

µ2,ν1=1

(〈
N (1)(µ1;µ2)N

(1)(µ1; ν1)
〉〈

D(2)(µ2)D
(2)(ν1)

〉
− ⟨N⟩2

〈
D(1)

〉2)

=
∑

µ2,ν1=µ2

· · ·+
∑

µ2

∑

ν1 ̸=µ2

. . .

= v

(
σ2
Nσ

2
D(1) + σ2

N

〈
D(1)

〉2
+ σ2

D(1) ⟨N⟩2
)
+ v(v − 1)

(
cifcD(1) + cif

〈
D(1)

〉2
+ cD(1) ⟨N⟩2

)

= v
(
σ2
Nσ

2
D(1) + (v − 1)cifcD(1)

)
+ v

〈
D(1)

〉2 (
σ2
N + (v − 1)cif

)
+ v ⟨N⟩2

(
σ2
D(1) + (v − 1)cD(1)

)

= vσ2
D(1)

(
σ2
N − cif

)
+ v

〈
D(1)

〉2 (
σ2
N + (v − 1)cif

)
, (55)

cD(2) = − σ2
D(2)

(v − 1)
. (56)

Level L. In general,

D
(1→L)
i1→L

(µ1) =

v∑

µ2=1

N
(1)
i1

(µ1;µ2)D
(2→L)
i2→L

(µ2). (57)

Therefore,
〈
D(L)

〉
= v

(m
v

)
×
〈
D(L−1)

〉
=
nc
v
mL; (58)

σ2
D(L) =

v∑

µ2,ν1=1

(〈
N (1)(µ1;µ2)N

(1)(µ1; ν1)
〉〈

D(2→L)(µ2;α)D
(2→L)(ν1;α)

〉
− ⟨N⟩2

〈
D(1→(L−1))

〉2)

=
∑

µ2,ν1=µ2

· · ·+
∑

µ2

∑

ν1 ̸=µ2

. . .

= v

(
σ2
Nσ

2
D(L−1) + σ2

N

〈
D(L−1)

〉2
+ σ2

D(L−1) ⟨N⟩2
)
+ v(v − 1)

(
cifcD(L−1) + cif

〈
D(L−1)

〉2
+ cD(L−1) ⟨N⟩2

)

= vσ2
D(L−1)

(
σ2
N − cif

)
+ v

〈
D(L−1)

〉2 (
σ2
N + (v − 1)cif

)
, (59)

cD(L) = − σ2
D(L)

(v − 1)
. (60)

Concentration for large m. Since the D’s can be expressed as a sum of different U ’s, their concentration for m≫ 1
follows directly from that of the U ’s.

B.1.3 Estimate of the conditional class probability

We can now turn back to the original problem of estimating

f
(1→L)
i1→L

(α|µ1) =

v∑

µ2,...,µL=1

N
(1)
i1

(µ1;µ2)× · · · ×N
(L)
iL

(µL;α)

v∑

µ2,...,µL=1

nc∑

µL+1=1

N
(1)
i1

(µ1;µ2)× · · · ×N
(L)
iL

(µL;µL+1)

=
U

(1→L)
i1→L

(µ1;α)

D
(1→L)
i1→L

(µ1)
. (61)
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Having shown that both numerator and denominator converge to their average for large m, we can expand for small
fluctuations around these averages and write

f
(1→L)
i1→L

(α|µ1) =

v−1mL

(
1 +

U
(1→L)
i1→L

(µ1;α)−mL/v

mL/v

)

ncv−1mL

(
1 +

D
(1→L)
i1→L

(µ1)−ncmL/v

mL

) (62)

=
1

nc
+

1

nc

U
(1→L)
i1→L

(µ1;α)−mL/v

mL/v
− 1

nc

D
(1→L)
i1→L

(µ1)− ncm
L/v

mL/v

=
1

nc
+

v

ncmL

(
U

(1→L)
i1→L

(µ1;α)−
1

nc
D

(1→L)
i1→L

(µ1)

)
. (63)

Since the conditional frequencies average to n−1
c , the term in brackets averages to zero. We can then estimate the size

of the fluctuations of the conditional frequencies (i.e. the ‘signal’) with the standard deviation of the term in brackets.
It is important to notice that, for each L and position i1→L, D is the sum over α of U , and the U with different α

at fixed low-level feature µ1 are identically distributed. In general, for a sequence of identically distributed variables
(Xα)α=1,...,nc

,

〈
 1

nc

v∑

β=1

Xβ




2〉
=

1

n2c

nc∑

β=1


⟨Xβ⟩2 +

∑

β′ ̸=β

⟨XβXβ′⟩


 =

1

nc


⟨Xβ⟩2 +

∑

β′ ̸=β

⟨XβXβ′⟩


 . (64)

Hence,

〈
Xα − 1

nc

nc∑

β=1

Xβ




2〉
=
〈
X2

α

〉
+ n−2

c

nc∑

β,γ=1

⟨XβXγ⟩ − 2n−1
c

nc∑

β=1

⟨XαXβ⟩

=
〈
X2

α

〉
− n−1

c


⟨Xα⟩2 +

∑

β ̸=α

⟨XαXβ⟩




=
〈
X2

α

〉
− n−2

c

〈


nc∑

β=1

Xβ




2〉
. (65)

In our case
〈(

U
(1→L)
i1→L

(µ1;α)−
1

nc
D

(1→L)
i1→L

(µ1)

)2
〉

=

〈(
U

(1→L)
i1→L

(µ1;α)
)2〉

− nc
−2

〈(
D

(1→L)
i1→L

(µ1)
)2〉

= σ2
U(L) − n−2

c σ2
D(L) , (66)

where, in the second line, we have used that
〈
U (L)

〉
=
〈
D(L)

〉
/nc to convert the difference of second moments into a

difference of variances. By Eq. 41 and Eq. 58,

σ2
U(L) − n−2

c σ2
D(L) = vσ2

U(L−1)

(
σ2
N − σ2

if

)
+ v

〈
U (L−1)

〉2 (
σ2
N + (v − 1)σ2

if

)

− v

n2c
σ2
D(L−1)

(
σ2
N − σ2

if

)
− v

n2c

〈
D(L−1)

〉2 (
σ2
N + (v − 1)σ2

if

)

= v
(
σ2
N − σ2

if

) (
σ2
U(L−1) − n−2

c σ2
D(L−1)

)
, (67)

having used again that
〈
U (L)

〉
=
〈
D(L)

〉
/nc. Iterating,

σ2
U(L) − n−2

c σ2
D(L) =

[
v
(
σ2
N − σ2

if

)]L−1 ((
σ2
U(1) − n−2

c σ2
D(1)

))
. (68)
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Since

σ2
U(1) =

m

v

v − 1

v

vs −m

vs − 1

v≫1−−−→ m

v
,

n−2
c σ2

D(1) = n−1
c σ2

N + n−1
c (nc − 1)σ2

if
v≫1−−−→ n−1

c

(m
v

)2 ( v
m

− nc
vs−1

)
=

1

nc

m

v

(
1− mnc

vs

)
, (69)

One has

σ2
U(L) − n−2

c σ2
D(L)

v≫1−−−→ mL

v

(
1− 1− ncm/v

s

nc

)
, (70)

so that

Var
[
f
(1→L)
i1→L

(α|µ1)
]
= v2

〈(
U

(1→L)
i1→L

(µ1;α)− 1
nc
D

(1→L)
i1→L

(µ1)
)2〉

n2cm
2L

v,nc≫1−−−−−→ v

nc

1

ncmL
. (71)

B.2 Introducing sampling noise due to the finite training set

In a supervised learning setting where only P of the total data are available, the occurrences N are replaced with
their empirical counterparts N̂ . In particular, the empirical joint occurrence N̂(µ;α)7 coincides with the number of
successes when sampling P points without replacement from a population of Pmax where only N(µ;α) belong to class
α and display feature µ in position j. Thus, N̂(µ;α) obeys a hypergeometric distribution where P plays the role of the
number of trials, Pmax the population size, and the true occurrence N(µ;α) the number of favorable cases. If P is large
and Pmax, N(µ;α) are both larger than P , then

N̂(µ;α) → N
(
P
N(µ;α)

Pmax
, P

N(µ;α)

Pmax

(
1− N(µ;α)

Pmax

))
, (72)

where the convergence is meant as a convergence in probability and N (a, b) denotes a Gaussian distribution with mean
a and variance b. The statement above holds when the ratio N(µ;α)/Pmax is away from 0 and 1, which is true with
probability 1 for large v due to the concentration of f(α|µ). In complete analogy, the empirical occurrence N̂(µ) obeys

N̂(µ) → N
(
P
N(µ)

Pmax
, P

N(µ)

Pmax

(
1− N(µ)

Pmax

))
. (73)

We obtain the empirical conditional frequency by the ratio of Eq. 72 and Eq. 73. Since N(µ)=Pmax/v and
f(α|µ)=N(µ;α)/N(µ), we have

f̂(α|µ) =
f(α|µ)

v + ξP

√
1
P

f(α|µ)
v

(
1− f(α|µ)

v

)

1
v + ζP

√
1
P

1
v

(
1− 1

v

) , (74)

where ξP and ζP are correlated zero-mean and unit-variance Gaussian random variables over independent drawings of
the P training points. By expanding the denominator of the right-hand side for large P we get, after some algebra,

f̂(α|µ) ≃ f(α|µ) + ξP

√
vf(α|µ)

P

(
1− f(α|µ)

v

)
− ζP f(α|µ)

√
v

P

(
1− 1

v

)
. (75)

Recall that, in the limit of large nc and m, f(α|µ) = n−1
c (1 + σfξRHM) where ξRHM is a zero-mean and unit-variance

Gaussian variable over the realizations of the RHM, while σf is the ‘signal’, σ2
f = v/mL by Eq. 71. As a result,

f̂(α|µ) nc,m,P≫1−−−−−−−→ 1

nc

(
1 +

√
v

mL
ξRHM +

√
vnc
P
ξP

)
. (76)

7For ease of notation, we drop level and positional indices in this subsection.
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B.3 Sample complexity

From Eq. 76 it is clear that for the ‘signal’ f̂ , the fluctuations due to noise must be smaller than those due to the
random choice of the composition rules. Therefore, the crossover takes place when the two nose terms have the same
size, occurring at P =Pc such that √

v

mL
=

√
vnc
Pc

⇒ Pc = ncm
L. (77)

C One-Step Gradient Descent (GD)

We will consider a simplified but tractable setting, where we generate an instance of the RHM and then train a
one-hidden-layer fully-connected network only on the first s-dimensional patch of the input. Since there are many data
having the same first s-dimensional patch but a different label, this network does not have the capacity to fit the data.
Nevertheless, in the case where the s-dimensional patches are orthogonalized, neural networks can learn the synonymic
invariance of the RHM if trained on at least Pc data.

GD on Cross-Entropy Loss. More specifically, let us first sample an instance of the RHM, then P input-label
pairs (xk, αk) with αk :=α(xk) for all k=1, . . . , P . For any datum x, we denote with µ1(x) the s-tuple of features in
the first patch and with δµ the one-hot encoding of the s-tuple µ (with dimension vs). The fully-connected network
acts on the one-hot encoding of the s-tuples with ReLU activations σ(x)=max (0, x),

FNN(δµ) =
1

H

H∑

h=1

ahσ(wh · δµ), (78)

where the inner-layer weights wh’s have the same dimension as δµ and the top-layer weights ah’s are nc-dimensional.
The top-layer weights are initialized as i.i.d. Gaussian with zero mean and unit variance and fixed. The wh’s are
trained by Gradient Descent (GD) on the cross-entropy loss,

L = Êδ


−

nc∑

β=1

δβ,α(x) log

(
e(FNN(δ))β

∑nc

β′=1 e
(FNN(δ))β′

)
 , (79)

where δβ,α(x) stems from the one-hot encoding of the class label α(x) and Ê denotes expectation over the training set.

For simplicity, we consider the mean-field limit H → ∞, so that F (0)
NN =0 identically, and initialize all the inner-layer

weights to 1 (the vector with all elements set to 1)8.

Update of the Hidden Representation. In this setting, with enough training points, one step of gradient descent
is sufficient to build a representation invariant to the exchange of synonyms. Due to the one-hot encoding, (wh · δµ),
namely the h-th component of the hidden representation of the s-tuple µ, coincides with the µ-th component of the
weight wh. This component, which is set to 1 at initialization, is updated by (minus) the corresponding component
of the gradient of the loss in Eq. 79. Recalling that at initialization the predictor is 0 and all the components of the
inner-layer weights are 1, we get

−∇(wh)µ
L =

1

P

nc∑

α=1

ah,α

(
N̂1(µ;α)−

1

nc
N̂1(µ)

)
, (80)

where N̂1(µ) is the empirical occurrence of the s-tuple µ in the first patch of the P training points and N̂1(µ;α) is
the (empirical) joint occurrence of the s-tuple µ and the class label α. As P increases, the empirical occurrences N̂
converge to the true occurrences N , which are invariant for the exchange of synonym s-tuples µ. Hence, the hidden
representation is also invariant for the exchange of synonym s-tuples in this limit.

8These two assumptions can be relaxed by extending the tools developed in [22].
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C.1 Extension to a one-hidden-layer CNN

The same argument can be carried out by considering a one-hidden-layer CNN with weight sharing and global average
pooling:

FCNN(x) =
1

HsL−1

H∑

h=1

sL−1∑

j=1

ahσ(wh · xj), (81)

where we added an average over all input patches j. The gradient updates now read,

−∇(wh)µ
L =

1

P

nc∑

α=1

ah,α
1

sL−1

sL−1∑

j=1

(
N̂j(µ;α)−

1

nc
N̂j(µ)

)
, (82)

hence, synonymic invariance can now be inferred from the average occurrences over patches. This average results
in a reduction of both the signal and noise term by the same factor

√
sL−1. Consequently, analogously to the case

without weight sharing, the hidden representation becomes insensitive to the exchange of synonymic features for
P ≫Pc = ncm

L.

D Improved Sample Complexity via Clustering

In Section 4.C of the main text and Appendix 4, we showed that the hidden representation of a one-hidden layer
fully-connected network trained on the first patch of the RHM inputs becomes insensitive to exchanges of synonyms at
P =P ∗ =Pc =ncm

L. Here we consider the maximal dataset case nc = v and m= vs−1, and show that a distance-based
clustering method acting on these hidden representations would identify synonyms at P ≃√

ncm
L, much smaller than

Pc in the large-nc limit.
Let us then imagine feeding the representations updates ∆fh(µ) of Eq. 82 to a clustering algorithm aimed at

identifying synonyms. This algorithm is based on the distance between the representations of different tuples of input
features µ and ν,

∥∆f(µ)−∆f(ν)∥2 :=
1

H

H∑

h=1

(∆fh(µ)−∆fh(ν))
2
, (83)

where H is the number of hidden neurons. By defining

ĝα(µ) :=
N̂1(µ;α)

P
− 1

nc

N̂1(µ)

P
, (84)

and denoting with ĝ(µ) the nc-dimensional sequence having the ĝα’s as components, we have

∥∆f(µ)−∆f(ν)∥2 =

nc∑

α,β=1

(
1

H

H∑

h

ah,αah,β

)
(ĝα(µ)− ĝα(ν)) (ĝβ(µ)− ĝβ(ν))

H→∞−−−−→
nc∑

α=1

(ĝα(µ)− ĝα(ν))
2
= ∥ĝ(µ)− ĝ(ν)∥2, (85)

where we used the i.i.d. Gaussian initialization of the readout weights to replace the sum over neurons with δα,β .
Due to the sampling noise, from Eq. 72 and Eq. 73, when 1≪P ≪Pmax,

ĝα(µ) = gα(µ) +

√
1

ncmvP
ηα(µ), (86)

where ηα(µ) is a zero-mean and unit-variance Gaussian noise and g without hat denotes the P → Pmax limit of ĝ. In
the limit 1≪P ≪Pmax, the noises with different α and µ are independent of each other. Thus,

∥ĝ(µ)− ĝ(ν)∥2 = ∥g(µ)− g(ν)∥2 + 1

ncmvP
∥η(µ)− η(ν)∥2 + 2√

ncmvP
(g(µ)− g(ν)) · (η(µ)− η(ν)) . (87)
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If µ and ν are synonyms, then g(µ)= g(ν) and only the noise term contributes to the right-hand side of Eq. 87. If this
noise is sufficiently small, then the distance above can be used to cluster tuples into synonymic groups.
By the independence of the noises and the Central Limit Theorem, for nc ≫ 1,

∥η(µ)− η(ν)∥2 ∼ N (2nc,O(
√
nc)), (88)

over independent samplings of the P training points. The g’s are also random variables over independent realizations of
the RHM with zero mean and variance proportional to the variance of the conditional probabilities f(α|µ) (see Eq. 62
and Eq. 71),

Var [gα(µ)] =
1

ncmvncmL
=

1

ncmvPc
. (89)

To estimate the size of ∥g(µ)− g(ν)∥2 we must take into account the correlations (over RHM realizations) between
g’s with different class label and tuples. However, in the maximal dataset case nc = v and m= vs−1, both the sum
over classes and the sum over tuples of input features of the joint occurrences N(µ;α) are fixed deterministically. The
constraints on the sums allow us to control the correlations between occurrences of the same tuple within different
classes and of different tuples within the same class, so that the size of the term ∥g(µ)− g(ν)∥2 for nc = v≫ 1 can be
estimated via the Central Limit Theorem:

∥g(µ)− g(ν)∥2 ∼ N
(

2nc
ncmvPc

,
O(

√
nc)

ncmvPc

)
. (90)

The mixed term (g(µ)− g(ν)) · (η(µ)− η(ν)) has zero average (both with respect to training set sampling and RHM
realizations) and can also be shown to lead to relative fluctuations of order O(

√
nc) in the maximal dataset case.

Tu sum up, we have that, for synonyms,

∥ĝ(µ)− ĝ(ν)∥2 = ∥η(µ)− η(ν)∥2 ∼ 1

mvP

(
1 +

1√
nc
ξP

)
, (91)

where ξP is some O(1) noise dependent on the training set sampling. If µ and ν are not synonyms, instead,

∥ĝ(µ)− ĝ(ν)∥2 ∼ 1

mvP

(
1 +

1√
nc
ξP

)
+

1

mvPc

(
1 +

1√
nc
ξRHM

)
, (92)

where ξRHM is some O(1) noise dependent on the RHM realization. In this setting, the signal is the deterministic
part of the difference between representations of non-synonymic tuples. Due to the sum over class labels, the signal
is scaled up by a factor nc, whereas the fluctuations (stemming from both sampling and model) are only increased
by O

(√
nc
)
. Therefore, the signal required for clustering emerges from the sampling noise at P =Pc/

√
nc =

√
ncm

L,

equal to v1/2+L(s−1) in the maximal dataset case. This prediction is tested for s=2 in Fig. 12, which shows the error
achieved by a layerwise algorithm which alternates single GD steps to clustering of the resulting representations [22,27].
More specifically, the weights of the first hidden layer are updated with a single GD step while keeping all the other
weights frozen. The resulting representations are then clustered, so as to identify groups of synonymic level-1 tuples.
The centroids of the ensuing clusters, which correspond to level-2 features, are orthogonalized and used as inputs of
another one-step GD protocol, which aims at identifying synonymic tuples of level-2 features. The procedure is iterated
L times.
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Figure 12: Sample complexity for layerwise training, m = nc = v, L = 3, s = 2. Training of a L-layers network is
performed layerwise by alternating one-step GD as described in Section 4.C and clustering of the hidden representations.
Clustering of the mv = v2 representations for the different one-hot-encoded input patches is performed with the
k-means algorithms. Clustered representations are then orthogonalized and the result is given to the next one-step GD
procedure. Left: Test error vs. number of training points. Different colors correspond to different values of v. Center:
collapse of the test error curves when rescaling the x-axis by vL+1/2. Right: analogous, when rescaling the x-axis by
vL+1. The curves show a better collapse when rescaling by vL+1/2, suggesting that these layerwise algorithms as an
advantage of a factor

√
v over end-to-end training with deep CNNs, for which P ∗ = vL+1.

E Instances of the Homogeneous Feature Model (HFM) in the Random
Hierarchy Model (RHM)

Given that the rules in the RHM are chosen uniformly at random, a non-zero probability exists that an HFM, where
no input-output correlations exist, is sampled as an instance of the RHM. In these instances, semantic invariance, and
good generalization, would be impossible to learn from correlations, as illustrated in the main text. In this appendix
we show that such specific instances of the RHM are sampled with vanishing probability, for increasing values of the
RHM parameters.

E.1 m = vs−1 case

The number of rules for the RHM made by L layers for generic values of m and v is given by

[
(vs)!

(m!)v(vs − vm)!

]L(
1

v!

)L−1

. (93)

For m = vs−1 it becomes
(

vs

vs−1...vs−1

)L ( 1
v!

)L−1
. The number of HFM rules, defined by having Ni(µ;α)= vs−2

independently of µ in each of the single-layer rules, can be computed as follows. Let’s look at a given feature of the
previous layer, for example the symbol 1. We want to assign to it m = vs−1 s−tuples

(1, α1,1
1 , ..., α1,s−1

1 ), ..., (1, α1,1
vs−2 , ..., α

1,s−1
vs−2 ), ..., (v, α1,1

vs−1−(vs−2−1), , ..., α
1,s−1
vs−1−(vs−2−1)), ..., (v, α

1,1
vs−1 , , ..., α

1,s−1
vs−1 ), (94)

where the first vs−2 tuples has as first symbol 1, the second vs−2 the symbol 2 and we continue up to the last vs−2

tuples with first symbol v. The numbers {α1,t
i }i=1,...,vs−1 are permutations of the set {1, ..., v}vs−2

for feature 1 and
location t. In these rules, there is no symbol that occurs more than the others at a given location. Consequently, the
network cannot exploit any correlation between the presence of a symbol at a given location and the label to solve
the task. With regard to the other features j of the previous layer, to any of these we will assign the vs−1 tuples
(1, αj,1

1 , ..., αj,s−1
1 ), ..., (v, αj,1

vs−1 , , ..., α
j,s−1
vs−1 ), with the numbers {αj,t

i } being the same of α1,t
i for any t but shifted forward

of (j − 1)v positions. For example, the numbers related to the ”block” of tuples with first element 1 for feature 1
will be the same related to the ”block” of tuples with first element 2 for feature. In formulae: αj,t

i = α1,t
i−(j−1)v, with

i− (j − 1)v being equivalent to (vs−1 − (v − i) + 1) (periodic boundary conditions). The number of such uncorrelated
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rules is just the number (vs−1)! of permutations of the numbers {α1,t
i }i=1,...,vs−1 for a fixed tuple location t, elevated to

the number of positions s− 1. Consequently, the fraction of uncorrelated rules for L layers is:

fHFM =
1

v!

(
(vs−1!)(s−1)

(
vs

vs−1...vs−1

)
1
v!

)L

. (95)

We now want to show that fHFM vanishes for large v. We implement the Stirling approximation in (95) getting

fHFM ≈ 1

v!

(
v(s−1)(vs−1+ 1

2 )e−vs−1(s−1)

vs(v
s+ 1

2 )e−vs
vv(s−1)(vs−1+ 1

2 )e−vs

)L

, (96)

yielding the following limit behavior for large v:

fHFM ≈ 1

v!

(
e−vs−1(s−1)

vvs

)L

, (97)

which is vanishing for large v and large L.

E.2 Generic m case

Let’s characterize the uncorrelated rules in the case of generic m. For each single-layer rule, we assign m s−tuples to
each symbol of the previous layer. Let’s consider a given symbol j. To this symbol, we assign m s−tuples of the type
(αj,1

1 , ..., αj,s
1 ), (αj,1

2 , ..., αj,s
2 ), ..., (αj,1

m , ..., αj,s
m ), with the m numbers (αj,t

i )i at fixed location t being a permutation of a

subset of {1, ..., v}vs−2

such that, if we call mq the number of items in the subset equal to q ∈ {1, ..., v}, each mq is
either 0 or we have that mq1 = mq2 for q1 and q1 such that mq1 = mq2 > 0 and

∑v
q=1mq = m. Moreover, since each

symbol q can appear at most vs−2 times, we have that mq ≤ vs−2. We take the m numbers (αj,1
i )i=1,...m at the first

location t = 1 ordered in increasing order. Note that these tuples can be picked just once across different symbols j,
imposing then constraints on the numbers αj,t

i for different features j.
As in the case of m = vs−1 in Sec. E.1, we want to show that the probability of occurrence fHFM of such uncorrelated

rules, given by the number of these rules divided by the number of total rules, is vanishing for large v and/or large L.
To count the number of uncorrelated rules, that we call #HFM, we first count the number #j,t of possible series of

numbers {αf,t
i }i=1,...,m for a fixed feature j and position t > 1, and for a single-layer rule. In other words, we have to

count the number of possible subsets made by m elements of {1, ..., v}vs−2

such that each symbol q ∈ {1, ..., v} appears
mq times, with the mq satisfying the constraints above. We introduce the quantity v0 which is the number of symbols
q which appears 0 times in a given subset. Once we fix v0, from the constraint

∑v
q=1mq = m we get that the features

with mq > 0 appear m̄ = m
v−v0

if m
v−v0

is a positive integer, otherwise, there are no subsets with that v0. Consequently,
the number #j,t is given by:

#j,t =

v−1∑

v0=0

(
v

v0

)
I
[

m

v − v0
∈ N>0

]
I
[

m

v − v0
≤ vs−2

]
m!, (98)

where (i)
(
v
v0

)
counts the number of choices of the features with 0 appearances and (ii) m! counts the number of

permutations of the m numbers {αj,t
i }i. Since we are interested in proving that fHFM is vanishing for large v and L,

we upper bound it relaxing the constraint that m
v−v0

∈ N>0 and using that
(
v
v0

)
≤
(

v
⌈v/2⌉

)
:

#j,t ≤
(
v − m

vs−2

)( v

⌈v/2⌉

)
m! (99)

Considering all the s locations, we get

#j ≤
(
v − m

vs−2

)s( v

⌈v/2⌉

)s

(m!)s−1, (100)
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where #j is defined similarly as #f,t. Notice that for the first location t = 1 there is not a factor m! since we are

ordering the numbers αj,1
i in ascending order there.

If we want to count #HFM, we have to take into account that we are sampling without replacement from the space of
s−tuples, and hence two different symbols j cannot share the same s− tuples, hence increasing the number of possible
rules. To upper bound #HFM, we relax this constraint, hence sampling the tuples with replacement. Consequently, we
have:

#HFM ≤
[(
v − m

vs−2

)s( v

⌈v/2⌉

)s

(m!)s−1

]v
, (101)

since the choice of the αj,t
i is independent between different features j. Consequently for a L−layer rule:

fHFM ≤
[(
v − m

vs−2

)s( v

⌈v/2⌉

)s

(m!)s−1

]vL/[(
vs

m. . .m

)L(
1

v!

)L−1
]

(102)

We now assume m ∼ vα, with 0 < α < (s− 1) and for large n we implement the Stirling approximation9, getting:

fHFM ≤ 1

v!

(
v − vα−(s−2)

)svL
2(v+1)vLvα(v

α+1/2)(s−1)vL+vL/2e−vα(s−1)vL−vL

/
vL(vs+v/2−sv/2+s/2)e−

L

2vs−1 (v(v
α−vs−1)+(vs−v1+α−vs−1))

(103)

where we approximated ⌈v/2⌉ with v/2. At the leading order for large v we get, using the fact that (α+ 1) < s

fHFM ≤ 1

v!

e−(s−1)Lvα+1

v(vs)L
2(v+1)vL, (104)

hence the probability of occurrence of a parity-like rule is vanishing for large n and L.
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Figure 13: Test error of deep CNNs on the Homogeneous Feature Model for different v and L. Horizontal dashed lines
stand for the test error (v − 1)/v given by guessing labels uniformly at random. For v = 2 the networks can generalize
to a number of training points P which scales with the total size of the dataset Pmax. Increasing v, performance is very
close to chance already at v = 4.

F Intrinsic Dimensionality of Data Representations

In deep learning, the representation of data at each layer of a network can be thought of as lying on a manifold
in the layer’s activation space. Measures of the intrinsic dimensionality of these manifolds can provide insights into
how the networks lower the dimensionality of the problem layer by layer [14,15]. However, such measurements have
challenges. One key challenge is that it assumes that real data exist on a smooth manifold, while in practice, the

9The Stirling approximation for the multinomial
( n
a1...ak

)
for n → ∞ and integers ai such that

∑k
i=1 = n is given by

( n
a1...ak

)
∼

(2πn)(1/2−k/2)kn+k/2exp{− k
2n

∑k
i=1(ai − n/k)2}. In our case n = vs, k = (v + 1) and ai = m for i ∈ 1, ..., v and ak+1 = (vs − vm).
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dimensionality is estimated based on a discrete set of points. This leads to counter-intuitive results such as an increase
in the intrinsic dimensionality with depth, especially near the input. An effect that is impossible for continuous smooth
manifolds. We resort to an example to illustrate how this increase with depth can result from spurious effects. Consider
a manifold of a given intrinsic dimension that undergoes a transformation where one of the coordinates is multiplied by
a large factor. This operation would result in an elongated manifold that appears one-dimensional. The measured
intrinsic dimensionality would consequently be one, despite the higher dimensionality of the manifold. In the context of
neural networks, a network that operates on such an elongated manifold could effectively ’reduce’ this extra, spurious
dimension. This could result in an increase in the observed intrinsic dimensionality as a function of network depth,
even though the actual dimensionality of the manifold did not change.

In the specific case of our data, the intrinsic dimensionality of the internal representations of deep CNNs monotonically
decreases with depth, see Fig. 14, consistently with the idea proposed in the main text that the CNNs solve the problem
by reducing the effective dimensionality of data layer by layer. We attribute this monotonicity to the absence of
spurious or noisy directions that might lead to the counter-intuitive effect described above.
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Figure 14: Effective dimension of the internal representation of a CNN trained on one instance of the RHM with
m = nc = v, L = 3 resulting in Pmax = 6′232. Left: average nearest neighbor distance of input or network activations
when probing them with a dataset of size P . The value reported on the y-axis is normalized by δ0 = δ(P = 10). The
slope of δ(P ) is used as an estimate of the effective dimension. Right: effective dimension as a function of depth. We
observe a monotonic decrease, consistent with the idea that the dimensionality of the problem is reduced by DNNs
with depth.
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Figure 16: Test error vs. number of training points for a ResNet18 [44] trained on subsamples of the CIFAR10 dataset.
Results are the average of 10 jointly different initializations of the networks and dataset sampling.
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7 Conclusion

The central takeaway from this thesis is that the power of deep learning indeed resides in its

ability to adapt to the structure of the data. In particular, we put forward the hypothesis that

the curse of dimensionality–—a major challenge in processing high-dimensional data—–can

be substantially mitigated by learning representations that are invariant to aspects of the data

that are irrelevant for the task, extending the ideas of Bruna and Mallat (2013); Mallat (2016) to

other invariances beyond smooth deformations and image tasks. Our findings demonstrate

that neural networks are able to learn such representations, provided they have the right

architecture and are trained in the feature learning regime. Crucially, we have shown that this

learning of invariances is fundamental for achieving good performance.

The first section (7.1) of this concluding chapter presents a summarizing table that encapsu-

lates our primary results, systematically categorizing the invariances, neural network architec-

tures, and training regimes that were examined. One of the central aspects of our research is

the introduction of empirical tools to characterize invariance learning in neural networks in

order to connect it to performance. The second section (7.2) of this conclusion elaborates on

these tools, providing a unified formulation for all the invariances we studied, and placing

these tools in context with existing literature. In section 7.3 we discuss more in detail the

results encapsulated in the table and the key lessons drawn from them; section 7.4 provides

the big picture that emerges from our work. We close with the limitations of our work and the

ongoing and future investigations that our findings open up to (section 7.5).

7.1 Table of Results

We provide a compact summary of our results in Table 7.1. On the rows, one finds the

invariances we considered:

1. Linear Invariance. This invariance could model the pixels at the corner of an image,
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1. Linear Inv.

2. Rotation Inv.

4. Deformation Inv.
(scale detection)

3. Deformation Inv.
(image classification)

5. Hierarchy
(synonymic inv.)

shallow FCN
(lazy)

shallow FCN
(feature)

deep FCN
(feature)

deep CNN
(feature)

Arch. + regime

Data Structure

Algo: GF Algo: GF

Algo: GD Algo: GD

Algo: SVM Algo: GF Algo: GD Algo: SGD

Algo: SVM Algo: SGD Algo: SGD Algo: SGD

Algo: SGD

(preliminary results)

Table 7.1: Summary of Results. The rows represent the various data structures considered,
categorized by data invariances, while the columns detail the types of neural networks and
training regimes studied, including 2-layer neural networks in both the lazy and feature
regimes, deep fully-connected networks, and deep convolutional networks. Gray cells indicate
configurations that were not expressly addressed in our research. For each invariance, symbols
provide a ranking of the performance of the architecture and training regime we investigated
(green: best, orange: intermediate, red: worst).
The performance is more precisely reported by the predicted scaling exponent β, when the
test error follows a power law, or by the sample complexity P∗. When predictions of test error
are not available (i.e. for deformation invariance), we indicate the qualitative value of relative
sensitivity R f , which correlates closely with test error.
The algorithms used in each setting are also indicated, namely Support Vector Machine SVM,
(Stochastic) Gradient Descent (S)GD, and Gradient Flow GF, that is GD with adaptive learning
rate as defined in Geiger et al. (2020b).
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likely uncorrelated to the task. It generically includes target functions of the form:

f ∗(x) = g (Ax) where A :Rd →Rd ′
and d ′ ≪ d . (7.1)

2. Rotation Invariance. This invariance is introduced as a simple model of non-linear

invariance. In this setting, data points xi are sampled uniformly at random from the

d-dimensional unit sphere Sd−1. The target f ∗ is a Gaussian random function of

controlled smoothness:

E∥ f ∗(x)− f ∗(z)∥2 =O
(∥x − z∥2νt

)
, as x → z , (7.2)

where the exponent νt controls the smoothness of f ∗ and hence its stability with respect

to rotations of the input. For νt →∞, f ∗ is the constant function that is invariant to

rotations. The results reported in the second row of Table 7.1 are valid for large νt (cf.

chapter 4, Equation 3.4).

3. Deformation Invariance in Images. Given τ an operator that applies a small deforma-

tion to 2D images, we have that the target function defining the class of an image x

satisfies

f ∗(x) ≈ f ∗(τx), (7.3)

in the sense that ∥ f ∗(x)− f ∗(τx)∥ is small, if the norm of τ is small.

4. Scale-detection tasks. We’ve designed artificial tasks as a model for scenarios where

deformation invariance plays a role to better characterize it. These include models of

2D images where only two pixels i and j are active, and the target is given by

f ∗(x) = sign(∥i − j∥−ξ). (7.4)

The task hence consists of classifying whether the two pixels are closer or not than

a given distance or scale ξ and moving one active pixel to a neighboring position is

unlikely to affect the class.

5. Synonymic Invariance of Hierarchical Tasks. This invariance is related to hierarchically

compositional and local tasks. Consider, for instance:

f ∗(x) = g3(g2(g1(x1, x2), g1(x3, x4)), g2(g1(x5, x6), g1(x7, x8))), (7.5)

with x = (x1, . . . , x8)—see also graphical representation in Figure 7.1. Here, we have

a function f ∗ of a d-dimensional input (d = 8), written as a hierarchy of L = 3 levels

of constituent functions. Each of the constituent functions is local in the sense that

it only depends on a number of variables s ≪ d , with s = 2 in this case. Synonymic

invariance stems from the fact that, for each constituent function, different tuples e.g.

(x1, x2), (x ′
1, x ′

2) with identical meaning may exist, i.e. g11(x1, x2) = g11(x ′
1, x ′

2). We call

these tuples synonyms.
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g3

g2

g1

x1 x2

g1

x3 x4

g2

g1

x5 x6

g1

x7 x8

Figure 7.1: Graphical Representation of the Hierarchically Compositional and Local Func-
tion of Equation 7.5. The tree represents the structure of the hierarchical function with L = 3
layers, whose constituent functions (g ’s) are local on patches of size s = 2. The leaves corre-
spond to input variables.

In the model of the hierarchical data we introduced in chapter 6, each input takes values

from a finite vocabulary V , with v = |V |, and the constituents gl : V s →V are surjective

functions that map sets of m inputs of the domain to each one of the v outputs. The

functions gl are chosen by drawing the sets of m synonyms uniformly at random from

all the possible s-tuples of inputs.

Notice that the results reported in the fifth row of Table 7.1, are valid when the input

distribution has full support, in the sense that all possible vd input data are generated—

this is the case when m is large. If only a fraction of input data was generated (m =O(1)),

then even kernel methods could beat the curse of dimensionality, as they are known to

be adaptive to a low-dimensional input support Bach (2022).

7.2 Empirical Characterization of Invariants Learning

Observables to measure the invariance of neural networks to input transformations that

leave the label unchanged are crucial for the findings of this thesis, as they are needed to

quantitatively link invariance learning and performance.

Our main contribution in this context consists in proposing to characterize the learning of

invariances through the relative measure of the sensitivity of the network activations with

respect to input transformations that the target function is invariant to. Relative sensitivities

generally take the form,

S f =
Ex ,T ∥ f (x)− f (T x)∥2

Ex ,G∥ f (x)− f (Gx)∥2 , (7.6)

where f is the neural network output or internal activations, the x ’s are test samples, T is an

operator applying the invariant transformation to the inputs, and G is an operator applying a

generic transformation of the same magnitude, i.e. Ex ,T ∥T x −x∥ = Ex ,G∥Gx −x∥.

This definition is such that S f ≈ 1 if the function f does not distinguish between the invariant

transformation T and a generic one G , otherwise S f ≪ 1. Such measures of sensitivity have

178



7.2 Empirical Characterization of Invariants Learning

101 102 103

trainset size, n

10−10

10−8

10−6

10−4

ro
ta

ti
on

st
ab

il
it

y

d = 2

Feature

Lazy

101 102 103

trainset size, n

10−9

10−7

10−5

d = 3

Feature

Lazy

101 102 103

trainset size, n

10−9

10−7

10−5

d = 5

Feature

Lazy

Figure 7.2: Rotation sensitivity of the predictor when learning the constant function on
the sphere (cf. chapter 4), in the feature and lazy regime, for a varying number of training
points. Results for different input-space dimensions are reported in each column. To see the
correlation between sensitivity and performance, these curves are to be compared with Figure
4 in chapter 4.

proven to be successful to characterize the learning of invariance in different contexts, and are

shown to have a remarkable correlation with performance.

Our sensitivity measurements have drawn inspiration from the definition of deformation

stability Bruna and Mallat (2013); Mallat (2016). Yet, as found in chapter 3, measures of relative

stability more effectively correlate with performance in practical settings. Furthermore, we

adapt these observables to encompass other invariances beyond just diffeomorphisms. While

Goodfellow et al. (2009) has also proposed methods to assess the invariance of deep networks

to various input changes, their approach is based on the assumption that individual neurons

are specialized for specific invariances. This assumption is challenged by the empirical

evidence in Szegedy et al. (2014), which indicates that the entire activation space, rather than

individual neurons/coordinates, carries semantic information about the task.

We summarize here the invariant and generic transformations specific to each invariance and

task we considered in this thesis, and our main results on relative sensitivity measurements.

1. For linear invariance, T corresponds to Gaussian noise added to the d −d ′ irrelevant

directions, and G to Gaussian noise added to all directions. We have shown that this

invariance can be learned by 2-layers neural networks in the feature regime both in

anisotropic targets (chapter 3, Figure 7) and image classification tasks (chapter 4, Figure

H.1), where linear invariance is associated with pixels at the boundary of images.

2. For rotation invariance, T corresponds to a small rotation of x over the input coordi-

nates and G to Gaussian noise. We report results for the sensitivity of feature and lazy

predictor when regressing the constant function on the d-sphere in Figure 7.2. The

separation in sensitivity to rotations between the two regimes is consistent with the one

of test error as reported in chapter 4.

4./5. For deformation invariance the transformation T correspond to a small deformation.

To generate deformations of controlled norm we introduced an ensemble of maximum-
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original deformed

larger deformation norm

Figure 7.3: Image of a swan deformed with the ensemble of max-entropy diffeomorphisms
we introduced in chapter 3. Starting from the original image on the left, deformations of
increasingly larger magnitudes are applied while going to the right.

entropy diffeomorphisms that allows us to uniformly sample from the distribution of all

diffeomorphisms having the same norm. Samples from this distribution as a function

the deformation norm are reported in Figure 7.3. In this case, G corresponds to isotropic

additive noise. This invariance can be profitably learned by deep CNNs (chapter 3

and chapter 5), but even deteriorates when learning features in shallow architectures

(chapter 4).

6. For synonymic invariance, T corresponds to the exchange of synonymous features at a

given level of the hierarchy, G to the substitution of a feature at the same level with a

different one taken at random. This invariance can be learned by deep but not shallow

networks (chapter 6 and Figure 7.6).

Overall, our findings suggest that, if a certain invariance is relevant for the task, then S f of a

given network predictor correlates with its test error. In deep networks, we observe that these

invariances are gradually learned, layer by layer, an observation in line with previous findings

within the information bottleneck framework reviewed in subsection 1.2.1. As for the measures

of intrinsic dimension that we discussed in subsection 1.2.1, our results are consistent with the

decrease in intrinsic dimension in later layers, but hint that the increase in early layers might

actually be a side effect due to the inherent difficulties of intrinsic dimension estimation, as

described in subsection 1.2.1. This is because such an increase is not observed for any of

the invariances considered, and measuring the intrinsic dimension of representation in deep

CNNs trained on the Random Hierarchy Model does not reveal this effect either (cf. chapter 6).

In summary, our sensitivity measures advance existing tools for assessing dimensionality

reduction and allow establishing quantitative relationships to performance.
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7.3 Lessons Learned

To understand which elements in deep neural networks are responsible for learning which

kind of invariances, we broke down such architectures and studied their different aspects

separately. Which benefits come from feature learning and/or architectural advancements

like depth and convolutional filters?

Shallow Neural Networks In our study of shallow neural networks we established that (i)

they are able to learn linear invariances in the feature regime, (ii) they are bad for certain

non-linear invariances with a performance deterioration in the feature regime with respect to

lazy and (iii) they are not able to learn hierarchical tasks in all regimes. In particular,

(i) In the case of 2-layer neural networks trained on classification tasks that exhibit linear

invariance (as in Equation 7.1), we established that in the feature learning regime, fully-

connected neural networks can adapt effectively to data structure by orienting their

weights and develop an invariance to irrelevant input directions. However, we show

this is not the case when the networks are trained in the lazy regime, which leads to a

performance difference that we quantified via scaling exponents of generalization error

versus the number of training points, and have shown these exponents to be practically

tight—–a finding scarce in existing literature. We highlight that here the target is still

given by the sign of a smooth function, and for this reason kernels are not cursed by

dimensionality. Indeed, bounds to the scaling exponent β for a problem of this kind

would predict β≥ 1/4 Bartlett and Mendelson (2001). In our setting, such bound is not

tight as, for large d , we find and βlazy = 1/3, as also highlighted in Paccolat et al. (2021b).

Finally, to draw qualitative parallels between the learning of linear invariances by neural

networks and that of more complex invariances of deep CNNs on real-world tasks, we

studied the neural tangent kernel and the one computed from the last layer activations,

after training. We found these kernels to retain the properties of the neural network,

displaying only a few non-negligible eigenvalues, whose corresponding eigenvectors

have a large projection on the target function. This finding showed that dimensionality

reduction takes place in the feature regime both in the presence of linear invariance for

shallow FCNs, and more complex invariances for deep CNNs. Determining the exact

nature of these complex invariances remained an open question at this stage. The low-

dimensionality of the space of the final layer activations has been further characterized

in the context of the neural collapse phenomenon Papyan et al. (2020). Moreover, more

recent works Guth et al. (2023) report that low-dimensional structures can be found not

only at the last, but at all layers of deep networks.

(ii) In which cases learning features in shallow networks is instead a disadvantage? Building

on the results of Geiger et al. (2020b); Lee et al. (2020), we empirically characterized

the performance vs. number of training points of shallow networks trained on image

classification tasks and showed a systematic gap between feature and lazy regime,
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emphasizing the presence of drawbacks of learning features in shallow fully-connected

networks.

We proposed to rationalize these drawbacks by arguing that shallow FCNs, when trained

in the feature regime, tend to overfit irrelevant input directions in the absence of linear

invariances. We quantitatively characterized this overfitting in the case of rotationally

invariant tasks as defined in Equation 7.2. In this setting, we computed tight gener-

alization error rates with the number of training points for 2-layer FCNs and show a

performance gap in favor of the lazy regime. Notice that, consistently with our discus-

sion on generalization in kernel methods of subsection 1.1.3, the curse of dimensionality

can only be beaten if the target smoothness νt is proportional to the input dimension (cf.

chapter 4, Equation 3.4). If that is the case, for d ≫ 1 we find βfeature = 1 and βlazy = 2,

highlighting that the optimal generalization bound for kernel methods is not tight in

this setting, as it would predict βlazy = 1/2.

In practical applications, these results suggest that when the selected architecture is not

ideally suited to the task, gradient descent could potentially lead to overfitting solutions.

In such cases, resorting to a kernel method might be a more prudent choice.

(iii) In the case of hierarchically compositional tasks exhibiting synonymic invariance, we

showed that 2-layers networks are not able to learn the invariance and hence are cursed

by dimensionality, with a sample complexity scaling exponentially with the input di-

mension.

These results underscore a limitation of studying the benefits of feature learning by consid-

ering 2-layer neural networks. Indeed, in real-world settings, 2-layer fully-connected neural

networks do not perform well, especially for more complex datasets (Figure 7.4). Surprisingly,

the lazy regime often yields better performance in these settings. These observations suggest

that linear invariance might not be the most relevant aspect of data structure that enables

the learnability of real data. Thus, while building a robust understanding of 2-layer networks

is a necessary first step to making further progress, the study of more complex architectures

appears necessary to explain the success of deep learning. In particular, what is the role of

depth? What is the role of local filters implemented through convolutional layers?

The Role of Depth and Locality Deep learning has demonstrated an ability to capture a

hierarchy of increasingly abstract representations with depth Zeiler and Fergus (2014); Yosinski

et al. (2015); Olah et al. (2017). Our work demonstrated that depth is indispensable for learning

hierarchical tasks in the feature learning regime. In particular, we have shown that (i) for

a toy model of hierarchically compositional tasks, deep networks are able to perform well

by learning the associated synonymic invariance and (ii) for real-world tasks, specifically

image classification, deeper networks generally perform better as they are able to better learn

deformation invariance. Alongside depth, the utilization of local filters is crucial for image

classification tasks. However, the advantage of using local filters for tasks that are purely
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Figure 7.4: Test error rates of Fully-Connected Networks (FCN), LeNet LeCun et al. (1989),
and ResNet18 He et al. (2016) with increasing number of training points, for different image
datasets. As depicted, a widening performance gap emerges between FCN and the two
convolutional neural networks (LeNet and ResNet18) with the increase in dataset complexity
(left: black and white digits, center: black and white clothes, right: colored objects).

hierarchical, such as the ones we introduced, remains a subject for further exploration and is

discussed in section 7.5 regarding open questions.

More specifically,

(i) We developed the Random Hierarchy Model to mimic the hierarchical structure of

real data and study synonymic invariance. We find that deep, but not shallow, neural

networks are able to profitably learn this invariance, and beat the curse of dimensionality.

Interestingly, we have shown that the possibility to detect input-output correlations

is crucial for deep neural networks trained by gradient descent to learn, as previously

noted in related but different settings Arora et al. (2014); Malach and Shalev-Shwartz

(2018, 2020). While our quantitative characterization of the sample complexity in this

setting offers an estimate of the data required to learn a task based on its hierarchical

structure, how to fit the parameters of the model (m, v, s,L) to real data remains an open

question.

(ii) In real data, these features, other than being hierarchically composed, also need to be

identified in space. In particular, their exact position may not matter, in the sense that

they can be slightly displaced without changing the label. This property gives rise to

deformation invariance. For image classification tasks we found that neural networks

that are more invariant to input deformations are also the ones that perform best, as

hypothesized in Bruna and Mallat (2013); Mallat (2016). Notably, neural networks em-

ploying local filters are better than fully connected ones in learning the invariance, and

deeper CNNs are better than shallow ones. By examining the mechanisms responsi-

ble for granting deformation invariance, we found that deep CNNs often achieve it by

utilizing low-frequency filters.

Complementary to our findings, other works have explored the benefits of depth and locality

183



Chapter 7. Conclusion

when features are not learned, i.e. in the lazy regime, and regression tasks Bietti and Bach

(2021); Favero et al. (2021); Bietti (2021); Cagnetta et al. (2022); Xiao (2022); Misiakiewicz and

Mei (2022). In particular, for fully connected networks, the NTK of a deep network has no

advantages over its shallow counterpart Bietti and Bach (2021). Instead, when filters are local,

as for a deep CNN, then the NTK can learn targets that are local on patches of different sizes,

without suffering from the curse of dimensionality Cagnetta et al. (2022).

For classification tasks, preliminary results obtained from the Random Hierarchy Model (not

shown) suggest that the NTK of a deep CNN cannot learn tasks that are hierarchical if the target

function has full support, exhibiting a sample complexity exponential in d . These preliminary

findings further emphasize the fundamental importance of learning features for the success

of deep neural networks.

7.4 The Big Picture

Figure 7.5: The task of recognizing an object in a visual scene. In both drawings we are able
to recognize a dog even if some features of the dog come in different positions and shapes (e.g.
the legs), or in different realizations (e.g. the ears). In this thesis, we argue that the invariance
of the task to such changes is crucial for neural networks to learn it, as it allows for reducing the
dimensionality of the problem and breaking the curse of dimensionality. Illustration courtesy
of A.P.

The task of recognizing objects within a visual scene, such as identifying a dog as depicted in

Figure 7.5, involves several steps.

Firstly, (i) we must discern which parts of the scene are irrelevant to our task, such as pixels in

the upper corners. Secondly, (ii) it becomes apparent that solving our task does not require

an exact match to a specific, idealized image of a dog. Instead, the features that constitute

the dog can manifest in a multitude of positions, and the precise relative location of these

features is not vital to our task. Lastly, (iii) upon recognizing that the exact placement of these
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features is unimportant, we begin to compose them to form a coherent picture of the object.

We discern edges and textures, realizing that they form components of the dog such as legs,

eyes, and mouth. Gradually, these elements combine, allowing us to recognize the dog as a

whole. It’s noteworthy that these elements can appear, not only in various positions or shapes,

but also in various synonymous realizations, that are not just deformations or rearrangings

of the constituent features in space; for example, the ears might be pictured from their back

and appear droopy and brown when relaxed Figure 7.5(left), or show their pink interior when

perked up if the dog is alert (right).

This thesis posits that these three aspects of real data structure are relevant in solving practical

tasks like image classification, with particular emphasis on the significance of (ii) and (iii). If

this is the case, then unraveling how neural networks tackle these properties is fundamental

to understanding their remarkable success. Specifically, we argue that these properties can

be more precisely defined in terms of data invariances: linear invariance for (i), deformation

invariance for (ii), and synonymic invariance for (iii). We propose that in order to effectively

leverage these invariances, neural networks must learn them from data since they are not

typically built into the network’s architecture from the start. As such, feature learning and

adaptation are essential for the optimal performance of neural networks. Yet, we also demon-

strate that the architectural selection of the network is equally important for proper feature

learning. A suboptimal architectural choice could result in learning the wrong features, leading

to poor performance. Thus, implementing proven architectural advancements, such as the

use of local filters through convolutional layers and the incorporation of multiple layers, plays

a critical role in successful feature learning.

7.5 Some Open Questions

This final section outlines the limitations of our study and suggests potential avenues for

future exploration. We first discuss how to unify the two main lines of inquiry in this thesis:

the roles of deformation and synonymic invariance both (i) in the Random Hierarchy Model

and (ii) in real-world tasks. Then (iii) we show novel results aimed at disentangling the role of

depth and local filters in learning hierarchical tasks. (iv) We propose extensions to the Random

Hierarchy Model to get the power-law behavior of test error that is often observed in practice.

We conclude (v) by discussing practical applications of our ensemble of diffeomorphisms,

specifically for data augmentation and confidence estimation.

(i) Our study on deformation invariance currently does not provide a theoretical framework

for understanding the observed correlation with test error. Such an understanding

would allow for making quantitative predictions on how many training points would be

needed to learn the invariance, hence the task. While some progress in this direction

has been made in the study of kernel methods Bietti et al. (2021), the sample complexity

of algorithms that are allowed to learn features is still unknown.

One way to make progress consists in unifying the two main lines of inquiry of this
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thesis by creating a data model that can be invariant to both deformations and to the

exchange of synonymous features. This can be done by adding a notion of sparsity in

space to the Random Hierarchy Model (RHM) in such a way that, at every hierarchy level,

the relevant features can equivalently appear at different locations of a given patch,

with the rest of the patch being empty or noisy, irrelevant pixels. This construction is

such that exchanging the position of a relevant feature with an irrelevant pixel within

a patch does not change the task, hence modeling invariance to small deformations.

Some preliminary results in this direction (to appear in Tomasini et al. 2023) show

that synonymic and deformation invariance are learned together in deep CNNs. From

these results, we can derive the following interpretation. The RHM can be efficiently

learned only by understanding the structure of the problem at all levels, which involves

achieving synonymic invariance: a model that did not learn synonymic invariance could

only memorize the input samples, and would need to see all of them to solve the task.

Hence a correlation between synonymic invariance and performance comes naturally

in this setting. The preliminary findings we report here—specifically the correlation

between deformation and synonymic invariance—suggest that deformation invariance

is indicative of the goodness of a network representation on various aspects, hence

rationalizing its strong correlation to performance. Estimating the sample complexity

as a function of both invariances is still an ongoing work.

(ii) A related and complementary direction would include studying synonymic invariance

in real-world tasks: when learning to predict e.g. age from face pictures, is the invariance

to exchange of synonymous features (e.g. eyes with or without sunglasses) correlated to

the performance of a given neural network, as predicted from our findings in chapter 6?

Are synonymic and deformation or 2D/3D rotation Goodfellow et al. (2009) invariance

learned together in real-world tasks as well? Moreover, the transformer architecture

Vaswani et al. (2017) has been the most recent technological breakthrough in the context

of natural language processing. The study of synonymic invariance in real tasks may

include understanding how transformers learn that the exchanges of two synonyms do

not change e.g. the sentiment of a sentence, and whether measures of the invariance of

a transformer to such exchanges are also correlated to its performance.

(iii) In our study of hierarchical tasks we mainly focus on shallow FCNs and deep CNNs. One

important question though is how locality is learned, when not imposed from the start,

or "What is the performance of deep FCNs?". In the case of a target function just depend-

ing on one of the input patches, locality corresponds to the linear invariance studied in

chapter 2. However, when the function depends on different patches independently, as

in

f ∗(x) = g3(g1(x1), g2(x2)), (7.7)

where x1 and x2 are two input patches, the picture is different. In this case, the con-

stituent functions g1 and g2 are invariant to all the input except x1 and x2, respectively,

but the target function is not. As a consequence, to solve the task, different neurons need

to specialize to different parts of the input. Understanding when and how non-local
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neurons can achieve such specialization in practice to learn compositionally local func-

tions is still an open question Neyshabur (2020); Pellegrini and Biroli (2021); Ingrosso

and Goldt (2022).

We believe that the Random Hierarchy Model (RHM) provides a practical setting to start

addressing this question. To this end, we conducted some preliminary experiments on

deep fully-connected networks trained on the RHM, see results in Figure 7.6. Neurons

are indeed able to achieve specialization: they clearly separate into distinct groups, each

responding to one of the different input patches. Interestingly, (not shown) we observe

that this specialization occurs at all hierarchy levels, with neurons in successive layers

specializing to patches of patches, and so on. These experiments led to the following

insight: Deep FCNs can learn the Random Hierarchy Model with a sample complexity

that is orders of magnitude smaller than the one of shallow FCNs, corresponding to the

total number of data points. These preliminary results suggest that depth is crucial for

learning tasks that are solely hierarchical, but imposing locality from the start is not.

However, additional experiments with varying RHM parameters (L in particular) are

needed to validate this finding and characterize the scaling of the sample complexity of

deep FCNs. Our current hypothesis is that P∗
dFCN =C (d)P∗

dCNN, with C (d) a prefactor

polynomial in d , that could be large for large d . Hence, even if both deep FCNs and

CNNs beat the curse of dimensionality, deep CNNs may still have a relevant edge on

performance. Ultimately, while we observe neuron specialization in practice, a com-

prehensive theoretical understanding of this phenomenon remains an open challenge.

(iv) The Random Hierarchy Model serves as a toy model, and while it may provide useful

insights, it clearly does not perfectly reflect real-world data. Future investigations could

profitably extend to more sophisticated and realistic models. We already discussed how

to include the sparsity of features in space in the model. One other possible extension

drawn from the context of natural languages is the incorporation of Zipf ’s law Zipf

(1935), an empirical principle in linguistics, stating that the frequency of a word in a

natural language is a power law of its rank in the frequency table.

Currently, in the Random Hierarchy Model, the features are uniformly distributed and

hence all appear with the same probability. As a consequence, there exists a well-defined

scale P∗ = nc mL at which all correlations between input features and labels emerge

from sampling noise. If, instead of being uniform, the features were distributed as

a power law, then correlations of rarer features would need an increasing number of

training points to emerge from sampling noise. As a consequence, the sharp transitions

we observe in our setting around P∗ for the test error versus number of training points

could manifest as power-law behaviors when Zipf’s law is incorporated into the model.

Indeed, power-law behaviors have been observed in large language models Kaplan et al.

(2020).

(v) We conclude by discussing the practical application of the ensemble of diffeomorphisms

we introduced to data augmentation and confidence estimation.
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Figure 7.6: Deep FCNs Learn Hierarchical Tasks. 3-hidden layers fully-connected network
trained on the Random Hierarchy Model with three hierarchy levels (L = 3) and patches of size
s = 2, resulting in input dimension d = 8. The number of classes equals number of features
and multiplicity nc = v = m = 8, resulting in a predicted sample complexity for deep CNNs of
P∗

dCNN = nc mL = 4′096 and a total data set size Pmax = nc md−1 ≈ 108. (a) On the rows, there
are different neurons, on the columns different input locations x1, . . . , xd . The color indicates
the weights norm across the v input channels. Left and right correspond to before and after
training with P∗

dCNN ≪ P ≪ Pmax. FCN learns locality in the sense that different neurons
specialize to different input patches (x1, x2), (x3, x4), etc. with training. A similar behavior can
be observed for the following layers focalizing on the next level of the hierarchy, i.e. patches
of patches. (b) Test error vs. number of training points for Deep (blue) vs Shallow (orange)
FCNs. Deep networks are able to reach zero test error with a number of training points P that
satisfies P∗

dCNN < P ≪ Pmax, while shallow do not.
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Data augmentation consists in creating additional training samples by applying transfor-

mations to existing data that do not change the label, thereby enhancing the networks’

ability to generalize or robustness to adversarial attacks Ortiz-Jiménez et al. (2021).

Although we found that diffeomorphisms didn’t outperform standard data augmen-

tation methods when trying to improve generalization, successful applications of our

maximum-entropy transformations in this domain of adversarial robustness have ap-

peared in the literature Modas et al. (2022), suggesting this may be a promising direction

for further future work.

Confidence estimation is the process of quantifying the certainty or confidence level

of a model’s predictions Guo et al. (2017). The goal is to assess how likely the model’s

prediction is to be correct, providing a measure of trustworthiness for the output that is

crucial in high-stakes applications like healthcare or finance. Our ensemble of diffeo-

morphisms can be employed to design better confidence estimators: by exploring the

value of the predictor in the neighborhood of data points, other than on the data points

alone, this could provide more accurate confidence estimations. Current work, that

I’m co-supervising, involves this approach. Preliminary results indicate that averaging

standard confidence estimators over max-entropy diffeomorphisms of a specific input

yields improved confidence estimators, that are more informative than standard ones,

and better calibrated. These findings will appear in Hasler et al. (2023).
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