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Abstract

Object detection plays a critical role in various computer vision applications, encompassing

domains like autonomous vehicles, object tracking, and scene understanding. These applica-

tions rely on detectors that generate bounding boxes around known object categories, and

the outputs of these detectors are subsequently utilized by downstream systems. In practice,

supervised training is the predominant approach for training object detectors, wherein labeled

data is used to train the models.

However, the effectiveness of these detectors in real-world scenarios hinges on the extent

to which the training data distribution can adequately represent all potential test scenarios.

In many cases, this assumption does not hold true. For instance, a model will be typically

trained under a single environmental condition but at the test time, it can encounter a much

more diverse condition. Such discrepancies often occur as acquiring training data that covers

diverse environmental conditions can be challenging. This disparity between the training

and test distributions, commonly referred to as the domain shift deteriorates the detector’s

performance.

In the literature, various methods have been employed to mitigate the domain shift issue.

One approach involves unsupervised domain adaptation techniques, where the model is

adapted to perform well on the target domain by leveraging unlabeled images from that do-

main. Another avenue of research is domain generalization, which aims to train models that

can generalize effectively across multiple target domains without direct access to data in that

particular domain.

In this thesis, we propose unsupervised domain adaptation and domain generalization meth-

ods to alleviate domain shift. First, we introduce an attention-based module to obtain local

object regions in the single-stage detectors. Here we show the efficacy of a gradual transition

from global image features adaptation to local region adaptation. While this work mainly

focuses on appearance shifts due to illumination or weather change, in our second work,

we show that the gap introduced due to differences in the camera setup and parameters is

non-negligible, as well. Hence, we propose a method to learn a set of homographies that

allow us to learn robust features to bring two domains closer under such shifts. Both of these
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Abstract

works have access to unlabelled data in the target domain, but sometimes even unlabeled

data is scarce. To tackle this, in our third work, we propose a domain generalization method

by leveraging image and text-aligned feature embeddings. We estimate the visual features of

the target domain based on the textual prompt describing the domain.

Key words: domain adaptation, domain generalization, object detection, multimodal learning.
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Résumé

La détection d’objets joue un rôle crucial dans diverses applications de vision par ordinateur,

englobant des domaines tels que les véhicules autonomes, le suivi d’objets et la compré-

hension de scènes. Ces applications reposent sur des détecteurs qui génèrent des boîtes

englobantes autour de catégories d’objets connues. Les prédictions de ces détecteurs sont

ensuite utilisées par divers systèmes. En pratique, l’entraînement supervisé est l’approche

prédominante pour entraîner des détecteurs d’objets, où des données étiquetées sont utilisées

pour entraîner les modèles.

Cependant, l’efficacité de ces détecteurs dans des scénarios réels dépend de la mesure dans

laquelle la distribution des données d’entraînement représente adéquatement les scénarios

de test potentiels. Dans de nombreux cas, cette hypothèse n’est pas valide. Par exemple,

un modèle sera généralement entraîné dans une seule condition environnementale, mais

lors du test, il peut rencontrer des conditions beaucoup plus diverses. De telles divergences

surviennent souvent car l’acquisition de données d’entraînement couvrant diverses conditions

environnementales peut être un défi. Cette disparité entre les distributions d’entraînement et

de test, communément appelée décalage de domaine (domain shift), nuit à la performance du

détecteur.

Dans la littérature, diverses méthodes ont été utilisées pour atténuer le problème de décalage

de domaine. Une approche implique des techniques d’adaptation de domaine non supervi-

sées, où le modèle est adapté pour être efficace sur le domaine cible en utilisant des images

non étiquetées de ce domaine. Une autre voie de recherche est la généralisation de domaine,

qui vise à entraîner des modèles capables de généraliser efficacement sur plusieurs domaines

cibles sans accès direct aux données de ces domaines particuliers.

Dans cette thèse, nous proposons des méthodes d’adaptation de domaine non supervisées

et de généralisation de domaine pour atténuer le décalage de domaine. Tout d’abord, nous

introduisons un module basé sur l’attention pour obtenir des régions locales correspondant à

des objets dans les architectures de détecteurs à étape unique. Ici, nous montrons l’efficacité

de la transition graduelle d’une adaptation de la représentation de l’image globale à une

adaptation des représentations des régions locales. Ce travail se concentre principalement sur

les décalages d’apparence dus aux changements d’illumination ou de conditions météorolo-

giques, cependant le décalage entre domaines peut avoir des origines géométriques (position
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Résumé

et propriétés de la caméra). Par conséquent, nous étudions ce type de décalage avec une

méthode qui apprend un ensemble d’homographies pour nous permettre d’apprendre des

caractéristiques robustes pour rapprocher deux domaines sous de tels décalages. Ces deux

premiers travaux ont accès à des données non étiquetées dans le domaine cible, mais parfois

même les données non étiquetées sont indisponibles. Pour résoudre ce problème, dans notre

troisième partie, nous proposons une méthode de généralisation de domaine en exploitant

des plongements alignés d’images et de texte, où nous estimons les caractéristiques visuelles

du domaine cible en fonction de la description textuelle correspondant à ces domaines.

Mots clés : adaptation de domaine, généralisation de domaine, détection d’objets, apprentis-

sage multimodal.
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1 Introduction

The field of computer vision seeks to enable computers to comprehend the real world. To

achieve this, it is essential to grasp various low-level and high-level concepts. Low-level

concepts, such as edges, colors, and texture, serve as the foundational elements for higher-

level concepts like 3D shapes, objects, or semantically similar regions. These concepts play a

crucial role in designing decision-making systems for applications like autonomous vehicles,

robotics, and more.

For applications that interact with their environment, a profound understanding of surround-

ing objects is indispensable. Object recognition and localization are pivotal in comprehending

these potential interactions. Traditionally, computer vision techniques [18, 19, 20, 21, 22, 23,

24] have heavily relied on handcrafted features like histograms based on edges, to predict, seg-

ment, and classify objects. While these features are highly interpretable, they face challenges

when confronted with complex scenes. Consequently, for most applications, one needs to

redesign the features, limiting their generalizability. These issues are alleviated by methods

that directly learn from data.

Currently, the majority of computer vision applications, including object detection [11, 25,

12, 2], heavily rely on data-driven learning. These methods tend to identify important low-

level features like edges and texture to build a representation of task-specific semantics, like

the representation of various objects for object detection. Though, such an approach was

proposed in the 1990s [26], they have been successful recently largely due to the availability of

vast datasets and computational resources, facilitating their training.

However, these methods falter when the underlying assumption is violated, such as when

there is a change in the distribution between training and testing data. This phenomenon is

referred to as domain shift, which frequently occurs when the training dataset lacks diversity

to cover all possible cases. For instance, in an autonomous driving dataset, capturing data

during clear day conditions is easier, but a detector trained on such data performs poorly

when presented with foggy or night-time images. The primary objective of this thesis is to

achieve enhanced detection performance under such domain shifts.
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In the following sections, we provide an overview of the object detectors and the problem of

domain shift. Thereafter, we introduce domain adaptation and generalization methods which

are used to address domain shift. We conclude with thesis contributions and their outline.

1.1 Object Detection

1.1.1 Applications

The development of various types of object detectors is motivated by their crucial role in

different applications.

Monitoring Systems In industrial settings, quality control, and inspection mechanisms

incorporate detectors to ensure adherence to proper production processes. These detectors

play a vital role in identifying deviations and discrepancies in the production pipeline, while

also contributing to the enforcement of safety protocols among workers. Additionally, they

find applications in ecological conservation, aiding in the monitoring of animals and the

assessment of habitat quality for preservation purposes.

Autonomous vehicles For autonomous vehicles, understanding their surroundings is para-

mount. Detectors assist in identifying different objects in the vehicle’s vicinity, and the ob-

tained results are subsequently fed into decision systems such as path planning and obstacle

avoidance.

Retail Analytics Retail businesses heavily rely on analytics to improve their service and cus-

tomer experience. Various aspects of this analytics involve understanding customer behavior,

analyzing foot traffic, and managing inventory. Detection plays a crucial role in tracking

customer traffic and their interactions with products, aiding in stock management on the

shelves and in warehouses.

Medical Applications Detection systems are highly valuable in identifying diseases in CT

and MRI scans of patients, enabling doctors to make more accurate diagnoses. In robot-

assisted surgery, detectors provide continuous feedback to surgeons, ensuring the safety and

success of surgical procedures.

1.1.2 Machine Learning based Detection

Object detection involves recognizing objects and localizing them within an image. They can

be broadly categorized into single- and two-staged architectures. The single-stage pipeline

involves image features directly used to predict final bounding boxes, whereas two-staged

detectors have a second pass over the features from object-like regions to have better predic-

tions. Consequently, two-stage detectors tend to be more accurate than single-stage detectors.

Over the years, several improvements have been to proposed to single-stage design, bringing

its performance on par with two-stage detectors. In this thesis, we work with both of these

architectures.
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Figure 1.1 – Training examples for object detection task. The bounding boxes, shown along with their
labels, enclose the objects of interest.The objective of the detector is to predict boxes and their category
accurately.

In order to train these detectors, one requires a dataset Ds of images Xs , and annotations ys .

These annotations include bounding boxes around objects along with their category labels. As

common in the machine learning framework, the training involves minimizing a loss function.

Here we minimize Ldet , which is a combination of classification loss, Lcl s and regression loss,

Lr eg .

Ldet =Lcl s +Lr eg (1.1)

Lcl s promotes accurate object label predictions, and Lr eg enforces tighter bounding boxes

around the objects. After training, the detector is capable of predicting bounding boxes for

regions containing objects with higher confidence compared to non-object regions.

1.2 Domain Adaptation and Generalization

A critical aspect during detector training is to ensure that it does not merely memorize the

training data but learns essential features that can generalize to new, unseen images. This

generalization is effective when the training data distribution, Ps(X , y), matches the test

distribution, Pt (X , y). Here, Ps and Pt are joint distribution functions over images X and their

corresponding annotations y .

However, in practice, a scenario may arise where Ps(X , y) 6= Pt (X , y), leading to what is known

as domain shift. This usually happens because the training data is unable to capture all

possible scenarios. Collecting more diverse data could be a solution, but it can be costly to

gather and annotate them. Sometimes it might not be even an option, for example, medical

images are harder to obtain than real-world images from the internet.

Under domain shift semantically similar objects can appear visually different. For example, it

is hard to perceive the color of a car at night versus during the day. Moreover, cars will have

their lights on during the night rather than during the day. If the detector is trained exclusively
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on daytime images, it will fail to generalize to the night scenes. This problem can exacerbate

when there is additional weather change like rain or snow conditions. Another reason for

domain shift to occur is due to the bias induced by cameras used to capture the scene. The

wide field of view of the camera creates the distorted appearance of objects which are closer to

it. Additionally, depending on the camera setup there can be an extreme perspective distortion.

In both of these scenarios, there is a geometric change in the object’s shape and size.

The above-mentioned causes of shifts are termed as covariate shift. Here,

Ps(X ) 6= Pt (X ) and Ps(y |X ) = Pt (y |X ) (1.2)

imply that cause of domain shift is due to changes in the input image and the conditional

probability of the output remains the same. When the cause of the shift is a difference in the

output labels distribution, it is termed as label shift. Concretely,

Ps(y) 6= Pt (y) and Ps(X |y) = Pt (X |y) (1.3)

here input image distribution conditioned on the output remains the same. This is created by

some categories under-or over-represented in the dataset. Additionally, a new category can

appear during the test time leading to a further gap between the distributions.

In this thesis, we mainly study covariate shift as it is more pronounced and complex to tackle

in applications such as autonomous driving.

1.2.1 Domain Adaptation

Domain adaptation methods aim to enhance the performance of a trained model in new

domains by addressing the impact of domain shift. These methods are based on the core

principle of learning transferable features from a source domain to a known target domain.

To achieve this, the source domain dataset Ds is utilized in conjunction with target domain

dataset Dt , to which adaptation is required. The training process involves using source images

and their corresponding labels, represented as (Xs , ys) ∈Ds , alongside labeled or unlabeled

dataset from the target domain, denoted as (X t , yt ) ∈Dt or X t ∈Dt . It is important to note

that the underlying task remains consistent in both domains, i.e., the label space ys ∈ Ys and

yt ∈ Yt is the same (Ys = Yt ). These shared similarities between the two domains are leveraged

to learn transferable and discriminative features.

Adaptation methods can be categorized as semi-supervised or unsupervised, depending on

the availability of annotations in the target domain. Semi-supervised methods utilize ground-

truth labels from both domains to align image features, thereby improving performance in

both the source and target domains. In contrast, unsupervised methods do not have access to

labels in target domain and align image features through an adversarial objective [27] or by

learning domain-specific features through self-training [28]. Further details regarding these

methods are discussed in Chapter 2.
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Figure 1.2 – Domain shift: Each image represent a different domain. Top: Synthetic images are easier
to obtain but their appearance is far from a real image, making it harder to directly use detector trained
on them for real applications. Similarly, detector trained on day scenes fails on the night images due to
large illumination change. Middle: The style in which people are respresented in comics or paintings
deviate from in ones in real life. The detector needs to adapt to these shifts in order to perform better
in all the domains. Bottom: Wider field of view camera has more stretching at the edges of the images
which leads to distorted shapes compared to a narrow field of view.

Unsupervised domain adaptation is a more practical approach, especially because there is no

annotation required in the target domain. However, it is crucial that the unlabeled data still

reflects the diversity of the domain, which can be challenging depending on the application,

such as in medical imaging.

1.2.2 Domain Generalization

Domain generalization poses a more complex scenario compared to domain adaptation.

Unlike adaptation methods, generalization methods lack access to specific information about

the target domain. The only shared assumption with adaptation methods is that the label

space remains consistent between the source and target domains. In general, during training,

multiple source domains may be available, and the methods aim to learn robust features that

can generalize to unseen target domains. A more challenging case is encountered in single

domain generalization methods, where only one source domain is accessible during training.
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Figure 1.3 – Example of unsupervised domain adaptation from clear day to rainy for driving car
scenario. The annotations are available in the source domain and additional unlabeled images from
target domain are used to train detector. The adapted detector is evaluated on unseen target domain
images.

The methodology for achieving domain generalization can be broadly grouped into data

augmentation and representation learning-based approaches. Data augmentation methods

manipulate input images through photometric or geometric transformations. Alternatively,

generative models can be utilized to generate diverse styles of the same image. On the other

hand, representation learning methods focus on manipulating image features or learning a

disentangled representation consisting of domain-specific and domain-invariant parts.

This thesis primarily addresses single domain generalization for the detection task, an area

that is still in its nascent stage compared to image classification. In the context of detection,

an additional challenge is the localization of objects, requiring the learning of global image

and instance-wise invariant features in order to generalize to unseen domains.

1.3 Thesis Contributions

The objective of this thesis is to improve the detector’s performance under various domain

shifts. Through the following publications, we aim to achieve it.

Attention-based domain adaptation for single-stage detectors

Domain adaptation techniques leverage region proposals of the two-staged detector to per-

form local instance-wise adaptation, which has been shown to significantly improve the

adaptation effectiveness. Here, by contrast, we target single-stage architectures, which are

better suited to resource-constrained detection than two-stage ones but do not provide region

proposals. To nonetheless benefit from the strength of local adaptation, we introduce an

6



Introduction

Figure 1.4 – Example of single domain generalization setup for driving car scenario. The detector is
trained only on clear day images and has to learn features transferable to new weather conditions like
fog, rain, and adapt to night time images.

attention mechanism that lets us identify the important regions on which adaptation should

focus. Our method gradually adapts the features from the global, image level to the local,

instance level. Our approach is generic and can be integrated into any Single-Shot Detector.

We demonstrate this on standard benchmark datasets by applying it to both the single-shot

detector (SSD) and a variant of the You Only Look Once detector (YOLOv5). Furthermore, for

equivalent single-stage architectures, our method outperforms the state-of-the-art domain

adaptation techniques even though they were designed for specific detectors. This work was

published as a journal paper [29].

Vidit, Vidit, and Mathieu Salzmann. "Attention-based domain adaptation for single-stage

detectors." Machine Vision and Applications 33, no. 5 (2022): 65.

Learning Transformations To Reduce the Geometric Shift in Object Detection

Most of the domain adaptation methods focus on object appearance changes caused by,

eg, different illumination conditions, or gaps between synthetic and real images. Here, by

contrast, we tackle geometric shifts emerging from variations in the image capture process, or

due to the constraints of the environment causing differences in the apparent geometry of

the content itself. We introduce a self-training approach that learns a set of geometric trans-

formations to minimize these shifts without leveraging any labeled data in the new domain,

nor any information about the cameras. We evaluate our method on two different shifts, ie, a

camera’s field of view (FoV) change and a viewpoint change. Our results evidence that learning

geometric transformations helps detectors to perform better in the target domains. This work

was published as a conference paper [30].

Vidit, Vidit, Martin Engilberge, and Mathieu Salzmann. "Learning Transformations To Re-

duce the Geometric Shift in Object Detection." In Proceedings of the IEEE/CVF Conference on
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Computer Vision and Pattern Recognition, pp. 17441-17450. 2023.

CLIP the Gap: A Single Domain Generalization Approach for Object Detection

Single Domain Generalization (SDG) tackles the problem of training a model on a single

source domain so that it generalizes to any unseen target domain. While this has been well

studied for image classification, the literature on SDG object detection remains almost non-

existent. To address the challenges of simultaneously learning robust object localization and

representation, we propose to leverage a pre-trained vision-language model to introduce

semantic domain concepts via textual prompts. We achieve this via a semantic augmentation

strategy acting on the features extracted by the detector backbone, as well as a text-based

classification loss. Our experiments evidence the benefits of our approach, outperform the

SDG object detection method on adverse weather datasets, and extend to other cross-domain

datasets. This work was published as a conference paper [31].

Vidit, Vidit, Martin Engilberge, and Mathieu Salzmann. "CLIP the Gap: A Single Domain

Generalization Approach for Object Detection." In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 3219-3229. 2023.

1.4 Outline

• Chapter 1 introduces the fundamental concepts and motivation behind the thesis.

• Chapter 2 covers the existing literature on domain adaptation and generalization tech-

niques applied to detection tasks.

• Chapter 3 presents our novel approach to adapt single-stage detectors. We introduce an

attention mechanism to enhance adaptation for local object regions.

• Chapter 4 addresses the need to mitigate geometric changes arising from different

camera setups. We propose learning a set of homographies to bridge this gap.

• Chapter 5 introduces a single domain generalization method where we estimate target

domain features using their textual descriptions. This approach utilizes vision language

embeddings.

• Chapter 6 concludes the thesis, discussing limitations and providing insights into po-

tential future research directions.
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2 Related work

In this chapter, we detail previous works on domain adaptation for object detection. We start

with discussing different object detectors and later delve into different domain adaptation

techniques for them.

2.1 Object Detection

As discussed in Sec. 1.1, modern object detectors can be broadly grouped into single and

two-staged architectures. Two-stage object detectors, such as FasterRCNN [11], and Feature

Pyramid Network(FPN) [32], consist of a feature extractor, a region proposal network (RPN),

and a refinement network. The feature extractor generates high-dimensional image repre-

sentations, which are then used as inputs to the RPN. RPN provides foreground regions, via

region of interest(ROI) pooling, to the refinement stage for bounding box prediction and

classification. While FasterRCNN was the first end-to-end learning approach, FPN was the

first to introduce learning at multiple scales. The deeper layers of the network capture object

semantics better but have lower spatial resolution, which limits their ability to precisely lo-

calize objects. FPN addresses this limitation by building semantics in shallower layers, thus

facilitating finer localization.

One-stage detectors like Single-Shot Detector(SSD) [1], You Look Only Once (YOLO) [25, 2, 33],

FCOS [34], RetinaNet [3], EfficientDet [4] and Detr [12], have emerged as an alternative, be-

coming competitive in accuracy while being faster than two-stage ones. These detectors

forgo the region proposal branch of two-stage detectors and directly predict bounding boxes

based on the output of the feature extractor. YOLO [25] was the first one-stage detector and

surpassed FasterRCNN in terms of inference speed at the cost of lower accuracy. SSD followed

multi-scale-based detection and performed better than its direct competitor YOLO [25]. The

inherent background-foreground class imbalance in detection tasks affects the detector’s

training as there are several easy negatives. RetinaNet solves this issue by introducing a new

loss to reduce the importance of the well-classified regions during training. By doing so they

improved the single-stage performance to be better than the two-stage ones. EfficientDet

tweaks the feature extractor’s backbone and uses a compound scaling method to simultane-
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ously change the resolution, depth, and width of all the detector layers. They outperformed

RetinaNet and two-staged detectors by a large margin. Subsequent iterations of YOLO, such as

YOLOv5 [2] and YOLOv7 [33], have surpassed two-stage detectors in both speed and accuracy,

primarily by creating meticulously optimized network layers. Presently, these models are the

preferred choice for numerous industrial applications.

Across all these detectors, predictions of bounding box offsets are made with respect to

predetermined anchor boxes. The selection of these anchors is crucial and dependent on

the dataset to align with the distribution of object sizes and shapes. The performance of

the detector is intrinsically tied to these anchors, which are often hand-engineered to a

certain extent. To address this concern, anchorless detection methods have been introduced,

including CornerNet [35], FCOS [34], and Detr [12]. CornerNet predicts the top-left and

bottom-right corners of bounding boxes, while FCOS predicts a heatmap around the object’s

center, capturing its aspect ratio, height, and width. Both of these methods surpassed the

performance of single-stage detectors of their time. Detr innovatively employs a transformer-

based encoder-decoder architecture [36] for anchorless prediction. It utilizes a set-based

prediction loss mechanism to establish a one-to-one correspondence between predictions

and ground truth. Deformable Detr [37] was proposed to enhance the convergence speed of

Detr and elevate its performance on small objects. Although these methods exhibit ongoing

improvement, they still fall short of the performance attained by YOLOv7.

In this thesis, we work with both single and two-staged architectures, specifically SSD, YOLOv5,

and FasterRCNN.

2.2 Unsupervised Domain Adaptation for Object Detection

Unsupervised domain adaptation leverages unlabeled target domain images along with la-

beled source domain images to improve the transferability of the detector in the target domain.

In the context of detection, the domain shift happens at the global, image-level, and local,

object level. The adaptation methods need to account for both of these changes in order to

improve the performance in the target domain.

In the literature, there are broadly three different techniques that are used for adaptation tasks.

Domain invariant features: [27] proposed an adversarial training mechanism where source

and target domain features are aligned by fooling a domain classifier.The domain classifier is

trained to differentiate between images originating from the source or target domains based

on their features. By incorporating a novel gradient reversal layer, the model learns domain

invariant features, deliberately confusing the domain classifier.

Data augmentation: The simplest technique to bridge the gap between two domains is to

augment training images to reflect the scene similar to the target domain. Generative models

like, CycleGAN [38] are used to translate a source domain image in target domain style. Apart

from this, simple photometric changes like color-jitter can increase the transferability of the

features to target domain.
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Self-training: The model trained on the source domain can be used to generate pseudo-labels

for the unlabeled target domain. These pseudo-labels help the model to directly learn target

domain features. Mean Teacher [28] formulation is a popular method to generate these

pseudo-labels. Here, a student model is updated using loss from supervised labels in source

domain and pseudo-labels in target. These pseudo-labels are generated by a teacher which is

a moving average of student model weights.

The above mentioned techniques are usually used in conjunction with each other to adapt

single and two-staged detectors. In particular, most of the methods have focused on the

two-stage FasterRCNN detector. In this context, [39] uses instance- and image-level alignment

to improve the FasterRCNN performance on new domains; [40] shows that a strong local

feature alignment improves adaptation, particularly when focusing on foreground regions;

[41] performs feature- and image-level adaptation on interpolated domain images generated

using a CycleGAN [38]; [42] uses CycleGAN-translated images to remove the source domain

bias in the teacher network and generate better pseudo labels for the target domain; [43]

clusters the proposed object regions using k-means clustering and uses the centroids to do

instance-level alignment; [44] introduces a method to improve the interaction between local

and global alignment; [45] learns category-specific attention maps for FasterRCNN using

memory modules to perform alignment. In these works, alignment is achieved using an

adversarial mechanism of [27]. [42, 46, 47] used the Mean Teacher strategy of [28] to generate

reliable pseudo-labels in the target domain. [42] use of CycleGAN [38] generated images to

train an unbiased teacher model, while [46] uses photometric and geometric transformations

to generate robust pseudo-labels. [46] additionally leverages adversarial training [27] to do fea-

ture alignment. [47] enforce additional consistency loss between bounding box classification

score and Intersection Over Union(IOU) score with the ground-truth.

In the case of a two-stage detector, the adaptation methods leverage the RPN proposals to

achieve a form of local object feature alignment. This local feature alignment is particularly

challenging in single-stage detectors due lack of RPN. Different methods have been proposed

to circumvent this problem and adapt single-stage detectors. Some of these rely on generating

better pseudo labels for the target domain and train the detector on them. In particular, [48]

proposes to regularize highly-confident pseudo labels to reduce false positives; [49] develops

a domain mixup strategy to gradually adapt the detectors using the generated labels. [50] uses

the object centerness maps predicted by the single-stage detector of [34] to perform local

feature alignment. While effective, this approach is therefore restricted to this specific detector.

[13] designs a set of complementary modules, which help global- and local-level alignment in

the dissimilar domain setting, implicitly learning foreground regions in the SSD architecture.

They formulate their category alignment loss for the target domain using the class probabilities

of each anchor box. [51] performs domain adaptation with the self-attention based detector,

Detr [12]. Some of the two-stage-based methods [40, 41, 47] can be extended for single-stage

adaptation tasks.
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2.3 Single Domain Generalization

While domain adaptation methods have access to both source and target domains, domain

generalization methods solely rely on source domains for learning purposes. These source

domains are employed to acquire robust features that exhibit transferability to previously

unseen target domains. The realm of single domain generalization (SDG) pertains to the

challenging scenario where only a source domain is available for acquiring transferable features

to be employed in new domains.

Methods falling within the SDG paradigm can be broadly categorized into two groups:

Data manipulation: Through data augmentation and generation, models can learn domain

invariant features and better adapt to the underlying task. These methods rely on simple

photometric changes like color jittering to neural network-based stylization methods like

[52]. The objective of this approach is to create diversity in the training dataset to facilitate

generalization.

Representation learning: The technique mostly used under this paradigm is feature disen-

tanglement. Here, the objective is to disentangle image features into domain-invariant and

domain-specific parts. Then domain-invariant features are used for the underlying task and

generalization.

In image classification, where SDG has been popular for a while, the above strategies have been

used in conjunction with each other. In particular, [53, 54, 55] introduce data augmentation

strategies where diverse input images are generated via adversarial training; [56, 57] propose

normalization techniques to adapt the feature distribution to unseen domains. While SDG

has been reasonably well studied for image classification, the case of object detection remains

largely unexplored and poses additional challenges related to the need to further localize

the objects of interest. This was recently tackled by Single-DGOD [10] with an approach

relying on learning domain-specific and domain-invariant features. Specifically, this was

achieved by exploiting contrastive learning to disentangle the features and self-distillation [58]

to further improve the network’s generalizability. [59] leverages a vision-language model,

CLIP [9], to estimate visual features of the unseen domains using textual descriptions. This

work is concurrent with our work on domain generalization.

With a foundational understanding of the topic and the overarching research landscape

established, the forthcoming chapters will delve into the details of our specific contributions.
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3 Attention-based Domain Adaptation for
Single-Stage Detectors

3.1 Introduction

Several works on domain adaptation for object detection [39, 40, 41, 43, 44, 45] have focused

mostly on two-stage detectors. At the heart of most of these methods lies the intuition that

adaptation should be performed locally, focusing on the foreground objects because the

background content may genuinely differ between the training and test data, whereas the

object categories of interest do not. This process of local adaptation is facilitated by the ROIs

used in two-stage detectors. Unfortunately, no counterparts to ROIs exist in single-stage

detectors, making local adaptation much more challenging.

In this chapter, we introduce a domain adaptation strategy able to perform local adaptation

while generalizing across different single-stage object detectors. Specifically, we introduce an

attention mechanism that allows adaptation to focus on the regions that matter for detection,

that is, the foreground regions, as depicted by Fig. 3.1. In essence, our approach leverages

attention to perform local-level feature alignment, thus following the intuition that has proven

successful in adapting two-stage detectors. Our attention mechanism is generic and can be

incorporated into any single-stage detector. Furthermore, and contrarily to [50] and [13], we

gradually modulate the adaptation from global features to local features, which lets us give

increasingly more importance to foreground features as training progresses. Consequently,

this allows us to use the same domain classifiers for both global and local alignment, thereby

leading to a simpler implementation than [50] and [13]. While [51] and [60] also propose

attention-based adaptation mechanism, in contrast to our work, they are dedicated to specific

backbones and thus do not easily transfer to different single-stage architectures.

We demonstrate the benefits of our approach via a series of experiments on several stan-

dard domain adaptation detection datasets. Despite its comparative simplicity, our method

outperforms the state-of-the-art ones of [50] and [13]. Furthermore, our results evidence

the generalizability of our domain adaptation strategy to different single-stage frameworks,

including SSD [1] and YOLOv5 [2], and the importance of local feature alignment over the

global ones, particularly in the later training stages. Our code is available at https://github.

com/vidit09/adass
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Attention-based Domain Adaptation for Single-Stage Detectors

Figure 3.1 – Leveraging attention for local domain adaptation. Top: Target image with predicted
detections. Bottom: Attention maps output by our approach for feature maps at different scales, allowing
us to focus adaptation on the relevant local image regions, ranging from small (left) to large (right)
objects. The attention maps are re-scaled to the same size for visualization purpose. Best viewed digitally.

3.2 Method

Let us now introduce our attention-based domain adaptation strategy for single-stage de-

tection. We begin with a comparison with existing approaches using attention mechanism,

followed by a detailed explanation of our approach.

3.2.1 Self Attention

Our approach exploits self-attention (SA) which was introduced in [36] for natural language

processing and has since then become increasingly popular in this field [61, 62]. Recently, it

has also gained popularity in computer vision, for both image recognition [63, 64, 65] and

object detection [12]. While other attention mechanisms have been proposed [66, 67, 68, 69],

they typically require more architectural changes than vanilla SA [36], which motivated us to

rely on this strategy in our method. [51] performs domain adaptation with the self-attention

based detector [12]. By contrast, we develop an attention mechanism that can be integrated

into a single-stage detector to facilitate adaptation. This makes our approach applicable to the
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Attention-based Domain Adaptation for Single-Stage Detectors

Figure 3.2 – General single-stage object detection architecture. Both SSD [1] and YOLOv5 [2], used
in our experiments, comply with this architecture, and other methods [3, 4] also do.

non-attention-based backbones of SSD and YOLOv5, thus making it more general than [51].

3.2.2 Attention in Single-stage Detectors

Single-stage object detectors typically follow the general architecture depicted by Fig. 3.2,

consisting of a feature extractor followed by several detection heads. These detection heads

take as input the features Fs at different scales s ∈ [1,S], with the different scales allowing the

detector to effectively handle objects of different sizes. Such an architecture directly predicts

bounding boxes and their corresponding class from the feature maps, via the use of bounding

box anchors at each spatial location. As such, it does not explicitly provide information about

the features corresponding to the objects. This contrasts with two-stage detectors, whose

region proposals directly correspond to potential objects.

To automatically extract information about the object locations, we propose to incorporate a

self-attention mechanism [36] in the detector. Intuitively, we expect the foreground objects

to have higher self-attention than background regions because the detector aims to identify

them, and thus exploit self-attention to extract an objectness map. To this end, we use an

attention architecture similar to that of [12], but without an attention-based decoder because

we want to keep the same detector heads as in [1] and [2].

The attention module takes as input the feature map Fs ∈ RHs×Ws×Cs and produces an ob-

jectness map As ∈ RHs×Ws and a feature map Gs ∈ RHs×Ws×Cs . Specifically, Fs is flattened to

RHsWs×Cs and transformed into a query matrix Q ∈RDq×D , a key matrix K ∈RDk×D and a value

matrix V ∈ RDv×Cs , with Dq = Dk = Dv = HsWs , using three separate linear layers. We then

compute

A′
s = so f tmax

(
QK T

p
D

,di m = 1

)
∈RDq×Dk (3.1)

which, intuitively, represents the similarity between the query and the key at different spatial

locations. To compute the objectness map As , we then compute the maximum in each row of

A′
s , leading to a Dq -dimensional vector, which we min-max normalize, so that each value falls

in the range [0,1]. Finally, As is obtained by reshaping this vector to RHs×Ws .
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Figure 3.3 – Overview of our approach. We compute self-attention from the features extracted by
the single-stage detector backbone. We then modulate these features with our attention maps so as to
encourage the feature alignment achieved by the domain discriminator to focus on the relevant local
image regions. The number of domain classifiers matches the number of detection heads in SSD [1] and
YOLOv5 [2]

Given A′
s , we also compute

G ′
s = A′

sV ∈RHsWs×Cs (3.2)

which we reshape to RHs×Ws×Cs to obtain the feature map Gs . We then pass Fs +Gs to the

detection head.

In addition to this, and as will be discussed in more detail in Sec. 3.2.3, we further leverage As

to modulate the Fs +Gs features for domain adaptation. This differs from previous SA works,

which do not explicitly exploit the learned attention maps.

In practice, instead of the single-head attention mechanism discussed above, we rely on the

multi-head extension presented in detail in [36, 12]. In short, Eq. (3.1) is computed multiple

times using unshared linear layers to obtain different query, key, and value matrices. The

resulting independent A′
s matrices are concatenated and linearly transformed to a single

matrix of size RDq×Dk . Intuitively, and as discussed in [36, 12], the multiple heads can extract

different representations for the same pair of locations.

As the different detection heads focus on objects of different sizes, we add an attention module

at each scale. These modules are trained jointly with the feature extractor and detection heads.

Because we do not have access to supervisory signals for the attention/objectness maps, the

loss function Ldet to train the detector remains the same as that of the original single-stage

detector. Typically [1, 2], such a loss function incorporates a classification term to categorize

pre-defined anchor bounding boxes, and a regression one to refine these anchors. It can thus

be expressed in general as

Ldet (I ) =Lcl s(I )+Lr eg (I ) . (3.3)
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3.2.3 Unsupervised Domain Adaptation

Let us now explain how we exploit the above-mentioned attention mechanism for unsuper-

vised domain adaptation. This process is depicted by Fig. 3.3. Let Is be a source image, for

which we have the ground-truth bounding boxes and class labels, and It be a target image, for

which we do not. The source and target images are drawn from two different distributions but

depict the same set of classes. Domain adaptation then translates to learning a representation

that reduces the gap between both domains.

An effective approach to achieve this consists of jointly training a domain discriminator D in

an adversarial manner [27], encouraging the learned features not to carry any information

about the observed domain. In our context, because the detection heads act on features at

different scales, we use a separate discriminator Ds for each scale s. However, we do not

directly use the feature maps Fs as input to these discriminators, but instead aim to focus

the adaptation on the foreground objects, accounting for the fact that the background can

genuinely differ across the two domains.

To this end, we leverage the objectness maps from Sec. 3.2.2 to extract the weighted feature

map

Ms = (1−γ)∗ (Fs +Gs)+γ∗ (Fs +Gs)¯ As , (3.4)

where ¯ indicates an element-wise product performed independently for each channel of

(Fs +Gs), and γ ∈ [0,1]. This formulation combines the global, unaltered features with the

local ones obtained by modulating the features by our attention map. During our training,

we then gradually increase γ from 0 to 1, which lets us transition from global adaptation to

local feature alignment. Intuitively, this accounts for the fact that, at the beginning of training,

the predicted attention maps may be unreliable, and a global alignment is thus safer. We

also observed such a strategy to facilitate the training of the discriminators. In practice, we

compute γ as

γ= 2

1+exp(−δ · r )
−1 , (3.5)

where δ controls the smoothness of the change and r = current iteration
max iteration .

Given the attention-modulated features Ms for each scale s, we then write the discriminator

loss as

Ldi s(I ) =−1

S

∑
s

t log(Ds(Ms))+ (1− t ) log(1−Ds(Ms)), (3.6)

where t = 0, resp. t = 1, indicates that image I is a source, resp. target image.

During training, the discriminator aims to minimize Ldi s while the feature extractor seeks to

maximize it. To facilitate such an adversarial training process, we use the gradient reversal
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layer (GRL) of [27]. Hence, the overall loss function minimized by the feature extractor for a

source and a target image can be expressed as

L(Is) =Ldet (Is)−Ldi s(Is) , (3.7)

L(It ) =−Ldi s(It ) , (3.8)

respectively. Note that, unlike [50] and [13], we do not use pixel-wise domain discriminators,

as we found our attention-modulated feature maps to be sufficient to suppress the background

features. Moreover, the formulation in Eq. (3.4) allows us to use the same discriminator for

global alignment at the beginning of training and local alignment in the later training stages.

3.3 Experiments

In this section, we discuss our experimental settings and analyze our results.

3.3.1 Datasets

We evaluate our method using the following four standard datasets:

Cityscapes [5] contains 2975 images in the training set and 500 in the test set, with annotations

provided for eight categories, namely, person, car, train, rider, truck, motorcycle, bicycle, and

bus. The images depict street scenes taken from a car, mostly in good weather conditions.

Foggy Cityscapes [70] contains Cityscapes images with synthetically added fog condition. It

contains 2965 training images and 500 testing ones, depicting the same eight categories as

Cityscapes.

Sim10K [71] consists of 9975 synthetic images, with annotations available for the car category.

KITTI [7] depicts street scenes similar to those of Cityscapes, but acquired using a different

camera setup. In our experiments, we will only use its 6684 training images.

Following [50], we present results for the following domain adaptation tasks:

Sim→Cityscapes (S→C): This evaluates the effectiveness of a method to adapt from synthetic

data to real images. All Sim10K images are used as the source domain, and the Cityscapes

training images act as the target domain. Following [50], only the car class is considered for

evaluation.

KITTI→Cityscapes (K→C): This task aims to evaluate adaptation to a different camera setup.

While KITTI is has a wide field of view camera , camera in Cityascapes is a narrow field of view.

We use the KITTI training images as the source domain and the Cityscapes training images as

the target one. Again, as in [50], we consider only the car class for evaluation.

Cityscapes→Foggy Cityscapes (C→F): The goal of this experiment is to test the effectiveness

of a method in different weather conditions. We use the Cityscapes training images as the

source domain and all Foggy Cityscapes images as target data. For this task, all eight object

categories are taken into account for evaluation.
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3.3.2 Implementation Details

We evaluate our method on two single-stage detectors, SSD [1]I and YOLOv5 [2]II. We imple-

mented our method in Pytorch [72], and performed all our experiments on a single Nvidia

V100 GPU [73]. The batch consists of 8 images, 4 drawn from the source and 4 from the target

domain. We set δ in Eq. (3.5) to 5. We provide additional training details in the Appendix A.1.

SSD relies on a similar VGG [74] backbone to that used by the detectors employed in [50]

and [13]. We will therefore focus our comparison with [50] and with [13] on our SSD-based

approach. We employ an image resolution of 512×512 because it is the highest resolution

available for the SSD architecture. Note that, in [50], larger images were used, i.e., a short

image side between 800 and 1333, and that [13] used a lower, 300×300 resolution. For the

comparison to be fair, we thus re-trained these methods with this 512×512 image resolution.

To further make our SSD architecture comparable to that of [50], we incorporated a Feature

Pyramid Network [32] to our SSD backbone. Following [50] and [13], all backbones were

initialized with ImageNet-trained weights.

YOLOv5 is also trained with input images of size of 512×512. This allows us to illustrate the

generality of our approach to other single-stage detectors. Specifically, we use the YOLOv5s

backbone, which is the smallest model out of all YOLO configurations. We keep the default

configuration for preprocessing and data augmentation. We initialize the backbone with

COCO-pretrained weights [75] since [2] don’t provide ImageNet-trained weights.

3.3.3 Results

Evaluation Metric

Following previous work [40, 50, 13], we evaluate our method’s performance with the Mean

Average Precision (mAP) [76]. Specifically, the precision of the detector is computed over 11

equally-spaced recall values in the range [0,1]. We then compute the Average Precision (AP) for

each class as the area under the Precision-Recall curve, and then use the mean of the APs for

the different classes to indicate the overall detector performance on a dataset. In this process,

a prediction is considered to be correct if it is deemed to contain the right class and has an

intersection over union (IOU) score of at least 0.5 with the ground-truth bounding box. We

thus refer to our metric as mAP@0.5.

Comparison with the State of the Art

Let us first compare our SSD-based method with [13] and with the global and local version

of [50]. Following [13], we also report the results of SWDA [40] and of HTCNψ [41], originally

developed for two-stage detectors, which we made compatible with single-stage ones. Specifi-

Ihttps://github.com/lufficc/SSD
IIhttps://github.com/ultralytics/yolov5
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AP@0.5

Method person car train rider truck motor bike bus mAP

[50] - w/o DA 18 28.3 1.6 18.3 6.5 6.6 15.5 16.5 13.9
[50] - global 25.1 43.3 5.4 27.6 17.8 11.9 22.1 33.5 23.3

[50] - global+local 26.6 44.5 4.8 26.2 21.2 12.3 19.1 33.9 23.5
I3Net [13] 19.7 37.9 9.6 22.9 12.5 18.3 22.7 21.1 20.6

SSD - w/o DA 15.1 28.8 0.2 12.9 2.2 5.8 13.7 13.5 11.5
SSD + our DA 23.4 49.1 4.9 27.8 16.9 17.6 24.2 34.0 24.8

SWDA [40] 16.6 30.3 0.6 17.9 6.2 9.3 18.5 16.9 14.5
HTCNψ [41] 11.5 28.8 0.9 9.8 1.7 4.5 12.7 6.4 9.6

Table 3.1 – Results on C→F: Our method outperforms the baselines in most of the categories. Here, the
name motor and bike represent the class motorbike and bicycle, respectively.

cally, we reimplemented both methods within our SSD framework and further modified the

HTCN pixel and image-wise reweighting so as not to use any context vector, as single-stage

detectors don’t provide access to foreground ROIs. Additionally, we did not use CycleGAN-

translated images as in [41] for the comparison to be fair. As a reference point, we also report

the results obtained without domain adaptation, as SSD - w/o DA.

Tab. 3.1 provides the results on C→F. Our method yields the best results on average (last

column). When looking at the individual categories, we observe that we outperform all

methods on car, rider, and additionally yield better results than [50] on bicycle, with on par

performance on train and bus. In some categories, such as car, our approach yields an increase

in mAP by 10% compared to [50]. We attribute our poor performance on train and truck to the

fact that these categories are under-represented in the source domain, and that their similar

elongated shapes create confusion between these classes. We outperform [13] on most of

the categories and increase the mAP score by 29.5% and 61% for car and bus, respectively.

This shows the effectiveness of our method. Both SWDA and HTCNψ suffer from the lack of

rich foreground information in SSD, which contrasts with the two-staged detector they were

originally developed for. HTCNψ additionally relies on context vectors trained with ROIs and

translated images to improve performance. The unavailability of these leads to even worse

performance than our SSD - w/o DA.

In Fig. 3.4, we provide examples of detections and attention maps predicted with our approach

on the C→F task. Despite the challenging nature of this adaptation problem, our method

correctly highlights the objects in the scene. The attention maps at different scales focus on

objects of different sizes.

Tab. 3.2 shows the results for the S→C adaptation. Our method again yields the best results,

outperforming both [50] and [13]. Surprisingly, the global alignment of [50] yields better

performance than when further exploiting their local alignment. This suggests that both

should not be given equal importance as training progresses. HTCNψ without instance-aware
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Figure 3.4 – Qualitative results on C→ F. We show targeted images with predicted detections, together
with attention maps at different scales. Recall that here we consider multiple classes.All predictions
are with confidence 50% and above. Bottom two rows: We show the predictions and attention maps
before(left) and after(right) adaptation. We are able to reduce the false positives and improve the
detection on smaller objects in this case.

adaptation performs worse than the other baselines, suggesting its reliance on the foreground

adaptation.

We provide the K→C results in Table 3.2. Note that the method of [50] fails to adapt to the target
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AP@0.5

Method S→C K→C

[50] - w/o DA 31.5 33.3
[50] - global 33 23.3

[50] - global+local 32.8 27.8
I3Net [13] 35.1 40.0

SSD - w/o DA 29.1 33.1
SSD + our DA 36.7 40.5

SWDA [40] 31.5 39.0
HTCNψ [41] 29.9 32.3

Table 3.2 – Results on S→C and K→C adaptation: Our method performs better on both of the adap-
tation tasks. We achieve comparable resuts w.r.t I 3Net [13] while being simpler in design and training
choices.

data, yielding worse performance than their own no-DA baseline. This difference compared to

the results provided in [50] paper, arises from the use of a smaller image size here, as detailed in

implementation section. Note, however, that the fact that the [50]- w/o DA baseline, which we

also re-trained, yields essentially the same performance as our SSD - w/o DA baseline, and that

the method of [50] yields reasonable performance in the other source-target pairs evidence

that we correctly re-trained this model. For this adaptation task, we achieve comparable

results with [13] even though we adopt simpler training and architecture choices. Again, the

worse performance of HTCHψ can be attributed to the lack of instance-specific loss. We show

qualitative results for this task in Fig. 3.6.

In Fig. 3.5, we provide qualitative results for the S→C task. These results evidence that the

attention maps we produce correctly focus on the local regions of interest, i.e., the cars in this

case. Furthermore, the maps at different scales account for objects at different sizes. Note

that attention maps with no activations or activations everywhere indicate the absence of any

object of that scale, and will typically lead to predictions with low confidence because the

model has learned to ignore those cases during training.

For K→C task, we show qualitative results in Fig. 3.6. With our approach, we learn to adapt

local object regions better, as seen in before and after adaptation results.

Generalization to Another Architecture

To show the generality of our approach, we use it with the YOLOv5 detector. We compare

our method with an additional baseline YOLO + obj w DA. This baseline leverages the fact

that the YOLO architecture predicts an objectness score for each anchor box at each feature

map location. We thus use the maximum score at each location to create an objectness map

and replace our As , learned using self-attention, with this map. Furthermore, we provide the
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Figure 3.5 – Qualitative results on S→ C. We show targeted images with predicted detections, together
with attention maps at different scales. All predictions are with confidence 50% and above. Bottom two
rows: We show the predictions and attention maps before(left) and after(right) adaptation. We can see
we supress the false postives by learning better attention maps(middle). The objects of interest belong to
category car.

results of the YOLOv5 architecture without domain adaptation as YOLO w/o DA.

The results on C→F, S→C, and K→C are shown in Tab. 3.3, and Tab. 3.4. As in the SSD case,
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Figure 3.6 – Qualitative results on K→ C. We show targeted images with predicted detections, together
with attention maps at different scales. All predictions are with confidence 50% and above. Bottom row:
We show the predictions and attention maps before(left) and after(right) adaptation. After adaptation,
we see attention maps to be more focused on the foreground objects. The objects of interest belong to
category car.

our method consistently outperforms the baselines, illustrating the generality of our approach.

YOLO + obj w DA performs worse than us on S→C, C→F and comparably on K→C. This further

shows that our attention scheme helps to learn better objectness maps.

3.3.4 Ablation Study

Global vs Local Alignment

As mentioned in Sec. 3.2.3, our formulation in Eq. (3.4) is motivated by the intuition that one

should initially perform a global alignment to learn reliable features for the attention module,

but that the global features can be gradually dropped to focus on local regions in the later

training stages. To further evaluate the benefits of local vs global alignment, we implemented

three alternative strategies: (a) The global features are maintained throughout the whole

training process. Concretely, this strategy computes a features map of the form

Md = (Fs +Gs)+γ∗ (Fs +Gs)¯ As , (3.9)

where γ follows the same rule as in our approach. (b) We set γ = 1 in Eq. (3.4), which cor-

responds to performing adaptation using only local features throughout the whole training
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AP@0.5

Method person car train rider truck motor bike bus mAP

YOLO - w/o DA 27.1 40.8 4.5 30.8 11.1 9.3 21 24.7 21.1
YOLO + obj w DA 31.8 50.3 4.9 33.9 18.5 12.7 25.8 34.3 26.5
YOLO + our DA 32.8 51.3 16.2 35.7 18.8 11.8 25.6 34.5 28.3

Table 3.3 – Results on C→F: Our method outperforms the baselines in most of the categories. Our
attention based method is better than using simple objectness score of YOLO. Here, the name motor and
bike represent the class motorbike and bicycle, respectively.

AP@0.5

Method S→C K→C

YOLO - w/o DA 42.5 29.1
YOLO + obj w DA 43.5 37.5
YOLO + our DA 44.9 37.7

Table 3.4 – Results on S→C and K→C adaptation: Adaptation with YOLO’s objectness score improves
over no adaptation baseline. This suggests adapting object regions is helpful. With our attention
mechanism, we further improve our performance on both the tasks.

process. (c) We set γ= 0 in Eq. (3.4), which corresponds to a global alignment where the atten-

tion block is nonetheless employed via Gs but the attention maps are not used to modulate

the features.

Method AP@0.5

Ours w. Eq. 3.9 32.9
Ours w. γ =1 33.6
Ours w. γ = 0 34.2

Ours 36.7

Table 3.5 – Global vs Local Alignment on S→C

As shown in Tab. 3.5 for the S→C task and with an SSD-based detector, our approach out-

performs all of these baselines. This confirms that maintaining a global alignment term

throughout training harms the overall performance, suggesting that the transition from global

to local is crucial. This is further supported by the fact that local or global alignment on their

own performs better than combining both in a suboptimal fashion. Purely local adaptation

yields worse results than purely global adaptation because the attention maps do not carry

sufficient meaningful information at the beginning of training, which compromises the rest of

the training process. This study shows that both global and local alignment are important and

that their interaction affects the overall performance.
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Figure 3.7 – Study of different variants of γ. We plot the evolution of γ throughout training for
different values of δ. We also study other functions highlighted in orange.

Hyperparameter Study

In this section, we further investigate the influence of attention on our results. To this end, we

first study the effect of δ in γ= 2
1+exp(−δ·r ) −1 for S→ C with SSD. Tab. 3.6 shows mAP scores

for strategies ranging from local alignment (γ=1) to more global alignment (δ=0.5). Fig. 3.7

depicts the evolution of γ for different values of δ. For δ = 10,5 we see that the transition

from global to local is relatively fast, which yields better results than the slower transition

δ = 1,0.5 and γ=r 3. We attribute this to the fact that the network becomes biased towards

global features if the transition is slow. Moreover, for δ = 1,0.5, the local features are never

given much importance as γ is always below 0.5. Finally, we see that a linear function γ= r

yields a similar score to that obtained with a non-linear function with δ= 10, suggesting that

transition leads to a better result, thereby validating our claim of the importance of global

adaptation in the initial training stages and local adaptation towards the end.

Method AP@0.5

Ours w. γ =1; large δ 33.6
Ours w. δ=10 35.6
Ours w. δ=5 36.7

Ours w. γ = r 35.7
Ours w. γ = r 3 33.0

Ours w. δ=1 33.4
Ours w. δ=0.5 33.3

Table 3.6 – Hyperparameter study on S→C
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Importance of Attention

To show the importance of attention, we trained both the SSD and YOLO detectors without and

with our attention mechanism, along with domain adversarial training. As shown in Tab. 3.7,

our attention scheme consistently improves the performance in the target domain for all the

adaptation tasks.

Adapt Method SSD YOLO

w/o attn 35.1 42.7
S→C attn 36.7 44.9

w/o attn 39.9 37.4
K→C attn 40.5 37.7

w/o attn 24.1 25.9
C→F attn 24.8 28.3

Table 3.7 – Importance of Attention: The consisent improvement due our attention mechanism on
shows it effectiveness. We report the mAP@0.5 in the target domain.

3.4 Conclusion

In this chapter, we adapt single-stage detectors for domain adaptation task. We take inspiration

from the methods proposed for two-stage detectors to adapt the local object feature along

with global image features. Two-stage detectors can perform local adaptation easily as they

have access to object regions which is not a trivial task in single-stage detectors.

We tackle this problem by incorpoting a self-attention based module to obtain local foreground

regions that truly matter for detection. We have further developed a gradual training strategy

that smoothly transitions from global to local feature alignment. Our experiments on several

domain adaptation benchmarks have demonstrated that (i) with a comparable architecture,

our method outperforms the state-of-the-art domain adaptation techniques for single-stage

detection, despite the fact that they were designed for specific architectures; (ii) our approach

remains effective across different single-stage detectors; (iii) our gradual training strategy

effectively allows the network to benefit from global and local adaptation.

In this chapter, we mostly tackle domain shifts occuring due to appearance change. The

underlying reason being the difference in the weather condition or gap created due to lack

of realism in the synthetic training data. In the following chapter, we will see another kind of

shift, termed, geometric shifts, caused due changes in the object shapes and sizes between

two domains.
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4 Learning Transformations To Reduce the
Geometric Shift in Object Detection

4.1 Introduction

Unsupervised domain adaptation methods have made great progress when the appearance

of the objects changes drastically from one domain to the other, as in case of real-to-sketch

adaptation (e.g., Pascal VOC [76] to Comics [14]), or weather adaptation (e.g., Cityscapes [5] to

Foggy Cityscapes [70]). Nevertheless, such object appearance changes are not the only sources

of domain shifts. They can also have geometric origins. For example, as shown in Fig. 4.1,

they can be due to a change in camera viewpoint or field-of-view (FoV), or a change of object

scale due to different scene setups. In practice, such geometric shifts typically arise from a

combination of various factors, including but not limited to the ones mentioned above.

In this chapter, we introduce a domain adaptation approach tackling such geometric shifts. To

the best of our knowledge, the recent work of [8] constitutes the only attempt at considering

such geometric distortions. However, it introduces a method solely dedicated to FoV variations,

assuming that the target FoV is fixed and known. Here, we develop a more general framework

able to cope with a much broader family of geometric shifts.

To this end, we model geometric transformations as a combination of multiple homographies.

We show both theoretically and empirically that this representation is sufficient to encompass

a broad variety of complex geometric transformations. We then design an aggregator block

that can be incorporated into the detector to provide it with the capacity to tackle geometric

shifts. We use this modified detector to generate pseudo labels for the target domain, which

let us optimize the homographies so as to reduce the geometric shift.

Our contributions can be summarized as follows. (i) We tackle the problem of general geo-

metric shifts for object detection. (ii) We learn a set of homographies using unlabeled target

data, which alleviates the geometric bias arising in source-only training. (iii) Our method

does not require prior information about the target geometric distortions and generalizes to a

broad class of geometric shifts. Our experiments demonstrate the benefits of our approach

in several scenarios. In the presence of FoV shifts, our approach yields similar performance

to the FoV-dedicated framework of [8] but without requiring any camera information. As
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Figure 4.1 – Geometric shifts. (Left) Due to a different FoV, the cars highlighted in green, undergo
different distortions even though they appear in similar image regions. (Right) Different camera view-
points (front facing vs downward facing) yield different distortions and occlusion patterns for pedestrian
detection. (Bottom) The distributions of pedestrian bounding box sizes in Cityscapes [5] and MOT [6]
differ significantly as the pedestrians are usually far away or in the periphery in Cityscapes. The top
images are taken from Cityscapes [5], and the bottom-left and right ones from KITTI [7] and MOT [6],
respectively.

such, it generalizes better to other FoVs. Furthermore, we show the generality of our method

by using it to adapt to a new camera viewpoint in the context of pedestrian detection.Our

implementation can be accessed at https://github.com/vidit09/geoshift.

In the following sections, we will introduce our method and show with experiments, its

effectiveness. We begin with the previous works done to estimate geometric transformations.

Thereafter, we explain the motivation behind our approach , which is followed by a detailed

description of it. Lastly, we show and compare our results on standard benchmarks.
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4.2 Learning Geometric Transformations.

End-to-end learning of geometric transformations has been used to boost the performance

of deep networks. For example, Spatial Transformer Networks (STNs) [77] reduce the classifi-

cation error by learning to correct for affine transformations; deformable convolutions [78]

model geometric transformations by applying the convolution kernels to non-local neighbor-

hoods. These methods work well when annotations are available for supervision, and make

the network invariant to the specific geometric transformations seen during training. Here, by

contrast, we seek to learn transformations in an unsupervised manner and allow the network

to generalize to unknown target transformations.

Position Invariant Transform (PIT) [8] leverages known camera parameters i.e. camera FoV

and focal length to fix the apparent object deformations due to the deviation from principal

axis of the lens. They project 2D image to a spherical surface, where object sizes are preserved

irrespective of their angular position w.r.t. camera. Finally, the image is project to a new image

plane. While this approach can only be used for FoV corrections and relies on the availability

of the camera parameters, we want to develop a method to estimate a general transformations

for unknown camera parameters.

4.3 Modeling Geometric Transformations

In the context of UDA, multiple geometric differences can be responsible for the gap between

the domains. Some can be characterized by the camera parameters, such as a change in

FoV (intrinsic) or viewpoint (extrinsic), whereas others are content specific, such as a differ-

ence in road width between different countries. Ultimately, the geometric shift is typically a

combination of different geometric operations. Since the parameters of these operations are

unknown, we propose to bridge the domain gap by learning a geometric transform. Specifi-

cally, we aggregate the results of multiple perspective transforms, i.e., homographies, to obtain

a differentiable operation that can emulate a wide variety of geometric transforms.

4.3.1 Theoretical Model

Let us first show that, given sufficiently many homographies, one can perfectly reproduce any

mapping between R2 \ (0,0) and R2.

Single homography for a single point. First, we show that a single homography with 4

degrees of freedom can map a point p ∈R2 \ (0,0) to any other point in R2. To this end, let

H =

sx 0 0

0 sy 0

lx ly 1

 (4.1)
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Figure 4.2 – Approximating PIT with homographies. We show the original image (top), the PIT [8]
correction (middle), and our approximation of PIT using 5 homographies. Note that 5 homographies are
sufficient to closely match the PIT spherical correction.

be a homography, with (sx , sy ) the scaling factors on the x- and y-axis, respectively, and (lx , ly )

the perspective factors in x and y , respectively. For any destination point d ∈R2, there exists

a set of parameters (sx , sy , lx , ly ) such that d ′ = H × p ′, where d ′ and p ′ are homogeneous

coordinates for d and p, respectively. One such set is ( dx
px

,
dy

py
,0,0).

Emulating any geometric transformation Now that we have shown that a single homogra-

phy can move a point to any other point in R2, we describe a simple protocol to emulate any

geometric transform. Given an unknown geometric transform T :R2 \ (0,0) →R2, we aim to

emulate T with a set of homographies. In general, for an image I ∈ R3×h×w , we can restrict

the domain of T to only image coordinates. To this end, we can define a set of homographies

Hi ∈H for i in {1,2,3, ...,h×w}, where the parameters of Hi are chosen to mimic the transform

T for location i of the image. In this protocol, the aggregation mechanism is trivial since each

homography is in charge of remapping a single pixel coordinate of the original space.

While this works in theory, this is of course not viable in practice since it would require too

many homographies. With a smaller number of homographies, each transform needs to remap

multiple points, and a more sophisticated aggregation mechanism is required. Specifically,

the aggregation mechanism needs to select which transform is in charge of remapping which
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Figure 4.3 – Approximating PIT with homographies. Left column: Visualization of each homography
use to approximate PIT with 5 transforms; the top one is the identitity, and the following ones are in order
of increasing compression. Center column: Contribution of each homography to the final remapping.
Right column: The top figure shows the per pixel coordinate error when compared to the PIT remapping
as a function of the number of homographies used in the approximation; the three bottom figures depict
the coordinate error maps for 1, 5, and 25 homographies used to approximate PIT (note the scale change
in pixel coordinate error).

point. In the next section, we empirically show that this strategy lets us closely approximate

the spherical projection mapping used in PIT [8].

4.3.2 Approximating PIT with Homographies

To demonstrate the possibility offered by aggregating multiple homographies, we design an

approximation of PIT using only homographies. PIT proposes to correct for an FoV gap by

remapping images to a spherical surface. During this transformation, regions further from the

center of a scene are compressed with a higher ratio. This variable compression of the space

cannot be reproduced by a single homography transformation. To overcome this limitation,

we combine the results of multiple homographies that all have different compression rates

(scaling parameters). For the aggregation mechanism, we use the optimal strategy by selecting

for each pixel the homography that approximates best the PIT mapping. As shown in Fig. 4.2,

this combination closely approximates the PIT results with only 5 homographies. In Fig. 4.3,

we show the different homorgraphies and their corresponding aggregation masks to obtain
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Figure 4.4 – Architecture: The input image is first transformed by a set of trainable homographies. The
feature maps extracted from the transformed images are then unwarped by the inverse homographies
to achieve spatial consistency. We then combine the unwarped feature maps using a trainable aggre-
gator, whose output is passed to a detection head. The blocks shown in green correspond to standard
FasterRCNN operations. The ⊕ symbol represents the concatenation operation.

results in Fig. 4.2. Moreover, we can see that as the number of homograhies increases, the

approximation error decreases quickly and saturates, thereafter.

4.3.3 Homographies in a Learning Setup

In the two previous sections, we have demonstrated both theoretically and empirically the

flexibility of aggregating homographies. This makes this representation an ideal candidate

for domain adaptation since the geometric shift between the domains is unknown and can

be a combination of different transforms, such as FoV change, viewpoint change, camera

distortion, or appearance distortion. As will be discussed in the next section, by learning

jointly the set of perspective transforms and the aggregation mechanism on real data, our

model can reduce the geometric shift between the two domains without prior knowledge

about this domain gap.

4.4 Method

Let us now introduce our approach to reducing the geometric shift in object detection. Fol-

lowing the standard UDA setting, let Ds = {(Is ,Bs ,Cs)} be a labeled source dataset containing

images Is = {I i
s }Ns

1 with corresponding object bounding boxes Bs = {bi
s}Ns

i=1 and object classes

Cs = {c i
s }Ns

i=1. Furthermore, let D t = {It } denote an unlabeled target dataset for which only

images It = {I i
t }Nt

i=1 are available, without annotations. Here, we tackle the case where the two

domains differ by geometric shifts but assume no knowledge about the nature of these shifts.

Below, we first introduce the architecture we developed to handle this and then our strategy to

train this model.
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4.4.1 Model Architecture

The overall architecture of our approach is depicted in Fig. 4.4. In essence, and as discussed

in Sec. 4.3, we characterize the geometric changes between the source and target data by a

set of transformations T = {Hi }N
i=1. EachI Hi ∈R4 in T is a homography of the same form as

in Eq. (4.1). For our method to remain general, we assume the transformations to be unknown,

and our goal, therefore, is to learn T to bridge the gap between the domains. This requires

differentiability w.r.t. the transformation parameters, which we achieve using the sampling

strategy proposed in [77].

As shown in Fig. 4.4, the input image is transformed by the individual homographies in T ,

and the transformed images are fed to a modified FasterRCNN [11] detector. Specifically, we

extract a feature map FHi ∈RH×W ×C for each transformed image via a feature extractor shared

by all transformations. To enforce spatial correspondence between the different FHi s, we

unwarp them with H−1
i .

We then introduce an aggregator Aθg , parameterized by θg , whose goal is to learn a common

representation given a fixed number of unwarped feature maps F ′
Hi

. To achieve this, the

aggregator takes as input

G =F ′
H1

⊕F ′
H2

⊕ ...⊕F ′
HN

∈RH×W ×C×N , (4.2)

where ⊕ represents concatenation in the channel dimension. The aggregator outputs a feature

map Aθg (G) ∈RH×W ×C , whose dimension is independent of the number of transformations.

This output is then passed to a detection head to obtain the objects’ bounding boxes and class

labels.

4.4.2 Model Training

Our training procedure relies on three steps: (i) Following common practice in UDA, we first

train the FasterRCNN detector with source-only data; (ii) We then introduce the aggregator

and train it so that it learns to combine different homographies using the labeled source data;

(iii) Finally, we learn the optimal transformations for adaptation using both the source and

target data via a Mean Teacher [28] strategy.

Aggregator Training. To train the aggregator, we randomly sample a set of homographies

T ∈RN×4 in each training iteration. This gives the aggregator the ability to robustly combine

diverse input transformations but requires strong supervision to avoid training instabilities.

We, therefore, perform this step using the source data.

The loss function for a set of transformed images T (Is) is then defined as in standard Faster-

RCNN training with a combination of classification and regression terms [11]. That is, we train

IAs our homographies involve only 4 parameters, with a slight abuse of notation, we say that Hi ∈R4.
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the aggregator by solving

min
θg

Lcl s(T (Is))+Lr eg (T (Is)) , (4.3)

where

Lcl s(T (Is)) =Lr pn
cl s +Lr oi

cl s , (4.4)

Lr eg (T (Is)) =Lr pn
r eg +Lr oi

r eg . (4.5)

Lr pn
· and Lr oi· correspond to the Region Proposal Network (RPN) loss terms and the Region

of Interest (RoI) ones, respectively. During this process, we freeze the parameters θb of the

base network, i.e., feature extractor and detection head, which were first trained on the source

data without aggregator. Ultimately, the aggregator provides the network with the capacity to

encode different transformations that are not seen in the source domain. The third training

step then aims to learn the best transformation for successful object detection in the target

domain.

Learning the Transformations. As we have no annotations in the target domain, we exploit

a Mean Teacher (MT) strategy to learn the optimal transformations. To this end, our starting

point is the detector with a trained aggregator and a set of random transformations T . The MT

strategy is illustrated in Fig. 4.5. In essence, MT training [28] involves two copies of the model:

A student model, with parameters θst = {T st ,θst
b ,θst

g }, that will be used during inference, and

a teacher model, with parameters θte = {T te ,θte
b ,θte

g }, that is updated as an Exponentially

Moving Average (EMA) of the student model. That is, the student’s parameters are computed

with standard backpropagation, whereas the teacher’s ones are updated as

θte ←αθte + (1−α)θst . (4.6)

The student model is trained using both source and target detection losses. Since the target

domain does not have annotations, the teacher model is used to generate pseudo-labels.

These labels might be noisy, and hence we only keep the predictions with a confidence score

above a threshold τ. Furthermore, non-maxima suppression (NMS) is used to remove the

highly-overlapping bounding box predictions.

Formally, given a source image Is and a target image It , the student model is trained by solving

min
T st ,θst

g ,θst
b

Ldet (T (Is))+λLdet (T (It )) , (4.7)

36



Learning Transformations To Reduce the Geometric Shift in Object Detection

Figure 4.5 – Mean Teacher formalism. The student model is trained with ground-truth labels in the
source domain and pseudo labels in the target one. These pseudo labels are produced by the teacher
model, which corresponds to an exponentially moving average (EMA) of the student network.

where λ controls the target domain contribution and

Ldet (T (Is)) =Lcl s(T (Is))+Lr eg (T (Is)) , (4.8)

Ldet (T (It )) =Lcl s(T (It )) . (4.9)

Similarly to [46, 48], we update the student model with only the classification loss in the target

domain to help stabilize training.

4.5 Experiments

We demonstrate the effectiveness and generality of our method on different geometric shifts.

First, to compare to the only other work that modeled a geometric shift [8], we tackle the

problem of a change in FoV between the source and target domain. Note that, in contrast to [8],

we do not assume knowledge of the target FoV. Furthermore, while [8] was dedicated to FoV

adaptation, our approach generalizes to other geometric shifts. We demonstrate this on the

task of pedestrian detection under a viewpoint shift. We compare our method with the state-

of-the-art AdaptTeacher [46], which also uses a Mean Teacher, but focuses on appearance

shifts. In the remainder of this section, we describe our experimental setup and discuss our

results.

4.5.1 Datasets

Cityscapes [5] contains 2975 training and 500 test images with annotations provided for 8

categories (person, car, train, rider, truck, motorcycle, bicycle and bus). The average horizontal

(FoVx) and vertical (FoVy) FoVs of the capturing cameras are 50°and 26°, respectively. We use
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this dataset as the source domain for both FoV adaptation and viewpoint adaptation.

KITTI [7] is also a street-view dataset containing 6684 images annotated with the car category.

The horizontal (FoVx) and vertical (FoVy) FoVs of the camera are 90°and 34°, respectively. We

use this dataset as target domain for FoV adaptation, as the viewpoint is similar to that of

Cityscapes. Following [8], we use 5684 images for unsupervised training and 1000 images for

evaluation.

MOT [6] is a multi-object tracking dataset. We use the indoor mall sequence, MOT20-02,

consisting of 2782 frames annotated with the person category. We employ this dataset as target

domain for viewpoint adaptation. We use the first 2000 frame for unsupervised training and

last 782 for evaluation.

4.5.2 Adaptation Tasks and Metric

FoV adaptation. As in [8], we consider the case of an increasing FoV using Cityscapes as

source domain and KITTI as target domain. The horizontal and vertical FoVs increase from

(50°, 26°) in Cityscapes to (90°, 34°) in KITTI. Therefore, as can be seen in Fig. 4.1, the KITTI

images have a higher distortion in the corners than the Cityscapes ones. Similarly to PIT [8],

we use the car category in our experiments.

FoV generalization. Following PIT [8], we study the generalization of our approach to new

FoVs by cropping the KITTI images to mimic different FoV changes in the horizontal direction

(FoVx). Specifically, we treat FoVx = 50° as the source domain and the cropped images with

FoVx = {70°, 80°, 90°} as different target domains. We evaluate our approach on car on these

different pairs of domains.

Viewpoint adaptation. This task entails detecting objects seen from a different viewpoint in

the source and target domains. We use the front-facing Cityscapes images as source domain

and the downward-facing MOT ones as target one. As the MOT data depicts pedestrians, we

use the bounding boxes corresponding to the person category in Cityscapes.II

Metric. In all of our experiments, we use the Average Precision (AP) as our metric. Specifically,

following [8], we report the AP@0.5, which considers the predictions as true positives if they

match the ground-truth label and have an intersection over union (IOU) score of more than

0.5 with the ground-truth bounding boxes.

4.5.3 Implementation Details

We use the Detectron2 [79] implementation of FasterRCNN [11] with a ResNet50 [80] backbone

as our base architecture. In all of our experiments, the images are resized so that the shorter

IIIn Cityscapes, a person may be labeled as either person or rider. Since the rider label is used for people riding a
vehicle, we omit these cases.
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side has 800 pixels while maintaining the aspect ratio. The base network is first trained

on source-only images with random cropping and random flipping augmentation for 24k

iterations with batch size 8. We use the Stochastic Gradient Descent (SGD) optimizer with a

learning rate of 0.01, scaled down by a 0.1 factor after 18k iterations. We use ImageNet [81]

pretrained weights to initialize the ResNet50 backbone.

We then incorporate the aggregator in the trained base architecture. The aggregator architec-

ture contains three convolutional layers with a kernel size of 3×3, and one 1×1 convolutional

layer. We first train the aggregator on the source data with the base frozen and using random

transformations T . The transformations are generated by randomly sampling each Hi pa-

rameters as sx , sy ∼ U[0.5,2.0],U[0.5,2.0] and lx , ly ∼ U[−0.5,0.5],U[−0.5,0.5]. We train the aggregator

for 30k iterations using a batch size of 8 and the SGD optimizer with a learning rate of 1e−4.

The student and teacher models are then initialized with this detector and the random

T = {Hi }N
i=1. We optimize T using Adam [82], while the base and aggregator networks are

optimized by SGD. The learning rate is set to 10−3 and scaled down by a factor 0.1 after 10k

iterations for the SGD optimizer. For the first 10k iterations in FoV adaptation and for 2k

iterations for viewpoint adaptation, we only train T keeping base and aggregator frozen. The

α coefficient for the EMA update is set to 0.99; the confidence threshold τ= 0.6; λ= {0.01,0.1}

for FoV and viewpoint adaptation, respectively. The Mean Teacher framework is trained using

both the source and target data. We set N = 5, unless otherwise specified, and use a batch size

of 4, containing 2 source and 2 target images. We apply random color jittering on both the

source and target data as in [28, 46]. We provide aggregator architecture details and training

augmentation details in Appendix A.2.

4.5.4 Comparison with the State of the Art

Method Car AP@0.5

FR [11] 76.1

AT [46] 77.2

FR+PIT 77.6

MT 78.3

MT+PIT [8] 79.7

Ours 80.4 ± 0.15

Table 4.1 – FoV Adaptation.

Car AP@0.5 for FoVx

Method 50° 70° 80° 90°

FR [11] 94.3 90.2 86.8 80.6

FR+PIT [8] 93.6 91.4 89.2 85.9

Ours-h 94.1± 0.16 93.1± 0.33 91.8± 0.40 88.8± 0.21

Table 4.2 – FoV Generalization

We compare our approach with the following baselinesIII. FR: FasterRCNN trained only on

the source data with random crop augmentation; AT: AdaptTeacher [46]; MT: Mean Teacher

initialized with FR and trained with random color jittering on both the source and target data

(i.e., this corresponds to our mean teacher setup in Sec. 4.4.2 but without the aggregator and

IIIWe re-implement PIT baselines with our detector.
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Method Pedestrian AP@0.5

FR [11] 43.7
AT [46] 63.5
MT 64.7
Ours 65.3± 0.37

Table 4.3 – Viewpoint Adaptation.

without transformations T ); FR+PIT: Same setup as FR but with the images corrected with

PIT [8]; MT+PIT: Same setup as MT but with the images corrected with PIT. We refer to our

complete approach (Sec. 4.4.2) as Ours. For the task of FoV generalization, we report our

results as Ours-h to indicate that we only optimize the homographies (5×4 parameters) in

T to adapt to the new FoVs while keeping the base and aggregator networks frozen. This

matches the setup of PIT [8], which also corrects the images according to the new FoVs. As

Ours and Ours-h are trained with randomly initialized T , we report the average results and

standard deviations over three independent runs.

FoV adaptation. The results of Cityscapes → KITTI FoV adaptation are provided in Tab. 4.1.

Both MT+PIT and Ours bridge the FoV gap, outperforming the MT baseline. Note, however,

that we achieve this by learning the transformations, without requiring any camera-specific

information, which is needed by PIT. Note also that MT outperforms FR by learning a better

representation in the target domain, even though FR is trained with strong augmentation,

such as random cropping. AT underperforms because its strong augmentation strategy fails

to generalize for datasets having prominent geometric shifts. Our improvement over MT

evidences that learning transformations helps to overcome geometric shifts. We optimize with

N = 9, homographies in this setup. Fig. 4.6 shows a qualitative example.

FoV generalization. Tab. 4.2 summarizes the results obtained by using different FoVs as

target domains while fixing the source FoV to 50°. Since both the source and target images are

taken from KITTI, the domain gap is only caused by a FoV change. Note that the performance

of FR drops quickly as the FoV gap increases. Ours-h outperforms FR+PIT by a growing margin

as the FoV gap increases. This shows that learning transformations helps to generalize better

to different amounts of geometric shifts.

FoV decreasing adaptation We also evaluate our approach for the case when source domain

has wider FoV than the target. We can model this by having KITTI as a source and Cityascapes

as a target domain. We obtain following results for (a) MT: 47.1, (b) MT+PIT: 48.5, (c) Ours

(N = 5): 49.3. The better perfomance of our method further illustrates the effectiveness of our

approach in diverse settings.

Viewpoint adaptation. As shown in Fig. 4.1, a change in the camera viewpoint yields dif-

ferences in the observed distortions and type of occlusions. The results in Tab. 4.3 show
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the benefits of our method over MT in this case. Note that PIT, which was designed for FoV

changes, cannot be applied to correct for a viewpoint change. Other baselines outperform

FR, as they use pseudo labels to fix the difference in bounding box distribution, as shown in

Fig. 4.1. These results illustrate the generality of our method to different kinds of geometric

shifts. The qualitative results for this task can be found in Fig. 4.7.

Figure 4.6 – FoV Adaptation: Qualitative Results. We visualize a car detection result in the Cityscapes-
to-KITTI FoV adaptation scenario. The top left image corresponds to the ground truth, the bottom left to
the Mean Teacher result, which confuses the orange container with a car, the bottom right to the Mean
Teacher adaptation + PIT FoV adaptation result, which also mistakes the orange container for a car and
further detects the speed limit on the road. Our approach, on the top right, correctly matches the ground
truth.

Figure 4.7 – Viewpoint Adaptation: Qualitative Results. We visualize results for viewpoint adapta-
tion between Cityscapes and MOT20-02. The left image depicts the ground truth, the middle one the
results of Mean Teacher adaptation, and the right one those of our approach. Our approach recovers
more detections (e.g., the woman near the stroller in the center-left) while having fewer false positives
(overlapping box in bottom-left corner of the MT results).

4.5.5 Evolution of Homographies

We randomly initialize the homorgraphies and learn their parameters during the training. This

is supervised through the detector losses as explained in Sec. 4.4.2. In Fig. 4.8 and Fig. 4.10,

we show these transformations change during training. Additionally, we also visualize the
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parameters of the homograhies over different iterations in Fig. 4.9 and Fig. 4.11.

Figure 4.8 – FoV adaptation: The randomly initialized homographies evolve as the training progresses
to improve the overall AP score. We train with 5 homographies and show how they transform an image
for the corresponding FoV adaptation task.

sx sy

lx ly

Figure 4.9 – Quantitative results for the corresponding results in Figure 4.8. The randomly initialized
transforms, parameterized by sx , sy , lx , ly , evolve to achieve the best score at 28k iterations (shown by the
vertical bar). The colors represent different homographies. Some set of parameters converges to similar
value but overall each homography is unique.
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Figure 4.10 – Viewpoint adaptation: The randomly initialized homographies evolve as the training
progresses to improve the overall AP score. We train with 5 homographies and show how they transform
an image for the corresponding viewpoint adaptation task.

sx sy

lx ly

Figure 4.11 – Quantitative results for the corresponding results in Figure 4.10. The randomly initialized
transforms, parameterized by sx , sy , lx , ly , evolve to achieve the best score at 8k iterations (shown by the
vertical bar). The colors represent different homographies. Some sy parameters start at a similar value
but eventually diverge.
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4.5.6 Additional Analyses

Variable number of homographies. Let us now study the influence of the number of ho-

mographies in T . To this end, we vary this number between 1 and 9. In Fig. 4.12, we plot

the resulting APs for the Cityscapes-to-KITTI FoV adaptation task. Increasing the number

of transformations results in a steady increase in performance, which nonetheless tends to

plateau starting at 4 homographies. This is similar to our theoretical observation in Fig. 4.3

. This confirms the intuition that a higher number of perspective transformations can bet-

ter capture the geometric shift between two domains. Therefore, we conducted all exper-

iments with the maximum number of homographies allowed by our compute resources.

Function Car AP@0.5

sum 78.1± 0.14

mean 78.7± 0.05

max 78.7± 0.12

min+max 78.9± 0.43

MT 78.3

Ours 79.9± 0.14

Table 4.4 – Aggregator Architecture with-
out learnable parameters

Figure 4.12 – Varying the number of homogra-
phies. We evaluate the effect of N on the FoV adap-
tation task.

Only optimizing T . We also run the Ours-h baseline in the FoV and viewpoint adaptation

scenarios. The resulting APs are 78.2 and 49.8, respectively. By learning only the 20 (5×4)

homography parameters, our approach outperforms FR (in Tab. 4.1 and Tab. 4.3, respectively)

by a large margin in both cases. This confirms that our training strategy is able to efficiently

optimize T to bridge the geometric gap between different domains.

Aggregator In Tab. 4.4, we compare with different non-learnable aggregators to combine

the feature maps. Our learning based aggregrator outperforms the other methods thereby

validating the need for a learnable approach. The trained aggregator learns how to combine

the activations corresponding to object regions as depicted in Fig. 4.13.

Random Transformations We compare our approach against (a) a fixed set of random trans-

formations used throughout the training and inference; (b) sampling random homographies

throughout training and inference; (c) sampling random homographies throughout training

and identity homographies during inference. We use the FoV adaptation task with N = 5

homographies and keep the original training step (i) and step (ii) (Sec. 4.4.2) unchanged for all

cases. Our approach achieves 79.9 AP vs (a) 78.2, (b) 79.3, (c) 77.7. This shows that the choice
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Pred

I

H1(I)

H2(I)

H3(I)

H4(I)

H5(I)

Aggregator
Feat. Map

H1
-1 F1

H2
-1 F2

H3
-1 F3

H4
-1 F4

H5
-1 F5

Figure 4.13 – Feature Maps: Top row: predictions of our network and feature map after aggregator.
Left column: Image I, transformed by 5 learnt homographies; Right Column: Feature maps F warped by
corresponding H−1 which are input to aggregator. Each transform distorts the image regions differently.
Most of the cars are on the left side and of small size in the image. H1 distorts the left side leading to
no activation(H−1

1 F1) for the object. H3 which causes zoom-in effect has the strongest activation as
the smaller objects are visible better here. Overall aggregator feature map contains activation from the
region where the objects exist. The aggregator has learnt how to combine regions with activations under
different homographies. The feature maps are generated by taking maximum over channel dimension.

of homographies significantly impacts performance. Interestingly, (b) can be seen as an en-

semble method that outperforms the MT and AT baselines (Tab. 4.1 ). Our proposed approach

nonetheless achieves better performance by learning the transformations. This study further

evidences the importance of transformations and the need to learn them. Additionally, we

can achieve better inference speed w.r.t. randomly sampling transformations.

Diversity in T . To show that our approach can learn a diverse set of transformations that

help in the adaptation task, we initialize all the homographies with identity. Fig. 4.14 depicts

the diversity of the learned homographies on the FoV adaptation task. Even though we do not

enforce diversity, our approach learns a diverse set of transformations. With these learned

homorgraphies, our model achieves 79.5 AP@0.5 score for the FoV adaptation task.

45



Learning Transformations To Reduce the Geometric Shift in Object Detection

sx sy

lx ly

Figure 4.14 – Diversity in T : We train |T | = 5 initialized with Hi = I . Homographies parameterized
by sx , sy , lx , ly evolve as the training proceeds and tend to become diverse. Each homography is shown
in different color. Even though we do not enforce any diversity, our approach learns diverse set of
transformations. With these learned homorgraphies, we achieve 79.5 AP@0.5 score for FoV adaptation
task. The best score is achieved at iteration = 22k shown with the vertical line.
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Hyperparameter Study For our mean teacher setup (Sec. 4.4.2), we choose τ = 0.6 as the

confidence threshold for the pseudo-labels and evaluate the contribution of target domain

loss for different λ. We see that method performs worse when we have an equal contribution

from both source and target domain loss λ = 1, as the false positives in the target domain

quickly deteriorate the training. Sec. 4.5.6, evaluation for different values of τ.

Figure 4.15 – Hyperparameter Study: (left) λ for τ = 0.6, |T | = 5 ; (right) τ for FoV and Viewpoint
adaptation using λ= 0.01,0.1, respectively. Here, |T | = 5 is used for the study.

Limitations. Our approach assumes that the geometric gap between two domains can be

bridged by a set of perspective transformations. We have shown that with enough transforma-

tions this is true. However, using a large number of homographies comes at a computational

cost. The computational overhead leads to an increment in the inference time from 0.062s

to 0.096s for N = 5 on an A100 Nvidia GPU with image dimension 402×1333. Nevertheless,

our simple implementation shows promising results. Moreover, since the optimization of the

homography set is done at the dataset level, only certain transformations are beneficial to a

given image. On alternative is to condition the homography on the input image, which would

reduce the total number of homographies needed.

In this work, we have assumed pin-hole camera and used homographies for learning trans-

formations. While this assumption is valid for most of the applications, there are cases when

this may not hold. For example, fish-eye camera, which has a very different distortion pattern

than pin-hole camera, our approach might not be efficient as it will need a large number of

homographies to approximate the large fish-eye deformations.
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4.6 Conclusion

In this chapter, we depart from the conventional domain shift like due to weather change, to

geometric shift which create a change in distribution of the object sizes and shapes. These

shifts are fairly common but are hard to formulate as the ground-truth transformations can

be unknown. To this end, we propose to learn a set of homographies to alleviate these shifts.

We leverage mean teacher formulation and unlabeled data in the target domain to learn the

homograhies along with an adapted detector. Our experiments evidence that optimizing

the transformations alone brings in improvement over the base detector and increasing the

number of learned homographies helps further. We show consistent improvement over the

baselines on different benchmarks.

The methods proposed in this, and the previous chapter, we leveraged labeled source domain

and unlabeled target domain, to facilitate adaptation of the detectors. In the following chapter,

we move away from this paradigm and learn robust features only from a single labeled source

domain.
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5.1 Introduction

In this chapter, we introduce a fundamentally different approach to single-domain generaliza-

tion (SDG) for object detection. To this end, we build on two observations: (i) Unsupervised/self-

supervised pre-training facilitates the transfer of a model to new tasks [83, 84, 85]; (ii) Exploit-

ing language supervision to train vision models allows them to generalize more easily to new

categories and concepts[86, 9]. Inspired by this, we, therefore, propose to leverage a vision-

language model, CLIP [9], to guide the training of an object detector so that it generalizes to

unseen target domains. Since the visual CLIP representation has been jointly learned with

the textual one, we transfer text-based domain variations to the image representation during

training, thus increasing the diversity of the source data.

Specifically, we define textual prompts describing potential target domain concepts, such

as weather and daytime variations for road scene understanding, and use these prompts to

perform semantic augmentations of the images. These augmentations, however, are done in

feature space, not in image space, which is facilitated by the joint image-text CLIP latent space.

This is illustrated in Fig. 5.1, which shows that even though we did not use any target data for

semantic augmentation, the resulting augmented embeddings reflect the distributions of the

true image embeddings from different target domains.

We show the effectiveness of our method on the SDG driving dataset of [10], which reflects a

practical scenario where the training (source) images were captured on a clear day whereas the

test (target) ones were acquired in rainy, foggy, night, and dusk conditions. Our experiments

demonstrate the benefits of our approach over the Single-DGOD [10] one.

To summarize our contributions, we employ a vision-language model to improve the generaliz-

ability of an object detector; during training, we introduce domain concepts via text-prompts

to augment the diversity of the learned image features and make them more robust to an un-

seen target domain. This enables us to achieve state-of-the-art results on the diverse weather

SDG driving benchmark of [10]. Our implementation can be accessed through the following

url: https://github.com/vidit09/domaingen.
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Figure 5.1 – Semantic Augmentation: We compare the PCA projections of CLIP [9] image embeddings
obtained in two different manners: (Top) The embeddings were directly obtained from the real images
from 5 domains corresponding to different weather conditions. (Bottom) The embeddings were obtained
from the day images only and modified with our semantic augmentation strategy based on text prompts
to reflect the other 4 domains. Note that the relative positions of the clusters in the bottom plot resemble
that of the top one, showing that our augmentations let us generalize to different target domains. The
principal components used are the same for both the figures.

In the following sections, we introduce existing works that utilize vision-language models for

their downstream tasks. Then, we illustrate the motivation behind our approach and present

its details. In the experiment section, we provide comparisons with the baselines on different

benchmarks and finally end the chapter with the conclusion.

5.2 Vision-Language Models

Jointly learning a representation of images and text has been studied in many works [87, 88,

89, 90, 91, 92, 86, 9]. They use image-text pairs to train visual-semantic embeddings which

can be used not only for image classification, captioning or retrieval but also for zero-shot

prediction on unseen labels. VirTex [86] relies on image-caption-based pre-training to learn a

rich visual embedding from a small amount of data. CLIP [9] proposes a scalable contrastive
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pre-training method for joint text and image feature learning. CLIP leverages a corpus of 400

million image-text pairs and a large language model [93] to learn a joint embedding space,

which was shown to have superior zero-shot learning ability on classification tasks. The

image-text-based training is also useful for Open Vocabulary Detection (OVD) [94], where the

objects are detected using arbitrary textual descriptions. To address this task, [94] train their

own visual-semantic representation, whereas [95, 96] employ CLIP embeddings. Recently,

[97, 98] introduced a phrase-grounding-based pre-training for better OVD and zero-shot

object detection. In contrast to these works, whose objective is to generalize to novel categories

or objects, we seek to generalize to new domains depicting the same object categories as

the source one. The domain change between the dataset can be attributed to the global

illumination or appearance change. A concurrent work [?], follows a similar methodology as

ours, to leverage CLIP and a textual description of target domain for domain adaptation task.

5.3 Method

Let us now introduce our approach to exploiting a vision-language model for single-domain

generalization in object detection. Below, we first present our semantic augmentation strategy

aiming to facilitate generalization to new domains. We then describe the architecture and

training strategy for our object detector.

5.3.1 Semantic Augmentation

In SDG, we have access to images from only a single domain. To enable generalization, we seek

to learn object representations that are robust to domain shifts. Here, we do so by introducing

such shifts while training the model on the source data. Specifically, we exploit CLIP’s joint

representation to estimate shifts in the visual domain using textual prompts, as illustrated

in Fig. 5.1. This corresponds to the optimization step shown in the left portion of Fig. 5.2.

Formally, let T denote CLIP’s text encoder and V its image one. For reasons that will become

clear later, we further split V into a feature extractor Va and a projector to the embedding

space Vb . The CLIP [9] model is trained to bring image features closer to their textual captions.

In essence, this means that, for an image I and a corresponding prompt p, it seeks to minimize

the distance between Vb(Va(I )) and T (p).

A useful property of the text embedding space is that algebraic operations can be used to

estimate semantically related concepts. Word2Vec [99] had demonstrated such a learned

relationship (e.g. king-man+woman approaches the word representation of queen). Such a

relationship exists with CLIP embeddings as well [100].

To exploit this for SDG, we define a generic textual prompt p s related to the source domain,

such as An image taken during the day, and a set of prompts P t = {p t
j }M

1 encompassing

variations that can be expected to occur in different target domains, e.g, describing different
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weather conditions or times of the day. Our objective then is to define augmentations {A j } of

the features extracted from a source image such that the shift incurred by A j corresponds to

the semantic difference between p s and p t
j .

To achieve this, we first compute the embeddings q s = T (p s) and q t
j = T (p t

j ) of the textual

prompt. We then take multiple random crops from a source image. For each such crop Icr op ,

we create a target image embedding

z∗
j = z +

q t
j −q s

‖q t
j −q s‖2

, (5.1)

where z =V(Icr op ). We then search for an augmentation A j ∈RH×W ×C such that

z̄ j =Vb(Va(Icr op )+A j ) (5.2)

is as similar as possible to z∗
j , which we measure with the cosine similarity. Ultimately,

we estimate the augmentations {A j }M
j=1 through an optimization process using only source

domain images. Specifically, we minimize the loss function

Lopt =
∑
Icr op

∑
j
D(z∗

j , z̄ j )+‖z̄ j − z‖1 , (5.3)

where

D(a,b) = 1−a ·b (5.4)

is the cosine distance and (·) is a dot product operation. The loss also includes an l1 regularizer

that prevents the embeddings from deviating too far from their initial values, so as to preserve

the image content.

As the objective is to estimate the meaningful feature augmentation while preserving the

original CLIP pre-training, we keep the image crop size the same as the original CLIP training.

Note that the optimization of the augmentations is done once in an offline stage, and we then

use the resulting augmentations to train our detector.

5.3.2 Architecture

Let us now describe our detector architecture. As shown in the right portion of Fig. 5.2,

it follows a standard FasterRCNN [11] structure but departs from it in two ways. First, to

exploit the augmentations optimized as discussed in the previous section, we initialize the

blocks before and after the ROI align one with the corresponding Va and Vb modules of the

ResNet-based trained CLIP model. Second, to further leverage the vision-language model, we

incorporate a text-based classifier in our model’s head. Note that, in contrast to OVD [95, 96]

where a text-based classifier is used to handle novel categories, we employ it to keep the image
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Figure 5.2 – Our Approach: (Left) We first estimate a set of semantic augmentations A using a set of
textual domain prompts {P t , p s } and source domain images. The goal of these semantic augmentations
is to translate source domain image embeddings to the domain specified by the prompts. We can do
this because of the CLIP’s joint embedding space and its ability to encode semantic relationships via
algebraic operations. Lopt is minimized w.r.t A over random image crops of the same size as CLIP [9].
(Right) The optimized semantic augmentations are used to train our modified detector which minimizes
a text-based classification loss Lcl i p9t . Here, we train with the full image and add a randomly sampled
A j after average pooling. This pooling operation allows us to use A on extracted feature maps of the
arbitrary-sized image. We initialize the detector with the pre-trained CLIP [9] V and T encoders to
leverage their general representations.

features close to the pre-trained joint embedding space.

Specifically, we define textual prompts that represent the individual categories we seek to

detect, and extract corresponding embeddings Q ∈ R(K+1)×Dcl i p , for K categories and the

background class, using the text encoder T . For a candidate image region r proposed by

the Region Proposal Network(RPN) [11], we then compute the cosine similarities between

the text embeddings Q and the features Fr ∈RDcl i p obtained by projection to the embedding

space using Vb after ROI-Align [101] and the text embeddings Q. These cosine similarities,

si m(Fr ,Q) ∈RK+1, act as logits to the softmax based cross-entropy loss

Lcl i p9t =
∑

r
LC E

(
eγ·si m(Fr ,Qk )∑K

k=0 eγ·si m(Fr ,Qk )

)
. (5.5)

where γ is a temperature factor. Similarly to [9], we formulate prompts of the form a photo
of a {category name} to obtain our text embeddings.

5.3.3 Training with Augmentation

Following the standard detector training [11], we use the full image as our input. This subse-

quently increases the output feature map size of Va , hence we use average pooling operation

and obtain channel-wise augmentations which can work for arbitrary-sized feature maps. The

training of our modified object detector with the semantic augmentations is as follows, first,

we randomly sample an augmentation A j from the full set and collapse its spatial dimension

using average pooling. We then add the resulting vector to every element in the feature map
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Figure 5.3 – Diverse Weather Dataset [10]: Day-Clear acts as our source domain while the other
weather condition are our target domains. In these domains, the objects’ appearance drastically changes
from the Day-Clear scenario. As we do not utilize any target domain images, learning generalizable
features on source images is crucial for the SDG task.

extracted by Va . In practice, we apply augmentations to a batch with a probability θ.

The detector is then trained with the loss

Ldet =Lr pn +Lr eg +Lcl i p9t , (5.6)

which combines the Lcl i p9t loss of Eq. (5.5) with the standard RPN and regression losses [11].

During inference, we use the detector without any augmentation of the feature maps.

5.4 Experiments

5.4.1 Experimental setup

Datasets. To evaluate our model, we use the same datasets as [10]. They include five sets,

each containing images with different weather conditions: daytime sunny, night clear, dusk

rainy, night rainy, and daytime foggy. The images have been selected from three primary

datasets, Berkeley Deep Drive 100K (BBD-100K) [102], Cityscapes [5] and Adverse-Weather

[103]. Additionally, rainy images are rendered by [104], and some of the foggy images are syn-

thetically generated from [70]. Our model is trained on the daytime sunny scenes, consisting

of 19,395 training images, the remaining 8,313 daytime sunny images are used for validation

and model selection. The four other weather conditions are only used during testing. They

consist of 26,158 images of clear night scenes, 3501 images of rainy scenes at dusk, 2494 images

of rainy scenes at night, and 3775 images of foggy scenes during daytime. All the datasets

contain bounding box annotations for the objects bus, bike, car, motorbike, person, rider and

truck. Fig. 5.3 shows examples from this dataset.

Metric. In all our experiments, we use the Mean Average Precision (mAP) as our metric.

Specifically, following [10], we report the mAP@0.5, which considers a prediction as a true

positive if it matches the ground-truth label and has an intersection over union (IOU) score of

more than 0.5 with the ground-truth bounding box.
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5.4.2 Implementation Details

We use the Detectron2 [79] implementation of FasterRCNN with a ResNet101 [80] backbone.

We initialize the detector with CLIP [9] pre-trained weights, where ResNet convolution blocks

1-3 act as Va , and block-4 along with the CLIP attention pooling act as Vb . This follows from

the standard FasterRCNN implementation with ResNet backbone. We set γ as 100, similar to

CLIP [9].

Optimization Step. As the benchmark dataset evaluates the method on different weather

conditions, we curated a list of domain prompts P t matching the concept weather. To this

end, we take all the hyponyms of the term weather from WordNet [16] and generate their text

embeddings using the CLIP text encoder T . We prune away the words whose cosine similarity

with the term weather is lower than 0.5. Additionally, we filter out the words that are not in the

top 10k frequent words in GloVe wordlist [17]. After combining the synonyms, we get to a list

of six words: snow, fog, cloudy, rain, stormy, sunshine. We remove sunshine as it corresponds

to our source domain concept. Furthermore, we consider three times of the day: day, night,

evening. This lets us generate M = 15 prompts using the template an image taken on a
{weather} {time of the day}. We use an image taken during the day as the source

domain prompt p s . We refer readers to Appendix A.3 to see prompt curation results.

To optimize the augmentations with these prompts, we generated random crops from the

source images and resized them to 224×224 pixels. The resulting output feature map ofVa and

A j are in R14×14×1024. We initialize A j ∀ 1 ≥ j ≥ M with zeros and train it using the Adam [82]

optimizer while keeping the CLIP encoder, V and T , frozen. Optimization was done for 1000

iterations with a learning rate of 0.01.

Detector Training with Augmentation. When training the detector, the input image is re-

sized to 600×1067, and V and T are initialized with CLIP pre-trained weights. While T is kept

frozen during the training, the ResNet blocks 3-4 and attention pooling of V , along with the

other FasterRCNN learnable blocks, are trained with Stochastic Gradient Descent (SGD) for

100k iterations. We train with a learning rate of 1e−3, scaled down by a factor of 0.1 after 40k

iterations. We use a batch size of 4 and apply A j to the features with probability θ = 0.5. We

also use random horizontal flipping augmentation as in Single-DGOD [10]. Dcl i p is set to 512

as in [9] and background class is initialized by zeros in Q. All of our training was done on a

single NVIDIA A100 GPU.

5.4.3 Comparison with the State of the Art

We compare our method trained with semantic augmentations against the state-of-the-art

Single-DGOD [10]. Similar to them, we also show comparisons with feature normalization

methods, SW [105], IBN-Net [106], IterNorm [107], and ISW [108]. These methods improve

network generalization by using better feature normalization. We additionally report the

performance of FasterRCNN (FR) initialized with ImageNet pre-trained weights. For the
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mAP

Method
Day

Clear
Night
Clear

Dusk
Rainy

Night
Rainy

Day
Foggy

FR [11] 48.1 34.4 26.0 12.4 32.0

SW [105] 50.6 33.4 26.3 13.7 30.8

IBN-Net [106] 49.7 32.1 26.1 14.3 29.6

IterNorm [107] 43.9 29.6 22.8 12.6 28.4

ISW [108] 51.3 33.2 25.9 14.1 31.8

S-DGOD [10] 56.1 36.6 28.2 16.6 33.5

Ours 51.3 36.9 32.3 18.7 38.5

Table 5.1 – Single domain generalization results. We show consistent improvements across all the
target domains. S-DGOD boosts the source domain results, but at the cost of reduced generalization
ability. By contrast, our approach is robust to domain changes. The numbers for S-DGOD, SW, IBN-Net,
IterNorm, ISW are taken from [10].

SDG task, we evaluate the generalization performance on unseen target domains, hence we

compare the mAP scores on the out-of-domain datasets: day-foggy, night-rainy, dusk-rainy,

and night-clear. Following Single-DGOD, we adopt training-domain validation strategy [109]

for the model selection.

Our approach of combining CLIP pre-training and semantic augmentation outperforms

the baselines on all of the target domains. Tab. 5.1 shows a consistent improvement in all

domains with close to 15% improvement on day-foggy and dusk-rainy compared to Single-

DGOD. In the challenging scenario with Night conditions, we improve by 12.6% on night-rainy

while being comparable with Single-DGOD on night-clear. On the source domain, both our

method and Single-DGOD are better than the FR baseline. However, while Single-DGOD gains

improvement at the cost of losing out for domain generalization, we improve on both the

source and target domains. The failure of feature normalization baselines suggests a large

domain gap between the source and target domains. Fig. 5.4 and Fig. 5.5 provide a qualitative

results on different weather-datasets.
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Figure 5.4 – Qualitative Results. We visualize the predictions of the detectors trained only with day-
clear images. (Top) FasterRCNN [11] predictions. (Bottom) The predictions with our approach. Night-
Clear and Night-Rainy contain scenes that are taken under low light conditions. Due to this, the
appearance of the object is obscure and deviates from the daytime case. FasterRCNN fails to detect many
objects. As shown in the Night-Clear, it misclassifies a car to bus. By contrast, we can still detect car under
such a big shift. For Dusk-Rainy scenes, the rain pattern on the windscreen and the wet ground causes
an appearance shift. As shown FasterRCNN fails to detect several cars and misclassifies person on the
bottom-left.

Figure 5.5 – Qualitative Results. In the foggy scenes, the objects further away w.r.t the camera are more
obscure than the near ones. Due to this FasterRCNN (Top) struggles to detect them. car and person missed
by FasterRCNN are successfully recovered by our approach (Bottom).
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In the remainder of this section, we discuss the per-class results on the individual target

domains.

AP mAP

Method Bus Bike Car Motor Person Rider Truck All

FR [11] 28.1 29.7 49.7 26.3 33.2 35.5 21.5 32.0

S-DGOD [10] 32.9 28.0 48.8 29.8 32.5 38.2 24.1 33.5

Ours 36.1 34.3 58.0 33.1 39.0 43.9 25.1 38.5

Table 5.2 – Per-class results on Daytime Clear to Day Foggy. Our method consistently performs better
on all categories for the difficult foggy domain. This shows that CLIP initialization and our semantic
augmentations improve the detector’s generalizability.

Daytime Clear to Day Foggy. The object appearance drastically changes in the foggy images

compared to the day-clear scenario. As shown in Tab. 5.2, our method brings in a large

improvement for the car, person, and bike categories, while still being consistently better than

Single-DGOD and FR on the others.

AP mAP

Method Bus Bike Car Motor Person Rider Truck All

FR [11] 28.5 20.3 58.2 6.5 23.4 11.3 33.9 26.0

S-DGOD [10] 37.1 19.6 50.9 13.4 19.7 16.3 40.7 28.2

Ours 37.8 22.8 60.7 16.8 26.8 18.7 42.4 32.3

Table 5.3 – Per-class results on Daytime Clear to Dusk Rainy. Our approach generalizes to rainy road
conditions along with the low light conditions of the dusk hours. The car category sees the biggest
improvement, but we nonetheless also boost the performance of all the other classes.

Daytime Clear to Dusk Rainy. Dusk Rainy scenes reflect a low light condition and along with

the rainy pattern. The image distribution is thus further away from the daytime clear images.

As shown in Tab. 5.3, our method improves the AP of each class, with the biggest improvement

in the car and person categories. Since we leverage CLIP pre-training and bring in concepts

such as rain/cloudy/stormy an d evening/night hours through our semantic augmentation,

the learned detector generalizes better.
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AP mAP

Method Bus Bike Car Motor Person Rider Truck All

FR [11] 34.7 32.0 56.6 13.6 37.4 27.6 38.6 34.4

S-DGOD [10] 40.6 35.1 50.7 19.7 34.7 32.1 43.4 36.6

Ours 37.7 34.3 58.0 19.2 37.6 28.5 42.9 36.9

Table 5.4 – Per-class results on Daytime Clear to Night Clear. While being comparable to S-DGOD on
most of the categories, we improve on car and person.

Daytime Clear to Night Clear. The Night Clear dataset shows a challenging night driving

scene under severe low-light conditions. In Tab. 5.4, we show that while being comparable

to Single-DGOD, we bring in a larger improvement in the car and person categories. Night

scenes are particularly challenging as the low light condition leads to more confusion among

visually closer categories such as bus and truck.

AP mAP

Method Bus Bike Car Motor Person Rider Truck All

FR [11] 16.8 6.9 26.3 0.6 11.6 9.4 15.4 12.4

S-DGOD [10] 24.4 11.6 29.5 9.8 10.5 11.4 19.2 16.6

Ours 28.6 12.1 36.1 9.2 12.3 9.6 22.9 18.7

Table 5.5 – Per-class results on Daytime Clear to Night Rainy. This dataset presents the most chal-
lenging scenario, where the low light and rainy conditions obscure the objects. We still perform better
than the baseline on most of the categories.

Daytime Clear to Night Rainy. This is the most challenging scenario where dark night con-

ditions are exacerbated by patterns occurring due to rain. Tab. 5.5 shows consistent improve-

ment by our approach for most of the classes. The car class sees the biggest improvement with

an increase in AP of more than 22% compared to Single-DGOD. The lower performance of

the class rider can be attributed to an increase in the confusion between the visually similar

person and rider classes under adverse conditions.
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Model Component
mAP

Source Target

CLIP init Lcl i p9t Attn. Pool Sem. Aug
Day

Clear
Night
Clear

Dusk
Rainy

Night
Rainy

Day
Foggy

48.1 34.4 26.0 12.4 32.0

X 51.2 37.0 31.0 15.7 37.5

X X 50.7 36.0 31.3 16.3 36.9

X X X 51.0 35.9 31.3 16.7 37.7

X X X X 51.3 36.9 32.3 18.7 38.5

Table 5.6 – Ablation study. We study the influence of five different components of our approach: the
backbone weight initialization strategy, the classification loss, the attention pooling, and the semantic
augmentation. When those five components are removed (first row of the table) the model is equivalent
to the standard FasterRCNN. Initializing the detector with CLIP weights (second row) largely improves
the generalization performance; on its own it already outperforms Single-DGOD (penultimate row of
Tab. 5.1) on most of the datasets, hence suggesting that CLIP has better generalizability than ImageNet
pre-trained weights. Combining this with the text embedding-based loss Lcl i p9t (third row) improves the
results on the challenging scenarios of dusk rainy and night rainy, but has a detrimental effect for the
other weather conditions. Adding attention pooling to the architecture (fourth row) helps to mitigate
these detrimental effects as it brings the visual features closer to the joint embedding space. Finally,
the best results are obtained when the semantic augmentation is added (last row), greatly helping with
adverse weather, rainy and foggy, scenarios.

5.4.4 Ablation Study

To understand how each element of the proposed method contributes to the overall per-

formance, we conduct an ablation study. We test five individual components of our model.

Specifically, we remove semantic augmentation, replace CLIP attention pooling in Vb with av-

erage pooling, replace Lcl i p9t with the FasterRCNN classification loss, and change the weight

initialization from the CLIP model to an ImageNet classification model. Removing those five

components turns our model back into the standard FasterRCNN. The ablation study results

are provided in Tab. 5.6 and discussed below.

CLIP initialization. When the FasterRCNN backbone V is initialized with CLIP pre-trained

weights, the model performance consistently increases both in the in-domain and out-of-

domain scenarios, as shown in the second row of Tab. 5.6. This setting itself already outper-

forms Single-DGOD (penultimate row of Tab. 5.1). This goes to show that, for the generalization

task, model weight initialization plays a crucial role. We further improve this performance

with semantic augmentations.
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mAP

Aug. Type
Day

Clear
Night
Clear

Dusk
Rainy

Night
Rainy

Day
Foggy

no-aug. 51.0 35.9 31.3 16.7 37.7

random 51.2 36.0 30.4 15.3 37.3

clip-random 51.5 36.4 30.2 15.9 37.9

Ours w/ seg.aug 51.3 36.9 32.3 18.7 38.5

Table 5.7 – Semantic Augmentation. Our semantic augmentation consistently outperforms other aug-
mentation strategies. While random augmentations are worse than no-aug., clip-random is comparable
to no-aug.. Only when we give relevant prompts, there is a consistent improvement across datasets.

Attention pooling and Lcl i p9t . Next we test the impact of the text-embedding-based loss

Lcl i p9t for classification. As visible in the third row of Tab. 5.6, when combined with CLIP

initialization, it improves the generalization performance for the rainy scenarios, but degrades

it for the other ones. Replacing average pooling in Vb with CLIP attention pooling helps to

mitigate the detrimental effect of Lcl i p9t and exhibits consistent improvement on all datasets.

Semantic augmentation. Finally, adding semantic augmentation gives us the best results,

as shown in the last row of Tab. 5.6. Exposing the visual encoder V to targeted semantic

augmentations helps the overall model to better generalize when exposed to new domains

sharing similarity with the augmentations.

5.4.5 Additional Analyses

Study of semantic augmentation. Our proposed method involves translating feature maps

by semantic augmentations learned using plausible domain prompts. To further study the

utility of our approach, we replace the augmentation strategy in our training pipeline with

(a) no-aug: no augmentation; (b) random: A is initialized with a normal distribution; (c)

clip-random: we define P t with concepts that are not specific to weather. We generate

prompts with a template an image of {word}, where the words are desert, ocean, forest,

and mountain. Tab. 5.7 illustrates the importance of the semantics in our augmentation

strategy. The random augmentation performs worse than the no-aug strategy. clip-random

is comparable to no-aug and doesn’t show any consistent trend but is mostly better than

random. Our semantic augmentation strategy provides a consistent improvement over no-

aug because the translations are performed with prompts from the relevant weather concept.

61



CLIP the Gap: A Single Domain Generalization Approach for Object Detection

mAP

Method Comic Watercolor

CLIP-init 26.2 41.9

Ours w/o seg-aug 32.8 42.7

Ours 33.5 43.4

Table 5.8 – Additional Dataset: We show effectiveness of our approach on generalization to comics [14]
and watercolor painting-styled images [14]. The detector is trained with real images from VOC [15] and
text prompts describing the other domains. Interestingly, CLIP-init method fails to generalize well for
comics domain, thereby suggesting the need to bring in semantic knowledge of the domain.

Additional Dataset We evaluate our approach on images from(a) Comic [14] and (b) Water-

color painting [14] while training on VOC [15] as the source domain. Our method consistently

brings improvement compared to other baselines. This further illustrates effectiveness of our

method. For this experiment, we used the prompts P t : an image in {comic, painting, cartoon,

digital-art, sketch, watercolor, oil painting} style" and the source prompt p s a realistic image.

5.5 Limitations

Our method augments visual features using textual prompts. To generate these prompts, it

is assumed that some information about the domain gap is known. In our experiments, we

assumed that the domain gap was due to changes in weather and daytime conditions. In prac-

tice, we only used the word weather and time of the day to derive all the prompts used in our

augmentation; nonetheless, some extra information was used. In most applications, however,

the domain gap can be known in advance, and providing a few keywords characterizing it

should not be an issue. In the rare cases where no information can be known, our approach

still has the potential to be used by using multiple broad concept keywords such as weather,

ambiance, or location.

5.6 Conclusion

In this chapter, we address the generalization issue of the detectors to an unseen domain.

Our approach fundamentally departs from the existing method by leveraging a pre-trained

vision-language model, CLIP, to help the detector to generalize. Specifically, we have exploited

textual prompts to develop a semantic augmentation strategy that alters image embeddings

so that they reflect potential target domains, and to design a text-based image classifier. We

have shown that our approach outperforms the state of the art on four adverse-weather target

datasets. The improvements on an additional dataset show the effectiveness of our approach.
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6 Conclusion

In this thesis, we propose different methods to tackle domain shifts for object detectors. It

is a challenging problem that needs to be solved in order to have more reliable computer

vision applications. In this chapter, we reiterate our specific contributions and discuss future

research directions on the topic.

6.1 Summary

Attention-based Domain Adaptation for Single-Stage Detectors: As single-stage detectors

tend to be faster than two-staged ones, they are a great fit for industrial applications. In

recent years their accuracy has surpassed the two-staged ones. However, most of the domain

adaptation literature has focused mostly on two-staged detectors. In Chapter 3, we take

inspiration from the two-staged methods to adapt both global image features and local object

features in single-stage architectures. We add a self-attention-based module to obtain local

object regions and gradually adapt them along with global image features. We adapt SSD and

YOLOv5 detectors using adversarial training for feature alignment. We evaluate our method

on various datasets which contain significant appearance changes between domains.

Learning Transformations To Reduce the Geometric Shift in Object Detection: While do-

main shift due to appearance change is common, we motivate that geometric changes due to

differences in the camera setup are also ubiquitous. These differences in the camera setup

lead to apparent differences in the shapes and sizes of objects. As the exact formulation of

these geometric changes is not possible, we propose in Chapter 4 to learn transformations that

can negate the effect of such shifts. Firstly, an input image is warped by a set of homographies

and then their features are combined using a learnable aggregator. The aggregator is trained

to combine regions containing objects of interest while ignoring the background. We adopt

mean-teacher formulation to utilize pseudo labels in the target domain. We benchmark our

approach on different datasets showing a large geometric shift.

CLIP the Gap: A Single Domain Generalization Approach for Object Detection: While the

previous two works use unlabeled target domain data to align or estimate target domain
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features, there can be situations where unlabeled data is hard to obtain. In Chapter 5, we in-

troduce a method to estimate the visual features of the domain by using its textual description

and a vision-language embedding, CLIP. While training our detector, we do augmentation

with these features in order to increase robustness. We evaluate the generalization of our

method on road scenes with adverse weather conditions and images in the style of comics or

watercolor painting.

6.2 Limitations and Future Work

There are exciting research directions that can bring in further improvements in the domain

adaptation and generalization tasks. We first proceed with the limitations of our work and

how they can be improved, followed by, a discussion on the broader research directions.

6.2.1 Limitations

In Chapter 3, we discuss the differences between the single-stage and two-stage detectors

and how the adaptation methodology is different for both. But both of these detectors have a

backbone that is initialized with ImageNet [81] pre-trained weights. This leads to a bias in the

training. Lately, different self-supervised methods [110, 85] have shown to generalize better

to downstream tasks. One interesting direction can be to have a large pretraining with an

additional constraint of learning domain invariant features.

In Chapter 4, the transformations were learned over the entire dataset and this could be

a suboptimal approach. If the transformations are conditioned on each input image, the

performance can be improved further. This approach can potentially reduce the number

of homographies used and hence lower the inference time. Another direction would be to

explore transformation equivariant architectures. There are previous works [111, 112, 113]

that have tried to introduce such properties into the convolutional neural networks and it

could be beneficial for adaptation under geometric shifts.

In Chapter 5, we have a fixed CLIP embedding of the prompts during the training. Alternatively,

we can have prompts optimization to better align with the domain generalization objective.

Recent work [114] has shown that learnable prompts are better for downstream tasks. Another

challenge in this work is when domains cannot be described via text. For such cases, methods

like [115] can be applicable as they learn a concept with few examples. However, this implies

access to a few target domain images.
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6.2.2 Future Work

In this section, we provide some new directions for future research.

Existing domain adaptative detections rely on fixed datasets which is different from the real-

world where things keep on evolving. Therefore, a practical direction would be continual

adaptation or test-time adaptation methods, where the new unseen target domains can be

introduced at the test time. Here, an additional open challenge is on how to efficiently adapt

to new domains while avoiding catastrophic forgetting. Test-time adaptation can also leverage

CLIP like models to better infer from few examples in the new domain.

The domain shift can occur due to a combination of different covariate shifts like illumination

change, camera distortion, or weather change. Disentangling and adapting them separately

can potentially be useful. This approach will require having an interpretable domain adapta-

tion and generalization methods. Leveraging CLIP or large language models for this objective

can be an interesting area of research.

We hope the following directions along with the insights from our work provide a better

understanding of the current and future research landscape.
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A Architecture and Training details

A.1 Attention-based Domain Adaptation for Single-Stage Detectors

A.1.1 Architecture Details

The details of our detector’s architecture are as follows.

SSD: As mentioned in the Chapter 3, we add an FPN [32] to our VGG backbone. We use 7

scales corresponding to feature maps of size 642, 322, 162, 82, 42, 22, 1 for our SSD architecture.

We add a GroupNorm [116] layer after every convolutional layer. We set D =Cs = 256 for all

pyramid levels, corresponding to the number of channels in the feature maps Fs .

YOLOv5: D =Cs = 128, 256, 512 corresponds to the three YOLO feature levels with the back-

bone proposed in [2].

A.1.2 Self Attention

Figure A.1 depicts our self-attention module design. Following [12], we add a feed-forward

network (FFN) and pass its output as an input to the detector heads. The FFN consists of two

fully-connected layers with 2048 hidden units followed by ReLU activation. Furthermore, we

add a Dropout layer with a factor of 0.1, as in [12]. We use LayerNorm [117] to normalize the

features. Finally, following [12], we set the number of heads for the multi-head attention layer

to be 8.

For SSD, we incorporate the attention module to the first three scales and use the third scale’s

attention map for the remaining 4 scales using max-pooling to adapt the spatial resolution.

This limits the increase in model complexity. For YOLO, all three scales have an attention

module.
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Figure A.1 – Self Attention Module: Following [12], we use multihead attention followed by a feed
forward network.

A.1.3 Discriminator

We use blocks of 3× 3 convolution kernels with GroupNorm [116], ReLU activation, and

max-pooling with a stride of 2. For a feature map of size 2n ×2n , the discriminator at the

corresponding scale contains n blocks. These blocks are followed by a fully connected layer

with 2 hidden units.

A.1.4 Training Details

As discussed in the main paper, we define a factor γ= 2
1+exp(−δ·r ) −1 to modulate the influence

of attention on our feature maps. Here, r = cur r ent i ter ati on′
max i ter ati on′ is computed from the moment

the GRL is activated. Hence, current iteration’ = current iteration - tg r l and max iteration’=

max iteration-tg r l . tg r l is the iteration at which the GRL begins the domain adaptation phase

of training.

SSD: We keep GRL activation iteration tg r l = 12k,12k,5k and max iteration=30k,30k,50k for

S→C, K→C and C→F, respectively, reflecting the fact that C→F has less training data. For

S→C, K→C, we set the detector learning rate to 1e-3 for the first 10k iterations and then decay

it by a factor of 0.1. For C→F, to avoid overfitting to the smaller source data, we set the learning

rate to 5e-4 and decay it by 0.1 after 20k iterations. The discriminator learning rate is an order

of magnitude smaller than the initial detector one and kept constant throughout training.

This lets us train the attention layers faster than the discriminator for the initial iterations.

Furthermore, the GRL coefficient is set to 0.005 for S→C and K→C, and to 0.5 for C→F to

compensate for the lower detector learning rate. We set δ to 5.

68



Architecture and Training details

YOLOv5: We initially train without activating the GRL layer for 3 epochs in all cases and then

set its coefficient to be 0.1. The base detector learning rate is set to be 0.1, and we train the

model with δ set to 5. In these experiments, we set tg r l = 10 epochs and max epoch=20,20,50

for S→ C, K→ C and C→ F, respectively. The initial learning rate is set to 0.001 for S→ C and

0.01 for K→ C and C→ F. The GRL coefficient is 0.01 for S→ C and 0.1 for K→ C and C→ F.

A.2 Learning Transformations To Reduce the Geometric Shift in Ob-

ject Detection

A.2.1 Aggregator Architecture

Our aggregator architecture consists of three convolution layers along with BatchNorm and

Relu layers after each convolution. Appendix A.2.1 shows the details of different layers. Here,

C = 1024 corresponds to the output of the feature extractor.

# Channels

Layer Input Output

Conv2d 3×3 N ×C N ×C /2
BatchNorm + Relu N ×C /2 N ×C /2
Conv2d 3×3 N ×C /2 C
BatchNorm + Relu C C
Conv2d 1×1 C C
BatchNorm + Relu C C

Table A.1 – Aggregator Architecture for |T | = N

A.2.2 Training Details

We use random crop implementation of Detectron2[79] and torchvision I for color jittering.

Kind Details

Random Crop Relative Range: [0.3,1]
Color Jitter Brightness=.5, Hue=.3

Table A.2 – Augmentations

We train our base network, FasterRCNN, with random crop strategy on with only source data,

which is Cityscapes for both the adaptation tasks. The trained model achieves 74.7 and 58.4

AP@0.5 scores on the source domain validation set for car and person detection, respectively.

Ihttps://pytorch.org/vision/stable/transforms.html
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A.3 CLIP the Gap: A Single Domain Generalization Approach for

Object Detection

scattering , current of air , draft , norther , line storm , doldrums , flurry
roughness , sou’wester , shower , gale , simoon , trade wind , boisterousness
deluge , air mass , southerly , easter , west wind , mizzle , whiff
cold wave , downfall , murk , line squall , elements , bad weather , easterly
sprinkling , balminess , depression , monsoon , cloudburst , chinook wind , good weather
fine spray , harmattan , clemency , tramontane , south wind , gentle breeze , wave
tramontana , draught , windlessness , equinoctial storm , fohn , overcast , cloud cover
quiet , moderate breeze , souther , thundershower , foehn , westerly , stillness
airstream , north wind , whiteout , snow eater , levanter , catabatic wind , clear-air turbulence
fair weather , snow , antitrades , simoom , bize , windiness , fresh gale
drizzle , sunshine , fog , puff of air , bluster , heat wave , light air
blast , zephyr , whole gale , temperateness , thawing , calmness , squall
storminess , prevailing westerly , soaker , snowfall , hot weather , scorcher , fresh breeze
raw weather , puff , rough water , northwest wind , murkiness , cold weather , gentle wind
northwester , freeze , crosswind , gust , mildness , breath , near gale
east wind , wind , northerly , rainstorm , chinook , atmosphere , rain shower
rainfall , high wind , pelter , snow flurry , southeaster , virga , jet stream
breeze , softness , warming , khamsin , atmospheric state , downpour , downdraft
cloudiness , trade , blow , inclementness , antitrade , strong gale , antitrade wind
calm , light breeze , tempestuousness , wester , lull , thaw , choppiness
cyclone , calm air , sleet , sandblast , sea breeze , mistral , air current
hail , southwester , rain , waterspout , sultriness , katabatic wind , torrent
precipitation , headwind , moderate gale , boreas , breeziness , tailwind , air
sou’easter , low , anticyclone , samiel , thermal , strong breeze , Santa Ana
bise , frost , high , sprinkle , inclemency , turbulence , fogginess

Table A.3 – Hyponyms of word weather in WordNet [16]

A.3.1 Prompt Curation

As mentioned in Chapter 5, we curate a set of domain prompts P t . For this step, we get the

words matching the concept weather from WordNet [16]. Tab. A.3 lists the hyponyms for the

word weather. With this list, we filter out words that have cosine distance below 0.5 w.r.t the

weather in CLIP embedding space. We further improve our wordlist using GloVE [17] to weed

out the uncommon words. To this end, we take only the words which are in the 10k most

common words of GloVE. Tab. A.4 lists the words after this stage.

We still see there are words that show the same concepts like draft , easter , elements , depression

, air , low , high, wind, atmosphere, air represent related to the windy or stormy conditions,

hence we replace these words with stormy. We merge rainfall and rain, while removing

ambiguous words like blast, warming, breath, quiet.
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draft , easter , elements , depression ,
wave , quiet , snow ,

sunshine , fog , blast , freeze ,
breath , wind , atmosphere ,

rainfall , warming , trade ,
blow , calm , cyclone , rain , air , low , high

Table A.4 – Word list after CLIP and GloVE [17] based pruning
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