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Abstract

With the looming threat of large-scale quantum computers, a fair portion of recent crypto-
graphic research has focused on examining cryptographic primitives from the perspective
of a quantum adversary. Shor’s 1994 result revealed that quantum computers can efficiently
solve the discrete logarithm and factorization problems, the foundation of public-key cryp-
tography’s hardness assumptions. As a response, the field of post-quantum cryptography has
emerged, aiming to redesign classical cryptographic primitives to maintain security against
quantum adversaries.
Conversely, quantum computation presents new opportunities for cryptographic design. It
may be possible to construct cryptographic primitives designed specifically for quantum
parties, relying on weaker assumptions compared to classical cryptography or even elimi-
nating the need for any computational assumptions altogether. This has opened up exciting
possibilities for exploring quantum-enhanced cryptographic schemes.
In this thesis, we delve into both aspects: classical cryptography guaranteeing security against
quantum adversaries and the potential opportunities presented by cryptographic primitives
harnessing quantum computation.
Throughout the first part of the thesis, we focus on post-quantum signature schemes. We
examine signature schemes within the Minicrypt realm, built on the MPC-in-the-head frame-
work and symmetric-key primitives. The results we present demonstrate that the security level
of these schemes is influenced by the multiplication complexity of the underlying symmetric-
key cipher. We specifically analyse the PICNIC signature scheme, instantiated with the LowMC

block cipher family, and establish the importance of maintaining a sufficient round complexity
in the block cipher to ensure security.
The second part of the thesis focuses on cryptographic primitives specifically designed for
parties utilizing quantum computation. We thoroughly explore the concept of public-key
encryption (PKE) in the quantum domain and tackle the question of whether it is feasible to
construct PKE schemes using assumptions weaker than those required in classical settings.
We demonstrate that it is indeed possible to construct a quantum PKE scheme by relying solely
on the existence of one-way functions or potentially weaker assumptions.
Additionally, we explore the utilization of self-testing techniques from quantum mechanics
in the field of learning theory. We focus on the challenge of constructing classifiers that
exhibit robustness against test examples drawn from arbitrary distributions, including ad-
versarially chosen examples. We showcase the application of self-testing techniques to offer
cryptographic guarantees for such tasks within a quantum learning model.
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Résumé

La sourde menace posée par les ordinateurs quantiques a conduit une partie des cryptologues
à réexaminer les primitives cryptographiques du point de vue d’un adversaire doté d’une
force de calcul quantique. Le résultat de Shor de 1994 a révélé que ces machines seraient
capables de résoudre efficacement les problèmes du logarithme discret et de la factorisation.
En réaction, la communauté cryptographique s’est employée à construire des alternatives
aux primitives dites "classiques" afin de garantir la sécurité dans un monde quantique. Ce
nouveau domaine de recherche a pris le nom de cryptographie post-quantique.
Cependant, la puissance du calcul quantique offre également de nouvelles opportunités
en termes de conception cryptographique. Par exemple, il peut être possible de construire
des primitives quantiques qui s’appuient sur des hypothèses plus faibles comparé à leur
équivalent classique, ou mieux, sur aucune hypothèse calculatoire du tout. L’informatique
quantique ouvre donc ainsi la voie à de nouvelles avancées conséquentes dans la construction
de systèmes cryptographiques.
Dans cette thèse, nous explorons ces deux aspects ; c’est-à-dire la cryptographie post-quantique
qui a pour but de construire des algorithmes classiques qui résistent aux ordinateurs quan-
tiques, et la cryptographie quantique proprement dite, qui se concentre sur la construction de
primitives opérant directement sur un ordinateur quantique.
Dans la première partie de la thèse, nous nous concentrons sur les systèmes de signature post-
quantiques. Plus particulièrement, nous examinons des signatures numériques construites
à partir de la technique dite "MPC-dans-la-tête" et de primitives symétriques. Les résul-
tats obtenus démontrent que le niveau de sécurité de ces constructions est influencé par
la complexité des multiplications dans le système de chiffrement symétrique sous-jacent.
Plus spécifiquement, nous analysons PICNIC instancié avec le chiffrement par bloc LowMC

et montrons l’importance de maintenir un nombre de répétitions élevé dans le système de
chiffrement par bloc.
Dans la seconde partie de la thèse, nous nous concentrons sur des primitives quantiques,
c’est-à-dire destinées à être exécutées sur des ordinateurs quantiques. Nous explorons en
détail le concept de chiffrement à clé publique dans un monde quantique et nous abordons la
question de savoir s’il est possible de construire un tel système en se basant sur des hypothèses
plus faibles que dans un monde classique.
En outre, nous explorons l’application de techniques d’autocontrôle issues de la mécanique
quantique au domaine la théorie de l’apprentissage. Nous nous concentrons sur le défi de
construire des classifieurs robustes contre des échantillons test tirés de distributions arbi-
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Résumé

traires (y compris des échantillons choisis par un adversaire). Nous démontrons comment les
techniques d’autocontrôle peuvent fournir des garanties pour cette tâche dans un modèle
d’apprentissage quantique.

Mots-clés : Cryptographie, Cryptographie post-quantique, Signature numérique, Chiffrement
par bloc, Chiffrement à clé publique, Sécurité contre les attaques à texte chiffré choisi, Théorie
de l’apprentissage, Délégation du calcul quantique
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Introduction

In a must-read survey titled "A Personal View of Average-Case Complexity", Russell Impagli-
azzo [Imp95] introduced the five realms of average-case complexity hardness:

1. Algorithmica: a realm where P=NP.

2. Heuristica: a realm where NP problems are hard in the worst case but easy on average.

3. Pessiland: a realm where NP problems are hard on average, but no one-way functions
exist. Hard NP problems can be easily created, but not hard NP problems for which the
solution is known.

4. Minicrypt: a realm where one-way functions exist, but public-key cryptography might
not.

5. Cryptomania: a realm where public-key cryptography is possible.

The study of the latter two realms and their relationship forms the foundation of cryptographic
research. Therefore, cryptographic research is often divided into two segments. The first
segment is symmetric-key cryptography, which focuses on the study of cryptographic objects
residing in Minicrypt. This sub-field is dedicated to investigating schemes such as commit-
ments, symmetric-key encryption, message authentication codes, collision-resistant hash
functions, and more. Hardness assumptions in symmetric cryptography are often based on
heuristics rather than being derived from well-structured mathematical problems.

The second sub-field of cryptography focuses on public-key cryptography, which involves
the study of objects within the realm of Cryptomania. Public-key encryption, trapdoor per-
mutations, and secure multi-party computation are among the key objects of interest in
this sub-field. Unlike symmetric cryptography, public-key cryptography relies heavily on
mathematically structured problems and well-established, often number-theoretic, hardness
assumptions. The most commonly employed hardness assumptions in public-key cryptogra-
phy are the discrete logarithm problem and the factoring problem. A non-exhaustive list of
cryptographic objects in both worlds and their relations is visualized in Figure 1.

However, a new threat emerged in the peaceful realms of cryptography with the advent of
quantum computing. In 1994, Peter Shor’s seminal work [Sho94] demonstrated that both

1
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Cryptomania

Minicrypt


Trapdoor Permutations

IND-CPA PKE IND-CCA PKE

Key Exchange
Oblivious Transfer

Secure Multiparty Computation

One-Way Functions


Pseudorandom Generators
 Pseudorandom Functions


Pseudorandom Permutations
Symmetric-Key Encryption


Commitment Schemes
 ZK Arguments for all NP

Signature Schemes
 ROM

ROM

Figure 1: A Visualization of Cryptographic primitives and their relations. The arrows indicate
which primitives can be built from which and the dotted lines indicate the existence of an
oracle separation.

the discrete logarithm and factorization problems could be solved by quantum computers
in polynomial time. As previously mentioned, the hardness of factorization and discrete
logarithm served as the foundation for many cryptographic objects in Cryptomania. On the
other hand, quantum computing also presented intriguing possibilities. The quantum key
distribution protocol by Bennett and Brassard [BB84] and the quantum money protocol by
Wiesner [Wie83] hinted at the potential for building cryptographic primitives from weaker or
even no computational assumptions. This development raised a crucial question: "How will
the achievement of quantum supremacy impact Impagliazzo’s cryptographic realms?" In light
of this question, we can approach the issue from two distinct perspectives.

Classical Cryptography, Secure Against Quantum Adversaries:

Examining classical cryptographic primitives through the lens of quantum computing has
given rise to a new sub-field known as post-quantum cryptography. One of the primary focuses
of this field has been replacing existing Cryptomania hardness assumptions with alternative
problems that are believed to remain difficult for quantum computers to solve. Extensive
research has been dedicated to constructing cryptographic primitives based on various new
assumptions, such as the hardness of the learning with errors problem (LWE) [Reg05] and
finding isogenies between elliptic curves [RS06].

It is important to stress that the pursuit of quantum-secure cryptography is not merely of
theoretical interest. In fact, the National Institute of Standards and Technology (NIST) has
held a standardization process for post-quantum cryptography [AAC+22]. The procedure
primarily targeted two key primitives: key-encapsulation mechanisms (KEM) and digital

2
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signature schemes. Several schemes were proposed in both categories, to name a few: key-
encapsulation mechanisms such as CRYSTALS-KYBER [SAB+20], Classic McEliece [ABC+20]
and SIKE [JAC+20], and digital signature schemes including CRYSTALS-DILITHIUM [LDK+20]
and PICNIC [CDG+17].

Although defining hard problems have been the main approach in designing post-quantum
KEMs, the landscape for signature schemes is slightly different. Despite often being con-
structed using Cryptomania assumptions, as shown by Rompel [Rom90], one-way functions
are sufficient to construct signature schemes, establishing that signatures are within the realm
of Minicrypt. Moreover, a seminal result by Goldreich, Micali, and Wigderson [GMW87] es-
tablished that commitment schemes imply zero-knowledge arguments for all NP statements.
Relative to a random oracle, combining this result with the Fiat-Shamir transformation [FS87],
immediately implies that commitment schemes are sufficient for constructing digital signa-
ture schemes. However, employing this methodology results in very large signature sizes and
highly inefficient signing algorithms.

Following the blueprint of transforming ZK arguments to signatures, Ishai et al. [IKOS07]
demonstrated another approach to build zero-knowledge arguments for NP based on honest-
majority secure multiparty computation.2 The basic idea of this approach involves the prover
executing the NP verification algorithm in a multiparty manner "in their head" and commit-
ting to the computations performed on each share. Subsequently, the verifier requests the
prover to reveal views of certain players to verify the correctness of the computation. This
framework offers another avenue for building digital signatures, wherein the computation
cost and signature size are determined by the expense of running the verification procedure
of the NP statement in a multiparty manner.

Subsequently, Giacomelli et al. [GMO16] showed how this methodology can be further op-
timized for statements regarding boolean circuit evaluation. Combining this result with
statements regarding the evaluation of a pseudorandom function (PRF) leads to actually
practical digital signature schemes where the security can be reduced to the security of the
PRF and commitment scheme used.

The interesting observation is that, in contrast to Cryptomania assumptions, assumptions in
Minicrypt are not believed to be significantly impacted by the emergence of quantum com-
puting. For instance, standardized symmetric-key encryption schemes like AES [AES01] are
not believed to be vulnerable to quantum adversaries. This has led to a new avenue for design-
ing post-quantum signature schemes using the MPC-in-the-head framework from [IKOS07]
where the security only relies on the underlying symmetric cryptography schemes [CDG+17,
BdK+21, dDOS19].

Quantum Cryptography:

2It is worth noting that although secure multiparty computation (MPC) belongs to Cryptomania, achieving
honest-majority MPC can be accomplished unconditionally.
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Introduction

We briefly explored the challenges of enhancing the security of classical cryptography against
quantum adversaries. However, in a world where quantum supremacy has been achieved,
a new question arises: "What if, in addition to the adversary, the parties involved in the
cryptographic protocol are also quantum?"

Wiesner’s quantum money protocol [Wie83] and Bennett and Brassard’s quantum key distribu-
tion [BB84] were some of the first concrete proposals of leveraging quantum resources which
can both be viewed as ways to build cryptographic tasks which require weaker assumptions
than classically needed. Recently it has been shown that oblivious transfer and arbitrary
multiparty computation, both primitives which are classically in Cryptomania, can be built
from Minicrypt assumptions if quantum communication is allowed [BCKM21, GLSV21]. This
advancement has led to a growing belief that leveraging quantum computation might bridge
the gap between Minicrypt and Cryptomania3.

On another note, Ji et al. [JLS18] proposed a new minimalistic cryptographic primitive called
pseudo-random state generators (PRSG), and demonstrated that the existence of PRSG is
implied by the existence of one-way functions. Subsequently, Kretschmer [Kre21] showed
that with respect to an oracle, PRSG might exist in a world in which one-way functions do not.
Subsequent research improved upon this result, establishing the existence of an oracle, relative
to which P=NP while PRSGs can still be present [KQST22]. Moreover, it was shown that PRSGs
are sufficient to construct quantum variants of a number of cryptographic primitives such as
bit-commitments and one-time signatures which require the existence of one-way functions
classically [MY22b, AQY22]. In Impagliazzo’s framework, these findings suggest that quantum
cryptographic tasks may be achievable even in Algorithmica.

Another area in cryptographic research where quantum computing introduces a separation
is the study of interactive proofs. Interestingly, certain phenomena in quantum mechanics
can be viewed as accomplishing cryptographic objectives. An example of this is the Bell
inequality, where the actions of two provers achieving a CHSH score of 2

p
2 exhibit a unique

strategy, up to an isometry. This allows a classical referee to verify the behavior of two quantum
parties, who share a Bell state, by communicating with them exclusively through classical
means. This leads to the execution of cryptographic tasks that are typically impossible using
space-separated classical parties, such as certifying the authenticity of outputs generated
by a process as genuinely random. Another example of this is the seminal result of Ji et
al. [JNV+22] where it was shown that two space-separated parties sharing entanglement can
convince a classical verifier that a touring machine halts, i.e. MIP§ =RE. Whereas, without
the shared entanglement it was shown by Babai et al. [BFL90] that the set of languages that
have interactive proofs in this model is equal to NEXP.

Circling back to Impagliazzo’s picture, recent results have shown how space separation can be
replaced by Cryptomania assumptions for such protocols. Examples of this are the classical

3Classically there is evidence that public-key encryption can not be built only assuming the existence of one-way
functions [IR90]
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verification of quantum computation protocol by Mahadev [Mah18], and the compiler to
build a computationally sound test of quantumness from any non-local game by Kalai et
al. [KLVY22].

Outline of this thesis. The research presented in this dissertation addresses both questions
regarding the impact of quantum computation on the field of cryptography. Consequently,
the content of this thesis is divided into two main parts, each focusing on one of the aforemen-
tioned questions. Part I is dedicated to analyzing signature schemes specifically designed to
ensure post-quantum security. On the other hand, Part II investigates cryptographic primitives
that leverage quantum computation, which classically either rely on stronger cryptographic
assumptions or are downright unattainable.

Part I: This part of the thesis consists of two chapters. In these chapters, we delve into post-
quantum signature schemes based on the MPC-in-the-head paradigm from [IKOS07] and
[GMO16]. As previously mentioned, the primary overhead of these schemes is closely tied to
the computational cost of the MPC computation involved in the verification procedure of the
NP statement. In the case of proving statements in the form of C (x) = y , where C represents a
boolean circuit, this overhead is directly linked to the number of multiplication gates present
in C . Consequently, various instantiations of this paradigm have emerged, utilizing symmetric-
key primitives with low multiplication gate count or low multiplication depth. These choices
aim to minimize the computational burden of the signing algorithm and reduce the size of the
resulting signature.

In Chapters 2 and 3, we re-examine this selection and establish the following guiding principle:

"The security level of signatures derived from the MPC-in-the-head paradigm is directly
influenced by the multiplication depth of its underlying block-cipher."

The specific signature scheme examined in these chapters is PICNIC [CDG+17], where the
boolean circuit is instantiated with LowMC [ARS+15]. LowMC is a block cipher explicitly designed
for MPC applications. We demonstrate that diminishing the number of rounds in LowMC

to achieve improved efficiency parameters for PICNIC would result in significant security
vulnerabilities, even when only classical security is of concern.

Part II: This part of the thesis focuses on the exploration of cryptographic primitives tailored
for parties utilizing quantum computation. In Chapter 4, we revisit the concept of public-key
encryption (PKE), the main pillar of Cryptomania, when keys are allowed to be quantum
states. The objective of this chapter is to address the following question: "Can public-key
encryption be constructed using assumptions that are weaker than those required in classical
settings within a quantum realm?"

We affirmatively address the aforementioned question by demonstrating that it is feasible to
construct a quantum public-key encryption (qPKE) scheme that offers the robust notion of
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adaptive indistinguishability against chosen-ciphertext attacks (IND-CCA2), relying solely on
the existence of one-way functions, placing IND-CCA2 secure qPKE within the framework
of Minicrypt. Furthermore, we establish that achieving non-adaptive indistinguishability
against chosen-ciphertext security (IND-CCA1) can be accomplished from assumptions that
potentially fall within the realm of Algorithmica. To give a tight description, we also establish
that the notion of public-key encryption still cannot provide information-theoretic security,
even with the incorporation of quantum keys and ciphertexts.

In Chapter 5, we delve into the field of learning theory. A prominent area of research in modern
learning theory focuses on classification tasks where the test-time examples are not drawn
from the intended distribution. An example of this scenario arises when the examples are
subjected to adversarial perturbations. Previous studies have explored this problem under
various regimes, where the perturbations applied to the test-time examples are restricted
to a fixed set, such as small perturbations in the `2 norm [SZS+14, NYC15]. However, these
regimes have their limitations since ensuring classifier robustness against such perturbations
necessitates prior knowledge of the set of possible perturbations, which is an unrealistic
assumption in most real-world scenarios.

Golwasser et al. [GKKM20] took a different approach by proposing a regime that removes
restrictions on the set of perturbations an adversary can apply, i.e. the set of test-time examples
is arbitrary. However, the learning model comes with two important caveats,

1. Transductivity: The learning algorithm is provided with both the (unlabeled) test exam-
ples and the (labelled) training samples, allowing it to access the entire dataset.

2. Selectivity: The learning algorithm has the ability to abstain from answering certain
classification queries, providing an additional level of flexibility.

It should be noted that without further requirements on the learning algorithm, it can be
demonstrated that the task becomes intractable. Furthermore, the authors of [GKKM20]
establish a lower bound on the rejection rate for any classifier aiming to be robust against an
arbitrary set of test examples. This highlights the inherent challenges and limitations associ-
ated with developing classifiers that can handle unrestricted perturbations in a transductive
and selective learning setting.

The crux of the problem seems to be the following question:

"Can a classifier ascertain that the queries presented to it adhere to the correct distribution?"

In classical settings, the problem is intractable, even for the specific case of a uniform distribu-
tion. There is no possible method to verify if the provided samples were uniformly sampled.
However, self-testing techniques from quantum mechanics offer potential solutions to this
verification problem. One such example is the use of the Bell inequality, which guarantees that
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if a pair of provers achieves a CHSH score of 2
p

2, their outputs are in fact uniformly sampled.
This observation hints that answering this question might be easier in a quantum learning
model.

The work presented in chapter 5 demonstrates how this idea can be generalized for any distri-
bution which can be efficiently estimated. Building on this idea we show how in a quantum
learning model, cryptographic assumptions would lead to classifiers with lower rejection
rates than the lower-bound proven in [GKKM20] as long as the distribution of samples can be
efficiently estimated.
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1 Preliminaries

Throughout this document, the security parameter is often denoted by ∏. We write n(∏) =
poly(∏), if there exists a polynomial f , such that n < f (∏). We also write n(∏) = negl(∏), if for
any polynomial f , there exists N such that for ∏> N , n(∏) < 1

f (∏) .

Quantum algorithms/devices are represented by circuits consisting of gates from a fixed set
of universal gates. A common choice of universal gates can be found in section 1.3. We say
an algorithm is in Quantum Polynomial Time (QPT) if it can be represented by a circuit with
poly(n) gates, where n is the size of the input.

1.1 PICNIC Signature Scheme

In this section, we briefly introduce the PICNIC signature scheme which will be the main
focus of chapters 2 and 3. PICNIC [CDG+17] is a highly tweakable signature scheme based
on an MPC-in-head paradigm, which advanced to the third round of NIST post-quantum
cryptography competition [AAC+22]. The authors propose several different parameters for
various security levels and applications.

PICNIC signature is built using Fiat-Shamir transformation of a proof of knowledge protocol
based on the MPC-in-head paradigm by Ishai et al. [IKOS07]. The high-level idea is as follows,
imagine we have a multi-party computation of a function f . Each player has a share of
the input x, and the output y = f (x) is publicly known. The goal of the prover is to prove
the knowledge of x. To do so, the prover simulates all players and commits to all the states
and transcripts. Later the verifier is allowed to corrupt a random subset of players, having
access to their full state. Having this information in hand, the verifier can check whether the
computation was done correctly from the corrupted players’ perspective.

In the case of PICNIC this paradigm is instantiated using a block cipher. Let Enc(K ,pt) be the
encryption of the plaintext pt using the key K . The function f in the previous paradigm is
instantiated as Enc(§,pt) for a public plaintext pt. The plaintext/ciphertext pair (pt,ct) is used
as the public key of the signature scheme (verification key), and encryption key K is used as
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Figure 1.1: LowMC Round Function

the secret key (signing key). If an adversary can recover the encryption key given only a single
ciphertext, plaintext pair (ct,pt) i.e. the public key of the signature scheme, then in effect he
computes the secret signing key. This allows him to forge a signature by following exactly the
honest prover protocol with the recovered signing key.

As multiplications are quite costly when computing a function in a multi-party manner,
signatures such as PICNIC need to be instantiated with ciphers specifically designed for MPC
use cases, for instance, ciphers with very low multiplication depth. For the case of PICNIC the
chosen cipher is LowMC.

1.2 LowMC Block Cipher

LowMC [ARS+15] is an efficient block cipher tailored specifically for FHE and MPC usage,
aiming to minimize the number of multiplications. LowMC uses a quadratic S-box operating
on 3 bit inputs, and for each output bit of the S-box, a single multiplication is needed. The low
multiplication count makes LowMC a fairly suitable choice for PICNIC instantiation.

The LowMC round function is a typical SPN construction given in Figure 1.1. It consists of an
n-bit block undergoing a partial substitution layer consisting of s S-boxes where 3s ∑ n. It is
followed by an affine layer which consists of the multiplication of the block with an invertible
n £n matrix over F2 and addition with an n-bit round constant. Finally, the block is xored
with the round key which is again the product of the n-bit master secret key K with an n £n
invertible matrix. As in most SPN constructions, a plaintext is first xored with a whitening key
which for LowMC is simply the secret key K , and the round functions are executed r times to
give the ciphertext. From the point of view of cryptanalysis, we emphasise that the design
is completely known to the attacker, i.e. all the matrices and constants used in the round
function and key update are known.

The only non-linear component of the round function is the S-box. The LowMC S-box is a 3-bit
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to 3-bit function (x0, x1, x2) ! (s0, s1, s2) described as follows:

s0 = x0 +x1x2

s1 = x0 +x1 +x0x2

s2 = x0 +x1 +x2 +x0x1

1.3 Quantum Information

For a more in-depth introduction to quantum information, we refer the reader to [NC16].

Quantum States

We denote by HM a complex Hilbert space with label M and finite dimension dim M . We
use the standard bra-ket notation to work with pure states

Ø

Ø√
Æ

2HM . The class of positive,
Hermitian, trace-one linear operators on HM is denoted by D(HM ). A quantum register is
a physical system whose set of valid states is D(HM ); in this case we label by M the register
itself. The maximally mixed state (i.e., uniform classical distribution) is written as I/dim M on
M .

The support of a quantum state % is its cokernel (as a linear operator). Equivalently, this is
the span of the pure states making up any decomposition of % as a convex combination of
pure states. We will denote the orthogonal projection operator onto this subspace by P%. The
two-outcome projective measurement (to test if a state has the same or different support as %)
is then {P%, I°P%}.

Qubits

A qubit is the most basic quantum system used throughout this thesis. The definition we opt
to use is taken from [Vid22].

Definition 1. A qubit is a tuple (
Ø

Ø√
Æ

,H , X , Z ), where H is a Hilbert space,
Ø

Ø√
Æ

2H is a unit
vector, and X , Z are two observables (non-singular Hermitian operators on H ) such that,

(X Z +Z X )
Ø

Ø√
Æ

= 0 (1.1)

In words, one typically refers to this property by saying that X and Z anticommute on the
support of

Ø

Ø√
Æ

.

What anticommuting means on a high level, is that there are two ways to observe
Ø

Ø√
Æ

but it
is not possible to observe

Ø

Ø√
Æ

in both ways simultaneously. The simplest type of qubits we
encounter are defined over H =C2. A standard choice of basis for C2 is,

|0i=
"

1
0

#

, and |1i=
"

0
1

#

. (1.2)
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According to this choice, the state
Ø

Ø√
Æ

can be represented as Æ |0i+Ø |1i ,Æ,Ø 2 C such that
|Æ|2 +|Ø|2 = 1.

Pauli Operators

Important examples of observables are the Pauli matrices, æX and æZ where,

æX =
"

0 1
1 0

#

, and æZ =
"

1 0
0 °1

#

. (1.3)

We often refer to æZ as the computational basis measurement and æX as the Hadamard basis
measurement. The reason these specific two observables play a special role is the following
lemma.

Lemma 1. Let (
Ø

Ø√
Æ

,H , X , Z ) be a qubit. There exists a Hilbert space H 0 and an isometry
V : H !C2 ≠H 0, such that,

V X
Ø

Ø√
Æ

= (æX ≠ I)V
Ø

Ø√
Æ

,

V Z
Ø

Ø√
Æ

= (æZ ≠ I)V
Ø

Ø√
Æ

.

This lemma states that up to an isometry every qubit can be seen as a state on C2 with
two observables that are the Pauli matrices. There is a canonical choice for this isometry
V : H !C2 ≠C2 ≠H 0 given acting as follows:

V
Ø

Ø√
Æ

= 1
2

X

a,b2{0,1}
(I≠æa

Xæ
b
Z ≠X a Z b)

Ø

Ø¡+Æ

Ø

Ø√
Æ

,8
Ø

Ø√
Æ

2H (1.4)

We recall the SWAP test on two quantum states
Ø

Ø√
Æ

,
Ø

Ø¡
Æ

which is an efficient algorithm that
outputs 0 with probability 1

2 +
1
2

Ø

Ø

≠

√
Ø

Ø¡
Æ

Ø

Ø

2. In particular, if the states are equal, the output of the
SWAP test is always 0.

Next, we state a well-known fact about the quantum evaluation of classical circuits.

Fact 1. Let f : {0,1}n ! {0,1}m be a function which is efficiently computable by a classical circuit.
Then there exists a unitary U f on (C2)≠n+m which is efficiently computable by a quantum circuit
(possibly using ancillas) such that, for all x 2 {0,1}n and y 2 {0,1}m,

U f : |xi
Ø

Øy
Æ

7! |xi
Ø

Øy © f (x)
Æ

.

Measurements

The next concept which is used extensively in this thesis is the topic of measurements. Mea-
surements allow us to observe the properties of a quantum state. In the real world, this can be
seen as measuring the energy of a state or the spin of a particle. Measurements are often mod-
eled as observables, let us denote one by a Hermitian operator O. As O is a Hermitian it can be
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decomposed as O =P

i ∏i¶i , where¶i is the projection onto the eigenspace corresponding to
eigenvalue ∏i . The eigenvalues are referred to as measurement outcomes and the probability
of observing ∏i when measuring it on

Ø

Ø√
Æ

is given by
≠

√
Ø

Ø¶i
Ø

Ø√
Æ

.

There are two types of measurements, namely a projector-valued measurement (PVM) and
positive operator-valued measurement (POVM). A PVM is defined by a set of projections {¶i }
such that

P

i ¶i = I. The probability of obtaining measurement outcome i when measuring it
on

Ø

Ø√
Æ

is given by
Ø

Ø

≠

√
Ø

Ø¶i
Ø

Ø√
Æ

Ø

Ø. POVMs are a generalization of PVMs. For a POVM {¶i },¶i ’s are
not necessarily projections but can be any positive operators. We still have the requirement
that

P

i ¶i = I and the law that the probability of observing outcome i is given by
≠

√
Ø

Ø¶i
Ø

Ø√
Æ

.

Let us also talk about the post-measurement state. When measuring a POVM {¶i } on a state
Ø

Ø√
Æ

, conditioned on the outcome of the measurement being i , the post measurement state is

given by
p
¶i |√ip

h√|¶i |√i
. Another interesting fact is that any POVM can be represented by a PVM

on a bigger space. This is referred to as Neimark’s dilation theorem.

Circuits and Universal Gate Set

The last concepts we cover in this section are quantum circuits and a set of universal gates.
For a fixed set of unitary gates with fan-in at most t , G , a quantum circuit is represented
as a tuple (n, [(Gi ,r1,r2, . . . ,rt )]i2I ), where n is the number of input qubits, Gi 2 G and ri 2
[n][ {?}. The representation means that the i th operation, is applying Gi to qubits indexed
(r1,r2, . . . ,rt ). ri is set to ? if the gate does not use that input wire. For a circuit C , we represent
the corresponding unitary with UC . The size of a circuit is often considered to be the number
of gates in the circuit, i.e. |I |.

A set of gates G = {Gi }i2I is called universal, if for any unitary U acting on a Hilbert space H

and all ≤> 0, there exists an integer m, a circuit C of size m, using only gates in G , such that
UC is ≤ close to U in operator norm.

A usual choice for a universal gate set is {H ,P,CNOT,T }. The gates are called Hadamard, Phase,
Controlled NOT, and T -gate and are described as follows:

H = 1
p

2

"

1 1
1 °1

#

, P =
"

1 0
0 °i

#

, CNOT =

2

6

6

6

6

4

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3

7

7

7

7

5

, T =
"

1 0
0 e°i º4

#

(1.5)

1.4 Cryptographic Primitives

1.4.1 Quantum-Secure Pseudorandom Functions

Throughout this thesis, we often refer to a pseudorandom function (PRF) first introduced
in [GGM86]. This is an ensemble of functions, indexed by a key, denoted { fk }k , that can be
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evaluated in polynomial time satisfying a certain security property. In this thesis, we often
require PRF to be quantum-secure, which, loosely speaking says that an adversary with oracle
access to fk cannot distinguish it from a truly random function, even when allowed to make
superposition queries. It is known that quantum-secure PRF can be constructed from any
quantum-secure one-way function [Zha12].

Definition 2 (Quantum-secure PRF). We say that a keyed family of functions { fk }k is a quantum-
secure pseudorandom function (PRF) ensemble if, for any QPT adversary A , we have

Ø

Ø

Ø

Pr
h

1 √A (1∏) fk
i

°Pr
h

1 √A (1∏) f
i

Ø

Ø

Ø

∑µ(∏),

where k
$√° {0,1}∏, f is a truly random function, and the oracles can be accessed in superposition,

that is, they implement the following unitaries

|xi |zi
U fk7°°! |xi

Ø

Øz © fk (x)
Æ

and |xi |zi
U f7°°! |xi

Ø

Øz © f (x)
Æ

,

respectively.

1.4.2 Post-Quantum IND-CCA Symmetric-Key Encryption

We briefly recall the definition of a symmetric-key encryption scheme (SKE).

Definition 3. An SKE consists of 2 algorithms with the following syntax:

1. Enc(sk,pt): a PPT algorithm, which receives a symmetric-key sk 2 {0,1}∏ and a plaintext
pt, and outputs a ciphertext ct.

2. Dec(sk,ct): a deterministic polynomial-time algorithm, which takes a symmetric-key sk
and a ciphertext ct, and outputs a plaintext pt.

We say that a SKE scheme is perfectly correct if for every plaintext pt 2 {0,1}§ and symmetric-
key sk 2 {0,1}∏, Dec(sk,Enc(sk,pt)) = pt.

Definition 4. An SKE is post-quantum IND-CCA secure if for every QPT adversary A :=
(A1,A2), there exists a negligible function ≤ such that the following holds for all ∏:

Pr

2

6

6

6

6

6

6

6

4

b̃ = b

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

sk $√° {0,1}∏

pt0,pt1 √A
Enc(sk,·),Dec(sk,·)

1 (1∏)

b
$√° {0,1}

ct§ √Enc(sk,ptb)

b̃ √A
Enc(sk,·),Dec

§(sk,·)
2 (ct§,1∏)

3

7

7

7

7

7

7

7

5

∑ 1/2+≤(∏),

Where Dec§(sk, ·) is the same as Dec(sk, ·) but returns ? on input the challenge ciphertext ct§.
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he adversary in this security definition is not given superposition access to the Enc, Dec
oracles.

1.4.3 Pseudorandom Function-Like State (PRFS) Generators

The notion of pseudorandom function-like states was first introduced by Ananth, Qian and
Yuen in [AQY22]. A stronger definition where the adversary is allowed to make superposition
queries to the challenge oracles was introduced in the follow-up work [AGQY22]. We reproduce
their definition here:

Definition 5 (Quantum-accessible PRFS generator). We say that a QPT algorithm G is a
quantum-accessible secure pseudorandom function-like state generator if for all QPT (non-
uniform) distinguishers A if there exists a negligible function ≤, such that for all ∏, the following
holds:

Ø

Ø

Ø

Ø

Ø

Pr
k√{0,1}1∏

h

A|OPRFS(k,·)i
∏

(Ω∏) = 1
i

° Pr
OHaar

h

A|OHaar(·)i
∏

(Ω∏) = 1
i

Ø

Ø

Ø

Ø

Ø

∑ ≤(∏),

where:

• OPRFS(k, ·), on input a d-qubit register X, does the following: it applies an isometry
channel that is controlled on the register X containing x, it creates and stores G1∏(k, x) in
a new register Y. It outputs the state on the registers X and Y.

• OHaar(·), modeled as a channel, on input a d-qubit register X, does the following: it applies
a channel that controlled on the register X containing x, stores |#xih#x | in a new register
Y, where |#xi is sampled from the Haar distribution1. It outputs the state on the registers
X and Y.

Moreover, A1∏ has superposition access to OPRFS(k, ·) and OHaar(·) (denoted using the ket nota-
tion).2.

We say that G is a (d(∏),n(∏))-QAPRFS generator to succinctly indicate that its input length is
d(∏) and its output length is n(∏).

1.4.4 Quantum Pseudorandomness with Proofs of Destruction

We import the definition of pseudorandom function-like states with proofs of destruction
(PRFSPD) from [BBSS23].

1Meaning |#x i=U |0i, where U is sampled according to the Haar measure. The Haar measure is a canonical
measure that is left invariant with respect to the action of the unitary group.

2As the oracle is not necessarily a unitary the action can not be defined generically by only defining it on the

basis vectors. However, what we mean by accessed in superposition is OPRFS(k, ·) returning
P

x Æx |xi
Ø

Ø

Ø

√x
k

E

when
queried on

P

x Æx |xi |0i
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Definition 6 (PRFS generator with proof of destruction). A PRFSPD scheme with key-length
w(∏), input-length d(∏), output length n(∏) and proof length c(∏) is a tuple of QPT algorithms
Gen,Destruct ,Ver with the following syntax:

1.
Ø

Ø√x
k

Æ

√ Gen(k, x): takes a key k 2 {0,1}w , an input string x 2 {0,1}d(∏), and outputs an
n-qubit pure state

Ø

Ø√x
k

Æ

.

2. p √ Destruct (
Ø

Ø¡
Æ

): takes an n-qubit quantum state
Ø

Ø¡
Æ

as input, and outputs a c-bit
classical string, p.

3. b √ Ver (k, x, q): takes a key k 2 {0,1}w , a d-bit input string x, a c-bit classical string p
and outputs a boolean output b.

Correctness. A PRFSPD scheme is said to be correct if for every x 2 {0,1}d ,

Pr
k

u√°{0,1}w

[1 √ Ver (k, x, p) | p √ Destruct (
Ø

Ø√x
k

Æ

);
Ø

Ø√x
k

Æ

√Gen(k, x)] = 1

Security.

1. Pseudorandomness: A PRFSPD scheme is said to be (adaptively) pseudorandom if for
any QPT adversary A , and any polynomial m(∏), there exists a negligible function
negl(∏), such that

| Pr
k√{0,1}w

[A |Gen(k,·)i(1∏) = 1]

° Pr
8x2{0,1}d ,|¡xi√µ(C2)≠n

[A

Ø

Ø

Ø

Ø

Haar
{|¡xi}

x2{0,1}d (·)
¿

(1∏) = 1]| = negl(∏)

where 8x 2 {0,1}d , Haar
{|¡xi}x2{0,1}d (x) outputs

Ø

Ø¡xÆ

. Here A is granted quantum access to
the oracles.

2. Unclonability-of-proofs: A PRFSPD scheme satisfies Unclonability-of-proofs if for any
QPT adversary A in cloning game (see Game 1), there exists a negligible function negl(∏)
such that

Pr[Cloning-ExpA ,PRFSPD
∏

= 1] = negl(∏).

1.4.5 Claw-Free Functions with Adaptive Hardcore Bit Property

We import the definition of claw-free families with adaptive hardcore bit property from [BCM+18].
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Game 1 Cloning-ExpA ,PRFSPD

∏

1: Given input 1∏, Challenger samples k √ {0,1}w(∏) uniformly at random.
2: Initialize an empty set of variables, S.
3: A gets oracle access to Gen(k, ·), Ver (k, ·, ·) as oracle, i.e. oracle access to the algorithms

Gen and Ver with the first input set to k
4: for Gen query x made by A do
5: if 9 variable tx 2 S then tx = tx +1.
6: else Create a variable tx in S, initialized to 1.
7: end if
8: end for
9: A outputs x,c1,c2, . . . ,ctx+1 to the challenger.

10: Challenger rejects if ci ’s are not distinct.
11: for i 2 [m +1] do bi √ Ver (k, x,ci )
12: end for
13: Return ^m+1

i=1 bi .

Definition 7 (Adaptive hardcore bit property). For parameter ∏, and a finite set of keys K a
family of functions { fpk}pk2K is called a claw-free family with adaptive hardcore bit property if,

1. There exists an efficient randomized generation algorithm (pk,td) √Gen(1∏)

2. For all pk 2K , fpk : {0,1}m(∏)+1 ! {0,1}m(∏) is a 2-to-1 function and can be evaluated in
polynomial time

3. For all pk 2K ,b 2 {0,1}, fpk,b : {0,1}m(∏) ! {0,1}m(∏) acting as follows:

x
fpk,b°°°! fpk(b||x)

is a bijection.

4. For all pk 2K , there exists an efficient inversion algorithm {x0, x1} √ f °1
pk

(td, y), for all

y 2 {0,1}m(∏)

5. Correctness:
3

Pr

2

6

6

4

fpk(0||x0) = fpk(1||x1) = y

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

(pk,td) √Gen(1∏)

y
$√° {0,1}m(∏)

(x0, x1) √ f °1
pk

(td, y)

3

7

7

5

= 1

6. Adaptive Hardcore Bit Property: For all pk 2K and b 2 {0,1} define Gpk,td
b Ω {0,1}m(∏) £

3In the correctness and security definitions the probability is taken over the randomness of the Gen algorithm,
y and the randomness of the adversary
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{0,1}m(∏) £ {0,1}m(∏)+1 as follows:

Gpk,td
b = {(x, y,d)|d 6= 0^ fpk(x) = y ^d .(0||x0 +1||x1) = b, where (x0, x1) √ f °1

pk
(td, y)}

The family satisfies the adaptive hardcore property if for all QPT(∏) adversaries A return-
ing (x, y,d) √ A (pk), there exists a negligible function negl(∏) such that the following
holds on average over the random coins of the Gen algorithm and A 4:

(pk,td) √Gen(1∏)

|Pr[A (pk) 2Gpk,td
0 ]°Pr[A (pk) 2Gpk,td

1 ]|∑ negl(∏) (1.6)

To give a high-level description of the property, the security definition guarantees that it is not
possible for an adversary to provide one preimage and a single bit of information about the
other preimage at the same time for an image y of their choice.

1.5 The Collapsing Property

The final security definition we cover in this section is the collapsing property. Defined
by Unruh [Unr16], the collapsing property can be seen as the quantum variant of collision
resistance.

Definition 8. A family of functions { fk }k is called collapsing if for all large ∏ any QPT adversary
A , there exists a negligible function negl(∏) such that:

|Pr[Collapsing-ExpA ,{ fk }k

∏
= 1]°1/2|∑ negl(∏)

1.6 Probabilities and Learning Theory: Basic Facts and Definitions

For k 2N we denote by [k] the set {1, . . . ,k} and by D(n) the family of distributions on n-bit
strings. For P ,Q 2D(n) we define their Hellinger distance as dH (P ,Q) := 1p

2
k
p

P °
p

Qk2.

We denote the total variation distance of P ,Q as 4(P ,Q) = 1
2kP °Qk1. The two similarity

measures satisfy d 2
H (P ,Q) ∑4(P ,Q) ∑

p
2dH (P ,Q). A direct calculation yields the useful

identity 1°d 2
H (P ,Q) =P

x2{0,1}n
p

P (x)Q(x), where P (x) is the probability mass function of
P .

Fact 2 (Chernoff-Hoeffding). Let X1, . . . , Xk be independent Bernoulli variables with parameter
p. Then for every 0 < ≤< 1

Pr
"

Ø

Ø

Ø

Ø

Ø

1
k

k
X

i=1
Xi °p

Ø

Ø

Ø

Ø

Ø

> ≤
#

∑ 2e°
≤2k

2 .

4The probabilities in equation 1.6 are taken over the randomness of A and equation 1.6 holds on average over
the randomness of Gen
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Game 2 Collapsing-EXPA ,{ fk }k

∏

1: Given input 1∏, Challenger samples k √ {0,1}w(∏) uniformly at random.
2:

Ø

Ø¡
Æ

√A (k,1∏), let us write
Ø

Ø¡
Æ

=P

x Æx |xi
3: Evaluate fk on superposition on

Ø

Ø¡
Æ

, i.e.
Ø

Ø¡0Æ=P

x Æx |xi
Ø

Ø fk (x)
Æ

out
4: Measure the out register to obtain y and a state

Ø

Ø¡0Æ= 1
P

x: fk (x)=y |Æx |2 (
P

x: fk (x)=y Æx |xi)

5: b
$√° {0,1}

6: if b = 0 then ¡challenge =
Ø

Ø¡0Æ

7: else
8: Measure

Ø

Ø¡0Æ in computational basis and set ¡challenge to be the post-measurement
state 1

P

x: fk (x)=y |Æx |2 (
P

x: fk (x)=y |Æx |2 |xihx|)
9: end if

10: b̃ √A (y,
Ø

Ø¡challenge
Æ

)
11: return 1b=b̃

The learning tasks we consider in this document are classification tasks. Given a relation
R µX £C , on query x 2X , the goal of a classifier is to output c 2C such that (x,c) 2 R. The
elements of X are referred to as samples and the elements of C are referred to as classes. A
classification task is called separable if each x 2X belongs to exactly one class c 2C , i.e. R
is a function. Furthermore, the classification task is a binary classification if R is a boolean
function, i.e. C = {1,°1}. For separable tasks, the class relation R is often called the ground
truth and we often denote it by a boolean function g , i.e. g (x) = b if and only if (x,b) 2 R.

A supervised learning algorithm for a boolean classification task g , consists of two phases:

1. The training phase: in this phase, the learning algorithm gets labelled samples from a
distribution D, i.e. (x, g (x))xªD . At the end of the training phase, it outputs a hypothesis
function f . The number of samples that the learning algorithm is given is often referred
to as the sample complexity.

2. The testing phase: in this phase, the learning algorithm is queried on examples from a
distribution D0, i.e. the hypothesis function f is queried.

The training distribution D is often referred to as the nature. In most cases, the error of the
learning algorithm is measured with respect to the samples coming from nature, i.e. the
training distribution and the test distribution are considered to be the same D = D0. The
standard risk of a learning algorithm outputting a hypothesis function f is defined as follows.

Definition 9 (Standard Risk). For a separable binary classification task with distribution D

and a ground truth g we define the standard risk of f as

Rg
D

( f ) :=PrxªD[ f (x) 6= g (x)].
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2 Ruining a PICNIC, Act 1

In this chapter, we explore cryptanalysis of a post-quantum signature scheme PICNIC. We
present the first known cryptanalysis results on LowMC in a scenario where the adversary has
access to only a single plaintext/ciphertext pair, which corresponds to the security guarantee
required for the usecase of PICNIC. The personal contributions of this chapter are mainly
taken from joint work with Subhadeep Banik, Betül Durak and Serge Vaudenay published at
IACR-ToSC 2020 [BBDV20].

Structure of the Chapter: In section 2.2 we briefly introduce the LowMC paramterization of
interest for the security of PICNIC based on the LowMC cryptnalysis challenge. In section 2.3
we provide a review of the previously known cryptanalysis attempts on LowMC. In section 2.4
we introduce a technique to linearize the LowMC S-box which is used later in section 2.5 to
realize an attack on two sets of parameters for LowMC. In section 2.6 we introduce a meet-in-
the-middle attack (MITM) employing the linearization technique. We later show the attack can
be optimized using the 3-xor problem in section 2.7. We conclude this chapter in section 2.8.

2.1 LowMC as an Attribute of PICNIC
PICNIC is a post-quantum signature scheme built based on the MPC-in-the-head interactive
proofs for statements regarding evaluations of boolean circuits [GMO16]. On a highlevel, to
prove their identity, a signer proves the knowledge of a key K such that PRPK (x) = y for a
public pair (x, y), where PRP is a pseudo-random permutation. As the size of the proof and
the prover efficiency from [GMO16] heavily relies on the number of AND gates required to
compute PRPK (·), the framework is often instanciated with PRPs with minimal multiplication
count. A way to do this is by decomposing the the PRP into linear layers and t-fan-in, t-fan-out
non-linear operations. The smallest non-linear operation that fits this framework is a 3-fan-in
3-fan-out quadratic gate. This is exactly the philosophy taken in the design of LowMC. A more
detailed description of PICNIC and LowMC in sections 1.1 and 1.2.
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Chapter 2. Ruining a PICNIC, Act 1

An important question regarding the signing efficiency of such signatures is how low can the
number of the non-linear operations be such that the security is still intact? One important
observation is that for the derived signature to be secure, we do not necessarily need the full
security of the PRP. Indeed, the adversary is only given the evaluation of the PRP on a single
point x rather than being provided an evaluation oracle. This would mean that one might
hope to reduce the number of non-linear operations further than normally allowed without
harming the usual PRP security, for the specific use-case of digital signatures. The goal of this
segment of the dissertation is to establish that even in this setting, reducing the number of
non-linear operations excessively would lead to serious security problems.

2.2 LowMC Cryptanalysis Challenge and Paramters

In the pursuit of finding the optimal number of rounds for PICNIC, Rechberger et al. an-
nounced a cryptanalysis challenge for LowMC family of block ciphers, specifically for the
PICNIC use case [ARS+15].

From the point of view of cryptanalysis, the design is completely known to the attacker, i.e. all
the matrices and constants used in the round function and key update are known. We denote
the number of rounds by r , the number of S-boxes in each layer by s and the block size by n.

The LowMC challenge specifies 9 challenge scenarios for key recovery given only 1 plaintext-
ciphertext pair, i.e. the data complexity d = 1.

• n = 128, s = 1

• n = 128, s = 10

• n = 129, s = 43 (full S-box layer)

• n = 192, s = 1

• n = 192, s = 10

• n = 192, s = 64 (full S-box layer)

• n = 256, s = 1

• n = 256, s = 10

• n = 255, s = 85 (full S-box layer)

The number of rounds r for instances with the full S-box layer is either 2, 3, or 4 and for
instances with a partial S-box layer can vary between 0.8£

•n
s

¶

,
•n

s

¶

and 1.2£
•n

s

¶

. The key
length k for all instances is n bits. In general instantiations of LowMC, the key size and block
size are not the same. The whitening key and all the round keys are extracted by multiplying
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2.3 Previous Work

Instance n s r Type of Attack Complexity Section

Full S-box layer 129 43 2 Linearization 286 4
192 64 2128

255 85 2170

Partial S-box layer 128 1 0.8£
•n

s

¶

Linearization 2102 4
192 1 2154

256 1 2205

Partial S-box layer 128 10 0.8£
•n

s

¶

Linearization 2100 4
192 10 2150

256 10 2200

Full S-box layer 129 43 2 Linearization + MITM 2109 5
192 64 2161

255 85 2214

Partial S-box layer 128 1 0.8£
•n

s

¶

Linearization+ MITM 2124 5§

192 1 2186

256 1 2248

Partial S-box layer 128 10 0.8£
•n

s

¶

Linearization + MITM 2124 5§

192 10 2186

256 10 2248

Full S-box layer 129 43 2 Linearization + MITM+3-xor 2106 6
192 64 2158

255 85 2211

Table 2.1: Summary of results. Note for the Linearization+MITM (+3-xor) approaches the
complexity is given in “evaluations of a quadratic expression”. For the Linearization only
approach, the complexity is in “number of Gaussian eliminations.” § As explained in Section
4, these are best case complexities that occur for around 29% of the LowMC instances.

the master key with full rank matrices over GF(2). However, for all the instances of LowMC used
in the LowMC challenge the block size and key size are the same. This being so, the lengths of
the master key, whitening key and all the subsequent round keys are the same. Effectively,
this makes all these keys related to each other by multiplication with an invertible matrix
over GF(2). Thus all round keys can be extracted by multiplying the whitening key with an
invertible matrix. So for all practical purposes used in this work, the whitening key can also
be seen as the master secret key. This is true since given any candidate whitening key, all
round keys can be generated from it, and thus given any known plaintext-ciphertext pair, it is
possible to verify if that particular candidate key has been used to generate the corresponding
pt/ct pair. As such we use the terms master key/whitening key interchangeably.

2.3 Previous Work

In ICISC 2015 Dobraunig et al. [DEM15] proposed an attack on LowMC family of block ciphers,
based on cube attack strategies. The authors proposed an algorithm which successfully
recovers the key of the round reduced version of the cipher, aiming for 80-bit security. Dinur
et al. [DLMW15] showed that around 2°38 fraction of its 80-bit key instances could be broken
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223 times faster than exhaustive search. Moreover, all instances that claimed to provide 128-
bit security could be broken about 1000 times faster. In [DKP+19], the authors showed that
for the LowMC instances that employ partial linear layers, each instance belonged to a large
class of equivalent instances that differ in their linear layers. This led to a more efficient
implementation of the cipher that reduces the evaluation time and storage of computing
the linear layers. In FSE 2018, Rechberger et al. [RST18] proposed a meet-in-the-middle
style attack, based on possible output differentials, given an input differential, which affects
the security of the variants of LowMCv2 with partial S-box layers drastically. In [LIM20] some
results on LowMC were reported building on the techniques of [RST18], albeit with higher data
complexities, which naturally do not apply to the PICNIC scenario. In [DN19] the authors
proposed multi-target attacks on the PICNIC signature scheme. For a survey of key recovery
attacks on LowMC, readers may check the survey done by Rechberger et al. [DKRS].

2.4 Linearizing the LowMC S-box

Let us for example take f to be the majority function computed on the inputs of the 3 input
bits, i.e. f = x0 ·x1+x1 ·x2+x0 ·x2, where all the operations are over GF(2). Then the expressions
of the S-box can be rewritten as

s0 = f · (x1 +x2 +1)+x0,

s1 = f · (x0 +x2 +1)+x0 +x1,

s2 = f · (x0 +x1 +1)+x0 +x1 +x2

This means that if we guess the value of the single expression f (0 or 1), then the entire S-box
becomes an affine function in the input bits. The same holds for the inverse S-box. In fact
we can replace f with any balanced 3-variable Boolean function of degree 2, and still get the
same results as we prove in the following lemma.

Lemma 2. Consider the LowMC S-box S defined over the input bits x0, x1, x2. If we guess the
value of any 3-variable quadratic Boolean function f which is balanced over the input bits of
the S-box, then it is possible to re-write the S-box as an affine function of its input bits.

Proof. The general expression for a 3 variable quadratic Boolean function is

f = A+B x0 +C x1 +Dx2 +E x0 · x1 +F x1 · x2 +Gx0 · x2.

The only non-linear terms in the expression of the LowMC S-box are x0 · x1, x1 · x2, x0 · x2. Thus
if there exists a Boolean function of the above form, which when multiplied with different
linear functions can produce each of the terms x0 · x1, x1 · x2, x0 · x2, then we are done. Thus
the necessary and sufficient conditions required to achieve the above is to prove the existence
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2.5 Cryptanalysis by Linearization

of 3 affine Boolean functions gi = ai x0 +bi x1 + ci x2 +di , 8i 2 [0,2], such that

f · g0 = x0 · x1 + l0(x0, x1, x2)

f · g1 = x1 · x2 + l1(x0, x1, x2)

f · g2 = x0 · x2 + l2(x0, x1, x2)

where l0, l1, l2 are some affine functions on x0, x1, x2. If these functions gi exist, we can write
each of the three output bits of the LowMC S-box as

x0 + f · g1 + l1, x0 +x1 + f · g2 + l2, x0 +x1 +x2 + f · g0 + l0

So in order for the first equation to be satisfied, we need that the product of f and g0 produces
coefficients 0,1,0,0 for the terms x0 ·x1 ·x2, x0 ·x1, x1 ·x2, x0 ·x2 respectively. In matrix form
this can be written as M · [a0, b0, c0, d0]T = [0,1,0,0]T , where

M =

2

6

6

6

6

4

F G E 0
C +E B +E 0 E

0 D +F C +F F
D +G 0 B +G G

3

7

7

7

7

5

Similarly the other 2 equations can be written as M · [a1, b1, c1, d1]T = [0,0,1,0]T and M ·
[a2, b2, c2, d2]T = [0,0,0,1]T . It is therefore clear that for the equations to have a solution
we need M to be invertible. Since the number of 3-variable quadratic Boolean functions
f is just 27, we can perform the following small computer exercise: we can construct the
matrix M for each function f and test whether it is invertible or not. We found that all
functions f for which M is invertible, are exactly the functions that are balanced.

For example, if we take f = s0 = x0 +x1 · x2, the S-box functions can be written as

s0 = f ,

s1 = f · (x2 +1)+x1,

s2 = f · (x1 +1)+x1 +x2

2.5 Cryptanalysis by Linearization

The first technique to break LowMC by linearization is for instances for which the total number
of S-boxes is less than the key length. This occurs for the following cases:

1. All instances of full S-box layer with number of rounds = 2.

2. All instances of partial S-box layer with number of rounds = 0.8£
•n

s

¶

.
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fi(K1) + Ai(K1) + ci

gi(K2) + Bi(K2) + di

⌘1, ⌘2, . . . , ⌘s

Figure 2.1: Meet in the Middle

The idea is as follows. We guess the value of the majority function at the input of all the S-boxes
in the encryption circuit. When we do so the expression relating the plaintext and ciphertext
becomes a linear expression in the key variables, i.e. of the form

A · [k0,k1, . . . ,kn°1]T = const,

where A is an n £n matrix over GF(2). Thus the key can be found using Gaussian elimination.
After this a wrong key can be discarded by simply recalculating the encryption function with
the derived key and plaintext and checking if the result equals the given ciphertext or not.
Of course, we need not compute the full encryption: a key can be discarded as soon as the
majority function computed at the input of one of the s-boxes differs from the value used
to linearize the circuit. If the total number of s-boxes in the circuit is t , then the worst case
complexity of the process is 2t gaussian eliminations calculations. For example this is 286 for
the LowMC instance with n = 129, s = 43,r = 2. However, there is an added cost in this process.
For any guess of the majority values, the matrix A computed above may not necessarily be
invertible. If the dimension of the kernel of the matrix A is dA , then we can see that O(2dA )
keys would satisfy any equation of the form A ·K = const. Thus the verification would require
running the verification for 2dA candidate keys. Moreover, we did not find any easy way to find
a closed form for any bound on dA .
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2.6 Meet-in-the-Middle approach

2.6.1 2 round full S-box layer

The complexity of the attack in the previous section was measured in terms of number of
Gaussian eliminations. Even while bypassing the Gaussian Elimination method, the algorithm
will still require an additional computational step (evaluating all elements in the kernel of A).
In this section, we present attacks whose complexity is measured in a much simpler and more
tangible metric: "number of evaluations of a quadratic expression in keybits". We describe a
meet-in-the-middle approach for the two-round variant of LowMC. The idea is to first split
the key into two parts K1 = [k0, . . . ,kt°1]T and K2 = [kt , . . . ,kn°1]T , each of around t º n

2 bits.
By guessing the majority bits (or any other balanced quadratic function) of the second layer
S-box we can make the second round linear as described above. After this, it is possible to
adopt a meet-in-the-middle approach, by guessing first the K1 value and making a list based
on each guess. We later independently guess K2 and create a list based on the guessed values
and search for a collision in the obtained lists.

The idea is as follows. As proven in Lemma 2, if we know the value of a balanced quadratic
boolean function in the input bits of each S-box, i.e. the majority, we can write the S-box as
an affine function in the input bits. The same argument holds for the inverse S-box (since
the inverse S-box is also a quadratic permutation over {0,1}3). Again let us denote by R1, R2

the first and second round functions i.e. R1(pt+RK0,RK1) = x and R2(x,RK2) = ct, where x
denotes the n-bit input to the second round and RK1,RK2 denotes the first, second round
keys, respectively, which are of course linear functions of the original key K =RK0. As shown
in Figure 2.1, we start with the ciphertext backwards and try to reach the state at the input to
the second round. To do this we first perform the inverse affine function operation on the
vector ct©RK2 (where RK2 is expressed in terms of K1 and K2). Thereafter we guess the s
majority bits ¥1, . . . ,¥s at the input of the second round inverse S-boxes to linearize R2. After
this, each bit of x can be written as an affine function of the key and the ciphertext. In fact
denoting each bit of x as xi , we can further write xi = Ai (K1)+Bi (K2)+di , 8 i 2 [0,n°1], where
each Ai , Bi are linear functions over K1,K2 and di is a single bit constant.

Similarly it is possible to compute x from the plaintext in the forward direction. Even if we
do not guess the majority of the first round s-boxes, K1 and K2 can be chosen such that the
bits of K1 and K2 are never multiplied in the first round function. For example for n = 129,
K1 can be taken to be the first t = 3£bs/2c= 63 bits of the key and K2 to be the remaining 66
bits. The only source of non-linearity in the first round are the S-boxes, and each S-box either
gets the bits of K1 or K2 as inputs and so K1 and K2 are not mixed in a multiplicative sense in
this round. This being the case, after the affine layer and addition of RK1, each bit xi can be
written as fi (K1)+gi (K2)+ci where each fi , gi are at most quadratic functions over K1,K2 and
ci is a single bit constant. Given the equality xi = fi (K1)+gi (K2)+ci = Ai (K1)+Bi (K2)+di , we
can rearrange the terms to get
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fi (K1)+ Ai (K1)+ ci = gi (K2)+Bi (K2)+di , 8 i 2 [0,n °1]

We are now ready to state the attack. Let the plaintext be pt = [pt0,pt1 . . . ,ptn°1], and ct =
[c0,c1, . . . ,cn°1] be the corresponding ciphertext. Take t = 3£bs/2c º n

2 . We proceed as follows:

1. Calculate the functional forms of fi , gi and ci for all i 2 [0,n °1].

2. Guess the values ¥1, . . . ,¥s . This step is done 2s times in the worst case.

• Compute Ai ,Bi ,di for all i 2 [0,n °1] using the guessed values.

• For all possible values of K1, create a hash table LIST1 indexed by the n-bit vector
[ fi (K1)© Ai (K1)© ci ], 8 i 2 [0,n °1]. We need 2t operations in this step.

• For all possible values of K2, create a hash table LIST2 indexed by the n-bit vector
[gi (K2)©Bi (K2)©di ], 8 i 2 [0,n °1]. We need 2n°t operations in this step.

• Find a collision between LIST1 and LIST2.

• When a collision is found for K1 and K2 check if the majority bits are consistent with
the guess of the key. If yes, this key is in fact the encryption key. Otherwise try
another guess of ¥1, . . . ,¥s .

In practice, 2 hash tables are not necessary. The attacker can insert each new vector of LIST1

and LIST2 into a single hash table and wait until a collision between elements of LIST1 and
LIST2 is found. For each set of majority guesses, the complexity of the attack is dominated by
finding a collision between two lists of length 2t and 2n°t each. So for n = 129, we can take
t = 63 (key bits added before the first 21 S-boxes) and n ° t = 66. The total complexity of the
attack is O

°

2s £ (2t +2n°t )
¢

, which for the n = 129 bit version is around 243+66 = 2109.

2.6.2 MITM on partial S-box layers

In order to perform a MITM on the partial S-box layer instances of LowMC, we rearrange the
first r1 and final r3 rounds so that the total number of different key bits involved in these
rounds is 3s per round. The transformations are shown in Figures 2.2, 2.3 and are similar to
the ones used in [RST18]. In fact the transform used in the backward direction (see Fig 2.3)
is exactly same as the one used in [RST18, Fig.1]. The idea is that the affine layer and key
addition are interchangeable. Since if L is a linear function, we have L(x)+K = L(x +L°1(K ))
and similarly L(x +K ) = L(x)+L(K ). Hence the key addition can be moved before or after the
affine layer as required, by multiplying the round key by the appropriate matrix. Fig 2.2 further
shows how to transform the first r1 rounds.

We partition the r = r1 + r2 + r3 rounds of LowMC into the first r1, middle r2 and final r3 rounds,
and further transform the first r1 and the final r3 rounds so that each round has only 3s
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Figure 2.2: Transforming the round function in the first r1 rounds. From A ! B, the key
material not added to bits input to the S-box in round 1 (shown in orange background) are
carried to the next round, through the affine layer and merged with the round key in round 2.
B ! C ! D do the same from the second round onwards.
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Figure 2.3: Transforming the round function in the final r3 rounds. A ! B flips the order of
the last round Affine layer and round key xor. B ! C takes the bits of the last round key that
are not added to S-box outputs (shown in orange background), and brings them back by 1
round and merges it with the penultimate round key. C ! D flips the order of the Affine layer
and round key of the penultimate round, and D ! E generalizes the process from this point
onwards.
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Figure 2.4: MITM on r1 + r2 + r3 rounds with partial S-box layers. In fact the first r1 and last
r3 rounds have been transformed as per the procedures explained in Figures 2.2, 2.3. We
guess the majority bits at the S-box inputs in the middle r2 rounds (shown against yellow
background) so that they become affine.

keybits. If r1 = r3 =
• n

6s

¶

, then there are a total of n keybits in these rounds. Naming these
keybits as ∑0,∑1, . . . ,∑n°1. Let us assume that these n keybits result from linearly independent
expressions on the master key bits (in the next subsection we will see what happens when this
is not the case). Then it is not difficult to see that all the keybits in the middle r2 = 0.8

•n
s

¶

°
• n

3s

¶

rounds can be written as linear functions of ∑0,∑1, . . . ,∑n°1. Now let us divide the keybits into
K1 = [∑0,∑1, . . . ,∑n/2°1] and K2 = [∑n/2,∑n/2+1, . . . ,∑n°1] where K1 and K2 are the keybits used
in the first r1 and the final r3 rounds respectively.

Now if all the s ·r2 majority bits of the middle r2 rounds are guessed, then the transformation in
the middle r2 rounds becomes completely affine. If G is the vector of these s · r2 majority bits,
let us denote this affine transformation in the middle rounds as LG (x)+QG (K1)+WG (K2)+
CG , where LG is a linear function from {0,1}n ! {0,1}n and QG ,WG are linear functions over
{0,1}n/2 ! {0,1}n and CG is an n-bit constant. Let v be the n-bit vector obtained by executing
the r1 forward rounds by guessing some value of K1, and let w be the vector obtained after
r1 + r2 rounds. Then after guessing G we have w = LG (v)+QG (K1)+WG (K2)+CG . Now w
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can also be obtained by guessing K2 and executing the inverse of the final r3 rounds on the
ciphertext. If R3 denotes the transformation in the last r3 rounds, we have w = R°1

3 (ct,K2) So
we have R°1

3 (ct,K2) = LG (v)+QG (K1)+WG (K2)+CG . Rearranging terms we have

R°1
3 (ct,K2)+WG (K2) = LG (v)+QG (K1)+CG

Then our meet-in-the-middle algorithm will proceed as follows.

1. Guess the vector G of the s · r2 majority values in the middle rounds. Find the functions
LG ,WG ,KG and CG . This step is done 2s·r2 times in the worst case.

• For all possible values of K2, create a hash table LIST2 indexed by the n-bit vector
R°1

3 (ct,K2)+WG (K2). We need 2n/2 operations in this step.

• For all possible values of K1, create a hash table LIST1 indexed by the n-bit vector
LG (v)+QG (K1)+CG . We need 2n/2 operations in this step.

• Find a collision between LIST1 and LIST2.

• When a collision is found for K1 and K2 check if the majority of bits are consistent
with the guess of the key. If yes, this key is in fact the encryption key. Otherwise try
another guess of G .

The procedure has been explained diagrammatically in Figure 2.4. Again as explained before,
2 hash tables are not necessary in practice. The attacker can insert each new vector of LIST1

and LIST2 in a single hash table and wait till a collision between elements of LIST1 and LIST2.
The majority of the computational complexity is taken by the guessing of G and computing
R°1

3 (ct,K2)+WG (K2) for each guess of K2 and LG (v)+QG (K1)+CG for each guess of K1. This
part takes 2s·r2 · 21+n/2 º 2s·r°n/3+n/2 = 2r s+n/6. For r = 0.8

•n
s

¶

, this complexity is around
229n/30.

2.6.3 When all the key expressions ∑i , i 2 [0,n °1] are not linearly independent

Note that each ∑i is a linear expression in the n master key bits, and so it may turn out that the
n linear expressions for ∑i , i 2 [0,n °1] are not linearly independent. Assuming each ∑i is a
random linear expression, the probability that they are linearly independent is the same as
the probability that a random n £n matrix over GF(2) is invertible. In fact it is a well known
result in discrete mathematics, that this probability is around 0.29 as n becomes large.

When all the ∑i ’s are not linearly independent, then we can not write the round keys in the
middle r2 rounds as linear expressions of the ∑i ’s. And if this happens, then naturally the
attack as outlined in the previous subsection can not be applied. In that case how do you
proceed with the attack?

1. Let us assume that for some r1, r3, the total rank of the 3·s ·(r1+r3)£n matrix containing
the linear expressions (in terms of the master key) for all the keybits ∑i used in these
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rounds be equal to ∏. We have already seen that that when 3 · s · (r1 + r3) = n, the
probability that ∏ = n is 0.29. The probability that ∏ = t is given by the expression
2°n·t Qt°1

i=0

≥

1° 2i

2n

¥

. Therefore the probability that t ∏ n °1, n °2, n °3 is around 0.58,
0.77, 0.88 respectively (for large enough n).

2. In such an event the attacker should choose suitable values of r1, r3 such that the value
of ∏= 3 · s · (r1 + r3).

3. Let K = [∑0,∑1, . . . ,∑∏°1] be the corresponding keybits whose linear expressions are
linearly independent. Let K1 be the subset of these keybits used in the first r1 rounds, K2

be the subset of these keybits used in the last r3 rounds. Choose K3 = [∑∏,∑∏+1, . . . ,∑n°1]
as random linear expressions of the master key such that the expressions for K1, K2, K3

are linearly independent. After this step, all round keybits can be written as linear
expressions in K1, K2, K3.

4. After guessing G , the vector of the middle s · r2 majority bits, the middle r2 rounds
become completely affine. Again if v is the vector that is the output of the first r1 rounds,
the output vector w of the first r1 + r2 rounds can be written as w = LG (v)+QG (K1)+
WG (K2)+EG (K3)+CG , where LG ,QG ,EG are linear functions and CG is an n-bit constant.

5. Since w can be computed from the ciphertext backwards as w = R°1
3 (ct,K2) So we

have R°1
3 (ct,K2) = LG (v)+QG (K1)+WG (K2)+EG (K3)+CG . Rearranging terms we have

R°1
3 (ct,K2)+WG (K2) = LG (v)+QG (K1)+EG (K3)+CG . Let us partition K3 into two disjoint

sets K31 and K32 so that the number of bits in K1[K31 and K2[K32 are almost same. We
write EG (K3) = E 1

G (K31)+E 2
G (K32). Rearranging terms further we have

R°1
3 (ct,K2)+WG (K2)+E 2

G (K32) = LG (v)+QG (K1)+E 1
G (K31)+CG

After this our meet-in-the-middle algorithm will proceed as follows.

1. Choose suitable values of r1, r3 such that the value of 3 · s · (r1 + r3) =∏.

2. Choose K3 = [∑∏,∑∏+1, . . . ,∑n°1] as random linear expressions of the master key such
that the expressions for K1, K2, K3 are linearly independent.

3. Partition K3 into two disjoint sets K31 and K32 so that the number of bits in K1 [K31 and
K2 [K32 are almost same.

4. Guess the vector G of the s · r2 majority values in the middle rounds. Find the functions
LG ,WG ,KG ,E 1

G ,E 2
G and CG . This step is done 2s·r2 times in the worst case.

• For all possible values of K2 [K32, create a hash table LIST2 indexed by the n-bit
vector R°1

3 (ct,K2)+WG (K2)+E 2
G (K32). We need around 2n/2 operations in this step.

• For all possible values of K1 [K31, create a hash table LIST1 indexed by the n-bit
vector LG (v)+QG (K1)+E 1

G (K31)+CG . We need around 2n/2 operations in this step.
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• Find a collision between LIST1 and LIST2.

• When a collision is found check if the majority bits are consistent with the guess of
the key. If yes, this key is in fact the encryption key. Otherwise, try another guess of
G .

Again the majority of the computational complexity is taken by the guessing of G and comput-
ing R°1

3 (ct,K2)+WG (K2)+E 2
G (K32) for each guess of K2[K32 and LG (v)+QG (K1+E 1

G (K31))+CG

for each guess of K1[K31. This part takes 2s·r2 ·21+n/2. If r1+r3 =
• n

3s

¶

°¢ then the complexity
can be rewritten as 2s·r+s·¢°n/3+n/2 = 2sr+s¢+n/6. For r = 0.8

•n
s

¶

, this complexity is around
229n/30+s¢. Thus the procedure becomes a valid attack if and only if s¢< n/30. Thus since ¢ is
at least 1 when the first and last keybits are not all linearly independent, the procedure does
not work for all challenge instances when s = 10.

2.7 Improving Complexities using the 3-xor problem

The 3-xor problem in a nutshell is as follows: given 3 lists L1, L2, L3 of binary strings over {0,1}n ,
the task is to find 3 elements x1 2 L1, x2 2 L2, x3 2 L3 such that x1 ©x2 ©x3 = 0. This problem
has been extensively studied in the literature. Wagner studied in [Wag02], the generalized k-xor
problem and showed that for the 4-xor problem if we have lists of size 2n/3 then a solution
can be found in time O(2n/3). However the 3-xor problem still required O(2n/2) time using
his approach. In [Nan15] a forgery attack was mounted against the COPA mode of operation
requiring only 2n/3 encryption queries and about 22n/3 time. This attack was later refined in
[NS15], using an improved 3-xor algorithm, to 2n/2°≤ queries and 2n/2°≤)operations, for small ≤.
In [LS19], the authors attacked the 2-round Even Mansour algorithm using this problem with
data and time both lower than 2n . However, the algorithm we use was proposed by Joux [Jou09,
Section 8.3.3.1], which is the best algorithm for the 3-xor problem to this day. A generalization
for the above algorithm for variable sized lists was proposed in [BDF18], however since we will
use lists of fixed size in this section, Joux’s algorithm is more relevant here.

Before we discuss the details of the attack it is best to summarize the algorithm in a few words.
We begin with the following lemma.

Lemma 3. Given n/2 randomly generated vectors over {0,1}n, then with high probability, they
are linearly independent.

Proof. The above probability is given by p = 2°n2/2 ·Qn/2°1
i=0 (2n °2i ). For large n, this equals

p =
n/2°1
Y

i=0

µ

1° 2i

2n

∂

º 1°
Pn/2°1

i=0 2i

2n = 1° 2n/2 °1
2n º 1°2°n/2
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The algorithm proceeds with 3 lists L1, L2, L3 of size 2n/2/`, 2n/2/`, `2 respectively where
`=

p
n/2. The list L3 has n/2 random vectors which span at most a subspace of rank n/2. It

is possible to choose vectors B = {b1,b2, . . . ,bn/2, bn/2+1,bn/2+2, . . . ,bn} such that all vectors
in L3 belong to the subspace generated by bn/2+1,bn/2+2, . . . ,bn . Now designate M to be the
n £n binary matrix that changes the basis of all vectors in L1, L2, L3 to B. In fact, in the
modified basis all elements in L3 will begin with n/2 zeros. From the previous lemma, we
know that the elements in L3 are linearly independent with very high probability. In that
case bn/2+1,bn/2+2, . . . ,bn can be simply taken as the elements of L3 which ensures that in the
modified basis the elements of L3 have hamming weight exactly equal to 1, i.e. it has 1 in one
of the positions from n/2+1 to n. In fact, if there exist 3 vectors x1 2 L1, x2 2 L2, x3 2 L3 such
that x1 © x2 © x3 = 0, then M x1 © M x2 © M x3 = 0 for any n £n binary matrix M . Once M is
fixed, it can be used to transform L1 and L2. After this, all we need to do is to search for pairs
of elements (x1, x2) 2 L1 £L2 such that M ·x1 ©M ·x2 equals 0 on the first n/2 bits, (and when
all the vectors in L3 are linearly independent we simply have to check if the sum has hamming
weight 1) and this of course can be done efficiently in the following way.

1. After transforming all elements of L3 in the new basis B, insert the elements in hash
table J .

2. After transforming all elements of L1 in the new basis B, insert the elements in hash
table H indexed by first n/2 bits. All cells of the table should be able to hold multiple
elements.

3. After transforming all elements of L2 in the new basis B, insert the elements in the
same hash table H indexed by first n/2 bits. In fact, if any cell of H has more than
one elements then their sum in the first n/2 bits must be 0. By standard randomness
assumptions there will be 2n+1·2°n/2

n = 2n/2+1

n such pairs left whose sum needs to be tested
for membership in L3.

4. Assuming that testing for membership in J can be done in constant time, we need 2n/2+1

n
tests. One can see that most of the time L3 is linearly independent and so testing for
membership in L3 can be done by simply checking whether the hamming weight of the
full vector is 1, and whether it begins with n/2 zeros. In this case, it is neither necessary
to change the basis of vectors in L3 nor store them anywhere.

Since the complexity of preparing each list is O(2n/2/
p

n/2) and around O(2n/2+1/n) mem-
bership tests are required the complexity of the algorithm is O(2n/2+1/

p
n/2+2n/2+1/n) º

O(2n/2+1/
p

n/2). This gives a speedup of around
p

n/2 compared to the basic birthday algo-
rithm of Wagner.

2.7.1 MITM on 2-round full S-box layer

The improved algorithm closely follows the one presented in Sec 2.6.1 earlier. The basic idea
is still the same: this time we partition the key K into 3 sets K1 = {k0,k1,k2, . . . ,km°1}, K2 =
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{km ,km+1,km+2, . . . ,k2m°1} and K3 = {k2m ,k2m+1, . . . ,kn°1}, where the value of m is given by
•

log2(2n/2/
p

n/2)
¶

, and so the size of K3 is considerably smaller and only around
•

log2(n/2)
¶

.

Our strategy will be, as before, to guess the s majority bits ¥1, . . . ,¥s at the input of the second
round inverse S-boxes to linearize R2 (and of course its inverse). Borrowing the terminology
from Sec 2.6.1, where x denotes the n-bit input to the second round and RK1,RK2 denote
the first, second round keys which are linear functions of the original key K =RK0, we have
R1(pt+RK0,RK1) = x and R2(x,RK2) = ct. Since after guessing the majority bits ¥I the inverse
of R2 becomes linear, we can write each bit xi of x as xi = Ai (K1)+Bi (K2)+Ci (K3)+di , 8 i 2
[0,n °1], where all Ai ,Bi ,Ci are linear functions and di is a constant.

Similarly in R1, the set of keybits in K1,K2,K3 can be partitioned in a manner so that they are
not combined multiplicatively in the first round. Hence computing R1 in the forward direction
from the plaintext input it is possible to write each xi as fi (K1)+ gi (K2)+hi (K3)+ ei , 8 i 2
[0,n ° 1] , where all fi , gi ,hi are quadratic functions and ei is a constant. Equating these
expressions we have Ai (K1)+Bi (K2)+Ci (K3)+di = fi (K1)+ gi (K2)+hi (K3)+ei . Rearranging
terms we have:

[Ai (K1)+ fi (K1)+di ]
| {z }

L1

+ [Bi (K1)+ gi (K1)+ei ]
| {z }

L2

+ [Ci (K3)+hi (K3)]
| {z }

L3

= 0

We see that, if 3 lists are enumerated for the terms in the square braces, then we arrive exactly
at the scenario of the 3-xor problem. We need to find 3 elements form these lists that sum to 0.
So our modified algorithm will be as follows:

1. Calculate the functional forms of fi , gi ,hi and ei for all i 2 [0,n °1].

2. Guess the values ¥1, . . . ,¥s . This step is done 2s times in the worst case.

• Compute Ai ,Bi ,Ci ,di for all i 2 [0,n °1] using the guessed values.

• For all possible values of K3, create a hash table L3 indexed by the n-bit vector
[Ci (K3)+hi (K3)], 8 i 2 [0,n°1]. From here find the matrix M that would transform
basis the basis B= {b1,b2, . . . ,bn/2, bn/2+1,bn/2+2, . . . ,bn} such that L3 is spanned
by bn/2+1,bn/2+2, . . . ,bn . With high probability the list L3 is linearly independent so
that bn/2+1,bn/2+2, . . . ,bn can be taken to be the vectors in L3. Multiply all vectors
in L3 by M and store in a hash table J . Note there are around n/2 steps here.

• For all possible values of K1, create a hash table L1 indexed by the n-bit vector
M · [Ai (K1)+ fi (K1)+di ], 8 i 2 [0,n °1]. We need 2n/2/

p
n/2 operations in this

step.

• For all possible values of K2, create a hash table L2 indexed by the n-bit vector
M ·[Bi (K1)+gi (K1)+ei ], 8 i 2 [0,n°1]. We need 2n/2/

p
n/2 operations in this step.
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• In practice, 2 different hash tables are not necessary. We can instead use one single
hash table H in which all elements of L1,L2 are inserted indexed by the first n/2
bits as explained in the previous subsection.

• For all pairs in x1, x2 2 H which are in the same cell

A: Discard if the sum is not in L3. For most cases this can easily be verified by
checking if the hamming weight of the sum is 1, i.e. if L3 is linearly indepen-
dent.

• Once a solution for K1, K2 and K3 is found, check if the majority bits are consistent
with the guess of the key. If yes, this key is in fact the encryption key. Otherwise try
another guess of ¥1, . . . ,¥s .

For each majority guess, the complexity of the attack is dominated by finding a collision
between two lists of length O(2n/2/

p
n/2). So the total complexity of the attack is O(2s £2 ·

2n/2/
p

n/2) = O(n°1/2 ·2s+n/2+1). This gives a speed up of around
p

n/2 over the attack in
Section 2.6.1.

There are some further issues to be discussed. We ideally want the lists L1 and L2 of the
same size, but it is often not possible due to the algebraic structure of LowMC. Since we
have to partition the keybits such that the cardinality of each set should be a multiple of 3,
it is not always possible to get lists of size 2n/2/

p
n/2, 2n/2/

p
n/2 and n/2. For n = 129 we

have n/2 = 64.5 º 26, and so we can take K3 to be the last 6 bits of the key, and K1 and K2

may contain the first 60 and the next 63 bits of the key respectively. In that case, the cost of
preparing the lists is around 260 +263 º 263. The sum of the transformed vectors in L1 and L2

would need to be zero in the first 129°64 = 65 bits and so after filtering 260+63°65 º 258 vector
sums need to be tested for membership in L3. So the total cost is around 263 +260 +258 º 263.
Multiplying this by the 243 times we need to guess majority bits, this comes to 263+43 = 2106,
which results in a speed up of factor 8 compared to the basic MITM in Section 2.6.1. For
n = 192, we have n/2 = 96 º 26.58. The only feasible choice of the size of K3 is again 6, which
forces K1 and K2 to be of size 93 each. The cost of preparing lists is around 293 +293 = 294.
However the number of pairs needed to be tested for membership in L3 is 293+93°(192°64) = 258.
So the total complexity for list matching is around 294 +258 º 294. Multiplying by the number
of majority guesses, we get the total complexity as 264+94 = 2158 which also results in a speed
up of 8 compared to Section 2.6.1. Similarly for n = 255, we have to take K1,K2,K3 of sizes
123,126,6 respectively. A similar calculation yields the total complexity as 285+126 = 2211 which
results again in a speedup of 8 compared to the basic MITM.

2.8 Conclusion

In this work we describe attacks on instances of LowMC where the number of S-boxes is less
than the security level, when we use only one plaintext/ciphertext pair. A cryptanalysis of this
kind is important as it results in a forgery on the post-quantum signature scheme PICNIC.
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2.8 Conclusion

Since our attacks are in the KPA/KCA scenario and since we use only one plaintext/ciphertext
pair, it is not possible to apply traditional symmetric cryptanalytic techniques like differential,
linear or any other higher order differential attacks. We begin by showing how to efficiently
linearize the LowMC S-box by guessing only one single balanced quadratic expression in its
input bits. We leverage this fact to present two types of attacks. First is a simple linearization
attack where the attacker obtains a set of linear equations on the key bits relating the plaintext
and ciphertext. The second is a meet in the middle attack, which takes advantage of the fact
that in a single LowMC round, all key bits are not combined multiplicatively. We then show
how to improve the attack on the 2-round full S-box layer variant of LowMC with the help of
Joux’s algorithm to solve the 3-xor problem.
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3 Ruining a PICNIC, Act 2

In this chapter, we present improved cryptanalysis results on instantiations of LowMC block-
cipher relevant to the PICNIC signature scheme. We build on the attacks presented in Chap-
ter 2 and show how these attacks can be extended to more number of rounds both in the
full, and partial S-box layer scenario. The personal contributions of this chapter are taken
from joint work with Subhadeep Banik, Serge Vaudenay and Hailun Yan published at IACR-
ASIACRYPT 2021 [BBVY21].

Structure of the Chapter: We begin this chapter by providing some additional related work in
section 3.1. We proceed by providing a more precise complexity analysis of the linearization
attack and its proof in section 3.2. Then, we present improved attacks on both a) the 2 and
3-round complete non-linear layer instance in Section 3.3, and b) the 0.8 ·

•n
s

¶

and
•n

s

¶

-round
LowMC instance with partial non-linear layers in Section 3.4. We show that the attack com-
plexity can be reduced if we perform the MITM in two separate stages: the first stage reduces
the set of possible key candidates of a fraction of key bits to a smaller set. A second MITM
stage is then performed on this reduced candidate set and the candidates in the remaining
fraction of the key bits. This result shows that the combined computational complexity of the
2 attack stages is significantly lower than the complexities reported in [BBDV20]. Table 3.1
tabulates in detail the complexities of the attacks reported in this work and compares them
to the corresponding complexities reported in [BBDV20]. In Section 3.5, we present some
experimental results on LowMC instances with smaller blocksizes. This is done to prove that
the attacks presented in Section 3.3, 3.4 can indeed be applied to full-size LowMC instances.
Section 3.6 concludes the chapter.

3.1 Additional Related Work

The LowMC cryptanalysis challenge asked for cryptanalysis of several instances of LowMC (in
which the blocksize and keysize are equal), with both partial and complete non-linear layers
given only one plaintext and ciphertext pair. We presented the results from [BBDV20] in
chapter 2 where we demonstrated how some parameterizations of LowMC do not provide
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the intended security level. The main observation was that after guessing the value of any
balanced quadratic Boolean function on the inputs of the LowMC S-box, the transformation
becomes completely linear. We chose the 3-variable majority function for this purpose, but
we show that any balanced quadratic function can be used. Using this fact, we showed various
attacks on

A 2-round LowMC with complete non-linear layers.

B 0.8 ·
•n

s

¶

-round LowMC with partial non-linear layers. Here n denotes the blocksize of the
LowMC instance, and s denotes the number of S-boxes in each round.

In [BBDV20], we reported the attack complexities in the number of linear/quadratic expression
evaluations. However, it is always preferable to have computational complexity reported in
terms of the number of encryptions. We show that the best complexity of these attacks is
equivalent to n

2r £2r s encryptions (r denotes the number of rounds used in the encryption),
as will be discussed later in this chapter.

In [Din21], the authors showed an ingenious method of finding roots of multiple polynomial
systems over GF(2). The n variables of the equation system are partitioned into two disjoint
sets y = y0, y1, . . . , ym°1 and z = z0, z1, . . . , zp°1 (with n = m +p). It is argued that any random
linear combination of the polynomials in the original equation system has an isolated solution
with high probability, i.e. if (ŷ , ẑ) is an isolated solution then (ŷ , z 0) is not a solution for all
z 0 6= ẑ. The authors then observed that all such isolated solutions could be recovered bit-by-bit
by computing p + 1 partial sums for each candidate solution ŷ 2 {0,1}m . The first step is
to randomly combine the original equation system into a system with a smaller number of
equations whose solutions can be found by brute force. These solutions are then used to
compute partial sums and construct a candidate solution of the original equation system. This
generic method of solving equations works quite well if the algebraic degree of the system is
small and so it was applied to attack 3, 4 and 5 round LowMC with complete non-linear layers
for some specific block-lengths. However, the method can not be applied to LowMC instances
with partial non-linear layers, since the number of rounds in such instances are generally
much higher, and the degree of the internal state variables (as a function of the key) doubles
every round. [LIM21] reports an algebraic attack on LowMC. However, the authors use the n2.8

estimate (ignoring constant factors) to solve Gaussian elimination, to report the complexity of
their attack. As such it is unclear if the complexity bounds they report are tight.

3.2 Linearization Attack

The starting point of the attack in [BBDV20] was lemma 2 which enabled us to linearize the
LowMC S-box by guessing only one balanced quadratic expression on its input bits, e.g. the
3-bit majority function.

Using this lemma, the first attack we proposed in [BBDV20] used only the linearization tech-

42



3.2 Linearization Attack

nique to obtain affine equations relating plaintext and ciphertext. The idea is as follows. The
values of the majority function at the input of all the S-boxes in the encryption circuit were
guessed: this made the expression relating the plaintext and ciphertext completely linear in

Table 3.1: Summary of results. Note for the complexity is given in #Encryptions

Instance n s r Type of Attack Recalculated Reference
Complexity

Full S-box layer 129 43 2 Linearization 291 [BBDV20]§

192 64 2134

255 85 2176

Partial S-box layer 128 1 0.8£
•n

s

¶

Linearization 2102 [BBDV20]§

192 1 2153

256 1 2204

Partial S-box layer 128 10 0.8£
•n

s

¶

Linearization 2103 [BBDV20]§

192 10 2163

256 10 2203

Full S-box layer 129 43 2 Equation solving 2102 [Din21]§§

3 2108

4 2113

Full S-box layer 192 64 2 Equation solving 2153 [Din21]§§

3 2162

4 2170

5 2175

Full S-box layer 255 85 2 Equation solving 2204 [Din21]§§

3 2216

4 2226

5 2232

Full S-box layer 129 43 2 2-Stage MITM 281 Sec 3.3
192 64 2122

255 85 2164

Full S-box layer 129 43 3 2-Stage MITM 2123 Sec 3.3
192 64 2186

255 85 2248

Partial S-box layer 128 1 0.8£
•n

s

¶

2-Stage MITM 2101 Sec 3.4
192 1 2151

256 1 2202

Partial S-box layer 128 1
•n

s

¶

2-Stage MITM 2125 Sec 3.4
192 1 2189

256 1 2253

Partial S-box layer 128 10 0.8£
•n

s

¶

2-Stage MITM 291 Sec 3.4
192 10 2149

256 10 2188

Partial S-box layer 128 10
•n

s

¶

2-Stage MITM 2111 Sec 3.4
192 10 2179

256 10 2238

*Complexities recalculated and do not always match those reported in [BBDV20]
**[Din21] reports complexities in bit operations. We recalculate them in number of encryptions.
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the key variables, i.e. of the form:

A · [k0,k1, . . . ,kn°1]T = const, (3.1)

where A is an n £n matrix over GF(2). Thereafter the key could be found by using Gaussian
elimination. A wrong key found by this method could be discarded by recalculating the
encryption and checking if the given plaintext mapped to the given ciphertext.

The above method would work if the total number of S-boxes in the encryption circuit is
strictly less than the size of the key in bits. This happens for a) 2-round LowMC with complete
non-linear layers and b) 0.8£

•n
s

¶

-round LowMC with partial non-linear layers. However, we
pointed out 2 issues in this approach:

1. If the total number of S-boxes in the encryption circuit is t , then the algorithm requires
in the worst case at least 2t computations of the encryption function (for the verification
of each computed candidate key). It additionally requires 2t Gaussian elimination
calculations.

2. For any guess of the majority values, the matrix A computed above may not necessarily
be invertible. If the dimension of the kernel of the matrix A is dA , then we can see that
O(2dA ) keys would satisfy any equation of the form A ·K = const. Thus the verification
would require running the verification for 2dA candidate keys.

We start by giving a closed-form expression of the complexity of the linearization algorithm in
terms of the number of encryptions.

First of all, the expected number of solutions for the system A · [k0,k1, . . . ,kn°1]T = const is 1 if
the system is random. If const lies in the image of the linear transformation defined by A then
the system has 2dA solutions, and it has 0 solutions otherwise. Now the probability that const
lies in the image of A is exactly 2°dA and so the average number of solutions by Bayes theorem
is 2dA ·2°dA + (1°2°dA ) ·0 = 1, and testing this solution costs us one encryption.

Multiplying an n £n matrix with an n-bit column vector requires n2 bit operations. Every
LowMC round therefore requires at least 2n2 bit operations (n2 for computing the affine layer
and another n2 for generating the round key). Assuming calculation of the S-box layer can be
done in linear time using a lookup table and also since key xor with state also takes linear time,
the sum total of all the other bit operations in the round are linear in n. Suppressing these,
the total bit operations required in performing a LowMC encryption is around 2r n2. Solving a
system of linear equations by Gaussian elimination (GE) costs around n3 bit operations which
is equivalent to n3

2r n2 = n
2r encryptions.

Also note the computational complexity required to formulate the linear system of form
A · [k0,k1, . . . ,kn°1]T = const. We argue that this is equivalent to n encryptions. After guessing
the majority bits, the system becomes completely linear. Therefore finding the i -th column of
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A and the i -th bit of const is equivalent to performing one encryption with the basis key vector
[0,0, . . . ,ki , . . . ,0,0]. Hence the result follows. Therefore the total computational complexity
required to perform the attack using only linearization in terms of number of encryptions is

2r s (Guessing majority bits)£ [ n (Formulating the linear system)+
n
2r

(Solving the linear system)+

1 (Testing one solution on average)].

We can simplify this to n ·2r s encryptions.

3.2.1 Improving complexity using Gray-Code based approach

The above complexity can be significantly improved if one were to make the majority guesses
in a Gray-code-like manner. Recall that the encoding is defined as follows: Graycode(i ) =
i © (i ¿ 1). An important observation is that, the hamming difference between Graycode(i )
and Graycode(i +1) is always 1 for all values of i . The idea is instead of ordering the majority
guesses in lexicographic order, we use the order defined by the Gray-code, i.e. in the i -th step
the majority guess sequence is the binary string defined by the bits of Graycode(i ). When this
is done the matrix A defined above, changes very little from iteration i to i +1. Thus having
already constructed A in the i -th iteration, the corresponding construction in the i +1-th
iteration can be done much faster and so the cost of formulating the linear system of equations
defined by Eqn (3.1) can be amortized over all the majority guesses.

Let us state the algorithm formally. Let M = m0,m1, . . . ,ms°1, ms ,ms+1, . . . , m2s°1, . . . ,m(r°1)s

,m(r°1)s+1, . . . ,mr s°1 be the r s majority guesses for the s number of S-boxes in each of the r
rounds. Let Mi denote the value of the string M at the i -th iteration which we want to be
equal to Graycode(i ). Let the linearized system of equations at the i -th iteration be denoted
as Ai ·k = ci . We want to determine how Ai+1,ci+1 relate with respect to Ai ,ci . Let x ! T x © v
be the linear map from {0,1}n ! {0,1}n that is obtained as a result of linearizing the S-boxes in
any single round with the majority value string Str (T is an n £n matrix and v is a n-element
vector). Let x ! T 0x + v 0 be the corresponding map when the majority string is Str©et (here
et denotes the t-th unit vector of length s and 0 ∑ t < s). Then we define ¢t = T ©T 0 and
∏t = v©v 0, so that¢t x+∏t denotes the change of linear map when the majority guess changes
at the t-th S-box.

Let La denote the n £n matrix used in the linear layer in the a-th round (with 1 ∑ a ∑ r ).
Also, let Graycode(i )©Graycode(i +1) = e j for some j (by slight abuse of notation e j here
denotes the j -th unit vector of length r s). If j < s, then it can be deduced that Ai © Ai+1 =
(
Qr

a=1 La)·¢ j := B j (say) and ci ©ci+1 = (
Qr

a=1 La)·∏ j := b j . If j 2 [(u°1)s,us°1], which means
that the change of majority guess occurs in the u-th round, then denote j 0 = j ° (u °1)s. B j is
now defined as Ai © Ai+1 = (

Qr
a=u La) ·¢ j 0 and b j = (

Qr
a=u La) ·∏ j 0 . In fact, it is thus possible to

precompute for all j 2 [0,r s °1] the matrix-vector pair (B j ,b j ) before the linearization step
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begins. Thus the linearization attack can be restated as follows:

1. For all j 2 [0,r s °1] precompute the matrix-vector pair (B j ,b j ).

2. Compute A0,c0 and try to solve the system A0 ·k = c0 using GE.

3. For i = 1 ! 2n °1 do

• The majority guess is Mi =Graycode(i ).

• Let Graycode(i )©Graycode(i °1) = e j .

• Calculate Ai = Ai°1 ©B j and ci = ci°1 ©b j .

• Try to solve the system Ai ·k = ci using GE.

Since none of the B j ’s are sparse matrices, we can not devise a quicker method of doing GE
on Ai from the knowledge of steps involved in the GE of Ai°1. The additional complexity
of constructing Ai ,ci at each step is given by a matrix and vector addition and so equal to
n2 +n bit operations which roughly corresponds to n2+n

2r n2 º 1
2r encryption operations. Thus if

P denotes the cost involved in pre-computation (which is at most a polynomial in r s) then the
total complexity of the method can be written as P +2r s · ( n

2r +1+ 1
2r ) º n

2r ·2r s encryptions
which gives us an improvement of a factor of 2r over the naive linearization method of the
previous subsection. We have recalculated the complexities in Table 3.1 using this expression.

3.3 2-stage MITM attack on 2-rounds with full S-box layer

In Section 2.6.1 we already showed that after guessing the majority bits of the second round
and linearizing it the algebraic relation between the plaintext and ciphertext can be written as

fi (K1)+ Ai (K1)+ ci = gi (K2)+Bi (K2)+di , 8 i 2 [0,n °1]. (3.2)

The functions Ai , Bi are linear and fi , gi are quadratic. It can be seen that for Equation (3.2)
to hold we need not split K in such a way that K1 and K2 have approximately n/2 bits. We
can, for example, also split K so that K1 has around n/3 and K2 has around 2n/3 bits. The
only condition that must be satisfied is that the sizes of K1 and K2 are chosen so that they are
never mixed multiplicatively in the first round. It is easy to see that if we choose t = |K1| and
n ° t = |K2| to be multiples of 3 then this condition is automatically satisfied.

The important observation is that fi , gi can be expressed as affine functions in an extension
of the input of double size. This comes from the structure of the S-box: S(x0, x1, x2) is an affine
function on (x0, x1, x2, x0x1, x1x2, x2x0). Let f i , g i be the affine functions associated with fi , gi .
Therefore the above set of equations can be written as

f i (K 1)+ Ai (K 1)+ ci +di = gi (K2)+Bi (K2), 8 i 2 [0,n °1], (3.3)
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where if K1 = [k0,k1,k2, . . . ,k3w°3,k3w°2,k3w°1], we define

K 1 = [k0,k1,k2,k0k1,k1k2,k2k0, . . . . . . . . . ,k3w°3,k3w°2,k3w°1,

k3w°3k3w°2,k3w°2k3w°1,k3w°1k3w°3].

Since K1 only has the first t = 3w bits of the master key and so K 1 is of size 6w . Since
Fi = f i + Ai is an affine function over K 1, the map ¡ : K 1 ! [F0,F1, . . . ,Fn°1] can be seen as
a linear code of length n and dimension 6w . Let w be such that K1 contains around n/3
key bits i.e. w º n/9 and hence K2 contains the remaining 2n/3 key bits. Since ¡ is seen
as a linear code, let G be the corresponding generator matrix (of size n £ 6w º n £ 2n/3),
which can be efficiently constructed from the algebraic forms of the functions Fi . Let H be
the parity check matrix of the code (of size (n °6w)£n º n/3£n). The parity check matrix
is essentially obtained from the generator matrix by employing one Gaussian elimination.
Define Con to be the vector [c0 +d0,c1 +d1, . . .cn°1 +dn°1]T . The left side of Equation (3.3),
when written in matrix notation for all i = 0,1, . . . ,n°1 is essentially¡(K 1)+Con. Therefore we
have H ·[¡(K 1)+Con] = H ·[GK 1+Con] = H ·Con= e (say). This follows from the fact that since
G and H are the generator and parity check matrices of a linear code, we must have H ·G = 0.

We can split K2 into two halves K21 and K22 such that both halves contain approximately
n/3 key bits each. Let’s say |K21| = 3u and |K22| = n ° 3w ° 3u (our strategy would be to
have 3u º n °3w °3u so that the halves are of equal size). We can rewrite gi (K2)+Bi (K2) as
g 1

i (K21)+B 1
i (K21)+ g 2

i (K22)+B 2
i (K22) for all i 2 [0,n °1], where g j

i are quadratic and B j
i are

linear for j = 1,2. Again this is possible if we take |K21| and |K22| to be multiples of 3, so that
the bits of K21 and K22 after xor with the plaintext are input to different S-boxes. Due to the
structure of LowMC, the quadratic terms from adjacent S-boxes do not combine multiplicatively
after one round and so the separation into the 2 expressions is possible. Define the n-bit
vectors:

M1 = [g 1
0 (K21)+B 1

0 (K21), . . . , g 1
n°1(K21)+B 1

n°1(K21)]T , and

M2 = [g 2
0 (K22)+B 2

0 (K22), . . . , g 2
n°1(K22)+B 2

n°1(K22)]T .

One can see that, if Eqn (3.3) for i = 0,1, . . . ,n °1, is written together as a vector equation, The
right-hand side of the vector equation is essentially M1 +M2. We have already seen that the
left-hand side of the vector equation when multiplied by H results in the vector H ·Con= e.
Multiplying the right side of the vector equation by H, we get the matrix equation:

H · (M1 +M2) = e, ) H ·M1 = H ·M2 +e.

Pre-computation: In this phase we try and compute some expressions that remain constant
over different majority guesses. We compute the following vectorial functions over all points
over its input space: (a) fi (K1), 8i 2 [0,n °1] over input space of K1 i.e {0,1}3w , (b) g 1

i (K21),
8i 2 [0,n°1] over input space of K21 i.e {0,1}3u and (c) g 2

i (K22), 8i 2 [0,n°1] over input space
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of K22 i.e {0,1}n°3u°3w . Using Möbius transform the number of bit-operations required are

n ·
µ

3w
2

·23w + 3u
2

·23u + n °3u °3w
2

·2n°3u°3w
∂

.

This follows since any t-variable Boolean polynomial can be evaluated over all its input space
using Möbius transform using t ·2t°1 bit operations.

1st MITM stage: As M1 and M2 only contain expressions on the key bits in the sets K21 and K22

respectively, we can conduct a first MITM stage in which we create 2 lists L1,L2. L1 contains
the (n ° 6w), n-bit vector pairs H · M1, M1 for all 23u values of K21. And similarly the list
L2 contains the (n °6w),n-bit vector pairs H ·M2 + e, M2 for all 2n°3w°3u values of K22. We
look for a collision in the n °6w co-ordinates of these lists. We are expected to get around
23u+(n°3w°3u)°(n°6w) º 23w collisions. Thus in the process we get 23w key values for the key
bit set K2 = (K21,K22). For computing each entry in the list L1 we do the following:

1. Compute the vectorial linear functions B 1
0 ,B 1

1 , . . . ,B 1
n°1 over a given point k in K21. Each

such computation takes |K21| ·n = 3un bit operations.

2. Add to the corresponding precomputed vector g 1
i (k), 8i 2 [0,n °1]. This requires n bit

operations.

3. Multiply by H. Each such computation takes (n °6w) ·n bit operations.

This is computationally equivalent to 3un+n+(n°6w)n
2r n2 º 3u+n°6w

4n of an encryption for r = 2. A
similar argument holds for L2. Hence the total computational cost incurred in this step is
3u+n°6w

4n ·23u + 2n°9w°3u
4n ·2n°3w°3u encryptions.

2nd MITM: Let us now turn to Eqn (3.2). The left side of this equation is defined over approxi-
mately the 3w-bit set K1 which can have 23w values in total. And we have just reduced K2 to a
set of 23w values. Thus the next MITM is making two more lists L3, L4 of size 23w each in the
following way. L3 contains all 23w n-bit vectors [ fi (K1)© Ai (K1)© ci ©di ], 8 i 2 [0,n °1] enu-
merated for all the 23w values of K1. For all the 23w values of K2 that have passed the previous
MITM step we make the list L4 containing the n-bit vector [gi (K2)©Bi (K2)], 8 i 2 [0,n °1].
We now look for a collision between L3 and L4. On average we have 23w+3w°n = 26w°n < 1
collisions. This means that the correct key K will necessarily by the output of one of these
MITM steps for the correct guess of majority bits in the second round. For constructing L3

we need to compute the n linear functions Ai (K1) over the 3w-bit variable K1 which by the
previous logic, requires 3wn bit operations each and then n bit operations for addition to the
precomputed vector fi (K1). Populating L4 requires computing [gi (K2)©Bi (K2)] for all the K2

that have passed the previous MITM step. However we can compute this vector by simply
adding the M1, M2 vectors that have collided in the previous MITM stage. This stage therefore
requires 3wn+n

4n2 ·23w + n
4n2 ·23w º 3w

4n ·23w encryptions. We are now ready to state the attack
formally:
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1. Calculate the functional forms of fi , gi , f i , g 1
i , g 2

i and ci for all i 2 [0,n °1].

2. Pre-compute fi (K1), g 1
i (K21), g 2

i (K22), 8i 2 [0,n °1] over their respective input spaces.

3. Guess the majority values ¥1, . . . ,¥s at the output of 2nd round S-box layer as in the
previous attack. This step is done 2s times in the worst case (note s = n/3).

• Compute Ai ,Bi ,di for all i 2 [0,n °1] using the guessed values.

• Compute the functions Fi = f i + Ai for all i 2 [0,n °1].

• Using the Fi ’s, construct the generator matrix G.

• Using Gaussian elimination, construct the parity check matrix H.

• Construct Con= [c0 +d0,c1 +d1, . . .cn°1 +dn°1]T , and e = H ·Con.

• For all possible values of K21, create a hash table L1 indexed by the (n °6w)-bit
vector H ·M1.

• For all possible values of K22, create a hash table L2 indexed by the (n °6w)-bit
vector H ·M2 +e.

• Find all collisions between L1 and L2. Store all values of K21,K22 extracted from
the collision in a list L.

• For all possible values of K1, create a hash table L3 indexed by the n-bit vector
[ fi (K1)© Ai (K1)© ci ©di ], 8 i 2 [0,n °1].

• For all values of K2 2 L, create a hash table L4 indexed by the n-bit vector [gi (K2)©
Bi (K2)], 8 i 2 [0,n °1].

• When a collision is found for K1 and K2 check if the majority bits are consistent
with the guess of the key. If yes, this key is in fact the encryption key. Otherwise try
another guess of ¥1, . . . ,¥s .

Complexity Estimation: We first consider the time complexity. For each guess of 2s = 2n/3 ma-
jority values, we have to perform a Gaussian elimination and 2 MITM steps. The cost of Gaus-
sian elimination and the linear terms required to formulate Ai ,Bi ,di and pre-computation
may be ignored in comparison with 2n/3. Hence the total time complexity for this attack is
around

2n/3 ·
µ

3u +n °6w
4n

·23u + 2n °9w °3u
4n

·2n°3w°3u + 3w
4n

·23w
∂

. (3.4)

For w = u = n/9, the above evaluates to 2n/3 · (( 1
6 +

1
6 +

1
12 ) ·2n/3) = 5

12 ·2
2n/3 º 22n/3°1.26 encryp-

tions.

Memory Complexity: In the first MITM stage, we created 2 lists L1,L2 which contain (n °
6w), n-bit vector pairs for 23u possible values of K21 and (n ° 6w), n-bit vector pairs for
2n°3w°3u possible values of K22, respectively. As a matter of fact, in practice, 2 different lists
are not necessary. We can instead insert each new vector of L1 and L2 into a single hash table.
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The memory complexity here is (2n °6w) · (23u +2n°3w°3u) bits. In the second MITM stage,
we create 2 more lists L3,L4, both containing 23w n-bit vectors. By similar logic, memory
complexity here is thereby 2n ·23w bits. The pre-computation part generates n-bit vectors over
the input spaces of K1,K21,K22. Hence the memory complexity here is n ·(23w +23u+2n°3u°3w )
bits. The total memory complexity for this attack is around

(2n °6w) · (23u +2n°3w°3u)+2n ·23w +n · (23w +23u +2n°3u°3w ) bits. (3.5)

If we look at concrete parameters, for n = 129 and s = 43, we can choose the parameters in the
following manner: we can choose w = u = 14, which makes |K1| = 42 and |K2| = 87 and hence
|K21| = 42 and |K22| = 45. The parity check matrix H is of size (n °6w)£n = 45£129, which
makes H ·M1 and H ·M2 + e both 45-bit vectors. After the first MITM stage the number of
remaining candidates for K2 is º 2|K21|+|K22|°45 = 242. The complexity of the first MITM stage is
thus 1

6 · (245 +242) º 1
6 ·245 º 242.4 encryptions. The second MITM stage requires 1

12 ·242 = 238.4

encryptions. Hence the total attack complexity is 2s · (242.4 + 238.4) º 285 encryptions and
around 253 bits of memory. This is lower than the linearization attack by a factor of 26 for this
LowMC instance.

3.3.1 Extending attack to 3-rounds

The attack can be extended to 3-round LowMC in which we keep the basic character of the
algorithm and run it by guessing the majority values of the last 2 rounds and linearizing both
of them simultaneously. Hence a total of 22s values would need to be guessed in stead of 2s .
All other steps remain the same. Thus the computational complexity will be given by:

22n/3 ·
µ

3u +n °6w
6n

·23u + 2n °9w °3u
6n

·2n°3w°3u + 3w
6n

·23w
∂

.

This is so since encryption is now given by 2r n2 = 6n2 bit operations. The memory complexity
is essentially the same as in the 2-round attack. For w = u = n/9, the above evaluate of
computational complexity is 22n/3 · (( 1

9 +
1
9 +

1
18 ) ·2n/3) º 5

18 ·2n encryptions, which is better
than exhaustive search by a factor equal to approximately 2 bits. For n = 129 and s = 43, using
the values w = 14, |K1| = 42, |K21| = 42 and |K22| = 45, we get 1

9 · (245 +242) º 241.8 encryptions
for the first MITM. The second MITM requires 1

18 ·2
42 º 237.8 encryptions. The total complexity

is therefore 22s · (241.8 +237.8) º 2128 encryptions.

3.3.2 Speedup using Gray-Codes

There are 3 places in the above process where a speed-up may be applied using a Gray-code
like approach.

1. By ordering the majority guesses in a Gray-code like manner as in Sec 3.2.1 so that the
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affine expressions formed after linearizing the S-boxes can be generated more efficiently.
But we have already seen that this does not result in significant speed-up when employed
along with MITM.

2. Using a Gray-code like approach to do the pre-computations.

3. Using a Gray-code like approach to generate the values of the expressions that are
inserted in the tables in each of the MITM stages. We will see how optimizing this stage
results in significant speed-up.

There are several methods of evaluating an n-variable Boolean function over all the 2n points
of its input space, given its algebraic expression. One such method, as we have already seen is
the Möbius transform which evaluates the function in-place by performing around n ·2n°1 bit
operations. However the method we will use for this method is the Gray-code based approach
suggested by [BCC+10] which finds all roots of a polynomial over GF(2) by evaluating it over
all points of its input space by traversing the space in a Gray-code like manner. We start with
the following theorem from [BCC+10].

Theorem 1. [BCC+10] All the zeroes of a single multivariate polynomial f in n variables of
degree d can be found in essentially d ·2n bit operations (plus a negligible overhead), using nd°1

bits of read-write memory, and accessing nd bits of constants, after an initialization phase of
negligible complexity O(n2d ).

We present a top-level overview of the approach used in this paper. Consider the derivative
± f
±i : x ! f (x+ei )© f (x). Then for any vector x, we have f (x+ei ) = f (x)© ± f

±i (x). If the algebraic

degree of f is d then ± f
±i is of degree d °1. For our use case, f is either a quadratic or linear

function. Meaning ± f
±i is an affine (or constant) function and can be represented by a vector

Di 2 (GF(2))n and a constant ci . Now we have that,

ci =
± f
±i

(0) = f (ei )+ f (0) (3.6)

Di [ j ] = f (ei +e j )+ f (ei )+ f (e j )+ f (0) (3.7)

Note that the Di [ j ] and ci values only depend on the evaluation of f on unite vectors. The
main idea of the optimization is to precompute and store these values and use them to evaluate
the function on the rest of the space faster. Let us elaborate on how this is done. The first
observation is that:

f (x +ei ) = f (x)+Di · x + ci (3.8)

Now when enumerating the input space in a gray-code order, for every two consecutive input
values, they differ by a unit vector ei . Hence, f can be evaluated on the later input using
equation 3.8.
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Employing this method for the case of our attack, for the pre-computation part, we can
evaluate each t-variable quadratic Boolean function in 2t+1 bit-operations. As a result the pre-
computation cost can be brought down to 2n ·

°

23w +23u +2n°3u°3w ¢

bit-operations. However,
the pre-computation is not the most dominant term in the total computational cost, and so
this gives only a slight improvement.

We now see how we can improve the complexity of the MITM stages by using this approach.
As we only evaluate linear functions inside the iterations for each majority guess, since only
2t bit-operations are required to evaluate any linear function, using the Gray-code approach
we can accelerate this part considerably. Note that in L1 we need to store both H ·M1 and
M1. To do this, we begin by computing the quadratic expressions each one of the n bits
M1 and then each of the (n °6w)-bits given by H ·M1. We use the Gray-code approach of
[BCC+10], to evaluate these functions over all the points of their input domains. The number
of bit operations required are therefore n ·23u+1 + (n °6w) ·23u+1 º 2n°6w

2r n2 ·23u+1 encryptions.
Similarly the list L2 would require around 2n°6w

2r n2 ·2n°3u°3w+1 encryptions.

The lists L3, L4 are simpler to construct. For L3 we need to compute the n linear functions
Ai (K1) which requires n ·23w bit operations each and then add to the precomputed vector
fi (K1). Populating L4, as before can be done by simply adding the M1, M2 vectors that have
collided in the previous MITM stage. This stage therefore requires 2n

2r n2 ·23w + n
2r n2 ·23w º

3n
2r n2 ·23w encryptions. This reduces the main terms of the computational complexity to

T = 2
(r°1)n

3 ·
µ

n °3w
r n2 ·23u+1 + n °3w

r n2 ·2n°3u°3w+1 + 3n
2r n2 ·23w

∂

encryptions

For n = 129, r = 2 and u = w = 14, we have T = 280.7 encryptions. For n = 129, r = 3 and
u = w = 14, we have T = 2123.2 encryptions. The memory complexity of this attack is the
same as the attack in the previous sub-section plus the additional cost for storing tables
required for fast Gray-code based evaluations. Using Theorem 1, this additional memory is
(3u)2 · (2n °6w)+ (n °3u °3w)2 · (2n °6w)+ (3w) ·n bits which is negligible when compared
to the space occupied by the lists.

3.4 2-Stage MITM attack on partial S-box layers

In order to perform a MITM on the partial S-box layer instances of LowMC, we use a trick used
in both [BBDV20, RST18] to transform some of the initial and final rounds so that the total
number of different key bits involved in these rounds is 3s per round. The transformations
are shown in Figures 2.2, 2.3 and are similar to the ones used in [RST18]. In fact the transform
used in the backward direction (see Figure 2.3) is exactly same as the one used in [RST18,
Figure 1]. The idea is that the affine layer and key addition are interchangeable. Since L is a
linear function, we have L(x)+K = L(x +L°1(K )) and similarly L(x +K ) = L(x)+L(K ). Hence
the key addition can be moved before or after the affine layer as required, by multiplying the
round key by the appropriate matrix. Figure 2.2 further shows how to transform the first r1
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rounds. To mount this attack let us split the LowMC into 4 parts as shown in Figure 3.1:

1. First a +b rounds which have been transformed as per Figure 2.2.

2. Final c rounds which have been transformed as per Figure 2.3.

3. The remaining d = r °a °b ° c rounds which lie in between.

Let the set of round key bits in the first a,b and the last c rounds be denoted as

Ka = [∑0,∑1, . . . ,∑3sa°1], Kb = [∑3sa ,∑3sa+1, . . . ,∑3sa+3sb°1], and

Kc = [∑n°3sc ,∑n°3sc+1, . . . ,∑n°1].

Denote by Kr em the remaining n °3s(a +b + c) key bits such that Ka ,Kb ,Kc , and Kr em are
linearly independent expressions of the master key and so any key bit can be expressed
as a linear function of them. It is important to notice that, we implicitly assume here that
n ∏ 3s(a +b + c).

Let X = [x0, x1, x2, . . . , xn°1] be the output of the first a rounds, W = [!0,!1, . . . ,!n°1] be the
output of the first a +b rounds and Y = [y0, y1, . . . , yn°1] be the input to the last c rounds as
shown in Figure 3.1. Observe the middle b and d = r °a °b °c rounds closely, as seen in Fig-
ure 3.2. Let us introduce 6b · s new variables U = [u0,u1, . . . ,u3bs°1] and Z = [z0, z1, . . . , z3bs°1]
such that they represent the input and output bits of the b · s S-boxes in the middle b rounds.
Our first aim is to find a linear expression relating the xi ’s, yi ’s and zi ’s and the key bits. Let
D = [D0,D1, . . . ,Dn°1] be the output of the first of the b rounds (see Figure 3.2). Then we
can write D = Lin1(z0, z1, . . . , z3s°1, x3s , x3s+1, . . . , xn°1), where Lin1 denotes a set of n affine
functions. Similarly, if E = [E0,E1, . . . ,En°1] is the output of the next round we can write E
as a set of linear functions on (z3s , z3s+1, . . . , z6s°1,D3s ,D3s+1, . . . ,Dn°1) which means that we
can write E =Lin2(z0, z1, . . . , z6s°1, x3s , x3s+1, . . . , xn°1) as a set of linear functions on X and the
first 6s zi ’s. Iterating upto all the b rounds, it can be seen that W can be written as a set of
linear functions on the entire Z and x3s , x3s+1, . . . , xn°1. Now if we guess the majority bits at
the inputs of the following d rounds, they become completely linear. In that case Y itself
becomes linear in W and Ka ,Kb ,Kc ,Kr em (since the key bits used in these d rounds can be
seen as linear expressions in Ka ,Kb ,Kc ,Kr em). Hence we have

Y =Lin(Z , x3s , x3s+1, . . . , xn°1,Ka ,Kb ,Kc ,Kr em). (3.9)

The above equation denotes a system of n affine equations (one for each bit in Y ) in all the n
bits of the key. Our aim is to get a reduced set of equations by somehow eliminating Z ,Kb ,Kr em

from this set. The set§= {Z ,Kb ,Kr em} comprises a total of µ = 3sb +3sb + (n °3s(a +b + c))
variables. Consider the system of n equations given in Equation 3.9. Apart from the µ variables
the system has n (for Y )+(n°3s) (for X )+(3as+3cs) (for Ka ,Kc ) = 2n+3(a+c°1)s variables.
So the above system can be written in matrix notation as M · v = a, where v is the set of
2n+3(a+c°1)s+µ = (3n+3sb°3s) variables,M is a matrix over GF(2) of size n£(3n+3sb°3s),
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Figure 3.1: Splitting LowMC into 4 sections
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and a is a constant vector. Rearrange v so that the variables in§ are the first µ elements of v.
Then we use Gaussian elimination to sweep out at least the first µ columns of M. Then the last
n °µ rows of the matrix would then have the entries in the first µ columns all equal to 0 and
thus these are the linear equations in Ka ,Kc , X ,Y that we get from this process. Note we have
a total of n °µ = 3sa +3sc °3sb equations of this form.

First MITM: The equations so obtained can be rearranged and written as A�1(Ka , X ) =
A�2(Kc ,Y ), where A�1,A�2 are the set of 3sa +3sc °3sb affine functions on Ka , X and Kc ,Y
respectively, obtained above. We now state the first MITM step: the observation is that, if we
guess the value of Ka , we can easily obtain the value of X by computing the forward a rounds
from the plaintext. If we guess Kc we can similarly compute Y , by computing backward the
last c rounds from the ciphertext. Hence for all the 23sa values of Ka we make the first list L1

that contains all the (3sa °3sb +3sc)-bit vectors calculated from A�1(Ka , X ). Similarly for all
the 23sc values of Kc we make the second list L2 that contains all the 3sa°3sb+3sc-bit vectors
calculated from A�2(Kc ,Y ). We look for collisions in the two lists. We can expect around
23sa+3sc°(3sa°3sb+3sc) = 23sb collisions. We store all the 23sb tuples (Ka ,Kc ) so obtained in a list
L.

Second MITM: The second part of the attack focuses on getting an affine relation between
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Figure 3.2: The middle b +d rounds

55



Chapter 3. Ruining a PICNIC, Act 2

U , Z and Kb . From Figure 3.2, we can see that ui = xi +∑3sa+i , 8i 2 [0,3s °1]. For the second
round we have

u3s+i = Di +∑3sa+3s+i , 8 i 2 [0,3s °1]

= Lin1,i (z0, . . . , z3s°1, x3s , . . . , xn°1)+∑3sa+3s+i , 8 i 2 [0,3s °1]

where Lin1,i is the i -th linear function of Lin1 described above. The above holds since we have
already seen that all Di ’s are linear functions in (z0, . . . , z3s°1, x3s , . . . , xn°1). Similarly for the
third round we have

u6s+i = Ei +∑3sa+6s+i , 8 i 2 [0,3s °1]

= Lin2,i (z0, . . . , z6s°1, x3s , . . . , xn°1)+∑3sa+6s+i , 8 i 2 [0,3s °1]

where Lin2,i is similarly the i -th linear function of Lin2. Iterating over all the b rounds we can
write the vector equation, U = Kb + P(Z , x3s , . . . , xn°1), where P denotes the set of 3bs linear
expressions obtained by putting together the linear expressions Lin1,i ,Lin2,i etc. We can now
replace Kb in Equation (3.9) to get

Y = Lin(Z , x3s , x3s+1, . . . , xn°1,Ka ,U + P(Z , x3s , . . . , xn°1),Kc ,Kr em)

= Lin0(Z , x3s , x3s+1, . . . , xn°1,Ka ,U ,Kc ,Kr em).

This time we eliminate Kr em from the above set of linear equations using the same Gaussian
elimination method as in the previous stage. There are n °3s(a +b + c) variables in Kr em that
we eliminate, which leaves us with 3s(a+b+c) equations in Z , x3s , x3s+1, . . . , xn°1,Ka ,U ,Kc . We
can rearrange the terms in the equation to get A�3(Z ,U ) =A�4(X ,Ka ,Kc ), where A�3,A�4

are a set of 3s(a +b + c) affine functions on Z ,U and Ka ,Kc , X respectively.

In fact, if Z is guessed, one can compute U since the S-box is bijective, and we have already
seen that guessing Ka lets us compute X by computing the a forward rounds from the plaintext.
Thus in the next MITM stage we make 2 lists L3,L4. In L3 we store the 3s(a + b + c)-bit
vector given by the expressions A�3(Z ,U ) for each of 23bs values of Z . In L4 we store the
3s(a + b + c)-bit vector given by the expressions A�4(X ,Ka ,Kc ) for each of 23bs values of
(Ka ,Kc ) in L. We again look for collisions in the 2 lists. The expected number of collisions is
23bs+3bs°3s(a+b+c) = 23sb°3sa°3sc . However the correct value of the key Ka ,Kc is guaranteed to
be the outcome of the collision finding stage for the correct guess of the majority values.

Once we get a candidate solution Ka ,Kc , Z ,U we can compute the vectors X ,Y by computing
the a,c rounds forwards/backwards from the plaintext/ciphertext. We can then compute
Kb =U+ P(Z , x3s , . . . , xn°1). As we know the majority of the inputs of the S-boxes in r°a°b°c
middle rounds, we can solve an affine equation of form A�r em(W,Kr em) = Y to recover the
value of Kr em , which was the only part of the key which remained unknown. After this one can
check if the key so obtained produces the required majority values guessed at the beginning.
If not the attacker can restart the process with another set of majority values. The expected
number of such checks is around 2s(r°a°b°c)+3sb°3sa°3sc = 2r s°4sa°4sc+2sb . We formally state
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the attack:

1. Separate the first a +b and last c rounds of the cipher

2. Denote the output of the first a rounds by X , the output of the b rounds by W and the
input of the last c rounds by Y .

3. Denote the inputs/outputs of the S-boxes in the b rounds by U /Z

4. Guess majority bits of the inputs of the S-boxes of r °a °b ° c middle rounds.

5. For every majority guess do:

First MITM:

• Compute the relation Y =Lin(Z , x3s , . . . , xn°1,Ka ,Kb ,Kc ,Kr em)

• Eliminate Kb ,Kr em , Z from the relation and form and equation of form A�1(Ka , X ) =
A�2(Kc ,Y ).

• By exhausting all possible values of Ka keep a list of A�1(Ka , X ), where X is com-
puted knowing Ka and plaintext pt .

• Try all possible values of Kc and find collisions between A�2(Kc ,Y ) and the list
computed in the previous step. Keep a list L of (Ka ,Kc ) values satisfying the condi-
tion.

Second MITM:

• Compute the relation Y =Lin0(Z , x3s , x3s+1, . . . , xn°1,Ka ,U ,Kc ,Kr em) by replacing
Kb .

• Eliminate Kb ,Kr em to get a relation of form A�3(Z ,U ) =A�4(X ,Ka ,Kc ).

• For every pair (Ka ,Kc ) in the list L, compute A�4(X ,Ka ,Kc ).

• For every possible value of Z , compute A�3(Z ,U ), where U can be computed
efficiently from Z , and look for occurrence with A�3(Z ,U ) in the list from the
previous step.

• For every (Ka ,Kc , Z ,U ) satisfying the relation, compute Kb ,W,Y as shown before.

• Linearize the middle r °a °b ° c rounds using the majority guess and compute
Kr em from A�r em(Kr em ,Ka ,Kb ,Kc ,W ) = Y .

• After the entire key is found, check if they result in the same majority values
assumed at the beginning of the attack or else retry with another set of majority
values.

Complexity Estimation: Before we state our analysis to calculate the computational complex-
ity, let us state a few observations:
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1. The number of variables on the right side of Equation (3.9) is 2n+3sb°3s. Hence using
the basis vector logic, forming Equation (3.9) is equivalent to 2n +3sb °3s encryptions
limited to r °a ° c rounds, hence equivalent to (2n +3sb °3s) · (r°a°c)

r encryptions.

2. For the first MITM, eliminating µ = n °3s(a °b + c) variables in an n £ (3n +3sb °3s)
matrix using the sweeping out method costs around n·µ·(3n+3sb°3s)

2r n2 encryptions.

3. Computing U from X and K is equivalent to the encryption of 2n base vectors (for the n
bits of X and the n bits of K ) in b rounds instead of r . So, this costs 2n · b

r encryptions

4. For the 2nd MITM, eliminating 3sb (Kb) and n ° 3s(a + b + c) (Kr em) variables in a
n £ (3n +6sb °3s) matrix requires (n°3s(a+c))·n·(3n+6sb°3s)

2r n2 encryptions.

5. Solve the system of linear equations to get Kr em from A�r em(Kr em ,Ka ,Kb , Kc ,W ) = Y .
This requires one Gaussian Elimination which is equivalent to (n°3s(a+b+c))3

2r n2 encryptions.

Both MITM steps should be done for each majority guess for the middle rounds, hence
should be repeated 2s(r°a°b°c) times. To evaluate A�1(Ka , X ) we need to evaluate the first
a encryption rounds to get X from the plaintext. Thereafter we evaluate (3sa °3sb +3sc)
linear expressions in (3sa+n) bits of Ka , X , which requires around (3sa+3sb°3sc) · (3sa+n)
bit-operations. Similarly to evaluate A�2(Kc ,Y ) we need to evaluate the last c decryption
rounds to get Y from the ciphertext, followed by evaluation of linear expressions that take
(3sa + 3sb ° 3sc) · (3sc +n) bit-operations. Hence the first MITM takes time equivalent to
T1 =

≥

a
r + (3sa°3sb+3sc)·(3sa+n)

2r n2

¥

·23sa +
≥

c
r +

(3sa°3sb+3sc)·(3sc+n)
2r n2

¥

·23sc encryptions. The number

of pairs stored in the first MITM is around 23sb as mentioned before.

Later on we replace Kb in the linear equation and eliminate Kb ,Kr em , this can also be seen
as a matrix multiplication followed by a Gaussian elimination. Next we compute the values
of A�3(Z ,U ) and A�4(X ,Ka ,Kc ) having values of Ka ,Kc and Z . Computing the value of
U from Z takes time less than required in the b encryption rounds. Thereafter, evaluating
3s(a +b + c) linear expressions in 6bs bits requires 3s(a +b + c) ·6bs bit-operations. Again for
A�4 computing X from Ka requires evaluating the first a encryption rounds. Then evaluation
of linear expressions requires 3s(a +b + c) · (3sa + 3sc +n) bit-operations. Hence the 2nd
MITM takes T2 =

≥

b
r + (3sa+3sb+3sc)·(6bs)

2r n2 + a
r + (3sa+3sb+3sc)·(3sa+3sc+n)

2r n2

¥

·23sb encryptions. The

expected number of collisions in this procedure is 23sb°3sa°3sc which the attacker needs to
filter whenever it is greater than 1. Hence the total complexity of the attack is estimated as:

2s(r°a°b°c) £
h

T1 +T2 (The 2 MITMs) + (23s(b°a°c)) (Filter Solutions)+

(2n +3sb °3s) · (r °a ° c)
r

+ n ·µ · (3n +3sb °3s)
2r n2 +

2n · b
r
+ (n °3s(a + c)) ·n · (3n +6sb °3s)

2r n2 +

(n °3s(a +b + c))3

2r n2

i

.
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3.4 2-Stage MITM attack on partial S-box layers

As n and s go to infinity, the optimal parameters become a = b = c = 1 and the asymptotic
complexity is equivalent to 4

r §2sr , which is an improvement by a factor n/8 compared to the
linearization attack. When s remains small (e.g. s = 1), the optimal parameters can be larger.
With a = b = c = log2(2n)

3s , the complexity is asymptotically 4log2(n)
3sr ·2sr . If we take sr = n, this is

better than exhaustive search by a factor≠
≥

n
log(n)

¥

. The memory complexity is dominated by
the space required for the 2 MITM stages. It can be seen that the total memory complexity in
bits can be computed as

(3sa °3sb +3sc) · (23as +23cs)+ (3sa +3sb +3sc) ·23bs+1.

For the
•n

s

¶

-round instances, we get the following results. For n = 128, s = 1,r = 128, if we take
a = b = c = 5, we get the total complexity around 2125 encryptions with 222 bits of memory.
For n = 128, s = 10,r = 12, if we take a = b = c = 1, we get the total complexity around 2119

encryptions with 238 bits of memory. For the 0.8£
•n

s

¶

-round instances, we get the following
results. For n = 128, s = 1,r = 103, if we take a = b = c = 5, we get the total complexity around
2101 encryptions. For n = 128, s = 10,r = 10, if we take a = b = c = 1, we get the total complexity
around 299 encryptions. The memory complexity is the same as the corresponding

•n
s

¶

-round
attacks.

3.4.1 Speed-up using Gray-Codes

We emphasize that the technique outlined in [BCC+10] to evaluate a function over all points
of its input domain, works best for linear or quadratic functions. As such, it is best to employ
the attack when the set of functions for which we want to evaluate over the input space is
quadratic/linear. This is only possible if we restrict a = c = 1. Let us see why. The first MITM
procedure finds a collision between two lists using the equation A�1(Ka , X ) = A�2(Kc ,Y ).
Notice that, thus far, X (rep. Y ) has been computed from the plaintext (resp. ciphertext) by
guessing Ka (resp. Kc ) and evaluating the first a rounds in the forward direction (resp. last c
rounds in the backward direction). In order to apply Gray-code-based speed-up we need to
express X and Y as functions of Ka and Kc . These functions happen to be quadratic only when
a = c = 1. This condition automatically ensures that in the second MITM equations are also
quadratic. This is true since the second MITM essentially equates A�3(Z ,U ) =A�4(X ,Ka ,Kc ),
and we know that the relation between U , Z is quadratic since these are the input-output bits
of the LowMC S-box in the middle b rounds. However, unlike in the MITM for the complete
non-linear layers, there is no pre-computation in the first MITM that helps us reduce the
steps in the second MITM. A�4(X ,Ka ,Kc ) needs to be only evaluated for the 23sb pairs of
Ka ,Kc that survive the 1st MITM. However, to employ Gray-code-based speed up we need to
evaluate A�4 over all points of its input space. We could split A�4 into A�5(Ka , X )+A�6(Kc )
and then evaluate each of the A�5 and A�6 separately. Thus the time required for the first
MITM would be TG1 = 3sa°3sb+3sc

2r n2 · (23as+1 + 23sc+1) encryptions. The 2nd MITM requires
TG2 = 3sa+3sb+3sc

2r n2 · (23bs+1 +23as+1 +23sc ) encryptions.
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Chapter 3. Ruining a PICNIC, Act 2

Figure 3.3: The base 2 logarithm of the complexity of the 2-stage MITM attack when n = 128
and s = 1,10, for n = 0.8£bn

s c, when a,b,c are kept equal and varied.

It only makes sense to employ Gray-codes if TG1 +TG2 < T1+T2. For s = 1, the optimal values of
a,b,c are considerably higher and it does not make sense to attempt the Gray-code speed-up
using this algorithm. In fact even if we attempt to use this method by forcing a = b = c = 1, the
complexity is many times higher. Intuitively this makes sense, if a, c and s are both 1 then the
lists require exhaustive search over only 3as = 3sc = 3 variables, for which employing even a
non-Gray-code approach would take only 23 function evaluations. However when s = 10, using
such Gray-codes to execute the MITM stages is beneficial. For n = 128, s = 10,r =

•n
s

¶

= 12, if
we take a = b = c = 1, we get the total complexity around 2110.6 encryptions which is better
than the previous estimate by a factor of around 29. For r = 0.8£

•n
s

¶

= 10 using the same
parameters we get the total complexity around 290.8 encryptions which again outperforms the
previous estimate by a factor of around 28.

3.5 Experimental Results

In this section we present experimental data to showcase how our new attacks stack up in
comparison to the attacks proposed in [BBDV20] on instances of LowMC with smaller blocksizes.
Our results indicate that for all instances targeted in our work, there is a significant speedup
compared to the previous attacks. Moreover, we provide experimental evidence that our
attacks successfully recover the key with a better complexity than exhaustive search for both
3-round with full S-box layer and n/s-round with partial S-box layer variants.

All the attacks and variants of the encryption function were implemented in Sage and ran on
an Intel Xeon E5-2680 processor with 256 GB of memory. Each attack was run for several
randomly generated instances. The complexity figures are reported by computing the base
2 logarithm of the amount of time taken by the attack, divided by the amount of time one
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3.5 Experimental Results

Figure 3.4: The histogram of base 2 logarithm of the time complexity of all linearization,
2-stage MITM and 2-stage MITM with gray-code enumeration attacks for n = 18, s = 6, r = 2,
in terms of the time it takes to perform a single encryption with the same key, the same affine
layers, and the same key update functions.

encryption takes.1

Full S-box Layer: For the 2-round full S-box layer variant of the cipher, we implemented
all three Linearization, 2-step MITM and 2-step MITM with gray-code enumeration attacks
for n = 18. The results are presented in Figure 3.4. On average, the linearization attack
required 216.38 encryptions to recover the key, where as the 2-stage MITM, and the gray code
enumeration attacks required 213.31 and 26.42 encryptions to yield a solution respectively.

We also implemented the attack using Gray-code enumeration for 3-round variants of block
size 12. Figure 3.5 show cases the complexity of this attack for several randomly generated
samples. Our experimental results indicate that the 3-round variant of this attack yields a
solution faster than exhaustive search for all the samples we ran the attack for and the average
complexity of our experiments was 25.88 encryptions for n = 12, s = 4,r = 3.

Partial Non-Linear Layer: For the partial S-box layer variant of the cipher with the number
of rounds equal to r = bn

s c £ 0.8, we implemented the 2-stage MITM attack described in
section 3.4, the linearization method described in [BBDV20] and in addition, the special case
gray-code enumeration attack described at the end of 3.4. For n = 16, s = 1 and r = 12 the
linearization attack yielded a complexity of 210.29 encryptions, and the two-step MITM and the
gray-code enumeration attacks yielded a solution in 28.46 and 28.50 encryptions respectively.

1The source code of the attacks can be found at https://gitlab.epfl.ch/barooti/lowmc-challenge-round-3
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Chapter 3. Ruining a PICNIC, Act 2

Figure 3.5: The histogram of base 2 logarithm of the time complexity of the gray-code enu-
merated 2-stage MITM attack for n = 12, s = 4, r = 3, in terms of the time it takes to perform a
single encryption

(a) (b)

Figure 3.6: (a) The logarithm of the complexity of 2-step MITM, 2-step MITM with gray-code
enumeration and linearization attacks for the partial S-box layer variant with parameters
n = 16 , s = 1 and r = 12, (b) The logarithm of the complexity of the two-step MITM attack for
n = 12, s = 1,r = 12.

For the 2-step MITM attack, we ran the experiments for 3 instances of a = b = c = 1, a = b =
c = 2 and a = b = c = 3. According to our experimental results, the best performance was when
a = b = c = 1. The results of the 3 attacks are demonstrated in Figure 3.6a, and it is evident that
both our new attacks are significantly faster than the linearization method.

We also experimented the attack for n = 12, s = 1 and r = n/s = 12 and a = b = c = 1. According
to our experimental results demonstrated in Figure 3.6b, this attack had an average complexity
of 27.402 encryptions, indicating a speed up over exhaustive search.

3.6 Conclusion

In this chapter, we present a 2-stage MITM on several instances of LowMC using only a single
plaintext/ciphertext. The first MITM stage reduces the key candidates corresponding to a
fraction of key bits of the master key. The second MITM stage between this reduced candidate
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3.6 Conclusion

set and the remaining fraction of key bits successfully recovers the master key. We have shown
with experimental evidence on smaller versions of LowMC that the combined computational
complexity of both these stages is significantly lower than those reported in [BBDV20].
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4 Public-Key Encryption With Quantum
Keys

This chapter is dedicated to the study of the notion of Public-Key encryption with quantum
keys (qPKE). We show that, unlike the classical counterpart, qPKE can be constructed from
MiniCrypt assumptions. We further show although qPKE can not provide unconditional
security, it is possible to build this primitive in a world in which one-way functions do not. The
personal contribution of this work is taken from joint work with Alex B. Grilo, Loïs Huguenin-
Dumittan, Giulio Malavolta, Or Sattath, Quoc-Huy Vu, and Michael Walter [BGHD+23].

Structure of the Chapter: We begin this chapter by motivating the problem and summarizing
the results presented throughout the chapter in section 4.1. We continue by giving a technical
overview of the contributions done in this work in section 4.1.2. We summarize the related
and concurrent work on this problem in sections 4.1.3 and 4.1.4. The formal definitions and
security notions for qPKE are provided in section 4.2. Later, in section 4.3 we present two
constructions for qPKE, based on the existence of one-way functions and pseudorandom
function-like state generators. We continue by presenting another construction of qPKE based
on pseudorandom function-like states with proof of destruction in section 4.4. Section 4.5
contains the impossibility proof for information-theoretically secure qPKE. We ultimately
conclude the chapter in section 4.6.

4.1 Introduction

The use of quantum resources to enable cryptographic tasks under weaker assumptions than
classically needed (or even unconditionally) were actually the first concrete proposals of
quantum computing, with the seminal quantum money protocol of Wiesner [Wie83] and
the key-exchange protocol of Bennett and Brassard [BB84]. Ever since, the field of quantum
cryptography has seen a surge of primitives that leverage quantum information to perform
tasks that classically require stronger assumptions, or are downright impossible. Recent
works [BCKM21, GLSV21] have shown that there exist quantum protocols for oblivious transfer,
and therefore arbitrary multi-party computation (MPC), based solely on the existence of
one-way functions (OWF) [BCKM21, GLSV21], or pseudorandom states (PRS) [JLS18], which
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Chapter 4. Public-Key Encryption With Quantum Keys

potentially entail even weaker computational assumptions [Kre21, KQST22]. It is well-known
that, classically, oblivious transfer and MPC are “Cryptomania” objects, i.e., they can only
be constructed from more structured assumptions that imply public-key encryption (PKE).
Thus, the above results seem to challenge the boundary between Cryptomania and MiniCrypt,
in the presence of quantum information. Motivated by this state of affairs, in this work we
investigate the notion of PKE itself, the heart of Cryptomania, through the lenses of quantum
computing. That is, we ask the following question:

Does public-key encryption (PKE) belong to MiniQCrypt?

Known results around this question are mostly negative: It is known that PKE cannot be
constructed in a black-box manner from OWFs [IR90], and this result has been recently re-
proven in the more challenging setting where the encryption or decryption algorithms are
quantum [ACC+22]. However, a tantalizing possibility left open by these works is to realize PKE
schemes from OWFs (or weaker assumptions), where public-keys or ciphertexts are quantum
states.

4.1.1 Our results

In this work we initiate the systematic study of quantum public-key encryption (qPKE), i.e.,
public-key encryption where public-keys and ciphertexts are allowed to be quantum states.
We break down our contributions as follows.

1. Definitions. We provide a general definitional framework for qPKE, where both the public-
key and the ciphertext might be general quantum states. In the classical setting, there is
no need to provide oracle access to the encryption, since the public-key can be used to
implement that. In contrast, if the public-key is a quantum state, it might be measured during
the encryption procedure, and the ciphertexts might depend on the measurement outcome.
In fact, this is the approach taken in some of our constructions. This motivates a stronger
security definition, similar to the classical counterpart, in which the adversary gets additional
access to an encryption oracle that uses the same quantum public-key that is used during the
challenge phase. We define IND-CPA-EO (respectively, IND-CCA-EO) security by adding the
encryption oracle (EO) to the standard IND-CPA (respectively, IND-CCA) security game.

2. Constructions. With our new security definition at hand, we propose three protocols
for implementing qPKE from OWF and potentially weaker assumptions, each with its own
different advantages and disadvantages. More concretely, we show the existence of:

1. A qPKE scheme with quantum public-keys and classical ciphertexts that is IND-CCA-
EO1 secure, based on post-quantum OWF, in section 4.3.1.

1Throughout this chapter, unless explicitly specified, by IND-CCA we refer to the notion of adaptive IND-CCA2.
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2. A qPKE scheme with quantum public-key and quantum ciphertext that is IND-CCA1
secure, based on pseudo-random function-like states (PRFS) with super-logarithmic
input-size2, in section 4.3.2. Since this scheme is not EO secure, each quantum public-
key enables the encryption of a single message.

3. A qPKE scheme with quantum public-key and classical ciphertext that is IND-CPA-
EO secure based on pseudo-random function-like states with proof of destruction
(PRFSPDs), in section 4.4.

We wish to remark that it has been recently shown that OWF imply PRFS with super-logarithmic
input-size [AQY22] and PRFSPDs [BBSS23]. Therefore, the security of the second and third
protocols is based on a potentially weaker cryptographic assumption than the first one. Fur-
thermore, PRFS with super-logarithmic input-size are oracle separated from one-way func-
tions [Kre21]; therefore, our second result shows a black-box separation between a certain
form of quantum public-key encryption and one-way functions. On the other hand, for the
other two constructions, even if the public-key is a quantum state, the ciphertexts are classical
and, furthermore, one quantum public-key can be used to encrypt multiple messages. The
first protocol is much simpler to describe and understand since it only uses standard (classical)
cryptographic objects. Moreover, we show that this scheme guarantees the notion of adaptive
CCA2 security and is the only scheme that achieves perfect correctness.

3. Lower Bounds. To complete the picture, we demonstrate that information-theoretically
secure qPKE does not exist. Due to the public-keys being quantum states, this implication is
not trivial like the classical case. In fact, some of the existing constructions of qPKE [Got05]
have been conjectured to be unconditionally secure, a conjecture that we invalidate in this
work. While this general statement follows by recent and independent implications in the
literature (see section 4.5 for more details), in this work we present a novel proof of this fact,
borrowing techniques from shadow tomography, which we consider to be of independent
interest.

4.1.2 Technical overview

In this section, we provide a technical overview of our results. In Section 4.1.2, we explain
the challenges and choices to define qPKE and its security definition. In Section 4.1.2, we
present 3 instantiations of qPKE, each based on a different assumption and with different
security guarantees. Ultimately, Section 4.1.2 is dedicated to the impossibility of information-
theoretically secure qPKE and a high-level overview of the proof technique.

2It is worth mentioning that PRS implies PRFS with logarithmic size inputs, but no such implication is known
for super-logarithmic inputs.
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Definitions of qPKE

In order to consider public-key encryption schemes with quantum public-keys, we need to
revisit the traditional security definitions. In the case of quantum public-keys, there are several
immediate issues that require revision.

The first issue is related to the access the adversary is given to the public-key. In the classical-
key case (even with quantum ciphertexts), the adversary is given the classical public-key
pk. Given a single quantum public-key, one cannot create arbitrary number of copies of the
quantum public-key, due to no-cloning. Hence, to naturally extend notions such as IND-CPA
security, we provide multiple copies of the quantum public-key to the adversary (via the mean
of oracle access to the quantum public-key generation algorithm).

The second issue concerns the quantum public-key’s reusability. Classically, one can use the
public-key to encrypt multiple messages. With quantum public-keys, this might not be the
case: the quantum public-key might be consumed during the encryption. In a non-reusable
scheme, the user needs a fresh quantum public-key for every plaintext they wish to encrypt.
In fact, in the PRFS-based construction (see section 4.3.2), part of the quantum public-key is
sent as the (quantum) ciphertext, so clearly, this construction is not reusable.

Thirdly, it could be the case that in a reusable scheme, each encryption call changes the
public-key state Ωqpk in an irreversible way. Hence, we make a syntactic change: Enc(Ωqpk ,m)
outputs (c,Ω0

qpk
), where c is used as the ciphertext and Ω0

qpk
is used as the key to encrypt the

next message. It is important to notice that in this scenario, the updated public-key is not
publicly available anymore and is only held by the party who performed the encryption.

Lastly, the syntactic change mentioned above also has security effects. Recall that classically,
there is no need to give the adversary access to an encryption oracle, since the adversary
can generate encryption on their own. Alas, with quantum public-keys, the distribution of
ciphers might depend on the changes that were made to the quantum public-key by the
challenger whenever the key is used to encrypt several messages. Therefore, for reusable
schemes, we define two new security notions, denoted CPA-EO and CCA-EO, that are similar
to CPA and CCA security but the adversary is given additional access to an encryption oracle
(EO). We note there are several works considering the notions of chosen-ciphertext security in
the quantum setting, because it is not clear how to prevent the adversary from querying the
challenge ciphertext, if it contains a quantum states. However, we only consider CCA-security
for schemes with classical ciphertexts, and therefore this issue does not appear in this work.

Pure vs Mixed States. We mention explicitly that we require our public-keys to be pure states.
This is motivated by the following concern: there is no general method to authenticate/sign
quantum states. One proposal to ensure that the certificate authority (CA) is sending the
correct state is to distribute various copies of the keys to different CAs and test whether
they are all sending the same state [Got05]. This ensures that, as long as at least one CA is
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honest, the user will reject a malformed key with a probability correlated to the distance of
the tampered key from the real one. However, this argument crucially relies on the public-key
being a pure state (in which case comparison can be implemented with a SWAP-test). On the
other hand, if the public-key was a mixed state, there would be no way to run the above test
without false positives.

It has been shown that authenticating arbitrary quantum states is impossible [BCG+02a].
However, follow-up work has shown how tampering with the public-key can be prevented
using the structure of the key [KMNY23, MW23].

We also mention that, if mixed states are allowed, then there is a trivial construction of
qPKE from any given symmetric encryption scheme (SKE.key-gen,SKE.Enc,SKE.Dec), as
also observed in [MY22a, Theorem C.6], which we describe in the following. To generate the
keys, we use the output of SKE.key-gen as the secret-key and use it to create the uniform
mixture

1
2n

X

x2{0,1}n
|xihx|≠ |Encsk(x)ihEncsk(x)| (4.1)

as the public-key. The ciphertext corresponding to a message m is given by (Encx (m),Encsk(x)).
To decrypt, the decryptor would first recover x by decrypting the second element in the
ciphertext using sk, and then recover m by decrypting the first item using x as the secret key.

Constructions for qPKE

As previously mentioned, we propose in this work three schemes for qPKE, based on three
different assumptions, each providing a different security guarantee.

qPKE from OWF. Our first instantiation of qPKE is based on the existence of post-quantum
OWFs. For this construction, we aim for the strong security notion of indistinguishability
against adaptive chosen ciphertext attacks with encryption oracle referred to as IND-CCA-EO.
We start with a simple bit-encryption construction that provides IND-CCA security and we
discuss how one can modify the scheme to encrypt multi-bit messages and also provide EO
security.

Our first scheme assumes the existence of a quantum-secure pseudorandom function (PRF),
which can be built from quantum-secure one-way functions [Zha12]. Given a PRF ensemble
{ fk }k , the public key consists of a pair of pure quantum states qpk = (

Ø

Øqpk 0

Æ

,
Ø

Øqpk 1

Æ

) and the
secret key consists of a pair of bit-strings dk= (dk0,dk1) such that, for all b 2 {0,1},

Ø

Øqpk b

Æ

= 1
p

2n

X

x2{0,1}n

Ø

Øx, fdkb (x)
Æ

,

where fk denotes the quantum-secure PRF keyed by k. To encrypt a bit b, one simply measures
all qubits of

Ø

Øqpk b

Æ

in the computational basis. The result takes the form (x, fdkb (x)) for some

71



Chapter 4. Public-Key Encryption With Quantum Keys

uniformly random x 2 {0,1}n and this is returned as the ciphertext, i.e., (qc0,qc1) = (x, fdkb (x)).

To decrypt a ciphertext (qc0,qc1), we apply both fdk0 and fdk1 to qc0 and return the value
of b 2 {0,1} such that fdkb (qc0) = qc1. In case this does happen for neither or both of the keys,
the decryption aborts.

The IND-CCA security of the simple bit-encryption scheme can be proven with a hybrid
argument (see appendix B.1). However, there are a few caveats to the scheme that can be
pointed out. First, the scheme is not reusable. It can be easily noticed that after using a public-
key for encryption, public-key state collapses, meaning that all the subsequent encryption
queries are derandomized. This would mean if the same public-key is reused, it can not even
guarantee IND-CPA security as the encryption is deterministic.

The second issue is lifting this CCA-secure bit-encryption scheme to a many-bit CCA-secure
encryption scheme. In fact, although not trivial, as proven by Myers and Shelat [Ms09],
classically it is possible to construct CCA-secure many-bit encryption from CCA-secure bit-
encryption. However, the argument cannot be extended to qPKE in a generic way. The
main issue is that the construction from [Ms09], similar to the Fujisaki-Okamoto transform,
derandomizes the encryption procedure for some fixed random coins. Later these fixed
random coins are encrypted and attached to the ciphertext, so that the decryptor can re-
encrypt the plaintext to make sure they were handed the correct randomness. Looking at our
construction, it is quite clear that it is not possible to derandomize the encryption procedure
as the randomness is a consequence of the measurement.

Let us show how the same approach can be modified to circumvent the issues mentioned. Our
main observation is that we can use public-keys of the form mentioned before for a key agree-
ment stage and then use the agreed key to encrypt many-bit messages with a symmetric-key
encryption scheme (SKE). Let us elaborate. Let { fk }k be a PRF family and (SKE.Enc,SKE.Dec)
be a symmetric-key encryption scheme. It has been proven that quantum-secure one-way
functions imply a quantum-secure PRF [Zha12], and post-quantum IND-CCA symmetric
encryption [BZ13a]. Consider the following scheme: the secret key dk is a uniformly random
key for the PRF, and for a fixed dk, the quantum public-key state is

Ø

Øqpk
dk

Æ

= 1
p

2∏

X

x2{0,1}∏
|xi

Ø

Ø fdk(x)
Æ

. (4.2)

The encryption algorithm will then measure
Ø

Øqpk
dk

Æ

in the computational basis leading to the
outcome (x§, y§ = fdk(x§)). The ciphertext of a message m is given by (x§,SKE.Enc(y§,m)).
To decrypt a ciphertext (x̂, ĉ), we first compute ŷ = fdk(x) and return m̂ = SKE.Dec( fdk(x̂), ĉ).

We emphasize that this scheme is reusable since it allows the encryption of many messages
using the same measurement outcome (x§, fdk(x§)). Using a hybrid argument, it can be shown
that if the underlying SKE guarantees IND-CCA security, this construction fulfills our strongest
security notion, i.e. IND-CCA-EO security. A formal description of the scheme, along with a
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security proof can be found in section 4.3.1.

QPKE from PRFS. The second construction we present in this work is an IND-CCA1 secure
public-key scheme based on the existence of pseudorandom function-like state generators.
Our approach is based on first showing bit-encryption, and the discussion regarding how to
lift that restriction is discussed in section 4.3.2. The ciphertexts generated by our scheme
are quantum states, and as the public-keys of this construction are not reusable, we do not
consider the notion of EO security. A family of states {

Ø

Ø√k,x
Æ

}k,x is pseudo-random function-
like [AQY22] if

1. There is a quantum polynomial-time algorithm Gen such that

Gen(k,
X

x
Æx |xi) =

X

x
Æx |xi

Ø

Ø√k,x
Æ

, and

2. No QPT adversary can distinguish (
Ø

Ø√1
Æ

, ...,
Ø

Ø√`

Æ

) from (
Ø

Ø¡1
Æ

, ...,
Ø

Ø¡`
Æ

), where
Ø

Ø√i
Æ

=
P

x Æ
i
x |xi

Ø

Ø√k,x
Æ

,
Ø

Ø¡i
Æ

=P

x Æ
i
x |xi

Ø

Ø¡x
Æ

, and {
Ø

Ø¡x
Æ

}x are Haar random states and the states
|æi i=

P

x Æ
i
x |xi are chosen by the adversary.

We continue by providing a high-level description of the scheme. The key generation algorithm
picks a uniform PRFS key dk and generates the corresponding public-keys as stated below:

1
p

2∏

X

x2{0,1}∏
|xi

Ø

Ø√dk,x
Æ≠n , (4.3)

where {
Ø

Ø√k,x
Æ

}k,x is a PRFS family, the size of the input x is super-logarithmic in the security
parameter and n is a polynomial in the security parameter.

To encrypt a bit m, the encryptor will then measure the first register of
Ø

Øqpk
Æ

to obtain x§ and
the residual state after this measurement will be of form |x§i

Ø

Ø√dk,x§
Æ≠n . They also sample

a uniform key dk1 and compute the state
Ø

Ø√dk1,x§
Æ

then compute the ciphertext c = (x§,Ω)
where

Ω =

8

<

:

Ø

Ø√dk,x§
Æ≠n , if m = 0

Ø

Ø√dk1,x§
Æ≠n , if m = 1

. (4.4)

To decrypt a ciphertext (x̂, Ω̂), we split Ω̂ into n subsystems and check whether each subsystem
is the PRFS with input x̂ and key dk using the PRFS Test procedure from [AQY22, Section 3.3].
If the test succeeds for all subsystems, we output 0 and otherwise, we output 1. For a large
enough n, our scheme achieves statistical correctness.

We prove that this construction guarantees IND-CCA1 security by a hybrid argument in
section 4.3.2. We emphasize that as the ciphertexts of the scheme are quantum states it is
challenging to define adaptive CCA2 security.
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QPKE from PRFSPDs. Our third scheme is based on pseudo-random function-like states
with proof of destruction (PRFSPDs), which was recently defined in [BBSS23]. The authors
extended the notion of PRFS to pseudo-random function-like states with proof of destruction,
where we have two algorithms Destruct and Ver , which allows us to verify if a copy of the PRFS
was destructed.

We will discuss now how to provide non-reusable CPA security security3 of the encryption of a
one-bit message and we discuss later how to use it to achieve reusable security, i.e., CPA-EO
security. The quantum public-key in this simplified case is

1
p

2∏

X

x2{0,1}∏
|xi

Ø

Ø√dk,x
Æ

. (4.5)

The encryptor will then measure the first register of
Ø

Øqpk
Æ

and the post-measurement state
is |x§i

Ø

Ø√dk,x§
Æ

. The encryptor will then generate a (classical) proof of destruction for this
state º= Destruct (

Ø

Ø√dk,x§
Æ

). The encryption procedure also picks dk1 uniformly at random,
generated

Ø

Ø√dk1,x§
Æ

and generates the proof of destruction º0 = Destruct (
Ø

Ø√dk1,x§
Æ

). The corre-
sponding ciphertext for a bit b is given by c = (x§, y), where

y =

8

<

:

º0, if b = 0

º, if b = 1
.

The decryptor will receive some value (x̂, ŷ) and decrypt the message b̂ = Ver (dk, x̂, ŷ). The
proof of the security of the aforementioned construction follows from a hybrid argument
reminiscent of the security proof of the previous schemes (see section 4.4). Notice that
repeating such a process in parallel trivially gives a one-shot security of the encryption of
a string m and moreover, such an encryption is classical. Therefore, in order to achieve
IND-CPA-EO secure qPKE scheme, we can actually encrypt a secret key sk that is chosen
by the encryptor, and send the message encrypted under sk. We leave the details of such a
construction and its proof of security to section 4.4.

Impossibility of Information-Theoretically Secure qPKE

So far, we have established that qPKE can be built from assumptions weaker than the ones
required for the classical counterpart, and potentially even weaker than those needed to
build secret-key encryption classically. This naturally leads to the question of whether it is
possible to build an information-theoretically secure qPKE. In the following, we present an
impossiblity proof of this fact, using techniques from the literature on shadow tomography.
Although proving the impossibility of classical PKE is immediate, there are a few challenges
when trying to prove a result of a similar flavour for qPKE. Even when considering security
against a computationally unbounded adversary, there is a limitation that such adversary has,

3Meaning that one can only encrypt once using a
Ø

Øqpk
Æ

.
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namely, they are only provided with polynomially many copies of the public-key.

The first step of the proof is reducing winning the IND-CPA game to finding a secret-key/public-
key pair (dk,

Ø

Øqpk
dk

Æ

) such that
hqpk

§ Ø

Øqpk
dk

Æ

º 1.

In other words, we show that if
Ø

Øqpk
dk

Æ

is relatively close to
Ø

Øqpk
§Æ

, there is a good chance that
dk can decrypt ciphertexts encrypted by

Ø

Øqpk
§Æ

correctly. A formal statement and the proof of
this argument can be found in lemma 4.

Given this lemma, the second part of the proof consists in constructing an adversary that takes
polynomially many copies of

Ø

Øqpk
§Æ

as input and outputs (dk,
Ø

Øqpk
dk

Æ

) such that
Ø

Øqpk
dk

Æ

is
relatively close to

Ø

Øqpk
§Æ

. The technique to realize this adversary is shadow tomography, which
shows procedures to estimate the values hqpk

dk
|qpk

§i for all (
Ø

Øqpk
dk

Æ

,dk) pairs. It is apparent
that doing this naively, i.e. by SWAP-testing multiple copies of

Ø

Øqpk
§Æ

with each
Ø

Øqpk
dk

Æ

, would
require exponentially many copies of the public-key

Ø

Øqpk
§Æ

. The way we circumvent this
problem is by using a recent result by Huang, Kueng, and Preskill [HKP20]. Informally, this
theorem states that for M rank 1 projective measurements O1, . . . ,OM and an unknown n-
qubit state Ω, it is possible to estimate Tr(OiΩ) for all i , up to precision ≤, by only performing
T =O(log(M)/≤2) single-copy random Clifford measurements on Ω.

Employing this theorem, we show that a computationally unbounded adversary can estimate
all the values hqpk

dk
|qpk

§i from random Clifford measurements on polynomially many copies
of

Ø

Øqpk
§Æ

. Having the estimated values of hqpk
dk
|qpk

§i the adversary picks a dk such that the
estimated value is relatively large and uses this key to decrypt the challenge ciphertext. Now
invoking Lemma 4 we conclude that the probability of this adversary winning the IND-CPA
game is significantly more than 1/2.

4.1.3 Related works

The notion of qPKE was already considered in the literature, although without introduc-
ing formal security definitions. For instance, Gottesman [Got05] proposed a candidate
construction in an oral presentation, without a formal security analysis. The scheme has
quantum public-keys and quantum ciphers, which consumes the public-key for encryption.
Kawachi et al. [KKNY05] proposed a construction of qPKE (with quantum keys and cipher-
texts) from a newly introduced hardness assumption, related to the graph automorphism
problem. [OTU00] defines and constructs a public-key encryption where the keys, plaintexts
and ciphers are classical, but the algorithms are quantum the (key-generation uses Shor’s
algorithm). One of the contributions of this work, is to provide a unifying framework for these
results, as well as improve in terms of computational assumptions and security guarantees.

In [NI09], the authors define and provide impossibility results regarding encryption with
quantum public-keys. Classically, it is easy to show that a (public) encryption scheme cannot
have deterministic ciphers; in other words, encryption must use randomness. They show
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that this is also true for a quantum encryption scheme with quantum public-keys. In [Dol20],
a secure encryption scheme with quantum public keys based on the LWE assumption is
introduced. That work shows (passive) indistinguishable security, and is not IND-CPA secure.

In [MY22b, MY22a], the authors study digital signatures with quantum signatures, and more
importantly in the context of this work, quantum public-keys.

4.1.4 Concurrent and subsequent work

In a concurrent and independent work, Coladangelo [Col23] proposes a qPKE scheme with a
construction that is very different from ours, and uses a quantum trapdoor function, which is
a new notion first introduced in their work. Their construction is based on the existence of
quantum-secure OWF. However, in their construction, each quantum public-key can be used
to encrypt a single message (compared to our construction from OWF, where the public-key
can be used to encrypt multiple messages), and the ciphertexts are quantum (whereas our
construction from OWF has classical ciphertexts). They do not consider the stronger notion of
IND-CCA security.

Building on the results presented in this chapter, two follow-up works [KMNY23, MW23]
consider a stronger notion of qPKE where the public-key consists of a classical and a quantum
part, and the the adversary is allowed to tamper arbitrarily with the quantum part (but not
with the classical component).4 The authors provide constructions assuming quantum-
secure OWF. While their security definition is stronger, we remark that our approach is more
general, as exemplified by the fact that we propose constructions from potentially weaker
computational assumptions. In [BS23], the authors give another solution for the quantum
public-key distribution problem using time-dependent signatures, which can be constructed
from quantum-secure OWF, but the (classical) verification key needs to be continually updated.

4.2 Definitions of qPKE

In this section, we introduce the new notion of encryption with quantum public keys (defini-
tion 10). The indistinguishability security notions are defined in section 4.2.1 and section 4.2.2.

Definition 10 (Encryption with quantum public keys). Encryption with quantum public keys
(qPKE) consists of 4 algorithms with the following syntax:

1. dk √ Gen(1∏): a QPT algorithm, which receives the security parameter and outputs a
classical decryption key.

2.
Ø

Øqpk
Æ

√ QPKGen(dk): a QPT algorithm, which receives a classical decryption key dk, and
outputs a quantum public key

Ø

Øqpk
Æ

. In this work, we require that the output is a pure

4Because of this stronger security definition, here the notion of public-keys with mixed states is meaningful
since there is an alternative procedure to ensure that the key is well-formed (e.g., signing the classical component).
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state, and that t calls to QPKGen(dk) should yield the same state, that is,
Ø

Øqpk
Æ≠t .

3. (qc,
Ø

Øqpk
0Æ) √ Enc(

Ø

Øqpk
Æ

,m): a QPT algorithm, which receives a quantum public key
Ø

Øqpk
Æ

and a plaintext m, and outputs a (possibly classical) ciphertext qc and a recycled
public key

Ø

Øqpk
0Æ.

4. m √ Dec(dk,qc): a QPT algorithm, which uses a decryption key dk and a ciphertext qc,
and outputs a classical plaintext m.

We say that a qPKE scheme is correct if for every message m 2 {0,1}§ and any security parameter
∏ 2N, the following holds:

Pr

2

6

4

Dec(dk,qc) = m

Ø

Ø

Ø

Ø

Ø

Ø

Ø

dk√ Gen(1∏)
Ø

Øqpk
Æ

√ QPKGen(dk)
(qc,

Ø

Øqpk
0Æ) √ Enc(

Ø

Øqpk
Æ

,m)

3

7

5

∏ 1°negl(∏),

where the probability is taken over the randomness of Gen , QPKGen , Enc and Dec. We say that
the scheme is reusable if completeness holds to polynomially many messages using a single
quantum public key. More precisely, we say that a qPKE scheme is reusable if for every security
parameter ∏ 2N, polynomial number of messages m1, . . . ,mn(∏) 2 {0,1}§, the following holds:

Pr

2

6

6

6

6

6

6

6

4

8i 2 [n(∏)], Dec(dk,qci ) = mi

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

dk√ Gen(1∏)
Ø

Øqpk 1

Æ

√ QPKGen(dk)
(qc2,

Ø

Øqpk 2

Æ

) √ Enc(
Ø

Øqpk 1

Æ

,m1)
...

(qcn ,
Ø

Øqpk n+1

Æ

) √ Enc(
Ø

Øqpk i

Æ

,mn(∏))

3

7

7

7

7

7

7

7

5

∏ 1°negl(∏).

4.2.1 Security Definitions for qPKE with Classical Ciphertexts

In this section, we present a quantum analogue of classical indistinguishability security for
qPKE with classical ciphertexts. There are a few subtleties in defining this notion that require
attention. Firstly, since in general the public keys are quantum states and unclonable, in
the security games, we allow the adversary to receive polynomially many copies of

Ø

Øqpk
Æ

,
by making several calls to the QPKGen(dk) oracle. Secondly, in the classical setting, there is
no need to provide access to an encryption oracle since the adversary can use the public
key to apply the encryption themself. In the quantum setting, this is not the case: as we
will see, the quantum public key might be measured, and the ciphertexts might depend on
the measurement outcome. Furthermore, the quantum public key can be reused to encrypt
multiple different messages. This motivates a stronger definition of indistinguishability with
encryption oracle, in which the adversary gets oracle access to the encryption, denoted as
IND-ATK-EO security, where ATK can be either chosen-plaintext attacks (CPA), (adaptive or
non-adaptive) chosen-ciphertext attacks (CCA1 and CCA2).

We define the oracles O1,O2 depending on the level of security as follows.
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Game 3 Indistinguishability security with an encryption oracle (IND-ATK-EO) for encryption
with quantum public key and classical ciphertext schemes.

1: The challenger generates dk√ Gen(1∏).
2: The adversary gets 1∏ as an input, and oracle access to QPKGen(dk).
3: The challenger generates

Ø

Øqpk
Æ

√ QPKGen(dk). Let
Ø

Øqpk 1

Æ

:=
Ø

Øqpk
Æ

.
4: For i = 1, . . . ,`, the adversary creates a classical message mi and send it to the challenger.
5: The challenger computes (qci ,

Ø

Øqpk i+1

Æ

) √ Enc(
Ø

Øqpk i

Æ

,mi ) and send qci to the adversary.
6: During step (2) to step (5), the adversary also gets classical oracle access to an oracle O1.
7: The adversary sends two messages m0

0,m0
1 of the same length to the challenger.

8: The challenger samples b 2R {0,1}, computes (qc
§,

Ø

Øqpk l+2

Æ

) √ Enc(
Ø

Øqpk `+1

Æ

,m0
b) and

sends qc
§ to the adversary.

9: For i = `+2, . . . ,`0, the adversary creates a classical message mi and send it to the chal-
lenger.

10: The challenger computes (qci ,
Ø

Øqpk i+1

Æ

) √ Enc(
Ø

Øqpk i

Æ

,mi ) and send qci to the adversary.
11: During step (9) to step (10), the adversary also gets classical oracle access to an oracle O2.

One can observe that after step (7), the adversary no longer gets access to oracle O1.
12: The adversary outputs a bit b0.

We say that the adversary wins the game (or alternatively, that the outcome of the game is 1)
iff b = b0.

ATK

CPA

CCA1

CCA2

Oracle O1

?
Dec(dk, ·)
Dec(dk, ·)

Oracle O2

?
?
Dec

§(dk, ·)

Here Dec
§(dk, ·) is defined as Dec(dk, ·), except that it return ? on input the challenge ciphertext

qc
§.

Definition 11. A qPKE scheme is IND-ATK-EO secure if for every QPT adversary, there exists
a negligible function ≤ such that the probability of winning the IND-ATK-EO security game
(Game 3) is at most 1

2 +≤(∏).

Remark 1. The definition presented in definition 11 is stated for the single challenge query
setting. Using the standard hybrid argument, it is straightforward to show that single-challenge
definitions also imply many-challenge definitions where the adversary can make many chal-
lenge queries.

Remark 2. We emphasize that the IND-CCA2-EO definition is only well-defined for schemes
with classical ciphertexts. The other two notions are well-defined even for quantum ciphertexts,
though we do not use those.

4.2.2 Security Definitions for qPKE with Quantum Ciphertexts

We now give a definition for qPKE with quantum ciphertexts. In the case of adaptive chosen
ciphertext security, the definition is non-trivial due to the no-cloning and the destructiveness
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of quantum measurements. We note there are indeed several works considering the notions
of chosen-ciphertext security in the quantum setting: [AGM18] defines chosen-ciphertext
security for quantum symmetric-key encryption (when the message is a quantum state), and
[BZ13b, CEV22] defines chosen-ciphertext security for classical encryption under superpo-
sition attacks. However, extending the technique from [AGM18] to the public-key setting is
non-trivial, and we leave this open problem for future work. In this section, we only consider
security notions under chosen-plaintext attacks and non-adaptive chosen-ciphertext attacks.

Even though one can similarly define security notions with encryption oracle for schemes
with quantum ciphertexts as in section 4.2.1, bear in mind in all constructions of qPKE with
quantum ciphertexts present in this work are not reusable, and thus we do not present the
definition in which the adversary has oracle access to the encryption oracle for the sake of
simplicity. We denote these notions as IND-ATK, where ATK is either chosen-plaintext attacks
(CPA) or non-adaptive chosen-ciphertext attacks (CCA1).

Game 4 IND-ATK security game for encryption with quantum public key and quantum cipher-
texts schemes.

1: The challenger generates dk√ Gen(1∏).
2: The adversary A1 gets 1∏ as an input, and oracle access to QPKGen(dk), Enc(qpk , ·) and

O1, and sends m0,m1 of the same length to the challenger. A1 also output a state |sti and
sends it to A2.

3: The challenger samples b 2R {0,1}, generates
Ø

Øqpk
Æ

√ QPKGen(dk) and sends c§ such that
(c§,

Ø

Øqpk
0Æ) √ Enc(

Ø

Øqpk
Æ

,mb) to the adversary A2.
4: A2 gets oracle access to QPKGen(dk), Enc(

Ø

Øqpk
Æ

, ·).
5: The adversary A2 outputs a bit b0.

We say that the adversary wins the game (or alternatively, that the outcome of the game is 1)
iff b = b0.

The oracles O1 is defined depending on the level of security as follows.

ATK

CPA

CCA1

Oracle O1

?
Dec(dk, ·)

Definition 12. A qPKE scheme with quantum ciphertexts is IND-ATK secure if for every QPT
adversary A := (A1,A2), there exists a negligible function ≤ such that the probability of winning
the IND-ATK security game (Game 4) is at most 1

2 +≤(∏).

4.3 Constructions of CCA-Secure qPKE

In this section, we present our qPKE constructions from OWF and PRFS and prove that their
CCA security. The former (given in section 4.3.1) has classical ciphertexts, and allows to encrypt
arbitrary long messages. The latter (given in section 4.3.2) has quantum ciphertexts, and only
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allows to encrypt a single-bit message. However, the latter is based on a weaker assumption
than the former. Finally, in section 4.3.3, we give a remark on the black-box construction of
non-malleable qPKE from CPA-secure qPKE using the same classical approach.

4.3.1 CCA-Secure Many-Bit Encryption from OWF

We start by presenting a simple qPKE construction from OWF which prove that it provides
our strongest notion of security, i.e. IND-CCA-EO security. The scheme is formally presented
in construction 1. The ciphertexts produced by the scheme are classical, and the public-
keys are reusable. The cryptographic components of our construction are a quantum secure
PRF family { fk } and a post-quantum IND-CCA secure symmetric-key encryption scheme
(SKE.Enc,SKE.Dec), defined in section 1.4.2, which can both be built from a quantum-secure
OWF [Zha12, BZ13a].

Construction 1 (IND-CCA-EO secure qPKE from OWF).

• Assumptions: A family of quantum-secure pseudorandom functions { fk }k , and post-
quantum IND-CCA SKE (SKE.Enc,SKE.Dec).

• Gen(1∏)

1. dk $√° {0,1}∏

2.
Ø

Øqpk
Æ

√P

x2{0,1}∏ |x, fdk(x)i

• Enc(
Ø

Øqpk
Æ

,m)

1. Measure
Ø

Øqpk
Æ

to obtain classical strings x, y.
2. Let c0 √ x and c1 √ SKE.Enc(y,m).
3. Output (c0,c1) as the ciphertext and

Ø

Øx, y
Æ

as the residual public key

• Dec(dk, (c0,c1))

1. Compute y √ fdk(c0).
2. Compute m √ SKE.Dec(y,c1) and return m.

It can be trivially shown that the scheme achieves perfect correctness if the underlying SKE
provides the perfect correctness property.

Theorem 2. Let { fk }k be a quantum secure PRF and (SKE.Enc,SKE.Dec) be a post-quantum
IND-CCA secure SKE. Then, the quantum qPKE given in construction 1 is IND-CCA-EO secure.

Proof. We proceed with a sequence of hybrid games detailed in

• Hybrid H0: This is the IND-CCA game with ¶ with the challenge ciphertext fixed to
(x§,c§) to be the ciphertext portion of Enc(

Ø

Øqpk
Æ

,m0
0).
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• Hybrid H1: This is identical to H0 except instead of measuring
Ø

Øqpk
Æ

when the adversary
queries the encryption oracle, the challenger measures a copy of

Ø

Øqpk
Æ

in advance to
obtain (x§, y§ = fdk(x§)) and answers queries to the encryption oracle using (x§, y§)
instead. The decryption oracle still returns ? when queried (x§,c§). This change is only
syntactical so the two hybrids are the same from the adversary’s view.

The hybrids H2 to H5 have 2 main goals: (i) to decorrelate the encryption/decryption ora-
cles Dec

§,Enc from the public-keys handed to the adversary and (ii) to remove the oracles’
dependency on dk.

• Hybrid H2: This is identical to H1, except (x§, y§) is removed from the copies of
Ø

Øqpk
Æ

handed to the adversary. More precisely, the adversary is handed
Ø

Øqpk
0Æ of the following

form:
Ø

Øqpk
0Æ= 1

p
2|x§|°1

X

x:x 6=x§
|xi

Ø

Ø fdk(x)
Æ

(4.6)

Given oracle access to fdk, this state can be efficiently generated. For instance a way
to do this would be preparing a uniform superposition, and computing the indicator
function Ix§(x) = 1x 6=x§ in a separate register and measuring it. The output of this
measurement is 1 with 1°negl(∏) probability and the residual state is of the desired
form.

The decryption oracle still returns ? when queried on the challenge ciphertext. One
can observe that

Ø

Øqpk
Æ

and
Ø

Øqpk
0Æ have negl(∏) trace distance so the advantage of distin-

guishing H1 and H2 is negl(∏).

• Hybrid H3: This (inefficient) hybrid is identical to H2 other than fdk being replaced with
a truly random function f , i.e. the public-keys are changed to:

Ø

Øqpk
0Æ= 1

p
2|x§|°1

X

x:x 6=x§
|xi

Ø

Ø f (x)
Æ

(4.7)

The encryption and decryption oracle can be simulated by oracle access to f . The
decryption oracle returns ? when queried (x§,c§). The indistinugishability of H3 and
H2 follows directly from pseudorandomness property of { fk }k .

• Hybrid H4: This hybrid is identical to H3 other than y§ being sampled uniformly at
random. Upon quering (c0,c1) to the decryption oracle if c0 6= x§, the oracle computes
y = f (c0) and returns m = SKE.Dec(y,c1). In case c0 = x§ and c1 6= c§, the decryption
oracle returns m = SKE.Dec(y§,c1). On (x§,c§) the oracle returns ?. The encryption
oracle returns (x§,SKE.Enc(y§,m)) when queried on m. As x§ does not appear in any
of the public-keys this change is only syntactical.

• Hybrid H5: This hybrid reverts the changes of H3, i.e. dk0 is sampled uniformly at

81



Chapter 4. Public-Key Encryption With Quantum Keys

random and the public-keys are changed as follows:

Ø

Øqpk
0Æ= 1

p
2|x§|°1

X

x:x 6=x§
|xi

Ø

Ø fdk
0(x)

Æ

(4.8)

With this change, on query (c0,c1) if c0 6= x§, the decryption oracle computes y = fdk
0(c0)

and returns m = SKE.Dec(y,c1). In case c0 = x§, the decryption oracle simply returns
m = SKE.Dec(y§,c1) when c1 6= c§ and ? otherwise. The encryption oracle is unchanged
from H4. The indistinguishability of H4 and H5 follows from the pseudorandomness of
f and the fact that

Ø

Øqpk
0Æ and (x§, y§) are decorrelated. The hybrid is efficient again.

The next step is to remove the dependency of the encryption and decryption oracles on y§.
This is done by querying the encryption and decryption oracles of the SKE.

• Hybrid H6: Let SKE.OEnc and SKE.ODec§ be two oracles implementing the encryption
and decryption procedures of SKE with the key y§. SKE.ODec§ returns ? when queried
y§. In this hybrid, we syntactically change the encryption and decryption oracle using
these two oracles. To implement the encryption oracle, on query m we simply query
SKE.OEnc on message m and return (x§,SKE.OEnc(m)). To simulate the decryption
oracle, on query (c0,c1) we act the same as in H5 when c0 6= x§, but on queries of form
(x§,c) we query SKE.ODec§ on c and return SKE.ODec§(c). Due to the definition of
OEnc and ODec§ these changes are also just syntactical. Note that although SKE.ODec§

always returns ? on y§, this event only happens when c0 = x§, i.e. to cause this event
the decryption oracle should be queried on the challenge ciphertext (x§,c§).

• Hybrid H7: We provide the adversary with x§,SKE.OEnc,SKE.ODec§, instead of ac-
cess to the encryption and decryption oracle. The important observation is that the
adversary can implement the encryption and decryption oracles themselves by having
access to x§,SKE.OEnc,SKE.ODec§ and sampling a uniform dk0 themselves and vice
versa (SKE.ODec§ can be queried on c by querying the decryption oracle (x§,c) and
SKE.OEnc can be queried on m by querying the encryption oracle on m). This demon-
strates that the hybrids are only syntactically different and hence are indistinguishable.

• Hybrid H8: This hybrid is identical to H7 with the only difference that the challenge
ciphertext is swapped with (x§,SKE.OEnc(0)). Now notice that any adversary that can
distinguish H8 from H7 can effectively break the IND-CCA security of SKE. Hence, the
indistinguishability of the two hybrids follows directly from the IND-CCA security of
SKE.

Following the same exact hybrids for challenge ciphertext Enc(
Ø

Øqpk
Æ

,m0
1) we can deduce

that the scheme is IND-CCA-EO secure.
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4.3.2 CCA1-Secure Many-Bit Encryption from PRFS

We continue by presenting a CCA1-secure bit-encryption from PRFS, defined in section 1.4.3.
Extending this scheme to polynomially many bits is discussed at the end of this section, see
remark 3. The description of the scheme is given below in construction 2.

Construction 2 (IND-CCA1 secure qPKE from PRFS).

• Assumptions: A PRFS family {
Ø

Ø√dk,x
Æ

}dk,x with super-logarithmic input-size. Let n :=
n(∏).

• Gen(1∏)

1. Output dk√R {0,1}∏.

• QPKGen(dk)

1. Output
Ø

Øqpk
Æ

√P

x |xiR
Ø

Ø√dk,x
Æ≠n

S , where x 2 {0,1}!(log∏).

• Enc(
Ø

Øqpk
Æ

,m) for m 2 {0,1}

1. Measure the R registers of
Ø

Øqpk
Æ

to obtain a classical string x. Let |xi
Ø

Ø¡
Æ

:= |xi
Ø

Ø√dk,x
Æ≠n

denote the residual state.
2. If m = 0, output the ciphertext as (x,

Ø

Ø¡
Æ

).
3. Else, sample a uniformly random key dk1, and output the ciphertext as (x,

Ø

Ø√dk1,x
Æ≠n).

• Dec(dk, (x,™))

1. Split™ into n equally sized registers and call them Ωi for i 2 [n].
2. Run Test(dk, x, ·) from [AQY22, corollary 3.9] on each Ωi .
3. If the outcome of all the tests is 1, output 0, otherwise output 1.

We start by providing a proof sketch for the correctness of the scheme.

sketch. First, we can write the correctness term as:

Pr[Dec(dk, (x,™)) = m|(x,™) √ Enc(
Ø

Øqpk
Æ

,m)]

=1
2

[Pr[Dec(dk,Enc(
Ø

Øqpk
Æ

,0)) = 0]+Pr[Dec(dk,Enc(
Ø

Øqpk
Æ

,1)) = 1]]

Note that the first term is 1°negl(∏) following [AQY22, lemma 3.10]. The only case that requires
attention is when the plaintext is 1 but it decrypts to 0, i.e. Pr[Dec(dk,Enc(

Ø

Øqpk
Æ

,1)) = 0].

To give a bound on the second term, we use the guarantees of [AQY22, corollary 3.9], which
guarantees that

Pr
dk1

[Test(dk1, x,
Ø

Ø√dk,x
Æ

) = 1] ∑ Edk1 [Tr(
Ø

Ø√dk,x
Æ≠

√dk,x
Ø

Ø

Ø

Ø√dk1,x
Æ≠

√dk1,x
Ø

Ø)] (4.9)
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Using the indistinguishability property of the PRFS, we can deduce that the L.H.S of the
equation 4.9 is less than 2°#qubits(√dk,x ) +negl(∏) via lemma 3.6 from [AQY22]. By doing many
runs of this test, we can use Chernoff-type concentration arguments to prove the PKE provides
at least constant correctness error, which can be boosted to negligible correctness error using
i.i.d repetitions of the encryption.

Theorem 3. The construction in construction 2 is IND-CCA1 secure (see definition 12), assuming
{
Ø

Ø√dk,x
Æ

}dk,x is a PRFS with super-logarithmic input-size.

Proof. We prove the theorem via a series of hybrids.

• Hybrid H0. The original security game as defined in definition 12.

• Hybrid H1. This is identical to hybrid H0, except that the challenger, instead of mea-
suring

Ø

Øqpk
Æ

when the adversary queries the encryption oracle for the first time, the
challenger measures (the R registers of) this state before providing the copies of

Ø

Øqpk
Æ

to the adversary. Note that by measuring
Ø

Øqpk
Æ

in the computational basis, the chal-
lenger would obtain a classical uniformly random string x§, let the residual state be
Ø

Ø¡§Æ

:=
Ø

Ø√dk,x§
Æ≠n .

As the two operations corresponding to the challenger’s measurement of
Ø

Øqpk
Æ

and the
creation of the copies of

Ø

Øqpk
Æ

given to the adversary commute, the distributions of the
two hybrids are identical and no adversary can distinguish H0 from H1 with non-zero
advantage.

• Hybrid H2. This is identical to hybrid H1, except that the challenger samples x§ as in
the previous hybrid, and instead of providing

Ø

Øqpk
Æ

to the adversary, it provides

Ø

Øqpk
0Æ := 1

p
2|x§|°1

X

x:x 6=x§
|xi

Ø

Ø√dk,x
Æ≠n .

Moreover, in the challenge query, the challenger uses (x§,
Ø

Ø¡§Æ

) for the encryption of
the chosen message m, without measuring a fresh copy of

Ø

Øqpk
Æ

(that is, it skips the
first step of the encryption algorithm). As we elaborated before, this state

Ø

Øqpk
0Æ can be

efficiently prepared.

The distinguishing probability of the two hybrids H1 and H2 implies that we can dis-
tinguish the following quantum states

Ø

Øqpk
Æ≠p ≠ |x§i and

Ø

Øqpk
0Æ≠p ≠ |x§i with the same

probability, but these two quantum states have negl(∏) trace-distance for any polyno-
mial p. Therefore, any adversary can only distinguish H1 and H2 with success probability
at most negl(∏).

• Hybrid H3. This (inefficient) hybrid is identical to H2, except that the challenger uses
a Haar oracle OHaar to generate

Ø

Øqpk
0Æ in place of

Ø

Ø√dk,·
Æ

. In particular, the quantum
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public key in the hybrid H3 is computed as:

Ø

Øqpk
0Æ√

X

x:x 6=x§
|xi≠ |#xi≠n ,

where each |#xi is an output of OHaar on input x. The decryption oracle is the same as
the decryption algorithm with the difference that OPRFS (the algorithm generating the
PRFS) is swapped with OHaar. The crucial point here is that the decryption oracle only
uses the PRFS in a black-box way (in particular, it only uses OPRFS and does not use
O†

PRFS
).

Although the decryption oracle can return ? on query (x§, ·), this can not be used to
distinguish the two hybrids as the adversary has a negligible chance of querying x§ as
x§ is picked uniformly at random. The adversary is only provided with the value of
x§ when given the challenge ciphertext, at which point they do not have access to the
decryption oracle anymore.

Notice that, the adversary does not have direct access to this OHaar, but only via the
decryption oracle. By pseudorandomness property of

Ø

Ø√dk,·
Æ

, we have that H2 and H3

are computationally indistinguishable.

• Hybrid H4. In this hybrid, we revert the changes in H3, except that the challenger
samples a uniformly random key dk0 to compute all states in

Ø

Øqpk
0Æ, except for the

one used to encrypt the challenge query. In particular, the public key
Ø

Øqpk
0Æ is now

generated using the PRFS generator with the key dk0, and the secret key dk and its public
counterpart (x§,

Ø

Ø√dk,x§
Æ≠n) are used for the challenge encryption. With the changes,

the hybrid is now efficient again. Similar to the previous argument, H3 and H4 are also
computationally indistinguishable due to pseudorandomness property of

Ø

Ø√dk
0,·

Æ

.

• Hybrid H5. This hybrid is identical to H4, except that in the challenge query, instead of
encrypting 0 as (x§,

Ø

Ø√dk,x§
Æ≠n), the challenger encrypts 0 as (x§, |#x§i≠n), where each

|#xi is an output of OHaar on input x.

Notice that in this hybrid, the secret key dk and its public counterpart (x§,
Ø

Ø√dk,x§
Æ

)≠n)
are not correlated with any of other variables in the hybrid. Furthermore, after receiv-
ing the challenge ciphertext, the adversary no longer gets access to the decryption
oracle. By the pseudorandomness property of

Ø

Ø√dk,x§
Æ

, we have that H4 and H5 are
computationally indistinguishable.

Furthermore, in this final hybrid, the adversary needs to distinguish the output of PRFS
with a uniformly random key dk1 (for encryption of 1) and the output of a Haar random
oracle (for encryption of 0). By the same argument as above, the winning advantage of
the adversary is also negligible.

Overall, since all hybrids are negligibly close and the winning advantage of the adversary in
the last hybrid in negligible, we conclude the proof.
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Remark 3. We sketch here how to achieve many-bit encryption (i.e., non-restricted length
encryption) from our scheme present above. We do this through several steps.

• The scheme stated in construction 2 can easily be extended to a length-restricted scheme,
by applying bit-by-bit encryption.

• Given a qPKE length-restricted CCA1 encryption, and a (non-restricted length) symmetric
key encryption, we can define a hybrid encryption scheme, where the qPKE scheme is
used first to encrypt a random (fixed length) secret key, which is later used to encrypt an
arbitrarily long message. The entire scheme is CPA- (respectively, CCA1-) secure if the
symmetric key encryption has CPA- (respectively, CCA1-) security.

• Finally, the following many-bit symmetric key encryption scheme can be proven to be
CCA1 secure, using the same proof strategy as in theorem 3, based on the existence of
PRFS alone. Given a secret key dk, to encrypt a message m 2 {0,1}`, we sample ` distinct
uniformly random strings xi , and compute

Ø

Ø√dk,xi

Æ≠n. Then each bit mi will be encrypted
using as (xi ,

Ø

Ø√dk,xi

Æ≠n) if mi = 0, or (xi ,
Ø

Ø√dk
0,xi

Æ≠n) if mi = 1 for a fresh key dk0.

4.3.3 Generic Construction of Non-Malleable qPKE

We remark that known implications from the literature can be used to show that IND-CPA
secure qPKE with classical ciphertexts implies non-malleable qPKE: The work of [CDMW18]
shows a black-box compiler from IND-CPA encryption to non-malleable encryption, which
also applies to the settings of quantum public-keys. The only subtlety is that the compiler
assumes the existence of a one-time signature scheme to sign the ciphertext. In [MY22b,
MY22a] it is shown that one-time signatures (with quantum verification keys) exist assuming
one-way state generators, which in turn are implied by qPKE. Combining the implications of
these two works, we obtain a generic construction of non-malleable qPKE from any IND-CPA
secure one.

4.4 IND-CPA-EO secure qPKE from PRFSPD

In this section, we propose a construction for qPKE from pseudo-random function-like states
with proof of destruction. The construction is reusable, has classical ciphers, and is CPA-EO
secure.

We first import the following result that builds symmetric-key encryption from PRFSPD, de-
fined in section 1.4.4.

Proposition 1 ([BBSS23]). If quantum-secure PRFSPD exists, then there exists a quantum CPA
symmetric-key encryption with classical ciphertexts.
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We give the formal construction for many-bit reusable encryption scheme from PRFSPD
in construction 3.

Construction 3 (IND-CPA-EO secure qPKE from PRFSPD).

• Assumptions: A PRFSPD family {
Ø

Ø√dk,x
Æ

}dk,x and a quantum symmetric encryption
scheme with classical ciphers {Enc,Dec}.

• Gen(1∏)

1. Let dk0,i √R {0,1}∏ for all i 2 [1,∏].
2. Output dk√ {dk0,i }i2[1,∏].

• QPKGen(dk)

1. Output
Ø

Øqpk
Æ

=N

i2[∏]
1p
2∏

P

xi2{0,1}∏ |xi i
Ø

Ø√dk0,i ,xi

Æ

.

• Enc(
Ø

Øqpk
Æ

,m) for m 2 {0,1}§

1. Let
Ø

Øqpk i

Æ

:= 1p
2∏

P

xi2{0,1}∏ |xi i
Ø

Ø√dk0,i ,xi

Æ

, and write
Ø

Øqpk
Æ

as
Ø

Øqpk
Æ

=N

i2[∏]
Ø

Øqpk i

Æ

.

2. Measure the left registers of
Ø

Øqpk i

Æ

to obtain classical strings xi . Denote the post-
measurement states as

Ø

Ø√0
i

Æ

.
3. Set yi √ Destruct (

Ø

Ø√0
i

Æ

).
4. For i 2 [1,∏], pick dk1,i √ {0,1}∏ and compute

Ø

Ø√dk1,i ,xi

Æ

.
5. Set y 0

i √ Destruct (
Ø

Ø√dk1,i ,xi

Æ

) for all i 2 [∏].
6. Pick a uniformly random key k √ {0,1}∏.

7. Set ỹi =

8

<

:

y 0
i , if ki = 0

yi , if ki = 1
.

8. Output
°

Enc(k,m),
°

(xi , ỹi )
¢

i

¢

as ciphertext and
°

k,
°

(xi , ỹi )
¢

i

¢

as the recycled public-
key.

• Dec(dk,c)

1. Interpret c as
°

c 0,
°

(xi , ỹi )
¢

i

¢

.
2. Let k 0

i = Ver (dk0,i , xi , ỹi ) and let k 0 = k 0
0 . . .k 0

∏
.

3. Output Dec(k 0,c 0).

The correctness of our scheme relies on the existence of PRFSPD with pseudorandomness and
unclonability of proof properties. To give a high-level view, the unclonability property ensures
that the probability of the symmetric key computed by the parties not being equal is negligible.
This allows us to bound the correctness error of the PKE construction the correctness error
of the symmetric-key encryption used in it, plus a negligible loss. Next, we show that this
construction achieves IND-CPA-EO security in theorem 4.

Theorem 4. If quantum-secure PRFSPD with super-logarithmic input size exists, then there
exists public-key encryption with classical ciphertexts which is IND-CPA-EO secure.
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Proof. Our construction is given in construction 3. It uses a PRFSPD family {
Ø

Ø√dk,x
Æ

}dk,x and
a quantum symmetric encryption scheme with classical ciphers {Enc,Dec}. We prove the
security of our scheme through a series of hybrids.

• Hybrid H0. The original security game as defined in definition 11.

• Hybrid H1. This is identical to hybrid H0, except that the challenger, instead of measur-
ing

Ø

Øqpk i

Æ

(for all i 2 [∏]) when the adversary queries the encryption oracle for the first
time, the challenger measures the left register of each

Ø

Øqpk i

Æ

before providing the copies
of

Ø

Øqpk
Æ

to the adversary. Note that by measuring
Ø

Øqpk i

Æ

in the computational basis, the
challenger would obtain a classical uniformly random string x§

i .

As the two operations corresponding to the challenger’s measurement of
Ø

Øqpk
Æ

and the
creation of the copies of

Ø

Øqpk
Æ

given to the adversary commute, the distributions of the
two hybrids are identical and no adversary can distinguish H0 from H1 with non-zero
advantage.

• Hybrid H2. This is identical to hybrid H1, except that the challenger samples x§
i as in

the previous hybrid, and instead of providing
Ø

Øqpk
Æ

to the adversary, it provides

Ø

Øqpk
0Æ :=

O

i2[∏]

1
p

2|x§
i |°1

X

xi :xi 6=x§
i

|xi i
Ø

Ø√dk0,i ,xi

Æ

.

Moreover, in the challenge query, the challenger uses (x§
i ,

Ø

Ø

Ø

√dk0,i ,x§
i

E

) for all i 2 [∏] for

the encryption of the chosen message m, without measuring a fresh copy of
Ø

Øqpk
Æ

(that
is, it skips the first step of the encryption algorithm).

The distinguishing probability of the two hybrids H1 and H2 implies that we can dis-
tinguish the following quantum states

Ø

Øqpk
Æ≠p ≠N

i2[∏]
Ø

Øx§
i

Æ

and
Ø

Øqpk
0Æ≠p ≠N

i2[∏]
Ø

Øx§
i

Æ

with the same probability, but these two quantum states have negl(∏) trace-distance
for any polynomial p. Therefore, any adversary can only distinguish H1 and H2 with
success probability at most negl(∏).

• Hybrid H2,i for i 2 [0,∏]. We define a series of (inefficient) hybrids H2,i , in which
H2,0 := H2, and we denote H2,∏ := H3. Each H2,i+1 is identical as H2,i , except that the
challenger uses a Haar oracle OHaari in place of

Ø

Ø√dk0,i ,·
Æ

. In particular, the quantum
public key in the hybrid H2,i is computed as:

Ø

Øqpk
0Æ√

i
O

j=1

X

x j :x j 6=x§
j

Ø

Øx j
Æ

≠
Ø

Ø#x j

Æ

≠
∏

O

j=i+1

X

x j :x j 6=x§
j

Ø

Øx j
Æ

Ø

Ø

Ø

√dk0, j ,x j

E

,

where each
Ø

Ø#x j

Æ

is an output of OHaar j on input x j . For the challenge encryption query,

the challenger uses (x§
j ,

Ø

Ø

Ø

#x§
j

E

) for all j 2 [1, i ], and (x§
j ,

Ø

Ø

Ø

√dk0, j ,x§
j

E

) for all j 2 [i +1,∏].

By pseudorandomness property of
Ø

Ø√dk0,i ,·
Æ

, we have that H2,i and H2,i+1 are computa-
tionally indistinguishable.
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• Hybrid H3,i for i 2 [0,∏]. We define a series of (inefficient) hybrids H3,i , in which
H3,0 := H3, and we denote H3,∏ := H4. In each H3,i+1, we revert the changes in H3,i ,
except that the challenger samples uniformly random keys dk0i to compute the i -the
component in

Ø

Øqpk
0Æ, except for the one used to encrypt the challenge query.

Similar to the previous argument, H3,i+1 and H3,i are also computationally indistin-
guishable due to pseudorandomness property of

Ø

Ø

Ø

√dk
0
i ,·

E

.

• Hybrid H4,i for i 2 [0,∏]. We define a series of (inefficient) hybrids H4,i , in which
H4,0 := H4, and we denote H4,∏ := H5.

Each hybrid H4,i is identical to H4,i+1, except that for the challenge encryption, the chal-
lenger does not sample dk1,i and compute

Ø

Ø

Ø

√dk1,i ,x§
i

E

. Instead, the challenger generates
Ø

Ø

Ø

#x§
i

E

using a Haar random oracle OHaari and uses this state to compute y 0
i (by applying

Destruct to
Ø

Ø

Ø

#x§
i

E

).

By the pseudorandomness of
Ø

Ø√dk1,i ,·
Æ

, H4,i and H4,i+1 are computationally indistin-
guishable.

• Hybrid H6. This hybrid is identical to H5, except that now the challenger sets ỹi = yi for
all i for the challenge encryption query.

In this hybrid, both yi and y 0
i are computed by applying Destruct to a Haar random state,

thus they are outputs of the same distribution. Therefore, H5 and H6 are identical.

• Hybrid H6,i for i 2 [0,∏]. We define a series of hybrids H6,i , in which H6,0 := H6, and we
denote H6,∏ := H7.

Each hybrid H6,i+1 is identical to H6,i , except now instead of using a Haar random oracle
in encryption of the challenge query, the challenger samples a fresh key dki and uses
this key to compute ỹi which is a proof of destruction of the state

Ø

Ø

Ø

√dki ,x§
i

E

.

By pseudorandomness of
Ø

Ø√dki ,·
Æ

, H6,i+1 and H6,i are computationally indistinguish-
able.

After the changes the hybrid H7 is now efficient again. In this final hybrid, the secret key
k of the symmetric key encryption scheme is uniformly random and independent from
all the other variables in the hybrid. Thus, we can easily reduce the winning probability
of the adversary in this hybrid to the security of the symmetric key encryption scheme,
which is negligible.

Overall, we obtain the winning probability of the adversary in the first hybrid H0 is negligible,
and conclude the proof.
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4.5 Impossibility of Unconditionally Secure qPKE

In the following, we investigate the question on whether qPKE is possible to construct with
information-theoretic security, and we give definitive proof against this. First, let us mention
that an independent work by Morimae et al. [MY22a] shows that an object called quantum
pseudo one-time pad (QPOTP) implies the existence of efficiently samplable, statistically far
but computationally indistinguishable pairs of (mixed) quantum states (EFI pairs). QPOTP
is a one-time symmetric encryption with quantum ciphertexts and classical keys, whose key
length is shorter than the message length. qPKE immediately implies the existence of QPOTP,
by increasing the message length, using bit-by-bit encryption. Since EFI pairs cannot exist
information-theoretically, this chain of implications rules out the existence of unconditionally
secure qPKE.5

We provide an independent and direct proof of the impossibility statement using a shadow
tomography argument.

A Proof from Shadow Tomography. In order to prove our impossibility result, we first show
that if two public-keys

Ø

Øqpk
Æ

and
Ø

Øqpk
§Æ

are close, if we encrypt a random bit using
Ø

Øqpk
§Æ

, the
probability of decrypting correctly with dk is high, where dk is the corresponding secret-key of
Ø

Øqpk
Æ

.

Lemma 4. Let ∏ be the security parameter and ° = (Gen ,QPKGen ,Enc,Dec) be a qPKE. Let
dk§,

Ø

Øqpk
Æ§ be a fixed pair of honestly generated keys and for all decryption keys dk define pdk

to be:

pdk = Pr

"

Dec(dk,qc) = pt
Ø

Ø

Ø

Ø

Ø

pt $√° {0,1}
(qc, ·) √ Enc(qpk

§,pt)

#

and let
Ø

Øqpk
dk

Æ

√ QPKGen(dk). For all dk, if
Ø

Øhqpk
§|qpk

dk
i
Ø

Ø∏ 1°≤, then pdk ∏ 1°
p

3≤.

Proof. Let UEnc be the purified implementation of the encryption procedures, i.e. given
the state

Ø

Øqpk
§Æ

|bi |0i, UEnc computes the state computed by Enc prior to the measurement.
We argue that for any

Ø

Øqpk
dk

Æ

which is close to
Ø

Øqpk
§Æ

, the purified ciphertexts generated
by the two keys are also close. For any bit b, the purified ciphertext are defined as ˜qcb =
UEnc

Ø

Øqpk
§Æ

|bi |0ih0|hb|
≠

qpk
§Ø

ØU †
Enc

and ˜qcb
0 =UEnc

Ø

Øqpk
dk

Æ

|bi |0ih0|hb|
≠

qpk
dk

Ø

ØU †
Enc

. We refer
to these as purified ciphertexts. Now we can show,

Tr( ˜qcb ˜qcb
0†) = Tr(UEnchqpk

§|qpk
dk
i
Ø

Øqpk
§Æ≠

qpk
dk

Ø

ØU †
Enc

) (4.10)

=
Ø

Øhqpk
§|qpk

dk
i
Ø

Ø

2 ∏ (1°≤)2 (4.11)

5This observation was pointed out to us by Takashi Yamakawa.
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The transition from Equation (4.10) to Equation (4.11) follows from the trace-preserving prop-
erty of unitaries. Let {¶b

dk
}dk be the POVM corresponding to decrypting a purified ciphertext

with key dk, i.e. the probability of a purified ciphertext qc being decrypted to b by dk is given
by Tr(¶b

dk
qc). Now the term pdk can be rewritten as follows:

pdk =
1
2

[Tr(¶0
dk

q̃c0)+Tr(¶1
dk

q̃c1)] (4.12)

Now observe that Tr(¶0
dk

qc
0
0) = Tr(¶1

dk
qc

0
1) = 1°negl(∏) as we assumed ° has negligible correct-

ness error. Now we can bound pdk as follows,

pdk =
1
2

[Tr(¶0
dk

q̃c0)+Tr(¶1
dk

q̃c1)] (4.13)

∏ 1°negl(∏)° 1
2

[Tr(|¶0
dk

(q̃c0 ° q̃c
0
0)|)+Tr(|¶1

dk
(q̃c1 ° q̃c

0
1)|)] (4.14)

∏ 1°negl(∏)° 1
2

[Tr(|q̃c0 ° q̃c
0
0|)+Tr(|q̃c1 ° q̃c

0
1|)] (4.15)

= 1°negl(∏)° 1
2

[
q

1°Tr( ˜qc0
˜qc0
0†)+

q

1°Tr( ˜qc1
˜qc1
0†)] (4.16)

∏ 1°negl(∏)°
p

2≤∏ 1°
p

3≤ (4.17)

The transition from Equation (4.15) to Equation (4.16) is due to q̃cb and q̃c
0
b being pure states.

This concludes the proof of the lemma.

Given lemma 4 one can reduce the adversary’s task in the IND-CPA game to finding a de-
cryption key dk such that the state

Ø

Øqpk
dk

Æ

√ QPKGen(dk) is close to
Ø

Øqpk
§Æ

in inner product
distance. The main technique we use to realize this subroutine of the adversary is shadow
tomography introduced by Aaronson et al. [Aar18]. At the core of our proof is the following
theorem by Huang, Kueng, and Preskill [HKP20].

Theorem 5 ([HKP20], Theorem 1). Let O1, . . . ,OM be M fixed observables and let Ω be an un-
known n-qubit state. There exists a quantum algorithm, only performing T =O(log(M/±)/≤2 £
maxi Tr(O2

i )) single-copy measurements in random Clifford basis of Ω, outputs p̃1, . . . , p̃M based
on the outcome of the random measurements such that, with probability at least 1°±

8i , |p̃i °Tr(OiΩ)|∑ ≤

At a high level, the theorem states that outcomes of polynomially many random Clifford
measurements on a state, i.e. a classical shadow, are enough to reconstruct an estimate of
the statistics obtained by measuring an exponential number of observables. Bare in mind
that the post-processing required to reconstruct p̃i values is often inefficient, however for our
purpose, i.e. proving the impossibility of an information-theoretically secure quantum PKE
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the efficiency of the procedure is not of concern. Using theorem 5 we are able to prove the
impossibility statement.

Theorem 6. For any security parameter ∏ and qPKE ° = (Gen ,QPKGen ,Enc,Dec) there exists
a polynomial m and a computationally unbounded adversary A who can win the IND-CPA
game with significant advantage only given m(∏) copies of the public-key.

Remark 4. Actually our attack allows us to recover the secret key with high probability, and
thus the attack also breaks the one-wayness security of qPKE (which is a weaker security notion
than IND-CPA). Thus, our theorem indeed shows a generic impossibility of unconditionally
secure qPKE.

Proof. Let us describe the adversary given m copies of the public-key
Ø

Øqpk
§Æ

alongside a
challenge ciphertext qc. We set the value of m later in the proof. For a value N , we define the
following rank 1 projection ensemble {¶1

dk
=

Ø

Øqpk
dk

Æ≠

qpk
dk

Ø

Ø

≠N }dk√Gen(1∏). The adversary tries
to find a decryption key dk such that Tr(¶1

dk
|qpk

§ihqpk
§|≠N ) is relatively large. In order to do

so the adversary computes Tr(¶1
dk
|qpk

§ihqpk
§|≠N ) for all decryption keys dk.

By theorem 5, the adversary performs T =O(log( #{dk|dk√Gen(1∏)}
± ) 1

≤2 Tr(¶1
dk

2)) random Clifford
measurements to compute values p̃dk such that with probability 1°±, for all dk we have that,
Ø

Øp̃dk °Tr(¶1
dk
|qpk

§ihqpk
§|≠N )

Ø

Ø∑ ≤. Let us set ≤< 1/6 and ± to be a small constant, e.g. 1/100.
We claim that if the adversary picks any key such that p̃dk > 1/2, they have found a key that
has a high chance of decrypting the challenge ciphertext correctly. Let us elaborate.

First of all, the adversary finds at least one such dk with probability at least 1° 1
100 , as for the

correct decryption key dk§, Tr(¶1
dk

§ |qpk
§ihqpk

§|≠N ) = 1 hence p̃dk
§ > 1°1/6 with probability

at least 1° 1
100 .

The next thing to show is that any dk such that p̃dk > 1/2 is a good decryption key. We have,

Tr(¶1
dk
|qpk

§ihqpk
§|≠N ) =

Ø

Øhqpk
dk
|qpk

§i
Ø

Ø

2N (4.18)

For all dk such that pdk ∑ 1°
q

3
log(N ) we have:

pdk ∑ 1°
s

3
log(N )

)hqpk
dk
|qpk

§i ∑ 1° 1
log(N )

(4.19)

) Tr(¶1
dk
|qpk

§ihqpk
§|≠N ) ∑ (1° 1

log(N )
)2N (4.20)

∑ e°2N /log(N ) ø 1/3, for a large enough N (4.21)

This ensures that if the adversary picks any dk such that p̃dk > 1/2, with probability at least
1° 1

100 we have that
Ø

Øp̃dk °Tr(¶1
dk
|qpk

§ihqpk
§|≠N )

Ø

Ø∑ 1/6, Tr(¶1
dk
|qpk

§ihqpk
§|≠N ) > 1/3 hence,

pdk > 1°
q

3
log(N ) .
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4.6 Conclusion

As the last step, the adversary uses the dk they obtain from the previous procedure to decrypt
the challenge ciphertext qc

§. Using the guarantees of the shadow tomography procedure, with

probability at most 1
100 , pdk is larger than 1°

q

3
log(N ) which for a large enough N is larger than

1° 1
10 per-se. By union bound on the fail events, the adversary wins the IND-CPA game with a

probability larger than 1° 1
5 which is significantly larger than 1/2.

The last thing to prove is that T is poly(∏). We set both 1/≤ and 1/± to be constants. Tr(¶1
dk

2) is
1 as¶1

dk
is a rank one projector. Lastly #{dk|dk√ Gen(1∏)} = 2n where n = poly(∏), hence T is

polynomial in ∏. Hence, the adversary only requires m = T N copies of the public-key which is
polynomial in ∏.

4.6 Conclusion

In this chapter we studied the notion of public-key encryption (PKE) through the lens of
quantum computation. We showed that if the public-keys of the scheme are allowed to be
quantum states, public-key encryption can be built from assumptions weaker than ones
classically required. We showed the existance of one-way functions is adequate to build
an IND-CCA secure public-key encryption scheme with quantum public-keys and classical
ciphertext. Moreover, we showed that by allowing the ciphertexts to also be quantum states,
this primitive can be built from assumptions potentially weaker than existence one-way
functions. On a final note, we showed that computational assumptions are in fact necessary
to realize the notion of public-key encryption, even when the keys and the ciphertexts are
quantum states, i.e. quantum public-key encryption can not be information-theoretically
secure.
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5 Cryptographically Robust Classifiers
Against Arbitrary Test Examples in a
Quantum Learning Model

In this chapter, we delve into the topic of classification tasks when the test-time examples
are provided from an arbitrary distribution, e.g. the test-time examples are adversarially
chosen. We show that, in some regimes, assuming the quantum hardness of learning with
errors problem (LWE) [Reg05], the classical rejection-rate lower-bounds proven by Goldwasser
et al. [GKKM20] for this problem can be circumvented in a quantum learning model. The
personal contribution of this chapter is mostly taken from a joint work with Grzegorz Głuch,
and Rüdiger Urbanke, published in International Conference on Artificial Intelligence and
Statistics (AISTATS) 2023 [GBU23].

Structure of the Chapter: We start by introducing the problem in section 5.1. We then describe
the classification model and the main result presented in this chapter in section 5.2 and how
it compares to the results from [GKKM20]. In Section 5.3, we introduce the main technical
component of our result, i.e. an interactive protocol that allows a verifier to assure examples
they have received for classification adhere to the intended distribution. We provide 3 variants
of this protocol. In sections 5.3.1 we present the simplest protocol, where the verifier is
quantum and the prover and verifier communicate over a quantum channel. We later provide
the proof for the main theorem of this work, after stating the guarantees of the classical verifier
variant of the sampling protocol in section 5.4. The rest of the chapter is dedicated to building
and proving the properties of the sampling protocol where the communication and the verifier
are classical. We do this in two steps: in 5.6 we provide a protocol with a quantum verifier with
a constant qubit quantum memory and finally in section 5.7 we show how one can make the
verifier classical, assuming the hardness of LWE. From a technical perspective, this is done by
tweaking the delegation protocol from Mahadev [Mah18] for sampling tasks with arbitrary
inputs.
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Quantum Learning Model

5.1 Introduction

We are interested in the task of classifying1 test examples that are arbitrary, by which we
mean any set of examples from the input space. More formally, assume that a classifier
f : X ! {°1,1} was trained using iid samples from the training distribution D. Then, at
test time, a set of arbitrary examples is given to the classifier. In particular, this models the
adversarial robustness setup, where the test time examples are provided by an adversary who
applies imperceptible (think of perturbations small in `2 norm) perturbations to iid samples
from D in order to fool f [SZS+14, NYC15]. This setup also covers a situation in which an
adversary is not limited to small perturbations. For an example of such a situation consider the
case of explicit content detection [YTL+19], where an adversary produces endless variations
of an image to pass the detection test.

Perhaps unsurprisingly, the task of classifying arbitrary test examples is impossible to solve in
the usual settings. If f has accuracy strictly smaller than 100% and if all the test examples are
chosen to correspond to inputs where f makes an error then all of them will be misclassified
by f . To resolve issues of this nature a new model was recently introduced in [GKKM20]. The
authors argue that one should consider selective classifiers and transductive learning. A selec-
tive classifier is allowed to abstain from prediction on certain examples, while transductive
learning refers to a situation, where the (unlabeled) test examples are presented together with
(labelled) training examples. In [GKKM20] it is argued that selective classifiers are necessary
to obtain meaningful guarantees in the arbitrary test examples case.

The guarantees obtained in [GKKM20] give bounds on the interplay of two quantities: the risk
on arbitrary test examples and the rejection rate on iid samples from D (training distribution).
It is natural that there is a trade-off, because one could easily maximize both of this metrics
separately by either: rejecting almost all inputs or just applying f without rejecting anything.
One of the results in [GKKM20] is a lower bound on the possible trade-offs of these two
quantities. The lower bound provides a minimum number of training samples and test
examples needed for the risk on arbitrary examples + the rejection rate on D to be smaller than
≤. The bound is expressed in terms of the VC-dimension and ≤. We break this lower bound
by considering a quantum model. Instead of the standard samples x ªD we assume access
to the many qubit quantum states

P

x2{0,1}n
p

D(x) |xi – similar to the quantum PAC-learning
model by [BJ95].

On the technical side, we borrow heavily from a series of results on the delegation of quantum
computation [Mah18]. These techniques allow us to “restrict the actions of the adversary.”
Using ideas from this line of work, we are able to design a key tool for our result. Namely a
protocol between a classical verifier and a quantum prover that guarantees that the samples
collected by the verifier at the end of interaction come from a distribution close to D - we call
it a certifiable sampling protocol. This is done under the assumption that the prover cannot
solve the LWE problem - an assumption also present in previous works. Our protocol builds

1we refer the reader to section 1.6 for the definition of the classification tasks and learning phases.
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upon ideas from [Mah18] but it is not just plug and play: in our setting, we need to collect
samples from some distribution - whereas, the previous results only provide guarantees for
delegating decision problems. Due to these differences, a new protocol(s) is required, together
with a careful analysis to verify correctness in this extended setting. For readers who are
familiar with the proof in [Mah18], you can see how our extra requirement manifests itself by
comparing for instance Theorem 8 and Theorem 15.

5.2 Model and Main Result

Our model differentiates from the standard learning model in the test phase, i.e. after a
hypothesis function f : X ! {°1,1} is learned from iid samples from D. The most common
modeling approach for the classification of arbitrary test time examples is that instead of
receiving examples from nature directly, the classifier is queried on examples that are provided
by a potentially dishonest party that gets examples from nature as input. One differentiation
that we make is that we make this procedure interactive, i.e. we consider a verifier V handed the
hypothesis function f , and a prover P provided with examples from nature which interact over
several rounds, and at the end, V classifies an example which was deduced from the interaction.

Nature

Adversary / Prover

Learner / Verifier

x ªD or
Ø

Ø√D

Æ

x0 or
Ø

Ø√DA

Æ

Figure 5.1: Model

The two quantities of interest in this model are the rejection
rate, and the risk on arbitrary examples. The rejection rate
is the probability of the verifier rejecting the interaction, or
not classifying a sample when interacting with an honest P.
The risk on arbitrary examples is the maximum probability
of V misclassifying examples collected from an accepting
interaction. The quantities can be seen as the completeness
and soundness errors of an interactive proof.

The second major difference between our model from the
standard one is that the samples from nature are provided
as quantum states, similar to the quantum PAC-learning
model [BJ95]. Fixing the input space to be X = {0,1}n , in-
stead of being provided samples x ªD, the prover receives
a quantum state

Ø

Ø√D

Æ

=P

x2{0,1}n
p

D(x) |xi.2

5.2.1 Notation and Quantities of Interest

For D 2D(n) we define O(D) as an oracle giving access to
|√Di :=P

x2{0,1}n
p

D(x)|xi.In our protocols, we will be inter-
ested in an interaction between V (Verifier) and P (Prover). We will write PO(D) to denote that P
has access to O(D). For a quantum circuit C acting on n-qubits via the unitary transform UC ,
we define DC 2D(n) as the distribution arising from measuring all n qubits of UC |0≠ni in the

2In [BJ95] quantum samples are states of the form
P

x2{0,1}n
p

D(x)
Ø

Øx, g (x)
Æ

. Here, g is the ground truth.
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computational (which we will also denote as Z ) basis. For
Ø

Ø√
Æ

2 (C2)≠n we say that D√ 2D(n)
defined as D√(x) = |

≠

x
Ø

Ø√
Æ

|2 for every x 2 {0,1}n is the distribution associated with
Ø

Ø√
Æ

.

As described before the two main quantities of interest are: the rejection rate when P acts
honestly and the risk when P acts maliciously. We define these quantities more formally
now. In our protocols, we perform various consistency checks and collect some statistics.
Because of that the protocols need to be repeated some number of times to obtain meaningful
guarantees. This is why rejection rates and risk on arbitrary examples are defined as values in
expectation.

Definition 13 (Rejection Rate). We define the rejection rate as 1 minus the expectation of the
ratio of the number of samples obtained by V in the protocol (when an honest P interacts with
V) to the number of states

Ø

Ø√D

Æ

that P used in the protocol. We denote it by

?D := 1° E

∑

#examples obtained by V

#number of
Ø

Ø√D

Æ

used by P

∏

,

where the expectation is over the randomness of V and P (that also includes the randomness
stemming from quantum mechanics).

Definition 14 (Risk on Arbitrary Examples). We define the risk on arbitrary examples as
the supremum over malicious provers accepted with probability 1 of the expected risk of f on
examples accepted by V. We denote it by

ARg (V f ) := sup
P
P[ f (x) 6= g (x)|OutV(V $ P) = (x,Accept)],

where the probability is over the randomness of V and P conditioned on accepted interaction
and x is sampled at random from all obtained examples. AR stands for Arbitrary Risk but can
be also thought of as Adversarial Risk in a sense that it is a risk in the presence of an adversary.

5.2.2 Main Result

As discussed above, our result is applicable to the test phase. We assume that the training
phase is completed and V has access to two objects obtained during the training phase: a
classifier f and a description of a generative quantum circuit C with the following properties.

The circuit C captures the true distribution well, i.e. dH (DC ,D) = ¥ø 1, where dH is the
Hellinger distance defined in section 1.6. The classifier f is robust with respect to small
changes in the distribution (i.e., it is robust to distributional shifts). This means that for
all DA 2D(n) such that dH (DA ,D) ∑ O(¥) we would have RDA ( f ) º RD( f ), where RD is the
standard risk, defined in section 1.6.

We claim that if such a VC , f (V having access to f and the description of C ) interacts with P
using our protocol (defined in Section 5.3) then this will yield a framework robust under all
(computationally bounded) adversaries. Indeed there are two scenarios of interest: (1) P is
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honest, (2) P is malicious. In (1) P acts equivalently to just measuring
Ø

Ø√D

Æ

and sending the
result to V. Our protocol guarantees that a big fraction of these samples will be accepted (small
rejection rate) as they came from D itself. Classifier f is robust wrt distributional shifts around
D, which in particular implies that it has a low risk on D itself. In (2) the certifiable sampling
protocol (defined in Section 5.3) guarantees that the interaction will only be accepted if the
distribution from which P samples is close to D. Then again we know that f has low risk on
samples from such a distribution, which guarantees low risk on arbitrary examples. Thus we
arrive at the main theorem of this work.

Theorem 7. There exists a universal constant K 2N such that for every n 2N, any small enough
¥ 2 (0,1) , for every binary, separable classification task with a distribution D 2D(n) and a
ground truth g : {0,1}n ! {°1,1}, every classifier f : {0,1}n ! {°1,1} and every quantum circuit
C with T gates the following conditions hold. If

• (DC is a good approximation of D) k
p

DC °
p

Dk2 ∑ ¥ and

• ( f is robust wrt distributional shifts) for all DA such that k
p

DA °
p

Dk2 ∑ K ·¥1/4 we
have Rg

DA ( f ) ∑O(Rg
D

( f ))

then there exists an efficient interactive protocol with the following properties.

• (Completeness / Low Rejection Rate) There exists an honest quantum prover PO(D) such
that

?D= 1°≠
µ

1
poly(n,T,1/¥)

∂

.

• (Soundness / Low Risk) For every Quantum Polynomial Time (QPT) prover P that is
accepted by the interaction with probability 1 we have that with high probability

ARg (V) =O(Rg
D

( f )).

For a proof sketch, we refer the reader to Section 5.4.

5.2.3 Comparison to [GKKM20]

In this section, we compare Theorem 7 to the results from [GKKM20] and in particular to the
lower bound presented there.

First, let us discuss the similarities and differences between the model from [GKKM20] and
our model. In [GKKM20] learner V receives as input two sets of samples: the iid samples
from D, x1, . . . , xN and a set of arbitrary test examples x̃1, . . . , x̃M . Having access to both sets
V rejects some of x̃i ’s and classifies the rest. In our language we think of x̃1, . . . , x̃M as being
generated by P. In our model, during the training phase, V has access to iid samples from D
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(x1, . . . , xN )3. During the test phase V interacts with P over many rounds. An honest P in the
model from [GKKM20] receives samples x ªD and forwards them to V. For us an honest P
receives quantum states

Ø

Ø√D

Æ

and starts interacting with V according to our protocol. For
both models, we measure two quantities: the risk on accepted samples and the rejection rate
when P acts honestly.

The models are obviously different as only ours uses quantum states. We will however proceed
with a comparison as if they were the same. That is we will treat iid samples from D and
quantum states

Ø

Ø√D

Æ

as an equivalent resource and compare the number of samples/states
needed for meaningful guarantees. The equivalence is justified because, in an idealized setting,
an honest P generates one sample from D from one

Ø

Ø√D

Æ

. Apart from this difference, our
protocol requires interaction between V and P while the on in [GKKM20] does not.

Now we are ready to compare Theorem 7 to the lower bound from [GKKM20, Theorem 5.5].
In [GKKM20, Theorem 5.5], in order to have a non-vacuous bound on the rejection rate plus
the risk on accepted arbitrary examples, one requires the number of examples to be M =≠(d),
where d is the VC-dimension of the hypothesis4. More concretely, the theorem states that to
achieve ≤ risk plus rejection rate,≠(d/≤2) training and test examples are required.

Theorem 7 guarantees a non-vacuous bound on the rejection rate plus the risk on accepted
samples when M =≠(poly(n,T,1/¥)), where we think of M as the number of states

Ø

Ø√D

Æ

that
was used by P in the protocol. The two quantities, i.e. d and poly(n,T,1/¥), are not comparable
in general but there is a crucial difference. Our bound of poly(n,T,1/¥) depends only on the
distribution D, because n is the dimension of the input space and T is the number of gates in
C . On the other hand, the lower bound of d depends only on the hypothesis class. Thus there
exist tasks for which d ¿ n,T , for some circuits C with T gates for which k

p

DC °
p

Dk2 ø 1.
This implies that Theorem 7 breaks the lower bound from [GKKM20] in some regimes!

For an example of a task for which a separation holds one can take a distribution and a
hypothesis class constructed in [GKKM20] that certifies their lower-bound. For d 2 N the
distribution used is the uniform distribution over {1, . . . ,O(d)} and the hypothesis class are all
functions of exactly d 1’s. By construction, the VC-dimension is equal to d . Moreover, this
distribution can be generated exactly (k

p

DC °
p

Dk2 = 0), using quantum Fourier transform,
by quantum circuits acting on n =O(log(d)) qubits with T =O(log(d)) gates. We compare: our
guarantee gives a non-vacuous bound for M = poly(n,T,1/¥) = polylog(d) while the lower-
bound requires M =≠(d). We see an exponential separation. This task has an additional
property. The lower-bound holds also when the classical algorithm knows D exactly. This
shows that access to a generator C , which is required by our construction, is not a hidden
source of separation.

3V can also have access to states
Ø

Ø√D
Æ

during the training phase. Our result is about the test phase and the exact
mechanics of the training phase are not important as long as V has access to f and C .

4For a hypothesis class C on an input space X n , the VC-dimension is an integer d , such that there exist d points
in X n that can be shattered by functions in C , but there are no n+1 points that can be shattered by functions in C .
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Theorem 1 guarantees a non-vacuous bound on the rejec-
tion rate plus the risk on accepted samples when M =
�(poly(n, T, 1/�)), where we think of M as the number of
states |�D� that was used by P in the protocol. The two
quantities, i.e. d and poly(n, T, 1/�), are not comparable
in general but there is a crucial difference. Our bound of
poly(n, T, 1/�) depends only on the distribution D, because
n is the dimension of the input space and T is the number
of gates in C. On the other hand the lower bound of d de-
pends only on the hypothesis class. Thus there exist tasks
for which d � n, T , for some circuits C with T gates for
which �

�
DC �

�
D�2 � 1. This implies that Theorem 1

break the lower bound from [GKKM20] in some regimes!

It is important to note that we require that V obtains dur-
ing the training phase access to f robust to distributional
shifts and a generator C - a requirement that does not exist
in [GKKM20]. This might imply that more samples are
needed during the training phase. Our focus however is on
the testing phase and the number of examples (states) in this
phase.

3 Certifiable Sampling Protocols

Now we move to proving Theorem 1. To do that we show
existence of a protocol, which we name a certifiable sam-
pling protocol. The name comes from the fact that this
protocol guarantees that the samples collected by V came
from a distribution close to the requested one.

We define the protocol in three settings (i) where the V has
quantum capabilities (ii) where the V has access to a con-
stant quantum memory (iii) where the V is fully classical.
Because of the space restrictions we present only setting (i)
and state the main result from setting (iii) in the main paper.
The rest is deferred to the appendix.

3.1 Quantum Verifier

In this section we present a protocol in a setting where V

has quantum capabilities. We start with an overview and
then move to a formal result.

The key component of all our protocols is a quantum circuit
G, acting on three registers: out (1 qubit), adv (n qubits)
and aux (n qubits), depicted in Figure 1. G is parametrized
by a quantum circuit C with the associated distribution DC .
Recall that the result of applying UC to 0�n is the state
|�DC �. The circuit is designed so that it measures the sim-
ilarity between DA and DC , where DA is the distribution
corresponding to the state |�DA�adv. More precisely, the
closer DA and DC are in terms of the Hellinger distance
the higher the probability that G outputs 1 in the out reg-
ister. We note that a circuit of this form, often referred to
as the SWAP test, is a key component of many quantum
algorithms [MCEM97].

|0�out H H NOT

|�DA�adv � (C2)�n

SWAP

|0��n
aux C

Figure 1: Comparison Circuit

Equipped with such a comparison circuit we are ready to de-
sign a protocol in a model where V has quantum capabilities.
For now we assume that P acts i.i.d. in every round of the
protocol (a generalization is discussed in the appendix). In
the i-th round of the interaction P sends an n-qubit quantum
state |�DA� to V, V samples a bit bi � {0, 1} uniformly
at random. If bi = 0 then V inserts |�DA� as an input to
G, computes G, measures the output bit in the Z basis and
records the result as �i. If b = 1 then V measures |�DA� in
the Z basis and records the outcome as xi � {0, 1}n. After
a certain number of rounds (dependent on the desired ac-
curacy and probability of success) V computes an average
�avg of the set {�i : bi = 0}. If �avg is bigger than a certain
(to be determined) threshold V accepts the interaction and
returns the set {xi : bi = 1}.

Let us now consider the properties of this protocol. Com-
pleteness of the protocol is straightforward. An honest P

can forward the state |�D� he receives to V. For soundness
of the protocol note the following facts: i) �avg is a good ap-
proximation for the probability that G outputs 1 on |�DA�,
ii) this probability is monotonically related to dH(DA, DC)
by the properties of G, iii) the samples {xi : bi = 1} are
i.i.d. from DA, iv) we assumed that dH(D, DC) is small.
Moreover we assume that dH(D, DC) � � and that � is
known to V. Combining these facts we arrive at the fol-
lowing conclusion. If V accepts the interaction then the
samples it returns are i.i.d. from a distribution DA such that

dH(DA, D) < O(dH(DC , D)). (1)

The reason the above holds is because we can set the thresh-
old in the protocol over which V accepts �avg to be such that
the interaction is accepted when dH(DA, DC) . �. Then
using a triangle-like inequality we arrive at (1).

Note. For the most part of the paper we assume that the
P acts in an i.i.d. fashion. For the fully-quantum verifier we
give a proof also for general setting where we drop the i.i.d.
assumption. To keep the exposition manageable we do not
provide general proofs for the other two models.

3.1.1 Protocol and a Proof

In this section we define the protocol formally and prove its
correctness.

The protocol is defined in Figure 2. We start by assuming
that P acts in an i.i.d. fashion and that the states P sends

Figure 5.2: Comparison Circuit

5.3 Certifiable Sampling Protocols

Now we move to proving Theorem 7. To do that we show the existence of a protocol, which
we name a certifiable sampling protocol. The name comes from the fact that this protocol
guarantees that the samples collected by V came from a distribution close to the requested
one.

We define the protocol in three settings (i) where the V has quantum capabilities (ii) where the
V has access to a constant quantum memory (iii) where the V is fully classical. For the sake
of readability, we present setting (i) and state the main result from setting (iii) first. We then
spend the rest of the chapter proving the guarantees of the other two models (Sections 5.6 and
5.7).

5.3.1 Quantum Verifier

In this section we present a protocol in a setting where V has quantum capabilities. We start
with an overview and then move to a formal result.

The key component of all our protocols is a quantum circuit G , acting on three registers: out
(1 qubit), adv (n qubits) and aux (n qubits), depicted in Figure 5.2. G is parametrized by a
quantum circuit C with the associated distribution DC . Recall that the result of applying UC

to 0≠n is the state
Ø

Ø√DC

Æ

. The circuit is designed so that it measures the similarity between
DA and DC , where DA is the distribution corresponding to the state

Ø

Ø√DA

Æ

adv. More precisely,
the closer DA and DC are in terms of the Hellinger distance the higher the probability that G
outputs 1 in the out register. Circuits of this form, often referred to as the SWAP test, is a key
component of many quantum algorithms [MCEM97].

Equipped with such a comparison circuit we are ready to design a protocol in a model where V
has quantum capabilities. For now we assume that P acts i.i.d. in every round of the protocol
(a generalization is discussed in the appendix). In the i -th round of the interaction P sends an
n-qubit quantum state

Ø

Ø√DA

Æ

to V, V samples a bit bi 2 {0,1} uniformly at random. If bi = 0
then V inserts

Ø

Ø√DA

Æ

as an input to G , computes G , measures the output bit in the Z basis
and records the result as ∞i . If b = 1 then V measures

Ø

Ø√DA

Æ

in the Z basis and records the
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outcome as xi 2 {0,1}n . After a certain number of rounds (dependent on the desired accuracy
and probability of success) V computes an average ∞avg of the set {∞i : bi = 0}. If ∞avg is bigger
than a certain (to be determined) threshold V accepts the interaction and returns the set
{xi : bi = 1}.

Let us now consider the properties of this protocol. Completeness of the protocol is straightfor-
ward. An honest P can forward the state

Ø

Ø√D

Æ

he receives to V. For soundness of the protocol
note the following facts: i) ∞avg is a good approximation for the probability that G outputs 1 on
Ø

Ø√DA

Æ

, ii) this probability is monotonically related to dH (DA ,DC ) by the properties of G , iii)
the samples {xi : bi = 1} are i.i.d. from DA , iv) we assumed that dH (D,DC ) is small. Moreover
we assume that dH (D,DC ) º ¥ and that ¥ is known to V. Combining these facts we arrive at
the following conclusion. If V accepts the interaction then the samples it returns are i.i.d. from
a distribution DA such that

dH (DA ,D) <O(dH (DC ,D)). (5.1)

The reason the above holds is because we can set the threshold in the protocol over which V
accepts ∞avg to be such that the interaction is accepted when dH (DA ,DC ) . ¥. Then using a
triangle-like inequality we arrive at (5.1).

Note 1. For the most part of this chapter we assume that the P acts in an i.i.d. fashion. For
the fully-quantum verifier, we provide a proof for the general setting where we drop the i.i.d.
assumption in Appendix A.3.1.

Protocol and a Proof

In this section we define the protocol formally and prove its correctness.

The protocol is defined in Figure 5.3. We start by assuming that P acts in an i.i.d. fashion
and that the states P sends are pure. We discuss how to remove these assumptions in Ap-
pendix A.3.1 and A.3.2.

Let us prove the correctness of this protocol. The following lemma shows how the distribu-
tion of measuring the out register of G relates to the Hellinger distance of DC and DA . The
proof is almost identical to the proof of output distribution of a swap-test and is deferred to
Appendix A.1.

Lemma 5. The probability of obtaining outcome |1i when measuring the out register of G
executed on

Ø

Ø√DA

Æ

, i.e.
≠

0≠n
Ø

Ø

aux

≠

√DA

Ø

Ø

adv h0|out G†¶(1)
outG |0iout

Ø

Ø√DA

Æ

adv

Ø

Ø0≠nÆ

aux, is equal to
1
2

°

1+ (1°d 2
H (DA ,DC ))2¢ .

Next we show that the number of times each of the types (0 and 1) occurs is at least N /4 with
high probability. This is a simple application of the Chernoff bound.

Lemma 6. Let n0,n1 be the number of times each type occurs in the protocol from Figure 5.3. If
N =≠(log(1/±)) then P[n0,n1 > N

4 ] ∏ 1°±.
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5.3 Certifiable Sampling Protocols

Verifier V Prover P

p := 0,S :=;

for i 2 {1, . . . N } where N =O
µ

K
¥2 log(1/±)

∂

do :

type $√° {0,1}
Ø

Ø√DA
Æ

2 (C2)≠n

Ø

Ø√DA
Æ

if type= 0 :

Set b1,b2, . . . ,bn to be the measurement of
Ø

Ø√DA
Æ

in the Z basis

S := S [ {(b j ) j2{1,...,n}}

if type= 1 :

Set pi to be the measurement of the out register of

G |0iout
Ø

Ø√DA
Æ

adv

Ø

Ø0≠nÆ

aux in the Z basis

p := p + pi

N
done :

if p < 1°2¥2 abort

return S

Figure 5.3: The interactive protocol for the model where the verifier has access to a quantum
computer.

103



Chapter 5. Cryptographically Robust Classifiers Against Arbitrary Test Examples in a
Quantum Learning Model

We are now ready to combine all the pieces and prove that the protocol from Figure 5.3
guarantees that if V accepts the interaction then with high probability the samples he collected
are i.i.d. from a distribution close to D.

Theorem 8 (Quantum Verifier). For every circuit C acting on n qubits, for every ± 2 (0, 1
3 ), K 2N

and all ¥> 0 sufficiently small there exists an interactive protocol between a quantum verifier V
and a quantum prover P with the following properties. The protocol runs in N =O

≥

K
¥2 log(1/±)

¥

rounds and in each round P sends a pure quantum state on n qubits to V. At the end of the
protocol V outputs ? when it rejects the interaction or it outputs S = {x1, . . . , x|S|}, xi 2 {0,1}n,
when it accepts.

• (Completeness) There exists PO(§) such that for every D 2D(n) satisfying dH (D,DC ) ∑ ¥
the following holds. With probability 1°± over the randomness in the protocol PO(D)

succeeds, S ªi.i.d. D
|S|, and |S|∏≠(K ).

• (Soundness) For every P that succeeds with probability at least 2
3 we have S ªi.i.d. (DA)|S|

and dH (DC ,DA) ∑O(¥).5

Note 2. How can we check the success probability of the prover? Assuming that the prover
behaves in an i.i.d. fashion, it suffices to run the protocol (2/≤) log(1/±) times. If the fraction of
successes is bigger than 1°≤/2 then we know with confidence 1°± that the success probability
is at least 1°≤.

Remark 5. For certifiable sampling protocols we use the number of repetitions instead of the
rejection rates and risk on arbitrary examples. This phrasing is better suited for these protocols.
We stated Theorem 7 differently to easily compare it to [GKKM20]. For instance, in Theorem 8 we
state that by performing O( K

¥2 log(1/±)) repetitions of the protocol when the prover acts honestly,
we collect at least K samples with high probability. However, note that this theorem could also
be stated as the probability of collecting a sample at each repetition being ¥2, i.e. the rejection
rate ?D = 1°≠(¥2).

Proof. We start with the completeness property and then move to soundness.

Completness. An honest PO(D) obtains
Ø

Ø√D

Æ

from O(D) and forwards it to V. Lemma 6
guarantees that with probability 1° ±

2 , n0,n1 =≠( K
¥2 log(1/±)). This automatically guarantees

that |S|∏≠(K ). Moreover by Fact 2 we have that with probability 1° ±
2

Ø

Ø

Ø

p °
≠

0nØ

Ø

aux

≠

√D

Ø

Ø

adv h0|out G†¶(1)
outG |0iout

Ø

Ø√D

Æ

adv

Ø

Ø0nÆ

aux

Ø

Ø

Ø

∑ ¥2. (5.2)

5DA is the implicit distribution from which we collect the samples, which is the distribution corresponding to
Ø

Ø√DA

Æ
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5.4 Proof of Theorem 7

By Corollary 5 we thus get that
Ø

Øp ° 1
2

°

1+ (1°d 2
H (D,DC ))2¢

Ø

Ø∑ ¥2 holds with probability 1° ±
2 .

By assumption dH (D,DC ) ∑ ¥ so we get that p ∏ 1° 2¥2 (as a function 1
2 (1+ (1° x2)2) is

decreasing). This means that PO(D) succeeds with probability 1°±/2.

By the union bound over the error events with probability 1°±/2°±/2 = 1°± we have that
|S|∏≠(K ) and PO(D) succeeds. The property S ªi.i.d. D

|S| holds because the state sent by P to V
is equal to

Ø

Ø√D

Æ

.

Soundness. By Corollary 5 we get that
Ø

Øp ° 1
2

°

1+ (1°d 2
H (DA ,DC ))2¢

Ø

Ø ∑ ¥2 with probability
1° ±

2 . P succeeds with probability 2
3 so by the union bound and the fact that 1

3 +
±
2 < 1 we get

that h(dH (DA ,DC )) ∏ p °¥2 ∏ 1°3¥2, where we used h to denote the function 1
2 (1+ (1°x2)2).

As h is a decreasing function we get that that dH (DA ,DC ) ∑
q

1°
p

2(1°3¥2)°1 ∑ 10¥, for
sufficiently small ¥.

5.4 Proof of Theorem 7

The goal of this section is to sketch the proof of theorem 7. The main ingredient of the proof is
the classical verifier variant of the protocol described in section 5.3. We provide an informal
statement of the theorem regarding the guarantees of such protocol here and move on to the
proof of theorem 7. The rest of this chapter is dedicated to proving theorem 9.

Theorem 9 (Classical Verifier). For a security parameter ∏, every generative circuit C acting on
n qubits, for every K 2N and all ±,¥> 0 sufficiently small there exists an interactive protocol
(V,§) between a classical verifier V and a quantum prover P with the following properties. The
protocol runs in N = O

≥

K
¥4 poly(n,T ) log(1/±)

¥

rounds and in each round P and V exchange
poly(n,T,∏) bits. At the end of the protocol V outputs ? when it rejects the interaction or it
outputs S = {x1, . . . , x|S|}, xi 2 {0,1}n, when it accepts.

• (Completeness) There exists a QPT prover PO(§) such that for every D 2D(n) satisfying
dH (D,DC ) ∑ ¥ the following holds. With probability 1°± over the randomness in the
protocol PO(D) succeeds, S ªi.i.d. D

|S|, and |S|∏≠(K ).

• (Soundness) For every QPT bounded P that succeeds with probability 1 we have that with
probability 1°±°µ(∏) the following conditions hold: S ªi.i.d. (DA)|S| and dH (DC ,DA) ∑
O(¥1/4), where µ is a negligible function.

Remark 6. Just as mentioned in remark 5, the completeness can be stated as?D = 1°≠(¥4 1
poly(n,T ) ).

Having Theorem 9 it is quite straightforward to prove Theorem 7. We provide a short proof
sketch.
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|0�out H H NOT

|�D�adv � (C2)�n

SWAP

|0��n
aux UC

t = 0 T T + 1 T + n + 1 T + n + 3

Figure 3: Comparison Circuit with Time Slices

From the discussion above it seems that improving the state of the art of robustness for �p bounded perturbations might not
guarantee a satisfying solution to the adversarial robustness puzzle in the long run. Instead, an exploration of new models is
likely needed for a principled resolution of the problem.

C Overview

In this section we give an overview of how to generalize the protocol from Figure 2 to, first, the setting where V has access
to a constant memory quantum computer and then to a setting where V is fully classical. We present it this way, as the
protocols in the consecutive settings build on top of each other.

Constant Memory Quantum Verifier. In this model the messages in the protocol can still be quantum. (But we will see
that in our protocol only P will send quantum states and V will send only classical messages.) But V now only has access
to a constant-size quantum computer and can store only a constant number of qubits at each point in time V. The only
operation that will be required from V is measuring the qubits sent by P in either the Z or the X basis. Protocols of this
form are called receive-and-measure protocols and were already previously considered in the literature, see e.g. [FHcvM18].

Our goal is to emulate the protocol that we designed in the previous step in this more restrictive constant-quantum memory
model. The idea is the following. We let P choose an n-qubit state |�DA� and then force her to create a state |�� that
depends on |�DA� and to send this state to V.5 The state |�� should satisfy the following properties. When V measures |��
in the Z basis then (i) with probability �(1/T ) the distribution of outcomes of measuring one of the qubits is close to the
distribution of measuring the output qubit of G |0� |�DA� |0�n� in the Z basis (ii) with probability �(1/T ) V can obtain
x

� � DA.6 These two operations emulate the steps V performed in the previous protocol for b = 0 and b = 1, respectively.
Note that the operations succeed only with probability �(1/T ) but this suffice for our purpose. The main question is how to
force P to create |�� with these properties?

To solve this problem we use the well-known circuit-to-Hamiltonian reduction introduced in [KSV02]. This reduction was
originally used to show that a local Hamiltonian problem is QMA-complete. Later on it was a crucial component in the the
delegation of quantum computation in the constant quantum memory model [FHcvM18] and in the delegation of quantum
computation with a classical verifier in [Mah18]. Unfortunately, we can not use the reduction in a black-box manner. The
main issue is, the reduction is designed for decision problems, and our problem of interest is a sampling problem. Hence, in
order to use the Hamiltonian model, one would need to modify the reduction to adapt sampling problems.

What is the purpose of this reduction in our context? The circuit-to-Hamiltonian reduction allows to reduce the computation
of a quantum circuit G to estimating an energy of a state |�� with respect to a local Hamiltonian HG. In particular, it allows us
to build a protocol that forces P to prepare a so-called history state |�� of G. Assume that P chooses to evaluate G on a state
|�DA�. Assume further that the circuit C has T gates and denote T +n+3 by T �. Then denote by |�0� , |�1� , . . . , |�T+n+3�
the (2n + 1)-qubit states, where |�i� is the state after the first i gates of G are performed on |�DA�. We refer the reader to
Figure 3, where the �i’s are depicted as time slices in G. With this notation the history state is defined as:

|�� :=
1�

T � + 1

�
|0�clock |�0�comp + |1�clock |�1�comp + |2�clock |�2�comp + · · · + |T ��clock |�T ��comp

�
.

5By sending the state to V we mean sending the state one qubit at a time. Whenever a qubit arrives to V he has a choice whether to
keep it or discard it. At all times the number of qubits V stores cannot exceed the constant predefined number.

6Note that x� � {0, 1}n but V has only a constant quantum memory. But it is possible to realize a protocol with these properties.
Imagine that while the qubits come to V one by one he measures a qubit, records the result and discards the qubit making room for the
next ones. In total he collects many measurement outcomes out of which he can create x�.

Figure 5.4: omparison Circuit with Time Slices

Theorem 7(sketch). Let us assume that there exists an efficient verifier V having access to
classifier f and a description of circuit C , satisfying the conditions in the theorem 7, i.e. DC is a
good approximation of D and f is robust wrt distributional shifts of maximum distance M ·¥1/4

in Hellinger distance. Now according to Theorem 9, for this C , ¥, and a security parameter ∏,
there exists an efficient classical verifier V interacting with a QPT prover P that satisfies the
soundness and completeness properties of theorem 9.

Due to the completeness statement of Theorem 9, there exists an honest prover P that given
access to the distribution D, and partaking in O( K

¥4 poly(n,T ) log(1/±)) repetitions of the pro-
tocol, returns samples from the same distribution and is accepted with probability 1°± for
small ±, and collects K examples from D. Now as noted in remark 6 we have,

?D = 1°E
∑

#numer of samples collected by V
#number of states used by P

∏

= 1°≠(¥4 1
poly(n,T )

)

so the completeness statement of Theorem 7 holds.

For the soundness, due to the soundness statement of Theorem 9, for any QPT bounded (in
n and ∏) prover P, if P is accepted with probability 1, with confidence 1°± we know that
if the samples given by the adversary follow a distribution DA , dH (DA ,D) ∑ O(¥1/4). Now
using the second assumption in the statement of theorem 7, i.e. ( f is robust wrt distributional
shifts), as dH (DA ,D) ∑O(¥1/4), we have that ARg (V) = RDA ( f ) ∑O(RD( f )), which concludes
the soundness proof.

5.5 Overview of Making the Verifier Classical

In this section we give an overview of how to generalize the protocol from Figure 5.3 to, first,
the setting where V has access to a constant memory quantum computer and then to a setting
where V is fully classical. We present it this way, as the protocols in the consecutive settings
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build on top of each other.

Constant Memory Quantum Verifier. In this model the messages in the protocol can still be
quantum. (But we will see that in our protocol only P will send quantum states and V will send
only classical messages.) But V now only has access to a constant-size quantum computer and
can store only a constant number of qubits at each point in time. The only operation that will
be required from V is measuring the qubits sent by P in either the Z or the X basis. Protocols
of this form are called receive-and-measure protocols and were already previously considered
in the literature, see e.g. [FHcvM18].

Our goal is to emulate the protocol that we designed in the previous step in this more restrictive
constant-quantum memory model. The idea is the following. We let P choose an n-qubit
state

Ø

Ø√DA

Æ

and then force them to create a state
Ø

Ø¡
Æ

that depends on
Ø

Ø√DA

Æ

and to send this
state to V.6 The goal is that the constant-sized local subsystems of the state

Ø

Ø¡
Æ

contain all the
required information that V needs to be assured that P ran the circuit correctly.

Ideally, the state
Ø

Ø¡
Æ

should satisfy the following properties. When V measures
Ø

Ø¡
Æ

in the Z
basis then (i) with probability≠(1/T ) the distribution of outcomes of measuring one of the
qubits is close to the distribution of measuring the output qubit of UG |0i

Ø

Ø√DA

Æ

Ø

Ø0≠nÆ

in the Z
basis (ii) with probability ≠(1/T ) V can obtain x0 ªDA .7 These two operations emulate the
steps V performed in the previous protocol for b = 0 and b = 1, respectively. These operations
succeed only with probability≠(1/T ) but this suffices for our purpose. The main question is
how to force P to create

Ø

Ø¡
Æ

with these properties.

To solve this problem we use the well-known circuit-to-Hamiltonian reduction introduced
in [KSV02]. This reduction was originally used to show that a local Hamiltonian problem
is QMA-complete. Later on it was a crucial component in the the delegation of quantum
computation in the constant quantum memory model [FHcvM18] and in the delegation of
quantum computation with a classical verifier in [Mah18]. Unfortunately, we can not use the
reduction in a black-box manner. The main issue is, the reduction is designed for decision
problems, and our problem of interest is a sampling problem. Hence, in order to use the
Hamiltonian model, one would need to modify the reduction to adapt sampling problems.

What is the purpose of this reduction in our context? The circuit-to-Hamiltonian reduction
allows to reduce the computation of a quantum circuit G to estimating an energy of a state

Ø

ØΩ
Æ

with respect to a local Hamiltonian HG . In particular, it allows us to build a protocol that forces
P to prepare a so-called history state

Ø

Ø¡
Æ

of G . Assume that P chooses to evaluate G on a state

6By sending the state to V we mean sending the state one qubit at a time. Whenever a qubit arrives to V they
have a choice whether to keep it or discard it. At all times the number of qubits V stores cannot exceed the constant
predefined number.

7Although x0 2 {0,1}n and V has only a constant quantum memory it is possible to realize a protocol with these
properties. Imagine that while the qubits come to V one by one he measures a qubit, records the result, and
discards the qubit making room for the next ones. In total, he collects many measurement outcomes out of which
he can create x0.
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Ø

Ø√DA

Æ

. Assume further that the circuit C has T gates and denote T +n +3 by T 0. Then denote
by |ª0i , |ª1i , . . . , |ªT+n+3i the (2n +1)-qubit states, where |ªi i is the state after the first i gates
of G are performed on

Ø

Ø√DA

Æ

. We refer the reader to Figure 5.4, where the ªi ’s are depicted as
time slices in G . With this notation the history state is defined as:

Ø

Ø¡
Æ

:= 1
p

T 0+1

°

|0iclock |ª0icomp +|1iclock |ª1icomp +|2iclock |ª2icomp +·· ·+
Ø

ØT 0Æ
clock |ªT 0 icomp

¢

.

Hence,
Ø

Ø¡
Æ

represents a history of the evaluation of G . It is a superposition of states of the
circuit after applying 0,1,2 . . . ,T 0 gates of the circuit tensored with a state representing a clock.
We denoted by comp the concatenation of the three registers out, adv, aux. For instance
|ª0icomp = |0iout

Ø

Ø√DA

Æ

adv

Ø

Ø0≠nÆ

aux.

Assume for now that P sends
Ø

Ø¡
Æ

to V. We will show that with such a state it is possible to
realize the two properties we were hoping for. V measures

Ø

Ø¥
Æ

in the Z basis and depending
on the outcome of measuring the clock register performs further actions.

If the outcome of measuring the clock register is equal to T 0, which by definition of
Ø

Ø¡
Æ

happens
with probability 1

T 0+1 , then the distribution of measuring the out register is exactly equal to
the desired distribution. This is because |ªT 0 icomp represents the last slice of the computation
of G (see Figure 5.4).

If the outcome of measuring the clock register is equal to 0 then the distribution of measuring
the adv register is exactly equal to DA . This is because |ª0icomp = |0i

Ø

Ø√DA

Æ

Ø

Ø0≠nÆ

represents
the first slice of the computation of G (see Figure 5.4). One might notice that in the final
protocol, we also check if the outcomes of measuring the out and aux registers are all 0. This is
done for technical reasons to simplify the proof of soundness.

We realized the two properties we were looking for. Now we can emulate the protocol described
in the first step (Quantum Verifier). Thus we will obtain a result similar to Theorem 8 also in
this setting. Notice that in each of the cases we were succeeding only with probability º 1/T 0.
This will influence the guarantee of Theorem 8 in this model. In particular, this will imply that
we will recover 1 sample from D for every T 0 states

Ø

Ø√D

Æ

provided to an honest P.

In Section 5.6 we will explain in more detail what it formally means that we can force P to
produce the history state. In short, the circuit-to-Hamiltonian reduction allows V to perform
local (which means involving only few qubits) checks on the state obtained from P to check
that it is in fact a history state. These local checks and the whole reduction have a flavor similar
to the famous Cook-Levin proof that shows that 3-SAT is NP-complete.

Classical Verifier. In the last model we consider V that is classical and all exchanged messages
are also classical. To make our protocol work we need to impose a computational restriction
on P, namely we assume that P is in QPT- Quantum Polynomial Time.
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5.6 Constant Memory Quantum Verifier

The goal now is to adopt the protocol from the previous step to this model. The protocol can
be understood as forcing P to construct a history state by performing checks (measurements
in the X or the Z basis) that involve only a constant number of qubits. In the model where the
communication is only classical, we need to somehow force P to perform the measurements
chosen by V and report the result of these measurements back to V.

To achieve this we use an idea that was a crucial component in the delegation of quantum
computation with a classical verifier in [Mah18]. A similar idea was used in [BCM+21] to
generate certified randomness with a classical verifier. On a high level, we design a protocol
that forces P to commit to an n-qubit state

Ø

Ø¡
Æ

, then receive instructions for measurements
from V, measure

Ø

Ø¡
Æ

accordingly and report the results back to V. The commitment stage
is done using a cryptographic primitive called a claw-free family with adaptive hardcore bit
property, defined in section 1.4.5.

5.6 Constant Memory Quantum Verifier

In section 5.3.1 we described a protocol in which a verifier V can certify that the distribution
of the samples they get from the prover P is ¥-close to the distribution of the samples given
by nature. However, this protocol required V to perform computation on 2n +1-qubit states,
whereas here we assume quantum memory of V is constant.

We proceed by describing a protocol, achieving the same goal, in which V can perform opera-
tions only on a constant number of qubits.8 On a high level V wants to outsource the execution
of the comparison circuit G to P. Intuitively we want P to send to V a state that certifies exe-
cution of G . This is possible by modifying a well-known result called circuit-to-Hamiltonian
reduction.

Circuit-to-Hamiltonian reduction. This reduction was introduced by Kitaev in the late 1990’s,
see [KSV02]. This reduction allows one to reduce the computation of a quantum circuit to
estimate the ground energy of a local Hamiltonian. With such a tool in hand V can first perform
the reduction to create HG , send a classical description of HG to P, then P is supposed to send
a low energy state

Ø

Ø√
Æ

of HG back to V, and finally V estimates the energy of
Ø

Ø√
Æ

with respect
to HG to verify that it is indeed of low energy.

For our purposes, we need a slight modification of the standard reduction. Due to this fact,
here we give an overview of this classical result and point to the differences needed for our
setup. The main difference is, the output of the circuits we are concerned with are not single
bit, and also a portion of the input √D , is plugged directly by the prover and V does not know
what this input is, hence the hamiltonian can not have penalization terms based on a portion
of the input and the output of the circuit, otherwise V would not be able to compute this

8This protocol is based on a circuit-to-Hamiltonian reduction. The size of this constant depends on which
reduction we use
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Verifier V Prover P

HG

∞= 0, p = 0

T 0 = n +T +3

n0 = 2n +T 0+1

L = number of terms of HG

for i 2 {1, . . . N } where N =O
µ

K (n5 +n2T 3 +T 5)
¥4 log(1/±)

∂

do :

t
$√°Terms(HC )

type $√° {1,2,3}

n1,n2,n3 = 0
Ø

Ø¡
Æ

AB 2 (C2)≠n0
A ≠HB

Ø

Ø¡
Æ

A

if type= 0 :

# measure energy of the state with respect to the Hamiltonian

bi = measurement of
Ø

Ø¡
Æ

i in basis æB
i , 8æB

i 2 t

∞= ∞° Jt (¶i2t bi )

n1 = n1 +1

if type= 1 :

# obtain a sample

b = measurement of the second qubit of clock in the Z basis

a1, . . . , an = measurement of aux in the Z basis

b0 = measurement of out in the Z basis

if b = 0,b0 = 0, a1, . . . , an = 0 :

b1, . . . ,bn = measurement of adv in the Z basis

S = S [ {(bi )i2[n]}

n2 = n2 +1

if type= 2 :

# estimate the output probability

b1 = measurement of the T 0-th qubit of clock in the Z basis

if b1 = 1 :

r = measurement of out in the Z basis

p = p + r

n3 = n3 +1

Done :

if
∞ ·L
n1

> ¥2

2T 02 _ p
n3

< 1°2¥2 :

Abort

Figure 5.5: The interactive protocol, in which the verifier collects samples from a distribution
close to the desired one. The verifier only requires a single qubit, as they measure one qubit at
a time. HG is the Hamiltonian corresponding to the comparison circuit, described in Figure 5.2.
We emphasize that we send

Ø

Ø¡
Æ

one qubit a time. When we measure the clock register we use
the unary representation of the clock. By writing

Ø

Ø¡
Æ

AB 2 (C2)≠n0

A ≠HB and then sending
Ø

Ø¡
Æ

A
to V we mean that P might be sending a mixed state.

110



5.6 Constant Memory Quantum Verifier

hamiltonian. We follow the approach from [KSV02] and we refer the reader to this book for
more details.

The starting point of the reduction is the comparison circuit G9. Recall that G acts on three
registers: out (1 qubit), adv (n qubits), aux (n qubits) and the output of the circuit is obtained by
measuring the out register in the Z basis. We want to find an object called a local Hamiltonian
HG .

Definition 15. We say that an operator H : (C2)≠N ! (C2)≠N on N qubits is a k-local Hamil-
tonian if H is expressible as H =P j

r=1 H j , where each H j is a Hermitian operator acting on k
qubits.

Our goal will be to define a Hamiltonian that is 5-local. As mentioned before HG acts on a
bigger number of qubits than G does. More precisely it acts on four registers clock, comp =
(out, adv, aux) - that is there is an additional register called clock in comparison to registers of
G . The standard reduction defines

HG = Hin +Hout +Hprop +Hclock.

The high level idea is to define the terms Hin, Hout, Hprop, Hclock such that G outputs 1 with
high probability if and only if HG has a small eigenvalue. In this case the minimizing vector
Ø

Ø¡hist
Æ

is the so-called history state

1
p

T 0+1

T 0
X

j=0

Ø

Ø j
Æ

clock ≠G j . . .G1 |0iout
Ø

Ø√
Æ

adv

Ø

Ø0nÆ

aux , (5.3)

where, for every j , G j is the unitary transformation corresponding to the j -th gate in G and
Ø

Ø j
Æ

clock is a state in the clock state space that we will define in detail later. The terms are
defined so that they impose penalties to

≠

¡
Ø

ØHG
Ø

Ø¡
Æ

whenever
Ø

Ø¡
Æ

is far from the history state.

For our purposes we change the reduction by removing the Hout term. By doing that we will
be able to say that for every

Ø

Ø¡
Æ

such that
≠

¡
Ø

ØHG
Ø

Ø¡
Æ

is small there exists
Ø

Ø√DA

Æ

adv such that
Ø

Ø¡
Æ

is close to the history state for
Ø

Ø√DA

Æ

adv. With that property in hand we can then say that
if we measure

Ø

Ø¡
Æ

in the Z basis then (i) with probability≠(1/T 0) the clock register is equal
to |0iclock, the out is equal to |0iout, the aux register is equal to |0niaux and the adv register
contains a sample from DA (ii) with probability≠(1/T 0) the clock register is equal to

Ø

ØT 0Æ
clock

and the out register contains a sample from a Bernoulli variable with parameter p such that
p is close to the probability of G outputting 1 on |0iout

Ø

Ø√DA

Æ

adv |0
niaux. In fact, we can also

write this probability as h0n |
≠

√DA

Ø

Ø

adv h0|out G†¶(1)
1 G |0iout

Ø

Ø√DA

Æ

adv |0
niaux, where ¶(Æ)

s is the
projection onto the subspace of vectors for which the s-th qubit equals Æ. This notation will
be useful later.

9The reduction can be applied to any circuit but we focus only on the comparison circuit for simplicity.
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Overview of the Protocol. Assuming that the above properties hold we give a high level idea of
the protocol defined in Figure 5.5. In each round of the protocol we perform one of the three
types of operations, where the type is chosen uniformly at random (i) we estimate the energy
≠

¡
Ø

ØHG
Ø

Ø¡
Æ

(ii) we measure
Ø

Ø¡
Æ

in the Z basis and if the clock register is equal to |0iclock, the
out register is equal to |0iout and the aux register is equal to |0niaux then we collect a sample
(iii) we measure

Ø

Ø¡
Æ

in the Z basis and if the clock register is equal to
Ø

ØT 0Æ
clock we update the

estimate for p. We run the protocol£(T ) rounds thus each of the types will occur≠(T ) times
with high probability and our reduction guarantees that for (ii) we successfully≠(1) samples
and for (iii) we update the estimate≠(1) times. Overall this guarantees that the estimate for
≠

¡
Ø

ØHG
Ø

Ø¡
Æ

and p will be accurate and the number of samples collected will be in≠(1). Our
reduction guarantees moreover that if

Ø

Ø¡
Æ

is in fact a low energy state of HG then p is close to
the probability of G outputting 1 on |0iout

Ø

Ø√DA

Æ

adv |0
niaux and the samples we collect come

i.i.d. from distribution DA that corresponds to
Ø

Ø√DA

Æ

. Moreover using Lemma 11 from p we
can estimate |h√DA |√DC i|, recall that DC is the distribution generated by C on |0ni of which
we think as being close to D. As explained in Section 5.3.1 estimating |h√DA |√DC i| is enough
to guarantee that the distribution from which we collected the samples is close to D.

For the remainder of this section we first explain the details of the circuit-to-Hamiltonian
reduction and then formalize the correctness and soundness requirements and prove the
desired properties.

Building the Hamiltonian

The next step is to adapt Kitaev’s reduction for our scenario, i.e. for circuits sampling from a
distribution rather than solving a decision problem. As most of the steps in the reduction have
a significant amount of overlap with Kitaev’s original reduction, we only state the final result
here and defer the proof to Appendix A.2.

Note 3. In [CLLW22], Chung et al. proved how the delegation protocol from Mahadev [Mah18]
can be extended to sampling problems in BQP. However, the results presented in this chapter
were independently found although they share a fair amount of similarities in the techniques
used. Another difference between the results is that in our setting, the verifier does not have
control over a portion of the input, i.e. the prover plugs in a portion of the input.

Lemma 7 (Circuit-to-Hamiltonian Reduction). For every comparison circuit G, for all, suffi-
ciently small, ≤> 0 there exists an efficiently computable description of a 5-local Hamiltonian
HG with L = O(n +T 0) many terms such that the following conditions hold. Let DA be the
distribution of the content of the adv register when measuring

Ø

Ø¡
Æ

in the Z basis conditioned
on the clock, out and aux registers being all 0 after measurement. For every

Ø

Ø¡
Æ

such that
≠

¡
Ø

ØHG
Ø

Ø¡
Æ

∑ ≤
T 0 if we measure

Ø

Ø¡
Æ

in the Z basis then

• with probability 2
£ 1°5≤

T 0+1 , 1+5≤
T 0+1

§

the clock register is equal to |0iclock, the out register is equal
to |0iout, the aux register is equal to |0niaux,
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• with probability 2
£ 1°5≤

T 0+1 , 1+5≤
T 0+1

§

the clock register is equal to
Ø

ØT 0Æ
clock and conditioned on

this event the distribution of the out register is a Bernoulli variable with parameter p such
that |p °h0n |aux

≠

√DA

Ø

Ø

adv h0|out G†¶(1)
outG |0iout

Ø

Ø√DA

Æ

adv |0
niaux |∑ 5≤T 0.

Correctness of the Protocol

Recall that protocol from Figure 5.5 builds upon the protocol from Figure 5.3. Now V, instead of
running G itself, outsources its execution to P. On a high level correctness of this new protocol
is a consequence of correctness of the quantum verifier protocol (Theorem 8) and circuit-to-
Hamiltonian reduction (Lemma 7). One, however, needs to be careful as the guarantees about
the protocol will change slightly and some details in the proof need to be verified.

Lemma 8. Let n1,n2,n3 be the number of times each type occurs in protocol from Figure 5.5. If
N =≠(log(1/±)) then P[n1,n2,n3 > N

6 ] ∏ 1°±.

Proof. For b 2 {1,2,3}, nb can be seen as sum of random Bernoulli variables {xi }i2[N ] with
parameter 1/3. Then by Fact 2 we get that P[|nb

N ° 1
3 | >

1
6 ] ∑ 2e°

N
72 ∑ ±

3 . We finish by applying
the union bound to the error events.

Lemma 9. Let ΩA be the reduced density of the first n0 qubits of
Ø

Ø¡
Æ

AB , ∞, p, n1,n2,n3, S be as
in the protocol defined in Figure 5.5. Let p§, q§ and ∏ be defined as,

∏= Tr(HGΩA),

q§ = Tr(|0ih0|clock ≠ |0ih0|out ≠
Ø

Ø0nÆ≠

0nØ

Ø

auxΩA),

p§ =
Tr(

Ø

ØT 0Æ≠

T 0Ø
Ø

clock ≠ |1ih1|outΩA)

Tr(|1ih1|outΩA)
.

We define the event F to be
Ø

Ø

Ø

∞·L
n1

°∏
Ø

Ø

Ø

∑ ≤,
Ø

Ø

Ø

|S|
n2

°q§
Ø

Ø

Ø

∑ ≤
Ø

Ø

Ø

p
n3

°p§
Ø

Ø

Ø

∑ ≤. If N =≠( n2+T 02

≤2 log(1/±))
then P[F ] ∏ 1°±.

Note 4. For the sake of convenience, we often write |0ih0|clock ≠ |0ih0|out ≠ |0nih0n |aux, when we
actually mean |0ih0|clock ≠ |0ih0|out ≠ Iadv ≠ |0nih0n |aux.

Proof. Notice that for every term t 2 HG we have |Jt |∑ 1. Then if n1 =≠( L2

≤2 log 1
± ) then Fact 2

guarantees that P[|∞·Ln1
°∏| > ≤] ∑ ±.

Next we define Bernoulli variables {si }i2[n2] to indicate whether |S| increases in a given round,
i.e. |S| = Pn2

i=1 si . By definition µ = E[si ] = Tr(|0ih0|clock ≠ |0ih0|out ≠ |0nih0n |auxΩA). Using

Fact 2 we get that if n2 =≠( 1
≤2 log(1/±)) then P

h

Ø

Ø

Ø

|S|
n2

°q§
Ø

Ø

Ø

> ≤
i

∑ ±. The exact same argument

can be used for p
n3

.

113



Chapter 5. Cryptographically Robust Classifiers Against Arbitrary Test Examples in a
Quantum Learning Model

To conclude, by the union bound, if n1 = ≠( L2

≤2 log(1/±)) and n2,n3 = ≠( 1
≤2 log(1/±)) then

P[F ] ∏ 1°±. By Lemma 8 and the union bound we get that if N =≠( L2

≤2 log(1/±)) then P[F ] ∏
1°±. As Lemma 7 guarantees that L =O(n +T 0) we can also set N =≠( n2+T 02

≤2 log(1/±)).

Intuitively Lemma 9 guaranties that with a high probability, the estimates ∞·L
n1

, |S|n2
, p

n3
are accu-

rate enough. With that fact in hand we proceed by stating the main theorem of this section.

Theorem 10 (Constant Memory Quantum Verifier). For every circuit C acting on n qubits,
with T gates, for every ± 2 (0, 1

3 ),K 2N and all ¥ > 0 small enough there exists an interactive
protocol between a verifier with constant quantum memory V and a quantum prover P with
the following properties. The protocol runs in N =O

≥

K ·(n5+n2T 3+T 5)
¥4 log(1/±)

¥

rounds, in each
round P sends a (potentially mixed) quantum state on O(n +T ) qubits to V. At the end of the
protocol V outputs ? when it rejects the interaction or S = {x1, . . . , x|S|}, where xi 2 {0,1}n, when
it accepts.

• (Completeness) There exists PO(§) such that for every D 2D(n) satisfying dH (D,DC ) ∑ ¥

the following holds. With probability 1°± over the randomness in the protocol PO(D)

succeeds, S ªi.i.d. D
|S| and |S|∏≠(K ).

• (Soundness) For every P that succeeds with probability at least 2
3 we have S ªi.i.d. (DA)|S|

and dH (DC ,DA) ∑O(¥1/4).

Proof. We first address completeness of the protocol and then move to soundness.

Completeness.Recall that the P that was guaranteed to exist in Theorem 8 was just sending
state

Ø

Ø√D

Æ

adv to V. Recall that we denote by T 0 = n +T +3 the number of gates in G and by n0

the number of qubits that are sent by P in each round. As we discussed the natural extension
of this strategy to the constant memory model is for P to prepare the history state

Ø

Ø¡D

Æ

comp of
Ø

Ø√D

Æ

adv and send it to V. As N =O
≥

K ·(n2T 03+T 05)
¥4 log(1/±)

¥

=O
≥

K ·(n5+n2T 3+T 5)
¥4 log(1/±)

¥

we get
by Lemma 9 that with probability 1°±

• the estimate of the energy ∞·L
n1

∑ ¥2

4T 03 as
≠

¡D

Ø

ØHG
Ø

Ø¡D

Æ

= 0,

• |S| =≠(K ) as in this case Tr(|0ih0|clock≠ |0ih0|out≠ |0nih0n |auxΩA), which is the probabil-
ity of getting a sample if the type is 1 is equal to

≠

¡D

Ø

Ø¶(T 0)
clock

Ø

Ø¡D

Æ

= 1
T 0+1 ,

• p ∏ h¡D |¶(0)
clock¶

(1)
out|¡Di

h¡D |¶(0)
clock|¡Di ° ¥2

4 ∏ f (dH (DC ,D))° ¥2

4 ∏ 1°2¥2, thus the two checks are verified

and the interaction is accepted. By definition S ªi.i.d. (D)|S|. Thus completeness is
verified.
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Soundness.We follow the structure of the proof of Theorem 16, which is the analog of this
theorem for a fully quantum verifier. Let ΩA be the density matrix representing the state sent
by P. By Lemma 9 we know that with probability 1°±/2 the energy estimate is within an
additive error of ¥2

4T 03 and p is estimated within an additive error of ¥2

4 . So as P succeeds with
probability 2

3 then by the union bound and the fact that 1
3 + ±

2 < 1 we get that Tr(HGΩA) ∑
¥2

2T 03 + ¥2

4T 03 = ¥2

T 03 and p ∏ 1°2¥2° ¥2

4 ∏ 1°3¥2. With that we can apply Corollary 1 and conclude
that dH (DA ,DC ) ∑O(¥1/4).

5.7 Classical Verifier

Now we are ready to move to the last model we consider in this work, namely the one where V
is fully classical and the communication is also classical. Recall that in Section 5.6 we designed
the protocol by forcing P to send to V a history state

Ø

Ø¡DA

Æ

comp corresponding to a distribution
satisfying dH (DC ,DA) ∑O(¥1/4). To extend this protocol to the classical model we first force P
to commit to a state Ω, a state that will in some sense correspond to

Ø

Ø¡DA

Æ

comp and then force
P to measure this state in the basis chosen by V. By making the prover to measure his qubits
honestly we get a version of constant quantum memory Protocol (Figure 5.5) in which all the
quantum computation is done on the prover side and the verifier and the communication is
completely classical.

To achieve our goal we will use cryptographic tools. As the protocol will rely on the hard-
ness of computational problems, our soundness results will only address provers that are
computationally bounded, namely only provers in the QPT class.

Next, we give a high-level overview of the protocol. An honest prover P is given a local
Hamiltonian corresponding to G and computes the ground state of the Hamiltonian, i.e. the
history state

Ø

Ø¡hist
Æ

. Later the prover is asked to commit to this state before the protocol
proceeds with the interactive stage, in which the prover is asked to measure qubits of the state
he has committed to either in computational or the Hadamard basis, and send the outcomes
to the verifier. At each iteration, the verifier decides to do one of the following 3,

• estimate the energy of the state the prover has committed to,

• estimate the probability of the output of the circuit being 1,

• collect a sample from the distribution corresponding to the prover’s state.

The description of this protocol is given in Figure 5.6. We note that the results presented in
this section heavily rely on [Mah18]. Some of the technical lemmas are not proven here. We
refer the reader to [Mah18] for said proofs.

Note 5. We stress that with this protocol one can only retrieve samples from measurements done
in the Z basis. The distribution of samples collected in the protocol when V asks for the X basis
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measurements are not in general equal to the distribution of measuring the state of P in the X
basis. This means that if our protocol required samples from the distribution corresponding to
the X measurements it is not clear if it could be realized in the fully classical model.

Similar to [Mah18] we require a more refined version of the circuit-to-Hamiltonian reduc-
tion, namely we require our Hamiltonians to be 2-local and of the form

P

i , j °
Ji , j

2 (æX ,iæX , j +
æZ ,iæZ , j ).

Theorem 11 ([BL08]). For any integer n ∏ 1 there exists n0 = pol y(n), a(n) and ±∏ 1/pol y(n)
such that given a T -gate quantum circuit G, there exists an efficiently computable real-weighted
Hamiltonian HG in X X °Z Z form, such that,

• (completeness) If G accepts x with probability at least 2/3, then ∏0(HG ) ∑ a.

• (soundness) If G accepts x with probability at most 1/3, then ∏0(HG ) > a +±.

As proved in Section 5.6, by modifying the standard circuit-to-Hamiltonian reduction, we can
show that "for any

Ø

Ø¡
Æ

such that
≠

¡
Ø

ØHG
Ø

Ø¡
Æ

< ≤ the distribution of the measurement outcome
of the first qubit of

Ø

Ø¡
Æ

(conditioned on the clock register being T 0) is ≤ close to the distribution
of what G would output". We refer the reader to [CLLW22] to see how the same guarantees
can be derived with a 2-local Hamiltonian.

We proceed by stating the completeness and soundness properties of this protocol and provid-
ing a proof sketch.

Prover’s Observables

In order to prove ∞ is an accurate estimate of the energy using a similar argument to Lemma 9,
we have to prove the E[∞] = Tr(HGΩ), where in a sense Ω is the prover’s state. Letting (Xi , Zi ) be
the observables of P which determine the value of the i th response, we require an isometry
which teleports these observables to æX ,i ,æZ ,i as the Hamiltonian is penalizing the bad config-
urations of the state with respect to æX ,i ,æZ ,i . Let us assume the prover’s state is in a Hilbert
space H ≠Henv, where he might share some entanglement with the environment.

Based on how the estimates are updated in the protocol the natural way to define the observ-
ables that P measures, would be,10

Z (a) =P

x1,...,xn0 2{0,1}m (°1)b(x)·a |x1ihx1|≠ . . . |xn0 i hxn0 |≠ IP
X (a) =P

d1,...,dn0 (°1)
P

ai (di (xi ,0+xi ,1))U †(|d1ihd1|≠ . . . |dn0 i hdn0 |≠ IP )U

Basically in our modeling of actions of P, if the challenge bit is b = 0, P measures his state in
the computational basis in order to get the preimages, and if b = 1, he applies an arbitrary
unitary U , followed by a Hadamard measurement to retrieve the d values.

10here we will use b by absuing the notation instead of (bi (xi ))i2[n]
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Verifier V Prover P

HC =
X

i j
°

Ji j

2
(æX ,iæX , j +æZ ,iæZ , j )

for i 2 [N ] where N =O
µ

K
¥4 poly(n,T ) log(1/±)

∂

do

∞, p,n1,n2,n3 = 0

T 0 = n +T +3,n0 = 2n +T 0+1,S =;

type $√° {1,2,3}

# generate the functions

for ` 2 [n0],set (pk`,td`) √Gen(1∏)

pk1, . . . ,pkn0

y1, . . . , yn0

b
$√° {0,1}

b

{xi }i2[n0]=(o,t1,...,tT ,a1,...,an ,i1,...,in )

o, t j , a j , i j 2 {0,1}m+1

if b = 0 :

#the computational basis

if fpki
(xi ) 6= yi :

abort()
if type= 1 :

#Estimate ∞

n1 = n1 +1

∞√ ∞° Ji j (°1)b(xi )+b(x j )

if type= 2 :

#Estimate p

#check if clock is = T 0

if (b(t0),b(t1), . . . ,b(tT 0 )) = (1, . . . ,1) :

p = p +b(o)

n2 = n2 +1

if type= 3 :

#Obtain a sample

n3 = n3 +1

#check if clock is = 0

if(b(t0), . . . ,b(tT 0 )) = (0,0, . . . ,0)

^b(o) = 0

^b(i0), . . . ,b(in0 ) = (0, . . . ,0) :

s = b(a1)|| . . . ||b(an0 )

S = S [ {s}

if b = 1 :

#the Hadamard basis

{di }i2[n0]

if type= 1 :

n1 = n1 +1

∞= ∞° Ji , j (°1)(di (xi ,1+xi ,0)+d j (x j ,1+x j ,0))

else :

continue
return ∞, p,S,n1,n2,n3

Figure 5.6: The description of the classical verifier protocol. Notice that xi values are m+1 bits
long each, e.g. o contains the measurement outcome of the output register, plus the remaining
m bits of the input to fpk1

.
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Now we apply the canonical isometry from lemma 1 on the two observables, given as follows,

V
Ø

Ø√
Æ

= ( 1
2n0

P

a,b I≠æX (a)æZ (b)≠X (a)Z (b))
Ø

Ø¡+Æ≠n0 Ø
Ø√

Æ

and prove that it interacts with the observables X and Z as intended, i.e. forms a commutative
diagram. Note that for V to be an isometry X and Z do not need to anti-commute, but the
diagram need not commute if X and Z do not anti-commute.

We start by defining a notion of an extracted qubit.

Definition 16 (Extracted Qubits). Let P be a prover playing in Protocol 5.6, X , Z defined and
let V be the canonical isometry sending (X , Z ) to (æX ,æZ ). Let

Ø

Ø¡
Æ

2H ≠Henv be the state of
the prover after sending the yi values. We call the reduced density of the first qubit of V

Ø

Ø¡
Æ

the
extracted qubits of the prover, and we denote it by Ω.

Now we restate lemma 7.4 from [Vid22] shows that the observables and the isometry form an
almost commutative diagram.

Fact 3 ([Vid22]). Let P be any QPT prover, Ω be their extracted qubit. We have,11

• 8b 2 {0,1}n0
, Tr(æZ (b)Ω) =

≠

√
Ø

Ø Z (b)
Ø

Ø√
Æ

• 8b 2 {0,1}n0
, Tr(æX (b)Ω) = 1

2n0
P

a(°1)a·b ≠

√
Ø

Ø Z (b)X (a)Z (b)
Ø

Ø√
Æ

Previously we mentioned that one can retrieve samples by asking the prover to measure their
state in the computational basis, the first bullet exactly corresponds to this scenario. Intuitively
what it tells us is that the distribution of the b(x), for x values returned by P, is identical to the
distribution of the measurement outcomes of the extracted qubit Ω in the computational basis.
However, in the case of the Hadamard basis, the matter is more subtle as the distribution is
"twirled". As long as we only care about collecting samples via Z measurements, the twirl
operator does not cause us any issues, as we will show that it would not affect the energy
estimate in the protocol.

In order to follow the proofs done in [Mah18] we require our function family F to have the
adaptive hardcore property and moreover be collapsing, where both properties are defined in
sections 1.4.5 and 1.5. Note that, the collapsing property holds naturally for the LWE-based
construction given in [Mah18]12.

We proceed by stating and proving the completeness of the protocol.

11æW (a) =¶i s.t. ai=1æW,i the X or Z measurement of indices such that ai = 1
12the authors consider two families of functions, a 2-to-1 family and a bijective family, and prove that based on

the hardness of LWE, no adversary can distinguish between the two. This is another phrasing of the collapsing
property.
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Completeness

In this section we describe an honest prover strategy. We describe a prover PO(D) that wins
in protocol 5.6 with probability 1, and provides us with samples from D. Recall that in the
constant quantum memory protocol, P first creates a history state

Ø

Ø¡D

Æ

for
Ø

Ø√D

Æ

and then
sends

Ø

Ø¡D

Æ

to V. This prover satisfies the completeness property. For the classical model we
will show that a prover who commits to the same history state also satisfies completeness.

Theorem 12 (Completeness). There exists a QPT prover PO(§), such that for any distribution
D 2D(n), any ∏-collapsing claw-free family F , PO(D) wins in Protocol 5.6 with probability 1
and we have:

• S ªD |S|

The completeness of this protocol is in some sense easier to prove than the completeness of
the protocols described in the previous sections. The reason for this is that the protocol does
not abort when the estimates are not satisfying the desired bounds. We proceed by describing
the strategy for the honest prover and the proof of completeness.

Proof. Let us denote 2n +T 0+1 by n0. The honest prover will create a state such that each bit
bi would correspond to the measurement of a qubit from the history state. They extend the
state with zeros in the following way.

Ø

Ø¡hist
Æ

Ø

Ø

Ø

0mn0E

X
=

X

b1,...,bn0

Æb1,...,bn0 |b1i
Ø

Ø0mÆ

. . . |bn0 i
Ø

Ø0mÆ

(5.4)

By applying QFT on the 0 registers we get the state,

Ø

Ø¡0Æ= 1
p

2mn0

X

b1,...,bn0

Æb(
X

z2{0,1}mn0
|b1i |z1i . . . |bn0 i |zn0 i) (5.5)

We add a zero register to
Ø

Ø√
Æ

and evaluate fpki
on the superpositions to get the state,

Ø

Ø¡00Æ= 1
p

2mn0

X

b1,...,bn0

Æb(
X

x2{0,1}mn0
|b1i |z1i

Ø

Ø fpk1
(b1, z1)

Æ

. . . |bn0 i |zn0 i
Ø

Ø fpkn0 (bn0 , zn0)
Æ

) (5.6)

P proceeds by measuring the image registers to get values y1, . . . , yn0 . The state after obtaining
this measurement outcome will be,

Ø

Ø¡P
Æ

=
X

b
Æb |b1i

Ø

Øx1,b1

Æ

Ø

Øy1
Æ

. . . |bn0 i
Ø

Øxn0,bn0

Æ

Ø

Øyn0
Æ

(5.7)

where (bi , xi ,bi ) is the bi -labeled preimage of yi under fpki
.

Upon receiving challenge 0, P measure the state
Ø

Ø¡P
Æ

in computational basis and sends
x1, . . . , xn = (b1, x1,b1 ), . . . , (bn0 , xn0,bn0 ) values to V. From equation 5.7 one can deduce that
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b1(x1), . . . ,bn0(xn0) as in the protocol is distributed identically to the outcome of the measure-
ment of the history state in computational basis. By construction P always succeeds in the
preimage check, hence, wins with probability 1.

As the outcomes of measuring the b registers of state
Ø

Ø¡P
Æ

are distributed identically to the
measurement outcomes of the history state

Ø

Ø¡hist
Æ

we have S ªD |S|, following the complete-
ness proof from Theorem 10.

In fact the completeness can be modified so that it captures the fact that the estimates com-
puted in the protocol are close to the actual energy and outcome probability. We state the
theorem here, but as similar statements are proven in the soundness we avoid repeating the
proof here.

Theorem 13 (Completeness 2). There exists a QPT prover PO(§), such that for any distribution
D 2D(n), any family of∏-collapsing claw-free family F , PO(P ) wins N =O( K

¥4 poly(n,T ) log(1/±))
iterations of Protocol 5.6 with probability 1, we have that with probability at least 1°±,

• |S|∏≠(K ),

• p/n2 ∏ 1°2d 2
H (D,DC ),13

• ∞/n1
°n0

2

¢

2 [q ° ¥2

2T 03 , q + ¥2

2T 03 ], where q =
≠

¡hist
Ø

ØHG
Ø

Ø¡hist
Æ

,

• S ª (D)|S|.

Soundness

Now that we have established an honest prover strategy, the only thing left is to prove that for
any prover who wins the game with a high probability, the verifier V would collect samples
from a distribution close to the DC .

The key fact to prove the soundness of the protocol is that the values xi and di are somewhat
correlated with the measurement outcomes of the i th qubit of the prover’s extracted qubit.

Fact 4 ([Mah18]). Let F be a collapsing claw-free family and let P be any QPT prover who wins
in Protocol 5.6 with probability 1, let Ω be the prover’s extracted qubits, Bi and Di the outcome
of measuring the i th qubit of Ω in the computational and the Hadamard basis respectively. For
any parity ¬ : {0,1}n0 ! {°1,+1} we have,

• (computational basis measurement) ¬(B1, . . . ,Bn0) is identically distributed to

¬(b1(x1), . . . ,bn0(xn0)).

13This is done similar to the protocol described in Figure 5.5
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• (the Hadamard basis measurement) ¬(D1, . . . ,Dn0) is computationally indistinguishable
from ¬(d1 · (x1,0 +x1,1), . . . ,dn0 · (xn0,0 +xn0,1)).

Lemma 10. For any T -gate quantum circuit C , and its corresponding T 0-gate comparison
circuit G, let F = { fpk} be a family of claw-free functions satisfying the collapsing property, and
let HG be an n0 = 2n +T 0+1 qubit Hamiltonian corresponding to G. For any QPT prover P let Ω
be the reduced density of the extracted qubits of P, and let DA be the distribution of outcomes of
measuring the adv register of Ω conditioned on the measurement outcome of clock, out and aux
register being 0 in the computational basis. If P wins in protocol 5.6 with probability 1 we have,

• E[∞/n1
°n0

2

¢

] º Tr(HGΩ),

• E[p/n2] = Tr(|T 0ihT 0|clock≠|1ih1|outΩ)
Tr(|T 0ihT 0|clockΩ) ,

• S ª (DA)
|S|

.

Proof. To prove this theorem we will be using Fact 4. First we prove the properties only relying
on the computational measurements, namely properties about p and S. Let us focus on
distribution of S first.

A sample is collected if type= 1, the challenge bit b is equal to 0 and b(o),b(clock),b(aux) are
all 0. Due to Fact 4 this is equivalent to when the outcome of measuring the aux,clock and out
registers of Ω are 0. Conditioned on this happening the sample collected has the exact same
distribution as measuring the adv register of Ω, which is equivalent to DA .

The estimate p is increased by b(o), when type= 2, the challenge bit is 0 and

b(t0), . . . ,b(tT 0) = (1, . . . ,1).

Conditioned on the clock being T 0, The expectation of b(o) is Tr(
Ø

ØT 0Æ≠

T 0Ø
Ø

clock≠|1ih1|outΩ) due

to fact 4. Hence we have E[p] = n2
Tr(|T 0ihT 0|clock≠|1ih1|outΩ)

Tr(|T 0ihT 0|clockΩ) .

The next thing to prove is that the energy estimate has the desired expectation. If we consider
the n1 rounds in which we change the energy estimate, the expectation of the amount of
change done to ∞ is equal to:

° 1
2(n0

2 )
P

i , j Ji , j (°1bi (xi )+b j (x j ) +°1di (xi ,0+xi ,1)+d j (x j ,0+x j ,1))

For bi (xi ) and b j (x j ), we know that these random variables are distributed identically to
measurement of Ω in computational basis. The only issue is that di (xi ,0+xi ,1) is not distributed
identically to Hadamard measurement of Ω, but rather is computationally indistinguishable
from it.
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However for any parity ¬ if the distance between the expectations of ¬(di (xi ,0 + xi ,1)) and
¬ applied on the measurement outcomes of Ω in the Hadamard basis is negligible in ∏; as
otherwise an adversary could distinguish between the two by random sampling using only
O(1/pol y(µ)) samples. Hence we have,

E[Ji , j (°1)bi (xi )+b j x j ] = Ji , j Tr(æZ ,iæZ , jΩ)

E[Ji , j (°1)di (xi ,0+xi ,1)+d j (x j ,0+x j ,1)] = Ji , j (Tr(æX ,iæX , jΩ)±ng l (∏))

Hence we have that E[∞] º n1
1

(n0
2 )

Tr(HGΩ) as desired.

Theorem 14 (Perfect Prover Soundness). For any security parameter ∏, any T -gate circuit
C acting on n-qubits, the protocol defined in Figure 5.6 has the following properties. It is an
interactive protocol (V,§) between a classical verifier V and a quantum prover. For any QPT
prover P, let Ω be the reduced density of the extracted qubits of P, and DA be the distribution of
outcomes of measuring the adv register of Ω in the computational basis conditioned on the mea-
surement outcome of clock, out and aux registers being 0. If P wins N =O( K

¥4 poly(n,T ) log(1/±))

iterations of the protocol with probability 1 and ∞
n1

°2n+T+1
2

¢

∑ ¥2

2T 03 and p
n2

∏ 1°2¥2, then with
probability 1°±°µ(∏), we have,

• dH (DC ,DA) ∑O(¥1/4),

• S ª (DA)|S|.

where µ is a negligible function.

Note 6. The guarantee expressed in the last sentence of Theorem 14 might seem mysterious at
first. Note however that the conditions contained there are equivalent to the checks performed
at the last step in the constant quantum memory protocol from Figure 5.5. The fact that the
checks are contained in the statement of the theorem and not in the protocol itself allows us to
analyze perfect provers only and simplifies the presentation considerably.

Proof of Theorem 14. Let G be the T 0 comparison circuit of C and let HG be the corresponding
2-local Hamiltonian acting on n0 = 2n +T 0+1 qubits.

Applying Lemma 8 we have that with probability 1°e°
N
18 we have n1 ∏≠(N ). From Lemma 10

we have,

E

"

∞

n1

√

n0

2

!#

º Tr(HGΩ) (5.8)

E

∑

p
n2

∏

=
Tr(

Ø

ØT 0Æ≠

T 0Ø
Ø

clock ≠ |1ih1|outΩ)

Tr(|T 0i hT 0|clockΩ)
(5.9)
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Using Fact 2 we get,

P

"

Ø

Ø

Ø

Ø

Ø

∞

n1

√

n0

2

!

°Tr(HGΩ)

Ø

Ø

Ø

Ø

Ø

∏ ¥2

2T 03

#

∑ 2e
° ¥4n1

8(n0
2 )

2
T 06 J (5.10)

P

"

Ø

Ø

Ø

Ø

Ø

p
n2

°
Tr(

Ø

ØT 0Æ≠

T 0Ø
Ø

clock ≠ |1ih1|outΩ)

Tr(|T 0i hT 0|clockΩ)

Ø

Ø

Ø

Ø

Ø

∏ 3¥2

2

#

∑ 2e°
9¥4n2

8 , (5.11)

where J = supi 6= j2[n0]{|Ji , j |}.

If we use the hypothesis of the theorem, (5.10) and (5.11) we get that with probability 1° ±
8 ,

Tr(HGΩ) ∑ ¥2

T 03 (5.12)

Tr(
Ø

ØT 0Æ≠

T 0Ø
Ø

clock ≠ |1ih1|outΩ)

Tr(|T 0i hT 0|clockΩ)
∏ 1°2¥2 ° 3¥2

2
∏ 1° 7¥2

2
(5.13)

By eq. (5.13), the probability of the measurement outcome of the out register being 1, when
the clock is T 0 is at least 1° 7¥2

2 . By employing Corollary 1 we have that with probability 1±7¥
T 0+1 ,

dH (DC ,DA) ∑O(¥1/4).

By Fact 2 we have that n2 =≠( N
T 0 ) with probability 1° ±

20 so it is enough to set the number

of rounds to be N = O( 1
¥4 log(1/±)

°n0

2

¢2
T 07 J) = O( 1

¥4 log( 1
± )poly(T,n)) for (5.11) to hold with

probability ∑ ±/10. If we apply the union bound over all failure events we get that all the
conditions will be satisfied with probability at least 1°±, hence with probability 1°± we get
dH (DC ,DA) ∑O(¥1/4).

The second bullet follows directly from Lemma 10.

Discussion We have proven the soundness of our protocol only in the perfect prover setting.
The problem with this statement is that it can not be verified that the prover is winning with
probability 1. Also, the soundness guarantee is different from the previous sections as the
game does not abort when the estimates do not satisfy the bound. The reason we modified the
game in this manner is that if the game aborted after checking the bounds, even the honest
prover would not have won the game with probability 1, as there is a small probability that the
estimates computed in the protocol are far from the expected value.

However, it is possible to achieve a stronger soundness guaranties, similar to Theorem 10.
This requires more adjustments to the protocol which allows one to prove the soundness for
a non-perfect prover by following a similar path as the one in Claim 7.1 of [Mah18], where a
reduction from the non-perfect prover to a perfect prover is given.
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6 Conclusion and Further Work

6.1 Conclusion

In this thesis, We focused on exploring the realm of cryptography when confronted with
quantum computation. Our objective was to offer two distinct viewpoints on this matter.
Initially, we examined classical cryptographic objects that ensure security even when facing
quantum adversaries. Subsequently, we delved into cryptographic primitives specifically
tailored for quantum entities.

The initial two contributions presented in this thesis (Chapter 2 and 3) revolved around
an analysis of a back to the roots approach to designing quantum-secure digital signatures.
Specifically, we explored the construction of signature schemes based on symmetric-key
cryptographic components. Our analysis focused on the PICNIC signature scheme [CDG+17],
which is built using the MPC-in-the-head paradigm [IKOS07]. We demonstrated that reducing
the multiplication count of the underlying cipher used in PICNIC results in a significant loss of
security. We summarize the findings from these two chapters with the following fundamental
principle:

"The security of signature schemes derived from the MPC-in-the-head paradigm is directly
influenced by the multiplication count of the underlying symmetric-key primitive."

The third outcome we present in this thesis (Chapter 4) focused on how quantum commu-
nication affects the relationship between the five worlds of Impagliazzo. We establish that
public-key encryption, which serves as the central primitive in Cryptomania, can indeed be
constructed using Minicrypt objects when quantum states are allowed as public keys. Fur-
thermore, we demonstrate how this notion of public-key encryption can be built based on
assumptions that might even belong to Algorithmica, a world where classical cryptography
is no longer viable. Additionally, we show that while quantum public-key encryption (qPKE)
can be constructed using weaker assumptions compared to classical cryptography, it still falls
short of providing information-theoretic security. This observation underscores the blurred
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boundaries between Impagliazzo’s five worlds when quantum computation is considered and
emphasizes the need for modifying the definitions of these worlds in a quantum context.

In Chapter 5, we explored the possibilities offered by quantum information in leveraging
Cryptomania assumptions. Specifically, we investigate problems that are considered classically
intractable even under strong Cryptomania assumptions. By building upon the concept of
delegating quantum computation, we provide cryptographic guarantees for classification
tasks, where the test time examples can be adversarially perturbed, without any restrictions
on the perturbations. The result presented in this chapter established that in a quantum
learning model, assuming the hardness of the LWE problem, classical lower bounds previously
established in [GKKM20] can be surpassed in certain regimes.

6.2 Future Work

Regarding the outcomes presented in Chapters 2 and 3, a highly desirable objective is to
establish a direct relationship between the circuit complexity of the verification procedure for
a general NP-statement and the security of the MPC-in-the-head signature derived from it.
Obtaining fine-grained bounds on this quantity would enable a more systematic selection of
parameters for signatures constructed using this framework.

The findings discussed in Chapter 4 open up new avenues for constructing quantum crypto-
graphic primitives based on weaker assumptions compared to classical requirements. One
immediate open problem arising from these results is the exploration of building a public-key
infrastructure (PKI) using similar principles. One significant challenge in achieving this goal is
the authentication of public keys, as it has been shown that authenticating arbitrary quantum
states is impossible [BCG+02b]. However, the specific structure of the keys might allow for this
task to be achievable only using a classical authenticated channel [KMNY23].

The analysis presented in the first three chapters gives rise to an intriguing problem: the
exploration of fine-grained circuit complexity in the construction of quantum cryptography
primitives. One particularly intriguing question that remains unresolved is whether objects
like pseudorandom state generators (PRSGs) can be implemented using constant-depth
quantum circuits. Consequently, a captivating research direction involves investigating both
lower and upper bounds for the circuit complexities required to realize various quantum
cryptographic objects.

The final direction for future work that we propose is to investigate the question: "Where are
Cryptomania assumptions necessary in a quantum world?" While quantum communication
allows the construction of cryptographic primitives that would traditionally demand heavier
classical machinery, it remains uncertain whether certain tasks still necessitate Cryptoma-
nia assumptions. A notable example is qubit test protocols and randomness certification
from [BCM+18]. In a recent breakthrough, Zhandry and Yamakawa [YZ22] demonstrated
that random oracles suffice to build a publicly verifiable test of quantumness protocol. An
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intriguing open problem is to explore whether this approach can be adapted to construct a
qubit test and classical verification of quantum computation.
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A Appendicies for Chapter 5

A.1 Ommited Proofs

Lemma 11. For every
Ø

Ø√DA

Æ

and C the probability of obtaining outcome |1i when measuring
the out register of G |0iout
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Æ
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.

Proof. We analyze the evolution of the state
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The probability of obtaining outcome |1i when measuring the out register in the Z basis is

129



Appendix A. Appendicies for Chapter 5
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Lemma 5. Apply Lemma 11 and the 1°d 2
H (P ,Q) =P

x2{0,1}n
p

P (x)Q(x) identity.

Lemma 6. For b 2 {0,1}, nb can be seen as a sum of random Bernoulli variables {xi }i2[N ] with
parameter 1/2. Then, by Fact 2, we get that P[|nb

N ° 1
2 | >

1
4 ] ∑ 2e°

N
32 ∑ ±

2 . We finish by applying
the union bound over the error events.

A.2 Proof of Lemma 7

Proof. As we discussed we want to base our reduction on the standard circuit-to-Hamiltonian
reduction but drop the Hout term. We define

HG = Hin +Hprop +Hclock. (A.1)

The term Hin corresponds to the condition that, at step 0, the qubits are in the right state.
Formally

Hin = |0ih0|clock ≠
√

X

j2out,aux
¶(1)

j

!

, (A.2)

where by j 2 out,aux we mean iterating over all the qubits in these registers. Informally
speaking, we add a penalty whenever a qubit in registers out or aux is in state |1i while the
clock is in state |0iclock.

The term Hprop guarantees the propagation of quantum states through the circuit. Formally

Hprop =
T 0
X

j=1
H j , (A.3)

H j =°1
2

Ø

Ø j
Æ≠

j °1
Ø

Ø

clock ≠G j °
1
2

Ø

Ø j °1
Æ≠

j
Ø

Ø

clock ≠G†
j +

1
2

(
Ø

Ø j
Æ≠

j
Ø

Ø

clock +
Ø

Ø j °1
Æ≠

j °1
Ø

Ø

clock)≠ I .

We will define Hclock later. We could realize it with O(log(T 0) qubits but then our Hamiltonian
would be O(log(T 0))-local. But we aim for a 5-local Hamiltonian. We explain how to address
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this issue towards the end of this section. Because of this we will assume for now that Hclock

does not appear in (A.1).

For the analysis we follow [KSV02]. It will be useful to consider a change of basis given by

W =
T 0
X
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Ø j
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clock ≠G j . . .G1.

What we mean is that we represent the vector
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Æ
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Ø

Ø¡̃
Æ

. Under this change
the Hamiltonian is transformed into its conjugate eHG =W †HGW . Simple calculation verifies
that eHin = Hin and eHprop = E ≠ I , where
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The bound above gives two inequalities. Thus we get that max j2[T 0] |Æ j°1 °Æ j |2 ∑ 2≤
T 0 , which

combined with the fact that
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2
PT 0

j=1 min(|Æ j°1)|2, |Æ j |2) ·k
Ø

Øª j°1
Æ

comp °
Ø

Øª j
Æ

comp k
2 from (A.4)

we get that for ≤∑ 1

T 0
X

j=1
k
Ø

Øª j°1
Æ

comp °
Ø

Øª j
Æ

comp k
2 ∑

2≤
T 0

1
T 0+1 °

2≤
T 0

∑ 4≤,
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which implies that
k |ª0icomp ° |ªT 0 icomp k2 ∑ 4≤T 0. (A.6)

Using the second term from HG we also have

≠

¡̃
Ø

Ø

eHin
Ø

Ø¡̃
Æ

=
n
X

j=1

X

s2{0,1}n :s[ j ]=1
Ø2

s ∑
≤

T 0 . (A.7)

Note that the distribution corresponding to
Ø

Ø√0n
Æ

is DA . Observe moreover that (A.5) guaran-
tees that for small enough ≤ if we measure

Ø

Ø¡̃
Æ

in the Z basis then with probability 2
£ 1°3≤

T 0+1 , 1+3≤
T 0+1

§

the clock register is equal to |0iclock and with probability 2
£ 1°3≤

T 0+1 , 1+3≤
T 0+1

§

the clock register is
equal to

Ø

ØT 0Æ
clock. Moreover conditioned on the clock register being |0iclock probability of out

and aux register being |0iout , |0niaux respectively is, by (A.7), lower bounded by 1° ≤
T 0 . Thus

we collect a sample from DA with probability 2
£ 1°3≤

T 0+1 (1° ≤
T 0 ), 1°3≤

T 0+1

§

µ
£ 1°5≤

T 0+1 , 1+5≤
T 0+1

§

.

For the second condition observe that

|p °
≠

0nØ

Ø

aux

≠

√DA

Ø

Ø

adv h0|out G†¶(1)
outG |0iout

Ø

Ø√DA

Æ

adv

Ø

Ø0nÆ

aux |
= |hªT 0 |comp W †¶(1)

outW |ªT 0 icomp °
≠

0nØ

Ø

aux

≠

√DA

Ø

Ø

adv h0|out G†¶(1)
outG |0iout

Ø

Ø√DA

Æ

adv

Ø

Ø0nÆ

aux |
∑ |hª0|comp W †¶(1)

outW |ª0icomp °
≠

0nØ

Ø

aux

≠

√DA

Ø

Ø

adv h0|out G†¶(1)
outG |0iout

Ø

Ø√DA

Æ

adv

Ø

Ø0nÆ

aux |+4≤T 0

∑ ≤

T 0 +4≤T 0 ∑ 5≤T 0,

where in the first inequality we used (A.6) and the fact that the largest eigenvalue of W †¶(1)
outW

is at most of norm 1 and in the second inequality we used (A.7) and again the fact that the
largest eigenvalue of W †¶(1)

outW is at most of norm 1.

Realizing the clock. As we mentioned we also need to specify how to realize the clock register.
The naive implementation would result in a O(log(T 0))-local Hamiltonian. To obtain a 5-local
Hamiltonian we use a unary representation. That is we embed the counter space in a larger
space in the following way

Ø

Ø j
Æ

clock 7! |1, . . . ,1
| {z }

j

,0, . . . ,0
| {z }

T 0° j

i.

We need to now change Hin and Hprop to be consistent with this change. But more importantly
we need to also penalize incorrect configurations in the clock register. This is what the Hclock

term is responsible for. We refer the readeer to [KSV02] for details. The proof of Lemma 7
extends naturally to this case.

We will need a slight extension of Lemma 7 to the case where P sends mixed states. For the
standard use cases of the reduction this extension is trivial but our purposes require more
careful treatment. The difference of our setup in comparison to the standard reduction is that
we also collect samples that need to satisfy a specific requirement and this is the reason why
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the analysis is more involved.

Corollary 1 (Circuit-to-Hamiltonian Reduction for Mixed States). For every comparison circuit
G, if dH (D,DC ) = ¥ is sufficiently small then there exists an efficiently computable description
of a 5-local Hamiltonian HG with L =O(n +T 0) many terms such that the following conditions
hold. Let DA be the distribution of the content of the adv register when measuring ΩA in the Z
basis conditioned on the clock, out and aux registers being all 0 after measurement. For every
density matrix ΩA such that Tr(HGΩA) ∑ ¥2

T 03 if we measure ΩA in the Z basis then

• with probability 2
h

1°7¥
T 0+1 , 1+7¥

T 0+1

i

the clock register is equal to |0iclock, the out register is
equal to |0iout, the aux register is equal to |0niaux,

• with probability 2
h

1°7¥
T 0+1 , 1+7¥

T 0+1

i

the clock register is equal to
Ø

ØT 0Æ
clock and if conditioned

on this event the distribution of the out register is a Bernoulli variable with parameter
p ∏ 1°3¥2 then dH (DC ,DA) ∑O(¥1/4).

Proof. Let ≤= ¥2

T 02 . By the ensemble interpretation of density matrices we can express

ΩA =
k
X

i=1
qi

Ø

Ø¡i
Æ≠

¡i
Ø

Ø

comp .

Thus we can write
k
X

i=1
qi

≠

¡i
Ø

ØHG
Ø

Ø¡i
Æ

∑ ≤

T 0 .

By Markov inequality we have

k
X

i=1
qi 1

n

h¡i |HG |¡ii>
p
≤

T 0
o ∑

p
≤

T 0 . (A.8)

For i 2 [k] let DA
i be the distribution of contents of adv conditioned on clock, out, and aux

registers being all 0 when measuring
Ø

Ø¡i
Æ

in the Z basis. For all i such that
≠

¡i
Ø

ØHG
Ø

Ø¡i
Æ

∑
p
≤

T 0

Lemma 7 guarantees that DA
i satisfies the conditions of the reduction.

To see the the first condition, by (A.8), we get that the probability that the clock register is
|0iclock is 2

h

1°5≤°2
p
≤

T 0+1 , 1+5≤+2
p
≤

T 0+1

i

µ
h

1°7
p
≤

T 0+1 , 1+7
p
≤

T 0+1

i

µ
h

1°7¥
T 0+1 , 1+7¥

T 0+1

i

. Same bound on probability

holds also for the clock register being equal to
Ø

ØT 0Æ
clock.

For i 2 [k] let pi be the probability of obtaining outcome 1 in the out register when measuring
Ø

Ø¡i
Æ

in the Z basis conditioned on clock register being in state
Ø

ØT 0Æ
clock. Then for the second

condition observe that
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p =
k
X

i=1
qi pi

∑
k
X

i=1
qi pi 1

n

h¡i |HG |¡ii∑
p
≤

T 0
o+

p
≤

T 0

∑
k
X

i=1
qi

≠

0nØ

Ø

aux

D

√DA
i

Ø

Ø

Ø

adv
h0|out G†¶(1)

outG |0iout

Ø

Ø

Ø

√DA
i

E

adv

Ø

Ø0nÆ

aux 1
n

h¡i |HG |¡ii∑
p
≤

T 0
o+6

p
≤T 0

∑
k
X

i=1
qi

≠

0nØ

Ø

aux

D

√DA
i

Ø

Ø

Ø

adv
h0|out G†¶(1)

outG |0iout

Ø

Ø

Ø

√DA
i

E

adv

Ø

Ø0nÆ

aux +6
p
≤T 0+

p
≤

T 0

∑
k
X

i=1
qi f (dH (DC ,DA

i ))+7
p
≤T 0 (A.9)

where in the first inequality we used (A.8), in the second inequality we used properties of DA
i

guaranteed by Lemma 7, in the fourth we used Corollary 5.

By (A.9) and the assumption p ∏ 1°3¥2 we get that

k
X

i=1
qi f (dH (DC ,DA

i )) ∏ 1°3¥2 °7
p
≤T 0 ∏ 1°10¥2,

where in the last inequality we used that ≤= ¥2

T 02 . We conclude by applying Lemma 12.

A.3 Generalized Setting For the Quantum Verifier Protocol

A.3.1 Non i.i.d. Quantum Verifier

Let us now relax the assumption that P acts i.i.d., i.e. that P sends the same
Ø

Ø√DA

Æ

in every
round. We still assume at this point that the states sent by P are pure. For a discussion about
mixed states see Section A.3.2. First we state a slightly changed theorem.

Theorem 15 (Quantum Verifier). For every circuit C acting on n qubits, for every ± 2 (0, 1
3 ) and

all ¥ > 0 sufficiently small there exists an interactive protocol between a quantum verifier V
and a quantum prover P with the following properties. The protocol runs in N =O( 1

¥2 log(1/±))
rounds, in each round P sends a pure quantum state on n qubits to V. At the end of the protocol
V outputs ? when it rejects the interaction or x 2 {0,1}n when it accepts.

• (Completeness) There exists PO(§) such that for every D 2D(n) satisfying dH (D,DC ) ∑ ¥

the following holds.. With probability 1°± over the randomness in the protocol PO(D)

succeeds and x ªi.i.d. D.
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Verifier V Prover P

p := 0,S :=;

for i 2 {1, . . . N } where N =O
µ

1
¥2 log(1/±)

∂

do :

type $√° {0,1}
Ø

Ø√DA
Æ

= (C2)≠n

Ø

Ø√DA
Æ

if type= 0 :

Set b1,b2, . . . ,bn to be the measurement of
Ø

Ø√DA
Æ

in the Z basis

S := S [ {(b j ) j2{1,...,n}}

if type= 1 :

Set pi to be the measurement of the out register of

G |0iout
Ø

Ø√DA
Æ

adv

Ø

Ø0≠nÆ

aux in the Z basis

p := p + pi

N
done :

if p < 1°2¥2 abort

Set x to be an element of S chosen uniformly at random

return x

Figure A.1: The interactive protocol for the model where the verifier has access to a quantum
computer and the prover doesn’t need to act in an i.i.d. fashion.

135



Appendix A. Appendicies for Chapter 5

• (Soundness) For every P that succeeds with probability ∏ 1° ±
2 we have that with proba-

bility 1°± over the randomness in the protocol x ªi.i.d. D
A and dH (DC ,DA) ∑O

°

¥1/4¢.

Before going to the proof of the theorem we first state a technical lemma.

Lemma 12. For every ¥ > 0,k 2 N, every set of distributions D,DC ,DA
1 , . . . ,DA

k 2 D(n) and
every q1, . . . , qk 2 [0,1] such that

Pk
i=1 q1 = 1 the following holds. Let f (x) = 1

2 (1+ (1° x2)2). If
Pk

i=1 qi f (dH (DC ,DA
i )) ∏ 1°50¥2 then

dH

√

k
X

i=1
qi D

A
i ,DC

!

∑O
°

¥1/4¢ .

Proof. We bound the quantity

k
X

i=1
qi dH (DC ,DA

i )

∑
k
X

i=1
qi

≥

dH (DC ,DA
i )1{dH (DC ,DA

i )∑p¥} + 1{dH (DC ,DA
i )>p¥}

¥

∑p
¥+

k
X

i=1
qi 1{dH (DC ,DA

i )>p¥} (A.10)

Let l =Pk
i=1 qi 1{dH (DC ,DA

i )>p¥}. By definition and the fact that f (x) ∑ 1°x2/2 we have

≥

1° ¥

2

¥

l + (1° l ) ∏
k
X

i=1
qi f (dH (DC ,DA

i )).

Using the assumption
Pk

i=1 qi f (dH (DC ,DA
i )) ∏ 1°50¥2 we get l ∑ 100¥. Plugging it in (A.10)

we get

101
p
¥∏p

¥+100¥

∏
k
X

i=1
qi dH (DC ,DA

i )

∏
p

2
k
X

i=1
qi4(DC ,DA

i ) As dH (P ,Q) ∏
p

24(P ,Q)

∏
p

24
√

DC ,
k
X

i=1
qi D

A
i

!

Triangle inequality and identity 4(P ,Q) = 1
2
kP °Qk1.

(A.11)
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Now we can bound the quantity of interest

dH

√

k
X

i=1
qi D

A
i ,DC

!

∑

v

u

u

t4
√

k
X

i=1
qi D

A
i ,DC

!

By dH (P ,Q) ∑
p

4(P ,Q)

∑O
°

¥1/4¢ By (A.11)

Proof of Theorem 15. The modified protocol is given in Figure A.1. In each run at most one
sample is generated. The number of iterations is changed from O

≥

K
¥2 log(1/±)

¥

to O
≥

1
¥2 log(1/±)

¥

.
The biggest change is in the very last step of the protocol, where instead of returning the whole
set S we return a random element from S. The reason behind this change will hopefully
become clear at the end of the proof.

It suffices to prove the soundness as the completeness proof is analogous to the proof of
Theorem 8.

Assume that P sends the states
Ø

Ø

Ø

√DA
1

E

,
Ø

Ø

Ø

√DA
2

E

, . . . ,
Ø

Ø

Ø

√DA
N

E

to V. Let the rounds in which the type
is 1 be I µ [N ] and denote |I | by k. Then for every i 2 I we have that V gets a sample according
to a Bernoulli variable with parameter

≠

0nØ

Ø

aux

D

√DA
i

Ø

Ø

Ø

adv
h0|out G†¶(1)

outG |0iout

Ø

Ø

Ø

√DA
i

E

adv

Ø

Ø0nÆ

aux .

Thus by Fact 2 and Corollary 5 we have that with probability 1° ±
2

Ø

Ø

Ø

Ø

Ø

p ° 1
k

X

i2I
f (dH (DC ,DA

i ))

Ø

Ø

Ø

Ø

Ø

∑ ¥2, (A.12)

where f (x) = 1
2 (1+ (1°x2)2).

P succeeds with probability 1° ±
2 so by (A.12) and the union bound we get that with probability

1°±
1
k

X

i2I
f (dH (DC ,DA

i )) ∏ 1°2¥2 °¥2 ∏ 1°3¥2. (A.13)

By Lemma 12 we get then

PI

"

dH

√

1
k

X

i2I
DA

i ,DC

!

∏O(¥1/4)

#

∑ ±.
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As I and [N ] \ I have the same distribution we also get

PI

"

dH

√

1
N °k

X

i 62I
DA

i ,DC

!

∏O(¥1/4)

#

∑ ±.

Finally, it can be seen that the samples we collected in S came exactly from the distribution
S ª¶i 62I D

A
i , so if we choose the sample to return x as a uniformly random element of S then

x ª 1
N°k

P

i 62I DA
i . This concludes the proof as DA = 1

N°k
P

i 62I DA
i .

A.3.2 Prover sending mixed states

In this section we explain what happens when instead of sending a pure state
Ø

Ø√DA

Æ

, P is
allowed to send a mixed state ΩA . This means that P can prepare a state

Ø

Ø√
Æ

E,F in a bigger
space (C2)≠n

E ≠HF and send only the E part of the system to V. We still assume here that P
acts in an i.i.d. fashion. In this setting the guarantee for soundness will deteriorate (as in
Theorem 15) to dH (DC ,DA) ∑O(¥1/4) in comparison to dH (DC ,DA) ∑O(¥) as in Theorem 8.
The slightly changed theorem becomes

Theorem 16 (Quantum Verifier with Mixed States). For every circuit C acting on n qubits, for
every ± 2 (0, 1

3 ),K 2N and all ¥> 0 sufficiently small there exists an interactive protocol between
a quantum verifier V and a quantum prover P with the following properties. The protocol runs
in N =O( K

¥2 log(1/±)) rounds and in each round P sends a (potentially mixed) quantum state on
n qubits to V. At the end of the protocol V outputs ? when it rejects the interaction or it outputs
S = {x1, . . . , x|S|}, xi 2 {0,1}n, when it accepts.

• (Completeness) There exists PO(§) such that for every D 2D(n) satisfying dH (D,DC ) ∑ ¥

the following holds. With probability 1°± over the randomness in the protocol PO(D)

succeeds, S ªi.i.d. D
|S| and |S|∏≠(K ).

• (Soundness) For every P that succeeds with probability at least 2
3 we have S ªi.i.d. (DA)|S|

and dH (DC ,DA) ∑O(¥1/4).

Proof of Theorem 16. We only need to verify the soundness property as for the completeness
we know that P sends pure states. By the ensemble interpretation of density matrices we can
express

ΩA =
k
X

j=1
qi

Ø

Ø

Ø

√DA
i

ED

√DA
i

Ø

Ø

Ø

, (A.14)

where
Ø

Ø

Ø

√DA
i

E

2 (C2)≠n . This expression is not unique but it will not play a role for us. We
observe that measuring ΩA in the Z basis and collecting a sample is equivalent to collecting
a sample from a distribution

Pk
j=1 qi D

A
i . By Corollary 5 we know that the probability of
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obtaining outcome 1 when running G on
Ø

Ø

Ø

√DA
i

E

and measuring out register is equal to the

Bernoulli variable with parameter f (dH (DC ,DA
i )), for f (x) = 1

2 (1+ (1°x2)2). The distribution
of measuring the out register when running G on ΩA is thus equal to

k
X

j=1
qi · f (dH (DC ,DA

i )).

By Fact 2 and the setting of N we have that with probability 1° ±
2

Ø

Ø

Ø

Ø

Ø

p °
k
X

j=1
qi · f (dH (DC ,DA

i ))

Ø

Ø

Ø

Ø

Ø

∑ ¥2

P succeeds with probability 2
3 so by the union bound and the fact that 1

3 +
±
2 < 1 we get that

Pk
j=1 qi · f (dH (DC ,DA

i )) ∏ p °¥2 ∏ 1°3¥2. Application of Lemma 12 finishes the proof.
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B.1 CCA-Secure Bit-Encryption from OWF

In this appendix, we describe a simple quantum public key bit encryption scheme that satisfies
the strong notion of CCA security. The construction relies on a quantum-secure pseudoran-
dom function

PRF : {0,1}∏£ {0,1}∏! {0,1}3∏

which, as mentioned earlier in section 1.4.1, can be constructed from any quantum-secure
one-way function. Then our quantum PKE scheme¶= (Gen ,QPKGen ,Enc,Dec) is defined as
follows:

• The key generation algorithm Gen(1∏) samples two keys dk0
$√° {0,1}∏ and dk1

$√° {0,1}∏

and sets dk= (dk0,dk1). The public-key generation QPKGen(dk) prepares the states

Ø

Øqpk 0

Æ

=
X

x2{0,1}∏

Ø

Øx, fdk0 (x)
Æ

and
Ø

Øqpk 1

Æ

=
X

x2{0,1}∏

Ø

Øx, fdk1 (x)
Æ

.

Where { fdk}dk is a PRF. Moreover, both states are efficiently computable since the PRF
can be efficiently evaluated in superposition. The quantum public key is then given by
the pure state

Ø

Øqpk
Æ

=
Ø

Øqpk 0

Æ

≠
Ø

Øqpk 1

Æ

, whereas the classical secret key consists of the
pair dk= (dk0,dk1).

• Given a message pt 2 {0,1}, the encryption algorithm Enc(
Ø

Øqpk
Æ

,pt) simply measures
Ø

Ø

Ø

qpk
pt

E

in the computational basis, and outputs the measurement outcome as the

classical ciphertext qc = (x, y) and the post measurement state |xi
Ø

Øy
Æ

.

• Given the ciphertext qc = (x, y), the decryption algorithm Dec(dk,qc) first checks whether
fdk0 (x) = y and returns 0 if this is the case. Next, it checks whether fdk1 (x) = y and
returns 1 in this case. Finally, if neither is the case, the decryption algorithm returns ?.

Next, we establish the correctness of this scheme.
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Theorem 17. If PRF is a quantum-secure pseudorandom function, then the quantum PKE
scheme¶ is correct.

Proof. Observe that the scheme is perfectly correct if the ranges of fdk0 and fdk1 are disjoint.
By a standard argument, we can instead analyze the case of two truly random functions f0

and f1, and the same will hold for fdk0 and fdk1 , except on a negligible fraction of the inputs.
Fix the range of f0, which is of size at most 2∏. Then the probability that any given element
of f1 falls into the same set is at most 2°2∏, and the desired statement follows by a union
bound.

Finally, we show that the scheme is CCA-secure. The main tool used in the proof is the one-way
to hiding lemma [AHU19].

Lemma 13 (One-way to hiding). Let G , H : X ! Y be random functions and S Ω X an arbitrary
set with the condition that 8x › S,G(x) = H(x), and let z be a random bitstring. Further, let
AH (z) be a quantum oracle algorithm that queries H with depth at most d. Define BH (z) to be
an algorithm that picks i 2 [d ] uniformly, runs AH (z) until just before its i th round of queries to
H and measures all query input registers in the computational basis and collects them in a set
T . Let

Pleft = Pr[1 √ AH (z)], Pright = Pr[1 √ AG (z)],

Pguess = Pr[S \T 6=;|T √BH (z)]

Then we have that

|Pleft °Pright|∑ 2d
q

Pguess and |
q

Pleft °
q

Pright|∑ 2d
q

Pguess (B.1)

Theorem 18. If { fdk}dk is a quantum-secure pseudorandom function ensemble, then the quan-
tum PKE scheme¶ is CCA-secure.

Proof. It suffices to show that the CCA experiment with the bit b fixed to 0 is indistinguishable
from the same experiment but with b fixed to 1. To this end we consider a series of hybrids,
starting with the former and ending with the latter:

• Hybrid 0: This is the original CCA experiment except that the bit b fixed to 0.

• Hybrid 1: In this (inefficient) hybrid, we modify hybrid 0 to instead compute
Ø

Øqpk 0

Æ

as

Ø

Øqpk 0

Æ

=
X

x2{0,1}∏

Ø

Øx, f (x)
Æ

,

where f is a truly uniformly random function.
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The indistinguishability between these two hybrids follows by a standard reduction against the
quantum security of PRF: To simulate the desired n copies of

Ø

Øqpk 0

Æ

, and to answer decryption
queries (except the one that contains the challenge ciphertext), the reduction simply queries
the oracle provided by the PRF security experiment (possibly in superposition). Note that
whenever the oracle implements PRF, then the view of the distinguisher is identical to hybrid
0, whereas if the oracle implements a truly random function, then the view of the distinguisher
is identical to hybrid 1.

• Hybrid 2: In this (inefficient) hybrid, we modify hybrid 1 such that the challenge cipher-
text is sampled as

x
$√° {0,1}∏ and y

$√° {0,1}3∏.

The indistinguishability of hybrids 1 and 2 follows from the one-way to hiding lemma (lemma 13).
Let H be such that H(x) = y and for all x 0 6= x we set H(x 0) = f (x 0), and let S = {x}. Let A be the
adversary playing the security experiment. We claim that A f is the adversary playing in hy-
brid 1 whereas AH corresponds to the adversary playing hybrid 2: Observe that the public keys
can be simulated with oracle access to f (H , respectively) by simply querying on a uniform
superposition of the input domain, whereas the decryption queries can be simulated by query
basis states. Importantly, for all queries after the challenge phase, the adversary is not allowed
to query x to Dec

§. Hence the set T , collected by B is a set of at most n uniform elements from
the domain of f , along with Q basis states, where Q denotes the number of queries made by
the adversary to the decryption oracle before the challenge ciphertext is issued. By a union
bound

Pguess = Pr[T \ {x} 6=;] ∑ (n +Q)

2∏
= negl(∏)

since x is uniformly sampled. Applying lemma 13, we deduce that |Pleft °Pright| is also negligi-
ble, i.e., which bounds the distance between the two hybrids.

• Hybrid 3: In this (efficient) hybrid, we modify hybrid 2 to compute
Ø

Øqpk 0

Æ

by using the
pseudorandom function fdk0 instead of the truly random function f . That is, we revert
the change done in hybrid 1.

Indistinguishability follows from the same argument as above.

• Hybrid 4: In this (inefficient) hybrid, we modify hybrid 3 to compute
Ø

Øqpk 1

Æ

as

Ø

Øqpk 1

Æ

=
X

x2{0,1}∏

Ø

Øx, f (x)
Æ

where f is a truly uniformly random function.

Indistinguishability follows from the same argument as above.
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Appendix B. Appendicies for Chapter 4

• Hybrid 5: In this (inefficient) hybrid, we modify hybrid 4 by fixing the bit b to 1 and
computing the challenge ciphertext honestly, i.e., as

x
$√° {0,1}∏ and y = f (x).

Indistinguishability follows from the same argument as above.

• Hybrid 6: In this (efficient) hybrid, we modify hybrid 5 to compute
Ø

Øqpk 1

Æ

by using the
pseudorandom function fdk1 instead of the truly random function f . That is, we revert
the change done in hybrid 4.

Indistinguishability follows from the same argument as above. The proof is concluded by
observing that the last hybrid is identical to the CCA experiment with the bit b fixed to 1.
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