
Building and Environment 245 (2023) 110850

A
0

Contents lists available at ScienceDirect

Building and Environment

journal homepage: www.elsevier.com/locate/buildenv

Toward contactless human thermal monitoring: A framework for Machine
Learning-based human thermo-physiology modeling augmented with
computer vision
Mohamad Rida a, Mohamed Abdelfattah b, Alexandre Alahi b, Dolaana Khovalyg a,∗

a Laboratory of Integrated Comfort Engineering (ICE), École polytechnique fédérale de Lausanne (EPFL), Fribourg, Switzerland
b Visual Intelligence for Transportation (VITA), École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland

A R T I C L E I N F O

Keywords:
Thermal comfort
Human thermo-physiology modeling
Non-intrusive sensing
Artificial intelligence
Deep learning
Computer vision

A B S T R A C T

The transition towards a human-centered indoor climate is beneficial from occupants’ thermal comfort and from
an energy reduction perspective. However, achieving this goal requires the knowledge of the thermal state of
individuals at the level of body parts. Many current solutions rely on intrusive wearable technologies, which
require physical access to individuals facing limitations in scalability. Personalizing the indoor environment
demands increased sensing at individual levels presenting challenges in terms of data collection and ensuring
privacy protection. To address this challenge, this paper introduces a novel approach to non-intrusive
personalized humans thermal sensing that can acquire personal data while minimizing the amount of sensing
required. The method investigates multi-modal sensing solutions based on IR and RGB images, and it includes
the development of a Machine Learning-based Human Thermo-Physiology Model (ML-HTPM). With the help
of computer vision, features important for thermal comfort such as activity level, clothing insulation, posture,
age, and sex can be extracted from an RGB image sequence using models such as the SlowFast network,
YOLOv 7, while limited skin temperatures can be extracted from an IR image using OpenPifPaf for body
parts detection. The developed ML-HTPM is based on data generated from an open-source JOS3 model after
applying a prediction model based on Long Short-Term Memory (LSTM). The results showed that a human
thermo-physiology model using machine learning can be trained, showing an RMSE of less than 0.5 ◦C in most
of the local skin temperatures.
1. Introduction

Rapid urbanization and the fact that people spend almost 90% of
their time indoors makes indoor environmental quality (IEQ) account-
able in new and existing buildings for assuring the well-being of the
occupants [1]. IEQ is characterized by environmental categories such
as thermal, air quality, lighting, and acoustics. While each category
is important for the comfort and well-being of occupants, thermal
(dis)comfort is the most familiar and easily recognizable by occupants.
Therefore, the indoor temperatures are typically set in buildings with
the aim of providing thermal comfort to occupants by keeping their
sensation around thermal neutrality (the state when a human body
primarily maintains its core body temperature with minimal metabolic
regulation) [2,3]. However, the practice of setting the indoor temper-
ature at a narrow range has resulted in almost 40% of operational
energy use in buildings [4,5]. Surprisingly, as evidenced from multiple
field studies, e.g., [6,7], the buildings that are supposedly designed
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according to the standardized requirements do not necessarily pro-
vide a satisfactory experience to their occupants primarily because of
human diversity. The current methods of setting the indoor climate
consider an average person [8], but ‘‘one size does not fit all’’ [9] and
individual differences in thermal sensation are well documented in
the literature [10,11]. Therefore, in quest of improving the well-being
of occupants and limiting energy use in buildings, there is a need
to advance methods to detect the thermal sensation of individuals
and potentially incorporate them into the control of the climatization
system of the building.

As humans are endotherms, the core body temperature (𝑇𝑐𝑜𝑟𝑒) in
healthy people is rather stable even for a wide range of ambient
temperatures and during exercises, excluding scenarios of hypo- and
hyperthermia [12,13]. The gradient between the skin temperature of
the core body part such as a chest (𝑇𝑠𝑘𝑖𝑛,𝑐ℎ𝑒𝑠𝑡) and other body parts
(𝑇𝑠𝑘𝑖𝑛,𝑖), particularly of extremities, drives thermal sensation of indi-
viduals [14]. Zhang et al. [15] and Choi and Loftness [16] conducted
vailable online 26 September 2023
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studies on the factors affecting the prediction of thermal sensation.
They found that skin temperature exhibited the highest correlation
among physiological parameters, capturing the combined influence of
environmental factors, body thermoregulation, and individual char-
acteristics. According to Bulcao et al. [17], skin temperature is the
primary determinant of thermal comfort in humans, whereas both skin
temperature and core temperature variations contribute to physiolog-
ical reactions related to thermal changes [18,19]. Thus, the overall
thermal sensation is a function of the local sensation of individual
body parts [14], and knowing the local skin temperature at different
body parts (𝑇𝑠𝑘𝑖𝑛,𝑖) is important to advance the human-centric thermal
environment and personalized conditioning systems that can aid the
reduction of energy use in buildings [20–22].

1.1. Human thermal state modeling

Mathematical models of human thermoregulation called human
thermo-physiology models (HTPMs) can estimate the change in core
temperature 𝑇𝑐𝑜𝑟𝑒 and local skin temperature 𝑇𝑠𝑘𝑖𝑛,𝑖 at steady and
transient thermal environments [23]; thus, serve as a tool to predict
local thermal comfort of people. Most of the detailed multi-node HTPMs
are based on Stolwijk’s model [24,25], examples are Fiala’s model [26],
Tanabe’s model (JOS1-JOS3) [23], the Berkeley Comfort Model [27],
the AUB model [28], and ThermoSEM [29,30]. All models are based
on the energy balance between the environment and the human body;
thus, they include heat transfer between the skin layer and the envi-
ronment in addition to conduction between the different skin layers
and convection due to the blood circulation between layers and body
parts [23,26,28,30]. The typical inputs used in HTPMs are environmen-
tal parameters (local air temperature 𝑇𝑎𝑖𝑟, mean radiant temperature
𝑀𝑅𝑇 , air speed 𝑉𝑎𝑖𝑟, relative humidity 𝑅𝐻) and personal parameters
(activity level 𝐴𝑐𝑡, local clothing insulation 𝐼𝐶𝑙, and sometimes body
characteristics). Environmental parameters should be input at each
body part, which is typically challenging to determine; nevertheless,
there has yet to be an HTPM that could be executed without input
information about the environment.

Models ThermoSEM and JOS3 can use individual body parameters
as input and be re-scaled to fit an individual, thus, they are capable
of predicting personalized local thermal responses. JOS3, a description
of which is detailed in Appendix A, is an open-access model [23] and,
per a validation study by Rida et al. [31], it has better accuracy in
predicting skin and core temperatures compared to ThermoSEM. JOS3
model showed a root-mean-squared-error RMSE of 0.3 ◦C for core tem-
perature and 0.9 ◦C for mean skin temperature; therefore, this model
could be used to determine the local temperatures of the human body,
however, accurate environmental data and personal parameters such
as clothing and metabolic rate must be input. Since metabolism is quite
individual [32], the input of additional individual characteristics (e.g.,
height, weight, age, and gender) are essential. Thus, the model JOS3 is
capable of detailing the interaction of humans with their environment,
but it requires multiple environmental and personal sensing and the
knowledge of individual parameters.

1.2. Human comfort, environment, and personalized features detection

Currently, the most direct way of knowing the local thermal sen-
sation of people is surveying, which is limited by the participation
rate [33]. Typical monitoring of environmental parameters at the room
level using a restricted number of sensors is difficult to match with
the actual thermal sensation of humans since they are usually attached
to building surfaces away from people [34]. Detailed measurements of
physiological changes in the human body caused by the environment
(i.e., vasodilation, vasoconstriction) can precisely inform regarding the
local thermal sensation of individuals; however, it is difficult to perform
such measurements outside the lab. With the advancement of wear-
able devices, it has become possible to monitor certain physiological
2
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parameters of humans (i.e., HR, wrist skin temperature, etc.) in the
ctual environment and to correlate them with individuals’ thermal
ensation [35,36]. However, the measurements using wearables are
till relatively imprecise, and physiological input to wearable devices
s limited [34]. Alternatively, there are emerging data-driven methods
ombining objective environmental measurements with subjective feed-
ack [22,37]; but they require large dataset collection using intrusive
r semi-intrusive approaches [38]. Data-intensive methods contradict
he dislike of occupants to be equipped with sensors and respond to
ultiple surveys. Therefore, minimizing the number of data sources

nd maximizing the data extraction from limited sources is a challenge
o overcome. With this respect, non-intrusive measurements using cam-
ras augmented with computer vision methods are gaining more attention
ue to the recent advances in Deep Learning.

Multiple researchers attempted to develop machine learning mod-
ls to predict thermal comfort and showed that skin temperatures
ere important predictors. Yu et al. [39] tested different machine

earning algorithms (e.g., Support Vector Machine, Decision Tree, K-
earest Neighbors) to predict thermal comfort, and head and hand

kin temperatures were the main contributors to the model. Other
tudies, such as [40,41], focused on correlating some areas of the face
emperature to thermal comfort. Lyu et al. [40] used the classification
andom Forest algorithm to model thermal sensation based on facial
kin temperature extracted from an IR image with the help of the
penCV library to detect the face. They determined that the frontal
iew of the face had the best results, followed by the lateral view of
he face. Li et al. [41] studied the impact of the temperature collection
ones that can accurately reflect the thermal sensation by applying the
ecision Forest algorithm in addition to the Haar Cascade algorithm

or face detection. Ghahramani et al. [42] used hidden Markov model, a
ontinuous learning method, to capture personal thermal comfort using
R thermography of the human face. Jazizadeh and Jung [43] used RGB
ideo camera combined with Eulerian Video Magnification algorithm to
nfer personalized blood perfusion state through tracking of facial skin
olor variations. Moreover, Li et al. [44] also examined the use of an
R thermal camera network to identify skin temperature features and
redict occupants’ thermal preferences at variable angles and distances.
ased on their experiment, they reported that the variations in skin
emperature correspond to the comfort states reported by the sub-
ects. Studies by Aryal and Becerik-Gerber [45,46] compared different
ensing methods including the use of an IR camera FLIR Lepton for
verall thermal comfort prediction using multiple algorithms (Random
orest, KNN, SVM, and Decision Trees). Comfort prediction using only
thermal camera was not the best one, and the lower accuracy was

ttributed to the high levels of noise in the data. Thus, the IR camera
uality influences the comfort prediction accuracy.

Recently, deep convolution-based models [47,48] have been proven
ignificantly efficient in predicting personalized features such as the
ose, age, gender, activity, clothing of humans solely based on input
GB images. Multiple methods [49,50] have been proposed to extract
uman poses from input RGB images. Accurate prediction of age and
ender has been achieved by training simple Multilayer Perceptron
MLPs) [51] on publicly available datasets such as [52,53] and it
chieves the best age and gender classification accuracies of 60% and
1% respectively on the Audience dataset. Additionally, RGB images
an be used to accurately detect the types of clothing items of humans
n the image. The introduction of large-scale fashion datasets [54,55]
akes it possible to train generic state-of-the-art object detection mod-

ls [56,57], paving the way for automatic, non-intrusive detection of
lothing items of humans in the field of view of a camera. Specifically,
he model YOLOv7 [56] on DeepFashion dataset [55] is popular for
lothes detection as it is lightweight and has superior Average Precision
AP) of 56.8% on MS COCO dataset [58] and state-of-the-art perfor-
ance on multiple other object detection datasets [59,60]. Finally,

ecent deep learning models [61,62] have been developed to detect and

lassify human actions by capturing spatial and temporal information
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Fig. 1. Schematic of the proposed non-intrusive sensing solution involving IR+RGB imaging for personalized thermal sensing.
from input RGB videos. Among the most successful models is the Slow-
Fast [63] network which relies on 3D convolutions for accurate action
detection. SlowFast has been proven considerably effective in detecting
actions from generic in-the-wild videos, achieving top-1 accuracy of
79.8% on the challenging Kinetics-400 dataset [64]. The integration
of such information about the pose, activity, age, gender, and clothing
insulation constitutes a viable input to machine learning regression
models to accurately predict body skin temperatures and, hence, human
thermal comfort.

1.3. Objectives of the current work

This work tests the capability of the multi-modal non-intrusive
sensing solution involving IR and RGB imaging to extract thermal
comfort-related features of different people located in the field of view
of the camera. To this aim, we exploit the human thermo-physiology
model JOS3 and develop a new Machine Learning model, referred to
as ML-HTPM, that uses as input a restricted set of individual parame-
ters that are detectable with our proposed non-intrusive camera-based
sensing method. Thus, the proposed framework contributes to the
advancement of scalable and cost-effective personalized comfort moni-
toring solutions. Contactless monitoring of the local and overall comfort
of individuals can be used for (i) better understanding if the building
meets comfort criteria, and (ii) for personalized climate control. Instead
of using the temperature input from the conventional thermostats
attached to the walls, away from people, the camera-based solution
could provide input in terms of the actual local and overall thermal
state of people to the controls of both personalized and centralized
climatic systems.

2. Methodology

Our method of detecting human thermal comfort-related parameters
and the prediction of individual thermal state non-intrusively using
RGB and IR cameras features the following steps as shown in Fig. 1:

• Extraction of individual thermal comfort-related parameters (sex,
age group, clothing type, and activity type) in real-time by de-
ploying advanced computer vision techniques using live-streamed
RGB images.

• Extraction of local skin temperatures of body parts such as head
and hand from IR images supported by the body key points de-
tection from RGB images. Two body parts were chosen to capture
distal-proximal skin temperature gradient. The accuracy of the IR
camera was supplementary evaluated by comparing IR measure-
ments with contact skin temperature sensors in Appendix B.

• Development of the Machine Leanring-based human thermo-
physiology model (ML-HTPM) that uses head and hand skin
temperature and personal factors that can be extracted from RGB
images as inputs to predict an individual’s thermal state.
3

2.1. Computer vision for personalized features detection

We used several computer vision models to extract personalized fea-
tures of human subjects as illustrated in Fig. 2. For age and gender de-
tection, we employed RetinaFace [65] for face detection, ArcFace [66]
for face feature extraction, and a Multilayer Perceptron (MLP) [51] for
age and gender prediction. Action detection was achieved by leveraging
the SlowFast [63] network with a 3D-ResNet backbone. All actions
were classified according to activity types listed in standards ASRHAE
55 to refer to their corresponding estimated metabolic rate value in
met as described in Appendix D (Table D.3). Further, we detected
the types of clothing by training YOLOv7 [56] object detection model
from scratch on the DeepFashion2 [67] dataset. Different clothing types
detected were matched to the classification of clothing in standard
ISO7730 [68] to be able to match with the standard clothing insulation
values (Appendix C, Fig. C.19). Finally, for posture and body parts
detection, the machine learning library OpenPifPaf [69] was used. It
provides detailed keypoint annotations for the face, hands, and feet,
enabling accurate pose estimation from RGB images. By using synchro-
nized RGB and IR image streaming, the model can be used to locate
the coordinates of the head and hands in RGB images and extract the
temperatures of corresponding body parts from the IR thermal image
as demonstrated in Fig. 3. Many modern IR cameras are equipped with
a synchronized RGB camera, allowing for the simultaneous capture
of RGB and IR images. This approach allows for the extraction of
the body temperature, bridging the visual representation of the body
with thermal patterns. Overall, these models contribute to non-invasive
thermal sensation prediction by providing information on factors such
as age, gender, actions, clothing, and body posture in relation to
thermal comfort. A detailed description of each model is provided in
Appendix C.

2.2. ML-HTPM development

The traditional use of the HTPM requires environmental parameter
inputs like air temperature (𝑇𝑎𝑖𝑟), mean radaint temperature (𝑀𝑅𝑇 ),
relative humidity (𝑅𝐻), and air speed (𝑉𝑎𝑖𝑟). In addition, it requires
personal parameters like activity (𝐴𝑐𝑡), clothing insulation (𝐶𝑙𝑜) and
body composition to predict the person’s local skin temperature 𝑇𝑠𝑘𝑖𝑛
and core temperature 𝑇𝑐𝑜𝑟𝑒, which can be linked to thermal sensation
model to project the human’s thermal sensation and thermal comfort
at local and overall body level. In our approach, we trained a Machine
Learning-based human thermo-physiology model ML-HTPM, based on
the data from the physical HTPM, to predict the local skin, mean skin,
and core temperature using features that can be extracted from RGB
images. Fig. 4 presents the steps used to develop the ML-HTPM which
was based on the dataset generated from a physical HTPM. The input
of environmental parameters was replaced by the head and hand skin
temperature as features to calibrate the ML-HTPM.
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Fig. 2. Overview of the computer vision models for personal features extraction.
Fig. 3. Body parts detection in the RGB image using OpenPifPaf and the link to the body temperatures in the IR image.
2.2.1. Data generation
The HTPM JOS3 was used to generate two databases that served for

training and testing the ML-HTPM. In order to generate a reliable and
explicit training dataset, the following steps were undertaken:

1. 20 human subjects (10 males and 10 females) with actual mea-
sured anthropological data such as height, weight, and body fat
percentage from studies [31,32,70] were used for the simula-
tions. The mean and standard deviation of anthropological data
of the considered population are provided in Table 1.

2. For each subject, a sequential set of simulations was conducted
by exposing the human model to step-changing operative tem-
perature while looping over the other personal and environmen-
tal parameters. The time used between changes in temperature
steps was 30 min, allowing for 60 min over the thermal neutral
temperature of 24 ◦C. Fig. 5 shows the step change operative
temperature profile used in the simulations, also Table 2 presents
the values of personal and environmental factors that were
considered for the dataset generation.

3. All data were combined and arranged by subjects forming one
dataset referred to as training dataset. The training dataset includ-
ing data from all simulations reached the size of 5.8M where the
line of data represents consecutive minutely data.

For testing purposes, two kinds of datasets were generated using a
physical JOS3 for 4 familiar (already used in the training data) and 4
4

Table 1
Anthropological data of the population considered in the training dataset.

Height [m] Weight [kg] Fat [%] Age [Y]

10 Males 1.74 ± 0.10 71.08 ± 8.4 19.39 ± 5.4 31.2 ± 6
10 Females 1.65 ± 0.05 61.85 ± 7.3 26.92 ± 7.0 29.1 ± 12

Table 2
Environmental and personal factors used to generate the training dataset.

Factors Metabolic
rate [met]

Clothing
[clo]

Relative
humidity [%]

Air speed
[m/s]

Values 1, 1.2, 1.4,
1.6, 1.8, 2,
2.2, 2.4, 2.6

0.4, 0.6, 0.7,
0.8

40, 60 0.1, 0.5

unfamiliar (i.e., new) people with anthropological data different than
what was used for training. The first dataset named ‘‘dynamic testing’’
followed the same environmental profile as during the training phase.
The second dataset named ‘‘varying activity testing’’ aimed to challenge
the model. In a new testing dataset, activities were frequently changing,
and corresponding metabolic rate and air speed around the body parts
were dynamically varying as presented in Fig. 6. The profile was chosen
based on the experiment presented in [31]. Simulations for ‘‘varying
activity testing’’ were conducted over 4 uniform and steady operative
temperatures of 22, 24, 26, and 28 ◦C over 215 min each.
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Fig. 4. Development steps of Machine Learning-based human thermo-physiology model (ML-HTPM).

Fig. 5. Operative temperature profile in simulations to generate a training dataset.
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Fig. 6. Metabolic rate and air speed variation for generation of testing dataset at each fixed operative temperature case.
2.2.2. Feature selection for the development of the ML-HTPM
The generated training dataset was re-processed, keeping the data

arranged in a time flow. The features and targets were identified and
arranged to meet the objective of the ML-HTPM. The environmental
parameters were not used in ML-HTPM however, the model relied on
the use of two local skin temperatures of the head and the hand. Two
variations of the ML-HTPM model were developed. One model was
based on 10 features selected for the training:

• physiological features (two local skin temperatures 𝑇ℎ𝑒𝑎𝑑 and 𝑇ℎ𝑎𝑛𝑑)
• personal features (clothing insulation Clo, metabolic rate Met, pos-

ture P)
• individual body composition (age A, sex S, height H, weight W, fat

percentage F ).

Due to the difficulty of estimating the height, weight, and fat per-
centage of a human from an RGB image without the use of a depth
camera, the second variation of the ML-HTPM excluded these features
and was only based on the remaining 7 features. The aim of developing
two variations of models was to understand the influence of body
composition-related parameters on prediction accuracy. The features
selected to predict the thermal state of individuals can be summarized
as follows:

𝐹7 = [𝑇ℎ𝑒𝑎𝑑 , 𝑇ℎ𝑎𝑛𝑑 ,𝑀𝑒𝑡, 𝐶𝑙𝑜, 𝑃 , 𝐴, 𝑆] (1)

𝐹10 = [𝑇ℎ𝑒𝑎𝑑 , 𝑇ℎ𝑎𝑛𝑑 ,𝑀𝑒𝑡, 𝐶𝑙𝑜, 𝑃 , 𝐴, 𝑆,𝐻,𝑊 , 𝐹 ] (2)

2.2.3. ML-HTPM modeling architecture using LSTM networks
The ML-HTPM should consider the transient nature of the human

thermo-physiology model and the fact that metabolic rate, clothing,
and environmental exposure are dynamically changing. One of the
key challenges in handling sequential data is retaining information
from earlier time steps and effectively utilizing it when processing
subsequent steps. Therefore, we developed a time series regression
prediction model based on Long Short-Term Memory (LSTM) to esti-
mate the temperatures of different human body parts while selected
features are used as inputs. LSTM is a type of recurrent neural network
(RNN) that is well-suited for modeling sequential data due to its ability
to capture long-term dependencies [71]. In our model architecture,
we design a four-layer LSTM module, each layer containing 16 LSTM
units, which takes the input features across a time window of 10 s
and learns their temporal relationships. The LSTM is followed by a
fully connected neural network (Fig. 7) with 256 hidden neurons,
employing ReLU activation functions for non-linearity. The final output
layer predicts the temperatures of the 11 body parts (neck, chest, back,
6

pelvis, shoulders, arm, thigh, leg, foot, and core body). We train the
model for 300 epochs using a batch size of 128, the learning rate of
10−3, and Adam optimizer. As the LSTM algorithm is trained based on
the variations in the data over a certain number of previous timesteps,
intervals of 10 and 20 min were evaluated. By leveraging the power of
LSTM and a deep full connected network, our model aims to provide
accurate predictions of body temperatures based on the given input
factors.

3. Results

3.1. Performance of features extraction models from RGB images

The computer vision models that were chosen had acceptable per-
formance when tested with their respective datasets. The age and
gender detection model achieved a classification accuracy of 90.66% on
the test set of Audience [51]. The action classification model achieved
a top-1 and top-5 classification accuracies of 79.8% and 93.9%, re-
spectively [63]. Similarly, the clothing detection also achieved good
accuracy when using YOLOv7, the model achieved an Average Preci-
sion (AP) score of 82.4%. The OpenPifPaf had an AP score of 71.9% on
COCO 2017 TEST-DEV dataset [69].

The feature extraction techniques were applied to images of subjects
from our own experiments presented in [31]. Fig. 8 illustrates the
output after applying age and gender detection, the model detects the
gender accurately and age with an acceptable error within a range of
±2 years in this particular case. Fig. 8 shows an example of a female
(27 y.o.) and a male (22 y.o.) where the model was applied to side
and front face profile images for the same people. An example of the
prediction of people’s activity is shown in Fig. 9. Image (a) shows a
sitting person performing office work (site, touch an object, read) with
a metabolic rate corresponding to 1.2 met. A walking person (walk)
with a corresponding metabolic rate of 1.7 met is shown in the image
(b), and image (c) shows a standing person (standing, carry/hold) with
a corresponding metabolic rate of 1.4 met.

Example outputs of the clothing detection model are shown in
Fig. 10. Two images show a standing person, one has a full-body
appearance while the second shows only the upper half of the body.
Since the model can only predict what it can see, it showed only what
the person is wearing at the top in the second case. However, for the
remaining seated cases, the model was able to predict the clothing of
both upper and lower body parts even though the person was partially
obstructed by the desk. The model detected the short-sleeve and long-
sleeved shirts and the trouser correctly. Apart from recognizing the
clothing contours, the model does not provide information about the
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Fig. 7. LSTM regression model architecture.
Fig. 8. Example illustrations of age and gender detection (images taken from controlled experiments [31]).
Fig. 9. Examples of actions recognition (images taken from controlled experiments [31]).
material of clothing, thickness, or air gap, which brings some challenges
in detecting the actual insulation value. For example, as the model
predicts both the jeans and the cotton trousers as trousers, both would
refer to an insulation value of 0.24 clo (Fig. C.19).

3.2. ML-HTPM results and performance

First of all, the general performance of the ML-HTPM model using
7 and 10 features and also LSTM sequences of 10 min and 20 min
was evaluated. The purpose was to see the influence of the number
7

of features and the effect of the sequence time on the performance of
the model. The results on selected skin temperatures and core body
temperature prediction are presented in Fig. 11 for dynamic testing in
(a–b) and for varying activity testing in (b–c). In addition, two datasets
with 4 people were used: (i) 4 people from the training dataset that
were familiar to the model (a, c), and (ii) 4 new people unfamiliar for
the model (b, d). Due to the uniform environment consideration in the
data generation, HTPM predicts symmetrical temperature for left and
right body parts; thus, we considered the left and right extremities as
one body part.
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Fig. 10. Examples of clothing classification with the indication of the prediction confidence (images from study [31]).
Fig. 11. Performance of the ML-HTPM in terms of RMSE of temperature and percentage of absolute error less than 0.2 ◦C for the four different cases: (a) dynamic testing of 4
familiar people, (b) dynamic testing of 4 unfamiliar people, (c) varying activity testing of 4 familiar people, (d) varying activity testing of 4 unfamiliar people.
The results show that increasing the number of features by adding
height, weight, and fat percentage improves the prediction accuracy,
especially for data generated from new people. The percentage of
absolute error (PAE) < 0.2 ◦C increased for both data from familiar
people and unfamiliar new people (Fig. 11a vs. b) which means that
the detailed body composition might need to be considered to have
a better prediction of the model applied on a larger population. The
results showed an increase in PAE of around 7% and around 0.1 ◦C
improvement in RMSE in some body parts. The effect of the number of
previous timestamps on prediction can be clearly seen in Fig. 11(d).
The model with the smaller sequence of 10 min tends to have a
better performance when applied to a varying activity testing dataset.
Based on the results, the performance increased by 8% in some body
parts when decreasing the sequence from 20 min to 10 min on the
varying activity testing dataset; however, it did not show an effect and
sometimes negative performance when applied to the dynamic testing
dataset. Both leg and foot skin temperature showed the highest error
with an RMSE reaching 1 ◦C in the worst case of the new people
and varying activity testing dataset. To better understand the increased
error in extremities, the distribution of temperatures at different body
parts in the training dataset from a male and a female is presented
in Fig. 12 presents. The violin plots show that extremities (e.g. hand,
leg, and feet) had a wider range of temperatures, and core body parts
had a smaller range of temperatures. The extra data concentrated at
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low temperatures, for example in the feet, is due to different clothing
insulation which is not shown in nude body parts such as the forehead
and hand.

To show how well the ML-HTPM predicts temperatures in a dynamic
situation, Fig. 13 presents the dynamic prediction of mean, core, foot,
and chest skin temperatures from four different environmental tem-
peratures (22–28 ◦C) while a person was frequently changing activity
according to illustrations in Fig. 6. The results of ML-HTPM shown
in the figure are the prediction of the 7 input features and 10 min
sequence for a new person (unfamiliar to the model). The results for the
complex scenario show relatively acceptable performance, especially
for the mean skin and core temperatures with a small error. The
discrepancy occurs mostly during standing and walking activity, which
is accompanied by sudden elevated metabolic rate and increased air
speed. The dataset generated for training did not include data with
a sudden change in metabolic rate, instead, the change of metabolic
rate or air speed was set once before each simulation covering all the
combinations of metabolic rate, air speed, relative humidity, or clothing
insulation.

4. Discussion

The ML-HTPM developed in this paper shows the potential of using
a machine learning algorithm to predict the physiological adaptation to
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Fig. 12. Example distributions of local skin, mean, and core temperatures for a male and a female subject.
Fig. 13. Dynamic performance of ML-HTPM with 7 input features and 10 min sequence in four different environmental conditions: (a) at 22 ◦C, (b) at 24 ◦C, (c) at 26 ◦C, and
(d) at 28 ◦C for mean skin, core, foot and chest temperatures.
the environmental changes of an individual by relying on a few inputs,
thus, this tool could serve the purpose of sensing an individual’s ther-
mal states with minimum intrusive measurements. By further analyzing
the predicted thermo-physiological parameters of local skin, mean skin,
and core temperatures, it would be possible to evaluate the person’s
thermal sensation. In real life, human tends to be exposed to a dynamic
environment where people frequently change activity and clothing.
Therefore, this paper considered the influence of a dynamic environ-
ment in the development of ML-HTPM by considering the LSTM model
for training. Based on the results, the model with the smaller number of
9

previous timestamps tends to have a better performance when applied
to a frequently changing environment. The results showed that 10 min
of historical data can be sufficient to improve predictability and to
account for the dynamic variation in skin temperatures.

In ML-HTPM, the hand and head skin temperatures seem to have
a strong correlation with adjacent body parts, as the error from the
adjacent body parts is minimal. However, the leg and foot temperatures
exhibit the highest error, which can be attributed to the fact that these
body parts are the furthest from the head and hand. As the distance
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Fig. 14. Flowchart of the proposed method and accuracy of different components.
between body parts increases, the strength of this relationship dimin-
ishes slightly. Furthermore, increasing the number of features resulted
in a minor improvement in Root Mean Square Error (RMSE) for certain
body parts. This implies that models should be trained on datasets
generated from a more diverse population to account for variations in
physiological responses related to individual body composition.

Moreover, the model was not trained on data where the air speed
or metabolic was suddenly changing, instead, the training dataset
was based on a fixed metabolic rate, air velocity, etc., while only
the operative temperature was dynamically changing. The influence
of sudden change in air speed and metabolic rate was shown in the
dynamic results in Fig. 13; therefore, improving the predictability of
the model can be achieved by adding more simulation cases to the
training dataset where a person experiences a sudden change in air
speed and metabolic rate. Based on the results from ML-HTPM, we saw
that including information about an individual’s body composition such
as height, weight, and fat percentage increases the accuracy (PAE) by
around 10%. Extracting those features from images requires the use of
a depth camera or other advanced techniques which was outside the
scope of this work, but should be considered in future research.

The methods presented in this paper require the use of a multi-
modal sensing and machine learning. Fig. 14 summarizes the prediction
accuracies of all computer vision models reaching the ML-HTPM and
the accuracy of the ML-HTPM model outputs if the inputs are correct.
Results from ML-HTPM showed a PAE of 81% for mean skin temper-
ature, 95% for core temperature, and a range of (62%–96%) for the
different local skin temperatures. Those percentages of performance are
for the ML-HTPM receiving accurate inputs, the precision is expected to
drop if the inputs are directly taken from the computer-vision models.
Although the computer vision algorithms adopted to extract personal
thermal comfort-defining features from images showed good accuracy,
they cumulatively might reduce the accuracy of the ML-HTPM model.
Therefore, the accuracy of the feature extraction should be maximized
to maximize the accuracy of the ML-HTPM prediction.

Specific issues related to computer vision models are the following.
Prediction of clothing insulation as well as the metabolic rate estima-
tion are based on the values prescribed in standards. In reality, these
values, particularly metabolic rate, might be subject to inter-individual
differences [32]. The clothing detection model can provide a good
description of the clothing items; however, it misses detailed features
of clothing that can help estimate the thermal resistance values more
accurately. The garment’s materials, thickness, color, and air gaps have
a significant influence on defining the clothing’s insulation [72,73],
which cannot be extracted from an image yet. The clothing detection
model has an accuracy of 82% which describes the accuracy of the
model in classifying the type of clothing based on the shape. Some
body parts might not be in the field of view of the camera due to
obstruction; however, this can be overcome by using face recognition
and tracking and trying to predict clothing whenever the person has
a full view. The action recognition requires a sequence of images to
predict, and the model showed an accuracy of 80% (top-1). The model
gives information that describes the person’s activity, which is sufficient
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only to estimate a metabolic rate value derived from the standard
descriptions. Both age and sex prediction model has a 91% of accuracy
and from the tests conducted on images from our experiments, the
model showed good agreement with real values. It was predicting the
sex correctly, however, the absolute age showed some variation for the
same person from different images and profile perspectives, but the
age group prediction was correct. OpenPifPaf has adequate accuracy
in locating the person’s body parts with 72% accuracy; however, it
requires both hand and face to determine keypoints and draw a human
body skeleton. Thus, in cases when a person’s face is obstructed, it
would be challenging to detect the body parts and further link them
to the temperatures from the IR camera. In many practical cases it
might be difficult to have both a face and a hand of the same person
simultaneously in the field of view of cameras. This could be techni-
cally solved by using a rotating motor and slides for the camera or
intermittent monitoring. Otherwise, further analysis on what extent the
modeling accuracy could drop if only one body part is captured should
be performed.

Finally, the ML-HTPM is trained on data generated from a phys-
ical HTPM JOS3, a model based on energy balance equations that
consider physiological phenomena. Factors such as ethnicity, thermal
acclimatization, and circadian rhythm were not implemented in those
models yet. Also, JOS3 has some issues with personalized thermal
parameters prediction, particularly in extremities, when compared with
actual data. Based on our previous study [31], the RMSE can reach
3 ◦C in the foot, 0.9 ◦C in mean skin temperature, and 0.3 ◦C in
core temperature. The ML-HTPM was not yet evaluated with real data;
however, it showed promising results when compared to HTPM results
with an RMSE less than 0.5 ◦C in most of the body parts.

As the suggested framework involves multiple computer vision mod-
els for data collection, some privacy challenges arise. As a solution, the
models should be performed in real-time, with no storage of images in
the local or cloud storage; thus, the privacy of people during the data
acquisition will be assured at the monitoring time. Only the numerical
data corresponding to the ID of the person in the field of view can
be translated to the ML-HTPM model that will ultimately output their
thermal state parameters.

5. Conclusion

Contactless monitoring of the comfort of people can be used for
surveying if the building meets comfort criteria and for better climate
control of buildings. The camera-based solution can provide input
in terms of the actual thermal state of people to the controls of a
climatic system, both centralized and personalized. The potential of
monitoring at the individual level will advance the implementation
of Personalized Environmental Control Systems (PECS), the new gen-
eration of technologies designed to condition the micro-environment
around humans, thus avoiding energy waste to condition the spaces
that are not occupied.

With the improvement in the field of data science and machine
learning, it becomes feasible to predict an individual’s thermal state
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through data-driven approaches. Accordingly, this paper showed that
machine learning can emulate individuals’ thermo-physiological state
(local and mean skin temperature, core temperature) by considering a
few physiological inputs and some personal factors. The multi-modal
method presented in this paper also showed that we can extract all
needed personal thermal comfort-defining features from RGB and IR
images. Based on the results of the developed machine-learning-based
human thermo-physiology model (ML-HTPM), the model was able to
predict the temperature distribution over the body with an RMSE
varying between 0.2 and 1 ◦C in the worst case. The highest RMSE
was shown at the leg and the foot, the body parts that are away from
the hand and head, which were considered as physiological inputs.
The models used to extract features from RGB images exhibited high
accuracy in predicting personal features, with a clothing detection
accuracy of 82%, an action recognition accuracy of 80%, and an age
and sex recognition accuracy of 91%. Moreover, the method uses IR
images with the help of a machine learning pose estimator OpenPifPaf
to extract skin temperatures of the hand and head non-intrusively in
real-time.

Considering the dynamic variability of environmental parameters
and people’s diversity in the training dataset can improve the prediction
accuracy of the ML-HTPM which should be considered in the further
development of the proposed framework. Generally, an unlimited com-
bination of environmental and personal factors can be considered to
generate the data and generalize the model. In the development of
the framework, we restricted ourselves to personal characteristics of
individuals that were actually measured and to environmental parame-
ters typical for offices. The further note that the model was trained on
a dataset of uniform temperature exposure over all body parts, thus,
it needs to be re-trained for cases when an asymmetric environment
or localized heating or cooling is introduced using HTPM outputs for
such conditions. It is important to make sure that the source HTPM is
validated for non-uniform environments. More investigation is needed
to study the applicability of the ML-HTPM in such a non-uniform
environment. In general, the ML-HTPM proved its functionality in
projecting an individual’s thermal state; thus, training a model on
measured data can present a more realistic prediction, however, this
requires an extensive dataset on human thermal responses.

Overall, the presented framework shows that a human can be used
as a sensor strengthening the need to move toward an occupant-centric
approach, which can be further used to control the micro-environment
of individuals. Developing a human-centered indoor climate based on
continuous monitoring of occupants’ comfort can improve the quality
of living, work performance, and overall satisfaction with the built
environment.
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Appendix A. Human thermo-physiology model JOS3

Model JOS3 segments the human body into 17 parts [23]. Each
body part comprises multiple concentric layers (core, muscle, fat, skin,
artery, and vein), forming 83 nodes in total. The model is based on
the energy balance between the environment and the human body;
thus, it includes heat transfer between the skin layer and the environ-
ment through 3 modes (convection, radiation, evaporation) in addition
to conduction between the different layers and convection due to the
blood circulation between layers and body parts [23], as illustrated
in Fig. A.15. JOS3 included the vein and artery nodes. The model
incorporates a sophisticated interconnected blood flow system, com-
prising nodes representing arteries and veins within each body part.
Additionally, it includes a superficial vein in the extremity. The distri-
bution of arteries and veins across the various body parts is determined
based on the formulation described in the work of Smith [74]. JOS3
also included the modeling of arteriovenous anastomoses (AVA) blood
circulation phenomena in hands and feet to improve the overall model
Fig. A.15. Heat transfer and nodes representation of JOS3.
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predictability. JOS3 considers different thermoregulatory mechanisms
(vasodilation, vasoconstriction, sweating, and shivering) by using feed-
back temperature sensed by thermoreceptors located throughout the
body parts. Similar to other HTPMs, JOS3 requires local environmental
parameters, personal parameters, and individual body characteristics as
input.

Appendix B. Evaluation of temperature measurements using an IR
camera

To evaluate the usefulness of using the measurements from an IR
camera, we have conducted a series of controlled experiments and
compared IR measurements with contact skin measurements. The ex-
periments were conducted in a climatic chamber monitoring the skin
temperatures of both hands and forehead for six subjects (3 males
M1–M3 and 3 females F1–F3) using in-house calibrated iButton skin
temperature sensors (±0.2 ◦C) and FLIR A700 infrared camera (±2 ◦C).
All experiments started at around thermal neutrality after that, each
subject was exposed to four different environmental conditions [22–
24–26–28 ◦C] over 3 h and 35 min on separate days. During the
experiment, the subjects conducted a sequence of standardized office
activities and wore standard summer clothing (0.35clo) at 26 and 28 ◦C
and winter clothing (0.65clo) at 22 and 24 ◦C. The activities conducted
during the experiment have the same flow as in Fig. 6. The thermal
camera FLIR A700 used in the experiment is one of the advanced
monitoring tools developed by FLIR. The lens used was with a focal
length of 10 mm (42 ◦C) to have a larger field of view, capturing all
the activity of the subject. The camera produces images with 640 × 480
pixels, and with the measurement range, the manufacturer stated an
accuracy of ±2 ◦C. Fig. B.16 shows the approach used to evaluate the
IR measurements by identifying the pixels on the IR image close to the
contact iButton sensor.

The results presented in Figs. B.17 and B.18 show the data from
the three males and three females, respectively. Each figure presents
four different experiments showing the IR measurements and data
from iButton for the forehead, the hand, and its difference. It shows
that in some cases IR can predict the skin temperature very well,
however in some cases the error reached ±2 ◦C. The difference between
hand and head skin temperature might provide less error, since the
IR measurement error might be applicable to all pixels in one frame
and FLIR does an auto adjustment and calibration regularly during
measurement.

Fig. B.16. IR images from the experiments showing examples of the pixels considered
for temperature readings and the comparison with iButton sensors.
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Fig. B.17. A comparison between the IR measurements and the on skin iButton sensor
temperature measurements for the head and hand from three males at four different
experiments.

Fig. B.18. A comparison between the IR measurements and the on skin iButton sensor
temperature measurements for the head and hand from three females at four different
experiments.

Appendix C. Description of computer vision models for personal
features extraction

In this section, a detailed overview of the computer vision mod-
els used for the extraction of personal features from RGB images is
presented. It includes age and gender detection using a state-of-the-
art model trained on the IMDB-WIKI and Adience datasets. Action
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Fig. C.19. Clothing classification in DeepFashion2 and the matched values of clothing insulation (in clo) from ISO7730 [68].
classification utilizes the SlowFast network trained on the Kinetics-
700 dataset, achieving high accuracy in recognizing various activities.
Clothing detection relies on the YOLOv7 model trained on the Deep-
Fashion2 dataset, showcasing improved performance with dynamic an-
chor assignment and feature pyramid integration. Finally, posture and
body parts detection employ the OpenPifPaf library, which accurately
estimates human pose by locating key points.

C.1. Age and gender detection

We implemented the model proposed by [51] due to its state-of-
the-art performance in age and gender classification. From input RGB
images, the model predicts both the age and gender of every person
in the image through a three-stage process. First, the image is fed to
a pre-trained RetinaFace [65] model, the current best model for face
detection, to get the bounding box of the face of each person. The
bounding boxes are used to crop the faces out of the image, hence
removing background noise and reducing data size. Secondly, RGB
faces are passed to a powerful face-embedding extractor, ArcFace [66],
to extract the features and further reduce the data size. Finally, a
Multilayer Perceptron (MLP) is applied to the embeddings to ultimately
predict age and gender. The MLP consists of a fully connected layer,
followed by ReLU, batch normalization, and dropout layers (cascaded
five times). The model has been pre-trained on the popular IMDB-WIKI
dataset [75], which contains 523 K images of celebrities annotated with
gender (two classes: male, female) and fine-grained 101 age categories
(i.e. from 0 to 100). It was then fine-tuned on the Adience dataset [76],
which encompasses 19 K images annotated with age and gender. It
achieves a classification accuracy of 90.66% on the test set of Audience.

C.2. Action classification

The SlowFast [63] network is used to extract information about
human activities from input video streams. The network is composed
of two parallel pathways: a slow pathway, operating at a low frame
rate, to capture special semantics, and a fast one, operating at a high
frame rate, to capture temporal information. We use the default instan-
tiation proposed by the authors, with the 3D-ResNet as the backbone
network for both pathways. The two pathways are fused by lateral
connections into a SlowFast network. The model has been trained on
the Kinetics-700 [77] dataset, which contains 545 K training videos and
30k validation videos. Actions are classified into 700 categories which
include walking, sitting, running, carrying an object, throwing, playing,
etc.
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C.3. Clothing detection

To automatically detect the types of clothes of each person in
the image, we run YOLOv7 [56], the state-of-the-art object detection
model, on input RGB images. The model ultimately predicts both the
classes and bounding boxes of different items of clothes in each image.
The YOLOv7 network is composed of a series of convolutional layers
that downsample the input image, followed by several detection layers
that predict the bounding boxes and associated class probabilities for a
fixed number of predefined anchor boxes. Each anchor box is defined
as a prior box that is centered on a specific location in the image and
has a certain width and height.

During training, YOLOv7 optimizes the network parameters by min-
imizing a loss function that penalizes errors in the predicted bounding
box coordinates and class probabilities. The loss function is composed
of several components, including the mean squared error (MSE) be-
tween the predicted and true bounding box coordinates, the cross-
entropy loss between the predicted and true class probabilities, and a
regularization term that encourages the model to learn sparse represen-
tations.

YOLOv7 introduces several improvements over previous YOLO mod-
els, such as the use of a Swish activation function, which has been
shown to improve the accuracy of deep neural networks, and the
integration of a feature pyramid network (FPN) [78] to capture multi-
scale features across different layers of the network. Additionally,
YOLOv7 utilizes a dynamic anchor assignment strategy to adapt the
anchor boxes to the object sizes and aspect ratios in the training dataset.

We trained the network on DeepFashion2 [67], the largest publicly
available dataset for clothes detection. DeepFashion2 contains 492 K
images, 873 K clothing items, 801 K bounding boxes, and 13 clothes
categories. Fig. C.19 shows examples of the clothing categories that can
be identified by the model and the estimated clothing insulation values
taken from ISO 7730 [68].

C.4. Posture and body parts detection

For the identification of specific body parts and posture from an
image, we considered the machine learning library OpenPifPaf [69].
The library incorporates a recent model that offers detailed keypoint
annotations for the face, hands, and feet, comprising a total of 133
keypoints [79]. This model enables accurate human pose estimation
with fine-grained keypoint information. The architecture of OpenPifPaf
is based on a generic neural network that detects and constructs a
spatio-temporal pose. This pose is represented by a connected graph,
where each node corresponds to a person’s body joint across multiple
frames.
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Appendix D. Metabolic rate values adopted from standards

Metabolic rate values used in this work were extracted from ASHRAE
55 standard (Table D.3).

Table D.3
Examples of office work metabolic rate values from ASHRAE 55 [80].
Activity Values in Met units

Resting
Sleeping 0.7
Reclining 0.8
Seated, quiet 1.0
Standing, relaxed 1.2

Walking (on level surface)
3.2 km/h 2.0
4.3 km/h 2.6
6.8 km/h 3.8

Office Activities
Seated 1.0
Reading/writing/typing, seated 1.1
Filing, seated 1.2
Filing, standing 1.4
Walking about 1.7
Lifting/packing 2.1
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