
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Bridging the gap between theoretical and practical
privacy technologies for at-risk populations

Kasra EDALATNEJADKHAMENE

Thèse n° 8931

2023

Présentée le 27 octobre 2023

Prof. J. R. Larus, président du jury
Prof. C. González Troncoso, directrice de thèse
N. Sullivan, rapporteur
Prof. S. Meiklejohn, rapporteuse
Prof. B. Ford, rapporteur

Faculté informatique et communications
Laboratoire d’ingénierie de sécurité et privacy
Programme doctoral en informatique et communications

Thesis jury members:
Prof. Dr. James Larus, EPFL, jury president
Prof. Dr. Carmela Troncoso, EPFL, advisor
Prof. Dr. Bryan Ford, EPFL
Prof. Dr. Sarah Meiklejohn, University College London
Nick Sullivan, Cloudflare

“Saruman believes it is only great power that can hold evil in check, but that
is not what I have found. I found it is the small everyday deeds of ordinary

folk that keep the darkness at bay. Small acts of kindness and love.”
— Gandalf the Grey

Acknowledgements

Reflecting on my 6-year Ph.D. journey at EPFL, I’ve evolved immensely. The
one constant has been my incredible luck, which led me to start this journey
and introduced me to remarkable people and experiences.

I am deeply grateful to my advisor, Prof. Carmela Troncoso. For being
a great mentor, inspiration, and a support in my life. For being family. Not
only Carmela is a brilliant researcher, but also a great mentor who thought us
how to become better researchers, writers, and better human beings. Carmela
gave us the freedom to chase our passion, yet she provided us with her unwa-
vering support in achieving our goals. Carmela sets a near-impossible bar for
achievements and how to act as a teacher, mentor, and researcher, and watch-
ing her inspires us to aim for the same impossible goal, yet she is one of the
most wonderful and fun people to know. Joining the Spring lab at its inception
and watching it flourish has been rewarding. The moments of brainstorming,
deadline frenzies (and always breaking the system in the deadline week), TA
preparation meetings, and laughing at funny answers in our ‘grading parties’
are all etched in my mind. I have been the luckiest EPFL student to have you
as my advisor; words fall short of describing how you impacted my life and
how grateful I am.

Equally integral to my journey has been Wouter Lueks. You have been
my mentor, my friend, and a reliable source of support and advice in my life.
You have thought me a lot from how to research or do ‘crypto-magic’, to soft
skills like how to write and present better and care about every aspect of a
work to the minor typographic details, to valuable life lessons. Despite the
notorious pressures of deadline crunches, having both you and Carmela by
my side made them unexpectedly enjoyable. Wouter, you have epitomized
the ideal of a ‘perfect gentleman’; an image that I have strived for. I cannot
imagine my journey without you, or tell you how grateful I am for having
you there. But I can tell you that my mantra for facing difficult or delicate
situations is checking WWW, asking myself “What Would Wouter do?”

I am grateful to my thesis committee: Prof. Sarah Meiklejohn, Nick
Sullivan, Prof. Bryan Ford, and jury president Prof. James Larus. Thank you
for reviewing my extensive thesis, making the journey to Lausanne, engaging

v

Acknowledgements

deeply with my work, and offering invaluable advice. Like every other Ph.D.
student, I dreaded my defense; till I realized that I rather be in a meeting
room with you, even in a defensive manner, than enjoy a calming tea outside.
Thanks for this elusive peace of mind.

During the initial semester of my Ph.D., I received guidance from Prof.
Bryan Ford. Bryan, your energy and unwavering enthusiasm though me that
the joy of research can be everlasting. Later, I had the chance to visit IMDEA
software. Prof. Dario Fiore and Dr. Claudio Soriente, thank you for your kind
reception and belief in my potential. To Nicolas Mazzocchi, Ľubica Jančová,
Lydia Garms, Peter Chvojka, and Emanuele Giunta, your friendship and board
game nights made Madrid feel like home. Thank you.

Laurent Girod, our engineer, my office mate, and my dear friend. Your
technical support and help in transforming our prototypes into usable products
cannot be overstated. Thanks for being as reliable as clockwork and for your
sense of programming humor, but most importantly for being a great friend.
My academic journey began alongside Sandra Siby, one of the kindest souls I
know. Your presence always provided a comforting sense of home. Bharath
Narayanan, your unadulterated sense of humor has always brightened my day.
Early in my Ph.D., I supervised a young bright student, who later became my
collaborator, labmate, and more importantly my friend. Mathilde Raynal, I
am glad that you stayed with us and I got to know you better. Our discussions
and shared meals have been enlightening. Klim Kireev, our lunches and unique
discussions will be dearly missed. I am grateful to find a friend who shares
the same sense of dark humor as me. While older students typically guide
the newer ones, Boya Wangs, when you joined our lab in my 5th year, you
redefined my approach to life. You taught me it is cool to make healthier
decisions and to live freely. For that, I am grateful.

I was lucky to find many friends and amazing colleagues in the Spring lab
and our sister labs. Theresa Stadler, your candidness taught me much. Bogdan
Kulynych, you have shown us all the essence of sociability. Sinem Sav, Sylvain
Chatel, and Christian Mouchet, thanks for the stimulating morning coffee
chats. Christian and Bogdan, defending our thesis together on the same day
has been an honor and the dinner after the defence will always have a special
place in my memory. Linus Gasser, your early advice at EPFL was invaluable,
and your consistent positivity was comforting. I offer my sincere gratitude to
other colleagues who helped me, gave me advice, and shared triumphs and
rejections, especially to Rebekah Overdorf, Ceyhun Alp, Apostolos Pyrgelis,
Giovanni Cherubin, Dario Pasquini, Kirill Nikitin, Eleftherios Kokoris Kogias,

vi

Acknowledgements

Cristina Băsescu, Georgia Fragkouli, Jeff Allen, and Pasindu Tennage.

Navigating the bureaucracy and admin work of a Ph.D. was daunting for
me. Isabelle Coke, I am grateful for your cheerful assistance, making these
processes more manageable and less intimidating with your reassuring smile.

I am profoundly grateful to the International Consortium of Investigative
Journalists for welcoming me into the DatashareNetwork project and entrust-
ing us with their crucial mission and journalist safety. A heartfelt thanks to
the ICIJ’s Research and Data team: Soline Ledésert, Anne L’Hôte, Bruno
Thomas, and Pierre Romera. Over the past 5 years, you provided invaluable
insights into investigative journalism, guiding system usability, and your en-
thusiasm actualized our design. Soline, I have always been amazed at how you
transform our system into something beautiful, intuitive, and usable. Bruno,
our engineering discussions, sometimes intense, always pushing for the best
system, though me a lot. My heartfelt thanks to the Data Protection Office of
the International Committee of the Red Cross especially to Justinas Sukaitis,
Vincent Graf Narbel, and Massimo Marelli for giving us the opportunity to
work on systems aiming for a brighter future and for teaching me about hu-
manitarian principles. Additionally, I wish to thank Martin Strohmeier and
Vincent Lender from the Armasuisse for all the fun times working on aviation
ciphers and their never-ending patience; and a special thanks to Martin for
helping me navigate the chaotic world of aircraft communication.

I owe a debt of gratitude to my friends in Lausanne, notably Matteo
Monti, Jakab Tardos, and Paritosh Garg. Our shared moments, from dinner
parties, hikes, gardening, to movie nights, have been invaluable. I fondly recall
our attempt at gardening and plowing the ground with 12 Ph.D. students;
unsurprisingly, our academic expertise did not translate to poor seeds’ survival.
Your presence has always uplifted my spirit. My experience in Lausanne would
have been incomplete without you. Additionally, I am grateful to my close
friend, Pouya Esmaili Dokht. You have always been like a brother to me, and
my Ph.D. life would not have been this enjoyable without you.

During my Ph.D. I had the chance to supervise many amazing students:
Valentyna, Bradley, Sacha, Jodok, Lorenzo, Eva, and Pierugo. Thanks for
your tireless work, for enriching my Ph.D. life, and for all the fun idea sessions
that we had together.

Last but not least, I want to thank my family. For always believing in
me, for pushing me to achieve my potential, for always being there for me, for
always picking me up after I fall even from afar, and for unconditionally loving

vii

Acknowledgements

and supporting me. This journey would have never begun if you were not filling
my mind with dreams and the belief that I can achieve them before even being
able to walk or talk. I always imagined myself as someone independent who
happily travels the world in pursuit of knowledge, till I came here and realized
that I would have not even survived the first month without you being there
for me and answering my calls no matter when.

With inspiration from J. R. R. Tolkien: “Well, here at last, dear friends,
on the shores of the Sea comes the end of our fellowship. Go in peace! I will
not say: I shall not weep; for not all tears are an evil.”

Lausanne, August, 2023 Kasra EdalatNejad

viii

Abstract

With the pervasive digitalization of modern life, we benefit from efficient ac-
cess to information and services. Yet, this digitalization poses severe privacy
challenges, especially for special-needs individuals. Beyond being a funda-
mental human right, privacy is crucial for roles sensitive in nature, including
investigative journalists exposing corruption and humanitarian organizations
supporting refugees or survivors of violence. This thesis leverages privacy-
enhancing technologies to mitigate the risks of digitalization while retaining
its advantages.

Recent breakthroughs in cryptography, such as fully homomorphic en-
cryption and secure multiparty computation, provide robust tools for privacy.
However, there is still no silver bullet solution that can achieve efficient privacy
out of the box. We observe that there often is a gap between theoretical cryp-
tographic solutions and real-world problems. Identifying and bridging these
gaps enables us to design pragmatic privacy-enhancing technologies tailored
for real-world deployment. In this thesis, we identify and solve four real-world
problems.

We first present the problem of searching sensitive documents among a
network of investigative journalists. In collaboration with the International
Consortium of Investigative Journalists, we design a decentralized peer-to-
peer privacy-preserving search engine called DatashareNetwork. Our solution
enables journalists to find colleagues who have relevant documents for their
topic of investigation and anonymously discuss the possibility of collaboration.
We develop a prototype of DatashareNetwork and demonstrate that it scales
to thousands of journalists and millions of documents.

We introduce a new class of problems called private collection matching
in which a client aims to determine whether a collection of sets owned by
a server matches their interests such as searching confidential chemical com-
pound databases. We design a framework based on fully homomorphic en-
cryption to solve these problems. Our solution, takes the data minimization
principle to the maximum and shows the possibility of satisfying clients’ needs
by only revealing a single bit. We evaluate our framework and show that it sig-
nificantly improves the latency, client computation cost, and communication

ix

Abstract

cost with respect to generic solutions that offer the same privacy guarantee.

We examine the problem of preventing double registration in humanitar-
ian aid distribution with a focus on the needs of the International Committee
of Red Cross. In response, we design Janus, a privacy-preserving biomet-
ric deduplication system that is compatible with fingerprints, irises, and face
recognition; and supports both biometric alignment and fusion. We design and
develop three instantiations of Janus based on secure multiparty computation,
somewhat homomorphic encryption, and trusted execution environments. We
evaluate Janus to show it satisfies the privacy, accuracy, and performance needs
of humanitarian organizations.

Finally, we study the problem of detecting insecure ciphers in aircraft
communication at scale. We design and develop a decision support system that
helps human analysts to detect new ciphertexts in aircraft communication. We
evaluate our system by applying it to real-world data and asking our analyst
to use our support system to find new ciphers. Our analysis led to uncovering
of 9 previously unknown (and potentially insecure) ciphers which we disclose
to various stakeholders.

Keywords: Privacy enhancing technologies, applied cryptography, pri-
vacy engineering, homomorphic encryption, private set intersection, private
computation.

x

Résumé

La numérisation croissante de notre vie nous apporte de nombreux avantages,
tels que la possibilité de rechercher instantanément de grandes quantités de
documents. Dans le même temps, cette numérisation suscite des inquiétudes
et des risques pour la vie privée, en particulier pour les utilisateurs ayant des
besoins particuliers. Non seulement la vie privée est un droit humain fonda-
mental, mais elle est également nécessaire à l’exercice de certaines professions
sensibles, tels que le journalisme d’investigation où des journalistes travaillent
sur des affaires de corruption ou les organisations humanitaires où des collab-
orateurs aidant les réfugiés ou les survivants d’incidents violents. Cette thèse
s’appuie sur les technologies de renforcement de la vie privée pour atténuer les
inconvénients de la numérisation tout en conservant ses avantages.

Des progrès considérables ont été réalisés dans le domaine de la cryptogra-
phie, ce qui a permis de mettre au point des outils très polyvalents tels que le
chiffrement homomorphe complet et le calcul multipartite sécurisé. Toutefois,
il n’existe toujours pas de solution miracle permettant d’assurer une protection
efficace de la vie privée dès le départ. Nous constatons qu’il existe souvent un
fossé entre les solutions cryptographiques théoriques et les problèmes du monde
réel. Identifier et combler ces lacunes nous permet de concevoir des technolo-
gies pratiques d’amélioration de la confidentialité qui peuvent être déployées
dans des scénarios concrets. Dans cette thèse, nous identifions et résolvons
quatre problèmes du monde réel.

Nous présentons tout d’abord le problème de la recherche de documents
sensibles au sein d’un réseau de journalistes d’investigation. En collabora-
tion avec le Consortium international des journalistes d’investigation, nous
concevons un moteur de recherche décentralisé peer-to-peer préservant la vie
privée, appelé DatashareNetwork. Notre solution permet aux journalistes
de trouver des collègues possédant des documents pertinents pour leur su-
jet d’enquête et de discuter anonymement de la possibilité d’une collaboration.
Nous développons un prototype de DatashareNetwork et démontrons qu’il peut
s’adapter à des milliers de journalistes et à des millions de documents.

Nous introduisons une nouvelle classe de problèmes appelés "private col-
lection matching" dans lesquels un client cherche à déterminer si une collec-

xi

Abstract

tion d’ensembles appartenant à un serveur correspond à ses intérêts, comme
la recherche de bases de données confidentielles de composés chimiques. Nous
concevons un cadre basé sur le chiffrement homomorphe complet pour résoudre
ces problèmes. Notre solution exploite au maximum le principe de minimisa-
tion des données et montre qu’il est possible de satisfaire les besoins du client
en ne révélant qu’un seul bit. Nous évaluons notre cadre et montrons qu’il
améliore considérablement la latence, le coût de calcul du client et le coût
de communication par rapport aux solutions génériques qui offrent la même
garantie de confidentialité.

Nous examinons le problème de double enregistrement dans la distribu-
tion de l’aide humanitaire en se concentrant sur les besoins du Comité inter-
national de la Croix Rouge. En réponse, nous concevons Janus, un système de
déduplication biométrique préservant la vie privée qui est compatible avec les
empruntes digitales, iris, et reconnaissance faciale; Janus est aussi capable de
fusionner de multiples échantillons biométriques pour réduire le taux d’erreur
et de se mettre à l’échelle de plus grande populations

Finalement, nous étudions le problème de la détection des chiffrement
non sécurisés dans les communications aériennes à grande échelle. Nous con-
cevons et développons un système d’aide à la décision qui aide les analystes
humains à détecter de nouveaux cryptogrammes dans les communications aéri-
ennes. Nous évaluons notre système en l’appliquant à des données réelles et
en demandant à notre analyste d’utiliser notre système d’aide pour trouver de
nouveaux chiffrements. Notre analyse a permis de découvrir neuf algorithmes
de chiffrement inconnus jusqu’alors (et potentiellement peu sûrs), que nous
divulguons à diverses parties prenantes.

Mots clés: Technologies d’amélioration de la vie privée, cryptographie
appliquée, ingénierie de la vie privée, chiffrement homomorphe, intersection
d’ensembles privés, calcul privé.

xii

Contents

Acknowledgements v

Abstract ix

1 Introduction 1

2 DatashareNetwork: A Decentralized Privacy-Preserving
Search Engine for Investigative Journalists 9
2.1 Introduction . 9
2.2 Towards building Datashare 11

2.2.1 Requirements gathering 12
2.2.2 Sketching Datashare 14

2.3 Multi-set PSI . 16
2.4 Privacy-preserving messaging 19

2.4.1 Messaging system construction 19
2.4.2 Messaging service privacy 23
2.4.3 Cost evaluation . 25

2.5 The Datashare system . 27
2.5.1 Preliminaries . 28
2.5.2 Datashare protocols and design 30
2.5.3 Datashare security analysis 34
2.5.4 Cost evaluation . 38

2.6 Related work . 42
2.7 Future steps: better protection 43

3 Private Collection Matching Protocols 45
3.1 Introduction . 45
3.2 Private Collection Matching . 47

3.2.1 Case studies . 47
3.2.2 PCM requirements . 49
3.2.3 Formal PCM definition 50

3.3 Related work . 51
3.4 A framework for PCM schemes 55
3.5 Technical background . 57

3.5.1 Homomorphic encryption 57

xiii

CONTENTS

3.5.2 Core functions . 58
3.6 PSI layer . 59

3.6.1 Small constant-size client set 60
3.6.2 Small input domain . 62
3.6.3 Ensuring well-formed queries 63

3.7 Matching layer . 64
3.8 Aggregation layer . 67
3.9 Security and privacy . 69
3.10 From theory to practice . 70

3.10.1 Asymptotic cost . 70
3.10.2 Implementation . 72
3.10.3 Optimizations . 73

3.11 PCM in practice . 74
3.11.1 Chemical similarity . 74
3.11.2 Peer-to-Peer document search 76
3.11.3 Comparison with generic solutions 78

3.12 Takeaways and future work . 80

4 Janus: Safe Biometric Deduplication for Humanitarian Aid
Distribution 83
4.1 Introduction . 83
4.2 Deduplication for aid distribution 85

4.2.1 Deduplication requirements 86
4.3 Towards a safe deduplication system 89
4.4 Janus’ architecture . 91

4.4.1 Janus-enabled registration workflow 91
4.4.2 Requirements achieved by design 92

4.5 Biometrics . 93
4.6 Instantiating Janus . 95

4.6.1 SMC-Janus . 95
4.6.2 SHE-Janus . 99
4.6.3 TEE-Janus . 102

4.7 Biometrics in practice . 105
4.7.1 Membership with a single sample 106
4.7.2 Membership at scale . 108

4.8 Evaluation . 109
4.8.1 Performance of Janus . 111
4.8.2 Comparison with Closely Related Work 112

4.9 Related work . 114
4.10 Conclusion . 115

xiv

CONTENTS

5 Brutus: A Decision Support System to Prevent the Use of
Insecure Communication in Aircraft 117
5.1 Introduction . 117
5.2 Aircraft communications addressing and reporting system 119

5.2.1 ACARS system model 119
5.2.2 ACARS messages . 120
5.2.3 Usage . 121
5.2.4 Security . 122
5.2.5 Ethics . 122

5.3 Related work . 122
5.4 Detection methods . 123

5.4.1 Cipher detection based on text compression techniques . 124
5.4.2 Supervised text classification with a CNN model 126
5.4.3 Supervised classification with a Random Forests model . 127

5.5 Cipher detection on generated datasets 129
5.5.1 Synthetic data generation 130
5.5.2 Experiment setup . 131
5.5.3 Baseline . 132
5.5.4 Noisy data labels . 133
5.5.5 Heterogeneous plaintext sources 134
5.5.6 Heterogeneous cipher suites 138
5.5.7 Conclusions . 140

5.6 A pipeline for labeling ACARS messages 141
5.6.1 Synthetic data generation based on noisy samples 142
5.6.2 Manual labeling . 143
5.6.3 Bootstrapping manual labels 144
5.6.4 Conclusion . 145

5.7 Insecure ciphers in aerospace . 145
5.7.1 Setting-up detectors . 146
5.7.2 Automated detection of known ciphers 147
5.7.3 Exploring unknown insecure ciphers in ACARS 147
5.7.4 Analysis overhead . 149
5.7.5 Generalization over time and geographic regions 151
5.7.6 Conclusion . 152

5.8 Discussion and conclusion . 152

6 Conclusion 153
6.1 Future work . 155

A Appendix for DatashareNetwork 157

xv

CONTENTS

A.1 Security of MS-PSI . 157
A.2 The limits of document search 164

A.2.1 One-bit search extraction 164
A.2.2 #doc search extraction 167

B Appendix for Private Collection Matching Protocols 169
B.1 Extra material . 169
B.2 Sum of random Z∗

q elements . 170
B.3 Privacy proof . 172

B.3.1 Security properties of HE schemes 173
B.3.2 Semi-honest security . 176
B.3.3 Malicious server . 179
B.3.4 Malicious clients . 180

B.4 Extra benchmarks . 185
B.4.1 Small-domain protocols 185
B.4.2 Circuit-based protocols 186
B.4.3 OT-based protocol . 188

B.5 Solving matching in mobile apps 190
B.6 PSI-SUM . 190

C Appendix for Janus 193
C.1 Extended evaluation . 193
C.2 Normalized Hamming distance 194

D Appendix for Brutus 197
D.1 Random Forrest . 197
D.2 Additional results on generated datasets 197
D.3 Decision support system . 200

Bibliography 203

Curriculum Vitae 223

xvi

Chapter 1
Introduction

Digitalization is becoming a daily norm, offering improved efficiency and ca-
pabilities. For example, the ease and effectiveness of searching through digital
documents far surpasses searching printed ones. However, it also raises privacy
concerns, particularly for minority or special-needs users. This thesis leverages
privacy-enhancing technologies to balance these challenges and benefits.

Privacy is a fundamental human right. While some may not feel the impact
of privacy breaches unless severe (e.g., identity theft), for others, like those who
have sexuality, religion, or beliefs that deviate from the cultural norm, leaks
can lead to discrimination and harassment. If a journalist’s investigation gets
leaked ahead of publishing their story, it endangers journalists, their sources,
and stories. For survivors of violence or those under protection authorities or
humanitarian organizations, exposure can be life-threatening. System designs
should prioritize user needs to ensure safety and prevent harm.

Yet, despite advancements in cryptography suggesting that “privacy is a
solved problem,” the reality differs. Indeed, we have tools like fully homo-
morphic encryption and secure multiparty computation theoretically offering
broad solutions. However, in practice, these primitives are not silver bullets.
An off-the-shelf use of these tools to add privacy to existing systems often does
not lead to practical solutions. These translations from theory to practice reg-
ularly reveal gaps, whether in system scalability, mismatched functionalities
or privacy guarantees, or the assumptions simply not being applicable in all
situations.

In this thesis, we identify the gap that hinders the deployment of privacy-
preserving solutions in 4 societal challenges. Following the identification, we
design systems to bridge these gaps to create deployable solutions.

One form of gap is disparity between theoretical and practical resource

1

Introduction

and constraint assumptions. Take, for instance, the challenge of searching
for sensitive documents among a network of investigative journalists. Here,
bandwidth is limited; journalists are not always online and the communica-
tion round trip time between journalists can take days. At the same time,
journalists are patient and willing to wait a long time for their search results.
Practical solutions must be limited to one round of communication and they
should emphasize reducing transfer costs over speeding up computation. This
contrasts sharply with traditional search objectives in the academic literature
that aim for real-time, high-throughput systems that benefit from negligible
transfer delays.

Potential oversharing or overlooking a privacy requirement is another form
of gap. Consider the example of privately searching confidential chemical com-
pound databases. A server owning this confidential data can face a dilemma:
(1) deny all search access, thereby limiting the database’s functionality and
value, or (2) allow limited search access, risking the extraction of sensitive
compound information by clients. Current private search methods often pro-
vide answers for every item in the collection, inadvertently letting clients ac-
cumulate details about each item over time. To bridge this gap, we introduce
the PCM framework. This framework only reveals a single bit of informa-
tion about the entire collection, significantly reducing the potential for data
extraction.

Another common gap is mismatching functionality and security proper-
ties. We consider the challenge of protecting against double registration in
humanitarian aid distribution. The most suitable option seems to be relying
on biometrics and a large body of work on privacy-preserving biometrics ex-
ists. Unfortunately, the majority of existing work focuses on authentication
and identification problems where users want to be recognized by the system.
In contrast, users may want to evade the recognition in our context. This
distinction leads to the impracticality of some protection mechanisms and re-
quiring different gaols when handling biometric error rates.

Occasionally, ubiquitous assumptions do not hold in practice leading to
the creation of gaps. For instance, almost all cryptographers believe that
classical ciphers are historical relics that are not used in modern systems.
Yet, archaic insecure ciphers such as monoalphabetic substitution cipher can
be found in infrastructures like aircraft communication. Addressing this gap
involves proactive detection of such insecure ciphers. One way to bridge this
gap is by automatically detecting when insecure ciphers are in use. We design
a decision support system to aid experts to detect and monitor the use of

2

Contributions

insecure ciphers in aircraft communication at scale.

Upon identifying a gap and designing a solution, we develop a proof of
concept. We then evaluate its performance across different operational points
and scenarios derived from our requirement analysis. By comparing our proto-
type’s efficiency with both prior privacy-preserving systems and those offering
fewer privacy safeguards, we demonstrate that our systems achieve a reason-
able trade-off between privacy and performance.

Contributions

We study and solve four privacy problems in this thesis:

Chapter 2: DatashareNetwork

Investigative journalists collect large numbers of digital documents during their
investigations. Gathering documents is a major hurdle for investigative jour-
nalists and requires immense effort, and other journalists can greatly benefit
from accessing them. However, many of these documents contain sensitive in-
formation; and revealing them can endanger reporters, their stories, and their
sources. Consequently, countless opportunities for international collaboration
are lost as many documents are used only for single, local, investigations.

In Chapter 2, we introduce DatashareNetwork a decentralized and privacy-
preserving search system that enables journalists worldwide to find documents
via a dedicated network of peers. This system is the result of a long-running
collaboration, over 5 years, between EPFL and the International Consortium
of Investigative Journalists (ICIJ). ICIJ had already developed a local search
platform called Datashare [1] and contacted us to help extend the local search
platform to a peer-to-peer search engine that ensures the privacy of journalists.

We study the risks and practical constraints that investigative journalists
face. We introduce and design a new cryptographic primitive called ‘multi-
set private set intersection’ (MS-PSI) and use it to design a private search
engine. Next, we design a new anonymous messaging tailored for journalists’
constraints to enable them to anonymously discuss collaboration with their
colleagues. Finally, we combine our privacy-preserving search and messaging
systems with existing tools such as anonymous credentials and Tor to design
an end-to-end system for journalists. We perform a system-wide analysis at

3

Introduction

the end to prove the security and privacy of the system as a whole.

We develop a prototype of our system and show that it can scale to thou-
sands of journalists and millions of documents. Currently, DatashareNetwork
software is in the beta test stage and soon it will be fully deployed by ICIJ to
enable peer-to-peer document search between their journalists.

Chapter 3: Private collection matching

We introduce Private Collection Matching (PCM) problems, in which a client
aims to determine whether a collection of sets owned by a server matches their
interests. We systematize the privacy requirements for solving PCM problems,
and we show that existing privacy-preserving cryptographic primitives cannot
solve PCM problems efficiently without harming privacy.

We propose a modular framework that enables protocol designers to build
privacy-preserving PCM solutions. Our framework enables the design of sys-
tems that output a single bit determining whether a collection of server sets
matches the client’s interest. In our framework, the server computes per-server-
set binary answers to “Is this set of interest to the client?”, then aggregates
N per server-set responses into a single collection-wide response. The commu-
nication cost of our framework scales linearly with the size of the client’s set
and is independent of the number of server elements.

We demonstrate the potential of our framework by designing and im-
plementing novel solutions for two real-world PCM problems: determining
whether a dataset has chemical compounds of interest, and determining whether
a document collection has relevant documents. We show that our framework
offers improved privacy with competitive cost compared to custom-made so-
lutions, and significantly improves the latency (2–96x), client’s computation
cost (75–70,000x), and communication cost (93–2800x) with respect to generic
solutions that offer the same privacy guarantee.

Chapter 4: Janus

Humanitarian organizations provide aid to people in need. To use their limited
budget efficiently, their distribution processes must ensure that legitimate re-
cipients cannot receive more aid than they are entitled to. Thus, it is essential
that recipients can register at most once per aid program.

4

Contributions

Taking the International Committee of the Red Cross’s aid distribution
registration process as a use case, we identify the functional, safety, and deploy-
ment requirements to detect double registration. The traditional approaches
to solving this problem, such as relying on government-issued IDs or local
trusted actors (e.g. community representatives), suffer from availability, ac-
curacy, and efficiency issues. One natural path to solving this problem that
coincides with digitalization is the use of biometrics to detect duplicate regis-
tration requests. However, if not handled properly, the use of biometrics can
put both the humanitarian organization and its aid recipients at risk.

In Chapter 4, we present Janus, a system that combines privacy-enhancing
technologies with biometrics to prevent double registration in a safe manner.
Janus does not create plaintext biometric databases and reveals only one bit
of information at registration time (whether the user registering is present in
the database or not). We design three instantiations of Janus based on secure
multiparty computation, somewhat homomorphic encryption, and trusted ex-
ecution environments. Janus supports all major biometric sources (i.e., finger-
print, iris, and face recognition) and enables biometric alignment and fusion
to lower the error rates of the system. We implement and evaluate Janus to
demonstrate that it satisfies the functional, safety, accuracy, and performance
needs of humanitarian organizations. We compare Janus with existing alterna-
tives and show it is the first system that provides the low error rates necessary
for operating in the context of humanitarian aid distribution while providing
strong protection.

Chapter 5: Brutus

Aircraft and ground counterparts have been communicating via the ACARS
data-link protocol for more than five decades. Like many legacy protocols,
ACARS was not designed with security in mind and nowadays can easily be
accessed with modern consumer technology. Aircraft manufacturers and air-
lines have noticed the need for the security and confidentiality of ACARS
messages and started to create proprietary solutions to encrypt ACARS mes-
sages. Recent work discovered, through manual inspection, that some parties
“encrypt” messages using an insecure monoalphabetic substitution cipher. To
increase the security of aircraft communication, it is important to identify all
actors that use such insecure ciphers.

We design Brutus a decision support system to help authorities monitor
ACARS messages and detect actors who use (insecure) encryption schemes.

5

Introduction

We propose three methods to automatically detect ciphertexts in aircraft com-
munication at scale based on text compression techniques, convolutional neu-
ral network, and random forest classification. This is particularly challenging
because none of the existing ACARS datasets mark whether a message is a
plaintext or ciphertext and ACARS messages are heterogenous, mixing hu-
man and machine-generated messages. We propose the use of synthetic data
to evaluate our detectors when no real-world labeled data is available. We
design a new methodology to gather labeled ACARS messages at scale and
create a pipeline for training detectors.

We design and develop a decision support dashboard that helps a human
analyst to detect new ciphertexts in ACARS communication. We evaluate
our decision support system by applying it to real-world data and asking our
analyst to use the dashboard to find new unknown encryptions in ACARS
messages. Our analysis led to identifying 9 previously unknown (and potentially
insecure) ciphers, which we disclose to various stakeholders.

Bibliographic notes

The contents of this thesis are based on the following:

Chapter 2. Kasra EdalatNejad, Wouter Lueks, Julien Pierre Martin, Soline
Ledésert, Anne L’Hôte, Bruno Thomas, Laurent Girod, Carmela Troncoso:
“DatashareNetwork: A Decentralized Privacy-Preserving Search Engine for
Investigative Journalists”. USENIX Security Symposium 2020.

Chapter 3. Kasra EdalatNejad, Mathilde Raynal, Wouter Lueks, Carmela
Troncoso: “Private Collection Matching Protocols”. Proceedings on Privacy
Enhancing Technologies (PoPETs). 2023.

Chapter 4. Kasra EdalatNejad, Wouter Lueks, Justinas Sukaitis, Vincent
Graf Narbel, Massimo Marelli, Carmela Troncoso: “Janus: Safe Biometric
Deduplication for Humanitarian Aid Distribution” Under submission.

Chapter 5. Kasra EdalatNejad∗, Theresa Stadler∗, Martin Strohmeier, Vin-
cent Lenders, Wouter Lueks, Carmela Troncoso: “Brutus: A Decision Support

6

Contributions

System to Prevent the Use of Insecure Communication in Aircraft”. Under
submission.

∗ denotes equal contribution.

7

Chapter 2
DatashareNetwork: A Decentralized
Privacy-Preserving Search Engine for
Investigative Journalists

This chapter is based on the following article:

Kasra EdalatNejad, Wouter Lueks, Julien Pierre Martin, Soline Ledésert,
Anne L’Hôte, Bruno Thomas, Laurent Girod, Carmela Troncoso: “DatashareNet-
work: A Decentralized Privacy-Preserving Search Engine for Investigative
Journalists”. USENIX Security Symposium 2020.

2.1 Introduction

Investigative journalists research topics such as corruption, crime, and corpo-
rate misbehavior. Two well-known examples of investigative projects are the
Panama Papers that resulted in several politicians’ resignations and sovereign
states recovering hundreds of millions of dollars hidden in offshore accounts [2],
and the Boston Globe investigation on child abuse that resulted in a global
crisis for the Catholic Church [3]. Investigative journalists’ investigations are
essential for a healthy democracy [4]. They provide the public with informa-
tion kept secret by governments and corporations. Thus, effectively holding
these institutions accountable to society at large.

In order to obtain significant, fact-checked, and impactful results, journal-
ists require large amounts of documents. In a globalized world, local issues
are increasingly connected to global phenomena. Hence, journalists’ collec-
tions can be relevant for other colleagues working on related investigations.
However, documents often contain sensitive and/or confidential information
and possessing them puts journalists and their sources increasingly at risk of

9

Chapter 2. DatashareNetwork

identification, prosecution, and persecution [5, 6]. As a result journalists go
to great lengths to protect both their documents and their interactions with
other journalists [7]. With these risks in mind, the International Consortium of
Investigative Journalists (ICIJ) approached us with this question: Can a global
community of journalists search each other’s documents while minimizing the
risk for them and their sources?

Building a practical system that addresses this question entails solving five
key challenges:

1) Avoid centralizing information. A party with access to all the documents
and journalists’ interaction would become a very tempting target for attacks by
hackers or national agencies, and for legal cases and subpoenas by governments.

2) Avoid reliance on powerful infrastructure. Although ICIJ has journalists
worldwide, it does not have highly available servers in different jurisdictions.

3) Deal with asynchrony and heterogeneity. Journalists are spread around the
world. There is no guarantee that they are online at the same time, or that
they have the same resources.

4) Practical on commodity hardware. Journalists must be able to search doc-
uments and communicate with other journalists without this affecting their
day-to-day work. The system must be efficient both computationally and in
communication costs.

5) Enable data sovereignty. Journalists are willing to share but not uncondi-
tionally. They should be able to make informed decisions on revealing docu-
ments, on a case-by-case basis.

The first four requirements preclude the use of existing advanced privacy-
preserving search technologies, whereas the fifth requirement precludes the
use of automatic and rule-based document retrieval. More concretely, the
first requirement prevents the use of central databases and private information
retrieval (PIR) [8–10] between journalists, as standard PIR requires a central
list of all searchable (potentially sensitive) keywords. The second requirement
rules out multi-party computation (MPC) between distributed servers [11–13].

The third and fourth requirement exclude technologies that require many
round trips or high bandwidth between journalists such as custom private set
intersection [11, 14–17], keyword-based PIR [18, 19], and generic MPC proto-
cols [11–13,20], as well as the use of privacy-preserving communication systems
that require all users to be online [21,22].

10

2.2 Towards building Datashare

We introduce DatashareNetwork, a decentralized document search
engine for journalists to be integrated within ICIJ’s open source tool for orga-
nizing information called Datashare [1]. DatashareNetwork addresses the
challenges as follows. First, journalists keep their collections in their comput-
ers. Thus, if a journalist is hacked, coerced, or corrupted, only her collection
is compromised. Second, we introduce a new multi-set private set intersection
(MS-PSI) protocol that enables asynchronous search and multiplexes queries
to reduce computation and communication costs. Third, we combine existing
privacy-preserving technologies [23, 24] to build a pigeonhole-like communica-
tion mechanism that enables journalists to anonymously converse with each
other in an unobservable manner. These components ensure that even if an
adversary gains the ability to search others’ documents, she cannot extract
all documents nor all users in the system. In the rest of the document, for
simplicity, we refer to DatashareNetwork as Datashare.

Our contributions are as follows:

✓ We elicit the security and privacy requirements of a document search
system for investigative journalists.

✓ We introduce MS-PSI, a private set intersection protocol to efficiently
search in multiple databases without incurring extra leakage with respect to
traditional PSI with pre-computation.

✓ We propose an asynchronous messaging system that enables journalists
to search and converse in a privacy-preserving way.

✓ We design Datashare, a secure and privacy-preserving decentralized
document search system that protects from malicious users and third parties
the identity of its users, the content of the queries and, to a large extent, the
journalists’ collections themselves. We show that Datashare provides the
privacy properties required by journalists, and that the system can easily scale
to more than 1000 participants, even if their document collections have more
than 1000 documents.

2.2 Towards building Datashare

We build Datashare at the request of the International Consortium of In-
vestigative Journalists, ICIJ. When unambiguous from the context, we refer
to ICIJ simply as the organization.

11

Chapter 2. DatashareNetwork

2.2.1 Requirements gathering

In order to understand the needs of investigative journalists, ICIJ ran a survey
among 70 of their members and provided us with aggregate statistics, reported
below. We used the survey results as starting point for the system’s require-
ments, and we refined these requirements in weekly meetings held for more
than one year with the members of ICIJ’s Data & Research Unit who are in
charge of the development and deployment of the local tool Datashare [1].

User base. ICIJ consists of roughly 250 permanent journalist members in 84
countries. These members occasionally collaborate with external reporting
partners. The maximum number of reporters working simultaneously on an
investigation has reached 400. The organization estimates that each member
is willing to make approximately one thousand of their documents available
for searching. To accommodate growth, we consider that Datashare needs
to scale to (at least) 1000 users, and (at least) 1 million documents.

Journalists work and live all over the globe, ranging from Sydney to San
Francisco, including Nairobi and Kathmandu; this results in large timezone
differences. Around 38% of the journalists have a computer permanently con-
nected to the Internet, and another 53% of them are connected during work
hours: eight hours a day, five days a week. The rest are connected only during
a few hours per day. As it is unlikely that journalists are online at the same
time, the search system needs to enable asynchronous requests and responses.
Furthermore, many journalists live in regions with low-quality networks: only
half of the journalists report having a fast connection. Thus, Datashare
cannot require high bandwidth.

Waiting time. As the system must be asynchronous, the survey asked journal-
ists how much they are willing to wait to obtain a the result of a query. 21%
of the surveyees are willing to wait for hours, whereas another 56% can wait
for one or more days. Hence, Datashare does not need to enable real-time
search. Yet, given the delivery times of up to 24 hours, to keep search latency
within a few days, Datashare must use protocols that can operate with just
one communication round. Therefore, we discard multi-round techniques such
as multi-party computation [11–13,20].

Queries nature. The queries made by journalists are in a vast majority formed
by keywords called named entities: names of organizations, people, or locations
of interest. Therefore, journalists do not require a very expressive querying
language: Datashare must support queries made of conjunctions of keywords.

12

2.2 Towards building Datashare

Journalists are interested in a small set of these entities at a time: only those
related to their current project. Consequently, queries are not expected to
include more than 10 terms at a time, and journalists are not expected to issue
a large number of queries in parallel.

During the design phase, we also learned that as most terms of interest
are investigation-specific (e.g., XKeyScore in the Snowden leaks, or Mossack
Fonseca in the Panama Papers), a pre-defined list of terms cannot cover all
potentially relevant keywords for journalists. Therefore, techniques based on
fixed lists such as private information retrieval (PIR) [8–10] are not suitable
for building Datashare.

Security and privacy. Regarding security and privacy concerns, journalists
identify four types of principals: the journalists themselves, their sources, the
people mentioned in the documents, and the ICIJ. They identify three assets:
the named entities in documents, the documents themselves, and the conver-
sations they have during an investigation. The disclosure of named entities
could leak information about the investigation, or could harm the cited en-
tities (which could in turn could trigger a lawsuit). Whole documents are
considered the most sensitive aP involved, their sources, the organization, and
the whole investigation.

Journalists mostly worry about third party adversaries such as corpora-
tions, governments (intelligence agencies), and organized crime. Sources and
other journalists are in general considered non-adversarial. Similarly, journal-
ists trust ICIJ to be an authority for membership and to run their infrastruc-
ture. However, to prevent coercion and external pressures, ICIJ does not want
to be trusted for privacy.

The main requirement for Datashare is to protect the confidentiality
of assets from third parties that are not in the system. This implies that
Datashare cannot require journalists to send their data to third parties for
analysis, storage, indexing, or search. Journalists are concerned about only
subsets of these adversaries at a time. Therefore, Datashare does not need
to defend against global adversaries.

Journalists initially did not consider their colleagues as adversaries. How-
ever, after a threat analysis, we concluded that there is a non-negligible risk
that powerful adversaries can bribe or compromise honest journalists, in par-
ticular when those journalists live in jurisdictions with less protection for civil
rights. Therefore, we require that Datashare must minimize the amount of
information that journalists, or ICIJ, learn about others: searched keywords,

13

Chapter 2. DatashareNetwork

collections, and conversations. More concretely, we require that searches be
anonymous and that the searched terms be kept confidential, with respect to
both journalists and the organization. This way neither journalists nor the
organization become a profitable target for adversaries.

With respect to conversations, 64% of the surveyees report that they would
prefer to remain anonymous in some cases. Furthermore, 60% of the respon-
dents declare that they prefer to have a screening conversation before deciding
to share documents. This means that search and sharing features need to be
separated to enable screening. Datashare must provide anonymous means
for journalists to discuss document sharing to ensure safety. We expect con-
versations within Datashare to be short, as their only goal is to agree on
whether to proceed with sharing. After journalists agree, we assume they will
switch to an alternative secure communication channel and Datashare does
not need to support document retrieval.

2.2.2 Sketching Datashare

Datashare is run by ICIJ. Access to the system is exclusive to ICIJ members
and authorized collaborators. Journalists trust ICIJ to act as a token issuer
and only give tokens to authorized journalists. To enable journalists to remain
anonymous, tokens are implemented using blind signatures. Journalists use
these tokens demonstrate membership without revealing their identities.

Datashare provides the following infrastructure to facilitate asynchronous
communication between journalists: a bulletin board that journalists use to
broadcast information, and a pigeonhole for one-to-one communication. All
communications between journalists and the infrastructure (pigeonhole or bul-
letin board) are end-to-end encrypted (i.e., from journalist to journalist) and
anonymous. Hence, the infrastructure needs to be trusted for availability, but
not to protect the privacy of the journalists and their documents.

Each authorized journalist in Datashare owns a corpus of documents
that they make available for search. Journalists can take two roles: (i) querier,
to search for documents of interest, and (ii) document owner, to have their
corpus searched. Journalists first search for matching documents then (anony-
mously) converse with the corresponding document owners to request the doc-
ument.

Figure 2.1 sketches Datashare’s architecture. First, journalists upload
privacy-preserving representations of their collections and contact informa-

14

2.2 Towards building Datashare

Querier

Owner

Owner

Communication
server

Q

R
R

1. Query

3b. Respond

2a. Retrieve query

4. Retrieve responses

5. Converse

3a. Respond

2b.

A

B5. Converse

ICIJ

0. Get tokens

0. Publish

0. Publish

Figure 2.1: Datashare architecture overview.

tion to the bulletin board. To issue a query, journalists construct a privacy-
preserving representation of their keywords and broadcast it together with an
authorization token through the bulletin board. Owners periodically retrieve
new queries from the bulletin board. If the authorization is valid, they send
a response to the querier using the pigeonhole. The querier uses this response
to identify matches with the documents in the owner’s collection.

When journalists find a match in a collection, i.e., a document that con-
tains all the keywords in the query, they can start a conversation with the
document owner to request sharing. Document owners append a public con-
tact key to their collection to enable queriers to carry out this conversation in
an anonymous way via the pigeonhole.

Instantiation. Datashare uses four main privacy-preserving building blocks:
a multi-collection search mechanism, a messaging system, an anonymous com-
munication channel, and an authorization mechanism.

We implement the privacy-preserving search mechanism by using a novel
primitive that we call multi-set private set intersection (MS-PSI) described in
Section 2.3. We design a privacy-preserving messaging system in Section 2.4;
it provides both the bulletin board and pigeonhole functionality. We rely on
the Tor [23] network as anonymous communication channel, and we use blind
signatures to implement privacy-preserving authorization (see Section 2.5.1).
In Section 2.5.2, we explain how Datashare combines these building blocks.

15

Chapter 2. DatashareNetwork

Table 2.1: Notation.

G, g, p A cyclic group, its generator and the group’s order
n The security parameter
x←$ X Draw x uniformly at random from the set X

H, Ĥ Hash functions mapping into {0, 1}n resp. group G.
[n] The set {1, . . . , n}
s, c The server’s and client’s secret keys
Yi The server’s ith set Yi = {yi,1, .., yi,ni}
N, ni Nr. of server sets, resp. nr. of elements in set Yi

X The client’s set X = {x1, .., xm}
m The number of elements in the client’s set
τ, τ (i) Pretags for client (τ) resp. the server’s ith set Yi (τ (i))
TC The server’s tag collection

2.3 Multi-set PSI

Private set intersection (PSI) protocols enable two parties holding sets X and
Y to compute the intersection X ∩Y , without revealing information about the
individual elements in the sets. In this section, we introduce a multi-set private
set intersection (MS-PSI) protocol that simultaneously computes intersections
of set X with N sets {Y1, . . . , YN} at the server. In Section 2.6, we review
existing PSI variants.

Notation. (See Table 2.1) We use a cyclic group G of prime order p generated
by g. We write x ←$ X to denote that x is drawn uniformly at random
from the set X. Let n be a security parameter. We define two hash functions
H : {0, 1}∗ → {0, 1}n and Ĥ : {0, 1}∗ → G. Finally, we write [n] to denote the
set {1, . . . , n}.

Related PSI schemes. We build on the single-set PSI protocol by De Cristofaro
et al. [25], see Figure 2.2. In this protocol the client blinds her elements xi ∈ G
as x̃i = xc

i using a blinding factor c before sending them to the server. The
server applies its own secret to the blinded elements, x̂i = x̃s

i , and sends them
back to the client in the same order, together with a tag collection of her own
blinded elements: TC = {H(ys) | y ∈ Y }. The client unblinds her elements,
obtaining a list of xs

i s. Then, the client computes a tag H(xs
i) for each of them

and compares it to the server’s tags TC to find matching elements.

To increase efficiency when the server set is large, client-server PSI (C-
PSI) schemes in the literature [15,16,26] introduce optimizations to avoid that
the server has to compute and send a large fresh set of tags every execution.

16

2.3 Multi-set PSI

Client Server

X = {x1, .., xm} ⊂ G Y = {y1, .., yn} ⊂ G

c←$ Zp s←$ Zp

x̃i = xc
i

⟨x̃i⟩ x̂i = x̃s
i

Ti = H(x̂c−1
i) ⟨x̂i⟩, TC

TC = {H(ys) | y ∈ Y }
Return {xi | Ti ∈ TC}

Figure 2.2: Vanilla PSI protocol by De Cristofaro et al. [25].

Instead, the server precomputes the tag collection with a long-term secret key s

and sends it to the client once. In subsequent online phases, the server answers
clients’ queries by using the long-term key s. This significantly improves the
communication and computation cost, as the server does not compute or send
the tag collection every time.

A new Multi-set PSI protocol. Our multi-set private set intersection protocol
(MS-PSI) intersects a client set X = {x1, .., xm} ⊂ {0, 1}∗ with N sets Yi =
{yi,1, .., yi,ni

} ⊂ {0, 1}∗ at the server to obtain the intersections X ∩ Yi. Our
protocol computes all intersections simultaneously, lowering the computation
and communication cost with respect to running N parallel PSI protocols. In
Datashare, X contains the query (a conjunction of search keywords) and Yi

represents document i’s keywords, as described in Section 2.5.2. We use Ĥ to
map keywords to group elements.

A naive approach to building MS-PSI would be to mimic the client-server
protocols and to reuse the long-term key s for all sets Yi. This approach
maps identical elements in sets Yi, Yj to the same tag revealing intersection
cardinalities |Yi ∩ Yj|. We remove the link between tags across sets by adding
a tag diversifying step to the precomputation phase of client-server PSI (see
Figure 2.3). We first compute pretags τ (i) for each set Yi by raising each
element to the power of the long-term secret s. Then, we compute per-set
tags by hashing the pretags τ with the set index i to obtain H(i ∥ τ). The
hash-function ensures that the tags of each set are independent. The server
publishes the tag collection TC and the number of sets N .

During the online phase, the client blinds its set as in the scheme of De
Cristofaro et al. and sends it to the server. The server re-blinds the set with
its secret s and sends it back to the client in the same order. The client
unblinds the result to obtain the pretags for her elements. The client then
computes the corresponding tags T(d), for each document d ∈ [N], and obtains
the intersection.

17

Chapter 2. DatashareNetwork

Client Server

X = {x1, .., xm} {Y1, .., YN}
Yi = {yi,1, .., yi,ni}

Precomputation phase
s←$ Zp

τ (i) =
{

Ĥ(y)s | y ∈ Yi

}
TC, N TC ={H(i || t) |

i ∈ [N] ∧ t ∈ τ (i)}

Online phase
c←$ Zp

x̃i = Ĥ(xi)c ⟨x̃i⟩ x̂i = x̃s
i

τi = x̂c−1
i

⟨x̂i⟩

For d ∈ {1, . . . , N} :
T(d)

i = H(d || τi)
Return {Id = {xi | T(d)

i ∈ TC}}d∈[N]

Figure 2.3: Our MS-PSI protocol.

In Appendix A.1, we prove the following theorem to show that the server
learns nothing about the client’s set, and that the client learns nothing more
than the intersections X ∩ Yi.

Theorem 1. The MS-PSI protocol is private against malicious adversaries
in the random oracle model for H and Ĥ, assuming the one-more-gap Diffie-
Hellman assumption holds.

The MS-PSI protocol does not provide correctness against a malicious
server, who can respond arbitrarily leading the client to compute an incorrect
intersection. However, from Theorem 1 we know that, even then, the malicious
server cannot gain any information about the client’s set.

Performance. Table 2.2 compares the performance of our MS-PSI protocol
with the vanilla and the client-server PSI protocols in the multi-set setting.
We show the computation and communication cost for a server with N sets
and a client set with m elements. MS-PSI reduces the server’s online com-
munication and computation by a factor N . The client can replace expensive
group operations by inexpensive hash computations, significantly reducing her
online cost. The example costs for N = 1000 (in square brackets) illustrate
this reduction showing an improvement of 3 orders of magnitude.

18

2.4 Privacy-preserving messaging

Table 2.2: Performance of PSI variants in a multi-set scenario: N is the number
of server sets; S is the total number of server elements; m is the size of the client
set; and τe and τH denote the cost of an exponentiation and a hash computation
(τH+e = τH + τe). We report in square brackets the cost estimation when m = 10,
N = 1000, S = 100, 000 (i.e., server sets have 100 elements). We assume that group
elements require 32 bytes, τe = 100 µs, and τH = 1 µs.

Vanilla C-PSI MS-PSI

Precomputation phase
Server — SτH+e SτH+e

Comms — S S

Online phase
Client 2mNτH+e 2mNτH+e 2mτe + mNτH

[2 s] [2 s] [12 ms]
Server SτH+e + mNτe mNτe mτe

[11 s] [1 s] [1 ms]
Comms S + 2mN 2mN 2m

[3.84 MB] [640 KB] [640 B]

2.4 Privacy-preserving messaging

In this section, we introduce Datashare’s communication system (CS). Jour-
nalists use the CS to support MS-PSI-based search and to converse anony-
mously after they find a match. The CS respects the organization’s limitations
(see Section 2.2.1). The communication costs do not hinder the day-to-day op-
eration of journalists, and the system supports asynchronous communication.
As the organization cannot deploy non-colluding nodes, the CS uses one server.
This server is trusted for availability, but not for privacy.

Datashare’s communication system is designed to host short conversa-
tions for discussing the sharing of documents. We anticipate that journalists
will migrate to using encrypted email or secure messengers if they need to
communicate over a long period or if they need to send documents.

2.4.1 Messaging system construction

The server provides two components: a bulletin board for broadcast messages,
and a pigeonhole for point-to-point messages. We use communication server
to refer to the entity that operates both components. To hide their network
identifiers from the server and network observers, journalists always use Tor

19

Chapter 2. DatashareNetwork

[23] for communication. To ensure unlinkability, Datashare creates a new
Tor circuit for every request.

Bulletin board. The bulletin board implements a database that stores broad-
cast messages. Journalists interact with the bulletin board by using two proto-
cols: BB.broadcast(m), which adds a message m to the database to broadcasts
it to all journalists, and m← BB.read() to retrieve unseen messages.

Pigeonhole. The pigeonhole consists of a large number of one-time-use mail-
boxes. Journalists use the pigeonhole to send and receive replies to search
queries and to conversation messages. Journalists use the method PH.SendRaw
(Protocol 1) to send query replies; and the asynchronous process PH.Recv-
Process (Protocol 2) to retrieve incoming query replies and conversation mes-
sages. Journalists use PH.Monitor (Protocol 3) to receive notifications of new
messages from the pigeonhole and to trigger PH.RecvProcess. Journalists are
expected to connect to the system several times a week (see Section 2.2.1).
In agreement with ICIJ, we decided that the pigeonhole will delete messages
older than 7 days.

Journalists may initiate a conversation after receiving a successful match.
To hide this event, we ensure that the sending of conversation messages is
unobservable: the server cannot determine whether a journalist sends a con-
versation message or not (see Definition 1). This hides whether a conversation
occurred, and therefore whether the search revealed a match or not. To ensure
unobservability of conversation messages, journalists run PH.Cover (Protocol 4)
to send cover messages at a constant Poisson rate to every journalist. To send
a conversation message, it suffices to replace one of the cover messages with
the real message (see PH.HiddenSend, Protocol 5).

Journalists use the Diffie-Hellman key exchange to compute mailbox ad-
dresses and message encryption keys, and an authenticated encryption scheme
AE to encrypt messages. Queriers generate a fresh key for every query and use
that key to receive query replies and to send conversation messages associated
with that query. Document owners use a medium-term key to send query
replies and to receive conversation messages from queriers (see Section 2.5.2).
When exchanging cover traffic, journalists use fresh cover keys to send and
their medium-term keys to receive.

Protocol 1 (PH.SendRaw(skS, pkR, m)). To send message m to recipient R

with public key pkR, a sender with private key skS proceeds as follows. Let ns

be the number of times S called PH.SendRaw to send a message to R before.
The sender

20

2.4 Privacy-preserving messaging

1. computes the Diffie-Hellman key k′ = DH(skS, pkR);
2. computes the random rendezvous mailbox addr = H(‘addr’ || k′ || pkS || ns)

and a symmetric key k = H(‘key’ || k′ || pkS || ns);
3. pads the message m to obtain m′ of length mlen, and computes the ci-

phertext c = AE.enc(k, m′);
4. opens an anonymous connection to the pigeonhole and uploads c to mail-

box addr.

For every upload, the pigeonhole notifies all monitoring receivers (see PH.Monitor
below) that a message arrived at addr.

Protocol 2 (PH.RecvProcess(skR, pkS)). To receive a message from sender S

with public key pkS, a receiver R with private key skR runs the following
asynchronous process. Let nr be the number of times R successfully received
a message from S. The receiver

1. computes the Diffie-Hellman key k′ = DH(skR, pkS);
2. uses k′ to compute a random rendezvous mailbox addr = H(‘addr’ || k′ ||

pkS || nr) and a symmetric key k = H(‘key’ || k′ || pkS || nr);
3. waits until PH.Monitor (see below) receives a notification of a new message

on address addr. If no message is posted to addr in seven days, the process
terminates;

4. opens an anonymous connection to the pigeonhole and downloads the ci-
phertext c at address addr (if there was no message due to a false positive,
the process continues at step 3); and

5. decrypts the message m′ = AE.dec(k, c) and returns the unpadded mes-
sage m or ⊥ if decryption failed.

When the receiver goes offline, this process is paused and resumed when the
receiver comes online again.

A sender may send multiple messages without receiving a response. The
receiver calls PH.RecvProcess repeatedly to receive all messages (nr increases
every time). To ensure that the participants derive the correct addresses and
decryption keys, participants keep track of the message counters ns, nr for each
pair of keys (skS, pkR) and (skR, pkS), respectively.

Protocol 3 (PH.Monitor). Journalists run the PH.Monitor process to monitor
for incoming messages. The receiver

1. opens an anonymous monitoring connection to the pigeonhole and re-
quests a list of addresses addr that received a message since she was last
online

21

Chapter 2. DatashareNetwork

2. via the same anonymous connection, receives notifications of addresses
addr with new messages.

Addresses addr received in step 1 or 2 can cause the PH.RecvProcess processes
to continue past step 3. To save bandwidth, the pigeonhole sends a cuckoo
filter [27] that contains the addresses in step 1. Moreover, the pigeonhole only
sends the first two bytes of the address in step 2 (PH.RecvProcess handles false
positives).

The PH.Cover and PH.HiddenSend protocols ensure conversation messages
are unobservable. Senders store a queue of outgoing conversation messages for
each recipient.

Protocol 4 (PH.Cover(skR)). As soon as the journalists come online, they
start the PH.Cover process. Let skR be the medium-term private key, and
pk1, . . . , pkn−1 be the medium-term public keys of the other journalists. The
process runs the following concurrently:

• Cover keys. Draw an exponential delay tk ← Exp(1/λk), and wait for
time tk. Generate a fresh cover key-pair (skc, pkc) and upload pkc to the
bulletin board by calling BB.broadcast(pkc). Repeat.

• Sending messages. Wait until the first cover key has been uploaded. For
each recipient pki, proceed as follows:

1. Draw ti ← Exp(1/λc) and wait for time ti.
2. If the send queue for pki is not empty, let mi be the first mes-

sage in the queue and skq the corresponding query key. Send the
message by calling PH.SendRaw(skq, pki, mi) and remove mi from
the queue. Otherwise, let skc be the most recent private cover
key and mi be a dummy message. Send the message by calling
PH.SendRaw(skc, pki, mi).

3. Repeat.
• Receiving cover messages. For each of the non-expired cover keys pk′

c on
the bulletin board, call the process m ← PH.RecvProcess(skR, pk′

c). If m

is a real message (see Section 2.5.2) forward the message to Datashare,
otherwise discard. Repeat.

This process stops when the user goes offline, and PH.RecvProcess processes
started by PH.Cover are canceled.

Protocol 5 (PH.HiddenSend(skS, pkR, m)). To send a message m to recipient
R with public key pkR, sender S with private key skS places m in the send
queue for pkR.

22

2.4 Privacy-preserving messaging

2.4.2 Messaging service privacy

We first define unobservability then prove that conversation messages sent
using PH.HiddenSend are unobservable.

Definition 1 (Unobservability). A conversation message is unobservable if all
PPT adversaries have a negligible advantage in distinguishing a scenario in
which the sender S sends a conversation message to the receiver R, from a
scenario where S does not send a conversation message to R.

Theorem 2. Messages sent using PH.HiddenSend are unobservable towards
any adversary that controls the communication server but does not control
the sender or the receiver, assuming the receiver awaits both conversation and
cover messages. This statement is also true when the adversary can break the
network anonymity Tor provides.

Proof. To show that conversation messages are unobservable, we must prove
that the following two scenarios are indistinguishable: the scenario in which
the sender sends a conversation message (sent by PH.Cover after a conversation
message has been queued using PH.HiddenSend), and the scenario in which the
sender sends a cover message (sent by PH.Cover when no conversation message
has been queued). The intuition behind this proof is that the conversation
and cover messages are indistinguishable: (1) both are encrypted so that the
adversary cannot distinguish them based on content; and (2) conversation
messages replace cover messages, so they are sent using the same schedule.

All messages go through the pigeonhole. For each message, the adversary
observes (1) the pigeonhole address, (2) the content, (3) the length, (4) the
timestamps at which the message was posted and retrieved, and – in the worst
case scenario in which the adversary can break the anonymity Tor provides –
(5) the sender and the receiver.

The content and pigeonhole address of messages are cryptographically in-
distinguishable. Senders and receivers compute rendezvous mailbox addresses
by using a Diffie-Hellman key exchange based on either the query public key
and the owner’s public key (when the message is a conversation messages)
or the sender and receiver’s cover keys (when the message is a cover mes-
sage). As the adversary does not control the sender or the receiver, it does not
know the corresponding private keys in either scenario. Under the decisional
Diffie-Hellman assumption, the adversary cannot distinguish between mailbox
addresses for conversation messages and mailbox addresses for cover messages.
Under the same DH assumption, the adversary cannot learn the symmetric

23

Chapter 2. DatashareNetwork

key k that is used to encrypt the message either. Moreover, all messages are
padded to a fixed length of mlen. Hence, the adversary cannot distinguish
between the two situations based on message content or length. As a result,
all messages sent between sender S and receiver R are indistinguishable to the
adversary on the cryptographic layer.

We now show that the post and retrieve times of the messages are also
independent of whether the message is a cover message or a conversation mes-
sage:

Sender. The “cover keys” and “sending messages” processes of PH.Cover are,
by design, independent of whether a conversation message should be sent or
not. The sender sends (real or cover) messages to the recipient at a constant
rate λc. The send times are independent of whether the sender has a real
message for the receiver.

Receiver. The receiver is listening to both conversation and cover messages
from the sender. As soon as it a new message notification arrives, PH.Recv-
Process will retrieve this message. Therefore, the retrieval time does not de-
pend on the type of message.

As a corollary of the unobservability proof, we have the following theorem.

Theorem 3. The pigeonhole protects the secrecy of messages from non-participants
including the communication server.

To hide their (network) identities from the communication server, users
of Datashare communicate with the communication server via Tor. Sender
anonymity hides queriers’ identities from document owners, and receiver anonymity
hides document owners’ identities from queriers. Using Tor ensures these prop-
erties, even when journalists collude with the communication server. Formally,
we define sender and receiver anonymity as follows:

Definition 2 (Sender anonymity). A communication system provides sender
anonymity if any PPT adversary has a negligible advantage in guessing the
sender of a message.

Definition 3 (Receiver anonymity). A communication system provides re-
ceiver anonymity if any PPT adversary has a negligible advantage in guessing
the receiver of a message.

Theorem 4. Assuming that Tor provides sender and receiver anonymity
with respect to the communication server, the communication system pro-

24

2.4 Privacy-preserving messaging

vides sender and receiver anonymity at the network layer against adversaries
who control the communication server and a subset of journalists.

Proof. All messages go through the communication system and journalists
never directly connect with each other. We study separately the anonymity
provided by the bulletin board and the pigeonhole.

To publish an encrypted message (the query) to the bulletin board, senders
run the BB.broadcast protocol over a fresh Tor circuit. Sender anonymity is
guaranteed by Tor. The bulletin board broadcasts all messages to all journal-
ists. As these messages do not have an intended receiver, receiver anonymity
is not relevant.

Both senders and receivers use fresh Tor circuits when communicating with
the communication servers. This ensures that communications are unlinkable
at the network layer, and that the adversary cannot identify the journalist
from network artifacts. As shown in the unobservability proof, the pigeonhole
cannot distinguish senders’ or receivers’ given addresses or encrypted messages.

This theorem only addresses the anonymity at the network layer. We dis-
cuss anonymity at the application layer, i.e., based on the content of messages,
in Section 2.5.3.

Tor does not provide sender or receiver anonymity against global passive
adversaries. To protect against global passive adversaries, Datashare will mi-
grate to stronger network layer anonymity systems (e.g., the Nym system [28],
based on Loopix [29])

2.4.3 Cost evaluation

To guarantee unobservability, we schedule the traffic according to a Poisson
distribution. However, such strong protection comes at a cost [30]: Regardless
of whether they have zero, one, or many conversations, every journalist sends
messages at a rate λc to the other N journalists, i.e., sends λcN messages per
day. Consequently, every journalist also receives λcN messages a day.

Figure 2.4, left, illustrates the trade-off between bandwidth overhead and
latency for a given cover traffic rate. When journalists send few messages a
day, the bandwidth requirements are very low. For instance, setting λc to be 4

25

Chapter 2. DatashareNetwork

0 1000 2000 3000
Number of journalists (N)

0

200

400

600

800

1000

C
om

m
.c

os
tp

er
da

y
pe

rj
ou

rn
al

is
t(

M
B

)

Latency = 30 min
Latency = 1 h
Latency = 2 h
Latency = 4 h
Latency = 8 h

Figure 2.4: Left: bandwidth (left axis) and latency (right axis) for running the
communication system (CS) with 1000 journalist for given rate λc. Bottom: varying
the number of journalists and average latency in the CS. Right: bandwidth (left
axis) and latency (right axis) for running the PIR system with 1000 journalists.

messages per day requires every journalist to use 16.5 MB per day, including the
sending of notifications and the updating of cover keys. For these messages
to be unobservable, however, journalists have to wait on average six hours
between messages (less than 18 hours in 95% of the cases). If journalists
require higher throughput they must consume more bandwidth. For example,
setting λc = 48 messages a day ensures that messages are sent within half
an hour on average (and within 90 minutes with probability 95%). Storing
messages from the last seven days on the pigeonhole for 1000 journalists and
send rate of λc = 48 requires 390 GB, which is manageable for a server.

The latency we report in Figure 2.4 assumes that journalists are online.
If they disconnect from the system before a message is sent, journalists must,
after coming online again, first upload a new cover key then draw a new sample
from Exp(λc) to decide when to send their message. We propose to set the
update latency λk to λc/4, so that the initial latency is at most 25% more than

26

2.5 The Datashare system

the latency under normal circumstances.

For the current size of the population that will use Datashare, 250 jour-
nalists (see Section 2.2.1), the bandwidth can be kept reasonable at the cost
of latency. However, as journalists send cover traffic to everyone, the band-
width cost increases quadratically with the size of the population, and becomes
pretty heavy after reaching 2000 journalists, see Figure 2.4, center.

An alternative construction. If the traffic requirements become too heavy
for the organization members, bandwidth can be reduced by increasing the
computation cost at the pigeonhole server. Instead of using cover traffic to all
journalists to hide the mailboxes that contain real messages, journalists can
retrieve messages using computational private information retrieval (PIR) [10,
24].

In this approach, senders send cover messages at a rate λPIR, independent
of the number of journalists, to random mailboxes. When they have a real
message, they send it instead of a cover message. They use the same rate to
retrieve messages using PIR. This approach hides which messages are getting
retrieved from the pigeonhole and breaks the link between the send and receive
time. As a result, the server’s observation of the system is independent of
whether journalists send a real message or not.

We illustrate the trade-off associated with this approach in Figure 2.4,
right. We use SealPIR [24] to retrieve cover and conversation messages. Re-
sponding to a PIR request in a scenario of 1000 journalists and a send rate of
6 messages per hour takes 12 seconds. Therefore, we assume a server with 24
cores (approx 1300 USD/month in AWS) can handle this scenario. We see that
this approach enables the system to send conversation messages at a higher
rate and a lower cost. For example, sending 6 messages per hour (144 mes-
sages a day) requires around 59 MB. However, as opposed to the Poisson cover
approach described in the previous section, this rate limits the total number of
messages per day regardless of recipient. As a result, depending on the number
of receivers journalists want to communicate with on average, one or the other
method could be more advantageous.

2.5 The Datashare system

We now present Datashare, an asynchronous decentralized peer-to-peer doc-
ument search engine. Datashare combines the multi-set private set inter-

27

Chapter 2. DatashareNetwork

section protocol (Section 2.3), the privacy-preserving communication system
(Section 2.4), and an anonymous authentication mechanism.

2.5.1 Preliminaries

Processing documents. The primary interests of investigative journalists are
named entities, such as people, locations, and organizations (see Section 2.2.1).
ICIJ has already developed a tool [1] that uses natural language processing
to extract named entities from documents. After the extraction, the tool
transforms named entities into a canonical form to reduce the impact of spelling
variation in names. We employ this tool to canonicalize queries. An advantage
of using this tool over simply listing all words in a document is that it reduces
the number of keywords per document: the majority of documents have less
than 100 named entities.

Search. Datashare uses the MS-PSI protocol as a pairwise search primitive
between journalists. The querier acts as MS-PSI client, and the client’s set
represents the querier’s search keywords. The document owners act as MS-PSI
servers, where the server’s N sets represent the keywords in each of the owner’s
N documents. Each document owner has their own different corpus and secret
key. We say a document is a match if it contains all query keywords (i.e., the
conjunction of the query keywords, see Section 2.2.1). MS-PSI speeds up the
computation and reduces the communication cost by a factor of N compared
to the naive approach of running one PSI protocol per document.

Authenticating journalists. Only authorized journalists, such as members of
the organization or collaborators, are allowed to make queries and send conver-
sation messages. Datashare’s authentication mechanism operates in epochs.
In each epoch journalists obtain a limited number of anonymous tokens. To-
kens can be used only once, which limits the number of queries that journalists
can make per epoch. Compromised journalists, therefore, can extract limited
information from the system by making search queries. We considered using
identity-escrow mechanisms to mitigate damage by misbehaving journalists
but in agreement with the organization, we decided against this approach as
such mechanisms could too easily be abused to identify honest journalists.

Recall from Section 2.2.1 that journalists trust the organization as an au-
thority for membership and already have means to authenticate themselves
to the organization. Therefore, the organization is the natural design choice
for issuing anonymous tokens. We note that, even if the organization is com-

28

2.5 The Datashare system

promised, it can do limited damage as it cannot link queries or conversations
to journalists (because of token anonymity). However, it can ignore the rate
limit. This would enable malicious queriers to extract more information than
allowed. To mitigate this risk, Datashare could also work with several token
issuers and require a threshold of valid tokens.

For the epoch duration, ICIJ proposes one month to provide a good bal-
ance between protection and ease of key management. Rate-limits are flexible.
The organization can decide to provide additional one-time-use tokens to jour-
nalists who can motivate their need for extra tokens. Although this reveals
to the organization which journalists are more active, it does not reveal what
they use the tokens for.

Instantiation. Tokens take the form of a blind signature on an ephemeral
signing key. We use Abe’s blind signature (BS) scheme [31]. The organization
runs BS.Setup(1n) to generate a signing key msk and a public verification key
mpk. To sign an ephemeral key pkT , the journalist and the organization jointly
run the BS.Sign() protocol. The user takes as private input the key pkT , and
the organization takes as private input its signing key msk. The user obtains a
signature C on pkT . The verification algorithm BS.Verify(mpk, C, pkT) returns⊤
if C is a valid for pkT and ⊥ otherwise. These blind signatures are anonymous.
The blindness property of BS ensures that the signer cannot link the signature
C or the key pkT to the journalist that ran the corresponding signing protocol.

Let skT be the private key corresponding to pkT . We call the tuple
T = (skT , C) an authentication token. Journalists use tokens to authenticate
themselves before issuing a query or sending a message. To authenticate them-
selves, journalists create a signature σ on the message using skT and append
the signature σ and blind signature C on pkT . Non-authenticated messages
and queries are dropped by other journalists.

Anonymous authentication with rate limiting could have been instantiated
alternatively with n-times anonymous credentials [32], single show anonymous
credentials [33,34], or regular anonymous credentials [35,36] made single-show.
We opted for the simplest approach.

Cuckoo filter. Datashare uses cuckoo filters [27] to represent tag collections
in a space-efficient manner. The space efficiency comes at the price of having
false positives when answering membership queries. The false negative ratio is
always zero. The false positive ratio is a parameter chosen when instantiating
the filter. Depending on the configuration, a cuckoo filter can compress a set
to less than two bytes per element regardless of the elements’ original size.

29

Chapter 2. DatashareNetwork

Users call CF.compress(S, params) to compute a cuckoo filter CF of the in-
put set S using the parameters specified in params. Then, CF.membership(CF, x)
returns ⊤ if x was added to the cuckoo filter, and ⊥ otherwise. For conve-
nience, we write CF.intersection(CF, S ′) to compute the intersection S ′ ∩S with
the elements S contained in the cuckoo filter. The function CF.intersection can
be implemented by running CF.membership on each element of S ′.

2.5.2 Datashare protocols and design

The journalists’ organization sets up the Datashare system by running Sys-
temSetup (Protocol 6). Thereafter, journalists join Datashare by running
JournalistSetup (Protocol 7). Journalists periodically call GetToken (Protocol 8)
to get new authentication tokens, and Publish (Protocol 9) to make their docu-
ments searchable. Datashare does not support multiple devices, and the soft-
ware running on journalists’ machines automatically handles key management
without requiring human interaction. If a journalist’s key is compromised, she
contacts the organization to revoke it.

Protocol 6 (SystemSetup). The journalist organization runs SystemSetup to
set up the Datashare system:

1. The organization generates a cyclic group G of prime order p with gen-
erator g, and hash functions H : {0, 1}∗ → {0, 1}n and Ĥ : {0, 1}∗ → G
for use in the MS-PSI protocol. It selects parameters params for the
cuckoo filter and sets the maximum number of query keywords lim (we
use lim = 10). The organization publishes these.

2. The organization sets up a token issuer by running (msk, mpk) = BS.Setup(1n)
and publishes mpk.

3. The organization sets up a communication server, which provides a bul-
letin board and a pigeonhole.

Protocol 7 (JournalistSetup). Journalists run JournalistSetup to join the net-
work: The journalist authenticates to the organization and registers for Datashare.

Protocol 8 (GetToken). Journalists run GetToken to obtain one-time-use au-
thentication tokens from the organization.

1. The journalist J connects to the organization and authenticates herself.
The organization verifies that J is allowed to obtain an extra token and,
if not, aborts.

2. The journalist generates an ephemeral signing key (skT , pkT); runs the
BS.Sign() protocol with the organization to obtain the organization’s sig-

30

2.5 The Datashare system

nature C on the message pkT (without the organization learning pkT);
and stores the token T = (skT , C).

To obtain tokens for the new epoch, journalists repeatedly run the GetTo-
ken protocol at the beginning of each epoch.

Protocol 9 (Publish). Journalists run Publish to make their documents search-
able. Publish takes as input a token T = (skT , C) and a set Docs = {d1, .., dN}
of N documents such that each document di is a set of keywords in {0, 1}∗.
This protocol includes the pre-computation phase of MS-PSI.

1. The journalist chooses a secret key s ←$ Zp and computes her tag col-
lection for the MS-PSI protocol as

TC = {H(i || Ĥ(y)s) | i ∈ [N], y ∈ di},

and compresses it into a cuckoo filter CF = CF.compress(TC, params).
2. The journalist generates a long-term pseudonym nym, and a medium-term

contact key pair (sk, pk).
3. The journalist encodes her pseudonym nym, public key pk, compressed

tag collection CF, and the number of documents N as her public record

Rec = (nym, pk, CF, N).

4. The journalist signs her record σ = Sign(skT , Rec) and runs BB.broadcast(
Rec || σ || pkT || C) to publish it.

Datashare automatically rotates (e.g., every week) the medium-term
contact key of journalists (sk, pk) to ensure forward secrecy. This prevents that
an attacker that obtains a journalist’s medium-term private key can recompute
the mailbox addresses and encryption key of messages sent and received by the
compromised journalist.

Journalists retrieve all public records from the bulletin board. They run
Verify(pkT , σ, Rec) to verify the records against the ephemeral signing key,
check that they have not seen pkT before to enforce the one-time use, and
run BS.Verify(pkT , C, mpk) to validate the blind signature. Journalists discard
invalid records.

Datashare incorporates MS-PSI into its protocols to enable document
search. Querying works as follows (Fig. 2.5): (1) The querier posts a query to-
gether with a fresh key pkq to the bulletin board (Protocol 10); (2) Document
owners retrieve these queries from the bulletin board (2a), they compute the

31

Chapter 2. DatashareNetwork

Box 6D08695

…

Bulletin board

Querier

1. Query

Owner

2a. Retrieve query

2b. Reply3. Process

Pigeonhole

Communication

0. Publish

PH.Cover

PH.Cover PH.Cover

PH.Cover

Box FA67B49

Box 533579C

…

Box C866C85

…
…

4. Converse 4. Converse

Figure 2.5: An overview of Datashare protocols.

reply address, and they send the reply to a pigeonhole mailbox (2b, see Proto-
col 11); (3) The querier monitors the reply addresses for all document owners,
retrieves the replies, and computes the intersection to determine matches (Pro-
tocol 12).

Protocol 10 (Query). Queriers run Query to search for keywords X. The
protocol takes as input a token T = (skT , C).

1. The querier generates a key pair (skq, pkq) for the query and pads X to
lim keywords by adding random elements.

2. As in the MS-PSI protocol, the querier picks a fresh blinding factor c←$

Zp, and computes:
Q = {Ĥ(x)c | x ∈ X}.

3. The querier signs the query Q and her public key pkq as σ = Sign(skT , Q || pkq),
and broadcasts the query Q, public key pkq, signature σ, ephemeral token
key pkT , and token C by running BB.broadcast(Q || pkq || σ || pkT || C).

Recall that MS-PSI perfectly hides the keywords inside queries. As a
result, these queries can be safely broadcasted.

Protocol 11 (Reply). Document owners run Reply to answer a query (Q, pkq, σ,

pkT , C) retrieved from the bulletin board.

1. The owner verifies the query by checking Verify(pkT , σ, Q || pkq), BS.Verify(

32

2.5 The Datashare system

mpk, C, pkT), and that she did not see pkT before. If any verification fails,
she aborts.

2. The owner uses her secret key s to compute the MS-PSI response R =
{x̃s | x̃ ∈ Q} to the query.

3. Let sk be the owner’s medium-term private key. She runs PH.SendRaw(sk,

pkq, R) to post the result to the pigeonhole, and starts the process
PH.RecvProcess(sk, pkq) to await conversation messages from the querier
(see Converse below).

Protocol 12 (Process). Queriers run the Process protocol for every journalist
J with record Rec = (nym, pk, CF, N) to retrieve and process responses to their
query (X, skq, c), where X is the unpadded set of query keywords.

1. The querier runs the asynchronous protocol R← PH.RecvProcess(skq, pk)
to get the new response.

2. Similar to MS-PSI, the querier computes the size of the intersection Ii

for each document di, 1 ≤ i ≤ N , as

Ii =
∣∣∣CF.intersection

(
CF, {H(i ∥ x̂c−1) | x̂ ∈ R}

)∣∣∣ .

3. Let q = |X| be the number of query keywords. The querier learns that
the owner nym has t = |{i | Ii = q}| matching documents.

After finding a match, the querier and owner can converse via the pigeon-
hole to discuss the sharing of documents using the Converse protocol.

Protocol 13 (Converse). Let (skq, pkq) be the query’s key pair, and (skO, pkO)
the owner’s medium-term key pair at the time of sending the query.

• The querier sends messages m to the owner by calling PH.HiddenSend(skq,

pkO, m), and awaits replies by calling PH.RecvProcess(skq, pkO).
• The owner sends messages m to the querier by calling PH.HiddenSend(skO,

pkq, m), and awaits replies by calling PH.RecvProcess(skO, pkq).
• After receiving a message, the receiving party calls PH.RecvProcess again,

to await further messages.

Both the query’s key pkq and the owner’s key pkO are signed using a
one-time-use token. Thus, querier and owner know they communicate with
legitimate journalists.

33

Chapter 2. DatashareNetwork

2.5.3 Datashare security analysis

Datashare provides the following guarantees:

Protecting queries. The requirements established in Section 2.2.1 state that
Datashare must protect the searched keywords and identity of the querier
from adversaries that control the communication server and a subset of docu-
ment owners. The Query protocol, which handles sending queries, is based on
MS-PSI. It represents searched keywords as the client’s set in MS-PSI. Theo-
rem 1 states that MS-PSI perfectly hides the client’s set from malicious servers.
Therefore, Datashare protects the content of queries from owners.

Datashare does not reveal any information about the identity of queriers
at the network and application layer. Theorem 4 ensures that the communica-
tion system provides sender and receiver anonymity and protects the querier’s
identity at the network layer. At the application layer, the querier sends
(Q || pkq || σ || pkT || C) as part of the Query protocol to the bulletin board.
The values σ, pkT , and C form an anonymous authentication token based on
Abe’s blind signature [31]. Anonymous tokens are independent of the querier’s
identity. The value pkq is an ephemeral public key, and Q is a MS-PSI query
which uses an ephemeral secret for the client. Hence, both pkq and Q are
independent of the querier’s identity too. Therefore, the content of the query
does not leak the querier’s identity at the application layer.

Protecting conversations. According to the requirements stated in Sec-
tion 2.2.1, Datashare must protect (1) the content, and (2) the identity
of participants in a conversation from non-participants. (3) Datashare must
protect the identities of journalists (who are in a conversation) from each other.

First, Datashare protects the content of conversation messages from
non-participants: Theorem 3 proves that only the sender and receiver can
read their conversation messages.

Second, Datashare protects the identity of participants in a conversation
from non-participants. Theorem 2 proves that communication is unobservable,
as long as participants are awaiting both conversation and cover messages.
Datashare enforces the conditions by construction. Immediately after an-
swering a query (see Reply, Protocol 11), the owner starts PH.RecvProcess to
listen for messages from the querier. Similarly, the querier starts to listen for
conversation messages from the owner right after sending him a conversation

34

2.5 The Datashare system

message (see Converse, Protocol 13). Moreover, the “cover keys” and “receiving
cover messages” processes in the PH.Cover protocol ensure that all journalists
broadcast their cover keys and start PH.RecvProcess after receiving a new cover
key. Therefore, Datashare satisfies the requirements on the communication
systems in Theorem 2. As a result, non-participants cannot detect whether
users communicate. Thus, protecting the identity of participants as required.

Third, Datashare aims to hide the identity of journalists from their coun-
terparts in a conversation. Theorem 4 shows that the communication system
does not reveal the identity of journalists at the network layer. Datashare
also ensures protection at the cryptographic layer: as we argued above, queries
are unlinkable. However, Datashare cannot provide unconditional protec-
tion for conversations. Queriers or document owners could identify themselves
as part of the conversation. Moreover, by their very nature, messages in a
conversation are linkable. Also, as we discuss below, insiders can use extra
information to identify communication partners.

Protecting document collections. Any functional search system inherently
reveals information about the documents that it makes available for search: To
be useful it must return at least one bit of information. An attacker can learn
more information by making additional queries. We show that Datashare
provides comparable document owner’s privacy to that of ideal theoretical
search systems. We use as a security metric the number of queries an attacker
has to make to achieve each of the following goals:

Document recovery. Given a target set of keywords (e.g. “XKeyscore” and
“Snowden”), an adversary aims to learn which of these target keywords are
contained in a document for which some keywords are already known.

Corpus extraction. Given a set of target keywords, an adversary aims to learn
which documents in a corpus contain which target keywords. If the target
set contains all possible keywords, the adversary effectively recovers the full
corpus.

Any functional search system is also susceptible to confirmation attacks.
An adversary interested in knowing whether a document in a collection con-
tains a keyword (e.g., “XKeyscore” to learn whether the collection contains the
Snowden documents) can always directly query for the keyword of interest.

We compare the number of queries an adversary needs to extract the
corpus or recover a document in the following three settings: when using

35

Chapter 2. DatashareNetwork

Table 2.3: Privacy and scalability of the hypothetical and Datashare’s MS-PSI
based search protocols. The table shows the number of queries necessary to achieve
document recovery and corpus extraction, when interacting with a corpus of d doc-
uments over a set n keywords. The document extraction bound for the 1-bit system
extracts up to uniqueness bound u.

Doc Extract Scale

1-bit n nu + nd --
#doc n nd -
Datashare n/lim n/lim +

Datashare, and when using one of two hypothetical systems. The first hy-
pothetical system, called 1-bit, is an ideal search system. In this system, given
a query, the querier learns only one bit of information: whether the owner has
a matching document. The second hypothetical system, called #doc, is an
ideal search system where the querier learns how many matching documents
the owner has.

Table 2.3 compares these hypothetical systems with Datashare’s use of
MS-PSI, where d is the number of documents and n the number of relevant
keywords. We show that extracting all the keywords from a document requires
at most n queries in the 1-bit and #docs search systems in Appendices A.2.1
and A.2.2.

Extracting the full corpus using the 1-bit search system is not always pos-
sible. Let the uniqueness number uD be the smallest number of keywords that
uniquely identify a document D. If D is a strict subset of another document
D′, the document cannot be uniquely identified, and we set uD =∞. However,
as corpora are small, we expect that most documents can be identified by a
few well-chosen keywords, resulting in small uniqueness numbers.

In Appendix A.2.1, we show that extracting all documents with unique-
ness number less or equal to u takes O(nu + nd) queries in the 1-bit search
system. In Appendix A.2.2 we show that extracting all documents (regardless
of uniqueness number) takes O(nd) queries in the #doc search system.

In Datashare, we limit MS-PSI queries to lim keywords per query. Hence,
any document extraction attack must make at least n/lim queries to ensure
all keywords are queried at least once. In fact, this bound is tight for both
document recovery and corpus extraction for MS-PSI: By making n/lim queries
with lim keywords each, the attacker learns which keywords are contained in
which documents.

36

2.5 The Datashare system

In summary, Datashare offers similar protection against corpus extrac-
tion as the #doc ideal system. For document recovery, not even the ideal
1-bit-search system offers much better protection. At the same time, MS-PSI
is much more efficient than their ideal counterparts.

Internal adversaries. We now discuss how an adversary may use auxiliary
information about a journalist’s behavior or corpus to gain an advantage in
identifying the journalist. Some of these attacks are inherent to all systems
that provide search or messaging capabilities. These attacks, however, do
not permit the adversary to extract additional information from journalists’
corpora.

Intersection attacks. A malicious sender (respectively, receiver) who has access
to the online/offline status of journalists can use this information to reduce the
anonymity set of the receiver (respectively, sender) to only those users that are
online. As more messages are exchanged, this anonymity set becomes unavoid-
ably smaller [37]. This attack is inherent to all low-delay asynchronous mes-
saging systems, including the one provided by the communication server. In
the context of Datashare, we note that once document owners and queriers
are having a conversation, it is likely that they reveal their identity to each
other. Yet, we stress that preserving anonymity and, in general, that minimiz-
ing the digital traces left by the journalists in the system is very important to
reducing the risk that journalists become profitable targets for subpoenas or
hacking attempts.

Stylometry. A malicious receiver can use stylometry, i.e., linguistic style, to
guess the identity of the sender of a message. The effectiveness of this attack
depends on the volume of conversation [38, 39]. This attack is inherent to
all messaging systems, as revealing the content of the messages is required to
provide utility.

Partial knowledge of corpus. Adversaries who have prior knowledge about a
journalist’s corpus can use this knowledge to identify this journalist in the
system. However, due to MS-PSI’s privacy property (see Theorem 1), learning
more about the documents in this journalist’s corpus requires making search
queries.

In particular, if an adversary convinces a journalist to add a document
with a unique keyword pattern to his corpus, then the adversary can detect this
journalist’s corpus by searching for the pattern. Datashare cannot prevent

37

Chapter 2. DatashareNetwork

such out-of-band watermarking. However, the adversary still needs to make
further queries to learn anything about non-watermarked documents in the
collection.

Non-goals. Finally, we discuss security properties that are not required in
Datashare.

Query unlinkability. Datashare does not necessarily hide which queries
are made by the same querier. Even though anonymity is ensured at the
network and application layers, queriers that have made multiple queries may
retrieve responses for all these queries in quick succession after coming online.
Document owners know the corresponding query of their messages, and if they
collude with the communication server, then they can infer that the same
person made these queries. As no adversary can learn any information about
the queries themselves, we consider this leakage to be irrelevant.

Owner Unlinkability. Datashare also reveals which pseudonymous docu-
ment owner created a MS-PSI response, making responses linkable. Datashare
cannot provide unlinkability for document owners when using MS-PSI. Al-
though MS-PSI itself could be modified to work without knowing the document
owner’s pseudonym, an adversary could simply repeat a specific rare keyword
(for example, “one-word-to-link-them-all”) and identify the document owners
based on the corresponding pretag that they produce for the rare keyword.
We believe that revealing the document owner’s pseudonym is an acceptable
leakage for the performance gain it provides.

2.5.4 Cost evaluation

At the time of writing, ICIJ has implemented the local search and indexing
component of Datashare [1]. In addition, we have implemented a Python
prototype of the cryptographic building blocks underlying search (Section 2.3)
and authentication (Section 2.5.1).1 We did not implement the messaging
service (Section 2.4), as it relies on standard building blocks and cryptographic
operations.

To agree on the final configuration of the system, we are currently running
a user study among the organization members. The goal is to familiarize jour-
nalists with a type of search and messaging system that is different than those

1The code is open source and available at: https://github.com/spring-epfl/
datashare-network-crypto

38

https://github.com/spring-epfl/datashare-network-crypto
https://github.com/spring-epfl/datashare-network-crypto

2.5 The Datashare system

they typically use in their daily activities (Google and email or instant messag-
ing, respectively), as well as with the threat model within which Datashare
provides protection. We recall that Datashare hides all key management
and cryptography from the users, hence we do not study those aspects.

In this section, we evaluate the performance of the cryptographic opera-
tions involved in search and authentication. Our prototype uses the petlib [40]
binding to OpenSSL on the fast NIST P-256 curve for the elliptic curve cryp-
tography in MS-PSI. We implement the Cuckoo filter using cuckoopy [41]. We
ran all experiments on an Intel i3-8100 processor running at 3.60GHz using a
single core. We note that operations could be easily parallelized to improve
performance.

We focus our evaluation on the computational cost and bandwidth cost
of the authentication and search primitives to ensure that Datashare fulfills
the requirements in Section 2.2.1 without journalists needing fast hardware
or fast connections. When reporting bandwidth cost, we omit the overhead
of the meta-protocol that carries messages between system parties. We do
not consider any one-time setup cost or the standard cryptography used for
messaging. We also do not measure network delay as the latency the Tor
network introduces – around one second [42] – is negligible compared to the
waiting time imposed by connection asynchrony; and it is orders of magnitude
less than the journalists waiting limits (see Section 2.2.1).

We provide performance measurements for different system work loads.
We consider the base scenario to be 1000 journalists, each of whom makes
1000 documents available for search. There is no requirement for the number
of keywords per document or keywords per query. For a conservative estimate,
we assume that each document contains 100 keywords, and that each query
contains 10 keywords.

Authenticating Journalists. We implement the BS scheme using Abe’s blind
signatures [31]. Running BS.Sign requires transferring 413 bytes and takes
0.32 ms and 0.62 ms, respectively, for the organization and the journalist. Each
blind signature is 360 bytes, and verifying it using BS.Verify takes 0.4 ms. We
include these costs in the respective protocols.

Publishing Documents. Data owners run Publish to make their documents
searchable. For the base scenario, this one-time operation takes 14 seconds and
results in a cuckoo filter of size 400 KB for a FPR of 0.004%. For a conservative
estimation, we assume all keywords are different. When documents contain
duplicate elements y, the precomputation can be amortized: the pretag Ĥ(y)s

39

Chapter 2. DatashareNetwork

101 102 103 104

Documents

10−3

10−2

10−1

Ti
m

e
(s

)

Query
Reply
Process reply

100

200

300

400

500

600

700

D
at

a
si

ze
(b

yt
es

,u
np

ad
de

d)

Query size
Reply size

101 102 103 104

Journalists

10−2

10−1

100

101

102

Ti
m

e
(s

)

Query
Process replies

102

104

106

108

D
at

a
si

ze
(b

yt
es

,u
np

ad
de

d)

Query size
Replies size (sum)

101 102 103 104

Queries / day

10−1

100

101

Ti
m

e
(s

)

Replies to queries

103

104

105

106

107

108

D
at

a
si

ze
(b

yt
es

,u
np

ad
de

d)

Queries incoming
Replies outgoing

Figure 2.6: Time (left axis) and bandwidth (right axis, unpadded) for single query
on one journalist (left), single query on all journalists (right), answering several
queries (below).

has to be computed only once.

Querying a Single Journalist. Figure 2.6, left, shows the time and bandwidth
required to issue one query on one collection, depending on the collection size.
The querier constructs the query using Query and sends it to the document
owner (the querier’s computation cost includes the cost of obtaining the one-
time-use token using GetToken). The document owner responds using Reply.
These operations are independent of the number of documents. The querier
runs Process to retrieve the responses, and to compute the intersection of query
and collection. This takes 27 ms in the base scenario. Bandwidth cost reflects
the raw content size. But recall that, in practice, the messaging system pads
messages to 1 KB.

Querying All Journalists. As expected, the processing time and bandwidth of
Query are independent of the population size, whereas the cost of processing
the responses grows linearly with the number of queried journalists (Figure 2.6,
right). For the baseline scenario, processing all 999 responses takes about 27

40

2.5 The Datashare system

Figure 2.7: Communication cost for different communication strategies, depending
on the number of journalists. We assume 1 query per journalist per day in the search
component.

seconds in total and requires retrieving 1 MB of padded responses. We note
that this cost is only paid by the querier, and does not impact the document
owners (see below). Moreover, as replies are unlikely to arrive all at once, pro-
cessing can be spread out over time; thus reducing the burden on the querier’s
machine.

This computation assumes that each journalist has the same number of
documents. In practice, this might not hold. However, as we see in Figure 2.6,
left, as soon as collections have more than 50 documents the computation
time grows linearly with the collection size. Hence, as long as journalists
have collections with at least 50 documents, the measurements in Figure 2.6,
right, are largely independent of how these documents are distributed among
journalists.

The Cost for Document Owners. Document owners spend time and bandwidth
to answer queries from other journalists. Figure 2.6, bottom, shows how these
costs depend on the total number of queries an owner receives per day. Even
when all journalists make 10 queries of 10 keywords each day (unlikely in prac-
tice) the total computation time for document owners is less than 20 seconds;
and they send and receive less than 7 megabytes (10 MB when padded).

Overall Cost of Datashare. Finally, we plot in Figure 2.7 the total band-
width a journalist needs per day to run Datashare, depending on the number
of journalists in the system and the strategy implemented by the communi-
cation system. Regardless of the size of the system, the cost associated to
hide communications dominates the cost stemming from searches. Regarding

41

Chapter 2. DatashareNetwork

the communication cost, as explained in Section 2.4.3, for small organizations
Poisson-rate cover traffic provides a better trade-off with respect to through-
put, but as more journalists join the system, the PIR-based system starts
performing better.

2.6 Related work

Many PSI protocols [14,16,43,44] differ from that of De Cristofaro et al. [25],
but only in how they instantiate the oblivious pseudorandom functions (OPRFs).
Our MS-PSI protocols can easily be adjusted to use alternative OPRFs to com-
pute the pretags. As bandwidth is at a premium in our scenario, we base our
MS-PSI protocols on the scheme of De Cristofaro et al. as it has the lowest
communication cost.

The restrictions on computational power and bandwidth rule out many
other PSI schemes. Protocols based on oblivious polynomial evaluation [45]
have very high computational cost. Hash-based PSI protocols [12,17,46] have
low computational cost, but require much communication. Finally, PSI proto-
cols can be built from generic secure multi-party computation directly [11–13].
However, this approach also suffers from a high communication cost and re-
quires more than one communication round.

Secure multi-party computation based PSI protocols can be extended to
provide better privacy than MS-PSI: The underlying circuits can be extended
to implement either the ideal 1-bit search or the #doc search system. How-
ever, their high communication and round complexity rule out their use in our
document search system. Recently, Zhao and Chow proposed a threshold PSI
protocol based on polynomial evaluation [47] that can implement the #doc
search system (by setting the threshold equal to the number of keywords).
But its communication and computation complexity rule it out.

A document search engine could also be implemented using private in-
formation retrieval (PIR): Queriers use PIR to privately query keywords in
the document owner’s database. Computational PIR protocols [10, 24, 48]
(IT-PIR protocols [8, 9] do not apply) place a high computational burden
on the database owner. More importantly, PIR requires a fixed set of key-
words, that cannot exist for the journalists’ use case. Keyword-based PIR
approaches [18, 19] sidestep this issue, but instead require multiple communi-
cation rounds. Therefore, PIR cannot be used in our scenario.

42

2.7 Future steps: better protection

Encrypted databases hide the queries of data owners from an untrusted
database server [49–52]. Although Datashare could operate such a central
encrypted database, this system would not be secure. On the one hand, if
the encrypted database is used as a central service for all collections, then a
collusion between a journalist and the database server would leak the entire
database. This would violate document privacy. On the other hand, if each
journalist operates a personal database, then collusion between the database
server and the document owner (acting as the ‘data owner’ in the terminology
used in the encrypted database literature) might leak search queries, as these
systems are not designed to hide queries from a database server that colludes
with the data owner. This would violate query privacy.

2.7 Future steps: better protection

We have introduced Datashare, a decentralized privacy-preserving search
engine that enables journalists to find and request information held by their
peers. Datashare has great potential to help journalists collaborate in un-
covering cross-border crimes, corruption, or abuse of power.

Our collaboration with a large organization of investigative journalists
(ICIJ) provided us with a novel set of requirements that, despite being deeply
grounded in practicality, are rarely considered in academic publications. These
requirements led us to design new building blocks that we optimized for se-
curity trade-offs different than previous work. We combined these building
blocks into an efficient and low-risk decentralized search system.

Yet, Datashare’s protections are not perfect. Both the search primitive,
and the availability of timestamps of actions in the system, leak information.
At the time of writing, the high cost in bandwidth and/or computation of
state-of-the-art techniques that could prevent this leakage – e.g., PIR to hide
access patterns and efficient garbled circuits to implement one-bit search –
precludes their deployment.

We hope that this chapter fosters new research that addresses these prob-
lems. We believe that the new set of requirements opens an interesting new
design space with much potential to produce results that have a high impact,
not only by helping investigative journalism to support democratic societies,
but also in other domains.

43

Chapter 3
Private Collection Matching Protocols

This chapter is based on the following article:

Kasra EdalatNejad, Mathilde Raynal, Wouter Lueks, Carmela Troncoso:
“Private Collection Matching Protocols”. Proceedings on Privacy Enhancing
Technologies (PoPETs), 2023.

3.1 Introduction

In many scenarios, a server holds a collection of sets and clients wish to de-
termine whether these server sets match their own set, while both client and
server keep their privacy. We call these Private Collection Matching (PCM)
problems. In this chapter, we study for the first time the requirements of PCM
problems.

We identify the privacy and efficiency requirements of PCM problems by
analyzing three real-world use cases: determining whether a pharmaceutical
database contains compounds that are chemically similar to the client’s [53–55],
determining whether an investigative journalist holds relevant documents [56]
(or how many), and matching a user’s profile to items or other users in mobile
apps [57–59]. We find that PCM problems have three common characteristics:
(1) Clients want to compare their one set with all sets at the server. (2)
Clients do not need per-server set results, only an aggregated output (e.g.,
whether any server set matches). (3) Clients and server want privacy: the
server should learn nothing about the clients’ set, and the clients should only
learn the aggregated output. However, PCM problems differ in their definition
of when sets match and how to combine individual matching responses. Now,
we discuss these two aspects in more detail:

Set matching. Typically, set matching is defined as a function of the intersec-

45

Chapter 3. Private Collection Matching Protocols

Matching

Client's set
Se

rv
er

's
se

ts

Aggregation

Result

Private Collection Matching

Figure 3.1: Structure of our PCM framework. Red arrows show values encrypted
under the client’s key. fM designates a matching function: it outputs a binary value
λ indicating whether two sets match. fA is an aggregation function that combines
n matching statuses into a collection-wide result.

tion of two sets. Hence, clients could detect a matching server set by using
private set intersection (PSI) protocols [12,17,25,46,60–62,62,63] to privately
compute the intersection, then post-process the intersection to determine in-
terest locally. PCM applications differ in their matching criteria and may
decide interest using measures such as a cardinality threshold, containment, or
set similarity. This local processing approach, unfortunately, reduces privacy
of the server’s sets by leaking information beyond the set’s matching status to
the client. Such leakage could, for instance, reveal secret chemical properties
of compounds, or the content of journalists’ sensitive documents.

Many-set. In PCM problems, the server holds a collection of N sets. This
creates two challenges. First, running one matching (or PSI) interaction per
server set is inefficient. Second, revealing individual set-matching statuses
harms server privacy. While servers may be interested in selling data to or
collaborating with clients, they want to ensure that clients cannot use the
‘PCM solution’ to extract information about sets. Clients, meanwhile, of-
ten only need an aggregated response summarizing the utility of a collection.
Servers therefore enact application-dependent aggregation policies ensuring
that clients can, e.g., determine only whether at least one set matches or learn
only the the number of matching sets.

We construct a framework that leverages computation in the encrypted
domain to solve PCM problems. In our framework, shown in Fig. 3.1, given
an encrypted client set, the server uses a matching criteria fM to compute per-
server-set binary answers to “is this set of interest to the client?”. Next, the
server uses an aggregation policy fA to combine per server-set responses into
a collection-wide response. Finally, the client decrypts the aggregated result.

46

3.2 Private Collection Matching

Our work makes the following contributions:

✓ We introduce Private Collection Matching (PCM) problems. We derive
their requirements from three real-world problems.

✓ We design single-set protocols where the client learns a one-bit output –
whether one server set is of interest to the client – and many-set protocols where
the client learns a collection-wide output that aggregates individual matching
responses. The communication cost of our protocols scales linearly with the
size of the client’s set and is independent of the number of server sets and their
total size.

✓ We propose a modular design that separates flexible set matching crite-
ria from many-set aggregation. Our modularity enables extending our design
with new matching or aggregation policies and simplifies building privacy-
preserving PCM solutions.

✓ We demonstrate our framework’s capability by solving chemical sim-
ilarity and document search problems. We show that our framework offers
improved privacy with competitive cost compared to custom-made solutions,
and significantly improves the latency, client’s computation cost, and com-
munication cost with respect to generic solutions that offer the same privacy
guarantee.

3.2 Private Collection Matching

In this section, we define the Private Collection Matching (PCM) problem. We
derive its basic requirements from three real-world matching problems. We also
explain why existing PSI solutions cannot satisfy the privacy requirements of
PCM problems.

3.2.1 Case studies

We study three cases that can benefit from PCM.

Chemical similarity. Chemical research and development is a multi-billion
dollar industry. When studying a new chemical compound, knowing the prop-
erties of similar compounds can speed up the research. In an effort to mone-
tize research, companies sell datasets describing thousands to millions of com-
pounds and their properties. Chemical R&D teams are willing to pay high
prices for these datasets but only if they include compounds similar to their

47

Chapter 3. Private Collection Matching Protocols

research target. Determining whether this is the case is tricky: buyers want
to hide the compound they are currently investigating [55], and sellers want
to hide information about the compounds in their dataset before the sale is
finalized.

Chemical similarity of compounds is determined by comparing molecular
fingerprints of compounds [53, 54, 64–67]. Fingerprints are based on the sub-
structure of compounds and are represented as fixed-size bit vectors – these
vectors are between a few hundred and few thousand bits long. Measures such
as Tversky [68] and Jaccard [69] determine the similarity of these fingerprints,
and thus of the compounds.

Revealing pair-wise intersection cardinalities or even similarity scores be-
tween the fingerprints of a target compound and the seller’s compounds re-
sults in unacceptable leakage. A buyer can reconstruct an n-bit molecular
fingerprint F by learning similarity values between F and n + 1 known com-
pounds [55]. To prevent inferences, the buyer should learn only the number
of similar compounds in the seller’s dataset, or, better, only learn whether at
least one similar compound exists.

Peer-to-peer document search. Privacy-preserving peer-to-peer search engines
help users and organizations with strict privacy requirements to collaborate
safely. We take the example of investigative journalists who, while unwilling
to make their investigations or documents publicly available, want to find
collaboration opportunities within their network [56].

To identify those opportunities, a journalist performs a search to learn
whether a document owner has documents of interest. A search query consists
of keywords relevant to the journalist’s investigation. The document owner
compares the query to all documents in his collection. A document is deemed
relevant if it contains all or a sufficient number of queried keywords. Journal-
ists own a collection of a thousand documents (on average), and each document
is represented by around a hundred keywords.

The sensitivity of journalists’ investigations demand that both the content
of the documents and of the queries remain private [56]. Journalists only need
to learn one bit of information – that at least one or a threshold number of
documents in the owner’s collection is relevant – to determine whether they
should contact the owner.

Matching in mobile apps. A common feature in mobile apps is enabling users
to find records of interest in the app servers’ databases, e.g., restaurants [57],

48

3.2 Private Collection Matching

routes for running [58], or suitable dating partners [59,70]. Users are typically
interested in records that have at least a number of matching characteristics
in common with their search criteria or that are a perfect match. Also, users
need to be able to retrieve these records.

The user-provided criteria – typically range choices entered via radio but-
tons or drop-down menus – are compared to the attributes of records. An app
database can have millions of records and records can have dozens to hundreds
of attributes.

Both search criteria and records are sensitive. Knowing search criteria
enables profiling of user interests. These are particularly sensitive for dating
applications. Thus, search queries should be kept private. The secrecy of the
records in the database is not only at the core of the business value of these
apps but also required by law in cases where records contain personal data
(e.g., dating apps).

3.2.2 PCM requirements

We extract requirements that PCM protocols should fulfill based on the com-
monalities between the use cases. These come in addition to basic PSI prop-
erties such as client privacy.

RQ.1: Flexible set matching. PCM protocols need to be able to determine
matches between sets without revealing other information such as intersections
or cardinalities to the client. In the use cases, clients do not need to know the
intersection or its cardinality. They are interested only in whether there is a
match. Matches in these examples are a function of the intersection between a
client and a server set: a chemical compound is a match when the Tversky or
Jaccard similarity with the query exceeds a threshold; a document is a match
when it contains some or all query keywords; and a record is a match when
it includes a threshold of query attributes. PCM protocols must be able to
detect matching sets and compute a single one-bit matching status per-set.

RQ.2: Aggregate many-set responses. PCM protocols need to have the capa-
bility to provide an aggregated response for a collection of sets without leaking
information about individual sets. Our use cases highlight that in many ap-
plications, a client (buyer, journalist, user) may want to compare their input
(compounds under investigation, keywords of interest, search criteria) with a
collection of sets (compounds in a database, documents in a collection, records
in a database). More importantly, we observe that clients wish to know how

49

Chapter 3. Private Collection Matching Protocols

interesting the collection is as a whole. For example, a buyer is interested in
a chemical dataset if it contains at least one similar compound and a querier
journalist may contact a document owner if the owner has a number of rel-
evant documents in their collection. Therefore, to satisfy clients’ needs yet
protect the server’s privacy, PCM protocols should only reveal aggregated
per-collection results.

RQ.3: Extreme imbalance. PCM problems have thin clients and imbalanced
input sizes; thus, protocols must not require communication and computation
linear to the server’s input size from clients. Drawing from our earlier scenar-
ios, the total input size of the server may be as much as 6 orders of magnitude
larger than the client’s input, as shown by the chemical similarity scenario.
The server, holding many sets, can safely be assumed to be resourceful, while
clients may be constrained in their capabilities, e.g., a client running the PCM
protocol from their mobile phone. This can be in terms of computation, e.g.,
battery has to be preserved in mobile apps; or in terms of bandwidth, e.g.,
journalists that can be in locations with poor Internet access. Therefore, PCM
protocols should not incur a large client-side cost.

3.2.3 Formal PCM definition

Let X be a client set with nc elements {x1, . . . , xnc} from input domain D

and Y be a collection of N server sets {Y1, . . . YN} where the i’th server set
Yi = {yi,1, . . . , yi,ni

s
} has ni

s elements, also from D, leading to a total server size
of Ns = ∑

i ni
s. We define two families of functions as follows:

Matching functions λi ← fM(X, Yi) take two sets X and Yi as input and
compute a binary matching status λi determining interest. This family rep-
resents our flexible matching criteria RQ.1. For example, in the document
search scenario where a server set (document) is of interest when it contains
all queried keywords, we define fM(X, Yi) as 1 if X ⊆ Yi and 0 otherwise.

Aggregation functions A ← fA(λ1, . . . , λN) take N binary matching sta-
tuses (λi) and aggregates them into a single response A. This family represents
our aggregation requirement RQ.2. For example, if we want to count the num-
ber of relevant documents in a search, we define fA(λ1, . . . , λN) as ∑

j λj.

In Table B.2 in Section B.1, we summarize the matching and aggregation
functions that we implement.

Definition 4 (PCM). PCM protocols are two-party computations between a

50

3.3 Related work

client and a server with common inputs fM and fA, where the client learns an
aggregated matching status and the server learns nothing. Formally:

(A = fA (fM (X, Y1) , . . . , fM (X, YN)) ,⊥)← PCMfM ,fA
(X,Y)

We use this notation to define formal properties of PCM protocols.

Definition 5 (Correctness). A PCM protocol is correct if the client output
matches the result of A = fA(fM(X, Y1), . . . , fM(X, YN)).

Definition 6 (Client privacy). A PCM protocol is client private if the server
cannot learn any information about the client’s set beyond the size of the
client’s set.

Definition 7 (Server privacy). A PCM protocol is server private if the client
cannot learn any information about the server elements beyond the number
of server sets N , the maximum server set size max ni

s, and the client output
A = fA(fM(X, Y1), . . . , fM(X, YN)).

3.3 Related work

While ad-hoc solutions for chemical (Shimizu et al. [55]) and document search
(EdalatNejad et al. [56]) exist, most prior work focuses on building private set
intersection (PSI) protocols, which are a special case of PCM. We introduce
the PSI protocols most relevant to our work. We leave the detailed comparison
with ad-hoc solutions to the evaluation (see Section 4.8).

We compare existing work on two critical aspects of PCM problems: pri-
vacy and efficiency. We summarize existing schemes and their suitability for
the PCM scenario in Table 3.1.

For privacy, we assess whether existing approaches provide flexible match-
ing (RQ.1) and aggregated many-set responses (RQ.2). We note that the
majority of prior works do not consider, or support, many sets. When there is
no natural extension to support many sets at once, we run a single-set inter-
action per server set, leading to an N× increase in cost. This naive extension
does not provide the privacy enhancement of many-set aggregation but enables
us to reason about the efficiency of these approaches.

For efficiency, taking into account the extreme imbalance requirement
(RQ.3), we focus on the client’s computation and communication cost and
require schemes to have a client cost of ω(Ns(≈ Nni

s)).

51

Chapter 3. Private Collection Matching Protocols

Table 3.1: Overview of PSI approaches in the PCM setting.

Privacy Efficiency

RQ.1 RQ.2 RQ.3

Comparison [13,15,17,46,71,72] × × ×
OPRF [16,25,60,61,73] × × ✓∗

OPE [45,74–76] × × ✓
Generic SMC [11,77,78] ✓ ✓ ×
Circuit-PSI [12,62,79–83] ✓ ✓ ×
Flexible functionality [47,55,84–87] ✓ × ×
Our work ✓ ✓ ✓

∗Efficient communication requires pre-processing.

Traditional single-set PSI. We first study protocols solely focusing on single-
set intersection or cardinality. We study schemes that offer enhanced function-
ality or privacy below in the Custom PSI Protocols section.

In PSI, clients learn information about the intersection of two sets while
(i) not learning anything about the server’s non-intersecting elements, and (ii)
not leaking any information about their own set to the server. PSI protocols in
the literature focus on providing two possible outputs: the intersection (e.g.,
finding common network intrusions [88], or discovering contacts [89]); and the
cardinality of the intersection (e.g., privately counting the number of common
friends between two social media users [90], or performing genomic tests [91]).
Works in this area opt for a variety of trade-offs between the computational
capability and the amount of bandwidth required to run the protocol [16, 76,
77, 92]. These works show that PSI can scale to large datasets [62, 93], and
support light clients [16].

We classify PSI protocols according to the techniques they use to compute
the PSI functionality:

Comparison-based protocols. The fastest class of PSI protocols uses bucketing
to enable PSI protocols that run optimized comparison protocols between very
small client and server buckets [13,15,17,46,71,72]. These approaches use hash-
ing to first map elements to small buckets. Then they compare the client and
server elements in each bucket using comparison primitives that are efficient
when buckets have very few elements, for example built using oblivious trans-
fer (OT). These approaches reveal comparison results, and thus intersections
or cardinalities, to the client; therefore, they do not satisfy our single-set pri-
vacy requirement (RQ.1). As these approaches reveal individual detailed set

52

3.3 Related work

responses, private aggregation (RQ.2) is impossible. We discuss approaches
that do not reveal the comparison result separately below as ‘Circuit-PSI’.
Each client and server element must participate in at least one comparison;
consequently, the communication cost is linear in the client size nc and total
server size Ns. Therefore, comparison-based approaches do not satisfy our
efficiency requirement (RQ.3).

In Section B.4.3, we confirm our efficiency assessment by evaluating the
cost of SpOT-light [72], one of the fastest comparison-based PSI protocols,
in the PCM setting. We show significant improvement in latency (10–65x),
client’s computation (1800–24,800x), and transfer cost (1.7–27x).

OPRFs. Another technique to construct PSI protocols is to evaluate a pseudo-
random function (PRF) over client and server set elements and compare these.
To protect privacy, the client obliviously evaluates the PRF over its elements
together with the server, and the server sends the PRF evaluation of its
elements to the client. Oblivious Pseudo-random Functions (OPRFs) can
be constructed from asymmetric primitives such as RSA [16, 60, 61], Diffie-
Hellman [16, 73], discrete logarithms [25], or by applying SMC on symmet-
ric PRFs [16, 77].1 What distinguishes these OPRF-based approaches from
the previous category is that instead of comparing many pairs in small buck-
ets, OPRF-based approaches compute a deterministic tag for each client and
server element that can be compared locally. While the communication cost
is linear in the size of both client and server sets, preprocessing and reusing
tags for server elements can make the transfer cost independent of the server
size [16]. Similar to comparison-based protocols, OPRF approaches cannot
compute flexible set matches without leaking intermediate data nor do they
support aggregation.

Oblivious polynomial evaluation. Another approach is to use (partial) homo-
morphic encryption [94] to determine set intersection using oblivious polyno-
mial evaluation (OPE) [45, 74–76]. The client encrypts their elements and
sends them to the server. The server constructs a polynomial with its set
elements as roots, evaluates the polynomial on encrypted client elements, ran-
domizes the result, and sends them back to the client. The client decrypts the
results, a 0 indicates a matching element. We use a similar approach in our
schemes. Existing OPE-based approaches do not support flexible set matching
or aggregation, but achieve cost independent of the server input size (Ns) for
the client.

1We only consider OPRF approaches where the parties can choose the PRF key. Primitives
where a random key is generated during the execution [71, 72] can only be used for comparing-
based approaches.

53

Chapter 3. Private Collection Matching Protocols

Generic SMC. Some PSI protocols use generic SMC tools [95–97] to con-
struct full circuits such as sort-compare-shuffle [11] to compute the intersec-
tion [77,78]. They can be extended to support flexible set matching or many-set
aggregation. However, circuits have communication linear in the size of their
inputs (wires) which guarantees a transfer cost of O(nc +Ns). This is a funda-
mental limit. Thus, circuits cannot satisfy our efficiency requirement (RQ.3).
Because circuits can satisfy our privacy requirements, we develop a generic al-
ternative to our framework using an SMC compiler in Section 3.11.2 and show
that our system improves latency (2–96x), client’s computation (75–2250x),
and transfer cost (93–2800x). Besides for generic protocols, circuits are used
to (1) extend OT-based protocols (discussed as ‘Circuit-PSI’ below) or (2)
obliviously evaluate PRFs [16, 77] such as AES or LowMC [98] (discussed as
‘OPRF’).

Custom PSI protocols. Some PSI protocols go beyond cardinality and com-
pute more complex functions over the intersection.

Circuit-PSI. A new line of work extends comparison-based PSI protocols to
support arbitrary extensions with generic SMCs [12, 62, 79–83]. These works
compute the intersection of two sets but instead of revealing the plain re-
sult to the client, they secret share the intersection between the two parties.
This secret shared output enables parties to privately compute arbitrary func-
tions on top of the intersection. Unfortunately, these work focus on scenarios
with equal client and server sizes as their cost is linear in the input of both
parties O(nc + Ns). This linear communication cost is a fundamental limit.
As these approaches can satisfy our privacy requirement, we evaluate Chan-
dran et al. [81], a state-of-the-art Circuit-PSI paper, in the PCM setting in
Section 3.11.2. We show that our framework significantly improves latency
(580x), client’s computation (70,000x), and transfer cost (2360x).

Flexible functionality. Several privacy-preserving custom protocols provide
functionality beyond computing intersection or cardinality. For instance, com-
puting the sum or statistical functions over associated data [84,86], evaluating
a threshold on intersection size [47,85,87], or computing Tversky similarity [55].
These approaches improve privacy by supporting flexible set matching but do
not extend well to many-sets scenarios and aggregation. They are optimized
for a specific setting and do not achieve cost independent of the server input
size.

54

3.4 A framework for PCM schemes

PS
I

eP
SI

-C
A

PS
I

eP
SI

-C
A

Small input

Small domain

PSI layer

Full Match

Threshold
Match

Tversky
Match

X-Agg

CA-Agg

Ret-Agg

NA-Agg

Matching layer Aggregation layer

Figure 3.2: An overview of our layers and their composition. Refer to Table B.2 for
a summary of protocol definitions.

Orthogonal works. We briefly mention two groups of related work that,
while of interest, are orthogonal to PCM problems and solve different chal-
lenges. Encrypted databases and ORAM [50, 99–101] let clients query out-
sourced data, or, in more recent work [102], subsets of outsourced data via an
access control policy. Typically, these approaches do not limit what the client
can learn about the entries they have access to. This is in contrast with the
PCM setting where the client computes a function over the server’s sets, and
clients should not learn more than the function’s outcome. Therefore, tradi-
tional applications of encrypted databases and ORAM do not seem to directly
enable the construction of PCM solutions. However, we do not rule out the
possibility that they can be extended or used in creative ways to solve PCM
problems.

In multi-party PSI [103–105], p parties each with a set Si compute one
intersection I = ⋂

Si. PCM problems, instead, are a two-party protocol where
the server holds N sets.

3.4 A framework for PCM schemes

We showed that existing work – except for ad-hoc solutions – cannot solve
PCM problems without losing either privacy or efficiency. We now introduce
a modular framework that enables the design of PCM solutions with minimal

55

Chapter 3. Private Collection Matching Protocols

effort and strong privacy while providing performance close to ad-hoc solutions.

The framework has three layers, shown in Fig. 3.2:

PSI layer protocols operate directly on a client’s and a server’s set. These
protocols compute single-set PSI functionalities such as intersection or
cardinality. Our implementation focuses on two scenarios: small input
domain size and small constant-size client sets.

Matching layer protocols use PSI layer protocols to compute a binary answer
determining whether each of the server sets matches the interest of the
client according to a pre-defined matching function fM (RQ.1). Compu-
tation in this layer is the same regardless of the scenario chosen in the
PSI layer.

Aggregation layer protocols aggregate N single-set responses into one collection-
wide response according to a pre-defined aggregation function fA (RQ.2).
This layer achieves constant size responses and ensures efficient client
communication (RQ.3).

Modularity. While we provide a large number of protocols for the PSI, Match-
ing, and Aggregations layers (see Fig. 3.2), an advantage of our framework is
extensibility. Whenever an application requires new matching or aggregation
criteria, designers can add (or adapt) a single functionality while taking advan-
tage of the existing optimized layers. As an example, we extend our framework
to support the single-set PSI-SUM functionality in Section B.6.

The layers can also be used as standalone protocols. We include blocks
such as ‘Naive’ aggregation such that even if an application does not require
matching or aggregation the designer can use the framework to enjoy its ca-
pability to tackle the many-set scenario.

Security goals. The PCM framework should protect the privacy of clients and
servers against semi-honest adversaries. Furthermore, it is desirable that the
framework provides server and client privacy against malicious adversaries,
however, as we discuss in Section 3.9 our framework only guarantees client
privacy. Servers are free to choose their input, allowing them to degrade the
quality of the protocol’s result without any misbehavior. We accept this in-
herent weakness of PCM protocols and make the deliberate decision to aim
for correctness only in the semi-honest setting, and not when the server is
malicious.

56

3.5 Technical background

3.5 Technical background

We introduce our notation and define the syntax of the fully homomorphic
encryption scheme we use.

Notation. Let n be a security parameter. We write x ←$ X to denote that
x is drawn uniformly at random from the set X. Let q be a positive integer,
then Zq denotes the set of integers [0, . . . , q), and Z∗

q represent the elements of
Zq that are co-prime with q. We write [n] to denote the set {1, . . . , n}, and use
⟨ai⟩m to present the list [a1, . . . , am]. We drop the subscript m when the list
length is clear from the context. We write JxK to denote the encryption of x.
We write 1[E] to denote the indicator function that returns ‘1’ if the event E

is true, and ‘0’ otherwise. Table B.1 in Section B.1 summarizes our notation.

3.5.1 Homomorphic encryption

Homomorphic encryption (HE) schemes enable arithmetic operations on en-
crypted values without decryption. We use HE schemes that operate over the
ring Zq with prime q, such as BFV [106].

Syntax. HE is defined by the following procedures:

• params← HE.ParamGen(q). Generates HE parameters with the plaintext
domain Zq.

• pk, sk ← HE.KeyGen(params). Takes the parameters params and gener-
ates a fresh pair of keys (pk, sk). For brevity, we do not explicitly mention
evaluation keys evk and consider them to be incorporated in the public
key.

• JxK← HE.Enc(pk, x). Takes the public key pk and a message x ∈ Zq and
returns the ciphertext JxK.

• x ← HE.Dec(sk, JxK). Takes the secret key sk and a ciphertext JxK and
returns the decrypted message x.

g The correctness property of homomorphic encryption ensures that HE.Dec(
sk, HE.Enc(pk, x)) ≡ x (mod q).

Homomorphic operations. HE schemes support homomorphic addition (de-
noted by +) and subtraction (denoted by−) of ciphertexts: HE.Dec(JaK+JbK) =
a + b mod q and HE.Dec(JaK − JbK) = a − b mod q. HE schemes also support
multiplication (denoted by ·) of ciphertexts: HE.Dec(JaK · JbK) = a · b mod q.

57

Chapter 3. Private Collection Matching Protocols

Algorithm 1 Check whether JxK is zero.
function HE.ISZERO(pk, JxK)

JbK = 1− JxK(q−1) ▷ b← (x = 0)
return JbK

Besides operating on two ciphertexts, it is possible to perform addition and
multiplication with plaintext scalars. In many schemes, such scalar-ciphertext
operations are more efficient than first encrypting the scalar and then perform-
ing a standard ciphertext-ciphertext operation. We abuse notation and write
aJxK + b to represent (JaK · JxK) + JbK = Jax + bK.

Multiplicative depth. Our framework is designed with fully homomorphic en-
cryption (FHE) in mind and assumes unbounded multiplication depth. For
practical purposes, we port the majority, but not all, of our protocols to sup-
port execution with somewhat homomorphic encryption (SWHE) and optimize
operations in Section 3.10.

3.5.2 Core functions

The complex functionality of PCM protocols can be reduced to a sequence of
zero detection and inclusion test procedures. These two functions allow us to
describe our protocol at a higher abstraction level. Moreover, any improvement
to these basic functions automatically enhances our framework.

Zero detection. The function JbK ← HE.IsZero(pk, JxK) computes whether the
ciphertext JxK is an encryption of zero. The binary output b ∈ {0, 1} is defined
as b = 1 if x ≡ 0 (mod q) otherwise b = 0. We use Fermat’s Little Theorem
for zero detection [107]. We rely on the prime ring structure of Zq as any
non-zero variable x ∈ Z∗

q to the power q − 1 is congruent to one modulo the
prime q. We can perform this exponentiation with lg(q) multiplications. See
Algorithm 1 for the implementation.

The high multiplicative depth of HE.IsZero makes it impractical for use
with most SWHE schemes. We hope that the research and advances in HE
comparison enables efficient instantiations of this function and unlock our
framework’s full capabilities. When evaluating our framework in Section 4.8,
we use ad-hoc techniques to avoid the need for this function.

Inclusion test. The function JIK ← HE.IsIn(pk, JxK, Y) checks if x is included
in the set Y of cardinality n. We consider two variants. In the first, Y is
a set of ciphertexts JyiK, in the second, Y is a set of plaintexts yi. In both

58

3.6 PSI layer

Algorithm 2 Check inclusion of an encrypted variable x in a plain Y = {y1, . . . , yn} or an
encrypted Y = {Jy1K, .., JynK} set.

function HE.ISIN(pk, JxK, Y = {Jy1K, .., JynK})
JIK←

∏
i∈[n](JxK− JyiK)

r ←$ Z∗
q

return r · JIK
function HE.ISIN(pk, JxK, Y = {y1, .., yn})

[a0, . . . , an]← ToCoeffs(Y) ▷ Such that
∏

i(x − yi) =
∑

i aixi

JIK←
∑

i∈[0...n] ai · JxKi

r ←$ Z∗
q

return r · JIK

cases, the output I equals 0 if and only if a yi exists such that x ≡ yi (mod q),
otherwise I will be a uniformly random element in Z∗

q. See Algorithm 2 for
the implementation.

The function HE.IsIn relies on oblivious polynomial evaluation (OPE) [45,
74]. We create an (implicit) polynomial P with roots yi, and evaluate JIK =
Jr · P (x)K. If x is in the set, there exists a variable yi where x ≡ yi, thus I is
zero. Otherwise, I is the product of n non-zero factors modulo q. Since q is
prime, the product of non-zero values is non-zero. The random value r ensures
uniformity in this case. The multiplicative depth of HE.IsIn scales with the size
of Y . We use the second form, where Y is a set of plaintexts, to lower the
multiplicative depth when JxiK are known, see Section 3.10.3.

3.6 PSI layer

The PSI layer of our framework implements basic PSI functionalities: com-
puting intersection or intersection cardinality. These protocols can be used in
isolation, but in our framework they serve to form the input to the matching
layer (see Fig. 3.2). We build PSI protocols for two scenarios: (1) scenarios
where the client set has a small constant size (e.g., document search queries
which typically have less than 10 keywords); and (2) scenarios where set el-
ements come from a small input domain (e.g., gender and age in a dating
profile). We build basic protocols assuming semi-honest clients, but allow for
an extension – see Section 3.6.3 – that ensures queries represent a valid input
set even if clients deviate from the protocol.

We structure our single-set protocols following Fig. 3.3. The client gen-
erates a HE key pair (pk, sk)← HE.KeyGen(params) and sends the public key

59

Chapter 3. Private Collection Matching Protocols

pk to the server ahead of the protocol. Clients perform query and send an
encrypted representation of their set to the server. The server runs a protocol-
specific processing function process to obtain the result M . The protocol is
either used as the first layer and passes M into the second layer, or is stand-
alone and returns M to the client. The server optionally runs query-check
to randomize the result when a client submits a malformed query (JRK is zero
for correctly formed queries). Finally, the client runs the protocol-specific func-
tion reveal to compute the result. We denote algorithms run by the client
in red and by the server in green. The optional server-side checks that ensure
well-formedness of queries are denoted in blue.

3.6.1 Small constant-size client set

We start with scenarios where client sets are small and constant-size, typical for
representing a search criteria. Clients use query to encrypt their set elements
xi ∈ X as a query Q and send it to the server. Algorithm 3 instantiates small
input functions.

PSI. The PSI protocol computes PSI(X, Yk) = X ∩ Yk. The server uses the
inclusion test HE.IsIn (see Section 3.5.1) to compute an inclusion status JsiK for
each client element xi (see PSI-process). An element xi is in the intersection
if and only if the corresponding inclusion status JsiK is zero (recall that the
inclusion test produces zero for values in the set). When used as a stand-alone
protocol, the server returns the list of encrypted inclusion values M , which the
client then decrypts (see PSI-reveal).

Cardinality. The PSI cardinality protocols compute PSI-CA(X, Yk) = |X∩Yk|.
There exist two variants: the standard PSI-CA variant in which the client
learns the cardinality |X ∩ Yk| [25,108], and the ePSI-CA variant in which the
server learns an encrypted cardinality [47]. We focus on the latter to enable
further computation on the intersection cardinality in the next layers.

Our ePSI-CA protocol (see ePSI-CA-process) first computes the inclu-
sion statuses JsiK using PSI-process and then uses HE.IsZero to compute – in
the ciphertext domain – the cardinality, i.e., the number of elements JsiK that
are zero. When used as a stand-alone protocol, the server returns JcaK to the
client which decrypts it to obtain the answer (see ePSI-CA-reveal).

When the cardinality protocol is used as a stand-alone protocol without
next layers, it is possible to mimic earlier work [25] and construct a cardinal-
ity protocol from the above-mentioned naive PSI protocol by shuffling server

60

3.6 PSI layer

Client Server

X = {x1, . . . , xm} ⊆ D Yi = {yi,1, . . . , yi,ni
s
} ⊆ D

(pk, sk) pk

Q← (SD-)query(pk, X) Q JAK← process(pk, Q, Yk)
JRK← (SD-)query-check(pk, Q)

R← reveal(sk, M) M M ← JAK+JRK

Figure 3.3: Single-set protocol structure. SD refers to small domain variants. The
optional blue parts ensure queries are well-formed.

Algorithm 3 Single set procedures with small input size.
function query(pk, X)

JxiK← HE.Enc(pk, xi)
return Q = ⟨JxiK⟩

function PSI-process(pk, Q = ⟨JxiK⟩, Yk)
JsiK← HE.IsIn(pk, JxiK, Yk)
return M ← ⟨JsiK⟩

function PSI-reveal(pk, M = ⟨JsiK⟩)
return {xi | HE.Dec(sk, JsiK) = 0}

function ePSI-CA-process(pk, Q = ⟨JxiK⟩, Yk)
⟨JsiK⟩ ← PSI-process(pk, ⟨JxiK⟩, Yk)
JcaK←

∑
i∈[m] HE.IsZero(JsiK)

return M ← JcaK
function ePSI-CA-reveal(pk, M = JcaK)

return HE.Dec(sk, JcaK)

function query-check(pk, Q = ⟨JxiK⟩)
JT K←

∏
i∈[|Q|],j∈[i−1](JxiK− JxjK)

JRK← r · HE.IsZero(pk, JT K)
return JRK

responses M before returning them.

Efficiency. While literature often dismisses OPE-based schemes due to their
‘quadratic’ total computation cost O(|X| · |Yk|), this approach excels in PCM
scenarios with small client input. Our protocols achieve client computation
and communication costs of O(nc), which is independent of the server’s input
size. While the ‘extra’ burden for the server is linear in the size of the client
set which is a small constant.

61

Chapter 3. Private Collection Matching Protocols

Algorithm 4 Single set procedures with small input domain.
function SD-query(pk, X)

zi ← (di ∈ X)
JziK← HE.Enc(pk, zi)
return Q = ⟨JziK⟩

function PSI-SD-process(pk, Q = ⟨JziK⟩, Yk)
vi ← (di ∈ Yk)
JsiK← JziK · vi

return M ← ⟨JsiK⟩

function ePSI-CA-SD-process(pk, Q = ⟨JziK⟩, Yk)
⟨JsiK⟩ ← PSI-SD-process(pk, ⟨JziK⟩, Yk)
JcaK←

∑
di∈DJsiK

return M ← JcaK

function SD-query-check(pk, Q = ⟨JziK⟩)
JtiK← HE.IsIn(pk, JzdK, {0, 1})
JRK←

∑
d∈DJtiK

return JRK

3.6.2 Small input domain

When the set’s input domain D is small, sets can be efficiently represented
and manipulated as bit-vectors [55,103,109]. Parties agree on a fixed ordering
d1, . . . , d|D| of the elements in D. Then, clients use SD-query to compute a
vector of encrypted inclusion statuses ⟨JziK⟩, where zi = 1 iff di ∈ X and 0
otherwise, for all dis in D. We instantiate small domain procedures, except for
reveal processes that are not impacted by the domain size, in Algorithm 4.

The function PSI-SD-process creates a bit vector of the intersection.
The status JsiK is an encryption of 1 if di is present in both sets and 0 otherwise.
To do so, the server multiplies the indicator JziK with another binary indicator
vi determining whether the element di is present in the server set Yk. The
function ePSI-CA-SD-process computes the sum of the inclusion statuses
JsiK for all domain values di ∈ D. The functions query, query-check, and
base layer process must have the same domain size. The rest of the functions
and layers are not impacted by the choice of domain.

Efficiency. While the idea of representing sets as bit-vectors is not new [55,103,
109], existing works dismiss FHE protocols as too costly and focus on additively
homomorphic solutions. We use the inherent parallelism of schemes such as
BFV [106], that we discuss in Section 3.10, to achieve lower computation and
communication costs, especially in the many-set scenario. In Section B.4.1, we
show that PSI-CA-SD has a competitive performance to the existing schemes

62

3.6 PSI layer

such as Ruan et al. [109].

3.6.3 Ensuring well-formed queries

In this section we consider a specific class of misbehaving clients: those that
encrypt a malformed input and submit it as a query. Since the client’s query
is encrypted, the server cannot directly verify well-formedness of the query. In
this section we show how we can ensure that if a client’s query is malformed,
i.e., it does not correspond to a valid set X, the client’s output is random.

Zero-knowledge proofs are not practical in the FHE setting, so we rely on
an HE technique to ensure queries are well-formed. The server uses (SD-)
query-check to compute a randomizer term JRK that is random in Zq if the
client misbehaves and 0 otherwise. By adding JRK to the result JAK, misbe-
having clients learn nothing about the real result. With abuse of notation, the
server adds a vector of fresh randomizers when the result is a vector such as the
output of PSI-SD-process. The server can amortize the cost of computing
N randomizers JRiK for N variables i: The server first computes JRK as before,
then picks a fresh randomness δi ←$ Z∗

q and sets JRiK← δi · JRK.

Small domain. Misbehaving clients can submit non-binary ciphertexts JziK to
learn more than the cardinality. We compute a term JRK which is zero when all
zis are binary, and is random otherwise. The term JtiK← HE.IsIn(pk, JziK, {0, 1})
evaluates to 0 if zi ∈ {0, 1} and to a uniformly random element in Z∗

q other-
wise. Therefore, the distribution of JRK← ∑

d∈DJtiK will be close to uniformly
random in Zq as long as at least one non-binary zi exists in the client’s query.
See Appendix B.2 for the exact distribution.

Small input. The client sends a list of encrypted values JxiK to the server. This
list represents a set as long as all elements are distinct, so the server needs
to ensure that no two client elements are equal. First, the server computes
JT K, the product of pairwise differences of the client elements. Since these
multiplications are performed in a prime group Z∗

q, the product will be zero
if and only if two equal elements exist. Second, the server uses a uniformly
random element r ← Zq in combination with the zero detection on JT K to
compute the additive randomizer JRK.

Since the zero detection function is impractical, we provide a practical
alternative protection method which deviates from our structure. The client
can deterministically compute T , allowing us to protect the result in a mul-
tiplicative way by returning M ← JAK · JT K. As long as T is not zero, which

63

Chapter 3. Private Collection Matching Protocols

signifies a malicious query, the client can reverse T and recover A←M · T −1.

Without this protection, misbehaving clients are still limited to submitting
a list of scalar values, with a limited size, which is equivalent to a multi-set.
Depending on the flexible matching function, allowing multi-set queries may
or may not impact the security. On one hand, if the server reveals PSI-CA,
allowing multi-sets may lead to the extraction of the intersection from the
cardinality. On the other hand, if the server is computing F-Match, which
checks X ⊆ Yk, there is no difference between querying a set or a multi-set.

At first glance, query-check’s quadratic computation cost O(nc
2) seems

expensive. However, we target imbalanced scenarios where nc ≪ Ns. In Sec-
tion 3.10.1, we discuss how this optional protection cost will be overshadowed
by the cost of our PSI layer O(nc · Ns); thus, not having any impact on our
final cost.

Next layers. We note that the checks on well-formedness in the PSI layer
extend to the matching and aggregation layers by instead applying the ran-
domizer JRK computed on the client’s query to the results that the matching
and aggregation layers compute.

3.7 Matching layer

Given the output of the PSI layer, the matching layer determines whether the
server set Yk is of interest to the client. The matching layer outputs a matching
status JγkK. Similar to the inclusion test, HE.IsIn in Section 3.5.1, γk is zero
for sets of interest and a random value in Z∗

q otherwise. The value JγkK can be
revealed as a binary output λk or passed-on to the next layer.

These matching operations can use either the small input or the small
domain PSI layer protocols. To instantiate a matching protocol, the client
and the server proceed as in Fig. 3.3, but plug in the desired process variant
based on fM . As match-process functions have identical outputs, they share
the same match-reveal method.

We provide three matching functions fM : full matching (F-Match), which
determines if the client’s query set is fully contained in the server set; threshold
matching (Th-Match), which determines if the size of intersection exceeds a
threshold; and Tversky matching (Tv-Match), which determines if the Tversky
similarity between the client’s and the server’s set exceeds a threshold. The

64

3.7 Matching layer

Algorithm 5 Processing matching variants.
function F-match-process(pk, Q, Yk) ▷ Full match
⟨JsiK⟩ ← PSI-process(pk, Q, Yk)
JγkK←

∑
i∈[n]JsiK

return JγkK

function Th-match-process(pk, Q, Yk,A = tmin) ▷ Threshold
JcaK← ePSI-CA-process(pk, Q, Yk)
T ← {t | t ∈ Zq, tmin ≤ t ≤ min(|Q|, |Yk|)} ▷ Threshold to set
JγkK← HE.IsIn(pk, JcaK, T)
return JγkK

function Tv-match-process(pk, Q, Yk,A = (t, α, β)) ▷ Tversky
JcaK← ePSI-CA-process(pk, Q, Yk)
(a, b, c)← Tversky-param-process(α, β, t)
T = {t | t ∈ Zq, 0 ≤ t ≤ (a− b− c)|Yk|}

JsizeXK←
{

J|Q|K For small input size variants∑
iJziK For small domain var. with Q = ⟨JziK⟩

JTvK← a · JcaK− bJsizeXK− c|Yk|
JγkK← HE.IsIn(pk, JTvK, T)
return JγkK

function match-reveal(sk, M = JγkK) ▷ Reveal matching output
γk ← HE.Dec(sk, JγkK)
λk ← 1[λk = 0]
return λk

associated process variants are described in Algorithm 5.

Full matching. The F-Match variant determines if all the client elements are
inside the server’s set, i.e., fM(X, Yk) = 1[X ⊆ Yk]. The server first computes
the inclusion statuses JsiK by calling PSI-process (see F-match-process).
Recall JsiK is zero when xi ∈ Yk. Therefore, when X ⊆ Yk, the sum JγkK of all
JsiK is zero. When an element xi is not in the server set, its inclusion status si

is uniformly random in Z∗
q, and therefore the sum λk is also random.

The F-Match protocol has a small false-positive probability when more
than one xi exists such that xi /∈ Yk. Adding multiple random JsiK ∈ Z∗

q

PSI responses can, incorrectly, lead to a zero sum JγkK. In Appendix B.2, we
bound the probability of a false-positive to 1/(q − 1). Moreover, we bound
the difference between the distribution of the sum R and uniformly random
over Zq to 1/(q − 1)2 at all points when more than one xi is missing. The
false-positive probability is zero when only one xi is missing.

Note that the F-Match protocol computes containment and not equality.
Thus, hashing and comparing the client set with server’s set does not work as
the server would need to hash every combination of |X| server set elements

65

Chapter 3. Private Collection Matching Protocols

resulting in an exponential cost.

Threshold matching. The Th-Match variant determines if the two sets have at
least tmin elements in common, i.e., fM(X, Yk; tmin) = 1[|X ∩ Yk| ≥ tmin]. The
server first computes the encrypted cardinality JcaK using ePSI-CA-process,
then evaluates the inequality ca ≥ tmin (see Th-match-process).

Directly computing this one-sided inequality over encrypted values is costly.
However, we know that |X ∩ Yk| ≤ min(|Q|, |Yk|) = tmax, where we bound the
client set size by the size of the query. The server evaluates the inequality
tmin ≤ ca ≤ tmax by performing the inclusion test ca ∈ {t | tmin ≤ t ≤ tmax}
using HE.IsIn.

Tversky similarity. The Tv-Match variant determines if the Tversky similar-
ity of the two sets exceeds a threshold t. Formally, the protocol computes
fM(X, Yk; α, β, t) = 1[Tvα,β(X, Yk) ≥ t] where

Tvα,β(X, Yk) = |X ∩ Yk|
|X ∩ Yk|+ α|X − Yk|+ β|Yk −X|

is the Tversky similarity with parameters α and β. Computing the Tversky
similarity in this form is difficult as it requires floating-point operations. We
assume t, α, and β are rational, and known to both the client and the server.
We follow the approach of Shimizu et al. [55] and transform the inequality
Tvα,β(X, Y) ≥ t to

(t−1 − 1 + α + β)|X ∩ Y | − α|X| − β|Y | ≥ 0
⇒ (a, b, c) ∈ Z3

q, a|X ∩ Y | − b|X| − c|Y | ≥ 0 (1)

for appropriate integer values of a, b, c. The server either knows |X| (|X| = |Q|)
or can compute it (J|X|K = ∑

iJziK for small domain protocols). The server
also knows |Yk| and can compute JcaK = |X ∩ Yk| using ePSI-CA-process.
Evaluating the inequality requires two steps (see Tv-match-process):

Step 1. Transform coefficients (t−1− 1 + α + β), α and β to equivalent integer
coefficients a, b, c. We describe this in detail in Appendix B.1.

Step 2. Evaluate the Tversky similarity inequality (1). We convert this in-
equality to a two-sided equation. We know |X| ≥ |X ∩Yk| and |Yk| ≥ |X ∩Yk|,
thus

a|X ∩ Yk| − b|X| − c|Yk| ≤ (a− b− c)|X ∩ Yk| ≤ (a− b− c)|Yk|.

66

3.8 Aggregation layer

Client Server

X = {x1, . . . , xm} Y = [Y1, . . . , YN]
(pk, sk) Yi = {yi,1, . . . , yi,ni

s
}

Auxiliary match-process data A
pk

Q← (SD-)query(pk, X) Q JγjK← match-process(pk, Q, Yj ,A)
JAK← agg-process(pk, ⟨JγjK⟩)
JRK← (SD-)query-check(pk, Q)

A← reveal(sk, JAK) JAK JAK← JAK + JRK

Figure 3.4: Aggregation protocol structure.

Therefore, two sets X and Yk satisfy Tvα,β(X, Yk) ≥ t iff

0 ≤ aJcaK− b|X| − c|Yk| ≤ (a− b− c)|Yk|.

The server uses an inclusion test to evaluate this inequality.

3.8 Aggregation layer

The aggregation layer combines the outputs of the matching layer, over many
sets, into a single collection-wide result. We provide four aggregation func-
tions fA: naive aggregation (NA-Agg), which returns outputs as is; existential
search (X-Agg), which returns whether at least one server set matched; cardi-
nality search (CA-Agg) which returns the number of matching server sets; and
retrieval (Ret-Agg) which returns the index of the κ’th matching server set.

Figure 3.4 shows the structure of the aggregation protocols. Upon receiv-
ing the query Q, the server runs the desired matching protocol match-process
(e.g., one from Algorithm 5) on each of its sets to compute the matching output
JγjK. The response JγjK is zero if the set Yj is interesting for the client and ran-
dom otherwise. The server next runs an aggregation function agg-process
that takes N matching responses JγjK as input and computes the final result
A. We show how to instantiate agg-process and reveal in Algorithm 6.
If using naive aggregation (NA-Agg), the client runs NA-reveal. Other-
wise, the client runs reveal to compute the result. Finally, the server can
run (SD-)query-check on the query and apply it to the final result A for
protection.

Naive aggregation (NA-Agg). The naive variant runs the matching protocol

67

Chapter 3. Private Collection Matching Protocols

Algorithm 6 Processing fM .
function NA-agg-process(pk, ⟨JγjK⟩)

return ⟨JγjK⟩
function NA-reveal(sk, M = ⟨JγjK⟩) ▷ Naive output

matchj ← match-reveal(sk, JγjK)
return ⟨matchj⟩

function X-agg-process(pk, ⟨JγjK⟩) ▷ At least one match
JAK←

∏
j∈[N]JγjK

return JAK

function CA-agg-process(pk, ⟨JγjK⟩) ▷ Number of matches
JbjK← HE.IsZero(pk, JγjK)
JAK←

∑
j∈[N]JbjK

return JAK

function Ret-agg-process(pk, ⟨JγjK⟩,D, κ) ▷ Retrieve data for the κ’th match
JbjK← HE.IsZero(pk, JγjK)
Jctr0K← J0K
JctrjK← Jctrj−1K + JbjK ▷ #matches before j’th set
JIjK← HE.IsZero(pk, JctrjK · JbjK− κ) ▷ Create index
JAK←

∑
j∈[N]Dj · JIjK

return JAK

function reveal(sk, M = JAK)
return HE.Dec(sk, JAK)

on all N server sets and returns N results to the client, i.e., fA(λ1, ...λN) =
λ1, ...λN . This enables our framework to support many-sets when there is no
need for aggregation and reduces the client’s cost by computing and sending
the query Q only once.

Existential search (X-Agg). The existential search variant determines if at
least one server set Yj is of interest to the client. Formally, the aggregation
computes fA(λ1, ...λN) = 1[∃i |λi = 1]. Recall that interesting sets produce
zero matching responses JγjK, so a collection will have an interesting set if and
only if the product of matching responses is zero (see X-agg-process). As
responses γj are elements of the prime field Zq, their product will never be
zero without having a zero response; thus, there will be no false-positives.

Cardinality search (CA-Agg). The cardinality search variant counts the num-
ber of interesting server sets Yj, i.e., fA(λ1, ..., λN) = |{i |λi = 1}|. This
aggregation (see CA-agg-process) follows the same process as ePSI-CA and
uses HE.IsZero to turn the matching responses JγjK into binary values bj and
computes their sum.

Similar to the single set PSI-CA, we can use shuffling to convert the

68

3.9 Security and privacy

naive aggregation into cardinality search with minimal computational over-
head. This gain comes at the cost of increased communication as the protocol
needs to send the N shuffled set responses to the client instead of a single
encrypted cardinality.

Retrieval (Ret-Agg). The retrieval variant returns associated data Dj of the
κth matching server set Yj. Formally, fA(λ1, ...λN) = Dj |(λj = 1) ∧ (|{i |λi =
1 ∧ i < j}| = κ). Clients use this variant when they are not concerned about
whether a matching set exists, but rather about information related to this
matching set – such as an index (Dj = j) for retrieving records. A good
example is the matching scenario where apps want to retrieve a lot of data
about the matching records. Apps would first run the Ret-Agg protocol to
retrieve the index of the matching record and then follow with a PIR request
to retrieve the matching set’s associated data.

The Ret-Agg protocol takes an input parameter κ denoting that the client
wants to retrieve the associated data of the κth matching set. The server builds
an encrypted index of interesting sets in three steps (see Ret-agg-process):
(1) The server uses HE.IsZero to compute JbjK indicating if a set is interesting.
(2) The server computes a counter JctrjK to track how many interesting sets
exist in the first j sets. (3) The server combines JbjK and JctrjK to compute
an index JIjK where Ij is 1 if Yj is the κth interesting set, and zero otherwise.
Adding weighted JIjK values produces the result.

3.9 Security and privacy

Section 3.2.3 defines correctness (Definition 5), client privacy (Definition 6),
and server privacy (Definition 7) of PCM protocols. We now discuss the cor-
rectness and privacy properties of our framework in the semi-honest and ma-
licious settings. Our theorems rely on properties of the HE scheme, which are
defined formally in Section B.3.1.

Semi-honest setting. When both parties are semi-honest, our protocols achieve
all three security properties.

Theorem 5. Our protocols are correct, client private, and server private
against semi-honest adversaries as long as the HE scheme is IND-CPA secure
and circuit private.

We simulate our protocols in a real-world/ideal-world setting to prove

69

Chapter 3. Private Collection Matching Protocols

Theorem 5 in Section B.3.2.

Malicious setting. When the server is malicious, server privacy does not ap-
ply. Moreover, our framework does not provide any correctness guarantee
to clients. Malicious servers can produce arbitrary, fixed (always match/no
match) or input-dependent, responses to the clients without detection. How-
ever, servers cannot learn information about the clients’ private input even if
they misbehave.
Theorem 6. Our protocols provide client privacy against malicious servers,
as long as the HE scheme is IND-CPA.

In Section B.3.3, we prove Theorem 6 by reducing client privacy to the
IND-CPA security of the underlying HE scheme. The client’s sole interaction
is sending encrypted queries. The server cannot extract information from these
encrypted queries without knowing the secret key or breaking the security of
the HE scheme.

When the client is malicious, client privacy does not apply. The correctness
property, which requires that the malicious client’s output is correct, does not
apply either. In Section B.3.4, we reason about server privacy when the client
is malicious in a non-standard model.

System-wide security. We proved the security of our framework in isolation,
where there is no honest interaction outside our framework. In practice, when
integrating our framework into a larger system, e.g., allowing journalists to
contact document owners after a document search, user interactions may leak
information such as the outcome of the search. Therefore, whenever protocol
designers decide to integrate our framework into a larger system, they must
perform a system-wide security analysis.

3.10 From theory to practice

We first analyze the asymptotic cost of our schemes, and explain the optimiza-
tions we implement to make our schemes practical.

3.10.1 Asymptotic cost

Our framework is modular and supports arbitrary protocol combinations. Hence,
we report the cost of layers separately. Table 3.2 summarizes the asymptotic

70

3.10 From theory to practice

Table 3.2: Asymptotic cost of our protocols. See Table B.1 for a summary of our
parameter definition. SD stands for small domain protocols. The column Calls
denotes which protocols from earlier layers are called.

Calls Add Mult. Exp.

PSI - ncn
i
s ncn

i
s

PSI-SD - |D|
ePSI-CA 1×PSI nc

ePSI-CA-SD 1×PSI-SD |D|

F-Match 1×PSI nc

Th-Match 1×ePSI-CA |T | |T |
Tv-Match 1×ePSI-CA |T | |T |

NA-Agg N×Match
X-Agg N×Match N
CA-Agg N×Match N N
Ret-Agg N×Match 2N 2N 2N

Query check - nc
2

SD-Query check - |D| |D|

costs of modules in our framework. We report the number of homomorphic
additions, multiplications, and exponentiations (counting scalar-ciphertext op-
erations as ciphertext-ciphertext operations; but excluding operations in earlier
layers). The PSI and matching layers’ costs are reported for a single set (recall
ni

s is the size of the server’s i’th set). As the well-formedness check is optional,
we report its one-time cost separately.

As an example, we compute the cost of using existential search with full-
match interest criteria with no input domain restriction. The client runs a
single X-Agg protocol, which per server set calls one F-Match and one small
input PSI protocol. This leads to N multiplications in the aggregation layer,∑N

i (nc) = Nnc additions in the matching layer, and ∑N
i ncn

i
s = ncNs mul-

tiplications in the PSI layer. Additionally, the server needs to perform the
well-formedness check once, leading to n2

c extra multiplications. The total cost
will be N + Nnc + ncNs + n2

c , but knowing that the total number of server
elements (Ns) is larger than the set number (N) or the client size (nc), we
simplify the cost to O(ncNs).

Communication. The client sends a query Q in the PSI layer and receives a re-
sponse A from the aggregation layer. The query’s size only depends on the PSI
layer variant and is independent from the server’s input. Small input queries
are an encrypted list of client elements containing nc encrypted scalars while

71

Chapter 3. Private Collection Matching Protocols

small domain queries are encrypted bit-vectors containing |D| scalar elements.
The response size depends on the aggregation method. Naive aggregation has
to produce N individual responses for N sets, while other aggregation meth-
ods produce a single scalar value. This results in a total cost of O(|Q|) for
non-naive and O(|Q|+N) for naive protocols which is the minimum achievable
cost.

Computation. The PSI layer dominates the cost of our framework. Each
PCM run calls N instances of PSI leading to a cost of O(ncNs) for small
client input and O(N · |D|) for small input domain variants. Our cost is
asymptotically higher than alternatives [16, 25, 92] and is often dismissed as
“quadratic” and too expensive. In contrast, approaches [60–62, 80, 110] with
“linear” cost O(k(nc+Ns)), where 10 < k < 100 determines the protocol’s false
positive rate, are considered acceptable. The extreme imbalance requirement
(RQ.3) leads to scenarios where nc ≪ Ns or even nc < log(Ns) and impacts
how asymptotic costs should be interpreted. We show a how “quadratic” cost
O(ncNs) can outperform the “linear” cost O(k(nc + Ns)) in Section 4.8.

3.10.2 Implementation

Fully homomorphic encryption schemes assume unbounded multiplication depth
and rely on bootstrapping, which is prohibitively expensive. Thus, we use the
somewhat homomorphic BFV cryptosystem [106] with a fixed multiplicative
depth.

Let Ndeg be the degree of the RLWE polynomial, mpt be the plaintext
modulus, and mct be the ciphertext modulus. The polynomial degree Ndeg

and ciphertext modulus mct determine the multiplicative depth of the scheme.
The plaintext modulus determines the input domain. We define two sets of
parameters: P8k(Ndeg = 8192, mpt = 4,079,617) and P32k(Ndeg = 32,768, mpt =
786,433), and follow the Homomorphic Encryption Security Standard guide-
lines [111] to choose mcts that provide 128 bits of security. We use relineariza-
tion keys to support multiplication, and rotation keys to support some of our
optimizations (see next section). Generating and communicating keys is ex-
pensive. Therefore, we assume that clients generate these keys once at setup
and use them for all subsequent protocols. In Section B.1, we provide more
details on our parameters in Table B.3 and a microbenchmark of basic BFV
operations and key sizes in Table B.4.

We implement a subset of our protocols using the Go language. Our code

72

3.10 From theory to practice

is open-source and 1,620 lines long.2 We use the Lattigo library [112, 113] for
BFV operations. Unfortunately, Lattigo does not support circuit privacy. We
discuss the implications of this lack of support and possible countermeasures
in Section B.3.1. We run experiments on a machine with an Intel i7-9700 @
3.00 GHz processor and 16 GiB of RAM. Reported numbers are single-core
costs. As the costly operations are inherently parallel, we expect our scheme
to scale linearly with the number of cores.

3.10.3 Optimizations

We explain how we optimize our implementation and limit the multiplicative
depth of (some of) our algorithms to improve efficiency.

NTT batching. We use BFV in combination with the number-theoretic trans-
formation (NTT) so that a BFV ciphertext encodes a vector of Ndeg ele-
ments [114]; BFV additions and multiplications act as element-wise vector
operations. This batching enables single instruction multiple data (SIMD) op-
erations on encrypted scalars. Performing operations between scalars in the
same ciphertext (such as computing the sum or product of elements) requires
modifying their position through rotations. Rotations require rotation keys.

Batching renders HE.IsZero infeasible. The exponentiation with mpt − 1
consumes a multiplicative depth of lg(mpt) in HE.IsZero, so mpt must be small.
To use batching, however, the plaintext modulus mpt must be prime and large
enough that 2Ndeg | mpt − 1. Batching does not support small mpts and
consequently HE.IsZero; we prioritize efficiency and only evaluate variants that
do not require zero detection. The parameters we use support batching.

Replication. The client’s query is small with respect to the capacity of batched
ciphertexts, i.e., |Q| ≪ Ndeg. We use two forms of replications to make full
use of SIMD operations: powers and duplicates. When using a small input
PSI variant, the client encodes powers of each element x (e.g., [x, x2, . . . , xt])
into the query ciphertext to reduce the multiplicative depth of HE.IsIn, see the
second variant in Algorithm 2. Next, the client encodes k duplicates of the full
query (including powers, when in use) regardless of the PSI variant.

Replication is straightforward when the client is semi-honest, but im-
pacts security when the clients can misbehave. We follow a similar process to
query-check to enforce correct replication. The server computes a second

2Code available online: https://github.com/spring-epfl/private-collection-matching

73

https://github.com/spring-epfl/private-collection-matching

Chapter 3. Private Collection Matching Protocols

randomizer JRK such that R will be zero when (1) all duplicates are equal and
(2) for all consecutive power elements xi and xi+1, the equality xi+1 = x1 · xi

holds. The server needs to compute this check only once per query. We im-
plemented this check and included its cost in all figures.

3.11 PCM in practice

To demonstrate our framework’s capability, we solve the chemical similar-
ity and document search problems. We discuss matching in mobile apps in
Appendix B.5. We focus on end-to-end PCM solutions and do not evaluate
single-set protocols or scenarios.

3.11.1 Chemical similarity

Recall from Section 3.2.1 that chemical similarity of compounds is determined
by computing and comparing molecular fingerprints [53, 54, 64–67]. We use
the Tversky similarity matching algorithm, Tv-Match, to compute whether
a compound in the seller’s database is similar to the query compound. As
fingerprints are short, we instantiate Tv-Match with the small-domain ePSI-
CA-SD and represent molecular fingerprint as bit-vectors.

We follow a popular configuration [55] where compounds are represented
by 166-bit MACCS fingerprints [115] and Tversky parameters are set to α =
1, β = 1, t = 80%. Processing these raw parameters (see Algorithm 5) leads to
the inequality

a, b, c = 9, 4, 4← Tversky-param-process(1, 1, 0.8)
0 ≤ 9JcaK− 4|X| − 4|Y | ≤ |Y |.

We evaluate two aggregation policies. We apply X-Agg aggregation to
determine whether at least one compound in the database matches and CA-
Agg to count the number of matching compounds. These variants have high
multiplicative depth, so we modify them to enable efficient deployment without
relying on bootstrapping.

Existential search. The X-Agg protocol applied to a collection of N compounds
requires a multiplicative depth of lg(N) to compute ∏

j∈[N]JγjK. This depth is
too high for our parameters. Instead, we relax the output requirements and

74

3.11 PCM in practice

reduce the output as much as possible: For a fixed depth l, we return ⌈N/2l⌉ en-
crypted scalars JλkK = ∏

k2l≤j<(k+1)2lJγjK to the client. This relaxation reduces
the privacy of X-Agg – it is less than full X-Agg but better than CA-Agg – at
the gain of efficiency. If this reduced privacy is unacceptable, the client just
needs to choose larger HE parameters.

Cardinality search. We use the shuffling variant of the CA-Agg protocol due
to its lower multiplicative depth. When the server shuffles the N matching re-
sponses, the client only learns the number of interesting compounds. Shuffling
batched encrypted values is hard, so the server shuffles the compounds (server
sets) as plaintext before processing the query to the same effect.

Our modifications to both aggregators increase the transfer cost from a
single aggregated result to linear in the number of server sets. Yet, the X-Agg
protocol sends 1 scalar value per 2l compounds.

Evaluation. We evaluate our similarity search on the ChEMBL database [116,
117], which contains more than 2 million compounds and is one of the largest
public chemical databases. The database contains compounds in the SMILES
format. We use the RDKit library [118] to compute MACCS fingerprints from
this format.

Figure 3.5 shows the cost of running our protocols with the BFV parameter
set P32k. We ran 5 times the experiments with databases containing up to 256k
compounds, and 3 times the larger experiments. We report the average cost.
Standard errors of the mean are small, so error bars are not visible.

The server batches 128 compounds per ciphertext. Performing the PSI
layer protocol ePSI-CA only requires 1 multiplication per ciphertext, while
computing the binary Tversky score requires a depth of 7. For the X-Agg
protocol, we set l = 6 and aggregate up to 64 matching results into each scalar
JγkK. As each ciphertext holds 32k scalars, the aggregation of up to 2M server
sets requires 1 ciphertext. CA-Agg transfers 1 ciphertext per 32k compounds.
The cost of the extra X-Agg multiplications is insignificant compared to com-
puting similarity, leading to similar computation costs for both protocols.

The client computation of searching among 2 million compounds is less
than a second and the transfer cost is 12MB for X-Agg and 378MB for CA-Agg.
These protocols can be run by a thin client. The server, however, requires 3.5
hours of single-core computation.

75

Chapter 3. Private Collection Matching Protocols

2k 8k 32k 128k 512k 2M
#Chemical compounds

102

103

104

Ti
m

e
(s

)

X-Agg (P32k)

CA-Agg (P32k)

12

18

30

54

102

192

378

Tr
an

sf
er

co
st

(M
B

)

Figure 3.5: Computation time (solid lines) and transfer cost (dotted lines) for
computing aggregated chemical similarity.

Comparison to ad-hoc solution. Shimizu et al. [55] build a custom chem-
ical search that computes the number of matching compounds. They offer
the same functionality/privacy as our CA-Agg protocol, but reveal more in-
formation than our X-Agg variant. Shimizu et al. protect privacy against
malicious adversaries, but malicious servers can violate correctness. They use
the secp192k1 curve which provides less than 100-bit of security, while we
offer full 128-bit security. Moreover, their use of differential privacy requires
distributional assumptions. Shimizu et al. report the cost of searching 1.3 mil-
lion compounds as: 167 seconds of server computation, 172 seconds of client
computation, and 265MB of data transfer. Our X-Agg and CA-Agg solutions
achieve higher security, lower client computation, and lower ratio of bandwidth
consumed per compound, at the cost of higher server computation.

3.11.2 Peer-to-Peer document search

To implement peer-to-peer document search, we represent queries and docu-
ments by the sets of keywords they contain. A single document, represented by
the keyword set S, is of interest to the querier if it contains all query keywords
Q, i.e., Q ⊆ S. This functionality can be implemented with the full matching
(F-Match) variant.

The client and the server must agree on how keywords are represented in
Zq. We use hash functions to do the conversion. As the search queries typically
contain few keywords and the domain for searchable keywords is too large for
our small domain variant, we construct F-Match with PSI with a small client

76

3.11 PCM in practice

input. There are two sources of false-positive in our setup:

False positive of mapping words. The parameter mpt (recall mpt = q) deter-
mines the input domain. Since mpt is small, multiple words could be mapped
to the same Zq element. This can lead to F-Match claiming there is a match,
even though one of the colliding keywords is absent in the server’s set. Since
mpt impacts the multiplicative depth of our HE schemes, choosing a large value
is impractical.

Instead of directly increasing the size of mpt to reduce the false positive
rate, the client hashes the nc query keywords with t hash functions and encodes
them into t nc scalar values, which reduces the false-positive rate to 1/qt. When
running PSI-process, the server knows the corresponding hash function for
each scalar value and hashes them accordingly. Afterward, the server runs the
F-Match protocol on all t nc PSI outputs together; a document matches if and
only if all hashed keywords are present.

Using multiple hashes to reduce false positives does not impact privacy,
as it is straightforward to simulate a query with t hashes, with t F-Match
queries. This modification increases the computation cost and the number
of scalar values in the query by a factor of t. However, there is no concrete
change in the communication cost as the client can still pack tnc scalars into
one ciphertext.

False positive of F-Match. The F-Match protocol itself has a false positive
rate of ∼ 1/q (see Section 3.7) caused by internal randomness. An easy way to
reduce this FP rate is to run r instances of F-Match with different randomness
and reveal the r responses. This repetition reduces the FP rate of a single
matching response to ∼ 1/qr, while increasing the server’s computation cost
by a factor r.

Aggregation. We explore two aggregation policies: existential (X-Agg) to de-
termine whether at least one document in the collection matches; and cardinal-
ity (CA-Agg) to count matching documents. Since the multiplicative depth
of F-Match is low, we can fully reduce the X-Agg output to one encrypted
scalar. For the CA-Agg variant, we still use the shuffling variant for lower
multiplicative depth.

Evaluation. We use the parameters P8k for CA-Agg and P32k for X-Agg pro-
tocols. We base our evaluation on the requirements set out in EdalatNejad et
al. [56]. We limit the number of keywords in each query to 8 and generate ran-
dom documents of 128 keywords. We represent each keyword with two hash

77

Chapter 3. Private Collection Matching Protocols

functions leading to false-positive rates of 2−44 for CA-Agg and 2−39 for X-Agg
due to the mapping to Zq. We need to account for false-positive errors as we
run a single F-Match per document. This error increases with the number
of documents and reaches its peak at 8k documents where the probability of
overestimating the cardinality is 0.2% (CA-Agg) and existence is 1% (X-Agg).
Our protocols do not have false negatives. We skip query-check from Sec-
tion 3.6.3 since F-Match is not impacted by repeated keywords in the query,
but still perform checks from Section 3.10.3 to enforce honest batching. Our
use of power replication leads to a multiplicative depth of 1 in the PSI layer
while F-Match only uses addition. We report the cost of our document search
in Fig. 3.6 and discuss our performance in Section 3.11.3.

Comparison to ad-hoc solution. EdalatNejad et al. [56] build a document
search engine that performs PSI-CA in a many-set setting and post-processes
the output, in the client, to detect relevant documents. EdalatNejad et al.
protect privacy against malicious adversaries, but malicious servers can violate
correctness. To enhance performance, they sacrifice privacy and leak more in-
formation than individual intersection cardinalities, yet less than vanilla PSI.
The protocol of EdalatNejad et al. has a latency of less than 1 second to
search 1k documents while our framework requires 8.7 s for CA-Agg and 54 s
for X-Agg. Our CA-Agg search does not reveal information about individ-
ual documents and X-Agg only reveals a single bit about the collection. As
expected, this privacy gain comes at a performance cost.

3.11.3 Comparison with generic solutions

After comparing against ad-hoc solutions, we compare our document search
against generic SMC and circuit PSI that can offer the same privacy and
functionality (see Table 3.1). See Section B.4.2 for implementation details. In
Section B.4.3, we compare our document search to one of the fastest OT-based
solutions, which cannot satisfy our privacy requirements.

Generic SMC. We use a semi-honest SMC compiler, EMP tool-kit [119], to
build two custom search engines. Our circuits take 1 client and N server sets
as input. They compute PSI and F-Match using boolean logic then aggregate
the N matching results following either X-Agg or CA-Agg policy. We call
these two approaches ‘SMC-X-Agg’ and ‘SMC-CA-Agg’.

78

3.11 PCM in practice

8 32 128 512 2048 8192
#Documents

100

101

102

103

104

L
at

en
cy

(s
)

CA-Agg (P8k)

X-Agg (P32k)

CA-EMP
X-EMP
Circuit-PSI

8 32 128 512 2048 8192
#Documents

10−1

101

103

C
lie

nt
’s

co
m

pu
ta

tio
n

co
st

(s
)

8 32 128 512 2048 8192
#Documents

100

101

102

103

Tr
an

sf
er

co
st

(M
iB

)

Figure 3.6: The end-to-end search latency (left), client’s computation cost (middle),
and communication cost (right) of document search. We limit execution to a single
CPU core and enforce a bandwidth of 100 Mbps and an RTT of 100 ms on the
connection.

Circuit-PSI. We compare against Chandran et al. [81] which is a state-of-the-
art single-set circuit-PSI protocol. To support many-set, we run one PSI per
document. Chandran et al. support extending the intersection computation
with arbitrary circuits allowing us to perform F-Match and then X-Agg or CA-
Agg aggregation. However, we consider the cost of computing the intersections
as a lower bound for the cost of search and do not extend the circuit.

Figure 3.6 reports the latency, client’s computation, and transfer cost of
document search. We repeat each experiment 4 times and report the aver-
age cost and the standard error of the mean. Unfortunately, the SMC and
circuit-PSI solutions crash on runs with 4k documents and more, hence we
only show entries up to 2k documents. The stable trend of our measurements
let us think that one could easily extrapolate results for those settings from
the measurements that we report. To estimate the latency of our framework,
we run it in a single process and add the expected network time (as we have
one round, we consider 1 round trip time plus transfer time).

Now we show that our framework supports thin clients by significantly
reducing the clients’ computation and communication costs. Moreover, our

79

Chapter 3. Private Collection Matching Protocols

framework provides better latency and in Section B.4.2 we show that we have
a competitive server cost.

Latency. Both SMC and Circuit-PSI require many rounds of communication
and are thus heavily impacted by the network’s round-trip time (RTT). We
assume a transatlantic RTT of 100 ms. In this setting, our framework consis-
tently outperforms competitors. When performing existential search (X-Agg),
our framework cuts the end-to-end latency in half while our improvement factor
increases to 96x when doing a cardinality search (CA-Agg) on 1k documents.

Client’s computation. Circuit-based approaches have a balanced computation
load between clients and servers while we outsource almost all the computa-
tions to the server. The client’s computation cost of our framework is inde-
pendent of the number of the server sets and is only 50 ms for the X-Agg and
5 ms for the CA-Agg search. While slower, the SMC approach is computation-
ally efficient and only requires 3.7 s for the existential (X-Agg) and 11.3 s for
the cardinality (CA-Agg) search for a 1k document collection. SMC’s cost is
still acceptable for thin clients, however using our framework leads to a saving
factor of 75–2250x on client computation. In contrast, Chandran et al. require
a prohibitive cost of 352 seconds, which is 70,000x higher than ours.

Communication. The X-Agg protocol has a constant communication cost of
12 MB while the cost of CA-Agg grows linearly with the number of documents.
However, this cost is fixed to 768KB for CA-Agg in our evaluation since we
can pack up to 8k results in a P8k ciphertext. Both SMC and Circuit-PSI have
costs linear in the inputs size. The SMC search requires 1.1 GiB for X-Agg
and 2.1 GiB for CA-Agg queries when searching 1k documents while Chan-
dran et al. require 1.7 GiB; thus, both approaches are prohibitively expensive.
Ultimately, our framework reduces communication by a factor of 93–2800x.

3.12 Takeaways and future work

In this work, we introduce and formalize private collection matching problems.
Using homomorphic encryption, we build a modular framework for solving
them. Our framework and its layers-based design simplify the construction
of PCM schemes that achieve complex goals while limiting the leakage to
what is required by the functionality, nothing more. Relying on homomorphic
encryption is extremely advantageous in theory. Our work shows, however,
that using it in practice is challenging. We have overcome these challenges by
using optimizations from the literature, at the cost of reduced flexibility of our

80

3.12 Takeaways and future work

framework. Ultimately, our framework is competitive with ad-hoc solutions
and outperforms generic approaches in all three latency, communication, and
computation costs, sometimes by several orders of magnitude. As example,
our framework requires 12MB of communication and less than a second of
client computation to determine matching of a chemical compound against a
database of 2 million compounds; or respectively 768KB and 50ms to determine
whether the owner of a thousand documents has content of interest to a querier
journalist. We believe further work on homomorphic encryption schemes – and
ciphertext-based comparison methods in particular – will allow our framework
to operate in a wider range of settings. We hope that our work fosters the
evolution of homomorphic encryption in further areas so that the community
can build a wider range of privacy-preserving applications.

81

Chapter 4
Janus: Safe Biometric Deduplication for
Humanitarian Aid Distribution

This chapter is based on the following article:

Kasra EdalatNejad, Wouter Lueks, Justinas Sukaitis, Vincent Graf Nar-
bel, Massimo Marelli, Carmela Troncoso: “Janus: Safe Biometric Deduplica-
tion for Humanitarian Aid Distribution”. Under submission 2023.

4.1 Introduction

Humanitarian organizations have a long history of providing aid to people in
crisis. To maximize impact, they wish to distribute aid among as many recipi-
ents as possible given their limited budget. Thus, recipients should receive aid
only once for each time that aid is distributed. Wang et al. propose privacy-
friendly mechanisms to ensure that recipients enrolled in an aid-distribution
system can receive aid at most once per round [120]. Their work relies on the
assumption that recipients cannot register more than once.

In this chapter, we tackle the problem of preventing double registration.
To understand the requirements behind double registration prevention in the
humanitarian sector, we collaborate with the International Committee of the
Red Cross (ICRC). We learn that common ways to tackle this issue are to rely
on the use of official government-issued identity documents or on the input of
local trusted sources of information (e.g., community representatives).

Both methods have shortcomings. Government-issued IDs are not univer-
sal. Aid recipients may not have a reliable government identity document, or
may not have these documents in their possession at registration time (e.g.,
after evacuating their homes under pressure in conflict zones). This means

83

Chapter 4. Janus

that people in need may be refused by the system, opposite to the ‘human-
ity’ and ‘impartiality’ humanitarian principles stating that aid and protection
must be given to everyone that needs it [121]. Reliance on community repre-
sentatives may not be available in every scenario, e.g., in dangerous situations.
Moreover, it suffers from efficiency issues. Verification by local actors is slow
and thus typically can only be done after registration when prevention may
not be as useful. Additionally, both of these methods may increase the risks
for the participants in the aid program as they create a single point of failure
(e.g., a paper list, a community representative) which, if compromised, reveals
the identity of all participants. This membership may be associated with,
for example, political or religious beliefs which can be pursued under some
governmental regimes [122].

A natural path to address the issues above is digitalization. Our con-
versations with the ICRC reveal that, besides addressing the shortcomings of
current proposals, digital solutions need to also minimize the amount of (per-
sonal) data collected. This is not only to uphold the fundamental right of aid
recipients to personal data protection and privacy, but to also help the organi-
zation avoid sharing data with third parties (e.g., financial service providers)
as such sharing may put recipients in danger especially when those institutions
are closely linked with local government or cross-national financial institutions.

A digital means that humanitarian organizations have started to use is
biometrics [123]. Biometrics are available in many more situations than iden-
tification documents, and the digital nature of biometrics systems helps speed
up the registration process. However, existing biometric-based solutions come
at a high risk for recipients. They require the collection of biometric samples
into databases which are typically stored in the clear, becoming a tempting
target for entities seeking information about program participants [122]. More-
over, due to the nature of biometric data, such databases can reveal sensitive
information about health or ethnicity [124, 125], and because biometrics are
unique they can be used to link entries across databases. These risks are
exacerbated by the long lifespan of biometric data.

Secure and privacy-preserving biometrics solutions [126–132], which would
enable the use of encrypted databases to store the biometric templates, can-
not be directly applied to the humanitarian setting. They often do not provide
the low error rates required to ensure that legitimate recipients are not erro-
neously refused from the aid-distribution program. This is because typical
error-oriented measures, such as allowing multiple biometric match attempts
for authentication, are not a suitable solution for the humanitarian context as

84

4.2 Deduplication for aid distribution

in which participants in the matching might want to evade detection.

In this chapter, we introduce Janus, a biometrics-based deduplication sys-
tem tailored to the humanitarian sector needs. Janus only reveals a single bit of
information determining whether a registration request is valid. Instead of cre-
ating a plaintext biometric database, Janus either secret shares biometric data
between the registration station and a humanitarian organization-operated bio-
metric provider, encrypt data using a quantum secure HE scheme, or seals the
data in a secure enclave. This approach provides strong privacy protections
by ensuring that not even the humanitarian organization has access to plain
biometric data; provides long-term protection of sensitive biometric data in the
case of data breaches even in the presence of quantum computers; and avoids
creating a high-value target for hackers. Finally, Janus enables humanitar-
ian organizations to remotely disable query access, even when the registration
station is physically compromised during armed conflicts.

Our work makes the following contributions:

✓ We elicit the functionality, safety, and deployment requirements of pro-
tecting against double registration in the context of humanitarian aid distri-
bution.

✓ We propose Janus, which addresses these requirements. We build three
instantiations of Janus based on secure multiparty computation, somewhat
homomorphic encryption, and trusted execution environments. We show that
Janus can support multiple biometric sources including fingerprints, irises, and
facial recognition; as well as biometrics alignment and fusion.

✓ We implement and evaluate Janus’s instantiations to demonstrate that
they can satisfy the requirements of humanitarian organizations.

Ethical considerations. We do not collect or use biometric data in our evalua-
tion. Therefore, there are no ethical concerns with our experiments.

4.2 Deduplication for aid distribution

We take as starting point for our work, the aid distribution scenario identified
by Wang et al. [120], depicted in Fig. 4.1. This scenario is largely based on
the aid distribution process of the International Committee of the Red Cross
(ICRC). In the registration phase, potential aid recipients (or recipients, for
short) visit a registration station (RS) and requests aid. If this person is eligi-
ble for aid, the registration station enrolls them into the system and allocates

85

Chapter 4. Janus

Figure 4.1: Humanitarian aid distribution workflow [120].

them an aid budget. Registration stations are often directly controlled by the
humanitarian organization or other trusted local parties. In the case of the
ICRC, these stations are protected by the ICRC’s special privileges and immu-
nity [133]. To ensure the legitimacy of aid recipients, we assume, like Wang et
al. [120], the existence of a registration oracle that determines eligibility during
registration. This role may be fulfilled by verifying recipients’ ID documents,
checking against local government lists, or asking community representatives.
(See Section 4.3 for why these do not suffice for deduplication.)

At the distribution phase, registered users visit aid distribution centers,
show proof of their registration, and receive the aid they are entitled to. As
security with respect to the distribution station has been tackled by Wang et
al., we leave it out of the scope of this work together with the distribution
auditing step included in [120].

4.2.1 Deduplication requirements

We collaborate with the International Committee of the Red Cross to under-
stand the requirements associated with preventing double registration, i.e.,
ensuring that recipients can only register once at the registration stations.
We gather the requirements for deduplication through conversations with the
ICRC’s Data Protection Office and from ICRC documents on data protection
and biometric policy [134,135].

Functional requirements. The deduplication mechanism must provide the
following functionality:

RQ.F1: Identify duplicate aid requests. The registration station needs to
determine if a potential recipient is already registered to proceed with a reg-

86

4.2 Deduplication for aid distribution

istration request. For this, the deduplication system must provide a single
bit indicating the potential recipient’s presence or absence in the database of
registered users.

RQ.F2: Dynamic addition. If a registration is successful, the newly accepted
individual must be added to the registered users database. Newly accepted
users must be added individually so that attempts to re-register can be imme-
diately detected. As many recipients may need to be added in a short amount
of time, adding individual users to the database should be efficient and not
require an operation on all elements in the database.

RQ.F3: Low failure rate. Recipients that are eligible should not be erro-
neously denied registration. Humanitarian organizations should be able to set
an arbitrarily low failure rate for the deduplication system on falsely detecting
a new recipient as a duplicate.

Non-goals. The deduplication system only provides information for the regis-
tration station to make decisions regarding the legitimacy of the registration.
The deduplication system does not aim to prevent the registration station from
proceeding with registration in case of a detected duplicate. For such cases,
the humanitarian organization must rely on other processes that ensure that
the staff at the registration station use the deduplication information correctly.

Safety requirements. Augmenting aid distribution systems with technology
may bring new risks to recipients. The introduction of deduplication detection
must minimize the introduction of such risks.

RQ.S1: Single functionality. The output of the deduplication system should
not reveal more information about recipients than the binary answer necessary
to detect duplicates. Aid recipients often belong to sensitive groups such as
refugees or survivors of violent incidents where their data is of interest to vari-
ous adversaries such as governments. While some humanitarian organizations
(such as the ICRC) enjoy legal protection that prevents subpoenas, creating a
valuable database increases the risk for recipients if the data is lost or stolen
via hacking attempts [136].

Therefore, to ensure single functionality, deduplication systems should
limit the storage of recipients’ personal data, and ensure that any personal
data stored cannot be used to recover the identity or any other traits of the
recipients. This should also hold for adversaries that have access to other data
sources and try to link recipient data to these sources.

87

Chapter 4. Janus

RQ.S2: Protection against passive compromise. Traditional mechanisms for
deduplication typically create a single point of failure (e.g., a paper list, a
database community representative) which, if compromised, reveals the iden-
tity of all participants and their data. This membership may be associated
with, for example, political or religious beliefs which can be pursued under
some governmental regimes To increase safety, a deduplication system should
ensure that as long as an adversary compromises at most one actor in the aid
distribution system at the same time, this adversary cannot learn any infor-
mation about recipients’ data.

RQ.S3: Protection against active compromise. Humanitarian organizations
operate in dangerous and volatile situations, where the registration station is at
risk of being physically compromised during armed conflicts. In such scenarios,
even the single-bit answer resulting from a membership query for a human-
itarian program may put recipients at risk. For example, when the Taliban
took control of Afghanistan, they got access to biometric devices left behind
by the US Army. These devices contained data about Afghan civilians, and
the Taliban used them to determine who had a relation to the US Army [122].
Deduplication systems should prevent that third parties can query the system
without involving the humanitarian organization.

Deployment requirements. Following humanitarian principles, aid programs
have to enable humanitarian organizations to serve a large number of users in
very diverse environments. We derive the following requirements.

RQ.D1: Universality. Humanitarian organizations aim to bring assistance
without discrimination. Thus, deduplication systems should only rely on in-
formation available in all kinds of contexts, including conflict zones.

RQ.D2: Medium scalability. Humanitarian organizations help millions of hu-
mans around the world. However, the process of providing aid to recipients is
usually localized in geographically-diverse regions where a conflict or disaster
happens. Deduplication is only needed within a given aid program in one of
these regions. A typical ICRC program supports 1000–10,000 recipients. Oc-
casionally, there are larger projects that support up to a 100,000 recipients.
We aim to efficiently operate at the medium scale (around 10,000) so that hu-
manitarian organizations can rely on commodity devices and limited network
connections, which are typically the only infrastructure available in many of
the settings where these organizations operate. To scale to larger projects,
humanitarian organizations would require higher computational and commu-

88

4.3 Towards a safe deduplication system

nication capabilities, which may limit the scope of application of a solution.

4.3 Towards a safe deduplication system

We now discuss methods that humanitarian organizations use, or could use,
to prevent duplicate registrations.

Government-issued ID. Government IDs are a simple form of identification.
However, they cannot be assumed to be available in humanitarian contexts.
Humanitarian organizations often operate in areas there may be no govern-
ment, or the government refuses to issue IDs to certain groups. Additionally,
people fleeing conflict zones often do not prioritize protecting their IDs, and
losing them is not uncommon.

Other unique identifiers. An alternative to government IDs is to use government-
based (e.g., social security numbers [137]) or commercial-based (e.g. phone
numbers or social network aliases) identifiers. These identifiers, however, may
not be available everywhere, or it may be easy to obtain several, and given
their uniqueness act as (pseudo-)identifiers that can be used to link databases.

Trusted local actors. Humanitarian organizations may rely on trusted local
actors, such as local committees, focus rooms, or local community leaders, to
identify and verify potential aid recipients. However, this approach is limited
by the availability of these trusted actors. Moreover, while local actors are
suitable for determining eligibility, humans are not good at remembering who
has registered over a long span of time to prevent double registration.

Biographic information. The above measures are sometimes complemented by
the use of biographic information to better separate records [138]. This can be
done using statistical patterns or fuzzy matching, reducing the number of false
positives. This method, however, requires the availability of such biographic
information, as well as storing it with the corresponding risk.

Biometrics. Humanitarian organizations [123] have started to use human bio-
metrics – under the assumption that they do not change, and are almost al-
ways present – to implement deduplication while avoiding the weaknesses of
the previous methods. For example, the UNHCR introduced the Biometric
Identity Management System [139] and the World Food Program (WFP) uses
SCOPE [140]. Yet, using biometric data brings serious security and privacy
concerns. Biometric data are personal, sensitive, and can be used for purposes

89

Chapter 4. Janus

beyond deduplication. This creates risks for humanitarian organizations in
forms of surveillance, hacking attempts, or pressure to share data and risk for
aid recipients in forms of losing asylum or extradition [123,141–143].

Our discussion with the ICRC’s Data Protection Office revealed that while
government IDs, identifiers, biographic information, and trusted local actors
may be suitable for specific aid programs, their lack of availability and accuracy
prevents them from fully meeting the functional needs of the ICRC. Therefore,
in this work, we focus on biometrics-based solutions combining them with
privacy-enhancing technologies to mitigate the risks arising from their use.

Biometric-based additional requirements. Due to their sensitive nature,
the use of biometric data requires stricter protection measures to prevent harm.
For instance, the ICRC’s biometrics policy [135] sets strict conditions under
which biometric data may be used. This policy also requires that, in general,
biometric materials are stored on users’ devices. However, this requirement is
not compatible with preventing double registrations: we cannot trust malicious
recipients to provide biometric data from their previous registrations. There-
fore, an effective biometric-based deduplication system must store biometric
data on devices operated by the humanitarian organization.

To ensure that the centralized biometric storage does not increase risk (and
complies with the biometrics policy) when biometrics are involved, the single
functionality requirement (RQ.S1) implies that the mechanism must prevent
the extraction of the biometric templates (or the recovery of the biometric
samples), and any inference on the similarity between two biometric samples.
Crucially, the information that the deduplication mechanism requires should
not enable the authentication of users.

Finally, given the long lifespan of biometric data and its potential for
impersonation and inferring information even decades after collection, we in-
troduce a new requirement:

RQ.S4: Long-term safety. The deduplication system should be designed to
maintain the protection of the information it stores for at least 20-30 years.

90

4.4 Janus’ architecture

4.4 Janus’ architecture

In this section, we introduce the architecture of Janus, a biometric-based dedu-
plication system that fulfills the requirements in Sections 4.2 and Section 4.3.

Non goals. Janus focuses on preventing double registrations. Our design does
not aim to: (1) improve plaintext biometrics – we use existing biometric ap-
proaches as black boxes; or (2) secure biometric readings – the registration
station has physical access to plaintext biometric samples during registration
(via the registration devices). It is trusted to delete them at the end of the reg-
istration. Using biometric sensors with hardware protection would eliminate
this need.

4.4.1 Janus-enabled registration workflow

In order to fulfill the requirements for protection against passive and active
compromise (RQ.S2 and RQ.S3), the system must include an extra actor be-
sides the registration station and the recipients (which are malicious in our
setting). To this end, we introduce a biometric provider (BP), an honest-
but-curious actor under the control of the humanitarian organization. The
biometric provider should not learn any information about aid recipients’ bio-
metric data or the success of their registration attempt. We also consider the
registration station to be honest-but-curious, and that there is no collusion
between the registration station and biometric provider.

In Section 4.6, we propose three different instantiations of Janus’ design
with different trade-offs. Each of these designs, however, implement the same
set of four protocols. A Setup procedure initializes the two parties and sets up
key material, and initialize a distributed database of registered recipients db .
To test for membership of a new recipient in the database db , the two parties
jointly run the Membership protocol. To add a new recipient to db , the two
parties run the AddMember protocol. Finally, to provide proactive security,
the parties can run the Ratchet protocol to recover from earlier compromises
of either party.

When including Janus to prevent double registration, the registration
workflow is as follows (see also Figure 4.2):

(i) A potential aid recipient visits the registration station (RS) to register
(step 1). The RS determines the eligibility and the aid entitlement of the

91

Chapter 4. Janus

Figure 4.2: An overview of registration workflow.

recipient (step 2).
(ii) The RS sends a membership request to the RS component of Janus (step

3). The RS component then obtains a biometric sample from the recipient
(step 4) and runs the Membership protocol with the biometric provider
component of Janus (step 5). Janus returns the membership response
(step 6).

(iii) Upon receiving the membership response from Janus, the RS determines
if the registration should proceed or be aborted. If successful (step 7),
the Janus components in RS and BP run the AddMember protocol to
add the new recipient to the user database (step 8).

(iv) Regardless of the outcome, the registration station deletes all the plain-
text biometric data, and it informs the recipient of the registration’s
outcome.

From now on, we simply write registration station (RS) to refer to the RS
component of Janus and biometric provider (BP) to refer to the BP component
of Janus.

4.4.2 Requirements achieved by design

Our design choices for Janus help ensure we meet the requirements in Sec-
tion 4.2. By design, the interface provided by the Membership and AddMember
protocols satisfy the functional requirements to be able to query for mem-

92

4.5 Biometrics

bership (RQ.F1) and to add new recipients (RQ.F2). Because Janus uses
biometrics, it ensures universality (RQ.D1).

In all instantiations, the separation of trust between the RS and BP en-
sures that Janus protects against passive compromises of any single party
(RQ.S2). Moreover, because the instantiations support ratcheting, the system
can recover from passive compromises of any single party as long as Ratchet
is run between compromises (RQ.S2).

Our three instantiations of Janus differ in the cryptographic building
blocks for distributing trust between the RS and the BP; which reflects on
how they guarantee that each query reveals only a single bit (RQ.S1) and how
they achieve scalable designs (RQ.D2).

Achieving non-collusion. The non-collusion assumption between the RS and
the BP is critical to satisfying a number of requirements. In the context of the
ICRC, this assumption can easily be realized. The ICRC has a hierarchical
structure. The headquarter (HQ) of the ICRC is located in Switzerland, and
it has delegations in over 50 countries. The ICRC also has local branches in
the 190 countries in which it operates.

The HQ and majority of delegations are located in physically secure and
stable locations and have their own IT infrastructure. Delegations and the HQ
are autonomous and suitable for the role of the biometric provider. Registra-
tion stations need to be closer to potential aid recipients who need to visit the
station in person and provide biometric samples. This makes local branches a
suitable choice for the role of the registration station. The local branches have
the IT infrastructure necessary to support gathering and processing biometric
samples which enables them to actively participate as a computing party in
the deduplication. This internal structure promotes a significant level of in-
dependence between headquarters, delegations, and local branches. With the
roles above, the RS and BP are typically situated in distinct geographical loca-
tions and have separate IT systems; and both benefit from a special privilege
of non-disclosure of confidential information [133], which gives them judicial
immunity against subpoenas and requests for data.

4.5 Biometrics

We introduce a simplified and generic abstraction for biometric operations.
We first define biometric templates then show how to match two biometric

93

Chapter 4. Janus

templates to determine if they belong to the same user. We demonstrate
that our abstraction supports matching different biometric sources such as
fingerprint, iris, and face in Section 4.7.

Notation. We write x←$ X to denote that x is drawn uniformly at random
from the set X. Let q be a positive integer, then Zq denotes the set of integers
[0, . . . , q) and Z∗

q represents the elements of Zq that are co-prime with q. We
write ⟨ai⟩m to represent a list of m elements [a0, . . . , am−1].

Biometric template. Biometric sensors produce raw images. These images
are processed into biometric templates to facilitate matching. We use tem-
plates modeled as a fixed-sized array of TS values taken from an integer domain
Zd. We denote the process of reading and processing a biometric sample from
a sensor as:

S ← Sensor(TS, d)
B ∈ ZTS

d ← S.ReadBio(recipient).

We use B[i] to denote the i’th value in a biometric template. The process of
reading biometrics is probabilistic and multiple readings of the same biometric
may result in slightly different templates.

Biometric matching. Matching takes two biometric templates X and Y and
determines if they belong to the same person. We formalize the matching
process as:

0/1← Match(X, Y, D, t) = (D(X, Y) < t).

where D is a distance measure that determines the similarity between two tem-
plates, and t is a threshold that determines whether two templates correspond
to the same person. The choice of the threshold t impacts the error rate of
the system and creates a trade-off between false acceptance and rejection (see
Section 4.7). This parameter is non-sensitive and can be hardcoded into the
system. When the distance and threshold are clear from the context, we drop
them from the notation.

In this work we use three distance measures: Euclidean distance (D.Euclidean(
X, Y) = ∑

i(X[i]−Y [i])2), Hamming distance (D.Hamming(X, Y) = ∑
i(X[i]⊕

Y [i])), and normalized Hamming distance (D.NormHamming((X, MX), (Y, MY)),

94

4.6 Instantiating Janus

where Mα denotes a mask of a template used to exclude certain values during
comparison). We include Euclidean and Hamming distances in the body of
the thesis and address the normalized Hamming distance in Section C.2.

Alignment. Biometric samples may need alignment before matching. We
represent the aligned matching of templates X and Y as producing a aligned
templates ⟨Xi⟩a ← Align(X, a) from X then computing pairwise matching
between Y and the aligned Xi templates as follows:

M ∈ {0/1} ←AlignedMatch(X, Y, D, t, a) =
⟨Xi⟩a ← Align(X, a)
di ← D(Xi, Y)
M ← ∨a

i=1(di < t).

Janus only supports alignment approaches that do not need to have plaintext
access to both X and Y at the same time. We discuss how to instantiate Align
for different biometric sources in Section 4.7.

4.6 Instantiating Janus

We design three Janus instantiations that use secure multiparty computation,
homomorphic encryption, and trusted hardware to offer different trade-offs.
These instantiations are inspired by existing biometric systems that we modify
to satisfy our specific requirements.

4.6.1 SMC-Janus

Our first instantiation uses secure multiparty computation (SMC) between the
RS and the BP. We are not the first to propose the use of SMC in the biomet-
rics context. Existing privacy-preserving biometric identification approaches
use SMC to compute the distances between a client sample and a database of
N samples held by a server [131,144,145]. These works prevent the server from
learning the client’s sample and prevent the client from learning the server’s
database. However, in these approaches the server holds plaintext biometric
templates, violating the single functionality requirement (RQ.S1). In our de-
sign, we instead store the N samples of registered recipients in secret-shared
form between the RS and BP. We redesign the SMC-based biometric approach

95

Chapter 4. Janus

to reconstruct the secret shared templates before computing distances.

Secure two-party computation. Secure two-party computation is an inter-
active protocol between Alice with private data X and Bob with private data
Y where they want to compute a known function (A, B) ← F (X, Y) with-
out revealing any information about their private data. The security of S2PC
guarantees that the view of each party can be simulated with its input and
output. We use Yao’s garbled circuit (GC) [96] for our SMC instantiation.

Secret sharing. A secret-sharing scheme shares a secret value x between n

party while providing an information-theoretic guarantee that no combination
of t < n shares will reveal any information about the secret x. We focus on
the two-party scenario, i.e., n = 2. A secret-sharing scheme is given by the
methods SS.Share and SS.Reconstruct. We define two types of secret sharing,
binary and additive:

(x(0), x(1))← SS.Share(x). shares a secret value x between two parties. For bi-
nary sharing, x ∈ {0, 1}n, for additive sharing, x ∈ Zα. The function SS.Share
picks the first share x(0) ← {0, 1}n (resp. x(0) ← Zα) uniformly at random
in binary (resp. additive) sharing and sets the second share x(1) such that
x(0) ⊕ x(1) (resp. x(0) + x(1) mod α) equals x. We write SSb to denote binary
secret sharing and SSα to denote arithmetic sharing modulus α.

x← SS.Reconstruct(x(0), x(1)). takes two shares and outputs the original secret
x = x(0)⊕x(1) in the binary and x = (x(1) +x(0)) mod α in the additive setting.

SMC-Janus. We now instantiate the SMC-Janus functions.

Setup. We initialize the system as follows:

1. The RS initializes a new biometric sensor S ← Sensor(TS, d).
2. The RS creates an empty database RS.db for storing secret shared bio-

metric templates.
3. The BP creates an empty database BP.db for storing secret shared bio-

metric templates.

Membership. The RS reads a biometric sample B from the new recipient, then
interacts with the BP to compute whether it matches any of the N registered
recipients in the database using a garbled circuit:

96

4.6 Instantiating Janus

1. The RS reads a new biometric sample B ← S.ReadBio(recipient) from the
potential recipient.

2. The RS computes a alignments of B using ⟨Bj⟩a ← Align(B, a).
3. The RS and BP use a garbled circuit to compute the SMC-Matching func-

tion from Algorithm 7 as follows:
(a) The RS retrieves the registered users’ template shares from its database
⟨Xi

(0)⟩N ← RS.db and uses (⟨Xi
(0)⟩N , ⟨Bj⟩a) as its private input.

(b) The BP retrieves the secret shares of registered users’ templates
⟨Xi

(1)⟩N ← BP.db as its private input.
(c) The RS and BP jointly compute SMC-Matching and RS learns the

binary value member.
4. The RS outputs the binary value member.

When computing the SMC-Matching function, we first reconstruct biometric
templates for registered users in line 3. Next, we compute the Hamming dis-
tance between the i’th user and the j’th alignment of B in line 5. We check
the distance against the public threshold t to decide if a pair of templates are
a match in line 6. The user i is a match for the new recipient if the template
Xi matches any of the a alignment Bj as seen in line 7. Finally, recipients
are duplicates if they match any of the existing users (line 8). Changing the
Hamming distance to Euclidean distance only requires replacing line 5 with
di,j ←

∑TS−1
k=0 (Bj[k]−Xi[k])2.

AddMember. To add a new recipient, the registration station loads the bio-
metric from the pending registration request and secret shares the template B

with the biometric provider (without including a alignments) as follows:

1. The RS loads the plaintext biometric template B from the last member-
ship request and secret shares B as (B(0), B(1))← SSb.Share(B).

2. The RS runs RS.db.Insert(B(0)) to insert B(0) into its database and sends
B(1) to BP. The BP inserts B(1) into its the user database by running
BP.db.Insert(B(1)).

3. The RS deletes plaintext biometrics templates B, alignments ⟨Bj⟩a, and
BP’s share B(1).

Ratchet. Ratcheting refreshes the secret shares of the registration station and
biometric provider (see RQ.S2). To minimize communication costs, instead of
sending new shares for all values, we send a single randomness seed and use a
keyed PRF function to refresh shares locally as follows:

1. The RS chooses a randomness seed r and sends it to the biometric

97

Chapter 4. Janus

Algorithm 7 The matching functioned computed using a garbled circuit inside SMC-Janus
(for hamming distances).

1: function SMC-Matching((⟨Xi
(0)⟩N , ⟨Bj⟩a), ⟨Xi

(1)⟩N)
2: for i← ZN do
3: Xi ← Xi

(0) ⊕Xi
(1)

4: for j ← Za do
5: di,j ←

∑TS−1
k=0 (Bj [k]⊕Xi[k])

6: mi,j ← di,j < t

7: matchi ←
∨a−1

j=0 mi,j

8: member←
∨n−1

i=0 matchi

9: return member

provider.
2. The BP receives the seed r and randomizes template shares ⟨Xi

(1)⟩N ←
BP.db as X ′(1)

i ← X ′(1)
i ⊕ PRFr(i). The BP deletes its database BP.db

and the seed r then create a new user database with new shares using
BP.db.Insert(⟨X ′

i
(1)⟩N).

3. The RS refreshes its shares using the seed r following the same process
as BP. Afterward, RS deletes the seed r and all old secret shares.

Safety. The SMC-based design satisfies the safety requirements. First, we
argue that SMC-Janus achieves single functionality (RQ.S1). By inspection,
the only protocol that might reveal data related to recipients is Membership
(at Setup there is no data to leak, and AddMember and Ratchet have no
output). However, in Membership the private inputs of either party are fed
into a two-party SMC protocol that guarantees that as long as the parties are
honest-but-curious (which they are by assumption), only the RS learns the
single output bit, and nothing more. Thus RQ.S1 is satisfied.

Second, at rest, recipient-related data is secret-shared between the RS and
the BP, ensuring information-theoretic protection against single compromises.
As a result, a compromise of either party does not reveal any sensitive data
(satisfying RQ.S2) and long-term safety is guaranteed (RQ.S4). Any leakage of
information resulting from queries can only be the result of a call to Membership
by an attacker compromising the RS. However, the SMC protocol can only be
run with the cooperation of the BP (satisfying RQ.S3).

98

4.6 Instantiating Janus

4.6.2 SHE-Janus

Next, we instantiate Janus using homomorphic encryption. Biometric match-
ing and identification can be computed using either additively homomorphic
encryption [146, 147] or fully homomorphic encryption [129, 148]. Computing
the Euclidean distance is straightforward with homomorphic encryption. How-
ever, many HE schemes are not suitable for performing the comparison needed
for applying the decision threshold. While many of the prior works [149, 150]
reveal this distance and perform the thresholding in the clear, some papers like
Huang et al. [146] extend the HE distance computation with an SMC com-
parison to keep the whole computation in an encrypted domain. We use the
BFV [106] somewhat homomorphic encryption to compute Euclidean distance
and use a garbled circuit to perform the comparison. We compare our perfor-
mance against a scheme that reveals the distance [150] and Huang et al. [146]
that protects the distance in Section 4.8.2.

Somewhat homomorphic encryption. Somewhat homomorphic encryption
schemes allow arithmetic operations like additions and limited multiplications
without decryption. This chapter relies on the BFV scheme over the prime
ring Zq. There are 4 major methods in SHE schemes:

• params ← HE.ParamGen(q). Takes a plaintext domain Zq and generates
an HE parameter set.

• pk, sk ← HE.KeyGen(params). Generates a new key pair (pk, sk) based
on the parameter set params. Evaluation keys are assumed to be part of
the public key.

• JxK← HE.Enc(pk, x). Takes the public key pk and a message x ∈ Zq and
returns the ciphertext JxK.

• x ← HE.Dec(sk, JxK). Takes the secret key sk and a ciphertext JxK and
returns the decrypted message x.

The correctness property of the encryption ensures HE.Dec(sk, HE.Enc(pk, x)) ≡
x (mod q).

Homomorphic operations. SHE schemes support homomorphic addition (de-
noted by +), subtraction (denoted by −), and a limited number of multiplica-
tion (denoted by ·) of ciphertexts: HE.Dec(sk, JaK · JxK + JbK) = ax + b mod q.
It is also possible to perform addition and multiplication with scalar values in
addition to operating on two ciphertexts.

SIMD batching. We can combine number theoretic transformation (NTT) with

99

Chapter 4. Janus

Algorithm 8 The matching functioned computed using a garbled circuit inside SHE-Janus.

1: function SHE-Matching(⟨di,j
(0)⟩aN , ⟨di,j

(1)⟩aN)
2: for i← ZN do
3: for j ← Za do
4: di,j ← di,j

(0) + di,j
(1)

5: if di,j ≥ q then
6: di,j ← di,j − q

7: mi,j ← di,j < t

8: matchi ←
∨a−1

j=0 mi,j

9: member←
∨n−1

i=0 matchi

10: return member

the BFV scheme to allow batching N scaler values into each ciphertext [114].
This transforms each arithmetic operation to a SIMD alternative that performs
pairwise operations between two N -ary vectors.

SHE-Janus. We now instantiate the SHE-Janus functions.

Setup. We initialize the system as follows:

1. The RS initializes a new biometric sensor following S ← Sensor(TS, d).
2. The BP creates a new SHE key pair pk, sk ← HE.KeyGen(params) and

sends the public key to the registration station. The RS saves pk.
3. The RS creates an empty database RS.db for encrypted biometric tem-

plates.

Membership. To determine if a recipient has registered before, the registration
station reads a biometric sample B and performs the membership matching
in three phases: computing Euclidean distance using SHE, secret sharing the
encrypted distance using an additive sharing modulus q, and using a GC to
perform comparison over secret shared values.

1. The RS reads a new biometric sample B ← S.ReadBio(recipient) from the
recipient and computes a alignments of B using ⟨Bj⟩a ← Align(B, a).

2. The RS retrieves the encrypted templates of registered recipients ⟨JXiK⟩N ←
RS.db from its database.

3. The RS computes the Euclidean distance of the alignment Bj and user
template JXiK as Jdi,jK = ∑TS

k=1(JXi[k]K−Bj[k])2.
4. The RS secret shares the encrypted Euclidean distances using di,j

(0) ←$

Zq, Jdi,j
(1)K← Jdi,jK−di,j

(0) and sends ⟨Jdi,j
(1)K⟩aN to the biometric provider.

5. The BP receives and decrypts ⟨Jdi,j
(1)K⟩aN .

6. The RS and BP interact together to compute the SHE-Matching function

100

4.6 Instantiating Janus

in Algorithm 8 using a garbled circuit as follows:
(a) The RS uses (⟨di,j

(0)⟩aN) as its private input.
(b) The BP uses (⟨di,j

(1)⟩aN) as its private input.
(c) The RS and BP jointly compute the garbled circuit and RS learns

the value member as output.
7. The RS outputs the binary value member.

Computing the Euclidean distance Jdi,jK between the j’th alignment Bj

and i’th user template JXiK is straightforward and follows the definition of Eu-
clidean distance. The Hamming distance is equivalent to Euclidean distance
in binary arrays; we discuss an optimized version of Hamming distance for our
HE approach in Section C.2. We use additive secret sharing modulo q to secret
share the distance. When performing the secret sharing over the ciphertexts,
the BFV scheme automatically performs the modular reduction. However, we
need to manually perform the modular reduction needed for reconstruction in
the GC. Instead of running a costly modulus operation in GC, we take advan-
tage of the fact that both shares di,j

(0), di,j
(1) are less than q and consequently

their addition is less than 2q. This allows us to simplify computing modulus in
line 6 to subtract q if di,j is greater than q. After computing di,j in our garbled
circuit protocol, comparing against the decision threshold is straightforward
and similar to our SMC approach.

AddMember. To add a new recipient, the registration station encrypts then
stores the the resulting ciphertext template in RS.db as follows:

1. The RS loads the plaintext templates B from the last membership re-
quest, encrypts JBK← HE.Enc(sk, B), and inserts it to the user database
RS.db.Insert(JBK).

2. The RS deletes all plaintext and alignment templates B, ⟨Bj⟩a.

Ratchet. The biometric provider generates a new key pair then interacts with
the RS to transition the registration station’s old ciphertext to the new key as
follows:

1. The BP generates a new key pair pk′, sk′ ← HE.KeyGen(params) and
sends the public key pk′ to the registration station.

2. The RS receives and saves the public key pk′.
3. In a similar manner to membership, the RS secret shares the templates

Xi
(0) ←$ Zq, JXi

(1)K← JXiK−Xi
(0) and sends ⟨JXi

(1)K⟩N to the biometric
provider.

4. The BP receives ⟨JX(1)K⟩N , decrypts then re-encrypt template shares with

101

Chapter 4. Janus

the new key pk′ as JX ′
i
(1)K← HE.Enc(pk′, HE.Dec(sk, JXi

(1)K)).
5. The BP sends ⟨JX ′

i
(1)K⟩ to the registration station.

6. The RS deletes the old ciphertext database and then reconstructs and
inserts new ciphertext to the database as RS.db.Insert(⟨JX ′

i
(1)K + Xi

(0)⟩N).
7. The BP deletes the old key pair (pk, sk).

Safety. Our SHE-based version satisfies the safety requirements. Similar
to SMC-Janus, the only protocol that reveals an output about recipients is
Membership . The Membership protocol has three stages. First, the registra-
tion station computes the distance in the encrypted domain, thus cannot gain
any information. Second, RS secret shares the distances and sends shares di,j

(1)

to the BP, thus the security of SS prevents any leakage. Third, both parties
feed their secret shares into a two-party SMC protocol that guarantees that
as long as the parties are honest-but-curious (which they are by assumption),
only the RS learns the single output bit. Therefore, RQ.S1 is satisfied.

At rest, the biometric provider does not have any information about recip-
ients, and the registration station stores a database encrypted with a quantum
secure encryption scheme without knowing the decryption key. As long as only
the data of a single party gets compromised during each ratchet epoch, SHE-
Janus satisfies both RQ.S2 and RQ.S4. Similar to SMC-Janus, the leakage
from queries is limited by the need for cooperation from the BP to run calls
to Membership (satisfying RQ.S3).

4.6.3 TEE-Janus

An alternative for using advanced cryptographic tools such as SMC and SHE
is relying on trusted hardware. In this section, we instantiate Janus based
on a trusted execution environment (TEE). While TEEs allows us to ensure
the security of biometric templates with only one party, we still keep our two-
party setting to protect against active compromises (RQ.S3). In TEE-Janus,
we use the biometric provider as an authentication server that blindly signs
membership requests. If an adversary takes control of the registration station,
the humanitarian organization can disable the biometric provider to prevent
adversaries from performing queries and learning information from RS.

Recent attacks on trusted hardware [151–153] demonstrate that extracting
secrets from a TEE is not impossible. While we acknowledge the vulnerability
of TEE solutions to hardware attacks as a limitation of TEE-Janus, our design

102

4.6 Instantiating Janus

safeguards against side channels like memory access and timing patterns. We
deploy TEEs on humanitarian organization-controlled devices and not on a
cloud service, therefore, there is no need for TEE attestation.

Trusted execution environment. TEEs are hardware security modules that
ensure the confidentiality and integrity of the data and code during execu-
tion. TEE programs have two components: an enclave that runs the sensitive
portion of the code and benefits from the hardware security guarantee, and
a host component that runs outside of the secure module and is in charge of
managing the interactions of the enclave with non-secure components (e.g.,
the network).

Blind signature. A blind signature scheme allows a client to interact with a
server to compute a signature on private message m with the server’s secret
key without revealing m to the server. There are 4 major methods in blind
signatures:

• vk, sk ← BS.KeyGen(). Generates a verification vk and a signing key sk.
• σ ← BS.Sign(sk, m). The server signs a known message m with its signing

key sk.
• σ ← BS.BlindSign(sk, m). A client with a secret message m interacts

with a server holding the signing key sk to compute a signature σ on
m. Blindness guarantees that the server does not learn any information
about the message.

• {0, 1} ← BS.Verify(vk, m, σ). Takes a message m, a signature σ, and a
verification key vk and determines if σ is a valid signature for m.

TEE-Janus. We now instantiate the TEE-Janus functions.

Setup. We initialize the system as follows:

1. The BP creates a new blind signature key vk, sk ← BS.KeyGen() and
sends the verification key vk to the registration station.

2. The RS creates a secure enclave and stores vk as the authority key in-
side. The enclave securely creates an empty database RS.db for biometric
templates.

3. The RS initializes a new biometric sensor through the host following
S ← Sensor(TS, d). Remember that running the sensor inside an enclave
is a non-goal for this work (see Section 4.2.1).

103

Chapter 4. Janus

Membership. To check if a new user is already registered in the database,
the registration station reads and processes a biometric sample B on the host,
requests a blind signature from the biometric provider on this template, and
passes both the template and signature to the enclave which can directly per-
form the plaintext biometric matching after verifying the signature.

1. The RS reads a new biometric sample B ← S.ReadBio(recipient) from the
potential recipient.

2. The RS host interacts with the BP to compute a blind signature on
the template σ ← BS.BlindSign(sk, B), and passes passes (B, σ) to the
enclave.

3. The RS enclave verifies the signature with the stored authority key vk by
running BS.Verify(vk, B, σ). If the verification fails, the enclave aborts.

4. The RS enclave runs a plaintext biometric membership check by iterating
over all registered templates and comparing them with the plain template
B to compute the binary result member. Comparing against all templates
prevent memory access pattern and timing attacks by ensuring that the
operations performed are independent of the data.

5. The RS outputs the membership result member.

AddMember. To add a new recipient, the RS inserts the biometric sample
from the last membership query to the sealed registered user database inside
the enclave as follows:

1. The RS enclave loads the plaintext biometric templates B from the
last membership request and inserts the template to its user database
BP.db.Insert(JBK).

2. The RS host deletes the plaintext templates B.

The registration station is adding the biometric template from the last
membership request to the database without reading a new sample. As RS
has already received and verified a blind signature on this template, there is
no need for repeating the blind signing.

Ratchet. We assume that the biometric data stored in the enclave are secure
and the adversary cannot extract secrets from a TEE. Therefore, our ratchet
protocol only supports rotating the key of the biometric provider after verifying
the signature of the ratchet request as follows:

1. The biometric provider generates a new key pair vk′, sk′ ← BS.KeyGen(),
signs the verification key with the old secret key σ ← BS.Sign(sk, vk′),
and sends the verification key vk′ and the signature σ to the registration

104

4.7 Biometrics in practice

station. The RS host receives the new key and signature (vk′, σ) and
passes them to the enclave.

2. The RS enclave loads the old verification key vk from the sealed memory
and runs BS.Verify(vk, vk′, σ). If the verification passes, the RS enclave
replaces the old verification key vk with the new one vk′.

Safety. TEE-Janus satisfies the safety requirements. First, we argue that the
design achieves single functionality (RQ.S1). All recipient data is stored inside
the TEE enclave. The only time that the enclave reveals any information
about these data is when running Membership . By design, the enclave code
will compute and output exactly the allowed 1-bit membership response, thus
satisfying RQ.S1.

Second, the sealing properties of the TEE guarantee security against pas-
sive compromises of either party, thus satisfying RQ.S2. Third, the TEE only
replies with a 1-bit answer when it receives a (blindly) signed request from
the BP. Thus, TEE-Janus also protects against active compromises, satisfying
RQ.S3. Finally, provided that the security guarantees of TEEs hold, TEE-
Janus provides long-term safety (RQ.S4). However, given the recent attacks
on TEEs [151–153] we do not want to claim that TEE-Janus provides long-
term safety in practice.

4.7 Biometrics in practice

Biometric pipelines start with a raw image such as an eye image or a fingerprint
scan. Directly comparing images is complex and costly. Thus, typically im-
ages are transformed into lower-dimension representations called ‘templates’.
This transformation can rely on classic algorithms [154–156] or on neural net-
works [157–159]. As we assume the registration station processes biometrics
in plaintext, Janus can use prior biometric works as a black-box inside the
ReadBio function, as long as the resulting template complies with the abstrac-
tion in Section 4.5.

Template creation. We show how to generate templates and handle align-
ment for major biometric sources. We note that when choosing biometrics,
humanitarian organizations must consider factors such as culture and religion
which may vary between regions where aid needs to be distributed.

105

Chapter 4. Janus

Fingerprint. The traditional approach for fingerprint matching is minutiae
matching. Unfortunately, it does not satisfy our abstraction as the number
of extracted minutiae varies between readings and minutiae do not have a
fixed ordering. Thus, we use a different matching technique relying on finger
codes [154, 160–162], that transform fingerprints into fixed-size arrays of inte-
gers where similarity is computed based on Euclidean distance. Different fin-
gerprint scans can have different angles. Some finger code approaches [154,161]
create codes that are not rotation-invariant. Instead, they use an alignment
process that rotates the raw image a times (commonly by 11.5◦ degree), ex-
tract a finger codes, and check if any of these a templates match the target
biometric to improve accuracy.

Iris. Irises are a highly accurate source of biometric data. A common matching
approach is iris code [155,163,164], where an eye image is converted to a fixed-
size binary array. Not all iris bits are equal. Parts of the eye may be obstructed
(e.g., by glares or eyelashes) and lead to unreliable bits [164]. To address this
issue, iris codes are accompanied by mask vectors to exclude unreliable bits
from the comparison, and similarity is computed using normalized Hamming
distance. Iris codes have an alignment procedure that applies a circular shifts
(by steps of 1 or 2) on the bit vector and repeats the similarity comparison.

Face. Prior works such as ArcFace [157] allow us to represent faces with a fixed-
size array of real values where the similarity of two faces is computed using
Euclidean distance. We can discretize these real values into integers fitting
into an arbitrary domain Zd. This discretization can have a minor impact on
accuracy that depends on the choice of d. The templates produced in ArcFace
do not require alignment.

4.7.1 Membership with a single sample

We study membership performance with respect to two types of errors, which
we name following the same convention as in biometric identification and
matching: false accept rate (FAR), the probability of incorrectly identifying
a new person as an existing user in a biometric membership; and false reject
rate (FRR), the probability of failing to detect an existing user in a biometric
membership test.

In the humanitarian setting, the cost of false acceptance is considerably
higher than false rejection. False acceptances prevent legitimate recipients
from receiving aid. False rejection enables recipients to register more than

106

4.7 Biometrics in practice

102 103 104 105

Number of registered users

10−2

10−1

100

Pr
ob

.o
ff

ai
lin

g
to

re
gi

st
er

Pf p = 5%

Pf p = 1%

Pf p = 0.5%

Pf p = 0.1%

Pf p = 0.05%

Pf p = 0.01%

Figure 4.3: Impact of biometric matching Pfp on registration.

once. While allowing cheating is undesirable, humanitarian principles imply
that we must favor lower FAR over FRR (see RQ.F3).

The membership operation can be broken down into individual matching
operations between the queried biometric sample B and the N templates of
recipients already registered in the system. The accuracy of each matching
operation is limited by the error rate of the plaintext matching operation Match.
Assuming that the underlying plaintext matching has a false positive rate of
Pfp and a false negative rate of Pfn, and these probabilities are independent
for different match operations, we can compute FAR as 1 − (1 − Pfp)N and
FRR as Pfn (1− Pfp)N−1.

The error probabilities of plaintext matching algorithms for a single bio-
metric sample are typically in the range of 0.01− 5%. These error rates often
satisfy the accuracy requirements of authentication systems and choosing the
decision threshold value t allows configuring a trade-off between Pfp and Pfn.
These rates however are not sufficient in the context of humanitarian aid distri-
bution. Figure 4.3 shows the probability of falsely rejecting a legitimate new
recipient depending on the number of registered users and biometric failure
probability Pfp. Looking at this graph, deduplicating a new recipient with a
single biometric sample against a database of 10,000 fails with the probability
of 63% for Pfp = 0.01% and almost always for higher error rates. These failure
rates do not satisfy RQ.F3.

107

Chapter 4. Janus

4.7.2 Membership at scale

We explore the potential of biometric fusion to lower the error rate, inspired by
existing biometric identification systems such as Aadhar [165] or US-VISIT [166]
that use multiple samples (10 fingerprint scans, 2 iris scans, and 1 facial image;
and 10 fingerprints and 1 facial image, respectively) to lower their error rates
when operating on a billion, respectively tens of millions, people.

The fusion procedure takes f samples from different sources to create a f -
ary template ⟨Xi⟩f . As our primary goal is reducing FAR, our fusion requires
all f sample pairs of two templates to match as follows:

M ∈ {0/1} ←FusedMatch(⟨Xi, Yi, Di, ti, ai⟩f) ={
mi ← AlignedMatch(Xi, Yi, Di, ti, ai)
M ← ∧f

i=1 mi.

A fused false positive only happens when all f underlying samples produce
false positives at the same time. Therefore, the fused membership will have
an FPR of ∏f

i=1 Pfpi where Pfpi is the FPR of the i’th sample. At the same
time, the fused false negative rate is bound by ∑f

i=1 Pfni. Providing support
for fusion is very similar to our alignment process (Align). The only difference
is that when performing pairwise matching instead of performing the logical
or (∨) as in alignment, we use logical and (∧) in fusion. We support biometric
fusion in all three instantiations of Janus. This enables Janus to scale its FAR
rate to support very large userbases as long as Janus receives the necessary
number of biometric samples.

We evaluate the FAR of membership when fusing f samples with false
positive rates of Pfp for various numbers of registered users in Fig. 4.4. To
satisfy RQ.F3, we aim for a false accept rate of FAR = 10−4 on deduplicating
against a database of 10,000 registered users. Two ways for achieving this error
rate are: (1) taking 4 samples from biometric modalities with Pfp = 1% (e.g.,
4 fingers); or (2) with 2 samples with Pfp = 0.01% (e.g., 2 irises). Since there
exist biometric devices that scan 4 fingers or 2 irises at the same time, Janus
could be efficiently deployed even when requiring more than one sample. If
lower error rates are desired, the ICRC can combine modalities (4 finger and
2 irises) or collect more finger samples from recipients.

Template configuration. While we use existing biometric matchings as black
boxes, they offer various configurations that provide accuracy/performance

108

4.8 Evaluation

102 103 104 105

Number of registered users

10−8

10−7

10−6

10−5

10−4

10−3

Pr
ob

.o
ff

ai
lin

g
to

re
gi

st
er

f ,Pf p = 4, 1%

f ,Pf p = 4, 0.5%

f ,Pf p = 3, 0.1%

f ,Pf p = 3, 0.05%

f ,Pf p = 2, 0.01%

Figure 4.4: Impact of fusing f samples with FPR of Pfp.

trade-offs that are of interest in Janus. For example, having a larger template
size (e.g., TS = 10k over TS = 2k) or more alignments (e.g., a = 8 over a = 1)
may improve both the false positive and negative error rates (up to a limit) at
a performance cost.

Biometric fusion introduces the number of samples as a new trade-off
dimension, where two short templates (e.g. f = 2, TS = 2k) might outperform
and offer better error rates than a single large template (e.g. f = 1, TS = 10k).

Failure rate of Janus. The error rates of Janus are mainly limited by the
plaintext biometric matching. Our instantiations follow the plaintext com-
putation with two minor differences: Discretization: SMC-Janus and SHE-
Janus expect biometric templates to have integer values from the domain Zd.
While iris and finger codes follow this restriction, face templates are often real-
valued and need discretization. Threshold: The public threshold t has limited
precision. As the encrypted computation is nearly identical to its plaintext
counterpart, and measuring the accuracy of the underlying plaintext biomet-
ric approaches is out of the scope of this work, we do not measure the error
rates of Janus.

4.8 Evaluation

In this section, we evaluate the performance of Janus.

109

Chapter 4. Janus

Biometrics setup. As we do not need to measure accuracy (see Section 4.7.2),
we do not collect or process biometric data from real humans, and instead, take
existing biometric template generation schemes and replace their output with
random data of the same dimension as follows:

Iris. We base our iris code setting on templates produced by the University
of Salzburg Iris Toolkit (USIT) v3 [167, 168]. The default parameters create
TS = 10240 bits template, but smaller 2048 bits templates are used in prior
privacy-preserving works [131]. Following our notation in Section 4.5, we create
iris sensors as Iris10240 ← Sensor(10240, 2) and Iris2048 ← Sensor(2048, 2).

Fingerprint. We use two instantiations of finger codes. The first sensor
Finger640 ← Sensor(640, 256) follows Jain et al. [160] and uses Gabor filters
to create a byte array of TS = 640 elements as the template. The sec-
ond sensor Finger64 ← Sensor(64, 256) follows more recent CNN-based ap-
proaches [150,162] and creates TS = 64 byte templates.

Face. We base our face sensor Face← Sensor(512, 256) on ArcFace [157]. Ar-
cFace generates 512-dimensional real-values templates, but we can discretize
template elements into bytes to fit Janus’s requirements. Since face and fin-
gerprint templates are similar and their matching follows the same process, we
only evaluate fingerprints.

Instantiations setup. We run our experiments on a machine with an Intel i7-
8650U CPU and 16 GiB of RAM, using the following libraries and parameters
for our instantiations.

SMC-Janus. We rely on a high-level SMC compiler called EMP-Toolkit [119]
to generate and execute garbled circuits. More specifically, we use ‘EMP-
sh2pc’ [169] which offers semi-honest security in a two-party setting. We im-
plemented SMC-Janus fully in C++ (320 lines).

SHE-Janus. We use the BFV [106] somewhat homomorphic encryption scheme
implemented in the Lattigo library [170] for our homomorphic operations. Let
the degree of the RLWE polynomial be Ndeg, the plaintext modulus be mpt,
and the ciphertext modulus be mct. We generate BFV keys with a set of
parameters (Ndeg = 4096, lg(mct) = 109, mpt = 65 929 217). Our parameter set
follows the homomorphic encryption security standard [111] to provide 128 bits
of security. Moreover, our parameter supports batching Ndeg scalar values into
each ciphertext and performing SIMD operations. We implement SHE-Janus
partially in Go (650 lines) and partially in C++ (150 lines).

110

4.8 Evaluation

TEE-Janus. We use Intel SGX for our TEE-based solution and rely on the
Fortanix enclave development platform [171] to run Rust code in an SGX
enclave. We implement TEE-Janus fully in Rust (300 lines).

We will make all our implementations open source.1

4.8.1 Performance of Janus

We evaluate the performance of our three Janus instantiations. We measure
their (single-core) computation and communication cost when using various
database sizes (generated as described above). We assess both the single- and
multi-sample settings with a single alignment. We use 4 fingers and 2 irises
for the latter to ensure the instantiations satisfy RQ.F3 (see Section 4.7.2).

TEE-Janus. Our TEE-based solution significantly outperforms SMC-Janus
and SHE-Janus, providing near plaintext biometric efficiency. Deduplication
over an 8k user database takes under 50 ms and uses less than 1 KiB of com-
munication, meeting the scalability requirement (RQ.D2) easily.

SHE-Janus. Fig. 4.5 displays the computation and communication costs for
single and multi-sample membership across different database sizes using Finger64
and Iris2048 sensors. Deduplication 8k recipients with 2 irises takes 40 s of com-
putation on RS and 56 MiB, while deduplication with 4 fingerprints requires
4.4 s and 155 MiB. This duration, under a minute, is suitable for in-person
registration, and SHE-Janus meets RQ.D2. When templates are larger, com-
putation increases linearly, but not the communication cost (see Section C.1
for more details).

SMC-Janus. SMC-Janus offers information theoretic data security. With
this instantiation, deduplicating 10,000 users is prohibitively costly (see Sec-
tion C.1); it fails to meet RQ.D2 and is better suited for smaller aid projects.
Deduplicating 1k recipients with 2 irises requires 0.93 GiB and 39 s of compu-
tation on both RS and BP, while deduplication with 4 fingerprints requires
52 s and 2.36 GiB.

Comparison. The TEE-Janus version is the most efficient but it requires
SGX-supported devices at the registration station, as well as trust in the man-
ufacturers of these devices. Also, the security of the scheme is limited by the
existence of hardware vulnerabilities that might expose biometric data from

1Code available online: https://github.com/spring-epfl/Janus

111

https://github.com/spring-epfl/Janus

Chapter 4. Janus

128 512 2048 8192
Number of registered users

100

101

R
S’

s
co

m
pu

ta
tio

n
(S

ec
)

f = 1, finger64

f = 4, finger64

f = 1, iris2048

f = 2, iris2048

128 512 2048 8192
Number of registered users

10−1

100

B
P’

s
co

m
pu

ta
tio

n
(S

ec
)

128 512 2048 8192
Number of registered users

100

101

102

C
om

m
un

ic
at

io
n

(M
B

)

Figure 4.5: Evaluating the single-core membership performance of SHE-Janus with
f iris or fingerprint samples.

the registration station. While SMC-Janus offers the strongest data protec-
tion, its cost makes it unsuitable for large aid distribution projects. SHE-Janus
ensures biometric data safety using a quantum-secure encryption scheme, and
registration completes in under a minute. We would recommend SHE-Janus
for large aid projects given its balance between security and performance; and
SMC-Janus as long as the size of the group receiving aid is such that perfor-
mance is acceptable.

4.8.2 Comparison with Closely Related Work

In this section, we compare the cost of SHE-Janus to two of the most relevant
prior works:

112

4.8 Evaluation

128 512 2048 8192
Number of registered users

100

101

C
om

pu
ta

tio
n

(S
ec

)

Janus-Finger640

Janus-Finger64

Huang-Finger640

Huang-Finger64

100

101

Tr
an

sf
er

(M
B

)

Figure 4.6: Single sample computation (solid lines) and communication (dashed
lines) cost of Huang et al. [146] (80-bit security) vs SHE-Janus (128-bit security).

Same protection. The closest paper to Janus is Huang et al. [146], which
supports identification with a single finger code sample and has a structure
similar to SHE-Janus. This work can be modified in a straightforward manner
to support membership, but due to being limited to a single biometric sample
and relying on the RSA assumption for security (which is not quantum secure),
they do not satisfy RQ.F3 or RQ.S4.

Huang et al. use Pailler homomorphic encryption to compute the Eu-
clidean distance of templates, then secret shares the distance between two
parties, and finally uses a garbled circuit to determine the template with the
highest similarity. Huang et al. have an expensive offline phase whose cost
cannot be fully aggregated in our setting due to frequent user additions (see
RQ.F2) and provides a protocol called ‘backtracking’ to retrieve the identity of
the matching template. We only consider the online cost of Huang et al. in the
comparison without performing backtracking. We run the code of Huang et al.
on the machine described above using the original parameter of the paper that
provides 80-bit (classic) security. Fig. 4.6 shows the cost of deduplicating over
databases of various sizes with both Finger64 and Finger640 sensors. SMC-Janus
has a similar communication cost to Huang et al., but despite having a higher
security guarantee of 128-bit, Janus reduces the cost of deduplicating 4k users
by a factor of 20x.

Less protection. HERS [150] provide privacy-preserving single sample finger-
print identification. HERS introduces a novel short finger code representation
(the basis for our Finger64 sensor) and computes and reveals the distance of
templates using the BFV [106] SHE scheme. HERS focuses on finding the

113

Chapter 4. Janus

128 512 2048 8192
Number of registered users

100

C
om

pu
ta

tio
n

(S
ec

)

Janus-Finger640

Janus-Finger64

HERS-Finger640

HERS-Finger64

10−1

100

101

102

Tr
an

sf
er

(M
B

)

Figure 4.7: Single sample computation (solid lines) and communication (dashed
lines) cost of computing template distance of HERS [150] and SHE-Janus (without
thresholding).

most similar templates as part of identification and do not support or evaluate
the accuracy of membership or deduplication. HERS is limited to a single bio-
metric sample which prevents achieving a low membership error rate (RQ.F3),
reveals the distance against every template in the server’s database that vio-
lates RQ.S1, and does not offer a key rotation mechanism to protect against
RQ.S2 when actors are compromised at different times. Fig. 4.7 shows the
cost of distance computation in SHE-Janus (without thresholding) and HERS.
Both approaches have similar computation costs but SHE-Janus significantly
improves the communication in our setting.

4.9 Related work

In Section 4.6, we discussed prior works related to the techniques we use to
instantiate Janus: secure multiparty computation, homomorphic encryption,
and trusted execution environments; and discuss how they compare to our so-
lution. We now discuss other techniques to build privacy-preserving biometrics
systems.

Fuzzy matching. Fuzzy matching approaches model the probabilistic biometric
sampling process by assuming that a unique biometric ground truth exists, and
taking each biometric sample read as a noisy version of this truth. Then, they
decode each biometric reading using error correction codes. When biometrics
samples are taken from the same user, the difference between them should be
small, and decoding them should lead to the same base code. There are three

114

4.10 Conclusion

common fuzzy matching approaches: fuzzy commitments [127, 128, 172], that
target biometric sources represented by fixed-size arrays; fuzzy vaults [126,173]
which can support comparison of order-invariant arrays such as fingerprint
minutiae; and fuzzy extractors [174, 175], that generate pseudorandom keys
based on biometric samples.

The use of error correction codes negatively impacts accuracy, and thus
fuzzy approaches cannot fulfill the low failure rate requirement (RQ.F3). Also,
many fuzzy matching protocols are vulnerable to statistical attacks [176,177],
violating the single functionality requirement (RQ.S1).

Convolutional neural network. Besides using a CNN to learn a representation
of biometric samples [162], it is possible to train a model to classify biometric
images in a closed world [178]. These approaches require retraining when
adding a new recipient to the system, thus they do not satisfy the dynamic
addition requirement RQ.F2.

Biometric cryptosystems. Biometric cryptosystems [179] use biometric data
to derive a secret key per user, either by deriving it from the biometric sam-
ple [174] or by hiding the key in helper data which can be opened using a
biometric sample from the user [127, 173]. The secret key can be used to en-
crypt data or in authentication protocols. These approaches can be combined
with so-called BioHashing [180, 181] that enhances the key derivation process
by adding a user secret (password) to support 2-factor authentication and re-
duce the false accept rate. Deduplication cannot provide a secret key and thus
biometric cryptosystems are not a suitable solution in our setting.

4.10 Conclusion

To ensure efficient distribution of aid, humanitarian organizations need to pre-
vent recipients from registering more than once in their programs. Current
approaches to achieving this are based on slow and not widely-available means.
The humanitarian sector is turning to biometrics-based solutions to address
these problems, but not carefully done these solutions can have a strong impact
on the safety of aid recipients.

In this chapter, we introduced Janus, a biometric-based deduplication sys-
tem designed to provide safety-by-design. Janus can be combined with major
biometric sources, and supports the fusion of multiple encrypted biometric
samples to improve accuracy. We show that, while providing better protec-

115

Chapter 4. Janus

tion, Janus improves by orders of magnitude the performance of prior systems
and, to the best of our knowledge, is the first to achieve the low error rate
needed for deduplication in humanitarian aid.

After Wang et al.’s system [120], our work is a step forward toward enabling
humanitarian organizations to harness digitalization to increase their efficiency
while protecting the safety and dignity of those that are most in need. Further
research is essential for safe digitalization in other stages, like pre-program
recipient identification and post-aid monitoring and evaluation [182].

116

Chapter 5
Brutus: A Decision Support System to
Prevent the Use of Insecure Communication
in Aircraft

This chapter is based on the following article:

Kasra EdalatNejad∗, Theresa Stadler∗, Martin Strohmeier, Vincent Lenders,
Wouter Lueks, Carmela Troncoso: “Brutus: a decision support system to pre-
vent the use of insecure communication in aircraft”. Under submission 2023.

This article is a collaborative effort. Kasra EdalatNejad designed the
detection method based on text compression, while methods utilizing convo-
lutional neural networks and random forest are designed by Theresa Stadler.
Remaining contributions were made jointly by all authors.

∗ denotes equal contribution.

5.1 Introduction

Aviation protocols, including the Aircraft Communications Addressing and
Reporting System (ACARS) [183], were designed decades ago. At that time,
eavesdropping on aircraft communication required specialized tools. The con-
fidentiality provided by these protocols relied solely on such tools being un-
available to adversaries. With the advent of software-defined radios, however,
eavesdropping on aircraft communications became possible at a low cost (e.g.,
with equipment worth less than 100$) and without requiring any technical
background.

In response, secure protocol standards such as ACARS Message Security
(AMS) [184] were introduced. Yet, these protocols are rarely, if ever, used in

117

Chapter 5. Brutus

the wild. Instead, some airlines and aircraft manufacturers developed home-
made protocols to enable message confidentiality. However, previous works
that manually inspected ACARS traffic discovered that these proprietary pro-
tocols rely on insecure ciphers as encryption method [185,186].

The use of insecure ciphers, such as substitution ciphers, poses a major risk
to the users of the ACARS network as they give the communicating parties an
illusion of confidentiality. This might encourage them to send sensitive content,
such as credit card details, passenger information, or location data [186].

To improve data privacy, aviation authorities thus need to be able to easily
and reliably identify air traffic operators and manufacturers that use propri-
etary protocols based on insecure ciphers. This is a difficult task that requires
expertly trained analysts to manually inspect large volumes of messages and
identify suspicious patterns among a trove of machine-generated data. While
such manual inspection has shown to be effective [185], it does not scale.

Goal. We develop methods to identify and flag encrypted ACARS messages
at scale with a focus on weak ciphers. Our methods do not distinguish secure
and insecure ciphertexts. The goal is to provide authorities with a tool that
filters out messages that are likely to be encrypted and should be further
inspected by a human analyst. Our tool aims to reduce the manual labor of
identifying entities that use insecure ciphers. Distinguishing plaintext messages
from encrypted messages is a challenging task due to several reasons.

First, ACARS messages are highly heterogenous and range from machine-
generated sensor data to manually typed messages written in multiple lan-
guages. A manual inspection of ACARS messages shows that the message
structure differs significantly from natural language. Many sensor messages
are a sequence of characters drawn from the full set of ASCII characters in-
stead of words. Moreover, user-generated texts contain words from a mix of
natural languages and include jargon and abbreviations.

Second, ACARS messages that contain sensor data look similar to the
(somewhat) random stream of characters produced by (insecure) ciphers. This
makes it challenging to robustly differentiate between these two classes.

Third, the data available through the collection of real-world ACARS mes-
sages is not naturally labeled and contains a mix of plain- and ciphertexts. This
requires careful consideration when pre-processing and cleaning the raw data
for classification. Moreover, the lack of ground truth labels complicates the
evaluation of detection methods.

118

5.2 Aircraft communications addressing and reporting system

Our work makes the following contributions:

✓ We design three methods to automatically detect ciphertexts; one based
on text compression techniques and two based on supervised learning paradigms.

✓ Our detectors are the first methods that support flagging insecure clas-
sic ciphers in a scenario where the plaintext distribution is unknown and may
include multiple natural languages in addition to machine-generated messages.

✓ We introduce a methodology to obtain labeled data for training and
evaluation at scale when ground truth is unavailable and labeling requires
specialized knowledge.

✓ We design and build a decision support system using our detector. To
demonstrate the capability of our system, we performed a large-scale analysis
of real-world data; we found 9 new unknown (potentially insecure) encrypted
protocols.

5.2 Aircraft communications addressing and reporting
system

In this section, we provide technical background on the ACARS protocol. We
discuss the system model, message structure, and typical usage by stakeholders
in aviation.

5.2.1 ACARS system model

ACARS was developed and standardized by Aeronautical Radio Inc. (ARINC)
in the 1970s. ACARS is a major datalink in commercial aviation. Almost all
commercial airliners use it to communicate with local air traffic control as well
as with their own business and flight operations centers.

ACARS uses different physical channels for transmission: (Very) High Fre-
quency (HF/VHF) air-to-ground communication and via satellite (UHF/SHF).
Messages are transmitted between an aircraft and ground stations managed
by two service providers, who handle the infrastructure between aircraft and
endpoints. Fig. 5.1 illustrates this system model.

119

Chapter 5. Brutus

Figure 5.1: Overview of the ACARS system taken from Smith et al. [185].

5.2.2 ACARS messages

ACARS is a text-based communication channel supporting 7-bit ASCII charac-
ters. Yet, in practice, the Baudot character set1 is used to ensure compatibility
across all parts of the network and applications. We focus on three fields of
ACARS message structure that are relevant for our work:

Aircraft registration. With the help of open-source aircraft databases, the 7-
character aircraft registration field enables the retrieval of metadata about the
sender, including aircraft type, owner, operator, and manufacturer.

ACARS label. The 2-character ACARS label field is crucial in routing a mes-
sage to the intended endpoint in the ACARS network. Labels are principally
defined in the ARINC 620 standard. However, there is space for user-defined
labels [187], which are used extensively.

Free text. The core part of the message is formed by the 210-character text
field, which allows the transmission of arbitrary content. For our work, it
is crucial to distinguish between several types of messages by user type and
intent:

Arbitrary free text entered by humans. ACARS is often described as “SMS for
aircraft”, whereby pilots and cabin crew communicate with the ground. This

1Consisting of A-Z, 0-9, ,-./?, and some control characters.

120

5.2 Aircraft communications addressing and reporting system

can take any form and content, from concerns about unruly or sick passengers
to small talk and exchange of connecting flight information. Similar to SMS
messages, the character limit often leads to use of word contractions (“THX”,
“PLS”). There have been reports of even basic emails transmitted via ACARS
[186].

Automated human-readable content. Many messages are sent to/from the air-
craft by automated systems but intended for human consumption. Examples
include passenger and crew lists, weather data, positional information, and
flight plans. In principle, ACARS can be used as an all-purpose datalink with
larger messages spread over several consecutive messages.

Automated machine-readable content. Mostly employed by commercial airlines,
this type of message typically includes sensor and performance data regarding
engines and other crucial aircraft parts that require monitoring. The input
for these messages comes mostly from the Aircraft Condition Monitoring Sys-
tem (ACMS), which provides vibration, temperature, and pressure monitors
as well as speed measurements. The real-time nature of these applications
creates a significant data throughput. Besides the ACMS, there can be further
proprietary, user-defined applications with similar content.

Dataset. We use the Smith et al. dataset [185] throughout this chapter.
This dataset includes 1.18 million ACARS messages from satellite, VHF, and
VDL2 transmission channels. The reception coverage of messages is focused
on Switzerland.

5.2.3 Usage

In modern aviation, ACARS is used as a general-purpose datalink, outgrowing
its original purpose. Aircraft transmit and receive safety-critical data such as
aircraft weight, fuel, engine data, or weather reports; privacy-related informa-
tion about passengers and crew; and critical business operation data such as
gate assignments, crew schedules, or flight plan updates.

ACARS is generally used by larger aircraft with expensive avionics, i.e.,
not typically by individual citizens in small general aviation aircraft such as
a Cessna 172. Besides commercial aviation, its users include governments,
corporations, and the military [185]. Using ACARS is costly, both providers
charge a significant bandwidth usage fee.

121

Chapter 5. Brutus

5.2.4 Security

ARINC made no considerations regarding information security in ACARS’
original design, similar to most legacy aviation technologies [188]. Conse-
quently, eavesdropping on ACARS reception has been a known problem for
over two decades. This was worsened significantly by the ease of access pro-
vided by modern software-defined radios and large-scale website-based collec-
tors. In response to this issue, several security add-ons were developed in
the 2000s including the AMS standard [184], which has been independently
validated by academic researchers [189].

Unfortunately, AMS incurs a financial cost, which seems to strongly im-
pede its deployment – previous research has found little to no evidence of its use
in the wild [185,186]. Potentially in response to privacy concerns and the cost
of AMS, proprietary solutions by individual stakeholders have been developed
such as the insecure protocol analyzed in Smith et. al [185]. The prevalence
of such proprietary ‘hacks’ in the aviation datalink ecosystem motivates our
present work.

5.2.5 Ethics

Our experiments use publicly broadcasted data. The existence of ciphers shows
that some aviation actors care about the secrecy of these messages, yet they fail
to achieve it due to using insecure classic ciphers. We disclosed our findings to
impacted aircraft manufacturers without decrypting insecure ciphertexts. Our
aim is to enable regulators to notify impacted parties and ensure that actors
do not have wrong impressions of security. A false sense of secrecy is more
dangerous and harmful than knowingly using public channels. As our research
involves real data, we reached out to our organization’s ethics committee and
received approval.

5.3 Related work

Classic cryptoanalysis. Classical methods such as the Kasiski test [190], in-
dex of coincidence [191], and frequency analysis [192] help detect and decrypt
monoalphabetic and polyalphabetic substitution ciphers. A more general ap-
proach is to use entropy [193] to distinguish plaintexts from ciphertexts: plain-
texts are expected to have a lower entropy. Unfortunately, entropy-based

122

5.4 Detection methods

metrics do not work well for ACARS messages. These messages are more
complex than natural language texts, have lower repetition, and thus have
higher entropy. Moreover, classic ciphers do not manage to hide the under-
lying characteristics of ciphertexts well leading to lower entropy than their
secure counterparts. Combining these two facts results in entropy being an
ineffective detection measure.

Automatic classic cipher decryption. The basic idea behind automatic decryp-
tion is to search for keys that decrypt the ciphertext to promising plaintext
candidates and then ranking these candidates based on their likelihood of be-
ing a proper human written message [194–198]. These methods work well for
long natural language texts, but fail for ACARS messages that are short and
heterogeneous. We adapt and extend one of the compression-based ranking
mechanisms [199] to distinguish plain- from ciphertexts.

Traffic classification. A related topic to our goal is network traffic classification
as it aims to detect encrypted network traffic. Recent works use statistical and
machine learning methods to detect encrypted traffic [200–202]. However, none
of these support insecure classic ciphers as they exclusively focus on modern
(secure) ciphers. Moreover, most methods rely heavily rely on traffic flow and
network features beyond text in classification which are unavailable in our
scenario [203].

Data leakage. A related yet orthogonal problem is automatically detecting data
leakage in network traffic. For example, Reardon et al. [204] study Android
applications at scale to detect patterns leading to leakage of personal data.

Avionics. The unique legacy communication protocols found in aviation have
been subject of recent research. Much of the literature focuses on active at-
tacks, see Strohmeier et al. for an overview [188], but the (lack of) confiden-
tiality of communications [185,186,205] and the privacy of aviation stakehold-
ers [206] has recently received increased attention, too.

5.4 Detection methods

We develop three automated methods to distinguish encrypted ACARS mes-
sages from those sent in clear at scale. Despite flagging all encrypted commu-
nication, our goal is to identify weak ciphers. Thus, we focus our design and
evaluation on detecting insecure ciphers.

123

Chapter 5. Brutus

5.4.1 Cipher detection based on text compression techniques

Plaintext ACARS messages can be modeled as a (mix of) language(s). A
message is a ciphertext if it is unlikely to be generated from the plaintext
language. We first build a Hidden Markov Model (HMM) of plaintext ACARS
messages and subsequently use it to determine whether a message is a plaintext
that originates from the same language.

Language definition. Languages are well studied in computer science. Despite
the popularity of simpler languages (e.g., regular or context-free) in designing
protocols, many ACARS protocols are semi-decidable: they support free-text
messages [207]. Furthermore, many of the protocols used on top of ACARS
are proprietary and their specifications are inaccessible. Therefore, classic
language theory tools that rely on the definition of a language, e.g., grammars,
are infeasible in the ACARS setting.

Instead, we use an empirical approach to build a statistical language model
of the ACARS plaintext language. We assume that plaintext ACARS mes-
sages, which are strings of characters sent in the clear, form a language L.
This language is more extensive than the traditional ‘comprehensible human-
written text’ language definition because ACARS includes sensor-generated
machine-readable messages.

Statistical language models have been used to support the automatic de-
cryption of English messages encrypted with classical ciphers [196–198]. Al-
Kazaz [199] uses the prediction by partial matching (PPM) compression algo-
rithm, which uses an internal language model trained on a corpus of English
texts, to determine whether a message is a proper English text. The algorithm
achieves a high compression ratio for English texts but this ratio declines oth-
erwise. We follow a similar method to distinguish plain- from ciphertexts.

Prediction by partial matching. The PPM compression algorithm processes
text in a streaming fashion with two main components: a statistical model to
determine the probability of each character’s occurrence, and an encoder to
output characters based on their probability.

Statistical Model. The statistical model underlying PPM compression is an
HMM of order k. This model determines the probability distribution over
each character ci in a message m = (c1, . . . , cl) based on the length-k prefix
si = (ci−(k+1), . . . , ci−1) [208]. The model is trained on a training set M =
{m1, . . . , mn} with messages mi from the target language L. The trained

124

5.4 Detection methods

model is a table that represents the probability of a character ci following a
prefix si of length k.

Combinations of prefix s and characters c that do not appear in the train-
ing set are assigned a probability of zero, resulting in a failure to encode the
character. Therefore, PPM compression uses k Markov models, of order 1 to
k. Whenever the i’th model fails to represent a character sequence, it produces
a special character that tells the encoder to use the i − 1’th model instead.
This “skip model” character is assigned a probability ps in each Markov model.
There are various approaches to computing ps; based on prior work [198] we
use the PPMD approach and set order k = 5.

Encoder. PPM compression encodes messages with an arithmetic encoder
using the trained statistical model [208, 209]. We compute the compression
ratio of a message m as r(m) = |Encode (Model(L) , m)| /|m|.

Ciphertext detection. The compression ratio r(m) captures the likelihood
that the message m is generated by the language model underlying the PPM
compression: the lower the ratio, the higher the probability that the message
originates from the target language, i.e., m ∈ L. We build two PPM-based
detectors to classify messages as plain (comes from the language) or cipher
(does not come from the language).

Gaussian detector (G-PPM). The G-PPM method assumes that the compression
ratios of messages generated from the same language follow a normal distri-
bution. We take a second set of plaintext messages M ′, disjoint from the set
M used to train our compression model, compress each message in M ′ using
the trained PPM model, and fit the parameters of a Gaussian distribution
to the resulting compression ratios. We then label a message as plain if its
compression ratio r(m) is within d = 4 standard deviations of the mean of the
fitted Gaussian. Otherwise, we label the message as cipher.

Two-class detector (2C-PPM). The 2C-PPM method takes an empirical, non-
parametric approach to determine the compression ratio that separates plain-
text messages, coming from the target language modeled by the trained HMM,
from ciphertexts. It only relies on the assumption that the compression ra-
tio of a message r(m) is directly proportional to the likelihood that m ∈ L
and should be labeled as plain. To find the best compression threshold that
separates the two classes, we use a labeled dataset M ′ where half of the mes-
sages are labeled as plain, i.e., m ∈ L, and the other half is labeled cipher.
We compress each message in M ′ and perform a grid search to determine the

125

Chapter 5. Brutus

threshold r′ that maximizes the F1 score of separating messages based on their
class. We then label a message as plain if r(m) ≤ r′ and cipher, otherwise.

Implementation. We modify an existing python implementation of the PPM
algorithm [210] for our use case. 2 We implement three core functionalities:
train a compression model, train a G-PPM or 2C-PPM detector, and classify
messages.

5.4.2 Supervised text classification with a CNN model

The problem of detecting encrypted messages can also be cast as a supervised
learning task. Similar to existing text classification tasks, in which a free text
document is assigned to one out of a fixed set of predetermined categories [211],
we treat the content of each message m as a sample from the class distribution
indicated by its label. We design a CNN detection method using a Convolutional
Neural Network (CNN) model that learns a representation of messages to
separate the two distributions underlying the plain and cipher messages.

A prerequisite for the supervised learning approach is access to a suffi-
ciently large set of labeled messages that serves as a training set. It is crucial
that the messages in the model’s training set are representative of the mes-
sages encountered at test time, or during deployment. Otherwise, the model
will have a large generalization gap and fail to detect ciphers during deployment
under real-world settings.

Message encoding. While almost all text classification models use the natural
construct of words to quantize raw text data into numerical features [211,212],
we follow the approach presented by Zhang et al. [213] and treat each message
as a sequence of single characters. We model a message m as a sequence of
characters (c1, c2, · · · , cl) from a pre-defined character set, the alphabet C. This
approach addresses many of the challenges described in Section 5.1: it makes
the classification agnostic to the language in which a message was written, it
supports abnormal character sequences, such as sensor messages, and enables
the use of CNNs which have been found useful in extracting information from
sequential data.

We encode each message m as a fixed length sequence of one-hot vectors.
Given an alphabet C of size k, each character ci is translated into a vector of

2We will open-source our code upon publication without releasing data.

126

5.4 Detection methods

Figure 5.2: Character-level CNN by Zhang et al. [213]

size k × 1 which is all zeros except at ki, the position of character ci in the
alphabet. Starting from the last position, we transform a message m into a
binary array of size k × l, where l is the number of characters in the message.
We fix the maximum sequence length of any message to lmax and ignore any
characters that exceed this limit. Messages with l < lmax are padded to the
maximum sequence length with zeroes.

Model architecture. The model described by Zhang et al. [213] is a 9-layers deep
CNN with 6 convolutional and 3 fully-connected layers. We implement the
small version of the model with 256 1-dimensional kernels in each convolutional
layer and varying kernel sizes (see original paper and implementation [213]).
The first two and the last convolutional layers are followed by temporal max-
pooling which enables training deeper models. The first two fully-connected
layers present a dropout layer with dropout probability p = 0.5. The number of
input features to the first convolutional layer and the number of output features
of the last fully-connected layer are determined by the problem. The alphabet
size k is determined by the chosen plaintext alphabet (see Section 5.5.6) and
the number of output classes is equal to 2 (plain and cipher). We use the
same non-linearity (ReLU) and training procedure (mini-batch SGD) as in the
original paper.

Implementation. We implement the model using the PyTorch framework [214].
The implementation provides functions for training and evaluating a trained
model, and can be adapted to run either the small or large version of the CNN
presented by Zhang et al. [213].

5.4.3 Supervised classification with a Random Forests model

So far, we considered purely text-based approaches only. Now, we augment our
classification with metadata. We design the MetaRF detection method using a

127

Chapter 5. Brutus

Random Forests (RF) model that combines metadata with features extracted
from the messages’ text to label them as either plain or cipher.

Message metadata. Each message sent over the ACARS network includes an
aircraft registration field (see Section 5.2.2). We use the registration to iden-
tify the aircraft in open-source avionic datasets such as OpenSky’s aircraft
registration [215] and gather additional categorical information about the air-
craft such as manufacturer, model, owner, and operating airline. Previous
studies showed that the use of certain weak ciphers is most prevalent among
a small number of manufacturers and aircraft models [185]. This suggests a
high correlation between a message’s metadata and its label. We leverage this
relationship for training our Random Forests classifier.

Text features. A model trained on message metadata only would not be able to
correctly label messages from unknown categories, such as any manufacturer
not included in the model’s training set. We hence combine the metadata with
a set of text features extracted from the actual message text. The combination
of these two types of features, message text and categorical metadata features,
ensures that the RF classifier is able to both flag new types of ciphertexts and
the use of known ciphers by new actors (e.g., manufacturer or airline). We
leave the detailed description of features used to train the model to Table D.1
in Section D.1.

Limitations on application. The MetaRF detector combines domain knowledge
through metadata with the power of natural language processing. A major
drawback, however, is its reliance on a fixed set of metadata fields to classify
messages. This restricts its usage to use cases where such metadata is readily
available and correlated with the target label. While our primary task, flagging
encrypted ACARS messages, fulfills this requirement, the purely text-based
detectors (i.e., G-PPM, 2C-PPM, and CNN) are more widely applicable to similar
use cases that do not meet this criteria. We hence focus our evaluation in
Section 5.5 and 5.7 to these text-based detectors.

Implementation. We use the sklearn library [216] to implement an RF model
with 10 estimators. The implementation provides model training and classifi-
cation functionalities.

128

5.5 Cipher detection on generated datasets

5.5 Cipher detection on generated datasets

Our ultimate goal is to apply the detection methods introduced in Section 5.4
on real ACARS messages, flag encrypted ones, and then ask an analyst to
identify weak ciphers. We have to solve three major challenges to achieve this
goal.

First, ACARS messages available through data collection of real-world
communication are not labeled and contain a mix of plain- and ciphertexts.
Without labeled data, we can neither create a clean plaintext corpus to feed to
the PPM detectors nor train any of the supervised learning-based detectors.
Labelling ACARS messages, however, requires specialist knowledge about both
aircraft communication protocols and (weak) encryption schemes. Thus, typ-
ical approaches for gathering a labeled dataset such as crowdsourcing that
rely on untrained volunteers are not applicable. We further discuss the chal-
lenges of obtaining labeled data and design a methodology to overcome them
in Section 5.6.

Second, the content of ACARS messages is highly heterogeneous as seen in
Section 5.2.2. The PPM detectors assume that plaintext messages form a single
well-defined language. This heterogeneity increases the complexity of building
a unified language model and finding a threshold that optimally separates
the compression ratio of plain- and ciphertext messages. Similarly, a highly
heterogeneous class of plaintext messages makes it difficult for our supervised
classification methods, CNN and MetaRF, to find a good representative of the
plaintext class that cleanly separates the two classes.

Third, we do not know what ciphers generate encrypted ACARS messages.
While there is evidence for the use of classical ciphers, such as mono-alphabetic
substitution ciphers [185], other types such as transposition or more modern
ciphers may be in use. Thus, our detectors must be able to detect new ciphers
that were not present in their training set.

We explore how each of these factors might affect our detectors in a simpli-
fied setting before addressing them on real-world ACARS data in Section 5.7.
For our evaluation, we use synthetic data generated from pre-processed clean
(plain-)text corpuses. The evaluation with synthetic datasets brings two main
benefits. First, we know the ground truth label for every message. Second, it
enables us to study how heterogeneous text sources and domain shifts between
train and validation sets affect our detectors.

129

Chapter 5. Brutus

Table 5.1: Summary of plaintext sources.

Name #Msgs Mean(len) Max(len) Examples

Bible 42k 94 150 for his mercies are great..
And he said unto me, Go..

SMS 56k 52 500 Okay set! Put on Facebook?
Love u back

Sensor 10k 64 438 PIKCPYA.ADS.N407KZ08081438DA
PIKCPYA.AT1.G-CIVL212E8168..
NIMCAYA.CR1.G-CIVO205837A8..

5.5.1 Synthetic data generation

Text sources. We use three plaintext sources for our experiments. (1) Bible:
an English Bible taken from the Canterbury corpus [217]. We split the text
into sentences with at most 150 characters to simulate the challenge of short
messages. Books provide a simple structured language and are the traditional
choice used in prior work. (2) SMS : a corpus of English SMS messages from
students of the National University of Singapore [218]. The informal conver-
sations in the SMS dataset are more similar to the pilot written messages that
we encounter in the ACARS dataset. (3) Sensor : machine-generated ACARS
messages from a single sensor selected from Smith et. al’s dataset [185]. These
selected sensor messages are plaintexts with high probability and represent the
plaintext sensor data which we face in ACARS. Table 5.1 shows a summary.

Ciphertext generation. From each of these sources, we extract plaintext mes-
sages and encrypt them with classical ciphers to generate ciphertext samples.

Classic ciphers were originally designed to encrypt messages written in the
standard Latin alphabet (A-Z). To be able to encrypt messages that contain
characters outside this set, such as numbers or the special characters found in
ACARS messages (see Section 5.2), we need to extend the set of supported
plaintext characters which we call the plaintext alphabet. We refer to the set
of all possible characters appearing in ciphertexts as the cipher alphabet and
the set of all possible keys as the keyspace.

We use four types of ciphers in our synthetic experiments:

Mono-alphabetic substitution. A mono-alphabetic substitution cipher creates a
one-to-one mapping between the plaintext and cipher alphabets as the encryp-
tion key. Both encryption and decryption use this key to translate characters
from plaintext to cipher alphabet, and vice versa. We represent this category

130

5.5 Cipher detection on generated datasets

with Caesar and simple substitution ciphers.

Poly-alphabetic substitution. Poly-alphabetic substitution ciphers are an exten-
sion of mono-alphabetic ciphers that use multiple plaintext to cipher alphabet
mappings for encryption. We represent this category with the Vigenere cipher.

Transposition. Transposition ciphers permute the characters in a plaintext
message. We represent this category with the columnar cipher.

Modern. We use this category to represent modern ciphers that produce a
pseudo-random stream of characters. As we are not assessing the security of
modern ciphers in this chapter, we assume these ciphers to be secure. We
represent this category with an ideal primitive (PRF) that replaces plaintexts
with a uniformly random binary string of the same length. As the ACARS
protocol does not support binary transmission, we randomly use one of hex,
base-32, base-64, or base-85 encodings to convert the binary ciphertext to an
ASCII string.

5.5.2 Experiment setup

The basic experiment setup in this section is built on a set of plaintext messages
M extracted from one of the three text sources (Bible, SMS, and Sensor) and
a set of nc ciphers E . Unless explicitly defined, the default set E contains the
Caesar, Substitution, Vigenere, Columnar, and Modern ciphers.

For each experiment, we run a five-fold cross-validation and split M into
5 train and validation pairs, Mtrain and Mval. In each fold, we split both
training and validation sets into two halves. One half we leave unencrypted
and label as plain. The other half, we split into nc equal-sized groups, encrypt
each group with a different cipher from our cipher suite E , and label them as
cipher messages. For each cipher in E , we use 10 random keys for encrypting
messages in Mtrain and 10 fresh random keys for encrypting messages in Mval.
We set all characters that occur in the plaintext source M as our plaintext
alphabet.

We use the entire training set Mtrain of each fold to train the CNN and
MetaRF detectors. For the PPM detectors, G-PPM and 2C-PPM, we split Mtrain

into two unequal parts: 80% of the data is used for building the compression
model, and the remaining 20% is used for finding the decision threshold. The
G-PPM detector does not use ciphertext samples at all while the 2C-PPM detec-

131

Chapter 5. Brutus

0.0

0.2

0.4

0.6

0.8

1.0
P

er
fo

rm
an

ce
G-PPM 2C-PPM

Bible SMS Sensor
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

CNN

Bible SMS Sensor
Dataset

MetaRF

Figure 5.3: Precision and recall of ciphertext detection.

tor only uses ciphertexts in the 20% of Mtrain that is dedicated to finding a
suitable threshold. In plots, we report the mean precision or recall of cipher-
text detection for each detector on the five validation sets, and error bars show
the 95% confidence interval.

5.5.3 Baseline

We first demonstrate the effectiveness of our detectors if their respective re-
quirements (see Section 5.4) are met. We use the experiment setup from
Section 5.5.2 for all sources.

The text-based detectors (G-PPM, 2C-PPM, CNN) achieve near-perfect accu-
racy in distinguishing ciphertexts from plaintexts with an average precision
and recall of 99% across all three datasets if clean, labeled data is available
for training (see Fig. 5.3). The MetaRF detector only reaches an average preci-
sion and recall of 84% and 76% across datasets, respectively. However, this is
because in these experiments there is no metadata available for classification.
The model hence needs to rely purely on the features extracted from message
texts which substantially reduces its predictive power. In the following, we
focus our evaluation on the three purely text-based detectors.

132

5.5 Cipher detection on generated datasets

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

G-PPM 2C-PPM

5% 10% 20%
Ciphertext Ratio

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

CNN

5% 10% 20%
Ciphertext Ratio

MetaRF

Figure 5.4: Precision and recall of ciphertext detection when models are trained
on the SMS corpus with a varying ratio of wrongly labeled ciphertexts.

5.5.4 Noisy data labels

Data collected from real-world ACARS traffic is unlabeled, and manual label-
ing by experts is costly and prone to errors. Given the class imbalance in the
ACARS data – only a small fraction of messages is suspected to be ciphertexts
– we expect that a random sample of messages contains a large majority of
plaintexts. Thus, one could use such a random sample directly as a (noisy)
plaintext training set.

To study the impact of noisy labels during model training, i.e., ciphertexts
wrongly labeled as plaintext messages, we intentionally add noise to our train-
ing data and vary the ratio of ciphertexts that are wrongly labeled as plain.
We use the same basic experiment setup as before. We present experiments for
the SMS dataset but observe similar results for all other text sources. In each
experiment, we replace e% ∈ [5, 10, 20] of plain messages in the training set
with cipher messages and randomly drop e% of plain messages to ensure the
class balance during training. Fig. 5.4 shows the performance of our detectors
when the training plaintext data is noisy.

The CNN detector is most robust to noise in its training labels. Recall drops

133

Chapter 5. Brutus

from 99.6% to 87.6% if 20% of plaintext training samples are wrongly labeled.
Precision remains unaffected. In contrast, the G-PPM detector performs very
poorly when trained on noisy inputs. Even just 5% of wrongly labeled training
samples leads to precision as low as 50%. Increasing the noise to 20%, leads
to G-PPM classifying all validation messages as plaintext. Hence, there is no
ciphertext precision bar in the graph. The 2C-PPM detector is considerably
more robust: precision drops slightly to a minimum of 84.7% if 20% of samples
are wrongly labeled while recall stays perfect.

Our experiment (intentionally) uses the same set of keys for encrypting
wrongly labeled plaintexts and correctly labeled ciphertexts. Unlike modern
ciphers, messages encrypted with the same key using classic ciphers produce
highly correlated ciphertexts. This correlation amplifies the performance drop
but is necessary as there is no guarantee that ciphertexts labeled as plain
have different keys from ciphertexts that we want to detect when using a noisy
training set.

Conclusions. Given that we cannot guarantee to obtain clean, labeled training
data in the ACARS setting, we exclude the G-PPM detector from further anal-
ysis. Both the CNN and 2C-PPM detectors tolerate noisy training data, but with
different trade-offs. While the CNN offers higher precision the 2C-PPM provides
close to perfect recall.

5.5.5 Heterogeneous plaintext sources

ACARS messages are highly heterogeneous and vary in purpose (conversations,
requests, etc.), language, and authorship (pilot, sensor). Besides, many pro-
prietary protocols use ACARS as a transmission channel. These protocols are
often private and there is no public list of existing protocols. Even aviation
communication experts struggle to decide if a given message is from known
standard protocols or from a new proprietary one due to the high entropy
of acars messages. Given these factors, manually detecting and separating
languages in the ACARS dataset is infeasible, and the ‘ACARS language’ is
best modeled as a mixture of smaller languages as opposed to a single well-
structured language.

In this section, we hence study the behavior of the CNN and 2C-PPM detec-
tors in the presence of plaintext heterogeneity.

Mix of languages. To assess how training our detectors on messages from
a mixture of languages affects performance, we use the experiment setup in

134

5.5 Cipher detection on generated datasets

Bible
SMS

Sensor

Validation Set

Bible + SMS

Bible + Sensor

SMS + Sensor

All

T
ra

in
S

et
1 0.98 0.5

1 0.67 1

0.99 0.95 1

1 0.93 1

2C-PPM

Bible
SMS

Sensor

Validation Set

1 1 0.52

1 0.93 1

1 1 1

1 0.98 1

CNN

Figure 5.5: Precision across validation sets from different text sources (columns) for
models trained on a mix of languages (rows).

Section 5.5.2 but create datasets that contain a mixture of messages from
different plaintext sources. We randomly sample 8000 messages from each
plaintext dataset and combine them into 4 mixed-language training datasets
that contain a mix of 2 or 3 different languages. For validation, we use the
original single-source validation sets. Fig. 5.5 shows the precision of detectors
trained on mixed-language plaintext sources. The detectors’ recall remains
unaffected under this experiment (see Fig. D.1 in Appendix D.2).

Training on a mix of languages affects the detectors’ performance only
in some cases. The average precision of the 2C-PPM detector on validation
sets from the SMS corpus drops from 98.2% to 93.1% when training on a
dataset that contains messages from all three sources instead of SMS texts
only. The CNN’s performance remains unaffected. For both detectors, however,
we observe a clear decrease in precision when their training sets did not include
any plaintexts from the validation source. Next, we study this effect in more
detail.

Plaintext distribution shifts. ACARS messages come from a variety of sources
and there is no guarantee that messages observed during training are repre-
sentative of those that will be classified later. In other words, there is a high
likelihood that there will be a shift between the distribution of messages in the
models’ train and test sets.

To assess how well models trained on messages from a specific language
perform on test messages from a different language, we use the experiment

135

Chapter 5. Brutus

Bible
SMS

Sensor

Validation Set

Bible

SMS

Sensor

T
ra

in
S

et

1 0.87 0.5

0.99 0.98 0.5

0.5 0.51 1

2C-PPM

Bible
SMS

Sensor

Validation Set

1 0.97 0.95

1 1 0.69

1 0.8 1

CNN

Figure 5.6: Precision across validation sets from different text sources (columns) for
models trained on different texts (rows).

setup in Section 5.5.2 but pair training and validation sets of different text
sources. We show the average precision of the 2C-PPM and CNN detectors under
this setting in Fig. 5.6. The diagonal displays the results for training and
validation sets from the same text source.

The precision of both detectors is significantly affected by certain shifts in
the plaintext distribution between their train and validation sets. While both
detectors retain a high average recall across all text combinations (≥ 99.0%,
see Fig. D.2 in Appendix D.2), there is a high likelihood to misclassify plaintext
messages from unseen sources as cipher.

The CNN detector is more resilient to plaintext domain shifts than 2C-PPM.
For instance, only when trained on SMS and tested on Sensor messages, CNN’s
average precision drops significantly to 69.4%. This robustness is most likely
due to CNN’s ability to find a coherent representation of ciphertexts. As long as
ciphertexts characteristics remain unchanged between training and validation
sets, a CNN detector may accurately distinguish between the two classes. Our
experiments in Section 5.5.6 further strengthen this hypothesis.

The 2C-PPM detector generalizes well across human-written text sources
(SMS and Bible). However, moving between human-written texts and machine-
generated sensor messages leads to a large drop in precision. A detector trained
on the SMS or Bible corpus labels nearly all Sensor messages as cipher be-
cause its underlying language model confidently detects that sensor plaintexts
are not generated from the language it was trained on; therefore marks them

136

5.5 Cipher detection on generated datasets

as encrypted.

Unbalanced mix of languages. In the previous experiments, we observed that
training on a balanced mix of languages with an equal number of messages
from each source affects our detectors’ performance only marginally but that
they tend to perform poorly on messages from languages never seen before.
An analysis of real-world ACARS communications shows that the situation
encountered in practice lies somewhere in-between: While the majority of mes-
sages stem from a small number of common protocols and natural languages,
there is a large number of proprietary protocols that contribute a small number
of messages each. It is thus highly likely that a random sample of ACARS mes-
sages used for training our detectors contains an unbalanced mix of plaintext
types.

To assess the performance of our detectors trained on an unbalanced lan-
guage mix, we use the experiment setup in Section 5.5.2 and generate training
sets of fixed size in the following manner: From each data source, Bible, SMS,
and Sensor, we select 6400 (80%), 7200 (90%), and 7840 (98%) messages and
complement this set with an equal number of messages from the other two
sources to obtain a total of 8, 000 messages in each training set. Fig. 5.7 shows
the average precision of the 2C-PPM and CNN on a training set where 98% of
messages come from the majority source. In this case, the two minority classes
contribute only 40 plain and 40 cipher messages each to the training set. The
detectors’ recall remains unaffected under this experiment (see Fig. D.3 in
Appendix D.2).

Even a very small number of training samples from a specific source is
sufficient for the CNN detector to achieve high performance on messages from
that source. Mixing languages does not degrade the performance of either
detector on the majority source. However, 2C-PPM does not achieve a high
precision on SMS messages when this source contributes only 1% of samples
in its training set. Fig. D.4 in Section D.2 shows that improving 2C-PPM’s
performance on minority languages requires at least 5% representation in the
training data.

Conclusions. To summarize, the CNN detector shows a high tolerance towards
shifts in plaintext distributions as long as its train set contains at least a small
number of samples from the target distribution. The 2C-PPM detector requires
at least 5% of training messages to originate from the test language or high
similarity between train and test languages.

137

Chapter 5. Brutus

Bible
SMS

Sensor

Validation Set

Bible

SMS

SensorM
a

jo
r

T
ra

in
S

et
(9

8%
) 1 0.86 0.95

1 0.99 0.98

0.99 0.71 1

2C-PPM

Bible
SMS

Sensor

Validation Set

1 0.97 1

1 0.99 0.98

1 0.99 1

CNN

Figure 5.7: Precision across validation sets from different text sources (columns)
for models trained on train sets with an unbalanced mix of languages (rows). Row
labels indicate the majority source of training samples (98%).

5.5.6 Heterogeneous cipher suites

As we have little knowledge about the types of ciphers and their implemen-
tations used by aircraft providers [185], our detectors need to generalize well
across ciphertext distributions: i.e., they should correctly identify ciphertexts
generated by ciphers not observed at training time. We intentionally create
domain shifts in our synthetic ciphertexts to study the impact of these shifts.
We report results for the SMS dataset but observe equivalent results on all
other text sources.

Generalization across cipher types. As it is close to impossible to create train-
ing sets that include all possible cipher types and implementations, we study
whether our detectors are able to detect cipher types not seen during training.

From the SMS source, we generate four different datasets, each using a
different cipher suite E to generate encrypted messages (see Section 5.5.2 for
our general experiment setup). We generate one dataset per cipher type de-
scribed in Section 5.5.1: mono-alphabetic (E = {Caesar, Substitution}), poly-
alphabetic (E = {Vigenere}), transposition (E = {Columnar}), and modern
(E = {PRF}) ciphers. During cross-validation, we train a detector on each
cipher’s training set then evaluate its performance on all four validation sets.
This way we obtain the detectors’ average recall in detecting ciphertexts from
the same family as its training examples (diagonal entries) and across cipher
types (off-diagonal entries) shown in Fig. 5.8. The detectors’ precision remains

138

5.5 Cipher detection on generated datasets

Monoalphabeti
c

Polyalphabeti
c

Transpositi
on

Modern

Validation Set

Monoalphabetic

Polyalphabetic

Transposition

Modern

T
ra

in
S

et

0.99 1 0.99 1

0.99 1 0.96 1

0.99 1 0.99 1

0.97 0.99 0.68 1

2C-PPM

Monoalphabeti
c

Polyalphabeti
c

Transpositi
on

Modern

Validation Set

0.98 0.99 0.23 0.99

0.97 0.99 0.097 0.96

0.97 0.98 0.98 0.98

0.061 0.061 0.018 1

CNN

Figure 5.8: Recall across validation sets from the SMS data when the training cipher
suite (rows) differs from the validation cipher suit (columns).

unaffected under this experiment (see Fig. D.5 in Appendix D.2).

The 2C-PPM detector’s performance is rarely impacted by cipher domain
shifts. Only a detector trained on Modern ciphers fails to classify ciphertexts
generated by a transposition cipher. This robustness is due to learning a
coherent representation of plaintext messages. Only when the chosen threshold
r′ to separate plain- from ciphertexts is too high (see the last row, Fig. 5.8 left),
the 2C-PPM detector misclassifies ciphertexts with a low compression ratio.
In contrast, the CNN detector consistently fails to detect messages encrypted
with ciphers less secure than those seen during training. For instance, when
trained on Modern ciphers (last row, Fig. 5.8 right), it does not detect classic
ciphers. Similarly, if the CNN detector is trained on substitution ciphers that
impact the character frequency of messages, the detector labels transposition
ciphertexts, which do not hide the character frequency, as plain. We suspect
that the CNN detector uses the characteristic that the train ciphers hide to
distinguish classes. For example, modern ciphers hide the character frequency
so the detector uses non-uniform character frequency to detect plaintexts; and
misclassifies insecure ciphers that retain these characteristics.

Generalization across keyspace. The ciphertext distribution may be impacted
by the choice of keyspace, especially in substitution ciphers, where the key de-
termines how plaintext characters map to ciphertext characters. The ACARS
transmission channel supports sending 7-bit ASCII characters, but many pro-
prietary protocols use a reduced character set, e.g., only uppercase alphanu-
meric characters plus a small set of special characters. It is likely that the

139

Chapter 5. Brutus

Table 5.2: Character sets used as keyspace.

Name Size Character Set

CLatin 33 [a-z,-./?:*]
CAlphanumLower 43 [a-z0-9,-./?:*]
CAlphanum 69 [a-zA-Z0-9,-./?:*]
CSMS 97 [a-zA-Z0-9,.;:!?’"\t\n#$%&()[]*+-/<=>\@]

custom encryption methods, designed to encrypt ACARS messages from spe-
cific protocols, directly use the protocol’s reduced plaintext alphabet as the
ciphertext space. This poses a problem when generating training sets: As we
do not know the specific plaintext alphabets of ACARS protocols that contain
weak ciphertexts nor how the ciphertext space of their proprietary encryption
is chosen, our detectors are likely to be trained on ciphertexts with a much
larger cipher alphabet than those encountered at test time. We measure how
differences in the ciphertext space between training and validation sets impact
our detectors’ performance on substitution ciphers.

To mimic such shifts, we choose 4 character sets that are subsets of each
other (see Table 5.2). We run our basic experiment setup from Section 5.5.2 but
use the simple substitution as the only cipher. We train one detector using the
full SMS dataset and set CSMS as the keyspace to generate synthetic ciphertexts.
We then generate four different versions of our validation set by choosing one
of the four character sets listed in Table 5.2 as our plaintext/ciphertext space
and discarding any messages from the validation set that contain characters
outside this set. Fig. 5.9 shows the performance of our detectors trained on
datasets using the full SMS character set as ciphertext space validated over
datasets containing plain- and ciphertext messages from a (reduced) character
set.

The 2C-PPM detector’s performance is unaffected by shifts in ciphertext
space. In contrast, we observe a significant drop in the CNN’s recall when
the character set of validation messages is substantially smaller than that of
training messages.

5.5.7 Conclusions

Our extensive evaluation of the four detectors introduced in Section 5.4 uncov-
ers their varying trade-offs. When trained on a labeled dataset that is repre-
sentative of the messages encountered at test time, the three purely text-based

140

5.6 A pipeline for labeling ACARS messages

50 60 70 80 90
|Val. Alphabet|

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

fo
rm

an
ce

2C-PPM

Precision

Recall

50 60 70 80 90
|Val. Alphabet|

CNN

Figure 5.9: Precision and recall when varying ciphertext spaces in validation set.

detectors, G-PPM, 2C-PPM, and CNN, clearly outperform the MetaRF detector if
no metadata is available. The G-PPM method, however, does not tolerate noise
in training labels and is not a viable option for classifying ACARS messages.

In contrast, the 2C-PPM detector still achieves close to perfect recall even
when the training data includes a small ratio of wrongly labeled ciphertexts
and only suffers a slight reduction in its precision. It is furthermore robust to
cipher domain shifts such as mismatching cipher type or keyspace. The draw-
back of the 2C-PPM detector is sensitivity to plaintext domain shifts. Large
shifts, such as those between human-written texts and machine-generated sen-
sor data, between the detector’s train and validation sets prompt the 2C-PPM
to misclassify plaintexts from the target language as ciphertexts.

The CNN detector shows resilience to noisy training labels and plaintext
domain shift. However, it often fails to recognize ciphertexts generated from
a new cipher type not included in its training set. Our experiments suggest
that the CNN’s tendency to misclassify ciphertexts as plaintexts is largest when
the test cipher is less secure than the ciphers the model has been trained on
and retains certain plaintext characteristics, such as non-uniform character
frequencies.

5.6 A pipeline for labeling ACARS messages

We investigated the behavior of our detectors on synthetic data in a setting
where we control any experimental factors that might influence their perfor-
mance. Now, we draw on the insights from these experiments to design a data
pipeline that starts with a set of unlabeled ACARS messages collected from

141

Chapter 5. Brutus

real-world aircraft communications and results in a labeled dataset that can be
used to train any of the detection methods introduced in Section 5.4. We build
our pipeline in a way that minimizes the manual labor needed and maximizes
the number of flagged messages that are deemed relevant by an expert ana-
lyst. We describe three alternative approaches to obtaining labeled datasets
and discuss their varying trade-offs in terms of scalability and accuracy of the
resulting predictions.

Data requirements. As discussed before, ACARS data available through data
collection of real-world aircraft communications is not naturally labeled. How-
ever, training our detectors requires a labeled dataset. We have two main
dataset requirements. First, naturally, the labeled set must include a sufficient
number of encrypted messages. Prior analysis of ACARS messages has shown
that only a small fraction of sent messages are encrypted [185]. Consequently,
satisfying this requirement can be challenging in the ACARS setting as a small
random sample of messages might not meet this requirement. Second, the la-
beled set must cover a wide variety of message types (e.g., originating from
various protocols). As we demonstrate in Section 5.5.5, if the detectors’ train-
ing set does not include any examples of a specific message type, there is a
high risk that messages of this type are misclassified.

Labeling approaches. The standard approach to label data at scale, crowd-
sourcing, is unfortunately unsuitable for our setting. Labeling ACARS mes-
sages requires specialist knowledge about both ACARS communication pro-
tocols and (weak) encryption schemes. Thus, we cannot outsource this task
to untrained volunteers. The next option is expert labeling. This approach
has two problems: (1) labeling messages correctly is hard and time-consuming
even for experts and (2) it does not scale beyond a few thousand messages.
We performed a small study in which we asked a group of ACARS special-
ists to label a small set of messages. They perceived the task as cumbersome
and struggled to produce high-confidence labels. Now, we study approaches
to overcome these limitations,

5.6.1 Synthetic data generation based on noisy samples

The fraction of ciphertexts in ACARS messages is low [185]. We leverage
this observation and combine it with the synthetic ciphertext generation (see
Section 5.5.1) to design a scalable approach to obtain a labeled dataset. We
first randomly select a large sample of ACARS messages and label all messages
as plain. Due to the class imbalance, the majority of labels are assumed to

142

5.6 A pipeline for labeling ACARS messages

be accurate. The random sample, however, only provides us with (noisily)
labeled plaintext messages. We use our experimental setup (see Section 5.5.2)
with the default cipher suite to generate cipher messages from our plaintexts.
This provides us with a dataset similar to the noisy labels which we study in
Section 5.5.4.

Discussion. This approach scales easily but produces low-quality and noisy
labels. Moreover, it relies on synthetic ciphertext generation to obtain cipher
samples. Hence, the performance of our detectors on flagging real-world en-
crypted ACARS messages depends on the similarity between the generated
ciphertext examples and the ciphers found in ACARS.

5.6.2 Manual labeling

We show how to address the lack of ciphertext samples when manually labeling
a small set of messages. Next, we show how to bootstrap this small set of high-
confidence manual labels to produce high-quality labels at scale.

Message selection. The main constraint on manual labeling by experts is its
scalability: To collect high confidence labels on ACARS messages requires a
substantial effort even by trained experts. The problem with letting experts
label a small random selection of ACARS messages is that it does not meet
our two main requirements: The random sample is unlikely to contain enough
examples of the cipher class and a variety of message types from different
ACARS protocols.

We want to filter out a small set of messages that is likely to contain a
sufficient number of ciphertexts. Detectors trained on noisy data may suffer
from performance drop, but they suffice to guide out filtering criteria and make
a biased message selection. We first collect a large random sample of ACARS
messages. Similar to our experiment setup (see Section 5.5.2), we split the data
into 5 disjoint subsets then process each subset into two plain and cipher
halves. This makes each subset a noisy training set where some ciphertexts are
incorrectly labeled as plain. On each of these subsets, we train a CNN detector
and use it to classify all messages in the remaining 4 subsets. At the end of
this process, we have 4 labels on each message. We select messages that are
flagged as cipher by at least one detector for manual labeling. Using 2C-PPM
detectors instead of CNN detectors is possible and may improve the ciphertext
recall rate at the cost of having more messages for manual labeling due to the
lower precision.

143

Chapter 5. Brutus

Manual expert labeling. We randomly select 50, 000 ACARS messages and use
cross-validation with our CNN detector to filter out a subset of messages for
manual labeling. Following this process, we obtain 1, 811 messages marked as
cipher. One of the authors, who is familiar with aviation protocols, labeled
these messages, together with an additional control sample of 100 messages
not flagged by any of the 4 detectors and marked as plain (1, 911 messages in
total).

In addition to the free text, our labeling tool provides the labeler with
message metadata such as aircraft manufacturer, operator, and ACARS label.
This allows experts to use their domain knowledge to make more informed
decisions. We asked labelers to indicate their confidence in each label as low,
medium, or high. Our expert labels 422 out of 1, 911 messages as ciphertexts,
276 of those with high or medium confidence. A total of 738 messages only
receive a low confidence label.

The high number of messages that only receive a low confidence label
can partly be explained by our biased selection. Our expert mainly observes
challenging plaintexts that look similar to ciphertexts. This makes it harder
to distinguish these messages from their encrypted counterparts. This is also
shown by the fact that all 100 messages not flagged by our CNN included as a
control sample are labeled as plain, 67% of which with high confidence.

5.6.3 Bootstrapping manual labels

The result of the previous step is a set of 1, 911 manually labeled messages that
contains both plain- and ciphertext examples. This dataset is still too small to
fully leverage the capabilities of our CNN and 2C-PPM detectors and the biased
message selection is not representative of the entire ACARS corpus. This leads
to a high risk of purely text-based detectors producing random labels on any
type of plaintext message that is not included in the labeled set

We leverage the ACARS metadata and use our MetaRF detector to over-
come this limitation. As discussed in Section 5.4.3, the metadata attached to
each ACARS message is highly correlated with its likelihood to be encrypted.
The MetaRF detector uses this relationship to learn which actors are likely to
encrypt their communications and which ACARS subprotocols contain a high
ratio of ciphertexts. Combined with the text features listed in Table D.1, the
MetaRF detector, which can be trained on small datasets, provides us with a
powerful tool to expand our manual labels.

144

5.7 Insecure ciphers in aerospace

Table 5.3: An overview of labeling approaches and their suitability for our detectors.
HC stands for high-confidence.

Labelin
g

Scalability

No manual labor

HC plain labels

HC cipher labels

Real cipherte
xts

CNN 2C-PPM
MetaRF

Noisy ✓ ✓ × ✓ × ∼ ∼ ×
Manual expert × × ✓ ✓ ✓ × × ✓
Bootstrapped ✓ × ∼ ∼ ✓ ✓ ✓ ×

We train a MetaRF detector on our manually labeled dataset and use it to
label a random sample of 150, 000 ACARS messages, disjoint from the dataset
used to create our manual labels. We obtain 9, 246 messages labeled as cipher
and 140, 754 messages as plain.

Discussion. As shown by our evaluation in the next section, our approach
to scaling manual labels by experts to a larger dataset produces high-quality
training sets for our detectors. However, compared to synthetic data generation
on noisy labels (see Section 5.6.1), it comes at a significant cost in manual labor
and might not be applicable to other data use cases outside ACARS. The
metadata needed for bootstrapping is not always available or correlated with
the target label. Furthermore, the generalization capabilities of our MetaRF
detector are limited. While MetaRF is capable of detecting new cipher types
sent by aircraft models and operators known to use proprietary encryption
methods, it might fail to flag ciphertexts that originate from new aircraft
types or have entirely different text features from training ciphertext.

5.6.4 Conclusion

We present three approaches to gathering a labeled dataset of ACARS mes-
sages that provide different trade-offs on scalability, manual labor, and label
confidence. Table 5.3 summarizes the properties of our labeling methods and
their compatibility with our detectors.

5.7 Insecure ciphers in aerospace

Our goal is to detect ciphertexts in ACARS communications and identify actors
who use insecure encryption schemes. We assess our detectors’ performance in

145

Chapter 5. Brutus

a real scenario and observe how they compare. We cannot compute traditional
performance measures such as accuracy or F1 score since there is no ground
truth for real messages. Instead, we design an evaluation criteria based on
how experts use detectors to catch bad actors in aerospace. We require all
our measures to be non-intrusive, i.e., measurements should not cause a high
burden on experts when performing the analysis.

We take the manual analysis of ACARS messages by Smith et al. [185] as
the baseline and assess how our detectors impact the analysis. We design and
evaluate four criteria:

• Does the detector flag messages encrypted under known insecure ciphers
(Section 5.7.2)?

• Does the detector enable our human analyst to identify previously un-
known insecure ciphers (Section 5.7.3)?

• How much overhead in manual labor does the detector cause (Section 5.7.4)?

• How much effort is needed to effectively use our detectors in a new region
or over time (Section 5.7.5)?

5.7.1 Setting-up detectors

Building detectors requires 2 parts: a detection method and a training label
source. We designed 3 detection methods (PPM, CNN, RF) in Section 5.4
and identified 3 approaches for obtaining labeled training data (Noisy, Manual,
Bootstrapped) in Section 5.6. We use Table 5.3 to select 5 detectors:

SynCNN uses noisy data labeling with CNN detection.

SynPPM uses noisy data labeling with 2C-PPM detection.

MetaRF uses manually labeled data with MetaRF detection.

CNN uses bootstrapped data, that includes real ciphertexts, with CNN detec-
tion.

2C-PPM uses bootstrapped data, where real ciphertexts are replaced with syn-
thetic ones, with 2C-PPM detection.

Our detector selection assesses our three detection methods with low and
high labeling effort. Since the 2C-PPM detector is sensitive to noisy labels

146

5.7 Insecure ciphers in aerospace

Table 5.4: Number of insecure ciphers flagged out of 52 ciphertexts manually de-
tected in Smith et al.

SynCNN SynPPM MetaRF CNN 2C-PPM

cipher 1 16 51 52 52

but robust to cipher domain shifts, we replaced bootstrapped cipher messages
(which may contain false positives) with synthetic cipher messages (which are
guaranteed to have the correct label).

Our goal is to confirm the impact of our detectors rather than doing a
full-scale study. Hence, we limit the number of studied messages to reduce
our analyst’s workload. Of course, looking at more data may lead to finding
more insecure ciphers. We use the 150k randomly selected messages from Sec-
tion 5.6.3 for training and randomly select 50k test messages for analysis. We
label these 150k training messages according to our noisy and bootstrapped
approaches in Section 5.6 and train our detectors. Note that the MetaRF de-
tector is trained on the set of 1,911 manually labeled messages in Section 5.6.2.
Finally, we classify the 50k test messages with our 5 detectors.

5.7.2 Automated detection of known ciphers

First, we assess whether our automated tools can detect manually identified
insecure ciphers. Smith et al. [185] manually crafted a regular expression for
detecting a specific class of classic ciphers. We apply this expression to our
50k test messages, which flags 52 messages. Table 5.4 reports the number of
known ciphertexts flagged by each detector.

Detectors trained on manual and bootstrapped labeled data have near-
perfect recall; CNN and 2C-PPM detectors flag all weak ciphers while MetaRF
only misses one (98%). In contrast, detectors trained on noisy data only mark
31% (SynPPM) and 2% (SynCNN) of known ciphertexts.

5.7.3 Exploring unknown insecure ciphers in ACARS

To answer “Does our detectors help analysts to detect unknown insecure ci-
phers?”, we asked an analyst – who is one of the authors and has extensive
knowledge of ACARS – to repeat the original experiment (Smith et al. [185])
on a smaller scale with our detectors.

147

Chapter 5. Brutus

A decision support system. We observed the expert’s analysis process and
interactively designed a dashboard to support them. The dashboard enables
viewing and searching messages. Moreover, the dashboard supports grouping
messages by their metadata since experts study messages in groups based on
the ACARS label as it approximately separates messages by their functionality
and underlying protocol (see Section 5.2). The dashboard further displays
statistics on the flagged messages per aircraft manufacturer, model, owner,
and operating airline. We further describe our dashboard in Section D.3.

We loaded our dashboard with the 50k test messages and classification la-
bels from the MetaRF, CNN, and 2C-PPM detectors. Then, we asked our expert to
analyze this data and report insecure ciphers. We only use high-performance
detectors in our dashboard to reduce the load on our analyst. We compared
labels from SynCNN and SynPPM to our analyst’s findings to assess their effec-
tiveness at the end.

Whenever our analyst suspects a group of messages to be encrypted under
an (insecure) cipher they first identify which actors are most likely responsible
for using this cipher and then contact the responsible actor, either directly
or through regulating bodies. The number of contacts initiated based on the
analysis is a good measure of the effectiveness of our tools. It demonstrates
that our detectors flag messages that our specialists deem suspect and worth
a follow-up request.

Our analyst identified 9 new potentially insecure ciphers, see Table 5.5.
The majority of suspected ciphers have a fixed acars label and are used by a
specific manufacturer. Only ciphers #4, #5, and #9 are found across multiple
aircraft types. Ciphers #4 and #8 are found across multiple ACARS labels.
We disclosed our findings to aircraft manufacturers and are following up to
gather more information.

Our analyst believes one of the detected cipher groups originates from the
same encryption scheme as the original manual study but eluded inspection.
A metadata analysis confirms that these messages originate from aircraft using
HoneyWell devices, the device type identified as the source of the cipher in the
manual study. Thus, beyond detecting new ciphers, our detectors enabled our
analyst to identify and alert a new manufacturer who uses encryption known
to be insecure.

Detector performance. The last five columns of Table 5.5 indicate whether the
cipher type would have been identified by our analyst based on the detector’s
predictions.

148

5.7 Insecure ciphers in aerospace

Table 5.5: Suspected (insecure) ciphers in ACARS, and detectors’ performance on
flagging all (✓), some (∼), or none (×) of the cipher’s message groups.

Labels # Actors SynCNN SynPPM MetaRF CNN 2C-PPM

#1 MA 1 ✓ ✓ ✓ ✓ ✓
#2 H1 1 × ✓ × × ✓
#3 H1 1 × ✓ ✓ ✓ ✓
#4 1L, 3L, H1, H2 4 ∼ ∼ ∼ ✓ ✓
#5 41 2 × ∼ ✓ ✓ ✓
#6 26 1 × ✓ × ✓ ✓
#7 H1 1 × ✓ ✓ ✓ ✓
#8 4D, 5Z 1 × ✓ ✓ ✓ ✓
#9 42 2 ∼ ✓ ✓ ✓ ✓

Our purely text-based detectors trained on a bootstrapped dataset outper-
form the MetaRF detector that is using both text- and metadata-based features.
The MetaRF detector fails to flag 2 out of the 9 ciphers and only partially flags
cipher #4. In comparison, the 2C-PPM detector provides a complete list of find-
ings while the CNN detector only misses one interesting group. These results
demonstrate the success of text-based detectors in ACARS when supplied with
a training set that is representative of the target distribution.

Out of our two detectors trained on noisy data, SynCNN misses many of
the analyst’s crucial findings. We expect that the low recall of SynCNN is due
to cipher domain shift (see Section 5.5.6) as CNN detectors generalize poorly
across unseen cipher types. Surprisingly, SynPPM far exceeds our expectations
and even outperforms our MetaRF detector.

5.7.4 Analysis overhead

While the number of contacts is indicative of whether a detector is likely to
miss crucial findings, it does not take into account how precise the labels are.
While some detectors have high coverage, they might produce a significant
overhead for the analyst if the total number of flagged messages is high but
only a low fraction is actually relevant.

There are two common (direct) approaches for measuring the overhead of
detectors: measure the necessary time for an expert to perform the analysis
with a detector or ask experts to label messages as interesting/non-interesting
to measure the ratio of interesting messages. However, both approaches are
intrusive. Measuring the analysis time for each detector adds a huge burden on

149

Chapter 5. Brutus

Table 5.6: Number of messages labeled as cipher from 50k test ACARS messages.

SynCNN SynPPM MetaRF CNN 2C-PPM

cipher 300 2278 2909 3193 3015

analysts while reducing the available information to only 1 classification label.
Similarly, explicitly labeling all messages is very time-consuming. Therefore,
we come up with two indirect measures to estimate the overhead:

Number of flagged messages. Analysts check a large portion of flagged mes-
sages. Thus, the number of messages labeled as cipher is a coarse estimate of
the effort needed. There are two drawbacks to this measure: it estimates total
work and not overhead, and the time spent on messages varies depending on
the underlying protocol and the number of similar messages.

Table 5.6 reports the number of messages labeled as cipher by each de-
tector. Except for the SynCNN detector, the number of flagged messages does
not vary much; MetaRF, CNN, and PPM detectors flag 5.8 − 6.4% of messages
while SynPPM only flags 4.5%.

Number of flagged groups. Experts study flagged messages in groups (formed
by metadata) as having multiple messages of the same type/purpose gives a
better view of the protocol. We follow the same process to group all flagged
messages. We mark a group as interesting if it is marked for further investi-
gation in Section 5.7.3. The number of groups not marked as interesting is a
measure of overhead. Fig. 5.10 reports the number of flagged groups for each
detector and how many groups were marked as interesting.

The detection method has a higher impact on the overhead than the
source of training labels. The PPM detectors, SynPPM and 2C-PPM, tend to
have the highest number of non-interesting flagged message groups (85 to 87).
The CNN detectors, SynCNN and CNN, flag 55-61 non-interesting groups, while
the MetaRF detector achieves the lowest overhead by only flagging 40 non-
interesting groups.

Our measures are a rough estimate of the actual overhead. They give a
first impression of the trade-offs our detectors pose. Our experiment suggests
that the higher recall rate of PPM detectors comes at the price of doubling
the overhead.

150

5.7 Insecure ciphers in aerospace

SynCNN SynPPM MetaRF CNN 2C-PPM
Detector

0

20

40

60

80

100

#
gr

ou
p

s
fla

gg
ed

Figure 5.10: Message groups flagged by our five detectors. shows the total number
of groups flagged and the groups marked by analysts as suspicious.

5.7.5 Generalization over time and geographic regions

Ensuring the security of aerospace is a continuous task. Regulators keep track
of known ciphers to push manufacturers towards secure options. Moreover,
aviation is an international industry and different geographical regions may
have distinct airlines, aircraft, and sometimes even different protocols. This
may lead to plain- and ciphertext distribution shifts. Thus, we assess our
detectors’ robustness when faced with new data.

New dataset. We used an existing infrastructure [219] to obtain over 2 million
ACARS messages from satellite, VHF, and VDL2 sources during one week
starting April 6, 2022. We mainly cover North America.

We use our five detectors, without re-training, to classify a random se-
lection of 100k messages from the new dataset. Based on our experiment in
Section 5.7.4, we expect roughly 5% of messages to be flagged if there is no
change in the situation. SynCNN and MetaRF only label 303 and 512 messages
as cipher which is a sign of having a low recall. The PPM detectors label
37% of messages as cipher which shows low precision and high overhead. In
contrast, CNN is robust and labels 5.5% of messages as cipher as expected.
Inspecting the compression ratio of PPM detectors suggests a plaintext distri-
bution shift. Re-training the SynPPM detector brings the cipher ratio to the
expected range at a low cost.

Finally, we used the CNN result to check the persistence of ciphers detected

151

Chapter 5. Brutus

in Section 5.7.3. We observed that not only weak ciphers from 2017 are still in
use in 2022 but that they also have spread to more manufacturers and aircraft.

5.7.6 Conclusion

We recommend using both CNN and SynPPM detectors simultaneously for con-
tinuous deployment. The CNN detector provides great recall and the highest
robustness; it can be used on new datasets without retraining. 2C-PPM pro-
vides the highest recall but is sensitive to plaintext domain shift. Changing
the geographical region may require re-training PPM detectors. As the SynPPM
detector has a recall and overhead rate close to the 2C-PPM detector, the lower
labeling effort makes SynPPM a better choice for deploying to new datasets.
Training the first MetaRF detector was necessary to enable bootstrapped la-
beling and build robust CNN detectors. However, the performance/overhead
trade-off of MetaRF does not justify repeating the manual labeling and retrain-
ing a MetaRF detector for new datasets.

5.8 Discussion and conclusion

We presented new methods for detecting the use of weak ciphers in the ACARS
protocol. However, our design and methodology applies to any scenario in
which weak ciphers may still be in use. Unfortunately, such scenarios might
be more common than security researchers might like. Nautical and satellite
communications are also notorious for having been designed before security
was common place. Moreover, IoT devices have low communication and com-
putation power and they are infamous for the existence of numerous private
proprietary protocols. IoT designers may cut corners and use obsolete ciphers.
Similar conditions apply to embedded systems. Our tools can easily be ad-
justed to detect ciphers in various communication channels.

152

Chapter 6
Conclusion

When designing systems, some argue that enabling privacy will be prohibitively
expensive and use this excuse to ignore the possibility of building privacy-
preserving alternatives. However, In this thesis, we demonstrate that privacy-
enhancing technologies can be practical in many real-world scenarios. While
there is no silver bullet that can achieve efficient privacy out of the box, tai-
loring cryptographic tools for a specific challenge can drastically improve per-
formance; allowing the system to scale to practical scenarios.

We showed that identifying and bridging the gaps between theoretical
cryptographic solutions and real-world problems can improve the practicality
of privacy-preserving systems. Although we have not reached a stage where
existing systems can seamlessly integrate privacy via a ‘privacy library’, privacy
is no longer an out-of-reach property.

In collaboration with the International Consortium of Investigative Jour-
nalists (ICIJ), we designed DatashareNetwork a privacy-preserving peer-to-
peer document search engine tailored for investigative journalists. We demon-
strated that DatashareNetwork can scale up to thousands of journalists and
millions of documents; satisfying ICIJ’s current needs and supporting future
expansions. While a practical academic design was a crucial step in conceiv-
ing DatashareNetwork, the academic proof of concept and publication was
merely the beginning. Real-world applicability requires more. We contin-
ued our collaboration with ICIJ to help them develop and deploy the system.
DatashareNetwork not only brings novel search features to journalists but also
fosters collaboration and opens up new avenues At the moment, DatashareNet-
work is an open-source software in the beta test stage and soon will enable
journalists to tackle upcoming challenges.

The efforts made to ensure that DatashareNetwork satisfies a real-world
need and can be deployed as a useful tool for investigative journalists were rec-

153

Conclusion

ognized by receiving awards such as runner-up for CNIL-Inria data protection
award [220] and runner-up for Caspar Bowden award for outstanding research
in privacy enhancing technologies [221]. Beyond the original paper, the lessons
learned during the DatashareNetwork project were presented at the real-world
crypto symposium (RWC 2023) [222]

We introduced a new class of problems called PCM and showed their use
in various real-world scenarios such as privately searching chemical compound
datasets or collections of documents. Our approach to PCM problems takes
the principle of ‘data minimization’ to the maximum and states that ‘if a user’s
need can be satisfied with a single bit of information, there is no need for re-
vealing more’. We designed a layered framework that separates concerns such
as basic set comparison, matching criteria, and aggregation from each other
and allows simple customization of the protocol for various use cases. We
developed our framework and showed that it improves latency, client compu-
tation, and communication cost with respect to the prior generic systems that
offer the same privacy guarantee.

We designed Janus, a privacy-preserving biometric deduplication system
to protect against double registration in humanitarian aid distribution. We
demonstrate that Janus is compatible with fingerprints, irises, and face recog-
nition; Janus is also capable of fusing multiple biometric samples together
enabling it to support the necessary error rate for large-scale deduplication.
We develop three instantiations of Janus based on secure multiparty compu-
tation, homomorphic encryption, and trusted hardware and demonstrate that
they can scale to practical scenarios. Our design may impact the future deci-
sions of the International Committee of Red Cross when integrating protection
against double registration in their digital system.

We designed a decision support system called Brutus that aids human
analysts to detect the use of insecure ciphers in aircraft communication. We
design three methods to automatically detect ciphertexts in the ACARS do-
main and a new methodology to gather labeled data at scale when the labeling
process requires high expertise. Our decision support system led to the detec-
tion of 9 (potentially insecure) ciphers used in aviation which we responsibly
disclosed to the stakeholders involved. Brutus may be used in the research
branch of Armasuisse as a tool to help monitor and improve the security of
aircraft communication.

154

6.1 Future work

6.1 Future work

This thesis introduces new practical scenarios with real-world impacts, such
as constraints that investigative journalists and humanitarian organizations
face. We hope to see more papers and systems that are compatible with these
requirements in the future. Beyond introducing new problems and scenarios,
this thesis identifies the following areas to address:

A methodology for designing private systems. We observe a common pat-
tern emerging when looking at the process of building DatashareNetwork, PCM
framework, and Janus together. Each project includes steps to: (1) Identify
a real-world privacy problem. (2) Study users to understand their functional
needs and the risks that face. (3) Systematize users’ needs and risks into a set of
technical requirements and a threat model. (4) Design a solution that satisfies
all requirements, (5) Perform a system-wide security and privacy analysis. (6)
Develop a prototype and evaluate the performance of the system. Creating a
methodology on how to study privacy problems and design privacy-preserving
solutions can facilitate the process of building new systems.

Evaluator privacy in homomorphic encryption. Homomorphic encryption
is a valuable tool that enabled the construction of many new cryptographic
primitives including the ones introduced in our PCM paper. HE offers strong
formal privacy guarantees for the person holding the private key, but the pro-
tection provided to the evaluators is lacking. The notion of circuit privacy was
introduced to help with the challenge of keeping the evaluators’ data private
but it still has shortcomings: circuit privacy requires (1) honest generation
of public and evaluation keys, (2) can have a high impact on noise, and (3)
only supports the semi-honest setting and fails to protect against malicious
adversaries.

Private tools for journalist. We studied the constraints that investigative
journalists face which are quite different from common assumptions that ap-
pear in cryptographic papers. While DatashareNetwork satisfies journalists’
need for search, there is still a lot of room for improvement. The performance
and scalability of DatashareNetwork come at the price of privacy compromises.
It is possible to design and build more private solutions. Our PCM framework
shows that it is possible to achieve the optimal privacy of only revealing 1 bit
per search. However, the extra privacy of our PCM solution comes with higher

155

Conclusion

computation and communication costs. We hope that future work can reduce
the performance and privacy gap between PCM solutions and DatashareNet-
work.

156

Appendix A
Appendix for DatashareNetwork

A.1 Security of MS-PSI

In this section, we prove that MS-PSI is correct and private. Proving privacy
requires showing that neither a malicious client nor a malicious server can learn
anything beyond the intended output of the protocol. The client’s interaction
with the server is identical to the PSI [25] and C-PSI [16] protocols. Hence,
they have the same client privacy against a malicious server. To prove server
privacy, we use the ideal/real world paradigm in the random oracle model
and show that a malicious MS-PSI client does not learn anything beyond the
intended output of the protocol as long as the One-more-Gap-DH assumption
holds. We first prove correctness.

Theorem 7. The MS-PSI protocol is correct.

Proof. We show that the intersection Id of the d’th set represented as Yd =
{yd,1, yd,2, .., yd,nd

} and the client’s set X = {x1, x2, .., xm} is equal to Id =
X ∩ Yd.

Recall that the client computes the intersection with set Yd as Id = {xi |
T(d)

i ∈ TC}. We prove that T(d)
i ∈ TC iff xi ∈ X ∩ Yd. For each client keyword

xi, the client computes the pretag τi = x̂c−1
i = x̃sc−1

i = Ĥ(xi)csc−1 = Ĥ(xi)s.
On the other hand, the server computes its pretags for set Yi as τ (i) = {Ĥ(y)s |
y ∈ Yi} and computes its tag collection as TC =

{
H(i || t)

∣∣∣ i ∈ [N] ∧ t ∈ τ (i)
}

={
H

(
i || Ĥ(y)s

) ∣∣∣ i ∈ [N] ∧ y ∈ Yi

}
. Hence, the intersection will be computed as

Id = {xi | T(d)
i ∈ TC}

=
xi

∣∣∣∣∣∣ H(d || τi) ∈
{

H
(
i || Ĥ(y)s

) ∣∣∣∣ i ∈ [N] ∧ y ∈ Yi

}.

157

Chapter A. Appendix for DatashareNetwork

The hash functions Ĥ and H are cryptographically secure, and the probability
of collision is negligible. Hence, two hash values will only be equal when their
inputs are equal. Since d is an input to H, only the keywords from the d’th set
in the server’s tag collection can be in the intersection. Therefore:

Id =
{
xi

∣∣∣ Ĥ(xi)s ∈ {Ĥ(y)s | y ∈ Yd}
}

.

Similarly, xi is an input to Ĥ and it will be in the intersection Id if xi is
present in both X and Yd sets. Consequently:

Id = {xi | xi ∈ {y | y ∈ Yd}} = {xi | xi ∈ Yd} = X ∩ Yd.

The MS-PSI protocol is interactive: the client asks keywords in multiple
queries and receives the response of the i’th query before making the i + 1’th
one. To measure the client’s interaction with the server, we define q as the
number of queried keywords. We chose the number of queried keywords over
the number of queries since the server reveals the same information about these
q keywords regardless of how many queries they were asked in. Without loss of
generality, we assume an adaptive adversary in which the adversary asks her
keywords one by one and receives responses immediately. The non-adaptive
versions or versions where the client queries multiple keywords simultaneously
only delay when the adversary receives the response. Hence, they have the
same security guarantee as the adaptive version.

An adaptive PSI functionality. Let λ be an empty string, w be the client’s
input keyword, and Y = [Y1, . . . , Yn] be a list of n server sets Yi = {yi,1, . . . , yi,ni

}.
We define the adaptive PSI functionality PSIadt as a two party function in which
the client learns the sets which contain the keyword w, and the server learns
nothing:

PSIadt(w,Y) =
(
{i | i ∈ [n] ∧ w ∈ Yi)}, λ

)
.

We define Idealq as an ideal instantiation of PSIadt in which a trusted third
party receives the server’s input and responds to the client’s PSIadt queries at
most q times. Idealq provides an oracle OIdeal(Y , w) → {i | i ∈ [n] ∧ w ∈ Yi)}
which responds to ideal queries. The ideal oracle can answer non-adaptive
queries with t keywords by calling the PSIadt process t times and concatenating
their responses. Note that this operation costs t adaptive queries.

We define Realq as the real world instantiation of PSIadt which runs the

158

A.1 Security of MS-PSI

MS-PSI protocol and allows the client to ask up to q keywords. The MS-PSI
protocol consists of 2 parts: 1) publish, which corresponds to the pre-process
phase and 2) exponentiation, which corresponds to the online interaction. The
simulation implicitly assumes a known fixed size for the parties’ inputs as
an adversary can distinguish different input sizes. To make this explicit, we
reveal the number of server sets N and the size of the tag collection N =
|TC| = ∑N

i=1 ni to the simulator and the adversary. Bear in mind that the
MS-PSI protocol reveals an upper bound on N and N . MS-PSI uses two
hash-functions H : {0, 1}∗ → {0, 1}l and Ĥ : {0, 1}∗ → G, which are modeled
in the random oracle model (ROM) as oracles OHkw

and OHG
respectively. We

define the following oracles to represent Realq:

x← OReal
HG

(w) hashes the keyword w ∈ {0, 1}∗ into a uniformly random group
element x ∈R G.

TC ← OReal
P ub() pre-processes the server’s input, i.e., chooses the server’s secret

key α, and publishes the server’s tag collection TC = {H(i || Ĥ(y)α) | i ∈
[N] ∧ y ∈ Yi}.

xα ← OReal
exp (x) takes a group element x ∈ G and returns xα. The adversary is

limited to making up to q queries.

τ ← OReal
Hkw

(ω) hashes the input ω ∈ {0, 1}∗ to a random l-bit tag τ ∈ {0, 1}l.

To show that Idealq and Realq have the same server privacy guarantee, we
assume a PPT adversary A that interacts with Realq and design a simulator
S which given black-box access to A extracts the same information from the
ideal world Idealq. In Theorem 3, we proved that the MS-PSI is correct. Since
MS-PSI is correct and its output is deterministic, we only have to prove the
following computational indistinguishability to show that the server privacy in
the real and ideal worlds are equivalent:

ViewA
Realq

(
[wi]i∈[q],Y

)
c≡ ViewSA,OIdeal(Y,·)

Idealq

(
[wi]i∈[q],Y

)
.

Where ViewP
f (X, Y) is the view of P in an execution of PSIadt instantiated with

f , X is the client’s input, and Y is the server’s input.

We start with a high-level overview of the proof. We build simulator S
by constructing oracles to represent MS-PSI. Afterward, we show that the
adversary cannot distinguish simulator S from Realq. Oracles OS

HG
and OS

exp

are similar to their real world counterparts. The oracle OReal
P ub follows the pre-

process phase of the MS-PSI protocol to compute the server’s tag collection

159

Chapter A. Appendix for DatashareNetwork

TC and produces a set of N random l-bit tags generated by the hash function
H. To mimic this, the oracle OS

P ub returns N random l-bit tags. To construct
the oracle OS

Hkw
, simulator S has to extract the adversary’s effective input

and query it to the ideal oracle OIdeal to respond accordingly (i.e. with one of
the N random outputs of OS

P ub for positive and a uniformly random tag for a
negative response). The key idea in building this oracle is that the simulator
uses the server’s secret α to decrypt queries ω = d||xα to the oracle OS

Hkw
and

extract the input x. After extracting A’s input, S queries the ideal oracle
and responds accordingly. If S makes more than q queries from OIdeal, the
simulation fails, and the simulator aborts.

First, we prove in Lemma 1 that as long as the simulator does not abort,
S is indistinguishable from Realq. Second, we show in Lemma 2 that the prob-
ability of abort is negligible. The simulator aborts when an adversary queries
q + 1 distinct keywords from OS

Hkw
without querying OS

exp more than q times.
Informally, this means that the adversary can compute the exponentiation rα

i

of q + 1 random values ri with only q queries to the exponentiation oracle,
which translates into the One-more-Gap-DH problem. We show that if an
adversary A exists which has a non-negligible chance of forcing an abort, we
can build an adversary B that can break the One-more-Gap-DH assumption
given black-box access to A.

We now give details on how to build simulator S:

x← OS
HG

(w) responds the same way as OReal
HG

; stores the mapping between
each keyword and its matching element.

TC ← OS
P ub() choses a random key α and generates the tag collection TC as a

set of N uniformly random l-bit tags. Recall that the simulator receives
N and N as input.

xα ← OS
exp(x) same as OReal

exp . The adversary is limited to making up to q

queries.

τ ← OS
Hkw

(ω) the oracle responds to repeated queries consistently. For a new
query ω, it proceeds as follows:

1. Parse the input ω as “d||z” where d ∈ ZN and z ∈ G. If this fails,
respond with a random l-bit tag τ .

2. Use the secret key α to compute the adversary’s effective input ele-
ment x = zα−1 .

3. If x is the result of a query to the OS
HG

, let w be the corresponding
preimage. Otherwise, return a random l-bit tag τ .

160

A.1 Security of MS-PSI

4. If w has not been queried, query w from the ideal oracle OIdeal(Y , ·)
and store the response.

5. If simulator S has queried the ideal oracle more than q times, then
abort.

6. Respond with a random unused tag τ ∈ TC if d ∈ OIdeal(Y , w).
Otherwise, respond with a random l-bit tag τ .

Lemma 1. The simulator S is indistinguishable from the Realq as long as S
does not abort.

Proof. Oracles OReal
exp and OS

exp are identical, and it is easy to see that OS
HG

and OS
P ub are indistinguishable from their Real counterparts as their output is

uniformly random.

The MS-PSI protocol uses OReal
Hkw

to produce l-bit tags. Theorem 7 proves
the correctness of the MS-PSI protocol and shows that a final tag T(d) ←
OReal

Hkw
(ω) is in the server’s tag collection TC if ω = “d || Ĥ(w)s” and w ∈ Yd

where s is the server’s secret key. Otherwise, T(d) is a random tag. Similarly,
the oracle OS

Hkw
(ω) responds with a tag τ ∈ TC if ω = “d || OS

HG
(w)α” and

d ∈ OIdeal(Y , w) where α is the simulator’s secret key. Otherwise, the oracle
responds with a random l-bit tag. As long as the oracle OS

Hkw
correctly detects

the effective input (w, d) and its status w ∈ Yd, the adversary cannot distin-
guish the oracles OS

Hkw
and OReal

Hkw
. There are two possible cases for an incorrect

response: false positives and false negatives. Now, we show that the probabil-
ity of incorrect response is negligible. Let qG and qkw be the number of queries
to oracles OS

HG
and OS

Hkw
respectively. A false positive happens when there is

a collision between the adversary’s input z = xα to the oracle OS
Hkw

and an
unintended keyword queried from x← OS

HG
(w). This event has a probability

of qG · qkw/Ord(G) due to the randomness of OS
HG

. A false negative happens
when x ← OS

HG
(w) is not known at the time of the OS

Hkw
query. The prob-

ability of OS
HG

(w) matching one of previous OS
Hkw

(ω) queries is qkw/Ord(G),
which limits the false negative probability to qG · qkw/Ord(G).

The simulator S aborts when adversary A queries q + 1 distinct keywords
from OS

Hkw
while making at most q queries from OS

exp. We assume that A
triggers an abort with the probability of ϵ. We state the One-more-Gap-DH
assumption and relate it to ϵ.

The One-more-Gap-DH assumption. informally states that computing CDH
is hard even if the adversary has access to a CDH oracle and the DDH problem

161

Chapter A. Appendix for DatashareNetwork

is easy.

The adversary A in the One-more-Gap-DH assumption gets access to
a CDH oracle xα ← OCDH(x) with the secret α and a DLα oracle 1/0 ←
ODLα

(x, z) which determines whether a pair of elements x, z ∈ G has a dis-
crete logarithm equal to the oracle’s secret, i.e., α = logx(z). The DLα oracle
is a weaker form of the DDH oracle since ODLα

(x, z) = DDH(h, hα, x, z).

The One-more-Gap-DH assumption states that the adversary has negligi-
ble chance in producing q +1 DH pairs (xi, xα

i) given M ≫ q random challenge
elements Ch = (c1, .., cM) ∈ GM while making at most q queries to the CDH
oracle OCDH

Pr
[
{(xi, xα

i) | xi ∈ Ch}i∈[q+1] ← A
OCDH(·),ODLα

(·,·)(Ch)
]

< µ.

Lemma 2. If the adversary A has a non-negligible probability ϵ in forcing an
abort in the simulator S, there exists an adversary B which has a non-negligible
advantage in solving the One-more-Gap-DH problem given black-box access
to A.

Proof. We start with a sketch of the proof. We construct an adversary B
that simulates S to adversary A to solve the One-more-Gap-DH challenge.
Simulator S has two main functions: computing exponentiations with a secret
key in OS

exp and finding the matching input element x = zα−1 used to query
OS

Hkw
. Adversary B programs OB

HG
to fix input elements to challenge points

and uses the CDH oracle OCDH to respond to OB
exp queries. Finally, B uses

ODLα
to detect which challenge point matches the group element z in the OB

Hkw

query ω = “d||z”. If B receives q+1 queries corresponding to distinct keywords
{wi}i∈[q+1] in the oracle OB

Hkw
, then B can produce q + 1 DH pairs from the

challenge set without querying OCDH more than q times.

Concretely, we build the adversary B as follows:

x← OB
HG

(w) responds with a new challenge element x ∈ Ch and stores the
mapping between each keyword and its matching group element.

TC ← OB
P ub() since OCDH has its own secret α, oracle OB

P ub does not choose
another secret. The oracle creates TC in the same manner as OS

P ub.

xα ← OB
exp(x) uses OCDH(x) to respond to up to q queries.

τ ← OB
Hkw

(ω) is similar to OS
Hkw

and responds to repeated queries consistently.
Unlike OS

Hkw
, this oracle does not know the secret α to decrypt the input

162

A.1 Security of MS-PSI

element. Instead, it uses ODLα
to check z against all challenge points

x ∈ Ch and find the corresponding element z = xα where 1 = ODLα
(x, z).

1. Parse the input ω as “d||z” where d ∈ ZN and z ∈ G. If this fails,
respond with a random l-bit tag τ .

2. Find challenge point x ∈ Ch where 1 = ODLα
(x, z). If no such point

exists, respond with a random l-bit tag τ .
3. If x has been queried from the oracleOB

HG
, let w be the corresponding

preimage. Otherwise, respond with a random l-bit tag τ .
4. If w has not been queried, query w from the ideal oracle OIdeal(Y , ·)

and store the response.
5. If B has queried q + 1 distinct keywords from the ideal oracle, then

abort the simulation and solve the One-more-Gap-DH challenge.
6. Respond with a random unused tag τ ∈ TC if d ∈ OIdeal(Y , w).

Otherwise, respond with a random l-bit tag τ .

In Lemma 3 (below), we prove that the adversary A cannot distinguish
the simulator S from adversary B. Therefore, if A has a non-negligible chance
ϵ in forcing an abort in S, then with the probability ϵ adversary A queries q+1
distinct keywords from OB

Hkw
while making at most q queries from oracle OB

exp.
Let {ωi}i∈[q+1] be the OB

Hkw
queries corresponding to the distinct keywords

{wi}i∈[q+1]. By the construction of OB
Hkw

, we know that
{
ωi = “di || zi”

∣∣∣
1 = ODLα

(xi, zi) ∧ xi = OB
HG

(wi)
}

i∈[q+1]
. Since the oracle OB

HG
responds with

fresh challenge points, we know that the xis are unique and belong to the
challenge set Ch. Adversary B queries the OCDH oracle once per OB

exp query.
Since adversary A makes less than q + 1 queries from OB

exp, B makes at most
q queries from the CDH oracle OCDH . Adversary B produces q + 1 DH pairs
{(xi, zi) | zi = xα

i ∧ xi ∈ Ch}i∈[q+1] with at most q queries to the CDH oracle
OCDH and solves the One-more-Gap challenge with probability ϵ.

Lemma 3. The adversary B is indistinguishable from simulator S.

Proof. Oracles OB
exp and OB

P ub are identical to their S counterparts OS
exp and

OS
P ub. The oracle OB

HG
responds with challenge points which are indistinguish-

able from the uniformly random elements used in OS
HG

. Oracles OB
Hkw

and
OS

Hkw
only differ in how they compute x = zα−1 in the step 2. We split the

inputs to the oracle OB
Hkw

based on their inclusion in the challenge set ch, and
show that oracle OB

Hkw
is indistinguishable from oracle OS

Hkw
in both cases. As

long as the element x is chosen from the challenge set, i.e., x ∈ Ch, the pair

163

Chapter A. Appendix for DatashareNetwork

(x, z) is unique, and both oracles compute the same effective input x because
x = zα−1 is equivalent to 1 = ODLα

(x, z). On the other hand, when the element
z is generated from an element x = zα−1 which is not in the challenge set, then
oracle OB

Hkw
cannot compute x. Despite the fact that the oracle cannot com-

pute x, it can determine that x is not from the challenge set and consequently
not a response from oracle OB

HG
as x /∈ Range

(
OB

HG

)
= Ch. Both oracles

OB
Hkw

and OS
Hkw

respond with a random l-bit tag when the effective input x

is not a response from oracles OB
HG

and OS
HG

, respectively. We conclude that
oracles OB

Hkw
and OS

Hkw
are indistinguishable.

A.2 The limits of document search

We show that even with ideal searches an adversary can recover documents
or even extract the whole corpus. We formalize the extraction problem as
follows: an adversary receives a list of n keywords U = {a1, .., an} and a
search oracle O which respond to queries using the server’s set of N documents
Docs = {d1, .., dN}. The adversary’s goal is recovering the document set Docs.
Since the adversary is only interested in the set U of keywords, we ignore any
keyword outside of this set in our analysis.

A.2.1 One-bit search extraction

In this section, we consider a 1-bit search oracle O which returns a boolean
answer for each query which determine whether at least one matching docu-
ment exists. The oracle supports one operation, query, which takes a set of
keywords P as input and returns boolean answer 0/1← O.query(P).

A set of keywords R represent a document if and only if this set returns
a positive search result O.query(R) = 1 and adding any other keyword to this
set R results in a negative response ∀x ∈ U, x /∈ R : O.query(R ∪ {x}) = 0. It
is easy to see that a document D = {d1, .., dm} is represented by R = D ∩ U .

Recall from Section 2.5.3 that uniqueness number uD is the smallest num-
ber of keywords that uniquely identify a document D. Moreover, when a
document Dx is included in a larger document Dy, i.e. Dx ⊂ Dy, then its
uniqueness number uDx is ∞, and document Dx cannot be detected. We have
discussed that such documents do not have a high impact as they are overshad-
owed by the larger document. In this section, we assume that all documents

164

A.2 The limits of document search

Algorithm 9 Recover the rest of the document given a keyword set {ak, .., an}.
Start : RecoverDocument(P)

function RecoverDocument(P)
for i← k . . . n do

if O.query(P ∪ {ai}) = 1 then
P ← P ∪ {ai}

return P

have a finite uniqueness number and only recover documents with uniqueness
number uD less than the uniqueness limit ulim.

Document recovery. We assume an adversary who has partial knowledge P

about a document D that is represented by m keywords. If the adversary wants
to recover the rest of document D, then she needs to ask at least t = n −m

and at most n queries from the oracle which leads to a Θ(n) query complexity.
It is important to note that if there is more than one document that contains
P , then recovering any of these documents counts as document recovery.

We claim that the adversary needs to ask at least one query for each
keyword which is not in the document, i.e., that it must make at least t = n−m

queries. We assume to the contrary that the adversary recovers the document
with less than t queries and then show that there are two possibilities for D

that the adversary cannot distinguish. Since the number of queries is smaller
than t, based on the pigeonhole principle a keyword x exist which has never
been queried without another keyword y /∈ D present in the query. We claim
that the adversary cannot distinguish D from the document D ∪ {x} as the
oracle’s responses to all queries will be consistent for both documents. The
queries which do not include x are not impacted by the inclusion of x in the
document, and queries that include x include a keyword y /∈ D which ensures
a negative answer for both D and D ∪ {x}. Hence, the adversary cannot
distinguish D from D ∪ {x} and needs to make at least t queries. Clearly, n

queries suffice; showing the result.

Algorithm 9 recovers a document with n queries. Without loss of gener-
ality, we re-index the keywords to represent the adversary’s known set of key-
words as P = {a1, .., ak−1}. The algorithm extends this set with the remaining
keywords {ak, .., an} as long as the oracle keeps returning 1. Eventually, the
algorithm returns a maximal extension of the initial set P .

Corpus extraction. Having a set P , extracting one plausible document is
straightforward. However, extracting all documents that contain P is more
complex. The reason behind this complexity is that when the adversary adds

165

Chapter A. Appendix for DatashareNetwork

a keyword ax to the set P and receives a positive query response, she knows a
document D exists such that (P ∪ {ax}) ⊆ D but cannot determine whether
any document D′ exists such that P ⊂ D′ and ax /∈ D′. Hence, the adversary
needs to expand both cases.

We designed a corpus extraction algorithm that takes care of this uncer-
tainty, see Algorithm 10. This recursive algorithm is called with a set of sets
representing the documents D, the set of keywords P that the algorithm is con-
sidering at this moment, and the index k into the list of keywords (the keywords
with index less than k have already been considered). To find all documents
with respect to the list of keywords S = {a1, . . . , an}, call Extract(∅, ∅, 1).

The algorithm is recursive. It considers the current set of keywords P and
tries to extend it with a keyword ai (k ≤ i < n). If the oracle returns 0, clearly
there is no document matching P ∪ {ai}. If the oracle returns 1, we cannot
distinguish the two cases above, so we recurse along both paths, one for doc-
uments that contain ai, and the other for documents that do not contain ai.
When the algorithm finds the ulim’th keyword in the set P , the algorithm can
uniquely identify the document and checks whether this document has been
extracted before (by calling IsInDocs) to prevent duplicates. After reaching a
partial set of at least ulim keywords, the algorithm only traverses the branch
which includes ai as only one document exists which contains the set P since
|P | ≥ ulim. When pursuing only one branch, the algorithm is similar to the
RecoverDocument function in Algorithm 9. If the algorithm exhausts all possi-
ble keywords without branching, it has found a document and after checking
for duplicates, the algorithm adds P as a new document to the current set of
documents D and returns.

We argue that this algorithm finds all documents with uniqueness num-
ber uD < ulim. Clearly, the algorithm explores all sets P of size less than
ulim for which there exist matching documents. So, eventually, the algorithm
will find the unique set for each document, which it will then extend to the
corresponding full document.

It is easy to see that the brute-force part, when |P | < ulim, requires at
most O(nulim) queries. However, the algorithm does not expand keyword sets
with negative responses, and on average, document sparsity leads to a signifi-
cantly lower number of queries. Once |P | ≥ ulim the algorithm enters a linear
exploration, as it stops branching. It runs through this linear phase exactly
once for each document. Resulting in a total complexity of O(nulim + nd).

166

A.2 The limits of document search

Algorithm 10 Extract non-contained documents with an uniquness number uD smaller
than ulim with a one-bit search oracle based on the keyword set S = {a1, .., an}.
Start: Extract(∅, ∅, 1)

function Extract(D, P, k)
if |P | ≥ ulim then ▷ The document is uniquely identifiable.

if IsInDocs(P, D) = 1 then ▷ P is already extracted.
return D

for i← k . . . n do
if O.query(P ∪ {ai}) = 1 then

D ← Extract(D, P ∪ {ai}, i + 1)
if |P | < ulim then

D ← Extract(D, P, i + 1)
return D

if IsInDocs(P, D) = 0 then ▷ No more extension possible.
D ← D ∪ {P}

return D

function IsInDocs(P, D)
for all d ∈ D do

if P ⊆ d then
return 1

return 0

A.2.2 #doc search extraction

In this section, we consider a #doc search oracle O which returns the number
of matching documents for each query. The oracle only supports one operation,
query, which takes a set of keywords P as input and returns the number of
matching documents t← O.query(P).

Document recover. Since the 1-bit search oracle’s output can be computed from
the #doc oracle, the algorithms from the previous section also work against
the #doc search oracle. As a matter of fact, when only considering a single
document, the behavior of the #doc oracle is equivalent to that of the 1-bit
search oracle, thus RecoverDocument in Algorithm 9 is also optimal for
the #doc system in recovering documents.

Corpus extraction. The extra information provided by the #doc oracle,
however, helps create a much more efficient corpus extraction function. In
particular, an attacker is no longer faced with the uncertainty caused by the
one-bit oracle. Given an existing set of keywords P , the attacker can query
P ∪{ax} and see if the number of matching documents changes, or not. If the
number of matching documents changes, there were documents that match P

but not P ∪ {ax}. If the number of matching documents stays the same, all
documents that match P also match P ∪ {ax}.

167

Chapter A. Appendix for DatashareNetwork

Algorithm 11 Extract all #matches documents which include the partial document P ,
with a #doc search oracle based on the keyword set S = {a1, .., an}.
Start : Extract(∅, ∅, 1,∞)

function Extract(D, P, k, matches)
for i← k, n do

next = O.query(P ∪ {ai})
if next > 0 then

D ← Extract(D, P ∪ {ai}, i + 1, next)
if matches > next then ▷ At least one doc did not contain ai

D ← Extract(D, P, i + 1, matches− next)
return D

return D ∪ {P}

Algorithm 11 exploits this principle. It keeps track of the current set
of documents represented as D, the set of keywords P that it is currently
considering, the index k into the list of keywords (the keywords with index less
than k have already been considered), and the number matches of documents
that contain the current set of keywords P . To find all documents with respect
to the set of keywords S = {a1, . . . , an}, call Extract(∅, ∅, 1,∞).

Given the current set P with matches matching documents it proceeds as
follows. It asks the next keyword ai, if there are still matching documents
(i.e., next > 0) it adds ai to P and continues exploring. If some documents
matched P but did not match P ∪ ai (i.e., matches > next), the algorithm also
continues exploring by skipping the keyword ai.

In the beginning, the algorithm starts with an empty set and checks ev-
ery keyword. This requires n queries, and the algorithm continues with a
deterministic document recovery for d documents. Therefore, this algorithm
requires a total of O(nd) queries for extracting the corpus.

168

Appendix B
Appendix for Private Collection Matching
Protocols

B.1 Extra material

We provide extra materials in this section.

Summary. Table B.1 summarizes our notation and asymptotic parameters
and Table B.2 summarizes the functionality of our protocols.

Tversky similarity. Algorithm 12 shows how to process rational Tversky
parameters to enable computing similarity with modular arithmetic.

BFV parameters. We report full details of our BFV parameters including
their supported multiplicative depth in Table B.3. Next we provide a mi-
crobenchmark of basic operations and key sizes in Table B.4. It is possible

Algorithm 12 Process Tversky parameters t, α, and β to compute integer coefficients
(a, b, c).

function TVERSKY-PARAM-PROCESS(α, β, t)
(α1, α2)← ToRational(α) ▷ α = α1/α2
(β1, β)← ToRational(β) ▷ β = β1/β
(t1, t2)← ToRational(t) ▷ t = t1/t2
l← LCM(t1, α2, β2)
a← l · (t−1 − 1 + α + β)
b← l · α
c← l · β
g ← GCD(a, b, c)
return (a/g, b/g, c/g)

169

Chapter B. Appendix for Private Collection Matching Protocols

Table B.1: Notation.

q,Zq,Z∗
q A prime number, a prime ring, and a prime field.

n The security parameter.
a←$ A Draw a uniformly at random from the set A.
[n], ⟨ai⟩ Present the set {1, . . . , n} and the list [a1, . . . , am].
1[E] Function that returns ‘1’ when E is true and ‘0’ otherwise.
HE An IND-CPA circuit-private homomorphic scheme.
pk, sk The client’s public and private HE keys.
JaK An encryption of a.
Ndeg The degree of the RLWE polynomial.
mpt, mct The plaintext and ciphertext modulus of the HE scheme.

X,Y, Yi The client’s set, server’s collection, and server’s i’th set.
nc, ni

s The size of client set |X| and server’s i’th set |Yi|.
N, Ns The number of server sets and their total size Ns =

∑
i ni

s.
D The set input domain.
T The matching threshold [tmin, tmax].

JziK The client’s encrypted bit-vector zi ← (di ∈ X).
Q The client’s query. Small input: ⟨JxiK⟩, domain: ⟨JziK⟩.
JsiK An encrypted status determining iff xi ∈ Yk.
JcaK An encrypted cardinality of intersection ca = |X ∩ Yk|.
JγkK A matching response. λ = 0 iff the set Yk is interesting.
JAK An aggregated collection-wide response.
JRK A term to randomize the output of malicious users.

to reduce the size of the rotation keys in exchange for more costly rotation
operations. We report key sizes that provide a balanced computation/commu-
nication trade-off.

B.2 Sum of random Z∗q elements

In Section 3.7, we argued that the distribution of the sum s = ∑k
i=1 xi of k

random xi ←$ Z∗
q elements is close to uniform when q is prime. Now we prove

that the probability of the sum being zero is bounded by 1/(q − 1) and the
difference between the probability of the sum being zero vs a non-zero value a

is at most 1/(q − 1)2 when k is larger than one.

Let z[k] be the probability that the of sum of k elements from Z∗
q is zero and

pa
[k] be the probability that the of sum is a non-zero value a. When k = 1, e.g.,

we sum one element, these probabilities are z[1] = 0 and pa
[1] = 1/(q− 1). The

k elements xi are independent from each other so we choose the value of the

170

B.2 Sum of random Z∗
q elements

Table B.2: Summary of our protocols. We show the computed functionalities, their
output range, and auxiliary input variables in the table.

Protocol Function Range Aux.

PSI X ∩ Y {0, 1}nc

PSI-CA |X ∩ Y | Z
Matching: λ← fM (X, Y)

F-Match X ⊆ Y {0, 1}
Th-Match |X ∩ Y | ≥ t {0, 1} t
Tv-Match Tvα,β(X, Y) ≥ t {0, 1} t, α, β

Aggregation: A← fA(λ1, . . . , λN)
NA-Agg ⟨λi⟩ {0, 1}N
X-Agg ∃i |λi = 1 {0, 1}
CA-Agg |{i |λi = 1}| Z
Ret-Agg Dj |λj = 1 ∧ |{i |λi = 1 ∧ i ∈ [j]}| = κ Z D, κ

Table B.3: BFV parameters with 128-bit security

Ndeg mpt lg(mct) Mult. depth

P8k 8192 4079617 218-bit 2
P16k 16384 163841 438-bit 7
P32k 32768 786433 880-bit 16

last element and recursively compute the probability by using the distribution
of k − 1 elements.

z[k] =
q−1∑
a=1

pa
[k−1]/(q − 1) = pa

[k−1]

pa
[k] = z[k−1]/(q − 1) +

∑
i∈Z∗

q−{a}
pa−i

[k−1]/(q − 1)

= z[k−1]/(q − 1) + (q − 2) · pa
[k−1]/(q − 1)

= pa
[k−1] + (z[k−1] − pa

[k−1])/(q − 1)

The probability gap of z[k] and pa
[k] gets narrower as the number of ele-

ments k increases as:

pa
[k] − z[k] = pa

[k−1] + (z[k−1] − pa
[k−1])/(q − 1)− pa

[k−1]

= (z[k−1] − pa
[k−1])/(q − 1)

171

Chapter B. Appendix for Private Collection Matching Protocols

Table B.4: Cost of basic BFV operations.

P8k P16k P32k

Addition (µs) 29 115 530
Multiplication (ms) 7.3 36.3 182
Plaintext mult. (ms) 0.97 4.13 18.3
Rotation by 1 (ms) 2.16 10.8 57

Ciphertext (KB) 384 1536 6144
Public key (KB) 512 2048 7680
Relinearization key (MB) 3 12 60
Rotation key (MB) 22 96 510

The highest probability of a zero sum happens when summing two random
elements and the probability is bound by z[2] = pa

[1] = 1/(q−1). Similarly the
highest probability difference happens when k = 2 and is bound by z[2]−pa

[2] =
(pa

[1] − z[1])/(q − 1) = 1/(q − 1)2. This means that the probability of false-
positive in our approach is bounded by 1/(q − 1) while the probability of
distinguishing the number of non-zero elements (when at least one non-zero
element is present) is 1/(q − 1)2.

B.3 Privacy proof

We prove the security and privacy of our framework. We throughout assume
that honest users do not have any interaction outside our framework that can
leak information.

Roadmap. We start by formally defining security properties of HE schemes
such as IND-CPA security, circuit privacy, and strong input privacy in Sec-
tion B.3.1. Next, we address our framework’s security in a semi-honest setting
and use real-world/ideal-world simulation to prove Theorem 5 in Section B.3.2.
We study malicious servers in Section B.3.3 and provide a tight reduction from
our client privacy to the semantic security of our HE scheme to prove Theo-
rem 6. Finally, we extend the notion of real-world/ideal-world simulation to
a new paradigm called cipher-world, which provides better support for simu-
lating HE protocols in a malicious setting. We use this new notion to prove
the server privacy of our scheme against malicious clients in a non-standard
manner in Section B.3.4.

172

B.3 Privacy proof

B.3.1 Security properties of HE schemes

We formally define the security properties of HE schemes in this section. We
start with semantic security (IND-CPA). Next, we discuss noise in HE schemes
and define circuit privacy, which ensures that the noise contained in ciphertexts
does not leak information about the computation performed on them. Finally,
we extend circuit privacy, which only applies in a semi-honest setting, to a
malicious setting and introduce strong input privacy.

Definition 8 (IND-CPA). An encryption scheme is indistinguishable against
chosen plaintext attacks if no PPT adversary A exists such that:

Pr

p← HE.ParamGen(1ℓ)
(pk, sk)← HE.KeyGen(p)

(st, m0, m1)← A(pk)
b←$ {0, 1}

cb ← HE.Enc(pk, mb)
b′ ← A(st, cb)

: b = b′

>

1
2 + ϵ

Each BFV ciphertext c contains noise. The amount of noise increases
with each operation and can be measured. As a result, a ciphertext c con-
tains more information than its decrypted value p ← HE.Dec(sk, c). If the
noise grows beyond the HE parameter’s noise budget, then the decryption
fails ⊥ ← HE.Dec(sk, c). Informally, circuit privacy states that the ciphertext
c should not reveal any information about the computation performed on c

beyond the decrypted result p. We follow the definition of Castro et al. [223]:

Definition 9 (Circuit privacy). Let HE be a leveled homomorphic encryption
scheme and let

params← HE.ParamGen(q)
(sk, pk)← HE.KeyGen(params)

ci ← HE.Enc(sk, mi)
M ← f(m1, . . . , mn, p1, . . . , pk)

be an (honestly) generated key pair, ciphertexts, and output of the compu-
tation. The scheme HE is ϵ-circuit private if a PPT simulator S exists such
that for all functions f of depth l ≤ L all PPT distinguisher algorithms D are

173

Chapter B. Appendix for Private Collection Matching Protocols

bounded by
∣∣∣∣Pr

[
D (HE.Eval (pk, f, ⟨ci⟩, ⟨pi⟩) , sk, pk, ⟨ci⟩)) = 1

]
−

Pr
[
D (S (sk, pk, M) , sk, pk, ⟨ci⟩)) = 1

]∣∣∣∣ ≤ ϵ.

The circuit privacy’s definition focuses on the semi-honest setting and
requires honest generation of HE keys and ciphertexts. We extend this defi-
nition by (1) removing the honest generation requirement, which extends the
property to the malicious setting, and (2) relaxing privacy by revealing the
functionality f and only hiding the evaluator’s private data ⟨pi⟩.

Definition 10 (Strong input privacy). A leveled homomorphic encryption
scheme HE is ϵ-strong input private if a simulator Ssip exists such that all
PPT adversaries A are bounded by:

Pr

(st, pk, sk)← A(1ℓ)
(st, f, ⟨ci⟩, ⟨pi⟩)← A(st)

b←$ {0, 1}
mi ← HE.Dec(sk, ci)
M ← f(⟨mi⟩, ⟨pi⟩)

a0 ← HE.Eval(pk, f, ⟨ci⟩, ⟨pi⟩)
a1 ← Ssip(sk, pk, f, ⟨ci⟩, M)

b′ ← A(st, ab)

: b = b′

≤ 1

2 + ϵ

Similar to the circuit privacy definition, f is the computed functionality, ⟨ci⟩
is the client’s encrypted input, and ⟨pi⟩ is the server’s plaintext input while st
is an state for the adversary for storing information between interactions.

Ciphertext indistinguishability. When simulating our protocols, in the next
section, the simulator generates ciphertexts. As part of our proof, we need to
show that these ciphertexts are indistinguishable from the output of our proto-
cols. Hence, we discuss when a distinguisher D can distinguish two ciphertexts
c and c′ in three settings:

Known public key. We first consider the case where the distinguisher only
knows the public key (pk). This scenario directly follows from the IND-CPA
property. As long as the HE scheme is IND-CPA secure and ciphertexts have
the same size |c| = |c′|, then the distinguisher D(pk, c, c′) has a negligible
chance.

174

B.3 Privacy proof

Semi-honest with known secret key. Next, we consider the case where the
distinguisher knows both the secret and public keys (sk, pk) in the semi-honest
setting, i.e., keys and ciphertexts are honestly generated. In this scenario, the
distinguisher can decrypt ciphertexts so IND-CPA is not enough. Decrypting
a ciphertext p← HE.Dec(sk, c) results in a plaintext p and a measurable noise
ϵ. This transforms ciphertext indistinguishability to showing two statements:
both decrypted plaintexts and ciphertext noises are indistinguishable. While
comparing decrypted values p is straightforward, we rely on circuit privacy to
ensure noises are indistinguishable. As long as the HE scheme is IND-CPA
secure and circuit-private, and p← HE.Dec(sk, c)∧p′ ← HE.Dec(sk, c′)∧p

c≡ p′,
then the distinguisher D(sk, pk, c, c′) has a negligible chance in a semi-honest
setting.

Malicious with known secret key. The distinguisher knows both the secret and
public keys (sk, pk) in a malicious setting. We require our scheme to be IND-
CPA secure and strongly input private in this setting and use the simulator of
strong input privacy (Ssip) to produce indistinguishable ciphertexts.

Lack of circuit privacy. The Lattigo library does not provide circuit pri-
vacy. This is not surprising since other popular HE libraries such as Microsoft
Seal [224] do not provide circuit privacy either. While there are possible mit-
igations in the semi-honest setting such as noise-flooding [225] (alternatively
called noise smudging) to achieve circuit privacy, there is no known mechanism
for the malicious setting (i.e., no HE scheme achieves strong input privacy).
Noise-flooding is only proven private in a semi-honest scenario where keys are
generated honestly and the computation is guaranteed to start on freshly en-
crypted ciphertexts. Beyond flooding, there is a new line of work [223] that
uses careful parameter selection in RNS or DCRT representation of ciphertexts
to achieve lightweight circuit privacy. We hope this approach will be adopted
by HE libraries.

Our implementation does not add extra defense mechanisms to prevent
possible leakage from noise, due to the extra cost associated with these de-
fenses. Despite this leakage, practical attacks using noise are limited. The
complexity and depth of our functions make extracting information from this
noise more challenging; especially since the size of the server’s private data,
Ns, is significantly larger than the capacity of the noise for storing information.

175

Chapter B. Appendix for Private Collection Matching Protocols

B.3.2 Semi-honest security

We use real-world/ideal-world simulation to prove the security of our PCM
protocols in the semi-honest setting (see Theorem 5). Our well-formedness
checks, computed using (SD-)query-check, have no impact on honest exe-
cution as they only add J0K to the result when the query is generated honestly.
Therefore, we ignore these functions in this section. Our framework can be
instantiated to support different functionalities, but they share a similar struc-
ture, which enables us to write a single proof that is customizable depending on
the protocol variation. As seen in Definition 4, PCM is a two-party interaction
that computes

(fc(X,Y),⊥)← PCMfM ,fA
(X,Y)

where fc(X,Y) = fA (fM (X, Y1) , . . . , fM (X, YN)) is a deterministic function
selected from the Table B.2. To reason about the properties the matching
layer, we allow fA to be equal to the identity function. To reason about the
PSI layer, we allow fc to have the natural PSI and PSI-CA definition.

Our semi-honest scenario has deterministic output functions. Therefore,
we can use the simpler formulation of security in Lindell [226] which requires
schemes to satisfy two properties to be secure. Correctness: the output of
parties is correct. Privacy: the view of parties can be separately simulated as
follows:

{SC (1n, X, fc (X,Y))}X,Y,n

c≡ {Viewclient (n, X,Y)}X,Y,n ,

{SS (1n,Y ,⊥)}X,Y,n

c≡ {Viewserver (n, X,Y)}X,Y,n

where n is the security parameter, X is the client input, and Y is the server
input. We omit n in the rest of this section. We assume that the client honestly
generates the key pair (pk, sk)← HE.KeyGen(params) and sends the public key
pk to the server before running the protocol.

Correctness. In a semi-honest scenario where both parties follow the pro-
tocol specification, showing that Algorithms 3 to 6 compute the functionality
described in Table B.2 is straightforward math. We have described the intu-
ition behind these algorithms in Sections 3.6 to 3.8, so we do not repeat the
argument here.

176

B.3 Privacy proof

Server privacy. We simulate the view of clients to ensure server privacy. Let
the view of the client be

Viewclient (X,Y) = (X, rnd, Q, R, A = fc(X,Y))

where rnd is the internal random tape, Q is the encrypted query, R is the
server’s encrypted response, and A is the client’s output.

All our protocols start with clients sending an encrypted query Q to the
server and receiving an encrypted response R. Afterward, clients apply the
appropriate reveal function on R to compute the output A← reveal(sk, R).
Correctness ensures that the output A computed by the reveal algorithm is
equal to the expected output fc(X,Y) summarized in Table B.2.

Now we build a simulator SC that given the input (X, rnd, A = fc(X,Y))
simulates the clients view as follows:

1. The simulator uses Q′ ← (SD-)query(pk, X) to compute a query de-
pending on the domain size with rnd as internal randomness.

2. We categorize the client’s output based on the range of fc(X,Y) into 3
groups:

A ∈

{0, 1} For: F-Match, Th-Match, Tv-Match, X-Agg
{0, 1}k For: PSI, NA-Agg
Z For: PSI-CA, CA-Agg, Ret-Agg

Depending on the range category, the simulator computes the server re-
sponse R′ as follows using the circuit-privacy simulator to ensure equiv-
alent noise levels:

R′ ←

HE.Enc(pk, r · A) A ∈ {0, 1}
⟨HE.Enc(pk, rj · A[j])⟩ A ∈ {0, 1}k

HE.Enc(pk, A) A ∈ Z

where r ←$ Z∗
q and rj ←$ Z∗

q are random values.1

3. The simulator returns (X, rnd, Q′, R′, A).

Now we show that the distribution returned from the simulator SC is indis-
tinguishable from Viewclient. The three variables X, A, rnd are taken from the

1When evaluating F-Match, the simulator chooses random variables from Zq instead of Z∗
q to

ensure the same false positive probability as the real-world execution.

177

Chapter B. Appendix for Private Collection Matching Protocols

input and are guaranteed to have the same distribution between the simulation
and the view. Therefore, we only need to show that the joint distribution for
the query and the server response are indistinguishable – conditional on the
common X, A, and rnd variables.

Both the query Q and response R are ciphertexts. As discussed in ‘ci-
phertext indistinguishability’ in Section B.3.1, we are in a semi-honest scenario
where the distinguisher knows both the public and private keys (pk, sk). Our
HE scheme is both IND-CPA and circuit private so we only need to show that
these ciphertext pairs, (Q, Q′) and (R, R′), decrypt to the same value. Queries
are computed following Q ← (SD-)query(pk, X). The query function only
encrypts the input set X as the query so both Q and Q′ should decrypt to
the same value. The server’s response R depends on the client’s output A and
this relation is specified in our reveal functions. Our correctness property
ensures that the following relation between R and A holds in the real-world:

R←

JbK b =
{

0 A = 0
←$ Z∗

q A = 1

∣∣∣∣∣ A ∈ {0, 1}

⟨JbjK⟩ bj =
{

0 A[j] = 0
←$ Z∗

q A[j] = 1

∣∣∣∣∣ A ∈ {0, 1}k

JAK A ∈ Z

.

It is straightforward to see that the underlying plaintext of R′, produced in
step (2) by SC , follows the same distribution.

Client privacy. We simulate the view of servers to ensure client privacy. Sim-
ulating the server’s view is considerably simpler than the client’s as the server
only observes ciphertexts encrypted under the client’s key. In this simulation,
the adversary is a semi-honest server and the distinguisher does not have access
to the client’s secret key. Moreover, our HE scheme is IND-CPA, which sim-
plifies ciphertext indistinguishability to ensuring |c| = |c′| (see Section B.3.1).

Let the server’s view be Viewserver = (Y , rnd, Q, R). We build a simulator
SS that given the input (Y , rnd) proceeds as follows:

1. The simulator chooses two random variables r1 and r2 with the same size
as the query and the server response then encrypts them.

Q′ ← HE.Enc(pk, r1), R′ ← HE.Enc(pk, r2)

2. The simulators return (Y , rnd, Q′, R′).

178

B.3 Privacy proof

The variables Y and rnd are taken from the input and have the same
distribution between the simulation and the view. The two variables Q′ and
R′ are encrypted under the client’s key. Without the knowledge of the secret
key Q

c≡ Q′ and R
c≡ R′ hold independent of their content.

B.3.3 Malicious server

Now, we study the setting where the server is malicious. In this setting, the
client is honest and server privacy is not applicable. Our framework provides
no correctness guarantee in this setting. The malicious server can force a
corrupted response that depends on the client input or fix the outcome in-
dependent of the query. Despite the lack of correctness guarantee, malicious
servers cannot learn any information about the client’s private data. We re-
state client privacy (Definition 6) more formally, then prove Theorem 6 by
giving a tight reduction from our scheme’s client privacy to the IND-CPA se-
curity of our HE encryption scheme. During this proof, we assume that the
client’s input fits into a single batched ciphertext, which holds throughout our
evaluation. Adjusting the proof to support input encrypted in k ciphertexts is
straightforward and gives a k-fold advantage to the adversary.

Definition (Client privacy). A PCM protocol is client private if no PPT
adversary A exists such that:

Pr

p← HE.ParamGen(1ℓ)
(pk, sk)← HE.KeyGen(p)

(st, X0, X1)← A(pk)
b←$ {0, 1}

Qb ← (SD-)query(pk, Xb)
b′ ← A(st, Qb)

: |X0| = |X1|
b = b′

>

1
2 + ϵ.

Proof. Let A be an adversary that can break the client privacy property with
a non-negligible probability ϵ. We build a new adversary A′ that can break the
IND-CPA security (Definition 8) of our HE scheme with the same probability
ϵ.

1. The adversary A′ starts an IND-CPA challenge and receives a public key
A′(pk).

2. The adversary A′ calls (st, X0, X1)← A(pk).

179

Chapter B. Appendix for Private Collection Matching Protocols

3. Depending on the domain size, A′ converts sets Xa to ma = ⟨xi⟩ or
ma = ⟨zi⟩ following the logic of (SD-)query.

4. The adversary A′ continues the IND-CPA challenge with (st, m0, m1) and
receives A′(st, cb).

5. The adversary A′ passes the challenge b′ ← A(st, Qb = cb) to A and
returns b′ as the output.

We show that the adversary A cannot distinguish interaction with A′ from
our protocol. The adversary A has two interactions in the client privacy chal-
lenge. The first interaction is getting a fresh public key pk which is the same
between the IND-CPA and client privacy challenges. In the second interaction,
A receives a query Qb produced by (SD-)query. We know that (SD-)query
consists of two steps: convert X into p = ⟨xi⟩ or p = ⟨zi⟩ which A′ performs
in (3) and encrypting p with pk which is performed as part of IND-CPA chal-
lenge. This ensures that cb is computed in the same way as Qb and follows the
same distribution. The adversary A′ runs one instance of client privacy with
A and succeeds the IND-CPA as long as the A succeeds leading to the same
ϵ advantage.

B.3.4 Malicious clients

When addressing malicious clients, client privacy is irrelevant and correctness
does not apply either as the server has no output. Therefore, we only need to
address our protocols’ server privacy.

Theorem 8. Our protocols provide server privacy against malicious clients if
the HE scheme is IND-CPA and strongly input private.

Unfortunately, direct application of real-world/ideal-world simulation on
our protocols in the malicious setting is not possible. The biggest challenges
in simulation proofs in the malicious setting is that the adversary is not re-
quired to use its input and random tape during the execution. Therefore, the
simulation needs to extract the effective input that the malicious adversary
uses to determine the corresponding output. In our protocols, the server only
receives an encrypted query from the client and there is no further interaction,
such as having ROM calls in the client, to provide any extraction opportunity.
Therefore, the semantic security of our HE scheme prevents extracting the ef-
fective inputs. To address this challenge, we adapt the ideal-world paradigm

180

B.3 Privacy proof

and introduce a new notion for simulating HE protocols called cipher-world.
Cipher-world is inspired by trapdoor commitments and allows the trusted party
to decrypt the query and compute the ideal functionality. We first prove that
cipher-world provides the same server privacy guarantee as the ideal-world then
use it to prove our framework server-private. The introduction of cipher-world
as a new paradigm to prove security makes our proof highly non-standard.

Cipher world

We extend the notion of real-world/ideal-world simulation for two-party HE-
based schemes in which exactly one party, called the querier, holds a pair of HE
keys while the other party, called the evaluator, performs computation in the
encrypted domain. This extension is one-sided and only addresses the privacy
of the evaluator (i.e., the server in our protocols). We call this extension
cipher-world.

Cipher-world assumes that the trusted party defined in the ideal-world
accepts encrypted inputs, is computationally unbounded, and can extract the
secret key sk of the querier from its public key pk – breaking the security
of the HE scheme in the process. The trusted party uses this secret key to
extract the effective input X of malicious queriers. Unlike the ideal-world,
there is no guarantee that the decrypted input of the cipher oracle is valid and
follows the input restrictions. The cipher oracle first verifies input restrictions
and outputs ⊥ if any check fails; otherwise, it computes and outputs f(X, Y).
Additionally, the cipher-world reveals the secret key sk to the simulator. This
key is solely used for the purpose of simulating ciphertext noise. Figure B.1
shows the structure of the cipher-world and how it compares to the standard
ideal-world setting. We define both ideal-world and cipher-world oracles below
to highlight their differences:

f(X, Y)← IDEAL(n, X, Y)
(sk, f(X, Y)/⊥)← CIPHER(n, (pk, c = JXK), Y).

Recall that here Y contains the evaluator’s private input.

Theorem 9. The cipher-world provides the same privacy guarantee for the
evaluator’s private information as the ideal-world.

Proof. It is clear that queriers can learn more information from interacting
with cipher oracles than ideal oracles. However, we show that this leakage

181

Chapter B. Appendix for Private Collection Matching Protocols

Ideal-world Decrypt &
Check

Cipher-world

Ideal-world

Figure B.1: Structure of the cipher-world and its difference with the ideal-world.

does not impact evaluator’s privacy. First, we formally prove that this leakage
L is bounded to providing an oracle sk ← OExt(pk) which extracts the secret
key from HE public keys. Next, we prove that the leakage L is independent
of the evaluator’s private date Y .

We assume that a PPT adversary A exists such that A gains more ad-
vantage from interacting with a cipher oracle instead of an ideal oracle than
L = {OExt}. We build a new adversaryA′ that given an ideal oracle IDEAL(Y, ·)
and an extraction oracle OExt can simulate the view of A.

1. Adversary A′ initiates a new interaction with A and receives (pk, c =
JXK)← A(·).

2. Adversary A′ uses the extraction oracle within L to extract the secret
sk ← OExt(pk).

3. Adversary A′ decrypts A’s query X ← HE.Dec(sk, c).

4. Adversary A′ verifies whether X passes input restrictions.

(4.a) If any check fails, A′ sets A← ⊥.
(4.b) Otherwise, A′ interacts with the ideal world oracle with the de-

crypted input and sets A← IDEAL(X, Y).

5. Adversary A′ finishes the execution A(sk, A).

We need to show that the adversaryA cannot distinguish (sk, A) produced
in our simulation from the output of the cipher-world. Both the simulation and
the cipher-world oracle are directly using the extraction oracle OExt to produce
the secret key sk which ensures secret key indistinguishability. We study two

182

B.3 Privacy proof

cases for A: (1) The adversary A does not follow the input restriction. In
this case, the cipher oracle responds with the failure symbol ⊥. The adversary
A′ performs the same input verification process as the cipher oracle which
leads to setting A ← ⊥ when one of step (4.a) checks fail. (2) The adversary
A follows the input restriction. In this scenario, both the cipher and ideal
oracles compute the same output ensuring that A = f(X, Y). This proves
that the leakage of cipher-world can be bound to L = {OExt}.

Now we need to show that the leakage of the cipher-world is independent
of the evaluator’s private data. As we bound the leakage to an extraction
oracle {OExt}, this independence is clear since extraction is not impacted by
changing the evaluator’s private data Y . Note that in our protocol, exactly
one party, the querier, generates HE keys, so assuming that HE key extraction
is easy has no impact on the evaluator. Therefore, our cipher-world provides
the same evaluator privacy guarantee as the ideal world.

We showed that our cipher-world provides the same server (evaluator)
privacy as the original ideal-world. Note that the cipher-world is one-sided
and does not make any security claim about clients (queriers). To prove that
our protocol provides server privacy, we have to show that the real-world view
can be simulated given access to a cipher-world oracle.{

CIPHERClient
S′

C
(X,Y)

} c≡
{

REALClient
A (X,Y)

}
⇕

S ′
C(X, rnd,A, CIPHER(Y, ·)) c≡ ViewA (X,Y) = (X, rnd, Q, R, A)

We build a simulator S ′
C that given a PPT real-world malicious client A

and a cipher-world oracle CIPHER(Y , ·) fixed with the server’s input, simulates
the real-world as follows:

1. Simulator S ′
C initiates a new interaction with A and receives (pk, Q =

JX ′K)← A(·).

2. Simulator S ′
C interacts with the cipher oracle and learns (sk, A′) ←

CIPHER((pk, Q)).

3. If the cipher-world detects a malicious query Q which does not respect
input checks (i.e., A′ = ⊥), the simulator S ′

C chooses a random response
t←$ Zq, sets the output accordingly A′ ← reveal(sk, JtK), and skips to
the step 5.

183

Chapter B. Appendix for Private Collection Matching Protocols

4. Otherwise, S ′
C computes the response t as follows:

t←

r · A′ A ∈ {0, 1}
⟨rj · A′[j]⟩ A ∈ {0, 1}k

A′ A ∈ Z
.

Note that the range of A is determined by functionality f and is inde-
pendent of the parties’ input.

5. Simulator S ′
C performs R′ ← Ssip(sk, f, Q, t).

6. AdversaryA only learns the response R if the decryption succeeds. There-
fore, Simulator S ′

C checks if the decryption HE.Dec(sk, R′) succeeds. Oth-
erwise, S ′

C sets A′ ← ⊥.

7. The simulator returns (X, rnd, Q = JX ′K, R′, A′).

Now, we show that the real view (X, rnd, Q = JX ′K, R, A) is indistinguish-
able from the simulated view (X, rnd, Q, R′, A′). The simulator S ′

C does not
use variables X and rnd as there is no guarantee that malicious clients will
use their input or random tapes. As (X, rnd, Q) are directly taken from the
input, we only need to show that (R, A) c≡ (R′, A′) conditional on the common
variables. We split our analysis into three cases:

Malicious queries which do not represent a set. When the client is mali-
cious there is no guarantee that the query represents a set. In Section 3.6.3, we
designed (SD-)query-check functions and proved that they randomize the
output of our protocols when the query does not represent a set as long as the
HE abstraction holds. Our simulator S ′

C relies on the cipher oracle to detect
when the query does not represent a valid set in step 3 and assigns a uniformly
random value t to be encrypted as the response R′. To ensure that R′ has an
indistinguishable noise from the real response R, instead of directly using the
encryption in step 5, S ′

C uses the simulator Ssip from the strong input privacy
property (Definition 10). Our simulator follows the same reveal process to
compute the output A from the response as the real protocol. Since R

c≡ R′,
we will have A

c≡ A′ as long as the server response R′ decrypts successfully.

The malicious query decrypts to the set X ′: When the query represents a
set, (SD-)query-check produces an encrypted zero and does not impact the
output of the protocol (i.e., adding J0K is neutral). Knowing that the query
is an encryption of the set X ′, our protocols ensure that A = f(X ′,Y) as
long as the decryption of R succeeds. This guarantee follows from combining
(1) our semi-honest correctness from Section B.3.2 and (2) knowing that the

184

B.4 Extra benchmarks

query decrypts to the same value as (SD-)query(pk, X ′). The simulator S ′
C

follows a similar process to compute R from A as our semi-honest simulator
SC with the difference of replacing HE.Enc with Ssip (i.e., relying on strong
input privacy instead of circuit privacy).

Failed decryption. Unlike the semi-honest setting where we know that
the client’s query is freshly encrypted, the server may receive queries with a
high noise level. This may lead to producing server responses that fail the
decryption. The use of Ssip in step 5 ensures that the response of S ′

C has the
same noise level as our real-world response. Therefore, the decryption of R′

fails if and only if the decryption of R fails. When the decryption fails, the
real-world cannot compute the output (A = ⊥) while the simulator S ′

C sets
A′ ← ⊥ in step 6.

B.4 Extra benchmarks

In this section, we provide extra details on our evaluation and add more bench-
marks. First, we compare our small domain PSI layer to an existing small
domain paper. Second, we provide more detail on how we design and evaluate
generic solutions with the same privacy and functionality as our document
search engine and provide extra performance plots. Third, we compare our
document search engine to one of the fastest OT-based PSI protocols which
does not satisfy our privacy requirements.

B.4.1 Small-domain protocols

In this section, we evaluate the performance of our small domain PSI-CA
protocol and compare it to existing work. We focus on Ruan et al. [109] in
this section. We compare with Shimizu et al. [55] in Section 4.8. We do not
consider Bay et al. [103] here, as it focuses on a multi-party scenario, which
leads to higher costs.

The code for the protocol of Ruan et al. is not available but the paper
provides a detailed cost analysis. We use the same scenario and the same
CPU (Intel Core i7-7700) to allow us to directly compare performance without
requiring us to rerun their protocol from scratch. Moreover, we extend and
optimize their approach for a many-set scenario. Ruan et al. use bit-vectors
encrypted with ElGamal [227] or Paillier [228] encryption to perform PSI.

185

Chapter B. Appendix for Private Collection Matching Protocols

8 16 32 64 128 256 512 1024
#Sets

102

103

104

Ti
m

e
(m

s)

Ours-256 (P32k)

Ours-4096 (P32k)

Ruan-256
Ruan-4096

Figure B.2: Computation cost for performing small domain PSI-CA. Two systems
provide different security levels: Ruan et al. support 80-bit security while ours
provide 128-bit security.

We extend their approach to only compute the query once and apply it to
many sets. Their detailed performance benchmark allows us to compute the
cost of performing a many-set query with N sets. In Fig. B.2, we show the
computation cost with a fixed input domain size (|D| ∈ {256, 4096}) and
varied the number of sets. The cost does not include the key exchange. The
performance of our scheme is comparable to Run et al. – which scheme is
performing best depends on the specific scenario.

Despite having the same operating point for both approaches, they have
very different security guarantees. Ruan et al. assume a semi-honest privacy
model and use Pallier keys with 1024-bit RSA primes which only provide 80-
bit security. Extracting more information than cardinality from their protocol
is trivial for malicious clients. On the other hand, we provide full 128-bit
security and protect against malformed queries by misbehaving clients (see
Section 3.6.3).

B.4.2 Circuit-based protocols

In this section, we provide more details on our evaluation of the generic solu-
tions in the document search scenario of Section 3.11.2. We expand on their
threat model and properties. Moreover, we report and compare the server
computation cost of all approaches.

186

B.4 Extra benchmarks

Generic SMC. We use a high-level SMC compiler, EMP tool-kit [119], to
design and evaluate circuits providing the same properties as our search engine.
More specifically, we use the ‘EMP-sh2pc’ branch of the compiler that provides
security in a two-party semi-honest setting and supports garbled circuits.

We encode each input as a 32 bits binary value, which results in a higher
false-positive rate due to encoding keywords than our framework, where we
encode keywords using 39 or 44 bits. We use a private equality check of-
fered by EMP for comparing encrypted set elements. To determine whether
one keyword of the client set has a match in a given document, we perform
equality tests against all keywords of a document and perform an OR over the
comparison results. To perform the full matching, we do an AND over the
matching status of all client keywords. This produces a 1-bit result for each
document determining its relevance. The F-Match process does not create any
extra false-positive in this approach.

Now we have to aggregate N 1-bit document matching statuses according
to our X-Agg and CA-Agg policies. The X-Agg variant is straightforward and
we use an OR to check if any document is relevant. To count the number
of relevant documents, we first convert binary matching statuses to integers
encoding ‘0’ or ‘1’ to enable us to continue the computation with an arithmetic
circuit. Then, we compute the sum of these integer statuses.

Circuit-PSI. We choose Chandran et al. [81] as a state-of-the-art circuit-PSI
paper that is secure against semi-honest adversaries. Circuit-PSI protocols
perform an intersection between the sets of two parties and secret share the
output among them. This enables using circuits to privately compute arbitrary
functions over the intersection. Despite the capability of Chandran et al. to be
extended with circuits to compute F-Match matching and X-Agg or CA-Agg
aggregation, we decide to not extend their circuit and use the time necessary
for computing the intersection as a lower bound on the cost of searching. Since
the PSI protocol of Chandran et al. is a single set protocol, we run N instances
of Circuit-PSI sequentially to simulate searching N documents. We use the
default parameters decided by Chandran et al., meaning that each item is
encoded using 32 bits with an additional false positive rate of 2−40 due to
computation.

Server’s computation cost. We have already reported the end-to-end la-
tency, communication cost, and client’s computation cost in the main body
(Fig. 3.6). We report the server’s computation cost in Fig. B.3. Starting from

187

Chapter B. Appendix for Private Collection Matching Protocols

8 32 128 512 2048 8192
#Documents

10−1

100

101

102

103

Se
rv

er
’s

co
m

pu
ta

tio
n

co
st

(s
)

CA-Agg (P8k)

X-Agg (P32k)

SMC-CA-Agg
SMC-X-Agg

Circuit-PSI

Figure B.3: Server’s computation cost for document search.

16 documents, our framework has lower server computation than Chandran et
al. [81]. On the other hand, the EMP solutions have better server efficiency
than our scheme which is not surprising as our framework outsources the com-
putation load from thin clients to the server. Despite our outsourcing, our
CA-Agg search only increases the server cost by a factor of 2.5x and X-Agg
by a factor of 30x when searching 1k documents.

B.4.3 OT-based protocol

There are efficient PSI protocols that are based on the oblivious transfer in
both the semi-honest (such as SpOT-light [72]) and the malicious setting (such
as PaXoS [92]). As discussed in Section 3.3, this line of research focuses on
computing one-to-one equality tests between the client and server which leaks
information about each server set and cannot satisfy our privacy requirements.
Despite providing a lower privacy guarantee, we compare our approach to the
SpOT-light protocol as a baseline cost.

Document search with SpOT-light. We follow the document search setting
from the Section 3.11.2 and evaluate the cost of using SpOT-light to search N

documents. SpOT offers 128-bit security in a semi-honest setting and accepts
256-bit input elements which bypasses the false-positive rate of mapping key-
words. However, SpOT is (1) a single-set protocol and (2) does not support
privacy extensions such as computing relevance without leaking the intersec-
tion cardinality to the client (i.e., private set matching) or aggregating the

188

B.4 Extra benchmarks

8 32 128 512 2048 8192
#Documents

100

101

102

103

L
at

en
cy

(s
)

CA-Agg (P8k) X-Agg (P32k) SpOT

8 32 128 512 2048 8192
#Documents

10−2

10−1

100

101

102

C
lie

nt
’s

co
m

pu
ta

tio
n

co
st

(s
)

8 32 128 512 2048 8192
#Documents

100

101

102

Tr
an

sf
er

co
st

(M
iB

)

8 32 128 512 2048 8192
#Documents

100

101

102

Se
rv

er
’s

co
m

pu
ta

tio
n

co
st

(s
)

Figure B.4: The end-to-end latency (upper-left), communication cost (lower-left),
and client and server computation cost (right) of the document search.

search result of multiple documents similar to our X-Agg and CA-Agg variant.
We handle the single-set limitation by running N sequential PSI interactions
to search N documents, but we do not add any countermeasure for the lack
of matching or aggregation functionality. We encountered concurrency issues
(with async IO) when running SpOT. This issue gets amplified when repeating
the protocol N times. Instead of directly running the code, we benchmarked
the cost of each interaction through multiple runs with N = 8, then extrapolate
the cost for all entries.

We report the end-to-end latency, computation, and communication costs
of SpOT-light in Fig. B.4. In the single-set setting and for a small number of
documents, SpOT provides better performance. However, as soon as reaching
32 documents, our CA-Agg variant starts to provide better latency, computa-
tion, and communication than SpOT despite providing better privacy. When
searching 1k documents, our framework improves latency by a factor of 10–65x,
communication by a factor of 1.7–27, and client’s computation by a factor of
1800–24,800x depending on the search functionality.

189

Chapter B. Appendix for Private Collection Matching Protocols

B.5 Solving matching in mobile apps

We do not separately evaluate the matching in the mobile apps scenario as
it is similar to the chemical similarity scenario. The set of attributes to be
matched can be represented using a small domain as the number of attributes
is limited and they have few possible values. Matching of individual records
can be implemented using the threshold matching (Th-Match) protocol. This
allows for approximate matches. The results can then be combined using naive
aggregation to reveal the matching indices to the querier. Since Th-Match is
simpler than the Tv-Match protocol and the threshold for matching is likely
smaller than the chemical similarity case, we expect better performance for
matching than chemical similarity.

B.6 PSI-SUM

A benefit of our framework’s modular design is extensibility. To show the ease
of adding new functionality, we design a new protocol called PSI-SUM in this
section which is getting more popular in the literature due to its use in private
ad-monetization systems [83, 84, 86]. In the PSI-SUM protocol, the server
assigns a weight to each of its elements and the client wants to compute the
sum of weights of common elements, i.e., PSI-Sum(X, (Y, W)) = ∑

{i|yi∈X} wi.

We add this new protocol in our PSI layer following the structure in
Fig. 3.3. We define the PSI-SUM algorithms in Algorithm 13. The function
PSI-SUM-process computes a binary inclusion status JtiK for each server
element yi. The server then proceeds similarly to ePSI-CA to compute the
encrypted weighted sum. The server can continue processing this value in the
next layers, such as checking for a threshold value on the sum, or return JW K
to the client which decrypts it to obtain the answer (see PSI-SUM-reveal).
Our extensions such as ensuring query well-formedness and many-set can di-
rectly apply to this protocol without any extra effort.

190

B.6 PSI-SUM

Algorithm 13 Adding PSI-SUM capabilities.
function PSI-SUM-process(pk, Q = ⟨JxiK⟩, Y, W = ⟨wi⟩)

JtiK← HE.IsZero(pk, HE.IsIn(pk, yi, ⟨JxjK⟩))
JWK←

∑
i∈[n] wi · JtiK

return JWK

function PSI-SUM-SD-process(pk, Q = ⟨JziK⟩, Y, W = ⟨wi⟩)
⟨JtiK⟩ ← PSI-SD-process(pk, ⟨JziK⟩, Y)
JWK←

∑
di∈D wi · JtiK

return M ← JWK

function PSI-SUM-reveal(pk, M = JWK)
return HE.Dec(sk, JWK)

191

Appendix C
Appendix for Janus

C.1 Extended evaluation

We evaluated the performance of Janus in Section 4.8. In this section, we
provide more details on the computation cost of SMC-Janus and the impact
of the template size on the performance.

Template size. We measure the performance of deduplication with different
template sizes in Fig. C.1 to study the impact of template size on perfor-
mance. We use solid lines to show shorter templates (Finger64 and Iris2048)
and dashed lines to show longer templates (Finger640 and Iris10240). We observe
that increasing the template size has a linear impact on the computation of
the registration station, but does not impact the computation of biometric
provider or the communication. This is in line with our expectation since the
size of the template only impacts the HE computation of the distance while
the communication and BP’s computation cost are dominated by the SMC
thresholding.

SMC-Janus. Fig. C.2 shows the single-core computation and communication
cost of operating SMC-Janus with fingerprint and iris sensors of various sizes
over different database sizes. Due to our use of garbled circuits, the computa-
tion cost of both parties (the registration station and biometric provider) are
similar. Moreover, we observe that the number of biometric samples f , the
template size TS, and the number of users registered in the database have a
linear impact on all three RS and BP computation and communication costs.

193

Chapter C. Appendix for Janus

128 512 2048 8192
Number of registered users

100

101

102

R
S’

s
co

m
pu

ta
tio

n
(S

ec
)

f = 1, finger64

f = 4, finger64

f = 1, finger640

f = 4, finger640

f = 1, iris2048

f = 2, iris2048

f = 1, iris10240

f = 2, iris10240

128 512 2048 8192
Number of registered users

10−1

100

B
P’

s
co

m
pu

ta
tio

n
(S

ec
)

128 512 2048 8192
Number of registered users

100

101

102

C
om

m
un

ic
at

io
n

(M
B

)

Figure C.1: Evaluating the single-core membership performance of SHE-Janus with
f iris or fingerprint samples of varied sizes.

C.2 Normalized Hamming distance

In this section, we define Normalized Hamming distance and discuss how we
optimize our protocols to compute this distance.

Noramlized Hamming distance. A biometric template X can have an asso-
ciated binary mask MX to exclude certain values during comparison. The nor-
malized Hamming distance, D.NormHamming((X, MX), (Y, MY)), applies both
masks, calculates the Hamming distance, and then normalizes by the count of
active comparison bits as follows:∑

i

((X[i]⊕ Y [i]) ∧ (MX [i] ∧MY [i])) ∗ TS/|MX ∧MY |.

We apply the following adaptations to our instantiations:

194

C.2 Normalized Hamming distance

64 256 1024
Number of registered users

100

101

102

R
S’

s
co

m
pu

ta
tio

n
(S

ec
)

f = 1, finger64

f = 4, finger64

f = 1, finger640

f = 4, finger640

f = 1, iris2048

f = 2, iris2048

f = 1, iris10240

f = 2, iris10240

64 256 1024
Number of registered users

100

101

102

B
P’

s
co

m
pu

ta
tio

n
(S

ec
)

64 256 1024
Number of registered users

102

103

104

C
om

m
un

ic
at

io
n

(M
B

)

Figure C.2: Evaluating the single-core membership performance of SMC-Janus with
f iris or fingerprint samples over different database sizes.

TEE-Janus.: Our TEE-based solution computes the matching in a plaintext
domain inside an enclave where supporting normalize Hamming is trivial.

SMC-Janus.: We store and handle the mask in the same manner as the bio-
metric data (secret shared between two parties) in our SMC-based solution
and adapt Algorithm 7 to apply the masks and scale the final distance based
on ∑

i(MX [i] ∧MY [i]).

SHE-Janus. While SHE schemes can support a multiplication depth beyond 1,
increasing the depth impacts the schemes parameter selection leading to higher
computation cost for each operation and a larger size for each ciphertext. We
aim to have a multiplication depth of 1 in our SHE-Janus solution to be able
to use the most efficient parameter with Ndeg = 4096. Using multiplication to
compute both the masking ∧ and the hamming ⊕ in the cipher domain leads
to a minimum depth of 2. Therefore, we rely on a different representation
of the hamming distance, namely D.Hamming(X, Y) = ∑

i(X[i] ∧ ¬Y [i]) ∨
(¬X[i] ∧ Y [i]), to compute the distance with a lower depth. When adding a

195

Chapter C. Appendix for Janus

new member, instead of separately encrypting and storing both Y and MY , we
store the following three vectors: (JY [i] ∧MY [i]K, J¬Y [i] ∧MY K, JMY K). When
performing the membership, we can compute X[i]∧MX [i] and ¬X[i]∧MX [i] in
the plaintext domain that allows us to compute the distance as D ← ∑

i(X[i]∧
MX [i]) · J¬Y [i] ∧MY [i]K + (¬X[i] ∧MX [i]) · JY [i] ∧MY [i]K.

Note that while we use a SHE approach to compute the distance, our
algorithms only require a linearly homomorphic scheme.

196

Appendix D
Appendix for Brutus

D.1 Random Forrest

In Section 5.4.3, we use metadata and features extracted from text to design a
ciphertext detector using a Random Forrest model. Now, we provide a detailed
description of the features used to train the model in Table D.1.

D.2 Additional results on generated datasets

In Section 5.5, we perform synthetic experiments to study our detectors’ be-
havior when facing plaintext or cipher domain shifts. When the impact of an
experiment is focused on only one of the precision or recall metrics, we present
the varying metric in the body and the unaffected measure in the appendix.

As mentioned in Section 5.5.2, our plots report the mean precision or
recall of ciphertext detection for each detector on the cross-validation sets.
Error bars show the 95% confidence interval. Since we discuss every plot in
their original experiment description, we do not add individual explanations
here.

197

Chapter D. Appendix for Brutus

Bible
SMS

Sensor

Validation Set

Bible + SMS

Bible + Sensor

SMS + Sensor

All

T
ra

in
S

et

1 0.99 1

1 1 1

1 0.99 1

1 1 1

2C-PPM

Bible
SMS

Sensor

Validation Set

1 0.99 1

1 1 1

1 0.99 1

1 0.98 1

CNN

Figure D.1: Recall of cipher detection on different text sources (columns) for models
trained on a mix of languages (rows). See Section 5.5.5 for more detail.

Bible
SMS

Sensor

Validation Set

Bible

SMS

Sensor

T
ra

in
S

et

1 1 1

1 0.99 1

1 1 1

2C-PPM

Bible
SMS

Sensor

Validation Set

1 1 1

1 0.99 1

1 1 1

CNN

Figure D.2: Recall of cipher detection on different text sources (columns) for models
trained on different texts (rows). See Section 5.5.5 for more detail.

198

D.2 Additional results on generated datasets

Bible
SMS

Sensor

Validation Set

Bible

SMS

SensorM
a

jo
r

T
ra

in
S

et
(9

8%
) 1 1 1

1 0.99 1

1 1 1

2C-PPM

Bible
SMS

Sensor

Validation Set

1 0.99 1

0.99 0.98 0.99

1 0.98 1

CNN

Figure D.3: Recall of cipher detection on different text sources (columns) for models
trained on train sets with an unbalanced mix of languages (rows). Row labels
indicate the majority source of training samples (98%). See Section 5.5.5 for more
detail.

Bible
SMS

Sensor

Validation Set

Bible

SMS

SensorM
a

jo
r

T
ra

in
S

et
(9

8%
) 1 0.85 0.99

1 0.97 1

1 0.85 1

2C-PPM

Bible
SMS

Sensor

Validation Set

1 0.98 1

1 0.99 1

1 0.97 1

CNN

Figure D.4: Precision across validation sets from different text sources (columns)
for models trained on train sets with an unbalanced mix of languages (rows). Row
labels indicate the majority source of training samples (90%). See Section 5.5.5 for
more detail.

199

Chapter D. Appendix for Brutus

Table D.1: Features of the Random Forests classifier. Features marked as M are
message metadata fields, those marked as T are features extracted from the message
text.

Name Type Description

label M Message label that allows to route ACARS messages to the
correct endpoint in the network

manufacturer M Aircraft manufacturer
model M Aircraft model
operator M Airline operating the aircraft
owner M Registered aircraft owner
cases T Boolean feature indicating whether both capital and lower-

case characters appear in the message text
date T Boolean feature indicating whether a date appears in the

message text
special T Fraction of special characters in the message text
dict T Number of matches within the message text with words from

the English dictionary

Monoalphabeti
c

Polyalphabeti
c

Transpositi
on

Modern

Validation Set

Monoalphabetic

Polyalphabetic

Transposition

Modern

T
ra

in
S

et

0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99

1 1 1 1

2C-PPM

Monoalphabeti
c

Polyalphabeti
c

Transpositi
on

Modern

Validation Set

1 1 0.98 1

0.99 0.99 0.94 0.99

1 1 1 1

0.99 0.99 0.96 1

CNN

Figure D.5: Precision of cipher detection on the SMS data using different cipher
suits. See Section 5.5.6 for more detail.

D.3 Decision support system

In this section, we present our dashboard and discuss how it helps analysts.
Fig. D.6 shows screenshots of our system. We are using real-world messages
in our dashboard, so we are blurring information that can be used to identify
actors responsible and involved aircraft.

200

D.3 Decision support system

Figure D.6: An overview of our dashboard.

Our dashboard provides three views:

Graph view. Our dashboard provides statistics about flagged messages based
on metadata and enables analysts to find patterns between messages and iden-
tify the actor responsible for the (insecure) cipher. We provide flexibility on
how metadata should be used for grouping and filtering messages as the re-
sponsible actor may have different roles such as manufacturer or airline.

Cipher view. Our dashboard provides detailed information about messages
flagged as cipher and enables searching based on metadata. We show a se-
lected set of fields from the original raw message collection. This field selec-
tion is based on discussions with our analyst. We extend these raw features
with additional aircraft metadata gathered through third-party sources (see
Section 5.4.3).

Plaintext view. This view is similar to the cipher view but shows messages
labeled as plain. The analyst may want to compare flagged messages with
non-flagged messages with similar metadata. This comparison may have two
reasons: (1) using plaintexts as a baseline to identify protocols with this spe-
cific metadata and (2) helping with further cryptanalysis as some proprietary

201

Chapter D. Appendix for Brutus

protocols support sending both plain and encrypted messages (with the same
metadata).

202

Bibliography

[1] ICIJ. Datashare. https://datashare.icij.org/.

[2] ICIJ. Panama papers. https://www.icij.org/investigations/
panama-papers/.

[3] Boston Globe. Church allowed abuse by priest for years.
https://www.bostonglobe.com/news/special-reports/2002/01/06/
church-allowed-abuse-priest-for-years/cSHfGkTIrAT25qKGvBuDNM/
story.html, 2002.

[4] Andrea Louise Carson. Investigative journalism, the public sphere and
democracy: the watchdog role of Australian broadsheets in the digital age.
PhD thesis, University of Melbourne, 2013.

[5] Susan E. McGregor, Franziska Roesner, and Kelly Caine. Individual
versus Organizational Computer Security and Privacy Concerns in Jour-
nalism. PoPETs, 2016.

[6] Susan E. McGregor, Polina Charters, Tobin Holliday, and Franziska
Roesner. Investigating the computer security practices and needs of jour-
nalists. In USENIX, 2015.

[7] Susan E. McGregor, Elizabeth Anne Watkins, Mahdi Nasrullah Al-
Ameen, Kelly Caine, and Franziska Roesner. When the Weakest Link
is Strong: Secure Collaboration in the Case of the Panama Papers. In
USENIX, 2017.

[8] Amos Beimel and Yuval Ishai. Information-Theoretic Private Informa-
tion Retrieval: A Unified Construction. In ICALP, 2001.

[9] Ian Goldberg. Improving the Robustness of Private Information Re-
trieval. In IEEE S&P, 2007.

[10] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SIN-
GLE database, computationally-private information retrieval. In FOCS,
1997.

[11] Yan Huang, David Evans, and Jonathan Katz. Private Set Intersection:
Are Garbled Circuits Better than Custom Protocols? In NDSS, 2012.

203

https://datashare.icij.org/
https://www.icij.org/investigations/panama-papers/
https://www.icij.org/investigations/panama-papers/
https://www.bostonglobe.com/news/special-reports/2002/01/06/church-allowed-abuse-priest-for-years/cSHfGkTIrAT25qKGvBuDNM/story.html
https://www.bostonglobe.com/news/special-reports/2002/01/06/church-allowed-abuse-priest-for-years/cSHfGkTIrAT25qKGvBuDNM/story.html
https://www.bostonglobe.com/news/special-reports/2002/01/06/church-allowed-abuse-priest-for-years/cSHfGkTIrAT25qKGvBuDNM/story.html

BIBLIOGRAPHY

[12] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder.
Efficient Circuit-Based PSI via Cuckoo Hashing. In EUROCRYPT, 2018.

[13] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phas-
ing: Private Set Intersection Using Permutation-based Hashing. In
USENIX, 2015.

[14] Emiliano De Cristofaro and Gene Tsudik. Practical Private Set Intersec-
tion Protocols with Linear Complexity. In FC, 2010.

[15] Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Private set
intersection with linear communication from general assumptions. In
WPES@CCS, 2019.

[16] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas.
Private Set Intersection for Unequal Set Sizes with Mobile Applications.
PoPETs, 2017.

[17] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster Private
Set Intersection Based on OT Extension. In USENIX, 2014.

[18] Sebastian Angel and Srinath T. V. Setty. Unobservable Communication
over Fully Untrusted Infrastructure. In OSDI, 2016.

[19] Benny Chor, Niv Gilboa, and Moni Naor. Private Information Retrieval
by Keywords. Technical report, Department of Computer Science, Tech-
nion, Israel, 1997.

[20] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated Gar-
bling and Efficient Maliciously Secure Two-Party Computation. In CCS,
2017.

[21] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke: Distributed
private messaging immune to passive traffic analysis. In OSDI, 2018.

[22] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich.
Vuvuzela: scalable private messaging resistant to traffic analysis. In
SOSP, 2015.

[23] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The
Second-Generation Onion Router. In USENIX, 2004.

[24] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR
with Compressed Queries and Amortized Query Processing. In IEEE
S&P, 2018.

204

BIBLIOGRAPHY

[25] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and Private
Computation of Cardinality of Set Intersection and Union. In CANS,
2012.

[26] Amanda C Davi Resende and Diego F Aranha. Faster unbalanced private
set intersection. FC, 2018.

[27] Bin Fan, David G. Andersen, and Michael Kaminsky. Cuckoo Filter:
Better Than Bloom. ;login:, 2013.

[28] Nym project. The nym system. https://nymtech.net/.

[29] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and
George Danezis. The Loopix Anonymity System. In USENIX, 2017.

[30] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket
Kate. Anonymity Trilemma: Strong Anonymity, Low Bandwidth Over-
head, Low Latency - Choose Two. In IEEE S&P, 2018.

[31] Masayuki Abe. A secure three-move blind signature scheme for polyno-
mially many signatures. In EUROCRYPT, 2001.

[32] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyan-
skaya, and Mira Meyerovich. How to win the clonewars: efficient periodic
n-times anonymous authentication. In CCS, 2006.

[33] Stefan A. Brands. Rethinking Public Key Infrastructures and Digital
Certificates: Building in Privacy. 2000.

[34] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light.
In CCS, 2013.

[35] Man Ho Au, Willy Susilo, Yi Mu, and Sherman S. M. Chow. Constant-
size dynamic k-times anonymous authentication. IEEE Systems Journal,
2013.

[36] David Pointcheval and Olivier Sanders. Short Randomizable Signatures.
In CT-RSA, 2016.

[37] Dogan Kesdogan, Dakshi Agrawal, and Stefan Penz. Limits of anonymity
in open environments. In Information Hiding, 2002.

[38] Fernanda López-Escobedo, Carlos-Francisco Méndez-Cruz, Gerardo
Sierra, and Julián Solórzano-Soto. Analysis of stylometric variables in
long and short texts. Procedia-Social and Behavioral Sciences, 2013.

205

https://nymtech.net/

BIBLIOGRAPHY

[39] G MuthuSelvi, GS Mahalakshmi, and S Sendhilkumar. Author attribu-
tion using stylometry for multi-author scientific publications. Advances
in Natural and Applied Sciences, 2016.

[40] George Danezis. Petlib: A python library that implements a number of
privacy enhancing technolgies. https://github.com/gdanezis/petlib.

[41] Rajath Agasthya. cuckoopy: Pure python implementation of cuckoo
filter. https://github.com/rajathagasthya/cuckoopy.

[42] Tor project. Tor metrics - performance. https://metrics.torproject.org/
onionperf-buildtimes.html.

[43] Moni Naor and Omer Reingold. Number-theoretic constructions of effi-
cient pseudo-random functions. J. ACM, 2004.

[44] Carmit Hazay and Yehuda Lindell. Efficient Protocols for Set Intersec-
tion and Pattern Matching with Security Against Malicious and Covert
Adversaries. J. Cryptology, 2010.

[45] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In EUROCRYPT, 2004.

[46] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private
set intersection based on OT extension. ACM Trans. Priv. Secur., 2018.

[47] Yongjun Zhao and Sherman S. M. Chow. Can You Find The One for
Me? 2018.

[48] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier
Killijian. XPIR : Private Information Retrieval for Everyone. PoPETs,
2016.

[49] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. Practical
Techniques for Searches on Encrypted Data. In IEEE S&P, 2000.

[50] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari
Balakrishnan. CryptDB: protecting confidentiality with encrypted query
processing. In SOSP, 2011.

[51] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal
Malkin, Seung Geol Choi, Wesley George, Angelos D. Keromytis, and
Steven M. Bellovin. Blind seer: A scalable private DBMS. In IEEE
S&P, 2014.

206

https://github.com/gdanezis/petlib
https://github.com/rajathagasthya/cuckoopy
https://metrics.torproject.org/onionperf-buildtimes.html
https://metrics.torproject.org/onionperf-buildtimes.html

BIBLIOGRAPHY

[52] Mohammad Etemad, Alptekin Küpçü, Charalampos Papamanthou, and
David Evans. Efficient Dynamic Searchable Encryption with Forward
Privacy. PoPETs, 2018.

[53] Dagmar Stumpfe and Jürgen Bajorath. Similarity searching. Wiley In-
terdisciplinary Reviews: Computational Molecular Science, 2011.

[54] Laufkötter, Oliver and Miyao, Tomoyuki and Bajorath, Jürgen. Large-
Scale Comparison of Alternative Similarity Search Strategies with Vary-
ing Chemical Information Contents. ACS Omega, 2019.

[55] Kana Shimizu, Koji Nuida, Hiromi Arai, Shigeo Mitsunari, Nuttapong
Attrapadung, Michiaki Hamada, Koji Tsuda, Takatsugu Hirokawa, Jun
Sakuma, Goichiro Hanaoka, et al. Privacy-preserving search for chemical
compound databases. BMC bioinformatics, 2015.

[56] Kasra Edalatnejad, Wouter Lueks, Julien Pierre Martin, Soline Ledésert,
Anne L’Hôte, Bruno Thomas, Laurent Girod, and Carmela Troncoso.
DatashareNetwork: A Decentralized Privacy-Preserving Search Engine
for Investigative Journalists. In USENIX, 2020.

[57] The fork: Restaurant booking system. https://www.thefork.com/, .

[58] Strava rolls out significant new routes fea-
ture. https://www.dcrainmaker.com/2020/03/
strava-rolls-out-significant-new-routes-feature.html, .

[59] Tinder: An online dating application. https://tinder.com/, .

[60] Emiliano De Cristofaro and Gene Tsudik. Practical Private Set Intersec-
tion Protocols with Linear Computational and Bandwidth Complexity.
IACR Cryptol. ePrint Arch., 2009.

[61] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-Complexity
Private Set Intersection Protocols Secure in Malicious Model. In ASI-
ACRYPT, 2010.

[62] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay
Yanai. Efficient Circuit-Based PSI with Linear Communication. In EU-
ROCRYPT, 2019.

[63] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set opera-
tions. In CRYPTO, 2005.

207

https://www.thefork.com/
https://www.dcrainmaker.com/2020/03/strava-rolls-out-significant-new-routes-feature.html
https://www.dcrainmaker.com/2020/03/strava-rolls-out-significant-new-routes-feature.html
https://tinder.com/

BIBLIOGRAPHY

[64] Ling Xue, Florence L Stahura, Jeffrey W Godden, and Jürgen Bajo-
rath. Mini-fingerprints detect similar activity of receptor ligands previ-
ously recognized only by three-dimensional pharmacophore-based meth-
ods. Journal of chemical information and computer sciences, 2001.

[65] Peter Willett, John M Barnard, and Geoffrey M Downs. Chemical simi-
larity searching. Journal of chemical information and computer sciences,
1998.

[66] Adrià Cereto-Massagué, María José Ojeda, Cristina Valls, Miquel
Mulero, Santiago Garcia-Vallvé, and Gerard Pujadas. Molecular fin-
gerprint similarity search in virtual screening. Methods, 2015.

[67] Ingo Muegge and Prasenjit Mukherjee. An overview of molecular fin-
gerprint similarity search in virtual screening. Expert Opinion on Drug
Discovery, 2016.

[68] Amos Tversky. Features of similarity. Psychological review, 1977.

[69] Paul Jaccard. The distribution of the flora in the alpine zone. New
phytologist, 1912.

[70] Okcupid: Free online dating. https://www.okcupid.com/, .

[71] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu.
Efficient Batched Oblivious PRF with Applications to Private Set Inter-
section. In CCS, 2016.

[72] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-
light: Lightweight private set intersection from sparse OT extension.
In CRYPTO, 2019.

[73] Mike Rosulek and Ni Trieu. Compact and malicious private set intersec-
tion for small sets. In CCS, 2021.

[74] Carmit Hazay. Oblivious Polynomial Evaluation and Secure Set-
Intersection from Algebraic PRFs. In TCC, 2015.

[75] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung.
Efficient robust private set intersection. In ACNS, 2009.

[76] Hao Chen, Kim Laine, and Peter Rindal. Fast Private Set Intersection
from Homomorphic Encryption. In CCS, 2017.

[77] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias
Senker, and Christian Weinert. Mobile Private Contact Discovery at
Scale. In USENIX, 2019.

208

https://www.okcupid.com/

BIBLIOGRAPHY

[78] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C.
Williams. Secure two-party computation is practical. In ASIACRYPT,
2009.

[79] Ferhat Karakoç and Alptekin Küpçü. Linear complexity private set in-
tersection for secure two-party protocols. In CANS, 2020.

[80] Michele Ciampi and Claudio Orlandi. Combining Private Set-
Intersection with Secure Two-Party Computation. In SCN, 2018.

[81] Nishanth Chandran, Divya Gupta, and Akash Shah. Circuit-psi with
linear complexity via relaxed batch OPPRF. PoPETs, 2022.

[82] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast OPRF and
circuit-psi from vector-ole. In EUROCRYPT, 2021.

[83] Jack P. K. Ma and Sherman S. M. Chow. Secure-computation-friendly
private set intersection from oblivious compact graph evaluation. In
AsiaCCS, 2022.

[84] Jason H. M. Ying, Shuwei Cao, Geong Sen Poh, Jia Xu, and Hoon Wei
Lim. Psi-stats: Private set intersection protocols supporting secure sta-
tistical functions. In ACNS, 2022.

[85] Satrajit Ghosh and Mark Simkin. The Communication Complexity of
Threshold Private Set Intersection. In CRYPTO, 2019.

[86] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, David Shanahan, and Moti Yung. Private Intersection-Sum
Protocol with Applications to Attributing Aggregate Ad Conversions.
IACR Cryptol. ePrint Arch., 2017.

[87] Yongjun Zhao and Sherman S. M. Chow. Are you the one to share?
secret transfer with access structure. PoPETs, 2017.

[88] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and
Nikita Borisov. BotGrep: Finding P2P Bots with Structured Graph
Analysis. In USENIX, 2010.

[89] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI:
Scaling Private Contact Discovery. PoPETs, 2018.

[90] Marcin Nagy, Emiliano De Cristofaro, Alexandra Dmitrienko,
N. Asokan, and Ahmad-Reza Sadeghi. Do I Know You? Efficient and
Privacy-Preserving Common Friend-Finder Protocols and Applications.
In ACSAC, 2013.

209

BIBLIOGRAPHY

[91] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti,
and Gene Tsudik. Countering GATTACA: efficient and secure testing of
fully-sequenced human genomes. In CCS, 2011.

[92] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from
PaXoS: Fast, Malicious Private Set Intersection. In EUROCRYPT, 2020.

[93] Seny Kamara, Payman Mohassel, Mariana Raykova, and Saeed
Sadeghian. Scaling Private Set Intersection to Billion-Element Sets. In
FC, 2013.

[94] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks
and privacy homomorphisms. Foundations of Secure Computation, 1978.

[95] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complex-
ity of secure protocols (extended abstract). In STOC, 1990.

[96] Andrew Chi-Chih Yao. How to Generate and Exchange Secrets (Ex-
tended Abstract). In FOCS, 1986.

[97] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any
Mental Game or A Completeness Theorem for Protocols with Honest
Majority. In STOC, 1987.

[98] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In EURO-
CRYPT, 2015.

[99] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. Arx: An en-
crypted database using semantically secure encryption. Proc. VLDB
Endow., 2019.

[100] Emil Stefanov, Marten van Dijk, Elaine Shi, T.-H. Hubert Chan, Christo-
pher W. Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path
ORAM: an extremely simple oblivious RAM protocol. J. ACM, 2018.

[101] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique
Schröder. Maliciously secure multi-client ORAM. In ACNS, 2017.

[102] Anrin Chakraborti and Radu Sion. Concuroram: High-throughput state-
less parallel multi-client ORAM. In NDSS, 2019.

[103] Aslí Bay, Zeki Erkin, Mina Alishahi, and Jelle Vos. Multi-party private
set intersection protocols for practical applications. In SECRYPT, 2021.

210

BIBLIOGRAPHY

[104] Zhusheng Wang, Karim Banawan, and Sennur Ulukus. Multi-party pri-
vate set intersection: An information-theoretic approach. IEEE J. Sel.
Areas Inf. Theory, 2021.

[105] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and
Ni Trieu. Practical multi-party private set intersection from symmetric-
key techniques. In CCS, 2017.

[106] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Ho-
momorphic Encryption. IACR Cryptol. ePrint Arch., 2012.

[107] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dim-
itropoulos. SEPIA: privacy-preserving aggregation of multi-domain net-
work events and statistics. In USENIX, 2010.

[108] Sumit Kumar Debnath and Ratna Dutta. Secure and Efficient Private
Set Intersection Cardinality Using Bloom Filter. In ISC, 2015.

[109] Ou Ruan, Zihao Wang, Jing Mi, and Mingwu Zhang. New approach to
set representation and practical private set-intersection protocols. IEEE
Access, 2019.

[110] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) Size
Matters: Size-Hiding Private Set Intersection. In PKC, 2011.

[111] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Gold-
wasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine,
Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody, Travis
Morrison, Amit Sahai, and Vinod Vaikuntanathan. Homomorphic En-
cryption Security Standard. Technical report, HomomorphicEncryp-
tion.org, 2018.

[112] Lattigo. http://github.com/ldsec/lattigo, 2020.

[113] Christian Mouchet, Juan Ramón Troncoso-Pastoriza, and Jean-Pierre
Hubaux. Multiparty Homomorphic Encryption: From Theory to Prac-
tice. IACR Cryptol. ePrint Arch., 2020.

[114] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD
operations. Des. Codes Cryptogr., 2014.

[115] Durant, Joseph L and Leland, Burton A and Henry, Douglas R and
Nourse, James G. Reoptimization of MDL keys for use in drug discovery.
Journal of chemical information and computer sciences, 2002.

211

http://github.com/ldsec/lattigo

BIBLIOGRAPHY

[116] David Mendez, Anna Gaulton, A Patrícia Bento, Jon Chambers, Marleen
De Veij, Eloy Félix, María Paula Magariños, Juan F Mosquera, Prudence
Mutowo, Michał Nowotka, et al. ChEMBL: towards direct deposition of
bioassay data. Nucleic acids research, 2019.

[117] Gaulton, Anna and Bellis, Louisa J and Bento, A Patricia and Cham-
bers, Jon and Davies, Mark and Hersey, Anne and Light, Yvonne and
McGlinchey, Shaun and Michalovich, David and Al-Lazikani, Bissan and
others. ChEMBL: a large-scale bioactivity database for drug discovery.
Nucleic acids research, 2012.

[118] RDKit: Open-source cheminformatics. http://www.rdkit.org, .

[119] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Effi-
cient MultiParty computation toolkit. https://github.com/emp-toolkit,
2016.

[120] Boya Wang, Wouter Lueks, Justinas Sukaitis, Vincent Graf Narbel, and
Carmela Troncoso. Not yet another digital ID: privacy-preserving hu-
manitarian aid distribution. IEEE S&P, 2023.

[121] The fundamental principles of the international red cross and red
crescent movement. https://www.icrc.org/sites/default/files/topic/file_
plus_list/4046-the_fundamental_principles_of_the_international_
red_cross_and_red_crescent_movement.pdf.

[122] Human Rights Watch. New Evidence that Biometric Data
Systems Imperil Afghans. https://www.hrw.org/news/2022/03/30/
new-evidence-biometric-data-systems-imperil-afghans.

[123] Zara Rahman, Paola Verhaert, and Carly Nyst. Biometrics in the hu-
manitarian sector. 2018.

[124] Hachim El Khiyari and Harry Wechsler. Face verification subject to
varying (age, ethnicity, and gender) demographics using deep learning.
Journal of Biometrics and Biostatistics, 7(323):11, 2016.

[125] Arun Ross, Sudipta Banerjee, and Anurag Chowdhury. Deducing health
cues from biometric data. Computer Vision and Image Understanding,
221, 2022.

[126] Benjamin Tams. Unlinkable minutiae-based fuzzy vault for multiple fin-
gerprints. IET Biom., 2016.

[127] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In CCS,
1999.

212

http://www.rdkit.org
https://github.com/emp-toolkit
https://www.icrc.org/sites/default/files/topic/file_plus_list/4046-the_fundamental_principles_of_the_international_red_cross_and_red_crescent_movement.pdf
https://www.icrc.org/sites/default/files/topic/file_plus_list/4046-the_fundamental_principles_of_the_international_red_cross_and_red_crescent_movement.pdf
https://www.icrc.org/sites/default/files/topic/file_plus_list/4046-the_fundamental_principles_of_the_international_red_cross_and_red_crescent_movement.pdf
https://www.hrw.org/news/2022/03/30/new-evidence-biometric-data-systems-imperil-afghans
https://www.hrw.org/news/2022/03/30/new-evidence-biometric-data-systems-imperil-afghans

BIBLIOGRAPHY

[128] Yadigar N. Imamverdiyev, Andrew Beng Jin Teoh, and Jaihie Kim. Bio-
metric cryptosystem based on discretized fingerprint texture descriptors.
Expert Syst. Appl., 2013.

[129] Mahesh Kumar Morampudi, Munaga V. N. K. Prasad, and U. S. N.
Raju. Privacy-preserving iris authentication using fully homomorphic
encryption. Multim. Tools Appl., 2020.

[130] Jiawei Yuan and Shucheng Yu. Efficient privacy-preserving biometric
identification in cloud computing. In INFOCOM, 2013.

[131] Julien Bringer, Hervé Chabanne, and Alain Patey. Privacy-preserving
biometric identification using secure multiparty computation: An
overview and recent trends. IEEE Signal Process. Mag., 2013.

[132] Liehuang Zhu, Chuan Zhang, Chang Xu, Ximeng Liu, and Cheng Huang.
An efficient and privacy-preserving biometric identification scheme in
cloud computing. IEEE Access, 2018.

[133] Stevens Le Blond, Alejandro Cuevas, Juan Ramón Troncoso-Pastoriza,
Philipp Jovanovic, Bryan Ford, and Jean-Pierre Hubaux. On enforcing
the digital immunity of a large humanitarian organization. In IEEE S&P,
2018.

[134] The International Committee of Red Cross. Hand-
book on Data Protection in Humanitarian Action.
ICRC, 2020. https://www.icrc.org/en/publication/
430501-handbook-data-protection-humanitarian-action-second-edition.

[135] The International Committee of Red Cross. Policy on the Processing
of Biometric Data. ICRC, 2019. https://www.icrc.org/en/document/
icrc-biometrics-policy.

[136] Cyber attack on icrc: What we know. https://www.icrc.org/en/
document/cyber-attack-icrc-what-we-know.

[137] Belkis Wille. You don’t need to demand sensitive bio-
metric data to give aid. The Ukraine response shows how.
https://www.thenewhumanitarian.org/opinion/2023/07/11/
you-dont-need-demand-sensitive-biometric-data-give-aid-ukraine-response-shows.

[138] The missing persons digital matching project: Faster and bet-
ter answers. Online: https://missingpersons.icrc.org/news-stories/
missing-persons-digital-matching-project-faster-and-better-answers,
2023.

213

https://www.icrc.org/en/publication/430501-handbook-data-protection-humanitarian-action-second-edition
https://www.icrc.org/en/publication/430501-handbook-data-protection-humanitarian-action-second-edition
https://www.icrc.org/en/document/icrc-biometrics-policy
https://www.icrc.org/en/document/icrc-biometrics-policy
https://www.icrc.org/en/document/cyber-attack-icrc-what-we-know
https://www.icrc.org/en/document/cyber-attack-icrc-what-we-know
https://www.thenewhumanitarian.org/opinion/2023/07/11/you-dont-need-demand-sensitive-biometric-data-give-aid-ukraine-response-shows
https://www.thenewhumanitarian.org/opinion/2023/07/11/you-dont-need-demand-sensitive-biometric-data-give-aid-ukraine-response-shows
https://missingpersons.icrc.org/news-stories/missing-persons-digital-matching-project-faster-and-better-answers
https://missingpersons.icrc.org/news-stories/missing-persons-digital-matching-project-faster-and-better-answers

BIBLIOGRAPHY

[139] United Nations High Commissioner for Refugees. Biometric
Identity Management System. https://www.unhcr.org/media/
biometric-identity-management-system.

[140] World Food Program. WFP SCOPE: Know them better, to serve them
better. https://documents.wfp.org/stellent/groups/public/documents/
communications/wfp258555.pdf.

[141] Human Rights Watch. UN Shared Rohingya Data With-
out Informed Consent. https://www.hrw.org/news/2021/06/15/
un-shared-rohingya-data-without-informed-consent.

[142] Paul Currion. Eyes wide shut: The challenge of humanitarian bio-
metrics. https://www.thenewhumanitarian.org/opinion/2015/08/26/
eyes-wide-shut-challenge-humanitarian-biometrics.

[143] IRIN. How a fingerprint can change an asylum seeker’s life. https:
//www.refworld.org/docid/5a1694724.html.

[144] Julien Bringer, Hervé Chabanne, Mélanie Favre, Alain Patey, Thomas
Schneider, and Michael Zohner. GSHADE: faster privacy-preserving dis-
tance computation and biometric identification. In IH&MMSec, 2014.

[145] Ying Luo, Sen-ching Samson Cheung, Tommaso Pignata, Riccardo
Lazzeretti, and Mauro Barni. An efficient protocol for private iris-code
matching by means of garbled circuits. In ICIP, 2012.

[146] Yan Huang, Lior Malka, David Evans, and Jonathan Katz. Efficient
privacy-preserving biometric identification. In NDSS, 2011.

[147] Mauro Barni, Tiziano Bianchi, Dario Catalano, Mario Di Rai-
mondo, Ruggero Donida Labati, Pierluigi Failla, Dario Fiore, Riccardo
Lazzeretti, Vincenzo Piuri, Fabio Scotti, and Alessandro Piva. Privacy-
preserving fingercode authentication. In MM&Sec. ACM, 2010.

[148] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama,
and Takeshi Koshiba. New packing method in somewhat homomorphic
encryption and its applications. Secur. Commun. Networks, 2015.

[149] Vishnu Naresh Boddeti. Secure face matching using fully homomorphic
encryption. In BTAS, 2018.

[150] Joshua J. Engelsma, Anil K. Jain, and Vishnu Naresh Boddeti. HERS:
homomorphically encrypted representation search. IEEE Trans. Biom.
Behav. Identity Sci., 2022.

214

https://www.unhcr.org/media/biometric-identity-management-system
https://www.unhcr.org/media/biometric-identity-management-system
https://documents.wfp.org/stellent/groups/public/documents/communications/wfp258555.pdf
https://documents.wfp.org/stellent/groups/public/documents/communications/wfp258555.pdf
https://www.hrw.org/news/2021/06/15/un-shared-rohingya-data-without-informed-consent
https://www.hrw.org/news/2021/06/15/un-shared-rohingya-data-without-informed-consent
https://www.thenewhumanitarian.org/opinion/2015/08/26/eyes-wide-shut-challenge-humanitarian-biometrics
https://www.thenewhumanitarian.org/opinion/2015/08/26/eyes-wide-shut-challenge-humanitarian-biometrics
https://www.refworld.org/docid/5a1694724.html
https://www.refworld.org/docid/5a1694724.html

BIBLIOGRAPHY

[151] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping bits in memory without accessing them: An experimental study of
DRAM disturbance errors. In ISCA, 2014.

[152] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In USENIX, 2018.

[153] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,
and Raoul Strackx. Foreshadow: Extracting the keys to the intel SGX
kingdom with transient out-of-order execution. In USENIX, 2018.

[154] Anil K. Jain, Salil Prabhakar, Lin Hong, and Sharath Pankanti. Fin-
gercode: A filterbank for fingerprint representation and matching. In
CVPR. IEEE Computer Society, 1999.

[155] Christel loic Tisse, Lionel Martin, Lionel Torres, and Michel Robert.
Person identification technique using human iris recognition. In Proc.
Vision Interface, 2002.

[156] Jucheng Yang. Non-minutiae based fingerprint descriptor. Biometrics,
2011.

[157] Jiankang Deng, Jia Guo, Jing Yang, Niannan Xue, Irene Kotsia, and
Stefanos Zafeiriou. Arcface: Additive angular margin loss for deep face
recognition. IEEE Trans. Pattern Anal. Mach. Intell., 2022.

[158] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In CVPR, 2015.

[159] Srdan Barzut, Milan Milosavljevic, Sasa Adamovic, Muzafer Saracevic,
Nemanja Macek, and Milan Gnjatovic. A novel fingerprint biometric
cryptosystem based on convolutional neural networks. Mathematics,
2021.

[160] Anil K. Jain, Salil Prabhakar, Lin Hong, and Sharath Pankanti.
Filterbank-based fingerprint matching. IEEE Trans. Image Process.,
2000.

[161] Lifeng Sha, Feng Zhao, and Xiaoou Tang. Improved fingercode for
filterbank-based fingerprint matching. In ICIP (2), 2003.

215

BIBLIOGRAPHY

[162] Joshua J. Engelsma, Kai Cao, and Anil K. Jain. Learning a fixed-length
fingerprint representation. IEEE Trans. Pattern Anal. Mach. Intell.,
2021.

[163] John Daugman. How iris recognition works. IEEE Trans. Circuits Syst.
Video Technol., 2004.

[164] Karen P. Hollingsworth, Kevin W. Bowyer, and Patrick J. Flynn. The
best bits in an iris code. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2008.

[165] Unique Identification Authority of India (UIDAI). Aaadhar dashboard.
https://uidai.gov.in/en/.

[166] The US department of state. Safety and Security of U.S. Bor-
ders: Biometrics. https://travel.state.gov/content/travel/en/us-visas/
visa-information-resources/border-biometrics.html/.

[167] The Multimedia Signal Processing and Security Lab (WaveLab). Uni-
versity of Salzburg Iris Toolkit (USIT) v3. https://www.wavelab.at/
sources/USIT/g.

[168] Christian Rathgeb, Andreas Uhl, Peter Wild, and Heinz Hofbauer. De-
sign decisions for an iris recognition sdk. Handbook of iris recognition,
2016.

[169] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit:
semi honest two party computation. https://github.com/emp-toolkit/
emp-sh2pc, 2016.

[170] EPFL-LDS, Tune Insight SA. Lattigo v4. Online: https://github.com/
tuneinsight/lattigo, 2022.

[171] Fortanix. Fortanix enclave development platform. https://edp.fortanix.
com/.

[172] Sasa Z. Adamovic, Milan Milosavljevic, Mladen D. Veinovic, Marko
Sarac, and Aleksandar Jevremovic. Fuzzy commitment scheme for gen-
eration of cryptographic keys based on iris biometrics. IET Biom., 2017.

[173] Ari Juels and Madhu Sudan. A fuzzy vault scheme. Des. Codes Cryptogr.,
2006.

[174] Valérie Viet Triem Tong, Hervé Sibert, Jérémy Lecoeur, and Marc Gi-
rault. Biometric fuzzy extractors made practical: A proposal based on
fingercodes. In ICB, 2007.

216

https://uidai.gov.in/en/
https://travel.state.gov/content/travel/en/us-visas/visa-information-resources/border-biometrics.html/
https://travel.state.gov/content/travel/en/us-visas/visa-information-resources/border-biometrics.html/
https://www.wavelab.at/sources/USIT/g
https://www.wavelab.at/sources/USIT/g
https://github.com/emp-toolkit/emp-sh2pc
https://github.com/emp-toolkit/emp-sh2pc
https://github.com/tuneinsight/lattigo
https://github.com/tuneinsight/lattigo
https://edp.fortanix.com/
https://edp.fortanix.com/

BIBLIOGRAPHY

[175] Yevgeniy Dodis, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. In
EUROCRYPT, 2004.

[176] A Stoianov, Tom Kevenaar, and Michiel Van der Veen. Security issues of
biometric encryption. In 2009 IEEE Toronto International Conference
Science and Technology for Humanity (TIC-STH), 2009.

[177] Alex Stoianov. Security of error correcting code for biometric encryption.
In PST. IEEE, 2010.

[178] Bashra Alwawi and Ali Althabhawee. Towards more accurate and ef-
ficient human iris recognition model using deep learning technology.
TELKOMNIKA (Telecommunication Computing Electronics and Con-
trol), 2022.

[179] Christian Rathgeb and Andreas Uhl. A survey on biometric cryptosys-
tems and cancelable biometrics. EURASIP J. Inf. Secur., 2011.

[180] Andrew Teoh Beng Jin, David Ngo Chek Ling, and Alwyn Goh. Biohash-
ing: two factor authentication featuring fingerprint data and tokenised
random number. Pattern Recognit., 2004.

[181] Alessandra Lumini and Loris Nanni. An improved biohashing for human
authentication. Pattern Recognit., 2007.

[182] Project/programme monitoring and evaluation guide. 2011. https://
www.ifrc.org/sites/default/files/2021-09/IFRC-ME-Guide-8-2011.pdf.

[183] Aeronautical Radio Inc. (ARINC). Aircraft Communications Addressing
and Reporting Systems (ACARS). Technical report, Aeronautical Radio
Inc. (ARINC), 2012.

[184] Aeronautical Radio Inc. (ARINC). DataLink Security, Part 1 - ACARS
Message Security. Technical report, Aeronautical Radio Inc. (ARINC),
2007.

[185] Matthew Smith, Daniel Moser, Martin Strohmeier, Vincent Lenders, and
Ivan Martinovic. Economy Class Crypto: Exploring Weak Cipher Usage
in Avionic Communications via ACARS. In FC, 2017.

[186] Matthew Smith, Daniel Moser, Martin Strohmeier, Vincent Lenders, and
Ivan Martinovic. Undermining privacy in the aircraft communications
addressing and reporting system (ACARS). PoPETs, 2018.

217

https://www.ifrc.org/sites/default/files/2021-09/IFRC-ME-Guide-8-2011.pdf
https://www.ifrc.org/sites/default/files/2021-09/IFRC-ME-Guide-8-2011.pdf

BIBLIOGRAPHY

[187] Aeronautical Radio Inc. (ARINC). Datalink Ground System Standard
and Interface Specification. Technical report, Aeronautical Radio Inc.
(ARINC), 2014.

[188] Martin Strohmeier, Ivan Martinovic, and Vincent Lenders. Securing the
air–ground link in aviation. In The Security of Critical Infrastructures.
2020.

[189] Bruno Blanchet. Symbolic and computational mechanized verification of
the arinc823 avionic protocols. In CSF, 2017.

[190] Friedrich Wilhelm Kasiski. Die Geheimschriften und die Dechiffrir-
Kunst: mit besonderer Berücksichtigung der deutschen und der franzö-
sischen Sprache. 1863.

[191] William Frederick Friedman. The index of coincidence and its applica-
tions in cryptography. 1922.

[192] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy, Second Edition. 2014.

[193] Claude Elwood Shannon. A mathematical theory of communication. The
Bell system technical journal, 1948.

[194] William F. Smyth and Reihaneh Safavi-Naini. Automated Cryptanalysis
of Substitution Ciphers. Cryptologia, 1993.

[195] Jian Chen and Jeffrey S. Rosenthal. Decrypting classical cipher text
using Markov chain Monte Carlo. Stat. Comput., 2012.

[196] Noor R. Al-Kazaz, Sean A. Irvine, and William John Teahan. An Au-
tomatic Cryptanalysis of Transposition Ciphers Using Compression. In
CANS, 2016.

[197] Noor R. Al-Kazaz, Sean A. Irvine, and William John Teahan. An Au-
tomatic Cryptanalysis of Playfair Ciphers Using Compression. In His-
toCrypt, 2018.

[198] Noor R. Al-Kazaz, Sean A. Irvine, and William John Teahan. An au-
tomatic cryptanalysis of simple substitution ciphers using compression.
Inf. Secur. J. A Glob. Perspect., 2018.

[199] Al-Kazaz, Noor R. Compression-based Methods for the Automatic Crypt-
analysis of Classical Ciphers. 2019.

[200] Guang Cheng and Ying Hu. Encrypted traffic identification based on
n-gram entropy and cumulative sum test. In CFI, 2018.

218

BIBLIOGRAPHY

[201] Zhengzhi Tang, Xuewen Zeng, and Yiqiang Sheng. Entropy-based feature
extraction algorithm for encrypted and non-encrypted compressed traffic
classification. International Journal of ICIC, 2019.

[202] Qing Li, Yonghui Ju, Chang Zhao, and Xintai He. An Encrypted Field
Locating Algorithm for Private Protocol Data Based on Data Recon-
struction and Moment Eigenvector. IEEE Access, 2021.

[203] Petr Velan, Milan Cermák, Pavel Celeda, and Martin Drasar. A survey
of methods for encrypted traffic classification and analysis. Int. J. Netw.
Manag., 2015.

[204] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On,
Narseo Vallina-Rodriguez, and Serge Egelman. 50 ways to leak your
data: An exploration of apps’ circumvention of the android permissions
system. In USENIX, 2019.

[205] Georg Baselt, Martin Strohmeier, James Pavur, Vincent Lenders, and
Ivan Martinovic. Security and privacy issues of satellite communication
in the avlatlon domain. In 2022 14th International Conference on Cyber
Conflict: Keep Moving! (CyCon), 2022.

[206] Martin Strohmeier, Matthew Smith, Vincent Lenders, and Ivan Mar-
tinovic. The real first class? inferring confidential corporate mergers
and government relations from air traffic communication. In 2018 IEEE
European Symposium on Security and Privacy (EuroS&P), 2018.

[207] Elaine Rich. Automata, computability and complexity: theory and appli-
cations. 2008.

[208] John G. Cleary and Ian H. Witten. Data Compression Using Adaptive
Coding and Partial String Matching. IEEE Trans. Commun., 1984.

[209] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic Coding
for Data Compression. Commun. ACM, 1987.

[210] Project nayuki: Reference arithmetic coding. https://github.com/
nayuki/Reference-arithmetic-coding.

[211] Thorsten Joachims. Text Categorization with Support Vector Machines.
Proc. European Conf. Machine Learning, 1998.

[212] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jef-
frey Dean. Distributed Representations of Words and Phrases and their
Compositionality. In Advances in Neural Information Processing Sys-
tems, 2013.

219

https://github.com/nayuki/Reference-arithmetic-coding
https://github.com/nayuki/Reference-arithmetic-coding

BIBLIOGRAPHY

[213] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level Con-
volutional Networks for Text Classification. In Advances in Neural In-
formation Processing Systems, 2015.

[214] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7:
A matlab-like environment for machine learning. In BigLearn, NeurIPS
workshop, 2011.

[215] Opensky’s aircraft registarry. https://opensky-network.org/datasets/
metadata/.

[216] Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and
Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and
Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cour-
napeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E. Scikit-
learn: Machine Learning in Python. JLMR, 2011.

[217] Canterbury corpus. https://corpus.canterbury.ac.nz/.

[218] Tao Chen and Min-Yen Kan. Creating a live, public short message service
corpus: the NUS SMS corpus. Lang. Resour. Evaluation, 2013.

[219] Acars data collection infrastructure. https://thebaldgeek.github.io/.

[220] Cnil-inria data protection award. https://www.cnil.fr/en/
2021-inria-and-cnil-award-european-researchers-awarded-their-work-privacy-protection.

[221] The caspar bowden award for outstanding research in privacy enhancing
technologies. https://petsymposium.org/award/winners.php.

[222] Real world crypto symposium. https://rwc.iacr.org/2023/, 2023.

[223] Leo de Castro, Chiraag Juvekar, and Vinod Vaikuntanathan. Fast Vec-
tor Oblivious Linear Evaluation from Ring Learning with Errors. In
WAHC@CCS, 2021.

[224] Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL,
2022.

[225] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, USA, 2009.

[226] Yehuda Lindell. How to Simulate It - A Tutorial on the Simulation Proof
Technique. In Tutorials on the Foundations of Cryptography. 2017.

[227] Taher El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Trans. Inf. Theory, 1985.

220

https://opensky-network.org/datasets/metadata/
https://opensky-network.org/datasets/metadata/
https://corpus.canterbury.ac.nz/
https://thebaldgeek.github.io/
https://www.cnil.fr/en/2021-inria-and-cnil-award-european-researchers-awarded-their-work-privacy-protection
https://www.cnil.fr/en/2021-inria-and-cnil-award-european-researchers-awarded-their-work-privacy-protection
https://petsymposium.org/award/winners.php
https://rwc.iacr.org/2023/
https://github.com/Microsoft/SEAL

BIBLIOGRAPHY

[228] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In EUROCRYPT, 1999.

221

Kasra EdalatNejad
® kasra.edalat.dev
 kasra.edalat@epfl.ch
¤ keybase.io/kasraedalat
� github.com/kasra-edalat
 kasra-edalatnejad

Education

École polytechnique fédérale de Lausanne Lausanne, Switzerland
Ph.D. in Computer Science, Advisor: Prof. Carmela Troncoso 2017–Current

– Thesis title: “Bridging the gap between theoretical and practical privacy technologies for at-risk
populations”

Sharif University of Technology Tehran, Iran
B.S. in Computer Engineering - Software Engineering 2011–2016

Salam Tajrish high school Tehran, Iran
Diploma in mathematics and physics 2008–2011

Experience

IMDEA Software Research Institute Madrid, Spain
Research intern, Advisor: Prof. Dario Fiore, Dr. Claudio Soriente July 2021–Nov 2021

– Topic: “Speeding up privacy-preserving deep learning by enhancing FHE operations with TEE and
GPU”

University of Michigan Ann Arbor, Michigan
Research assistant, Advisor: Prof. Harsha V. Madhyastha 2016–2017

– Topic: “Privacy-preserving recommendation sharing”

Atomic Energy high school Tehran, Iran
Teacher: Combinatory and programming 2011–2015

Salam Tajrish high school Tehran, Iran
Teacher: Algorithm, combinatory, and programming 2011–2012

Publications

1. Kasra EdalatNejad, Mathilde Raynal, Wouter Lueks, Carmela Troncoso: “Private Collection
Matching Protocols”. Proceedings on Privacy Enhancing Technologies, 2023.

2. Kasra EdalatNejad, Wouter Lueks, Julien Pierre Martin, Soline Ledésert, Anne L’Hôte, Bruno
Thomas, Laurent Girod, Carmela Troncoso: “DatashareNetwork: A Decentralized Privacy-Preserving
Search Engine for Investigative Journalists”. USENIX Security Symposium 2020.

3. Manu Drijvers, Kasra EdalatNejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, Igors
Stepanovs: “On the Security of Two-Round Multi-Signatures”. in IEEE Symposium on Security and
Privacy (IEEE S&P) 2019.

4. Manu Drijvers, Kasra EdalatNejad, Bryan Ford, Gregory Neven: “Okamoto Beats Schnorr: On the
Provable Security of Multi-Signatures”. IACR Cryptol. ePrint Arch. 2018: 417 (2018)

223

5. Han Zhang, Kasra EdalatNejad, Amir Rahmati, Harsha V. Madhyastha: “Towards Comprehensive
Repositories of Opinions”. HotNets 2016.

Contributed talks

1. Kasra EdalatNejad: “DatashareNetwork: A Decentralized Privacy-Preserving Search Engine for
Investigative Journalists”. Real world crypto (RWC), 2023.

2. Kasra EdalatNejad: “Automatic detection and decryption of insecure ciphertexts in ACARS”. Cyber
Alp Retreat, 2021.

3. Kasra EdalatNejad, Soline Ledésert: “DatashareNetwork: The use of Tor in supporting document
search for Investigative Journalists”. Tor Demo Day, September 2020.

Honors and Awards

• Runner up for CNIL-Inria data protection award 2022

• Runner up for the Caspar Bowden award for outstanding research in privacy enhancing technologies 2021

• EPFL IC distinguished service award 2020

• EPFL teaching assistance award 2019

• EPFL EDIC fellowship for doctoral studies 2017

• Ministerial award from ministry of science, research, and technology

for outstanding performance in olympiad 2017

• Gold medal (Ranked 1st) in the national computer science olympiad for graduate students 2016

• Ranked 6th in the Iranian national graduate examination (Konkur) 2016

• Ranked 23rd (top 1%) in the 9th IEEEXtreme Oct 2015

• Presidential award from Pres. M. Ahmadinejad

for outstanding performance in olympiad 2011

• International Silver medal in 23th international olympiad in informatics (IOI), Thailand July 2011

• Silver medal in 5th Asia-Pacific informatics olympiad (APIO) May 2011

• Ministerial award from ministry of science, research, and technology

for outstanding performance in olympiad 2010

• National Gold medal (ranked 1st) in Iranian national olympiad in informatics (INOI) Sep 2010

• National Silver medal in Iranian national olympiad in informatics (INOI) March 2010

• Member of Iranian national elite foundation since 2011

Projects

• PCM: A framework for private collection matching �Repo

• DatashareNetwork: A decentralized privacy-preserving search engine
Proof of concept for cryptographic primitives � crypto
Production code � core, � server, � client
For more information visit ® kasra.edalat.dev

• SSCred: Single show anonymous credentials
Source code �Repo
Pypi package sscred

• KSSH: An SSH server as a plugin for Sharif Honeypot Repo

• KilliCent: A micropayment system based on MilliCent Repo

224

Skills

Programming languages

• Proficient in: C++, Python, Go, Java, Android, JavaScript

• Familiar with: C, Lisp, Verilog, Haskell, Racket

Teaching and Supervision

Student Supervision

• Pierugo Pace, Master project: “Biometric deduplication in humanitarian aid distribution”. 2023

• Eva Luvison, Master project: “Wallets for Privacy-Preserving Aid Distribution”. 2022

• Lorenzo Carlo Rovati, Master project: “Using smartcards for privacy-friendly aid distribution”. 2022

• Jodok Vieli, Master project: “Automatic decryption of classical ciphers with neural networks”. 2021

• Ma Ke, Master project: “Securing biometric authentication data with trusted hardware”. 2021

• Sacha Kozma, Master project: “Efficiently updatable accumulator”. 2020

• Omid Karimi, Bachelor project: “Automatic cryptanalysis of classical ciphers”. 2020

• Mathilde Raynal, Master project: “Secure Multiparty Computation for PSI”. 2019

• Bradley Mathez, Bachelor project: “An SMC Approach to Multi-Device Key Management” 2019

• Valentyna Pavliv, Bachelor project: “Efficient Blacklisting of Anonymous Users”. 2019

Teaching assistant

• CS-523: Advanced topics on privacy enhancing technologies 2020, 2021

• COM-301: Computer security 2018, 2019, 2020

• COM-412: Software security 2019

• MATH-232: Probability and statistics 2018

Academic Service

Program committee

• IEEE International Conference on Blockchain and Cryptocurrency (ICBC) 2020

• IEEE International Conference on Blockchain and Cryptocurrency (ICBC) 2019

External reviewer

• PoPETS 2023

• PoPETS 2022

• EuroCrypt, USENIX Security, OSDI, IEEE Trans. on Information Forensics and Security 2021

• NSDI 2020

• PoPETS, FC 2019

225

	Acknowledgements
	Abstract
	Contents
	Introduction
	DatashareNetwork: A Decentralized Privacy-Preserving Search Engine for Investigative Journalists
	Introduction
	Towards building Datashare
	Requirements gathering
	Sketching Datashare

	Multi-set PSI
	Privacy-preserving messaging
	Messaging system construction
	Messaging service privacy
	Cost evaluation

	The Datashare system
	Preliminaries
	Datashare protocols and design
	Datashare security analysis
	Cost evaluation

	Related work
	Future steps: better protection

	Private Collection Matching Protocols
	Introduction
	Private Collection Matching
	Case studies
	PCM requirements
	Formal PCM definition

	Related work
	A framework for PCM schemes
	Technical background
	Homomorphic encryption
	Core functions

	PSI layer
	Small constant-size client set
	Small input domain
	Ensuring well-formed queries

	Matching layer
	Aggregation layer
	Security and privacy
	From theory to practice
	Asymptotic cost
	Implementation
	Optimizations

	PCM in practice
	Chemical similarity
	Peer-to-Peer document search
	Comparison with generic solutions

	Takeaways and future work

	Janus: Safe Biometric Deduplication for Humanitarian Aid Distribution
	Introduction
	Deduplication for aid distribution
	Deduplication requirements

	Towards a safe deduplication system
	Janus' architecture
	Janus-enabled registration workflow
	Requirements achieved by design

	Biometrics
	Instantiating Janus
	SMC-Janus
	SHE-Janus
	TEE-Janus

	Biometrics in practice
	Membership with a single sample
	Membership at scale

	Evaluation
	Performance of Janus
	Comparison with Closely Related Work

	Related work
	Conclusion

	Brutus: A Decision Support System to Prevent the Use of Insecure Communication in Aircraft
	Introduction
	Aircraft communications addressing and reporting system
	ACARS system model
	ACARS messages
	Usage
	Security
	Ethics

	Related work
	Detection methods
	Cipher detection based on text compression techniques
	Supervised text classification with a CNN model
	Supervised classification with a Random Forests model

	Cipher detection on generated datasets
	Synthetic data generation
	Experiment setup
	Baseline
	Noisy data labels
	Heterogeneous plaintext sources
	Heterogeneous cipher suites
	Conclusions

	A pipeline for labeling ACARS messages
	Synthetic data generation based on noisy samples
	Manual labeling
	Bootstrapping manual labels
	Conclusion

	Insecure ciphers in aerospace
	Setting-up detectors
	Automated detection of known ciphers
	Exploring unknown insecure ciphers in ACARS
	Analysis overhead
	Generalization over time and geographic regions
	Conclusion

	Discussion and conclusion

	Conclusion
	Future work

	Appendix for DatashareNetwork
	Security of MS-PSI
	The limits of document search
	One-bit search extraction
	#doc search extraction

	Appendix for Private Collection Matching Protocols
	Extra material
	Sum of random Zq* elements
	Privacy proof
	Security properties of HE schemes
	Semi-honest security
	Malicious server
	Malicious clients

	Extra benchmarks
	Small-domain protocols
	Circuit-based protocols
	OT-based protocol

	Solving matching in mobile apps
	PSI-SUM

	Appendix for Janus
	Extended evaluation
	Normalized Hamming distance

	Appendix for Brutus
	Random Forrest
	Additional results on generated datasets
	Decision support system

	Bibliography
	Curriculum Vitae

