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Abstract

The new era of shared economy has raised our expectations to make mobility more
sustainable through better utilization of existing resources and capacity. In this
thesis, we focus on the design of transport systems that stimulate multi-purpose trips
with the aim of reducing congestion while simultaneously leveraging the existing
commuters better. Multi-purpose trips can improve the efficiency, sustainability,
and profitability of passenger transport systems, through vehicle relocation in
vehicle-sharing systems and ride-sharing. Similar improvements can be made in
last-mile logistics systems, through crowd-shipping.

A predictive user-based relocation approach through incentives is proposed for
car relocation in one-way car-sharing systems. This approach consists of a bi-level
optimization approach to find the optimal incentive and a Markov chain to describe
the state of the system. Numerical results indicate that these user-based relocations
can significantly improve the profit and the service level of a car-sharing system
and are more sustainable than staff-based relocations.

The effect of congestion on ride-sharing is studied. Numerical results indicate
that ride-sharing is more appealing during congestion, due to the high availability of
riders and drivers. Thereby, theoretical and numerical results show that bottleneck
congestion makes the schedules of riders and drivers more flexible, thereby increasing
the matching opportunities. Transfers of riders between modes and between drivers
can further improve the performance of a ride-sharing system. By allowing for
transfers, the trips of the rider and the driver only need to be partially similar.
The problem is formulated as a path-based integer programming problem and
travel time uncertainty is included by reformulating the problem as a stochastic
programming problem.

Crowd-shipping is a last-mile delivery concept in which commuters pick up
and deliver parcels on their pre-existing paths. By constructing depot locations
for picking up parcels, more potential crowd-shippers can be attracted and the
service area can be extended. Numerical results show that determining these depot
locations using predictive strategies can improve the overall performance of the
system by 15% compared to when non-predictive strategies are used. Using transfers
between crowd-shippers allows for further expanding the service area and improving
the overall performance. A column and row generation approach is proposed to



solve the problem of matching parcels to crowd-shippers. Numerical results show
that transfers can improve the service level and profit of the system by 30%.

Keywords: Car-sharing, Ride-sharing, Crowd-shipping, Transfers, Mixed inte-
ger linear programming, Optimization under uncertainty, Large-scale optimization



Résumé

La nouvelle ère de l’économie de partage a renforcé nos attentes pour rendre la
mobilité plus durable grâce à une meilleure utilisation des ressources et des capacités
existantes. Dans cette thèse, nous nous focalisons sur la conception des systèmes
de transport qui favorisent des trajets à usage multiple, dans l’objectif de réduire
les embouteillages routiers, tout en optimisant l’exploitation des flux pendulaires
déjà existants. Les trajets à usage multiple se révèlent être une voie prometteuse
pour améliorer l’efficacité, la durabilité et la rentabilité des systèmes de transport
des passagers, par le biais de la relocalisation des véhicules au sein de plateformes
d’auto-partage et de co-voiturage, ainsi que par les systèmes logistiques du dernier
kilomètre, à travers le crowd-shipping.

Une approche prédictive de relocalisation basée sur l’utilisateur à travers des
incitations est proposée pour la relocalisation des véhicules dans les systèmes
d’auto-partage à sens unique. Cette approche repose sur une optimisation à deux
niveaux visant à déterminer l’incitation optimale et sur une chaîne de Markov pour
caractériser l’état du système. Les résultats numériques indiquent que ces relocali-
sations basées sur l’utilisateur ont le potentiel d’améliorer de manière significative
la rentabilité et l’efficacité du service du système d’auto-partage, surpassant les
critères de durabilité des stratégies de relocalisation basées sur le personnel.

L’impact des embouteillages routiers sur le covoiturage est l’objet de cette étude
approfondie. Les résultats numériques mettent en évidence le fait que le covoiturage
devient d’autant plus attractif en période d’embouteillage routier, du fait de
l’abondance de passagers et de conducteurs disponibles. C’est ainsi que les résultats
théoriques et numériques démontrent que les embouteillages, considérés comme une
contrainte, rendent l’aménagement temporel des passagers et des conducteurs plus
flexibles, favorisant ainsi les opportunités de mise en relation entre eux. Les transferts
des passagers entre les divers moyens de transport et les conducteurs peuvent
optimiser davantage les performances du système de covoiturage. En permettant
ces transferts, les trajets des passagers et des conducteurs n’ont besoin d’être que
partiellement similaires. Le problème est formulé sous la forme d’une programmation
linéaire en nombres entiers (PLNE) basée sur les trajets, et l’incertitude liée au
temps de trajet est intégrée en reformulant le problème en tant que problème
de programmation stochastique.



Le crowd-shipping est un concept de livraison du dernier kilomètre, où les
pendulaires s’engagent à récupérer et acheminer des colis le long de leurs trajets
préexistants. En établissant des emplacements de dépôt pour la prise en charge
des colis, un plus grand nombre de participants potentiels au crowd-shipping peut
être attiré, et la zone de service peut être plus étendue. Les résultats numériques
démontrent que la détermination de ces emplacements de dépôt à l’aide de stratégies
prédictives peut améliorer les performances globales du système de 15 % par rapport
à l’utilisation de stratégies non prédictives. L’utilisation de transferts entre les
participants au crowd-shipping permet d’étendre davantage la zone de service et
d’améliorer la performance globale. La méthode de génération de colonnes et
de lignes est proposée pour résoudre le problème d’appariement des colis avec les
participants au crowd-shipping. Les résultats numériques indiquent que les transferts
peuvent améliorer le niveau de service et la rentabilité du système de l’ordre de 30 %.

Mots clés: Auto-partage, Covoiturage, Crowd-shipping, Transferts, Program-
mation linéaire mixte en nombres entiers (PLMNE), Optimisation sous incertitude,
Optimisation à grande échelle
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2 1.1. Motivation and background

1.1 Motivation and background
The new era of shared economy has raised our expectations to make mobility more
sustainable through better utilization of existing resources and capacity. Traffic
congestion is one of the biggest problems in passenger transport. As a result of
a large number of commuters, the preference for private car usage leading to low
vehicle occupancy, urban-centered lifestyle, and the high similarity of work schedules
from a temporal perspective, the morning and evening commutes on (urban) road
networks are often heavily congested. Traffic congestion causes inconvenience on a
private level, with large delays, tardiness, and idle time spent on congested roads.
Thereby, congestion has many negative social effects, such as CO2 emissions, fuel
and energy waste, and degradation of air quality.

In urban areas, the effect of road congestion is even more prevalent. Because
of the dense urban networks with one-way streets, congestion easily propagates
through the network. This is further amplified by roadblocks caused by road
maintenance or on-street parking of delivery vehicles. Traditional delivery vehicles
are often highly polluting but remain commonly used up to now.

Although the large number of commuters has many negative private and social effects,
in this thesis we describe multiple ways to leverage existing commuters to improve
last-mile mobility, transport, and logistic systems. By stimulating multi-purpose,
where commuters are fulfilling a second purpose during their commute, we try to
improve vehicle occupancy and improve the efficiency and sustainability of transport
and logistics systems. In this thesis, we consider user-based vehicle relocation, ride-
sharing, and crowd-shipping as multi-purpose trips, as illustrated in Figure 1.1.
Car-Sharing Systems (CSSs) have become an interesting alternative to private car
ownership, due to their benefits in terms of mobility and sustainability. Benefits for
the individual users include reduced transportation cost and mobility enhancement,
while society as a whole benefits from reduced congestion and emissions (see for
example Martin and Shaheen, 2011 and Baptista, Melo, and Rolim, 2014). Over
the last years, the number of car-sharing users has increased rapidly. A recent study
by Frost & Sullivan, 2016 has shown that the increase in the number of users of
CSSs is likely to continue over the coming years. One of the main problems in
one-way car-sharing systems is the relocation of cars which is needed because of the
asymmetry in demand, leading to imbalances. Staff-based vehicle relocations are
a potential solution to this problem, but lead to new vehicle and personnel movement.

In line with the vision of this thesis, we explore the potential of user-based vehicle
relocation in Chapter 2. The main benefit of this is that rather than using staff
members, users with pre-existing itineraries are incentivized to slightly change their
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Figure 1.1: Multi-purpose trips

trip and thereby contribute to the relocation of vehicles. In this way, the imbalances
of the car-sharing system can be resolved in a more sustainable way.

Commuting by private car remains one of the most used modes of transport.
With average car occupancy in the US being only 1.5 in 2019 (U.S. Department of
Energy (DOE), 2022), it is clear that the majority of commuters travels alone. Given
the empty space in private vehicles, this can be seen as a waste of resources. Ride-
sharing is a good potential solution to this problem, where individuals maintain the
flexibility of private transportation, while car occupancy is increased. In ride-sharing,
commuters with pre-existing travel itineraries share a ride for a part of their journey.

For ride-sharing to be a competitive mode of transport, there are some cost
components that need to be considered. Clearly, fuel and parking costs can be
shared which reduces the costs of the driver. However, either the driver, the rider, or
both need to make a detour to reach each other, which increases their inconvenience.
Thereby, if the desired arrival times of the driver and rider do not coincide, this will
lead to schedule delay penalties. In this thesis, we consider all these cost components
and obtain a matching that minimizes these costs. A matched driver and rider need
to have highly similar itineraries (i.e., routes and desired arrival times) for a match
to be low-cost and therefore competitive with private transport. This is a highly
restrictive requirement which has hindered the widespread adoption of ride-sharing
as a mode of transport.

We evaluate two scenarios that can help to relax these requirements. In Chapter 3,
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we evaluate the effect of congestion during the morning commute on ride-sharing
potential. In addition to the economies of scale during the morning commute (there
are more potential drivers and riders), congestion leads to more flexibility in the
time schedules of commuters. In equilibrium, commuters may have an interval of
departure/arrival times for which their costs are roughly similar, as opposed to a
specific desired arrival time that minimizes their cost in the non-congested case.
This, therefore, makes the matching of drivers and riders more flexible with respect
to time. In Chapter 4 we evaluate the effect of transfers in a ride-sharing system.
By allowing riders to transfer from one driver to another, or even transfer between
different modes of transport, a match is only required to be partially similar. This
can also increase the potential of ride-sharing. According to Li et al., 2007, family
carpooling makes up nearly 75% of all carpools. Since families share an origin
but not necessarily a destination during their morning commute, transfers can
drastically increase the potential of family carpooling.

Rather than sharing the commute with another person, individuals can also share
their commute with a small parcel. Such a situation is referred to as crowd-shipping,
where the last-mile delivery of small parcels is outsourced to individual commuters
who can pick up and deliver a parcel on their pre-existing route. Although the
similarities between crowd-shipping and ride-sharing are apparent, there are some
fundamental differences. The static nature of a parcel makes it so that all the delivery
effort needs to come from the driver (also referred to as a crowd-shipper). However,
parcels do not have the same strict time schedules as people and do not perceive
inconvenience in the same way. This makes storing a parcel at an intermediate
point a reasonable option. Based on this, we consider a depot-based crowd-shipping
system in Chapter 5, where we develop an efficient algorithm to find the optimal
depot locations. Furthermore, in Chapter 6, we consider transfers of parcels between
various crowd-shippers. Compared to the developed methodology in Chapter 4, due
to the flexibility of parcels with respect to transfers and inconvenience, the size of the
matching problem is significantly larger. Therefore, we develop a column-and-row
generation approach to find the optimal matching and routes for parcels.

Specifically, we consider bike-based crowd-shipping systems. These systems are
more sustainable than car-based crowd-shipping systems. Especially in urban areas,
bikes can more easily move through the network, stop without blocking a street,
and enter low-emission or car-free zones. Despite this, we still focus on bikers with
pre-defined itineraries. By leveraging existing bikers, this concept aligns with the
multi-purpose vision of this thesis.

This thesis focuses on leveraging existing vehicle flows for last-mile mobility,
transport, and logistics systems by stimulating multi-purpose trips. Through
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user-based vehicle relocation, ride-sharing, and crowd-shipping, we aim to improve
the efficiency and sustainability of these systems, decrease car ownership, increase car
occupancy, and reduce congestion. In the remainder of this section, we summarize
the existing literature for these three types of mobility and logistics systems and
state the specific objectives and contributions of this thesis.

1.1.1 State-of-the-art on relocation in car-sharing systems
Over the last decades, car-sharing systems, as well as other vehicle-sharing systems
such as bike- and ebike-sharing, have received increasingly more attention. In many
large cities, vehicle-sharing systems emerge for various modes of transportation.
The systems can be classified as either free-floating or station-based. The first
refers to the case where vehicles can be dropped off at any location where parking
is permitted within the specified operating area. This type of system has been
considered by, among others, Weikl and Bogenberger, 2013 and Herrmann, Schulte,
and Voß, 2014. The environmental effects of such a system are significant, as
described by Firnkorn and Müller, 2011. However, they are often also harder to
handle. Li, Liao, Timmermans, Huang, and Zhou, 2018 incorporate free-floating
car-sharing in a dynamic user equilibrium model and thereby illustrate the supply-
demand interaction for shared cars. Station-based CSSs on the other hand, require
vehicles to be picked up and dropped off at a limited number of stations. A major
advantage of this type of system is that electric vehicles can be charged at these
stations. As described by Li, Ma, Cui, Ghiasi, and Zhou, 2016, this innovative
mobility service has benefits in terms of sustainability and the environment.

Station-based CSSs can be either one-way or two-way systems. Two-way systems
require the customers to drop-off the vehicle at the same station as where they
picked it up. One-way systems allow the customer to drop their vehicle off at any
other station of their choice. Due to the increased level of flexibility of these systems,
they are commonly viewed as a more attractive alternative for customers compared
to two-way systems. As described by Boyacı, Zografos, and Geroliminis, 2015, the
attractiveness of a CSS is not only determined by its flexibility, but also by its level
of service. The level of service consists of two important factors: accessibility and
availability. Accessibility refers to the distance of the origin and destination of a
customer to the available vehicle. Availability refers to the availability of a vehicle
at the right time and the right place.

System performance (i.e. profit and service level) is optimized on a strategic,
tactical and operational level. On a strategic and tactical level, long and midterm
decisions are made. These decisions include the locations of stations (Kumar and
Bierlaire, 2012, Brandstätter, Kahr, and Leitner, 2017), the size of the fleet of
vehicles (George and Xia, 2011, Nair and Miller-Hooks, 2011) and the number of
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staff members Kek, Cheu, Meng, and Fung, 2009. In this paper, we focus on the
operational decisions, which regard the redistribution of vehicles in the network to
guarantee a minimum service level.

In one-way vehicle-sharing systems, the availability of vehicles is often problematic.
Uncertain and asymmetric demand are the main causes of the existence of balancing
problems. At a location where the demand for vehicles is high, the number of
available vehicles declines rapidly. On the other hand, at a location where the
supply for vehicles is high, the number of available parking places declines. Due
to the limited availability of both vehicles and parking spaces the service level of
CSSs decreases. Non-reserved vehicles should be relocated either to create available
vehicles for stations with high density of origins or to create available slots for
stations with high density of destinations. Nevertheless, due to limited resources
for relocation and the fact that vehicles are unavailable during this movement, an
optimization framework should be integrated.

To solve this balancing problem, vehicles should be relocated. For an extensive
review of relocation strategies in one-way car-sharing systems, the reader is referred
to Illgen and Höck, 2019. In the literature, both static and dynamic relocation
policies are considered. The static relocation policy assumes that no demand occurs
during the relocation of vehicles, suggesting the vehicles are relocated at night.
Chemla, Meunier, and Calvo, 2013 consider a capacitated pickup and delivery
problem to describe the static bike relocation problem. Static relocation problems
are easier to solve as they are less prone to uncertainty. However, they are also less
effective as temporary imbalances during the day can not be resolved.

A dynamic relocation policy considers the relocation of vehicles during the day. This
is discussed by among others Caggiani and Ottomanelli, 2013 and Boyacı, Zografos,
and Geroliminis, 2015. Dynamic relocation policies are more effective as vehicles
can be relocated throughout the day. However, as customers arrive dynamically,
uncertainty forms a major burden. Due to this uncertainty, most relocation policies
rely on simple benchmarks such as a minimum number of vehicles at each station.
As these policies do not incorporate expected future demand, they are classified
as non-predictive. Predictive methods incorporate expected future demand and
thereby expected future states of the system. Such a predictive relocation policy was
developed by Repoux, Kaspi, Boyacı, and Geroliminis, 2019. They use a Markovian
model to describe the state of the system and optimize their staff-based relocation
policy based on this.

In practice, vehicle relocations are mostly performed by staff members. Staff
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members pick up vehicles at over-saturated locations and deliver them to under-
saturated locations. In bike-sharing systems, a truck can be used to relocate multiple
bikes at the same time by a single staff member (Caggiani and Ottomanelli, 2013).
However, in car-sharing systems this procedure is less efficient as only a single car
can be moved at the same time by one staff member. User-based relocation offers a
more sustainable and less costly alternative to staff-based relocation. User-based
relocation refers to the case where users are stimulated to relocate the vehicles
themselves, thereby contributing to a more balanced system. An example of such a
method is paid relocation, as described by Schulte and Voß, 2015, where users are
paid free minutes or other bonuses. Jorge, Molnar, and Almeida Correia, 2015 use
dynamic trip pricing to reduce imbalances. They offer higher prices to trips that
increase imbalances and lower prices to those trips that improve the state of the
system.

The most common type of user-based relocation is customer incentivization. In
this case, customers are stimulated to change their pickup or delivery location by
offering them a discount. By doing this, a less favorable location in terms of access
time may be chosen by the customer, which aims to reduce the balancing problem.
Correia, Jorge, and Antunes, 2014 investigate that if customers are more flexible in
their choice for pickup and delivery locations, a significant increase in profit can
be obtained by incentivizing customers. Angelopoulos, Gavalas, Konstantopoulos,
Kypriadis, and Pantziou, 2016 provide discounts to customers if they contribute to
the balancing process. Their decision is based on priorities that are assigned based
on the capacity and occupancy of the stations. Similarly, Brendel, Brauer, and
Hildebrandt, 2016 assume that the price of a ride is a function of the extra time that
is required to perform a relocation. They assume the same value of time applies to
all customers, thereby disregarding customer heterogeneity. Most of the literature
considers policies where incentivization decisions are made based on threshold
values (Clemente, Fanti, Iacobellis, Nolich, and Ukovich, 2017) or problematic
scenarios at stations such as being completely full or completely empty (Singla
et al., 2015). Di Febbraro, Sacco, and Saeednia, 2018 determines the best incentive
stations and discount in a sequential manner. They determine the best station
based on the relative demand for vehicles at all stations and the best discount value
is determined to maximize the systems’ profit. These approaches can be classified
as non-predictive, in the sense that they do not incorporate expected future demand
loss caused by insufficient vehicles or parking spaces. Future demand is integrated
by Pfrommer, Warrington, Schildbach, and Morari, 2014, who incorporate the
difference between supply and demand rates of bikes in their decisions. They use
truck routing and dynamic incentives to relocate bikes in a bike-sharing system.

In on-demand transportation systems, incentives or dynamic (surge) pricing are
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often used to balance demand and supply. For example, Yang, Shao, Wang, and
Ye, 2020 design a reward scheme integrated with surge pricing for the ride-sourcing
market. Similarly, Zha, Yin, and Du, 2018 propose equilibrium models for supply
in ride-sourcing and investigate the effect of surge pricing. Xiong et al., 2019 design
an incentive scheme to create energy efficient mobility systems using personalized
traveler information. Ma, Ban, and Szeto, 2017 propose an emission pricing model
for dynamic traffic networks. They determine the optimal first-best emission pricing
by solving an optimal control problem.

1.1.2 State-of-the-art on ride-sharing
In ride-sharing people share a ride for a part of their journey, which reduces the
time a driver is traveling with a partially empty vehicle. Teal, 1987 provides an
early definition of carpooling and distinguishes between different types of carpoolers.
Shaheen and Cohen, 2019 give an overview of the various shared-ride services that
exist in the modern day. The two most important ones are ride-sharing (commuters
that have a predefined trip purpose share a ride) and ride-hailing (also known
as ride-sourcing, which is more similar to a taxi service). Whereas studies have
shown that ride-hailing generally leads to an increase in congestion (Beojone and
Geroliminis, 2021; Schaller, 2021), ride-sharing generally reduces congestion by
increasing vehicle occupancy and thereby reducing the number of vehicles on the
road (Caulfield, 2009; Gurumurthy, Kockelman, and Simoni, 2019; Palma, Javaudin,
Stokkink, and Tarpin-Pitre, 2022). Ride-sharing may lead to environmental and
societal benefits but brings forth many optimization challenges.

For a review of the optimization challenges in ride-sharing, the reader is referred to
Agatz, Erera, Savelsbergh, and Wang, 2012. One of the most important optimization
problems in ride-sharing is the matching of drivers and passengers. Matching
algorithms can aim to find system optimal matching, as described by Özkan and
Ward, 2020, or a stable matching where no individual can improve their match as
described by Wang, Agatz, and Erera, 2018. Various extensions to the traditional
ride-sharing framework have been proposed. For example, Santi et al., 2014 consider
the sharing of taxi services to reduce its negative effect at the cost of increased
inconvenience perceived by the passengers. Alonso-Mora, Samaranayake, Wallar,
Frazzoli, and Rus, 2017 consider high-capacity ride-sharing with a dynamic trip-
vehicle assignment and also display the trade-off between passenger inconvenience
and negative externalities of commuting. The standard matching models are very
much used in labor economics (Zenou, 2009) and in the economics of the family
(Browning, Chiappori, and Weiss, 2014). In urban economics, matching is also used
to justify the micro-foundations of agglomeration effects or wide economic effects
(Duranton and Puga, 2004).
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The matching problem can be extended to include transfers between various vehicles.
Herbawi and Weber, 2012 model the ride-matching problem with transfers and
time windows and use a genetic algorithm to solve this problem. Masoud and
Jayakrishnan, 2017 consider multi-hop ride-matching where a driver can carry
multiple riders and riders can join multiple drivers. Huang, Bucher, Kissling,
Weibel, and Raubal, 2018 include carpooling in the trip planning of commuters
next to public transport. Commuters are allowed to transfer between drivers or
between modes. Lu, Liu, Wang, Zhou, and Hu, 2020 consider ride-sharing with
transfers in short-notice evacuations such as during natural or man-made disasters.

In the literature, carpooling has been modeled both as a competitor of public
transport (Li, Li, and Zhang, 2021) or as a complement to public transport (Kong,
Zhang, and Zhao, 2020). The former considers public transport as an alternative
mode of transport (Palma, Javaudin, Stokkink, and Tarpin-Pitre, 2022; Palma,
Stokkink, and Geroliminis, 2022). In this case, carpooling can reduce public
transport users and therefore has negative societal effects. The latter considers
public transport as a feeder to carpooling or carpooling as a feeder to public
transport (Kumar and Khani, 2021; Ma, Rasulkhani, Chow, and Klein, 2019;
Masoud, Nam, Yu, and Jayakrishnan, 2017). In that case, the two services may help
to improve each other and form a competitive alternative against private car usage.
In this work, we consider both alternatives simultaneously to properly consider
the interaction of the two transport modes when riders are allowed to make transfers.

Ride-sharing may be influenced by sudden changes in travel time. Previous studies
have focused on a robust optimization approach to ride-sharing with travel time
uncertainty (Li, Gao, Wang, Huang, and Nie, 2022; Li and Chung, 2020). Long,
Tan, Szeto, and Li, 2018 consider a bi-objective ride-sharing-matching model under
travel-time uncertainty. They consider delay and schedule delay penalties that
may change according to this uncertainty. Our work is most similar to the latter
work, but as we allow for transfers, travel time uncertainty does not only affect
(schedule) delay penalties but may also affect the feasibility of some matches.
We consider the schedule delay structure for commuters as defined previously by
Vickrey, 1963 and Small, 1982.

1.1.3 State-of-the-art on crowd-shipping
The last-mile delivery of parcels is a well-studied topic in the optimization literature.
Traditionally, goods are delivered by using delivery vans. In this case, the problem
can be formulated as a Pickup-and-Delivery Problem (PDP) (Savelsbergh and
Sol, 1995) or a Vehicle Routing Problem (VRP) (Toth and Vigo, 2002). These
problems have been extended to include various problem-specific aspects such as
time-windows (Dumas, Desrosiers, and Soumis, 1991; Ropke and Cordeau, 2009) or
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uncertainty (Fabri and Recht, 2006).

Due to the increase in online shopping, a large number of traditional vans is
needed to serve all demand. According to Iwan, Kijewska, and Lemke, 2016,
delivery vans for last-mile delivery are one of the main causes of congestion in
urban areas. As a consequence, many companies are looking for more sustainable
options to replace the aforementioned traditional delivery methods. Iwan, Kijewska,
and Lemke, 2016 analyze the use of parcel lockers where customers can pick up
and send small parcels. Results from a pilot survey in Poland indicate that the
use of these lockers can potentially reduce the environmental impact of last-mile
delivery. Another alternative is drone delivery (Agatz, Bouman, and Schmidt, 2018;
Karak and Abdelghany, 2019), for which it has been shown that combining truck
delivery with a drone can significantly reduce transportation costs. Thereby, drones
cause less congestion compared to delivery vans. Akeb, Moncef, and Durand, 2018
propose a model that relies on the interaction of a network of neighbors to enhance
parcel delivery in urban areas.

Another promising alternative to traditional last-mile delivery methods is crowd-
shipping. In a crowd-shipping system, the last-mile delivery of small parcels is
(partially) outsourced to individual commuters that can deliver the parcel on their
pre-existing route. Various empirical studies have investigated the potential and
determinants of crowd-shipping (Ermagun and Stathopoulos, 2018; Le and Ukkusuri,
2019b; Punel, Ermagun, and Stathopoulos, 2019). These studies have shown the
potential demand for crowd-shipping and the concerns of potential users. Thereby,
they highlight the importance of the availability of occasional couriers. Potential
crowd-shippers have a pre-existing itinerary (origin, destination, and approximate
departure and arrival times) and trip purpose (for example, a work commute or a
leisure trip). Therefore, only parcels that do not create significant inconvenience can
be assigned to the crowd-shipper that has to be compensated for the inconvenience
through some (monetary) incentive.

Recently, substantial research has been done on the operational problems that
arise in crowd-shipping systems. For a review of recent academic research as well
as recent practice, the reader is referred to Le, Stathopoulos, Van Woensel, and
Ukkusuri, 2019. Pourrahmani and Jaller, 2021 give an overview of the operational
challenges and research opportunities that exist in this field. One of these operational
challenges is the matching of parcels to crowd-shippers which has been studied by,
among others, Li, Krushinsky, Reijers, and Van Woensel, 2014 and Soto Setzke
et al., 2017. Another important operational problem is pickup and delivery routing.
Clearly, these problems are intertwined and therefore are often tackled jointly.
Archetti, Savelsbergh, and Speranza, 2016 model the static routing problem as a
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Vehicle Routing Problem with Occasional Drivers (VRPOD). It is assumed that
an occasional driver is willing to make a delivery if the extra distance traveled to
make the delivery is less than a pre-specified portion of the total distance traveled.
Li, Krushinsky, Reijers, and Van Woensel, 2014 consider a crowd-shipping scenario
where people and parcels share a taxi. They model the problem as a Share-a-Ride
Problem (SARP), which is an extension of the Dial-a-Ride Problem (DARP). Dahle,
Andersson, and Christiansen, 2017 consider a two-stage stochastic program to model
the VRP with dynamic occasional drivers. The first-stage decision models the route
of the traditional delivery truck. After the occasional drivers make themselves
known in the second stage, they are assigned to parcels and the truck route can be
changed. Arslan, Agatz, Kroon, and Zuidwijk, 2019 model the problem as a dynamic
PDP. Their heuristic assigns crowd-shipping tasks to occasional (ad-hoc) drivers
dynamically. Cohn, Root, Wang, and Mohr, 2007 integrate matching and routing
decisions for carriers of small packages. Yildiz and Savelsbergh, 2019 introduce
the service and capacity planning problem. With their model, they aim to answer
questions that arise in a crowd-shipping system, both on strategic and operational
levels.

As the availability of potential crowd-shippers is a key determinant of the per-
formance of a crowd-shipping system, parcels may be stored at intermediate
depot locations (or transshipment points) such that they are easily reachable by
potential suppliers. Wang, Zhang, Liu, Shen, and Lee, 2016 consider “pop-stations"
distributed around the city where crowd-shippers can perform pickups. For a fixed
set of transshipment points, they optimize the utilization of crowd-shippers for
last-mile delivery. Raviv and Tenzer, 2018 and Macrina, Pugliese, Guerriero, and
Laporte, 2020 consider a crowd-shipping system where crowd-shippers can pick up
parcels either from the depot or from transshipment points. Their results show
the economic benefits of such transshipment nodes. Similarly, Yıldız, 2021a also
considers transshipment points but uses a dynamic programming algorithm to solve
their problem. Contrary to the fixed transshipment points in the previous works,
Mousavi, Bodur, and Roorda, 2022 consider mobile depots. They do not consider
the routing of vehicles, but they determine the optimal location of these mobile
depots under uncertainty in supply.

The literature on crowd-shipping with transfers can be roughly divided into two types
of transshipments. On the one hand, there are transfers between crowd-shippers
and another mode of transport, usually traditional delivery vehicles (Macrina,
Pugliese, Guerriero, and Laporte, 2020). Such transfers are commonly modeled as
two-echelon systems (Laporte and Nobert, 1988). Kafle, Zou, and Lin, 2017 consider
crowd-shippers performing first-leg pickups or last-leg deliveries, with relays to
trucks performing the middle leg. Various alternatives of the two-echelon delivery
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system with crowd-shippers have been introduced, such as mobile satellites (Lan,
Liu, Ng, Gui, and Lai, 2022), parcel lockers (Enthoven, Jargalsaikhan, Roodbergen,
Broek, and Schrotenboer, 2020; Santos, Viana, and Pedroso, 2022) and delivery
options (Vincent, Jodiawan, and Redi, 2022). Others have considered two-echelon
systems with transfers to mobile depots (Mousavi, Bodur, and Roorda, 2022) and
public transport (Kızıl and Yıldız, 2022) rather than a traditional delivery vehicle.

On the other hand, there are transfers among the crowd-shippers themselves. This
can again be divided into two groups of studies. One with transfers taking place
at dedicated transfer locations with for example parcel lockers (Raviv and Tenzer,
2018) and one with time-synchronized transfers, where parcels are transferred
directly from one crowd-shipper to another and cannot be left unattended (Chen,
Mes, and Schutten, 2018). The latter is highly similar to what is classified by
Agatz, Erera, Savelsbergh, and Wang, 2012 as multi-hop ride-sharing. Multi-hop
ride-sharing has received considerably more attention (Chen et al., 2019; Drews
and Luxen, 2013; Herbawi and Weber, 2011; Lu, Liu, Wang, Zhou, and Hu, 2020;
Masoud and Jayakrishnan, 2017). We also note the similarity with public transport
modeling, where passengers can make stops and transfers when traveling through a
public transport network (Spiess and Florian, 1989). The most important difference
between multi-hop ride-sharing and multi-stage crowd-shipping is the fact that
passengers incur psychological costs when making detours and transfers and when
they are waiting at transfer points. Parcels, on the other hand, are more flexible
and can make large detours with various transfers as long as they arrive on time.

Chen, Mes, and Schutten, 2018 allow for transfers between crowd-shippers but
require time synchronization such that parcels are directly passed on from one
to another crowd-shipper. In their approach, a parcel cannot be left unattended.
Sampaio, Savelsbergh, Veelenturf, and Van Woensel, 2020 consider a crowd-shipping
system with a single transfer at a dedicated transfer point, where parcels can be
stored temporarily. As their crowd-shippers do not have predetermined paths, their
problem is similar to a pickup and delivery problem with transfers (Mitrović-Minić
and Laporte, 2006; Rais, Alvelos, and Carvalho, 2014). The itinerary of crowd-
shippers is considered by Voigt and Kuhn, 2022, but they do not consider time
windows for crowd-shippers nor parcels. Such a system is clearly less attractive
for potential crowd-shippers that wish to deliver a parcel during their commute,
where time windows are imposed. Such a system is considered by Yıldız, 2021a,
who develop a dynamic programming approach to solve their problem. The authors
later extend this problem by considering stochasticity in demand (Yıldız, 2021b).
Their crowd-shippers are inflexible and do not deviate from their routes. As a
result, crowd-shippers are paid a fixed compensation. Raviv and Tenzer, 2018
offer compensations for stopping and handling. In their work, they assume Poisson
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arrivals of occasional couriers, that have a predetermined sequence of transfer points
that they will visit. Based on this assumption, they use a stochastic dynamic
programming algorithm to find an optimal policy. Nieto-Isaza, Fontaine, and
Minner, 2022 take a strategic perspective and focus on finding the optimal locations
for mini-depots that function as transshipment points. DiPugliaPugliese, Guerriero,
Macrina, and Scalzo, 2021 consider transfers between two types of crowd-shippers:
long-distance crowd-shippers and short-distance crowd-shippers in an urban area.
Due to this classification, they can more easily model transfers.

We also consider the strategic planning problem of network design. Specifically,
we focus on finding the optimal depot locations. This is closely related to the
Facility Location Problem (FLP) (Cornuéjols, Nemhauser, and Wolsey, 1983),
where optimal locations of facilities are chosen in a network. This approach has
been commonly used to determine the location of depots in freight transportation
problems (Fernandes et al., 2014; Gendron, Khuong, and Semet, 2016). We also note
the similarities with hub location problems in passenger transportation. There, hubs
function as locations where passengers can switch between mobility modes in a multi-
modal shared mobility system (Blad, Almeida Correia, Nes, and Annema, 2022) or
between public transport modes (Yatskiv and Budilovich, 2017). A depot for freight
transportation is fundamentally different from a hub for passenger transportation.
Whereas freight can be kept at a depot for a long time before a pickup, passengers
are sensitive to time and desire rapid transfers. A comprehensive review of various
solution algorithms for different variants of the hub location problem is presented
by Wandelt, Dai, Zhang, and Sun, 2022.

1.2 Thesis objectives

The overarching objective of this thesis is to improve the sustainability and efficiency
of last-mile logistics and (on-demand) transport systems by leveraging existing
vehicle flows. Congestion is one of the main problems in transport networks, which is
mainly caused by the large number of commuters. The majority of these commuters
are traveling alone by car, leading to a lot of unused space. The large number
of commuters combined with the inefficient vehicle occupancy provides room for
improvement. In this thesis, we explore the possibility to leverage existing vehicle
and user flows in car-sharing, ride-sharing, and crowd-shipping systems. By doing
this, we aim to improve the operational performance of these systems, increase
vehicle occupancy and explore the effect of multiple-purpose trips. Specifically, the
following objectives are set, organized in chapters following the structure of the thesis:
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• Chapter 2: Predictive user-based vehicle relocation through incen-
tives in one-way car-sharing systems.
Car-sharing systems are an attractive alternative to private vehicles due to
their benefits in terms of mobility and sustainability. However, the distribution
of vehicles throughout the network in one-way systems is disturbed due to
asymmetry and stochasticity in demand. As a consequence, vehicles need to be
relocated to maintain an adequate service level. Staff-based relocations impute
new vehicle flows into the network, whereas user-based vehicle relocation aims
to incentivize users with existing travel itineraries to contribute to (implicit)
vehicle relocations. The aim of this chapter is to develop a user-based vehicle
relocation approach through the incentivization of customers based on a
predictive model. We explore the potential of predictive user-based vehicle
relocation in comparison to staff-based relocation.

• Chapter 3: Influence of dynamic congestion with scheduling prefer-
ences on carpooling matching with heterogeneous users.
The aim of this chapter is to investigate the effect of dynamic traffic congestion
on the matching of heterogeneous users in a carpooling system. The effect
of carpooling on congestion is a well-studied problem. The reverse effect, on
the other hand, is less studied. We model the two-way causality between
carpooling and dynamic congestion with scheduling preferences using a bi-level
optimization approach. The first level considers the optimal matching problem
and the second level incorporates the equilibrium departure time choices of
commuters through a dynamic bottleneck model.

• Chapter 4: Multi-modal ride-matching with transfers and travel-
time uncertainty.
The aim of this chapter is to develop a framework for multi-modal ride-
matching that allows for transfers between drivers and between modes and
incorporates travel-time uncertainty. An important operational limitation of
direct ride-sharing is that a pairing of drivers and riders needs to be found
with matchable itineraries. This means that a driver needs to be able to pick
up and drop off the matched rider without deviating too much from their
original route. In addition to this, desired arrival times of the rider and the
driver need to be similar. Dissimilar matches increase the costs of drivers
and riders, such that ride-sharing is no longer competitive with private or
public transport. By allowing for transfers, this limitation can be overcome,
as the itinerary of drivers and riders only needs to be partially similar. In
this chapter, we explore to what extent transfers can increase the potential of
ride-sharing.
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• Chapter 5: A continuum approximation approach to the depot
location problem in a crowd-shipping system.
The aim of this chapter is to develop a framework to determine the best depot
locations for a crowd-shipping system in a large urban area. The success of
a crowd-shipping system heavily relies on the availability of crowd-shippers
and the potential to match them to demand requests without large detours.
If the pickup locations of parcels are poorly accessible by potential crowd-
shippers, few parcels can be delivered by crowd-shippers. We find optimal
depot locations based on the interaction between the expected travel patterns
of crowd-shippers and the expected spatial distribution of demand for parcels.
This problem is especially difficult because of the dependency of lower-level
operational decisions and costs on upper-level strategic decisions.

• Chapter 6: A column and row generation approach to the crowd-
shipping problem with transfers
The aim of this chapter is to bridge the gap between short-distance trips of
crowd-shippers in a bike-based crowd-shipping system and the long distance
some parcels need to traverse between origin and destination. We propose a
framework that allows for transfers of parcels between crowd-shippers and that
aims to improve the revenue and service level of a crowd-shipping system. We
design a column generation algorithm to solve large-scale realistic instances to
optimality. We extend the problem to allow crowd-shippers to carry multiple
parcels at the same time and for this extend the algorithm to simultaneously
column-and-row generation.

1.3 Thesis contributions
Driven by the stated objectives and based on the developed methodology and
obtained results that are elaborated on in the next chapters, this thesis leads
to the following contributions. The contributions are listed and elaborated per
chapter as follows.

• Chapter 2: Predictive user-based vehicle relocation through incen-
tives in one-way car-sharing systems.
In this chapter, we introduce a new predictive user-based relocation strategy
that determines the optimal incentive based on both the current state of the
system (i.e. distribution of vehicles throughout the network) and expected
future demand. In doing so, we aim to anticipate future demand and therefore
avoid expected future demand losses. Our user-based relocation strategy builds
on unknown customer preferences. These preferences can be approximated by
learning from previously offered incentives. The obtained estimates can, in
turn, be used to dynamically determine the optimal value of an incentive, as
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well as the optimal pickup and delivery location of the vehicle. Our method is
adaptive, in the sense that the value of the incentive is adjusted to the value
of time of customers, as well as the current and expected future states of the
car-sharing system. By offering incentives, the operator stimulates customers
to relocate vehicles from over-saturated to under-saturated locations. We
evaluate our strategy using an event-based simulation model with synthetic
data from a real experiment, which allows us to compare our methods to
existing relocation policies. Our results show that incentives can increase the
service level of car-sharing systems and decrease the number of staff members
needed to achieve this level. Furthermore, our results indicate that incentives
are a more profitable and sustainable way of relocating vehicles, compared
to staff-based relocations. By using a hybrid operator-user-based relocation
strategy, profit, and service levels can be maximized.

• Chapter 3: Influence of dynamic congestion with scheduling prefer-
ences on carpooling matching with heterogeneous users.
In this chapter, we model the two-way causality between carpooling and
dynamic congestion with scheduling preferences using a bi-level optimization
approach. We formulate the optimal matching problem (first stage) as an
integer linear programming problem. Using this formulation, we can determine
the matching that minimizes the sum of the cost of the detour and the potential
inconvenience costs while all passengers are matched to a driver. Inconvenience
cost can be a psychological cost, and/or more specifically some extra schedule
delay cost due to the need for coordination of the drivers’ and passengers’
departure times. Congestion is incorporated through a dynamic bottleneck
model (for the second stage). Using an iterative approach, we obtain the
optimal matching for a dynamic traffic equilibrium with congestion. By
comparing multiple scenarios and performing extensive sensitivity analysis,
we evaluate the effect of congestion on carpooling matching. Specifically, we
evaluate the effect of congestion on departure time choices and with that the
effect on matching decisions. Thereby, we inspect the tendency of commuters
for early departures and the tendency of carpoolers to avoid the peak of
congestion.

• Chapter 4: Multi-modal ride-matching with transfers and travel-
time uncertainty.
In this chapter, we develop a framework for multi-modal transport of riders
that considers public transport, solo driving, and ride-sharing. The framework
allows for transfers between modes and between drivers. We formulate the
multi-modal ride-matching problems with multiple transfer hubs as a path-
based integer programming problem. We model the same problem with
uncertain travel times as a two-stage stochastic programming problem. We
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evaluate the effect of transfers on mode-choice, generalized travel cost, and
vehicle hours traveled. Furthermore, we investigate the effect of limited
information on travel times on the performance of the system and specifically
on the appeal of transfers.

• Chapter 5: A continuum approximation approach to the depot
location problem in a crowd-shipping system.
In this chapter, we develop a framework to determine the best depot locations
for a crowd-shipping system in a large urban area. This problem is especially
difficult because of the dependency on lower-level operational decisions and
costs on upper-level strategic decisions. To track these interactions, we solve
the lower-level assignment problem of parcels to potential crowd-shippers
through a Continuum Approximation (CA) approach, allowing us to determine
the lower-level costs efficiently in a short time. These estimates are based on
the physical properties of the matching procedure, as well as expectations of
the set of parcels and the set of crowd-shippers, fed by historical data. We
develop a large neighborhood search heuristic that exploits the CA estimates
to efficiently search a good set of depots that minimizes the operational
costs. In addition to this, these estimates are used to design a smart dynamic
assignment strategy of parcels to crowd-shippers that outperforms existing
strategies. A comparison of our approach to solving a discrete formulation
of the problem shows that on small networks the objective obtained by our
CA-based approach is slightly better than that of the discrete formulation.
In terms of computation time, our CA-based approach is between 200 and
1000 times faster. We highlight the importance of the interaction between
supply and demand patterns, rather than solely considering geographically
central locations. The results show that using CA-based strategies in all three
layers of decision-making can improve overall performance by 15% compared
to non-predictive strategies.

• Chapter 6: A column and row generation approach to the crowd-
shipping problem with transfers
In this chapter, we propose a general framework that allows the incorporation
of both time-synchronized transfers as well as transfers with intermediate
storage at transfer points for a crowd-shipping system. In addition to this,
we consider the original itinerary of crowd-shippers including their departure
times, but we consider some flexibility in their routing decisions, making
crowd-shipping accessible to daily commuters. On top of this, we consider
a detailed compensation scheme for crowd-shippers, which includes rewards
for stops, detours, and the inconvenience of carrying a parcel for a longer
distance. Furthermore, we consider heterogeneous crowd-shippers and parcels.
We propose a column-generation approach to solve our problem. This method
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is highly scalable and allows solving larger instances than those previously
considered in the literature for similar problems. Our results are evaluated on
a realistic large-scale case study of the city of Washington DC.

Other contributions

In the period of the work towards the dissertation, significant contributions were
made to two works that were developed alongside the main body and contributions
of this thesis. The first was an extension of the work described in Chapter 3
towards a large-scale network application. The second was the development of an
incentive-based electric vehicle charging scheme for managing bottleneck congestion,
which took aspects from the works described in Chapter 2 and 3. A summary of
these works is provided in the following.

Despite the clear benefits of ride-sharing in terms of reduced congestion, ride-
sharing is not yet widely accepted. We propose a specific ride-sharing variant, where
drivers are completely inflexible. This variant can form a competitive alternative
against private transportation, due to the limited efforts that need to be made
by drivers. However, due to this inflexibility, matching of drivers and riders can
be substantially more complicated, compared to the situation where drivers can
deviate. In this work, we propose a four-step procedure to identify the effect of such
a ride-sharing scheme. We use a dynamic mesoscopic traffic simulator that computes
departure-time choices and route choices for each commuter. The optimal matching
of potential drivers and riders is obtained outside the simulation framework through
an exact formulation of the problem. We evaluate the potential of this ride-sharing
scheme on a real network of the Paris metropolitan area for the morning commute.
We show that even with inflexible drivers and when only a small share of the
population is willing to participate in the ride-sharing scheme, ride-sharing can
alleviate congestion. This study is published as a stand-alone article as:

• A. de Palma, L. Javaudin, P. Stokkink, and L. Tarpin-Pitre (2022). “Ride-
sharing with inflexible drivers in the Paris metropolitan area”. In: Trans-
portation, pp. 1–24

We propose an incentive-based traffic demand management policy to alleviate traffic
congestion on a road stretch that creates a bottleneck for commuters. The incentive
targets electric vehicle owners by proposing a discount on the energy price they use to
charge their vehicles if they are flexible in their departure time. We show that, with
a sufficient monetary budget, it is possible to completely eliminate traffic congestion
and we compute the optimal discount. We also analyze the case of a limited budget
when the congestion cannot be completely eliminated. We compute analytically the
policy minimizing the congestion and estimate the level of inefficiency for different
budgets. We corroborate our theoretical findings with numerical simulations that
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allow us to highlight the power of the proposed method in providing practical advice
for the design of policies. This study is published as a stand-alone article as:

• C. Cenedese, P. Stokkink, N. Geroliminis, and J. Lygeros (2022). “Incentive-
based electric vehicle charging for managing bottleneck congestion”. In:
European Journal of Control 68, p. 100697

1.4 Thesis structure
The thesis is organized in 7 chapters. The structure of each chapter is described
and the publications of parts of each chapter in scientific journals are listed below.
Chapters 2, 3, 4, 5, and 6 are standalone articles published or under review in
scientific journals. These chapters are divided into two parts, based on the field of
research. Chapters 2, 3, and 4 are included in Part I: First and last-mile mobility
systems. Chapters 5 and 6 are included in Part II: Last-mile logistics systems. The
literature review has been removed from each chapter and is presented as a whole
for the entire thesis in Chapter 1. Each chapter, being a stand-alone article, has
its own notation which is introduced at the start of the chapter. Therefore, the
same symbol can be used to represent different variables or parameters in different
chapters.

Chapter 2 presents the user-based relocation policy to solve the vehicle relocation
problem in oneway car-sharing systems. It includes the nested optimization problem
to determine the optimal incentive and the Markovian model to describe the
state of the system. This work has been presented at the 24th International
Symposium on Transportation and Traffic Theory (ISTTT24) and the 2020 Forum
on Integrated and Sustainable Transportation System (ISTS). Chapter 2 is a stand-
alone article published as:

• P. Stokkink and N. Geroliminis (2021). “Predictive user-based relocation
through incentives in one-way car-sharing systems”. In: Transportation
Research Part B: Methodological 149, pp. 230–249

Chapter 3 presents the bi-level optimization approach for the carpooling matching
of heterogeneous users with scheduling preferences and dynamic congestion. Theo-
retical results are presented for the uncongested model and simulation results are
given for the congested model. Parts of this research have been presented at the
International Transportation Economics Association (ITEA) Annual Conference
in 2021 and the Transportation Research Board (TRB) 101st Annual Meeting.
Chapter 3 is a stand-alone article published as:
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• A. de Palma, P. Stokkink, and N. Geroliminis (2022). “Influence of dynamic
congestion with scheduling preferences on carpooling matching with hetero-
geneous users”. In: Transportation Research Part B: Methodological 155,
pp. 479–498

Chapter 4 presents the framework for the multi-modal ride-matching problem with
transfers and travel-time uncertainty. The deterministic variant is modeled as a
path-based integer programming problem and the stochastic variant is given as a
two-stage stochastic programming problem. Part of this research has been presented
at the 11th Symposium of the European Association for Research in Transportation
(hEART). Chapter 4 is a stand-alone article submitted for publication in Omega:
The International Journal of Management Science, currently under review:

• P. Stokkink, A. de Palma, and N. Geroliminis (2023). “Multi-modal ride-
matching with transfers and travel-time uncertainty”. Available in: THEMA
Working Papers

Chapter 5 presents the continuum approximation approach for the parcel-depot
and parcel-crowd-shipper assignment and the large neighborhood search heuristic
for finding the optimal depot locations. Parts of this work have been presented at
the Transportation Research Board (TRB) 101st Annual Meeting, the Journées de
l’Optimisation 2022 (JOPT), and the 11th Triennial Symposium on Transportation
Analysis (TRISTANXI). Chapter 5 is a stand-alone article published as:

• P. Stokkink and N. Geroliminis (2023). “A continuum approximation approach
to the depot location problem in a crowd-shipping system”. In: Transportation
Research Part E: Logistics and Transportation Review 176, p. 103207

Chapter 6 presents the formulation for the crowd-shipping problem with transfers
and the column-and-row generation algorithm proposed to solve this problem. Parts
of this work have been presented at the Transportation Research Board (TRB)
102nd Annual Meeting and the 2nd INFORMS Transportation Science and Logistics
(TSL) Society Triennial Conference. Chapter 6 is a stand-alone article submitted
for publication in Transportation Science, currently under review:

• P. Stokkink, J.-F. Cordeau, and N. Geroliminis (2023). “A column and row
generation approach to the crowd-shipping problem with transfers”. Available
in: HEC Working Papers

Finally, Chapter 7 summarizes the findings and contributions of the thesis and
discusses about possible future research directions.

https://thema.u-cergy.fr/recherche/documents-de-travail/?lang=en
https://thema.u-cergy.fr/recherche/documents-de-travail/?lang=en
https://chairelogistique.hec.ca/en/publications/
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2
Predictive user-based relocation through

incentives in one-way car-sharing systems

This chapter is based on the article:

• P. Stokkink and N. Geroliminis (2021). “Predictive user-based relocation
through incentives in one-way car-sharing systems”. In: Transportation
Research Part B: Methodological 149, pp. 230–249

2.1 Introduction
Car-sharing is a low-cost and sustainable alternative to private car ownership.
Instead of owning a private car that is used occasionally, a shared car can be picked
up only when needed. Car-sharing can reduce car ownership and private car trips but
also improves mobility for individuals that do not own a private car. This chapter
focuses on one of the main operational problems that car-sharing systems encounter:
vehicle imbalances. Due to unknown and asymmetric demand, a surplus of vehicles
arise in one region of the network, while a deficit of vehicles arises in another
region. We propose a predictive user-based relocation scheme through incentives.
We formulate the problem of finding the optimal incentives as a bi-level optimization
problem. Imbalances are modeled through Markov Chains based on the expected
movements of users. Experimental results for a real city are obtained through a
discrete event simulation and indicate the advantage of user-based vehicle relocation.

Following the motivation and detailed review of the literature describing the current
approaches to vehicle relocation in car-sharing systems, which are given in Sections
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1.1 and 1.1.1 of Chapter 1, respectively, this chapter is organized as follows: In
Section 2.2 we formally introduce the problem and the modeling framework. The
mathematical formulation of the bi-level optimization program is given and the
Markov Chains to model the state of the system are described here. The experimental
results are given in Section 2.3 for a case study of a car-sharing system in the city
of Grenoble, France. The proposed user-based relocation policy is compared to
more common staff-based relocation policies. Finally, the chapter is concluded
with a summary of the main findings in Section 2.4.

2.2 Problem description and modeling framework

2.2.1 Problem description
The characteristics of the designed system are similar to those considered by
Repoux, Kaspi, Boyacı, and Geroliminis, 2019 and occur in many real cities such as
Toyota City in Japan and Grenoble in France. We consider a one-way car-sharing
system where once users arrive to the system, they select their preferred origin and
destination stations. This type of reservation policy is referred to as a complete
journey reservation policy. The user is allowed to reserve the vehicle a short time
in advance and a parking space is reserved at the destination until the vehicle
is returned. We consider that users are possibly offered an alternative and less
convenient trip after revealing their preferences, in return for a small discount.
Due to a shortage of either vehicles or parking spaces, a user’s first-choice trip
may be unavailable. In that case, the user can choose to accept the incentive or
decline and choose a different mode of transportation. We should keep in mind
that the short time for reservations does not allow for proactive relocations based
on real information. Nevertheless, a predictive model utilizing historical data and
the current state of the system can be proved beneficial compared to standard
threshold-based strategies that are among the most established in the state of
practice.

We assume that users make reservations using their user ID, which is for example
linked to their driving license. For this reason, we can collect user-specific data, which
contributes to the learning process. Such a system is commonly used in practice
to ensure that only registered people with valid driving licenses can reserve a vehicle.

Besides user-based relocations, we consider that vehicles can be relocated by staff
members. Staff members can pick up vehicles at locations with a shortage of parking
spaces and deliver them to locations with a shortage of vehicles. We note that using
staff members in car-sharing systems is not necessarily efficient, as only one car
can be moved by a staff member at a specific time. On the other hand, user-based
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relocations are less flexible as users typically do not want to spend too much effort to
reach their destination. Therefore, user-based relocations are mainly short-distance
relocations. Thus, even if users are willing to change their origin or destination
following the recommendations of the system (through some incentives) this cannot
guarantee that it can lead to a proper rebalancing of the system.

2.2.2 Relocation policy
Car-sharing operators usually focus on simultaneously maximizing their profit and
the level of service they offer to their users, which is reflected in their relocation
policy. In our approach, the operator can offer each arriving user an incentive. Upon
the arrival of a user, the operator determines i) whether to offer an incentive, ii)
what the discount value of the optimal incentive is and iii) between which stations
the vehicle should be relocated. Therefore, an optimization problem is solved upon
the arrival of every user. In this section, we provide a detailed description of this
optimization problem.

We define I as the set of feasible incentives. An incentive is feasible if there are
sufficient available vehicles at the pickup location and sufficient available parking
spaces at the drop-off station. Sufficiency suggests that at least one vehicle is
available at the origin and at least one parking space is available at the destination.
Thereby, we limit this set to only contain incentives for which the user can reach the
stations within a given time interval (see Section 2.2.5). For every incentive i we
define ∆time(i), the increase in access time the user experiences when accepting the
incentive, and ∆cost(i), the discount value that is offered. The estimated probability
that a user accepts an incentive, P̂acc, is based both on ∆time(i) and ∆cost(i). The
shape of the estimated probability function P̂acc(∆time,∆cost) is described in more
detail in Section 2.2.5.

The aim of offering incentives is to relocate the vehicles to omit expected future
losses in demand due to vehicle imbalances. We refer to this as the expected omitted
demand loss, ODL(i), for the system when the user accepts incentive i ∈ I. Thereby,
we define w as the importance of demand loss relative to the cost of incentives.
That is, the higher the value of w, the higher the relative importance of demand
loss. Given that demand is known in the system operator with a short notice, a
predictive framework has to be integrated. The idea is that based on the current
state of each station (which is measured in real time), and the historical demand
between origins and destinations, the operator can estimate the probability that in
a given future window a station will run out of vehicles or slots. If this probability
is multiplied by the expected demand for origins (related to available vehicles) or
demand for destinations (related to available parking spots) an expected loss can
be estimated. We refer to the original pickup and delivery stations as o and d
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respectively. The pickup and delivery stations that are chosen as a consequence of
the acceptance of the incentive are referred to as o∗ and d∗. As depicted in Figure
2.1, the use of one incentive implicitly replaces at most two staff-based relocations.

o d*

o* d

Implicit relocations
Incentivized route
Original route

Figure 2.1: Implicit relocations experienced due to incentive

The operator can determine for every possible incentive i ∈ I what the optimal
discount ∆cost(i) is. For the operator, this decision is based on a trade-off between
cost and the probability that the incentive is accepted. Note that for a given
incentive i, the corresponding values of ∆time(i) and ODL(i) are fixed. This
can be formulated as follows:

fi(∆cost(i)) = max
∆cost(i)≥0

xP̂acc(∆time(i),∆cost(i)) · (w ·ODL(i)−∆cost(i)) (2.1)

The objective is to maximize the expected additional profit of offering the incentive.
The additional profit is defined as the extra profit obtained compared to the base
case when the incentive is not offered. It consists of the weighted omitted demand
loss, minus cost incurred by offering the discount. This discount, of course, needs
to be non-negative. An additional constraint may be imposed which says that
the discount cannot be higher than the price of the trip. The expected values of
w and ODL(i) are inserted in the objective function in a predict-then-optimize
fashion. As the objective is linear in these uncertain parameters and given their
likely independence, this does not effect optimality (Elmachtoub and Grigas, 2017).
The value of ODL(i) is estimated using Markov chains as explained in the remainder
of this section. The function Pacc is estimated using a logistic regression model,
using independent data to avoid bias caused by the optimization. This is explained
in detail in Section 2.2.6. The optimal value of each incentive can be found by
solving the optimization problem in (2.1), which can be done efficiently as the
function has a single stationary point, as stated in Theorem 1. A proof of this
theorem is included in Appendix A.

Theorem 1. If for a given incentive i a profitable discount value ∆cost(i) exists,
there exists a unique most profitable (optimal) discount value ∆∗

cost(i) for which the
derivative of the subproblem is equal to 0.
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Following from this theorem and using the fact that discounts are in whole cents
and therefore integer, we initialize ∆0

cost = w · ODL and iteratively reduce the
discount until the objective function starts to decrease or if it is equal to zero. If
the function starts to decrease, the optimal incentive is found. If the objective
value is maximal at zero, no discount exists for which this incentive is profitable.
The optimal discount ∆∗

cost(i) is non-decreasing in the value of ODL(i) if all other
variables remain constant. This is shown analytically through Theorem 2, of which
a proof is included in Appendix A. This implies that incentives that yield a higher
expected omitted demand loss in general receive higher discounts.

Theorem 2. The optimal discount ∆∗
cost(i) is non-decreasing in the value of ODL(i)

The best incentive can be chosen by optimizing over the set of possible incentives.
We refer to the optimal incentive as i∗ and to the corresponding optimal value
of the incentive as ∆∗

cost(i∗) (which is the argument of the sub-problem). The
total objective can be formulated as follows:

i∗ = arg max
i∈I

fi(∆∗
cost(i)) (2.2)

2.2.3 Modeling the state of the system and vehicle im-
balances

To determine the value of ODL(i) we construct a Markovian model expanding the
model proposed by Repoux, Kaspi, Boyacı, and Geroliminis, 2019. We consider a
separate Markov chain for every station, which allows us to define the expected loss
of future demand given the current state of the system. Through this Markov chain,
we incorporate trip reservation information to better predict future states of the
system. Every parking spot at a station can have one of the following five states:
occupied by an available vehicle (xav), occupied by a reserved vehicle for either a
one-way (xrv) or a two-way trip (xrv′), not occupied but reserved for a vehicle (xrp)
or not occupied and available (xra). Therefore, the state of a station is defined by
the number of parking spots that are in any of the first four states. As the capacity
C of a station is fixed and known, the number of parking spots in the fifth state
can be deduced from the first four.

The state of a station changes because of arrivals of vehicles or reservations made by
users. For this, arrival rates can be determined based on historic data. We determine
arrival rates of users looking to rent a vehicle and arrival rates of users returning
a vehicle to a reserved parking spot. Hourly arrival rates are used to capture the
dynamic demand pattern of the historic data. Using these states and arrival rates
we can estimate the expected loss of users. Loss of user demand is encountered if
either the desired pickup location has no available vehicles or the desired drop-off
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location has no available parking spaces. The expected demand loss is numerically
obtained in the same way as in Repoux, Kaspi, Boyacı, and Geroliminis, 2019 using
the approximation method described by Raviv and Kolka, 2013. We denote the
expected loss given the state of the station as EL(xav, xrv, xrv′ , xrp).

The omitted demand loss can then be calculated as the difference between the
expected demand loss in the original situation and the expected demand loss
after the relocation has been performed. Following Repoux, Kaspi, Boyacı, and
Geroliminis, 2019, we first determine the omitted demand loss for every station
separately, given the implicit relocations in Figure 2.1. The ODL for every station
is given in Equations (2.3) - (2.6). For ease of notation, the variables xav, xrv, xrv′

and xrp belong to the station of the corresponding ODL. Intuitively, without an
incentive, a vehicle is reserved at station o and no change is observed at station
o∗. If the incentive is accepted, a vehicle is reserved at station o∗ and no change is
observed at station o. A similar intuition applies to the destination stations.

ODLo = EL(xav − 1, xrv + 1, xrv′ , xrp)− EL(xav, xrv, xrv′ , xrp) (2.3)
ODLo∗ = EL(xav, xrv, xrv′ , xrp)− EL(xav − 1, xrv + 1, xrv′ , xrp) (2.4)
ODLd = EL(xav, xrv, xrv′ , xrp + 1)− EL(xav, xrv, xrv′ , xrp) (2.5)
ODLd∗ = EL(xav, xrv, xrv′ , xrp)− EL(xav, xrv, xrv′ , xrp + 1) (2.6)

Using this, we can compute the total omitted demand loss as a consequence of the
incentive. Other than in Repoux, Kaspi, Boyacı, and Geroliminis, 2019 where the
relocation is always between a unique origin and a unique destination, user-based
relocations depend on the relation between the four stations that may be included
in the relocation. If the origin station is not changed because of the incentive,
o = o∗ and the first two components (i.e. ODLo and ODLo∗) cancel out. Similarly,
the last two components cancel out if the destination station is not changed. We
consider other special cases for which two or more stations are equal in a similar
manner. For example, in case the original trip is a two-way trip (i.e. o = d), we
consider the reservation of a round-trip vehicle at that station. If the incentive
changes one of the stations, the trip becomes a one-way trip instead. Therefore, we
verify for every incentive the exact reservations that were made in the old and the
new situation, to accurately estimate the omitted demand loss for every involved
station. For example, consider a user travelling from A to B and an incentive being
offered to change the destination station from B to A. In the old situation, a vehicle
was reserved for a one-way trip at A, whereas in the new situation a vehicle is
reserved for a two-way trip. At B, a parking space was reserved in the old situation,
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but remains unused in the new situation. This yields the following calculation of
the omitted demand loss with respect to this incentive:

ODLA = EL(xav − 1, xrv + 1, xrv′ , xrp)− EL(xav − 1, xrv, xrv′ + 1, xrp) (2.7)
ODLB = EL(xav, xrv, xrv′ , xrp + 1)− EL(xav, xrv, xrv′ , xrp) (2.8)

If the original trip is unavailable, the composition of the omitted demand loss, to
which we will refer as ODL′, is also slightly different. Stations o and d are ignored
because no change is observed here. If the incentive is accepted, vehicles and parking
spaces are reserved at the incentivized location and if the incentive is not accepted,
the user is lost and therefore no reservations are made. In case the original trip is
not available, the corresponding user is not lost if the incentive is accepted, but is
lost if it is not accepted. This user is therefore included in the omitted demand loss.

ODL(i) = ODLo +ODLo∗ +ODLd +ODLd∗ (2.9)
ODL′(i) = 1 +ODLo∗ +ODLd∗ (2.10)

Similar to Repoux, Kaspi, Boyacı, and Geroliminis, 2019, the omitted demand loss
is based on a 2-hour time window. As we consider short term omitted demand
losses, some incentives may have a negative effect in the long run. This can be
reduced by choosing a longer estimation window. However, as the estimations do
not incorporate future incentives nor relocations and contain a lot of uncertainty,
the estimation quality decreases as the length of the estimation window increases.
Most importantly, we aim to improve the system in the short term. The reason
for this is that demand is highly asymmetric and stations that require additional
vehicles in the short term may no longer require these in the long term. Our
user-based relocations focus to solve short-term imbalances in the system, for which
a 2-hour time window has shown to be suitable.

2.2.4 Staff-based relocations
Besides the incentivizing method, we consider predictive staff-based relocations. We
consider the Markovian relocation policy as described by Repoux, Kaspi, Boyacı,
and Geroliminis, 2019 as a benchmark for the performance of our policy. As soon as
a staff member is not occupied, his next job is determined by considering all origin
and destination stations, which we denote by s1 and s2 respectively. The origin and
destination stations are selected such that the weighted expected omitted demand
loss is maximized. We weight the ODL by the time it takes to get to the origin
location, move(s1), and the time needed to execute the relocation, drive(s1, s2).
This leads to the following maximization problem:

(o∗, d∗) = arg max
s1,s2

ODLs1 +ODLs2

move(s1) + drive(s1, s2)
(2.11)
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To reduce the number of staff-based relocations, we extend this policy by introducing
a threshold value. We assume that the relocation is only executed if the expected
omitted demand loss ODLs1 +ODLs2 is higher than some threshold value τ . By
introducing this threshold value, staff members no longer perform relocations that
bring forth little additional demand.

User-based and staff-based relocations have some fundamental differences. Staff-
based relocations can only be performed whenever a staff member is available, which
limits the total number of relocations. On the other hand, user-based relocations
can in theory be performed by every user and therefore does not have this limitation.
In terms of feasibility, user-based relocations can only be performed if the user can
reach the station without walking too far and they can always decline a request
for a change. A staff member does not have this restriction and can therefore
do any relocation at the time he is available.

2.2.5 User decision-making
To model the user decisions, we define the probability function Pacc. We assume
that the probability with which a user accepts an incentive depends on the discount
value of the incentive and the additional access time that is experienced because of
this incentive. This type of user decisions is commonly modelled using a binomial
logistic (logit) model. A similar model has been used by Di Febbraro, Sacco, and
Saeednia, 2018. The acceptance probability is defined as follows:

Pacc(X) = 1
1 + e−(βX) , (2.12)

with X = [∆time, ∆cost]T . As βX may be negative, Pacc(X) varies between 0 and 1.
Two important notes have to be made considering this probability function. First,
users are heterogeneous in the sense that they value time differently. This suggests
that the parameters β = [βtime, βcost] are user-specific. Second, the actual shape
of the probability function Pacc is unknown to the operator. The operator can,
however, use previously observed data to create an estimation of the parameters β̂
through learning over time and thereby estimate the probability function P̂acc. The
estimation of this function is discussed in detail in Section 2.2.6.

A user’s value of time can be determined as the relative importance of the coefficients
βcost and βtime, which can be estimated by taking the ratio of the two. The higher
the ratio of these coefficients, the higher a user’s value of time. A user’s value of
time can then be interpreted as the additional discount a user wishes to receive for
one minute of extra access time. If the offered discount is exactly equal to the value
of time, the user is indifferent between accepting and not accepting such that the
acceptance probability is equal to 0.5. We note that it is also possible to directly
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model the value of time of a user by considering the fraction ∆cost

∆time
.

In addition to this probability model, some hard constraints may apply to the
choice to accept an incentive. It is commonly assumed that users are not willing
to walk too far to pick up their vehicle or reach their destination after delivering
their vehicle. For example, Schulte and Voß, 2015 assume that users choose an
alternative mode of transportation if they have to walk for more than 500 meters
to reach their vehicle. We use a similar assumption, that says that users never
accept an incentive that requires them to increase their one-way access time by 7
minutes (≈ 450 meters). This constraint can be easily incorporated in the definition
of the set I. A major advantage of this is that it reduces the computation time
of problem (2.2). Low computation time is of importance to the operator, as an
incentive has to be offered immediately after users reveal their preference. We
emphasize that any other relevant constraints on the feasibility of representatives
can also be implicitly incorporated in the set I. This constraint requires that the
density of stations should be quite high, so that a number of alternatives within
this walking distance exists. While this might be the case for the city centers of
major cities with car-sharing services, lower density of stations might exist in the
suburbs deteriorating the rebalancing power of this policy. For this reason we will
test policies that consider a mixture of incentives and staff relocations.

Truthfulness

An important property of an incentivization policy is that it forces the users to be
truthful. An untruthful user purposefully reports wrong information for his/her
own benefit. In our case, this means that he/she specifies a wrong pickup or delivery
station, as he/she knows he/she will receive a discount for his/her actual preferred
station. As untruthful behaviour can have negative effects on the revenue collected
by the operator, the policy should avoid untruthful behaviour. In this section, we
elaborate on the truthfulness of users under the designed policy.

A user can gain from being untruthful if he/she purposefully report a wrong pickup
or delivery station and receive an incentive for his/her actual preferred station,
thereby reducing his/her cost. On the contrary, he/she loses from being untruthful
if this incentive is not offered and therefore his/her access time is increased. Based
on this intuition, the expected gain of being untruthful is defined as the expected
incentive value multiplied by the probability of that incentive being offered. The
expected loss of being untruthful is the additional time the user needs to walk
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if the incentive is not offered, multiplied by his/her value of time (vot) and the
probability of no incentive being offered. That is,

E(gain) = E(∆cost) · P (desired incentive offered), (2.13)
E(loss) = ∆time · vot · P (desired incentive not offered). (2.14)

Of course, users can cancel their reservation if the incentive is not offered and
make a new reservation for their actual preferred station. However, this behaviour
can be recognized by the reservation tool as untruthful. If a user is recognized to
behave untruthfully, no incentive will be offered to this user in the future. Under
the assumption that users are risk-neutral, a user will be untruthful if:

E(gain) ≥ E(loss). (2.15)

By rewriting this equation, we observe that a user will be untruthful if:

E(∆cost) ≥ ∆time · vot ·
P (desired incentive not offered)
P (desired incentive offered) . (2.16)

Equation (2.16) can be seen as a condition for truthfulness. We emphasize that
the desired incentive is unknown to the operator but the corresponding probability
can be bounded as follows:

P (desired incentive offered) ≤ P (any incentive offered), (2.17)
P (desired incentive not offered) ≥ P (no incentive offered). (2.18)

Thereby, our results show that in general, ∆cost is not much higher than ∆time · vot.
In addition to this, users are in general risk-averse, which means they value losses
higher than gains. Following these arguments, we conclude that these conditions
are in general satisfied and are therefore not included in the simulation model.

This restriction can be enforced either on a user-based, station-based or a system-
based level. In case a violation of the truthfulness restriction is observed, it can
either be enforced by reducing the number of offered incentives or by limiting
the maximum discount value offered. Both conditions can be incorporated in the
optimization problem in Section 2.2.2. Intuitively, some incentives are easier to
anticipate than others. For example, experienced users can identify incentives offered
when the original trip is not available more easily compared to other incentives.
How and within what time-span strategic users are able to predict incentives is an
interesting topic of further research.

Incentives can create a new way for individuals to earn money. As individuals
are paid to relocate vehicles, this may attract new users that are solely looking to
create some income without interest for a specific travel. As these users are new to
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the system and are only offered those incentives from which the system benefits,
they cannot have a negative effect on the performance of the system and may only
improve performance. Nevertheless, a demand model to integrate these actions
is beyond the scope of the work and it might require data that are not readily
available. Thus, our focus remains only on travelers that are willing to change
their origin or destination for some discount in their trip.

2.2.6 Learning from user behaviour
The efficiency of the proposed service depends on the willingness of travelers to
accept the offered incentive. Nevertheless, a high value of discount might create
losses for the operator. Thus, learning the user behavior and having a model that
adequately predicts the acceptance probability as a function of the value of incentive
is an important aspect of the framework. In this section, we describe the estimation
method of the acceptance probability function. The acceptance probability function
has the shape of a binomial logistic (logit) model. The operator does not have any
information on the values of the coefficients in β, but it does have full knowledge
of the offered incentive and therefore the values of ∆time and ∆cost. In addition
to this, the operator can observe the outcomes of the offered incentives. That is,
whether the incentive is accepted or not. Using this, we can estimate the probability
function using a maximum likelihood estimate of the coefficients in β. As both
the dependent (acceptance choice, hereafter also referred to as y) and independent
variables (value of the incentive and additional access time, hereafter also referred
to as X) are known, they can be used to estimate the corresponding values of
the coefficients. The likelihood function corresponding to the binary logit model
with n observations is written as follows:

L(β) =
n∏

i=1
P (Xi)yi(1− P (Xi))1−yi . (2.19)

The optimal value of β is the one that maximizes the likelihood function. Instead
of maximizing the likelihood function, it is easier to maximize the log-likelihood
function which is given as follows.

l(β) =
n∑

i=1
yi ln(P (Xi))(1− yi) ln(1− P (Xi)). (2.20)

As no analytical solution exists, we use a numerical optimization approach to find
the optimal value for β. We use a steepest-descent algorithm with decaying step-size.
This estimation method suggests that we can train our model using previously
observed data and use this to forecast the probability that a user accepts the offered
incentive. An advantage of the described methods is that, besides the origin and
destination location of a user request, no other information is required. This limits
the possibilities for users to be untruthful about personal information to maximize
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their own profit and therefore contributes to the truthfulness of our method. This
method can be used to obtain user-specific estimates or one estimate for the
entire population. If a user-specific estimate is obtained, only those observations
corresponding to that user are used to train the logit model. If a single estimate
is obtained for the entire population, all observations are used. In this case, our
method is used to estimate a sample average value of β.

The use of this learning method in combination with the optimization with the
optimized incentives as described in Section 2.2.2 will create a measurement bias.
The reason for this is that the input variable ∆cost is optimized based on the
same acceptance probability function we try to estimate. Experiments show that
this generally leads to an overestimation of the value of time. Therefore, we first
use a training period to estimate the value of the coefficients using the described
maximum likelihood methods. During this training period, the optimal incentive is
determined using the methods described in Section 2.2.2, but the discount value
∆cost is randomly drawn from a uniform distribution on the interval [0, w ·ODL].
After the training period, the performance of the incentivization method is evaluated
using the optimized discount using the estimated coefficients β̂.In case user-specific
parameter estimates have to be obtained, newly arriving users are treated in a
similar way. The first discounts are determined randomly during a training period
until an adequate estimation can be made. Alternatively, discounts for newly
arriving users can be determined using estimates of a set of existing users.

In reality, estimates can be further improved by grouping users with similar features.
Travelers generally have to create an account to utilize the car-sharing system.
They can then be grouped according to relevant features such as age or occupancy,
such that group-specific estimates can be obtained. For example, it is likely that
students have a lower value of time than elderly people. By using group-specific
estimates, acceptance probability estimations can be improved.

2.3 Experimental results

The relative performance of the incentivization method described in the previous
sections is evaluated using a case study of the Grenoble car-sharing system. The
details of this case study and the cost structures we use in our evaluations are
described in Section 2.3.1. In Section 2.3.2 we describe the simulation model. In
the following sections, experimental results are provided that give insights into
the relative performance of the described methods.
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2.3.1 Case study: Grenoble car-sharing system
In our case study, we consider the Grenoble car-sharing system, which has been
previously studied by Repoux, Kaspi, Boyacı, and Geroliminis, 2019. The system
was operational between September 2014 and November 2017 and was based on
a complete journey reservation policy, as described in Section 2.2. The system
consisted of 27 stations with a total of 121 parking spots (each station had between 3
and 8 parking spots). In our simulation framework, 40 electric vehicles are available
in the system every day. The maximum speed of the vehicles is equal to 50 km/h,
corresponding to the speed limit in urban areas in France. In this case study, we
disregard the battery restrictions of the vehicles, as previous studies have shown
that in station-based systems these influence the results only marginally. As we
compare our methods to the Markovian staff-based relocation policy designed by
Repoux, Kaspi, Boyacı, and Geroliminis, 2019, we use similar settings for this policy.

Our simulation is based on demand data of the actual car-sharing system. Every
simulation run consists of 10 consecutive days. We generate 100 random synthetic
demand realizations per day, based on the observed distribution of demand in the
actual system. As the exact itinerary of a trip is unknown, trip distance and trip
duration are assumed to be independent of incentives. This distribution is based
on trip transaction data from the operational period. The system is operational
24 hours per day, but the majority of the trips occur between 7 a.m. and 8 p.m..
As no user information was collected by the car-sharing system, every demand
realization is randomly assigned to one of 50 users, which allows us to evaluate the
effect of our learning procedure within the set time-horizon. We note that user
information is only required for our learning procedure. Each user has a specific
value of time. The values of time are drawn from a normal distribution with mean
€0.30 per minute and standard deviation of 0.10. We assume βtime is fixed at −0.75
(in minutes) such that βcost follows directly from the value of time. We emphasize
that the number of users does not influence any of the obtained results other than
the learning procedure. The choice of parameter w depends on the importance
of the service level relative to the profit. We choose the value for w equal to the
average revenue earned for a single demand unit, which is equal to approximately
€15.

Walking and public transport times between stations for the city of Grenoble
have been extracted from Google, 2019. The public transport time comprises
walking time to reach public transport and time spent in public transport. In
case walking from origin to destination is the least time-consuming option, walking
time is used as the full travel time. Staff members also either walk or use public
transport, depending on which is faster, to move between stations when they are
not relocating. For consistency, we use the same moving times as considered by
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Repoux, Kaspi, Boyacı, and Geroliminis, 2019.

Finally, the profit is based on various costs similar to those defined by Boyacı,
Zografos, and Geroliminis, 2015. The profit is calculated as the user revenue based
on a cost of €0.20 per minute minus the cost of relocators (€18 per hour), fixed
vehicle cost (€20 per day) and a cost of €0.01 per kilometer travelled by both
users and relocators. In practice, users pay €3 for every 15 minutes, so their trip
duration is rounded up to 15 minutes.

2.3.2 Simulation model

Our experimental results are obtained using an event-based simulation framework.
The simulation framework is an extended version of the developed framework by
Repoux, Boyaci, and Geroliminis, 2015 and later updated by Repoux, Kaspi, Boyacı,
and Geroliminis, 2019. For a detailed description of the framework, the reader
is referred to these papers. The framework simulates the actual situation of the
Grenoble car-sharing system as described in Section 2.2. The event-based simulator
models vehicle reservations, pickups and drop-offs. Thereby, it keeps track of the
status of vehicles at stations and on the road and staff members.

The network of stations is taken directly from the Grenoble car-sharing system.
Travel times for users between stations are extracted from Google, 2019. We
emphasize that we incorporate asymmetries in both walking and transit times.
Synthetic data is used to model the demand for vehicles and parking spaces. Arrival
rates for origin-destination pairs are estimated based on observed demand during
the period when the system was active.

We extend the simulation framework by the described incentivization procedure.
For every user entering the system, we solve the problem described in Section
2.2.2 to determine the optimal pickup and delivery location and discount value
corresponding to the incentive, if any beneficial incentive exists. After the incentive is
offered, the response of the user to this incentive is randomly drawn corresponding
to the logistic distribution described in Section 2.2.5. In addition to this, we
implement a learning procedure which allows the operator to learn from previously
observed user behaviour to determine unobserved user preferences. This procedure
is described in detail in Section 2.2.6.
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2.3.3 Model evaluation
While user-based relocations only change the origin or the destination station within
the proximity of the original trip, they can help to locally rebalance the system.
Staff-based relocation can perform any movement of an empty vehicle between two
stations, but they might increase the operational cost. Thus, we are interested in the
performance of the system for different combinations of user-based and staff-based
relocations.

We first consider the general user-based relocation policy as described in Section
2.2.2. We evaluate the relative performance of this policy under the assumption that
the operator has perfect information on the value of time of users, that is P̂acc = Pacc.
The maximum one-way access time is equal to 7 minutes (≈ 450 meters). The total
additional access time a user experiences may therefore be at most 14 minutes,
but this is not commonly observed. The average results of 100 simulations are
reported in Table 2.1. We present different performance measures that can ease our
understanding of the system from the perspective of the users and the operators.
The number of active personnel varies between 0 and 3 with or without incentives.

Table 2.1: Simulation results

Staff Incentives % served # relocations % accepted # incentives KM Profit

0 No 59.7 0.0 0.0 0.0 5.82 62.79
Yes 71.5 0.0 56.7 21.5 5.78 183.66

1 No 84.6 33.9 0.0 0.0 6.36 206.93
Yes 91.8 30.8 45.9 21.4 6.31 263.74

2 No 89.6 62.1 0.0 0.0 6.97 61.17
Yes 94.7 58.4 40.8 18.6 6.90 95.77

3 No 91.0 86.0 0.0 0.0 7.49 -135.92
Yes 95.4 81.4 38.5 17.2 7.40 -106.52

The first two columns describe the relocation policy in place (i.e. number of staff
members and whether incentives are used). The third column denotes the percentage of
served users. The fourth column contains a daily average of the number of relocations
performed. The fifth and sixth column contain the percentage of offered incentives
that are accepted and the actual number of incentives accepted respectively. The KM
travelled is measured as an average per served demand unit and includes both user and
staff KM travelled. The profit is denoted in euros per day.

The results indicate that by offering incentives, the service level can be increased
significantly. Thereby, by only offering incentives if they are expected to be profitable,
the profit also significantly increases. We also observe that incentives are much more
sustainable compared to staff-based relocations. Whereas staff-based relocations
significantly increase the average kilometers travelled, this is not the case for
incentives.
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Due to staff-based relocations, the service level can be increased to a percentage
between 84.6% and 91%, depending on the number of staff members, but the profit
decreases if the number of personnel is higher than 1 (and it becomes negative for
3 or more). By using incentives without any personell, this is only 71.5%. The
main reason for this is that user-based relocations are limited to short-distance
relocations, while staff members can also do long-distance relocations. By combining
the two policies (one staff member and incentives), the profit is optimized and the
service level is higher than the one with three staff members and no incentives.
Interestingly, offering incentives with one personnel is capable of serving more users
compared to two personnel with no incentives, which also has a significantly higher
operational cost.

Daily, approximately 20 incentives are offered and accepted, depending on the
policy that is used. Note that the total number of offered incentives can be obtained
directly from the number of accepted incentives and the percentage of accepted
incentives. As daily demand is equal to 100, this means an incentive is accepted
by approximately 20% of the arriving users. This supports the truthfulness of our
policy, as discussed in Section 2.2.5. Approximately 55% of the offered incentives
are accepted if only incentives are used, which decreases if it is combined with
staff members. As proven in Theorem 2 in the Appendix, the discount value is
non-decreasing in the expected omitted demand loss. As staff-members reduce
imbalances in the systems, the expected omitted demand loss of incentives tends
to decrease. In turn, this decreases the offered discounts. As a consequence, the
acceptance probability of those incentives decreases and thereby the percentage
of accepted incentives decreases. This also means that if the original trip is not
available, the offered incentive is much more likely to be accepted as the lost user is
incorporated in the objective function.

By offering incentives or performing relocations, less critical situations (i.e. no
available vehicles or no available parking places) at stations arise. Figure 2.2 displays
the number of stations with at least one available vehicle and at least one available
parking space. We compare the scenario where no relocations are performed to
the scenario where incentives are used, obtained using a single simulation of 10
days. No staff members are used in both scenarios. The results indicate that, by
using incentives, slightly more stations have both available vehicles and parking
spaces. Because less critical situations arise, more demand can be served which
is in line with the results in Table 2.1.

Figure 2.3 graphically represents the relocations performed by staff members
and due to incentives. Figure 2.3A displays the incentives on origin locations (origin
locations changed because of incentives), Figure 2.3B displays the average walking
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Figure 2.2: Graphical representation of the number of stations with available vehicles
and parking spaces over time for one simulation

time between two stations in minutes, Figure 2.3C displays the incentives for which
the original trip was unavailable and 2.3D displays the staff-based relocations.
Figure 2.3C and 2.3D display those relocations that occur at least once every 20 or
10 days respectively. The relocations correspond to the simulations for which either
only incentives or only staff is used and are an average of 100 simulation runs.

The results confirm the intuition that incentives are used for short-distance reloca-
tions. The relocations are solely between stations that are within 7 minutes walking
distance from each other. Staff-based relocations, on the other hand, can relocate
vehicles between any two stations. A similar graph can be obtained for incentives
on the destination location. If the original trip is unavailable, the relocations look
more like the staff-based relocations as either the origin or destination can be
outside the maximum access time range. Incentives on unavailable trips are mostly
used to change the origin location of the trip, which can be seen from the stations
that are selected as origins in Figure 2.3C. The reason for this is that, due to the
high number of parking spaces (121) compared to the number of vehicles (40),
the unavailability of vehicles at the origin station is more problematic than the
unavailability of parking spaces at the destination station. If we reduce the number
of parking spaces, we observe that the number of incentives regarding an unavailable
vehicle and those regarding an unavailable parking space become roughly similar.
By combining staff and user-based relocations, we are using a hybrid operator-user-
based relocation policy. In this policy, user-based relocations are used for short-
distance relocations and are extremely effective if the original trip is unavailable.
Thereby, staff-based relocations can be used to cover imbalances over longer distances
such as between suburbs and the city center, as is illustrated in Figure 2.3. Many
incentives apply to stations 4, 5 and 10. These stations are located close to the
train station of Grenoble, with 5 located approximately between 4 and 10. Not
coincidentally, station 5 is also the station with the highest demand.
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Figure 2.3: Graphical representation of relocations

One of the advantages of our method is that it is applicable in real-time operation.
For an incentivization method to be applicable in real-time operation, it should be
able to determine the optimal incentive (if any) within seconds. Our simulation
results illustrate that this condition is satisfied and our method is computationally
very efficient. By limiting the number of feasible incentives and using the property
of the subproblem that has at most one stationary point, the optimal discount can
be found very fast. This suggests that our model can also be applied to larger cities,
where the number of feasible incentives is typically much higher, because stations are
located closer together. As the number of feasible incentives is higher in larger cities,
our user-based relocation approach is expected to perform even better in these cities.

Demand rates may change due to the used relocation policies. In general, if
a user is not served he/she is less likely to return in the future. In addition to this,
low availability of vehicles may decrease the demand rates at those stations whereas
high availability at other stations may increase the demand rates there. The pricing
policy may therefore change the demand rates (as may any staff- or user-based
policy). To anticipate this change, demand rates can be re-estimated and the omitted
demand loss estimations can be updated accordingly. Using such an iterative process,
dynamically changing demand can be anticipated indirectly. To directly anticipate
dynamically changing demand a proper demand model is required (depending on
service level, pricing and other features), which is outside the scope of this work.
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2.3.4 Learning evaluation

In this section, we evaluate the performance of our learning algorithm. We use
our learning algorithm described in Section 2.2.6 to estimate a single acceptance
probability function for the entire population. We assume that the value for βtime

is fixed and known for all users, whereas the value for βcosts is drawn randomly and
unknown. We emphasize that, if enough user-specific data is gathered, the exact
same procedure can be used to obtain a user-specific acceptance probability function.
If enough data is gathered, the performance using user-specific estimates will attain
the performance under perfect information. We compare the performance of the
learning algorithm to the performance when the value of time is known exactly
and when the value of time is underestimated by 30%. For the latter case, we
approximate the value of time by a single estimate which is 30% lower than the
population average.

Table 2.2 presents the simulation results for this experiment. A training period of 3
days is used. The simulation results are therefore an average of the last 7 days. We
observe that the performance of the learning algorithm increases with the length of
the training period. After 3 days, the performance does not increase significantly.

Table 2.2: Simulation results with learning method

Staff Estimation % served % accepted # incentives discount Profit

0
Exact 70.4 56.8 21.3 41.08 173.74
Learning 69.9 54.1 20.5 42.86 168.76
Underestimate 68.8 43.6 17.6 33.05 167.48

1
Exact 91.7 45.5 21.3 37.05 267.66
Learning 91.2 43.8 20.5 38.66 260.80
Underestimate 90.2 35.4 17.4 30.26 260.15

2
Exact 94.6 40.7 18.5 35.61 99.80
Learning 94.3 39.0 17.7 36.77 94.71
Underestimate 93.5 31.6 15.2 29.46 94.48

3
Exact 95.3 38.2 16.9 34.52 -102.83
Learning 95.1 37.6 16.7 36.07 -107.63
Underestimate 94.4 29.8 14.2 28.69 -106.43

The first column describes the relocation policy in place (i.e. number of staff members).
The second column denotes the method used to estimate the value of time: exact,
learning or underestimated. The third column denotes the percentage of served users.
The fourth and fifth column contain the percentage of offered incentives that are
accepted and the actual number of accepted incentives respectively. The average
discount per minute of accepted incentives is given in cents. The profit is given in
euros per day.
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The results indicate that in case the operator does not have perfect information
about the user’s value of time, incentives are still effective. The observed differences
mainly occur because user heterogeneity is ignored and all users are treated as if
their value of time is equal. We observe that, even though the average discount
per minute is higher, the percentage of accepted incentives is lower. Consequently,
fewer incentives are offered and the profit and service level decrease.

If the value of time is underestimated, the percentage of accepted incentives decreases
significantly and so does the average discount. As a consequence, the service level
decreases. Similar results can be obtained when the value of time is overestimated.
In this case, the average discount value will be higher, causing the profit to decrease.
This emphasizes the importance of a correct estimate of the value of time, as a
wrong estimate can decrease both the profit and the service level.

Our experiments indicate that users with a higher value of time are offered higher
discounts. A regression of the discount value on the actual value of time of a user
indicates that the value of time has a significant positive effect on the discount
value. From the experiments in this section, we conclude that our learning methods
enable the operator to obtain a good estimate of the acceptance probability function
of users. Naturally, as dispersion among the users in terms of their value of time
increases, the performance of the learning method decreases. However, when more
data is gathered, user-specific estimates can be obtained which are not influenced
by dispersion. A more detailed analysis of learning the distribution is beyond the
scope of this work, as no real data was available for specific users. This can be
a research priority for a demand-oriented analysis.

2.3.5 Increasing user flexibility
In the previous experiments, we assumed the maximum one-way time users were
willing to walk towards their pickup location and from their destination location
was 7 minutes. In this section, we perform a sensitivity analysis to investigate the
effect of increasing user flexibility. We assume the operator has perfect information
on the users’ value of time. First, we consider three scenarios where the maximum
walking time is either 5, 7 or 10 minutes (again, this applies separately to origin
and destination). The higher the maximum walking time, the more flexible users
are. The results of this experiment are displayed in Table 2.3.
We observe that as the maximum walking time increases, more incentives are offered,
as more profitable incentives are found. As a consequence, the percentage of demand
served and profit increase significantly. As flexibility increases, the percentage of
served demand and effectiveness of incentives increases. This result is in line with
those provided by Correia, Jorge, and Antunes, 2014. Due to the increasing number
of incentives, the number of staff-based relocations also decreases slightly.
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Table 2.3: Simulation results for multiple maximum walking times

Access time

Staff

Incentives

%
served

#
relocations

#
incentives

KM
travelled

Profit

5

0 No 59.7 0.0 0.0 5.82 62.79
Yes 65.1 0.0 11.0 5.79 118.68

1 No 84.6 33.9 0.0 6.36 206.93
Yes 88.3 32.2 11.9 6.33 239.59

2 No 89.6 62.1 0.0 6.97 61.17
Yes 92.2 59.9 10.7 6.94 80.88

3 No 91.0 86.0 0.0 7.49 -135.92
Yes 93.4 83.5 10.1 7.44 -115.82

7

0 No 59.7 0.0 0.0 5.82 62.79
Yes 71.5 0.0 21.5 5.78 183.66

1 No 84.6 33.9 0.0 6.36 206.93
Yes 91.8 30.8 21.4 6.31 263.74

2 No 89.6 62.1 0.0 6.97 61.17
Yes 94.7 58.4 18.6 6.90 95.77

3 No 91.0 86.0 0.0 7.49 -135.92
Yes 95.4 81.4 17.2 7.40 -106.52

10

0 No 59.7 0.0 0.0 5.82 62.79
Yes 79.4 0.0 32.4 5.76 252.32

1 No 84.6 33.9 0.0 6.36 206.93
Yes 94.1 29.7 26.6 6.31 276.15

2 No 89.6 62.1 0.0 6.97 61.17
Yes 95.9 57.1 22.7 6.89 98.10

3 No 91.0 86.0 0.0 7.49 -135.92
Yes 96.4 80.0 20.5 7.37 -104.39

The first column denotes the maximum extra access time in minutes. The next two
columns describe the relocation policy (i.e. number of staff members and whether incentives
are used). The fourth column denotes the percentage of served users. The fifth and sixth
columns denote the daily average number of relocations and the number of accepted
incentives respectively. The KM traveled is measured as an average per served demand
unit and includes both user and staff KM traveled. The profit is given in euros per day.

We note that walking for 10 minutes to pick up or drop off a vehicle can be
rather undesirable for users. Therefore, we explore the use of public transportation
modes to transport users before pick up or after delivery. The public transport
data for the city of Grenoble has been extracted from Google, 2019. The travel
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time comprises walking time to reach public transport and time spent in public
transport. In case walking from origin to destination is the least time-consuming
option, walking time is used as the full travel time. On top of that, the user may
wish to be compensated for the inconvenience of public transport (which comprises
among others waiting time and scheduling delay). We assume users expect to be
compensated for inconvenience comparable to five minutes of walking. This is
incorporated in the acceptance probability function and therefore indirectly leads
to higher compensations in case public transport is used.

The results of this experiment are presented in Table 2.4. We consider two scenarios,
where the maximum time to get to or from the vehicle is either 7 or 10 minutes. For
the sake of comparison, we assume the value of time is similar for both experiments.
We note that the value of time in public transport is likely to be higher than
that for walking, as the price of the public transport ticket needs to be paid, but
this is omitted in the current work.
The results indicate that if the maximum one-way access time in public transport
is 7 minutes, the results are better than walking for 10 minutes. The reason for
this is that if users are willing to use public transport, they can reach a higher
number of stations within their maximum access time. When the maximum access
time is equal to 10 minutes in public transport, the use of incentives outperforms
the use of 3 staff members. The main reason for this is that if a user requests an
unavailable trip, an alternative origin or destination can almost always be reached
within the maximum access time. Therefore, by offering a discount this user can
often be saved without the need to relocate vehicles. Although the use of incentives
outperforms the use of staff members in this case, 41 incentives per day are needed
to achieve this. This means that almost half of the arriving users change their
preferred origin or destination station. This has a negative effect on truthfulness and,
despite the fact that users are compensated, it is likely to decrease user satisfaction.
Thereby, if users demand higher compensations for the inconvenience of using public
transportation, the price of incentives will increase. As a consequence, profit goes
down and service level goes down as less profitable incentives exist.

The results of this experiment are promising in the sense that if users are willing
to combine multiple transportation modes, i.e. public transport and car-sharing,
the balancing problem can be solved efficiently without using any staff members.
This implies that incentives are a sustainable alternative to staff-based relocations.
A downside of this is that in practice users may choose to waive their car-sharing
request when they are already in public transport. A thorough user survey is
required to evaluate whether the increased service level outweighs the potential
demand lost to public transport.
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Table 2.4: Simulation results using public transport

Access time

Staff

Incentives

%
served

#
relocations

#
incentives

KM
travelled

Profit

7

0 No 59.7 0.0 0.0 5.82 62.79
Yes 80.6 0.0 32.0 5.77 263.96

1 No 84.6 33.9 0.0 6.36 206.93
Yes 95.0 30.4 26.9 6.31 282.00

2 No 89.6 62.1 0.0 6.97 61.17
Yes 96.8 58.0 22.9 6.89 105.75

3 No 91.0 86.0 0.0 7.49 -135.92
Yes 97.2 81.0 20.6 7.37 -97.69

10

0 No 59.7 0.0 0.0 5.82 62.79
Yes 91.9 0.0 41.6 5.76 370.87

1 No 84.6 33.9 0.0 6.36 206.93
Yes 97.5 29.2 30.9 6.30 289.08

2 No 89.6 62.1 0.0 6.97 61.17
Yes 98.2 56.7 25.6 6.87 106.42

3 No 91.0 86.0 0.0 7.49 -135.92
Yes 98.5 79.4 23.5 7.34 -96.23

The first column denotes the maximum extra access time in minutes. The next two
columns describe the relocation policy (i.e. number of staff members and whether incentives
are used). The fourth column denotes the percentage of served users. The fifth and sixth
columns denote the daily average number of relocations and the number of accepted
incentives respectively. The KM traveled is measured as an average per served demand
unit and includes both user and staff KM traveled. The profit is given in euros per day.

2.3.6 Adapting staff-based relocation policy
As we consider incentives and staff-based relocations that both aim to maximize
the omitted demand loss, it is interesting to consider the distribution of the ODL
obtained by a relocation due to an incentive and that obtained by a staff-based
relocation. Figure 2.4 depicts the distribution of the ODL values for these two types
of relocations. The distribution of the ODL values for incentives has two peaks.
The reason for this is that incentives can be classified as one of two types: incentives
if the original trip is available and incentives if the original trip is unavailable. For
the second type, one lost user is omitted with certainty if the incentive is accepted,
which can be seen from the plus 1 term in Equation (2.10). Therefore, the ODL
corresponding to this type of relocation is generally high, causing the second peak.
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The two distributions indicate that staff-based relocations on average bring forth
lower omitted demand losses than relocations due to incentives. This is partially
caused by the second type of incentives for unavailable trips. Another reason for
this is that due to the trade-off in the optimization problem, incentives with small
ODL values have lower discounts and therefore lower acceptance probabilities or
they may not even be offered. This causes the ODL values to be higher in general.
We emphasize that the omitted demand loss is based on a 2-hour time interval. In
the long term, relocations generally bring forth higher ODL values except for those
for which the original trip is unavailable. In that case, if the ODL value is smaller
than 1, this value is likely to decrease in the long term.

By only offering incentives when the original trip is unavailable, the service level
only decreases slightly whereas the profit may even increase. Of course, these
incentives do not actually contribute to the rebalancing of the system as only users
that would have otherwise been lost are redirected to a different station. These
incentives are also more likely to induce untruthful behaviour, as they are easier to
identify and compensations are higher. On the other hand, by offering incentives
only when the original trip is available, the service level and profit are decreased
but are still significantly higher compared to the case when no incentives are offered.
Contrary to the other type of incentives, a policy where incentives are only offered
in case the original trip is available is more resilient to untruthful behaviour and
still leads to a system that is properly rebalanced. Overall, offering incentives
independent of the availability of the original trip is highly effective and easier to
implement in reality. An additional subtlety for originally unavailable trips is that
users are in generally more likely to accept a small detour, but this highly depends
on their alternative transportation modes. This means that in reality profit can
be even higher by reducing the discounts for those trips.
We can adapt the staff-based relocation policy to the use of incentives by changing
the threshold value τ , the minimum expected omitted demand loss for a staff-
based relocation to be performed, as defined in Section 2.2.4. By changing this
value we can reduce the number of relocations performed by staff members and
thereby reduce their overall activity. This can be convenient as in practice staff
members often perform maintenance jobs and other tasks if they are not relocating
vehicles. We consider various threshold values varying between 0.00 and 0.25.
The results of this experiment are provided in Table 2.5. For this experiment, we
assume relocators are only paid for the number of hours they effectively worked,
corresponding to their occupancy rate.
The results indicate that by increasing the threshold value, we reduce the number
of relocations and the percentage of time the staff member is relocating vehicles.
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Figure 2.4: Distribution of ODL by incentive and staff relocation

Table 2.5: Simulation results for different staff thresholds

τ % served # relocations % occupancy # incentives KM travelled Profit

0.00 91.8 31.0 98.3 21.2 6.32 267.58
0.05 91.9 30.6 98.2 21.2 6.32 268.22
0.10 91.7 28.7 96.4 21.7 6.31 270.96
0.15 91.4 25.0 89.0 21.8 6.25 280.54
0.20 90.5 20.8 77.5 22.2 6.18 290.78
0.25 89.1 16.4 63.5 23.3 6.10 297.64

We consider the case where one staff member is used. The first column denotes
the value of τ . The second column denotes the percentage of served users. The
third and fifth column are a daily average of the number of relocations performed
and the number of incentives accepted respectively. The fourth column denotes the
average occupancy of the staff member as a percentage of the total workday. The
KM travelled is measured as an average per served demand unit and includes both
user and staff KM travelled. The profit is given in euros per day.

A positive finding is that for a value of τ = 0.25, the number of staff-based
relocations is almost half compared to τ = 0, but the served demand decreases
by only 2.5%. We also observe that the number of incentives increases slightly as
the threshold increases. The reason for this is that some of the relocations that
are not executed by staff members are now (implicitly) executed by users. By
increasing the threshold, the profit increases at the cost of a small decrease in the
percentage of served users. The results of this experiment strengthen the idea of
a hybrid operator-user-based relocation approach.

2.3.7 Sensitivity analysis: user value of time

In all previous experiments, the user value of time is assumed to be equal to 30
cents per minute of additional walking time. In this section, we perform a sensitivity
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analysis on the user value of time to illustrate the robustness of our results. The
results of this experiment are displayed in Table 2.6. We consider average values of
time which range from 20 to 50 cents per minute. Other than that, the simulation
settings are similar to those used in the previous experiments.

Table 2.6: Simulation results for different user value of time

vot % served # relocations % accepted # incentives discount/minute Profit

20 92.0 30.4 55.1 26.2 25.11 273.52
30 91.8 31.0 45.4 21.2 37.42 267.58
40 91.6 31.4 39.4 17.7 49.29 257.83
50 91.3 31.9 35.0 15.2 60.58 250.83

We consider the case where one staff member and incentives are used. The first
column describes the scenario, where the value of time is given in cents per minute.
The second column denotes the percentage of served users. The third column denotes
the percentage of offered incentives that is accepted and the fourth column denotes
the actual number of accepted incentives. The fifth column denotes the average
discount value per minute for all accepted incentives. The profit is given in euros per
day.

The results indicate that as the value of time increases, fewer incentives are profitable
and therefore fewer incentives are offered. In addition to this, because of the higher
value of time, the average discount value relative to the value of time is lower,
which means that the percentage of accepted incentives decreases. For the accepted
incentives, we observe that the average discount value increases proportionally with
the average value of time.

As fewer incentives are accepted, the service level and profit both decrease. Inter-
estingly, the service level and profit do not decrease significantly even though the
number of accepted incentives is almost halved. This is partially caused by the
use of staff-based relocations which can replace the incentives as well as later users
that are offered a similar incentive. In addition to this, those incentives that are no
longer profitable to offer are typically those for which the influence on profit and
service level was rather small.

We emphasize that this representation of profit is not realistic, as we use a constant
rental price. In cities where the average value of time is higher, a higher rental
price can be imposed. Thereby, the value for w (monetary value per unit of lost
demand) increases and the effect of value of time will be negligible.
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2.4 Summary
In this chapter, we proposed a predictive user-based relocation policy for one-way
car-sharing systems. Our method relies on user-based relocations that are stimulated
by offering discounts to users. By performing an alternative and less convenient
trip, users implicitly contribute to the redistribution of vehicles throughout the
system. Our policy uses information on the current state of the system as well as
expected future demand to determine appropriate relocations, to reduce expected
future demand losses. Our policy is adaptive to the value of time of users. As
user preferences such as their value of time are generally unknown, they have to
be estimated. We developed a learning algorithm that allows the operator to learn
from previously offered incentives and adjust the future offers accordingly.

Our simulation results indicate that, by using our incentivization approach, we
can partially solve the balancing problem of vehicles throughout the network and
thereby increase the service level. In addition to this, our methods allow the
operator to use fewer staff members while attaining a higher service level and
thereby increase the profit. Specifically, by using a hybrid operator-user-based
relocation policy, service level and profit can be maximized. In this case, user-based
relocations perform short-distance relocations, while long-distance relocations are
executed by staff members. We also observe that by using user-based relocations,
the average KM travelled by staff and users per unit of served demand decreases,
suggesting our method is environmentally more sustainable than staff-based policies.

Using a learning algorithm, we can accurately approximate the users’ acceptance
probability functions. Therefore, we can obtain results that are close to those under
the assumption of perfect information. A sensitivity analysis indicates that we can
further increase the service level in case users are more flexible. That is if users
are willing to walk further to pick up or deliver their vehicle or even use public
transport, the effectiveness of our incentivization method increases.
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3
Influence of dynamic congestion with
scheduling preferences on carpooling

matching with heterogeneous users

This chapter is based on the article:

• A. de Palma, P. Stokkink, and N. Geroliminis (2022). “Influence of
dynamic congestion with scheduling preferences on carpooling matching
with heterogeneous users”. In: Transportation Research Part B:
Methodological 155, pp. 479–498

3.1 Introduction
Over the last years, the demand for mobility services such as vehicle-sharing
and carpooling (or ride-sharing) has increased tremendously. One of the most
popular examples of carpooling is BlaBlaCar, 2020, with 30 million members in
22 countries. Carpooling initiatives are known to have many advantages such
as increasing mobility and reducing congestion. Carpooling eases congestion by
increasing average vehicle occupancy. According to BlaBlaCar, 2020, they increased
the average occupancy of their vehicles to 2.8 compared to an average of 1.6 in
Europe. However, carpooling decisions are also influenced by congestion. Congestion
brings forth significant economic costs both through extra fuel consumption and
waste of time. Furthermore, it induces social costs as it is commonly associated
with public health risks. Scheduling preferences are not integrated in most of the
matching studies and this inconvenience makes carpooling less attractive. These
effects emphasize the need to introduce congestion and scheduling preferences in
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carpooling models (literature has remained silent on this issue) to better understand
its potential benefits and costs.

We consider the commute of passengers and drivers in a parsimonious framework
that will allow us to develop intuition for a challenging problem both in terms of
mathematical formulation and economic insights. In our problem, passengers and
drivers are located along a horizontal line and all have the same destination at the
end of the horizontal line, the Central Business District (CBD). This framework
forms a theoretical approximation of many real-life situations, where people live in
the suburbs and work in the business district. Suburbs and the CBD are connected
by a highway. Contrarily to a formally similar problem, the matching in marriage
problem (Chiappori, Oreffice, and Quintana-Domeque, 2012), in our work a central
operator matches the drivers and the passengers such that the total matching
costs are minimized in the presence of untolled congestion. We refer to this as the
optimal matching problem. The matching costs include the detour time to pick up
a passenger but may also include scheduling delays (associated with early or late
arrivals). Congestion can significantly influence travel time and tardiness of all
agents and may therefore influence matching decisions. In this work, we incorporate
dynamic congestion in matching decisions as well as departure time decisions. In the
same unified framework, drivers still determine their time of departure considering
scheduling and congestion costs as per W. Vickrey (Vickrey, 1969).

The key element of carpooling is the matching process between drivers and passen-
gers. This is a well-known mathematical problem (the optimal transport model
reviewed by Galichon, 2018) that we will apply in this work. In the carpooling
context, since the quality of matching depends on travel times, which itself depends
on how many matches have been performed, we have an extended version of the
standard matching model, that we refer to as the congested optimal matching model.
Other applications of this congested matching model can be studied, such as the
housing market (in that case, matching will potentially change the market prices
and the population mix which may feed-back to the matching process) or the taxi
market (e.g. the operations research model of stable matching of Bai, Li, Atkin,
and Kendall, 2014), but this is clearly outside the scope of this work.

A two-way causality exists between carpooling and congestion. One side of the
implication is well-understood and intuitive. If a fraction of the drivers starts to
carpool, the number of cars on the road decreases, which eases congestion (Bahat
and Bekhor, 2016; Li, Hong, and Zhang, 2016). The other side of the causality is
more subtle and unexplored in the standard matching models.

To the best of our knowledge, the effect of dynamic congestion with scheduling
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preferences on carpooling matching has not been studied before. Dynamic traffic
models (Arnott, Palma, and Lindsey, 1990; Palma, Lefèvre, and Ben-Akiva, 1987)
are commonly used to model the relation between congestion and traffic decisions.
Smith, 1993 presents a dynamic traffic flow model for peak period traffic flows in
urban areas, where road capacity is tight. Morning and evening commutes are
commonly modeled using a traffic bottleneck model (Arnott, Palma, and Lindsey,
1993) based on the Vickrey, 1969 model. Later, the corridor model was extended by
Qian and Zhang, 2011 to include multi-modal transportation, with among others
carpooling. For a recent review of the bottleneck congestion model, the reader
is referred to Li, Huang, and Yang, 2020. The effect of fuel prices on carpooling
behavior has been studied by Bento, Hughes, and Kaffine, 2013. Their results
indicate that flow on high occupancy vehicle lanes on average increases with fuel
prices. However, they suggest that local traffic congestion such as bottlenecks may
change the way these variables interact. The bottleneck model has been extended
with ridesharing options by, among others, Ma and Zhang, 2017, Liu and Li, 2017,
Yu, Berg, and Verhoef, 2019, and Li, Huang, and Shang, 2020, however, these
models do not directly incorporate the matching of drivers and passengers.

In this chapter, we use a bi-level optimization approach to model the two-way
causality between carpooling and congestion. The first level considers the optimal
matching problem. We determine the matching that minimizes the total costs,
which comprises detour, delay, and inconvenience costs. Congestion is incorporated
in the second level through a dynamic bottleneck model. Equilibrium departure
times are determined given the optimal matching. Using an iterative process, we
can solve the congested matching model to evaluate the effect of congestion on
carpooling matching.

The remainder of this chapter is organized as follows. The framework and corre-
sponding theoretical results are described in Section 3.2. The framework is extended
with bottleneck congestion in Section 3.3. Section 3.4 discusses the simulation
results and in Section 3.5 the chapter is concluded. Most formal proofs of the
theorems are relegated to the Appendix.

3.2 Matching without congestion
We consider the morning commute of passengers and drivers. In this case, we
assume that the origins of all agents are distributed on Hotelling’s line [0,1), while
their destination is at the Central Business District (CBD), which is located at 1
and is, therefore, the same for all agents. An example of this with one passenger
and one driver is depicted in Figure 3.1. During the evening commute, this problem
is reversed. In this case, the origin is the same for all agents, while their destinations
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are distributed on Hotelling’s line. It is important to note that the morning and
evening commutes are similar but not identical since in the evening there is an
optimal desired departure time from the origin, rather than a desired arrival time
at the destination.

Let the location of passenger j be denoted as yj and the location of driver i
as xi. Let C (i, j) denote the (full) cost of a match between driver i and passenger
j. A driver always picks up a passenger before driving to the destination. This
means that if the location of the passenger is before that of the driver (i.e. driver
is closest to the CBD), the matching distance is twice the distance between the
customer and the driver. On the contrary, if the passenger is located closest to
the CBD, there is no additional matching distance. We let α denote the value of
time1 of drivers. The cost of matching for a driver located at xi and a passenger
located at yj is defined as follows:

C (i, j) = 2αmax(xi − yj, 0) (3.1)

0 1

xiyj
CBD

Figure 3.1: Example of a link with one passenger located further away from the CBD
than the driver

In our framework, the set of drivers and passengers is assumed to be fixed and
known beforehand. This can be interpreted as identifying your role (i.e. passenger
or driver) when signing up to a carpooling app. Thereby, we assume that a central
operator determines the matching and this can be enforced to the participants.
This assumption is reasonable as drivers and passengers are generally unaware of
their alternatives in such a carpooling framework and they can inform the operator
of their trip information (origin and desired arrival at destination) in advance. We
start by assuming the matching costs are limited to the costs for making a detour
(A1). This assumption is reasonable in case all individuals have identical desired
arrival times, and this assumption will be relaxed in later sections.

Assumption A1 (Simple matching): The (additional) cost of matching driver
i to passenger j depends only on the detour driver i makes to pickup passenger j,

1Different values of time can be considered easily, without changing the mathematical nature
of the problem. For simplicity, we assume here the same value of time for passengers and for
drivers with and without a passenger.
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as defined in Equation (3.1).

The remainder of this section is organized as follows. First we discuss the basic
model in Section 3.2.1. Then, we extend the model to incorporate unequal numbers
of drivers and passengers in Section 3.2.2. We incorporate scheduling delay
in Section 3.2.3.

3.2.1 Basic carpooling model: equal number of drivers and
passengers

First we assume that the number of passengers and drivers are equal. We can
formulate this as a linear assignment problem. Let I denote the set of drivers and J
the set of passengers. To ease notation, the following assumption is made without
loss of generality:

Assumption A2 (Sorting): Without loss of generality, all passengers and drivers
are sorted from left to right based on their location on the Hotelling line.

Following this assumption, driver locations satisfy xi ≤ xi+1 and passenger locations
satisfy yj ≤ yj+1. We study here the matching process, which minimizes the total
costs (which includes the potential schedule delay costs). This is thus an optimal
assignment provided by a regulator under the following definition.

Definition 1 (Optimal matching without congestion): The optimal matching
minimizes the sum of detour cost and inconvenience cost (including scheduling delay
costs) for all involved passengers and drivers. The optimal matching is the solution
of P1.

We use decision variables aij, which are equal to 1 if passenger j is matched
with driver i. We then formulate this problem as a linear assignment problem (see
Burkard and Cela, 1999, Galichon, 2018). We determine the optimal matching,
that is the matching minimizing total cost, given that all drivers are matched to
a passenger and all passengers are matched to a driver.

P1 : min
∑
i∈I

∑
j∈J

C(i, j)aij (3.2a)
∑
i∈I

aij = 1, ∀j ∈ J, (3.2b)∑
j∈J

aij = 1, ∀i ∈ I, (3.2c)

aij ∈ {0, 1}, ∀i ∈ I, j ∈ J. (3.2d)
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This is a special case of an integer linear program, which has a totally unimodular
constraint matrix. We use the definition of Heller, Tompkins, Kuhn, and Tucker,
1957 for the totally unimodular constraint matrix. According to the authors, the
constraint matrix can only contain elements {-1, 0, 1} and at most two non-zero
elements per column. Thereby, the rows can be partitioned over two disjoint sets
such that for every column, two elements with equal sign are in different sets and two
elements with same sign are in the same set. For our problem, these disjoints sets
are equal to I and J . In this special case, the linear programming (LP) relaxation
of the problem will provide the optimal solution and therefore the problem can be
solved efficiently. Even for a large number of passengers and drivers, the optimal
solution can be found in seconds.

Passengers and drivers are only willing to carpool with each other if they jointly
benefit from the match. Therefore, a passenger and a driver are only willing to
match if their joint benefit is higher than their joint costs. In practice, the costs and
benefits can be redistributed between the matched couple, for example through an
online platform. We characterize commuters by their potential role in a carpooling
match (i.e. drivers and passengers). Definitions and assumptions follow. Drivers
can be solo drivers or carpooling drivers. Passengers are carpooling passengers,
public transport passengers (in case they do not own a car and are not matched) or
self-driving passengers (in case they own a car and are not matched). In this section,
we only consider passengers that do not own a vehicle. Self-driving passengers
are considered in Sections 4 and 5. Formally, we define b as the subsidy drivers
receive for carpooling and cT as the fixed opportunity costs passengers experience
for taking public transport. As a consequence, a driver and passenger are willing
to match if the following condition holds:

C(i, j) ≤ b+ cT (3.3)

We add a set of dummy passengers and dummy drivers to the sets of passengers and
drivers, such that every driver is able to match to a dummy passenger and every
passenger is able to match to a dummy driver. We define a dummy driver/passenger
as follows:

Definition 2 (Dummy driver/passenger): A dummy driver or a dummy
passenger provides an alternative matching option for passengers or drivers, respec-
tively. An individual matched to a dummy driver/passenger is travelling alone and
therefore not carpooling.

The matching cost to a dummy passenger is equal to b (lost subsidy) and the
matching cost to a dummy driver is equal to cT (cost of public transport). Matching
a dummy driver to a dummy passenger is irrelevant and the corresponding cost
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is therefore set to zero. Clearly, it will never be optimal to match a driver and
a passenger if C(i, j) > b + cT , i.e. if Constraint (3.3) is violated. The optimal
matching of drivers and passengers, given that they only match if they jointly
benefit from the match, can then be determined using formulation P1. In general,
it is possible for an individual to have multiple alternatives. This can then be
incorporated easily by adding multiple dummy variables.

The optimal solution to the matching problem is not necessarily unique as multiple
solutions can lead to the same optimal objective value. A trivial example is the case
where all drivers are located before all passengers, in which every possible matching
has an objective value of 0 as all cars are the same from the passengers’ point of view.

Under assumption A1 and given that it is optimal to match all drivers and passengers,
the optimal matching of drivers and passengers is formulated in the following
theorem. A formal proof can be found in Appendix B.

Theorem 3. Let the number of drivers be equal to the number of passengers. Under
Assumption A1 and given that at optimality all drivers and passengers match,
matching the ith driver and the ith passenger is always among the set of optimal
matchings.

Intuitively, drivers and passengers are matched based on the order in which they
are ranked from furthest to closest to the CBD. We emphasize that this solution is
not necessarily unique in the sense that two passengers can be switched without
changing the value of the objective.

A matching of a similar structure is optimal if not all passengers and drivers
are matched at optimality. Intuitively, the most costly passengers and drivers
remain unmatched and the remaining passengers and drivers are matched in
agreement with Theorem 3. This is formally described in Theorem 4. The proof
is relegated to the Appendix.

Theorem 4. Let the number of drivers be equal to the number of passengers and
let matching cost be defined according to assumption A1. Assume that at optimality
k drivers and k passengers are not matched. The matching where the k left-most
passengers remain unmatched, the k right-most drivers remain unmatched and the
remaining passengers and drivers are matched in sequence according to Theorem 2,
is always among the set of optimal matches.

An example of Theorem 4 is illustrated in Figure 3.2. The initial matching is given
by the black lines. Imagine the detour outweighs the cost of the alternative, such
that this matching is suboptimal. Specifically, here, the red-dotted match violates
Equation (3.3), which means that this driver and passenger would not be willing to
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comply with this match. As a consequence, the most costly passenger and most
costly driver, both marked in red, are removed. The remaining passengers and
drivers are matched according to Theorem 3, yielding the matching indicated by
blue lines. This matching is optimal since no driver makes a detour.

Drivers

Passengers

Figure 3.2: Example of Theorem 3

The optimal matching may not necessarily be stable. In a stable matching, there
is no other match where both the driver and the passenger prefer each other
over their current match. The advantage of such a matching is that no one is
able to improve herself by deviating from the current match. The concept of
stability in matching is borrowed from marriage economics (Browning, Chiappori,
and Weiss, 2014). However, in a carpooling framework, as we consider, it is
reasonable to assume that individuals (both drivers and passengers) are unaware
of their alternative matching possibilities. In such a framework, enforcing the
optimal matching is therefore intuitive and common in practice. Alternatively,
the stable formulation by Wang, Agatz, and Erera, 2018 can be used to replace
formulation P1. In that case, the matching will be stable, but not necessarily
optimal under our definition of optimality.

3.2.2 Unequal number of drivers and passengers
When the number of drivers and passengers are unequal, we can still construct
and solve the model discussed in Section 3.2.1 in a similar way. The optimal
matching when the number of drivers is unequal to the number of passengers
can be characterized as in Theorem 5. Dummy drivers are assigned to the left-
most passengers whereas dummy passengers are assigned to the right-most drivers.
For the remaining drivers and passengers, the same structure as described in
Theorem 4 is observed.

Theorem 5. Consider a set of m drivers and n passengers both ranked from left to
right. Under assumption A1, the following match is optimal:

1. If m < n, the n−m left-most passengers are not matched (i.e. matched to
dummy drivers).

2. If m > n, the m − n right-most drivers are not matched (i.e. matched to
dummy passengers).

3. The remaining min(m,n) drivers and passengers are matched according to
Theorem 3.
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As for Theorem 4, we observe that the most costly drivers or passengers are removed
if the total number of passengers and drivers is unequal. The most costly drivers and
passengers are those that are most likely to cause a detour. For drivers, these are
located on the right of Hotelling’s line, for passengers, these are located on the left.

3.2.3 Scheduling delay
For passengers or drivers, matching costs are often not solely based on the additional
distance a driver has to drive to perform the pickup. Additional inconveniences
may be experienced by drivers and passengers. Here, we consider a specific type of
inconvenience cost: schedule delay cost. The approach below can be easily extended
to any arbitrary pattern of inconvenience costs. Until now, we assumed drivers and
passengers had no scheduling delay preferences. However, in many scenarios the
desired arrival time is different for every individual and individuals are penalized
for early and late arrivals. Therefore, we present a model that incorporates time
preferences and scheduling delay. Every individual i has a desired arrival time τi.
In this case, drivers and passengers also need to agree on an arrival time when they
are matched. The matching costs are therefore a trade-off between travel time and
scheduling delay as first introduced by Vickrey, 1969. If travel time is independent
of departure time, the total matching cost including scheduling delay penalties is:

C(i, j, t) = 2αmax(xi−yj, 0)+β
(
(τi−t)++(τj−t)+

)
+γ

(
(t−τi)++(t−τj)+

)
, (3.4)

where t is the agreed arrival time, β is the earliness penalty and γ is the lateness
penalty. We assume γ ≥ β (lateness is weighted higher than earliness), consistent
with the empirical literature. For a given match (i, j) the optimal joint arrival time
t∗ can be determined according to the following theorem (of which the proof can be
found in the appendix) and illustrated graphically as in Figure 3.3. We have:

Theorem 6. Consider linear scheduling delay with γ ≥ β. Driver i is matched
to passenger j with desired arrival times τi and τj. The optimal arrival time t∗
that minimizes the total earliness and lateness penalty as given in Equation (3.4) is
given as t∗ = min(τi, τj). In this case, the reduced-form cost of matching driver i to
passenger j is C̃(i, j) = 2αmax(xi − yj, 0) + β|τj − τi|.

We emphasize that the reduced matching cost is independent of t∗. Using this
property, the problem can be decomposed such that the optimal t∗ can be determined
for every potential match first and the optimal matching can be determined thereafter
using the reduced matching cost. If earliness and lateness are not computed as
piece-wise linear functions as in Equation (3.4), Theorem 5.1 does not necessarily
hold. However, for many functions a similar closed form solution can be obtained.
For any pair of functions satisfying the non-increasing and non-decreasing definition
of earliness and lateness, respectively, the following theorem holds.
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Joint total cost
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Figure 3.3: Scheduling delay cost for a given match

Theorem 7. Consider scheduling delay penalties where earliness and lateness
are non-increasing and non-decreasing functions of time, respectively. Driver i is
matched to passenger j with desired arrival times τi and τj and τi ≤ τj, without loss
of generality. The optimal arrival time t∗ that minimizes the total earliness and
lateness is in the closed bounded interval [τi, τj].

Note that this only holds if travel time is independent of the departure time. In
the presence on congestion, travel time and the optimal departure time are not
independent and therefore Theorem 5.1 and 5.2 do not necessarily hold.

3.3 Matching in the presence of bottleneck con-
gestion

During the morning commute, the access roads to the CBD are often heavily
congested. Travellers cannot always arrive on time at their destination and they may
experience both scheduling and travel time delays. The effect of congestion in road
networks on departure time decisions is a well-studied problem (e.g. Arnott, Palma,
and Lindsey, 1993 and Small, Verhoef, and Lindsey, 2007). Here, we consider a
basic Vickrey, 1969 model of road congestion. We incorporate bottleneck congestion
and scheduling delay in the matching decisions of the carpooling operator and the
departure time decisions of the drivers. Bottleneck congestion is implemented in
a similar way as described by Arnott, Palma, and Lindsey, 1993. We assume the
road is uncongested except at a single bottleneck at the entrance of the CBD. Here,
at most s cars can pass per unit of time, suggesting that a queue is formed if this
capacity is exceeded. The queue is served according to a first-come, first-served
(FIFO) policy. Similar to Arnott, Palma, and Lindsey, 1993, travel time from home
to work is defined as T (t) = T f + T v(t), where T f is fixed travel time including a
possible detour caused by matching, T v is variable travel time and t is the departure
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time. Variable travel time depends on the queue length at the time of arrival at the
bottleneck, Q(t′). A driver’s (or carpooler’s) queueing time is then equal to:

T v(t′) = Q(t′)
s

. (3.5)

The length of the queue can be determined using the cumulative number of arrivals
at the bottleneck (r(t)) and the departure rate according to the capacity. Let t̂ be
the last time the queue was empty. The queue length at time t′ > t̂ is given by:

Q(t′) =
∫ t′

t̂
r(u)du− s(t′ − t̂). (3.6)

Matching costs in our problem now include possible delay at the bottleneck, detour
to pickup a passenger, earliness and lateness. The relationship between travel time,
earliness and lateness is similar to that described in Section 3.2.3.

Note that bottleneck congestion does not incorporate congestion on the corridor itself.
However, as during the morning commute the traffic leaving the CBD is usually
very limited, congestion during the pickup of passengers is unlikely. Congestion on
the corridor towards the CBD tends to increase as the bottleneck is approached, due
to the increased demand for road space. Therefore, the highest level of congestion is
observed at the entrance of the CBD, which is incorporated in our bottleneck. More
complex city structures are beyond the scope of this work, but clearly a challenging
future direction.

The joint problem of matching and departure time choices is solved in a sequential
and iterative way. The departure time choices in equilibrium are determined using
an equivalent optimization problem for the bottleneck model, as described by Iryo
and Yoshii, 2007. Strictly speaking, Iryo and Yoshii, 2007 determine the equivalent
equilibrium arrival times rather than departure times. Therefore, from here onwards
we refer to equilibrium arrival times instead. While various heuristics have been
developed to solve this sub-problem, we chose this method as it is fast and exact.
Thereby, it allows to compute the scheduling delay costs as well as delay at the
bottleneck efficiently through a single optimization problem and its dual. By
solving an LP, the equilibrium arrival times and corresponding cost functions can
be determined. Variable zti describes the number of drivers in class i ∈ I (here,
all drivers and driver-passenger pairs are treated as separate classes) that choose
time t ∈ T to leave the bottleneck (and also enter it in case there is no congestion).
We emphasize that for the congestion model, time is discrete and not continuous.
Classes are defined as the sets of drivers with equal desired arrival times. In the
case of carpooling, we use the matched couples to identify a class. The total number
of drivers in class i is defined as di and the capacity at the bottleneck is given as s.
The non-bottleneck costs (i.e. scheduling delay costs) of a driver (or match) in class
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i that choose to leave the bottleneck at time t is given as pti. Non-bottleneck costs
pti are defined as the sum of earliness and lateness penalties for both the driver and
the passenger, scaled by the value of time α, such that the dual variables directly
give the delay. In the case of carpooling, we treat a couple as a single entity and
therefore we take the average of their non-bottleneck costs.2 This yields the following
definition of non-bottleneck costs for a driver i arriving at time t. Note that, as the
matching is fixed at this stage, every matched driver has a known passenger j.

pti =
{
β
α

(
0.5(τi − t)+ + 0.5(τj − t)+

)
+ γ
α

(
0.5(t − τi)+ + 0.5(t − τj)+

)
if driver i is matched to passenger j

β
α

(τi − t)+ + γ
α

(t − τi)+ if driver i drives alone
(3.7)

The formulation is given as follows:

P2: min
∑
t∈T

∑
i∈I

ptizti (3.8a)∑
i∈I

zti ≤ s ∀t ∈ T (3.8b)∑
t∈T

zti = di ∀i ∈ I (3.8c)

zti ≥ 0 ∀t ∈ T, i ∈ I (3.8d)

The objective is to minimize the total scheduling delay costs given that the capacity
is satisfied at every time interval and every driver (or match) chooses a time interval.
According to Iryo and Yoshii, 2007, the solution to this problem is equivalent to
the equilibrium arrival time choices of all drivers if the FIFO constraint is satisfied
(FIFO is not enforced by the formulation proposed by Iryo and Yoshii, 2007 and
has to be checked separately).

Iryo and Yoshii, 2007 define the dual formulation, to obtain the delay wt for a given ar-
rival time t ∈ T . We use dual variables wt and θi to solve the following formulation:

P3: max
∑
i∈I

diθi −
∑
t∈T

swt (3.9a)

pti + wt ≥ θi ∀t ∈ T, i ∈ I (3.9b)
wt ≥ 0 ∀t ∈ T (3.9c)

By solving the dual formulation, we can approximate the delay in the equilibrium
state. The delay in equilibrium for every discrete time step t is given by wt. As we
consider a matched couple as a single agent, we are able to incorporate scenarios
where a part of the drivers are driving alone, while another part is carpooling.

2Equal coefficients ensures optimality for driver and passenger if we assume costs can be
redistributed between driver and passenger. The proof hereof is straightforward and left to the
reader.



3. Influence of dynamic congestion with scheduling preferences on carpooling
matching with heterogeneous users 63

We use an iterative approach to determine the optimal matching decisions in
equilibrium. The reason for this is that the joint problem (optimal matching
and arrival time choices in equilibrium) is too complex to solve exactly in a
one-step process. The iterative procedure is summarized in Algorithm 1. The
algorithm is initialized with the uncongested travel time (no delay at the bottleneck).
The optimal matching and consequently the equilibrium arrival times given this
matching are determined using the aforementioned optimization problem. The
delay is updated using the estimated delay from the dual function as a weighted
moving average. The predicted delay is updated with the delay from last iteration
using a fraction λk. After every iteration, λk is decreased by multiplying it by
a constant δ until λmin is reached. This represents the increasing confidence in
the estimated delay as the number of iterations increases. Delay estimates are
updated as follows where Ŵ k are the predicted delays for iteration k and W k are
the experienced delays for iteration k:

Ŵ k+1 = λkW k + (1− λk)Ŵ k (3.10a)
λk+1 = max(δλk, λmin) (3.10b)

At convergence, arrival times are in equilibrium following the optimization problem
defined by Iryo and Yoshii, 2007 and the matching decisions are optimal given
the equilibrium state. The generalized matching costs including bottleneck conges-
tion and tardiness penalties are now as follows for driver i and/or passenger j
departing at time t:

C(i, j, t) =


α(D(i, j) + W (i, j, t)) + βE(i, j, t) + γL(i, j, t), if regular driver i is matched to regular passenger j
b + αW (i, j, t) + βE(i, j, t) + γL(i, j, t), if regular driver i is matched to dummy passenger j

c
T
, if dummy driver i is matched to a regular passenger j

0, if dummy driver i is matched to a dummy passenger j

(3.11a)
(3.11b)

(3.11c)
(3.11d)

Here, D represents the detour driver i makes to pick up passenger j, W is the
delay at the bottleneck, E and L are earliness and lateness penalties respectively.
Bottleneck delay, earliness and lateness are experienced by both the driver and the
passenger whereas the detour is only experienced by the driver. Equation (3.11a)
is the congested variant of (3.1) and (3.4), whereas the other equations represent
the matches to dummy variables. If a driver is matched to a dummy passenger,
he/she loses his/her subsidy b. Thereby, he/she may still suffer from delay and
scheduling delay at the bottleneck, but he/she does not need to incorporate the
time preferences of a passenger. For the passenger, the cost of matching to a dummy
driver is equal to cT . In this case, it is assumed the passenger does not suffer from any
delay or scheduling delay when using public transport. So far, we have considered
that passengers are either carpooling passengers or public transport passengers.
Alternatively, we can consider the case where all passengers also own a vehicle and
are self-driving if they are not carpooling. In this case, the cost of matching a
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passenger to a dummy driver has the same expression as that of matching a driver
to a dummy passenger, except for the lost subsidy (which is only added for drivers).
Thereby, a passenger incurs a general car cost, such as the cost of gasoline (cg).
The cost of gasoline is assumed to be proportional to the distance from the CBD,
but independent of any congestion encountered. Considering this, if passengers own
a vehicle, their cost of matching to a dummy driver is defined as follows:

C(i, j, t) = cg(1− xj) + αW (i, j, t) + βE(i, j, t) + γL(i, j, t) (3.12)

where a dummy driver i is matched to a regular passenger j. Of course, if passengers
also drive, they should be accounted for in the bottleneck. We emphasize that
Equation (3.12) replaces Equation (3.11c) in case passengers are self-driving instead
of using public transport, and the other equations remain unchanged.

To attain convergence, the matching only changes if the improvement compared
to the previous matching is higher than ϵ%. Thereby, we only allow κ matches
that we selected in the previous iteration to remain unchosen during the next
iteration. This additional restriction can be incorporated easily in Problem P1.
We enforce this restriction for the first η iterations.

Algorithm 1: Iterative Matching Approach
1 Initialize the waiting time at every time interval to the uncongested waiting

time
2 while Stopping criterion is not met do
3 Determine the optimal matching using formulation P1
4 Given the matching, determine the equilibrium arrival times using the

equivalent optimization problem defined by Iryo and Yoshii, 2007 using
formulation P2

5 Given the matching and the equilibrium arrival times, determine the
delay at every time interval using the dual formulation P3

6 Update the matching costs for every potential match given the
estimated delays

7 Gather statistics on travel time, delay, earliness and lateness based on
current matching and actual waiting time.

8 end

In accordance with the updated matching costs, we redefine the notion of optimal
matching as follows:

Definition 3 (Optimal matching with congestion): The optimal matching
minimizes the sum of detour costs, inconvenience costs (including scheduling delay
costs) and delay at the bottleneck for all involved passengers and drivers.
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The updated definition of optimal matching requires to solve a dynamic bottleneck
congestion problem. The optimal matching in equilibrium is such that the central
operator does not want to change the obtained matching and the individuals
do not want to change their arrival times. As such, delay at the bottleneck
and the arrival time decisions are in equilibrium and therefore the corresponding
optimal matching does not change.

3.3.1 Equilibrium analysis
An analytical solution can be obtained for the case where the desired arrival
time t∗ is equal for every individual. This solution can be identified using the
following theorem:

Theorem 8. Consider the dynamic carpooling model with n passengers and m

drivers, each with α− β − γ (scheduling) delay penalties and both owning vehicles.
If all users have the same desired arrival time t∗ and all users prefer carpooling
over their alternative, then the equilibrium arrival times can be determined using
max(n,m) non-carpooling individuals as described by Arnott, Palma, and Lindsey,
1993.

Proof. Arrival time is determined as a couple agreement between driver and
passenger. Note that this is independent of the travel time before the bottleneck
(including possible detour for pickup) as this is fixed for every arrival time. Therefore,
the cost function to determine the arrival time only includes waiting time and
scheduling delay. As all desired arrival times are equal, scheduling delay is
independent of the matching. The matching and arrival time decisions are therefore
independent. Given that every individual has equal desired arrival time, the match
can be considered to be a single agent. If everyone prefers to carpool, there will be
a total of min(n,m) matches. The remaining drivers or passengers will drive solo
as they all own a vehicle, so the total number of vehicles on the road will be equal
to max(n,m) Using this, the arrival times in equilibrium are similar to those of a
non-carpooling setting with max(n,m) individuals and can be derived analytically
as described by Arnott, Palma, and Lindsey, 1993.

This result does not necessarily hold if the desired arrival times are distributed. In
this case, the cost functions are not equal and therefore driver and passenger may
wish to respond differently to congestion. Any other kind of cost can be included,
as long as the desired arrival time is equal. If not all users prefer carpooling over
their alternative, this is not necessarily true. In this case, some matches may not be
optimal under some levels of congestion, while they are optimal under other levels.
The number of matches may therefore depend on the level of congestion, thereby
losing the independence between the matching model and the bottleneck model.
This is discussed in more detail in the next section. Liu and Li, 2017 analyze the
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bottleneck model in the homogeneous case (with no spatial distributions of origins,
nor of distribution of t*). They consider three types of commuters: solo drivers,
ridesharing drivers and ridesharing riders. Under those assumptions, they show
that at equilibrium, with time based and distance based ridership compensations,
solo drivers can drive at the middle of the peak or on the wing of the peak. As
discussed below, heterogeneity (location and desired arrival time) matter.

Let us elaborate on the difference between homogeneous and heterogeneous individu-
als with a numerical example. Algorithm 1 is used to obtain the delay at convergence
for various t∗ profiles. We consider a profile where every individual has identical
desired arrival time t∗ and a profile where desired arrival times are pseudo-randomly
generated. We compare the well known scenario where every individual drives alone
to the scenario where everybody carpools. Figure 3.4a displays the delay for all
time intervals, with arrival time on the horizontal axis and delay on the vertical
axis. The peak delay is at t∗, which is the same for all individuals. We observe that,
in accordance with the aforementioned theorem, the shape of delay for carpooling
mimics the shape of delay for no-carpooling with max(m,n) drivers. The slopes are
equal for both curves and are equal to β

α
before t∗ and − γ

α
after t∗, in agreement

with Yu, Berg, and Verhoef, 2019. The beginning and end of the rush hour, tq and
tq′ respectively, are also equal to those defined in Arnott, Palma, and Lindsey, 1993
and can be defined as follows, where N is the number of vehicles on the road:

tq = t∗ − γ

β + γ

N

s
(3.13a)

tq′ = t∗ + β

β + γ

N

s
(3.13b)

Figures 3.4b and 3.4c display the delay at the bottleneck if t∗ is not identical. We
evaluate the queue on a time horizon between 0 and 20, which is divided into 1000
intervals. The desired arrival times are pseudo-randomly drawn from a uniform
distribution3 between t∗s = 8 and t∗e = 12. The peak of congestion is observed at
t̂∗ = β

β+γ
t∗s + γ

β+γ
t∗e, which is at 11.2. This result is in agreement with those defined

in Lindsey, Palma, and Silva, 2019. We also observe that the slopes are similar
to those when every individual has an identical t∗ and the start and the end of
the rush hour can be approximated using (3.13a) and (3.13b).
When matching exists, the uniform distribution of the desired arrival times are lost,
as they are approximately pooled between the driver and the passenger. Therefore,
the shape of the delay curve is lost and no theoretical value for the peak congestion
time can be used. However, as the arrival times of a matched couple are determined
in a systematic way, we can still identify some descriptive properties. According to

3Desired arrival times are selected such that they are exactly uniformly distributed on the
interval and are therefore not truly random
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(b) Pseudo-uniform t∗

0 2 4 6 8 10 12 14 16 18 20

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
e
la

y

Delay at bottleneck

No carpooling

Carpooling

t*

(c) Pseudo-uniform t∗

Figure 3.4: Delay at bottleneck

Theorem 5.1, in the absence of congestion, the optimal arrival time of a matched
couple is the minimum of their two desired arrival times. We observed that in the
presence of congestion, a matched couple still has a tendency towards the earliest
arrival time, in agreement with this theorem. Following this, as displayed in Figure
3.4b, the peak of congestion is usually slightly earlier than t̂∗. If the desired arrival
times of the matched couples are close to a uniform distribution, there will be a
single peak of congestion, as displayed in Figure 3.4b. However, if the uniformity of
desired arrival times is lost after matching, the single peak congestion may also be
lost. In that case, we can observe multiple peaks in the delay curve as displayed in
Figure 3.4c. We emphasize that the delay curves in Figure 3.4a and those without
carpooling (blue) in Figure 3.4b and 3.4c are theoretical. The delay curves with
carpooling (red) in Figure 3.4b and 3.4c are simulated. A detailed analysis of delay
and tardiness penalties is included in Section 3.4.2.

3.4 Numerical results
In this section we provide numerical simulation results based on the methodology
described in the previous sections. We first evaluate the theoretical results without
congestion. Thereafter we evaluate the optimal matching under congestion and
perform extensive sensitivity analysis in Section 3.4.2.

3.4.1 Optimal matching without congestion

As expected, simulation results have shown that in the absence of congestion, the
optimal matching is in agreement with Theorems 1 - 5. While this is theoretically
proven, it also allows to test that our simulations provide intuitive results. Results
have also identified that, especially in large instances, the optimal matching is not
necessarily unique. Consider the following example where driver i1 and driver i2
are both located earlier on Hotelling’s line than passenger j1 and j2. Then, under
Assumption A1, the relation in Equation (3.14) holds.
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C(i1, j1) + C(i2, j2) = C(i1, j2) + C(i2, j1) = 0. (3.14)

This indicates that the optimal matching is not necessarily unique, as passengers
j1 and j2 can be interchanged without changing the objective value.

3.4.2 Optimal matching under bottleneck congestion
In this section we evaluate the optimal matching under bottleneck congestion for
various levels of carpooling and bottleneck capacity. We evaluate the convergence
of our iterative algorithm in Section 3.4.2. Thereafter, we compare macroscopic
statistics such as the total number of matches, average detour, average delay and
scheduling delay penalties for various system configurations in Section 3.4.2. Finally,
in Section 3.4.2, we provide a more detailed microscopic analysis of the difference
between carpoolers and solo-drivers when they face bottleneck congestion.

Convergence of the iterative algorithm

We first evaluate the convergence of our algorithm. Given that we use an exact
optimization problem to find the equilibrium arrival times, we only need to evaluate
the convergence of the matching decisions. In our analysis, we consider a total of
200 individuals, that can be either drivers or passengers. The length of the corridor
is set equal to 10 unit lengths. We set λ0 = 1.0, λmin = 0.1 and δ = 0.95 (for
weighted moving average estimates in Equation (15)). Desired arrival times t∗ are
drawn from a uniform distribution between 8 and 12 time units. We consider the
complete horizon between 0 and 20, which is divided into 100 discrete time intervals.
The value of time and schedule delay parameters α, β, γ are chosen as 2, 1 and 4,
respectively.

We consider the following parameter settings. The maximum number of matches
that can be changed κ is equal to 20 for the first η = 30 iterations, while we
consider a total of 50 iterations. The minimal expected matching improvement ϵ
is equal to 0.1%. The bottleneck capacity is set to 4 per time interval, while the
opportunity cost b+ cT is equal to 3. The initial matching is randomly generated
to identify multiple starting points. The iterative process is then repeated 10 times.
The convergence result are depicted in Figure 3.5. The first graph displays the
actual number of matches. We observe that this number fluctuates during the first
iterations but stabilizes after 15 to 30 iterations. This is in line with the expected
improvement, which approaches zero after 15 iterations. Although the exact number
of matches may differ by at most 3 between different runs (ranging between 68 and
71 in Fig. 5a), we observe that the difference in the average cost per individual
is negligible. This can be explained by the criterion that the total cost has to be
improved by at least 0.1% to accept the new matching. In addition to this, we
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have shown that multiple matching may lead to (roughly) the same total costs. To
achieve convergence for other system configurations, the specific parameters κ, η, λ, δ
and ϵ may have to be adjusted. When passengers also drive, the level of congestion
depends on the number of matches, which may lead to fluctuations. This is related
to the myopic nature of the operator’s matching decisions, in the sense that the
operator does not incorporate the effect of his/her decisions on congestion. To avoid
this, the operator could make decisions in a more strategic way, by approximating
the congestion level from the number of matches he/she imposes. The convergence
of the algorithm and the equilibrium solution when the number of road users is
endogenous has to be studied in more detail.

Although the costs are extremely similar across different runs, the exact matchings
are not. Over the 10 different runs with on average approximately 70 matches,
a total of 250 matches are used in the optimal solution out of which only 50 are
used in at least half of the runs. This is explained by the highly similar costs of
different matches, similar to the uncongested case in Section 3.4.1. Although the
exact matches are quite different, 97% of the passengers either always or never
carpool and 87% of the drivers either always carpool or never carpool4.
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Figure 3.5: Convergence of matching decisions

Macroscopic analysis

The success of carpooling services significantly depends on the quality of the pooling
compared to other travel alternatives. In principle, commuters decide to pool
if there are savings in their total cost. As the problem described has a large
number of parameters to perform sensitivity analysis, our objective is to identify
representatives scenarios to shed intuition for critical decisions. We are investigating
how the bottleneck capacity, the price of gas and level of subsidy influence the

4Note that these numbers are dependent on the chosen simulation settings.
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number of matches and different costs associated5. With respect to mode choice of
passengers, we consider two different options:
Option A: Passengers do not own a car and are either carpooling passengers or
public transport passengers.
Option B: Passengers own a car and are either carpooling passengers or self-driving
passengers.

We first evaluate the effect of subsidies. Figure 3.6 and 3.7 display the number
of matches and cost of scheduling delay, delay, detour and public transport for
varying subsidies, while the other parameters are fixed. Figure 3.6 displays option
A and Figure 3.7 displays option B. In Figure 3.6, the number of matches increases
with the subsidies, as expected. With increasing subsidies to carpoolers, carpooling
becomes a more attractive alternative to public transport, thereby attracting more
passengers. Average scheduling delay penalties increase, as it is assumed passengers
do not experience scheduling delay when using public transport. Overall, it is
clear that total cost increase with subsidies, suggesting that when passengers take
public transport as an alternative, carpooling subsidies do not have a positive social
effect, as expected. This is in contrast with the effect illustrated in Figure 3.7 when
passengers also own a car. In that case, by subsidizing carpooling the number
of matches increases slightly, thereby reducing the number of cars on the road
and therefore reducing scheduling delay and delay penalties. Here, it is clear that
subsidizing carpooling does have a positive effect on total cost, due to the positive
externality carpooling has by reducing the number of cars that pass the bottleneck.
In reality, passengers are likely to be a mix of carowners and non-carowners. An
important topic of further research is to use targeted subsidies to those individuals
that have the largest positive effect on welfare.

In line with Theorem 6 in the absence of congestion, carpooling induces an increase
in earliness. This suggests that even in the presence of congestion, carpoolers have
a tendency to depart earlier rather than later. The number of matches first shows
a steep increase, then it increases much slower. The reason for this is that the
majority of the individuals can be convinced to carpool with relatively small subsidies.
Following the intuition of Theorem 5, the most costly matches are left out. For it to
be beneficial for the operator to match those individuals, subsidies need to increase
substantially, explaining the slower increase in the number of matching for b > 2.
Next we evaluate the effect of bottleneck capacity on the same statistics, with no
subsidy (b = 0). When passengers use public transport as an alternative (Option A)
in Figure 3.8, the number of matches increases with bottleneck capacity. The reason
for this is that congestion decreases, making carpooling more attractive compared

5Emissions (in particular CO2) are rougly proportional to fuel consumption. They are omitted
in the current analysis.



3. Influence of dynamic congestion with scheduling preferences on carpooling
matching with heterogeneous users 71

0 1 2 3 4 5

Subsidy (b)

0

10

20

30

40

50

60

70

80

90

100

110

T
o
ta

l 
n
u
m

b
e
r 

o
f 
m

a
tc

h
e
s

Number of matches

Number of matches

0 1 2 3 4 5

Subsidy (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 t
im

e
 p

e
r 

in
d
iv

id
u
a
l

Delay and Tardiness

Delay

Earliness

Lateness

0 1 2 3 4 5

Subsidy (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 t
ra

v
e
l 
ti
m

e
 p

e
r 

in
d
iv

id
u
a
l

Travel time

Delay

Detour

Total Travel Time

0 1 2 3 4 5

Subsidy (b)

0

50

100

150

200

250

300

350

400

450

500

A
v
e
ra

g
e
 t
o
ta

l 
c
o
s
t

Total cost

PT cost

Driving + matching cost

Total cost

Figure 3.6: Passengers do not own a car and use public transport as an alternative to
carpooling. Bottleneck capacity (s) is equal to 4 cars per time interval, public transport
cost cT is fixed at 1 and subsidy varies.
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Figure 3.7: Passengers own a car and drive solo as an alternative to carpooling.
Bottleneck capacity (s) is equal to 4 cars per time interval, gasoline cost (cg) is equal to
0.2 per unit of distance and subsidy varies.

to public transport. As an effect, scheduling delay penalties as well as total cost
decrease. This is related to the fact that individuals only carpool if it reduces their
costs, similar to the matching condition in Equation (3.3). When passengers are
self-driving as an alternative to public transport, as in Figure 3.9, the effect of
bottleneck capacity on the number of matches is the opposite. If capacity increases,
delay at the bottleneck decreases. Delay at the bottleneck gives more flexibility to
match with individuals that have different desired arrival times. In equilibrium in
the presence of delay, commuters can be indifferent between arriving on time or
early/late depending on their desired arrival time t∗. This flexibility disappears
as capacity increases and therefore driving solo becomes more attractive for some
commuters. We note that as passengers face bottleneck congestion independent of
whether they carpool or not, the effect of bottleneck capacity is less substantial
when passengers are self-driving (90 to 78 matches) compared to when they use
public transport (0 to 85 matches).
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Figure 3.8: Passengers do not own a car and use public transport as an alternative to
carpooling. Public transport cost cT is fixed at 1 and subsidy (b) is fixed at 0. Bottleneck
capacity varies between 2 and 8 cars per time interval.
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Figure 3.9: Passengers own a car and drive solo as an alternative to carpooling. Gasoline
cost (cg) is equal to 0.2 per unit of distance and subsidy (b) is fixed at 0. Bottleneck
capacity varies between 2 and 8 cars per time interval.

A sensitivity analysis on the fuel cost per unit of distance is displayed in Figure
3.10. We note that the fuel cost of 0 is incremented by a value of 10−4, such that
carpooling is preferred if all other cost components are equal for driving solo and
carpooling. We observe that the number of matches increases with the fuel cost,
as the fuel savings of carpooling increase. As a consequence, the total number of
cars that have to pass through the bottleneck decreases and therefore congestion
decreases. We therefore observe that although fuel costs increase in the right-panel
of Figure 3.10, total cost decreases as congestion is reduced. If fuel cost increases
even further, it no longer leads to an increase of carpooling participation and
therefore leads to increasing total cost.
Lastly, we perform a sensitivity on the composition of the set of drivers and
passengers. Specifically, we keep the total number of travellers constant at 200
but vary the number of passengers and drivers. Passengers are self-driving as an
alternative to carpooling (Option B) such that the number of cars passing through
the bottleneck may vary. This is displayed in Figure 3.11. It is clear that the total
cost is minimized when the number of drivers and passengers are equal, as the
number of cars on the road is minimized and therefore bottleneck congestion is
minimized. We also note that the statistics are approximately symmetric in the
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Figure 3.10: Passengers own a car and drive solo as an alternative to carpooling.
Bottleneck capacity (s) is equal to 6 cars per time interval and subsidy (b) is fixed at 0.
Gasoline costs vary between 0 and 0.5 per unit of distance.

number of drivers and passengers, apart from the fuel cost which is only considered
for passengers by construction. When the number of passengers and drivers are
unequal (e.g. 60, 80, 120 and 140 passengers), we observe that the number of
matches is almost maximized, whereas this is not the case if the number of drivers
and passengers are equal. The reason for this is that if there are more drivers
or passengers, there exists some flexibility to leave out the commuters that are
difficult to match (i.e. can only be matched at high cost) without decreasing
the number of matches. We emphasize that when the number of passengers and
drivers grows altogether, matching costs in general decrease due to the increased
number of matching opportunities.
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Figure 3.11: Passengers own a car and drive solo as an alternative to carpooling.
Bottleneck capacity (s) is equal to 4 cars per time interval, subsidy (b) is fixed at 0 and
gasoline cost (cg) is fixed at 0.2 per unit of distance. The total number of individuals is
fixed at 200, but the number of passengers and drivers varies.

Microscopic analysis

Next, we look at the behaviour of the two groups of individuals (i.e. carpoolers and
solo drivers) separately. We consider two sets of simulations for options A and B
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separately. The simulation settings for both cases are chosen such that there are
sufficient solo drivers and carpoolers to compare the two. The graphs are obtained
using a total of 50 runs. Note that, when aggregating the two types of commuters,
the bottleneck operates at capacity from the moment a queue starts until the queue
is completely depleted, in agreement with dynamic congestion equilibrium theory.
Also note that the desired arrival times of carpoolers include those of both the
driver and the passenger. In the absence of congestion (i.e. for high bottleneck
capacities) the distributions of actual and desired arrival times are approximately
uniform and similar for carpoolers and non-carpoolers. This serves as a benchmark
for our investigation of the effect of bottleneck congestion on carpooling behaviour.

Figure 3.12 displays the actual and desired arrival times for the case where passengers
also own a car and are therefore self-driving if they do not carpool (Option B). We
observe that carpoolers generally avoid the peak period of the bottleneck, where
waiting time is the highest. Delay costs are experienced by both matched individuals,
whereas tardiness penalties are split between them. As a consequence, avoiding the
bottleneck and moving closer to either one of the desired arrival times is beneficial
for a match. Again, we observe that the tendency towards early arrival is higher
than the tendency towards late arrival, following the same intuition as in Theorem
6, given that γ ≥ β.

Figure 3.13 displays the actual and desired arrival times for the case where passengers
do not own a car and use public transport if they are not matched (Option A). We
observe a very similar effect to that of the previous case. However, there is one key
difference. As the alternative option of passengers does not yield any bottleneck
costs (i.e. delay and scheduling delay caused by bottleneck congestion), passengers
who are more likely to have high bottleneck costs are less likely to carpool (i.e. those
with desired arrival times at the peak congestion period; roughly around time 11 in
agreement with the theoretical results without carpooling discussed in the previous
section). This makes the distinction between carpoolers and solo-drivers even more
clear, but this effect diminishes as the subsidy increases and more carpoolers are
attracted.

Carpoolers and non-carpoolers respond differently to congestion. Specifically,
carpoolers have a tendency to depart earlier and avoid the peak period of congestion.
The optimal matching and the corresponding optimal arrival times are determined
accordingly, such that carpoolers arrive in the wings of the travel period, whereas
individual drivers arrive somewhat in the middle. The above analysis emphasizes
the importance to model congestion in tandem with carpooling/matching.
Finally, we consider two examples of explicit matchings. We use similar settings
as before where passengers are assumed not to have access to a car and therefore
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Figure 3.12: Pattern of desired and actual arrival times for carpoolers and individual
drivers if passengers own a car

Figure 3.13: Pattern of desired and actual arrival times for carpoolers and individual
drivers if passengers do not own a car

use public transport if they are not matched (Option A). In Figure 3.14, the points
mark the drivers (blue) and passengers (red) based on their location on the corridor
and their desired arrival time. The line segments between the points indicate the
matches. The results are obtained through a single run and display 100 drivers,
100 passengers and their corresponding matches. Figure 3.14a considers the case
where bottleneck capacity is relatively high and therefore congestion is negligible.
We observe, in line with Theorem 4, that some of the left-most passengers and the
right-most drivers remain unmatched. Further, drivers are mainly located to the
left of their matched passenger, to minimize the detour and desired arrival times are
extremely similar. Other than what was stated in Theorem 2, drivers and passengers
are not necessarily matched in sequence. This is caused both by non-uniqueness
of the solution, as well as the presence of scheduling delay penalties that have to
be taken into account when finding the optimal matching. Figure 3.14b displays
the explicit matches for a bottleneck capacity of 4. Congestion is more significant
here and therefore influences the matching. We make similar observations as for the
high capacity case, however, there is one important difference. Again, carpoolers
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mainly occur in the tail of the travel period. Those individuals with desired arrival
times between 10 and 11 (the peak period of congestion) choose to travel alone or
resort to their alternative options for drivers and passengers respectively.

A closer look at the arrival times of matches where one of the two individuals
has a desired arrival time that is substantially closer to the peak of delay indicates
that these matches generally avoid the peak of delay. Specifically, their actual arrival
time tends to the desired arrival time that is furthest from the peak. This explains
the behaviour in Figure 3.12 where carpoolers typically avoid the bottleneck more
than solo-drivers.

We also note that when desired arrival times are heterogeneous and congestion
exists, the optimal matching may not be unique. Consider two drivers that are
located before two passengers such that in any matching of these four individuals
will lead to zero detour. In equilibrium, individuals can be indifferent between
arriving early and arriving on-time (or between late and on-time, depending on their
desired arrival time relative to the peak of congestion). If all four individuals have
overlapping time intervals where they are indifferent, the two potential matchings
lead to identical objective values.

0 1 2 3 4 5 6 7 8 9 10

Location on Hotelling's line

8

8.5

9

9.5

10

10.5

11

11.5

12

D
e

s
ir
e

d
 a

rr
iv

a
l 
ti
m

e

Matches

(a) Bottleneck capacity (s) of 10

0 1 2 3 4 5 6 7 8 9 10

Location on Hotelling's line

8

8.5

9

9.5

10

10.5

11

11.5

12

D
e

s
ir
e

d
 a

rr
iv

a
l 
ti
m

e

Matches

(b) Bottleneck capacity (s) of 4

Figure 3.14: Explicit matches of drivers and passengers

3.5 Summary
We developed a framework for matching in carpooling or ride-sharing incorporating
dynamic bottleneck congestion. We first described various fundamental properties
of matching decisions in carpooling. Our theoretical results showed that, if the
only matching inconvenience is a possible detour, a system optimal matching is
obtained when the drivers and passengers are matched based on their location in
the sequence of drivers and passengers. When individuals differ in their desired
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arrival time, matching induces tardiness penalties. For a given match, their jointly
optimal desired arrival time is the lowest desired arrival time of the matched couple.
Matching therefore induces earliness and reduces lateness.

In order to evaluate the two-way causal effect of dynamic congestion and matching
decisions, we developed an iterative approach where matching decisions are adapted
based on bottleneck congestion. In the presence of bottleneck congestion, we still
observe a tendency towards early arrival for carpoolers, thereby moving the peak
of congestion forward in time. Our experimental results show that our algorithm
tends to converge to a near-optimal solution within 50 iterations. Thereby, we
observe that the optimal matching, and specifically the optimal number of matches,
depends heavily on the level of congestion, potential subsidies and the number of
available drivers and passengers. A microscopic analysis indicated that carpoolers
and non-carpoolers show different behavioural patterns in the presence of congestion,
where carpoolers mainly try to avoid the peak of congestion. The optimal matching
is also influenced by this behaviour, such that individuals with a desired arrival
time closer to the peak of congestion are more likely to travel alone.

We have proposed a first model on how matching models may be adapted in
case of congestion. Congestion distorts the matching costs and may therefore distort
the optimal matching. In that case, theoretical rules may no longer apply. A central
operator that imposes the matching is more likely to know traffic conditions more
precisely and in particular what the effect of the proposed matching on traffic
congestion will be. As private agents are less likely to know about traffic conditions,
in this case the market will lead to another solution, if congestion is not internalized
via congestion pricing. This justifies the choice for a central operator that imposes
the matching. The implementation of our algorithm requires more testing for a
realistic network, which will be the task of future work.

We have assumed so far that any commuter is either a driver or a passenger.
This is not necessarily the case, as individuals with a car may be flexible in their
choice to be a passenger or a driver. The matching problem can be extended to
this more complex setting. This has been explored on a realistic network of the city
of Paris by Palma, Javaudin, Stokkink, and Tarpin-Pitre, 2022.

By targeting subsidies to those drivers that have the highest matching costs,
more matches can be formed with the same budget. This outlines the benefit of
an adaptive pricing policy to stimulate carpooling. The development of such an
adaptive (targeted) pricing policy is an important direction of further research.
Several adaptive pricing policies have been proposed for the ride-sourcing problem
by among others Yang, Shao, Wang, and Ye, 2020 and Zha, Yin, and Xu, 2018,
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which bears many similarities to the carpooling problem. Further research can
shed light in this direction.



4
Multi-modal ride-matching with transfers

and travel-time uncertainty

This chapter is based on the following article:

• P. Stokkink, A. de Palma, and N. Geroliminis (2023). “Multi-modal
ride-matching with transfers and travel-time uncertainty”. Available
in: THEMA Working Papers (Currently under review in a scientific
journal)

4.1 Introduction
One of the reasons that current carpooling systems are not successful is the lack
of a central operator who can match riders in a multimodal system with different
itineraries in a reliable and efficient way for all parties involved. An important
operational limitation of direct ride-sharing is that a pairing of drivers and riders
needs to be found with matchable itineraries. This means that a driver needs to be
able to pick up and drop off the matched rider without deviating too much from
their original route. In addition to this, desired arrival times of the rider and the
driver need to be similar. Dissimilar matches increase the costs of drivers and riders,
such that ride-sharing is no longer competitive with private or public transport.

A potential solution for this is to allow riders to transfer between drivers and
between multiple modes of transportation. In this work, we consider the possibility
of a single transfer, since more than one transfer makes ride-sharing a less appealing
alternative. By allowing transfers, a larger set of potential matches is available

https://thema.u-cergy.fr/recherche/documents-de-travail/?lang=en
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for drivers and riders since the itineraries only need to be partially similar, as
they spend only a part of their trip together. Transfers may also promote family
carpooling at least for part of their journey. As families share their origin but do
not necessarily share their destination, they can spend the first part of their trip
together before one of them transfers. According to Li et al., 2007, family carpooling
makes up nearly 75% of all carpools.

Despite this benefit, transfers may impose additional difficulties in case travel
time is uncertain. In that case, riders or drivers may arrive late to their match,
which may either cause them to miss their ride or to delay the matched individual
as well. Thereby, for a transfer between ride-sharing and public transport, uncertain
travel times may lead to missed connections. In the presence of uncertainty, transfers
can make ride-sharing with transfers less appealing due to their effect on tardiness
and uncomfortable and unanticipated waiting times. For that, it is important to
develop adaptive matching strategies to maintain the attractivity of ride-sharing.

In this chapter, we consider a ride-matching framework with transfers and un-
certainty in travel time. We consider riders’ transfers between drivers and between
modes of transport. In our framework, riders are able to match with multiple drivers
sequentially and drivers are able to match with multiple riders both sequentially
and simultaneously if the capacity of their car allows. Riders can transfer between
modes or drivers at designated transfer hubs as depicted in Figure 4.1. Transfer hubs
have connections to public transport services and offer parking opportunities for
riders that use their own car to reach the transfer hub. By considering travel time
uncertainty, schedule delay and waiting time penalties of potential matches can be
influenced. Potential matches may be infeasible for some uncertain scenarios, which
can therefore affect the optimal matching. We first model the multi-modal ride-
matching problem with transfers as a deterministic integer programming problem.
Then, we extend this model to a two-stage stochastic programming problem where
travel time uncertainty forms the division between first- and second-stage decisions.
Matches on the first leg of the trip are made under uncertainty, whereas second-leg
matches are made afterwards when information on travel time is gathered.

This chapter is organized as follows. The deterministic matching approach is
described in Section 4.2. The stochastic matching approach is described in Section
4.3. Numerical results are provided in Section 4.4 and the chapter is concluded
in Section 4.5.
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Origins Transfer
points Destinations

PT

Figure 4.1: Graphic illustration of transfers. Colors represent individual commuters.
The lower-left half of a circle represents the driver and the upper-right half represents the
rider. If drivers are not matched to a rider, the full circle is colored by the driver.

4.2 Deterministic matching
In this section, we describe the deterministic ride-matching problem. We provide
the modelling assumptions and the mathematical formulation in Section 4.2.1. We
describe the way the costs and parameters are computed in Section 4.2.2 and
describe the departure time choices of riders and drivers in Section 4.2.3.

4.2.1 Assumptions and mathematical formulation
The deterministic matching approach is based on a set of predefined rider paths.
Let I be the set of riders, J the set of drivers, and H the set of transfer hubs. The
set of riders can be split into two subsets Ic and Inc according to car ownership.
Those in Ic own a car which they may use if they are not matched to a driver,
whereas those in Inc do not own a car and will therefore take public transport if
they are not matched to a driver. Although the number of possible matches can
get large, it is still polynomial in the number of riders, drivers, and transfer hubs.
Note that, if the number of transfers is not limited to one, the number of potential
matches would increase exponentially in the number of transfer hubs. Given that
the possible number of matches for riders is polynomial, we generate all possible
paths in advance. We let the drivers set the departure times, such that the costs
of rider paths are independent and such that the cost of a path is independent of
the total matching which allows us to determine the costs à-priori. The problem
then reduces to selecting the optimal set of rider paths, taking into account that
drivers may carry multiple riders both sequentially and simultaneously, as long as
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Table 4.1: Notational glossary

Sets

H Set of transfer hubs (indexed h)
I Set of riders (indexed i)
Ic Set of riders owning a car
Inc Set of riders not owning a car
J Set of drivers (indexed j)
K Set of rider paths (indexed k)
M Set of transport modes (indexed m)
T Set of discrete time intervals (indexed t)
K(m, t) Set of rider paths for which the first-leg mode is m ∈M and first-leg departure time is t ∈ T
Ω Set of uncertain scenarios of travel-time (indexed ω)

Parameters

a0
jk Binary parameter indicating if driver j ∈ J contributes to rider path k ∈ K

through a direct trip
a1h

jk Binary parameter indicating if driver j ∈ J contributes to rider path k ∈ K

through a first-leg trip to transfer hub h ∈ H
a2h

jk Binary parameter indicating if driver j ∈ J contributes to rider path k ∈ K

through a second-leg trip from transfer hub h ∈ H
ck Generalized cost of rider path k ∈ K
ck(ω) Generalized cost of rider path k ∈ K for scenario ω ∈ Ω
di Destination of individual i ∈ I ∪ J
eik Binary parameter indicating if rider path k ∈ K corresponds to rider i ∈ I
qj Capacity of the car of driver j ∈ J
oi Origin of individual i ∈ I ∪ J
tt(·, ·) travel time between two nodes in the network
αcar Cost per time unit spent in a car
αpt Cost per time unit spent in public transport
αwait Cost per time unit spent waiting at a transfer hub
β Cost per time unit arriving early at the destination
γ Cost per time unit arriving late at the destination
τ Maximum detour a driver is willing to make
ϕpark

d Fixed cost of parking at destination d
ϕfuel Cost of fuel per time unit in a car
ϕpt Cost of public transit per leg

Decision Variables

xk Binary decision variable indicating if rider path k ∈ K is selected
xk(ω) Binary decision variable indicating if rider path k ∈ K is selected in scenario ω ∈ Ω
yjh Binary decision variable indicating if driver j travels through transfer hub j
yjh(ω) Binary decision variable indicating if driver j travels through transfer hub j in scenario ω ∈ Ω

their paths are compatible and the capacity of the car is not exceeded.

The deterministic model is based on the following set of assumptions. Here,
Assumption (A1) is required for the formulation to hold, whereas Assumptions
(A2) - (A5) can be relaxed without significantly influencing the formulation and
the solution framework. For Assumptions (A2) - (A5), we consider that they add
efficiency to the system and they make the operational platform more appealing
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and acceptable to riders and drivers.

(A1) Travel times are exogenous and time-independent and there is no congestion.

(A2) Drivers determine their departure time that minimizes their own costs. If
matched, a rider must agree to the departure time of the driver.

(A3) The matching is determined by a central operator but drivers and riders
only accept the match if their costs are lower than that of their solo-travel
alternatives. The objective of the central operator is to minimize the costs of
all riders.

(A4) (a) Drivers can only perform a pickup in their departure zone or at a transfer
hub and only perform a drop-off at a transfer hub or in their arrival zone.

(b) Riders can only be picked up in their departure zone or at a transfer hub
and only be dropped off at a transfer hub or in their arrival zone.

(A5) Drivers can reach a transfer hub as long as their detour is at most τ time
units (riders have no such constraint, as long as their costs are minimized)

Every individual has an origin oi, a destination di and a desired arrival time t∗i .
Let K be the set of rider paths and let binary parameters eik = 1 if rider path
k corresponds to rider i, and 0 otherwise. Binary parameters ajk = 1 if driver j
contributes to rider path k, and 0 otherwise. The cost of rider path k is denoted
by ck. Our model aims to minimize the total costs of riders and does not account
for the costs of drivers. Since they determine the departure time, they do not
incur any additional scheduling delay costs by sharing a ride. Other than that,
drivers are assumed to be fully compensated for the inconvenience of sharing their
car with others and the minor detour that may be involved with picking up and
dropping off passengers. The design of compensation schemes for drivers is outside
the scope of this work. Let decision variable xk = 1 if rider path k is chosen and
0 otherwise. Let qj be the capacity of the car of driver j, that is, the maximum
number of riders driver j is able to transport at the same time. We let the driver
only perform pickups at their own origin or the transfer hub and only perform
drop-offs at their own destination or the transfer hub. We distinguish between
direct trips that take a rider directly from their origin to their destination, and
indirect trips that pass through a transfer hub. This means we can identify the
following three types of trips, for which the binary parameter ajk is adapted to
denote the trip type and the transfer hub that is used.

• Direct trip: a0
jk = 1 if driver j contributes to rider path k through a direct

trip.

• First leg of indirect trip: a1h
jk = 1 if driver j contributes to rider path k through

a first-leg trip to transfer hub h.
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• Second leg of indirect trip: a2h
jk = 1 if driver j contributes to rider path k

through a second-leg trip from transfer hub h.

We use decision variable yjh to define through which transfer hub driver j is going.
Similar to ride-sharing paths, public transport paths and paths where riders use
their own private car have a corresponding cost ck. Since no driver is involved in
these paths all al

jk parameters are equal to 0. For a multi-modal path where one
leg is a ride-sharing leg, only the corresponding al

jk is 1, and the others all remain
zero. We formulate the deterministic matching problem as follows:

(P1) minimize
∑
k∈K

ckxk (4.1a)

such that∑
k∈K

eikxk = 1 ∀i ∈ I (4.1b)

∑
k∈K

a0
jkxk ≤ qj

(
1−

∑
h∈H

yjh

)
∀j ∈ J (4.1c)

∑
k∈K

a1h
jkxk ≤ qjyjh ∀j ∈ J, h ∈ H (4.1d)

∑
k∈K

a2h
jkxk ≤ qjyjh ∀j ∈ J, h ∈ H (4.1e)

∑
h∈H

yjh ≤ 1 ∀j ∈ J (4.1f)

xk ∈ B ∀k ∈ K (4.1g)
yjh ∈ B ∀j ∈ J, h ∈ H (4.1h)

The objective (4.1a) is to minimize the cost of all matches. Every rider needs to be
matched to exactly one driver, which is enforced by Constraints (4.1b). Feasibility
of the solution from the perspective of a driver is enforced through Constraints
(4.1c) - (4.1e). The feasibility of the solution from the perspective of a rider is
enforced directly on the set of paths K. That is, the set K only contains paths that
are feasible for a rider. On every leg, a driver j ∈ J may have at most qj riders in
his/her car, which is enforced jointly by Constraints (4.1c), (4.1d) and (4.1e). A
driver may either serve riders directly from his/her origin to his/her destination or
through a transfer hub, but not both. This means that when a driver j makes an
indirect trip, he/she can carry qj riders on the first leg and qj riders on the second
leg. The set of riders on both legs may be partially similar, but it is possible that a
driver carries 2qj unique passengers on his/her full trip. Constraints (4.1f) ensure
that a driver only makes a stop at one hub. These constraints also ensure that the
first and second legs of a driver are compatible. That is, the first leg ends at the
same transfer hub as the second leg starts.
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A feasible solution to this problem always exists as long as every rider has access
to public transport. As public transport capacity is unlimited, every rider will
have a corresponding public transport path. The solution in which every rider uses
public transport as a direct path between their origin and destination is then always
feasible. The optimal solution obtained by solving P1 is not necessarily unique, as
multiple solutions may lead to the same objective value. According to Proposition
3 (see Appendix C.2.1), the optimal solution to P1 is also a stable solution if riders
are aware of their alternative transport modes and their costs but are not aware
of alternative matches besides their proposed match. As riders can always choose
to take public transport or ride their own car (there is no capacity constraint on
these modes), the optimal solution will always select these paths if the costs are
lower than other paths. According to Proposition 4 (see Appendix C.2.1), the set
of paths K can be reduced by removing strictly dominated paths. A dominated
path is a path where, by replacing one or multiple legs with a solo leg (either public
transport or solo driving), the cost can be reduced. By reducing the number of
paths in K, the computation time to solve P1 can be reduced.

4.2.2 Computation of costs and parameter values
In this subsection, we describe the costs and parameters of all rider paths. We
distinguish between direct paths and indirect paths that go through a transfer hub.
We consider three potential modes for riders: solo driving (SD) for those riders that
own a private car, public transport (PT), and ride-sharing (RS). Each mode can be
used as a direct path, or a combination of two modes can form an indirect path.
Given that solo driving is not possible as a second-leg mode after public transport
or ride-sharing (because they left their car at home) we have 7 potential mode
choice combinations for indirect paths.

We consider the following cost components and the corresponding parameters.
We let αcar be the value of time spent in a car, β the penalty for every unit of time
an individual is early, and γ the penalty for every unit of time an individual is
late. Waiting time is penalized by αwait and the value of time spent in a car may
be different from the value of time spent in public transport, which is defined as
αpt. Thereby, public transport has a fixed cost ϕpt. Riders that own a car may
choose to drive themselves. They incur ϕfuel fuel cost per time unit, on top of
their value of time, and have to pay a parking fee ϕpark

d at destination d. Travel
time between o and d is defined as tt(o, d). We highlight that for the sake of
notation, these parameters are all homogeneous. However, the formulation allows
for fully heterogeneous parameter values among all individuals. In the latter, we use
linear functions of earliness, lateness, and waiting time with respect to time. The
computation of the cost provided in Appendix C.1 can be generalized to non-linear
cost functions without changing the problem formulation in P1. Schedule delay
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penalties for commuters are incorporated in a way that is consistent with Small,
1982 and Arnott, Palma, and Lindsey, 1993 and has been previously used in a
ride-sharing framework by Palma, Stokkink, and Geroliminis, 2022.

The generalized costs consist of in-vehicle costs depending on the mode, possible
physical costs such as fuel or a public transport ticket, waiting penalties, and
schedule delay penalties. The exact cost formulation depends on the specific type of
path and the departure time choice. When driving themselves, riders can leave at
any time t. For the sake of tractability, we consider a set of discrete time intervals
t ∈ T at which a rider can leave. The optimal departure times of carpooling drivers
are also mapped to the closest discrete time interval t ∈ T . Drivers as well as riders
that are using their own cars determine their departure time in advance. A detailed
description of departure time choices is provided in Section 4.2.3. For completeness,
the exact cost definitions for each type of path is given in Appendix C.1.

We note that in the computation of the costs, we only considered the costs of
the riders. The reason for this is that due to the inflexibility of the drivers with
respect to departure time, they do not incur any extra scheduling delay costs with a
rider. We can neglect the payment of riders to drivers since these are direct money
transfers and therefore do not change the solution of the optimization problem.
For example, riders that save a percentage of their (expected) costs can share it
with the driver. The compensation schemes are outside the scope of this work
but deserve future research attention.

4.2.3 Departure time choice
In this work, we assume that drivers choose their departure time such that they
minimize their own generalized cost. The reason for this is that coordination of
departure times in a complex system where riders match with multiple drivers and
drivers match with multiple riders is difficult both theoretically and in practice.
However, there are some special cases for which the departure times can be
determined optimally. In this section, we discuss those special cases and the
jointly optimal departure times of matches.

Without transfers, the optimal departure time has a closed form solution. Consider
a direct match where a single driver takes a group of riders directly from their origin
to their destination. In case lateness is penalized heavier than earliness, the jointly
optimal departure time is the minimal departure time of all matched individuals
(See Theorem 9 in Appendix C.2). In this case, everyone is either on-time or early
and no one is late. Every rider is matched to at most one driver and therefore the
problem can be decomposed over the groups of agents that share a ride altogether.
The optimal departure time can be determined independently for every group.
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With a transfer, the problem complexifies as more coordination is required. Consider
a set of riders with identical destinations d that make a transfer at the transfer
hub h ∈ H. Also, consider a driver with an identical destination as the riders
that only performs a ride-sharing trip between the same hub h and destination d.
According to Theorem 10 in Appendix C.2, the jointly optimal departure time on
the second leg is a function of the arrival time of riders at the second leg, as well as
the minimal desired arrival time. According to Theorem 11 in Appendix C.2 the
optimal departure on the first leg for a driver that takes one rider on the first leg
and another rider on the second leg depends on the desired arrival time of all three
individuals. The optimal departure time on the first leg also depends on the rider
on the second leg, although they are not directly involved.

The results of Theorem 10 and 11 in Appendix C.2 also emphasize the difficulty
of coordination in more complex matching systems. If the driver takes another
group of riders on his first leg, coordination of departure times with this group
influences the departure time of the second group. Similarly, these riders may
be matched to a second driver after making a transfer, therefore also influencing
his departure time and vice versa. For a large system where many drivers and
riders are (indirectly) connected to each other, determining the jointly optimal
departure time is a complex problem to solve and difficult to implement both
theoretically and in practice. Therefore, in this work, we consider that the driver
is in charge of determining the departure times. In current ride-sharing systems
such as BlaBlaCar, the driver is also in charge of determining the departure time,
and the rider is forced to adapt if they are matched.

4.3 Two-stage stochastic matching
In this section, we describe the two-stage stochastic ride-matching problem. In
Section 4.3.1 we provide the assumptions and mathematical formulation of the
problem. In Section 4.3.2 we describe how the computation of the costs and
parameters is different from the deterministic variant and in Section 4.3.3 we
provide two benchmarks on the formulation with respect to uncertainty and
information availability.

4.3.1 Assumptions and mathematical formulation
Travel time in transportation systems is often prone to uncertainty. Travel time
may change as a consequence of, for example, congestion, weather, or unexpected
roadblocks and accidents. As a consequence, riders may suffer from additional
scheduling delay penalties or miss a connection at the transfer hub. In case a rider
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is too late for the driver to pick him/her up, he/she will be forced to take public
transport instead or match to another driver. To adapt to uncertainty, the optimal
matching may be (partially) different. For example, a rider could depart earlier
or match to a driver that leaves earlier to create a safety margin for unexpected
delays. In this way, waiting time at the transfer hub and the associated costs may
increase, but the chances of missing a connection are lower.

We adapt our formulation to a two-stage stochastic programming problem to
incorporate uncertainty in travel times. The first stage corresponds to the first leg
(i.e., origin to transfer hub), and the second stage corresponds to the second leg (i.e.,
transfer hub to destination). The matching for the first leg is made with uncertainty
about the exact travel times, but the probability distribution of travel times, denoted
by Ω, is known. These are referred to as first-stage matching decisions. Then, the
matches for the second leg are made after the exact travel times are observed. The
exact travel times are a realization ω ∈ Ω. These are referred to as second-stage
matching decisions.

A timeline for the decision-making process of the stochastic matching approach
is given in Figure 4.2. First-stage matching decisions are made in advance. Here,
all direct matches as well as first-leg matches (pickup from origin and drop-off
at hub) are determined. Thereafter, in the second stage, second-leg matches are
determined (pickup from hub and drop-off at destination). First-stage decisions
are made based on the probability distribution of travel times, whereas second-
stage decisions are based on actual travel times. The first-stage decisions can
be seen as a contract between the rider and the driver. Although actual travel
times may be available before the driver departs, the matching may not be altered
after the contract is agreed upon.

Probability distribution 
of travel times is known

First-stage matching decisions are
made and fixed like a contract

Actual travel times on
both legs  are observed

Second-stage matching
decisions are made

Time

Decisions

Information

Location

Origin

First leg or at transfer hub

Second leg

Destination

Figure 4.2: Timeline of decision-making in stochastic matching approach. The location
bars indicate the potential physical locations of agents when they receive information and
make decisions.

Some variables and parameters depend on the scenario ω. This means that instead
of xk we use xk(ω) and instead of yjh we use yjh(ω). We note that strictly speaking
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yjh(ω) is by definition the same across all scenarios, but we still model it as a
scenario-dependent variable for one of the benchmarks discussed in Section 4.3.3.
In addition to this, the cost of path k also depends on the scenario as it influences
travel time and may even make some paths infeasible. Therefore, we change ck to
ck(ω), where ck(ω) =∞ if path k is infeasible for scenario ω. This may happen, for
example, when the rider arrives at the transfer hub after their driver has already
departed because of a delay. We denote p(ω) the probability of scenario ω occuring,
such that p(ω) ≥ 0, ∑ω∈Ω p(ω) = 1 and p(ω1 ∪ ω2) = p(ω1) + p(ω2) if ω1 and ω2 are
disjoint.

In each of the scenarios ω ∈ Ω, a driver may match to another rider and vice
versa. A match that is optimal in at least one of the scenarios ω ∈ Ω is referred
to as a potentially optimal match, as per Definition 1. Every potentially optimal
match may lead to a different departure time for the rider (as before, the driver is
free to set his/her departure time and therefore has a unique potentially optimal
departure time, independent of the match). The set of optimal departure times for
every potentially optimal match is referred to as a potentially optimal departure
time, as per Definition 2.
Definition 1: Potentially optimal match: A second-stage match between driver i
and rider j which is optimal in at least one of the scenarios ω ∈ Ω.
Definition 2: Potentially optimal departure time: An optimal departure time of
an agent for at least one of their potentially optimal matches.

In addition to the assumptions for the deterministic model, we make the following
assumptions for the stochastic model:

(A6) Travel times on every arc are time-independent and are drawn from a
multivariate random distribution Ω

(A7) Every rider, driver, and the operator perfectly knows the distribution Ω

(A8) The central operator makes first-stage decisions with full knowledge of the
distribution Ω, but with no knowledge of the realization (i.e., actual travel
times)

(A9) First-stage decisions are like a contract that is made before departure. Riders,
drivers, and the operator have to stick to them even though they may be
aware of suboptimalities due to observed conditions.

(A10) The realization ω is revealed to everyone at the same time. First-stage decisions
cannot be changed, because they are fixed like a contract. All second-stage
decisions are made after the realization of ω is available.
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Given the previous assumptions, all first-stage decisions have to be the same for
all scenarios. To enforce this, we extend P1 with scenario-dependent variables and
parameters and impose the equality of first-stage decisions across scenarios through
the following constraints. As in the deterministic case, we distinguish between
direct and indirect paths. For direct paths, the full path needs to be the same (i.e.,
the mode, driver, and departure time). For an indirect path, only the first leg needs
to be the same. This means that the mode, driver, and departure time on the first
leg are fixed, whereas the second leg may be completely different.

For direct paths, we add the following set of constraints. If driver j is involved in
path k for scenario ω that is a direct match from origin to destination, he must
commit to doing the same direct path in any other scenario. Therefore, as direct
paths only have one leg, the chosen paths are identical for every scenario and are used
to minimize the expected cost. As the exact same path is chosen, this implies that
the mode, driver, and departure time are also identical. This is enforced through:

a0
jkxk(ω) = a0

jkxk(ω′) ∀j ∈ J, k ∈ K,ω, ω′ ∈ Ω. (4.2)

For an indirect path that goes through a transfer hub, only the first leg is fixed.
First, we consider indirect paths where the first leg is a ride-sharing leg. In this case,
the full path need not be the same, as long as the same driver goes to the same hub
in both scenarios. As the driver determines his/her expected optimal departure time
à-priori and imposes this on the rider, this is automatically forced to be identical
across scenarios. In addition to this, we impose that both paths need to correspond
to the same rider. By enforcing the matched driver-rider pair as well as the hub at
which the rider is dropped to be equal across scenarios, we guarantee that first-leg
matches are fixed in advance. To enforce this, we use the following set of constraints:∑

k∈K

eika
1h
jkxk(ω) =

∑
k∈K

eika
1h
jkxk(ω′) ∀i ∈ I, j ∈ J, h ∈ H,ω, ω′ ∈ Ω. (4.3)

Finally, for indirect paths where the first leg is not a ride-sharing leg, we impose
that the mode and departure time is the same across scenarios. Let m1

k ∈ M

denote the chosen mode on the first leg of path k where M = {ride-sharing, public
transport, solo driving} and let t1k ∈ T denote the departure time on the first leg
of path k. We define K(m, t) = {k ∈ K|mk = m, tk = t}. That is, K(m, t) ⊂ K

is the set of paths for which the mode on the first leg is equal to m ∈M and the
departure time is t ∈ T . Using this definition, we enforce that the modes and
departure times on the first leg need to be identical across scenarios for the same
rider i ∈ I, through the following set of constraints:∑
k∈K(m,t)

eikxk(ω) =
∑

k∈K(m,t)
eikxk(ω′) ∀i ∈ I, j ∈ J, h ∈ H,m ∈M, t ∈ T, ω, ω′ ∈ Ω.

(4.4)
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The full formulation of the stochastic programming problem, to which we refer
as P2 is given as follows:

(P2) minimize
∑
ω∈Ω

∑
k∈K

p(ω)ck(ω)xk(ω) (4.5a)

such that∑
k∈K

eikxk(ω) = 1 ∀i ∈ I, ω ∈ Ω

(4.5b)∑
k∈K

a0
jkxk(ω) ≤ qj

(
1−

∑
h∈H

yjh(ω)
)

∀j ∈ J, ω ∈ Ω

(4.5c)∑
k∈K

a1h
jkxk(ω) ≤ qjyjh(ω) ∀j ∈ J, h ∈ H,ω ∈ Ω

(4.5d)∑
k∈K

a2h
jkxk(ω) ≤ qjyjh(ω) ∀j ∈ J, h ∈ H,ω ∈ Ω

(4.5e)∑
h∈H

yjh(ω) ≤ 1 ∀j ∈ J, ω ∈ Ω

(4.5f)
a0

jkxk(ω) = a0
jkxk(ω′) ∀j ∈ J, k ∈ K,ω, ω′ ∈ Ω

(4.5g)∑
k∈K

eika
1h
jkxk(ω) =

∑
k∈K

eika
1h
jkxk(ω′) ∀i ∈ I, j ∈ J, h ∈ H,ω, ω′ ∈ Ω

(4.5h)∑
k∈K(m,t)

eikxk(ω) =
∑

k∈K(m,t)
eikxk(ω′) ∀i ∈ I, j ∈ J, h ∈ H,m ∈M, t ∈ T, ω, ω′ ∈ Ω

(4.5i)
xk(ω) ∈ B ∀k ∈ K,ω ∈ Ω

(4.5j)
yjh(ω) ∈ B ∀j ∈ J, h ∈ H,ω ∈ Ω

(4.5k)

The Objective (4.5a) is to minimize the expected costs, which is a linear function
weighted by the probability of each scenario occurring. Constraints (4.5b) to (4.5f)
are the same as in (P1), but adapted to the various scenarios, by extending them
with the scenario dependency ω. Constraints (4.5g) ensure that the exact same
direct paths are chosen for every scenario, which automatically imposes that the
rider, mode, and departure time are identical across the scenarios. Constraints
(4.5h) enforce the first leg of drivers to be the same on indirect paths and that
they carry the same rider. Again, this automatically imposes that the mode and
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departure time are identical across scenarios, as these are determined à-priori by
the driver. Finally, Constraints (4.5i) enforce that a rider that does not share a ride
on the first leg but rather drives alone or uses public transport has the same mode
of transportation and the same departure time across scenarios.

Using the formulation P2 we determine the matching that minimizes the expected
costs. The first-stage decisions determine the direct matches and the matches on
the first leg, which minimize the expected costs on both legs, taking into account
all possible second-stage scenarios. The first leg decisions impose constraints on
the decisions that can be made in the second leg, by choosing a transfer hub, a
departure time on the first leg, and the mode choice and hence influencing the
arrival time at the chosen transfer hub. In the second stage, we then optimize
the second-leg matches by taking into account these constraints. By formulating
the two stages as a single stochastic optimization problem, first-stage decisions
are chosen optimally by considering all possible second-stage scenarios and the
constraints that are imposed on the second stage by the first-stage decisions.

4.3.2 Computation of costs and parameter values
The computation of the cost on each path is similar to that described in Section 4.2.
Here, instead of using the fixed travel time tt(·, ·), we use the scenario-dependent,
yet exogenous, travel time tt(·, ·, ω). This then allows computing the costs ck(ω) for
all paths k ∈ K.

Every driver that is traveling on a direct path or on the first leg determines
his/her departure time in advance. A driver determines his/her expected optimal
departure time considering the probability distribution of Ω and the expected
earliness and lateness they encounter for a given departure time. This is formalized
in Theorem 12. Given the expected optimal departure time of drivers, the costs
for every scenario ck(ω) can be determined. For this it is important to note
that second-leg departure times are flexible, but immediate departures are always
preferred over waiting for reasonable values of αwait and β, according to Theorem 10.

As opposed to the deterministic case, the optimal departure time for a rider cannot
be determined à-priori. As riders may make different second-stage decisions for
every scenario, this influences their expected optimal departure time We compute
all potentially optimal departure times for a rider, for all possible paths that he/she
can take. Given that the cost is a linear combination of the costs of the individual
paths, the optimal departure time has to intersect with one of these potentially
optimal departure times. A separate path is constructed for every potentially
optimal departure time if this path leads to a feasible solution. This is formally
denoted in Theorem 12. For specific shapes of the uncertainty set Ω, for example
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when p(ω) is uniform, the expected optimal departure time can be defined exactly.
This is formally denoted in Corollary 1.

Direct paths and indirect paths ending in a public transport leg are always feasible,
independent of the scenario ω. Indirect paths ending in a ride-sharing leg, on the
other hand, are infeasible if the delay causes an arrival at the transfer hub after
the driver has already departed. For such a scenario ω, ck(ω) =∞. We also note
that if a path k ∈ K has cost ck(ω) =∞ for every ω ∈ Ω, this path can be omitted
from K. In the stochastic case, the rule described in Proposition 4 to remove
strictly dominated paths does not apply. A counterexample to disprove Proposition
4 in the case of stochastic travel times is given in Remark 1. However, a weaker
rule can be used in the stochastic case, as described in Proposition 5. Here, we
assume a path is dominated by another path if the cost is lower for every scenario,
allowing the first path to be combined with the path with minimal cost for all
but one scenario. In this way, we can identify that a path will never be used, not
even in combination with the best possible path.

4.3.3 Benchmarks
A comparison of the stochastic programming problem to the following two bench-
marks can attribute a value to the level of information. The expected-value
benchmark has limited information and only assumes the distribution of Ω is
known in advance, but no information on the scenario ω ∈ Ω is obtained anywhere
throughout the commute. The stochastic programming problem in P2 also assumes
the distribution of Ω is known before the commute, but the exact scenario ω ∈ Ω is
observed after the first-stage decisions are fixed but before the second-stage decisions
are made. Finally, the wait-and-see benchmark assumes the exact scenario ω ∈ Ω
is known at the start of the day and allows one to make full scenario-dependent
decisions even for the first stage. It is clear that this benchmark assumes the highest
level of information.

Definition 3: Wait-and-see benchmark: Relaxation of the stochastic programming
problem where completely independent decisions can be made for every scenario.

The solution to the wait-and-see benchmark describes what would be the optimal
solution if the realized scenario was to be identified in advance. In general, the
wait-and-see benchmark is obtained by relaxing Constraints (4.5g), (4.5h), and
(4.5i) in P2. However, in the precomputation of the paths K and corresponding
costs ck(ω), drivers are assumed to anticipate all scenarios and determine their
expected optimal departure time à-priori. For the wait-and-see benchmark, drivers
determine their optimal departure time for the exact scenario. Therefore, for this
benchmark, we determine the costs ck(ω) for every scenario independent of the
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other scenarios and relax Constraints (4.5g) and (4.5h). This new formulation is
referred to as P3. This allows solutions to be completely different for the various
scenarios, making it a lower bound to P2.

Definition 4: Expected-value benchmark: Restricted version of the stochastic
programming problem where completely identical decisions have to be made for
every scenario.

The solution to the expected-value benchmark describes what would be the optimal
solution if all matches were determined in advance. The expected value benchmark
is obtained by replacing ck in P1 by ∑ω∈Ω p(w)ck(ω). Here, only one solution is
obtained which minimizes the expected value of the costs for the scenarios. This
removes the flexibility of adapting second-leg matches based on the observed traffic
situation. Therefore, this solution is an upper bound to the stochastic problem
in P2. We refer to this problem as P4. This problem is especially restrictive for
indirect paths where the second leg is a ride-sharing leg. As for some paths, a
path may be infeasible for one scenario (ck(ω) = ∞), and therefore ck = ∞ in
the expected value problem, ensuring that this path will never be selected. This
results in paths only being selected in the expected value problem if the waiting
time at the transfer hub is long enough to ensure the timing restriction (drop-off
before pickup) is satisfied in every scenario.

4.4 Results

4.4.1 Case study
We evaluate our model on a circular city consisting of 33 nodes, as depicted in Figure
4.3. Every rider and driver has an origin and destination at one of the 33 nodes.
Origins are more likely to be in the suburbs (the outer rings) whereas destinations
are more likely to be in the city center. Transfer hubs can be at any of the nodes in
the network. In our analysis, we use at most 9 hubs that are always added in the
same order. The index of the hub is given in red in Figure 4.3. Finding the optimal
hubs is an interesting direction of future research, but is outside the scope of this
work. Drivers can perform a pick-up or a drop-off at one of the transfer hubs, but
only if their shortest path between origin and destination already passes through
this hub. Drivers do not make any detours. We consider 500 drivers and 500 riders.
Out of those riders, 75% own a car which they may use to drive themselves. Desired
arrival times are drawn from a truncated normal distribution with a mean at 8:00
and a standard deviation of 1 hour. The distribution is truncated such that we only
allow desired arrival times between 7:00 and 9:00.
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The parameter settings are homogeneous among the entire population and are
defined as follows. The value of time spent in a car αcar is equal to 6.4[$/h]. The
value of time in public transport αpt is higher and is set equal to 12.0[$/h]. In
addition to this, public transport has a fixed cost ϕpt of 2.0 per trip. Earliness and
lateness are penalized with β and γ equal to 3.9[$/h] and 15.21[$/h] respectively,
independently of the mode of transport. Waiting time is penalized by αwait which
is equal to 13.5[$/h] such that β < αcar < αpt < αwait < γ, consistent with the
literature (Small, 1982). Fuel costs ϕfuel are equal to 4[$/h] and parking costs ϕpark

are equal to 1.5$. The percentage of riders owning a car is set to 75%.
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Figure 4.3: Circular city with the distribution of origins (left) and destinations (right)
and in red the index of the transfer hub. The size of the node shows the density of trips
starting (left) and ending (right) in each node

A lower bound on the average cost per rider in the discrete formulation is found
when all riders find their perfect match (i.e., when origins, destinations, and desired
arrival times of drivers and riders are identical). In this case, they only incur travel
costs αcar. Given an average commuting time of 1 hour and 15 minutes in the
synthetic data, the lower bound is 75

60α
car = 8$. On the other hand, an upper bound

is found when all riders use public transport. In this case, they all incur travel
costs αpt and the fixed cost ϕpt. Given an average commuting time of 1 hour and
15 minutes in the synthetic data, the upper bound is 75

60α
pt + ϕpt = 17$. We note

that stronger bounds can be found by incorporating the portion of riders owning a
car, by incorporating their private transport alternative.

All integer programming problems are implemented in Java with CPLEX version
12.6.3.0. All problems are solved to optimality and can be solved within a matter
of seconds or minutes, depending on the exact problem configurations. Solving
the stochastic programming problem typically takes more time and time goes up
when the number of transfer hubs increases.
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4.4.2 Influence of transfers on modal split, costs, and VHT
We consider the influence transfers make on the modal split, the average cost per
individual, and the total Vehicle Hours Travelled (VHT). For this, we vary the
number of transfer hubs in the system between 0 and 9. The results are an average
of 10 randomly simulated instances. The results are displayed in Figure 4.4 where
4.4a displays the modal split of riders, 4.4b displays the average cost of riders,
and 4.4c displays the VHT as a percentage of the VHT when ride-sharing is not
available. Clearly, when there are no transfer hubs, the only possible mode choices
are direct ride-sharing, solo driving, and public transport. By opening transfer
hubs, a modal shift to the other modes is observed. Especially the number of riders
ride-sharing on two separate legs and the number of riders using their own car on
the first leg and ride-sharing on the second leg increases drastically. The reason for
this is that by using a transfer, more options exist for matching to a driver with
the same destination and a similar desired arrival time, at the cost of waiting at
the transfer hub. The number of direct matches may be limited as the origin and
destination of the rider and driver need to be identical and the desired arrival time
needs to be relatively similar. Figure 4.4c displays that the total VHT by riders in
their private car significantly decreases by 30% when allowing transfers, which has
a direct influence on emissions.

Figure 4.4b displays how the costs change by opening transfer hubs. By using a
single transfer hub in the center of the network, the average cost decreases from
12.80$ to 12.10$. Increasing the number of transfer hubs allows for a further decrease
in the average cost, but not nearly as substantial as for the first hub in the center.
When all 9 hubs are opened, the average cost decreases to 11.70$. To put these
numbers into the right perspective, we compare them to the lower and upper bounds
defined in Section 4.4.1. The upper bound is strengthened by using the portion of
riders that own a car. The upper bound is 14.00$ and the lower bound is 8.00$.
We see that when using 9 hubs, the improvement from the no ride-sharing upper
bound is doubled compared to when zero hubs are used. Thereby, the objective is
almost 20% closer to the lower bound of the cost compared to when zero hubs are
used. We emphasize that this lower bound is only attained if every rider can find a
perfect match. Therefore, attaining this lower bound is highly unlikely in realistic
scenarios where the number of drivers is not infinitely large. For example, when
the number of drivers is 2500 (5 drivers for every rider) the costs only decrease to
10.60$ (the purple line in Figure 4.4b).

Note that as the number of private vehicles used decreases, it is expected to
have a further decrease in travel times due to a decrease in congestion. We do
not include this effect in our analysis as travel times are exogenous, but in reality,
the system could create even higher social benefits.
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(c) Vehicle Hours Travelled (VHT) in private car

Figure 4.4: Statistics for a varying number of hubs. VHT is given as a percentage of
the VHT when ride-sharing is not available as a mode. SD = Solo Drive, PT = Public
Transport, RS = Ride-Share.

Figure 4.5 displays how the mode choice changes when the number of hubs changes.
Although the majority of the mode choices remain the same, some significant
movements can be observed. For example, riders that drove their own car without
transfer hubs mostly change to ride-share on both legs or to use their own car
on the first leg and ride-share on the second leg. Riders that used to take public
transport without transfer hubs, change either to ride-share on both legs or on
a single leg while using public transport on the other. Former ride-sharers may
change to any of the modes, abandoning their direct ride. As an effect of these
changes, we also observe some riders that used their own car or public transport
move towards a direct ride-share and vice-versa.

4.4.3 Spatio-temporal distribution of riders
In this section, we evaluate the spatial-temporal distribution of riders. First, we
classify riders by their desired arrival time and the mode they use to commute. The
results are displayed in Figure 4.6 where the left-hand panel displays the number of
riders using every mode and the right-hand panel displays the proportion of riders
using every mode (i.e., scaled by the number of riders with that desired arrival
time). To obtain these results, 100 simulated instances have been used with 1 hub
in the center and 4 on the second ring road (identified by 1-5 in Figure 4.3).

It is clear that the proportion of riders traveling solo is the highest in the tails. The
reason for this is that the number of potential matches with identical origins and
destinations and similar desired arrival times is low since the number of individuals
here is rather low. This effect is more apparent for riders with an early desired
arrival time. When these riders match to a driver, it is highly likely that the desired
arrival time of the driver is later than that of the rider, and therefore the rider will
suffer from lateness. As lateness is penalized heavier than earliness, the effect is
more apparent at the start of the morning commute than it is at the end. As the
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Figure 4.5: Change in mode choice for 1, 2, and 9 transfer hubs. The vertical axis
displays the modes, horizontal axis displays the number of hubs. The size of a bubble
depicts the number of riders using that mode and the thickness of the lines depicts how
many riders change from one mode to another when the number of hubs changes. SD =
Solo Drive, PT = Public Transport, RS = Ride-Share.

value of β approaches the value of γ the distribution gets more symmetric. At the
peak of the rush hour (i.e., around 8:00 when most commuters have their desired
arrival time), the number of ride-sharers is the highest. We see a skewness towards
later desired arrival times, which follows the same reasoning as stated before. By
changing the number of hubs, the modal share of each mode changes as described
in Section 4.4.2. The shape of the distribution on the other hand stays roughly the
same while being shifted either up or down depending on the mode.
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Figure 4.6: Distribution of riders by desired arrival time and mode. SD = Solo Drive,
PT = Public Transport, RS = Ride-Share.

For a more detailed analysis of ride-sharing with transfers, we look at the portion
of riders that share a ride with a transfer distributed by origin and destination.
We consider a network with a single hub in the center of the network. The results
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are analyzed in more detail by disaggregating over both origin and destination.
Given that the network is symmetric in all interior roads, we only distinguish
between the four rings, but not the nodes on the ring. That is, the network can
be rotated without changing the distribution. The results are shown in Figure
4.7. Riders that share a ride at a transfer generally have an origin at one side
of the transfer hub and a destination on the opposite side, approximately. The
reason for this is that the detour imposed by the transfer hub is relatively small for
those origin-destination combinations. Furthermore, we observe there is a higher
concentration of origins and destinations closer to the center.
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Figure 4.7: Proportion of riders sharing a ride with a transfer for a network with a
single transfer hub in the center. The destination and origin, for the top and bottom
respectively, are marked by a black square.

4.4.4 Sensitivity analysis
We perform a sensitivity analysis to evaluate the effect of the driver’s car capacity
(qj = [1,2,3,4]), the maximum detour drivers are willing to make to reach a transfer
hub (τj = [0 min, 5 min, 10 min, 15min]) and the ratio of drivers and riders ( |J |

|I| =
[0.5,1.0, 1.5, 2.0]). We evaluate the effect using the base parameters as described
before and a total of 5 transfer hubs, changing only the specific parameter to
evaluate the sensitivity of the solution, while for the others the base value is used.
We obtain the average cost per rider for every possible combination on a set of 10
randomly generated instances. The results are displayed in Figures 4.8 and 4.9 that
display the average cost per rider and the VHT in a private car for riders (red) and
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drivers (blue) with minimum, maximum and mean over the 10 instances.

The results indicate that the number of drivers is the most influential in decreasing
costs. The reason for this is that the higher the number of drivers, the higher
the probability for a rider to find a good match. Although each of the considered
parameters decreases the cost, the marginal effect is diminishing. For the capacity,
the effect is diminishing because the pickup and dropoff locations of all riders
that are carried simultaneously need to be identical. This is more difficult to
arrange when the number of riders increases. The effect of the maximum detour is
diminishing because of the finite size of the network. The number of drivers is the
most influential, but whenever most riders have found a good match, the effect of
each additional driver will also diminish.

Whereas an increase in the capacity of vehicles and the maximum detour drivers
are willing to make decreases the total vehicle hours traveled, this is not the case
for the ratio of riders and drivers. Because of the increase in the number of drivers,
ride-sharing participation among riders increases which therefore decreases their
VHT in a private car. However, by increasing the number of drivers, their VHT
increases proportionally. Clearly, the decrease in VHT of riders does not offset the
increase in VHT of drivers. Interestingly, whereas the capacity and the maximum
detour increase the proportion of riders that use a transfer, an increase in the
number of drivers leads to a decrease in this proportion. This means that a higher
number of drivers leads to a higher number of direct ride-sharing matches, rather
than the number of matches with transfers.

Figure 4.8: Effect of driver capacity (qj) and maximum detour τ on the average cost per
rider. The red shaded area displays the difference between the maximum and minimum
average cost among the 10 random instances and the black line displays the mean.
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Figure 4.9: Effect of the ratio of drivers and riders on the average cost per rider and the
total VHT. The shaded area displays the difference between the maximum and minimum
average cost/vht among the 10 random instances and the black line displays the mean.
The blue area corresponds to the driver and the red area corresponds to the rider.

4.4.5 Stochastic programming results
In this section, we analyze the results of the stochastic programming problem. Three
scenarios have been used (|Ω|= 3) for five different ranges of the uncertainty set.
We choose ∆ω ∈ {0.0, 0.1, . . . , 0.5} where the scenarios have the following variations:
[tt(1−∆ω), tt, tt(1 + ∆ω)]. In this way, we can evaluate the influence of increasing
uncertainty in travel times on the average cost, modal share, and similarity across
scenarios. Thereby, we evaluate the effect of the availability of information on the
solution by comparing it to two benchmarks. The results are evaluated on the
network with a single hub in the center of the network and parameter settings as
described in Section 4.4.1.

A comparison of the expected value, stochastic programming, and wait-and-see
problem gives more insight into the importance of information. The expected value
problem (P4) does not allow to change the solution based on information about
the realized scenario, the stochastic programming problem (P2) allows to change
second-stage decisions only and the wait-and-see problem (P3) allows to adapt all
decisions to the observed scenario. Based on this, (P4) can be seen as a limited
information regime (note that it is limited but not zero, as the distribution of travel
times is still known), (P2) as a partial information regime, and (P3) as a full
information regime. Figure 4.10a) shows the effect of information on the objective,
where consistent with the theory in Section 4.3.3 the solution to (P4) forms an
upper bound and (P3) forms a lower bound. The difference between the solution
to the stochastic programming problem and the bounds increases as the variance
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increases. Whereas the objective of (P2) and (P4) increases with the variance, the
objective of (P3) decreases with ∆ω. The reason for this is the independence of
public transport to the scenario ω that causes asymmetry in the effect of positive and
negative travel time changes in the wait-and-see problem. As the public transport
option has constant costs, once the cost of the alternative exceeds the cost of public
transport, riders will abandon their previous choice and use public transport instead.
Overall, a comparison of these three problems indicates the benefit of information
and flexibility to change decisions at the transfer hub.

Figure 4.10b) displays the modal split of the riders for the 10 considered mode
combinations. In general, increasing the variance has two main effects. The first is
that it becomes less attractive for drivers to drive in their own car, because they
may face high travel times. The second effect is that those modes that are by
definition suboptimal in the deterministic case (PT → PT and SD → SD) may
now be optimal because they are combined with other modes in other scenarios.
That is, passing through a transfer point gives the rider additional flexibility to
change their decision after the travel times are known. A solo-driving rider that
passes through the transfer point may choose to continue with public transport or
ride-sharing if travel time is high, or continue solo-driving if travel time turns out
to be low. This flexibility makes indirect modes more attractive than direct modes.

By increasing the variance, the similarity across decision-making in the various
scenarios also decreases. Clearly, direct trips and the first leg of indirect trips are
fixed (the modal share indicates that approximately half of the trips are direct
trips). The second leg of a trip that includes a transfer can be changed according
to the observed scenario. In Figure 4.10c), the blue bars depict the percentage of
riders that use the same mode in each scenario. The red bar displays the number
of riders who share a ride with the same driver in all scenarios as a percentage
of those that use the same mode in all scenarios and share a ride on their second
leg but not necessarily with the same driver. Without uncertainty, 100% of the
matches are the same. This decreases to approximately 40% for a ∆ω of 50%. In
that case, half of the riders who share a ride on the second leg use a different driver
for some scenarios. The results show the flexibility the riders use, especially when
the variance of the uncertainty set is higher. For the mode choice, over 20% of
the riders change their mode choice when ∆ω is 50%.
We compare in more detail the stochastic programming solution to the solution
of the two benchmark models and the deterministic alternative. We specifically
focus on the model for which ∆ω = 30%. Figure 4.11 compares the modal share
of each mode and describes how the riders change mode for different levels of
information. The size of the bubble describes the percentage of the modal share of
each mode. A large shift is observed from solo driving to public transport between
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Figure 4.10: Comparison of stochastic programming solutions to two benchmarks for
∆ω between 0% and 50%. Panel a) compares the average cost per rider of the stochastic
programming problem to the wait-and-see benchmark and the expected-value benchmark.
Panel b) displays the modal split of riders for the stochastic programming problem and
panel c) displays the percentage of riders that have identical mode choices and matches
across the three tested scenarios of the stochastic programming problem.

deterministic and stochastic. The reason for this is that public transport is not
prone to uncertainty like the other modes. This also causes an increase in the
number of riders that make a transfer (or at least pass through the transfer hub).
Clearly, the more information riders have, the more likely they are to use their own
car for a part of their trip. Figure 4.12 presents the percentage of time spent in each
of the three modes. The biggest difference can be observed between deterministic
and stochastic. We also observe that ride-sharing is the most resilient with the
percentage changing the least across the four settings.
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Figure 4.11: Change in mode choice between deterministic and stochastic travel times.
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Figure 4.12: Percentage of rider-VHT spent in each mode for deterministic and stochastic
travel times.

4.5 Summary
In this chapter, we introduced the multi-modal ride-matching problem with transfers
and travel time uncertainty. Ride-sharing, public transport, and private cars were
modeled as complementary first- or last-mile modes, as well as competitive modes.
Riders can change between two modes as well as between two drivers at designated
transfer hubs. These transfer hubs have connections to public transport and have
sufficient parking spaces for those reaching the transfer hub with their private car.
Travel time uncertainty can affect waiting time and schedule delay penalties and with
that the optimal matching. By allowing riders to partially change their decisions
at the transfer hub in order to anticipate the observed travel times, significant
improvements to their costs can be made.

The deterministic problem with fixed travel times is modeled as a path-based
integer programming problem. This problem is extended to a two-stage stochastic
programming problem to incorporate uncertain travel times. In the second stage,
we allow riders to adapt their path to the observed conditions, while their first-stage
decisions remain unchanged.

The results show that with a limited number of transfer hubs, both the average cost
per rider and the vehicle hours traveled can be reduced by more than 20%. Contrary
to previous studies, our results show that ride-sharing does not only attract riders
that were previously using public transport, but it also reduces private car usage
by 20%. Especially when travel times are uncertain we observe a large shift from
private car usage to public transport, ride-sharing, or multi-modal transport. Due
to the flexibility of changing their decisions at the transfer hub, riders can further
reduce their costs. Our results indicate that riders frequently change between modes
and drivers after observing the actual travel times, ranging between 10 and 60%
depending on the variability of the uncertainty set.
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A continuum approximation approach to

the depot location problem in a
crowd-shipping system

This chapter is based on the following article:

• P. Stokkink and N. Geroliminis (2023). “A continuum approximation
approach to the depot location problem in a crowd-shipping system”. In:
Transportation Research Part E: Logistics and Transportation Review
176, p. 103207

5.1 Introduction
The success of a crowd-shipping system heavily relies on the availability of crowd-
shippers and the potential to match them to demand requests without large detours.
The potential pool of crowd-shippers is considered to have a planned personal trip
and an associated individual trajectory which is not necessarily near to a parcel
trajectory. In this work, we focus on the few-to-many delivery problems of small
parcels that are transportable by foot or by bike. If the pickup locations of parcels
are poorly accessible by potential crowd-shippers, few parcels can be delivered by
crowd-shippers. This can form a major problem for crowd-shipping systems that use
in-store pickups. For this reason, we focus on the problem of determining optimal
depot locations that function as origins of parcels. Depots are built at central
locations in the network such that they are well accessible by crowd-shippers and
such that a large portion of the parcel requests can be delivered.
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In a depot-based crowd-shipping system, various decisions have to be made to
construct a profitable system. These decisions can be divided into strategic, tactical,
and operational decisions. A schematic representation of the decision process is
illustrated in Figure 5.1. In the first stage, the locations of the depots, where parcels
are stored for crowd-shippers to pick them up, are determined. This is a strategic
decision that has to be made before the system is operational and is therefore
made without full knowledge of the trajectories of potential crowd-shippers and
parcels. In the second stage, the assignment of parcels to these depots is determined.
This is a tactical decision that is made under full knowledge of the set of parcel
requests but only expectations of the trajectories of potential crowd-shippers, fed by
historical data. Then, crowd-shippers announce themselves, usually in a dynamic
fashion, and the parcels are assigned to them in the third (final) stage. These
operational decisions are made daily based on full knowledge of parcels and either
full or partial knowledge of crowd-shippers’ itineraries. One of the complexities
of the considered problem is the uncertainty in the requests for parcels and the
availability of crowd-shippers. As many companies offer next-day delivery, demand
for parcels is generally only known a day in advance. Crowd-shippers may announce
their availability only upon departure from their origin.

Determine depot
locations

Determine parcel-depot
assignment

Determine crowd-shipper-
parcel assignment

(1) (2) (3)

Parcel requests are known Crowd-shippers are known
(dynamically)

Figure 5.1: Schematic representation of decision process

In this chapter, we develop a framework to determine the best depot locations
for a crowd-shipping system in a large urban area. This problem is especially
difficult because of the dependency on lower-level decisions and costs on upper-level
decisions. To track these interactions, we solve the lower-level assignment problem
of parcels to potential crowd-shippers through a Continuum Approximation (CA)
approach, allowing us to determine the lower-level costs efficiently in a short time.
The reader is referred to Ansari, Başdere, Li, Ouyang, and Smilowitz, 2018 for a
recent review of the advancements of CA models for logistics and transportation
systems. CA approaches have been widely used for the design of large-scale networks.
For example, for the design of vehicle routing problems (Daganzo, 2005; Ouyang,
2007), integrated package distribution systems (Smilowitz and Daganzo, 2007) and
pickup-and-delivery problems (Lei and Ouyang, 2018). Thereby, CA has been used
for various variants of the FLP, such as the reliable FLP (Cui, Ouyang, and Shen,
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2010; Li and Ouyang, 2010) and the competitive FLP (Wang and Ouyang, 2013).
Although we note the similarities between the FLP and the depot location problem
discussed in this chapter, we note that the main difference is that our problem
introduces an additional layer of complexity due to the underlying assignment
problem of parcels to crowd-shippers. This complexity does not allow us to evaluate
all the lower-level costs for every potential set of depot locations, as is commonly
done a priori in an FLP.

Building on the approximated lower-level costs, we use a large neighborhood
search heuristic to solve the depot location problem that minimizes the total cost
of the crowd-shipping system. We use performance metrics to efficiently search the
neighborhoods of solutions. Due to the fast CA approximation, we can find the
optimal depot locations in a reasonable time. In addition to this, the CA estimates
are used as input to a smart dynamic assignment strategy, that outperforms existing
dynamic strategies by leveraging the expectations of future crowd-shippers. A
discrete event simulator is used to evaluate the performance of the continuum
approximation, the depot-location algorithm, and the dynamic assignment strategy.

The remainder of this chapter is organized as follows. The proposed methods
to efficiently solve this multi-level problem, including the continuum approximation
of the assignment problem, the depot-location algorithm, and a smart dynamic
assignment strategy, are discussed in Section 5.2. In Section 5.3 we describe the
discrete event simulator and various assignment strategies for the second and
third-stage assignment problems. The results are discussed in Section 5.4, where
we evaluate the proposed methodology with comparisons to static and dynamic
benchmarks. We compare the performance of our CA-based algorithm against
solving a discrete formulation using CPLEX and perform various sensitivity analyses.
Performance is evaluated using a discrete event simulator based on a part of the
city of Washington DC. The chapter is concluded with a summary in Section 5.5.

5.2 Methodology
In this section, we describe the methodological contributions of this work. In Section
5.2.1 we give a more detailed description of the problem and formulate the problem
as an integer stochastic programming problem. In Section 5.2.2 we describe the
continuum approximation approach used to approximate the cost in the third-stage
assignment problem. In Section 5.2.3 we explain the methods used to identify
the depot locations based on the CA results. A notational glossary of the sets,
parameters, and variables is provided in Table 5.1. For the sake of readability, a
division has been made for parameters that are introduced in the problem description,
continuum approximation approach, and large neighborhood search algorithm.
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Table 5.1: Notational Glossary

Problem description

Sets
C Set of potential crowd-shippers (indexed c)
D Set of opened depots (indexed d)
Dp Set of potential depots (indexed d)
P Set of parcels requested (indexed p)
Parameters
qc Capacity of crowd-shipper c
Dmax Maximum number of depots that can be built
fpcd Parameter indicating if crowd-shipper c can feasibly pick up and deliver parcel p, with an origin at depot d
tod Travel time between node o and node d
ϕdepot Fixed costs of opening a depot
ϕcs

pd
Reward given to crowd-shippers to pick up and deliver parcel p, with an origin at depot d

ϕ
reg
p Cost of regular delivery of parcel p
ψk(·) Function describing the costs of the kth stage for a given set of inputs
ξP (ξC ) Random variable of which the realizations are vectors of parcel requests (potential crowd-shippers)
Decision variables
xpc Decision variable indicating whether parcel p is matched to crowd-shipper c
ypd Decision variable indicating whether parcel p is assigned to depot d
zd Decision variable indicating whether depot d is opened

Continuum Approximation Algorithm

Sets
C̃ Set of crowd-shipper classes
R Set of regions
Parameters
ercd Binary parameter indicating if crowd-shippers of class c can feasibly pick up a parcel at

depot d and deliver it to region r
ẽrc Binary parameter indicating if crowd-shippers of class c can feasibly pick up a parcel at

at least one depot and deliver it to region r
or(c) Origin of crowd-shippers in class c
dest(c) Destination of crowd-shippers in class c
µr Number of parcels with destination in region r
µ̂r Expected number of parcels with destination in region r
λc Actual number of potential crowd-shippers of class c
λ̂c Expected number of potential crowd-shippers of class c
τc Maximum detour crowd-shippers of class c are willing to make to pick up and deliver a parcel
ϕcs

rd
Reward given to crowd-shippers to perform a pickup at depot d and delivery to region r

ϕ
reg
r Cost of regular delivery of a parcel to region r

Variables
ard Number of parcels with final destination r stored at depot d
C(D) Total expected cost of opening the set of depots D
lr Leftover parcels with a destination in region r in iterative CA procedure
ur Intermediate estimate for the expected number of parcels delivered by crowd-shippers to region r
vr Expected number of parcels delivered by crowd-shippers to region r
vr(D) Total expected number of parcels delivered by crowd-shippers to region r for a set of depots D
xrcd Decision variable indicating how many parcels with a destination in region r are assigned to depot d

and crowd-shipper class c
µ̃r Remaining expected number of parcels with destination in region r in iterative CA procedure
µ̄c Total number of parcels that can potentially be served by crowd-shippers of class c
λ̃c Remaining expected crowd-shippers of class c in iterative CA procedure

Large Neighborhood Search Algorithm

sd1d2 Similarity of depots d1 and d2
md Quality metric for opening single depot d
α, β, γ Tuning parameters
η Number of initial solutions in depot-location algorithm
κ Iteration limit of depot-location algorithm
Ω Current solution (i.e., set of depots) in the depot-location algorithm

5.2.1 Discrete formulation

The problem as described in Figure 5.1 can be formulated as an integer stochastic
programming problem. In this way, we can incorporate the two types of uncertainty
by dividing the problem into three levels. The formulation is similar to that of
Mousavi, Bodur, and Roorda, 2022. The main difference is that we consider an
additional layer of uncertainty (uncertainty in demand) which makes our problem a
three-stage stochastic programming problem, compared to the two-stage stochastic
programming problem proposed by Mousavi, Bodur, and Roorda, 2022. In addition
to this, crowd-shippers may carry multiple parcels in our formulation, as opposed to
them carrying only one parcel in the formulation by Mousavi, Bodur, and Roorda,
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2022.

We consider a set of demand requests for small parcels p ∈ P , which is a realization
drawn from random variable ξP . Similarly, we consider a set of crowd-shippers
c ∈ C, which is a realization drawn from random variable ξC . Thereby, we consider
the set of potential depots Dp and binary decision variables zd for all d ∈ Dp equal
to 1 if depot d is opened and 0 otherwise. The set of opened depots is hereafter
referred to as D and we continue to use Dp for the set of potential depots, that are
not necessarily opened. A depot can be opened at a cost ϕdepot and a maximum
of Dmax depots can be opened. The value of Dmax is a modeling choice related
to the maximum capital investment a crowd-shipping operator is willing to make.
The fixed cost of opening a depot mainly consists of the daily rental costs of a
location and the maintenance costs of parcel lockers. Acquiring the parcel lockers is
a one-time investment and is therefore neglected. The costs involved with the second
and third stages depend on earlier decisions, as well as the realization of parcels and
crowd-shippers, and are denoted by ψ2(z, P ) and ψ3(z, y, P, C) respectively. The
first-stage objective is to minimize the sum of the costs of opening depots and the
expected costs of the second and third stages. We denote with Eξ[·] the expected
value function over random variable ξ. The first stage can be formulated as follows:

minimize ϕdepot ∑
d∈Dp

zd + EξP [ψ2(z, P )], (5.1)

s.t.
∑

d∈Dp

zd ≤ Dmax, (5.2)

zd ∈ B ∀d ∈ Dp. (5.3)

The objective (5.1) is to minimize the total costs consisting of fixed costs for every
opened depot and the operational costs. The operational costs are an expected
value of the second- (and indirectly third-) stage costs. Constraint (5.2) enforces
that at most Dmax depots can be opened.

In the second stage, we decide which parcel to assign to which depot. For this,
we introduce binary decision variables ypd which is equal to 1 if parcel p ∈ P is
assigned to depot d ∈ Dp, and 0 otherwise. We assume there are no costs involved
with the second stage (at least, there is no direct cost difference between assigning
to different depots) other than the expected costs of the third stage. We consider
small and portable parcels, such that depot capacity can be disregarded. This
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leads to the following formulation of the second stage:

ψ2(z, P ) = EξC [ψ3(z, y, P, C), ] (5.4)
s.t.

∑
d∈Dp

ypd ≤ 1 ∀p ∈ P, (5.5)

ypd ≤ zd ∀p ∈ P, d ∈ Dp, (5.6)
ypd ∈ B ∀p ∈ P, d ∈ Dp. (5.7)

The second stage costs only consist of the expected costs of the third stage. Every
parcel is assigned to at most one depot, which is enforced by Constraints (5.5).
Constraints (5.6) ensure that a parcel is only assigned to an opened depot.

Finally, in the third stage, the parcels are assigned to crowd-shippers. For this, we
introduce binary decision variables xpcd, which is equal to 1 if parcel p ∈ P is assigned
to crowd-shipper c ∈ C and depot d ∈ Dp, and 0 otherwise. The crowd-shipper fee
for every parcel is denoted by ϕcs

pd and depends on the distance between the origin
depot d and the destination of parcel p. Specifically, ϕcs

pd = ϕcs,1
p + ϕcs,2

p · td,dest(p)

where the first term is a fixed compensation per delivery and the second term is a
variable compensation depending on the distance between the origin and destination
of the parcel. The cost of regular delivery of parcel p ∈ P is defined as ϕreg

p and
comprises all costs associated with last-mile delivery such as fuel cost, driver salary,
and cost of maintenance and repair. It is clear that for a parcel p, crowd-shipping
is only favored over regular delivery if ϕcs

pd < ϕreg
p . A parcel can be assigned to

only one crowd-shipper and a crowd-shipper can be assigned at most qc parcels.
Although a crowd-shipper can carry multiple parcels, we assume these parcels need
to have identical origins and destinations, to limit the inconvenience of pickup and
delivery that a crowd-shipper encounters. Thereby, a parcel can only be assigned
to a crowd-shipper if they can feasibly pick up and deliver this parcel, given the
depot the parcel was assigned to in the second stage. We use a binary parameter
fpcd which is equal to 1 if crowd-shipper c ∈ C can feasibly pickup parcel p ∈ P
from depot d ∈ Dp and deliver it to the final destination of the parcel. A potential
crowd-shipper c ∈ C is assumed to have a maximum detour τc he/she is willing
to make to pick up and deliver a parcel, which defines this feasibility parameter.
The third stage can then be formulated as:

ψ3(z, y, P, C) =
∑
p∈P

ϕreg
p +

∑
p∈P

∑
c∈C

∑
d∈Dp

xpcd (ϕcs
pd − ϕreg

p ), (5.8)
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p∈P

∑
d∈Dp

xpcd ≤ qc ∀c ∈ C, (5.9)
∑
c∈C

∑
d∈Dp

xpcd ≤ 1 ∀p ∈ P, (5.10)

xpcd ≤ ypdfpcd ∀c ∈ C, p ∈ P, d ∈ Dp, (5.11)
xp1cd1 + xp2cd2 ≤ 1 ∀c ∈ C, p1, p2 ∈ P, d1, d2 ∈ Dp : (5.12)

(d1 ̸= d2 || dest(p1) ̸= dest(p2)),
xpcd ∈ B ∀c ∈ C, p ∈ P, d ∈ Dp. (5.13)

The operational costs of the third stage in Equation (5.8) are made up of penalties
for regular delivery and compensations awarded to crowd-shippers. Without crowd-
shipping, all parcels would be delivered by regular delivery vehicles, therefore
incurring penalties ∑p∈P ϕ

reg
p . Every parcel that is delivered by crowd-shippers

then costs ϕcs
pd for compensation, but reduces the penalties by ϕreg

p . Every shipper
can be assigned at most qc parcels and every parcel can be assigned to at most
one crowd-shipper, which is enforced by Constraints (5.9) and (5.10) respectively.
Thereby, through Constraints (5.11), we ensure that a parcel should be picked up
from the depot to which it was assigned in the second stage and that the match
is feasible. Constraints (5.12) enforce that only parcels with identical origins and
destinations are allowed to be carried by the same crowd-shipper.

The difficulties of solving this problem in (5.1) - (5.13) are three-fold. First,
we are dealing with two separate layers of uncertainty. The first layer of uncertainty
is in the parcels; with next-day delivery being extremely common, the number
of parcel requests in every region is uncertain up to a day before delivery. The
second layer of uncertainty is in the crowd-shippers. The number of crowd-shippers
and their itineraries are generally uncertain up to shortly before the departure of
the crowd-shipper. Whereas some crowd-shippers may know their schedule well in
advance, others may only make themselves available a few minutes before departure.
Thereby, exact schedules may be prone to last-minute changes. The second difficulty
is that decisions in each of the three stages are heavily intertwined. Decisions in the
first and second stages are made based on expected costs and actions in the third
stage, whereas the optimal third-stage decisions and corresponding costs depend
on the decisions that were made in the first and second stages. This illustrates the
importance of solving the problem as a whole and the inability to decompose it.
The third difficulty is that the large size of the problem in urban areas causes a
computational burden.

These difficulties combined make it impossible for the problem to be solved exactly
for a realistic case study. Therefore, in this work, we approximate the second and
third-stage operational costs using a continuum approximation approach. Based on
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the approximated operational costs, we optimize the first-stage strategic decisions.
By using an approximation of the second and third stages, we can evaluate many
potential depot combinations within a reasonable amount of time and therefore
explore a large search space.

5.2.2 Continuum approximation
To approximate the third-stage costs, as well as estimate the served parcels in every
region of the network, we use a CA approach. Rather than using a formulation
based on individual crowd-shippers and parcels like in Section 5.2.1, we reformulate
the second and third stages to a region-based formulation. We consider a network
split into R regions. Daily demand for small parcels in every region r ∈ R is equal
to µr. To allow for heterogeneity among crowd-shippers, potential crowd-shippers
are divided into classes. We denote C̃ as the set of crowd-shipper classes, not to be
confused with the discrete set of crowd-shippers C. Every class c ∈ C̃ corresponds to
a homogeneous group of crowd-shippers with origin or(c), destination dest(c), and a
maximum detour τc. We note that additional heterogeneity may be added, such as
maximum distance traveled or value of time, but this is omitted in this work. The
number of crowd-shippers in class c is denoted by λc. For the sake of approximation,
a crowd-shipper with capacity qc is counted as qc separate crowd-shippers in λc.

We define parameter ercd which is equal to 1 if a crowd-shipper of class c can
pick up a parcel at depot d and deliver it to the final destination in region r,
and 0 otherwise. When ercd = 1, this is referred to as a feasible assignment. For
all feasible assignments for which crowd-shipping is more expensive than regular
delivery (ϕcs

rd > ϕreg
r ) we set ercd = 0. We remark the relation between the parameter

ercd and the parameter fpcd in the discrete formulation. One of the main advantages
of this reformulation is that the computation of the variables ercd relies only on the
size of the network (that is, the number of regions) and the level of heterogeneity
and not on the number of crowd-shippers nor the number of parcels. Thereby, it is
independent of the realizations of parcels and crowd-shippers, whereas fpcd depends
on the realizations of the uncertain sets P and C.

Geometrically, the matching problem and the definition of ercd can be interpreted
through two ellipses, as depicted in Figure 5.2. The original route from the origin
to the destination of a crowd-shipper is depicted by the black line. The crowd-
shipper has to make a detour by performing a pickup at d and delivery at the final
destination of the parcel r. For this to be feasible within the maximum detour
τc, the following should hold. The depot location d should lie within the ellipse
with focus points or(c) and dest(c), where the distance between the focus and the
closest vertex is equal to τ1. Thereby, the final destination r should lie within a
second ellipse with focus points d and dest(c), where the distance between the focus
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and the closest vertex is equal to τ2. If τ1 + τ2 ≤ τc, the pickup and delivery can
be made within the maximum detour. The difficulty of this problem is marked
by the variability in the values of τ1 and τ2 under the constraint τ1 + τ2 ≤ τc. In
addition to this, there is a dependency between the size of the two ellipses. As the
point d has to lie within the black ellipse, it restricts the size of the blue ellipse.
We also note that we cannot omit the second ellipse by simply considering the
line segment between d and dest(c) inside the black ellipse instead of just point d,
because of the influence of the direction of this segment on the total detour. Due
to these difficulties, we resort to numerical approximations.

or(c)
dest(c)

d

r

Figure 5.2: Geometric interpretation of matching problem

LP approximation

We use a region-based approximation of the discrete formulation in Section 5.2.1.
We consider region-based cost parameters ϕreg

r for regular delivery to region r ∈ R
and ϕcs

rd for crowd-shipped delivery to region r ∈ R from depot d ∈ D. We define
decision variables xrcd as the number of crowd-shippers of class c ∈ C̃ that perform
a delivery from depot d ∈ D to region r ∈ R. The approximation can then be
formulated using the following Linear Programming (LP) problem:

maximize
∑
c∈C̃

∑
r∈R

∑
d∈D

(ϕreg
r − ϕcs

rd)xrcd (5.14)
∑
c∈C̃

∑
d∈D

xrcd ≤ µ̂r ∀r ∈ R (5.15)
∑
r∈R

∑
d∈D

xrcd ≤ λ̂c ∀c ∈ C̃ (5.16)

xrcd ∈ R ∩ [0, ercd min(µ̂r, λ̂c)] ∀c ∈ C̃, r ∈ R, d ∈ D (5.17)

The objective is to minimize the total operational costs. Here, we simplified
the objective function in (5.14) to only account for the delivered parcels. All
parcels that are not delivered by crowd-shippers incur a cost for regular delivery.
Constraints (5.15) and (5.16) ensure that not more deliveries are made than there
are parcels requested and not more crowd-shippers are used than there are available.
Constraints (5.17) define the range of the decision variables and ensure that only
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feasible deliveries are made.

Although this drastically simplifies the second and third layer of the discrete problem
in Section 5.2.1 computation times and memory consumption for constructing and
solving the LP problem can still be problematic for large networks. Thereby, this
formulation ignores the level of uncertainty between hub assignment (second-stage
decisions) and crowd-shipper assignment (third-stage decisions). This generally
leads to an underestimation of the costs in a more realistic dynamic setting
with uncertainty. Therefore, we next propose an algorithmic approximation that
encompasses these two aspects.

Algorithmic approximation

For the sake of approximation, we treat the second and third-stage decisions in
reverse order. First, we merge all depots and approximate the third-stage assignment.
Second, based on the third-stage approximations we approximate the second-stage
parcel-depot assignments. The second-stage approximations are needed because of
their influence on the costs ϕcs

rd.

When multiple depots are opened, the main difficulty is that both parcels and
crowd-shippers have to be split over the various depots. Only when the expected
number of parcels delivered by a specific depot is independent of the other depots,
this problem can be separated into subproblems. However, especially when two
potential depots are close together, it is clear that this independency is not true.
When multiple depots are opened, each parcel can originate from multiple depots
and each crowd-shipper can pick up parcels from multiple depots as long as they
are within their maximum detour τc. We first relax the second stage assignment of
parcels to depots. We define ẽrc which is equal to 1 if a crowd-shipper with origin at
or(c) and destination at dest(c) can pick up a parcel from at least one open depot
and deliver it to the final destination in region r, and 0 otherwise. Specifically:

ẽrc = min(1,
∑
d∈D

ercd) ∀c ∈ C̃, r ∈ R. (5.18)

We want to approximate the number of parcels delivered from a given set of depots
to all regions separately. To approximate this, we let µ̂r be the expected number
of parcels with a destination in region r and let λ̂c the expected number of crowd-
shippers in class c ∈ C̃. Then, we define µ̄c = ∑

r∈R ẽrcµ̂r as the total number of
parcels that can potentially be served by crowd-shippers of class c. For the sake
of the approximation, we assume that a crowd-shipper is equally likely to choose
any of the parcels they can feasibly deliver. Following from this, the probability
that he picks a parcel with destination region r is equal to µ̂r

µ̄c
if ẽrc = 1 and 0
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otherwise. We can then consider all potential crowd-shippers to obtain the following
estimation of the number of served parcels:

ur =
∑
c∈C̃

ẽrcλ̂c
µ̂r

µ̄c

∀r ∈ R. (5.19)

Here, we sum over all classes of potential crowd-shippers. A class is only considered
if the assignment is feasible. Every crowd-shipper in λ̂c is considered to make the
delivery with the same probability µ̂r

µ̄c
. If no crowd-shippers can be assigned to a

region r, that is either λ̂c = 0 or ẽrc = 0 for every origin-destination pair, then the
number of delivered parcels will always be zero. Similarly, if the expected number
of parcels µ̂r is zero, ur will also be zero. We also note that it is possible for µ̄c = 0,
in which case Equation (5.19) is undefined. In this case, µ̂r

µ̄c
is naturally set to 0.

If µ̂r is non-zero, crowd-shippers with different origin-destination pairs may be
assigned to the same parcel-destination region r. As this could lead to an over-
estimation of the number of served parcels in that region (ur > µ̂r), we take into
account that at most µ̂r parcels can be delivered to a region r. Therefore, we
define vr which is the minimum of those two.

vr = min(µ̂r, ur) ∀r ∈ R. (5.20)

Especially if the number of crowd-shippers is high, by overestimating ur in region r
(i.e., ur > µ̂r), it is likely that ur′ for another region r′ ̸= r will be underestimated.
Therefore, we use an iterative process to ensure that this unavoidable overestimation
is accounted for in the other regions. We consider the leftover number of parcels
lr = max(0, ur − µ̂r) and split it evenly over the potential crowd-shippers. Similar
to the assignment of parcels to crowd-shippers, we assume that every crowd-shipper
that can be feasibly assigned to a region r (that is, every crowd-shipper of class
c for which ẽrc = 1), is equally likely to be assigned to one of the leftover parcels
in lr. Therefore, the lr leftover parcels are split over the origin-destination pairs
proportional to the number of crowd-shippers that could be feasibly assigned to
region r. We define the leftover crowd-shippers as follows:

λ̂′
c =

∑
r∈R

lr
ẽrcλ̂c∑

c∈C̃ ẽrcλ̂c

∀c ∈ C̃. (5.21)

Thereby, we define the undelivered parcels µ̂′
r = µ̂r−vr. All parcels that are already

expected to be served by previously assigned crowd-shippers no longer need to
be considered and are therefore disregarded. We then compute ur according to
Equation (5.19), but now using λ̂′

c and µ̂′
r as inputs in stead of λ̂c and µ̂r. Using
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these we find an additional portion of parcels that can be delivered and we update
the estimated number of delivered parcels and the leftover parcels as follows:

vr = min(µ̂r, vr + ur) ∀r ∈ R. (5.22)
lr = max(0, ur − µ̂′

r) ∀r ∈ R. (5.23)

This iterative process can be repeated until the number of leftover parcels lr is zero
for all regions r ∈ R. Intuitively, if lr = 0, all previously overestimated delivered
parcels have been compensated for. However, we emphasize that the simplifying
assumptions of proportional assignment in Equation (5.19) and (5.21) can lead to
suboptimal assignments.

As the costs ϕcs
p depend on the distance between the depot and the final destination

of the parcel p, we make an approximation of how many parcels are at which depot
through the previously approximated total deliveries. That is, we approximate the
second-stage decisions that we previously relaxed to approximate the operational
costs. Let vr(D) be the number of parcels delivered to region r if depots D are
opened. We recall ϕcs

rd as the compensation of crowd-shippers making a delivery
between depot d and destination region r. Thereby, we define ard the number of
parcels with final destination r ∈ R that are stored at depot d ∈ D as follows:

ard = µ̂r
vr({d})∑

d∈D vr({d})
. (5.24)

This approximation assumes that a parcel is not necessarily assigned to the closest
depot, but may be assigned to a further depot. In Section 5.4.6 we show that such
an assignment is substantially better than a closest-depot assignment. The reason
for this is that the flow of crowd-shippers is often not homogeneous across the
network. In that case, storing a parcel at a depot further away may increase the
likelihood of it being delivered by crowd-shippers if the depot and the destination
of the parcel (in that order) are on a route that is a more common itinerary for
potential crowd-shippers.

The total cost can be obtained directly from the results of the approximation.
The total approximated cost, similar to that defined in Section 5.2.1, is as follows.
The first term comprises the fixed costs of constructing and maintaining depots.
The second term approximates the crowd-shipper compensations by using the
total number of delivered parcels derived by the iterative procedure and using the
parcel-depot assignment from Equation (5.24). The third term approximates the
costs of regular delivery. As the costs of regular delivery are assumed to be equal
for all parcels we do not distinguish between depots.

C(D) = ϕdepot|D|+
∑
r∈R

[ ∑
d∈D

ϕcs
dr

ard∑
d∈D ard

]
vr(D) + ϕreg ∑

r∈R

(µ̂r − vr(D)). (5.25)
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This approximation can be easily extended for a probability distribution rather
than a single expected value. For example, the distributions ξP and ξC in Section
5.2.1 can be used to generate multiple scenarios for which the approximation is
repeated. The average value can then be used as an approximation of the costs.

5.2.3 Determining depot locations

The cost for a given set of depot locations can be approximated efficiently using the
methods discussed in the previous section. Despite this, in large urban networks,
the number of options for depot locations to consider can still be extremely large.
Specifically, the number of possible combinations grows exponentially with the
number of possible depot locations and therefore with the size of the network.
Enumerating all options is impossible for large networks and therefore we design an
efficient heuristic to determine the best depot locations.

We propose a Large Neighborhood Search (LNS) heuristic to solve this problem.
LNS heuristics explore a complex neighborhood to find better candidate solutions
(Pisinger and Ropke, 2010). We efficiently explore the neighborhood by using metrics
for the quality of solutions, that allow us to select candidates to destroy and repair in
a smart way. The advantage of this algorithm is that we do not need to evaluate the
full neighborhood at every iteration but we can use a quality and similarity metric to
select a single candidate which is evaluated. Thereby, the high level of randomness
allows for diversification of the search and therefore finding robust solutions. The
general structure of the algorithm is described in Algorithm 2. The remainder of
this subsection describes the initialization of the algorithm and the details of the
destroy and repair operators, that exploit the specific features of our problem.

Initialization

To initialize the heuristic, we compute several components that are input to the
algorithm. First, we compute the 3-dimensional matrix E with elements ercd for
every potential depot. Thereby, we compute the single-depot objectives for each
depot d ∈ Dp which will be used as a quality metric for the depots. This metric
will be referred to as md, which is defined as md = C(∅) + ϕdepot − C({d}). The
intuition behind this is that a depot that performs well on its own is more likely
to perform well in combination with other depots. Nevertheless, depots that are
serving parcels with similar destinations and attract crowd-shippers with similar
itineraries might perform poorly if they operate together, as one depot has little
added value over the other. For this reason, we construct a similarity measure
sd1,d2 for how similar two depots are in terms of the service area of crowd-shippers
using that depot. Specifically, sd1,d2 is determined as follows:
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sd1,d2 = [∑r∈R

∑
c∈C̃ min(ercd1 , ercd2)λc]2

[∑r∈R

∑
c∈C̃ ercd1λc][

∑
r∈R

∑
c∈C̃ ercd2λc]

. (5.26)

Clearly, two depots that are very similar in terms of the service area are likely to
have a lower gain in performance when they are combined. For this reason, this
similarity measure will be used to select dissimilar depots to be combined.

We use a multi-start heuristic so that we randomly determine η initial solutions.
Every initial solution is generated according to a simple construction heuristic. Every
depot is randomly chosen with a probability proportional to the quality of the depot
in the single-depot solution. By using a multi-start heuristic we aim to increase the
search space and therefore decrease the likelihood of ending up at a local optimum.

Body of algorithm

We terminate the LNS algorithm after a fixed number of κ iterations. In every
iteration, we consider the following operations on the current solution Ω and obtain
the corresponding objective value. A newly generated solution is always accepted if it
is an improvement over the previous solution and a worse solution is never accepted.

1. O1 - Repair operator: For every depot d that is not in the current solution
Ω, we compute the following metric: mα

d

[
∑

ω∈Ω sd,ω ]β where α and β are tuning
parameters that determine the relative importance of single-depot performance
and inter-depot similarity. This metric determines the best depot to be added
to the current solution, taking into account the quality of the depot in the
single-depot solution as well as the similarity to the other depots in the current
solution. We use the sum of the similarity with all depots in the current
solution Ω, such that a depot that is similar to two depots rather than only
one should have a lower metric value. Alternatively, the maximum similarity
across all depots in the current solution Ω can be used in the denominator
to replace the sum. A new depot is added randomly with a probability
proportional to the value of this metric.

2. O2 - Destroy operator: For every depot d that is in the current solution Ω,
we determine the same metric as in O1 and randomly drop a depot with a
probability proportional to the inverse of the metric in O1. By taking the
inverse, depots that are very similar to other depots and depots with relatively
low single-depot performance are most likely to be removed.

3. O3 - Swapping operator: A sequential combination of O1 and O2 where a
depot in the current solution Ω is replaced by another depot that is not in
the current solution. We first destroy a depot ω ∈ Ω using destroy operator
O2 and then add a depot using repair operator O1, based on the similarity
with the remaining depots Ω \ {ω}.
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Algorithm 2: Large Neighborhood Search Algorithm
1 Input: For every depot d the quality metric md and for every pair of depots

(d1, d2) the similarity metric sd1,d2

2 for n ∈ [1, η] do
3 Generate an initial solution Ω0

n

4 for k ∈ [1, κ] do
5 Ωk

n ← Ωk−1
n

6 Destroy a depot in Ωk
n according to O2

7 Repair a depot in Ωk
n according to O1

8 if C(Ωk
n) > C(Ωk−1

n ) then
9 Ωk

n ← Ωk−1
n

10 return arg minΩ∈{Ωκ1 ,...,Ωκη} C(Ω)

5.3 Discrete event simulator
We develop a discrete event simulator to simulate the dynamic operational process.
Considering the decision process in Figure 5.1, the depot locations are determined
using the methods described in Section 5.2, and the second and third-stage decisions
are simulated. We consider various assignment strategies both for the second and
third stage decisions, of which we evaluate the performance in Section 5.4.6.

The simulator is initialized by generating a set of parcel requests consisting of
only a destination region (the origin is at one of the depots and will be determined
in the second stage) and a set of potential crowd-shippers consisting of an origin and
destination region and a starting time of the trip. For the sake of this simulation,
crowd-shippers are assumed to make themselves available at the start of their
trip. All generated parcel requests are assigned to a depot based on one of the
strategies described in Section 5.3.1. All potential crowd-shippers are sorted in
ascending order of their start times. The generation of parcels and crowd-shippers
is performed using a pseudo-random number generator, such that simulations using
various policies can be directly compared.

Upon the arrival of a crowd-shipper, a parcel or a set of parcels is assigned to this
crowd-shipper based on one of the strategies described in Section 5.3.2. After the
assignment, the assigned parcel(s) is/are reserved for the crowd-shipper for pickup
and the crowd-shipper departs from his origin to the origin of the parcel(s). A new
pickup event is scheduled, taking into account the travel time between the origin of
the crowd-shipper and the origin of the parcel. As soon as a parcel is assigned to a
crowd-shipper, it is no longer available to be assigned to other crowd-shippers, even
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when it is not yet picked up.

For every pickup event, a delivery event is scheduled taking into account the travel
time between the origin and destination of a parcel. As only parcels with identical
origins and destinations are assigned to the same crowd-shipper, pickup events that
correspond to different parcels but the same crowd-shipper occur simultaneously.
The same is true for delivery events. For every delivery event, the number of served
parcels and total costs are updated and the detour made by the crowd-shipper
is stored. The simulation ends when all parcels have been delivered or when all
crowd-shippers have either completed a delivery or have failed to be assigned to a
parcel. We emphasize that the simulator allows us to consider time synchronization
constraints. Crowd-shippers are considered in order of their arrival time and the
system is constantly updated such that only the parcels that are available at the
arrival time of the crowd-shipper are considered for pickup.

5.3.1 Stage 2: parcel-depot assignment

After the depots are determined in stage 1, parcels have to be assigned to depots
on a day-to-day basis. At this stage, parcels are assumed to be known exactly
(all orders of parcels have been collected), but crowd-shippers can announce their
availability last minute and are therefore unknown. By simply assigning parcels
to the closest depot in terms of distance, the importance of the flow of potential
crowd-shippers is neglected. For the sake of comparison, we consider a distance-
based metric that assigns all the parcels of a region to the opened depot that is
closest to that region. Consider the set of opened depots D and consider µr parcels
with destinations in region R. We recall that the travel time between depot d and
region r is defined as tdr. We define ard the number of parcels with final destination
r ∈ R that are stored at depot d ∈ D as follows:

ard = µr1
[

tdr= min
d′∈D

td′r

]. (5.27)

Although a depot can be close in terms of distance, if very few crowd-shippers can
feasibly deliver a parcel from that depot to the final destination, such a parcel-depot
assignment can perform poorly. Therefore, we develop an assignment strategy
based on the CA-estimates obtained using the algorithm as described in Section
5.2.2. We solve the single-depot-approximation for every depot d ∈ D to obtain
the expected number of parcels delivered to region r ∈ R, vr({d}). To obtain
the single-depot approximations, we ignore the capacity of crowd-shippers to be
slightly more conservative, which has shown to perform better. We then assign the
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parcels proportional to the expected number of parcels delivered from a specific
depot location. In this case, we define ard as follows:

ard = µr
vr({d})γ∑

d∈D vr({d})γ
. (5.28)

The tuning parameter γ can be used to give extra weight to larger depots (depots
with high expected deliveries) and less weight to smaller depots (depots with
lower expected deliveries). We emphasize the similarity of this assignment and
parcel-depot assignment in the CA estimation in Equation (5.24).

5.3.2 Stage 3: parcel-crowd-shipper matching

In the third stage of our problem, when the depots are known and parcels are
distributed over these depots, parcels have to be assigned to crowd-shippers.
Generally, parcels are matched to crowd-shippers dynamically, upon arrival of
the crowd-shippers. A parcel can only be matched to a crowd-shipper if they can
pick up and deliver the parcel within their maximum detour, this is referred to as
a feasible match. If a crowd-shipper can be feasibly matched to multiple parcels,
the operator has to decide which parcel to assign to the crowd-shipper to maximize
the total number of delivered parcels over the entire planning horizon. We consider
the following three alternative matching approaches. The static matching approach
relies on solving an integer linear programming problem, whereas the minimal-
detour and CA-based matching use a simple decision rule. Furthermore, the static
matching approach uses information about future crowd-shippers, whereas the other
two approaches, more realistically, only consider one crowd-shipper at a time.

Static matching

The static matching approach assumes complete knowledge of all future crowd-
shippers that will arrive. The static matching can be obtained by solving an ILP
problem, that can be taken from the third stage of the stochastic programming
formulation (5.8) - (5.13). Here, the depots are fixed and the parcel-depot assignment
has been made. Therefore, the variable ypd can be fixed to 0 or 1 according to the
previously made assignments. This then simplifies the right-hand side of Constraints
(5.10), while the rest of the formulation remains unchanged.

As the static matching is made without uncertainty about the future crowd-shippers,
this forms a lower bound to the other matching approaches. In reality, this could
be very unrealistic if crowd-shippers make themselves known only shortly before
departing. Despite this, it forms a useful benchmark to compare the dynamic
assignment strategies as well as the continuum approximation.
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Minimal-detour matching

The minimal detour matching matches the crowd-shipper to the parcel for which
the crowd-shipper minimizes the detour. This matching strategy, therefore, does not
use any knowledge of future crowd-shippers. This strategy minimizes crowd-shipper
inconvenience but is likely to be suboptimal as it does not use any information
on future crowd-shippers. We consider that the set P only contains parcels that
are not yet assigned to other crowd-shippers, and we consider c ∈ C the current
crowd-shipper. We let or(·) and dest(·) be the origin and destination location,
respectively, for a crowd-shipper or parcel. Then the minimal detour matching
chooses the parcel that minimizes the detour a crowd-shipper makes to pick up
and deliver a parcel. This is computed as follows:

pmin = arg min
p∈P

[
tor(c)or(p) + tor(p)dest(p) + tdest(p)dest(c) − tor(c)dest(c)

]
. (5.29)

If multiple parcels with the same origin and destination have the lowest detour,
up to qc parcels are assigned to the current crowd-shipper c.

CA-based matching

The minimal-detour matching only uses information on the crowd-shipper that is
currently available. In this way, part of the information about potential crowd-
shippers arriving in the future remains unused, although this can be useful. Generally,
historic data is available that provides insights into the expected number of crowd-
shippers. In practice, expectations of demand based on historic data are used to
make strategic decisions. Actual demand is usually known at least one day in
advance and is therefore used for operational decisions. The CA-based matching
approach exploits the information on the approximated number of delivered parcels
to improve the matching quality. An arriving crowd-shipper is assigned the parcel
with the destination region that has the lowest expected number of delivered
parcels relative to the total demand in that region ( vr

µ̂r
). The intuition behind this

assignment strategy is that we favor parcels that are less likely to be delivered in
the future. By doing so, we increase the total expected number of parcels delivered
over the entire planning horizon. If the chosen destination region has multiple
parcels available, up to qc parcels are assigned to the current crowd-shipper c. To
obtain the estimates vr, we disregard the capacity of crowd-shippers to be slightly
more conservative. This shows an improvement in the performance of the CA-based
matching. Compared to static matching, CA-based matching only uses a simple
metric to determine the assignment, rather than solving an ILP problem. Therefore,
the match can be determined extremely fast, similar to minimal-detour matching,
which forms a major advantage for our real-time application. Here, we do not take
into account fluctuations in the arrival rates of crowd-shippers during the day. This
is marked as an interesting direction for future research.
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5.4 Results
In this section, we evaluate the performance of the developed CA approach to find the
optimal depots, as well as the potential of depot-based crowd-shipping. Our results
are obtained through a case study based on the city of Washington DC, of which the
details are described in Section 5.4.1. In Section 5.4.2 we evaluate the accuracy of
our continuum approximation by comparing it to two exact benchmarks. In Section
5.4.3 we further evaluate the performance of our CA approach by comparing our
solution to the solution obtained by solving the discrete formulation using a CPLEX
solver. In Section 5.4.4 we evaluate the results on the network and in Section 5.4.5
we perform a sensitivity analysis on the optimal number of depots. Finally, in
Section 5.4.6 we evaluate the effect of incorporating historic information about
crowd-shippers and parcels in the three levels of decision-making on the results.

5.4.1 Case study
We use the city of Washington DC and the surrounding metropolitan area as a case
study. The city of Washington DC has around 700,000 inhabitants and the entire
agglomeration has around 7 million inhabitants. Washington DC hosts one of the
biggest Bike-sharing platforms in the USA: Capital Bikeshare. Capital Bikeshare
has over 500 stations and 4500 bikes (Capital Bikeshare, 2020). Such a bike-sharing
platform with a large number of users forms a good base for a crowd-shipping
service. We consider the locations of the bike-sharing stations as potential depot
locations and use them as approximations for regions making up the entire service
area.

Based on the station names, approximate coordinates of the locations are extracted
from Google Maps, 2020. An approximation of the surrounding population has been
made using Census Reporter, 2021 data, which in turn has been used as a proxy for
demand for small parcels. We note that the actual coordinates of the stations may
slightly deviate from the approximated coordinates due to misinterpreted station
names. Nevertheless, the obtained network is used as a representation of an actual
network. A bike-sharing station is used as a potential demand region with the
expected number of parcels proportional to the population around that station.
Historic system data from the Capital Bikeshare, 2020 database has been used to
identify origin-destination pairs for the crowd-shippers. The stations that are used
as regions are displayed in Figure 5.3a. This figure displays a bubble chart of those
regions, where the size of the bubble is determined relative to the population around
the corresponding station. Whereas the most used stations in terms of origins and
destination of crowd-shippers are around Union Station, the Mall, and the center of
Washington DC, demand is higher in the suburbs. This shows the large asymmetry
in crowd-shippers’ origin and destination locations on the one hand and parcel
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destinations on the other that is usually present in crowd-shipping systems in real
urban areas, making this case study especially realistic and interesting. We consider
330 stations in the center of Washington DC and the nearest suburbs, as displayed
in Figure 5.3a. In Sections 5.4.2 and 5.4.3 we consider a smaller network of only
90 nodes in the center, as the benchmark approaches used in those sections are
computationally intractable for the larger instance. The network is displayed in
Figure 5.3b with the smaller subnetwork in red. For the sake of computation time,
we only use crowd-shippers that have their origin and destination within the selected
area. In our experiments, the number of parcels has been fixed at the expected
value such that crowd-shippers are the only uncertain variable in the problem.

(a) Bubble chart of bike-sharing stations,
where the size of the bubble is determined
by the population in the area.

(b) Abstract network used as input to the
optimization and simulation, with smaller
subnetwork in red

Figure 5.3: Network of Washington DC used for the case-study

We use the following parameter values to get a realistic interpretation of the results.
We assume that the cost of opening and operating a depot ϕdepot is equal to 1000$
per day. This is based on the average rental price in Washington DC to place the
storage lockers and the maintenance cost involved in operating the depots. The cost
of regular delivery is set to be 15$, similar to Le, Stathopoulos, Van Woensel, and
Ukkusuri, 2019. A part of these costs is still made to serve the depots, therefore, we
consider a slightly lower value for ϕreg

p equal to 10$. Our baseline scenario assumes
a homogeneous set of crowd-shippers that are willing to make a detour (τ) of at
most 500 meters and wish to receive (ϕcs

p ) 5$ to make a delivery plus 1$ for every
kilometer traveled with a parcel. The daily demand for parcels is assumed to be
roughly 20,000 per day, proportional to the population in a region. The number of
potential crowd-shippers is set to approximately 25,000. Of these crowd-shippers,
60% can carry only 1 parcel, 30% can carry 2 and 10% can carry up to 3 parcels.
The demand scenario is fixed to the expected value, whereas 10 different supply
scenarios are generated based on a Poisson process.

The LNS parameters are tuned in order to find a good objective value within
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a reasonable time. The algorithm uses 5 initial solutions (η) and 500 iterations (κ).
The repair and destroy operators take parameters α equal to 4.5 and β equal to 8.
These values were chosen based on a grid search over a large range of parameter
values. The parameters were chosen such that they maximize the number of multi-
start initial solutions for which the best objective was found and at the same
time minimize the number of iterations needed to find this objective. The tuning
parameter γ, used for the parcel-depot assignment, is chosen equal to 1. CPLEX
version 12.6.3.0 is used in Java to solve all MILPs.

5.4.2 Comparison of continuum approximation to static
and dynamic assignment strategies

To evaluate the quality of the continuum approximation, we compare the estimated
total costs to two benchmarks. The first benchmark assumes full knowledge of
crowd-shippers before parcels are distributed to the depots. This means that we
use the formulation of the second and third-stage as given by Equations (5.4) -
(5.13), but for a single realization of parcels and crowd-shippers which is known
with certainty. This eliminates the expected value in Equations (5.4) and (5.8)
and allows us to solve the problem to optimality using a standard Mixed Integer
Programming (MIP) solver, such as CPLEX. The objective is to minimize the
operational costs which are given in (5.8). The second benchmark is a realistic
dynamic assignment procedure. We use the CA-based parcel-depot assignment and
the CA-based matching of parcels and crowd-shippers, which outperforms other
assignment strategies (see Section 5.4.6).

For the sake of computation time, we consider a subset of the full network of
only 90 regions and we set the capacity of every crowd-shipper to 1. In this way,
we eliminate Constraints (5.12), which significantly reduces the computation time
of the static assignment method. A large sensitivity analysis is performed for
the expected number of potential crowd-shippers (λ̂), the maximum detour (τ),
and the number of depots (|D|). We use daily demand for parcels µ̂ equal to
approximately 4000 and varying λ̂

µ̂
from 0.5 to 2. We vary τ from 250 meters to

1000 meters and we consider 1, 3, 5, and 7 depots, which is appropriate given the
small network. Given the lower number of parcels, we also change the depot cost
ϕdepot to 100$. We compare the objective obtained through the CA approach as
well as the LP approximation. The results are visualized in Figure 5.4 to 5.7, that
display the percentage difference between the predicted objective and the actual
(simulated) objective. We compare the LP-approximation and the algorithmic
approximation to a static and dynamic assignment strategy. A set of 10 demand
and supply instances is used for all simulations.
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Figure 5.4: Percentage difference between the predicted objective by the LP approxima-
tion and the actual objective simulated by the static assignment strategy
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Figure 5.5: Percentage difference between the predicted objective by the LP approxima-
tion and the actual objective simulated by the dynamic assignment strategy

It is clear that the LP approximation performs well compared to the static
benchmark, with near 0 differences between the approximation and the actual
objective. The reason for this is that both the benchmark and the approximation
disregard uncertainty and are therefore able to reach a lower bound on the total costs.
However, compared to the more realistic dynamic benchmark the LP approximation
underestimates the actual total costs by on average 5% and can go up to 13%.
Clearly, with increasing uncertainty, the performance of the LP approximation will
decrease. Thereby, the performance also deteriorates with the number of hubs and
slightly deteriorates with the number of crowd-shippers and the maximum detour.
We emphasize that the objective generally decreases when λ̂

µ̂
, τ , and |D| increase

and therefore the percentual difference between the actual and approximated
objective is amplified.
The CA approximation accounts for uncertainty between the two lower levels of
decision-making whereas the static benchmark ignores this uncertainty. Therefore,
the CA approximation overestimates the objective of the static benchmark and
performance deteriorates especially when the number of hubs increase as the
static benchmark can optimally make the parcel-hub assignment, whereas the
CA approximation cannot. Compared to the more realistic dynamic benchmark,
the approximated objective differs on average 2% from the actual objective with
ranges between 0 and 5%. A comparison of Figures 5.5 and 5.7, shows that
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Figure 5.6: Percentage difference between the predicted objective by the CA approxi-
mation and the actual objective simulated by the static assignment strategy
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Figure 5.7: Percentage difference between the predicted objective by the CA approxi-
mation and the actual objective simulated by the dynamic assignment strategy

incorporating the uncertainty between the two lower-level decisions significantly
improves the performance of the approximation. With respect to computational
time, the CA approximation is on average 100 times faster on the small network.
Thereby, the number of variables and constraints will increase for the full-size
network, making it even more computationally demanding for the problem to be
constructed and solved by CPLEX.

5.4.3 Comparison of CA approach to discrete formulation

In this section, we further evaluate the performance of our algorithm by comparing
the CA-based solution algorithm proposed in this work to solving the discrete
formulation in Section 5.2.1 using CPLEX. For the discrete formulation to be
solvable within a reasonable amount of time, we consider a subset of the network
with 90 nodes, limit the number of scenarios in ξP and ξC to 1 and the capacity
of the crowd-shippers to 1. In this way, the expected values in the objectives in
Equations (5.1) and (5.4) are eliminated and due to the full knowledge of supply and
demand, the variables ypd can be omitted as well. Thereby, the capacity of 1 allows
us to eliminate Constraints (5.12). We emphasize that this significantly simplifies
the discrete formulation, as for larger networks with more realistic settings (such
as those considered in Sections 5.4.4 - 5.4.6), CPLEX fails to find an optimal or
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feasible solution or even fails to construct the model due to the size of the problem.
We also note the discrete formulation requires integer inputs. In the 90×90 network,
this may lead to a relatively high difference between the two estimates which could
potentially influence the solution.

The results are displayed in Figure 5.8. The left-hand panel displays the objective of
the CA method relative to the objective of the discrete formulation. The objective
values were computed as an average of 10 simulations using a CA-based dynamic
assignment strategy for the parcel-depot and parcel-crowd-shipper assignments.
Rather than directly comparing the objective values, we subtract a baseline of €5
for every parcel to properly quantify the percentual difference in the objective value.
The right-hand panel displays the computation times of both methods for various
settings, where we note the log scale of the y-axis. A time limit of 1 hour has been
implemented and CPLEX solves the problem up to a 5% optimality gap (without
this, the solver may continue looking for negligible improvements, creating a biased
comparison of CPU times). For this experiment, demand for parcels µ̂ and the
number of crowd-shippers λ̂ vary between 1000 and 2000 and the maximum detour
is either 250 meters or 500 meters. Compared to the previous experiment, smaller
values have been chosen such that the discrete formulation is solvable within a
reasonable amount of time.

For the comparison of the objective values, we emphasize that the hub locations for
both the discrete formulation and the CA-based algorithm were determined using
only a single scenario, which can lead to suboptimality in the dynamic simulation
setting. We observe that the CA-based method generally obtains better solutions,
which can be partially explained by the chosen 5% optimality gap for the discrete
formulation. Clearly, the results obtained by the CA-based algorithm are more
robust and find good solutions even when using only a single scenario. The discrete
formulation, on the other hand, does not find robust solutions and requires a higher
number of scenarios to adapt the depot locations. Thereby, the current simplification
ignores the uncertainty which is captured by the CA-based algorithm, which may
therefore also lead to suboptimality. We also observe that for settings for which the
discrete formulation cannot be solved within the 1-hour limit, the improvement of
the CA-based algorithm over the discrete formulation is significantly higher.

Computation times are significantly higher for solving the discrete formulation
than for the CA-based method. Computation time for both methods increases with
the number of hubs. However, the CA-based approach is only marginally influenced
by the number of crowd-shippers, parcels, and maximum detour. Averaged over
all tested settings, the CA-based algorithm is almost 150 times faster than solving
the discrete formulation. For the high-demand case with 2000 parcels, this even
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goes over 400 times faster, despite computation time being limited to one hour.
Thereby, we emphasize again that for larger networks with more realistic settings
such as multiple scenarios, the discrete formulation cannot be used at all whereas the
CA-based method only requires a couple of minutes to find high-quality solutions.
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Figure 5.8: Comparison of the CA-based method and solving the discrete formulation

Another alternative method is to use a simulation-optimization approach in combi-
nation with the described large neighborhoods search algorithm. Here, a simulation
is used to evaluate the objective rather than the CA-based approximation. The
performance of this method is highly dependent on the details of the simulator
and the efficiency of the implementation. Thereby, to obtain a good estimate, the
simulation has to be repeated many times to obtain an average. For large-scale
systems, such as the one considered in the remainder of this chapter, evaluating the
objective by simulation is computationally too time-consuming to obtain results
within a reasonable amount of time or will also run into memory issues like the
discrete formulation. Note that even the initialization of the LNS algorithm requires
strong computational effort for large systems.

5.4.4 Results on the network
To obtain managerial insights regarding the exact location of depots, we evaluate
the depot locations in the network. We emphasize that from this section onwards
we use the 330 node network with the baseline parameters outlined in Section
5.4.1. The bubble chart in Figure 5.9 displays the considered network where a
blue bubble represents a regular demand region and a red bubble represents a
demand region that was chosen to have a depot. The size of the bubble represents
the fraction of demand that was served by crowd-shippers. That is, a full bubble
implies that all parcels in the region are expected to be delivered by crowd-shippers,
according to the continuum approximation, whereas a smaller bubble implies that
only a fraction of the parcels is expected to be delivered by crowd-shippers. Figure
5.9a displays the approximation for three depots and Figure 5.9b displays the
approximation for five depots.
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(a) Three depots (b) Five depots

Figure 5.9: Bubble chart of parcels served by crowd-shippers in the network

We observe that depots are located in the city center of Washington DC where the
number of potential crowd-shippers is the highest. As we are using bike-sharing
users to approximate the commuting patterns of crowd-shippers, these are mainly
in the city center. We notice that most depots are in the northwest of the city
center, where demand is the highest as depicted in Figure 6.4. In addition to this,
depots are spread sufficiently to attract more crowd-shippers and to have a broader
service area. Many of the chosen depots are either at popular origins of potential
crowd-shippers, such as a train station, or at popular intersections where many
crowd-shippers pass by either directly or within their maximum detour.

The strong inter-dependency between the depots is shown in Figure 5.10, which
displays from which depots the parcels delivered to each region originate. Figure
5.10a shows the spider chart for three depots and Figure 5.10b shows the spider
chart for five depots. The majority of the destination regions are served by multiple
depots. Only the regions in the outskirts of the network are served by a single
depot. To quantify the results in this figure, we calculate how many regions are
served by more than one depot. Specifically, we count the number of regions for
which at most 90% of the delivered parcels originate from one depot. For three
depots, 37% of the regions where at least one parcel is delivered are served by more
than 1 depot. For five depots, this is as high as 70%. Typically we observe that the
higher the number of depots, the lower the number of regions served by a single
depot and thus the higher the inter-dependency. Intuitively, this corresponds to
the fact that when more depots are constructed, the distance between depots is
lower, and therefore their similarity (see Section 5.2.3) increases.

5.4.5 Optimal number of depots
In this section, we evaluate the optimal number of depots for τ varying between 500
and 1000 meters. Figure 5.11 displays the costs for a varying number of depots, as
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(a) Spider chart with 3 depots (b) Spider chart with 5 depots

Figure 5.10: Spider chart linking the origins and destinations of delivered parcels

approximated by the CA approach, for a set of depots that is obtained through the
CA-based heuristic. The total costs are split into the three components that make
up the objective function in Equation (5.25) and consist of costs of maintaining
depots, crowd-shipper compensations, and penalties for undelivered parcels.

Increasing the value of τ has two opposing effects on the total costs. On the one hand,
potential depot locations that previously were not able to serve sufficient demand
to be profitable may now be able to serve more demand because the maximum
detour is higher, thereby increasing the optimal number of depot locations. On the
other hand, a depot may be able to reach more demand regions due to the increase
of τ , making other depots obsolete, thereby reducing the optimal number of depots.
A similar effect is true for an increase or decrease in the total expected number of
crowd-shippers, which may either lead to an increase or decrease in the optimal
number of depots. We emphasize that this is specific to the chosen scenario and costs.

The marginal percentage of demand served due to the addition of one more depot is
diminishing. The first depots are the most profitable and can serve a relatively large
portion of the demand. As we showed in Section 5.4.4, these depots are built at
central locations where the number of potential crowd-shippers is high. Afterward,
additional depots can be opened at less busy locations to further increase served
demand, but the effect is substantially lower.

5.4.6 Comparison to non-predictive strategies
As described in Section 5.2, the proposed solution approaches to all three stages con-
tain a predictive component to incorporate the influence of parcel and crowd-shipper
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Figure 5.11: Decomposition of costs for varying number of depots and maximum detour
τ

patterns and their interaction in decision-making. We use historic information on
parcels and crowd-shippers to enhance the decision-making on all three layers. In
this section, we compare the predictive CA-based strategies to those that do not use
such a predictive component and only base the decisions on geographical distances.
The first stage decisions are compared to an FLP minimizing the total distance
of every region to the closest depot. The second stage parcel-depot assignment is
compared to an assignment strategy where each parcel is assigned to the closest
opened depot. The third stage matching is compared to a minimal-detour strategy
for crowd-shippers. These non-predictive approaches ignore the connection between
the three stages and solve every stage separately, basing their decisions solely on
distance rather than estimates of the pattern of parcels, crowd-shippers, and the
interaction of the two. The service levels are displayed in Table 5.2. For every
scenario, the percentage of parcels served by crowd-shippers is an average of 10
simulation runs. We consider a base case with 5 depots, roughly 20,000 parcel
requests, and 25,000 crowd-shippers (with varying capacities that are 1.5 on average).
The maximum detour for crowd-shippers is 500 meters.

Using predictive methods that incorporate expected patterns and interactions
of parcels and crowd-shippers significantly improves the performance of the depot-
based system. Especially the use of our algorithm to determine the optimal depot
locations compared to a simple distance-based algorithm that chooses depots at
central locations increases the service level by more than 10%. Additionally, using
predictive strategies to make second and third-stage decisions can improve the
objective by up to 5%. Overall, the results indicate that for this specific set of
configurations (i.e., number of depots, maximum detour, etc.) using predictive
components in all three levels of decision-making can improve the service level by
15%. We emphasize that results may vary for other configurations. For example,
if we increase the number of depots to 10, the fully non-predictive service level
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is 44%, whereas the fully predictive service level is 56.1%. Typically, we observe
that higher service levels are more difficult to improve.

Table 5.2: Comparison of predictive CA-based strategies to non-predictive strategies

First-stage Second-stage Third-stage
Non-predictive Predictive

Non-predictive Non-predictive 35.4 38.4
Predictive 36.5 38.7

Predictive Non-predictive 46.1 48.1
Predictive 48.1 50.9

The reported values are the number of parcels delivered by crowd-shippers
as a percentage of the total demand for parcels.

For the same settings as before, we compare the service level and profit of the
predictive and non-predictive approach to randomly generated sets of 5 depots.
This provides additional insights into the performance of our methods as well as
into the influence of the exact depot locations on service level and profit. We
randomly generate 100 sets and evaluate them all on the same 10 instances. This
then yields 1000 observations of profit and service level that are displayed in
Figure 5.12. The spread of the histograms shows that the exact locations of
depots significantly influence the service level and profit of the crowd-shipping
system. Clearly, the non-predictive FLP method is outperformed by some randomly
generated sets. The predictive CA-based approach, on the other hand, outperforms
all randomly generated sets.
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Figure 5.12: Histogram of service level and profit for random sets of 5 depots

5.5 Summary
Crowd-shipping is a promising alternative to traditional last-mile delivery methods
that can help to reduce congestion, and pollution and improve the overall perfor-
mance of the delivery system. One of the main drivers is the availability of sufficient
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suppliers. In this chapter, we proposed a depot-based crowd-shipping system where
crowd-shippers pick up parcels from depot locations and deliver them to the final
destination. By constructing depots at strategic locations, more crowd-shippers can
be attracted to serve more demand.

We approximate the lower-level decisions of assigning parcels to depots and later
to crowd-shippers using a Continuum Approximation (CA) approach. The ap-
proximation shows to provide an accurate estimation of the actual objective using
dynamic assignment strategies, on average being within 2% of the optimal dynamic
assignment problem, with deviations being at most 5% on the tested instances. We
developed a heuristic approach to efficiently determine the optimal depot locations.
The heuristic uses CA to approximate the lower-level operational decisions and
a large neighborhood search heuristic to make the strategic upper-level decisions
(i.e., find the best set of depots). Using quality and similarity metrics, the search
space is explored efficiently and a solution is found within a reasonable amount
of time. We compare the performance of our algorithm to solving a discrete
formulation. This comparison indicates that, on a set of smaller instances of 90
regions, our algorithm is on average almost 200 times faster on the tested, going
up to 1000 times for the largest tested instance. In terms of solution quality, our
algorithm generally finds slightly better solutions for instances where the CPLEX
solver converges with the one-hour time limit, but significantly better solutions
for instances where the solver does not terminate. For realistic instances of 330
regions, our algorithm can find good depot locations within a reasonable amount
of time whereas the MILP formulation cannot even be constructed, let alone find
feasible solutions. A comparison of our suggested approach where all three levels
of decision-making incorporate historic information of crowd-shippers and parcels
outperforms distance-based methods by 15%.



6
A column and row generation approach to
the crowd-shipping problem with transfers

This chapter is based on the following article:

• P. Stokkink, J.-F. Cordeau, and N. Geroliminis (2023). “A column and
row generation approach to the crowd-shipping problem with transfers”.
Available in: HEC Working Papers (Currently under review in a scientific
journal)

6.1 Introduction
One of the main operational challenges in crowd-shipping is matching crowd-shippers
to parcels that need to be delivered. The quality of such a match is influenced by
the detour that the crowd-shipper needs to make to pick up and deliver the parcel,
as well as potential time windows that need to be satisfied. Especially when the
number of parcels and the number of crowd-shippers is high, finding the optimal
matching is challenging, yet important to optimize the service level. Another major
challenge that can complicate matching problems is stochasticity in demand (i.e.,
uncertainty in destination, quantity, and time window) as well as supply (the full
itinerary of crowd-shippers is uncertain until they communicate it).

When the origins and destinations of parcels are further apart than those of potential
crowd-shippers, finding matches that can directly take the parcels from their origin
to their destination can be difficult. Especially in bike-based or pedestrian-based
crowd-shipping, the two forms that are considered among the least polluting and

https://chairelogistique.hec.ca/en/publications/
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with the highest potential (i.e. lower value of time), crowd-shipper trips are usually
short whereas distances across the city can be long. In this chapter, we consider
multi-stage deliveries where parcels can be transported from their origin to their
destination in multiple stages and with multiple crowd-shippers.

In this chapter, we propose a general framework that allows the incorporation
of both time-synchronized transfers as well as transfers with intermediate storage
at transfer points. To the best of our knowledge, this is the first model that can
capture both types of transfers simultaneously. In addition to this, we consider
the original itinerary of crowd-shippers including their departure times, but we
consider some flexibility in their routing decisions. This makes our crowd-shipping
system more realistic than those generally considered in the literature and makes
crowd-shipping accessible to daily commuters. On top of this, we consider a detailed
compensation scheme for crowd-shippers, which includes rewards for stops, detours,
and the inconvenience of carrying a parcel for a longer distance. Furthermore,
we consider heterogeneous crowd-shippers and parcels. We propose a column-
generation approach to solve our problem. This method is highly scalable and
allows solving larger instances than those previously considered in the literature for
similar problems. Our results are evaluated on a realistic large-scale case study in
the city of Washington DC.

This chapter is organized as follows. A formal problem description and formulation
are given in Section 6.2. The methods used to solve this problem are given in
Section 6.3. Simulation results are provided in Section 6.4 and the chapter is
concluded in Section 6.5.

6.2 Problem description and formulation
In Section 6.2.1 we introduce the main concepts and notation used in the chapter
before providing a mathematical formulation of the problem in Section 6.2.2.

6.2.1 Concepts and notation
We consider a set P of parcels that make up the considered demand requests. Every
parcel p ∈ P has an origin op, a destination dp and a delivery time window [ep, lp],
where ep is the earliest delivery time and lp is the latest. Every delivered parcel
p generates revenue, which can vary between parcels, and is denoted by ρp. The
set C contains all (potential) crowd-shippers. Every crowd-shipper c ∈ C has an
origin oc, a destination dc, and a trip starting time at tc. Crowd-shippers may be
willing to deviate from their path with a maximal detour of τc. The detour can be
measured either in units of distance or units of time.
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Based on their maximum detour, a crowd-shipper c is able to execute a set of
delivery segments Sc. A crowd-shipper always executes at most one segment.
Figure 6.1 illustrates a network with a crowd-shipper traveling from A to D with
its original path, marked in green, being A → B → D. The crowd-shipper
can also travel through the blue path A → B → C → D within his maximum
detour. Based on these two paths, the list of segments for this crowd-shipper
is: [AB,AC,AD,BC,BD,CD]. Based on the crowd-shipper’s start time, we can
compute the time at which the crowd-shipper starts the segment, which is given
by ts. A segment also has an origin os and a destination ds. A crowd-shipper
c ∈ C is rewarded wcs for traversing a segment s ∈ Sc. This cost is made up
of three components:

1. A fixed compensation α1
c for the inconvenience of pickup and delivery;

2. A variable compensation based on the detour crowd-shipper c ∈ C makes to
perform the delivery on segment s ∈ Sc, denoted by α2

c · detcs;

3. A variable compensation based on the time/distance spent carrying the parcel,
which is equal to the length of the segment and denoted by α3

c · lens.

A B C

D

A B C

D

Figure 6.1: Illustration of a crowd-shipper travelling from A to D that can perform
segments: AB, AC, AD, BC, BD, CD

A parcel can be transferred between crowd-shippers at a set H of transfer points
or transfer hubs. After the parcel is dropped off at the transfer point by a crowd-
shipper, the next crowd-shipper can pick up the parcel at least ∆min time units
later (a safety margin) and at most ∆max time units later (to avoid the parcel
staying at the hub for too long). We note that by choosing the set H of points to
be arbitrarily large and ∆max arbitrarily small, this corresponds to direct transfers
where parcels are handed directly from one crowd-shipper to another. Otherwise,
parcel lockers need to be present at transfer hubs for crowd-shippers to temporarily
store the parcels. Generally, this may differ across transfer points h ∈ H and we
allow ∆min

h and ∆max
h to vary.

The objective is to maximize the profit consisting of the revenue for delivered
parcels minus the costs of paying crowd-shippers. For this, we determine the
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optimal matching of parcels to crowd-shippers. Specifically, for the multi-stage
delivery problem, we determine the exact path a parcel traverses from its origin to
its destination. This path may be direct or through transfer points and by using
multiple crowd-shippers. To this end, we define the concept of a parcel path.

Definition 1. A parcel path is the trajectory a parcel traverses to get from its origin
to its destination. A parcel path is made up of one or more segments that a parcel
travels with a crowd-shipper. Between segments, a parcel is stored at a transfer
point.

In the next section, we give a formulation of the problem based on this concept of
parcel paths. The approach we take to solve the problem is described in Section 6.3.

6.2.2 Mathematical formulation

We first give a full formulation of the problem described above. This is a path-based
formulation that maximizes the revenue collected by parcel deliveries minus the
costs of crowd-shipper compensation. The full set of parcel paths is denoted by
K, where Kp is the set of parcel paths that correspond to parcel p ∈ P . Only
feasible parcel paths (i.e., paths that are fully connected and time-synchronized) are
included in the set K. The binary decision variable xk is equal to 1 if parcel path
k ∈ K is selected and 0, otherwise. We define ack as a binary parameter that is equal
to 1 if crowd-shipper c ∈ C is involved in parcel path k ∈ K. For completeness, we
also introduce binary parameter bcsk, which is equal to 1 if crowd-shipper c ∈ C
contributes to parcel path k ∈ K by performing segment s ∈ Sc and 0 otherwise.
Although this parameter is only indirectly part of the formulation of the problem
through the defined profit of a parcel, it is required for the solution approach.
Clearly, following the definition of a segment, acs = ∑

s∈Sc bcsk.

The profit of a parcel path k ∈ Kp is defined as πk and is defined as follows:

πk = ρp −
[∑

c∈C

ackα
1
c +

∑
c∈C

∑
s∈Sc

bcsk(α2
cdetcs + α3

c lens)
]
. (6.1)

Here, the first term captures the revenue obtained by delivering the parcel p
corresponding to the column k ∈ Kp. The second term is the fixed price paid
to a crowd-shipper for making a delivery. This does not depend on the segment
and therefore only uses parameter ack. The third term is a variable cost paid to a
crowd-shipper which depends on the segment and is therefore based on bcsk. This
term captures the cost per unit of detour and cost per unit travelled with a parcel.

The formulation of the problem is as follows:
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max
∑
p∈P

∑
k∈Kp

πkxk (6.2)
∑

k∈Kp

xk ≤ 1 ∀p ∈ P (6.3)
∑
k∈K

ackxk ≤ 1 ∀c ∈ C (6.4)

xk ∈ B ∀k ∈ K. (6.5)

The objective (6.2) is to maximize the total profit. By substituting Equation (6.1)
we observe the dependency on parameters acs and bcsk. Constraints (6.3) ensure
that every parcel is delivered at most once and therefore only one parcel path
can be selected among those associated with that parcel. Constraints (6.4) ensure
that a crowd-shipper is used at most once.

6.3 Methodology
We solve the problem using a column generation approach, where every column
is a unique parcel path. Figure 6.2 schematically illustrates this approach. In the
master problem, parcel paths from the current set of columns K̄ are selected to
maximize revenue and minimize operational costs, by solving the LP relaxation
of the Restricted Master Problem (RMP). In the pricing problem, new columns
are generated that improve the current solution, based on the dual variables of the
constraints of the last iteration of the LP. Finally, when no more columns with
positive reduced cost are found the optimal solution to the LP is obtained. We then
obtain an integer solution by solving the IP with the last set of obtained columns.
We note that this does not guarantee the optimality of the IP solution. An exact
method would require embedding the column generation in a branch-and-price
framework. However, in our computational experiments, the optimality gap of the
IP and LP objectives indicates that the obtained solutions are (near) optimal.

The master problem is described in Section 6.3.1 and the pricing problem is
described in Section 6.3.2. The shortest path problem that is used to solve the
pricing problem is described in Section 6.3.3.

6.3.1 Master problem
The formulation of the master problem closely resembles the formulation in Section
6.2.2. In the master problem, we select the best columns from the current set K̄
that maximize the obtained revenue from delivering parcels and minimizes the
costs of crowd-shippers. In addition to the total set of columns, we define K̄p as
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Figure 6.2: Column Generation Approach

the set of columns that correspond to parcel paths of parcel p ∈ P . It follows
that ⋃p∈P K̄p = K̄. The formulation of the master problem is as follows, with
the dual variables of the constraints in parentheses.

max
∑
p∈P

∑
k∈K̄p

πkxk (6.6)

∑
k∈K̄p

xk ≤ 1 ∀p ∈ P (vp) (6.7)

∑
k∈K̄

ackxk ≤ 1 ∀c ∈ C (uc) (6.8)

xk ∈ B ∀k ∈ K̄. (6.9)

6.3.2 Pricing problem
We extend the set of columns in the RMP by finding columns with positive reduced
cost. The reduced cost for a new column k ∈ K \ K̄ is defined as rk and it
can be computed as:

rk = πk − vp −
∑
c∈C

ucack. (6.10)

We can rewrite this by substituting πk from Equation (6.1), as follows:

rk = ρp −
∑
c∈C

ackα
1
c −

∑
c∈C

∑
s∈Sc

bcsk(α2
cdetcs + α3

c lens)− vp −
∑
c∈C

ucack. (6.11)
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We can then rewrite this by grouping together similar terms:

rk = (ρp − vp)−
∑
c∈C

ack(uc + α1
c)−

∑
c∈C

∑
s∈Sc

bcsk(α2
cdetcs + α3

c lens). (6.12)

Recall that acs = ∑
s∈Sc bcsk and that the total compensation paid to a crowd-

shipper is denoted by wcs. We can further simplify the definition of the reduced
cost as follows:

rk = (ρp − vp)−
∑
c∈C

∑
s∈Sc

bcsk(uc + α1
c + α2

cdetcs + α3
c lens) (6.13)

rk = (ρp − vp)−
∑
c∈C

∑
s∈Sc

bcsk(uc + wcs). (6.14)

From Equation (6.14) it is clear that finding a column with positive reduced cost can
be decomposed over the parcels. For every parcel, we search the parcel path with the
highest reduced cost (if any column with positive reduced cost exists). This is done
by finding the best crowd-shippers and segments to constitute a feasible path from
origin to destination. This path has to satisfy basic flow constraints as well as timing
restrictions to ensure that a parcel can only be picked up after it is delivered. As
the problem is separated over parcels, the term ρp− vp is fixed. Finding a path with
maximal reduced costs is then equivalent to minimizing ∑c∈C

∑
s∈Sc bcsk(uc + wcs).

This means that finding the positive reduced cost path is equivalent to solving the
shortest path problem.

We consider a layered procedure for the pricing problem where direct, indirect paths
with a single transfer, and indirect paths with multiple transfers are considered
separately. This procedure is presented in Algorithm 3. First, direct paths are
generated. Direct paths constitute a simple match of a crowd-shipper to a parcel.
Here, the feasibility with respect to time windows and location needs to be verified
and the costs are computed. Thereafter, indirect paths are generated. Although
slightly more difficult due to time and location synchronization at the transfer,
this can still be done by simply enumerating for every parcel all crowd-shippers
that can pick up and all crowd-shippers that can deliver the parcel. Finally, we
consider multi-stage deliveries by solving a shortest-path problem. As the number
of transfers is not fixed, this is more complicated and discussed in detail in the
remainder of this section.

This layered procedure has two main benefits. First, solving the pricing problem for
direct delivery and indirect delivery with one transfer is computationally much faster.
For a direct delivery, finding a column with a positive reduced cost only requires
going over all feasible matches of crowd-shippers and parcels, which can be done in
O(|P ||C|). For an indirect delivery with one transfer, a similar approach is used
where every crowd-shipper is considered twice (once for pickup and once for delivery),
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which can be done in O(|P ||C|2). Therefore, the column generation algorithm can
be warm-started first for direct deliveries and then also for indirect deliveries with
one transfer, before considering the computationally more expensive multi-stage
deliveries. The second benefit is that, by considering multi-stage deliveries separately,
the shortest path problem and the corresponding graph can be fully adapted to
this type of delivery and therefore improve the speed of the algorithm.

Algorithm 3: Layered procedure for pricing problem
1 for every parcel p ∈ P do
2 Generate a direct path with positive reduced costs.
3 Compute r̄; the maximum reduced cost across all generated paths
4 if r̄ ≤ 0 then
5 for every parcel p ∈ P and every pickup segment s ∈ Np do
6 Generate an indirect path with one transfer with positive

reduced costs.
7 Compute r̄; the maximum reduced cost across all generated paths
8 if r̄ ≤ 0 then
9 for every parcel p ∈ P and every pickup segment s ∈ Np do

10 Generate an indirect path with positive reduced costs, by
solving the shortest path problem.

11 Add all generated paths with positive reduced costs to K̄

6.3.3 Shortest path algorithm - Graph construction
To solve the shortest path problem, a graph is constructed based on the movement
of crowd-shippers through the road network. An example of such a graph is given
in Figure 6.3 and will be described below. The shortest path problem is solved on
a directed graph where nodes correspond to segments. Whenever a node is part
of the shortest path, the variable bcsk is equal to 1 and it is equal to 0 otherwise.
The cost of such a node is equal to uc + wcs, such that the length of the shortest
path corresponds to the second term of the reduced cost in Equation (6.14). An
arc between two nodes exists if the two segments are compatible, in the sense that
one segment can be executed right after the other. An arc between two nodes n1

and n2 exists if all of the following conditions hold:

• The crowd-shipper of node n1 is different from the crowd-shipper of node n2.

• The segment of node n1 ends at the same transfer point where the segment of
node n2 starts.

• The segment of node n1 finishes at least ∆min time units before and at most
∆max time units after the segment of node n2 starts.
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All existing arcs have a cost of zero, which means that the only cost components
are on the nodes. For the multi-stage delivery problem we consider three types of
nodes each corresponding to a type of segment: pickup nodes/segments, dropoff
nodes/segments and transfer nodes/segments. We describe the properties of these
nodes in detail below, with the set of nodes of each type in parentheses. A feasible
parcel path starts with a pickup segment and ends with a dropoff segment, possibly
with one or more transfer segments in between. A segment describes a part of the
parcel path for which the parcel is travelling with the same crowd-shipper.

1. Pickup nodes/segments (NP ): A pickup segment represents the initial
pickup of the parcel from the origin location and its delivery to a transfer
point. A pickup node exists if the origin of the segment coincides with the
origin of the parcel and the destination of the segment coincides with a transfer
point. Thereby, it only exists if the start time of the segment is later than the
earliest availability time of the parcel. A pickup node has no incoming arcs.

2. Dropoff nodes/segments (ND): A dropoff segment represents the final
delivery of the parcel from the last transfer point to the destination of the
parcel. A delivery node exists if the destination of the segment coincides with
the destination of the parcel and the origin of the segment coincides with
a transfer point. Thereby, it only exists if the time window of the parcel is
satisfied. A dropoff node has no outgoing arcs.

3. Transfer nodes/segments (NT ): A transfer segment represents the transfer
of any parcel from one transfer point to another. There are no restrictions on
location or time for the existence of a transfer node.

We emphasize that although pickup and dropoff nodes are parcel-specific, due
to origins, destinations, and time windows, transfer nodes are not. Therefore,
transfer nodes are only added once, whereas pickup and dropoff segments may
be repeated for multiple parcels that are similar.

6.3.4 Modified Dijkstra’s algorithm
To find the column to add to the master problem for every parcel, we aim to find
the shortest path between any pickup segment and any dropoff segment. We do this
by applying a modified version of Dijkstra’s shortest path algorithm tailored to fit
well the specifics of our problem. As Dijkstra’s algorithm can find the shortest path
from a source node to any node in the graph, we apply the shortest path problem
|NP | times. The column with the highest reduced cost (if any column with positive
reduced cost exists) is added to the master problem and this is repeated for every
parcel.
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(a) Network where H is the hub,
P is the parcel destination, colours
indicate a crowd-shipper and num-
bers are used to identify parts of
the route.
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(b) Graph for the pricing problem corresponding to
the network in (a). Nodes correspond to segments and
arcs connect segments if one can be feasibly executed
after the other (timing constraints are ignored in this
example). Numbers refer to parts of the route that
together form a segment.

Figure 6.3: Conversion from network with 1 parcel and 5 crowd-shippers, each with a
maximum detour of 0, to a graph for the pricing problem

Dijkstra’s algorithm takes as an input a set of nodes and an adjacency matrix
which defines the arcs between the nodes. We observe that the full graph does not
change between iterations and can therefore be pre-computed once. Then, at each
call to the pricing problem, only the costs on the nodes are updated according to
the dual variables. The details on the algorithm are described in Algorithm 4. The
algorithm enforces all constraints that hold between nodes through the adjacency
matrix, as these constraints are transitive. The only exception to this is that two
segments belonging to the same crowd-shipper may be included in the shortest
path, as long as at least one other segment is in between. This constraint is not
enforced as a hard constraint as this would make the problem resource-constrained.
However, by construction of our problem, such paths are never feasible if ∆min > 0.
As a crowd-shipper will leave directly after dropping off the parcel, whereas a parcel
can only be transferred after ∆min time units, the crowd-shipper will arrive at the
next transfer point at least ∆min time units before the parcel arrives with another
crowd-shipper. As crowd-shippers never wait for a parcel to become available in
our framework, these paths are implicitly eliminated. In Line 11, the algorithm is
terminated because there exist no remaining unvisited nodes that can be visited
through a feasible path from the source node. In Line 13, we skip the for-loop in
Lines 14-16 whenever the current node is in ND as this is by definition the last node
on a path and therefore can not be on the shortest path to another node.

In addition to the modifications to Dijkstra’s algorithm, more computational
enhancements are made to improve the speed of the algorithm. We consider
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Algorithm 4: Modified Dijkstra’s Algorithm
1 Input: A set of nodes N = NP ∪ND ∪NT with their costs c(n) for all

n ∈ N
2 Input: For every node n ∈ N , a set of neighboring nodes A(n)
3 Input: A source node s
4 Output: A set of shortest paths from source node s ∈ NP to all nodes in

ND

5 Mark all nodes as unvisited: visit(n)→ false
6 Set the shortest distance to each node at dist(n)→∞, except for the

source node which is set to dist(s)→ c(s)
7 while Not all nodes are visited do
8 Find node q− as the unvisited node with minimal dist(q−)
9 Set visit(q−)→ true

10 if dist(q−) =∞ then
11 return shortest paths
12 if q− ∈ ND then
13 continue to next node
14 for q+ ∈ A(q−) do
15 if visit(q+) = false and dist(q−) + c(q+) < dist(q+) then
16 dist(q+)→ dist(q−) + c(q+)

17 return shortest paths

three enhancements that allow to retain the optimality of the algorithm and one
enhancement that does not guarantee optimality.

Removing suboptimal nodes and arcs

For some nodes and arcs, we can immediately see that they will not be part of
the shortest path because the cost on the node is too high or the joint costs of
two nodes connected by an arc is too high. Propositions 1 and 2 identify several
of these cases where nodes and arcs can be eliminated from the graph. This also
leads to identifying parcels for which the pricing problem does not need to be
solved because no column with positive reduced cost exists for that parcel. By
eliminating nodes and arcs, the size of the graph can be reduced, which improves
the speed of the shortest path algorithm.

Proposition 1 (Disregarding nodes). Let ρ = min
p∈P

ρp and w = min
c∈C,s∈Sc

wcs. A
parcel p ∈ P can be disregarded if ρp − vp − 2w ≤ 0. The corresponding pickup and
dropoff segments (nodes) can then also be disregarded. A segment (node) s ∈ Sc of
crowd-shipper c ∈ C can be disregarded if ρ−uc−wcs−w ≤ 0 orρ−uc−wcs−2w ≤ 0
if s is a transfer segment (node).
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Proposition 2 (Disregarding arcs). Let ρ = min
p∈P

ρp and w = min
c∈C,s∈Sc

wcs. An arc
between two nodes s1 ∈ Sc1 of crowd-shipper c1 ∈ C and s2 ∈ Sc2 of crowd-shipper
c2 ∈ C can be disregarded if ρ− uc1wc1s1 − uc2wc2s2 or ρ− uc1wc1s1 − uc2wc2s2 − w
if either s1 or s2 is a transfer segment.

As we consider multi-stage deliveries, a parcel path consists of at least two segments
(i.e., a pickup and a dropoff segment). In case the considered segment is a transfer
segment, there are at least two other segments involved. Using this property, the
proof of these propositions is straightforward.

Constructing several smaller subgraphs

The nodes of the considered graph of the shortest path problem are partitioned
into three categories: pickup nodes (NP ), dropoff nodes (ND) and transfer nodes
(NT ). Transfer nodes are independent of the specific parcels and only depend
on crowd-shippers’ itineraries. Pickup and dropoff nodes, for their part, depend
on the specific parcel through the origin, destination and delivery time window.
Constructing separate graphs, hereafter referred to as subgraphs, that only include
a part of the pickup and dropoff nodes can solve memory issues, at the cost of a
slight increase in computation time. Transfer nodes, finally, need to be included in
every subgraph to guarantee the optimality of the solution.

We consider a fraction η ∈ (0, 1] of the parcels that are included in a subgraph. This
means that 1/η subgraphs are constructed for which the pricing problems are solved
separately. Basically, the value of η forms a trade-off between time-savings and
memory-savings, as well as the number of subgraphs and the size of those subgraphs.
When η is small, subgraphs are small and therefore do not lead to memory issues,
but many subgraphs need to be constructed at the cost of extra computation time.
When η is large, subgraphs are larger, which may lead to memory issues, but fewer
subgraphs need to be constructed which is generally faster.

Randomly removing highly similar nodes

Whereas the aforementioned enhancements improve the speed of the algorithm and
reduce the memory consumption without jeopardizing optimality, we now turn to a
method that can very successfully reduce the size of the graph but can no longer
guarantee optimality. Due to the nature of our problem, many of the segments (and
therefore nodes in the graph) are highly similar and therefore likely unnecessary.
For example, many transfer segments between the same two transfer hubs may
exist, but with different crowd-shippers at slightly different times. For this reason,
many of those nodes can be removed without influencing optimality. However,
as we do not know in advance whether such a node will be in a shortest path or
not, optimality can no longer be guaranteed. We maintain a fraction ζ ∈ [0, 1)
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of the nodes in the graph and remove the other 1− ζ (and the arcs connected to
those nodes). These nodes are selected randomly and with equal probability. As
this is repeated at every iteration of the column generation algorithm, different
nodes can be removed across iterations. This limits the influence on optimality,
yet maintains the goal of reducing the size of the graph.

6.3.5 Locker and shipper capacity
So far, we have assumed that lockers have an infinite capacity and that crowd-
shippers can only carry a single parcel. In this section, we relax those assumptions
and extend the formulation accordingly. This will come at the cost of increased
complexity in both the master problem and the pricing problem but will lead
to more realistic solutions.

Shipper capacity

Instead of assuming that a crowd-shipper can only make a single delivery, we now
relax this assumption and allow crowd-shippers to make multiple deliveries.We
assume that crowd-shippers only perform multiple pickups and deliveries if they
involve the exact same itinerary. That is, a crowd-shipper may carry multiple
parcels at the same time, but only if they are picked up and delivered at the exact
same stations. The reason for this is that significant effort is involved with every
pickup and delivery (i.e., stopping at a locker, collecting or storing the parcel and
continuing the journey). Whereas this can be largely consolidated if the pickup
and drop-off locations are the same for the different items, this is not the case if
these locations are different. We denote the capacity of a crowd-shipper c ∈ C by Qc.

To efficiently model the capacity without using a simultaneous column and row
generation approach, we duplicate every segment in Sc a total of Qc times. We
redefine the set Sc by introducing Sq

c with 1 ≤ q ≤ Qc as the qth copy of the set of
segments and Sc = ∪Qc

q=1S
q
c . For the sake of notation, let s1 ∼ s2 denote the property

that segments s1 and s2 are copies of each other and s1 ≁ s2 the fact that they are
not copies. Then, we reformulate problem (6.2) - (6.5) by replacing Constraints (6.4)
by the following set of constraints, which ensures the capacity of a crowd-shipper:

∑
k∈K

ackxk ≤ Qc ∀c ∈ C (uc). (6.15)

In addition to this, we add the following set of constraints to enforce that only
segments that are duplicates of each other are performed by the same crowd-shipper.
A pair of segments that are not duplicates of each other are deemed incompatible
and columns that cannot be used together because of such an incompatibility are
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part of an incompatible set I. The full collection of incompatible sets is denoted
as Icrowd with I ∈ Icrowd. Let bIk be a binary parameter taking value 1 if parcel
path k uses a segment that is part of incompatible set I, and 0 otherwise. Basically,
the set I contains all paths that are incompatible because they contain one of two
incompatible segments s1 and s2 for which it holds that s1 ∈ Sc and s2 ∈ Sc for
some crowd-shipper c ∈ C and s1 ≁ s2. Every set I, therefore, corresponds to a
pair of incompatible segments (s1, s2). The following set of constraints is added to
exclude incompatibilities, with dual variable δI for every constraint I ∈ Icrowd:

∑
k∈K

bIkxk ≤ 1 ∀I ∈ Icrowd (δI). (6.16)

Instead of adding all constraints, which is computationally impossible due to the
large number of segments, we only add those constraints that are violated in the
current solution. We can still guarantee optimality as satisfied constraints do not
influence the solution or the objective function. Given that they are inactive, their
dual variable is by definition equal to 0 and therefore this also does not influence
the pricing problem. The procedure to identify violated constraints is as follows.
We define in advance all possible combinations of segments that would constitute
a violation. That is, we identify all possible I ∈ I. Then, every time the master
problem is solved, for all the newly added columns we verify whether they contain
a segment that is in any I ∈ I. For every violation I ∈ I we maintain the set of
columns that contain any segment in this set. We note that the violation I ∈ I
is only added to the master problem if the corresponding set of columns contains
more than one column.

The new reduced cost then looks as follows, where we identify if parcel path
k contains a segment that makes it part of any of the incompatible sets I ∈ I:

rk = πk − vp −
∑
c∈C

ucack −
∑

I∈Icrowd

bIkδI . (6.17)

The pricing problem remains the same apart from an extra cost δI that is subtracted
whenever the new column is part of an incompatible set. We emphasize that the
computational complexity of the pricing problem remains unchanged after the
addition of the capacity constraint. Even though we duplicate the number of
segments by the capacity, only the duplicate segment s with the lowest value of∑

I∈Icrowd bIkδI is considered in the pricing problem. The reason for this is that
the duplicate segments are identical. Therefore, a segment s′ with a higher sum
of dual variables can never be in the shortest path, as replacing it with segment
s would always reduce the cost of the path.
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Locker capacity

In our framework, we allow parcels to be stored in parcel lockers at the transfer
point. So far, we assumed that parcel lockers had infinite capacity. Here, we limit
the number of parcels that can be stored at a transfer point h ∈ H to be Q̄h.
Similar to the capacity of the crowd-shippers, we identify sets of columns that are
incompatible because the capacity of a locker is exceeded at some point in time.
The full collection of incompatible sets is denoted as I locker. We adapt the master
problem by adding the same set of constraints as in (6.16), but for the new collection:

∑
k∈K

bIkxk ≤ 1 ∀I ∈ I locker (δI). (6.18)

Again, we do not add all constraints at once but identify those that are violated.
Although the number of transfer points is much lower than the number of crowd-
shippers, the capacity of the transfer point needs to be considered at every time
interval. We only consider transfer points with transfer lockers, as direct time-
synchronized transfers do not need to be stored and therefore do not influence the
capacity. To identify the violated constraints, we use the following procedure. For
every transfer point, we identify the parcel paths that store a parcel at this point.
We sort the parcel paths twice: once in ascending order of their arrival time at the
transfer point and once in ascending order of their departure time from the transfer
point. We start with an empty set of paths V . We then go over those events one
by one in chronological order. Every time an arrival is recorded, the parcel path
is added to V . Every time a departure is recorded, the parcel path is removed
from V . Whenever a parcel arrives that causes the cardinality of V to exceed Q̄h,
we add violation I with bIk = 1 for all k ∈ V and we store the time tIh at which
the violation occurs, which will later aid the pricing problem. For every transfer
point, we only add a single constraint and then re-solve the master problem. This
is repeated until no violated constraints are encountered.

The reduced cost can then be computed as follows, where we identify if a parcel
path k stores a parcel at transfer point h at time tIh for any of the incompat-
ibilities I ∈ I locker:

rk = πk − vp −
∑
c∈C

ucack −
∑

I∈Icrowd

bIkδI −
∑

I∈Ilocker

bIkδI . (6.19)

If this is the case, bIk = 1 for the new parcel path. The pricing problem can then
be extended by exploiting the start and end times of every segment. We recall
that every node in the network discussed in Section 6.3.2 corresponds to a segment.
So far, a node corresponding to a segment s ∈ Sc of crowd-shipper c ∈ C was
attributed a cost uc + wcs, and no costs were attributed to arcs. Now, for an arc
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between two nodes corresponding to segment s1 with end time t and s2 with start
time t̄ where ds1 = os2 = h a cost of δI is added for every I ∈ I locker for which
it holds that t ≤ tIh ≤ t̄. We note that if an arc violates multiple constraints,
multiple dual variables can be added to the same arc.

6.4 Results
We describe the details of the case study and the parameter settings in Section 6.4.1.
In Section 6.4.2 we evaluate the performance of the algorithm in terms of optimality
gap and computation time. We compare the results of our approach to a locally
optimal dynamic assignment strategy in Section 6.4.3. We evaluate the effect of
crowd-shipper capacity and locker capacity in Sections 6.4.4 and 6.4.5, respectively.
Finally, we perform a sensitivity analysis on the cost parameters in Section 6.4.6.

6.4.1 Case study
The city of Washington DC is used as a case study. We use data on the spatial
distribution of the population (Census Reporter, 2021) and the movement of
individuals throughout the city based on bike-sharing users (Capital Bikeshare,
2020). The bike-sharing system of Washington DC has over 500 stations and 4500
bikes, making it one of the largest in the USA. A selection of 240 stations that are in
the city center or the closest suburbs is used in our case study. Bike-sharing stations
are considered as demand locations. This can either be through parcel lockers
or home delivery to an individual living arbitrarily close to a station. Thereby,
historical data on the movement of bike-sharing users throughout the city is used
to approximate the movement of potential crowd-shippers.

The case study and the construction of the dataset are highly similar to that
of Stokkink and Geroliminis, 2023. The main difference is that the size of the
network we consider in this work is more than three times as large. Thereby, we
consider time-dependent arrival rates of crowd-shippers. For a detailed description
of how the case study is constructed, the reader is referred to their work. Figure 6.4
displays a bubble chart of the considered network, where the size of the bubble is
determined relative to the population around the corresponding station. Whereas
most commuters travel around Union Station, the Mall, and the center of Washington
DC, most people live in the suburbs and this is therefore where demand is the
highest. We note the large asymmetry in supply and demand for a crowd-shipping
system in an urban network, making our case study highly realistic.
The baseline parameters used for the model and the column generation algorithm
are given in Table 6.1. These parameters are used in all numerical experiments,
except for sensitivity analyses on these parameters. According to an analysis from
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Figure 6.4: Bubble chart of bike-sharing stations, where the size of the bubble is
determined by the population in the area.

American survey data in Le and Ukkusuri, 2019a, on average, crowd-shippers expect
a compensation of 12$ per hour. Considering 10 minutes to perform both the
pickup and delivery, we set α1 = $2. Using an average bikers speed of 12km/h,
we set α3 = $1/km, which is similar to the value chosen by Le, Ukkusuri, Xue,
and Van Woensel, 2021. Intuitively, α2 > α3 and therefore we set α2 = $2/km.
This is in line with the findings of Rougès and Montreuil, 2014, who studied 26
crowd-shipping businesses, that found the prices of intra-urban deliveries to start
between $4 and $10 plus additional charges for inconveniences such as heavy loads
and long distances. According to Le and Ukkusuri, 2019a, a traditional carrier
charges $15 per parcel. To accommodate distance aspects, we set the cost per parcel
to a base cost of $10, which can increase up to $15 with $2.00 per kilometer between
the origin and destination of the parcel. The maximum runtime of the algorithm
is set to 1800 seconds. The maximum runtime is checked before every call to the
pricing problem and may therefore be slightly exceeded.

The base case we consider has two origin locations and we construct a subgraph
for every origin in the pricing problem. This means η = 1/2. Parcels are stored
at a random origin in the morning and not necessarily at the closest origin to the
destination. The relative rate of parcels and crowd-shippers (|C|/|P |) is fixed. For
computational reasons, we reduce the set C by removing crowd-shippers that cannot
contribute to any delivery (complete or partial). This yields the reduced set C ′.
The number of crowd-shippers in |C ′| depends on other parameters such as the
transfer locations H and the maximum detour τ . Therefore, in the experiments
that follow, the reported ratio |C ′|/|P | is not necessarily constant.

CPLEX version 12.6.3.0 is used in Java to solve all ILPs and LPs. The LPs
during the iterations of the column generation algorithm are solved to optimality
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and the IP after the final iteration of the column generation algorithm is solved
up to a 0.5% optimality gap.

Table 6.1: Parameter settings

Model parameters
α1 $1.00/parcel
α2 $2.00/parcel/km
α3 $1.00/parcel/km
τ 100 meters
∆min 1 minute
∆max 10 hours
ρ min{$15.00, $10 + $2.00/km}/parcel

Algorithm parameters
η 0.5
ζ 0.3
CPU time limit 1800 seconds

6.4.2 Algorithm evaluation
In this section, we evaluate the performance of our column-generation algorithm in
terms of objective value and computation time. We evaluate the performance for
various model parameters and problem sizes. Thereby, we compare the performance
of the algorithm for multiple levels of ζ. The results are displayed in Table 6.2.
Clearly, the computation time of the algorithm increases as the size of the problem
increases. The most important determinant of the complexity of the algorithm is
the number of segments that are used to construct the graph in the pricing problem.
Therefore, the computation time increases drastically with |P |, |C|, and τ . This
also explains why using only a random portion of the segments to construct the
graph in every iteration leads to a significant reduction in computation time. By
using a portion ζ, the computation time is reduced almost by a factor 10. Hence,
larger instances can be solved without decomposing the pricing problem over more
subgraphs.

The algorithm finds optimal or near-optimal solutions. When ζ is 1 and the
algorithm converges before the time limit, we can use the LP solution as an upper
bound to the objective value and therefore compute an optimality gap. For ζ < 1,
the LP solution is not necessarily an upper bound. Hence, we only compute the
optimality gap if the optimal LP solution is found for ζ = 1. The optimality gap is
at most 0.5% for all tested instances for which the optimality gap was computable.
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Even when ζ = 0.3, the optimality gap is almost negligible. Furthermore, using
transfers leads to an improvement between 15% and 50% both in the objective
value (i.e., revenue - costs) and the service level (i.e., number of served parcels).

Table 6.2: Algorithm Evaluation

|P | |C′| τ |H| ζ CPU time (s) Opt. gap (%) Obj. ($) Gain (%) SL Gain (%)

310 339 250 6 1 4.0 0.0 109472 30.7 111 35.4
310 491 500 6 1 23.2 0.0 147542 24.5 152 28.8
681 798 250 6 1 88.5 0.0 271569 18.0 269 20.1
681 1034 500 6 1 952.3 0.5 375937 13.2 384 16.0

1043 1204 250 6 1 537.4 0.1 398558 14.6 400 17.0
1043 1776 500 6 1 - - - - - -

310 442 250 11 1 17.6 0.0 117926 40.8 120 46.3
310 577 500 11 1 284.5 0.0 163944 38.4 172 45.8
681 988 250 11 1 848.7 0.4 281295 22.2 280 25.0
681 1205 500 11 1 ∗1800.0 - 362884 9.2 377 13.9

1043 1464 250 11 1 ∗1800.0 - 419287 20.6 423 23.7
1043 1776 500 11 1 - - - - - -

310 339 250 6 0.3 2.1 0.0 109472 30.7 111 35.4
310 491 500 6 0.3 5.4 0.0 147565 24.5 152 28.8
681 798 250 6 0.3 13.6 0.0 271571 18.0 269 20.1
681 1034 500 6 0.3 174.7 0.4 376202 13.2 385 16.3

1043 1204 250 6 0.3 67.4 0.0 398895 14.7 400 17.0
1043 1535 500 6 0.3 1418.4 - 547657 12.8 565 16.5

310 442 250 11 0.3 3.4 0.0 117919 40.8 120 46.3
310 577 500 11 0.3 17.1 0.2 163682 38.2 172 45.8
681 988 250 11 0.3 39.2 0.0 282302 22.6 281 25.4
681 1205 500 11 0.3 591.1 - 403945 21.6 421 27.2

1043 1464 250 11 0.3 203.8 - 419365 20.6 422 23.4
1043 1776 500 11 0.3 ∗1800.0 - 582371 19.9 608 25.4

Note: |P | = number of parcels, |C′| = number of potential crowd-shippers, τ = maximum detour of
crowd-shippers, |H| = number of transfer hubs, ζ is the portion of random segments used in the construction of the
subgraph for the pricing problem. The optimality gap is the percentage difference between the IP solution and the
LP solution for ζ = 1. SL = service level. The gain columns display the improvement that is obtained by using
transfers over not using transfers. Scenarios for which the CPU time limit is reached and therefore no optimality
gap can be obtained are denoted with an asterisk. The two largest instances for ζ = 1 cannot be solved due to
memory issues.

To further evaluate the effect of ζ on computation time and optimality gap, we
evaluate the case where |P |= 310, |C ′|= 491, τ = 500, and |H|= 11 for 6 different
values of ζ. In Figure 6.5, the optimality gap is displayed relative to the number
of iterations (left) and the computation time in seconds (right). Clearly, the
computation time per iteration decreases drastically by decreasing the random
portion of segments that are used at every iteration. However, because the subgraphs
are not complete, they may lead to not all columns with positive reduced costs being
identified in an iteration. Therefore, the algorithm may require more iterations and
can lead to suboptimal solutions. The best value of ζ is thus a trade-off between
the number of iterations and the computation time per iteration. The best value is
also dependent on the size of the problem. In general, for larger problems, smaller
values of ζ can be chosen at the cost of limited losses.
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Figure 6.5: Iterative optimality gap for different values of ζ

6.4.3 Performance compared to locally optimized bench-
mark

In this section, we compare the performance of our optimized assignment procedure
to a myopic first-best assignment policy. Such a policy is commonly applied for
dynamic settings in practice and in the literature (???).

Crowd-shippers arrive dynamically over time. Every time a crowd-shipper arrives,
the first-best parcel is selected which maximizes the revenue. That is, we choose
the parcel that is locally optimal, ignoring information about potential future
crowd-shippers. For a direct delivery, the profit can be computed exactly as the
full trip is known. For an indirect delivery, the costs of the current delivery stage
are known. The costs of previous delivery stages have already been incurred and
can be considered sunk costs, which are therefore omitted from the optimization. It
is assumed that after the current stage, the parcel is directly picked up from the
transfer point and taken to the final destination of the parcel. Due to coordination
issues in the dynamic arrival of crowd-shippers, we only allow for two-stage deliveries
and strictly prefer delivering a parcel to the final destination over delivery to a
transfer point. With these cost components and the revenue obtained from delivering
the parcel, the expected profit can be computed. Since the strategy is myopic, no
information is used on potential future crowd-shippers.

We note that for the myopic first-best assignment policy, parcels may remain
at transfer points whereas for the optimized assignment this is not possible. In case
a parcel remains at the transfer point, the revenue is not obtained although a part of
the costs is already incurred. For the sake of comparison, we compare the optimized
assignment to two dynamic benchmarks. One where the costs for uncompleted
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deliveries are excluded (B1) and one for which the costs for uncompleted deliveries
are included (B2).

The results are displayed in Table 6.3 where the first set of rows denotes the
results for |H|= 0, implying that only direct deliveries are allowed and the second
set of rows denotes the results for |H|= 11 where transfers are allowed. Global
optimization allows for the coordination of transfers. As a consequence, global
optimization outperforms local optimization by 25% in terms of service level and
objective value when transfers are allowed. Without transfers, the effect is only 5%.

Table 6.3: Benchmark comparison

Global optimization Local optimization Effect of global optimization
|P | |C′| τ |H| SL Obj SL B1 B2 SL B1 B2

310 442 250 0 26.5 837.40 25.2 797.75 797.75 -4.9 -4.7 -4.7
310 577 500 0 38.1 1184.80 37.1 1144.06 1144.06 -2.5 -3.4 -3.4
681 976 250 0 32.9 2301.94 32.3 2251.91 2251.91 -1.8 -2.2 -2.2
681 1202 500 0 48.6 3322.31 45.5 3107.11 3107.11 -6.3 -6.5 -6.5

1043 1447 250 0 32.8 3477.75 31.4 3328.68 3328.68 -4.1 -4.3 -4.3
1043 1774 500 0 46.5 4856.33 44.9 4650.70 4650.70 -3.5 -4.2 -4.2

310 442 250 11 38.7 1179.20 29.4 905.14 864.79 -24.2 -23.2 -26.7
310 577 500 11 55.2 1633.30 40.6 1208.52 1098.46 -26.3 -26.0 -32.7
681 976 250 11 41.3 2823.58 34.5 2367.28 2298.17 -16.4 -16.2 -18.6
681 1202 500 11 61.2 4018.04 48.3 3198.28 3044.50 -21.1 -20.4 -24.2

1043 1447 250 11 40.6 4200.88 33.3 3471.00 3379.15 -18.0 -17.4 -19.6
1043 1774 500 11 58.9 5869.61 47.2 4768.41 4522.80 -19.9 -18.8 -22.9

Note: |P | = number of parcels, |C′| = number of potential crowd-shippers, τ = maximum detour of
crowd-shippers, |H| = number of transfer hubs, SL = service level given as a percentage, obj = objective value
given in dollars, B1 and B2 are the objective values of two local optimization benchmarks given in dollars. The last
three columns denote the percentual difference between the local and the global optimization strategies.

6.4.4 Crowd-shipper capacity
In this section, we evaluate the influence of crowd-shipper capacity on the profit
and service level. We consider that a part of the potential crowd-shippers can
carry multiple parcels at the same time. When generating the instance, every
crowd-shipper has an equal probability for each capacity level, such that we obtain
an evenly distributed population. The results are obtained for ζ = 0.05, to further
reduce the CPU time. Here, we also apply the described row generation procedure
to identify violated constraints that we iteratively add to the formulation. As
a result of using ζ = 0.05, the obtained LP solution is not necessarily optimal.
Therefore, the optimality gap is an approximation.

The results are displayed in Table 6.4. By considering higher capacities, computation
times increase drastically. For this reason, a time limit of 3600 seconds (1 hour) is
used instead. The reason for the increased computation times is two-fold. First,
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we consider duplicate segments, such that the number of considered segments and
therefore the computation time of the pricing problem increases. Second, the
violated constraints need to be identified and added to the master problem, which
makes solving the master problem more computationally demanding. Furthermore,
we observe that the optimality gap increases with capacity. However, the highest
observed optimality gap is 9%, which is deemed reasonable.

We note that to obtain an optimal solution the column generation framework
would have to be integrated into a branch-and-price framework. However, given the
relatively small optimality gap, the already substantial computation time of the
column generation algorithm, and the fact that we are dealing with an operational
problem rather than a strategic one, developing a branch-and-price framework looks
unappealing for our specific problem.

The increase in capacity leads to a substantial improvement in the objective (profit)
and the service level. Depending on the problem setting, using a capacity of 2 for
half of the population improves the objective and service level by 20% to 50%. For
higher capacities, the observed increase is even higher, even though the algorithm
has reached the time limit before the optimal solution has been found.

Table 6.4: Influence of crowd-shipper capacity

|P | |C′| qc τ (m) CPU time (s) Obj. ($) SL (%) ˜Opt. gap (%) Gain obj. (%) Gain SL (%)

310 442 {1} 250 2.8 1173.64 38.7 0.0 - -
310 442 {1,2} 250 139.6 1526.89 51.0 3.5 30.1 31.7
310 442 {1,2,3} 250 272.1 1637.73 54.2 9.0 39.5 40.0

310 577 {1} 500 4.4 1633.81 55.5 0.0 - -
310 577 {1,2} 500 775.3 1996.02 67.7 3.0 22.2 22.1
310 577 {1,2,3} 500 2192.0 2130.94 72.3 6.2 30.4 30.2

681 976 {1} 250 10.2 2821.64 41.3 0.0 - -
681 976 {1,2} 250 ∗3600.0 3997.53 60.1 - 41.7 45.6
681 976 {1,2,3} 250 ∗3600.0 4314.73 65.3 - 52.9 58.4

681 1202 {1} 500 89.9 4018.09 61.5 0.4 - -
681 1202 {1,2} 500 ∗3600.0 4317.14 64.0 - 7.4 4.1
681 1202 {1,2,3} 500 ∗3600.0 - - - - -

Note: |P | = number of parcels, |C′| = number of potential crowd-shippers, qc is the considered crowd-shipper
capacity, each with equal probability, τ = maximum detour of crowd-shippers, The optimality gap is the
percentage difference between the IP solution and the LP solution. Since we use ζ = 0.3, the optimality gap is not
exact but an approximation. SL = service level. The gain columns display the improvement that is obtained by
increasing the capacity. Scenarios for which the CPU time limit is reached and therefore no optimality gap can be
obtained are denoted with an asterisk. The largest instance cannot be solved due to memory issues.

Figure 6.6 displays a Gannt chart of the movement of parcels. Each colored bar
represents the time spent with a crowd-shipper. Identical bars in identical locations
signal that a crowd-shipper is carrying multiple parcels at the same time. A
deeper investigation reveals that the additional flexibility leads to parcels being
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carried collectively on one leg and separately on the other, which is clear from
the zoomed figure. We also observe the influence of travel patterns on crowd-
shipping activity. We observe a clear morning and evening peak, by the frequency
of the activities. The evening peak contains significantly more activities, despite
the number of potential crowd-shippers not being significantly different from the
morning commute. The reason for this is that most destinations for parcels are
in the suburbs. Hence, the evening commute from the center to the suburbs is
more useful for reaching these destinations.

Figure 6.6: Gannt chart of the movement of parcels with time on the x-axis and the
parcel index on the y-axis. Parcels are sorted by the start time of the first segment. Each
colored bar represents the time spent with a crowd-shipper. In the upper left corner, we
zoom on four specific parcels.

6.4.5 Parcel locker capacity
As parcel locker capacity does not seem to be a restrictive parameter for reasonable
values of Q̄h, these constraints are not considered in the obtained results. In this
section, we discuss the evolution of locker capacity over time. Out of the 11 transfer
hubs, we specifically focus on three locations that have distinct patterns. The
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locations are identified in Figure 6.7b, where origins are marked in red, transfer
points are marked in yellow, destinations of parcels are marked in green and the
flow of parcels that make at least one transfer is marked by blue lines. Here, the
size of the line denotes the number of parcels. The total number of parcels stored
in the transfer points is displayed in Figure 6.7a.

The three chosen transfer points are the most used among a total of 11. It is
clear that a capacity of 10, therefore, suffices for all transfer points. The first two
points are in the city center. This is clear because they fill up quickly during the
morning commute after which they are emptying out slowly during the evening
commute. During the morning commute, potential crowd-shippers travel from
the suburbs to the city center, passing by these transfer points. The opposite
is observed for the third transfer point, which is at the main train station of
Washington DC, parcels gradually accumulate throughout the day before being
emptied out rapidly during the evening commute when people are traveling back
home (i.e., to the suburbs) from the train station. Clearly, the results in Figure
6.7 align with the results in Figure 6.6.

(a) Number of parcels stored over time
(b) Flow of parcels that make at least one
transfer

Figure 6.7: Step and flow charts that indicate the number of parcels stored at transfer
points over time and the flow of parcels in the network

6.4.6 Sensitivity for cost parameters

In this section, we evaluate the effect of the cost parameters on the observed
performance and the number of transfers per parcel path. We consider similar
settings as in the previous experiment, but with a constant |H|= 11 and ζ = 0.3.
We consider non-linear cost components for crowd-shipper compensation where we
replace the profit in Equation (6.1) with the following function:

πk = ρp −
[∑

c∈C

ackα
1 +

∑
c∈C

∑
s∈Sc

bcsk

(
α2(detcs)β2 + α3(lens)β3

)]
. (6.20)
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The results are displayed in Table 6.5. We observe that the effect of transfers on
service level is relatively constant for different cost parameter combinations. The
effect on the objective improvement is more substantial. For higher values of τ ,
the relative improvement of the objective function compared to the case |H|= 0 is
lower than for lower values of τ . Thereby, if the penalty for distance traveled with
a parcel is non-linear, the improvement of the objective decreases by approximately
10%. The value of α1 has a significant influence on the number of transfers on a
path. When the fixed compensation is negligible, transfers become more beneficial
and we observe significantly more paths with two or more transfers.

Table 6.5: Sensitivity to cost parameters

|P | |C′| τ α1 α2 α3 β2 β3 Improvement over |H|= 0 Transfers per path (%)
Obj. (%) SL (%) 0 1 2+

310 442 250 1 2 1 1 1 40.8 46.3 66.7 33.3 0.0
310 577 500 1 2 1 1 1 38.4 45.8 66.3 32.0 1.7
310 442 250 1 1.6 1 1.2 1 40.3 48.1 65.0 34.2 0.8
310 577 500 1 1.6 1 1.2 1 34.4 46.2 64.9 33.3 1.8
310 442 250 1 2 0.8 1 1.2 29.7 46.3 64.2 34.2 1.7
310 577 500 1 2 0.8 1 1.2 23.1 43.2 68.0 30.8 1.2
310 442 250 1 1.6 0.8 1.2 1.2 28.3 46.9 66.4 32.8 0.8
310 577 500 1 1.6 0.8 1.2 1.2 18.6 32.5 70.3 29.0 0.6
310 442 250 0.01 2 1 1 1 46.2 46.3 56.7 38.3 5.0
310 577 500 0.01 2 1 1 1 43.8 45.8 60.5 33.7 5.8
310 442 250 0.01 1.6 1 1.2 1 46.4 48.1 56.7 38.3 5.0
310 577 500 0.01 1.6 1 1.2 1 41.3 47.0 58.7 34.3 7.0
310 442 250 0.01 2 0.8 1 1.2 39.3 46.3 49.2 42.5 8.3
310 577 500 0.01 2 0.8 1 1.2 33.9 44.1 51.8 38.8 9.4
310 442 250 0.01 1.6 0.8 1.2 1.2 38.0 46.9 53.8 42.0 4.2
310 577 500 0.01 1.6 0.8 1.2 1.2 29.0 41.0 53.9 38.8 7.3

Note: |P | = number of parcels, |C′| = number of potential crowd-shippers, τ = maximum detour of
crowd-shippers, α1 = fixed crowd-shipper compensation in dollars, α2 = variable crowd-shipper compensation per
km detour, α3 = variable crowd-shipper compensation per km traveled with parcel, β2 = power of detour
component, β3 = power of distance component. SL = service level. α1, α2, and α3 are given in dollars (per
kilometer).

6.5 Summary
In this chapter, we developed a crowd-shipping model with intermediate transfers.
In contrast with the majority of the existing literature, our model allows for high
levels of heterogeneity of crowd-shippers, parcels, and transfer points. We consider a
detailed individual-specific cost structure for crowd-shipper compensation and allow
for different weights to be assigned to different parcels, for example, to differentiate
between locations in the network. Thereby, we allow for direct time-synchronized
transfers, where a parcel is directly handed from one crowd-shipper to another, as
well as transfers with intermediate storage at strategically located parcel lockers.
We designed a column generation algorithm to solve large-scale realistic scenarios
to optimality within a reasonable amount of time. To improve the performance of
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the system, we allow crowd-shippers to carry more than one parcel at the same
time. This further complexifies the problem, as additional constraints are required
to regulate crowd-shipper capacity and compatibility of parcels. To solve this
problem, we extend our column generation algorithm to simultaneous column and
row generation. This algorithm identifies violated compatibility constraints and
adds these to the master problem after every column generation iteration.

For a large network with 250 regions, 11 transfer points, approximately 500 parcels,
and 500 crowd-shippers, our algorithm finds the optimal matching within one
minute. For larger models of approximately 1000 parcels and 1000 crowd-shippers,
we find solutions that are optimal or near-optimal within 10 to 30 minutes. Our
results indicate that the use of parcel lockers for intermediate transfers allows
for increasing the total revenue and service level by around 30%, depending on
the system configurations. A further increase of 30 to 50% can be obtained by
allowing some crowd-shippers to carry two or three parcels at the same time
(with an average capacity of two across the population). Due to the complexity
of coordination between crowd-shippers in a system with transfers, our optimal
approach outperforms a myopic first-best (locally optimized) approach by 25%.



7
Conclusions and future research

In this thesis, we developed optimization models for strategic and operational
problems in last-mile logistics and transport systems. The focus is on improving the
sustainability and efficiency of these systems, by leveraging existing vehicle flows
and stimulating multi-purpose trips for commuters. In Chapter 2 we developed a
predictive user-based vehicle relocation strategy for one-way car-sharing systems.
In Chapter 3 we identified the effect of dynamic congestion on matching in ride-
sharing systems. In Chapter 4 we modeled the multi-modal ride-matching problem
with transfers and travel time uncertainty as a stochastic programming problem.
In Chapter 5 we focused on the strategic network design problem in an urban
crowd-shipping system. We developed an algorithm based on lower-level continuum
approximations that efficiently determines depot locations. In Chapter 6 we designed
a column-and-row generation algorithm for the crowd-shipping matching problem
with transfers. In this final chapter, we summarize the main contributions and
findings of this thesis and identify promising areas for future research.

7.1 Main findings
Chapter 2: Predictive user-based relocation through incentives in one-
way car-sharing systems

Chapter 2 focuses on the problem of user-based vehicle relocation in one-way car-
sharing systems with the aim of finding an effective, low-cost, and sustainable
alternative for staff-based vehicle relocation. A predictive incentive scheme is
designed that determines the optimal incentive in a dynamic system framework.
The main contributions are listed as follows:
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• Design an innovative user-based relocation policy to solve the vehicle relocation
problem in one-way car-sharing systems.

• Integrate a Markovian prediction method to forecast future demand losses
due to vehicle imbalances.

• Propose an adaptive method that determines the optimal incentive based on
(predicted) customers’ value of time and current and expected future states of
the system.

• Illustrate the benefits and performance of user-based relocation compared to
staff-based relocation in terms of service level, cost, and sustainability.

• Describe the performance of a hybrid operator-user-based relocation policy in
terms of service level, cost, and sustainability.

Specifically, the simulation results indicate that, by using our incentivization
approach, we can partially solve the balancing problem of vehicles throughout
the network and thereby increase the service level. In addition to this, our methods
allow the operator to use fewer staff members while attaining a higher service level
and thereby increase the profit. Specifically, by using a hybrid operator-user-based
relocation policy, service level, and profit can be maximized. In this case, user-based
relocations perform short-distance relocations, while long-distance relocations are
executed by staff members. We also observe that by using user-based relocations,
the average KM traveled by staff and users per unit of served demand decreases,
suggesting our method is environmentally more sustainable than staff-based policies.

Future research can extend our model to include competition between users for
incentives. If one user declines the offered incentive, a similar incentive may be
offered to the next arriving user who may then choose to accept it. Including
future decisions on incentives would result in a computationally expensive recourse
problem and is therefore omitted in the current work, but is an interesting direction
of future work for mobility systems with higher demand. By incorporating this
type of competition for incentives in the optimization problem, offered discounts
may be lower without decreasing the performance of the system.

Chapter 3: Influence of dynamic congestion with scheduling preferences
on carpooling matching with heterogeneous users

Chapter 3 focuses on the problem of matching drivers and passengers in a carpooling
system. A bi-level optimization approach is proposed to evaluate the effect
of congestion on the matching in such a system. The main contributions are
listed as follows:
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• Describe the matching of drivers and passengers in a carpooling framework
through a MILP and fundamental theoretical properties.

• Design an integrated framework of carpooling matching and dynamic bottle-
neck congestion.

• Propose an iterative matching algorithm that incorporates dynamic bottleneck
congestion.

• Provide insight into the effect of dynamic bottleneck congestion on the optimal
carpooling matching solution.

Specifically, the numerical results indicate that carpooling is more attractive during
rush hours when there is congestion. Firstly, this is caused by the economies of scale
of the matching problem. When the number of drivers and passengers increases,
the average cost of a match decrease. Secondly, bottleneck congestion makes drivers
and passengers more flexible with respect to their departure time. In equilibrium,
commuters may be (almost) indifferent between multiple departure times, which
makes matching them to another commuter less costly. We also observe that in such
a framework, carpoolers have a preference to depart either earlier or later as schedule
delay penalties can be shared between passenger and driver, whereas delay costs are
faced by all individuals sharing a ride. Due to the common assumption that lateness
is penalized heavier than earliness, most carpoolers arrive early to their destination.

Chapter 4: Multi-modal ride-matching with transfers and travel-time un-
certainty

Chapter 4 focuses on the problem of matching riders and drivers in a multi-modal
framework where riders can transfer between drivers and modes. We also consider
that drivers can carry multiple riders and we investigate the influence of travel time
uncertainty. The main contributions are listed as follows:

• We develop a framework for multi-modal transport of riders that considers
public transport, solo driving, and ride-sharing. The framework allows for
transfers between modes and between drivers.

• We derive optimality conditions for the matching as well as the departure
times.

• We formulate the multi-modal ride-matching problems with multiple transfer
hubs as a path-based integer programming problem.

• We model the problem with uncertain travel times as a two-stage stochastic
programming problem.
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Specifically, the numerical results indicate that transfers allow to reduce the cost
of riders. Thereby, a modal shift is observed from private and public transport to
shared and multi-modal transportation. As a result of this, we observe a reduction
in the vehicle hours traveled in private vehicles. A temporal analysis indicates that
ride-sharing is mostly beneficial when the number of riders and drivers is higher. In
this case, ride-sharing benefits from economies of scale that reduce the matching
costs.

Travel time uncertainty may increase the costs of some matches and may even
make some matches infeasible because the rider arrives after the driver has already
departed. For this reason, we observe that uncertainty in travel times increases
the costs of riders. Despite this increase, transfers grant additional flexibility to
riders, as they can partially adapt their matching decisions at the transfer point
after observing the realized travel times. We observe a large modal shift where a
substantial portion of private car users changes to public transport or ride-sharing.
As we assume public transport is unaffected by travel time uncertainty, this mode is
especially appealing to riders when the variance increases. We observe that up to 25%
of the riders change their mode choice after the realized travel time is revealed and
up to 60% of the riders change their match after the realized travel time is revealed.

Chapter 5: A continuum approximation approach to the depot location
problem in a crowd-shipping system

Chapter 5 focuses on the problem of finding the optimal depot locations in a
large-scale urban crowd-shipping system. A depot-based crowd-shipping system is
suggested to attract more crowd-shippers and reach more demand destinations. A
heuristic algorithm based on continuum approximation is used to determine the
optimal hub locations. The main contributions are listed as follows:

• Developing a continuum approximation of the operational problem of the
assignment of parcels to crowd-shippers and parcels to depots.

• Developing a heuristic algorithm that uses the continuum approximation to
accurately and efficiently approximate lower-level decisions and costs and with
that search for the best depot locations.

• Propose predictive decision-making for strategic, tactical, and operational
decisions that incorporate the interaction between expected supply and
demand.
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Specifically, the simulation results indicate the integrating depots in a crowd-
shipping system allows to serve more demand. The best depot locations are not
necessarily in geographically central locations, but most importantly depend on
the supply and demand pattern in an urban area. Our heuristic approach is
significantly faster than exact approaches, yet obtains highly similar results. The
fast approximation algorithm makes the methodology applicable in large cities.
Predictive components in three levels of decision-making significantly improve
performance in terms of profit and service level.

Chapter 6: A column generation approach to the crowd-shipping problem
with transfers

Chapter 6 focuses on the problem of finding the optimal matching of parcels and
crowd-shippers. In the framework we consider, crowd-shippers may carry multiple
parcels at the same time and parcels may transfer between multiple crowd-shippers.
An exact solution algorithm that uses column and row generation techniques is
used to find the optimal solution to the problem. The main contributions are
listed as follows:

• Develop a framework for the crowd-shipping problem with transfers that allows
for time-synchronized transfers and transfers where the parcel is temporarily
stored.

• Consider a highly detailed cost structure for crowd-shipper compensation and
heterogeneity among crowd-shippers and parcels.

• Design an exact column and row generation approach to solve the problem at
hand to optimality

Specifically, the simulation results of a case study in the city of Washington DC
show that transfers can improve the profit and service level of the crowd-shipping
system by around 30%. Optimal solutions to instances with around 500 parcels and
500 crowd-shippers in a network with more than 200 nodes can be solved within
minutes. Computation times can be reduced significantly by randomly reducing
the pricing problem at every iteration. Although the method loses the guarantee of
optimality, the obtained solutions are near-optimal in all studied cases.

A comparison to a first-best assignment policy that is locally optimal illustrates
that our column generation approach performs approximately 25% better in terms
of objective and service level. Without transfers, this is only 5%. This signals the
additional complexity that transfers impose on the problem and the benefit of our
approach that coordinates between crowd-shippers.
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When part of the population of crowd-shippers can carry more than one parcel,
this allows for substantial improvements in the performance of the crowd-shipping
system. If half of the population can carry up to 2 parcels, the service level
and profit can be increased by approximately 40%. A spatiotemporal analysis
indicates a clear morning and evening peak, by the frequency of the activities. The
evening peak contains significantly more activities, despite the number of potential
crowd-shippers not being significantly different from the morning commute. The
reason for this is that most destinations for parcels are in the suburbs, where
the commuters are going in the evening.

7.2 Future research
Based on the developed methods and findings of the research included in this thesis,
various interesting directions of future research arise, related to one or multiple of
the main research fields explored in this thesis.

For both ride-sharing and crowd-shipping systems with transfers (Chapters 4 and 6,
respectively), we focused on the operational problem of matching drivers and riders,
and matching crowd-shippers and parcels. The strategic problem of determining
the optimal locations for these transfer points remains an open problem and is an
important direction of future research. The difficulty of this problem lies in the
connection between incoming and outgoing flows of transfer points. Especially when
multiple transfers can be made, in accordance with Chapter 6, there is a strong
connection between multiple transfer points.

To solve these problems, a similar algorithm can be developed for transfer points as
the one described in Chapter 5 for depot locations. Given that in these types of
problems, the main cost component is on the operational level, whereas decisions
are made on a strategic or tactical level, the optimization framework needs to
encompass the uncertainty between these levels.

Increasing the number of participants in ride-sharing systems such as those described
in Chapters 3 and 4 requires the design of subsidy, incentive, or pricing schemes. For
such problems, developing an adaptive pricing scheme that minimizes the expected
costs or maximizes participation is a promising direction for future research. Such
pricing strategies can be implemented directly on the ride-sharing platform, or
indirectly through HOV (High-Occupancy Vehicle) and HOT (High-Occupancy
Toll) lanes. Through the use of these dedicated lanes, ride-sharing can be promoted
as the use of these lanes is generally faster and therefore allows commuters to reduce
their generalized costs. Research in this direction can also focus on self-financing
policies where a toll can be imposed on solo-driving commuters to facilitate the
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subsidy for commuters who choose to share a ride.

Similarly, adaptive reward strategies need to be designed for crowd-shipping systems
such as those described in Chapters 5 and 6. For this, inspiration can be taken
from the predictive and adaptive pricing in a car-sharing system, as described
in Chapter 2. These adaptive reward strategies can incorporate the relationship
between supply and demand. When the number of potential crowd-shippers is high
but the number of parcels that need to be delivered is low, the crowd-shippers
compete for delivering the same parcel and therefore rewards can be lower. On the
other hand, when the number of potential crowd-shippers is lower than the number
of parcels, crowd-shippers need to be convinced to make the delivery by increasing
the rewards.

The methods described in Chapter 4 can be extended to incorporate the evening
commute, in addition to the morning commute. By jointly modeling the modal
choice in the morning and evening commute, constraints on the availability of cars,
or the requirement to go back to the transfer point where the car was parked in the
morning can be incorporated. With this, the problem described in Chapter 4 needs
to be extended from a two-stage stochastic programming problem to a four-stage
stochastic programming problem. Although this problem is computationally more
difficult, its importance is emphasized by the reliance of commuters on the ride-
sharing platform or public transport during the evening commute if they choose
to leave their car at home during the morning commute. In order to convince
commuters to leave their car at home, the platform should be able to guarantee a
return trip.

The matching approaches in Chapters 4 and 6 have focused on exact approaches
for finding the optimal matching. For these problems to be applicable to realistic
large-scale networks, efficient heuristic approaches need to be designed that can find
high-quality matchings in a relatively short amount of time. In addition to this, we
focused on static matching problems. Both of these problems can be extended to a
dynamic setting, where information on drivers, riders, crowd-shippers, and parcels
is collected gradually throughout the day, rather than all at once.

Finally, field experiments should be performed to evaluate the performance of
the developed methods in real-life settings. In these experiments, issues like privacy,
security, trust, and safety have to be addressed. In passenger transport and mobility
systems, where strangers share the same vehicle during their commute, trust and
safety are important concerns that need to be addressed for these systems to become
an attractive alternative transport mode. In crowd-shipping systems, similar security
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and trust issues need to be addressed. On the other hand, privacy issues with
respect to data collection and safety guarantees arise in these online platforms.



Appendices





A
Proofs for theorems in Chapter 2

For notational convenience we denote the optimization problem as follows:

fi(∆cost(i)) = max
∆cost(i)≥0

gi(∆cost(i)) (A.1)

In addition to this, we substitute ∆cost(i) by x and w ·ODL(i) by K. This reduces
the function to be optimized to the following:

g(x) = P (x)(K − x) (A.2)

Theorem 1. If for a given incentive i a profitable discount value ∆cost(i) exists,
there exists a unique most profitable (optimal) discount value ∆∗

cost(i) for which the
derivative of the subproblem is equal to 0.

Proof. We first note that the optimal discount value should lie somewhere on the
interval [0,+∞), as any value below 0 violates the definition of an incentive. Also,
we note that as g(0) ≥ 0 and g(x) < 0 for each x > K, such that we can reduce
the interval to the closed and bounded interval [0, K]. Additionally, we know that
g(K) = 0.
A global optimum for function g on a closed and bounded interval can occur either
on the boundary points, a non-differentiable point or a stationary point. As this
function is differentiable on the defined interval, only the boundary points and
stationary points need to be identified.
Using Fermat’s theorem, a first order stationary point requires for the derivative
dg(x)

dx
= 0

dg(x)
dx

= dP (x)
dx

(K − x)− P (x) = βP (x)P (−x)(K − x)− P (x) where we use the fact
that dP (x)

dx
= βP (x)P (−x)

By rearranging the terms, we obtain the following requirement: dg(x)
dx

= P (x)[βP (−x)(K−
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x)−1] = 0. As 0 < P (x) < 1 by definition, we can reduce this to: βP (−x)(K−x) =
1.
By further rearranging the terms and substituting y = −x, it should hold that
P (y)(K + y) = 1

β
.

As P (y)(K + y) is strictly increasing in y there exists at most one stationary point
to which we refer as x∗.
This suggests that, using Weierstrass extreme value theorem, if a profitable incentive
value exists, i.e. there exists some x ≥ 0 for which g(x) > 0, there exists an x∗ ≥ 0
which is the unique optimum.

Theorem 2. The optimal discount ∆∗
cost(i) is non-decreasing in the value of ODL(i)

Proof. Using the changed notation, the theorem follows directly from the proof
that x∗ is increasing in K. We consider two incentives i and j for which Ki < Kj

and all other variables are equal. The corresponding optimal discounts are x∗
i and

x∗
j respectively. We distuingish between the optimal discount being at a boundary

point 0 or at a stationary point. Note that we ignore the boundary point at K as
this incentive will not be offered. Therefore, we consider the following three cases:

(i) x∗
i and x∗

j are both at a stationary point
Given the first order necessary condition derived in Theorem 1, it holds that
P (−x∗

i )Ki − P (−x∗
i )x∗

i = 1
β
.

Rewriting this equation in terms of Ki yields: Ki =
1
β

+P (−x∗
i )x∗

i

P (−x∗
i ) (and similar

for Kj).
Given Ki < Kj , it follows that Kj−Ki > 0 which after some rewriting implies
that
P (x∗

j )−P (x∗
i )

β
+ P (−x∗

i )P (−x∗
j)(x∗

j − x∗
i ) > 0 which can only hold if x∗

j ≥ x∗
i .

(ii) x∗
i = 0 (i.e. i at a boundary point)

By definition, x∗
j ≥ 0, so x∗

j ≥ x∗
i

(iii) x∗
j = 0 (i.e. j at a boundary point)

If the discount is optimal at the boundary point, the following relationship
must hold: maxx P (x)(Kj − x) ≤ P (0)Kj.
Consider specifically Ki = Kj − τ with τ > 0.
maxx P (x)(Ki − x) = maxx P (x)(Kj − x− τ) = maxx P (x)(Kj − x)− τP (x)
≤ maxx P (x)(Kj − x)− τP (0) ≤ P (0)Kj − τP (0) = P (0)(Kj − τ) = P (0)Ki.
As maxx P (x)(Ki − x) ≤ P (0)Ki → x∗

i = 0 = x∗
j

We note that in each of these three cases it holds that x∗
j ≥ x∗

i . As the only variable
change is Kj > Ki, it follows that x is non-decreasing in K and therefore the
optimal discount is non-decreasing in the ODL value.
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For the sake of completeness, we repeat here the two assumptions that are needed
for some of the following theorems.

Assumption A1 (Simple matching): The (additional) cost of matching driver
i to passenger j depends only on the detour driver i makes to pickup passenger j,
as defined in Equation (3.1).

Assumption A2 (Sorting): Without loss of generality, all passengers and drivers
are sorted from left to right based on their location on the Hotelling line.

Theorem 3. Let the number of drivers be equal to the number of passengers. Under
Assumption A1 and given that at optimality all drivers and passengers match,
matching the ith driver and the ith passenger is always among the set of optimal
matchings.

Proof. Using drivers at location xi and xj and passengers at location yk and yl

where without loss of generality xi ≤ xj and yk ≤ yl. Furthermore we assume α = 1
without loss of generality. We show that the following inequality always holds:

C(i, k) + C(j, l) ≤ C(i, l) + C(j, k). (B.1)
To prove this, we consider six distinct scenarios that together comprise all possible
realizations.
xi ≤ xj ≤ yk ≤ yl : C(i, k) + C(j, l) = 0 + 0 ≤ 0 + 0 = C(i, l) + C(j, k)
xi ≤ yk ≤ xj ≤ yl : C(i, k) + C(j, l) = 0 + 0 ≤ 0 + 2(xj − yk) = C(i, l) + C(j, k)
xi ≤ yk ≤ yl ≤ xj : C(i, k) + C(j, l) = 0 + 2(xj − yl) ≤ 0 + 2(xj − yk) = C(i, l) + C(j, k)
yk ≤ xi ≤ xj ≤ yl : C(i, k) + C(j, l) = 2(xi − yk) + 0 ≤ 0 + 2(xj − yk) = C(i, l) + C(j, k)
yk ≤ yl ≤ xi ≤ xj : C(i, k) + C(j, l) = 2(xi − yk) + 2(xj − yl) ≤ 0 + 2(xj − yk) = C(i, l) + C(j, k)
yk ≤ xi ≤ yl ≤ xj : C(i, k) + C(j, l) = 2(xi − yk) + 2(xj − yl) ≤ 2(xi − yl) + 2(xj − yk) = C(i, l) + C(j, k)
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This shows that for every pair of matches, it is always better to match them in
order. Following this, we can start from any matching, iteratively select a pair of
matches that are not matched in order and interchange them. According to (B.1)
this will never increase the objective value. This will always lead to the matching
where the ith driver is matched to the ith passenger which is therefore at least as
good as any other matching. Specifically, the matching where the ith driver is
matched to the ith passenger is at least as good as the optimal matching. As we
consider that matching all individuals is optimal, we can disregard the option to
match to dummies. Therefore, the matching where the ith driver is matched to the
ith passenger is always among the set of optimal matchings.

Theorem 4. Let the number of drivers be equal to the number of passengers and
let matching cost be defined according to assumption A1. Assume that at optimality
k drivers and k passengers are not matched. The matching where the k left-most
passengers remain unmatched, the k right-most drivers remain unmatched and the
remaining passengers and drivers are matched in sequence according to Theorem 2,
is always among the set of optimal matches.

Proof. Given that k drivers and k passengers remain unmatched in the optimal
matching, there exist k matches of drivers to dummy passengers and k matches of
passengers to dummy drivers.
Given any match of a driver to a dummy passenger, we can proof that the matching
can always be improved my interchanging this driver with another driver to the
right of this driver (see proof of Theorem 4.1).
Given any match of a passenger to a dummy driver, we can proof that the matching
can always be improved by interchanging this passenger with another passenger to
the left of this passenger (see proof of Theorem 5).
Applying this intuition to all matches iteratively, we show that it is optimal that
the k right-most drivers are matched to dummies and the k left-most passengers
are matched to dummies.
We can then disregard these individuals and on the remaining sets of passengers
and drivers, apply Theorem 3. It follows that the remaining passengers and drivers
are matched based on their ordered sequence under Assumption A1.

Theorem 5. Consider a set of m drivers and n passengers both ranked from left to
right. Under assumption A1, the following match is optimal:

1. If m < n, the n−m left-most passengers are not matched (i.e. matched to
dummy drivers).

2. If m > n, the m − n right-most drivers are not matched (i.e. matched to
dummy passengers).

3. The remaining min(m,n) drivers and passengers are matched according to
Theorem 3.
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Proof. (Case I) We consider a driver i2 and another driver i1 located before driver
i2. Thereby j is a passenger and d is a dummy passenger. By definition, xi1 ≤ xi2 .
Furthermore we assume α = 1 without loss of generality. We show that the following
inequality holds:

C(i1, d) + C(i2, j) ≥ C(i2, d) + C(i1, j) (B.2)
To prove this, we consider three distinct scenarios that together comprise all possible
realizations.

xi1 ≤ xi2 ≤ yj : C(i1, d) + C(i2, j) = b + 0 ≥ b + 0 = C(i2, d) + C(i1, j)
xi1 ≤ yj ≤ xi2 : C(i1, d) + C(i2, j) = b + 2(xi2 − yj) ≥ b + 0 = C(i2, d) + C(i1, j)
yj ≤ xi1 ≤ xi2 : C(i1, d) + C(i2, j) = b + 2(xi2 − yj) ≥ b + 2(xi1 − yj) = C(i2, d) + C(i1, j)

This shows that for any matching, the matching where a later driver is assigned a
dummy passenger is always an improvement. This can be applied iteratively until
the last m− n drivers in the sequence are assigned dummy passengers. Therefore,
it is optimal to assign dummy passengers to the last m− n drivers.

Next, we remove those last m − n drivers from the considered set of drivers.
We are therefore left with n drivers and n passengers. Those drivers and passenger
are matched optimally as described by Theorem 4.

Proof. (Case II) We consider a passenger j1 and another passenger j2 located after
passenger j1. Thereby i is a driver and d is a dummy driver. By definition, yj1 ≤ yj2 .
Furthermore we assume α = 1 without loss of generality. We show that the following
inequality holds:

C(i, j1) + C(d, j2) ≥ C(i, j2) + C(d, j1) (B.3)

To prove this, we consider three distinct scenarios that together comprise all possible
realizations.

xi ≤ yj1 ≤ yj2 : C(i, j1) + C(d, j2) = 0 + cA ≥ 0 + cA = C(i, j2) + C(d, j1)
yj1 ≤ xi ≤ yj2 : C(i, j1) + C(d, j2) = 2(xi − yj1) + cA ≥ 0 + cA = C(i, j2) + C(d, j1)
yj1 ≤ yj2 ≤ xi : C(i, j1) + C(d, j2) = 2(xi − yj1) + cA ≥ 2(xi − yj2) + cA = C(i, j2) + C(d, j1)

This shows that for any matching, the matching where an earlier passenger is
assigned a dummy driver is always an improvement. This can be applied iteratively
until the first n − m passengers in the sequence are assigned dummy drivers.
Therefore, it is optimal to assign dummy drivers to the first n−m passengers.

Next, we remove those first n−m drivers from the considered set of passengers. We
are therefore left with m drivers and m passengers. Those drivers and passengers
are matched optimally as described by Theorem 4.
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Theorem 6. Consider linear scheduling delay with γ ≥ β. Driver i is matched
to passenger j with desired arrival times τi and τj. The optimal arrival time t∗

that minimizes the total earliness and lateness penalty as given in Equation (3.4) is
given as t∗ = min(τi, τj). In this case, the reduced-form cost of matching driver i to
passenger j is C̃(i, j) = 2αmax(xi − yj, 0) + β|τj − τi|.

Proof. Following Theorem 5.2, t∗ ∈ [min(τi, τj),max(τi, τj)]. As we consider a closed
bounded interval, we can use Weierstrass theorem to prove that t∗ = min(τi, τj).
For this, we consider the boundary points, all points that are non-differentiable and
all points where the gradient is equal to zero. As the gradient is never equal to zero
on the chosen interval, we consider t = τi and t = τj.

Without loss of generality we assume τi ≤ τj. Then,

E(t) + L(t) =
{
β(τj − τi) for t = τi

γ(τj − τi) for t = τj
(B.4)

Given that γ ≥ β, the minimum is obtained at t∗ = min(τi, τj). Filling this into
Equation (3.4) yields C̃(i, j) = 2αmax(xi − yj, 0) + β|τj − τi|.

Theorem 7. Consider scheduling delay penalties where earliness and lateness
are non-increasing and non-decreasing functions of time, respectively. Driver i is
matched to passenger j with desired arrival times τi and τj and τi ≤ τj, without loss
of generality. The optimal arrival time t∗ that minimizes the total earliness and
lateness is in the closed bounded interval [τi, τj].

Proof. Let earliness and lateness for individual i be defined as Ei(t) and Li(t)
respectively. Let the total earliness and total lateness for arrival time t be denoted
by E(t) and L(t) respectively. That is, E(t) = Ei(t)+Ej(t) and L(t) = Li(t)+Lj(t)
for a matched couple i and j. As the non-increasing and non-decreasing properties
are additive, E(t) is non-increasing in t and L(t) is non-decreasing in t. Therefore,
the following inequalities hold:

E(t) ≤ E(t′) for t ≥ t′,

L(t) ≥ L(t′) for t ≥ t′.

Furthermore, given the truncated nature of earliness and lateness (i.e. if both
passenger and driver are early (late), lateness (earliness) is strictly 0.), the following
equalities hold:

E(t) = 0 for t ≥ τj,

L(t) = 0 for t ≤ τi.
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Consider an arrival time t < τi. Combining the statements above, it follows that:

E(t) + L(t) ≥ E(τi) + L(τi)

hence, t < τi is never better than τi. Similarly, consider an arrival time t > τj, it
follows that:

E(t) + L(t) ≥ E(τj) + L(τj)

hence, t > τj is never better than τj. It follows that the optimal arrival time t∗ lies
within [τi, τj].
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C
Cost formulations and proofs for theorems

in Chapter 4

C.1 Cost formulations
In this appendix, we describe the deterministic costs for every type of path. We
consider separately all 10 types of paths (3 direct and 7 indirect). For the sake of
notation, we define t∗j(h) as the desired arrival time of driver j at transfer hub h

if he travels through that hub. This is simply computed as t∗j(h) = t∗j − tt(h, dj).
The three direct paths are described below:

Direct PT

Every rider i ∈ I has the option to take public transport. Public transport has
a fixed cost plus a variable term per unit of time traveled. A rider i ∈ I that
takes public transport incurs a cost:

ck = αpttt(oi, di) + ϕpt (C.1)

Direct SD

Every rider that owns a car i ∈ Ic also has the option to drive from origin to
destination directly. In that case, on top of his value of time, drivers pay for fuel
consumption and parking at the destination. Departure time choices are made to
minimize the costs. In the case of deterministic travel times, this means that they
arrive exactly at their desired arrival time, and as such schedule delay penalties
are zero. In the case of stochastic travel times, this may not be the case and
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departure times are chosen by modeling departures at t ∈ T as separate paths.
The deterministic costs for such a path are defined as:

ck = (αcar + ϕfuel)tt(oi, di) + ϕpark
di

(C.2)

Direct RS

For every rider i ∈ I, a direct match can be found with a driver j ∈ J if oi = oj and
di = dj. As the driver selects the departure time to minimize his/her own cost, the
arrival time at the final destination is equal to his/her desired arrival time of the
driver, possibly imposing schedule delay costs on the rider. A rider is penalized for
earliness by β and for lateness by γ. The notation (·)+ = max(0, ·), which means
that either earliness or lateness is positive, but not both at the same time. Only if
t∗i = t∗j , the rider arrives exactly on time, and therefore both earliness and lateness
will be zero. For a match between i ∈ I and j ∈ J , eik = 1, a0

jk = 1 and all other
parameters are equal to 0. The cost of this direct match is as follows:

ck = αcartt(oi, di) + β(t∗i − t∗j)+ + γ(t∗j − t∗i )+ (C.3)

The seven indirect paths are described below:

Indirect RS → RS

We consider a rider i ∈ I and two drivers j1, j2 ∈ J where j1 takes i on the first leg
and j2 takes i on the second leg with a transfer at transfer hub h. Similar to before,
this is only feasible if oi = oj1 , di = dj2 . Thereby, t∗j1(h) ≤ t∗j2(h) to ensure that the
rider is dropped off at the transfer hub before the scheduled pickup. The hub h

needs to deviate at most τ minutes from the shortest path of both drivers j1 and j2.
In this case, a1h

j1k = 1 and a2h
j2k = 1.The cost for the rider i is then defined as follows:

ck = αcar[tt(oi, h) + tt(h, di)] + αwait[t∗j2(h)− t∗j1(h)]
+ β[t∗i − t∗j2(h)− tt(h, di)]+ + γ[t∗j2(h) + tt(h, di)− t∗i ]+

(C.4)

Indirect RS → PT

For a path where only the first leg is a ride-sharing leg, a rider knows in advance
when he will be picked up at the transfer hub and can therefore adjust his departure
time on the first leg to the departure on the second leg. If rider i ∈ I and driver
j ∈ J are matched with a transfer at hub h ∈ H, they must share their origin
oi = oj and driver j may deviate at most τ minutes from his/her shortest path to
reach hub h. In this case, a1h

j1k = 1. The cost of this match is:

ck = αcartt(oi, h)+αpttt(h, di)+ϕpt+β[t∗i−t∗j(h)−tt(h, di)]++γ[t∗j(h)+tt(h, di)−t∗i ]+
(C.5)
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Indirect PT → RS

We consider the path where the rider shares a ride on the second leg and takes
public transport on the first leg. If rider i ∈ I and driver j ∈ J are matched with
a transfer at hub h ∈ H, they must share their destination di = dj and driver
j may deviate at most τ minutes from his/her shortest path to reach hub h. In
this case, a2h

j2k = 1. The cost of this match is:

ck = αpttt(oi, h)+ϕpt+αcartt(h, di)+β[t∗i−t∗j(h)−tt(h, di)]++γ[t∗j(h)+tt(h, di)−t∗i ]+

(C.6)

Indirect SD → RS

We consider an indirect path where a rider drives alone on the first leg and shares a
ride on the second leg. We note that the arrival time at the transfer hub should be
coordinated, similar to an indirect ride-sharing match. Let rider i ∈ I be matched
to driver j ∈ J on the second leg and let the departure time of rider i on the first
leg be equal to t ∈ T . The arrival time of the rider at the transfer hub h ∈ H is
then equal to t+ tt(oi, h). In a deterministic setting, the rider can optimize their
departure time t to arrive exactly on time at the transfer point and therefore incur
no waiting time. In a stochastic setting, this is not necessarily the case. Again,
driver j may deviate at most τ minutes from his/her shortest path to reach hub
h. In this case, a2h

j2k = 1. The cost is defined as follows:

ck = (αcar + ϕfuel)tt(oi, h) + αcartt(h, di) + αwait[t∗j(h)− t− tt(oi, h)]
+ β[t∗i − t∗j(h)− tt(h, di)]+ + γ[t∗j(h) + tt(h, di)− t∗i ]+

(C.7)

Indirect SD → PT

In case a rider i ∈ I drives their own car on the first leg, departs at time t ∈ T , and
transfers to public transport at hub h ∈ H, the cost is defined as follows:

ck = (αcar + ϕfuel)tt(oi, h) + αpttt(h, di)
+ β[t∗i − t− tt(oi, h)− tt(h, di)]+ + γ[t+ tt(oi, h) + tt(h, di)− t∗i ]+

(C.8)

Indirect PT → PT and SD → SD

For completeness, we introduce two indirect alternatives where the same mode is
used on both legs. Clearly, in the deterministic case, a direct option with that same
mode would always perform at least as well. However, in the stochastic case, an
indirect option (i.e., traveling through the transfer hub without changing driver
or mode) may be used in some scenarios to allow for multi-modal paths in other
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scenarios. The cost for an indirect public transport path and an indirect solo drive
path for individual i with a transfer at hub h are given as follows:

ck = αpt(tt(oi, h) + tt(h, di)) + 2ϕpt (C.9)
ck = (αcar + ϕfuel)(tt(oi, h) + tt(h, di)) + ϕpark

di
(C.10)

C.2 Theorems and proofs

C.2.1 Optimality propositions
Proposition 3 (Stability of optimal matching). Suppose all riders are aware of
their alternative modes of transport but are only aware of their current match and
not of other available drivers. Then, the optimal matching is stable (i.e. no rider
can improve their costs by changing their mode of transport).

Proposition 4 (Strictly dominated paths - deterministic). Consider a rider i ∈ I
and a path k1 ∈ K. Let path k2 ∈ K of rider i be a copy of path k1 where one
or multiple legs are replaced by direct or indirect legs where the rider travels alone
(either by car or public transport). If ck2 < ck1, then path k1 is strictly dominated
by path k2 and can therefore be omitted from K.

Remark 1 (Strictly dominated paths - stochastic). In case travel times are
stochastic, Proposition 4 does not hold. Consider the following counter-example:
Consider a rider i ∈ I and three paths k1, k2, k3 ∈ K corresponding to this rider.
Consider |Ω|= 3 where every scenario has equal probability. Let path k1 be a direct
public transport path for which ck1(ω1) = ck1(ω2) = ck1(ω3) = 10. Let path k2 be an
indirect public transport path through hub h for which ck2(ω1) = ck2(ω2) = ck2(ω3) =
12. Let path k3 be an indirect public transport-carpool path, also through hub h, for
which ck3(ω1) = 6, ck3(ω2) = 10, and ck3(ω1) = 14.
Even though ck1(ω) < ck2(ω) for every ω ∈ Ω, path k2 cannot be omitted. The reason
for this is that k1 and k3 have identical first legs and can therefore be combined across
scenarios. That is, by choosing a first-leg public transport path in every scenario
but choosing to carpool on the second leg in ω1 and ω2 and choosing public transport
on the second leg in ω3, the expected cost can be minimized and this combined path
forms an improvement over path k1 (9.33 versus 10). This disproves Proposition 4
for stochastic travel times.

Proposition 5 (Strictly dominated paths - stochastic). Let cmin
i (ω) be the minimal

cost for rider i ∈ I to travel between their origin and destination in scenario ω ∈ Ω.
If for a path k1, k2 ∈ K it holds that ck1(ω1) + ∑

ω2∈Ω\ω1 c
min
i (ω2) >

∑
ω2∈Ω ck2(ω2)

for all ω1 ∈ Ω1, then path k1 is strictly dominated by path k2 and can therefore be
omitted from K.
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C.2.2 Departure time choice proofs
Theorem 9 (Optimal departure time for a single leg). Let all riders and the driver
have identical origins and destinations. Let a driver with desired arrival time t∗0 be
matched to N riders with desired arrival times t∗1 . . . t∗N . With max(β0, β1, . . . βN ) <
min(γ0, γ1, . . . γN ), the jointly optimal departure time is equal to to = min(t∗0, . . . , t∗N ).

Proof. Without loss of generality, travel time is set equal to 0. Let to be the jointly
optimal departure time and let C(t) be the joint total cost for all drivers and
passengers. Then, to = arg mint C(t). Without loss of generality, we sort the desired
arrival times such that t∗0 ≤ t∗1 ≤ . . . ≤ t∗N . The cost C(t) is then defined as follows:

C(t) =
∑

i∈{0,...,N}|t∗
i<t

βi(t− t∗i ) +
∑

i∈{0,...,N}|t∗
i≥t

γi(t∗i − t) (C.11)

The function C(t) is piece-wise linear and therefore the optimal departure time to
has to be at one of the breakpoints {t∗0, . . . t∗N}. A graphic example is displayed in
Figure C.1. Given that max(β0, β1, . . . βN) < min(γ0, γ1, . . . γN), it can be shown
by contradiction that to = min(t∗0, . . . , t∗N).

Joint total costs

Departure time t

Figure C.1: Theorem 1 example with N = 4 riders and homogeneous β and γ

Theorem 10 (Optimal departure time for a second leg trip). Consider N riders
k1, . . . kN from origins ok1 , . . . , okN who transfer at hub h to their identical destination
d, and a driver i from hub h to the same destination d, with their desired arrival times
t∗k1 , . . . t

∗
kN

and t∗i . Let all individuals have identical cost parameters α, αwait, β, γ,
with β < γ and αwait < γ. We let t1 be the last departure time for the first leg
among all riders and the driver. The joint optimal departure time for the second leg
to2 is a function of the departure time for the first leg t1 which is defined as follows:

to2(t1) =

max(t1,min(t∗i , t∗k1 , . . . , t
∗
kN

)) if αwait ≤ β

t1 if αwait > β
(C.12)
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Proof. Without loss of generality, travel time is equal to 0. Let to2(t1) be the jointly
optimal departure time on the second leg given the latest departure time t1 on the
first leg and let C2(t1, t2) be the joint total cost on the second leg for all drivers
and passengers where t1 is the latest departure time on the first leg and t2 is the
departure time on the first leg. Then, to2(t1) = arg mint2 C(t1, t2). Clearly, leaving
before the last passenger has arrived makes the match infeasible and therefore
attains a cost of ∞. This implies that to2(t1) ≥ t1. Therefore, in the remainder of
this proof, we disregard the period before t1 and the costs of waiting during that
period.

Without loss of generality, we sort the desired arrival times such that t∗k1 ≤ . . . ≤ t∗kN .
The cost C2(t1, t2) is then defined as follows:

C2(t1, t2) = (N+1)αwait(t2−t1)+
∑

k∈{i,k0,...,kN}|t∗
k

<t

β(t−t∗k)+
∑

k∈{i,k0,...,kN}|t∗
k

≥t

γi(t∗k−t)

(C.13)
Using the same reasoning as in Theorem 9, earliness is jointly preferred over lateness.
In this case, we have an additional trade-off between earliness and waiting time.
If waiting time is penalized more than earliness, it is best to leave immediately
after everyone has arrived such that to2(t1) = t1. Otherwise, it might be better to
wait. We separately consider the cases where (i) t1 > min(t∗i , t∗k1 , . . . , t

∗
kN

) and (ii)
t1 ≤ min(t∗i , t∗k1 , . . . , t

∗
kN

). This is graphically depicted in Figure C.2. In case (i), at
least one matched individual is already late and therefore waiting longer is definitely
not desirable as αwait < γ. In that case, to2(t1) = t1. In case (ii), it is better to wait
at the transfer hub until to2(t1) = min(t∗i , t∗k1 , . . . , t

∗
kN

), applying the reasoning from
Theorem 9. Combining these individual cases leads to the optimal departure time
on the second leg as given in Equation (C.12).

Joint total costs

Departure time t

Joint total costs

Departure time t

Figure C.2: Schedule delay and waiting time

Theorem 11 (Optimal departure time on first leg). Consider a driver i from o to
d passing through hub h, one rider j from o to hub h and one rider k from hub h to
d, with their desired arrival times t∗i , t∗j , t∗k. Let all individuals have identical cost
parameters α, αwait, β, γ, with β < αwait < γ. The joint optimal departure time for
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the first leg to1 = min(t∗i , t∗j , t∗k). The joint optimal departure time of the second leg
can then be determined according to Theorem 10.

Proof. Without loss of generality, travel time is set equal to 0. Let to2(t1) be the
jointly optimal departure time on the second leg given the departure time t1 on
the first leg and let C(t1, t2) be the joint cost of the driver and the two riders
on both legs. Because β < αwait, according to Theorem 10, to2(t1) = t1 given
the relationship between the parameters. We can therefore determine C(t1) =
C(t1, to2(t1)) which is only composed of schedule-delay costs and not waiting, given
the immediate departure from the transfer hub. By applying Theorem 9 we obtain
to1 = min(t∗i , t∗j , t∗k).

Remark 2 (Optimal departure time on first leg). If αwait > β, Theorem 3 does not
necessarily hold and the optimal departure time depends on the order of the desired
arrival times as well as the ratio of αwait, β and γ.

C.2.3 Optimal departure time with stochastic travel times

Lemma 1 (Optimal departure time at breakpoints). Consider a commuter with
desired arrival time t∗ and let travel time be subject to uncertain changes of factor
∆ω (i.e., tt = t̄t ·∆ω) where ω ∈ Ω with a discrete distribution p(ω). The optimal
departure time is chosen to minimize total schedule delay costs of the commuter. Let
tω be the optimal departure time for individual scenario ω. The departure time that
minimizes the expected schedule delay costs (to) should be at one of the breakpoints
of the cost function.

Proof. Let C(t, ω) be the generalized cost of departing at time t under scenario
ω ∈ Ω. The expected cost of departing at time t is defined as Eω[C(t)]. Given the
discrete distribution, this can be written as Eω[C(t)] = ∑

ω∈Ω p(ω)C(t, ω). Given the
axioms of the probability distribution, p(w) ≥ 0 and therefore Eω[C(t)] is a weighted
sum of the scenario-specific costs. As C(t, ω) are piecewise-linear convex functions,
the weighted sum is also a piecewise-linear convex function. The breakpoints of this
function are the breakpoints of all scenario-specific cost functions and are defined
as tω, which are the optimal departure times under that scenario. The departure
time to that minimizes Eω[C(t)] is equal to one of these breakpoints.

Theorem 12 (Optimal departure time of drivers with stochastic travel time).
Consider a commuter with desired arrival time t∗ and let travel time be subject to
uncertain changes of factor ∆ω (i.e., tt = t̄t · ∆ω) where ω ∈ Ω with a discrete
distribution p(ω). Let tω be the optimal departure time for individual scenario
ω. The departure time that minimizes the expected costs is then equal to to =
max{tω, ω ∈ Ω|∑ω′∈Ω|tω′ <tω p(w)β > ∑

ω′∈Ω|tω′ >tω p(w)γ}
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Proof. According to Lemma 1, the optimal departure time to should be at one of
the breakpoints of the expected generalized cost function Eω[C(t)]. The expected
generalized cost function is defined as follows:

Eω[C(t)] =
∑
ω∈Ω

p(ω)[β(tω − t)+ + γ(t− tω)+] (C.14)
∑

ω∈Ω|tω≥t

p(ω)β(tω − t) +
∑

ω∈Ω|tω<t

p(ω)γ(t− tω) (C.15)

Although the derivative of the function Eω[C(t)] is not defined at the breakpoint, it
should hold that the derivative is negative before and positive after the breakpoint.
The derivative at non-breakpoints is the weighted sum of the derivative of the
scenario-specific cost functions. We identify the last breakpoint for which the slope
before that breakpoint is negative, which can be denoted as follows:

to = max
{
tω, ω ∈ Ω|

∑
ω′∈Ω|tω′ ≥tω

p(w)β >
∑

ω′∈Ω|tω′ <tω

p(w)γ
}
. (C.16)

We observe that we can efficiently find the optimal departure time by computing
the individual breakpoints tω = t∗ − t̄t · (∆ω − 1) and going over them in increasing
order until the inequality in Equation (C.16) is no longer satisfied. This concludes
the proof. A graphic example is displayed in Figure C.3.

Corollary 1 (Special case of Theorem 12 - uniform distribution). Consider a
distribution of ∆ω where p(ω) is uniform such that p(ω) = p(ω′) for all ω, ω′ ∈ Ω. Let
t(ω) be the ordered sequence of optimal departure times for the individual scenarios.
Then the departure time that minimizes the expected costs is equal to t(n+1) with
n =

⌊
β

γ+β
|Ω|
⌋
.

Proof. According to Theorem 12 and specifically using Equation (C.16) and the
fact that p(ω) = p(ω′) for all ω, ω′ ∈ Ω, we are able to eliminate p(w) from the
inequality by dividing the left and right-hand side by p(w) > 0. Let n denote
number of elements ω′ ∈ Ω such that tω′ < t(n+1) then we can rewrite the function
of to as follows:

to = max
{
tω, ω ∈ Ω|

∑
ω′∈Ω|tω′ ≥tω

β >
∑

ω′∈Ω|tω′ <tω

γ
}
. (C.17)

to = max
{
tω, ω ∈ Ω | (|Ω|−n)β > nγ

}
. (C.18)

to = max
{
tω, ω ∈ Ω | |Ω| β

γ + β
> n

}
. (C.19)

to = t(n+1) where n =
⌊

β

γ + β
|Ω|
⌋
. (C.20)

This concludes the proof. A graphic example is displayed in Figure C.3.
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