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Abstract

Omnichannel retail has emerged as the new standard in today’s commerce landscape,
with retailers integrating their physical and online channels to enhance the customer
shopping experience. However, such integration presents significant challenges for retailers,
particularly in relation to optimizing their product assortments. This thesis comprises
three chapters, each addressing different aspects of omnichannel assortment optimization
under various assumptions. In the first chapter, we introduce the multichannel attraction
model (MAM), a discrete choice model designed specifically for omnichannel environments.
Focusing on a dual-channel setting, we formulate the assortment optimization problem
under the MAM as a mixed-integer linear program, and provide a computationally
efficient heuristic method for solving large-scale instances of this problem. We also
describe general effects of the implementation of widely-used omnichannel initiatives
on the MAM parameters and explore the properties of optimal assortments through
numerical experiments.

In the second chapter, we generalize our modeling framework to the case of a retailer
managing both an online store and a network of physical stores. Additionally, we
incorporate demand stochasticity and inventory management considerations into the
assortment optimization problem under the MAM. We show that overlooking the demand
variability can result in suboptimal assortment decisions due to the demand pooling effect.
We derive complexity results for the assortment optimization problem, which we then
formulate as a mixed-integer second-order cone program. We also develop two heuristic
algorithms based on different relaxations of the formulated optimization problem. Our
findings indicate that an increasing coefficient of variation of demand has a dual effect
on optimal assortment sizes, initially causing a decrease in online assortment size due
to rising costs, followed by an increase in online assortment size because of the demand
pooling effect.

Finally, in the third chapter, we address a key limitation of the MAM by developing a
modeling framework for omnichannel assortment optimization that accounts for basket
shopping behavior of customers. We model customer choices using a Markov random field
– in particular, the Ising model – which captures pairwise demand dependencies as well as
the individual attractiveness of each product. We provide theoretical insights into the
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Abstract

structure of optimal assortments based on the graphical representation of the Ising model,
and develop a customized metaheuristic algorithm for obtaining high-quality solutions to
the assortment optimization problem. Lastly, we perform an extensive numerical analysis
to gather insights into the properties of optimal assortments and evaluate the benefits
of omnichannel assortment optimization as opposed to optimizing assortments in siloed
channels.

Keywords: omnichannel retailing, assortment optimization, discrete choice modeling,
integer programming, newsvendor model, demand pooling, Ising model, basket shopping
behavior
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Zusammenfassung

Der Omnichannel-Retailing hat sich als neuer Standard in der heutigen Handelsland-
schaft etabliert. Einzelhändler integrieren ihre physischen und Online-Kanäle, um den
Service für die Kunden zu verbessern. Eine solche Integration stellt jedoch erhebliche
Herausforderungen für Einzelhändler dar, insbesondere in Bezug auf die Optimierung ihrer
Produktsortimente. Diese Dissertation ist in drei Kapitel unterteilt, die jeweils unterschied-
liche Aspekte der Omnichannel-Sortimentsoptimierung mit verschiedenen Anforderungen
behandeln. Im ersten Kapitel stellen wir das Multichannel-Attraktionsmodell (MAM) vor,
ein diskretes Entscheidungsmodell, das speziell für den Omnichannel-Handel entwickelt
wurde. Für den Dual-Channel-Vertrieb formulieren wir das Problem der Sortimentsopti-
mierung unter dem MAM als mixed-integer lineares Programm und entwickeln hierfür
eine effiziente heuristische Lösungsmethode, die auch besonders für Problemstellungen
mit großer Produktvielfalt geeignet ist. Wir beschreiben auch die Auswirkungen der
Implementierung von weit verbreiteten Omnichannel-Initiativen auf die MAM-Parameter
und untersuchen die Eigenschaften optimaler Sortimente anhand numerische Experimente.

Im zweiten Kapitel erweitern wir unser Modell für den Fall eines Einzelhändlers, der
sowohl einen Online-Shop als auch ein Netzwerk von physischen Geschäften betreibt.
Darüber hinaus integrieren wir eine stochastische Nachfrage und Bestandsmanagement-
Überlegungen in das Sortimentsoptimierungsproblem im MAM-Modell. Wir zeigen, dass
die Vernachlässigung der Nachfrageschwankungen aufgrund des Poolingseffekts zu subop-
timalen Sortimentsentscheidungen führen kann. Wir leiten Komplexitätsergebnisse für das
Sortimentsoptimierungsproblem ab, das wir dann als mixed-integer Programm zweiter
Ordnung formulieren. Zusätzlich entwickeln wir auch zwei heuristische Algorithmen, die
auf verschiedenen Annährungen des formulierten Optimierungsproblems basieren. Un-
sere Ergebnisse zeigen, dass ein zunehmender Variationskoeffizient der Nachfrage einen
zweigeteilten Effekt auf die optimalen Sortimentsgrößen hat. Zunächst nimmt die Größe
des Online-Sortiments aufgrund steigender Kosten ab, danach folgt eine Zunahme der
Online-Sortimentsgröße aufgrund des Nachfragebündelungseffekts.

Im letzten Kapitel entwickeln wir ein Modellierungsframework für die Optimierung
des Sortiments im Omnichannel-Einzelhandel, das das Einkaufsverhalten der Kunden
berücksichtigt, die im Alltag typischerweise eine bestimmte Kombination von Produkten,
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Zusammenfassung

einen Warenkorb, kaufen. Diese Erweiterung ist in den Standard-MAM-Modellen nicht
enthalten. Wir modellieren die Entscheidungen der Kunden unter Verwendung eines
Markovschen Zufallsfelds, insbesondere des Ising-Modells, das die paarweise Nachfra-
geabhängigkeiten sowie die individuelle Attraktivität einzelne Produkte erfasst. Wir
liefern theoretische Einblicke in die Struktur optimaler Sortimente, indem wir das Ising-
Modell graphisch darstellen und einen angepassten metaheuristischen Algorithmus zur
Erlangung hochwertiger Lösungen für das Sortimentsoptimierungsproblem entwickeln.
Abschließend führen wir eine umfangreiche numerische Analyse durch, um Einblicke in
die Eigenschaften optimaler Sortimente zu gewinnen und die Vorteile der Omnichannel-
Sortimentsoptimierung im Vergleich zur Optimierung von Sortimenten in einzelnen
Kanälen zu bewerten.

Stichwörter: Omnichannel-Retailing, Sortimentsoptimierung, diskrete Entscheidungsmo-
delle, ganzzahlige Optimierung, Newsvendor-Modell, Nachfragebündelung, Ising-Modell,
Warenkorbanalyse
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Introduction

The rise of omnichannel retail has had a profound impact on both companies and customers,
revolutionizing the way they interact with each other. Through a seamless integration of
multiple sales channels, omnichannel retailers offer customers the convenience of easily
accessing products and services both online and offline. Consequently, customers have
the freedom to choose between visiting brick-and-mortar (B&M) stores, browsing online
platforms, or utilizing mobile apps to make their purchases. They also enjoy the flexibility
of seamlessly transitioning between sales channels, such as checking in-store product
assortments on a retailer’s website. A common illustration of omnichannel functionality
is the buy-online-and-pick-up-in-store (BOPS) service, also known as click-and-collect,
which allows customers to reserve products online for convenient collection at a retail store.
Another example of an omnichannel initiative is installing digital help desks in B&M
stores to provide customers with immediate access to information about the retailer’s
online store, including its assortment, prices, and delivery options.

As the boundaries between digital and physical retail environments become blurred,
companies have to implement omnichannel initiatives not to lose market share. According
to the Global Shopper Trends Report by iVend Retail (2019), 81.4% of consumers reported
using BOPS, representing a growth of nearly 30% from the previous year’s survey. The
study of Sopadjieva et al. (2017), based on a survey of 46,000 customers who made
a purchase between June 2015 and August 2016, found that 73% of participants used
multiple channels during their shopping journey compared to 20% of store-only shoppers
and 7% of online-only shoppers. It also revealed that omnichannel retailers are more likely
to retain customers. In fact, customers who had an omnichannel shopping experience took
23% more repeat shopping trips to the retailer’s stores within 6 months after the purchase
than those who shopped through a single channel. It is therefore not surprising that the
State of Omnichannel Retail report (Brightpearl, 2017) found that 87% of retailers agree
that omnichannel is crucial to their business success.

Despite the prevalence of omnichannel retail in the modern commerce landscape, few
retailers have adopted the omnichannel approach from their inception. Instead, many
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Introduction

businesses have undergone a transition from traditional single-channel retailing to modern
omnichannel retailing. Prominent examples include Walmart, a traditional B&M retailer,
and Amazon, an e-commerce giant. Initially, Walmart focused on B&M stores while
Amazon sold exclusively online; both companies have since expanded their presence in the
digital and physical retail realms (Rooderkerk and Kök, 2019). In particular, Walmart has
heavily invested in IT-related technology and digital infrastructure to create a seamless
customer shopping experience (Banker, 2021). Likewise, Amazon has opened physical
bookstores and acquired Whole Foods, including its hundreds of physical stores, in a
massive $13.7 billion deal (Debter, 2017).

The recent COVID-19 pandemic has also contributed to the shift to omnichannel retailing.
This crisis forced traditional B&M retailers to develop their online capabilities to stay
afloat. Nowadays, it has become clear that there is no reverting to previous modes of
operation once customers have become used to a seamless shopping experience (Barr,
2021). Meanwhile, as a result of gradual implementation of omnichannel practices, few
retailers have fully exploited the potential of the omnichannel approach. One major
retailer we interviewed managed three different sales channels (hypermarkets, convenience
stores, and online platforms), yet they were not considering cross-channel purchasing
behavior of customers when planning their business operations. Consequently, they
were unable to optimize their product assortment within an omnichannel framework.
This highlights the need for further development of methodologies that can facilitate
decision-making in omnichannel environments.

While the literature on decision-making in the retail sector is vast, there is a lack
of research specifically focused on omnichannel commerce. From a methodological
perspective, accounting for several integrated retail channels presents a challenging
task. Often, methods designed for single-channel settings cannot be readily applied
in contexts involving multiple channels. This difficulty is especially pronounced in the
case of omnichannel assortment optimization, which is one of major challenges faced by
omnichannel retailers. Determining which products should be offered in which channels
is exceedingly difficult due to the inherent complexity of omnichannel systems. Any
change in the product assortment within one channel can propagate throughout the entire
system, triggering demand shifts in all other channels. Such complexity necessitates
comprehensive analysis and advanced analytical techniques to effectively account for
customer shopping behavior in an omnichannel environment when making assortment
decisions.

This thesis comprises three chapters that focus on different aspects of omnichannel
assortment optimization. Each chapter stands as an independent paper, with one paper
already published (Vasilyev et al., 2023), and two papers being in preparation. Importantly,
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notation in each paper has to be considered in isolation. In the first paper, we introduce
the multichannel attraction model (MAM), upon which we build a modeling framework
aimed at addressing the complexities of omnichannel assortment optimization. In the
second paper, we extend the framework developed in the first chapter in multiple key
directions. Notably, we incorporate demand stochasticity and inventory management
considerations into the assortment optimization problem under the MAM. In the third
paper, we utilize the Ising model to address omnichannel assortment optimization while
taking into account the basket shopping behavior of customers. Collectively, these
three papers offer a comprehensive study of assortment optimization in omnichannel
environments. The abstracts for each of these papers are as follows:

1. Assortment optimization using an attraction model in an omnichannel
environment.

Making assortment decisions is becoming an increasingly difficult task for many
retailers worldwide as they implement omnichannel initiatives. Discrete choice
modeling lies at the core of this challenge, yet existing models do not sufficiently
account for the complex shopping behavior of customers in an omnichannel environ-
ment. In this paper, we introduce a discrete choice model called the multichannel
attraction model (MAM). A key feature of the MAM is that it specifically accounts
for both the product substitution behavior of customers within each channel and the
switching behavior between channels. We formulate the corresponding assortment
optimization problem as a mixed-integer linear program and provide a computation-
ally efficient heuristic method that can be readily used for obtaining high-quality
solutions in large-scale omnichannel environments. We also present three different
methods to estimate the MAM parameters based on aggregate sales transaction
data. Finally, we describe general effects of the implementation of widely-used om-
nichannel initiatives on the MAM parameters, and carry out numerical experiments
to explore the structure of optimal assortments, thereby gaining new insights into
omnichannel assortment planning. Our work provides the analytical framework for
future studies to assess the impact of different omnichannel initiatives.

“Republished with permission of Elsevier Science & Technology Journals, from
Vasilyev et al. (2023); permission conveyed through Copyright Clearance Center, Inc.
(license ID: 1352205-1).”

2. Optimizing omnichannel assortments and inventory provisions using an
attraction model.

Assortment optimization presents a complex challenge for retailers, as it depends
on numerous decision factors. Changes in assortment can result in demand redistri-
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Introduction

bution with multi-layered consequences. This complexity is even more pronounced
for omnichannel retailers, which have to manage assortments across multiple sales
channels. Choice modeling has emerged as an effective method in assortment
optimization, capturing customer shopping behavior and shifts in demand as as-
sortments change. In this paper, we utilize the multichannel attraction model –
a discrete choice model specifically designed for omnichannel environments – and
generalize it for the case of a retailer managing both an online store and a network
of physical stores. We integrate assortment decisions with optimal inventory deci-
sions, assuming stochastic demand. Our model shows that overlooking the demand
variability can result in suboptimal assortment decisions due to the demand pooling
effect. We derive complexity results for the assortment optimization problem, which
we formulate as a mixed-integer second-order cone program. We then develop two
heuristic algorithms based on different relaxations of the formulated optimization
problem. We establish the conditions under which the two relaxations are equivalent
to each other and the conditions under which they are also equivalent to the initial
problem. Furthermore, we conduct an extensive numerical analysis to provide
managerial insights. We find that an increasing coefficient of variation of demand
has a dual effect on optimal assortment sizes, initially causing a decrease in online
assortment size due to rising costs, followed by an increase in online assortment size
because of the demand pooling effect. Finally, we evaluate the potential benefits
of omnichannel assortment optimization compared to assortment optimization in
siloed channels.

3. Omnichannel assortment optimization given basket shopping behavior.

In markets where customers tend to purchase baskets of products rather than
single products, assortment optimization is one of the major challenges for retailers.
Removing a product from a retailer’s assortment can result in a severe drop in aggre-
gate demand if this product is a complement to other products. Accounting for the
complementarity effect when making assortment decisions is especially challenging
for omnichannel retailers, which have to manage product assortments across several
channels. In this paper, we develop a modeling framework designed to tackle this
problem. We model customer choices using a Markov random field – in particular,
the Ising model – which captures pairwise demand dependencies as well as the indi-
vidual attractiveness of each product. Using the Ising model allows us to leverage
existing methodologies for various purposes including parameter estimation and
efficient simulation of customer choices. We first consider a single-channel setting, in
which we formulate the assortment optimization problem under this model and show
that its decision version is NP-hard. We also provide several theoretical insights
into the structure of the optimal assortments based on the graphical representation
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of the Ising model, and develop a customized metaheuristic algorithm that can
be used to obtain high-quality solutions to the assortment optimization problem.
We then generalize our methodology and the theoretical results obtained for a
single-channel setting to an omnichannel setting. Finally, we perform an extensive
numerical analysis to gather insights into the properties of optimal assortments and
evaluate the benefits of omnichannel assortment optimization.

5





1 Assortment Optimization Using an
Attraction Model in an Omnichannel
Environment

This chapter is based on Vasilyev, A., Maier, S., and Seifert, R.W. (2023). Assortment
optimization using an attraction model in an omnichannel environment. European Journal
of Operational Research, 306(1):207– 226; doi: https://doi.org/10.1016/j.ejor.2022.08.002.

Republished with permission of Elsevier Science & Technology Journals, from Vasilyev
et al. (2023); permission conveyed through Copyright Clearance Center, Inc. (license ID:
1352205-1).

1.1 Introduction

Omnichannel retailing is a major trend in modern commerce. Its aim is to create a
seamless customer shopping experience by integrating multiple retail channels with each
other. One of the most common omnichannel initiatives is buy-online-and-pick-up-in-store
(BOPS), also called click-and-collect. It allows customers to use online services to reserve
a product for collection in a retail store. Other examples of omnichannel initiatives
include providing online customers with in-store inventory availability information, and
installing digital help desks in brick-and-mortar stores so that customers can readily access
information about the retailer’s online store, such as its assortment, prices and delivery
options. With regard to supply chain management, one of the most prominent examples
of channel integration is fulfilling a customer’s online order from a local brick-and-mortar
store to best leverage available inventories or respond in a timely fashion.

Modern consumers demand a variety of purchasing and delivery options, and retailers
have to adapt their services to changes in customer expectations in order not to lose
market share. For example, the rivalry between Amazon and Walmart induced the latter
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to push the BOPS functionality in order to provide customers with an option comparable
in convenience to Amazon’s same-day delivery but without charging for shipping (Petro,
2020). According to the recent Global Shopper Trends Report by iVend Retail (2019),
81.4% of consumers reported using BOPS, which represents a growth of nearly 30% from
the previous year’s survey. The study of Sopadjieva et al. (2017), which is based on a
survey of 46,000 customers who made a purchase between June 2015 and August 2016,
found that 73% of participants used multiple channels during their shopping journey
compared to 20% of store-only shoppers and 7% of online-only shoppers. It also revealed
that omnichannel retailers are more likely to retain customers. In fact, customers who
had an omnichannel shopping experience took 23% more repeat shopping trips to the
retailer’s stores within 6 months after the purchase than those who shopped through a
single channel. It is therefore not surprising that the State of Omnichannel Retail report
(Brightpearl, 2017) found that 87% of retailers agree that omnichannel is crucial to their
business success.

However, implementing omnichannel strategies remains a difficult task for retailers, with
estimating the effect of such strategies on demand being one of the key problems. Moreover,
since an omnichannel environment is characterized by a high level of integration between
retail channels, a change in assortment in one channel affects the demand across all
channels, which makes assortment optimization extremely challenging. At the same time,
omnichannel retailing is a rather recent research area with a relatively small number of
analytical research papers published. In particular, there is a lack of works which consider
the problem of demand and choice modeling in an omnichannel environment. Addressing
this problem is an integral part of estimating the expected profit of a retailer, yet existing
models do not account sufficiently and adequately for the complex nature of omnichannel
shopping behavior. Our paper aims to fill this gap in the extant literature.

This paper makes the following contributions. We introduce a discrete choice model called
the multichannel attraction model (MAM) that captures the complex shopping behavior
of customers in an omnichannel environment. Importantly, the choice probabilities under
the MAM are expressed through simple functional forms of the model parameters, making
them easily interpretable. We prove that the assortment optimization problem under the
MAM can be reformulated as a mixed-integer linear program. We propose a heuristic
method to approximate its value in case of large-scale problems, and show numerically
that our method is extremely efficient in terms of both computational performance and
solution quality. We also present three different methods to estimate the MAM parameters
based on sales history data, focusing on the case where only limited data are available.
Next, we perform a sensitivity analysis of the model parameters in the two-channel case
(with online and physical channels), which leads to insights into omnichannel assortment
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optimization. For example, we show that a product with a relatively high unit profit in
one of the channels may not be included in the corresponding optimal assortment, and
vice versa – a product with a relatively low unit profit may be offered. We also analyze
how the sizes of optimal assortments depend on the ratio of customers whose primary
choice is to shop online to those whose primary choice is to go to a retail store, and on
the proportion of customers willing to switch from one channel to another in case of
absence of a certain product. We find that implementing the BOPS initiative can be
unprofitable if the proportion of online customers using BOPS is too large compared to
the additional traffic attracted to the offline channel. Finally, we demonstrate the benefits
of omnichannel assortment optimization as opposed to optimizing siloed assortments in a
multichannel environment.

The remainder of this paper is organized as follows: In Section 1.2, we review the two main
streams of literature related to our research. In Section 1.3, we present a discrete choice
model for omnichannel retailing, referred to as the MAM, and provide the intuition behind
it. In Section 1.4, we formulate the corresponding assortment optimization problem as a
mixed-integer linear program. An efficient heuristic method for solving the assortment
optimization problem for very large numbers of products is provided in Section 1.5. The
subsequent section is devoted to estimating the parameters of the MAM. In Section 1.7,
we describe the impact of implementing widely-used omnichannel initiatives on the MAM
parameters and present a numerical study which investigates the structure of optimal
assortments. We summarize our contributions and discuss future research directions in
Section 1.8.

1.2 Theoretical Background and Related Literature

1.2.1 Related Discrete Choice Models

Since discrete choice modeling is a vast and complex area of research, here we review only
the works most relevant to our paper. A good introduction to discrete choice modeling
can be found, for example, in Ben-Akiva and Lerman (1985) and Train (2002).

The multinomial logit model (MNL) formulated by McFadden (1973) is one of the most
prominent discrete choice models. For clarity and introduction of notation, we provide
a short formal description of the MNL. The choice probabilities under this model are
derived as follows. Let N = {1, 2, . . . , n} denote a set of products, S ⊆ N denote an
offered set, and 0 denote the no-purchase alternative. A customer selects either one
product from the offered set, or the no-purchase alternative. Each alternative j ∈ N ∪{0}
has utility Uj , which is given by the sum of Ûj , a constant representing the known part
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of the utility, and ξj , which is a Gumbel-distributed random variable representing the
unobserved part of the utility. Random variables ξj are assumed to be independent and
identically distributed (i.i.d.) for all the alternatives, and are commonly considered to
be normalized so that their mean is zero and the variance is π2/6. Furthermore, it is
assumed that each customer selects the alternative with the highest utility among the
available choices (the no-purchase alternative is available by default). Then, it can be
shown that the probability of a customer selecting product j from the offered set S is

πj(S) =
eÛj

eÛ0 +
∑
k∈S

eÛk

. (1.1)

The MNL can be viewed as a special case of the basic attraction model (BAM) developed
by Luce (1959). Let vj represent the “attractiveness” value of product j, and v0 represent
the attractiveness value of the no-purchase alternative. Under the BAM, the probability
of a customer selecting product j ∈ S is the ratio of the attractiveness value of product j
to the sum of attractiveness values of all available alternatives, that is

πj(S) =
vj

v0 +
∑
k∈S

vk
. (1.2)

Clearly, the MNL choice probabilities (1.1) take the form (1.2) if we set the attractiveness
value of each product j to vj = eÛj , and the attractiveness value of the no-purchase
alternative to v0 = eÛ0 .

Gallego et al. (2014) proposed a generalization of the BAM called the general attraction
model (GAM). As noted by the authors, the BAM may be too optimistic in estimating
recapture probabilities as it ignores the possibility that a customer can choose to buy
product j ∈ N\S from another vendor or at a later time. For that reason, they modified
formula (1.2) in the following way:

πj(S) =
vj

v0 +
∑
k∈S

vk +
∑

i∈N\S
wi
, (1.3)

where wi ∈ [0, vi] represents the “shadow attractiveness” value of getting product i ∈ N\S
from another source. The meaning of the shadow attractiveness is that a customer does
not consider the opportunity of buying a product somewhere else as long as it is present
in the assortment. If the product is not available, however, a customer can decide to
purchase it from another source. Note that under the GAM, the no-purchase probability

is π0(S) =
v0 +

∑
i∈N\S wi

v0 +
∑

k∈S vk +
∑

i∈N\S wi
. Further note that the case wi = 0 ∀i ∈ N results
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in the BAM, and the case wi = vi ∀i ∈ N leads to the independent demand model as the
choice probability of any product j ∈ S does not depend on S.

Gallego et al. (2014) also formulated the sales-based linear program (SBLP) for network
revenue management under the GAM. The decision variables in the SBLP are sales
quantities rather than the offered set. In the case of infinite capacity and a single market
segment, the SBLP takes the form of the assortment optimization problem under the
GAM. Below we provide the formulation of this problem since we refer to it further in
the text. Let rj be the gross profit per unit of product j and Λ be the total number of
customers. Then, the following linear program can be used to find the optimal assortment
if the choice probabilities are given by (1.3):

max
x

∑
j∈N

rjxj (1.4a)

s.t.
ṽ0
v0
x0 +

∑
j∈N

ṽj
vj
xj = Λ, (1.4b)

xj
vj

− x0
v0

≤ 0 ∀j ∈ N , (1.4c)

x0, xj ∈ R≥0 ∀j ∈ N , (1.4d)

where xj is the sales quantity of product j, ṽj = vj − wj and ṽ0 = v0 +
∑
j∈N

wj . Con-

straint (1.4b) is the balance constraint, and constraints (1.4c) are the scale constraints.

Furthermore, the authors noted that the GAM is the limit of the nested logit model in
which customers first select a nest constructed from offerings of the same product by
different vendors and then select a vendor which offers this product, while assuming that
the dissimilarity parameter of products in each nest tends to zero. The nested logit model,
introduced by Domencich and McFadden (1975), is another well-known discrete choice
model where each choice probability can be decomposed into the product of two standard
logit probabilities: the probability that a certain nest is chosen and the probability that
a certain alternative is chosen given the nest.

Finally, it is worth mentioning the Markov chain choice model in which the product
substitution behavior of customers is represented by transitions in a Markov chain.
Blanchet et al. (2016) showed that such a model provides a simultaneous approximation
to all random utility choice models including the MNL, the nested logit model and mixed
MNLs. They also proved that this approximation becomes exact in the case of GAM
choice probabilities. However, the number of parameters of the general Markov chain
choice model is (n+ 1)2, where n is the total number of products, and, moreover, there
are no interpretable functional forms for the choice probabilities as computing them for a
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certain assortment requires a matrix inversion where the matrix entries depend on the
assortment.

1.2.2 Choice Modeling and Assortment Optimization in Omnichannel
Retailing

As mentioned earlier, the problem of choice modeling in an omnichannel environment is
underrepresented in the literature. Since most of the research conducted on omnichannel
is either purely empirical or qualitative, there is a considerable lack of works presenting
analytical models. Most of the analytical papers focus on supply chain and inventory
management questions rather than on discrete choice modeling or assortment optimization
in an omnichannel environment. For example, Schneider and Klabjan (2013) investigated
conditions under which common inventory control policies are optimal in the presence of
two sales channels. He, Xu, et al. (2020) developed a newsvendor model that considers
cross-channel product returns for a dual-channel retailer. Several papers studied the
effect of ship-from-store operations on the optimal inventory policy (Seifert et al., 2006),
fulfillment policy (Bayram and Cesaret, 2021), or both policies combined (Govindarajan
et al., 2021). However, to the best of our knowledge, very few papers address at least
one of the following questions, which we consider jointly in this paper: discrete choice
modeling in the presence of multiple retail channels; the impact of omnichannel initiatives
on demand allocation; and, ultimately, omnichannel assortment optimization.

Cao et al. (2016) proposed a theoretical framework to analyze the effect of adding the
BOPS channel (called “online-to-store” channel) to existing sales channels on demand
allocation. A major limitation of their study is that it considers a single-product setup.
The authors use utility functions associated with different channels to model customers’
channel choices, where each utility function is a linear function of the following parameters:
the product value, the price per unit of the product in the corresponding channel, the
delivery cost (in the case of the online channel), as well as certain inconvenience costs
and factors. The paper shows that it may not be profitable to implement the BOPS
functionality for some products depending on their characteristics.

Gao and Su (2016) presented a somewhat more complex approach to analyze the impact
of the BOPS channel on demand allocation. Similar to the work of Cao et al. (2016), the
authors model customers’ channel choices using utility functions associated with different
channels, but they also account for the cross-selling effect and inventory management
considerations. One of the key findings of their paper confirms that not all products are
well-suited for the BOPS functionality. However, their model does not account for the
product substitution effect in the case when a product is removed from the assortment.
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More recently, Harsha, Subramanian, and Ettl (2019) studied the pricing problem in
an omnichannel environment with a chain of brick-and-mortar stores in the presence
of other (online) channels. In their paper, the authors first consider a single-product
setup where a customer only selects a source to buy the product from. It is assumed
that the brick-and-mortar stores are located in geographically distributed zones, meaning
that customers’ choices in a zone do not depend on the parameters of other zones. At
the zone level, each customer obtains a utility for choosing a channel depending on
the product’s price in this channel. The choices of customers are defined by a BAM
where all attractiveness values are expressed through positive and strictly increasing
functions of price. The price optimization problem is then formulated as a mixed-integer
linear program. The authors also extend their analysis to a multiproduct setup using a
nested attraction model where nests correspond to channels and each nest is comprised
of products included in the channel assortment. For their extension, they provide a
mixed-integer linear program to solve the price optimization problem approximately. In a
related paper, Harsha, Subramanian, and Uichanco (2019) studied the omnichannel price
optimization problem in a single-product setup, whilst accounting for both exogenous
cross-channel fulfillment flows and inventory constraints.

With regard to multichannel assortment optimization for multiple products, Bhatnagar
and Syam (2014) presented an integer program to determine the optimal item allocation
for a hybrid retailer that manages both a chain of physical stores and an online store.
They found that the retailer’s profitability can be increased by removing products with
high carrying costs from the physical stores and making them available exclusively online,
thereby reducing the inventory carrying costs. However, their model relies on a number
of strong assumptions, including that the demand for each product is a fixed parameter,
meaning that the product demands do not depend on the assortment.

A different angle on multichannel assortment optimization was provided by Dzyabura
and Jagabathula (2018). They studied the problem of determining the subset of products
from the retailer’s online channel to offer in the offline channel in order to maximize the
aggregate revenue. It is assumed that each product is defined by a set of attributes, and
there is a utility associated with each attribute which depends on whether the product
is offered in the offline channel. The intuition behind this approach is that the utilities
of the attributes change when customers learn about products by inspecting them in
a brick-and-mortar store. Their choice model is the MNL based on the utilities of the
attributes. The paper shows that accounting for the impact of the retailer’s offline
assortment on the online sales can lead to substantial gains in expected revenue.

Lo and Topaloglu (2022) addressed the same problem as Dzyabura and Jagabathula (2018)
but in a different setup. The key difference between these is that the work of Dzyabura and
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Jagabathula (2018) assumes that there exists a product for every potential combination
of feature values, while in the model of Lo and Topaloglu (2022) it is assumed that the
product portfolio can be characterized by a features tree, where each leaf corresponds to a
product, and its ancestors are the features. The authors consider a mixture of customers:
offline customers who shop in the physical store, and online customers who first visit the
physical store to inspect the products offered there and then choose a product from the
full assortment offered online. They showed that the assortment optimization problem
in this setup is NP-hard, and leveraged the features tree structure to provide a fully
polynomial time approximation scheme (FPTAS) based on dynamic programming that
allows to determine approximately optimal assortments.

Finally, Hense and Hübner (2022) studied omnichannel assortment optimization while
taking into account both in-channel and cross-channel demand substitution. In contrast
to our work, the authors consider the exogenous demand (ED) model instead of leveraging
discrete choice modeling techniques. In their approach, the base demands are assumed
to be pairwise independent, and if one product is not available, then the proportion of
the demand that is substituted by another product is given by a parameter. Such an
approach has certain advantages because, in addition to finding optimal assortments,
it also allows the authors to determine optimal shelf space and inventory levels across
channels. However, the ED model does not allow to capture some of the complexity of
customers’ product substitution behavior. For instance, according to this model, it is
assumed that if a product is not available then its demand would be shifted to another
product in the same channel, but the associated demand is lost entirely if this other
product is also not available. Moreover, the relatively large number of parameters in their
proposed approach makes the problem of estimating the parameters from sales history
data particularly challenging.

1.3 Multichannel Attraction Model

1.3.1 Model Formulation

In this subsection we present a discrete choice model that captures the complex cus-
tomer shopping behavior in an omnichannel environment. Our proposed model is a
generalization of the GAM to a setup where a retailer can sell products across several
channels. Importantly, by generalizing the GAM our model inherits a number of desirable
features. First of all, the GAM itself generalizes the basic attraction model (BAM) and
the multinomial logit model (MNL), which is arguably the most widely used discrete
choice model. At the same time, choice probabilities under the GAM are formulated using
simple closed-form expressions. We can also leverage the concept of shadow attractiveness
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since it has an interpretation that is easily adaptable to the case of an omnichannel
retailer. We refer to the proposed model as the multichannel attraction model (MAM).

The MAM is most suitable for the case of a multichannel retailer that offers a range of
substitutable products of which customers select at most one product. For instance, a
sneakers subdivision of a large apparel retailer is a useful illustration to keep in mind for
further reading. For tractability reasons, we consider a retailer with two channels: an
online store and a physical store (or a chain of physical stores). However, our model can be
generalized to the case of a larger number of channels (see Appendix A.1). The main idea
behind the MAM is to develop a framework which allows to manage assortments in both
channels jointly, taking into account customers who switch from one channel to another
if certain products are unavailable. We therefore separate customers into two groups: the
first group comprises customers whose primary choice is to purchase a product in the first
channel if all products are available in both channels, whereas customers from the second
group shop through the second channel under the same condition. For both groups of
customers, we model their choices using our proposed generalization of the GAM, where
each shadow attractiveness value is divided into two parts which determine how likely
the customers are to switch to another channel to buy the corresponding product.

Let N = {1, 2, . . . , n} denote a set of products which can be offered in both channels,
and let 0 denote the no-purchase alternative. Furthermore, let c ∈ C = {1, 2} denote a
channel index, c̄ = C\{c} denote the other channel index, and Sc ⊆ N denote the set of
products offered in channel c. By type-c customers we mean customers whose primary
choice would be to shop in channel c if all products were available in both channels. For
type-c customers, we use the following notation:

• v
(c)
j : attractiveness value of purchasing product j ∈ Sc in channel c;

• v
(c)
0 : attractiveness value of the no-purchase alternative;

• u
(c)
i + w

(c)
i : shadow attractiveness value of purchasing product i ∈ N\Sc from

another source (that is, either from channel c̄ or from another retailer);

• u
(c)
i /(u

(c)
i + w

(c)
i ): proportion of customers switching to channel c̄ out of those

willing to purchase product i outside of channel c (if i /∈ Sc).

Superscript (c) indicates type-c customers’ characteristics (who might shop in both
channels), whereas subscript c refers to channel-specific features. Note that u(c)i and w(c)

i

are not in themselves attractiveness values. They provide an idea of how likely customers
are to switch to another channel or to go to another retailer, but they do not represent
utilities of different alternatives as such (see Subsection 1.3.2 for more details).
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Also, similarly to the GAM, we assume that u(c)j + w
(c)
j ∈ [0, v

(c)
j ] for all products j ∈ N ,

meaning that the shadow attractiveness value of purchasing product j from another source
(including channel c̄) does not exceed the attractiveness value of purchasing this product
in channel c. This also implies that N is a set of substitutable products, and discarding a
product from the assortment in channel c increases the demand for the remaining products
generated by type-c customers. It is important to note that the demand substitution
assumption is conventional for a setup where each customer purchases at most one product.
The opposite effect – when discarding a product leads to a lower demand for some other
products – is also possible in such a setup, e.g. if one product highlights the advantages
of another product, thus creating a synergy. A recent example of a modeling framework
devoted to assortment optimization in the presence of the product synergy effect can
be found in Lo and Topaloglu (2019). However, accounting for this effect is outside the
scope of our research.

Considering customers of two types associated with two channels is rational for two
main reasons. Firstly, these two types of customers are likely to have noticeably distinct
shopping preferences, which can be captured by different sets of parameters associated
with different customer types. Secondly, the two flows of customers can differ considerably
in volume (e.g., the number of customers associated with the online channel can be several
times higher or lower than the one associated with the offline channel), and this has to
be taken into account when making assortment decisions. Since the MAM is inherently
a mixture of models where each model is associated with a customer type, it would be
straightforward to extend the model by considering more types of customers. Nevertheless,
in this work we focus on two types of customers in order to keep the model tractable.

We define the choice probabilities under the MAM given assortments in both channels in
the following way. The probability that a type-c customer buys product j in channel c is

π
(c)
cj (Sc) =


v
(c)
j

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )

if j ∈ Sc,

0 otherwise;

(1.5)

and the probability that a type-c customer buys product j in channel c̄ is

π
(c)
c̄j (Sc, Sc̄) =


u
(c)
j

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )

if j ∈ Sc̄\Sc,

0 otherwise.

(1.6)

16



Chapter 1

It is straightforward to check that for each customer type, the sum of all choice probabilities
(including the no-purchase probability) equals one.

Now, suppose that the total expected number of type-c customers is Λ(c) =
∫ T
0 λ(c)(t)dt,

where λ(c)(t) is the arrival rate of type-c customers at time t, and T is the time horizon.
Let x(c)cj (Sc) = π

(c)
cj (Sc)Λ

(c) denote the expected number of type-c customers purchasing

product j in channel c, and let x(c)c̄j (Sc, Sc̄) = π
(c)
c̄j (Sc, Sc̄)Λ

(c) denote the expected number
of type-c customers purchasing product j in channel c̄. Hereafter, we slightly abuse the
notation by writing just x(c)cj and x(c)c̄j . Note that the overall probability that a customer
(of any type) buys product j in channel c is as follows:

πcj(Sc, Sc̄) =
x
(c)
cj + x

(c̄)
cj

Λ(c) + Λ(c̄)
.

Importantly, we focus on the modeling setup with unlimited inventories, i.e., we do not
consider the possibility of stockouts. As a result, the shopping behavior of customers is
fully determined by assortments offered at the beginning of the sales period. Moreover, it
also means that terms “demand” and “sales” can be used interchangeably. The assumption
of unlimited inventories – which is common in the assortment planning literature – does
not prevent our modeling framework from being applicable in a number of relevant and
important practical situations. For example, this assumption is valid in the make-to-order
setting, in which a company produces a product only after receiving an order and thus
avoids carrying a lot of stock. It is also a valid assumption for companies which rarely
have stockouts due to a high level of inventory.

1.3.2 Model Discussion

In this subsection, we provide the intuition behind the formulation of the MAM. Generally
speaking, when it comes to omnichannel retailing, the product substitution behavior is not
trivial, so our MAM requires a detailed description. At a high level, we assume that under
the MAM, customers are subject to the following product substitution behavior. Suppose
that if all products were available in all channels, a certain type-c customer would purchase
product j in channel c. If this product is not offered in channel c, then the customer may
either be determined to purchase product j anyway (potentially in channel c̄), or decide
to purchase another product k ̸= j instead, or leave without purchasing anything from
this retailer. The outcomes of these three alternatives are summarized in Figure 1.1. In
essence, if product j is not offered in channel c (i.e. j /∈ Sc) and it is the first choice of a
type-c customer, then this customer will either purchase another product k ∈ Sc, or a
product l ∈ Sc̄\Sc, where l ̸= k but possibly l = j, or nothing at all.
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Figure 1.1: Product substitution pattern.

Let us consider the first two cases in more detail. First, suppose that the customer
decides to stick with product j. In this case, the customer may be willing to search for
product j in channel c̄, or to go looking for this product somewhere else. To keep the
model formulation tractable, we assume that if a customer decides to stick with a certain
product and thus switches to another channel searching for it, then the product is always
purchased if it is available in that channel, or else the customer leaves without purchasing
anything from this retailer (e.g., goes to a competitor). Second, if the customer decides
to purchase another product k, then there are two possibilities: If product k is offered in
channel c, then the customer purchases it there; otherwise, the customer either continues
the search in channel c, or looks for product k in channel c̄, or looks for this product
somewhere else. Similar to the previous case, we assume that if the customer is willing to
switch to channel c̄ in order to look for product k, then the product is always purchased
if it is available there, otherwise the customer just leaves without purchasing anything.

Let us also provide additional insights into the structure of this product substitution
behavior by showing the link between the MAM and Markov chain choice model (MCCM).

Proposition 1.1. The MAM can be represented as a mixture of MCCMs where choices
of type-c customers are characterized by the MCCM with the following parameters:

λ
(c)
jc

= v
(c)
j , λ

(c)
jc̄

= 0,

ρ
(c)
jcic

=
v
(c)
i (v

(c)
j − u

(c)
j − w

(c)
j )

v
(c)
j − v

(c)
j (v

(c)
j − u

(c)
j − w

(c)
j )

,

ρ
(c)
jcjc̄

=
u
(c)
j

v
(c)
j

, ρ
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ρ
(c)
jc̄ic̄

= 0, ρ
(c)
jc̄jc

= 0, ρ
(c)
jc̄ic

= 0, ρ
(c)
jc̄0

= 1,

where jc denotes product j in channel c, λ(c) is the vector of arrival probabilities, and ρ(c)

is the matrix of transition probabilities.

The formal proof can be found in Appendix A.2. The intuition behind these expressions
is as follows. We leverage the fact that the MAM restricted to type-c customers and
products in channel c is equivalent to the GAM. Therefore, for such customers, the arrival
probabilities of products in channel c as well as the transition probabilities between such
products are defined by analogy to the probabilities that result in the GAM (see Blanchet
et al., 2016). However, in contrast to the GAM, we split the transition probability from
product jc to the no-purchase alternative into two parts: one corresponds to choosing the
no-purchase alternative directly, and the other one corresponds to first choosing product jc̄,
and then – in case product j is not available in channel c̄ – choosing the no-purchase
alternative with probability 1. Note that we impose the constraint that type-c customers
cannot purchase product jc̄ directly as they attempt to purchase product jc first. This
means, in turn, that type-c customers will never buy product j in channel c̄ if this product
is available in channel c. We believe that this assumption is not only reasonable, but
also essential as it enables us to obtain simple analytical formulas (and thus achieve
tractability and ensure interpretability of the model) for the choice probabilities, which
would not be the case if we used a mixture of MCCMs in a general setting.

Let us also highlight the connection between the MAM and the random utility theory.
First, note that the GAM is a random utility model (RUM), i.e., there exists a joint
distribution of random utilities over a certain set of alternatives such that if each customer
chooses an alternative with a maximum realization of utility, then the product choice
probabilities are consistent with the GAM choice probabilities. Indeed, the GAM can be
viewed as the nested logit model in the limit (see Gallego et al., 2014), and the nested
logit model is a special case of the generalized extreme value (GEV) model, which is a
RUM. Now since the GAM is a RUM, it is straightforward to show that for each customer
type, there exists a joint distribution of random utilities over a certain set of alternatives
that is consistent with the MAM choice probabilities. This can be done by using the
fact that the condition of existence of a joint probability distribution of random utilities
is equivalent to the condition of existence of a probability distribution over rankings of
alternatives consistent with a given set of choice probabilities (see Block and Marschak,
1959). The MAM thus belongs to the class of RUMs and we can formulate the following
proposition:

Proposition 1.2. The MAM is a mixture of RUMs (one model per customer type), and
as such it is also a RUM.
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The formal proof of this proposition can be found in Appendix A.3. However, note
that our modelling approach is motivated by incorporating probabilistic cross-channel
transitions into the GAM to account for the complex shopping behavior of customers
in an omnichannel environment, rather than by proposing a new discrete choice model
through specifying random utility of alternatives within a random utility maximization
framework.

Finally, let us demonstrate the benefit of our formulation approach as opposed to a more
traditional, utility-based way of generalizing the GAM to the omnichannel setting. As
mentioned above, Gallego et al. (2014) showed that the GAM can be represented as a
nested logit model in a limit. Following the same logic, one could have formulated the
MAM so that it would emerge as a mixture of nested logit models (one model per customer
type) in a limit, where each nest corresponds to a product and the dissimilarity parameter
of each nest tends to zero. In this case, each nest would comprise three alternatives:
purchasing the product in channel c, in channel c̄, and from another source. Then, the
choice probabilities would take the following form:

π
(c)
cj (Sc, Sc̄) =

v
(c)
j

v
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∑
k∈Sc

v
(c)
k +

∑
i∈(N\Sc)∩Sc̄

max{u(c)i , w
(c)
i } +

∑
l∈N\(Sc∪Sc̄)

w
(c)
l

if j ∈ Sc,

0 otherwise;

and

π
(c)
c̄j (Sc, Sc̄) =

u
(c)
j

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈(N\Sc)∩Sc̄

max{u(c)i , w
(c)
i } +

∑
l∈N\(Sc∪Sc̄)

w
(c)
l

if j ∈ Sc̄\Sc
and u(c)j ≥ w

(c)
j ,

0 otherwise.

Importantly, in the above formulas the parameters u(c)j and w
(c)
j have a different inter-

pretation compared to our model: for type-c customers, u(c)j and w(c)
j here represent the

shadow attractiveness of purchasing product j in channel c̄ and elsewhere, respectively,
whereas in our case u(c)j is defined through the proportion of customers willing to purchase
product j in channel c̄ if it is not available in channel c (see Subsection 1.3.1).

However, this alternative formulation based on a mixture of nested logit models has
important limitations. Indeed, it means that if j ∈ Sc̄\Sc, then either all type-c customers
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that choose nest j purchase product jc̄ (if u(c)j > w
(c)
j ), or all of them leave the retailer

(if u(c)j < w
(c)
j ). Both these cases are rather extreme and hence not sufficiently realistic.

There is also the special case when u
(c)
j = w

(c)
j , in which exactly half of the considered

customers purchase product jc̄ and the other half leave the retailer, but this is also too
restrictive. In contrast, our approach to formulating the MAM probabilities does not
suffer from these limitations as it allows any partitioning of customers’ choices between
purchasing product jc̄ and leaving the retailer. We therefore believe that our approach is
appealing because it is not only capable of more realistically representing omnichannel
customer behaviour but it also provides for more flexibility without overcomplicating the
choice model.

1.4 Assortment Optimization Problem

The assortment optimization problem under the MAM requires finding offer sets such
that the total expected profit is maximized, that is determining the optimizers of the
following problem:

max
Sc,Sc̄

∑
c∈C

∑
j∈N

rcjπcj(Sc, Sc̄), (1.8)

where rcj denotes the gross profit per unit of product j sold through channel c. This
problem can be reformulated using binary variables. Let zcj be a binary variable such
that zcj = 1 if j ∈ Sc, and 0 otherwise. Then, problem (1.8) can be written as follows:

max
Sc,Sc̄

∑
c∈C

∑
j∈N

rcjπcj(Sc, Sc̄) =

max
zcj ,zc̄j
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(c̄)
i + w

(c̄)
i )(1 − zc̄i)

)
.

This optimization problem is extremely difficult to solve as it includes binary decision
variables and a nonlinear objective function. However, we can formulate an equivalent
mixed-integer linear program (MILP) that can be solved using standard, off-the-shelf
optimization software. Consider the following problem:

max
x

∑
c∈C

∑
j∈N

rcj
(
x
(c)
cj + x

(c̄)
cj

)
(1.9a)
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ṽ
(c)
0

v
(c)
0

x
(c)
c0 +

∑
j∈N

ṽ
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, ṽ(c)j = v

(c)
j −

(
u
(c)
j +

w
(c)
j

)
, and constants H(c)

j and K(c)
j are given by

H
(c)
j =

v
(c)
j Λ(c)

v
(c)
0 + v

(c)
j +

∑
i∈N\{j}

(
u
(c)
i + w

(c)
i

) , K
(c)
j =

u
(c)
j Λ(c)

ṽ
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We call this problem formulation the sales-based mixed-integer linear program (SBMILP)
by analogy with the sales-based linear program presented by Gallego et al. (2014) for
the GAM. Constraints (1.9b) are similar to the balance constraint in the SBLP, and
constraints (1.9c) are modified scale constraints. However, due to the multichannel
structure of the MAM and hence a more complex product substitution behavior of
customers, we need additional constraints with binary variables. The meaning of each
constraint as well as the equivalence of problems (1.8) and (1.9) becomes evident from
the proof of the following Theorem (see Appendix A.4):

Theorem 1.1. The SBMILP is a valid formulation of the assortment optimization
problem under the MAM, that is, the optimal value of problem (1.9) is equal to the optimal
value of problem (1.8) multiplied by the constant (Λ(c) + Λ(c̄)).

Remark 1.1. It is straightforward to verify that constraints (1.9d), (1.9e) and (1.9f)
cannot be tightened, that is, the constant coefficients on the right-hand side of these
constraints cannot be reduced.

Remark 1.2. The SBMILP can easily be modified to incorporate additional constraints.
For example, if there is a cost acj associated with product j offered in channel c, and the
total cost induced by products offered in this channel is limited by the upper bound Lc,
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then the following constraint has to be added to the SBMILP:∑
j∈N

acjzcj ≤ Lc. (1.10)

If channel c is the physical channel, then constraint (1.10) can be viewed as a shelf-space
constraint where acj represents the shelf space required for product j to be offered in
channel c, and Lc is the total shelf space in that channel.

Adding the shelf space constraint described in Remark 1.2 to the SBMILP is of particular
practical importance (typically omnichannel retailers cannot offer all products in the
physical channel due to limited shelf space), but has implications in terms of computational
complexity:

Proposition 1.3. The assortment optimization problem represented by the shelf-space-
constrained SBMILP, which is given by adding constraint (1.10) to the SBMILP formula-
tion (1.9), is NP-hard.

The proof can be found in Appendix A.5. It is important to note that there is another
modification of the assortment optimization problem under the MAM that not only
makes the modified problem NP-hard, but may also suggest that the original SBMILP
is NP-hard too. In particular, if assortments in both channels have to be the same (i.e.
S1 = S2), then this problem is equivalent to the assortment optimization problem under a
mixture of two GAMs in a single channel. Such a problem is NP-hard as a generalization
of the assortment optimization problem under a mixture of two MNL models, which
has been shown by Rusmevichientong et al. (2014) to be NP-hard. This well-known
result, formulated for the simplest illustrative case of the assortment optimization problem
under a mixture of discrete choice models, strongly indicates that the original SBMILP
formulation (1.9) is also NP-hard since the MAM itself is essentially a mixture of discrete
choice models (one model per customer type). While an interesting problem, formally
establishing NP-hardness of the original SBMILP is left for future research.

If the assortment in one of the channels is fixed and equals N (i.e., all products are
offered), then we can build upon some of the results obtained for the SBLP in Gallego
et al. (2014) and establish certain analytical properties of the optimal assortment in the
other channel. Let R(c)(Sc, Sc̄) be the total profit generated by type-c customers given
assortments Sc and Sc̄. Suppose that the assortment in channel c̄ is fixed so that Sc̄ = N ,
thus no customers of type c̄ will switch to channel c. We can then formulate the following
proposition:

Proposition 1.4. Let Sc̄ = N and, without loss of generality, suppose that all products
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are sorted in descending order of the ratio (rcjv
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j − rc̄ju

(c)
j )Λ(c)/ṽ
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assortment in channel c is given by

zcj =
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(1.11)
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(c)/ṽ
(c)
j+1

}
.

The proof can be found in Appendix A.6. The intuition behind this finding is clear. Even
if the gross profit per unit of a certain product j in channel c is high and the product has
a high attractiveness value (i.e., the demand for product j in channel c is high compared
to other products), it may not be profitable to include this product in the channel c
assortment.

Further developing the idea behind the proof of Proposition 1.4, we can formulate the
following property of the optimal assortment in both channels:

Proposition 1.5. Let (Sc, Sc̄) be the optimal combination of assortments, and suppose
that k ∈ Sc. Then j ∈ Sc as well if Fc(j, Sc, Sc̄) ≥ Fc(k, Sc, Sc̄), where
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v
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(c̄)
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(c̄)
i )
) .

(1.12)

This property, the proof of which is provided in Appendix A.7, could serve as a base
for a heuristic algorithm that allows to determine a high-quality solution if solving the
SBMILP is computationally infeasible. In particular, Fc(j, Sc, Sc̄) could be approximated
with an expression that depends only on product j and channel-c̄ assortment, which
would allow for the approximate characterization of the optimal assortment in channel c
given the assortment in channel c̄. Then, the heuristic algorithm could take form of
an iterative procedure, where in each iteration the assortment in one of the channels is
determined given the assortment in the other channel. In this work, however, we focus
on the development of a heuristic algorithm based on a relaxation approach for situations
in which directly solving the SBMILP is computationally challenging.
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1.5 Heuristic Method

The SBMILP formulation (1.9) has 2n binary variables and 4n constraints containing
binary variables. For large values of n, this problem may become more challenging to solve.
Let us therefore consider the LP relaxation of the SBMILP derived from formulation (1.9)
by removing binary variables zcj together with the corresponding constraints (1.9d)
and (1.9e). Importantly, preliminary numerical experiments showed that a solution to the
relaxed problem satisfies the removed constraints for almost all c ∈ C, j ∈ N , and this is
a key observation underlying our heuristic. We propose the following two-step algorithm:

1. Solve the relaxed problem. Let
{
x̂
(c)
c0 , x̂

(c)
cj , x̂

(c)
c̄j

}
c∈C,j∈N be its optimal solution,

and J (c) be the set of indexes j ∈ N such that either
x̂
(c)
cj

v
(c)
j

=
x̂
(c)
c0

v
(c)
0

or x̂(c)cj = 0.

2. Solve problem (1.9) with the following additional constraints:

zcj = 1
x̂
(c)
cj >0

∀c ∈ C, j ∈ J (c), (1.13)

where 1 is the indicator function. The obtained solution is the heuristic output.

To gain insights into the computational performance of the proposed heuristic method,
we generate the parameters of the omnichannel assortment optimization problem in the
following way:

(i) r1j = u(0, 1) + ε, r2j = r1j(1 + u(0, 0.5)) ∀j ∈ N ;

(ii) v(1)j = u(0, 1) + ε, v(2)j = u(0, 1) + ε ∀j ∈ N ∪ {0};

(iii) u(1)j = u(0, 0.5)v
(1)
j , u(2)j = u(0, 0.5)v

(2)
j ∀j ∈ N ;

(iv) w(1)
j = u(0, 0.5)v

(1)
j , w(2)

j = u(0, 0.5)v
(2)
j ∀j ∈ N ,

where u(a, b) denotes a value sampled from the uniform distribution U(a, b), and ε = 0.01.
Also, we normalize the attractiveness values so that v(c)0 +

∑
j∈N

v
(c)
j = 1 ∀c ∈ C. While the

generated values of the parameters may not necessarily be representative of a real-world
example, they are well-suited for the purpose of evaluating the computational effort
required to solve the problem instance. The only meaningful restriction we impose is
that the gross profit per unit of a product is higher for the online channel than for the
offline channel, which can be justified by the difference in holding costs. Lastly, we fix
the values of parameters Λ(1) and Λ(2) at 104 and 3 · 104, respectively.

We use the SBMILP as a benchmark to evaluate the comparative performance of our
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Figure 1.2: Computational performance of the heuristic method as a function of the
product set size (n).

heuristic method. The computational study was carried out on a laptop with Intel Core
i7-8650U CPU (1.90 GHz), 8 GB RAM and 64-bit Windows 10 OS. To solve our MILPs we
used Gurobi (version 8.0.1). We ran 100 experiments for each value of n ∈ {100, 200, 300}.
The results showed that, on average, the SBMILP can be solved to optimality in 0.29
seconds if n = 100, in 1.48 seconds if n = 200, and in 10.72 seconds if n = 300. However,
running 100 experiments for n = 400 turned out to be not particularly feasible, as some
instances took up to 500 seconds to solve (even though some other instances were solved
in less than 7 seconds). This highlights the strong need for a computationally efficient
heuristic method to solve the assortment optimization problem.

Our proposed heuristic method allows to drastically reduce both the number of binary
variables and the number of constraints containing binary variables in the SBMILP
formulation. This is because each binary variable zcj such that j ∈ J (c) turns into a
parameter. The numerical results in terms of reduction in the number of binary variables
and solving time for different values of n are shown in Figure 1.2(a) and (b), respectively
(note that the x-axis is log-scaled with base 2). The results are averaged over 100 generated
instances. It can be seen that the reduction in the number of binary variables is more than
93% and this is independent of the actual value of n. As a consequence, the optimization
problem (1.9) with additional constraints (1.13) is computationally much easier to solve
than the original one. The heuristic still requires solving a MILP whose size grows linearly
in n, so the solving time grows exponentially in n. However, even if n is of order 104, the
heuristic solution can be found in a matter of seconds, making this method attractive for
most practical applications.

For moderate values of n – in the range from 50 to 300 – we also compared the output
and the solving time of the heuristic to those of the SBMILP. The results, which again
represent averages over 100 generated instances, are given in Table 1.1. As can be
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n ratio of solving times ratio of optimal values proportion of mismatched decisions

50 8.95 0.999984 0.003400

100 39.76 0.999975 0.003950

150 86.17 0.999979 0.003400

200 138.61 0.999960 0.003925

250 218.32 0.999974 0.003540

300 595.31 0.999966 0.004050

Table 1.1: Comparative performance of the heuristic method.

seen, on average, the profit yielded by the heuristic is around 0.99997 of the optimal
profit, and the proportion of mismatched assortment decisions (i.e., the proportion of
zcj values which are different for the heuristic output and for the optimal output) is
almost always less than 0.004. At the same time, the ratio of the solving time of the
original formulation to the solving time of the heuristic is around 9 if n = 50, and around
595 if n = 300. These results demonstrate that the developed heuristic method yields
close-to-optimal assortments whilst generally being substantially superior in terms of
solving time, especially as n grows.

Finally, for large values of n, we verified numerically that our heuristic method yields
close-to-optimal solutions. For each n ∈ {5000, 10000, 15000, 20000, 25000}, we generated
100 random MAM instances. Then, we compared the heuristic outputs with the solutions
to the linear relaxations of the corresponding SBMILPs, which provide upper bounds
on the true optimal values. For each problem instance, we computed the value of
(objrel−objheur)/objheur, where objrel is the value of the linear relaxation of the SBMILP
and objheur is the value of the heuristic. As can be seen in Figure 1.3, the value of these
gaps never exceeded 0.2%, with the average gap between 0.15% and 0.16%, confirming
the high solution accuracy of the proposed heuristic.

Note that since the MAM is a regular choice model – i.e., adding a product to an
assortment in one of the channels cannot lead to an increase in the probability of
customers choosing any other product – the revenue-ordered heuristic algorithm (see, e.g.,
Berbeglia and Joret, 2020) can be used to solve the assortment optimization problem
under the MAM. In particular, if all products (in both channels simultaneously) are ranked
in ascending order of the price, and the heuristic solution is determined by finding the
best cutoff in this ranking, then this solution approximates the optimum revenue within a
factor of 1

1+ln(rmax/rmin)
, where rmax and rmin are the maximum and the minimum price,

respectively. This method can prove to be very useful if prices are sufficiently close to
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Figure 1.3: Heuristic performance bounds for large numbers of products.

each other. By contrast, the quality of our proposed heuristic method, which is very
promising in terms of computational time and solution accuracy, does not rely on the
closeness of prices of products, meaning it is readily applicable in a general setting.

1.6 Parameter Estimation

We start with describing a basic method to estimate the parameters of the MAM. Recall
that πcj(Sc, Sc̄) is the probability that a customer buys product j in channel c given
assortments Sc and Sc̄ in channels c and c̄, respectively. Suppose that for all i, j ∈ N ,
c ∈ C the probabilities πcj(N ,N ), πcj(N\{i},N ) and πcj(N ,N\{i}) are known along
with the respective values of Λ(c) and Λ(c̄). Such information can be obtained from data
comprising the aggregate demand values (or, equivalently, the aggregate sales, assuming
that there are no shortages) for the corresponding assortments together with the shares of
customers of each type who chose the no-purchase alternative if all the products from N
had been offered in both channels. The latter means that the ratios v(c)0 /

∑
j∈N v

(c)
j

∀c ∈ C are estimated exogenously. While the assumption of having these exogenous
estimates is fairly restrictive, it aligns with the existing literature (Vulcano et al., 2012).

Without loss of generality, we can assume v(c)0 +
∑

j∈N v
(c)
j = 1 ∀c ∈ C. For all c ∈ C,

j ∈ N , the MAM parameters can then be determined using the following expressions:

v
(c)
j = πcj(N ,N )

Λ(c) + Λ(c̄)

Λ(c)
, v

(c)
0 = 1 −

∑
j∈N

v
(c)
j , (1.14a)

u
(c)
j =

πc̄j(N\{j},N ) − πc̄j(N ,N )

πck(N\{j},N )
v
(c)
k , (1.14b)

w
(c)
j =

πck(N ,N )

πck(N\{j},N )
+ v

(c)
j − u

(c)
j − 1, (1.14c)
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where k ∈ N is any product different from j. Expressions (1.14) can be verified by
straightforward calculations. This method, however, requires specific information on
the product demands for a certain set of assortments, which may be difficult to obtain
in practice. Therefore, there is a need for more general parameter estimation methods
for situations in which only limited data about product demands is available. The two
most common parameter estimation techniques for discrete choice models are maximum
likelihood estimation (MLE) and least squares estimation. In their recent empirical
study, Berbeglia, Garassino, et al. (2021) compared the estimation results produced by
these two standard estimation techniques and, considering a range of prominent discrete
choice models, found that the quality of estimates of these two methods is very similar.
Importantly, least squares estimation requires only aggregate sales data (i.e., how many
units of each product were sold during each period with a fixed assortment), whereas
MLE is typically used when the information about all individual sales transactions is
available. In this work, we focus on the limited setting of aggregate sales transaction data
(i.e. only sales quantities and product availability in each period are observed) in which
direct maximization of the (log-)likelihood function is computationally unappealing (see
Vulcano et al., 2012), so we resort to an estimation based on least squares which is readily
applicable in incomplete data situations.

Suppose that product demands which arise from the MAM are observed in both channels
for T periods. In other words, we implicitly assume customers make choices according
to an MAM in a homogeneous market (i.e. preferences of customer are homogeneous
across the selling horizon, meaning their choice behaviour can be modelled by a single
MAM). Note that although this assumption is standard in the estimation of discrete
choice models, it can be straightforwardly relaxed (see, for example, the discussion in
Vulcano et al. (2012)). For each period t, we denote the assortment in channel c by Sct and
the observed demand for product j in channel c by dcjt. We also assume that the demand
rate is constant for both channels, i.e. Λ

(c)
t = Λ(c) ∀t ∈ {1, . . . , T} and that the market

size is sufficiently large (i.e. observed historical sales are representative of expected sales).
If the available data is composed solely of the demand values and the corresponding
assortments, we can obtain estimates of the MAM parameters by minimizing the sum of
squared residuals, i.e., by solving the following optimization problem:

min
v(c),Λ(c)

u(c),w(c)

T∑
t=1

∑
c∈C

∑
j∈N

(
v
(c)
j Λ(c)

1j∈Sct

v
(c)
0 +

∑
k∈Sct

v
(c)
k +

∑
i∈N\Sct

(u
(c)
i + w

(c)
i )

+

u
(c̄)
j Λ(c̄)

1j∈Sct\Sc̄t

v
(c̄)
0 +

∑
k∈Sc̄t

v
(c̄)
k +

∑
i∈N\Sc̄t

(u
(c̄)
i + w

(c̄)
i )

− dcjt

)2

(1.15a)
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s.t. u(c)j + w
(c)
j ≤ v

(c)
j ∀c ∈ C, j ∈ N , (1.15b)

v
(c)
0 +

∑
j∈N

v
(c)
j = 1 ∀c ∈ C, (1.15c)

Λ(c), v
(c)
0 , v

(c)
j , u

(c)
j , w

(c)
j ∈ R≥0 ∀c ∈ C, j ∈ N . (1.15d)

Importantly, despite the fact that problem (1.15) is nonconvex, some off-the-shelf solvers
are able to cope with this problem quite well. In particular, the IPOPT package developed
by Wächter and Biegler (2006) for nonlinear optimization shows a surprisingly good
performance. Following Vulcano et al. (2012) and Gallego et al. (2014), we illustrate the
performance of the above parameter estimation method by considering an exemplary setup
with n = 5 and T = 15. We simulate 100 instances of demand arising from the MAM
with fixed parameters (which are randomly generated in the way described in Section 1.5),
with each instance corresponding to a set of randomly simulated assortments Sct, c ∈ C,
t ∈ {1, . . . , T}. We consider two cases: in the first case, we assume that the values of the
ratios v(c)0 /

∑
j∈N v

(c)
j ∀c ∈ C (or, equivalently, the values of v(c)0 if

∑
j∈N v

(c)
j = 1) are

given exogenously, whereas no such information is available in the second case. The least
squares estimates obtained by solving problem (1.15) and averaged over 100 instances are
presented in Table 1.2. It can be seen that these estimates are particularly close to the
true parameter values if the values of v(c)0 are known, which highlights the importance of
information availability. Indeed, if a firm has access to accurate exogenous estimates of
the attractiveness of the no-purchase option (e.g., by keeping track of the no-purchase
outcomes), then the accuracy of parameter estimation is shown to improve dramatically.

An alternative way to estimate the MAM parameters is to build upon the Expectation
Maximization (EM) algorithm which was developed by Vulcano et al. (2012) for estimating
the parameters of the BAM when only aggregate sales data are available, which makes
the standard MLE approach extremely computationally challenging. Their algorithm was
later adapted by Gallego et al. (2014) to estimate the parameters of the GAM. The idea
behind these algorithms is to estimate the model parameters iteratively using estimates of
the first-choice demand. For large-scale problems, such an approach can be more effective
than solving the least squares problem. However, similar to the algorithm presented
by Gallego et al. (2014), the method based on an adaptation of the EM algorithm to
the MAM suffers from an important limitation: its convergence is not theoretically
guaranteed. We provide a detailed description and performance examples of this method
in Appendix A.8.
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Table 1.2: Least squares estimates of the MAM parameters.
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1.7 Impact of Implementation of Omnichannel Initiatives
and Sensitivity Analysis

1.7.1 General Effects of Omnichannel Initiatives

In this subsection, we consider widely used omnichannel initiatives and discuss general
effects of their implementation on the MAM parameters. Importantly, we do not account
for implementation and maintenance costs associated with these initiatives – our goal is
to estimate and explore the demand evolution. In the following, we assume that channel 1
is the retailer’s offline channel (i.e., a physical store or a chain of physical stores) and
channel 2 is the online channel.

The most straightforward effect takes place when customers have in-store access to
information about the availability of online inventory, e.g., through in-store digital help
desks. In this case, values of u(1)j , j ∈ N have to increase as ratios u(1)j /(u

(1)
j + w

(1)
j )

determine the probability that customers are willing to switch from the offline to online
channel when looking for the desired product, and offline customers have an additional
incentive to check the online assortment. In other words, if product j is not available in
the offline channel but it is available in the online channel, then the demand for product j
in the online channel is expected to increase due to the fact that more customers switch
from the offline to online channel when looking for this product. At the same time, one
can expect that the shadow attractiveness values of purchasing products from another
source, u(1)j + w

(1)
j , should remain constant for all j ∈ N since there should be no

impact on choices of customers who select products which are offered in the offline
channel. That is, the increase in demand for products in the online channel caused by this
omnichannel initiative takes place on account of type-1 customers who would otherwise go
to a different retailer. However, note that parameters u(1)j may not increase considerably
because nowadays customers have an option to access the retailer’s online store using
their smartphones. It is also reasonable to assume that the effects on all other parameters
is negligible as no additional customers are drawn to the store, and customers willing to
buy something from the in-store assortment are not likely to switch to the online channel
looking for other products. Therefore, the benefits of this initiative may be outweighed by
its implementation costs. It would thus be interesting for future studies to compare the
additional revenue generated by increased cross-channel demand with the implementation
costs of this initiative through real-world case studies.

We now investigate the effect of BOPS, which is arguably the most prevalent omnichannel
initiative. We assume that BOPS orders are fulfilled from the physical store inventory.
Otherwise, if a customer is only allowed to pick up a product after it is delivered
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from a warehouse to the store, there is no substantial difference between regular online
transactions and BOPS transactions. The main distinction is in the delivery cost – if
the delivery is carried out by the retailer and it is not paid separately for by customers,
then the delivery cost in the latter case should at least not be higher than in the former
because deliveries to the store can be organized in batches. Thus, the major issue for the
retailer is to compare the benefits generated by attracting new online customers through
introducing the BOPS functionality with the associated implementation costs (including
those for adjusting the supply chain). This is, however, outside the scope of our research.

Within the framework of our research, it is more interesting to study the effect of BOPS if
orders have to be fulfilled from the physical store inventory. This is also a common practice
for omnichannel retailers, usually due to the need to have items ready for collection
shortly after the order was placed (see Gallino and Moreno, 2014). In general, the overall
traffic of customers should increase because customers who do not want to wait for a
delivery have an additional convenient way to receive a product. However, even if we
do not consider implementation costs, introducing BOPS can be unprofitable. Despite
counting purchases made through BOPS as online transactions, the empirical analysis
carried out by Gallino and Moreno (2014) revealed that the introduction of the BOPS
functionality generally leads to a reduction in online sales and an increase in offline sales.
They explained this phenomenon by the impact of sharing reliable inventory availability
information on customers’ decisions. If it is guaranteed that a certain product is available
in-store, customers may choose to go to the store (even without reserving the product
using BOPS) rather than order it online. A similar effect can take place if the retailer
provides online information about the current stock level of each product in each store.
As a consequence, the retailer may lose part of its online customers while attracting more
in-store customers instead. This can lead to losses under the assumption that the gross
profits per unit of each product in the online are higher than those in the offline channel.

Based on these assertions, we can describe the general effects of implementing the BOPS
functionality on the MAM parameters as follows: Firstly, one can expect an increase in
the expected number of customers visiting at least one of the retail channels, Λ(1) + Λ(2),
together with a decrease in the number of online customers Λ(2). Secondly, since online
customers now have information about the in-store assortment, parameters u(2)j should go
up, while the shadow attractiveness values of purchasing products from another source,
u
(2)
j + w

(2)
j , should remain constant (similar to the impact of in-store information about

online inventory availability). Note that in this case, we count purchases made through
BOPS as in-store purchases.

A more rigorous way to study the effect of BOPS on customer choices would be to
introduce a separate channel for BOPS transactions, and suitably adjust the parameters
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related to other channels. This approach would also allow us to formulate an optimization
problem for finding optimal assortments in all three channels, thereby determining the
products for which it is profitable to implement the BOPS functionality. Future research
should focus on studying the impact of this and other omnichannel initiatives in order to
gain a better understanding of, and novel insights into the profitability of adopting such
initiatives.

1.7.2 Numerical Analysis and Managerial Insights

For the first part of our numerical analysis, we generate the MAM parameters as described
in Section 1.5 and keep them fixed throughout the numerical experiments. More specifically,
we consider the case n = 30 in order to be able to clearly visualize the optimal assortments.
In the below figures, we indicate products that belong to the optimal assortment of both
channels by black squares, products that belong to one optimal channel assortment
exclusively by blue squares, and the remaining products – i.e. those not offered at all
– by white squares (similar to Figure 1.1). Each figure consists of two plots, with the
plot(s) on the left- and right-hand side corresponding to channel 1 (offline) and channel 2
(online), respectively.

It is important to recall that the generated parameter values are convenient for carrying
out this analysis, but they are not necessarily realistic. For example, one can expect that
if the gross profit per unit of a certain product j is high compared to other products, then
the proportion of the demand for product j to the total demand in the corresponding
channel is probably small, i.e., there is a negative correlation between the values of rcj
and v(c)j . Moreover, we assume that the values of rcj and v(c)j are uniformly distributed,
which is unlikely to be the case in practice. However, our goal is to study the relationship
between the parameters values and the optimal solution to the SBMILP, rather than
to investigate a real-world case study, and using such generated data ideally fits this
purpose.

First, let us explore the relation between the gross profit per unit of each product and
the optimal assortments given by the optimal solution of the SBMILP (see Figure 1.4).
We observe that the higher the gross profit per unit of a product, the more likely it is
that this product belongs to the optimal assortment. However, such a relation is not
always evident, i.e., a product with a relatively high unit profit in one of the channels
may not be included in the corresponding assortment, whereas a product with a relatively
low unit profit may be offered. Moreover, the relationship between unit profits and
optimal assortments seems to be more pronounced in channel 2 than in channel 1. It can
possibly be explained by the fact that we set the total number of type-2 customers to be
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Figure 1.4: Relation between the optimal assortments and rcj for channels 1 (left)
and 2 (right).

considerably higher than that of type-1 customers (Λ(1) = 104 and Λ(2) = 3 · 104), which
could reflect a situation where channel 2 represents an online channel. Also, note that if
a product is not included in the assortment in one channel, and the profit per unit of
the product is low in both channels, it can still be profitable to offer this product in the
other channel due to demand generated by customers who switch to that channel and
those who shop there in the first place.

Next, we create a similar visualization but for the attractiveness values v(c)j instead of
the gross profit values, with the results shown by Figure 1.5. Unlike Figure 1.4, it can be
observed that there is no apparent relation. To further analyze the structure of optimal
assortments, recall the finding formulated in Proposition 1.5. Based on Fc(j, Sc, Sc̄), we
can derive a more tractable expression that approximately characterizes the optimal
assortment in one channel given the assortment in the other channel. Indeed, consider
the following expression:

fcj(Sc̄) =


rcjv

(c)
j − rc̄ju

(c)
j

ṽ
(c)
j

if j ∈ Sc̄,

rcjv
(c)
j + rcju

(c̄)
j Λ(c̄)/Λ(c)

ṽ
(c)
j

otherwise.

(1.16)

The values of fcj(Sc̄) ∀c ∈ C, j ∈ N for the optimal assortments are illustrated by
Figure 1.6a. We observe that unlike the attractiveness values, these expressions do
provide an approximate characterization of the optimal assortments. Indeed, as can be
seen, if fcj(Sc̄) > fck(Sc̄) and product k belongs to the optimal assortment in channel c,
then product j tends to belong to the optimal assortment as well. In the following, we
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Figure 1.5: Relation between the optimal assortments and v(c)j for channels 1 (left)
and 2 (right).

use the values of fcj to produce more illustrative plots.

To study how the optimal assortments are being affected by a change in the ratio Λ(1)/Λ(2),
we consider two additional cases: Λ(1) = Λ(2) = 104 and Λ(1) = 3 · 104, Λ(2) = 104. The
results are summarized in Figure 1.6b and 1.6c. Interestingly, it can be seen that with an
increase in the ratio Λ(1)/Λ(2) from 1/3 to 1, the optimal assortment in channel 1 becomes
smaller in size, whereas the optimal assortment in channel 2 becomes larger. However,
with a further increase in the ratio Λ(1)/Λ(2) from 1 to 3, the optimal assortments in both
channels do not change. To sum up, the smaller the ratio of customers whose primary
choice is to shop online to those whose primary choice is to go to a retail store, the
smaller the optimal assortment in the physical channel and the larger the assortment in
the online channel (up to a certain limit). This is intuitively clear given that an online
purchase is generally more profitable for the retailer than the in-store purchase of the
same product, so the retailer is interested in a high online traffic and therefore increases
the online assortment.

We now investigate the effect of the values of u(c)i /(u
(c)
i +w

(c)
i ) on the optimal assortments.

These ratios determine how willing customers are to switch to another channel when
looking for the desired product. We therefore fix the values of all parameters except
for the values of u(c)j and w

(c)
j , and also set u(c)j + w

(c)
j = 0.5v

(c)
j . We then consider the

following three cases: u(c)j = 0.01v
(c)
j , u(c)j = 0.25v

(c)
j and u

(c)
j = 0.49v

(c)
j ∀c ∈ C, j ∈ N .

The optimal assortments are displayed in Figure 1.7. It is interesting to note that a similar
effect to the one described above for different values of Λ(1)/Λ(2) can be observed when
increasing the ratio u(c)j /(u

(c)
j + w

(c)
j ): given a fixed sum u

(c)
j + w

(c)
j ∀c ∈ C, j ∈ N , the

optimal assortment in channel 1 becomes smaller in size, whereas the optimal assortment
in channel 2 becomes larger. In other words, the larger the proportion of customers willing
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(a) Optimal assortments if Λ(1) = 104, Λ(2) = 3 · 104.
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(b) Optimal assortments if Λ(1) = Λ(2) = 104.
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(c) Optimal assortments if Λ(1) = 3 · 104, Λ(2) = 104.

Figure 1.6: Optimal assortments for different values of Λ(1)/Λ(2) for channels 1 (left)
and 2 (right).

to switch from one channel to another in case of absence of a certain product, the larger
the optimal assortment in the online channel and the smaller the optimal assortment in
the physical channel. Trivially, in the case when 100% of in-store customers are willing to
switch to the online channel if their primary-choice product is not available, the optimal
assortment in the physical channel is the empty set.
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Figure 1.7: Optimal assortments for different values of u(c)j and w(c)
j for channels 1 (left)

and 2 (right).

Next, we investigate the extent to which the implementation of the BOPS functionality
affects the total profit of the retailer. To this end, we use the initially generated values of
parameters u(c)j and w(c)

j ∀c ∈ C, j ∈ N . Recall that the impact of introducing the BOPS
functionality on the MAM parameters can be described approximately as follows: the
sum Λ(1) + Λ(2) increases, Λ(2) decreases, and u(2)j increases under the condition that the

sum u
(2)
j + w

(2)
j does not change ∀j ∈ N . We carried out several numerical experiments
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change in Λ(1) change in Λ(2) change in u(2)j objective value

– – – 24025.16

7500 −6000 – 23489.87

9000 −6000 – 24133.95

10500 −9000 – 22362.52

12000 −9000 – 22931.03

13500 −9000 – 23499.54

13500 −9000 0.2w
(2)
j 23514.09

13500 −9000 0.5w
(2)
j 23582.26

13500 −9000 0.8w
(2)
j 23723.54

15000 −9000 – 24068.05

Table 1.3: Different impacts of the BOPS implementation on total profit.

considering different degrees of such impact and report results in Table 1.3. Based on
these results, the following key observations can be made. The implementation of the
BOPS functionality can be unprofitable if the proportion of online customers using this
option is too large compared to the additional traffic attracted to the offline channel.
Furthermore, the primary effect on total profit is due to the change in the parameters
Λ(1) and Λ(2), whereas the effect of an increase of u(2)j -values is less pronounced. This is

not surprising since u(2)j -values only reflect the cross-channel demand volume generated
by customers switching from channel 2 to channel 1, while Λ(1) + Λ(2) represents the
total number of customers visiting the retailer. Ultimately, our results indicate that the
profitability of adopting the BOPS functionality needs to be evaluated on a case-by-case
basis, which is in line with the empirical findings of Gallino and Moreno (2014).

Unlike the above analysis, which was carried out for illustrative purposes for one problem
instance, we now analyze the effect of the considered parameter changes on both the
size of assortments and the degree of assortment overlap for a large number of problem
instances (simulated in the same way). First, we simulate 1000 problem instances, and
for each problem instance, we fix all the parameters except for Λ(1) and Λ(2). We then
consider several cases with different values of the Λ(1)/Λ(2)-ratio. Note that the absolute
values of Λ(1) and Λ(2) are irrelevant since the objective function in the SBMILP can
be divided by the constant Λ(2) (leaving the optimal solution unchanged), which makes
it a function of Λ(1)/Λ(2). Subsequently, we solve the SBMILP in each considered case
and record the size of assortments in both channels and the degree of assortment overlap.
The aggregated results are shown in Figure 1.8(a) (note that the x-axis is log-scaled). We
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(b) Impact of proportions of customers switching
to another channel.

Figure 1.8: Effect of ratio of physical to online traffic (left) and of proportions of
customers switching channels (right) on both the average size of assortments and the

degree of assortment overlap.

observe that the average assortment sizes follow the same trends as the ones described
earlier for one problem instance: with an increase in the ratio Λ(1)/Λ(2), on average the
size of assortment in channel 1 (physical channel) decreases while the size of assortment
in channel 2 (online channel) increases. Interestingly, we also observe that on average,
the degree of assortment overlap remains virtually constant. This can be explained by
fact that the trend lines are almost symmetric, that is the absolute values of their slopes
are very close to each other.

Next, we study the effect of the values of u(c)i /(u
(c)
i +w

(c)
i ) on both the size of assortments

and the degree of assortment overlap. As previously, we simulate 1000 problem instances.
For each problem instance, we fix all parameters except for u and w. Similar to the
analysis of one problem instance, we set u(c)i + w

(c)
i = 0.5v

(c)
i and consider several cases

with the ratio u(c)i /(u
(c)
i + w

(c)
i ) taking values from 0 to 1. The results are summarized

by Figure 1.8(b). We can see that if u(c)i /(u
(c)
i + w

(c)
i ) tends zero – that is if there

is no cross-channel demand – then the average sizes of assortments in both channels
are the same. This is not surprising because if there is no cross-channel demand, then
each assortment can be optimized independently. Since the parameters related to each
channel are simulated randomly, on average the assortment sizes are virtually identical,
i.e. |S1| ≈ |S2|. Also, we can observe that on average, an increase in u

(c)
i /(u

(c)
i + w

(c)
i )

leads to an increase in the size of channel 1 assortment (|S1|) and a decrease in the size
of channel 2 assortment (|S2|). This is consistent with our previous observations for
one problem instance. Lastly, we observe that the line representing the average overlap
degree closely follows the line representing the average size of channel 1 assortment –
in other words, there are hardly any products that belong to channel 1 assortment but
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Figure 1.9: Profitability of omnichannel assortment optimization and assortment
optimization in siloed channels.

not to channel 2 assortment. This might be explained by the fact that since channel 2
assortment comprises almost all products, the few products that are not part of it are
characterized by very low unit gross profits. In this case, their unit gross profits are also
low in channel 1 (due to the parameter simulation procedure), making them also less
likely to be part of the optimal assortment in that channel.

Finally, let us evaluate the revenue benefits of solving the omnichannel assortment
problem as opposed to optimizing the two assortments in siloed channels. To this end,
we consider several problem sizes with the number of products, n, ranging from 30
to 300. For each n, we simulate 1000 problem instances in the way described at the
beginning of Section 1.5. Then, for each problem instance, we compute two revenues:
one that corresponds to omnichannel assortment optimization; and one that corresponds
to assortment optimization in siloed channels. The former is obtained by solving the
SBMILP, whereas the latter is determined in the following way: First, we solve the
assortment optimization problem under the GAM for each channel separately, using the
fact that the MAM restricted to choices of type-c customers in channel c is equivalent
to the GAM. Once assortments in the two channels are identified, we compute the
corresponding total expected revenue assuming that the customers make their choices
according to the MAM. Importantly, by doing this we do not neglect the cross-channel
demand – even though the assortments are optimized in siloed channels, the underlying
demand model is the same as in the omnichannel case. Figure 1.9 shows that there is a
clear benefit of solving the omnichannel assortment optimization problem as opposed to
optimizing assortments in siloed channels. In fact, for the n-values under consideration,
the omnichannel solution turned out to between 1.8% and 1.9% more profitable on average
than the solution obtained for siloed channels, with maximum improvements of up to
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6.7%, highlighting the considerable revenue gains that may be achieved by omnichannel
assortment planning.

1.8 Conclusions and Future Work

In this paper, we have developed an analytical framework for both modeling product
demand and making assortment decisions in an omnichannel environment. In particular,
we have introduced a discrete choice model referred to as the multichannel attraction
model (MAM) that specifically accounts for the complex nature of omnichannel shopping
behavior. Compared to the single-channel setup – which corresponds to the general
attraction model (GAM) – the multichannel structure of our choice model substantially
increases the complexity of associated problems. For example, the assortment optimization
problem under the GAM can be formulated as a linear program, and the optimal
assortment can actually be found analytically. For the MAM, on the other hand, we
have formulated the sales-based mixed-integer linear program (SBMILP) – a tight MILP
formulation of the corresponding assortment optimization problem – and proved that
the optimal assortment in one channel can be found analytically if all products are
available in the remaining channel. We have proposed a computationally efficient heuristic
method to approximately solve the SBMILP, and showed numerically that its output is
extremely close to the optimal solution. We have also presented three different methods
to estimate the parameters of the MAM, and demonstrated that if product demands are
only known for a limited number of assortments in each channel, the MAM parameters
can be estimated fairly accurately by simply solving a least squares problem.

We have analyzed general effects of the implementation of widely-used omnichannel
initiatives on the MAM parameters, and have carried out numerical experiments to
investigate the structure of optimal assortments. We demonstrated that in an omnichannel
environment, optimal assortments cannot be characterized by a single factor alone as they
are affected by a combination of several factors. In fact, in our experiments we identified
a relation between the sizes of optimal assortments and the following two factors: the
ratio of customers whose primary choice is to shop online to those whose primary choice
is to go to a retail store, and the proportion of customers willing to switch from one
channel to another in case of absence of a certain product. We also showed numerically
that implementing the buy-online-and-pick-up-in-store (BOPS) initiative is not always
profitable, which supports previous findings in the omnichannel literature. Finally, we
evaluated the benefits of omnichannel assortment optimization as opposed to optimizing
siloed assortments and showed that the former can result in substantial revenue gains for
omnichannel retailers. Our numerical analysis indicated that the omnichannel solution
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is 1.8%-1.9% more profitable on average than the solution obtained for siloed channels,
with maximum gains of up to 6.7%. These findings are encouraging and demonstrate
that our framework can be beneficially used for omnichannel assortment planning as well
as for exploring the profitability of implementing different omnichannel initiatives, which
should be of great interest to decision-makers in the retailing industry.

The proposed framework can be the basis for a range of important further developments.
Firstly, a better understanding of the structure of optimal assortments in each channel
could be obtained through an extensive numerical analysis based on values of the MAM
parameters estimated using a real-world dataset. Secondly, additional theoretical results
related to the assortment optimization problem under the MAM could be derived, with
the question of NP-hardness of the SBMILP being of particular interest. In a similar
vein, the possibility of developing an FPTAS (e.g. along the lines of the recent work
of Désir et al. (2022)) may be explored. Also, the MAM could be subject to multiple
extensions. For example, the MAM could be calibrated on the product features level.
In this case, it would be very interesting to compare the results obtained using such a
modified version of the MAM to those obtained by Dzyabura and Jagabathula (2018) and
Lo and Topaloglu (2022). Another promising research direction would be to formulate
and explore a stochastic version of the SBMILP for the case of uncertain demand in each
channel. It would also be beneficial to study the effects of BOPS on customer choices by
introducing a separate channel for BOPS transactions. Such an approach would allow
to investigate not only whether but also for which specific products it is profitable to
implement the BOPS initiative. Finally, deriving analytical properties of solutions to
the SBMILP should lead to additional managerial insights and result in a more efficient
SBMILP formulation.

43





2 Optimizing Omnichannel Assortments and
Inventory Provisions Using an Attraction
Model

2.1 Introduction

Omnichannel retail has emerged as the new norm in today’s commerce landscape. However,
few retailers have adopted the omnichannel approach from their inception. Instead, many
businesses have undergone a transition from traditional single-channel retailing to modern
omnichannel retailing. Prominent examples include Walmart, a traditional brick-and-
mortar (B&M) retailer, and Amazon, an e-commerce giant. Initially, Walmart focused on
B&M stores while Amazon sold exclusively online; both companies have since expanded
their presence in the digital and physical retail realms (Rooderkerk and Kök, 2019). In
particular, Walmart has heavily invested in IT-related technology and digital infrastructure
to create a seamless customer shopping experience (Banker, 2021). Likewise, Amazon
has opened physical bookstores and acquired Whole Foods, including its hundreds of
physical stores, in a massive $13.7 billion deal (Debter, 2017). As a result of gradual
implementation of omnichannel practices, few retailers have fully exploited the potential
of the omnichannel approach, which necessitates further development of methodologies
that can facilitate decision-making in omnichannel environments.

While omnichannel retail enhances customer shopping experience, the necessary channel
integration makes decision-making extremely complex. Optimizing assortments in digital
and physical channels under stochastic demand, while simultaneously managing inventory
across a large and possibly diverse network of B&M stores, poses significant challenges
for omnichannel retailers. This complexity stems from the interconnected nature of
operational decisions related to inventory management and assortment optimization,
particularly in the context of demand pooling across different sales channels. In this paper,
we address this challenge by building upon the multichannel attraction model (MAM)
introduced by Vasilyev et al. (2023), which is a discrete choice model specifically tailored
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for omnichannel environments. Although the MAM was designed primarily for settings
with just two retail channels, we expand its applicability to a setting with an online store
and a network of physical stores, thereby enhancing its practical relevance. Furthermore,
we integrate assortment optimization under the MAM with demand stochasticity and
inventory management considerations, factors not taken into account by Vasilyev et al.
(2023). These extensions of the modeling framework have significant implications. We
demonstrate that accounting for demand variability is crucial due to demand pooling
effects, which may impact a retailer’s assortment decisions when inventory considerations
are factored in. Additionally, our generalized framework makes it possible to analyze
the impact of various relevant factors, such as the size or density of the physical store
network, on properties of optimal assortments.

To incorporate inventory provisions into our modeling framework, we employ the newsven-
dor model, which effectively balances inventory costs and stockouts. We derive a profit
function that accounts for optimal inventory decisions while assuming a static product
substitution behavior of customers. We then formulate the assortment optimization
problem as a mixed-integer second-order cone program. This problem can be solved
exactly using off-the-shelf solvers for small to medium-sized instances. For larger problems,
we propose two heuristic methods based on two different relaxations of the formulated
assortment optimization problem. We derive the conditions under which the two relax-
ations are equivalent to each other and to the initial problem, and provide insights into
the performance of our heuristic methods. Moreover, we conduct an extensive numerical
analysis to derive managerial insights. Our findings reveal that an increasing coefficient
of variation of demand has a dual effect on optimal assortment sizes: initially causing a
decrease in online assortment size due to rising costs, followed by an increase in online
assortment size as a result of the demand pooling effect. We also study the impact of
other model parameters on optimal assortments, highlighting the importance of consider-
ing the structure of the physical store network and confirming some of the findings of
Vasilyev et al. (2023). Lastly, we assess the potential benefits of omnichannel assortment
optimization compared to assortment optimization in siloed channels, demonstrating that
the former approach yields a noticeable increase in expected profit.

The remainder of this paper is organized as follows. Section 2.2 presents a review of
two streams of literature closely related to our research. In Section 2.3, we provide a
concise introduction to the MAM and adapt this model to the case of a retailer managing
both an online store and a network of physical stores. In Section 2.4, we utilize the
newsvendor model to derive a function for computing expected profits given assortments in
all channels, and provide an illustrative example highlighting the significance of accounting
for demand variability and inventory costs in omnichannel assortment decision-making. In
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Section 2.5, we formulate the assortment problem, examine its computational complexity,
and reformulate it as a mixed-integer second-order cone program. Section 2.6 is devoted to
heuristic methods that can be used to solve this optimization problem. In Section 2.7, we
perform a sensitivity analysis to gain insights into the properties of optimal assortments,
and evaluate the benefits of omnichannel assortment optimization as opposed to optimizing
assortments in isolated channels. Finally, Section 2.8 summarizes our findings and outlines
potential avenues for future research.

2.2 Literature Review

In this section, we review two primary streams of literature closely related to our research:
the integration of inventory decisions with choice modeling and assortment optimization,
and assortment planning in the context of omnichannel retailing.

2.2.1 Combining Inventory Decisions with Choice Modeling

In this paper, we utilize the multichannel attraction model (MAM) developed by Vasilyev
et al. (2023), a discrete choice model specifically tailored for omnichannel environments.
The MAM builds on the general attraction model (GAM) introduced by Gallego et al.
(2014), which, in turn, is a natural extension of the multinomial logit model (MNL)
formulated by Luce (1959) and McFadden (1973). Arising from the random utility theory,
the MNL is often regarded as the most prominent discrete choice model and is extensively
applied in practice due to its simple structure. We refer the reader to Vasilyev et al. (2023)
for an in-depth review of the theoretical background behind the MAM. One of the key
contributions of our paper is incorporating inventory decisions into the MAM framework.
There are two primary approaches to integrating choice models with inventory decisions:
assuming either static or dynamic product substitution behavior of customers. The static
approach suggests that customer shopping behavior is determined solely by the retailer’s
assortment decisions, and if a customer is willing to buy a product that is out of stock, it
results in a lost sale. In contrast, the dynamic approach suggests that customers may
switch to other items when their desired products are out of stock.

The static approach has been widely explored in academic literature. Smith and Agrawal
(2000) studied the problem of joint assortment and inventory decisions under the exogenous
demand model. In this model, base product demands are assumed to be pairwise
independent, with fixed parameters determining the redistribution of product demand
to other products when a product is unavailable. If the second-choice product is also
unavailable, a lost sale is generally assumed to occur, because modeling more complex
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product substitution behavior would require defining numerous additional parameters
that are difficult to estimate in practice. The authors derived optimal inventory quantities
using the newsvendor model and formulated the assortment optimization as a nonlinear
integer program. Ryzin and Mahajan (1999) analyzed the same problem using the
MNL model for consumer choice and the newsvendor model for optimal inventory levels.
They imposed the restrictive assumption that products have identical price-to-cost ratios,
which led to an analytical characterization of optimal assortments. Several studies have
built upon the model of Ryzin and Mahajan (1999), such as Cachon et al. (2005), who
incorporated consumer search behavior into their model. This behavior suggests that
customers may find a suitable product at one retailer but choose not to purchase it,
preferring to explore other retailers’ offers for better options. The authors showed that
neglecting consumer search can result in suboptimal assortment decisions. Li (2007)
relaxed the assumption of identical price-to-cost ratios and demonstrated that the optimal
assortments have a simple structure that can be explicitly derived under the assumption
that store traffic is a continuous random variable. Maddah and Bish (2007) extended the
model of Ryzin and Mahajan (1999) by incorporating pricing decisions into the modeling
framework.

Gaur and Honhon (2006) addressed the problem of joint assortment and inventory
decisions in a setting similar to Ryzin and Mahajan (1999), but employed the locational
choice model instead of the MNL. The locational choice model suggests that each customer
has an ideal product configuration in the attribute space, and they either purchase the
product closest to their ideal configuration or leave the retailer. The authors showed that
under the locational choice model, products in the optimal assortment tend to be equally
spaced out in the attribute space. They also used their results for the static model to
develop two heuristic methods for the problem under dynamic substitution. Fisher and
Vaidyanathan (2014) addressed a similar problem under a custom-built demand model.
They considered each SKU as a collection of attribute levels, estimated the demand share
of each attribute level based on historical sales data, and derived the demand share of
each SKU as the product of its attribute levels’ demand shares. The authors developed
several heuristic methods to solve the assortment optimization problem. Topaloglu (2013)
extended the work of Ryzin and Mahajan (1999) by making not only assortment and
inventory decisions, but also selling horizon decisions. They demonstrated that including
these decisions makes it possible to relax the assumption of products having the same
price-to-cost ratios, while still avoiding the combinatorial aspects of the assortment
optimization problem. Geunes and Su (2020) devised an analytical framework for making
joint assortment, inventory, and pricing decisions in online and physical retail channels,
where customer choices are modeled using a mixture of MNL models. All these decisions
are represented by variables in a two-stage stochastic optimization problem that can be
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solved using a simulation-based approximation algorithm.

The alternative approach to assuming the static product substitution behavior is con-
sidering dynamic product substitution behavior, under which customers may switch
to other products when faced with a stockout. Although this assumption is arguably
more realistic, it leads to extremely challenging problems even in the simplest settings
due to the stochastic nature of stockout events. Mahajan and Ryzin (2001) analyzed a
newsvendor-style inventory problem under dynamic substitution, where a retailer selects
initial inventory levels for products in a given assortment to maximize expected profits.
They employed a utility maximization framework to model customer choices. The authors
demonstrated that for a continuous relaxation of the problem, the expected profit is
not even quasiconcave in the initial inventory levels. They proposed a sample path
gradient method for the relaxed problem and showed that it converges to a stationary
point of the expected profit function under some mild conditions. Honhon, Gaur, et al.
(2010) addressed the problem of joint assortment and inventory decisions under dynamic
substitution, or dynamic assortment planning for short. In their model, customers can
be separated into different segments based on their preference lists, with each customer
purchasing their highest-ranked product available at the time of their visit. The total
customer demand is assumed to be random and comprises fixed proportions of customers
from different segments. The authors developed a dynamic programming-based algorithm
with a computational complexity of O(8n), where n represents the number of products.
Honhon and Seshadri (2013) built upon the model of Honhon, Gaur, et al. (2010) by
considering random proportions of customers from different segments, and providing a
performance guarantee for the fixed proportions solution in the random proportions set-
ting. Aouad, Levi, et al. (2018) studied the dynamic assortment planning problem under
the MNL. Importantly, they disregarded inventory costs, instead imposing a capacity
constraint on the total number of units stocked. The authors presented an approximation
algorithm that yields expected revenue of at least 0.139 times the optimum given that
the total demand has an increasing-failure rate distribution. Aouad and Segev (2019)
developed an approximation scheme for the same problem, with the running time of their
randomized algorithm of O(1δ · (nC)O(log∆/ϵ2)), where ϵ is the accuracy level, δ is the
confidence level, n is the number of products, C is the total number of units that can be
stocked, and ∆ is the ratio between the maximal and minimal product weights. Unlike
Aouad, Levi, et al. (2018), the algorithm proposed by Aouad and Segev (2019) does not
rely on the assumption of a specific distribution of the total number of customers.

Several papers have examined the dynamic assortment planning problem while making
simplifying assumptions to avoid complexities induced by the relevance of stockout event
sequences. Goyal et al. (2016), Segev (2019), Aouad, Levi, et al. (2019), Transchel et al.
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(2022) considered dynamic assortment planning models for which they devised efficient
solution algorithms, providing either approximation guarantees or numerical performance
validation. However, the choice models in these papers impose a very specific order
in which products are consumed. Finally, some studies assume that if the on-hand
inventory cannot satisfy the demand for a product during a sales period, fixed proportions
of the unmet demand are redirected to other products (see, e.g., Netessine and Rudi
(2003), Kök and Fisher (2007), Schlapp and Fleischmann (2018)). Under this assumption,
product substitution behavior is not truly dynamic since it is not affected by the order of
stockout events. In this paper, we follow the more conventional static approach, as the
complexity of the omnichannel environment makes it exceedingly difficult to employ the
dynamic approach. Moreover, as many authors have noted, the static approach provides
a reasonable approximation of customer shopping behavior in various real-world scenarios
(see, e.g., Ryzin and Mahajan (1999), Topaloglu (2013)).

2.2.2 Assortment and Inventory Decision-Making in an Omnichannel
Context

The topic of assortment optimization in an omnichannel environment has received consid-
erable attention in the past decade. In one of the earliest works on the subject, Bhatnagar
and Syam (2014) considered the problem of finding the optimal item allocation for a
hybrid retailer that operates an online store and a chain of B&M stores. They developed
an integer programming framework, assuming fixed product demands with no product
substitution. Dzyabura and Jagabathula (2018) investigated the problem of selecting a
subset of the online assortment to offer in the physical channel to maximize profits across
both channels. In their modeling approach, product substitution is taken into account
via an MNL-based consumer choice model where utilities depend on product features (or
attributes) but customer preferences may change following in-store product inspections.
Lo and Topaloglu (2022) built upon the work of Dzyabura and Jagabathula (2018) by
characterizing the product portfolio with a features tree, which allowed them to relax the
assumption made by Dzyabura and Jagabathula (2018) that a product exists for every
combination of features. Chen, Liang, et al. (2022) used a mixture of MNLs, or the mixed
MNL, to model customer preferences. They addressed the problem of determining both
optimal locations and assortments of B&M stores in the presence of an online sales channel
that maximize the total profit. Most recently, Vasilyev et al. (2023) studied the assortment
optimization problem in a dual-channel setting, utilizing the previously mentioned MAM.
The authors formulated this problem as a mixed-integer linear program and provided
an efficient heuristic method for solving it. They also described general effects of the
implementation of widely-used omnichannel initiatives on the MAM parameters and
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explored the properties of optimal assortments through numerical experiments.

Several studies have explored inventory management in the context of omnichannel
decision-making. One of the first contributions in this area was made by Seifert et al.
(2006), who analyzed a company that serves both online and in-store customers. The
authors studied an integration strategy where a firm can utilize excess inventory at B&M
stores to fulfill online orders, a strategy known as inventory pooling. They quantified the
benefits of channel integration over maintaining dedicated channels under centralized and
decentralized decision-making. They also established the conditions under which using
local stock for online order fulfillment can be beneficial. Hu et al. (2022) investigated the
impact of the buy-online-pick-up-in-store (BOPS) initiative on B&M store operations
from an inventory management perspective, using a stylized model with two customer
types: store-only and omnichannel. The authors demonstrated that the economic viability
of this initiative depends on the relative and absolute magnitude of costs related to store
visiting and online waiting. In particular, if the latter cost is relatively low and the
former cost is even lower, introducing the BOPS functionality benefits the retailer due to
the demand pooling effect. Conversely, if both costs are relatively high, with the online
waiting cost being even higher, then the BOPS initiative may negatively impact the
retailer because of demand depooling. Govindarajan et al. (2021) studied joint inventory
and fulfillment decisions of an omnichannel retailer operating a network of B&M stores
and online fulfillment centers. Their network-based approach made it possible to account
for the demand that “spills over” to other inventory locations in case of stockouts, as well
as for the synergies arising from pooling in-store and online demands within each inventory
location. The authors found that the financial benefits of centralized inventory planning
increase with network size and are highest when the retailer experiences a moderate mix
of in-store and online demands. Abouelrous et al. (2022) addressed a similar problem as
Govindarajan et al. (2021) but employed a different methodology. The authors developed
an algorithm based on solving a two-stage stochastic optimization problem on a reduced
number of scenarios. They showed that their proposed algorithm results in an average
cost reduction of 7.56% compared to the algorithm of Govindarajan et al. (2021). Gabor
et al. (2022) analyzed a two-echelon inventory model for an omnichannel retailer, where a
warehouse follows an (R,Q) inventory policy and uses its stock to serve online customers
and replenish B&M stores. They showed that offering customers a discount for purchasing
online can lead to substantial financial benefits. Other relevant papers studied the effect
of inventory availability information (Gao and Su, 2017) and store return options (He,
Xu, et al., 2020) on optimal inventory decisions.

Apart from the previously mentioned paper by Geunes and Su (2020), there have been very
few works on joint assortment and inventory optimization in omnichannel environments.
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Recently, Hense and Hübner (2022) proposed an approach based on the exogenous demand
(ED) model to investigate the omnichannel assortment planning problem, taking into
account limited shelf space and space elasticity of the demand. While the ED model-
based approach has some limitations as outlined in Section 2.2.1, it allowed the authors
to determine optimal assortment composition along with optimal space allocation and
inventory provisions across channels. To solve the profit maximization problem, which was
formulated as a multi-knapsack problem, Hense and Hübner (2022) proposed a heuristic
algorithm. Building upon the work of Hense and Hübner (2022), Schäfer et al. (2023)
incorporated various additional demand effects into the modeling framework, including
product positioning on store shelves. The authors extended the algorithm presented by
Hense and Hübner (2022) to solve the resulting nonlinear integer program.

In this paper, we go beyond the existing literature by addressing the problem of joint
assortment and inventory optimization under a utility-based choice model specifically
designed for omnichannel environments. We leverage the MAM framework developed
by Vasilyev et al. (2023), and broaden its scope in multiple key directions. Notably,
we incorporate demand stochasticity and inventory management considerations into
the assortment optimization problem under the MAM. We highlight the importance
of accounting for these aspects by demonstrating how neglecting them can result in
suboptimal assortment decisions. By examining a setting with both an online store and a
chain of physical stores, as opposed to a simple dual-channel setup, we are able to uncover
the crucial role the demand pooling effect plays in determining optimal assortments. Our
work offers various theoretical and practical insights, deepening the understanding of
factors affecting omnichannel assortment decision-making.

2.3 Multichannel Attraction Model with a Network of Physical
Stores

This section provides a brief overview of the multichannel attraction model (MAM)
introduced by Vasilyev et al. (2023) and adapts it to the context of our modeling
framework. We consider a setting in which an omnichannel retailer manages an online
store and a chain of physical (brick-and-mortar) stores. We assume that the physical
stores can be represented by a network, where nodes correspond to stores, and two
nodes are connected via an edge if and only if customers can switch between them. For
tractability, we consider the case where customers can move between connected stores in
both directions (i.e., edges are not directed), but this assumption can easily be relaxed.
We also assume that customers can always switch from a physical store to the online
store and vice versa. In essence, the online store can be viewed as an additional node in
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Figure 2.1: Store network illustration.

the network that is connected to all other nodes (see Figure 2.1). To maintain clarity,
we focus on the setting with a single online store, but our modeling approach can be
generalized to the case with a larger number of online stores – for example, if a retailer
has a website and a page on a social media platform – by considering additional nodes
that are connected to all other nodes in the network. Throughout this paper, we will
sometimes refer to stores as sales channels.

Vasilyev et al. (2023) primarily studied the MAM in a dual-channel setting. However,
the MAM can be extended to accommodate a network of physical stores rather than a
single physical channel. Such an extended version of the MAM can be formally defined
in the following way. Suppose that N = {1, 2, . . . , n} is the set of products that can be
offered in all channels, and let 0 represent the no-purchase alternative. Furthermore, let C
denote the set of channels (stores), and c ∈ C denote a channel index. Lastly, let Sc ⊆ N
denote the product assortment in channel c, and S = {Sc}c∈C denote the collection of
assortments in all channels. Following Vasilyev et al. (2023), we identify different types of
customers (one customer type per channel) depending on customers’ preferred channels,
with type-c customers being the ones who would shop in channel c if all alternatives were
offered in all channels. For type-c customers, we adopt the following modified version of
the notation used by Vasilyev et al. (2023):

• v
(c)
j , v(c)0 : attractiveness values of purchasing product j ∈ Sc and selecting the

no-purchase alternative, respectively;

• ϕ
(c)
j : shadow attractiveness value of purchasing product j ∈ N\Sc from another

source;
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• Ccj : subset of channels a customer can switch to in case j /∈ Sc;

• δ
(c)
c̄j : proportion of customers switching to channel c̄ ∈ Ccj out of those willing to

purchase product j /∈ Sc from another source.

Parameters v(c)j are assumed to be strictly positive for all c ∈ C, j ∈ N ∪{0}. Furthermore,

each shadow attractiveness value ϕ(c)i has to belong to the interval [0, v
(c)
i ]. This is because

the MAM is defined as a regular choice model, i.e., only product substitution effects (and
not complementarity effects) are present in the product portfolio. In other words, adding
a product to the assortment cannot increase the probability of customers selecting other
products. Finally, in order for the parameters δ(c)c̄j to be correctly defined, we must ensure

that
∑

c̄∈Ccj δ
(c)
c̄j ≤ 1 for all j ∈ N , c ∈ C.

Given assortments in all channels, the choice probabilities under the MAM are as follows.
The probability of a type-c customer purchasing product j in channel c (store c) is:

π
(c)
cj (Sc) =

v
(c)
j 1j∈Sc

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

ϕ
(c)
i

, (2.1)

and the probability that such a customer purchases product j in channel c̄ is:

π
(c)
c̄j (S) =

ϕ
(c)
j δ

(c)
c̄j 1j∈Sc̄\Sc

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

ϕ
(c)
i

, (2.2)

where 1 represents the indicator function.

The MAM is exceptionally well-suited to model the shopping behavior of customers in an
omnichannel environment. First, the MAM is a very intuitive model with parameters
that admit a natural interpretation. The concept of shadow attractiveness values, initially
introduced by Gallego et al. (2014), is particularly fitting for an omnichannel setting
(see Vasilyev et al. (2023) for more details). Second, this model has a sound theoretical
justification. Vasilyev et al. (2023) showed that this model belongs to the family of random
utility models as there exists a distribution over rankings of alternatives consistent with
the MAM choice probabilities. They also proved that the MAM can be represented as a
mixture of Markov chain choice models introduced by Blanchet et al. (2016). Finally, the
model parameters can be estimated using conventional techniques such as least squares
or maximum likelihood (Vasilyev et al., 2023).

In addition to the limitation of focusing on a dual-channel setting, the modeling framework
presented by Vasilyev et al. (2023) does not incorporate demand stochasticity and inventory
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management considerations. In our paper, we aim to fill this gap by assuming that the
retailer is subject to inventory costs, and the profit associated with each product is
computed using a variant of the single-period newsvendor model rather than a linear
function of the expected demand quantity.

2.4 Profit Function Under Stochastic Demand and Inventory
Costs

In this section, we derive the function for computing the expected profit given assortments
in all channels, and provide an example demonstrating the importance of accounting
for demand stochasticity and inventory costs when making assortment decisions in an
omnichannel environment.

2.4.1 Profit Function Derivation

First, we assume that the number of customers of a given type visiting the retailer during
the considered period is a normally distributed random variable. The assumption of
having normally distributed demands is common in the academic literature, especially if
it is important to maintain flexibility when modeling the variability of the demand (see,
e.g., Geunes and Su (2020)). Note that the support of a normally distributed random
variable is the whole real line, which presents a challenge as demand cannot be negative.
However, if the standard deviation of such a random variable is substantially less than its
expected value, then the probability of attaining negative values becomes negligible. For
example, if the value of the standard deviation is 0.3 of the expected value (equivalently,
if the corresponding coefficient of variation equals 0.3), then the probability of such a
normally distributed random variable attaining negative values is 0.0004. In this paper,
we assume that the coefficients of variation of random variables representing the numbers
of customers of each type are upper-bounded by CVmax = 0.3. Such an upper bound on
the coefficients of variation of normally distributed demands can also be observed in the
literature (see, e.g., Geunes and Su (2020)).

Let ξ(c) ∼ Normal(µ(c), (σ(c))2) be the number of type-c customers, We assume that
ξ(c) and ξ(c̄) are independent for any channels c ̸= c̄. We also assume that the choice
probabilities of customers are given by the multichannel attraction model. Then, the
demand Dcj for product j in channel c is as follows:

Dcj = ξ(c)π
(c)
cj (Sc) +

∑
c̄∈Ccj

ξ(c̄)π
(c̄)
cj (S). (2.3)
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Importantly, we assume that customers exhibit static product substitution behavior,
meaning that the distributions of product demands are determined solely by assortment
decisions and not by inventory levels. Under this assumption, stockouts are considered
abnormal situations that result in lost sales (e.g., due to customer dissatisfaction with the
service). As discussed in Section 2.2.1, the static modeling approach provides a reasonable
approximation of real-life customer shopping behavior in common practical settings.

Using properties of the normal distribution, we obtain that the individual product
demands (2.3) are normally distributed with the following parameters:

Dcj ∼ Normal
(
µ(c)π

(c)
cj (Sc)+

∑
c̄∈Ccj

µ(c̄)π
(c̄)
cj (S), (σ(c)π

(c)
cj (Sc))

2 +
∑
c̄∈Ccj

(σ(c̄)π
(c̄)
cj (S))2

)
.

(2.4)

Note that if the coefficients of variation of aggregate demands generated by customers of
each type are upper bounded by a certain constant, then the coefficients of variation of
individual product demands are upper bounded by the same constant. Formally, consider
the following proposition:

Proposition 2.1. If the coefficient of variation CV (ξ(c)) of the number of type-c customers
is less than CVmax for each c ∈ C, then the coefficient of variation CV (Dcj) of any
individual product demand Dcj is also less than CVmax.

The proof of this proposition can be found in Appendix B.1. Now, given product demand
distributions, we can compute the profit associated with each product using a variant
of the single-period newsvendor model. For the sake of clarity, let us slightly abuse the
notation and omit channel and product indices in the profit function derivation part.
Suppose that for a certain product, its demand D follows distribution Normal(µ, σ2)

with probability density function f(·) and cumulative distribution function F (·). Let us
introduce the following additional notation:

• r, b: unit price and unit ordering cost of the product, respectively;

• h: holding cost per unit of the product left over at the end of the period;

• s: base-stock quantity of the product at the beginning of the period.

Note that we assume that each unit of the product left over at the end of the period is
penalized with the holding cost h. Alternatively, it could be assumed that leftover units
are sold back to the supplier. In this case, the holding cost h would have to be replaced
with −αb, where α ∈ [0, 1] is a sell-back discount factor.
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Then, the expected revenue is:

rE(min(s,D)) = r

( s∫
0

tf(t)dt+

∞∫
s

sf(t)dt

)
= rµ− r

∞∫
s

(q − s)f(q)dq,

and the expected cost is:

bs+ hE(max(0, s−D)) = bs+ h(s− µ) + h

∞∫
s

(q − s)f(q)dq.

Thus, the expected profit associated with the product can be computed as follows:

Π(s, µ, σ) = (r + h)µ− (b+ h)s− (r + h)

∞∫
s

(q − s)f(q)dq. (2.5)

It is straightforward to verify that the optimal base-stock quantity s∗ maximizing the

expected profit is given by s∗ = F−1
(
r − b

r + h

)
. Let φ(·) and Φ(·) denote the probability

density function and the cumulative distribution function of the standard normal dis-

tribution Normal(0, 1), respectively. Then, the loss function
∞∫
s

(q − s)f(q)dq and the

optimal base-stock quantity s∗ can be rewritten in the following way:

∞∫
s

(q − s)f(q)dq = σ

(
φ
(s− µ

σ

)
− s− µ

σ

(
1 − Φ

(s− µ

σ

)))
,

s∗ = µ+ Φ−1
(
r − b

r + h

)
σ.

(2.6)

Substituting (2.6) into (2.5) yields the following expression for the expected profit:

Π(µ, σ) = (r − b)µ− (r + h)φ
( r − b

r + h

)
σ.

Thus, by reintroducing channel and product indices, we arrive at the following expression
for the profit associated with product j in channel c given that the product demand is
distributed as Normal(µ, σ2):

Πcj(µ, σ) = (rcj − bcj)µ− (rcj + hcj)φ
( rcj − bcj
rcj + hcj

)
σ. (2.7)

Finally, since each individual product demand follows distribution (2.4), we obtain that
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the total expected profit given assortments in all channels is as follows:

∑
c∈C

∑
j∈N

Πcj

(
µ(c)π

(c)
cj (Sc)+

∑
c̄∈Ccj

µ(c̄)π
(c̄)
cj (S),

√
(σ(c)π

(c)
cj (Sc))2 +

∑
c̄∈Ccj

(σ(c̄)π
(c̄)
cj (S))2

)
. (2.8)

2.4.2 Importance of Inventory Considerations Given Stochastic De-
mand in an Omnichannel Environment

Let us consider an illustrative example highlighting the importance of incorporating
inventory considerations into the modeling framework when addressing assortment op-
timization in an omnichannel environment. Suppose that a retailer operates an online
store and mp identical geographically distributed physical stores, meaning that the total
number of stores (physical and online) is m = mp + 1. The assumption that the physical
stores are geographically distributed implies that customers do not switch from one
physical store to another, i.e., there are no edges between physical stores in the retail store
network. Also, suppose that this retailer sells only one product (alternatively, we can
consider a product such that the demand for this product is independent of demands for
all other products). We will now demonstrate that although the deterministic approach to
assortment optimization under the MAM without inventory considerations may suggest
that the most profitable strategy is to offer the product in all stores (channels), taking
the demand stochasticity and inventory considerations into account may reveal that it is
more profitable for the retailer to offer the product exclusively online.

Suppose that the product price is the same in online and physical channels. If we disregard
inventory-related costs, then the optimal retailer strategy under the MAM is to offer the
product everywhere as it maximizes the total expected number of customers, and both
online and physical customers are equally profitable. Now, let us show that if we include
inventory management considerations and use expression (2.8) for profit calculation, then
the optimal strategy may change due to the demand pooling effect. Suppose that in
addition to the same price, the holding cost and the unit ordering cost are also the same
for all channels (with the purpose of isolating the demand pooling effect from the costs
difference effect). Let µ(p) and σ(p) be the expected value and the standard deviation of
the product demand in each of the identical physical retail stores, and µ(o) and σ(o) be
the expected value and the standard deviation of the product demand in the online store.
Furthermore, let r, b, and h be the unit price, ordering cost, and holding cost of the
product, respectively. Also, let v, ϕ, and v0 be the product attractiveness value, product
shadow attractiveness value, and the attractiveness value of the no-purchase alternative
in either of the channels, respectively, and suppose that these values satisfy v = ϕ = v0.
Finally, let δ be the proportion of customers switching from a physical store to the online
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store out of those willing to purchase the product from another source if this product is
not offered in the physical store.

In this case, if the product is offered in all stores, then the expected profit is:

Πall = 0.5

(
(r − b)(µ(o) +mpµ

(p)) − (r + h)φ
( r − b

r + h

)
(σ(o) +mpσ

(p))

)
, (2.9)

and if the product is offered exclusively online, then the expected profit is:

Πonline = 0.5

(
(r−b)(µ(o)+mpδµ

(p))−(r+h)φ
( r − b

r + h

)√(
σ(o)

)2
+mp

(
δσ(p)

)2)
. (2.10)

It can be observed that Πall can be less than Πonline depending on the values of the
parameters. Let us consider an example in which m = 10 (hence mp = 9), r = 1, b = 0.8,
h = 0.2, δ = 0.7, µ(o) = 1000, σ(o) = 150, µ(p) = 50, and σ(p) = 7.5. Then, the ratio
Πall/Πonline is approximately 0.975, meaning that it is more profitable for the retailer to
offer the product exclusively online compared to offering it in all stores.

A key factor affecting how the ratio Πall/Πonline compares to 1 is the value of the
coefficient of variation CV (p) = σ(p)/µ(p). Indeed, let µ(p) be fixed (so that the total
number of customers remains constant), and let CV (p) take values from 0.05 to 0.3. The
relation between CV (p) and Πall/Πonline is shown in Figure 2.2a. Ultimately, there is a
profitability cutoff such that if the coefficient of variation exceeds a certain threshold,
then it becomes more profitable for the retailer to offer such a product exclusively
online. To gain additional managerial insights, let us consider a stylized example of a
portfolio of non-substitutable (independent) products sorted in the descending order of
the coefficient of variation of product demand in a physical store. In practice, the values
of the coefficients of variation of product demands often follow an L-shaped curve, with a
few products having a high coefficient of variation and the majority of products having
a lower coefficient of variation. Similar to the single-product setting, suppose that all
physical stores are identical and geographically distributed and that for each product, its
price, purchasing cost, and holding cost are the same for all stores. Furthermore, suppose
that all products are offered in all stores and that purchasing and inventory costs divided
by corresponding prices do not depend on the product index. Then, from the reasoning
for a single product it follows that the considered product portfolio can be separated
into two parts, such that it is more profitable for the retailer to offer products with a
high coefficient of variation of demand exclusively online, and to offer the rest of the
product portfolio both online and offline (see Figure 2.2b). While this is just a stylized
example based on several strong assumptions, it effectively demonstrates the crucial role
of the coefficient of variation of product demand in determining the optimal allocation of
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Figure 2.2: Profitability cutoff with respect to the coefficient of variation of product
demand.

products between online and physical stores.

In the single-product setting, the connection between the coefficient of variation of the
demand in a physical store and the profitability of different product allocation strategies
becomes even more evident if we assume that the demand generated by online customers
is zero, i.e., if µ(o) = 0 and σ(o) = 0. In this case:

Πall − Πonline = 0.5

(
mp(1 − δ)(r − b)µ(p) − (mp − δ

√
mp)(r + h)φ

( r − b

r + h

)
σ(p)

)
.

This equation shows that the difference between the expected profit obtained by offering
the product everywhere and the one obtained by offering the product exclusively online
is a linear function of µ(p) and σ(p). Therefore, the profit difference decreases linearly if
the coefficient of variation CV (p) = σ(p)/µ(p) increases due to either a linear decrease in
µ(p) or a linear increase in σ(p).

2.5 Assortment Problem

The goal of the assortment optimization problem under the MAM with inventory con-
siderations is to maximize the total expected profit (2.8) over all possible assortments
S = {Sc}c∈C , i.e.:

max
S

∑
c∈C

∑
j∈N

Πcj

(
µ(c)π

(c)
cj (Sc)+

∑
c̄∈Ccj

µ(c̄)π
(c̄)
cj (S),

√
(σ(c)π

(c)
cj (Sc))2 +

∑
c̄∈Ccj

(σ(c̄)π
(c̄)
cj (S))2

)
.
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Such a nonlinear discrete optimization problem is extremely difficult to solve. First, this
problem is NP-hard in the number of stores even in the setting with a single product and
deterministic demand (i.e., if σ(c) = 0 for all c ∈ C) as demonstrated by the following
theorem:

Theorem 2.1. The assortment optimization problem under the MAM is NP-hard in the
number of stores.

The proof of this theorem is based on the fact that a special case of our assortment
optimization problem is equivalent to the assortment optimization problem under the
2-product nonparametric choice model presented by Feldman et al. (2019), which is in
turn NP-hard. The full proof of this theorem is provided in Appendix B.2.

Remark 2.1. Proof of Theorem 2.1 implies that the considered assortment optimization
problem is not just NP-hard, but also APX-hard in the number of stores, meaning that
it does not admit any polynomial-time approximation scheme (PTAS) unless P = NP.
Indeed, Feldman et al. (2019) proved the NP-hardness of the assortment optimization
problem under the 2-product nonparametric choice model by constructing a reduction from
the minimum vertex cover problem on cubic graphs, which is APX-hard as was shown
by Alimonti and Kann (2000).

Furthermore, it follows from the findings of Vasilyev et al. (2023) that if at least one of
the channels has limited shelf space, or assortments in at least two channels have to be the
same, then the assortment optimization problem is NP-hard in the number of products
(even if we disregard inventory considerations and assume deterministic demand). Proving
that the assortment optimization problem without such constraints is NP-hard in the
number of products remains an interesting problem for future research.

Despite having such a complex structure of the objective function, our assortment
optimization problem can be reformulated as the following mixed-integer second-order
cone program that can be handled by off-the-shelf solvers:

max
x

∑
c∈C

∑
j∈N

Πcj

(
x
(c)
cj +

∑
c̄∈Ccj

x
(c̄)
cj , tcj

)
(2.11a)

s.t.
∥∥(y

(c)
cj ,
{
y
(c̄)
cj

}
c̄∈Ccj

)
∥∥
2
≤ tcj ∀c ∈ C, j ∈ N , (2.11b)

ṽ
(c)
0

v
(c)
0

x
(c)
c0 +

∑
j∈N

ṽ
(c)
j

v
(c)
j

x
(c)
cj = µ(c) ∀c ∈ C, (2.11c)

x
(c)
cj

v
(c)
j

+
x
(c)
c̄j

ϕ
(c)
j δ

(c)
c̄j

≤ x
(c)
c0

v
(c)
0

∀c ∈ C, c̄ ∈ Ccj , j ∈ N , (2.11d)
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x
(c)
cj

v
(c)
j

≤ x
(c)
c0

v
(c)
0

∀c ∈ C, c̄ ∈ C\Ccj , j ∈ N , (2.11e)

x
(c)
c0

v
(c)
0

−
x
(c)
cj

v
(c)
j

≤ µ(c)

ṽ
(c)
0

(1 − zcj) ∀c ∈ C, j ∈ N , (2.11f)

x
(c)
c0

v
(c)
0

−
x
(c)
c̄j

ϕ
(c)
j δ

(c)
c̄j

≤ µ(c)

ṽ
(c)
0

(1 + zcj − zc̄j) ∀c ∈ C, c̄ ∈ Ccj , j ∈ N , (2.11g)

µ(c)y
(c)
cj ≥ σ(c)x

(c)
cj ∀c ∈ C, j ∈ N , (2.11h)

µ(c)y
(c)
c̄j ≥ σ(c)x

(c)
c̄j ∀c ∈ C, c̄ ∈ Ccj , j ∈ N , (2.11i)

x
(c)
cj ≤ H

(c)
j zcj ∀c ∈ C, j ∈ N , (2.11j)

x
(c)
c̄j ≤ K

(c)
c̄j x

(c̄)
c̄j ∀c ∈ C, c̄ ∈ Ccj , j ∈ N , (2.11k)

x
(c)
c0 , x

(c)
cj , x

(c)
c̄j , y

(c)
cj , y

(c)
c̄j ∈ R≥0 ∀c ∈ C, c̄ ∈ Ccj , j ∈ N , (2.11l)

zcj ∈ {0, 1} ∀c ∈ C, j ∈ N , (2.11m)

where x =
{
x
(c)
c0 , x

(c)
cj , x

(c)
c̄j , y

(c)
cj , y

(c)
c̄j , tcj , zcj

}
c∈C,c̄∈Ccj ,j∈N

, ṽ(c)0 = v
(c)
0 +

∑
i∈N

ϕ
(c)
i , ṽ(c)j =

v
(c)
j − ϕ

(c)
j , and constants H(c)

j and K(c)
c̄j are as follows:

H
(c)
j =

v
(c)
j µ(c)

ṽ
(c)
0 + ṽ

(c)
j

, K
(c)
c̄j =

ϕ
(c)
j δ

(c)
c̄j µ

(c)

ṽ
(c)
0

/
v
(c̄)
j µ(c̄)

v
(c̄)
0 +

∑
k∈N

v
(c̄)
k

. (2.12)

We call problem (2.11) a demand-based mixed-integer second-order cone program, or
DB-MISOCP. The name is derived from the interpretation of its decision variables.
Specifically, x(c)cj represents the expected demand for product j in channel c generated by

type-c customers, and x
(c̄)
cj represents the expected demand for product j in channel c

generated by type-c̄ customers. Therefore, the sum x
(c)
cj +

∑
c̄∈Ccj x

(c̄)
cj is the total expected

demand for product j in channel c. Additionally, tcj corresponds to the standard deviation
of such demand. Note that due to the limited inventory, the actual sales may be lower
than the demand. The equivalence of the considered assortment optimization problem
and the DB-MISOCP is established by the following theorem:

Theorem 2.2. The DB-MISOCP is a valid formulation of the assortment optimization
problem under the MAM with inventory considerations.

The DB-MISOCP can be viewed as an extension of the sales-based mixed-integer linear
program (SBMILP) presented by Vasilyev et al. (2023). Compared to the SBMILP, the
DB-MISOCP has a more complex formulation with a number of additional constraints
and variables. For example, constraints (2.11g) are not present in the SBMILP, despite
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the fact that they do not contain newly introduced variables that are unique for the
DB-MISOCP. These constraints play an important role in ensuring that the expected
demand variables are correctly defined given the intricate structure of our model. There
are also a number of other constraints that are not present in the SBMILP, including
the second-order cone constraints (2.11b), which are needed for the correct definition of
the variables that correspond to the standard deviations of the demands. Ultimately,
the significance of each constraint becomes clear through the course of the proof of
Theorem 2.2 (see Appendix B.3). In the following section, we will present heuristic
algorithms that make it possible to obtain high-quality solutions to the DB-MISOCP in
cases where finding the exact solutions is not computationally feasible.

2.6 Heuristic Methods

2.6.1 Formulation and Theoretical Results

Although the DB-MISOCP can be handled by off-the-shelf solvers, solving this problem
becomes very computationally demanding in the context of a large-scale omnichannel
environment. For this reason, we have implemented two basic heuristic approaches that
make it possible to obtain high-quality solutions to the DB-MISOCP when finding exact
solutions is not computationally feasible.

These heuristic methods are based on two types of relaxations of problem (2.11). Consider
the following two relaxations:

Relaxation (R1): Derived from formulation (2.11) by removing binary variables
zcj together with the corresponding constraints (2.11f), (2.11g), (2.11j), and (2.11m);

Relaxation (R2): Derived from formulation (2.11) by relaxing binary variables
zcj , i.e., by replacing constraints (2.11m) with the following constraints:

0 ≤ zcj ≤ 1 ∀c ∈ C, j ∈ N .

The first heuristic method is a generalization of the algorithm proposed by Vasilyev et al.
(2023) for solving the SBMILP. This approach involves solving the relaxed problem (R1)
and using the obtained solution to fix some of the assortment decisions. Subsequently, the
remaining assortment decisions are derived by solving problem (2.11), in which some of
the binary variables are replaced by fixed parameters determined in the previous step. The
second heuristic method is based on the standard continuous relaxation of problem (2.11).
The heuristic solution is obtained by rounding the values of relaxed variables zcj to the
nearest integers. A formal description of these two heuristic methods is provided below.
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Heuristic Method 1.

1. Solve the relaxed problem (R1). Let{
x̂
(c)
c0 , x̂

(c)
cj

}
c∈C,j∈N ,c̄∈Ccj

be part of
the obtained optimal solution, and
J (c) be the set of indices j ∈ N such

that either
x̂
(c)
cj

v
(c)
j

=
x̂
(c)
c0

v
(c)
0

or x̂(c)cj = 0.

2. Solve problem (2.11) with the follow-
ing additional constraints:

zcj = 1
x̂
(c)
cj >0

∀c ∈ C, j ∈ J (c),

where 1 represents the indicator
function. The obtained solution is
the heuristic output.

Heuristic Method 2.

1. Solve the relaxed problem (R2). Let{
ẑcj
}
c∈C,j∈N be part of the obtained

optimal solution.

2. Round each ẑcj to the nearest in-
teger. The obtained binary values
represent the heuristic assortment
decisions for different channels. The
values of all other variables can be
unambiguously determined given the
assortment decisions.

Interestingly, the two relaxations of the DB-MISOCP used in the heuristic methods are
equivalent if the price and cost parameters satisfy certain conditions. First, we require
the following theoretical statement:

Lemma 2.1. For any c ∈ C, c̄ ∈ Ccj, j ∈ N , if the following condition is satisfied:

rcj − bcj
rcj + hcj

≥ σ(c)

µ(c)
φ
( rcj − bcj
rcj + hcj

)
, (2.13)

then either constraint of type (2.11d) or constraint of type (2.11k) in the DB-MISOCP
relaxation (R1) is binding.

The proof of this lemma can be found in Appendix B.4. In practice, condition (2.13) is

not overly restrictive. For
σ(c)

µ(c)
= CVmax = 0.3, this condition translates into

rcj − bcj
rcj + hcj

⪅

0.119. Such an inequality is satisfied if, for example, bcj = 0.8rcj and hcj = 0.65rcj ,

in which case
rcj − bcj
rcj + hcj

≈ 0.121. For smaller values of the coefficient of variation,

condition (2.13) is even milder. Now, we can prove the following theorem:

Theorem 2.3. If condition (2.13) is satisfied for all c ∈ C, c̄ ∈ Ccj, j ∈ N , then
problem (R1) is equivalent to problem (R2).

A complete proof of this theorem is given in Appendix B.5. The theorem statement is
further developed by the following proposition:
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Proposition 2.2. The DB-MISOCP is equivalent to the relaxed problems (R1) and (R2)
if the following conditions are satisfied:

• condition (2.13) holds for all c ∈ C, c̄ ∈ Ccj, j ∈ N ;

• customers do not switch between channels, i.e., if for any c ∈ C, j ∈ N , either
ϕ
(c)
j = 0 or δ(c)c̄j = 0 ∀c̄ ∈ C\{c}.

The equivalence of the DB-MISOCP and relaxed problems (R1) and (R2) implies that
heuristic methods 1 and 2 are exact.

The proof of this proposition is available in Appendix B.6. In addition to offering clear
theoretical insights, Proposition 2.2 also provides some intuition about the performance
of our heuristic methods in certain scenarios. Specifically, the two heuristic methods are
expected to perform especially well if the number of customers willing to switch to other
channels in case of absence of their desired product is low. In the next subsection, we
conduct a numerical analysis to evaluate the performance of the heuristic methods on a
number of generated problem instances.

2.6.2 Heuristics Performance Analysis

In this subsection, we examine how the two heuristic methods perform in terms of both
solution quality and computational time. Let us first describe the parameter generation
procedure for our numerical experiments. Suppose that u(0, 1) denotes a random value
drawn from the standard uniform distribution U(0, 1) and u(0, 1, q) denotes a vector of q
random values drawn from the same distribution. Furthermore, let ε be a small positive
value, e.g., ε = 0.01. For all c ∈ C, j ∈ N , we generate the MAM parameters in the
following way:

• v
(c)
j = u(0, 1) + ε;

• ϕ
(c)
j = u(0, 1)v

(1)
j ;

• δ
(c̄)
cj =

ρ
(c̄)
cj∑

d∈Ccj
ρ
(d)
cj + u(0, 1)

, where
(
ρ
(d)
cj

)
d∈Ccj

= u(0, 1, |Ccj |).

Next, we assume that for any product, prices are the same across all channels, i.e., rcj = rj

∀c ∈ C, j ∈ N . This assumption is highly appropriate for an omnichannel environment
since maintaining consistent prices across channels can be viewed as one of the potential
omnichannel initiatives that enhance the overall customer experience. We then generate
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problem size average solving time (s) average objective value

exact heuristic 1 heuristic 2 exact heuristic 1 heuristic 2

n = 20,m = 5 0.809 0.457 0.025 5403.8 5403.4 5356.4

n = 30,m = 5 2.110 1.356 0.035 5484.1 5484.0 5430.1

n = 40,m = 5 5.598 3.555 0.046 5549.0 5548.6 5493.6

n = 50,m = 5 11.681 6.106 0.057 5613.9 5613.3 5548.7

n = 60,m = 5 26.199 8.274 0.067 5707.2 5706.9 5645.3

n = 20,m = 3 0.149 0.114 0.014 2706.4 2706.4 2690.0

n = 20,m = 6 1.318 0.902 0.045 6644.8 6644.2 6574.4

n = 20,m = 9 5.743 3.395 0.086 10698 10697 10569

n = 20,m = 12 10.196 7.793 0.151 14992 14991 14766

n = 20,m = 15 16.010 10.288 0.203 18978 18976 18684

Table 2.1: Performance of the heuristic methods compared to the exact method.

prices as rj = u(0, 1) + ε. We also set the values of the purchasing costs to bcj = 0.8rj

∀c ∈ C, and the values of the holding costs to h1j = 0.4rj and hcj = 0.2rj ∀c ∈ C\{1}.
Furthermore, we assume that the numbers of customers are given by random variables
ξ(c) ∼ Normal(µ(c), (σ(c))2), where µ(1) = 104(m − 1), µ(c) = 104 ∀c ∈ C\{1}, and
CV (ξ(c)) = σ(c)/µ(c) = 0.15 ∀c ∈ C. Note that this assumption implies that the total
expected number of online customers is the same as the total number of customers in
physical stores, which helps us to avoid biases in our estimates. Finally, while we have
described a generalized procedure for generating parameters δ(c̄)cj , we will focus on the case
with geographically distributed physical stores for this part of our numerical experiments.
Similar to Section 2.4.2, in this setting customers can switch between a physical store and
the online store, but not between different physical stores. We will utilize the generalized
procedure in the next section where we analyze the impact of the density of the physical
store network on properties of optimal assortments.

We start by considering relatively small problems that can be effectively solved using the
DB-MISOCP formulation. We first set the number of channels m = |C| to 5 and modify
the number of products n within the range of 20 to 60 with a step of 10. As a result, the
total number of assortment decisions that the retailer has to make varies from 100 to
300, which translates into 2100 to 2300 potential assortments. We then fix the number of
products n at 20 and change the value of m from 3 to 15 with a step of 3, meaning that the
total number of retailer’s assortment decisions changes from 60 to 300, and the number
of potential assortments changes from 260 to 2300. For each pair (n,m), we generate 100

problem instances, and solve them using the exact method and the two heuristic methods.

66



Chapter 2

20 40 60 80 100 120 140 160 180 200
number of products (n)

0.00

0.01

0.02

0.03

0.04

0.05

no
rm

al
iz

ed
 g

ap
median
mean

(a) Gaps for different numbers of products with
the number of stores fixed at m = 5.
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(b) Gaps for different numbers of stores with the
number of products fixed to n = 50.

Figure 2.3: Normalized gaps between profits yielded by heuristic method 2 and the upper
bounds obtained by solving a linear programming relaxation of the DB-MISOCP.

For all generated problem instances, we record the objective values yielded by the three
methods as well as their solving times. All numerical experiments were carried out on a
laptop with AMD Ryzen 5 4600H CPU, 16 GB RAM and 64-bit Windows 10 OS. The
optimization problems were solved using Gurobi version 10.0 (Gurobi Optimization, LLC,
2023). The results averaged over all simulated instances are provided in Table 2.1.

We can observe that the first heuristic method consistently yields near-optimal solutions
and reduces the average solving time nearly twofold. However, this gain in computational
efficiency is not sufficient for solving large problem instances. On the other hand, the
second heuristic method is substantially more computationally efficient as it only requires
solving a continuous second-order cone program. Although it falls slightly short of the
performance of the first heuristic method in terms of solution quality, it still shows
excellent performance. Overall, if the assortment optimization problem is relatively small,
then the best solution approach is to first try to solve this problem exactly using the
DB-MISOCP formulation. If the problem turns out to be too large and the solving time
exceeds a reasonable limit, then the first heuristic method should be applied. If this
method still cannot handle the given problem, then the second heuristic method should
be used.

Let us now explore the performance of heuristic method 2 on a set of larger problems. In
particular, we assess how the method performs as the problem size increases. First, we
set the value of m to 5 and vary the value of n from 20 to 200 with the step of 20. Next,
we set the value of n to 50 and vary the value of m from 2 to 20 with a step of 2. Using
the procedure described above, we generate 100 problem instances for each pair (n,m).
Following the heuristics performance analysis carried out by Vasilyev et al. (2023), we
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compute the value of the normalized gap (objR2−objH2)/objH2 for each problem instance,
where objR2 is the value of relaxation (R2) and objH2 is the value of heuristic method 2.
This gap upper bounds the relative optimality gap between the optimal objective value
and the value of the heuristic, and serves as a proxy for the heuristic’s performance. The
results of our numerical experiments are presented in Figure 2.3. Figure 2.3a shows that
as the number of products increases, the normalized gaps initially increase on average but
quickly stabilize once the number of products reaches n = 60. Interestingly, the spread of
gaps appears to decrease as the number of products increases, which demonstrates the
robustness of the performance of heuristic method 2. On average, the gap values are below
0.02, which is an excellent result given that the value of relaxation (R2) is only an upper
bound to the optimal objective value. As for the performance of the heuristic method
as the number of stores increases, Figure 2.3b indicates that both the average value and
spread of the gaps initially grow, but reach a plateau when the number of stores becomes
m = 12. On average, the normalized gaps between the values of heuristic method 2 and
relaxation (R2) are below 0.03. These findings, along with the results obtained for the
fixed value of m and a growing number of products n, confirm the potential of the second
heuristic method in generating high-quality solutions to the assortment optimization
problem under MAM with inventory considerations.

2.7 Numerical Study and Managerial Insights

In this section, we carry out numerical experiments to extract key managerial insights
from our modeling framework. We start by exploring how optimal assortment sizes
are impacted by changes in certain model parameters. We consider problems with the
number of products n = 20 and the number of stores m = 5. Although these problems
are of a relatively small size, they are sufficient to provide insights into general trends.
We generate the model parameters using the procedure described at the beginning of
Section 2.6.2, with a few exceptions that will be explicitly specified.

We begin our analysis by investigating the impact of the coefficient of variation of the
demand on the sizes of optimal assortments. Instead of using fixed values CV (ξ(c)) = 0.15

∀c ∈ C as outlined at the beginning of Section 2.6.2, we examine how optimal assortment
sizes change when the coefficients of variation range from CV (ξ(c)) = 0 ∀c ∈ C to
CV (ξ(c)) = 0.3 ∀c ∈ C, assuming that parameters µ(c) ∀c ∈ C remain constant (i.e.,
the total expected number of customers does not change). We generate 100 problem
instances for each parameter configuration and solve them exactly using the DB-MISOCP
formulation. Figure 2.4 illustrates the results of these numerical experiments. Specifically,
the left-hand side plot shows the evolution of assortment sizes averaged over all simulated
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Figure 2.4: Effect of values of coefficients of variation CV (ξ(c)) ∀c ∈ C on optimal
assortment sizes.

Figure 2.5: Effect of the number of physical stores on optimal assortment sizes.

instances, while the right-hand side plot displays the evolution of assortment sizes for all
individual problem instances (with each line representing the assortment size evolution in
one store for one generated set of parameters). Note that all figures in the first part of this
section will have the same layout. We observe that as the coefficient of variation of the
demand increases, the sizes of the optimal assortments in physical stores decrease. This
outcome is expected since an increase in the coefficient of variation of the demand may
make some products less appealing to offer due to inventory costs, resulting in smaller
optimal assortments. As for the optimal assortment sizes in online stores, we notice
an intriguing pattern. When the coefficient of variation grows, the online assortment
size initially decreases but then starts to increase, sometimes even surpassing the initial
assortment size derived for a zero coefficient of variation. This phenomenon can be
attributed to two different effects. Initially, online assortment sizes shrink since some
products become less appealing to offer due to inventory costs, which mirrors the behavior
of assortments in physical stores. However, the demand pooling effect eventually comes
into play. As the retailer offers fewer products in physical stores, it becomes profitable to
make some products available online, capturing a portion of the demand from physical
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stores. The adverse effects of a higher coefficient of variation are thus mitigated by the
demand pooling effect. These findings are consistent with the conclusions drawn from
a simple illustrative example provided in Section 2.4.2. It is also worth noting that
the observed trends apply not only to average values but also to all individual problem
instances. Geunes and Su (2020) studied a similar question concerning the impact of
the coefficient of variation of demand on the optimal assortment sizes for a dual-channel
retailer. Interestingly, their work showed that both online and physical assortment sizes
decrease as the coefficient of variation increases, meaning that the authors observed only
the inventory cost effect and not the demand pooling effect. This can be explained by
the fact that the authors considered a setting with just two channels, which makes the
demand pooling effect significantly less impactful.

Next, we examine the effect of the number of physical stores on the optimal assortment
sizes. As previously, we generate the parameters using the procedure described at the
beginning of Section 2.4.2. We initially assume that n = 20 and m = 2, and subsequently
vary the value of m from 2 to 8. Importantly, as we add physical stores one by one, we
retain the parameters for previously added stores and only generate parameters for the
newly added stores. The evolution of assortment sizes can be seen in Figure 2.5. We
do not observe any apparent upward or downward trends. This becomes particularly
evident when analyzing the results for individual problem instances (see the plot on the
right-hand side of Figure 2.5). At the same time, we find that adding a physical store can
have a substantial effect (either positive or negative) on the sizes of optimal assortments
in other stores.

Furthermore, we investigate the effect of the density of the physical store network on the
optimal assortment sizes. We return to the setting where the number of stores is m = 5

and consider four network density values: 0, 1/3, 2/3, and 1. If the density is 0, the
physical stores are assumed to be connected to the online store but not to each other. On
the other hand, if the network density is 1, all stores are assumed to be interconnected,
meaning that customers can switch between any two stores. For each density value,
we simulate 100 problem instances. When the density is 1/3 or 2/3, for each problem
instance we randomly generate edges in the physical store network until the target density
is reached. Once the network is formed, we generate parameters δ(c̄)cj in the way described
at the beginning of the previous section. Our numerical experiment results are presented
in Figure 2.6. Similar to the case with varying numbers of stores, no apparent trends
emerge for the optimal assortment sizes. We also observe substantial variation in optimal
assortment sizes when examining the results for individual problem instances. This is
not surprising, because modifying the network structure requires us to generate new
parameters δ(c̄)cj , which has a considerable impact on the optimal solution.
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Figure 2.6: Effect of the density of the physical store network on optimal assortment
sizes.

Figure 2.7: Effect of the ratio of the number of physical customers to the number of
online customers on optimal assortment sizes.

Lastly, we explore what happens with the optimal assortment sizes when the ratio of
the expected number of physical customers to the expected number of online customers
increases, i.e., when

∑
c∈C\{1} µ

(c)/µ(1) grows. In our previous numerical experiments, we
generated parameters in a way that this ratio equaled 1. We now examine the effects on
optimal assortment sizes when this ratio varies from 1/4 to 4, while keeping the total
expected number of customers

∑
c∈C µ

(c) constant. We continue to assume that physical
stores are identical in size, i.e., µ(c) = µ(d) ∀c, d ∈ C\{1}. The results are displayed in
Figure 2.7 (note that the x-axes are log-scaled in both plots). We observe that as the
considered ratio grows, the online assortment size expands while the physical assortment
sizes shrink. This is an intuitively clear result, as inventory costs are assumed to be lower
in the online store, hence the retailer aims to attract more online traffic by increasing
the online assortment. These findings align with those of Vasilyev et al. (2023), who also
explored the effect of the ratio of the number of physical customers to the number of
online customers on optimal assortment sizes. However, as mentioned previously, Vasilyev
et al. (2023) only considered a setting with two channels and deterministic demands, and
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Figure 2.8: Expected profit sensitivity.

did not explicitly account for inventory costs.

In addition to analyzing the evolution of optimal assortment sizes, we have also examined
the effects of the considered model parameter changes on the average objective values
(i.e., on the average profits of the retailer). These effects are illustrated in Figure 2.8.
Figure 2.8a demonstrates that the average expected profit decreases as the coefficients of
variation of the demands generated by customers of each type increase. Naturally, a higher
coefficient of variation of the demand leads to a lower expected profit per product due
to an increased probability of incurring lost sales or carrying excessive inventory. Next,
when the retailer opens additional physical stores, the expected profit grows as a result of
an expanding customer base (see Figure 2.8b). Remarkably, the magnitude of changes in
expected profit resulting from modifying the coefficient of variation is comparable to the
magnitude of changes caused by adding more physical stores, even though the expected
number of customers remains constant in the former case. This emphasizes the importance
of accounting for the coefficient of variation of the demand. Figure 2.8c reveals that on
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(b) Profit ratios for different numbers of stores.

Figure 2.9: Comparison of omnichannel solutions yielded by heuristic method 2 to the
siloed-channel solutions.

average, the expected profit slightly increases as the density of the physical store network
grows. This is also not surprising since customers’ willingness to switch between different
physical stores implies a higher probability of retaining those customers who cannot find
desired products in their preferred stores. However, this effect on the total expected profit
is less pronounced than the previously considered effects (note that the y-axis scale in
Figures 2.8a and 2.8b is different from the y-axis scale in Figures 2.8c and 2.8d), because
the expected number of customers in each channel remains stable. On average, increasing
the network density from 0 to 1 results in a profit gain of approximately 4.7%. Lastly,
as shown in Figure 2.8d, the average expected profit declines as the ratio of the number
of physical customers to the number of online customers decreases. Similar to the case
with the varying density of the physical store network, this effect is relatively minor,
with a profit loss of about 5.8% as the ratio changes from 1/4 to 4. The observed trend
is in line with our expectations, as a product offered online generally results in higher
profit compared to a product offered in a physical store, all else being equal (due to the
assumption of lower inventory costs in the online channel).

Finally, we analyze the potential benefits of optimizing assortments in an omnichannel
environment as opposed to optimizing assortments in siloed channels. To obtain more
realistic estimates, we focus on a set of larger problems considered in the end of Sec-
tion 2.6.2. We compare the solutions yielded by heuristic method 2 to those derived from
solving a series of assortment optimization problems formulated for individual channels.
Following Vasilyev et al. (2023), we obtain the latter solutions by leveraging the fact that
the MAM restricted to choices of type-c customers in channel c is equivalent to the GAM.
Therefore, for each channel, we can solve the assortment optimization problem under
the GAM independently from other channels. Once omnichannel and siloed-channel
solutions (assortments) are obtained, we compute the expected profits assuming the same
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underlying demand model. The ratios of the profits yielded by omnichannel solutions
to those yielded by siloed-channel solutions for different problem sizes are presented in
Figure 2.9. First, we observe that as the number of products n increases, the average
profit ratio remains stable, whereas the spread of profit ratios decreases up to a certain
limit. Meanwhile, as the number of stores m increases, the average profit ratio grows
(although the growth rate diminishes with larger values of m), while the spread of profit
ratios remains stable. In some rare cases, these ratios take values slightly below 1, which
indicates certain suboptimality of the chosen heuristic method. The average profit ratio
across all our numerical experiments is slightly above 3%, and it can be as high as 7%.
These estimates are at the lower end of the spectrum of potential profit gains. As shown
in Section 2.6.2, heuristic method 2 – despite showing good performance – still yields
suboptimal decisions. Moreover, we consider the setting with isolated physical stores, and
one could expect even more substantial profit gains in the case of a densely connected
physical store network.

2.8 Conclusions and Future Work

In this paper, we addressed the omnichannel assortment optimization problem under
stochastic demand and inventory considerations. Our approach builds upon the multichan-
nel attraction model (MAM) proposed by Vasilyev et al. (2023), which allows us to model
customer choices in an omnichannel environment. In their work, the authors essentially
assumed deterministic demand and focused on the case with a dual-channel retailer.
We extended this modeling framework by including stochastic demand, accounting for
the retailer’s optimal inventory decisions, and considering a generalized setting where
an omnichannel retailer manages an online store and a chain of physical stores. Our
study highlighted the importance of incorporating demand stochasticity into the modeling
framework. We showed that ignoring the coefficient of variation of the demand can lead
to suboptimal assortment decisions due to the demand pooling effect. We also proved
that the assortment optimization problem is NP-hard (and, moreover, APX-hard) in the
number of stores even in the setting with a single product and deterministic demand. We
then formulated the assortment optimization problem as a mixed-integer second-order
cone program that we called the DB-MISOCP. Additionally, we presented two heuristic
algorithms based on two different relaxations of the DB-MISOCP. We derived the condi-
tions under which the two relaxations are equivalent to each other, and the conditions
under which they are also equivalent to the DB-MISOCP. We showed numerically that
our first heuristic method consistently yields near-optimal solutions while reducing the
average solving times nearly twofold. We also observed that our second heuristic method
falls slightly short compared to the first heuristic method in terms of solution quality,
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but it demonstrates great computational efficiency, making it suitable for solving the
assortment optimization problem in large-scale omnichannel environments. Furthermore,
we performed an extensive numerical analysis to gather managerial insights. In particular,
we analyzed the complex effect of the coefficient of variation of the demand on optimal
assortment sizes. We demonstrated that an increasing coefficient of variation initially
leads to a decrease in the online assortment size due to increasing costs, followed by
an increase in the online assortment size due to the demand pooling effect. Last but
not least, we showed that omnichannel assortment optimization brings a clear gain in
expected profit compared to assortment optimization in siloed channels.

Our work gives rise to several interesting research questions. First, both heuristic methods
show great performance, with the first method being particularly accurate. It would
thus be interesting to theoretically justify why the first heuristic method yields such
high-quality solutions. This could lead to the development of a more advanced heuristic
method based on the DB-MISOCP formulation, which could further enhance solution
quality and reduce solving time. Another promising avenue would be to expand the
modeling framework to include additional dimensions, such as capacity constraints and
pricing decisions. This would allow the framework to better capture the complexities of
real-world scenarios and improve its applicability to practical situations. Finally, since
demand variability has a substantial impact on the structure of optimal assortments,
it would be interesting to explore a robust formulation of the assortment optimization
problem for cases with highly uncertain demand. Ultimately, our study contributes to
the literature on omnichannel assortment optimization and lays a foundation for future
research in the field of omnichannel decision-making.
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3 Omnichannel Assortment Optimization
Given Basket Shopping Behavior

3.1 Introduction

Optimizing product assortment can play a crucial role in increasing a retailer’s earnings by
both reducing operational costs and redirecting the demand to more profitable products.
The critical aspect lies in deciding what products to eliminate from an existing assortment
because removing a single product can have a substantial impact on demand allocation
for the remaining products. For example, if a retailer decides to discard a low-demand
or low-margin product, it may accidentally eliminate an item that attracts customers to
shop at this retailer and also buy other products (Timonina-Farkas et al., 2020). The
importance of this phenomenon cannot be understated. In 2009, Walmart cut 15% of
its inventory, with dire consequences: “Sales declined for seven consecutive quarters as
shoppers took their entire shopping lists elsewhere. By April 2011, Walmart added 8,500
SKUs back to its mix, an average of 11% of its products” (Pearson, 2015). This example
clearly shows how ignoring basket shopping behavior can result in suboptimal assortment
decisions.

The majority of assortment optimization models assume that each customer purchases
at most one product. Such an approach generally allows researchers to account only
for the product substitution effect, but not for the complementarity effect. In other
words, excluding a product from the assortment can only increase the probability of
customers purchasing other products instead. Discrete choice models satisfying this
property are often referred to as regular choice models (see, e.g., Berbeglia and Joret,
2020). However, in many industries where customers tend to buy baskets of products, the
complementarity effect cannot be ignored: Eliminating a product from the assortment
can reduce the probability of customers purchasing other products. There is an evident
need for suitable methodologies designed to support assortment decision-making in such
complex environments. This is clearly reflected in recent interviews with practitioners
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that indicated that most retailers are willing to adopt more advanced analytics in the
area of assortment planning (Rooderkerk, DeHoratius, et al., 2022).

In this paper, we utilize Markov random fields (MRFs) to model basket shopping behavior.
In particular, we provide a fresh perspective on the Ising model – which is a special case of
an MRF – by showing that it can be viewed as a multi-purchase choice model, i.e., a choice
model under which each customer can select a set of products instead of just one product.
We consider the Ising model such that each node represents a random variable indicating
whether a product belongs to the basket, and an edge between two nodes represents
the dependency between the two random variables. The joint probability distribution of
such random variables determines the choice probabilities for all possible baskets from
a given assortment. Note that we assume that each basket consists of unique products,
which is a standard assumption for multi-purchase choice models (see Section 3.3.2 for
more details). Under this assumption, the term “basket” is sometimes replaced with other
terms such as “bundle” (see, e.g., Tulabandhula et al., 2020) or “subset” (see, e.g., Benson
et al., 2018). However, in this paper we refer to customer choices as baskets since this is
intuitive terminology that improves the clarity of exposition.

One of the contributions of this paper is that it highlights the connection between the
Ising model and the multivariate logit model (MVL), which is one of the most prominent
techniques used for modeling basket shopping behavior. In the classic formulation of
the Ising model, the random variables take spin values, i.e., −1 or 1. However, here we
assume that these random variables are binary. As shown in Section 3.3.2, for a given
offered set of products, these two assumptions on the domain of the random variables
result in the same choice probabilities up to a parameter transformation. At the same
time, the binary values assumption turns the Ising model formulation into the MVL
formulation (see Section 3.3.2 for more details). The purpose of this paper is thus not to
introduce a novel multi-purchase choice model, but rather to establish the link between
MRFs and multi-purhcase choice models. It ultimately allows us to leverage the vast
methodology developed for the Ising model for omnichannel assortment optimization
taking into account basket shopping behavior.

We first consider a single-channel setting. One of the biggest challenges in modeling
basket shopping behavior is obtaining a valid probability distribution over all possible
shopping baskets. In particular, computing the normalization coefficient that makes all
the probabilities sum up to one is computationally demanding even for relatively small
problems. This makes the task of estimating the parameters of such models extremely
challenging. In the case of the Ising model, however, we can invoke existing methods
that help to alleviate the computational complexity issue and obtain parameter estimates
from historical sales data. Next, we formulate the assortment optimization problem under
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the Ising model. Using the fact that the problem of computing the partition function of
the Ising model is NP-hard (see, e.g., Istrail, 2000), we show that the decision version
of the assortment optimization problem is NP-hard as well. We then establish some
theoretical results on the structure of the optimal assortments based on the graphical
representation of the Ising model which can be used to reduce the dimensionality of the
assortment optimization problem. Furthermore, when it comes to assortment optimization,
being able to estimate the expected revenue for a given assortment is essential. Directly
computing such revenues might not be computationally feasible assuming that the choice
probabilities of customers are defined over all possible baskets. However, these values
can be approximated, and the methodology developed for the Ising model proves to be
beneficial for this task as well. The expected revenues can be estimated by simulating
a large number of customer choices, which is equivalent to drawing samples from the
Ising model. There are several Markov chain Monte Carlo (MCMC) methods that can be
applied to efficiently generate such samples. In this paper, we use systematic scan Gibbs
sampling to this end. Lastly, we develop a customized simulated annealing algorithm
for finding high-quality solutions to the assortment optimization problem, where each
candidate solution is evaluated using the aforementioned simulation procedure.

This paper equally contributes to the literature on omnichannel commerce. Even though
the tasks of modeling basket shopping behavior and solving the corresponding assortment
optimization problem have previously been addressed in the academic literature, they
are currently underrepresented in the context of omnichannel retailing. At the same
time, the need to incorporate multiple channels into the modeling framework cannot
be understated (Guo and Keskin, 2022). COVID-19 forced traditional brick-and-mortar
retailers to develop their online capabilities, and it has become clear that there is no
going back once customers become used to a seamless shopping experience (Barr, 2021).
Moreover, some of the originally pure online players such as Amazon and the Alibaba
Group have been opening physical stores to provide customers with additional options for
their shopping journey (Rooderkerk and Kök, 2019). From the methodology perspective,
accounting for several retail channels is a challenging task, and often methods developed
for a single-channel case cannot be readily generalized to a setting with multiple channels.
In this paper, we extend our modeling framework to the omnichannel environment by
considering customers of different types. We focus on a two-channel setting (with a
physical and an online channel) and differentiate four types of customers depending
on their consideration sets. In particular, each customer either shops in one channel
exclusively or purchases part of the basket in their primary-choice channel and the
remaining part in the other channel. We thus formulate the omnichannel assortment
optimization problem as a generalization of the single-channel assortment optimization
problem. Furthermore, we generalize some of our theoretical results formulated for a
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single-channel setting to the omnichannel setting, and develop a simulated annealing
algorithm that can be used to solve the omnichannel assortment optimization problem
when finding the exact solution is not computationally feasible. Finally, we carry out
a numerical study to obtain insights into the properties of optimal assortments and to
evaluate the benefits of accounting for omnichannel shopping behavior of customers as
opposed to considering isolated channels.

The remainder of this paper is organized as follows. In Section 3.2, we review the relevant
literature with a primary focus on modeling techniques related to multi-purchase shopping
behavior. In Section 3.3, we provide the background behind our modeling framework and
highlight the connection between the Ising model and the MVL. In Section 3.4, we describe
a method that can be used to estimate the model parameters and provide an illustrative
example. Section 3.5 is devoted to assortment optimization under the Ising model in a
single-channel setting. In Section 3.6, we extend our modeling framework (including the
theoretical results obtained for the single-channel setting) to an omnichannel setting and
carry out an extensive numerical study. In Section 3.7, we summarize our findings and
discuss future research directions.

3.2 Literature Review

Discrete choice modeling is a vast research area that aims to predict customer choices
given different sets of alternatives. A common approach to discrete choice modeling
implies that each customer selects at most one alternative. This applies to the multinomial
logit model (MNL) introduced by Luce (1959), which is arguably the most prominent
discrete choice model. Despite being widely adopted in practice, models that assume a
single-item customer shopping behavior are less suitable for industries where customers
purchase products primarily in baskets. This led to the need to develop methods for
modeling the basket shopping behavior of customers. Such models can be separated into
three categories: multi-purchase choice models (sometimes referred to as menu or subset
selection choice models), multiple-discrete choice models, and multiple discrete-continuous
choice models. In multi-purchase choice models, several alternatives can be chosen at the
same time, but at most one unit of each alternative can be selected. Multiple-discrete
choice models allow an integer number of units of each of the selected alternatives to be
chosen. Finally, in multiple discrete-continuous choice models, noninteger amounts of
several alternatives can be selected simultaneously. Our focus is on the setting in which
customers purchase products in sets, i.e., where each shopping basket consists of unique
products. This assumption is fairly justified for many retail industries such as consumer
electronics, fashion, toys, etc. It also applies if the goal is to study product categories
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rather than products themselves. Therefore, theory on multiple-discrete and multiple
discrete-continuous choice models is less relevant to our research. We only refer the reader
to the notable works of Hendel (1999), Dubé (2004), Kim et al. (2002), Bhat (2005) and
Bhat (2008) in this field.

With regard to multi-purchase choice modeling, one of the most prevalent models is the
multivariate logit model (MVL). Hruschka et al. (1999) used the MVL to analyze how
cross-category sales promotion effects influence purchase probabilities. The theoretical
justification for the MVL was developed by Russell and Petersen (2000), who derived
basket choice probabilities from conditional probabilities of purchasing each product given
the purchase decisions related to all other products. The authors showed that the only
joint distribution that is consistent with the specified conditional choice probabilities is
the multivariate logistic distribution (Cox, 1972). Russell and Petersen (2000) applied the
MVL to analyze basket purchases in a fairly small setting with four product categories.
Later, Boztuğ and Reutterer (2008) proposed a way of applying the MVL in settings
of a larger scale. In their paper, the authors first determine prototypical baskets that
are used for segmentation of the customer base and then estimate a separate MVL for
each customer segment. This approach also makes it possible to account for customer
heterogeneity by considering a mixture of the MVL models. Song and Chintagunta (2006)
presented the idea of leveraging the MVL framework to model customer choices across
different product categories assuming that customers choose at most one product within
each category (i.e., products in one category are considered to be strong substitutes).
Such an extension of the MVL is often referred to as the multivariate MNL, or MVMNL
(see, e.g., Lyu et al., 2022 and Chen, Li, et al., 2022). The MVL can thus be viewed as
a special case of the MVMNL where each product category contains a single product.
The MVL, however, can model an arbitrarily strong substitution effect between any two
products by assigning a sufficiently large negative value to the parameter representing
the pairwise demand dependency between these products (see Section 3.3 for parameter
definition). An interesting model similar to the MVL was proposed by Benson et al.
(2018). In their work, the utility of each basket equals the sum of utilities of individual
products in that basket plus an optional correction term. The authors proved that the
problem of determining the optimal set of baskets receiving corrective utilities is NP-hard
and developed several heuristic algorithms for finding such sets. Overall, the MVL and
MVMNL models have been applied in various contexts such as recommendation systems
(Moon and Russell, 2008) and pricing under competition (Richards et al., 2018) (See Lyu
et al. (2022) for a brief overview of different application areas of these models.) Another
classic approach to multi-purchase choice modeling is based on the multivariate probit
model (MVP) introduced by Manchanda et al. (1999). In the MVP framework, vectors
of unobserved parts of product utilities are assumed to follow the multivariate normal
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distribution. The MVP makes it possible to capture the correlation of customer product
preferences across different baskets. However, this modeling approach does not consider
the complementarity and substitution effects occurring within one purchased basket. In
other words, unlike the MVL, the MVP does not account for the fact that purchasing
one product may change the marginal value of adding other products to the same basket
(Kamakura and Kwak, 2020).

To the best of our knowledge, there are only three papers that address assortment
optimization under the MVL model and its variations. Tulabandhula et al. (2020) studied
the assortment optimization problem under the BundleMVL-K model – a version of the
MVL in which the size of each basket is restricted by an exogenously given constant K.
The authors focused on a setting in which each basket consists of at most two products,
i.e., K = 2. They showed that the decision version of the assortment problem under
this model is NP-complete. This powerful result might seem somewhat counterintuitive.
Indeed, the BundleMVL-2 specified for n products can be viewed as the MNL defined
over the set of n2 basket alternatives, meaning that the optimal set of baskets (which is
generally not translated into the optimal set of products) can be found in polynomial
time. The authors proposed a binary search-based heuristic algorithm to solve the
assortment problem and compared it against a mixed-integer programming benchmark,
as well as two other heuristic algorithms: a greedy approach and the revenue-ordered
heuristic (see, e.g., Rusmevichientong et al., 2014). Lyu et al. (2022) addressed the
assortment optimization problem under the MVMNL assuming that the parameters
representing cross-category demand dependencies are the same for all products in one
category. The authors showed that the decision version of the assortment optimization
problem is NP-hard even if each category comprises no more than two products and
there are no cross-category interaction terms (i.e., the utility of each basket is the sum of
utilities of the corresponding product categories). They developed a fully polynomial-time
approximation scheme (FPTAS) that can be used to solve this optimization problem.
The authors also proposed the generalization of the FPTAS for the case with nonzero
cross-category interactions assuming that the maximum number of interacting categories
is two. Lastly, they considered a setting with capacity constraints and developed an
FPTAS for the capacitated assortment problem by building on the ideas presented for the
uncapacitated case. Chen, Li, et al. (2022) studied the assortment optimization problem
under the MVMNL with two product categories, i.e., where the size of each basket is
at most two. However, in contrast to the work of Tulabandhula et al. (2020), Chen, Li,
et al. (2022) explicitly separated the product portfolio into two disjoint product categories.
The authors proved that the assortment optimization problem in this setting is strongly
NP-hard. They proposed the concept of adjusted-revenue-ordered assortments and showed
that the assortment with the highest revenue provides a 0.5-approximation. They also
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developed a 0.74-approximation algorithm based on a linear programming relaxation of
the assortment optimization problem. Finally, they considered three extensions of the
original setting: with capacity constraints, with generally defined basket prices, and with
three product categories. They proved that the assortment optimization problems in
all these settings do not admit constant-factor approximation algorithms assuming the
Exponential Time Hypothesis.

Another stream of literature closely related to our work concerns assortment optimization
in omnichannel retailing. An extensive overview of the existing literature on this topic
can be found in Vasilyev et al. (2023). Therefore, in this paper we only briefly mention
the most relevant works published in the field. Bhatnagar and Syam (2014) presented
an integer programming framework for determining the optimal product allocation for a
hybrid retailer. The authors imposed the strong assumption of having product demands
as fixed model parameters. Dzyabura and Jagabathula (2018) developed a modeling
approach to determine the subset of products from the online channel to offer in the
physical channel to maximize the aggregate profit. The authors incorporated the impact
of in-store product evaluation on customer preferences into the consumer demand model
based on the MNL where product utilities depend on their features. Lo and Topaloglu
(2022) addressed the same problem as Dzyabura and Jagabathula (2018). However, Lo
and Topaloglu (2022) relaxed the assumption made by Dzyabura and Jagabathula (2018)
that for every combination of product features there exists a product. Instead, they
considered a setting in which the product portfolio can be characterized by a features
tree in which each leaf corresponds to a product. Geunes and Su (2020) developed
an analytical framework for making joint assortment, inventory, and pricing decisions
in online and physical retail channels. The authors modeled customer choices using a
mixture of MNLs for different customer segments determined by their consideration sets.
The resulting decision problem is a two-stage stochastic optimization problem that can
be solved using a simulation-based approximation algorithm. Hense and Hübner (2022)
studied the omnichannel assortment, space, and inventory problem under an exogenous
demand (ED) model. The ED framework implies that base product demands are pairwise
independent, and if one product is not available, then the proportion of the demand
redirected to another product is given by a fixed parameter. The authors also incorporated
space-elasticity and limited shelf space considerations into their model. They formulated
the retailer’s profit maximization problem as a multi-knapsack problem with a nonlinear
objective function and developed a heuristic algorithm to solve it. Schäfer et al. (2023)
addressed a similar problem while accounting for a range of additional demand effects such
as product positioning on store shelves. The authors developed a specialized heuristic to
solve the resulting nonlinear integer program by generalizing the algorithm presented by
Hense and Hübner (2022). Lastly, Vasilyev et al. (2023) presented a discrete choice model
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called the multichannel attraction model (MAM) designed specifically for an omnichannel
setting. The MAM – which is an extension of the general attraction model introduced by
Gallego et al. (2014) – accounts for both the product substitution behavior of customers
within each channel and the switching behavior between channels. The authors formulated
the corresponding assortment optimization problem as a mixed-integer linear program
and developed an efficient heuristic method based on a relaxation of the original problem.

As detailed in Section 3.1, we go beyond the extant research on assortment optimization
by explicitly considering basket shopping behavior in an omnichannel setting. To tackle
this challenging problem, we adopt methodologies and theoretical results developed for
the Ising model. The necessary theoretical background related to the Ising model is given
in Sections 3.3.1 and 3.4.

3.3 Model Formulation

In this section, we recall the definition of a Markov random field (MRF) and show that
the Ising model can be viewed as a multi-purchase choice model.

3.3.1 Background on Markov Random Fields

The Ising model was introduced by Lenz (1920) and studied in a one-dimensional case in
the work of Ising (1925). It marked the beginning of the development of graphical models,
including MRFs. For clarity, we start by providing a formal definition of an MRF.

Definition 3.1. Let ξ = {ξi}i∈{1,...,n} be a random field represented by an undirected
graph G = (V,E), where V = {vi}i∈{1,...,n} is the set of nodes such that each node vi is
associated with a random variable ξi, and E is the set of edges. Then, the random field ξ
is called a Markov random field if the joint probability distribution p(ξ) is positive and
satisfies the conditional independence property, i.e., each random variable ξi is independent
of all other variables given its neighbors.

The MRF model received major attention in the 1970s when the equivalence relation
between this model and the Gibbs distribution was established. To define the Gibbs
distribution, recall that a subset of nodes of a graph is called a clique if the corresponding
subgraph is complete. Let L be the set of all cliques of graph G. Suppose that for each
clique l ∈ L, there exists a strictly positive function ψl referred to as the potential function
of this clique. Then, the Gibbs distribution can be defined in the following way (see, e.g.,
Murphy, 2012):

Definition 3.2. A joint probability distribution p defined over the nodes of graph G is
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called a Gibbs distribution if it can be expressed in terms of potential functions of cliques
of graph G in the following way:

p(x) =
1

Z

∏
l∈L

ψr(x),

where Z =
∑

x

∏
l∈L ψl(x) is the normalization coefficient (also known as the partition

function).

The connection between MRFs and the Gibbs distribution was first studied in the works
of Dobruschin (1968) and Spitzer (1971). Subsequently, the equivalence relation between
these two concepts was proved in an unpublished paper by Hammersley and Clifford
(1971). This important result was later revisited in the work of Besag (1974), where the
author restated the Hammersley-Clifford theorem and gave an alternative proof of it.
This theorem can be formulated as follows (Hristopulos, 2020):

Theorem (Hammersley-Clifford). A random field ξ is a Markov random field if and only
if the joint probability distribution p(ξ) is a Gibbs distribution.

Note that the Hammersley-Clifford theorem establishes the equivalence between local
properties of a random field (the conditional independence properties) and its global
property (being defined by the Gibbs distribution).

The Ising model is a prototypical example of an MRF. It originates from statistical
mechanics and is historically defined on a lattice rather than a general graph. However in
our case, we do not assume any lattice structure in the graph representation. The Ising
model can be defined by the joint distribution of random variables ξ = {ξi}i∈{1,...,n}. Let
us now specify the probability mass function of this distribution.

Let N denote the set of indices {1, . . . , n}. Suppose that each ξi, i ∈ N is a binary
random variable. For the Ising model, the probability mass function is defined in the
following way:

pθ(x|N ) = exp

(∑
i∈N

θiixi +
∑

i ̸=j, i,j∈N
xiθijxj −Aθ(N )

)
, (3.1)

where x ∈ X (N ) = {0, 1}|N | is a realization of the random vector ξ, θ ∈ Sn is a symmetric
matrix of parameters, and Aθ(N ) is the logarithm of the partition function given by

Aθ(N ) = log

( ∑
x∈X (N )

exp

(∑
i∈N

θiixi +
∑

i ̸=j, i,j∈N
xiθijxj

))
. (3.2)
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Clearly, distribution (3.1) is a special case of the Gibbs distribution. Therefore, from the
Hammersley-Clifford theorem, it follows that the Ising model is an MRF. The conditional
independence property can also be verified directly, thereby confirming that the Ising
model is an MRF. Importantly, the Ising model can define very complex probability
distributions. In fact, any pairwise MRF – i.e., a graphical model defined by expressions
similar to (3.1) and (3.2) but with the sums

∑
i θiixi and

∑
i ̸=j xiθijxj replaced by∑

iEi(xi) and
∑

i ̸=j Eij(xi, xj), respectively, where Ei and Eij are arbitrary real-valued
functions – is equivalent to the Ising model with one extra node (see Globerson and
Jaakkola, 2006 and Schraudolph and Kamenetsky, 2008).

Now, having provided all the necessary theoretical background, we can offer a novel
perspective on the Ising model as a multi-purchase choice model.

3.3.2 Ising Model as a Multi-Purchase Choice Model

As mentioned in Section 3.2, we consider the setting in which each basket consists of unique
products, i.e., it is assumed that customers do not purchase more than one unit of each
product. Then, basket {i1, . . . , ik} ⊆ N can be represented by vector x = {x1, . . . , xn}
such that

xi =

1 if i ∈ {i1, . . . , ik},

0 otherwise.

We can thus consider the Ising model such that each node represents a binary random
variable corresponding to a certain product, and an edge between two nodes represents
the dependency between the corresponding random variables. The binary value of each
random variable indicates whether the corresponding product belongs to the basket.
Then, each parameter θij , i ̸= j represents the pairwise demand dependency between
products i and j, and parameter θii determines the individual attractiveness of product i.
Consequently, the joint probability distribution of these random variables defines the
probability of a random customer selecting any basket, i.e., any set of products from N .
Finally, formulas (3.1) and (3.2) can be straightforwardly adjusted for the case when only
a subset S ⊆ N of products is offered, thereby defining a multi-purchase choice model:

pθ(x|S) = exp

(∑
i∈S

θiixi +
∑

i ̸=j, i,j∈S
xiθijxj −Aθ(S)

)
, (3.3a)

Aθ(S) = log

( ∑
x∈X (S)

exp

(∑
i∈S

θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

))
, (3.3b)
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where x represents a basket, and X (S) is the set of all possible baskets of products from S.

Importantly, in the classic formulation of the Ising model, random variables are assumed
to be spin variables rather than binary variables, i.e., they are assumed to take values
−1 or 1. However, for a given offered set S, these two assumptions on the domain of the
random variables result in models that are equivalent to each other up to a parameter
transformation. In other words, one can easily construct a parameter transformation that
maps the choice probabilities yielded by one model onto the choice probabilities yielded
by another model.

Proposition 3.1. Suppose that M1 is the Ising model with parameters θ defined over
binary variables, and M2 is the Ising model with parameters θ̃ defined over spin variables.
Let M1 and M2 define the choice probabilities of customers selecting baskets from a fixed
assortment S. If θ and θ̃ satisfy the following conditions:

θii = 2θ̃ii − 4
∑

j∈S: j ̸=i

θ̃ij ∀i ∈ S,

θij = 4θ̃ij ∀i, j ∈ S : i ̸= j,

(3.4)

then the choice probabilities yielded by models M1 and M2 are identical.

The formal proof of this proposition can be found in Appendix C.1. If the variables in the
Ising model take binary values instead of spin values, then for a given choice set the Ising
model takes exactly the same functional form as the multivariate logit model (MVL).
Proposition 3.1 allows us to extend this equivalence relation to the Ising model defined
over spin variables. Formally, we can formulate the following corollary of Proposition 3.1:

Corollary 3.1. The following relation between the Ising model and the MVL holds:

• For a given choice set, the binary Ising model is equivalent to the MVL;

• For a given choice set, the spin Ising model is equivalent to the MVL up to a
parameter transformation.

As previously stated, the purpose of this paper is not to introduce a novel multi-purchase
choice model, but to underline the connection (in a certain sense, the equivalence relation)
between the Ising model and the MVL. In Section 3.2, we emphasized that the MVL
model is one of the most prominent multi-purchase choice models. This model can be
theoretically justified in two different ways based on the random utility theory. First,
one can specify the conditional utility of purchasing each product given the purchase
decisions related to all other products in the assortment and derive the corresponding
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conditional choice probabilities. Then, the factorization theorem of Besag (1974) can be
used to obtain the unique joint distribution consistent with this conditional probability
distribution. We refer the reader to Russell and Petersen (2000), who developed this
theoretical justification for the MVL model, and to Tulabandhula et al. (2020), who
adapted this approach to the BundleMVL-K model and provided a detailed description
of it. Alternatively, one can assume that the utility of a basket represented by vector x is
given by the following expression:

Uθ(x|S) =
∑
i∈S

θiixi +
∑

i ̸=j, i,j∈S
xiθijxj + ϵx,

where ϵx is a random variable representing the unobserved part of the utility. If variables ϵx
are independent and identically distributed (i.i.d.) for all possible baskets and normalized
so that their mean is zero and the variance is π2/6, then the MVL can be viewed as
an extended version of the MNL, where the set of alternatives is given by the set of
all possible baskets and the resulting choice probabilities are given by expressions (3.3).
This theoretical justification approach was pursued by, for example, Lyu et al. (2022)
for the MVMNL model. The independence assumption might be criticized as being too
restrictive since it must hold even for baskets that share some of the products (see, e.g.,
Tulabandhula et al., 2020). However, this assumption is milder than it might look. Note
that the independence assumption applies to the MNL model, despite the fact that some
alternatives (i.e., individual products) can share similar attributes. In fact, as Train (2002)
pointed out with respect to the MNL model, this assumption can be viewed as a natural
consequence of a well-specified model. It implies that for each basket, the constant part
of utility is specified sufficiently so that the unobserved part of utility does not provide
any information about the unobserved parts of utilities of other alternatives. Therefore,
this is an assumption on, above all, the quality of model specification. To summarize,
each of the two described theoretical justifications is well grounded and can be viewed as
the utility theory foundation underlying the considered model.

Since the Ising model was introduced long before the MVL, we will primarily use the
former term when referring to customer choice probabilities. Using such terminology also
highlights the fact that most of the methodology utilized in this paper was originally
developed for the Ising model, which includes parameter estimation.

3.4 Parameter Estimation and Illustrative Example

For tractability, let us first consider a single-channel setting. The estimation approach
described in this section can be easily generalized to the omnichannel environment if we
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impose some additional assumptions on the available data (see Section 3.6).

Since we utilize the methodology developed for the classic version of the Ising model – with
variables taking spin values – we first describe how to obtain estimates of parameters θ̃.
Then, the estimates of parameters θ for the binary Ising model can be obtained by
applying transformation (3.4) to θ̃. We assume that the only sales history information
that is available is the list of purchased baskets assuming that all products are offered,
i.e., S = N . Such an assumption makes the parameter estimation method described in
this section readily applicable in a range of practical situations. Note that the assortment
optimization problem studied later in this paper can thus be viewed as one of finding a
subset of the current product portfolio that maximizes the expected profit. Finally, since
the assortment is fixed throughout this section (and equals the whole product portfolio),
we will slightly abuse the notation by omitting the argument N of the log-partition
function Ãθ̃.

Suppose that the available historical data sample comprises a list of purchased baskets
{ak}k=1,...,m, where each basket ak is given in the form of a spin vector with aki = 1 if
product i ∈ N belongs to basket ak, otherwise aki = −1. Then, under the Ising model
with parameters θ̃, the negative mean log-likelihood of selecting baskets from the given
sample is as follows:

−LLmean(θ̃) = Ãθ̃ −
(∑

i∈N
θ̃iiµi +

∑
i ̸=j, i,j∈N

θ̃ijsij

)
, (3.5)

where µ = 1
m

∑m
k=1 a

k is the sample mean vector, and s = 1
m

∑m
k=1 a

k(ak)T is the sample
second-order moment matrix. The model parameters can be learned by minimizing the
right-hand side of (3.5) over θ̃. Moreover, the matrix of off-diagonal entries of θ̃ can
be sparsified by using ℓ1-regularization, i.e., by adding a ℓ1-norm penalty term to the
corresponding optimization problem. This allows us to focus on the most important
pairwise dependencies while removing nonmeaningful interactions from consideration.
Formally, sparse estimates of parameters θ̃ can be obtained by solving the following
problem:

min
θ̃∈Sn

Ãθ̃ −
(∑

i∈N
θ̃iiµi +

∑
i ̸=j, i,j∈N

θ̃ijsij

)
+ ρ||θ̃ − diag(θ̃)||1, (3.6)

where ρ ≥ 0 is the penalty weight. The greater the value of ρ, the fewer nonzero
off-diagonal entries in matrix θ̃ and the fewer edges in the corresponding network.

The log-partition function Ãθ̃ contains an exponential number of terms, making optimiza-
tion problem (3.6) extremely computationally challenging. In fact, even the problem of

89



Chapter 3

computing the partition function for a given θ̃ is NP-hard in general, which was proved by
Barahona (1982). Istrail (2000) extended the work of Barahona (1982) and showed that
the computational complexity of this problem arises from the topology of the underlying
graphical model: If the corresponding graph is nonplanar, then the problem is NP-hard.
Since we do not make any restrictive assumptions on the topological structure of the Ising
model, the presence of the (log-) partition function poses a challenging problem. It can
be overcome by the following result obtained for the Ising model. Wainwright and Jordan
(2006) showed that the log-partition function can be upper bounded by the solution to a
certain variational problem, and Banerjee et al. (2008) proved that this upper bound can
be rewritten as follows:

̂̃Aθ̃ =
n

2
log
(eπ

2

)
− 1

2
(n+ 1) − 1

2

(
max

v∈Rn+1
vT q + log det

(
−Q(θ̃) − diag(v)

))
, (3.7)

where q = (1, 4/3, . . . , 4/3)T ∈ Rn+1 and

Q(θ̃) =



0 θ̃11 θ̃22 . . . θ̃nn

θ̃11 0 2θ̃12 . . . 2θ̃1n

θ̃22 2θ̃21 0 . . . 2θ̃2n
...

...
...

. . .
...

θ̃nn 2θ̃n1 2θ̃n2 . . . 0


.

Thus, the model parameters can be estimated by solving the following optimization
problem:

min
θ̃∈Sn

̂̃Aθ̃ −
(∑

i∈N
θ̃iiµi +

∑
i ̸=j, i,j∈N

θ̃ijsij

)
+ ρ||θ̃ − diag(θ̃)||1. (3.8)

Optimization problem (3.8) is convex and can be solved using one of the commercial
or open-source solvers. We used SDPT3 v4.0 – a MATLAB package for semidefinite-
quadratic-linear programming (see Toh et al., 1999 and Tutuncu et al., 2003). Once
optimal values of parameters θ̃ are identified, we can obtain the values of parameters θ
for the binary Ising model by applying transformation (3.4) to θ̃.

Now, for illustration purposes, let us apply this estimation method to an open-source
dataset. We chose the Bakery dataset – utilized by Benson et al. (2018) to evaluate the
performance of their model – on account of its moderate size, which makes it very well
suited to visualizing results. The dataset comprises a list of selected baskets obtained
from the receipts of purchases by customers of a bakery. It was preprocessed so that it
contains baskets with less than 6 products and only those products that were selected at
least 25 times, leaving 67,488 baskets and 50 products in total. We randomly split this
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Figure 3.1: Example of the Ising model visualization.

dataset into training and test samples at a ratio of 80:20. Using the training sample, we
first obtain estimates of parameters θ̃ by solving problem (3.8) with the penalty weight
ρ = 0.015. The penalty weight was chosen empirically with the goal of obtaining a
representative graph with a clear structure (i.e., with the goal of removing all negligible
interactions but without oversimplifying the model). Lastly, we convert θ̃ to θ by applying
transformation (3.4) and construct a graph based on the values of θ. We visualize this
graph in the following way (see Figure 3.1):

• The greater the value of θii, the larger the size of node i;

• The greater the absolute value of θij , the thicker the edge (i, j);

• If θij < 0, then the corresponding edge is blue (meaning a negative direct dependency
between i and j), and if θij > 0, then the corresponding edge is orange (meaning a
positive direct dependency between i and j).

Such an illustration provides valuable insights into the structure of the product portfolio.
For example, one can easily identify “established” baskets of products (represented by
groups of nodes mutually connected by edges with positive weights), or independent-
demand products (represented by isolated nodes).

We investigate the performance of the Ising model as a multi-purchase choice model on
the considered dataset (in particular, on the aforementioned test sample) in Appendix C.2.
Nevertheless, as detailed in Section 3.2, the MVL (which is equivalent to the binary Ising
model) is a well-established multi-purchase choice model, which is why we will not delve
into a deep exploration of its modeling strength.
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3.5 Assortment Optimization in a Single-Channel Setting

Let us first consider a single-channel setting in which customer choices correspond to
the Ising model. Let rj denote the gross profit per unit of product j ∈ N . Then, the
expected profit generated by a random customer given assortment S ⊆ N is as follows:

R(S) =
∑

x∈X (S)

(
pθ(x|S)

∑
j∈S

rjxj

)
.

The assortment optimization problem under the Ising model can be formulated as the
problem of maximizing R(S) over all possible assortments S, i.e.,

max
S

R(S). (3.9)

Note that this formulation does not depend on the expected number of customers since
the optimal solution to an optimization problem does not change if the objective function
is multiplied by a positive constant.

Solving optimization problem (3.9) is an extremely difficult task. In fact, the decision
version of this problem is NP-hard as demonstrated by the following theorem:

Theorem 3.1. The decision version of the assortment optimization problem under the
Ising model is NP-hard.

Remark 3.1. If a capacity constraint is introduced, then the decision version of the
capacitated assortment optimization problem under the Ising model is also NP-hard since
the uncapacitated problem is a special case of the capacitated one (in the case of infinite
capacity).

The theorem statement follows from the fact that the problem of computing the partition
function of the Ising model is NP-hard (see Appendix C.3 for the full proof). Furthermore,
the proof of Theorem 3.1 implies that the problem in question does not admit any
polynomial-time approximation scheme (PTAS) unless P = NP. Indeed, Istrail (2000)
proved NP-hardness of the problem of computing the partition function of the Ising
model using a reduction from the Max-Cut problem for 3-regular (cubic) graphs. At the
same time, the latter problem was shown to be APX-hard by Alimonti and Kann (2000).
Therefore, the decision version of our assortment optimization problem is APX-hard as
well, meaning that this problem does not admit PTAS unless P = NP.

Despite the complexity of the considered assortment optimization problem, we can
formulate some theoretical insights into the structure of its optimal solutions based on
the graphical representation of the Ising model.
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Proposition 3.2. If a node in the graphical representation of the Ising model is isolated,
then the corresponding product belongs to the optimal assortment.

The proof of this proposition is provided in Appendix C.4. This is an intuitively clear
result – the fact that θkj = 0 ∀j ∈ N\{k} means that the probability of any product
j ∈ N\{k} belonging to a random basket is not affected by the presence of product k in
the assortment. However, if a node in the graphical representation of the Ising model is
such that there are no edges with negative weights incident on it, then the corresponding
product does not necessarily belong to the optimal assortment. Consider the following
example:

Example 3.1. Let N = {1, 2, 3}, r1 = 10, r2 = 10, and r3 = 100. Suppose that the
customer choices follow the Ising model with the following parameters (see Figure 3.2 for
the graphical representation of this model):

θ =

1 5 2

5 5 −5

2 −5 5

 .

Then, it can be checked that P ({1, 2, 3}) ≈ 47 and P ({2, 3}) ≈ 55, meaning that it is more
profitable to offer products {2, 3} than products {1, 2, 3} despite the fact that all edges
connected to node 1 have positive weights.

5

2

-51

2

3

Figure 3.2: Example of when it is profitable to exclude a product from the assortment
even though there are only positive edges connected to it.

The above example demonstrates the complexity of the structure of the optimal assortment
under the Ising model. A product added to a basket can have only positive direct impacts
on the probabilities of other products belonging to this basket. However, when all
effects are taken into account jointly, it might happen that having such a product in the
assortment reduces the marginal probabilities of customers buying some other products,
meaning that this product does not necessarily belong to the optimal assortment.

Next, we can further exploit the fact that the Ising model is an MRF and formulate the
following proposition:
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Proposition 3.3. Suppose that N = H ⊔ K. If θij = 0 ∀i ∈ H, j ∈ K, then the
assortment optimization problem (3.9) can be separated into assortment optimization
problems for product sets H and K.

This proposition, the proof of which is provided in Appendix C.5, means that the
properties of optimal assortments can be formulated on the level of isolated subgraphs
of the graphical representation of the Ising model rather than on the level of the whole
graph. In Theorem 3.2, we provide a sufficient condition under which all products in an
isolated subgraph belong to the optimal assortment. We do it by showing that removing
a product from such a subgraph can only reduce the marginal probabilities of customers
choosing other products. When it comes to marginal probabilities, one can think of
removing product k from the assortment as considering conditional marginal probabilities
under condition xk = 0. Formally,

pθ(xl = 1|xk = 0, S) = pθ(xl = 1|S\{k}).

Indeed, one can easily see that

pθ(xl = 1|xk = 0, S) =
pθ(xl = 1, xk = 0|S)

pθ(xk = 0|S)

=

∑
x∈X (S): xl=1,xk=0

exp
(∑
i∈S

θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

)
∑

x∈X (S): xk=0

exp
(∑
i∈S

θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

)

=

∑
x∈X (S\{k}): xl=1

exp
( ∑
i∈S\{k}

θiixi +
∑

i ̸=j, i,j∈S\{k}
xiθijxj

)
∑

x∈X (S\{k})
exp
( ∑
i∈S\{k}

θiixi +
∑

i ̸=j, i,j∈S\{k}
xiθijxj

) = pθ(xl = 1|S\{k}).

This observation plays an important role in the proof of Theorem 3.2.

Theorem 3.2. If an isolated subgraph in the graphical representation of the Ising model
does not contain edges with negative weights, then all products from this subgraph belong
to the optimal assortment.

Although the theorem statement is intuitively clear, its formal proof is rather involved
and requires a combination of different techniques and supporting statements. The full
proof can be found in Appendix C.6. Besides explicit theoretical insights, Theorem 3.2
also provides intuition on the sizes of optimal assortments in certain cases. In particular,
if there are few pairwise negative dependencies, or if the absolute values of negative
parameters θij are small compared to the rest of the Ising model parameters, then one
can expect that it is optimal to offer almost all products.
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We can also identify a specific condition on the parameters associated with a product
under which this product has to belong to the optimal assortment. Consider the following
proposition (see Appendix C.7 for the proof):

Proposition 3.4. Let H ⊆ N induce an isolated subgraph in the graphical representation
of the Ising model. If product k ∈ H is such that θki = αri ∀i ∈ H\{k}, where α is a
positive constant, then product k belongs to the optimal assortment.

The theoretical results obtained can be used towards assortment optimization, in particular,
to reduce the dimensionality of problem (3.9). After producing the graphical representation
of the Ising model as discussed in Section 3.4, the following preprocessing procedure can
be applied:

1. Add isolated nodes to the optimal assortment, thereby removing them from consid-
eration;

2. Separate the graph into connected components (maximal connected subgraphs);

3. If some connected components do not contain edges with negative weights, add all
nodes from these components to the optimal assortment;

4. For each remaining connected component, formulate the assortment optimization
problem considering nodes from this component as a separate product portfolio.

Next, we need a computationally tractable method that will allow us to solve the
assortment optimization problem after completing the preprocessing stage. As mentioned
earlier, the decision version of problem (3.9) is NP-hard and, moreover, it does not
admit any polynomial-time approximation scheme (PTAS) unless P = NP. Thus, we
developed a metaheuristic algorithm that can be used to obtain high-quality solutions to
the assortment optimization problem. Before providing a detailed description, let us first
discuss the integral part of this algorithm, namely, how to evaluate potential solutions to
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Algorithm 1 Systematic scan Gibbs generator
1: Input
2: x(l−1): previous sample

3: Output
4: x(l): new sample

5: Initialization
6: n ← length(x(l−1))

7: x(l) ← x(l−1)

8: for k in [1, . . . , n] do:
9: Draw a random number r ∼ U(0, 1)

10: if r ≤ g(1, x
(l)
−k)/

(
g(0, x

(l)
−k) + g(1, x

(l)
−k)

)
where

11: g(xk, x−k) = exp
(∑

i
θiixi +

∑
i ̸=j

xiθijxj

)
then:

12: a← 1

13: else:
14: a← 0

15: x
(l)
k ← a

16: return x(l)

Algorithm 2 Random scan Gibbs generator
1: Input
2: x(l−1): previous sample

3: Output
4: x(l): new sample

5: Initialization
6: n ← length(x(l−1))

7: x(l) ← x(l−1)

8: Draw a random index k from [1, . . . , n]

9: Draw a random number r ∼ U(0, 1)

10: if r ≤ g(1, x
(l)
−k)/

(
g(0, x

(l)
−k) + g(1, x

(l)
−k)

)
where

11: g(xk, x−k) = exp
(∑

i
θiixi +

∑
i ̸=j

xiθijxj

)
then:

12: a← 1

13: else:
14: a← 0

15: x
(l)
k ← a

16: return x(l)
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(a) Systematic scan Gibbs sampling.
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(b) Random scan Gibbs sampling.

Figure 3.3: Example of expected profit estimation using Gibbs sampling for Ising model.

the considered problem. Finding the exact value of the expected profit R(S) might not
be computationally feasible even for moderately sized assortments S. This is because of
the need to compute the normalizing coefficient of pθ(x|S), which contains an exponential
number of terms. We thus need an efficient way of approximating the expected profit. This
can be done by generating a large number of samples from the Ising model, i.e., generating
a large number of purchased baskets. We employ Gibbs sampling for this purpose, which is
a special case of the Metropolis-Hastings algorithm. There are two well-known variations
of Gibbs sampling: systematic scan Gibbs sampling and random scan Gibbs sampling
(see, e.g., He, De Sa, et al., 2016). In the former method, each new sample x(l) is obtained
by iteratively sampling vector components x(l)k from pθ(·|x

(l)
−k) for k = 1, . . . , n, whereas

in the latter method, each new sample is obtained by randomly selecting index k and
sampling x(l)k from pθ(·|x

(l)
−k). Algorithms 1 and 2 describe these procedures adapted to
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Algorithm 3 Simulated annealing procedure to solve problem (3.9)
1: Input
2: N : whole product set
3: Sstart: assortment representing the starting point of the algorithm
4: dobj : typical increase of the objective function
5: ktemps: number of temperatures
6: pmin, pmax: minimum and maximum target acceptance probabilities
7: Output
8: Sheur: optimized assortment
9: Initialization

10: Scur ← Sstart, Rcur ← estimateProfit(Scur) ▷ Initialize the current solution and its value
11: Sheur ← Scur, Rheur ← Rcur ▷ Initialize the heuristic solution and its value
12: T ← −dobj/ log(pmax) ▷ Initialize the temperature
13: for i in [1, . . . , ktemps] do: ▷ Main loop
14: Draw a random product j ∈ N
15: if j ∈ Scur then: ▷ Generate the candidate solution
16: Scan ← Scur\{j}
17: else:
18: Scan ← Scur ∪ {j}
19: Rcan ← estimateProfit(Scan) ▷ Estimate the value of the candidate solution
20: if Rcan > Rcur then: ▷ Update the current solution
21: Scur ← Scan, Rcur ← Rcan

22: else:
23: Draw a random number r ∼ U(0, 1)
24: if r < exp

(
(Rcan −Rcur)/T

)
then:

25: Scur ← Scan, Rcur ← Rcan

26: if Rcur > Rheur then: ▷ Update the heuristic solution
27: Sheur ← Scur, Rheur ← Rcur

28: T ← −dobj/ log(pmax + (pmin − pmax)i/ktemps) ▷ Update the temperature
29: return Sheur, Rheur

sampling from the Ising model. In order to select the sampling procedure, we conducted a
preliminary numerical analysis using the Ising model parameters estimated in Section 3.4
together with randomly generated profit margins rj ∼ U(0, 1). Based on this preliminary
analysis, we decided to use systematic scan Gibbs sampling as it appeared to converge
faster than random scan Gibbs sampling for a similar amount of time (see Figure 3.3 for
an illustration).

Being able to approximate the expected profit for any assortment allows us to implement
a metaheuristic algorithm for finding promising solutions to problem (3.9). One of
the most prominent metaheuristic algorithms is simulated annealing (SA). There are
numerous variations of this procedure. In this work, we adopt the SA design described by
Bierlaire (2015). We set the number of algorithm iterations per temperature to one. At
each iteration, a candidate solution is generated and evaluated using simulations. Each
candidate solution is selected randomly from the neighborhood of the current solution.
We chose a fairly basic neighborhood structure: The neighborhood of an assortment
comprises all possible assortments that can be obtained from the assortment in question
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by either removing or adding a product. Next, if the candidate solution is better than the
current solution, then the candidate solution is accepted and becomes the current solution.
Otherwise, the candidate solution is accepted with a certain probability depending on
the annealing temperature at this iteration. The temperature decreases with each new
iteration. The maximum and minimum annealing temperatures are calculated based
on the target maximum and minimum acceptance probabilities, respectively. It is done
using parameter dobj representing the typical increase of the objective function in the
given neighborhood structure, which can be estimated empirically. In this algorithm
variation, the acceptance probability decreases linearly with respect to the iteration
counter. Algorithm 3 provides a detailed description of this SA procedure.

One of the greatest advantages of using SA for our purposes is its flexibility. First,
various additional constraints – such as capacity or shelf-space constraints – can be easily
incorporated into the algorithm by imposing additional restrictions on the neighborhood
structure. Moreover, Algorithm 3 can be generalized to solve the assortment optimization
problem in much more complex settings, including the omnichannel setting. In the next
section, we discuss the omnichannel extension and provide the results of our numerical
experiments.

3.6 Omnichannel Setting

In this section, we generalize our modeling framework to an omnichannel setting. We
focus on the case where a retailer has two sales channels: an online channel and a
physical channel. One of the key features of an omnichannel environment is that a
customer might purchase subsets of a single shopping basket in two different channels.
To account for this behavior, we consider four customer types: online-only, physical-only,
omnichannel-online, and omnichannel-physical. Online-only or physical-only customers
are assumed to shop exclusively in their respective channel. Omnichannel customers,
however, might purchase the first part of the basket in their preferred channel (e.g.,
online in the case of omnichannel-online customers) and the rest of the basket in the
other channel. We also assume that an omnichannel customer never purchases a product
in the second-choice channel if the same product is available in their preferred channel.
Let Ω = {o, op, po, p} be the set of customer types, where o-customers are online-only
customers, op-customers are omnichannel-online customers, po-customers are omnichannel-
physical customers, and p-customers are physical-only customers. Figure 3.4 illustrates
the shopping behavior of customers of different types. In Figure 3.4(a), we provide a
representative example of baskets that can be purchased by customers of each type. Note
that it is also possible that an omnichannel customer purchases products only in one
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Figure 3.4: Basket shopping behavior of customers in an omnichannel environment.

channel, or that a customer (of any type) selects an empty basket, which represents a
no-purchase alternative. Figure 3.4(b) summarizes what kinds of products are considered
for purchase by customers of each type.

Suppose that for all customer types ω ∈ Ω, choices of ω-customers correspond to the Ising
model with parameters θω. Parameter estimation can be performed for each customer
type separately as described in Section 3.4 if we assume that customers possess loyalty
cards. Since loyalty programs have been widely adopted by retailers worldwide, the
assumption that loyalty card data is available is fairly justified. In turn, such data would
allow us to identify two parts of the same basket purchased in different channels by an
omnichannel customer as a single basket. In the numerical analysis part of this section,
we will highlight the importance of having such visibility across channels by evaluating
the benefits of accounting for omnichannel purchases while optimizing assortments.

We can now formulate the omnichannel assortment optimization problem. Let So, Sp ⊆ N
denote assortments in the online and physical channels, respectively. Since omnichannel
customers can shop in both channels, the product set available for purchase by omnichannel
customers (either op-customers or po-customers) is the union of the two assortments,
i.e., Sop = Spo = So ∪ Sp ⊆ N . Importantly, even though both types of omnichannel
customers select from the same set of products So ∪ Sp, they purchase products that are
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offered in both channels only in their preferred channel, which generally results in different
gross profits per unit of each product depending on where it was bought. Suppose that
roj is the gross profit per unit of product j ∈ N offered in the online channel, and rpj is
the gross profit per unit of the same product offered in the physical channel. Let us also
introduce auxiliary parameters ropj and rpoj which can be expressed through roj and rpj in
the following way:

r
op
j =

roj if j ∈ So,

rpj if j ∈ Sp\So,
rpoj =

r
p
j if j ∈ Sp,

roj if j ∈ So\Sp.

Parameters ropj and rpoj defined above represent gross profits per unit of product j ∈ N
bought by an op-customer and a po-customer, respectively. These parameters are required
to formulate the standardized functions for computing the expected profits generated by
customers of different types. The expected profit generated by an ω-customer can be
written in the following way:

Rω(Sω) =
∑

x∈X (Sω)

(
pθω(x|Sω)

∑
j∈Sω

rωj xj

)
.

Finally, let Λω be the expected number of ω-customers. Then, the omnichannel assortment
optimization problem is as follows:

max
So,Sp

∑
ω∈Ω

ΛωRω(Sω). (3.10)

Clearly, problem (3.10) can be reduced to problem (3.9) – the assortment optimization
problem in a single-channel setting – by setting all but one parameter Λω to zero.
Therefore, we can formulate the following corollary of Theorem 3.1:

Corollary 3.2. The decision version of the omnichannel assortment optimization prob-
lem (3.10) is NP-hard.

Note that if adding a product to the assortment in either of the channels increases
the expected profits generated by customers of each type (or leaves some of the profits
unchanged), then adding such a product leads to an increase in the total expected profit.
Thus, we can generalize some of our theoretical results formulated for a single-channel set-
ting to the omnichannel setting. Consider the following corollaries of Propositions 3.2, 3.3
and Theorem 3.2, respectively:

Corollary 3.3. If for each customer type ω, node j ∈ N in the graphical representation of
the corresponding Ising model is isolated, then product j belongs to the optimal assortment.
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Corollary 3.4. Suppose that N = H ⊔K. If for each customer type ω, θωij = 0 ∀i ∈ H,
j ∈ K, then the omnichannel assortment optimization problem (3.10) can be separated
into omnichannel assortment optimization problems for product sets H and K.

Corollary 3.5. If for each customer type ω, H ⊆ N induces an isolated subgraph in
the graphical representation of the corresponding Ising model, and all these subgraphs do
not contain edges with negative weights, then all products from H belong to the optimal
assortment.

Similar to the single-channel setting, we can leverage the obtained theoretical results for
preprocessing aimed at reducing the dimensionality of problem (3.10). Let Gω denote the
graph corresponding to the Ising model that defines the shopping behavior of ω-customers
(in other words, Gω represents the graph that can be created using θω as adjacency
matrix). Our preprocessing procedure becomes:

1. Add nodes that are isolated in Gω for all ω ∈ Ω to the optimal assortment;

2. Separate the product portfolio into subsets of maximum size such that any two
subsets induce disconnected subgraphs of Gω for all ω ∈ Ω;

3. If some of the subsets are such that the induced subgraphs of Gω do not contain
negative edges for all ω ∈ Ω, add all nodes from these subsets to the optimal
assortment;

4. For each remaining subset, formulate the omnichannel assortment optimization
problem considering elements from this subset as a separate product portfolio.

After preprocessing, the remaining omnichannel assortment optimization problems can
be solved using Algorithm 4, which is the omnichannel extension of the SA procedure
described in Section 3.5. At its core, Algorithm 4 is nearly identical to Algorithm 3 apart
from a few key distinctions. In the omnichannel case, we assume that N = N o ∪ N p,
where N o and N p represent the maximum sets of products that can be offered in the
online and physical channels, respectively. Depending on the problem formulation, sets
N o and N p may coincide (i.e., N o = N p = N ). In practice, however, there may be
some products that cannot be offered in one of the channels – for example for marketing
considerations, or if the goal is to optimize assortments without introducing new products
in either channel. We thus provide a general algorithm formulation that can handle such
limitations. Next, at each iteration of Algorithm 4, a candidate solution is generated by
first randomly choosing a channel (with the probability calculated based on the sizes of
N o and N p) and then changing the current assortment in that channel. Finally, once
the candidate solution is generated, it is evaluated by summing up the expected profits
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Algorithm 4 Simulated annealing procedure to solve problem (3.10)
1: Input
2: N o, N p: whole product sets that can be offered in the online and physical channels, respectively
3: So

start, S
p
start : assortments representing the starting point of the algorithm

4: dobj : typical increase of the objective function
5: ktemps: number of temperatures
6: pmin, pmax: minimum and maximum target acceptance probabilities
7: Output
8: So

heur, S
p
heur: optimized assortments in the online and physical channels

9: Initialization
10: So

cur ← So
start, Sp

cur ← Sp
start ▷ Initialize the current solution

11: Rcur ← estimateOmnichannelProfit(So
cur, S

p
cur) ▷ Initialize the value of the current solution

12: So
heur ← So

cur, Sp
heur ← Sp

cur, Rheur ← Rcur ▷ Initialize the heuristic solution and its value
13: T ← −dobj/ log(pmax) ▷ Initialize the temperature
14: for i in [1, . . . , ktemps] do: ▷ Main loop
15: Draw a random number r ∼ U(0, 1)
16: if r < |N o|/(|N o|+ |N p|) then: ▷ Randomly choose channel
17: Draw a random product j ∈ N o

18: if j ∈ So
cur then: ▷ Generate the candidate solution

19: So
can ← So

cur\{j}
20: else:
21: So

can ← So
cur ∪ {j}

22: else:
23: Draw a random product j ∈ N p

24: if j ∈ Sp
cur then: ▷ Generate the candidate solution

25: Sp
can ← Sp

cur\{j}
26: else:
27: Sp

can ← Sp
cur ∪ {j}

28: Rcan ← estimateOmnichannelProfit(So
can, S

p
can) ▷ Estimate the value of the candidate solution

29: if Rcan > Rcur then: ▷ Update the current solution
30: So

cur ← So
can, Sp

cur ← Sp
can, Rcur ← Rcan

31: else:
32: Draw a random number r ∼ U(0, 1)
33: if r < exp

(
(Rcan −Rcur)/T

)
then:

34: So
cur ← So

can, Sp
cur ← Sp

can, Rcur ← Rcan

35: if Rcur > Rheur then: ▷ Update the heuristic solution
36: So

heur ← So
cur, Sp

heur ← Sp
cur, Rheur ← Rcur

37: T ← −dobj/ log(pmax + (pmin − pmax)i/ktemps) ▷ Update the temperature
38: return So

heur, S
p
heur, Rheur

generated by each of the four customer types estimated using the systematic scan Gibbs
sampling. The explicit pseudocode description of this algorithm is provided below.

We now perform numerical analysis to obtain insights into the properties of heuristic
and optimal solutions to the omnichannel assortment optimization problem. We start
by describing the parameter generation procedure for our numerical experiments. We
consider two sizes of the product portfolio N : n = 8 and n = 40. In the former case,
the size of the assortment optimization problem allows us to solve it by brute force (i.e.,
using a complete enumeration of all possible solutions). In the latter case, finding the
exact solutions is not computationally feasible, which means it is necessary to use the
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developed heuristic approach. For each product portfolio size, we generated 100 problem
instances in the following way. First, in order to study a more general setting, we assume
that some products can only be offered in one channel (in other words, N o and N p do
not coincide). We generate sets N o and N p by taking random subsets of N of size 0.75n

while ensuring that N o ∪ N p = N . Next, the generation process for parameters θω is
easier to describe in terms of the corresponding graphs Gω. Consider the following graph
generation procedure:

1. Create nodes with weights θωii ∀i ∈ N sampled randomly from the interval [2, 4];

2. For all unordered pairs i, j ∈ N , create an edge between nodes i and j with
probability pedge;

3. For each edge, sample its absolute weight θωij from the interval [1, 2] and multiply
the obtained value by −1 with probability pneg.

We apply the above procedure to first generate 100 graphs Gω for one customer type
ω = op. In the case n = 40, we set the value of the sparsity-controlling parameter pedge
to 0.2. If n = 8, we use pedge equal to 1 (i.e., we generate complete graphs) because
for such a small product portfolio, sparse graphs with low values of pedge would not be
representative. As for parameter pneg, we set its value to 0.8 for both n = 8 and n = 40.
This means that direct product substitution effects between pairs of adjacent products
(i.e., products connected via an edge) are somewhat prevalent. For n = 40, direct product
substitution effects thus exist with probability pedge · pneg = 0.16, which seems to be fair
value for illustrative purposes. Once graphs Gop are generated, we use them to obtain
graphs for the remaining customer types. It is reasonable to assume that graphs Gω

for different types ω have a similar structure. To this end, we obtain each graph Gω,
ω ∈ Ω\{op} by first adding random noise ζij ∼ U(−0.3 · θopij , 0.3 · θopij ) to all weights θopij
and then swapping the absolute values of one-third of all edges. Furthermore, following
Vasilyev et al. (2023), we assume that the gross profit per unit of each product is higher
for the online channel than for the physical channel (e.g., due to the difference in holding
costs) and thus generate gross profits per unit of each product j ∈ N in the following
way:

rpj ∼ U(0, 1), roj ∼ U(rpj , 1.5 · rpj ).

Finally, for each simulated problem instance, we consider several customer portfolio
compositions, i.e., several sets of values of parameters Λω, ω ∈ Ω. Our primary goal is to
investigate the relationship between different customer portfolio compositions and the
properties of optimized assortments. To this end, we consider the following realizations
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of vector Λ = (Λo,Λop ,Λpo ,Λp):
a1

a2

a3

a4

a5

 = 104 ·


5 1 1 5

4 2 2 4

3 3 3 3

2 4 4 2

1 5 5 1

 , and


b1

b2

b3

b4

b5

 = 104 ·


1 1 5 5

2 2 4 4

3 3 3 3

4 4 2 2

5 5 1 1

 .

We start by exploring what happens with the sizes of optimal (for n = 8) and heuristic
(for n = 40) solutions as the customer portfolio composition Λ evolves. To obtain heuristic
solutions, we apply Agorithm 4 with the following input: pmin = 0.001, pmax = 0.999,
ktemps = 300, dobj = 10000, So

start = N o, and Sp
start = N p. In Figure 3.5, we visualize the

sizes of assortments relative to the maximum number of products that can be offered in
the corresponding channels. For each customer portfolio composition, we display values
averaged over 100 simulated problem instances. First, note that the general trends are
similar for both exact and heuristic solutions (i.e., the plots on the left-hand side and on
the right-hand side of the figure are largely alike), which validates the results obtained
using our heuristic algorithm. In Figure 3.5(a), we can observe that as Λ changes from
a1 to a5 – in other words, as the proportion of omnichannel customers (of both types)
grows – the average size of the online assortment remains stable, whereas the sizes of the
physical assortment and assortment overlap decrease. This is in line with our expectations
– indeed, in the limit with only omnichannel customers and no purely online and physical
customers, offering a product exclusively online is always more profitable than offering
this product in both channels simultaneously. This is because the gross profit per unit
of each product is assumed to be higher in the online channel than in the physical
channel. Therefore, in the considered extreme case, one can expect to see a “large” online
assortment and a “small” physical assortment, with the latter assortment comprising only
those products that are not offered in the online channel. Conversely, in the limit where
all customers either shop exclusively online or in person (i.e., there are no omnichannel
customers), the two channels are independent and their average assortment sizes should be
approximately the same due to a similar parameter generation procedure. We also study
what happens with average assortment sizes if the proportion of customers who prefer
the online channel (including both o-customers and op-customers) grows compared to the
proportion of customers who prefer the physical channel. The results of our numerical
experiments visualized in Figure 3.5(b) do not indicate any apparent trends. Note that for
n = 40, the difference between the average sizes of online and physical assortments is less
pronounced in the case Λ = b1 than for other customer portfolio compositions. However,
this observation is not substantiated by the results obtained for exact solutions, so this
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(a) Sensitivity with respect to
Λop + Λpo

Λo + Λp
(as the proportion of omnichannel customers grows).

(b) Sensitivity with respect to
Λo + Λop

Λp + Λpo
(as the proportion of customers preferring the online channel

grows).

Figure 3.5: Average assortment sizes.

aberration might arise because of some suboptimal heuristic solutions. Nevertheless, we
can still see that, on average, the size of the online assortment is greater than the size
of the physical assortment, which is intuitively not surprising given that the unit gross
profits are assumed to be higher in the online channel than in the physical channel.

We also explore the benefits of omnichannel assortment optimization as opposed to
optimizing assortments in siloed channels. Let us start by describing how we obtain
assortments optimized in the two channels separately for a fixed set of generated pa-
rameters. First, we apply Gibbs sampling to simulate a large number of baskets bought
by customers of each type. Then, assuming that there is no visibility across different
retail channels, we separate each omnichannel basket into “online” and “physical” baskets
and add them to the lists of generated purchases made by online-only customers and
physical-only customers, respectively. Hence, we obtain two lists of baskets purchased
in the online and physical channels. Based on these lists, we estimate two sets of Ising
model parameters as described in Section 3.4 and formulate the corresponding assortment
optimization problems (one problem per channel). Consequently, these optimization

105



Chapter 3

(a) Sensitivity with respect to
Λop + Λpo

Λo + Λp
(as the proportion of omnichannel customers grows).

(b) Sensitivity with respect to
Λo + Λop

Λp + Λpo
(as the proportion of customers preferring the online channel

grows).

Figure 3.6: Benefits of omnichannel assortment optimization as opposed to optimizing
assortments in siloed channels.

problems are solved either by brute force (if n = 8) or by using Algorithm 3 (if n = 40)
with the following input: pmin = 0.001, pmax = 0.999, ktemps = 300, dobj = 2500, and
Sstart = N c, where c = o in the case of the online channel and c = p in the case of
the physical channel. We then compare the omnichannel solution (i.e., solution to the
omnichannel assortment optimization problem) to the solution obtained for the siloed
channels. In particular, we compute the ratio of the profit yielded by the omnichannel
solution to the profit yielded by the siloed-channel solution. Importantly, even though
the latter overall product assortment is obtained assuming independent demands in the
two channels, we always consider the same omnichannel demand when comparing the
expected profits of the two models. We repeat the described procedure for each generated
set of parameters. The results of our numerical experiments are provided in Figure 3.6.
As can be seen in Figure 3.6(a), the larger the proportion of omnichannel customers
(of both types), the greater the average profit gain yielded by optimizing product as-
sortment decisions explicitly taking into account the omnichannel setting. This shows
for both cases (n = 8 and n = 40). Meanwhile, the difference between the mean and
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the median ratio values computed over different problem instances is more pronounced
in the case of exact solutions. This could be explained by the noticeable presence of
outliers, i.e., instances in which omnichannel solutions greatly outperform siloed-channel
solutions, which occurs more rarely for heuristic solutions than for exact solutions. Next,
as previously, Figure 3.6(b) does not indicate any apparent trends as the proportion of
customers preferring the online channel grows. We do notice that in some rare cases,
the heuristic solutions obtained for the omnichannel case may be slightly worse than the
heuristic solutions obtained for siloed channels, which indicates a certain suboptimality
of our heuristics. On average, however, the omnichannel solution yields a substantially
higher profit than the siloed-channel solution. The gross profit gain averaged over all
our numerical experiments is close to 10% (more specifically, 9.9% in the case of exact
solutions and 9.2% in the case of heuristic solutions), which underlines the importance of
having visibility of customer shopping behavior across retail channels.

3.7 Conclusions and Future Work

In this paper, we addressed the question of omnichannel assortment optimization given
basket shopping behavior of customers. To tackle this problem, we developed a com-
prehensive methodology at the interface of operations research and computer science.
We brought into the spotlight the equivalence relation between the Ising model and the
multivariate logit model. This allowed us to utilize classic theoretical results devised
for the Ising model for various purposes, including parameter estimation and deriving
complexity results for the assortment optimization problem. Furthermore, we introduced
a preprocessing procedure that can be used to reduce the dimensionality of the assort-
ment optimization problem based on the graphical representation of the Ising model.
We developed a customized simulated annealing algorithm for solving the assortment
optimization problem in cases when finding the exact solution is not computationally
tractable. Finally, we carried out an extensive numerical study that allowed us, inter
alia, to quantify the value of having visibility across different retail channels, i.e., having
information about purchases made by omnichannel customers. We observed that, on
average, omnichannel assortment optimization results in significant gross profit gains
compared to assortment optimization in siloed channels.

Our work motivates a number of interesting research questions. We believe that the
graphical representation of the Ising model can be further exploited to boost assortment
optimization capabilities through network analytics techniques. For example, one can
identify “important” products using different centrality measures, or “established” baskets
using community detection algorithms. This information can be incorporated into the
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developed simulated annealing procedure, for example, in such a way that at each
iteration, high centrality products are added to the assortment with a higher probability
and removed from the assortment with a lower probability. Another interesting avenue is
to develop a heuristic procedure whereby all products are first ranked with respect to a
selected centrality measure (potentially multiplied by the corresponding unit gross profit),
and then the heuristic solution is determined by finding a cutoff in this ranking. Last
but not least, more general MRFs with other joint distribution functions could be used
for more accurate modeling of basket shopping behavior (e.g., by enabling our model
to account for product quantities in each basket). Ultimately, our work takes the first
step toward a comprehensive framework for omnichannel assortment optimization that
takes into account basket shopping behavior, and it provides a base for future studies on
omnichannel decision-making.
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In this thesis, we addressed the complex problem of omnichannel assortment optimization,
presenting three chapters that tackle different aspects of this topic. In the first chapter, we
introduced the multichannel attraction model (MAM), a discrete choice model specifically
designed for omnichannel environments. We focused on a dual-channel setting and
formulated the assortment optimization problem under the MAM as a mixed-integer
linear program. We proved that the optimal assortment in one channel can be found
analytically if all products are available in the remaining channel. This result also allowed
us to derive an approximate characterization of optimal assortments, thereby providing
insights into their structure. We proposed a computationally efficient heuristic method
to solve the assortment optimization problem, and showed numerically that it steadily
yields near-optimal solutions. We also showed that implementing the buy-online-and-
pick-up-in-store (BOPS) functionality can be unprofitable if the proportion of online
customers selecting this option is too large compared to the additional traffic in the
physical channel. Lastly, we demonstrated that omnichannel assortment optimization
results in a 1.8%-1.9% average profit gain compared to assortment optimization in siloed
channels, with maximum gains reaching up to 6.7%.

In the second chapter, we extended our modeling framework to the case of a retailer
managing an online store and a network of physical stores. We also incorporated demand
stochasticity and inventory management considerations into the assortment optimization
problem under the MAM, which we formulated as a mixed-integer second-order cone
program. This problem can be solved exactly using off-the-shelf solvers for small to
medium-sized instances. For larger problems, we proposed two heuristic methods based
on different relaxations of the problem. We identified the conditions under which the
two relaxations are equivalent to each other, and the conditions under which they are
also equivalent to the initial assortment problem. Our numerical analysis indicated that
demand variability has a dual effect on optimal assortment sizes: a combination of the
increasing costs effect and the demand pooling effect. Similar to the first chapter, the
numerical experiments showed noticeable financial benefits as a result of omnichannel
optimization compared to assortment optimization in siloed channels. On average, the
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profit gain yielded by the omnichannel solution was slightly above 3%, reaching up to 7%.
These estimates, obtained using a basic heuristic method in a simplified setting where
customers do not switch between physical stores, were at the lower end of potential profit
gains. Nonetheless, our results surpassed those from the first chapter, emphasizing the
importance of incorporating inventory decisions and demand variability into the modeling
framework.

In the third chapter, we tackled omnichannel assortment optimization while taking into
account the basket shopping behavior of customers. We established the equivalence
relation between the Ising model and the multivariate logit model, which made it possi-
ble to leverage well-known theorems and methodologies for parameter estimation and
derivation of complexity results for the assortment optimization problem. We developed
a preprocessing procedure based on the graphical representation of the Ising model for
dimensionality reduction of the assortment optimization problem, as well as a customized
simulated annealing algorithm for solving this problem when finding the exact solution
is not computationally feasible. Our numerical study allowed us to quantify the value
of having visibility of basket purchases across retail channels. The average gross profit
gain was close to 10%, exceeding the potential profit gains estimated in the first two
chapters and highlighting the crucial role such visibility plays in omnichannel assortment
optimization.

This thesis suggests several interesting avenues for future research. First, the modeling
framework presented in Chapters 1 and 2 could be extended by incorporating additional
dimensions, such as pricing and promotion decisions, capacity constraints, and product
return policies. These factors are closely intertwined with inventory management and
assortment planning. Addressing all these decisions simultaneously presents a considerable
challenge, but overcoming it could lead to significant financial benefits. It would also be
valuable to integrate the time component into our model, which would allow it to span
across numerous sales periods, as opposed to being limited to a single period. Furthermore,
incorporating retailer competition into the framework would provide a more accurate
representation of real-world complexities and enhance the model’s practical applicability.
Another promising research direction involves deriving additional theoretical properties
of the assortment optimization problem and its optimal solutions. This would enable the
development of more advanced heuristic methods for solving this problem in large-scale
omnichannel environments, potentially improving solution quality and reducing solving
time. Additionally, since demand variability significantly affects the structure of optimal
assortments, exploring a robust formulation of the assortment optimization problem
for cases with highly uncertain demand would be of interest. Lastly, a more in-depth
understanding of the characteristics of optimal assortments in each channel could be
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obtained through an extensive numerical analysis based on values of the MAM parameters
estimated using a real-world dataset.

For the third chapter, it would be interesting to explore the possibility of tightening
the upper bound of the partition function to improve the estimation quality of the
Ising model parameters. Another potential avenue would be to leverage the graphical
representation of the Ising model to enhance assortment optimization capabilities through
network analytics techniques. For example, one could identify “important” products
(those whose removal would substantially impact the demand for other products) using
various centrality measures, or “established” baskets (sets of products that are often
purchased together) using community detection algorithms. This information could then
be incorporated into a customized assortment optimization algorithm. Furthermore, the
Ising model – yet a powerful tool – is a rather basic example of an MRF. Considering more
complex MRFs could enable our modeling framework to account for product quantities
in each basket, marking a transition from the multi-purchase to the multiple-discrete
choice modeling paradigm. This could be achieved by replacing binary variables with
integer variables when defining basket choice probabilities, or alternatively, by creating a
separate binary variable for each possible quantity of each product. Finally, the current
configuration of our model does not allow for an explicit specification of the distribution
of basket sizes. Finding a way to incorporate this distribution into the model would be
a significant step forward. Overall, the MRF-based approach presented in this chapter
holds considerable potential to improve omnichannel decision-making and advance the
field of assortment optimization in general.

Acknowledgments

This work was supported by the Swiss National Science Foundation (SNSF) under Grant
192545.

111





A Appendices for Chapter 1

Republished with permission of Elsevier Science & Technology Journals, from Vasilyev
et al. (2023); permission conveyed through Copyright Clearance Center, Inc. (license ID:
1352205-1).

A.1 The MAM Formulation in the General Setup

Suppose that C = {1, . . . ,K} is the set of channels with K > 2. We adjust and extend
the notation presented in Section 1.3 in the following way. Let u(c)di /v

(c)
i be the proportion

of type-c customers willing to purchase product i ∈ N\Sc in channel d ∈ C\{c} if it is
not available in channel c, and let u(c)i denote the sum

∑
d∈C\{c} u

(c)
di . In other words,

u
(c)
i /v

(c)
i is the proportion of type-c customers willing to purchase product i in any of the

retailer’s channels if it is not available in channel c.

Then, the choice probabilities under the MAM given assortments in all channels can be
defined by analogy to the two-channel case. The probability that a type-c customer buys
product j in channel c is

π
(c)
cj (Sc) =


v
(c)
j

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )

if j ∈ Sc,

0 otherwise;

and the probability that a type-c customer buys product j in channel d is

π
(c)
dj (Sc, Sd) =


u
(c)
dj

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )

if j ∈ Sd\Sc,

0 otherwise.
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A.2 Proof of Proposition 1.1

First, note that the MAM restricted to type-c customers and products in channel c
is equivalent to the GAM for products in this channel. At the same time, Blanchet
et al. (2016) provided the set of MCCM parameters under which the choice probabilities
can be expressed as the GAM probabilities. Suppose that we only consider choices of
type-c customers in channel c. Then, the MCCM parameters that result in the GAM
probabilities are as follows (see Blanchet et al., 2016):

λ
(c)
jc

= v
(c)
j , ρ

(c)
jcic

=
v
(c)
i (v

(c)
j − u

(c)
j − w

(c)
j )

v
(c)
j − v

(c)
j (v

(c)
j − u

(c)
j − w

(c)
j )

,

ρ
(c)
jc0

=
v
(c)
0 (v

(c)
j − u

(c)
j − w

(c)
j ) + u

(c)
j + w

(c)
j

v
(c)
j − v

(c)
j (v

(c)
j + u

(c)
j + w

(c)
j )

.

(A.1)

Now, let us also take into consideration products in channel Sc̄. We therefore split the
transition probability from product jc to the no-purchase alternative into two parts:
one corresponds to switching to the no-purchase alternative directly, and the other one
corresponds to first purchasing product jc̄, and then – in case this product is not available
– selecting the no-purchase option with probability 1. Formally, let us define

ρ
(c)
jc0

=
v
(c)
0 (v

(c)
j − u

(c)
j − w

(c)
j ) + u

(c)
j + w

(c)
j

v
(c)
j − v

(c)
j (v

(c)
j + u

(c)
j + w

(c)
j )

−
u
(c)
j

v
(c)
j

, ρ
(c)
jcjc̄

=
u
(c)
j

v
(c)
j

, ρ
(c)
jc̄0

= 1,

and leave λ(c)jc
= v

(c)
j and ρ(c)jcic

unchanged as in (A.1).

Finally, let us set the remaining parameters λ(c)jc̄
, ρ(c)jcic̄

, ρ(c)jc̄ic̄
, ρ(c)jc̄jc

and ρ
(c)
jc̄ic

to be zero,
which gives us exactly the set of parameters shown in (1.7). By construction, if type-c
customers make their choices according to the MCCM with this set of parameters, then
the probability that such a customer buys product j in channel c is exactly the MAM
probability (1.5). What remains to be proven is that the probability of such a customer
purchasing product j in channel c̄ is the MAM probability (1.6).

Suppose that product j is offered in channel c̄. Note that type-c customers interested
in this product consider alternatives only in channel c before switching to channel c̄.
Therefore, in order to obtain probability π(c)c̄j (Sc, Sc̄), we can consider a subchain of our
constructed Markov chain comprising all products in channel c, product j in channel c̄,
and the no-purchase alternative. Following Blanchet et al. (2016), let B denote the
transition probability submatrix from alternatives that are not in the assortment to
alternatives from the assortment (or to the no-purchase alternative), and let C denote the
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transition probability submatrix among the alternatives that are not in the assortment.
Furthermore, let λ̂ be the vector of arrival probabilities to alternatives that are not in
the assortments. Finally, let ejc̄ be the standard unit vector such that the product Bejc̄
corresponds to the vector of transition probabilities from alternatives that are not in the
assortment to product j in channel c̄. Then, using the formula for Markov chain choice
probabilities (see Blanchet et al., 2016), we obtain the following:

π
(c)
c̄j (Sc, Sc̄) = 0 + λ̂T (I − C)−1Bejc̄

= λ̂T
( ∞∑

q=0

Cq

)
Bejc̄ =

( ∞∑
q=0

( ∑
i∈N\Sc

v
(c)
i −

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )
)q)

λ̂TBejc̄

=
λ̂TBejc̄

1 −
( ∑
i∈N\Sc

v
(c)
i −

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )
) =

v
(c)
j ρ

(c)
jcjc̄

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )

= v
(c)
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∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

(u
(c)
i + w

(c)
i ),

which concludes the proof.

A.3 Proof of Proposition 1.2

Recall that the GAM can be viewed as a limited case of the nested logit model where
the dissimilarity parameter of each nest goes to zero (see Gallego et al., 2014). In this
model, each nest corresponds to a product, and alternatives within the nest correspond
to different sources where this product can be bought. Since the dissimilarity parameter
of each nest tends to zero, it can be assumed that each nest comprises only two sources:
The retailer itself (with the highest utility overall) and the outside source (with the
highest utility among other available sources). Since the nested logit model is a RUM, the
GAM is a RUM as well and it can be represented through a distribution over rankings
(permutations) of alternatives. Readers are referred to Block and Marschak (1959), who
showed how to construct the distribution over rankings from the joint distribution of
random utilities, and vice versa. Importantly, if the number of products is n, then each
ranking comprises 2n+ 1 alternatives since each product can be bought either from the
retailer or from the outside source (and there is also the no-purchase alternative).

We can use the distribution over rankings that is consistent with the GAM to construct
the distribution over rankings that is consistent with the MAM choice probabilities for
one customer type. First, note that the choice probabilities of type-c customers selecting
alternatives from channel c are exactly the same as the GAM choice probabilities defined
over this set of products. Let us consider the corresponding distribution over rankings.
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One can insert the alternative of buying a certain product j from channel c̄ into the
rankings and modify the distribution in such a way that the probabilities of choosing
products from channel c do not change while the probability of choosing product j
from channel c̄ is exactly the same as the MAM choice probability. Indeed, let us
consider a ranking r = (r1, r2, . . . r2n+1) with P(r) = p. Suppose that rk corresponds
to the option of buying product j from the outside source (which is always available).
Let s denote the alternative of buying a certain product j from channel c̄. Then, let
us replace ranking r with two rankings r′ = (r1, r2, . . . , rk−1, s, rk, rk+1 . . . , r2n+1) and
r′′ = (r1, r2, . . . , rk−1, rk, s, rk+1 . . . , r2n+1), such that P(r′) = pu

(c)
j /(u

(c)
j + w

(c)
j ) and

P(r′′) = pw
(c)
j /(u

(c)
j + w

(c)
j ). Note that u(c)j /(u

(c)
j + w

(c)
j ) is exactly the probability of

type-c customers switching to channel c̄ given that they are willing to purchase product j
outside of channel c. If we do this for each ranking, then the probabilities of choosing
products from channel c will not change by construction of rankings r′ and r′′ and since
P(r′) + P(r′′) = P(r) for all rankings r. At the same time, the probability of choosing
product j ∈ Sc̄ will be defined as the probability of choosing the outside option according
to the GAM multiplied by the coefficient u(c)j /(u

(c)
j + w

(c)
j ), that is

(u
(c)
j + w

(c)
j )1j∈N\Sc

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )

·
u
(c)
j 1j∈Sc̄

u
(c)
j + w

(c)
j

=
u
(c)
j 1j∈Sc̄\Sc

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )

,

which is exactly the MAM choice probability π(c)c̄j (Sc, Sc̄). If we repeat this procedure n
times for all products in channel c̄, then we obtain the distribution over rankings that is
consistent with the MAM choice probabilities. The MAM is thus a mixture of RUMs.

Finally, note that a mixture of RUMs is also a RUM. Indeed, from the distributions over
rankings of alternatives consistent with each individual model in the mixture, one can
straightforwardly construct a distribution over rankings corresponding to the mixture
model. In the case of the MAM, suppose that the distribution over rankings that
corresponds to choice probabilities of type-c customers is as follows:

D(c) = {(r1, p
(c)
1 ), (r2, p

(c)
2 ), . . . , (rh, p

(c)
h )},

where each ri is a ranking and p(c)i is the associated probability. Similarly, let

D(c̄) = {(r1, p
(c̄)
1 ), (r2, p

(c̄)
2 ), . . . , (rh, p

(c̄)
h )}

be the distribution over rankings of alternatives that corresponds to choice probabilities
of type-c̄ customers. Note that both distributions D(c) and D(c̄) are defined over the
same set of rankings of alternatives which is composed of all permutations of all possible
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purchase outcomes (including the no-purchase option). In particular, each ranking ri

contains 3n+ 1 alternatives (the no-purchase option together with products in channel
c, channel c̄, and the outside source) and h equals the total number of permutations of
alternatives, i.e., h = (3n + 1)!. Then, it is easy to see that the following distribution
corresponds to the MAM choice probabilities:

D = {(r1, ωp
(c)
1 + (1−ω)p

(c̄)
1 ), (r2, ωp

(c)
2 + (1−ω)p

(c̄)
2 ), . . . , (rh, ωp

(c)
h + (1−ω)p

(c̄)
h )},

where ω = Λ(c)/(Λ(c) + Λ(c̄)). Thus, the MAM is also a RUM.

A.4 Proof of Theorem 1.1

In order to prove the theorem, we need to show the following:

1) Let Sc, Sc̄ be arbitrary subsets of N . If x(c)cj , x(c)c̄j correspond to probabilities (1.5), (1.6)

multiplied by Λ(c), zcj take the corresponding binary values, and x(c)c0 satisfy

x
(c)
c0 =

v
(c)
0 Λ(c)

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )

,

then
{
x
(c)
c0 , x(c)cj , x(c)c̄j , zcj

}
c∈C,j∈N is a feasible solution to the SBMILP.

2) If
{
x
(c)
c0 , x(c)cj , x(c)c̄j , zcj

}
c∈C,j∈N is an optimal solution to the SBMILP, then there exist

offer sets Sc, Sc̄ ⊆ N such that x(c)cj , x(c)c̄j correspond to probabilities (1.5), (1.6) multiplied
by Λ(c), and zcj take the corresponding binary values.

The first part can be shown straightforwardly by substituting
{
x
(c)
c0 , x(c)cj , x(c)c̄j , zcj

}
c∈C,j∈N

into the SBMILP constraints. For the second part, note that from constraints (1.9e) and
the form of the objective function it follows that zcj = 1 if and only if x(c)cj > 0 (since zcj
are binary and x(c)cj are nonnegative). Furthermore, from constraints (1.9c) and (1.9d) we
can see that

x
(c)
cj

v
(c)
j

=


x
(c)
c0

v
(c)
0

if zcj = 1,

0 otherwise.

(A.2)

Let us set Sc = {j ∈ N : zcj = 1}. Substituting (A.2) into constraints (1.9b), we obtain
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the following:

ṽ
(c)
0

v
(c)
0

x
(c)
c0 +

∑
j∈N

ṽ
(c)
j

v
(c)
j

x
(c)
cj =

ṽ
(c)
0

v
(c)
0

x
(c)
c0 +

∑
k∈Sc

ṽ
(c)
k

v
(c)
0

x
(c)
c0 = Λ(c).

Hence,

x
(c)
c0 =

v
(c)
0 Λ(c)

ṽ
(c)
0 +

∑
k∈Sc

ṽ
(c)
k

=
v
(c)
0 Λ(c)

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )

. (A.3)

Subsequently, by combining (A.2) and (A.3), we obtain the desired values of x(c)cj . Finally,

note that constraints (1.9c) and (1.9f) imply that x(c)c̄j ̸= 0 if and only if x(c)cj = 0 and

x
(c̄)
c̄j ̸= 0. In that case, x(c)c̄j attains its maximum value at

x
(c)
c̄j =

u
(c)
j Λ(c)

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )

,

which concludes the proof.

A.5 Proof of Proposition 1.3

Let all shadow attractiveness values together with all parameters related to channel c̄
be zero. Then, the assortment optimization problem under the MAM with shelf space
constraint (1.10) takes the following form:

max
zcj∈{0,1}n

∑
j∈N

rcjv
(c)
j zcj

v
(c)
0 +

∑
k∈N

v
(c)
k zck

s.t.
∑
j∈N

acjzcj ≤ Lc. (A.4)

Problem (A.4) is essentially the shelf-space-constrained assortment optimization problem
under the MNL, which has been shown by Désir et al. (2022) to be NP-hard. Indeed,
suppose that rcj = 1 for all j ∈ N and, following Désir et al. (2022), note that function
f(x) =

x

v
(c)
0 + x

is increasing in x, meaning that the objective function of problem (A.4)

can be replaced by
∑

j∈N v
(c)
j zcj . The resulting problem is equivalent to the knapsack

problem. Therefore, the shelf-space constrained SBMILP – i.e. the SMBILP formula-
tion (1.9) with additional constraint (1.10) – is NP-hard by reduction from the knapsack
problem.
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A.6 Proof of Proposition 1.4

First, let us show that R(c)(Sc ∪ {j},N ) can be expressed as a convex combination of
R(c)(Sc,N ) and (rcjv

(c)
j − rc̄ju

(c)
j )Λ(c)/ṽ

(c)
j . Consider the following:

α =
ṽ
(c)
j

v
(c)
0 +

∑
k∈Sc∪{j}

v
(c)
k +

∑
i∈N\(Sc∪{j})

(u
(c)
i + w

(c)
i )

.

Note that α ∈ (0, 1). Then, it is easy to verify that

α
(rcjv

(c)
j − rc̄ju

(c)
j )Λ(c)

ṽ
(c)
j

+ (1 − α)R(c)(Sc,N ) = R(c)(Sc ∪ {j},N ).

This fact is sufficient for showing that the assortment given by (1.11) is optimal for chan-
nel c. Indeed, suppose that there is an optimal assortment Sc such that q ∈ Sc and p /∈ Sc

for some p < q. Then, since Sc is optimal, R(c)(Sc\{q},N ) ≤ R(c)(Sc,N ) ≤ (rcqv
(c)
q −

rc̄qu
(c)
q )Λ(c)/ṽ

(c)
q . At the same time, since p < q and hence (rcqv

(c)
q − rc̄qu

(c)
q )Λ(c)/ṽ

(c)
q <

(rcpv
(c)
p −rc̄pu(c)p )Λ(c)/ṽ

(c)
p , it follows that R(c)(Sc,N ) < (rcpv

(c)
p −rc̄pu(c)p )Λ(c)/ṽ

(c)
p . There-

fore, R(c)(Sc ∪{p},N ) is greater than R(c)(Sc,N ) as a convex combination of R(c)(Sc,N )

and (rcpv
(c)
p − rc̄pu

(c)
p )Λ(c)/ṽ

(c)
p , which contradicts the assumption that Sc is optimal. It

means that the optimal allocation has to be in descending order of (rcjv
(c)
j −rc̄ju(c)j )Λ(c)/ṽ

(c)
j .

Finally, the fact that the optimal assortment has to be of the form (1.11) with index m
specified in Proposition 1.4 follows from the same convex combination observation.

A.7 Proof of Proposition 1.5

Let (Sc, Sc̄) be the optimal combination of assortments. Consider channel c and suppose
that all products in that channel are sorted in descending order of the value of expres-
sion (1.5). Suppose that the proposition does not hold, i.e., for some p < q we have that
q ∈ Sc and p /∈ Sc. First, note that the total revenue generated by type-c customers is as
follows:

R(c)(Sc, Sc̄) =

( ∑
k∈Sc

rckv
(c)
k +

∑
i∈Sc̄\Sc

rc̄iu
(c)
i

)
Λ(c)

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )

,
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and the revenue generated by type-c̄ customers purchasing product j in channel c is:

R
(c̄)
cj (Sc, Sc̄) =

rcju
(c̄)
j Λ(c̄)

1j∈Sc\Sc̄

v
(c̄)
0 +

∑
k∈Sc̄

v
(c̄)
k +

∑
i∈N\Sc̄

(u
(c̄)
i + w

(c̄)
i )

.

Given that q ∈ Sc and p /∈ Sc, one can check that

β1Λ
(c)Fc(p, Sc, Sc̄)+(1−β1)R(c)(Sc, Sc̄) = R(c)(Sc∪{p}, Sc̄)+R(c̄)

cp (Sc∪{p}, Sc̄) (A.5)

and

β2Λ
(c)Fc(q, Sc, Sc̄) + (1 − β2)R

(c)(Sc\{q}, Sc̄) = R(c)(Sc, Sc̄) +R(c̄)
cq (Sc, Sc̄), (A.6)

where

β1 =
ṽ
(c)
p

v
(c)
0 +

∑
k∈Sc∪{p}

v
(c)
k +

∑
i∈N\(Sc∪{p})

(u
(c)
i + w

(c)
i )

and

β2 =
ṽ
(c)
q

v
(c)
0 +

∑
k∈Sc

v
(c)
k +

∑
i∈N\Sc

(u
(c)
i + w

(c)
i )

.

Since (Sc, Sc̄) is assumed to be the optimal combination of assortments, it holds that
R(c)(Sc\{q}, Sc̄) < R(c)(Sc, Sc̄) + R

(c̄)
cq (Sc, Sc̄). Therefore, from relation (A.6) it fol-

lows that Λ(c)Fc(q, Sc, Sc̄) > R(c)(Sc, Sc̄) + R
(c̄)
cq (Sc, Sc̄) ≥ R(c)(Sc, Sc̄). Since p < q

and products are sorted in descending order of the value of expression (1.5), we ob-
tain that Λ(c)Fc(p, Sc, Sc̄) > R(c)(Sc, Sc̄). Thus, from relation (A.5) it follows that
R(c)(Sc ∪ {p}, Sc̄) +R

(c̄)
cp (Sc ∪ {p}, Sc̄) > R(c)(Sc, Sc̄). This means that the combination

of assortments (Sc ∪{p}, Sc̄) is more profitable than (Sc, Sc̄), which contradicts the initial
assumption and thereby concludes the proof.

A.8 MAM Estimation based on an Adaptation of the EM
Algorithm

We provide an alternative method to estimate the MAM parameters by building upon the
Expectation Maximization (EM) algorithm which was developed by Vulcano et al. (2012)
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for estimating the parameters of the BAM and then adapted to the GAM by Gallego
et al. (2014). We first give a brief description of the algorithm proposed by Gallego et al.
(2014) and discuss its limitations.

Their algorithm allows to estimate the GAM parameters given product demands in T

periods assuming that for each period t = 1, . . . , T , the offered set St is constant and the
arrival rate is Λt = Λ. The parameters are estimated through an iterative procedure in
which the observed demand is viewed as an incomplete observation of the first-choice
demand (the demand occurring when all the products belong to the offered set). More
specifically, the estimation procedure is based on the following expressions. For each
period t, let djt and Xjt be the observed demand and the first-choice demand for product j,
respectively. If the GAM parameters are assumed to be known, then an estimate X̂jt of
the first-choice demand given observed demands in period t can be found in the following
way (see Gallego et al. (2014)):

X̂jt =


πj(N )djt
πj(St)

if j ∈ St,

πj(N )
∑

j∈St
djt∑

k∈St
πk(St)

otherwise.

(A.7)

Aggregating over all the periods, the estimate of the first-choice demand can be obtained
as X̂j =

∑T
t=1 X̂jt/T . Gallego et al. (2014) also proposed to use the following weighting

scheme to compute X̂j , which allows to reduce the variance of the estimators: X̂j =∑T
t=1 ajtX̂jt/(

∑T
t=1 ajt), where ajt = πj(St) if j ∈ St; and ajt =

∑
k∈St

πk(St) otherwise.

Without loss of generality, it can be assumed that v0 +
∑

j∈N vj = 1. Let r =
v0∑

j∈N vj
.

Then, each iteration of the estimation procedure comprises the following two steps:

E-step (GAM). Using current estimates of the parameters, compute the values of
the first-choice demands and update the estimates of v in the following way:

v̂j =
X̂j

r
∑

k∈N X̂k

. (A.8)

M-step (GAM). Substitute the estimates of v obtained in the E-step into the
following least squares minimization problem:

min
w,Λ

T∑
t=1

∑
j∈St

(
vjΛ

v0 +
∑
k∈St

vk +
∑

i∈N\St

wi
− djt

)2

(A.9)

subject to the constraints 0 ≤ wj ≤ vj ∀j ∈ N and Λ ≥ 0. Solve this optimization
problem to update the values of w and Λ.
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In their paper, Gallego et al. (2014) also suggested to update the value of r =
v0∑

j∈N vj
with each iteration. However, from (A.8) it follows that

∑
j∈N v̂j remains constant over

iterations, which means that the ratio
v̂0∑

j∈N v̂j
=

1 −
∑

j∈N v̂j∑
j∈N v̂j

does not change either.

It is therefore reasonable to treat r as a given parameter, that is to assume that r (or,
equivalently, v0) is given exogenously, rather than being determined within the estimation
procedure.

To set initial values of v and w before starting the iteration procedure, Gallego et al.
(2014) proposed to solve the least squares minimization problem of the form (A.9) but
with respect to v, w and Λ. However, considering v as a vector of decision variables
rather than a vector of parameters makes such an optimization problem quite challenging
to solve. An alternative way to initialize v and w is to choose their values from the
corresponding domain, e.g., by setting vj = (1 − v0)/n and wj = 0 ∀j ∈ N .

The described algorithm to estimate the GAM parameters suffers from two major issues.
Firstly and most importantly, its convergence is not theoretically guaranteed. The reason
is that problem (A.9) – which has to be solved at each iteration – is not convex and, as
such, it may have several optimal solutions. Secondly, solving a nonconvex minimization
problem at each iteration is computationally hard, making this approach increasingly less
attractive as the number of iterations needed to obtain accurate parameter estimates grows.
However, running time issues emerging from solving problem (A.9) become substantially
less pronounced if the additional assumption of having exogenous knowledge of the true
value of Λ is imposed. Such an assumption is rather weak, because in the case where the
offered set is St = N for at least one period t, it is equivalent to the previously mentioned
assumption that v0 is given exogenously. In addition, note that if the value of Λ is known,
then the expressions for the first-choice demand (A.7) can be simplified in the following
way:

X̂jt =


πj(N )djt
πj(St)

if j ∈ St,

πj(N )Λ otherwise.

Nevertheless, problem (A.9) remains nonconvex even if we consider Λ as a parameter
rather than a decision variable, and hence the convergence of the algorithm is still not
guaranteed.

We now adapt this estimation algorithm to the MAM. Without loss of generality, let
v
(c)
0 +

∑
j∈N v

(c)
j = 1 ∀c ∈ C. Similar to the case of the GAM, we assume that for

each channel c, the value of v(c)0 is given exogenously and Λ
(c)
t = Λ(c) ∀t = 1, . . . , T . In
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addition, we also assume that we have knowledge of the true values of Λ(c) ∀c ∈ C. Since
the values of v(c)0 ∀c ∈ C are known, the latter assumption is rather weak (similar to
the single-channel case discussed above). If it does not hold, however, our numerical
experiments have shown that there is no advantage of our proposed algorithm over the
least-squares estimation of the MAM parameters described in Section 1.6 in terms of
solution quality.

For each period t, let dcjt and Xcjt be the observed demand and the first-choice demand
for product j in channel c, respectively. If the MAM parameters are assumed to be known,
then an estimate X̂cjt of the first-choice demand can be obtained in the following way:

X̂cjt =


(dcjt − π

(c̄)
cj Λc̄)

π
(c)
cj (N )

π
(c)
cj (St)

if j ∈ St,

π
(c)
cj (N )Λ(c) otherwise.

We define X̂cj – the estimate of the first-choice demand for product j in channel c
aggregated over all the periods – in the following way: X̂cj =

∑T
t=1 X̂cjt/T . Lastly, let

r(c) =
v
(c)
0∑

j∈N v
(c)
j

∀c ∈ C. Note that r(c) is a constant under the previously mentioned

assumption that v(c)0 is given exogenously.

For the parameter initialization stage, we set v(c)j = (1 − v
(c)
0 )/n and u

(c)
j = w

(c)
j = 0

∀c ∈ C, j ∈ N . Then, each iteration of our algorithm to estimate the MAM parameters
comprises the following two steps:

E-step (MAM). Using current estimates of the parameters, compute the values of
the first-choice demands for each channel c and update the estimates of v(c) in the
following way:

v̂
(c)
j =

X̂cj

r(c)
∑

k∈N X̂ck

.

M-step (MAM). Substitute the estimates of v(c) obtained in the E-step into the
following least squares minimization problem:

min
u(c),w(c)

T∑
t=1

∑
c∈C

∑
j∈N

(
v
(c)
j Λ(c)

1j∈Sct

v
(c)
0 +

∑
k∈Sct

v
(c)
k +

∑
i∈N\Sct

(u
(c)
i + w

(c)
i )

+

u
(c̄)
j Λ(c̄)

1j∈Sct\Sc̄t

v
(c̄)
0 +

∑
k∈Sc̄t

v
(c̄)
k +

∑
i∈N\Sc̄t

(u
(c̄)
i + w

(c̄)
i )

− dcjt

)2
(A.10)
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subject to the constraints 0 ≤ u
(c)
j + w

(c)
j ≤ v

(c)
j ∀c ∈ C, j ∈ N . Solve this

optimization problem to update the values of {u(c), w(c)}c∈C .

To illustrate the performance of the just-described estimation method, we use the same
setup as in Section 1.6. More precisely, we set n = 5 and T = 15, and we simulate 100
instances of demand arising from the MAM with fixed parameters, with each instance
corresponding to a set of randomly generated assortments Sct, c ∈ C, t ∈ {1, . . . , T}. The
estimation results are provided in Table A.1. It can be seen that the estimated values are
close to the true values of the parameters, especially in the case of parameters v(c)j and u(c)j .
Even though these estimates are more accurate compared to those obtained in Section 1.6,
here we impose the additional assumption that the values of Λ(c) ∀c ∈ C are given
exogenously, which clearly improves the estimation accuracy. Moreover, similar to the
algorithm developed by Gallego et al. (2014), the convergence of our proposed EM-based
algorithm is not theoretically guaranteed since problem (A.10) is also nonconvex and, as
such, it may also have several optimal solutions. However, in our extensive numerical
experiments the proposed algorithm has always converged for randomly simulated sets
of the MAM parameters, meaning that our estimation procedure can prove useful and
effective in practice.

v
(c)
j u

(c)
j w

(c)
j

j True Estimated True Estimated True Estimated

ch
an

ne
l1

1 0.068 0.068 0.013 0.013 0.027 0.027

2 0.145 0.146 0.045 0.044 0.031 0.032

3 0.233 0.232 0.106 0.105 0.017 0.019

4 0.096 0.096 0.047 0.047 0.039 0.039

5 0.221 0.220 0.035 0.034 0.095 0.096

ch
an

ne
l2

1 0.105 0.105 0.021 0.021 0.046 0.028

2 0.199 0.199 0.068 0.068 0.093 0.035

3 0.195 0.194 0.081 0.081 0.083 0.021

4 0.236 0.236 0.061 0.061 0.088 0.042

5 0.008 0.008 0.000 0.001 0.001 0.096

Table A.1: Estimates of the MAM parameters based on an adaptation of the EM
algorithm.
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B Appendices for Chapter 2

B.1 Proof of Proposition 2.1

If µ(c) > σ(c)/CVmax for each c ∈ C, then:(
µ(c)π

(c)
cj (Sc) +

∑
c̄∈Ccj

µ(c̄)π
(c̄)
cj (S)

)2

≥ (µ(c)π
(c)
cj (Sc))

2 +
∑
c̄∈Ccj

(µ(c̄)π
(c̄)
cj (S))2 >

>

(
(σ(c)π

(c)
cj (Sc))

2 +
∑
c̄∈Ccj

(σ(c̄)π
(c̄)
cj (S))2

)
/CV 2

max.

Therefore, we obtain:

CV (Dcj) =

(
(σ(c)π

(c)
cj (Sc))

2 +
∑

c̄∈Ccj (σ
(c̄)π

(c̄)
cj (S))2

)1/2

µ(c)π
(c)
cj (Sc) +

∑
c̄∈Ccj µ

(c̄)π
(c̄)
cj (S)

< CVmax.

B.2 Proof of Theorem 2.1

We show that a special case of our assortment optimization problem is equivalent to
the assortment optimization problem under the 2-product nonparametric choice model
presented by Feldman et al. (2019), which in turn has been proven to be NP-hard.
Feldman et al. (2019) studied a model where each customer is characterized by a ranked
preference list comprising at most k products. Consequently, customers can be separated
into different classes based on their preference lists, and customers in each class purchase
the highest ranking product available from the corresponding list. Every customer belongs
to a class with a given probability. Feldman et al. (2019) named this model the k-product
nonparametric choice model, and they showed that the assortment optimization problem
under this model is NP-hard even if k = 2 (through a reduction from the minimum vertex
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cover problem on cubic graphs).

Let us recall how the choice probabilities are defined under the 2-product nonparametric
choice model (2-NPCM). We adjust the notation used by Feldman et al. (2019) to enhance
the clarity of our proof. Let N denote the set of choice alternatives. Also, let λjk denote
the probability of a customer belonging to the class with the preference list {j, k}, where
j is the most preferred alternative. Probability λjk can be expressed as the product
λjk = λjp(k|j), where λj represents the probability of a customer belonging to a class in
which j is the most preferred alternative, and p(k|j) denotes the conditional probability
of a customer belonging to the class in which k is the second most preferred alternative
given that j is the most preferred one. Then, the probability of a customer purchasing
alternative j is as follows:

Prj(z) =
∑

k∈N\{j}

λjkzj +
∑

i∈N\{j}

λij(1 − zi)zj = λjzj +
∑

i∈N\{j}

λip(j|i)(1 − zi)zj , (B.1)

where zj denotes a binary variable representing whether product j is offered, and z =

{zj}j∈N .

We now construct an instance of the MAM that is equivalent to the 2-NPCM. Suppose that
in the network representation, all channels (both physical and online) are interconnected.
Additionally, suppose that the retailer sells a single product, and all costs are zero,
meaning that unit product prices are equal to the unit profit margins in each channel.
Since the retailer sells only one product, we omit product indices in our notation. Let the
attractiveness value of the no-purchase alternative v(c)0 be zero, the product attractiveness
value v(c) be equal to the product shadow attractiveness value ϕ(c) for all channels c ∈ C.
Moreover, let the standard deviation σ(c) of the number of type-c customers be zero for
all channels c ∈ C. Lastly, let µ̂(c) = µ(c)/

(∑
c∈C µ

(c)
)

denote the ratio of the expected
number of type-c customers to the expected total number of customers. Then, the
probability that a customer of any type purchases the product in channel c is as follows:

πc(z) = µ̂(c)zc +
∑

c̄∈C\{c}

µ̂(c̄)δ(c̄)c (1 − zc̄)zc. (B.2)

Clearly, probabilities (B.1) and (B.2) are equivalent if the set of channels under the
MAM is viewed as the set of alternatives under the 2-NPCM (i.e. N = C), µ̂(j) = λj

and δ(i)j = p(j|i). Therefore, the assortment optimization problems under the described
special case of the MAM and the 2-NPCM are equivalent to each other, which concludes
the proof.
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B.3 Proof of Theorem 2.2

Let us call a vector of decision variables x =
{
x
(c)
c0 , x

(c)
cj , x

(c)
c̄j , y

(c)
cj , y

(c)
c̄j , tcj , zcj

}
c∈C,j∈N ,c̄∈Ccj

“consistent” if it corresponds to the demand under the MAM, i.e, if all decision variables
satisfy the following expressions for all c ∈ C, c̄ ∈ Ccj , j ∈ N :

x
(c)
cj =

µ(c)v
(c)
j zcj

v
(c)
0 +

∑
k∈N

v
(c)
k zck +

∑
i∈N

ϕ
(c)
i (1 − zci)

, (B.3a)

y
(c)
cj =

σ(c)v
(c)
j zcj

v
(c)
0 +

∑
k∈N

v
(c)
k zck +

∑
i∈N

ϕ
(c)
i (1 − zci)

, (B.3b)

x
(c)
c̄j =

µ(c)ϕ
(c)
j δ

(c)
c̄j (1 − zcj)zc̄j

v
(c)
0 +

∑
k∈N

v
(c)
k zck +

∑
i∈N

ϕ
(c)
i (1 − zci)

, (B.3c)

y
(c)
c̄j =

σ(c)ϕ
(c)
j δ

(c)
c̄j (1 − zcj)zc̄j

v
(c)
0 +

∑
k∈N

v
(c)
k zck +

∑
i∈N

ϕ
(c)
i (1 − zci)

, (B.3d)

tcj =

√(
y
(c)
cj

)2
+
∑
c̄∈Ccj

(
y
(c̄)
cj

)2
=
∥∥(y

(c)
cj ,
{
y
(c̄)
cj

}
c̄∈Ccj

)
∥∥
2
. (B.3e)

To prove the theorem, it is sufficient to demonstrate the following two points:

1) For any set of binary values of zcj defining the channel assortments, the corresponding
consistent vector of decision variables (B.3) is a feasible solution to the DB-MISOCP.
In other words, each assortment corresponds to a feasible solution to the DB-
MISOCP, ensuring that no assortment is excluded from consideration when solving
the DB-MISOCP.

2) The optimal solution to the DB-MISOCP is a consistent vector of variables for a
certain set of binary values of zcj . This means that the optimal solution corresponds
to product demands yielded by the MAM for a certain combination of channel
assortments.

The first point is straightforward to verify by substituting expressions (B.3) into the
constraints of problem (2.11). Similar to the SBMILP formulation presented by Vasilyev
et al. (2023), constants (2.12) are chosen to be large enough so that constraints (2.11j)
and (2.11k) are always satisfied. However, it can be checked that in extreme cases when
all products are offered in some channels while no products are offered in other channels,
these constraints become tight.
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Let us prove the second point. First, note that each profit function Πcj is decreasing in
tcj . Since the decision variables tcj are only present in constraints (2.11b), it means that
these constraints have to be tight. Therefore, equalities (B.3e) hold true. Next, suppose
that zcj = 1 for a certain c ∈ C, j ∈ N . From constraints (2.11d), (2.11e), and (2.11f), it

follows that
x
(c)
cj

v
(c)
j

=
x
(c)
c0

v
(c)
0

and x(c)c̄j = 0 for all c̄ ∈ Ccj . At the same time, constraints (2.11j)

imply that if zcj = 0, then x(c)cj = 0. Hence, from (2.11c) it follows that equalities (B.3a)
must be satisfied.

Constraints (2.11k) imply that variable x(c)c̄j is nonzero only if x(c̄)c̄j ̸= 0, meaning that

zc̄j ≠ 0. Furthermore, as previously demonstrated, variable x(c)c̄j is nonzero only if zcj = 0.

Therefore, x(c)c̄j is nonzero only if zc̄j = 1 and zcj = 0. Meanwhile, if zc̄j = 1 and zcj = 0,

then from constraints (2.11d) and (2.11g) it follows that
x
(c)
c̄j

ϕ
(c)
j δ

(c)
c̄j

=
x
(c)
c0

v
(c)
0

, which means

that equalities (B.3c) must be satisfied.

Finally, since each profit function Πcj decreases if either y(c)cj or y(c)c̄j grows, the DB-
MISOCP constraints (2.11h) and (2.11i) must be tight. Using our previous findings on
the values of x(c)cj and x(c)c̄j in the optimal solution to the DB-MISOCP, we deduce that
equalities (B.3b) and (B.3d) hold true, which concludes the proof.

B.4 Proof of Lemma 2.1

Let us consider fixed indices c, c̄, and j. In problem (R1), variable x(c)c̄j is only present in
three constraints, namely:

x
(c)
cj

v
(c)
j

+
x
(c)
c̄j

ϕ
(c)
j δ

(c)
c̄j

≤ x
(c)
c0

v
(c)
0

,

µ(c)y
(c)
c̄j ≥ σ(c)x

(c)
c̄j ,

x
(c)
c̄j ≤ K

(c)
c̄j x

(c̄)
c̄j .

The second constraint has to be binding, as it is the only constraint on variable y(c)c̄j and
the objective function negatively depends on this variable. Suppose that the other two
constraints are not binding. In this case, variable x(c)c̄j can be increased by some ϵ > 0

while keeping all other variables except for y(c)c̄j unchanged. If x(c)c̄j is increased by ϵ, then,

since the second constraint is binding, y(c)c̄j will be increased by
σ(c)

µ(c)
ϵ. To prove the lemma,

it is sufficient to show that this change has a positive effect on the objective function.
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This can be done by proving that the following function is increasing in ϵ at ϵ = 0:

Πcj

(
x
(c)
cj +

∑
d∈Ccj

x
(d)
cj + ϵ,

√√√√(y
(c)
cj )2+

(
y
(c̄)
cj +

σ(c)

µ(c)
ϵ
)2

+
∑

d∈Ccj\{c̄}

(y
(d)
cj )2

)
.

The derivative of this function with respect to ϵ is as follows:

(rcj − bcj) −

σ(c)

µ(c)
(rcj + hcj)φ

( rcj − bcj
rcj + hcj

)(
y
(c̄)
cj +

σ(c)

µ(c)
ϵ
)

√
(y

(c)
cj )2+

(
y
(c̄)
cj +

σ(c)

µ(c)
ϵ
)2

+
∑

d∈Ccj\{c̄}(y
(d)
cj )2

. (B.4)

Since all y-variables are nonnegative, it is straightforward to verify that expression (B.4)
is positive if condition (2.13) is satisfied.

B.5 Proof of Theorem 2.3

First, note that problem (R1) is a relaxation of problem (R2) with the same objective func-
tion that does not depend on variables zcj . Therefore, to show the equivalence of these two
problems, it is sufficient to show that if

{
x̂
(c)
c0 , x̂

(c)
cj , x̂

(c)
c̄j , ŷ

(c)
cj , ŷ

(c)
c̄j , t̂cj

}
c∈C,j∈N ,c̄∈Ccj

is a solu-

tion to problem (R1), then there exist a set of variables zcj such that
{
x̂
(c)
c0 , x̂

(c)
cj , x̂

(c)
c̄j , ŷ

(c)
cj ,

ŷ
(c)
c̄j , t̂cj , zcj

}
c∈C,j∈N ,c̄∈Ccj

is a solution to problem (R2). In essence, we aim to prove that
for all c ∈ C, j ∈ N , the following constraints on zcj are not mutually contradictory:

x̂
(c)
c0

v
(c)
0

−
x̂
(c)
cj

v
(c)
j

≤ µ(c)

ṽ
(c)
0

(1 − zcj),

x̂
(c)
cj ≤ H

(c)
j zcj ,

x̂
(c)
c0

v
(c)
0

−
x̂
(c)
c̄j

ϕ
(c)
j δ

(c)
c̄j

≤ µ(c)

ṽ
(c)
0

(1 + zcj − zc̄j) ∀c̄ ∈ Ccj ,

0 ≤ zcj ≤ 1,

or, equivalently:

µ(c)

ṽ
(c)
0

zcj ≤
µ(c)

ṽ
(c)
0

+
x̂
(c)
cj

v
(c)
j

− x̂
(c)
c0

v
(c)
0

,

µ(c)

ṽ
(c)
0

zcj ≥
ṽ
(c)
0 + ṽ

(c)
j

v
(c)
j ṽ

(c)
0

x̂
(c)
cj ,
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µ(c)

ṽ
(c)
0

zcj ≥
x̂
(c)
c0

v
(c)
0

−
x̂
(c)
c̄j

ϕ
(c)
j δ

(c)
c̄j

+
µ(c)

ṽ
(c)
0

(zc̄j − 1) ∀c̄ ∈ Ccj ,

0 ≤ zcj ≤ 1.

Note that the latter double inequality is redundant if other inequalities are satisfied.

Indeed, from the first inequality, it follows that zcj ≤ 1 (since
x̂
(c)
cj

v
(c)
j

≤ x̂
(c)
c0

v
(c)
0

, which holds

because constraint (2.11d) must be satisfied), and from the second inequality, it follows
that zcj ≥ 0. Thus, to prove that the above inequalities are not mutually contradictory,

it is sufficient to show that the upper bound on
µ(c)

ṽ
(c)
0

zcj is greater than or equal to its

lower bounds, i.e.:

µ(c)

ṽ
(c)
0

+
x̂
(c)
cj

v
(c)
j

− x̂
(c)
c0

v
(c)
0

≥
ṽ
(c)
0 + ṽ

(c)
j

v
(c)
j ṽ

(c)
0

x̂
(c)
cj , (B.5)

µ(c)

ṽ
(c)
0

+
x̂
(c)
cj

v
(c)
j

− x̂
(c)
c0

v
(c)
0

≥ x̂
(c)
c0

v
(c)
0

−
x̂
(c)
c̄j

ϕ
(c)
j δ

(c)
c̄j

+
µ(c)

ṽ
(c)
0

(zc̄j − 1) ∀c̄ ∈ Ccj . (B.6)

Inequality (B.5) can be rewritten in the following way:

µ(c)

ṽ
(c)
0

≥ x̂
(c)
c0

v
(c)
0

+
ṽ
(c)
j

v
(c)
j ṽ

(c)
0

x̂
(c)
cj , (B.7)

which holds because constraint (2.11c) of the DB-MISOCP has to be satisfied.

Now, let us prove inequality (B.6). From Lemma 2.1 it follows that for any given c̄ ∈ Ccj ,
at least one of the following two constraints has to be binding:

x̂
(c)
c̄j ≤ K

(c)
c̄j x̂

(c̄)
c̄j , (B.8)

x̂
(c)
cj

v
(c)
j

+
x̂
(c)
c̄j

ϕ
(c)
j δ

(c)
c̄j

≤ x̂
(c)
c0

v
(c)
0

. (B.9)

First, suppose that inequality (B.8) is binding, i.e.:

x̂
(c)
c̄j = K

(c)
c̄j x̂

(c̄)
c̄j ,
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or, equivalently:

x̂
(c)
c̄j =

ϕ
(c)
j δ

(c)
c̄j µ

(c)

ṽ
(c)
0

/
v
(c̄)
j µ(c̄)

v
(c̄)
0 +

∑
k∈N

v
(c̄)
k

x̂
(c̄)
c̄j .

By substituting this expression into inequality (B.6), we obtain:

µ(c)

ṽ
(c)
0

+
x̂
(c)
cj

v
(c)
j

− x̂
(c)
c0

v
(c)
0

≥ x̂
(c)
c0

v
(c)
0

− µ(c)

ṽ
(c)
0

v
(c̄)
0 +

∑
k∈N v

(c̄)
k

v
(c̄)
j µ(c̄)

x̂
(c̄)
c̄j +

µ(c)

ṽ
(c)
0

(zc̄j − 1).

This inequality can be rewritten as:

µ(c)

ṽ
(c)
0

(
1 +

v
(c̄)
0 +

∑
k∈N v

(c̄)
k

v
(c̄)
j µ(c̄)

x̂
(c̄)
c̄j

)
+
x̂
(c)
cj

v
(c)
j

≥ 2
x̂
(c)
c0

v
(c)
0

+
µ(c)

ṽ
(c)
0

(zc̄j − 1).

Since
µ(c)

ṽ
(c)
0

≥ x̂
(c)
c0

v
(c)
0

, it is sufficient to show that:

v
(c̄)
0 +

∑
k∈N v

(c̄)
k

v
(c̄)
j µ(c̄)

x̂
(c̄)
c̄j ≥ zc̄j . (B.10)

We can safely assume that zc̄j satisfies the following constraint of the DB-MISOCP:

x̂
(c̄)
c̄0

v
(c̄)
0

−
x̂
(c̄)
c̄j

v
(c̄)
j

≤ µ(c̄)

ṽ
(c̄)
0

(1 − zc̄j).

Therefore, since
µ(c̄)

ṽ
(c̄)
0

≥ x̂
(c̄)
c̄0

v
(c̄)
0

, the following inequality holds:

ṽ
(c̄)
0 x̂

(c̄)
c̄j

v
(c̄)
j µ(c̄)

≥ zc̄j . (B.11)

Since inequality (B.11) is stronger than inequality (B.10), we obtain that inequality (B.10)
holds as well.

Next, suppose that inequality (B.9) is binding, i.e.:

x̂
(c)
cj

v
(c)
j

+
x̂
(c)
c̄j

ϕ
(c)
j δ

(c)
c̄j

=
x̂
(c)
c0

v
(c)
0

. (B.12)

Recall that zc̄j ≤ 1 for all c̄ ∈ Ccj . Therefore, to prove inequality (B.6), it is sufficient to
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show that:

µ(c)

ṽ
(c)
0

+
x̂
(c)
cj

v
(c)
j

− x̂
(c)
c0

v
(c)
0

≥ x̂
(c)
c0

v
(c)
0

−
x̂
(c)
c̄j

ϕ
(c)
j δ

(c)
c̄j

∀c̄ ∈ Ccj . (B.13)

By substituting expression (B.12) into inequality (B.13), we obtain:

µ(c)

ṽ
(c)
0

≥ x̂
(c)
c0

v
(c)
0

,

which holds as a special case of inequality (B.7). Therefore, inequality (B.6) holds as well,
which concludes the proof.

B.6 Proof of Proposition 2.2

If customers do not switch between channels, then the omnichannel assortment opti-
mization problem can be separated into assortment optimization problems for individual
channels. In this case, for each channel c, type-c customers make choices according to
the GAM with product set N , product attractiveness values v(c)j , shadow attractiveness

values ϕ(c)j , and the attractiveness value of the no-purchase option v(c)0 .

Next, it is easy to verify that the DB-MISOCP constraints (2.11b) and (2.11i) are binding.

Therefore, at the optimum y
(c)
cj = t

(c)
cj =

σ(c)

µ(c)
x
(c)
cj for each c ∈ C, j ∈ N . It means that the

objective function of the assortment optimization problem for a given channel c can be
rewritten in the following way:

∑
j∈N

(rcj − bcj)x
(c)
cj − (rcj + hcj)φ

( rcj − bcj
rcj + hcj

)σ(c)
µ(c)

x
(c)
cj =

∑
j∈N

(
(rcj − bcj) − (rcj + hcj)φ

( rcj − bcj
rcj + hcj

)σ(c)
µ(c)

)
x
(c)
cj .

Since variables x(c̄)cj are not present in the DB-MISOCP formulation with ϕ
(c)
j δ

(c)
c̄j = 0

∀c ∈ C, c̄ ∈ C\{c}, j ∈ N , and variables tcj , y
(c)
cj , and y

(c̄)
cj have been shown to be

redundant, relaxation (R1) of the DB-MISOCP is reduced to a series of the following
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optimization problems (with one problem per channel c):

max
x

∑
j∈N

(
(rcj − bcj) − (rcj + hcj)φ

( rcj − bcj
rcj + hcj

)σ(c)
µ(c)

)
x
(c)
cj

s.t.
ṽ
(c)
0

v
(c)
0

x
(c)
c0 +

∑
j∈N

ṽ
(c)
j

v
(c)
j

x
(c)
cj = µ(c),

x
(c)
cj

v
(c)
j

≤ x
(c)
c0

v
(c)
0

∀j ∈ N ,

x
(c)
c0 , x

(c)
cj ∈ R≥0 ∀j ∈ N .

The above linear program is essentially the sales-based linear program (SBLP) formulated
for an instance of the GAM, where the price of product j in channel c is given by

(rcj − bcj) − (rcj + hcj)φ
( rcj − bcj
rcj + hcj

)σ(c)
µ(c)

. Gallego et al. (2014) proved that the SBLP is

a valid formulation of the assortment optimization problem under the GAM. Therefore,
the optimal solution to problem (R1) – which is equivalent to problem (R2) as per
Theorem 2.3 – yields the optimal assortments in all channels in the considered setting.
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C Appendices for Chapter 3

C.1 Proof of Proposition 3.1

Let x be a binary vector representing a basket of products from S. Furthermore, let x̃ be
the corresponding spin vector, i.e. the vector such that its entries satisfy

x̃i =

1 if xi = 1,

−1 otherwise.

Note that x = (x̃+ 1)/2. Since θ and θ̃ satisfy conditions (3.4), we obtain that

∑
i∈S

θiixi +
∑

i,j∈S: i ̸=j

xiθijxj =
∑
i∈S

(
2θ̃ii − 4

∑
j∈S: j ̸=i

θ̃ij

) x̃i + 1

2
+

∑
i,j∈S: i ̸=j

x̃i + 1

2
4θ̃ij

x̃j + 1

2
,

=
∑
i∈S

(
θ̃ii − 2

∑
j∈S: j ̸=i

θ̃ij

)
(x̃i + 1) +

∑
i,j∈S: i ̸=j

θ̃ij(x̃ix̃j + x̃i + x̃j + 1)

=
∑
i∈S

θ̃iix̃i +
∑

i,j∈S: i ̸=j

x̃iθ̃ij x̃j +
∑
i∈S

(
θ̃ii −

∑
j∈S: j ̸=i

θ̃ij

)
.

Therefore,

exp

(∑
i∈S

θiixi +
∑

i,j∈S: i ̸=j

xiθijxj

)
= exp

(∑
i∈S

θ̃iix̃i +
∑

i,j∈S: i ̸=j

x̃iθ̃ij x̃j

)
· const,

from which it follows that pθ(x|S) = pθ̃(x̃|S), which concludes the proof.
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C.2 Performance of the Ising model as a Multi-Purchase
Choice Model

To evaluate the performance of the Ising model as a multi-purchase choice model on the
Bakery dataset (see Benson et al., 2018), we require a benchmark. Following Benson
et al. (2018), we use the separable model – in which each product has a certain utility
and a basket’s utility is equal to the sum of the utilities of its elements assuming a fixed
basket size – as a benchmark. The key feature of the separable model is that demands
for different products are independent of each other. In this model, the probability of
choosing basket {i1, i2, . . . , ik} from the given choice set N is given by

psep({i1, i2, . . . , ik}) = psize(k)

∏ik
i=i1

pi∑
{j1,j2,...,jk}⊆N

∏jk
j=j1

pj
,

where psize(k) denotes the empirical probability of a customer selecting a basket of size k,
and pi is the empirical probability of a customer selecting item i ∈ N . These auxiliary
probabilities can be empirically estimated in the following way. Let B be the total number
of baskets in the training sample, and Bk be the number of baskets of size k in the
training sample. Furthermore, let H be the total number of units of all products in the
training sample, and Hi be the number of units of product i in the training sample. Then,
the empirical values of psize(k) and pi are as follows:

psize(k) =
Bk

B
, pi =

Hi

H
.

Let LLising and LLbase be the mean log-likelihood yielded by the Ising model and
the benchmark model on the test sample, respectively. Then, the log-likelihood val-
ues are LLising = −10.802 and LLbase = −11.538, and the relative improvement is
e(LLising−LLbase) = 2.09. Furthermore, if we set the regularization weight ρ to zero, then
LLising = −10.567 and the relative improvement becomes 2.64. We see that the Ising
model outperforms the subset selection choice model presented by Benson et al. (2018)
when the set of corrections is determined using the (normalized) lift heuristic and the
determinantal point process (DPP) model, and underperforms compared to their model
when the set of corrections is determined using the frequency heuristic. The latter occurs
due to the fact that, unlike Benson et al. (2018), we do not specifically account for the
distribution of basket sizes and focus on pairwise product interactions. On the other
hand, assortment optimization under the general version of the subset selection choice
model presented by Benson et al. (2018) is extremely challenging and, to the best of our
knowledge, this problem has not been addressed in the literature. We also note that the
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Ising model is a basic example of an MRF, and considering more complex MRFs is a
promising research direction that could lead to significant gains in performance.

C.3 Proof of Theorem 3.1

The decision version of the assortment optimization problem under the Ising model is as
follows:

For any given K, is there assortment S such that R(S) ≥ K? (D-AO)

Recall that R(S) is defined by the following expression:

R(S) =

∑
x∈X (S)

exp
(∑
i∈S

θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

) ∑
j∈S

rjxj∑
x∈X (S)

exp
(∑
i∈S

θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

) .

Therefore, the inequality in the decision problem (D-AO) can be rewritten in the following
way:

∑
x∈X (S),

x ̸=0

exp
(∑
i∈S

θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

)(∑
j∈S

rjxj −K

)
≥ K.

(C.1)

Let r1 = K + 1, θ11 = 0, and rj = 0 ∀j ∈ N\{1}. Since product 1 is the only product
with a nonzero profit margin, it has to belong to S in order for inequality (C.1) to be
satisfied assuming that K > 0. Then, inequality (C.1) takes the following form:∑

x∈X (S),
x1=1

exp
( ∑
i∈S\{1}

(θii + 2θ1i)xi +
∑
i ̸=j,

i,j∈S\{1}

xiθijxj

)
≥ K.

Lastly, let θ′ii = θii + 2θ1i ∀i ∈ N\{1} and θ′ij = θij ∀i, j ∈ N\{1}. We can see that
solving problem (D-AO) requires answering the question of whether the partition function
of the Ising model with parameters θ′ defined over nodes N\{1} is greater than or equal
to a given constant. Such a problem is NP-hard as shown by Istrail (2000) for nonplanar
graphs, meaning that problem (D-AO) is NP-hard as well.

C.4 Proof of Proposition 3.2

Let product k be such that θkj = 0 ∀j ∈ N\{k}. Then, our goal is to show that
R(S ∪ {k}) ≥ R(S) for any assortment S ⊆ N such that k /∈ S. This can be verified
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directly:

R(S ∪ {k}) =

=

∑
x∈X (S∪{k})

exp
( ∑
i∈S∪{k}

θiixi +
∑

i ̸=j, i,j∈S∪{k}
xiθijxj

) ∑
j∈S∪{k}

rjxj∑
x∈X (S∪{k})

exp
( ∑
i∈S∪{k}

θiixi +
∑

i ̸=j, i,j∈S∪{k}
xiθijxj

)

≥

∑
x∈X (S∪{k})

exp
( ∑
i∈S∪{k}

θiixi +
∑

i ̸=j, i,j∈S∪{k}
xiθijxj

) ∑
j∈S

rjxj∑
x∈X (S∪{k})

exp
( ∑
i∈S∪{k}

θiixi +
∑

i ̸=j, i,j∈S∪{k}
xiθijxj

)

=

∑
x∈X (S)

(
1 + exp(θkk + 2

∑
i∈S

xiθki)
)

exp
(∑

i∈S θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

) ∑
j∈S

rjxj∑
x∈X (S)

(
1 + exp(θkk + 2

∑
i∈S

xiθki)
)

exp
(∑

i∈S θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

)

=

∑
x∈X (S)

(
1 + exp(θkk)

)
exp
(∑

i∈S θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

) ∑
j∈S

rjxj∑
x∈X (S)

(
1 + exp(θkk)

)
exp
(∑

i∈S θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

)

=

∑
x∈X (S)

exp
(∑

i∈S θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

) ∑
j∈S

rjxj∑
x∈X (S)

exp
(∑

i∈S θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

) = R(S).

C.5 Proof of Proposition 3.3

Let SH = S ∩H and SK = S ∩K, and let us fix product l ∈ SH. To prove the proposition,
it is sufficient to show that the marginal probability of a customer choosing product
l ∈ SH does not depend on SK. This is a direct implication of the fact that the Ising
model satisfies global Markov properties. This can also be verified directly:

pθ(xl = 1|S) =

∑
x∈X (S): xl=1

exp
(∑
i∈S

θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

)
∑

x∈X (S)

exp
(∑
i∈S

θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

)

=

∑
x∈X (SH):

xl=1

(
exp
( ∑
i∈SH

θiixi +
∑
i ̸=j,

i,j∈SH

xiθijxj

) ∑
x′∈X (SK)

exp
( ∑
i∈SK

θiix
′
i +

∑
i ̸=j,

i,j∈SK

x′iθijx
′
j

))
∑

x∈X (SH)

(
exp
( ∑
i∈SH

θiixi +
∑
i ̸=j,

i,j∈SH

xiθijxj

) ∑
x′∈X (SK)

exp
( ∑
i∈SK

θiix′i +
∑
i ̸=j,

i,j∈SK

x′iθijx
′
j

))
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=

∑
x∈X (SH): xl=1

exp
( ∑
i∈SH

θiixi +
∑

i ̸=j, i,j∈SH

xiθijxj

)
∑

x∈X (SH)

exp
( ∑
i∈SH

θiixi +
∑

i ̸=j, i,j∈SH

xiθijxj

) = pθ(xl = 1|SH).

C.6 Proof of Theorem 3.2

Let us first formulate the following auxiliary lemma:

Lemma C.1.

pθ(xl = 1|S) ≥ pθ(xl = 1|xk = 0, S) ⇐⇒ pθ(xl = 1|xk = 1, S) ≥ pθ(xl = 1|xk = 0, S).

Proof of Lemma C.1. Suppose that

pθ(xl = 1|S) ≥ pθ(xl = 1|xk = 0, S). (C.2)

By the law of total probability, we obtain that:

pθ(xl = 1|xk = 0, S)pθ(xk = 0|S)+pθ(xl = 1|xk = 1, S)pθ(xk = 1|S) ≥

pθ(xl = 1|xk = 0, S),

or

pθ(xl = 1|xk = 1, S)pθ(xk = 1|S) ≥ pθ(xl = 1|xk = 0, S)(1 − pθ(xk = 0|S)).

Since pθ(xk = 1|S) = 1 − pθ(xk = 0|S) and pθ(xk = 1|S) > 0, we can divide both sides of
the inequality by pθ(xk = 1|S) while preserving the inequality sign, thus obtaining the
desired inequality:

pθ(xl = j|xk = 1, S) ≥ pθ(xl = 1|xk = 0, S). (C.3)

Finally, one can prove that inequality (C.2) follows from inequality (C.3) by repeating
the above steps from the bottom up.

Proof of Theorem 3.2. From Proposition 3.3 it follows that we can consider products in
an isolated subgraph as a separate product portfolio N . Suppose that θij ≥ 0 ∀i, j ∈ N ,
i ̸= j. To prove the theorem, it is sufficient to show that removing any product from
the assortment can only reduce the marginal probabilities of customers choosing other
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products, i.e., for any k, l ∈ N :

pθ(xl = 1|S) ≥ pθ(xl = 1|xk = 0, S).

Without loss of generality, suppose that S = {1, . . . ,m}, l = 1, and k = 2. As shown in
Lemma C.1, the above inequality is equivalent to the following one:

pθ(x1 = 1|x2 = 1, S) ≥ pθ(x1 = 1|x2 = 0, S). (C.4)

Let f(a, b) =
∑

x∈X (S): x1=a,x2=b

exp
(∑
i∈S

θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

)
. Then, inequality (C.4)

can be rewritten as

f(1, 1)

f(0, 1) + f(1, 1)
≥ f(1, 0)

f(0, 0) + f(1, 0)
,

or

f(0, 0)f(1, 1) ≥ f(1, 0)f(0, 1). (C.5)

Let g(x|S) = exp
(∑
i∈S

θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

)
, and let S−m = {3, . . . ,m}. Then, inequal-

ity (C.5) takes the following form:

∑
x∈X (S−

m)

g
[
(0, 0, x)|S

] ∑
x∈X (S−

m)

g
[
(1, 1, x)|S

]
≥

∑
x∈X (S−

m)

g
[
(1, 0, x)|S

] ∑
x∈X (S−

m)

g
[
(0, 1, x)|S

]
.

(C.6)

We prove inequality (C.6) by induction over m.

Induction base. If m = 2, then inequality (C.6) can be written as:

1 · exp(θ11 + θ22 + 2θ12) ≥ exp(θ11) exp(θ22),

which holds true since θ12 ≥ 0. We also check that inequality (C.6) holds if m = 3. In
this case, this inequality becomes:(

1 + exp(θ33)
)(

exp(θ11 + θ22 + 2θ12) + exp(θ11 + θ22 + θ33 + 2θ12 + 2θ13 + 2θ23)
)
≥(

exp(θ11) + exp(θ11 + θ33 + 2θ13)
)(

exp(θ22) + exp(θ22 + θ33 + 2θ23)
)
.
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It is easy to see that the above inequality holds if:

exp(2θ12) + exp(2θ12 + 2θ13 + 2θ23) ≥ exp(2θ23) + exp(2θ13). (C.7)

Note that it is sufficient to show that the latter inequality holds for θ12 = 0, in which
case this inequality is equivalent to the following one:

(exp(2θ13) − 1)(exp(2θ23) − 1) ≥ 0.

The above inequality is true for any θ13, θ23 > 0, meaning that inequality (C.6) holds for
m = 3.

Induction step. Assuming that inequality (C.6) holds for dimension m− 1, our goal is to
show that it also holds for dimension m. This inequality can be rewritten in the following
way: ∑

x,x′∈X (S−
m)

g
[
(0, 0, x)|S

]
· g
[
(1, 1, x′)|S

]
≥

∑
x,x′∈X (S−

m)

g
[
(1, 0, x)|S

]
· g
[
(1, 0, x)|S

]
,

which is equivalent to:∑
x,x′∈X (S−

m)

g(x|S−m)g(x′|S−m) exp(θ11 + θ22 + 2θ12 + 2
∑
i∈S−

m

(θ1i + θ2i)x
′
i) ≥

∑
x,x′∈X (S−

m)

g(x|S−m)g(x′|S−m) exp(θ11 + θ22 + 2
∑
i∈S−

m

θ1ixi + 2
∑
i∈S−

m

θ2ix
′
i).

Since θ12 > 0 and exp(θ12) is a multiplier that is only present on the left-hand side of the
above inequality, it is sufficient to show that this inequality holds for θ12 = 0. Therefore,
we want to prove the following inequality:

∑
x,x′∈X (S−

m)

g(x|S−m)g(x′|S−m) exp(2
∑
i∈S−

m

θ2ix
′
i)
(

exp(2
∑
i∈S−

m

θ1ix
′
i)−exp(2

∑
i∈S−

m

θ1ixi)
)
≥ 0.

(C.8)

It is easy to see that if θ2i = 0 ∀i ∈ S−m, then inequality (C.8) is satisfied as it turns into
an equality. Therefore, one can prove inequality (C.8) by showing that its left-hand side
is increasing in θ2i for any i ∈ S−m. Without loss of generality, let us fix i = m and show
that the left-hand side of inequality (C.8) is increasing in θ2m. We do this by taking a
derivative of this function with respect to θ2m and checking that it is always nonnegative
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under the given assumptions. In other words, we prove the following inequality:∑
x,x′∈X (S−

m)
x′
m=1

g(x|S−m)g(x′|S−m) exp(2
∑
i∈S−

m

θ2ix
′
i)
(

exp(2
∑
i∈S−

m

θ1ix
′
i)−exp(2

∑
i∈S−

m

θ1ixi)
)
≥ 0.

Clearly, the above inequality holds if the following inequalities are true:

∑
x,x′∈X (S−

m)
xm=0, x′

m=1

g(x|S−m)g(x′|S−m) exp(2
∑
i∈S−

m

θ2ix
′
i)
(

exp(2
∑
i∈S−

m

θ1ix
′
i)−exp(2

∑
i∈S−

m

θ1ixi)
)
≥ 0,

(C.9)

∑
x,x′∈X (S−

m)
xm=1, x′

m=1

g(x|S−m)g(x′|S−m) exp(2
∑
i∈S−

m

θ2ix
′
i)
(

exp(2
∑
i∈S−

m

θ1ix
′
i)−exp(2

∑
i∈S−

m

θ1ixi)
)
≥ 0.

(C.10)

Let S−m−1 = {3, . . . ,m− 1}. Then, inequality (C.9) can be rewritten as:∑
x,x′∈X (S−

m−1)

g(x|S−m−1)g(x′, |S−m−1) exp(2
∑

i∈S−
m−1

θmix
′
i + θmm)·

exp(2
∑

i∈S−
m−1

θ2ix
′
i + θ2m)

(
exp(2

∑
i∈S−

m−1

θ1ix
′
i + θ1m) − exp(2

∑
i∈S−

m−1

θ1ixi)
)
≥ 0.

It is sufficient to show that the above inequality holds for θ1m = 0, in which case it takes
the following form:∑

x,x′∈X (S−
m−1)

g(x|S−m−1)g(x′|S−m−1) exp(2
∑

i∈S−
m−1

(θmi + θ2i)x
′
i)·

(
exp(2

∑
i∈S−

m−1

θ1ix
′
i) − exp(2

∑
i∈S−

m−1

θ1ixi)
)
≥ 0.

(C.11)

Inequality (C.11) is equivalent to inequality (C.8) where assortment S−m is replaced with
assortment S−m−1 and parameters θ2i are replaced with parameters θ2i + θmi ∀i ∈ S−m−1.
Therefore, inequality (C.11) holds by induction hypothesis.
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Similarly, inequality (C.10) is equivalent to the following one:∑
x,x′∈X (S−

m−1)

g(x|S−m−1)g(x′, |S−m−1) exp(2
∑

i∈S−
m−1

θmi(xi + x′i))·

exp(2
∑

i∈S−
m−1

θ2ix
′
i)
(

exp(2
∑

i∈S−
m−1

θ1ix
′
i) − exp(2

∑
i∈S−

m−1

θ1ixi)
)
≥ 0.

(C.12)

Inequality (C.12) holds true since it is equivalent to inequality (C.8) where assortment
S−m is replaced with assortment S−m−1 and parameters θii are replaced with parameters
θii + θmi ∀i ∈ S−m−1. Thus, inequality (C.8) holds for dimension m, which concludes our
proof by induction.

C.7 Proof of Proposition 3.4

First, from Proposition 3.3 it follows that we can consider products from the isolated
subgraph as a separate product portfolio, i.e., we can assume that H = N . Then, our
goal is to show that R(S ∪{k}) ≥ R(S) for any assortment S ⊆ N such that k /∈ S. Note
that

R(S ∪ {k}) =

∑
x∈X (S∪{k})

exp
( ∑
i∈S∪{k}

θiixi +
∑

i ̸=j, i,j∈S∪{k}
xiθijxj

) ∑
j∈S∪{k}

rjxj∑
x∈X (S∪{k})

exp
( ∑
i∈S∪{k}

θiixi +
∑

i ̸=j, i,j∈S∪{k}
xiθijxj

)

≥

∑
x∈X (S∪{k})

exp
( ∑
i∈S∪{k}

θiixi +
∑

i ̸=j, i,j∈S∪{k}
xiθijxj

) ∑
j∈S

rjxj∑
x∈X (S∪{k})

exp
( ∑
i∈S∪{k}

θiixi +
∑

i ̸=j, i,j∈S∪{k}
xiθijxj

)

=

∑
x∈X (S)

(
1 + exp(θkk + 2

∑
i∈S

xiθki)
)

exp
(∑

i∈S θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

) ∑
j∈S

rjxj∑
x∈X (S)

(
1 + exp(θkk + 2

∑
i∈S

xiθki)
)

exp
(∑

i∈S θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

)
and

R(S) =

∑
x∈X (S)

exp
(∑

i∈S θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

) ∑
j∈S

rjxj∑
x∈X (S)

exp
(∑

i∈S θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

) .

Let us denote exp
(∑

i∈S θiixi +
∑

i ̸=j, i,j∈S
xiθijxj

)
by a(x),

∑
j∈S

rjxj by b(x), and
(
1 +

exp(θkk + 2
∑
i∈S

xiθki)
)

by c(x). For readability, let us slightly abuse the notation and
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write just the summation over x instead of the summation over x ∈ X (S). Then, our
goal is to prove that the following inequality holds for any assortment S ⊆ N :∑

x a(x)b(x)c(x)∑
x a(x)c(x)

≥
∑

x a(x)b(x)∑
x a(x)

,

or ∑
x

a(x)b(x)c(x)
∑
x

a(x) ≥
∑
x

a(x)b(x)
∑
x

a(x)c(x).

The above inequality can be rewritten as:∑
x,x′

a(x)b(x)c(x)a(x′) ≥
∑
x,x′

a(x)b(x)a(x′)c(x′),

which is equivalent to∑
x,x′

a(x)b(x)a(x′)(c(x) − c(x′)) ≥ 0.

Let us multiply the latter inequality by 2 and split the sum on the left-hand side into
pairs in the following way:∑

x,x′

(
a(x)b(x)a(x′)(c(x) − c(x′)) + a(x′)b(x′)a(x)(c(x′) − c(x))

)
≥ 0,

which can be rewritten as∑
x,x′

a(x)a(x′)(b(x) − b(x′))(c(x) − c(x′)) ≥ 0. (C.13)

Finally, suppose that b(x) > b(x′), i.e.,
∑
j∈S

rjxj >
∑
j∈S

rjx
′
j . Then, exp(θkk+2

∑
j∈S

αrjxj) >

exp(θkk + 2
∑
j∈S

αrjx
′
j), meaning that c(x) > c(x′). Similarly, if b(x) < b(x′), then

c(x) < c(x′) as well. Therefore, inequality (C.13) holds true, which concludes the
proof.

144



Bibliography

Abouelrous, A., Gabor, A. F., and Zhang, Y. (2022). “Optimizing the inventory and
fulfillment of an omnichannel retailer: a stochastic approach with scenario clustering”.
Computers & Industrial Engineering, 173, p. 108723.

Alimonti, P. and Kann, V. (2000). “Some APX-completeness results for cubic graphs”.
Theoretical Computer Science, 237(1), pp. 123–134.

Aouad, A., Levi, R., and Segev, D. (2018). “Greedy-Like Algorithms for Dynamic As-
sortment Planning Under Multinomial Logit Preferences”. Operations Research, 66(5),
pp. 1321–1345.

Aouad, A., Levi, R., and Segev, D. (2019). “Approximation Algorithms for Dynamic
Assortment Optimization Models”. Mathematics of Operations Research, 44(2), pp. 487–
511.

Aouad, A. and Segev, D. (2019). The Stability of MNL-Based Demand under Dy-
namic Customer Substitution and its Algorithmic Implications. Available at SSRN:
https://ssrn.com/abstract=3498325.

Banerjee, O., Ghaoui, L. E., and d’Aspremont, A. (2008). “Model Selection Through
Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data”.
Journal of Machine Learning Research, 9, pp. 485–516.

Banker, S. (2021). Walmart’s Massive Investment In A Supply Chain Transformation.
Forbes. Accessed on 05/05/2023.

Barahona, F. (1982). “On the computational complexity of Ising spin glass models”.
Journal of Physics A: Mathematical and General, 15(10), p. 3241.

Barr, J. (2021). Why optimizing your omnichannel experience is critical after Covid-19.
Forbes. Accessed on 05/05/2023.

Bayram, A. and Cesaret, B. (2021). “Order fulfillment policies for ship-from-store im-
plementation in omni-channel retailing”. European Journal of Operational Research,
294(3), pp. 987–1002.

145

https://ssrn.com/abstract=3498325
https://www.forbes.com/sites/stevebanker/2021/04/23/walmarts-massive-investment-in-a-supply-chain-transformation/?sh=68280fe5340e
https://www.forbes.com/sites/forbesbusinesscouncil/2021/12/03/why-optimizing-your-omnichannel-experience-is-critical-after-covid-19/?sh=3ed3ab2431f7


Bibliography

Ben-Akiva, M. E. and Lerman, S. R. (1985). Discrete choice analysis: theory and applica-
tion to travel demand. MIT Press Cambridge (Mass.)

Benson, A., Kumar, R., and Tomkins, A. (2018). “A Discrete Choice Model for Subset
Selection”. In: Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining. ACM Press, pp. 37–45.

Berbeglia, G., Garassino, A., and Vulcano, G. (2021). “A Comparative Empirical Study
of Discrete Choice Models in Retail Operations”. Management Science.

Berbeglia, G. and Joret, G. (2020). “Assortment Optimisation Under a General Discrete
Choice Model: A Tight Analysis of Revenue-Ordered Assortments”. Algorithmica, 82(4),
pp. 681–720.

Besag, J. (1974). “Spatial Interaction and the Statistical Analysis of Lattice Systems”.
Journal of the Royal Statistical Society. Series B (Methodological), 36(2), pp. 192–236.

Bhat, C. R. (2005). “A multiple discrete–continuous extreme value model: Formulation
and application to discretionary time-use decisions”. Transportation Research Part B:
Methodological, 39(8), pp. 679–707.

Bhat, C. R. (2008). “The multiple discrete-continuous extreme value (MDCEV) model:
Role of utility function parameters, identification considerations, and model extensions”.
Transportation Research Part B: Methodological, 42(3), pp. 274–303.

Bhatnagar, A. and Syam, S. S. (2014). “Allocating a hybrid retailer’s assortment across
retail stores: Bricks-and-mortar vs online”. Journal of Business Research, 67(6), pp. 1293–
1302.

Bierlaire, M. (2015). Optimization: Principles and Algorithms. Lausanne: EPFL Press.

Blanchet, J., Gallego, G., and Goyal, V. (2016). “A Markov Chain Approximation to
Choice Modeling”. Operations Research, 64(4), pp. 886–905.

Block, H. and Marschak, J. (1959). Random Orderings and Stochastic Theories of Response.
Cowles Foundation Discussion Papers 66. Cowles Foundation for Research in Economics,
Yale.
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Schäfer, F., Hense, J., and Hübner, A. (2023). “An analytical assessment of demand
effects in omni-channel assortment planning”. Omega, 115, p. 102749.

Schlapp, J. and Fleischmann, M. (2018). “Technical Note—Multiproduct Inventory Man-
agement Under Customer Substitution and Capacity Restrictions”. Operations Research,
66(3), pp. 740–747.

Schneider, F. and Klabjan, D. (2013). “Inventory control in multi-channel retail”. European
Journal of Operational Research, 227(1), pp. 101–111.

Schraudolph, N. and Kamenetsky, D. (2008). “Efficient Exact Inference in Planar Ising
Models”. In: Advances in Neural Information Processing Systems. Ed. by D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou. Vol. 21. Curran Associates, Inc.

Segev, D. (2019). “Assortment Planning with Nested Preferences: Dynamic Programming
with Distributions as States?” Algorithmica, 81, pp. 393–417.

Seifert, R. W., Thonemann, U. W., and Sieke, M. A. (2006). “Integrating direct and
indirect sales channels under decentralized decision-making”. International Journal of
Production Economics, 103(1), pp. 209–229.

Smith, S. A. and Agrawal, N. (2000). “Management of Multi-Item Retail Inventory
Systems with Demand Substitution”. Operations Research, 48(1), pp. 50–64.

151



Bibliography

Song, I. and Chintagunta, P. K. (2006). “Measuring Cross-Category Price Effects with
Aggregate Store Data”. Management Science, 52(10), pp. 1594–1609.

Sopadjieva, E., Dholakia, U. M., and Benjamin, B. (2017). A Study of 46,000 Shoppers
Shows That Omnichannel Retailing Works. Harvard Business Review. Accessed on
05/05/2023.

Spitzer, F. (1971). “Markov Random Fields and Gibbs Ensembles”. American Mathematical
Monthly, 78(2), pp. 142–154.

Timonina-Farkas, A., Katsifou, A., and Seifert, R. W. (2020). “Product assortment and
space allocation strategies to attract loyal and non-loyal customers”. European Journal
of Operational Research, 285(3), pp. 1058–1076.

Toh, K. C., Todd, M. J., and Tutuncu, R. H. (1999). “SDPT3 — A Matlab software
package for semidefinite programming, Version 1.3”. Optimization Methods and Software,
11(1-4), pp. 545–581.

Topaloglu, H. (2013). “Joint Stocking and Product Offer Decisions Under the Multinomial
Logit Model”. Production and Operations Management, 22(5), pp. 1182–1199.

Train, K. (2002). Discrete Choice Methods with Simulation. Cambridge University Press.

Transchel, S., Buisman, M. E., and Haijema, R. (2022). “Joint assortment and inventory
optimization for vertically differentiated products under consumer-driven substitution”.
European Journal of Operational Research, 301(1), pp. 163–179.

Tulabandhula, T., Sinha, D., and Patidar, P. (2020). Multi-Purchase Behavior: Modeling
and Optimization. Available at SSRN: https://ssrn.com/abstract=3626788.

Tutuncu, R., Toh, K., and Todd, M. (2003). “Solving semidefinite-quadratic-linear pro-
grams using SDPT3”. Mathematical Programming Ser. B, 95, pp. 189–217.

Vasilyev, A., Maier, S., and Seifert, R. W. (2023). “Assortment optimization using an
attraction model in an omnichannel environment”. European Journal of Operational
Research, 306(1), pp. 207–226.

Vulcano, G., Ryzin, G. van, and Ratliff, R. (2012). “Estimating Primary Demand for
Substitutable Products from Sales Transaction Data”. Operations Research, 60(2),
pp. 313–334.
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