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Abstract

Every day, people search for information in databases helped by the convenience and efficiency

of recent search-algorithms. These algorithms work extremely well in situations where the

target search object is explicitly described in a query provided, as input, to a search engine.

However, it is not always possible to formulate an explicit query. Searching on the Web for a

specific image that was seen a few days before could be difficult; because describing it in terms

of keywords might poorly match its annotation, assuming that the picture was annotated,

which is also not guaranteed. This problem is addressed in a line of research called searching

with relevance feedback, where the main idea is for the user to interact with the system in

several rounds, until the target is found. In each round the user observes search results

suggested by the system and provides his feedback on them. Based on this feedback, the

search results are then refined and their updated version is presented to the user in the next

round. This process repeats until the system outputs the user’s search target. In this thesis,

we study a special, and very natural for humans, form of such feedback, that is expressed

through comparisons: “Which object among (i1, i2, . . . , iK ) is more similar to your target t?”.

We derive new probabilistic comparison models that better capture users’ choices, and we

develop comparison-based search algorithms, based on these models, that offer theoretical

guarantees and that are efficient in both computational complexity and in the number of

questions posed to the user.

In particular, we study two new choice models. The first is a Probit model for triplet compar-

isons (i , j ; t), i.e. when the user chooses between two objects (i , j ); this model is naturally

based on the distance to the decision hyperplane between two alternatives i and j . The

second model is a scale-free γ-CKL model that handles both pairs and K -tuples of alternatives;

it is a generalization of the Crowd Kernel Learning (CKL) model proposed by Tamuz et. al.

[47]. We show that both models are able to fit real-world comparison data better than the

current state-of-the-art choice models, as the objects’ embeddings learned by maximizing the

corresponding log-likelihoods better predict human-generated triplets. We then describe how

to learn a variational embedding of the objects and show that it benefits the search algorithm
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Abstract

in the early stages of large uncertainty about relationships among objects, when only a few

searches have been run and the system is short on comparison data.

Under the Probit model, we build GAUSSSEARCH – a Bayesian search algorithm with Gaussian

belief for the target object’s location. The special form of the Probit model enables us (1) to

characterize the most informative query at each step of the search, which leads to a low query

complexity, (2) to efficiently perform closed-form Bayesian updates of the posterior, and (3)

to prove the convergence of the algorithm to the target in the “dense” case when n →∞. In

a series of synthetic experiments, we show that GAUSSSEARCH has lower query complexity,

similar to what is achieved by the state-of-the-art methods, but has much lower computational

complexity.

Under theγ-CKL model, in the case when the number of objects n in the database is infinite, we

use the scale-free property of the model to propose a search scheme with provably exponential

rate of convergence to the target. This scheme uses a backtracking mechanism that keeps

the search procedure from “losing the target”. Then we propose a heuristic implementation

of this scheme and through a number of experiments show its convergence to the target at

an exponential rate in practice. Finally, when n is moderately small, we propose an efficient

Bayesian heuristic γ-CKLSEARCH that at each step of the search approximately finds most

informative queries to show to the user under the γ-CKL model.

To validate our proposed methods, we perform extensive experiments on real-world data. First,

we demonstrate the advantages of using, in the cold-start regime, the proposed variational

embedding over the point-vector embedding in a search algorithm. Second, we perform an

experiment with real users in a task of searching for a movie actor; we show the efficacy of

the GAUSSSEARCH algorithm when no prior comparison data is available. Finally, in another

experiment with real users, we compare GAUSSSEARCH and γ-CKLSEARCH, and we confirm

the superior performance of the latter.

Key words: comparisons, probabilistic modeling, interactive search, human computer inter-

action, recommender systems, machine learning
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Résumé

Chaque jour, des personnes recherchent des informations dans des bases de données grâce à la

commodité et à l’efficacité des récents algorithmes de recherche. Ces algorithmes fonctionnent

très bien dans les situations où l’objet de la recherche est explicitement décrit dans une requête

fournie en entrée à un moteur de recherche. Cependant, il n’est pas toujours possible de

formuler une requête explicite. La recherche sur le web d’une image spécifique vue quelques

jours auparavant peut s’avérer difficile, car sa description en termes de mots-clés peut mal

correspondre à son annotation, en supposant que l’image ait été annotée, ce qui n’est pas

non plus garanti. Ce problème est abordé dans une ligne de recherche appelée recherche avec

retour d’information sur la pertinence, où l’idée principale est que l’utilisateur interagisse avec

le système en plusieurs tours, jusqu’à ce que la cible soit trouvée. À chaque tour, l’utilisateur

observe les résultats de recherche suggérés par le système et donne son avis sur ceux-ci. Sur

la base de ces commentaires, les résultats de recherche sont ensuite affinés et leur version

actualisée est présentée à l’utilisateur lors du tour suivant. Ce processus se répète jusqu’à ce

que le système produise la cible de recherche de l’utilisateur. Dans cette thèse, nous étudions

une forme particulière, et très naturelle pour les humains, de ce retour d’information, qui

s’exprime par des comparaisons : “Quel objet parmi (i1, i2, . . . , iK ) est le plus similaire à votre

cible t” ? Nous dérivons de nouveaux modèles probabilistes de comparaison qui rendent mieux

compte des choix des utilisateurs, et nous développons des algorithmes de recherche basés

sur les comparaisons, fondés sur ces modèles, qui offrent des garanties théoriques et qui sont

efficaces en termes de complexité de calcul et de nombre de questions posées à l’utilisateur.

En particulier, nous étudions deux nouveaux modèles de choix. Le premier est un modèle

Probit pour les comparaisons de triplets (i , j ; t ), c’est-à-dire lorsque l’utilisateur choisit entre

deux objets (i , j ) ; ce modèle est naturellement basé sur la distance à l’hyperplan de décision

entre deux alternatives i et j . Le second modèle est un modèle scale-free γ-CKL qui traite

à la fois les paires et les K -tuples d’alternatives ; il s’agit d’une généralisation du modèle

Crowd Kernel Learning (CKL) proposé par Tamuz et. al. [47]. Nous montrons que les deux

modèles sont capables de s’adapter aux données de comparaison du monde réel mieux que les
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Résumé

modèles de choix actuels de pointe, car les enchâssements d’objets appris en maximisant les

log-vraisemblances correspondantes prédisent mieux les triplets générés par l’homme. Nous

décrivons ensuite comment apprendre un encastrement variationnel des objets et montrons

que cela profite à l’algorithme de recherche dans les premiers stades d’une grande incertitude

sur les relations entre les objets, lorsque seules quelques recherches ont été effectuées et que

le système manque de données de comparaison.

Dans le cadre du modèle Probit, nous construisons GAUSSSEARCH – un algorithme de re-

cherche bayésien avec une croyance gaussienne pour la localisation de l’objet cible. La forme

spéciale du modèle Probit nous permet (1) de caractériser la requête la plus informative à

chaque étape de la recherche, ce qui conduit à une faible complexité de la requête, (2) d’ef-

fectuer efficacement des mises à jour bayésiennes de forme fermée du postérieur, et (3) de

prouver la convergence de l’algorithme vers la cible dans le cas “dense” lorsque n →∞. Dans

une série d’expériences synthétiques, nous montrons que GAUSSSEARCH a une complexité

d’interrogation plus faible, similaire à celle obtenue par les méthodes de pointe, mais a une

complexité de calcul beaucoup plus faible.

Sous le modèle γ-CKL, dans le cas où le nombre d’objets n dans la base de données est infini,

nous utilisons la propriété scale-free du modèle pour proposer un schéma de recherche avec

un taux de convergence exponentiel vers la cible. Ce schéma utilise un mécanisme de retour

en arrière qui empêche la procédure de recherche de "perdre la cible". Nous proposons ensuite

une implémentation heuristique de ce schéma et, à travers un certain nombre d’expériences,

nous montrons sa convergence vers la cible à un taux exponentiel dans la pratique. Enfin,

lorsque n est modérément petit, nous proposons une heuristique bayésienne efficace γ-

CKLSEARCH qui, à chaque étape de la recherche, trouve approximativement les requêtes les

plus informatives à montrer à l’utilisateur selon le modèle γ-CKL.

Pour valider les méthodes proposées, nous réalisons des expériences approfondies sur des

données réelles. Tout d’abord, nous démontrons les avantages de l’utilisation, dans le régime

de démarrage à froid, de l’intégration variationnelle proposée par rapport à l’intégration

de vecteurs ponctuels dans un algorithme de recherche. Deuxièmement, nous réalisons une

expérience avec des utilisateurs réels dans une tâche de recherche d’un acteur de cinéma ; nous

montrons l’efficacité de l’algorithme GAUSSSEARCH lorsqu’aucune donnée de comparaison

préalable n’est disponible. Enfin, dans une autre expérience avec des utilisateurs réels, nous

comparons GAUSSSEARCH et γ-CKLSEARCH, et nous confirmons la performance supérieure

de ce dernier.

Mots clefs : comparaisons, modélisation probabiliste, recherche interactive, interaction homme-

machine, systèmes de recommandation, apprentissage automatique
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Notation Table

i , j ,k generic object indices

Q set of object indices, query

n total number of objects in the database

[n] objects {1,2, . . . ,n}

d embedding dimension

m step of the algorithm

t target index

xi embedding of object i

xt target embedding

X , X embedding of the objects [n]

(y,Q) or (x ,Q) choice data

p(i ,Q; t ) or p(xi ,XQ ; xt ) probability of the k-triplet outcome

“i is the closest to t among alternatives Q”

p(i , j ; t ) or p(xi , x j ; xt ) probability of the triplet outcome “i is closer to t than j ”

{i , j } or {xi , x j } a query of size 2
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1 Introduction

1.1 Searching with Relevance Feedback

Over the past few decades, search engines have become the go-to tool for seeking information.

Modern information-retrieval techniques very well identify relevant objects to the query

entered by a user, especially when the search query describes sufficiently precisely the subject

of the search. Indeed, by typing partial lyrics of a song into Google or by searching for a specific

question on Stack Exchange, a user can immediately find the desired music track or the answer

to the question, because these types of queries explicitly match the search target. However, in

many other situations, such queries could be difficult to express: searching for a new co-worker

to add on a social-media platform when you remember only his face can be problematic, as

most people would struggle to draw the face of a person accurately enough that it could be

used as a query image. Moreover, even if the user could provide the initial search query, the

output of the search engine most likely would be not sufficient to complete the search. The

next thing the search engine could do is to request additional relevance feedback from the

user to the engine’s initial output in order to refine the set of potential search target candidates

and then reiterate on this, until the target is eventually identified. An example of such process

in real life can be well illustrated by the joint work of a forensic artist and a witness of a crime,

where the latter has to give feedback on a sequence of images to gradually arrive at a faithful

approximation of the suspect’s face.

In the scope of a search task in a database of objects with relevance feedback, the user interacts

with the search system in multiple rounds. The form of such relevance feedback plays a funda-

mental role in designing the underlying search algorithm. As suggested in the psychological

literature (see e.g. [45]), it is usually cognitively easier for humans to express their relevance

feedback as a preference choice between two objects, rather than to give a numerical score

when assessing the “proximity” of the candidates suggested by the system to the user’s actual

target. In this dissertation, we study search systems that interact with a user via questions in
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Chapter 1. Introduction

the following form: “Which object among Q is the most similar to your target t?”, where I is a

subset of candidate objects from the database chosen at each round by the system and t is the

user’s target object. The choice made by the user thus take the form of tuple comparisons.

The purpose of this thesis is to propose an efficient way of searching using comparisons in a

database of objects. The key decision to be made is how to model humans choices. For this, we

present two new probabilistic choice models. For each model, we develop search algorithms

that are scalable in the size of the database of objects and efficient in both computational

complexity and in the number of interaction rounds.

1.2 Probabilistic Comparison Models

The concept of perceived similarity between different objects has been a long-studied topic in

the psychological literature of the past century. Usually, it is assumed that the objects have

some representations in a latent feature spaceΩ, and that when a person compares two objects,

his choice is viewed as an outcome of a perceptual judgement on the similarity between

objects based on these representations. The latent space is usually considered to be low-

dimensional, even though the raw objects might be high-dimensional (such as images, videos,

and sequences of musical notes). For example, a human face, for the purposes of a similarity

comparison, could be quite accurately described by a few tens of features, capturing head

shape, eye color, fullness of lips, gender, age, and the like [11]. The similarity s(i , j ) between two

objects i and j is then defined as a function f (xi , x j ) of the objects representations xi , x j ∈Ω.

One of the most influential psychological theories assumes that the latent space Ω is a metric

space with a distance function d(·, ·) and that the perceived similarity between two objects is

inversely related to the distance between these objects inΩ ([44, 4]):

s(i , j ) = g [d(xi , x j ]],

where g is some monotonically non-increasing function. This theory gave rise to a powerful

class of methods called multi-dimensional scaling (MDS) that produces latent embeddings of

the objects from similarity estimations. The MDS was initially developed to deal with explicit

numerical scores for pairwise similarities [49, 7] and, later, it was generalized to non-metric

MDS that can handle ordinal data [32, 43, 1]. Despite the intuitiveness of the model and its

practical appeal, the original idea of using distance as a measure of (dis)similarity had some

drawbacks, and its main criticism was in the violations of some of the metric axioms in practice

[51, 52]. Tversky in [51] empirically demonstrated a violation of some of the distance axioms

through a number of experiments. He proposed, as an alternative, to represent an object i

as a set of qualitative features Xi (rather than a continuous point in a metric space), and he

2



1.2 Probabilistic Comparison Models

designed a feature-contrast similarity model based on set operations:

s(i , j ) = F (Xi ∩X j , Xi \ X j , X j \ Xi ).

Nevertheless, probabilistic models for human choices, that are based on the distance-based

similarity measures [42, 34, 37] and were developed to account for the noise in the judgements,

have been the most successful in predictive tasks [4] and have become dominant in modern

machine learning research.

In this thesis, we follow the probabilistic view on the comparison outcomes; we assume that

the decision outcomes are sampled from a probability distribution that depends on the object

representations in a latent metric space. We assume, in particular, that the objects from the

database [n] = {1,2, . . . ,n} have associated latent feature vectors X = {x1, x2, . . . , xn} inΩ=Rd

that reflect their individual properties and that are intuitively used by users when answering

the system’s queries. We define X ∈Rn×d to be the feature matrix of the objects in [n], where

the rows of X are the corresponding feature vectors of the objects. We use the Euclidean

distance ∥·∥ between the objects’ vectors in Rd in order to quantify similarities between them:

“i is the most similar object in Q to t ” ⇐⇒ i = argmin
j∈Q

∥x j −xt∥.

Actor 1 Actor 2 Target actor

Figure 1.1: An example of inconsistency across user answers: 60% of respondents chose Actor
1 as more similar to the Target actor than Actor 2 [14].

As different users might have different perceptions of similarity and, even for a single user, it

might be difficult to answer every comparison confidently, we expect to observe inconsisten-

cies across the collected replies (see Fig. 1.1).

Therefore, we need to introduce an appropriate probabilistic model to reflect the noise in

comparison outcomes.

3
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Formally, by asking a user “Which object in Q is the most similar to your target t?”, we ask him

a query Q that consists of a tuple of objects he has to choose from, based on the perceived

proximity to his target t . When the user makes his choice, he gives us his answer Y ∈Q. As

previously mentioned, there could be an inconsistency in human similarity judgements across

different individuals, and even the same user can change his opinion on his similarity choice

for the same query due to factors that are outside of our control, hence we treat Y as a random

variable. We denote the probability of receiving the outcome Y = i , i.e., observing the answer

“i is the most similar object in Q to t”, by

p(i ,Q; t ) := P (Y = i |Q, t ). (1.1)

This probability usually depends on the relationships between the the objects in the feature

space Rd . Hence, during the search procedure, a search algorithm relies on the latent features

of the objects and on the probabilistic answer model when observing choice feedback from

the user.

1.3 Latent Setting and LEARN2SEARCH

In the previous subsection, we make one important assumption – when the user compares

objects from [n], he utilizes their latent representations X when answering queries. We have

discussed that in order to make progress, a search algorithm relies on probabilistic comparison

models to compute probabilities of the observed query outcomes that the user provides. How-

ever, the algorithm can compute these probabilities only if it has access to these latent features

X . But in a real-world application, that involves using triplet models, it is quite possible that X

will be hidden from the system, and possible workarounds, such as applying unsupervised

learning methods to approximate X (for example, some pre-trained Convolutional Neural

Networks to retrieve human facial features), could lead to representations that are arbitrarily

inaccurate to compute triplet comparison probabilities on. We refer to this scenario as a latent

setting, because the true feature vectors of the objects are hidden from the system and are

available only to the user.

We address the problem of searching in a space of objects with unobserved features by propos-

ing a general learning framework called LEARN2SEARCH. In this setting we assume that the

only information we have access to is a set of indices [n], representing objects, and results of

triplet comparisons of objects in the form of triplets of indices (i , j ; t ). Our framework operates

with its own object representations that are used during the searches and that are learned and

updated from the triplet comparisons obtained from past searches. LEARN2SEARCH consists

of two main components: a search method (running on the estimated embedding X̂ of objects)

and an embedding method (that learns and updates X̂ ), see the general scheme in Fig. 1.2.

4



1.4 Related Work

Search with X̂ Embedding

New comparisons {(y,Q; t )}

Updated embedding X̂

Figure 1.2: A general search framework LEARN2SEARCH.

In Chapters 5 and 6, we will experimentally demonstrate the efficacy of LEARN2SEARCH in the

latent setting: The quality of the embedding X̂ improves as more searches complete, which in

turn makes the future searches more efficient.

1.4 Related Work

1.4.1 Learning Embedding from Comparisons

The problem of estimating X from a set of triplet comparisons (i , j ; t ) has been studied exten-

sively in recent years. Jamieson and Nowak [27] study a problem of identification of the objects

features matrix X ∈Rn×d from a set of noiseless triplet comparisons between n objects in Rd

via comparing their relative distances. They provide a lower boundΩ(dn logn) on the number

of triplets needed to uniquely determine the embedding X that satisfies all O(n3) possible

relational triplet constraints and describe an adaptive scheme that builds an embedding by

sequentially selecting triplets of objects to compare. In our work we assume noise in the triplet

comparisons and cannot choose triplets to ask adaptively. The authors also do not discuss how

to construct an embedding from a given fixed set T of similarity triplets, which is an essential

problem arises in the latent setting.

More general algorithms for finding X̂ from a fixed set of triplet comparisons, under different

triplet probability models, i.e. allowing noise in the triplet outcomes, are proposed in [1], [47]

and [54], and involve solving an optimization problem of the form∑
(i , j ,;t )∈T

f (X , (i , j ; t )) → min
X∈Rn×d

subject to some constrains which is usually solved using gradient descent method. We discuss

this approach in details in Chapter 4. Amid and Ukkonen [2] modify the formulation of the

joint t-STE likelihood [54] to solve a problem of identification of multiple low-dimensional

embeddings {X1, X2, . . . , Xd }, Xm ∈Rn×di , at once, each corresponding to a single latent feature

m ∈ {1,2, . . . ,d} of an object, that are used by the oracle when answering triplet comparison

5
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queries. In particular, they assume that observing a triplet (i , j ; t ) implies that the inequality

∥xm
i −xm

t ∥2 < ∥xm
j −xm

t ∥2

is satisfied in Xm for some (possibly multiple) m ∈ {1,2, . . . ,d}. In this work we assume a single

latent embedding of the objects X ∈Rd . Finally, theoretical properties for a general MLE with

an assumed general probabilistic generative data model are studied by Jain et al. [26].

An alternative approach to learning ordinal data embedding is suggested in [31], where the

authors explicitly construct kernel functions k : [n]× [n] →R to measure similarities between

pairs of objects based on the set of triplet comparisons:

k(i , t ) < k( j , t ) ⇐⇒ (i , j ; t ) ∈ T .

This, e.g., allows to perform clustering on the set of objects by observing only triplet compar-

isons, however the authors do not explicitly assume the existence of an underlying feature

space for the objects. Heim et al. [24] adapt the kernel version of [54] for an online setting,

when the set of observable triplets is expanding over time. The authors use stochastic gradient

descent to learn the kernel matrix K = (k(i , j ))n
i , j=1 ∈Rn×n and to exploit sparsity properties

of the gradient. Although this work is closely related to our latent setting, i.e. periodically

updating the embedding matrix with the new data collected from the previous searches as

proposed in LEARN2SEARCH algorithm, the kernel decomposition, which is O(n3) in time and

has to be performed after each completed search, would be too computationally expensive in

an online real world application.

Finally, in [21] and [3] authors propose landmark-based triplet embedding methods that scale

well for large values of n but assume direct access to the oracle in order to ask to compare

adaptively selected triplets. Our scenario in the latent setting is different, as we only passively

collect triplets from past searches.

1.4.2 Comparison-based Search with Known Features

In the general active learning problem, it is usually assumed that there exists a set of binary

hypotheses H and a set of queries X , where each hypothesis can be tested via a query from

X , i.e. by observing the hypotheses outcome. The goal is then to identify a target hypothesis

by making queries which helps to shrink the set of possible target candidate hypotheses. The

Generalized Binary Search (GBS) method [17, 38] is known to be near-optimal in the number

of queries, if the observed outcomes are noiseless. The main idea of the GBS is to greedily find

a query that shrinks the current set of candidate hypotheses the most.

In the noisy case, Nowak [39] and Golovin et al. [22] propose objectives that are greedily

6
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minimized over all possible queries and outcomes in a Bayesian framework with a full posterior

distribution over the hypotheses. We adapt the method suggested in [22] to our setting in

Chapter 5 and investigate its performance in comparison to our proposed search algorithm

GAUSSSEARCH for our Probit oracle model.

Adaptive search through relevance feedback by using preprocessed features was studied in

the context of image retrieval systems in [16, 19, 20, 46]. In these papers, the authors aim at

building a heuristic system that assists users in finding target images in databases. In each

round of a search, the system displays a set of images if size K and the user is asked to pick

the one that is the closest to his desired target image. The system is based on a Bayesian

framework with a full posterior on the database images and the next query (displayed set

of images) is chosen via maximizing some information-theoretic criterion assuming users

choices are drawn from a given probabilistic oracle model with K > 2 alternatives. In this work

we mainly focus on the setup when the user needs to choose between two alternatives, and

are interested in algorithms with certain theoretical guarantees.

Brochu et al. [9] study the comparison-based search problem in continuous space. Their

approach relies on maximizing a surrogate GP model of the valuation function. In [13] and [25]

the authors study a similar problem where the entire valuation function needs to be estimated.

Comparison-based search under noise is also explored in [10]; the authors propose a Bayesian

scheme that finds the next query via greedily maximizing the information gain using sampling

from the posterior. In their work they independently proposed one of the oracle model that

also depends on the distance from the target point xt to the bisecting hyperplane defined by

the query (xi , x j ). The main difference between that model and the Probit model proposed

in this work is the activation function: the authors use the logistic function f (x) = 1/(1+e−x )

instead of the Gaussian CDF function, see Chapter 2.

The problem of the comparison-based search is closely related to the Reinforcement Learning

(RL) field. Indeed, during a search, one can view a set of choices made by the user so far as a

state, a set of all possible queries (which is of size
(n

k

)
for a query of size k) as a set of actions

and somehow define a reward based on how close the procedure gets to the target point. The

main difference is that in this work we model the target position as a distribution on [n] or

in Rd , and the choice of the next query is usually based on the greedy maximization of some

information-theoretic criterion. In contrast to maximizing cumulative reward, which is usually

the objective in the RL literature, we seek for an action with an immediate reward that balances

both exploration of the space and exploitation of the current belief.

7
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1.4.3 Comparison-based Search with Hidden Features

When the objects’ featuresX are hidden, finding a target in a set of objects by making similarity

queries is explored in [50] and [28] in the noiseless case. To deal with erroneous answers,

Kazemi et al. [29] consider an augmented user model that allows a third outcome to the

query, “?”; this answer can be chosen by a user to indicate that they do not know the answer

confidently. With this model, they propose several new search techniques under different

assumptions on the knowledge of relative object distances. Karbasi et. al. [28] also briefly

discussed the case of a noisy oracle with a constant mistake probability and proposed to treat

it with repeated queries. In [23] the authors consider the problem of nearest-neighbor search

using comparisons in the noiseless setting.

1.5 Outline

In short, the outline of this thesis is as follows:

• Chapter 2 introduces two new comparison models, Probit and γ-CKL, and studies some

of their theoretical properties.

• Chapter 3 discusses the general problem of Bayesian Inference and the approximate

methods for solving it.

• Chapter 4 describes methods to learn object embedding from comparison data and

compares the qualities of the learned embeddings using new models versus using state-

of-the-art alternatives.

• Chapter 5 introduces two efficient search algorithms that are based on the Probit and the

γ-CKL model respectively, and gives certain theoretical guarantees for these algorithms

exploiting the properties of these models.

• Chapter 6 presents the results of the experiments with proposed search methods and

models involving human oracles.

• Chapter 7 summarizes the results and findings of the thesis.
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2 Triplet Comparison Models

In this Chapter, we first give a formal definition of a probabilistic comparison model, define

their properties and explore some well-known models existing in the literature in light of these

properties.

Then we introduce two new probabilistic comparison models. The first is a purely triplet model

based on the decision hyperplane between two query points. The second is a generalization

of the CKL model that preserves the scale-invariance property and helps avoid the curse of

dimensionality the original model is suffering from.

2.1 Formal Definition and Examples of the Models

Following the discussion in the previous Chapter, we denote the probability of the choice “i is

the most similar object in Q to t” by

p(i ,Q; t ) := P (Y = i |Q, t ), (2.1)

where i , t , and Q are object indices [n].

Generally, for an arbitrary (finite) set of vectors Z ⊂Rd and a target vector xt ∈Rd , we could

also define the probability of vector x ∈ Z to be chosen as the closest in Z to xt as

p(x , Z ; xt ) := P (Y = x | Z , xt ). (2.2)

Since we assume that the user judgements are based on the hidden representations X of the
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objects, we will sometimes equivalently write (2.1) as

p(i ,Q; t ) = p(xi ,XQ ; xt ), where (2.3)

XQ := {x j ∈X | j ∈Q}. (2.4)

When |Q| = k we call (2.1) and (2.3) a k-triplet model. The minimum value of k = 2 corresponds

to a special family of models called triplet models:

p(xi , x j ; xt ) := P (Y = xi |Q = {xi , x j }, xt ), (2.5)

which will be the central type of models studied in this thesis. Generally, a triplet model (2.5)

is required to satisfy at least the basic property of a correct bias: We expect the outcome “i is

more similar to t than j ”, which we will further denote by (i , j ; t ) or (xi , x j ; xt ), to be the most

probable if and only if the same is true in the latent representations X

p(xi , x j ; xt ) > 1

2
⇐⇒ ∥xi −xt∥ < ∥x j −xt∥. (2.6)

We define and explore the following properties of a triplet model p(xi , x j ; xt ):

(P1) k-triplet generalization, whether the triplet model can be naturally generalized to the

case of more than two alternatives, i.e., |Q| = k, k > 2.

(P2) Identical-query-point property, whether the probability of observing the outcome

(xi , x j ; xt ) is 1 when xi = xt and x j ̸= xt , i.e., p(xt , x j ; xt ) = 1.

(P3) Distant-target behavior, given query points xi , x j , and the target xt : the query points po-

sitions xi and x j are fixed and the target point is moving away from them, i.e.

limm→∞ p(xi , x j ; xtm ) for xt0 = xt , ∥xi − xtm∥→∞ and ∥x j − xtm∥→∞ as m →∞, and

∥xi −xtm∥ ̸= ∥x j −xtm∥ for all m ≥ 0.

(P4) Narrow-query behavior, given query points xi , x j , and the target xt : the target xt is fixed

and the query points approaching their middle point,

i.e., limm→∞ p(xim , x jm ; xt ) for xi0 = xi , x j0 = x j , x̄ := (xi + x j )/2 and ∥xim − x̄∥→ 0 and

∥x jm − x̄∥→ 0 as m →∞.

(P5) Scale-free property, whether the outcome probabilities remain unaltered if the objects

features are scaled by a positive multiplicative constant, p(c ·xi ,c ·x j ;c ·xt ) = p(xi , x j ; xt )

for 0 < c ≤ 1.

Let us now introduce the two most popular triplet models, CKL and t-STE, and study them in

light of properties above.

10
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Crowd Kernel Learning Model. Tamuz et al. [47] defined the probability of the outcome “i is

closer to t than j ” by

p(xi , x j ; xt ) = ∥x j −xt∥2

∥xi −xt∥2 +∥x j −xt∥2 . (2.7)

In their model, the probability of the outcome (i , j ; t ) monotonically depends on the ratio of

the distances r = ∥xi−xt∥2

∥x j−xt∥2 between the alternatives i and j and the target t :

p(xi , x j ; xt ) = 1

1+ r
. (2.8)

By fixing the distance ∥xi −xt∥ and increasing ∥x j −xt∥, i.e., making r → 0, the probability of

observing the outcome (i , j ; t) goes to 1, and vice versa, when we fix ∥x j − xt∥ and increase

∥xi − xt∥, i.e., when r →∞, the probability of choosing j over i with respect to t goes to 0.

When one of the alternatives exactly match the target, the probability of choosing the closest

object also becomes 1, hence the model satisfies the identical query point property, (P2). It

also has a straightforward k-triplet generalization (P1):

p(xi ,Q; xt ) = ∥xi −xt∥2∑
j∈Q∥x j −xt∥2 .

For the property of the distant-target behavior (P3), the CKL model outputs 1
2 , i.e., the predicted

outcomes are the perfect coin flips, when the target is infinitely far away from both query

objects. The same occurs when the query is narrow (P4), p(xi , x j ; xt ) → 1
2 , as the query points

become indistinguishable as they approach their middle point.

The central feature of this model is that it is scale-free (P5), because multiplying X by any

positive constant does not change the probability p(xi , x j ; xt ). Such a property is, in fact,

desirable for a comparison model, as it reflects some of the psychological laws in perception

[12, 33]. Later in this Chapter, we will discuss a set of axioms needed for scale-free models and

will derive the general form of (2.7).

Stochastic Triplet Embedding Model. In [54] the authors proposed an alternative model

based on the logistic function in the attempt to address some of the flaws of the CKL model

when learning the object’s embedding based on a set of triplets (we will discuss the problem of

triplet embedding in Chapter 4):

p(xi , x j ; xt ) = exp(−∥xi −xt∥2)

exp(−∥xi −xt∥2)+exp(−∥x j −xt∥2)
, (2.9)
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with a generalization for a k-triplet scenario

p(xi ,Q; xt ) = exp(−∥xi −xt∥2)∑
j∈Q exp(−∥x j −xt∥2)

.

Inspired by the well-known algorithm for dimensionality reduction t-SNE [53], which uses

heavy-tailed similarity kernels, they also introduced a t-distributed version of the original STE

model:

p(xi , x j ; xt ) =
(
1+ ∥xi−xt∥2

α

)− α+1
2

(
1+ ∥xi−xt∥2

α

)− α+1
2 +

(
1+ ∥x j−xt∥2

α

)− α+1
2

, (2.10)

with α degrees of freedom, which is a hyperparameter. This model with heavy tails showed

better performance in the experiments on modeling human generated triplets in their paper.

The STE models do not carry the identical query point property (P2): When the target is

exactly at one of the query points, xi = xt , the probability p(xi , x j ; xt ) ̸= 1. The edge cases

p(xi , x j ; xt ) = 1 or p(xi , x j ; xt ) = 0 are achieved only when exactly one of the query points

is infinitely far from the target, i.e., when ∥xi − xt∥2 = ∞ and ∥x j − xt∥2 < ∞ or vice versa

(P3). When ∥xi − x j∥ → 0 and x̄ = (xi + x j )/2 is fixed, the different between the distances

(∥xi −xt∥−∥x j −xt∥) → 0, and p(xi , x j ; xt ) → 1/2, (P4).

Models Visualization

Figure 2.1: Likelihood p(xi , x j ; xt ) heatmaps inR2 for CKL and t-TSE. The red crosses represent
the query points xi = (−0.5,0), x j = (0.5,0).

We examine the behavior of the likelihood functions of the CKL, STE and t-STE models in

Figure 2.1. We fix a query Q = {x1, x2}, where x1 = (0,−0.5) and x2 = (0,0.5) and plot the

likelihood p(xi , x j ; xt ) as a function of xt ∈R2. The surface of the CKL likelihood has exactly

one “peak” and one “valley”, at xt = x1 and xt = x2, respectively. As we move away from

these two spots (in any direction), the probability p(xi , x j ; xt ) is approaching 1
2 , which is

desired: If the target point xt is far away from both query points, we would expect to observe

each outcome with approximately the same probability. The STE likelihood function has a
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very pronounced decision hyperplane between the two query points; moving away from the

hyperplane results into either p(xi , x j ; xt ) = 1 or p(xi , x j ; xt ) = 0 in the limit. The t-STE has

a fatter-tailed distribution with a smoother transition to the limit cases. Although, it might

appear from the plot that the STE probability depends only on the hyperplane, this is not true;

in general, for two points z1 and z2 inRd , which are equidistant from the hyperplane and lie on

the same side of it, the corresponding probabilities are not the same, p(xi , x j ; z1) ̸= p(xi , x j ; z2).

In the next subsection, we will introduce a Probit triplet model, for which the outcome

probabilities depend exclusively on the bisecting hyperplane between the two query points.

2.2 New Models

2.2.1 Probit Model

As previously discussed, users can be inconsistent in their judgments on the triplet similarities

between two objects, with respect to the third one. Under the Probit model, we postulate that

this occurs when both query objects xi and x j are roughly equidistant from the target object

xt , and less likely when the distances are quite different. In other words, answers are most

noisy when the target is close to the decision boundary, i.e., the bisecting normal hyperplane

to the segment between xi and x j , and the answers are less noisy when the target is far away

from this hyperplane.

Figure 2.2: Probit model’s likelihood heatmaps in R2 with different values of σε. The red
crosses represent the query points xi = (−0.5,0), x j = (0.5,0). The outcome probabilities are
defined by the decision hyperplane between the query points xi and x j . The three blue crosses
with coordinates z1 = (−1.25,−1), z2 = (−1.25,0), and z3 = (−1.25,1), are equidistant from the
hyperplane and lie on the same side of it. The probabilities of the outcomes (xi , x j ; zk ) are the
same for k = 1,2,3.

We consider the following probabilistic model, called the Probit model; it captures the uncer-
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tainty in users’ answers:

p(xi , x j ; xt ) = p(x⊤
t wi j +bi j +ε> 0)

=Φ
(

x⊤
t wi j +bi j

σε

)
, (2.11)

where xi , x j , xt ∈Rd are the feature vectors of the query objects and the target, respectively,

hi j = (wi j ,bi j ) =
(

xi −x j

∥xi −x j∥
,
∥x j∥2 −∥xi∥2

2∥xi −x j∥

)

is the bisecting normal hyperplane to the segment between xi and x j , ε∼N (0,σ2
ε) is additive

Gaussian noise, and Φ is the Standard Normal CDF. Indeed, if xt is on the hyperplane hi j ,

the answers to queries are pure coin flips, as the target point is equally far from both query

points. Everywhere else, answers are biased toward the correct answer, and the probability

of the correct answer depends only on the distance of xt to the hyperplane hi j . When xt is

close to - but not necessarily on - the hyperplane, the effect of random noise is still strong.

As xt becomes increasingly distant from the decision bound, the probability of the correct

outcome increases, see Fig. 2.2. The model does not carry the identical-query-point property,

since p(xt , x j ; xt ) ̸= 1, and cannot be easily generalized to the k-triplet case. In Chapter 6, we

will propose one possible workaround, which works well in practice, for the case when there

are more than two alternatives in Q.

This model is reminiscent of pairwise comparison models such as those of [48] or [8], e.g.,

where p(xi , x j ; xt ) = Φ[s(xi )− s(x j )] and s(x) = −∥x − xt∥2, [1, 26]. These models have the

undesirable property of favoring distant query points: given any xi , x j ̸= 0, it is easy to verify

that the pair (2xi ,2x j ) is strictly more discriminative for any target that does not lie on the

bisecting hyperplane. The Probit model is different: in (2.11), the outcome probability depends

on xi and x j only through their bisecting hyperplane.

In the previous Chapter, we have briefly mentioned that the comparison-based search algo-

rithms typically take a Bayesian approach for modeling target position in the space of objects

via discrete distribution over n points. One major advantage of Probit model is that its Gaus-

sian noise term enables us to use d-dimensional Gaussian distribution as a prior and posterior

distributions for the target location and effectively update them as the search progresses.

This opens the door for more efficient search algorithms which computational complexity

logarithmically depends on the size of the objects database n; which is a huge improvement

over more classic Bayesian approaches to the comparison-based search problem, where the

algorithms maintain full posterior over n points and have O(n3) computational complexity

at each iteration of the search. We introduce these new search algorithms in Chapter 5 and

14



2.2 New Models

compare them to the more computationally heavy state-of-the-art methods.

2.2.2 γ-CKL Model

Searching in databases with a large number n of objects could potentially cause another

difficulty if the assumed comparison model does not possess the scale-invariance property.

Once the belief distribution starts concentrating, as the search progresses, the information

contained in queries might decrease. For example, suppose for exposition’s sake that the

algorithm has narrowed down the target to two candidates xt ′ and xt ′′ , and that the distance

∥xt ′ −xt ′′∥ is small. Then any query pair {xi , x j } generates answers relative to xt ′ and to xt ′′ that

are nearly indistinguishable (i.e., they are Bernoulli random variables whose parameters are

close). This means that the rate at which the belief distribution concentrates around xt will

slow down, leading to an unfavorable scaling of expected search cost when n grows large.

Therefore, it would be plausible to assume an oracle model that is scale-free, i.e., for which the

probability of choosing xi over x j depends only on the ratio of ∥xi −xt∥ to ∥x j −xt∥. In other

words, comparing two very dissimilar objects, with respect to the target that is very dissimilar

from both, is not harder or easier to do than to compare two quite similar objects to a nearby

target.

Figure 2.3: The effect of the “curse of dimensionality” with CKL model. As the dimensionality
of the space d increases, the probability of choosing the closest point to the target, among
two sampled points uniformly at random in unit a ball around the target, goes to 1

2 under the
original CKL model. The average probability of the correct answer and the 95% confidence
intervals are reported over 10’000’000 random trials.

The CKL-model introduced in earlier in this Chapter is scale-free. However, one of its short-

15



Chapter 2. Triplet Comparison Models

comings is the high sensitivity to the “curse of dimensionality”: the probability of error grows

quickly with d . Indeed, for a fixed target point and two query points sampled uniformly at

random from a ball around the target, the predicted probability of the closest point to be

chosen by the oracle (2.7) decays to 1/2 for d → ∞, see Fig. 2.3. This scenario is relevant

for a comparison-based search algorithms that, as discussed later in Chapter 5, will cover a

potential target region with queries and rely on informative oracle replies.

To deal with this issue, we propose the following generalization of the original CKL model (2.7),

by defining

p(xi , x j ; xt ) = ∥x j −xt∥γ
∥xi −xt∥γ+∥x j −xt∥γ

, (2.12)

where γ≥ 1 is an additional parameter.

CKL/γ-CKL STE/t-STE Probit

k-triplet generalization Yes Yes No

Identical query point property Yes No No

Distant target behavior 1
2 1 (0,1)

Narrow query behavior 1
2

1
2 const

Scale-free Yes No No

Table 2.1: Triplet comparison model properties.

We compare the new Probit model and the γ-CKL model to CKL and t-STE on the list of

previously defined properties in Table 2.1.

Note that when γ is fixed and d → ∞, the probability (2.12) for a uniformly selected pair

of points xi , x j goes to 1/2. On the other hand, when γ→∞ and d is fixed, the probability

becomes an indicator function p(xi , x j ; xt ) → I
{∥xi −xt∥ < ∥x j −xt∥

}
.

This suggests that as the dimension d of the space grows (e.g. when working with high

dimensional feature spaces), the new γ-CKL model should enable us to control the average

outcome bias via scaling the parameter γ accordingly. In the following theorem, we show that

the linear relationship between γ and d achieves this:

Theorem 1. Consider a d-dimensional ball B ⊂Rd of radius 1. Let the target point xt be the

center of B. For two points xa , xb sampled uniformly from B let pQ be the probability of the

correct answer, i.e. choosing the closest point to the target, for a query Q = {xa , xb} given the
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target xt under the γ-CKL model with γ≥ 2,

pQ = p(xa , xb ; xt )1{∥xa −xt∥ < ∥xb −xt∥}

+p(xb , xa ; xt )1{∥xa −xt∥ > ∥xb −xt∥}.

For any c2 ∈ [ 1
2 ,1] there is a constant c1 > 0, s.t. if γ grows linearly with d, γ= c1d +o(d), then

pQ = c2 +o(1).

Proof sketch. When d grows large and γ as in the assumption, most of the points have a norm

close to 1. This allows us to use Taylor approximation for (2.12). Then we show show that the

error term becomes negligible as d approaches ∞.

In this way, scaling γ linearly with d helps to prevent the probabilities of random queries

from becoming perfect coin flips, i.e. when both query items become equiprobable, and

forces them to remain almost unchanged as d grows, up to an additional factor of o(1). This

insight is useful for practical applications of γ-CKL model. Usually, the dimensionality of the

hidden features space is unknown and has to be estimated from the triplet outcomes data

(see discussion in Chapter 4). Thus d and γ serve as model hyperparameters and are cross

validated. Then the linear relationship between γ and d helps to shrink the search space of

the potential values.

This linear relationship is also confirmed even for small values of γ and d through the following

experiment.

Experiment on the relationship between γ and d . Let us first fix the true reference values d⋆

andγ⋆ for which compute the target average probability of the correct answer pQ (γ⋆,d⋆). Now,

as d begins to grow, we would like to scale γ accordingly, in order to maintain average pQ (γ,d)

to be as close as possible to the original pQ (γ⋆,d⋆) To simulate that, we iterate over the values

of d > d⋆ and for each we find the corresponding γ that minimizes |pQ (γ⋆,d⋆)−pQ (γ,d)| via

a gridsearch. The best values of γ are reported in Fig. 2.4. In all trials we kept N = 1000 and

|T | = 10′000. We observe a linear relationship between γ and d even for finite values of d ,

which matches the limit result of Theorem 1.

17



Chapter 2. Triplet Comparison Models

(a) d⋆ = 10, γ⋆ = 5 (b) d⋆ = 20, γ⋆ = 4

Figure 2.4: Linear relationship between γ and d for finite values of d .

We can also provide some intuition on the geometrical structure of a set of queries that are

rich enough to identify the target xt ∈Rd under the γ-CKL model. In particular, we describe

the properties of a finite set of queries Q̂= {Q̂1,Q̂2, . . . ,Q̂L}, for which, by repeating each query

Qi ∈ Q̂ infinitely many times, we would be able to provably identify the target xt .

Proposition 1. Assume oracle answers queries according to γ-CKL model p(xa , xb ; xt ). Assume

thatΩ⊂Rd is d-dimensional compact set and that the target xt is sampled uniformly at random

from Ω. Consider an infinite sequence of queries Q = {Q0,Q1, . . . } that is asked to the oracle,

where each Qi ∈ Q̂ = {Q̂1,Q̂2, . . . ,Q̂L} and each Q̂i , i = 1,2, . . . ,L, is repeated infinitely many

times. Also for each Q̂i = (x̂ a
i , x̂b

i ) let ci = ∥x̂ a
i −xt∥/∥x̂b

i −xt∥ and ẑi = (ci x̂b
i − x̂ a

i )/(1−ci ). If Q̂
satisfies rank(Z ) = d, where Z is the d×(L−1) matrix of vectors {(ẑi − ẑL) : Q̂i ∈ Q̂, i = 1, . . . ,L−1},

then

argmax
x∈Ω

E[p(x | Y1:m)] → xt

as m →∞, where the expectation is taken over the oracle answers Y1:m = Y1,Y2, . . . ,Ym .

Proof sketch. First we show that, after repeating one query Q1 = (x11 , x12 ) infinitely many times,

the subset of points ofΩ that has the highest likelihood geometrically forms a sphere S1 ⊂Rd

with a center at z1, and of course xt ∈S1. If we then ask a new query Q2 = (x21 , x22 ), different

from Q1, also by repeating it infinitely many times, the new set of points with highest likelihood

for Q1 and Q2 will lie in the intersection of S1 and S2, i.e., at least in a (d −1)-dimensional

sphere S1 ∩S2. We show that by sequentially constructing a set of queries, where for each

additional query Qi+1 its induced sphere’s center zi+1 does not lie on the hyperplane spanned

by {z1, z2, . . . , zi }, we decrease the dimensionality of S1 ∩ ·· ·∩Si at least by 1. In total, d +1

queries constructed in this way will ensure that the corresponding d +1 spheres intersect at

exactly one point, xt .
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2.2 New Models

(a) One query {x a , xb} (b) rank(Z ) = 2

(c) rank(Z ) = 1

Figure 2.5: Illustration of Proposition 1 for d = 2. We assume that each query is repeated
infinitely many times.

Figure 2.5 illustrates the proposition in the case d = 2. For each query the subset of points

in Ω that maximizes the likelihood of observed query outcomes geometrically is a sphere

containing xt with center z , see Figure 2.5(a). Hence, if we repeat this query infinitely many

times, the set of points that maximize the posterior probability will also have a form of that

sphere in the limit. When the set of sphere centers {zi } corresponding to the queries Qℓ do not

lay on the hyperplane in Rd , these spheres intersect at exactly one point, xt , which is the only

point that the joint likelihood, see Figure 2.5(b). Otherwise, there could be multiple points

of common intersection of spheres (including xt ), like in Figure 2.5(c), which will result into

multimodal posterior in the limit.

Based on this result, we could construct a heuristic search algorithm that would consequently

choose a set of d +1 queries such that their middle points ∥x a
i +xb

i ∥/2, which lie on the same

line as x a
i , xb

i , and zi , span a volume in Rd , which would help to remove the ambiguity in

identifying the target position xt after repeating each query infinitely many times. However
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in order to build a set of d +1 queries that satisfy the assumptions of the proposition, it is

required to know (or at least have an estimate of) the likelihoods of the answers of each query,

forcing to repeat queries to the user, which will not be suitable for practical applications.

In Chapter 5, we introduce more rigorous and efficient search schemes that can efficiently

locate the target. But first, we will demonstrate how the new proposed models compare to the

previously existing ones for modeling human choices on real-world datasets.

2.3 Proofs

In this section we present proofs of Theorem 1 and Proposition 1.

2.3.1 Theorem 1

Proof of Theorem 1. Consider two points xa , xb ∈ Rd sampled uniformly from a unit ball B
that form a query to the oracle Q = (xa , xb). After asking Q we observe the answer Y ∈ {xa , xb}

under the γ-CKL model for some fixed γ≥ 2. Then the probability that the answer Y is correct,

pQ , is

pQ =
∫ 1

r1=0

∫ 1

r2=r 1

r γ2
r γ1 + r γ2

Sd (r1)Sd (r2)
1

Vd

1

Vd
dr1dr2

+
∫ 1

r1=0

∫ r1

r2=0

r γ1
r γ1 + r γ2

Sd (r1)Sd (r2)
1

Vd

1

Vd
dr1dr2

=
∫ 1

r1=0

∫ 1

r2=r 1

r γ2
r γ1 + r γ2

r d−1
1 r d−1

2 d 2dr1dr2 (2.13)

+
∫ 1

r1=0

∫ r1

r2=0

r γ1
r γ1 + r γ2

r d−1
1 r d−1

2 d 2dr1dr2, (2.14)

where

Sd (r ) = 2π
d
2

Γ( d
2 )

r d−1, Vd = π
d
2

Γ( d
2 +1)

are the respective surface and volume of the unit ball B.

Consider (2.13), ∫ 1

r1=0

∫ 1

r2=r 1

r γ2
r γ1 + r γ2

r d−1
1 r d−1

2 d 2dr1dr2.

If we increase d , the distance from the center of the ball to a random inside point will be close
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to 1. We use Taylor approximation of the probability model at (1,1) ∈R2:

r γ2
r γ1 + r γ2

= 1

2
− (r1 −1)

γ

4
+ (r2 −1)

γ

4
+R(r1,r2)

= P (r1,r2)+R(r1,r2).

Let’s fix some 0 < ε< 1. Then

(2.13) =
∫ 1

r1=0

∫ 1

r2=r 1

r γ2
r γ1 + r γ2

r d−1
1 r d−1

2 d 2dr1dr2

=
∫ 1

r1=ε

∫ 1

r2=r 1

r γ2
r γ1 + r γ2

r d−1
1 r d−1

2 d 2dr1dr2 +
∫ ε

r1=0

∫ 1

r2=r 1

r γ2
r γ1 + r γ2

r d−1
1 r d−1

2 d 2dr1dr2

=
∫ 1

r1=ε

∫ 1

r2=r 1
P (r1,r2)r d−1

1 r d−1
2 d 2dr1dr2 +

∫ 1

r1=ε

∫ 1

r2=r 1
R(r1,r2)r d−1

1 r d−1
2 d 2dr1dr2

+
∫ ε

r1=0

∫ 1

r2=r 1

r γ2
r γ1 + r γ2

r d−1
1 r d−1

2 d 2dr1dr2.

First note that the last summand is o(1) when d →∞:∫ ε

r1=0

∫ 1

r2=r 1

r γ2
r γ1 + r γ2

r d−1
1 r d−1

2 d 2dr1dr2 ≤
∫ ε

r1=0

∫ 1

r2=r 1
r d−1

1 r d−1
2 d 2dr1dr2

≤ 1

2
εd (2−εd ) = o(1).

Now the integral with the P (r1,r2) term can be computed as follows:

21



Chapter 2. Triplet Comparison Models

∫ 1

r1=ε

∫ 1

r2=r 1
P (r1,r2)r d−1

1 r d−1
2 d 2dr1dr2 =

=
∫ 1

r1=0

∫ 1

r2=r 1

1

2
r d−1

1 r d−1
2 d 2dr1dr2 + 1

4
εd − 1

2
ε2d

+
∫ 1

r1=0

∫ 1

r2=r 1
(r1 −1)

γ

4
r d−1

1 r d−1
2 d 2dr1dr2 + γdεd

4

(
ε2 −2

2d
+ε

(
1

d +1
− εd

2d +1

))

+
∫ 1

r1=0

∫ 1

r2=r 1
(r2 −1)

γ

4
r d−1

1 r d−1
2 d 2dr1dr2

+ γεd

8(d +1)(2d +1)

(
(d(2d(ε−1)−3)−1)εd +2(2d +1)

)
=1

4
+ γ

4

d 2(3d +1)

2d 2(d +1)(2d +1)
− γ

4

d 2

4d 3 +2d 2 +o(1)

=1

4
+ γ

4

d

(d +1)(2d +1)
+o(1).

Finally, consider the remaining integral,∫ 1

r1=ε

∫ 1

r2=r 1
R(r1,r2)r d−1

1 r d−1
2 d 2dr1dr2.

Using Taylor’s theorem for multivariate functions, we can get an upper bound for its absolute

value: ∣∣∣∣∫ 1

r1=ε

∫ 1

r2=r 1
R(r1,r2)r d−1

1 r d−1
2 d 2dr1dr2

∣∣∣∣
≤ M(γ)

2

∫
X

(
(r1 −1)2 +2(r1 −1)(r2 −1)+ (r 2−1)2)r d−1

1 r d−1
2 d 2dr1dr2

where

M(γ) = max
α=|2|,(r1,r2)∈X

∣∣∣∣∣Dα

[
r γ2

r γ1 + r γ2

]∣∣∣∣∣ ,

X = {(r1,r2) | r1 ∈ [ε,1], r2 ∈ [r1,1]},
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and ∣∣∣∣∣D (2,0)

[
r γ2

r γ1 + r γ2

]∣∣∣∣∣=
∣∣∣∣∣γr γ−2

2 r γ1 ((γ−1)r γ1 − (γ+1)r γ2 )

(r γ1 + r γ2 )3

∣∣∣∣∣ ,

∣∣∣∣∣D (1,1)

[
r γ2

r γ1 + r γ2

]∣∣∣∣∣= γ2r γ−1
2 r γ−1

1 (r γ2 − r γ1 )

(r γ1 + r γ2 )3
,

∣∣∣∣∣D (0,2)

[
r γ2

r γ1 + r γ2

]∣∣∣∣∣=
∣∣∣∣∣γr γ2 r γ−2

1 ((γ+1)r γ1 )− (γ−1)r γ2
(r γ1 + r γ2 )3

∣∣∣∣∣ .

For a big enough d , if γ grows with d , the maximum of M(γ) is achieved when r1 = r2 with

M(γ) ≤ γ
4ε

−2. We will show this for
∣∣∣D (2,0)

[
r γ2

r γ1 +r γ2

]∣∣∣, the other two cases can be proved similarly.

Indeed,∣∣∣∣∣D (2,0)

[
r γ2

r γ1 + r γ2

]∣∣∣∣∣=
∣∣∣∣∣γr γ−2

2 r γ1 ((γ−1)r γ1 − (γ+1)r γ2 )

(r γ1 + r γ2 )3

∣∣∣∣∣
= γr γ−2

2 r γ1 ((γ+1)r γ2 − (γ−1)r γ1 )

(r γ1 + r γ2 )3

= γ
(

r2
r1

)γ
((γ+1)

(
r2
r1

)γ− (γ−1))

r 2
2 (1+

(
r2
r1

)γ
)3

,

which is equal to γ
4ε

−2 when r1 = r2 and goes to 0 with d →∞ when r1 < r2.

Finally∫
X

(
(r1 −1)2 +2(r1 −1)(r2 −1)+ (r 2−1)2)r d−1

1 r d−1
2 d 2dr1dr2

= ε2d P1 +εd P2 + 3d +4

(d +1)2(d +2)
,

where

P1 =−d
(
d 2 + (d +1)2ε2 −2(d +2)2ε+6d +13

)+8

(d +1)2(d +2)

and

P2 = (2(d +2)d +1)dε2 −4d(d +2)(d +1)ε+2(d +2)(d +1)2

(d +1)2(d +2)

are two polynomial fractions.
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Putting everything together we can upper bound the remainder by∣∣∣∣∫ 1

r1=ε

∫ 1

r2=r 1
R(r1,r2)r d−1

1 r d−1
2 d 2dr1dr2

∣∣∣∣≤ γε−2

8

(
ε2d P1 +εd P2 + 3d +4

(d +1)2(d +2)

)
.

Also, due to symmetry, (2.13) = (2.14), and thus

pQ = 1

2
+ γ

2

d

(d +1)(2d +1)
+ R̂ +o(1)

where

|R̂| ≤ γε−2

4

(
ε2d P1 +εd P2 + 3d +4

(d +1)2(d +2)

)
.

We see that if
γ

d
= c1 +o(1)

and d →∞, then

pQ = c2 +o(1),

where c1 > 0, c2 > 0 are constants.

2.3.2 Proposition 1

Proof of Proposition 1. First we will show that for a query Qi = (x a
i , xb

i ) the set of points Si ⊂Ω
that have the same probabilities of the observing an Y forms a d-dimensional sphere. For ease

of reading, we drop the index i and simply write Q = (xa , xb).

The oracle answers Y = xa with probability p(xa , xb ; xt ) = ∥xb−xt∥γ
∥xa−xt∥γ+∥xb−xt∥γ . Let us consider all

points x ∈Ω for which pxa ,xb ,x = pxa ,xb ,xt . Now denoting

c := ∥xa −xt∥2

∥xb −xt∥2 =
(

1

p
−1

) 2
γ

,

and observing

p = ∥xb −xt∥γ
∥xa −xt∥γ+∥xb − v xt∥γ

= 1
∥xa−xt∥γ
∥xb−xt∥γ +1

,
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we can define the set SQ by

d∑
j=1

(x j − (xa) j )2 − c
D∑

i= j
(x j − (xb) j )2 = 0,

which can be rewritten as
d∑

j=1
(x j − z j )2 = r.

for

z j =
c(xb) j − (xa) j

1− c
,

r =
d∑

j=1

(c(xb) j − (xa) j )2

(1− c)2 −
(xa)2

j − c(xb)2
j

(1− c)
.

Hence, for a fixed query, the points that have the same outcome probabilities as xt form a

sphere in Rd . For two distinct query points Q1 and Q2, the set of points that have the same

outcome probabilities of answer for both Q1 and Q2 will lie in the intersection of S1 and S2,

i.e., at least in a (d −1)-dimensional sphere S1 ∩S2. Consider the third query point Q3. The

intersection S1 ∩S2 ∩S3 is at least a (d −2)-dimensional sphere if z3 does not lie on the line

intersecting z1 and z2, otherwise the points in S1 ∩S2 are equidistant from z3, and since

xt ∈S1 ∩S2, S1 ∩S2 =S1 ∩S2 ∩S3, and no additional dimensionality reduction of the spheres

intersection is achieved (see Fig 2.5 for illustration). Similarly, for d +1 queries Q1,Q2,. . . ,Qd+1,

the sufficient condition for

S1 ∩S2 ∩·· ·∩Sd+1 = xt

is

rank(z̃1 − z̃d+1, z̃2 − z̃d+1, . . . , z̃d − z̃d+1) = d . (2.15)

The intersection of the d +1 corresponding spheres will result in exactly one point, xt . Thus

the likelihood after d +1 such queries will be maximized only at xt . Now by chosing a uniform

prior over Ω, in expectation over the outcomes of any set of queries Q̃ that satisfies (2.15) the

posterior will be maximized only at xt and then the claim follows immediately.
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3 Technical Background for Bayesian
Inference

In this Chapter we describe some important techniques from Bayesian Inference that will be

used in the later Chapters of this thesis.

In the problem of Bayesian inference we are trying to estimate a latent random variable x

via observing data D about x . We assume a prior distribution p(x) for x before any data

is observed. We also assume a probabilistic model p(D|x) that gives us the likelihood of

observing data D when x value is fixed. Once p(x) and p(D|x) are defined, and data D is

observed, we would like to update our belief about x based on the information D , i.e. compute

the posterior distribution of x :

p(x |D) = p(D|x)p(x)

p(D)
,

where p(D) is the evidence. It is sometimes also written as

p(x |D) ∝ p(D|x)p(x),

since p(D) can be seen as a constant.

When x is a discrete random variable with a finite support X , this updates is trivial and can

be computed in O(n), where n is the cardinality of the support. Indeed, computing p(x |D)

involves for each xi ∈X computing

p(xi |D) = p(D|xi )p(xi )∑n
i=1 p(D|xi )p(xi )

.

In this work we refer to this scenario as a Bayesian update with full posterior on n points.

In the case when x is continuous, depending on the choice of the prior p(x) and the likelihood

function p(D|x), (a) the posterior distribution might not lie in the same distribution family as
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p(x) and (b) there could be no closed form expression for p(x |D). The term p(D) becomes an

integral

p(D) =
∫

p(D|x)p(x)d x ,

and is usually intractable to compute.

Below we describe two well-known methods to approximately compute p(x |D) in the continu-

ous case. They are both based on the idea of finding an approximation of p(x |D) by another

distribution q(x) from some family Q (e.g. Gaussian) via minimizing the Kullback–Leibler

divergence between the two.

The first method is called Expectation-Propagation [36] and it is aimed at minimizing

min
q̃∈Q

KL(p(x |D) || q̃(x)).

We focus on a special case of this method when Q is a family of Gaussian distributions. In

that case the idea of the EP method is to find a distribution q̃(x) that has the same first two

moments as p(x |D). We will derive a posterior update following this moment-matching idea

and assuming Probit likelihood and a Gaussian prior.

The second moment is called Variational Inference and aims at minimizing the reverse

min
q̃∈Q

KL(q̃(x) || p(x |D)).

In this method the KL divergnce can be re-written as a sum of two terms to minimize which

can be done via a gradient method with sampling. We will describe a general formulation of

this method below.

3.1 Moment-Matching for Probit Model

Assume we have a Gaussian prior p(x) =N (x |µ,Σ), and observe an outcome according to

the Probit model with respect to some hyperplane (w ,b). Then the posterior distribution will

be q(x) ∝ t (xT w +b)p(x), where

t (x) =Φ
(

x

σε

)
,

is the likelihood function based on the Gaussian CDF.

Using the idea of Expectation Propagation [36], we would like to find a Gaussian approximation
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3.1 Moment-Matching for Probit Model

q̃(x) =N (x | µ̃,Σ̃) of the true posterior q s.t. it minimizes the KL divergence

KL(q(x) || q̃(x)).

Natural parameters. Since p(x) is assumed to be Gaussian, as a part of the Exponential family

of distributions, it has natural parameters. Let (ν,P ) = (Σ−1µ,Σ−1) be the natural parameters

of p(x) and (νpproj ,τpproj ) = ((w TΣw )−1(µT w +b), (w TΣw )−1) be the natural parameters of

projected pproj(u) := p(xT w +b) =N (xT w +b |µT w +b, w TΣw ). Then

q(x) ∝ t (xT w +b)p(x) = t (xT w +b)N (x |ν,P )

= t (xT w +b)N (xT w +b | νpproj ,τpproj ).

Now note, that finding a Gaussian approximation q̃(x) that minimizes KL divergence is equiv-

alent to finding a Gaussian likelihood that approximates t (xT w +b) that minimizes KL diver-

gence, i.e. finding scalars ν̃ and τ̃ s.t.

t (xT w +b)N (xT w +b | νpproj ,τpproj ) ≈N (xT w +b | ν̃, τ̃)N (xT w +b | νpproj ,τpproj ) (3.1)

=N (x | (ν̃−bτ̃)T w , w T τ̃w )N (x |ν,P ) (3.2)

=N (x |ν+ (ν̃−bτ̃)T w ,P +w T τ̃w ) (3.3)

∝ q̃(x). (3.4)

Moment matching Now we will find ν̃ and τ̃ so that the first two moments of

q̃(x) ∝N (xT w +b | ν̃, τ̃)N (xT w +b | νpproj ,τpproj )

=N (u | ν̃, τ̃)N (u | νpproj ,τpproj )

=: q̃proj(u).

match the first two moments of the true posterior

q(x) ∝ t (xT w +b)N (xT w +b |µT w +b, w TΣw )

= t (xT w +b)N (xT w +b | νpproj ,τpproj )

= t (u)N (u | νpproj ,τpproj )

=: qproj(u).

First we will find the first two moments of the true posterior qproj(u). Let

Z (m, s2) =
∫

t (u)N (u | m, s2)du
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be the partition function with

m =µT w +b,

s2 = w TΣw .

We can find the moments of qproj(u) by computing the first and second derivatives of the

log-partition function with respect to m.

α := ∂

∂m
log Z (m,Σ) = 1

Z

∫
t (u)

∂

∂m
pproj(u)du = 1

Z

∫
t (u)

u −m

s2 pproj(u)du

= s−2
(∫

u
t (u)pproj(u)

Z
du −m

1

Z

∫
t (u)pproj(u)du

)
= s−2(Eqproj [u]−m),

Similarly,

β := ∂2

∂m2 log Z (m,Σ) = 1

Z

∫
t (u)

∂2

∂m2 pproj(u)du −α

= s−2 + s−4(Eqproj [u
2]−Eqproj [u]2).

Thus

Eqproj [u] = m + s2α

Eqproj [u
2]−Eqproj [u]2 = s2 + s4β.

Now we match the first two moments of approximation q̃proj(u) to the first two moments of

the true qproj(u), and thus the natural parameters of q̃proj(u) will be

νq̃proj(u) = m + s2α

s2 + s4β
,

τq̃proj(u) = (s2 + s4β)−1.
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Now we can write the full expressions for ν̃ and τ̃:

ν̃= νq̃proj(u) −νpproj =
m + s2α

s2 + s4β
− m

s2 = α−mβ

1+ s2β
, (3.5)

τ̃= τq̃proj(u) −τpproj = (s2 + s4β)−1 − s−2 =− β

1+ s2β
. (3.6)

Proposition 2. Assume a Gaussian prior p(x) = N (x | µ,Σ) and a Probit likelihood func-

tion (2.11). Let Z (µ,Σ) be defined as above. Then

Z (µ,Σ) =
∫
Φ

(
xT w +b

σε

)
N (x |µ,Σ)d x

=Φ

 m√
s2 +σ2

ε

 ,

where

m =µT w +b

s2 = w TΣw .

Proof. Let us denote X = xT w +b ∼N (x |µT w +b︸ ︷︷ ︸
m

, w TΣw︸ ︷︷ ︸
s

). Then,

P (X +ε≤ 0) = P (xT w +b +ε≤ 0) =Φ

 m√
s +σ2

ε

 .

On the other hand, using law of total probability,

P (X +ε≤ 0) =
∫

P (X +ε≤ 0 | X = xT w +b)N (x |µ,Σ)d x

=
∫

P (xT w +b +ε≤ 0)N (x |µ,Σ)d x

=
∫

P (ε≤−(xT w +b))N (x |µ,Σ)d x

=
∫
Φ

(
xT w +b

σε

)
N (x |µ,Σ)d x

= Z (µ,Σ).

31



Chapter 3. Technical Background for Bayesian Inference

Then in our one dimensional case Z (m, s2) we simply have

Z (m, s2) =Φ

 m√
s2 +σ2

ε

 ,

and the first two derivatives will be

α := ∂

∂m
log Z (m, s2) = N (z | 0,1)

Φ(z)
√

s2 +σ2
ε

, (3.7)

β := ∂2

∂m2 log Z (m, s2) = −zN (z | 0,1)Φ(z)−N (z | 0,1)2

Φ(z)2(s2 +σ2
ε)

(3.8)

=− N (z | 0,1)

(s2 +σ2
ε)Φ(z)

(
z +N (z | 0,1)

Φ(z)

)
(3.9)

with

z = m√
s2 +σ2

ε

.

3.2 Variational Inference

In the Variational Inference method, the idea is to find a distribution q(x) that minimizes

min
q∈Q

KL(q(x) || p(x |D)).

In this case by using the definition of the KL divergence we have

KL(q(x) || p(x |D)) = Eq [log q(x)− log p(x |D)]

= Eq [log q(x)− log p(x)− log p(D|x)+ log p(D)]

= KL(q(x) || p(x))−Eq [log p(D|x)]+ log p(D).

Hence the optimization problem becomes

min
q∈Q

KL(q(x) || p(x))−Eq [log p(D|x)],

or, equivalently,

max
q∈Q

Eq [log p(D|x)]−KL(q(x) || p(x)),
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3.2 Variational Inference

which is cold the Evidence Lower Bound (ELBO), since

log p(D) ≥ Eq [log p(D|x)]−KL(q(x) || p(x)),

since KL is non-negative. Under the assumption that the data D is independent, the likelihood

term Eq [log p(D|x)] can be rewritten as an expectation of a sum of data points. Optimization

of the ELBO,

min
ν∈Ω

L(ν) = min
ν∈Ω

Eq [log p(D|x)]−KL(q(x) || p(x)),

can be done using gradient descent in the parameters space Ω of a distributional family Q,

and using Monte-Carlo methods to sample from qν to approximate the expectations.
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4 Learning Object Embeddings from
Triplet Comparisons

In this Chapter, we describe a general method of learning object embeddings via finding

the maximum likelihood estimator (MLE) for a given set of triplet comparisons and a given

probabilistic model p(xi , x j ; xt ). The learned embedding serves two purposes. First, it can

be used to argue how well a given probabilistic triplet model is reflecting real world triplet

comparison data through measuring the "goodness of fit" of that embedding. Second, a

learned embedding is an essential part of our LEARN2SEARCH algorithm that is our proposed

solution in the blind setting.

We will justify our two new models, Probit and γ-CKL, via comparing the qualities of the

embeddings learned for Probit and γ-CKL versus the qualities of the embeddings learned for

the state-of-the-art models t-STE and CKL on real-world datasets. Then we will introduce a

distributional embedding method that captures the uncertainties in the exact positions of

the objects in Rd given the comparison data, which can further improve the quality of the

searches in the LEARN2SEARCH framework in the next Chapters.

4.1 Learning Embedding via Maximum Likelihood Estimator

Suppose we are given a set of objects [n] = {1,2, . . . ,n}, known to have representations X ⊂Rn×d

in a hidden feature space. Although we do not have access to X , we observe a set of noisy

triplet-based relative similarities of these objects:

T = {(i , j ; t ) | object i is closer to t than j is},

obtained with respect to an unknown probabilistic model p(xi , x j ; xt ), i , j , t ∈ [n]. Our goal

is to find an embedding X̂ ∈ Rn×d̂ that maximizes the probabilities of the observed triplet

comparisons T assuming probabilistic model p̂(xi , x j ; xt ). This can be done by maximizing
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the negative log-likelihood over T :

X̂ := argmax
X∈Rn×d̂

∑
(i , j ;t )∈T

− log p̂(xi , x j ; xt ). (4.1)

This optimization problem is usually solved using (stochastic) gradient descent. In order to

prevent overfitting, an additional regularization term (e.g. an L2 norm) for X̂ is added:

X̂ := argmax
X∈Rn×d̂

∑
(i , j ;t )∈T

− log p̂(xi , x j ; xt )+λ∥X ∥L . (4.2)

Thus, in this embedding method, we aim to find objects’ representations X̂ in Rn×d̂ , as the

original dimensionality d is also unobservable, such that the set of triplet observations T is

explained as much as possible under assumed probabilistic model p(xi , x j ; xt ). Then different

choices of p(xi , x j ; xt ) can be compared on the basis of goodness of fit using various metrics,

e.g. accuracy:

acc(X̂ ,T ) = 1

|T |
∑

(i , j ;t )∈T
1{||x̂i −xt || < ||x̂ j − x̂t ||}

or simply average negative log-likelihood

NLL(X̂ ,T ) = 1

|T |
∑

(i , j ;t )∈T
− log p̂(x̂i , x̂ j ; x̂t ).

4.2 Models Performance

In order to argue about how well the proposed Probit and γ-CKL models reflect the actual

human choices, we compare the performance of the embeddings, learned via solving (4.1)-

(4.2), for Probit, γ-CKL, t-STE, and CKL, in terms of the accuracy and the log-likelihood metrics,

on three real-world datasets.

Food. Wilber et al. [55] collected |T | = 190’376 triplet comparisons of food dishes for n =
100 unique pictures of food dishes. In this dataset, each triplet (i , j ; t) corresponds to the

respondent’s answer “The dish i tastes more similar to the dish t than to the dish j ”.

Musical Artists. Ellis et al. [18] conducted a web-based survey in which the human participants

were asked to chose the most similar musical artist among several presented options to a given

target artist. The number of possible answer options varied in each experiment. Following

[54], we convert the comparisons of the form (i ,Q; t ) to triplet comparisons {(i , j ; t )} j∈Q, j ̸=i . In
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total 1’032 users participated in that survey and 22’310 triplets were collected. After cleaning

the data, similarly to [54], we have left with n = 400 artists and |T | = 9’107 triplets.

Movie Actors. In [14] Chumbalov et al. built a web-based application for searching for famous

movie actors via comparing their face pictures. They collected a dataset of a total of |T | =
50’026 triplets for n = 552 unique movie actors. The queries during the searches were posed

in the form of “Which actors among the given set of actors Q is the most similar to your

target” with |Q| = 4, and the target actors were either chosen for the users prior the searches

or were later revealed by the casual users of their web service after the search was completed

and the target was found. We decompose their comparison outcomes {(i ,Q; t)} into triplet

comparisons similarly as for the Musical Artists dataset.

Figure 4.1: Distribution of the number of triplets per object, m(object) for Food, Musical
Artists, and Movie Actors datasets. The gap in the triplet participation is especially pronounced
for the latter two datasets.

To get a better sense of the datasets, let m(i ) be the number of triplets in T the object i appears

in (either as a target or as an alternative). We plot the distribution of m(·) for each of the dataset

in Fig. 4.1. For Musical Artists and Movie Actors the distribution is fat-tailed and this is due to

the way the data was collected. Indeed, in [18] the number of alternatives in the queries to the

user varied, hence the amount of triplets collected from a single user answer could be different

for different artists. In [14], the triplet comparisons were collected from the searches done on
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a web-site designed by the authors. The searches were performed by both participants of the

project as well as random users from the web. There was no full control over the targets users

were searching for and some of the actors were being added and removed over time. Hence

the final triplet participation distribution across the actors was skewed.

Figure 4.2: Comparison of the quality of the embedding produced using different probabilistic
models. The results are reported on a 10-fold holdout triplet set for accuracy and negative
log-likelihood, including mean estimates with 3 standard error bars. The proposed Probit and
γ-CKL models either beat or are on par with the state-of-the-art oracle models.
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Following [47], for each dataset we learned an embedding for every model using different

number of dimensions d ∈ [2,5,10,15,20,30,40,50,80,90], since the true dimensions of the

features spaces in the datasets are unobserved. Similarly to [47], we performed a 10-fold cross

validation to compute the average accuracy and negative log-likelihood on holdout sets. In

particular, we randomly divided each original dataset into 10 equal sized subsets. Then, for

each subset i , i = 1,2, . . . ,10, we used it as a hold-out test set and the rest 9 were used to train

the models. When reporting the accuracy and negative log-likelihood results in Fig. 4.2, we

averaged them over 10 fold runs to get the mean estimates and standard errors.

The hyperparameters for each model were optimized and the best performing configurations

for each d are reported. We used the following grid of hyperparameters: l r ∈ [1e−2,1e−3,1e−
4,1e−5], batchsi ze ∈ [128,256,512, |T |], L2 regularizerλ ∈ [0,0.4,1],σε ∈ [0.4,0.3,0.2,0.1,0.01],

γ ∈ [2,3,5,10,15,20,25]. No regularization was used for CKL and γ-CKL because these models

are scale-free.

The best hyperparemeter configuration for each dataset are given below:

• Musical Artists

– t-STE (accuracy 86%, nll 0.333): D = 50, l r = 1e −4, λ= 0, batchsi ze = |T |
– CKL (accuracy 83.9%, nll 0.395): D = 80, l r = 1e −5, batchsi ze = 256

– Probit (accuracy 85.6%, nll 0.352): D = 90, l r = 1e−2,λ= 0.4,σε = 0.1, batchsi ze =
512

– γ-CKL (accuracy 86.5%, nll 0.329): D = 80, l r = 1e −3, γ= 5, batchsi ze = |T |

• Food

– t-STE (accuracy 84.9%, nll 0.327): D = 80, l r = 1e −2, λ= 0, batchsi ze = |T |
– CKL (accuracy 82.8%, nll 0.389): D = 80, l r = 1e −3, batchsi ze = |T |
– Probit (accuracy 85%, nll 0.327): D = 90, l r = 1e−2, λ= 1.0,σε = 0.01, batchsi ze =

|T |
– γ-CKL (accuracy 85.%, nll 0.327): D = 90, l r = 1e −4, γ= 25, batchsi ze = |T |

• Movie Actors

– t-STE (accuracy 84.6%, nll 0.4): D = 50, l r = 1e −2, λ= 0, batchsi ze = 512

– CKL (accuracy 79.1%, nll 0.452): D = 15, l r = 1e −2, batchsi ze = 512

– Probit (accuracy 85%, nll 0.327): D = 90, l r = 1e −4, λ= 0,, σε = 0.2, batchsi ze =
|T |

– γ-CKL (accuracy 86.3%, nll 0.314): D = 90, l r = 1e −3, γ= 20, batchsi ze = |T |
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Overall, across the three datasets, Probit and γ-CKL correctly model between 84% and 86% of

triplets. On Musical Artists and Food, Probit and γ-CKL are on par with t-STE and significantly

outperform CKL. On Movie Actors dataset, Probit and γ-CKL outperform their competitors.

We can see that the γ-CKL model immediately benefits from having a general γ parameter

already in small dimensions compared to the original CKL.

We also found out that increasing d benefits the quality of the learned embedding for Probit

andγ-CKL, but not necessarily for t-STE and CKL; forγ-CKL as d increases, the best performing

values of γ tend to also increase, which is aligned with the findings of Theorem 1, see Fig. 4.3.

For each dataset and each value of d we report the running average of the mean of the top 10

best performing values of γ for that d . We see that the running average value of γ is uniformly

lower for for the Musical Artists dataset than for the other two datasets. We suspect this is

because the dataset itself contains relatively small average number of triplets per object. That

is why the γ-CKL embedding does not profit from increasing the values of γ, which could lead

the model to be more confident when predicting outcome probabilities.

Figure 4.3: Running average of the best performing values of γ in γ-CKL embedding as we
increase the embedding dimensionality d .

In our experiments we did not notice any strong sensitivity to any of the models to the hyper-

parameters for the same dataset, apart from the dimensionality of the embedding D . The only

exception is γ-CKL for which the best configurations of hyperparameters usually tend to have

all the same values of γ, which usually increase with D , as discussed above.

Overall, we can conclude that the new proposed oracle models, Probit and γ-CKL, reflect the

real user behaviour on the comparison-like tasks very well.
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4.3 Estimating d via SVD

Figure 4.4: The % of the energy explained by the dimensionality values. The dimensionality
of the initial embedding was chosen as d̂ = 90. For the γ-CKL model, d̂ = 84 has 99% of the
energy, for the Probit model, d̂ = 87 has 99% of the energy.

One way to choose the dimensionality of the embedding is to perform an exhaustive cross-

validation over different values of d̂ , which could be computationally-heavy in some cases. An

alternative and more practical approach is to first learn an embedding for some big value of d ,

and then examine the spectrum of the learned embedding matrix X̂ , see Fig. 4.4.

Given an initial embedding matrix X̂ ∈Rn×d̂ , the dimensionality that contains %k of energy is

defined as the smallest d ≤ d̂ s.t. ∑d
i σi∑d̂
i σi

≤ k

100
,

41



Chapter 4. Learning Object Embeddings from Triplet Comparisons

where σ1 ≤σ2 ≤ ·· · ≤σd̂ are the singular values of X̂ .

Fig. 4.4 suggests that most of the dimensions in the embedding are useful and higher values

of d̂ are required to carry 99% of the energy, given by the singular values of the embedding

matrix. This is aligned with the findings in Fig. 4.2, where the most accurate embeddings tend

to be high-dimensional.

4.4 Embedding Visualization

Figure 4.5: 2D PCA of the embeddings of the Movie Actors dataset using different probabilistic
oracle models.

In Fig. 4.5. we visualize in 2D the embeddings produced by different oracle models for the

Movie Actors dataset (in total, slightly more than 50’000 triplets), using PCA. All models

managed to separate actors based on gender into two clusters. In Fig. 4.6 (Probit) and Fig. 4.7

(γ-CKL), we can also examine what the 2 main components represent: the x-axis clearly

separates male and female actors; male actors that are closer to the female cluster are younger,

female actors that are closer to the male cluster have short hair and appear more masculine.
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The y-axis separates skin color: we see actors with darker skin on one side of the spectrum,

and actors with lighter skin on the other. Actors that have similar facial features also appear

to have similar representations. The embedding methods did not have access to the actual

pictures of the actors faces, and the produced embeddings are based exclusively on the triplet

comparisons collected via crowdsourcing. This suggests, that when humans compare faces,

the first two most important features they look at is gender and skin color.

Overall, both our models did a very good job in embedding the actors, resulting in high quality

representations; this is coherent with the quantitative results presented in Fig. 4.2.

Figure 4.6: 2-PCA on learned embedding with the γ-CKL model for the Movie Actors dataset.
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Figure 4.7: 2-PCA on learned embedding with the Probit model for the Movie Actors dataset.

4.5 Variational Embedding

In this last section we introduce a new general embedding method that produces distributional

embedding, which, as we will see later, will be very useful in symbiosis with search methods in

the LEARN2SEARCH framework.

In a given dataset of triplet comparison outcomes, one object might be included in few triplets

while another might be included in many (e.g., due to the latter being a popular search target),

thus we could have more information about one object and less information about another.

Indeed, the distributions of the number the triplets per target in the real world datasets could

be far from uniform as we have seen in Fig. 4.1 in Section 4.2.

This suggests that when approximating X , an uncertainty about the object’s position should

be taken into account. The latest should also affect the operation of the search algorithm: After

observing the outcome of oracle’s comparison between two objects i and j , whose positions

x̂i and x̂ j in our estimated embedding space are noisy, the target posterior distribution should
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have higher entropy than if x̂i and x̂ j were exact (as we had assumed so far).

We incorporate this dependence by generating a distributional embedding, where each esti-

mate x̂i is endowed with a distribution, thus capturing the uncertainty about its true position

xi . We take a Bayesian viewpoint and aim to find an approximate posterior distribution over

the objects’ embedding, given the triplets T . For computational tractability, we restrict our-

selves to an mean-field approximate posterior, where p(x1, ..., xn) =∏n
i=1N (µi ,Σi ). The goal

is to learn a d-dimensional Gaussian distribution embedding

q(x̂1, x̂2, . . . , x̂n) :=
n∏

i=1
N (x̂i ;µi ,Σi )

where µi ∈ Rd , Σi ∈ Rd×d and diagonal, such that objects that are similar with respect to

their “true” representations {xi }n
i=1 (reflected by T ) are also similar in the learned embedding.

Here for each object, µi represents the mean guess on the location of object i in Rd , and Σi

represents the uncertainty about its position.

We learn this Gaussian embedding via maximizing the ELBO (introduced in the Technical

Background chapter):

L({(µi ,Σi )}n
i=1) = Eq

[
log p(T , x̂1, . . . , x̂n)− log q(x̂1, . . . , x̂n)

]
, (4.3)

where the joint distribution p(T , x̂1, . . . , x̂n) is the product of the prior

p(x̂1, . . . , x̂n) =
n∏

i=1
N (x̂i ;0, I )

and the likelihood p(T | x̂1, . . . , x̂n) that is defined via probabilistic model p(xi , x j ; xt ):

p(T | x̂1, . . . , x̂n) = ∏
(i , j ;t )∈|T |

p(x̂i , x̂ j ; x̂t ).

We optimize the ELBO by using stochastic backpropagation with the reparameterization trick

[30, 40]. A detailed algorithm is outlined in Algorithm 1. The total complexity of executing one

epoch e is O(|T |d).

Using the resulting variational embedding in the LEARN2SEARCH framework brings a natural

tradeoff between exploration and exploitation: At first, the system tends to ask queries about

objects with high variance Σi more frequently, and the large effective noise reflected by

this variance restricts the speed at which the search narrows down the space of the target

candidates. After multiple searches, as the system gets more confident about the embedding, it

begins exploiting the structure of the space more assertively. In Section 5.1.5 we will empirically

demonstrate that using this variational embedding in the latent setting greatly profits the
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Algorithm 1 Learning Variational Embedding

Input: Triplet model p(xi , x j ; xt ), objects {1,2, . . . ,n}, triplets T , ns , E , α

Output: posterior distribution for each point {(µi ,Σi )}n
i=1

1: Initialize µi ← 0, Σi ← I , i = 1,2, . . . ,n

2: p(x̂i ) ←N (µi ,Σi ), i = 1,2, . . . ,n

3: q(x̂i ) ← p(x̂i ), i = 1,2, . . . ,n

4: for e = 1,2, . . . ,E do

5: Compute the Kullback–Leibler divergence term D :=∑n
i=1 DKL

(
p(x̂i )||q(x̂i )

)
6: For each xi sample {s1

i , s2
i , . . . , sns

i } from N (0, I ), i = 1,2, . . . ,ns

7: ŝk
i =µi +Σi sk

i , i = 1,2, . . . ,n, k = 1,2, . . . ,ns

8: Compute the log-likelihood term L := 1
ns

∑ns

k=1

∑
(i , j ;t )∈T log p(ŝk

i , ŝk
j ; ŝk

t )

9: Compute the gradient ∇L=∇(L−K ) with respect to {(µi ,Σi )}n
i=1

10: {(µi ,Σi )}n
i=1 ← {(µi ,Σi )}n

i=1 +α∇L
11: q(x̂i ) ←N (µi ,Σi ), i = 1,2, . . . ,n

12: end for

search procedure in comparisons to using point-estimate embeddings based on other model,

however in the scope of modeling human choices, we have already established the usefulness

of the Probit model in Section 4.2, and do not expect Algorithm 1 to outperform its point-

estimate Probit version in that task, since the underlying probabilistic model remains the

same.

Note, that the procedure of learning a variational embedding can be also used as an alternative

to the conventional way of learning through MLE with a regularization (4.2). The KL divergence

term can be seen as a regularizer itself, because it forces the posterior q(x̂i ) to not differ much

from the prior distribution p(x̂i ). In principle, the covariance matrices can be later ignored

and only the means µi can be used as the point estimates of xi .
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In this Chapter, we develop efficient comparison-based search algorithms for the Probit and

the γ-CKL models. We begin by introducing an efficient Probit-based search method called

GAUSSSEARCH, which (a) generates query pairs and (b) navigates towards the target. It is

provably guaranteed to converge to the target, due to the specific form of the Probit model

and key properties of the search algorithm. In contrast with prior adaptive search methods,

where generating a query pair is typically expensive, our algorithm is also computationally

efficient. We then study the performance of GAUSSSEARCH in a series of synthetic experiments

in two regimes: when the objects features X are available to us during the searches and when

they are hidden. In the latter we combine GAUSSSEARCH with the variational embedding

method GAUSSEMBED introduced in the previous Chapter under a general search framework

LEARN2SEARCH.

Next, we develop algorithms that are based on the γ-CKL model. Informally, in this model,

the work required to halve the volume of the belief region does not depend on the scale of the

current belief region. This suggests that there is hope that this volume can shrink exponentially

with the number of queries. We propose an algorithm that provably achieves exponential

convergence to the target when X = [0,1]d ⊂ Rd . The algorithm relies on the backtracking

mechanism that asks non-local queries and “regrows” the belief region when the belief region

looses the target in order to recapture the target. The result is non-trivial because there is

always the possibility of errors, such that the current belief moves too far away from the

target. Then we describe a practical implementation of this scheme and show exponential

convergence over a series of experiments.

Finally, we derive a heuristic algorithm for the γ-CKL that works well for relatively small n. For

this case, it is computationally feasible to maintain full belief distributions over all objects, and

to choose queries close to optimally by approximately maximizing expected information gain.
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5.1 Probit Model: GAUSSSEARCH

In this subsection we present a search algorithm GAUSSSEARCH assuming the Probit model (2.11).

Generally, we are interested in methods that are

1. Efficient in the average number of queries per search, and

2. Scalable in the number of objects n.

Scalability requires low computational complexity of the procedure for choosing the next

query. As the users answers are stochastic and their choices can vary from one user to another,

we also require our algorithms to be robust to the probabilistic nature of the human feedback.

Gaussian Model. Due to the sequential and probabilistic nature of the problem, we take

a Bayesian approach in order to model the uncertainty about the location of the target. In

particular, we maintain a d-dimensional Gaussian distribution N (x̂ ;µ,Σ) that reflects our

current belief about the position of the user’s target point xt in Rd , t ∈ [n]. We model user

answers with the Probit likelihood (2.11), and we apply approximate inference techniques

for updating µ and Σ every time we observe a query outcome. The space requirement of the

model is O(d 2).

The motivation behind such a choice of parametrization is that

1. The size of the model does not depend on n, guaranteeing scalability,

2. One can characterize a general pair of points in Rd that maximizes the expected infor-

mation gain, and

3. The sampling scheme that chooses the next pair of query points informed by 2 is simple

and works extremely well in practice.

5.1.1 Choosing the Next Query

To generate the next query, we follow a classic approach from information-theoretic active

learning [35]: find the query that minimizes the expected posterior uncertainty of our estimate

x̂ , as given by its entropy. More specifically, we find a pair of points {xi , x j } corresponding to

the objects i , j ∈ [n] that maximizes the expected information gain for our current estimation

of xt at step m:

I [x̂ ;Y | {xi , x j }] = H(x̂)−EY |xi ,x j ,x̂ [H(x̂ | Y )],
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where the random variable x̂ ∼N (µ,Σ) is the current belief about the target position xt in

the space Rd , H(x) is Shannon’s entropy, and Y ∼ p(Y | xi , x j , x̂) is the current belief over the

answer to the comparison between xi and x j .

Exhaustively evaluating the expected information gain over all O(n2) pairs for each query (e.g.,

as done in [13]) is prohibitively expensive. Instead, we propose a more efficient approach, that

runs in time O(logn) with O(n logn) preprocessing using a kd-tree, that is done only once for

an embedding. Recall from equation (2.11) that the comparison outcome probability p(Y |
x̂ , xi , x j ) depends on {xi , x j } only through the corresponding bisecting normal hyperplane hi j .

Therefore, instead of looking for the optimal pair of points from X , we first find the hyperplane

h that maximizes the expected information gain. Following [25], it can be rewritten as:

I [x̂ ;Y | h] = H(x̂)−EY |x̂ ,h[H(x̂ | Y )]

= H(Y | x̂ ,h)−Ex̂ [H(Y | x̂ ,h)]. (5.1)

The following theorem gives us the key insight about the general form of a hyperplane h =
(w ,b) that optimizes this utility function by splitting the Gaussian distribution into two equal

“halves”:

Theorem 2. Let x̂ ∼ N (µ,Σ), and let H = {(w ,b) | ∥w∥ = 1, w⊤µ+ b = 0} be the set of all

hyperplanes passing through µ. Then,

argmax
h∈H

I [x̂ ;Y | h] = argmax
(w ,b)∈H

w⊤Σw .

Proof sketch. Let h⋆ = (w⋆,b⋆) be an optimal hyperplane. Since w⊤µ+b = 0, we have p(Y |
x̂ ,h) ≡ 1/2 and H(Y | x̂ ,h) ≡ 1. Thus, h⋆ is such that Ex̂ [H(Y | x̂ ,h)] is minimal. We show that

Ex̂ [H(Y | x̂ ,h)] = Ez [H(Φ(z))],

where z ∼N (0, w⊤Σw ). As the binary entropy function has a single maximum in 1/2, the

expectation on the r.h.s. is minimized when the variance of z is maximized.

In other words, Theorem 2 states that any optimal hyperplane is orthogonal to a direction that

maximizes the variance of x̂ , i.e. its first eigenvector.

Consequently, we find a hyperplane h that maximizes the expected information gain via an

eigenvalue decomposition ofΣ. However, we still need to find a pair of objects {i , j } from [n] to

form the next query. We propose a sampling strategy based on Theorem 2, which we describe

in Algorithm 2. We maintain a set of points U ⊆ [n] that were used in any of the queries during

the search and do not repeat queries containing objects the user have seen so far, since they
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were not indicated as targets by the user. After computing the optimal hyperplane h⋆, we

sample a point z1 from the current Gaussian belief N (µ,Σ) over the location of the target, and

reflect it across h⋆ to give the second point z2. These two points z1 and z2 span h⋆, but are

not guaranteed to be in X . Then we construct our query by finding the closest pair of (distinct

and yet unseen) points {xi , x j } to {z1, z2} from X . The hyperplane spanned by xi and x j now

approximates the optimal hyperplane h⋆ that maximizes the expected information gain.

Assuming that the feature vectors X are organized into a k-d tree [5] at a one-time computa-

tional cost of O(n logn) for a given X , Algorithm 2 runs in time O(logn +d 3). This includes

O(d 3) for the eigenvalue decomposition, O(d 2) for sampling from a d-dimensional Gaussian

distribution, O(d) for mirroring the sample, and O(logn) on average for finding the closest

pair of points from the dataset using the k-d tree.

If needed, computing the eigenvector that corresponds to the largest eigenvalue can be well

approximated via the power method with O(d 2) complexity (assuming a constant number of

iterations). This will bring down the total complexity of Algorithm 2 to O(logn +d 2).

Algorithm 2 SAMPLEMIRROR

Input: current belief N (µ,Σ), X , U
Output: query pair {xi , x j }

1: Compute optimal hyperplane h⋆ for (µ,Σ).

2: Sample a point z1 from N (µ,Σ).

3: Obtain z2, as the reflection of z1 across h⋆.

4: Find objects i and j , s.t. i ̸= j and i , j ̸∈U , with the closest representations xi and x j to z1

and z2, respectively.

Note that the actual hyperplane defined by the obtained pair {xi , x j } in Algorithm 2 does not,

in general, coincide with the optimal one. Nevertheless, the hyperplane hi j approximates h⋆

increasingly better as n grows. For large enough n we could make a reasonable assumption of

high density of points {xi }n
i=1 in Rd , and hence expect hi , j to be a good enough approximation

for ĥ.

5.1.2 Updating the Model

Finally, after querying the pair {i , j } and observing outcome ȳ , we update our belief on the

location of target x̂ . Suppose that we are at the m-th step of the search, and denote the belief

before observing ȳ by pm−1(x̂) =N (x̂ ;µm−1,Σm−1). Ideally, we would like to update it using
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Bayesian inference:

p⋆m(x̂) ∝ p(Y = ȳ |Q = {xi , x j }, x̂) ·pm−1(x̂).

However, this distribution is no longer Gaussian. Therefore, we approximate it by the “clos-

est” Gaussian distribution pm(x̂) :=N (x̂ ;µm ,Σm). We use a method known as Expectation-

Propagation [36], which solves the following program:

min
µm ,Σm

DKL
[
p⋆m(x̂) ∥ pm(x̂)

]
,

where DKL[p∥q] is the Kullback-Leibler divergence from p to q . Because of the form of the

Probit model, this can be done in closed form by computing the first two moments of the distri-

bution p⋆m , with running time O(d 2), see full derivations in the Technical Background chapter.

Formally, at each step of the search, we perform computations outlined in Algorithm 3.

Algorithm 3 UPDATE

Input: µm−1,Σm−1,(w ,b)

Output: µm ,Σm

1: µproj ←µ⊤
m−1w +b

2: α← ∂
∂µproj

logΦ(µproj, wΣm w⊤+σε)

3: β← ∂2

∂µ2
proj

logΦ(µproj, wΣm w⊤+σε)

4: ν← α−βµproj

1+βw⊤Σm−1w

5: τ← −β
1+βw⊤Σm−1w

6: Σm ← (
Σ−1

m−1 +τw w⊤)−1

7: µm ←Σm[Σ−1
m−1µm−1 + (ν−bτ)w ]

We summarize the full active search procedure in Algorithm 4.
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Algorithm 4 GAUSSSEARCH

Input: Objects [n], feature vectors X .

Output: target object t

1: Initialize µ0 and Σ0

2: U ←;
3: m ← 1

4: repeat

5: xi , x j ← SAMPLEMIRROR(µm−1,Σm−1,X ,U )

6: U ←U ∪ {i , j }

7: ȳ ← noisy comparison outcome as per (2.11)

8: µm ,Σm ← UPDATE(xi , x j , ȳ ,µm−1,Σm−1)

9: m ← m +1

10: until t ∈ {i , j }

5.1.3 Convergence of GAUSSSEARCH

For finite n, GAUSSSEARCH is guaranteed to terminate because objects are used in queries

without repetition. However, in a scenario where n is effectively infinite because the feature

space is dense, i.e., X =Rd , we are able to show a much stronger result. The following theorem

asserts that, for any initial Gaussian prior distribution over the target with full-rank covariance

matrix, the GAUSSSEARCH posterior asymptotically concentrates at the target.

Theorem 3. Assuming Probit oracle model (2.11) and letting X = Rd , for any initial µ0 and

Σ0 ≻ 0, Algorithm 4 satisfies

1. Tr(Σm) → 0,

2. µm → xt

as m →∞ almost surely.

Proof sketch. We obtain crucial insights on the asymptotic behavior by studying the case

d = 1, when xt , µm and Σm become scalars xt , µm and σ2
m , respectively. We first show that

σ2
m =Θ(1/m). Next, we are able to recast {µm}∞m=0 as a random walk biased towards xt , with

step size σ2
m . By drawing on results from stochastic approximation theory [41, 6], we can show

that µm → xt almost surely. The extension to d > 1 follows by noticing that, in the dense case

X =Rd , we can assume (without loss of generality) that the search sequentially iterates over

each dimension in a round-robin fashion.
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This result is not a priori obvious, especially in light of the Probit model: answers become coin

flips as the sample points xi and x j get closer. Nevertheless, Theorem 3 guarantees that the

algorithm continues making progress towards the target.

5.1.4 Experimental Results: Non-latent Setting

We conducted an experiment in order to compare the query complexity and computational

performance of GAUSSSEARCH and the state-of-the-art comparison-based search algorithms

under the assumption that the feature vectors X are accessible.

(a) Query complexity

(b) Computational complexity

Figure 5.1: Average (a) query complexity and (b) computational complexity of four search
algorithms in the non-latent setting for d = 5 and increasing n. Search success is declared
when argmaxi∈[n] pi = t .

The main difference between GAUSSSEARCH and previous methods is the way the uncertainty

about the target object is modeled. All previous approaches consider a discrete posterior

distributionP = {p1, p2, . . . , pn} over all objects from [n], which is updated after each step using
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Bayes’ rule. We compared GAUSSSEARCH to the baselines that operate on the full discrete

distribution and that use different rules to choose the next query: (1) IG: the next query (i , j )

is chosen to maximize the expected information gain, (2) EFF: a fast approximation of the EC2

active learning algorithm [22] and (3) RAND: the pair of query points is chosen uniformly at

random from [n].

In order to assess how well GAUSSSEARCH scales in terms of both query and computational

complexities in comparison to the other baselines, we run simulations on synthetically gener-

ated data of n points uniformly sampled from a d = 5 dimensional hypercube. We vary the

number of points n from 50 to 100000. For each value of n, we run 1000 searches, each with a

new target sampled independently and uniformly at random among all objects. During the

search, comparison outcomes are sampled from the Probit model (2.11), using a value of σ2
ε

chosen such that approximately 10% of the queries’ outcomes are flipped. In order not to give

an undue advantage to our algorithm (which never uses an object in a comparison pair more

than once), we change the stopping criterion, and declare that a search is successful as soon

as the target t becomes the point with the highest probability mass under a given method’s

target model P (ties are broken at random). For the GAUSSSEARCH procedure, we take pi to be

proportional to the density of the Gaussian posterior at xi . We use two performance metrics.

Query complexity The average number of queries until argmaxi∈[n] pi = t , i.e., the true target

point has the highest posterior probability.

Computational complexity The (relative) total time needed for an algorithm to decide which

query to make next and to update the posterior upon receiving a comparison outcome.

Fig. 5.1a and Fig. 5.1b show the results averaged over 1000 experiments. Both IG and EFF

require O(n3) operations to choose the next query, as they perform a greedy search over all

possible combinations of query pair and target, and for each pair need to update the full

posterior on n points. For these two methods, we report results only for n = 50 and n = 100, as

the time required for finding the optimal query and updating the posterior for n > 100 takes

over a minute per one step. For n ∈ {50,100}, IG performs best in terms of query complexity,

with 4.9 and 6.47 queries per search on average for n = 50 and n = 100, respectively. However,

the running time is prohibitively long already for n = 100. In contrast, GAUSSSEARCH has a

favorable tradeoff between query complexity and computational complexity: in comparison

to IG, it requires only 1.8 (for n = 50) or 2 (for n = 100) additional queries on average, while

the running time is improved by several orders of magnitude. We observe that, even though

in theory the running time of GAUSSSEARCH is not independent of n, in practice it is almost

constant throughout the range of values of n that we investigate. Finally, we note that RAND

performs worst in terms of average number of queries, despite having a higher running

time per search step (due to maintaining a discrete posterior). We illustrate the progress of

GAUSSSEARCH in Fig. 5.2-5.4.
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Figure 5.2: Vizualization of GAUSSSEARCH progress. Beginning stage. The Gaussian posterior
covers most of the points reflecting the uncertainty in the early stages.

Figure 5.3: Vizualization of GAUSSSEARCH progress. Middle of the search. The Gaussian
posterior shrinks and begins to concentrate around the target.
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Figure 5.4: Vizualization of GAUSSSEARCH progress. Final stage. The Gaussian posterior
concentrates around the target even more. The target is found.

5.1.5 Experimental Results: Search in Latent Setting

We now turn our attention to the latent setting, briefly introduced in Chapter 1. In this setting

we assume that the ground-truth objects features X are not observable to us, and only the

oracle has access to them when making a comparison according to a probabilistic choice

model. We give a formal general description below.

This framework consists of two main ingredients: a search algorithm and an embedding

algorithm.

Search. At each step m of a search episode the search scheme S proposes the user a set of

candidate objects Qm , |Qm | > 1, i.e. a query. In our experiments we use |Qm | = 2. The user is

asked to choose one object ym ∈ Qm that he considers the most similar to his target t . The

choice of Qm depends on the scheme’s internal objects representations X̂ and on all previous

queries and user choices:

Qm =Qm(X̂ , (y1,Q1), (y2,Q2) . . . , (ym−1,Qm−1)).

The user is assumed to answer the scheme’s query according to a comparison model p(i ,Q; t )

with the true X hidden from the system. This process repeats until the target t appears as one

of the objects in Qm . The user then confirms his target and the search is complete. The search
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algorithm is designed for a specific choice of p(i ,Q; t ).

Embedding. After a few completed searches, the system collects choice data of the form (i ,Q j ),

which is used to update the objects embedding X̂ assuming comparison model p(i ,Q; t ). The

new searches are run on the updated X̂ .

The general scheme of LEARN2SEARCH is given in Algorithm 5.

Algorithm 5 Learn2Search

1: Initialize X̂

2: Initialize T ←;
3: while true do

4: Run k interactive searches using embedding X̂

5: Collect comparisons from these searches TX̂ = {(y,Q; t )}

6: Aggregate T ← T ∪TX̂

7: Update X̂ on data T
8: end while

We study the performance of the framework LEARN2SEARCH assuming Probit oracle model on

two real world datasets: the red wine dataset [15] and the music dataset [56]. These datasets

were studied in the context of comparison-based search in [29]. We assume that the true

feature vectors X = {x1, . . . , xn} are latent: in our experiments we use them only to generate

comparison outcomes, but X is not available to Algorithm 5. Instead, we use an embedding X̂
learned from the triplets from the previous searches as the objects representation in Rd for the

search algorithm in Algorithm 5 in line 4. We also periodically update X̂ between searches as

new triplet comparisons become available. See Fig. 1.2 for illustration.

We compare using different approaches to learning an estimate of the feature vectors from

comparison outcomes in Algorithm 5 in line 7. In addition to our distributional embedding

method GAUSSEMBED (listed in Algorithm 1), we consider two state-of-the-art embedding

algorithms: t-STE [54] and CKL [47] (both of which produce point estimates of the feature

vectors), as well as the ground-truth vectors X . The search part of Algorithm 5 is handled by

GAUSSSEARCH using X̂ .

Usage of the distributional embedding GAUSSEMBED requires the following modifications in

GAUSSSEARCH.

1. in SAMPLEMIRROR, we use the Mahalanobis distance (µ− z)⊤Σ−1(µ− z) when finding

the closest objects i , j to the sampled points z1, z2.
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2. in the UPDATE step, we combine the variance of the noisy outcome σ2
ε with the uncer-

tainty over the location of x̂i and x̂ j along the direction perpendicular to the hyperplane,

resulting in an effective noise variance σ2
eff =σ2

ε+w⊤Σi w +w⊤Σ j w .

Both modifications results in a natural tradeoff between exploration and exploitation within

LEARN2SEARCH: In the early stages of the system, when only small set of triplet comparisons

is available to us, we tend to sample points that have higher uncertainty in GAUSSEMBED more

frequently, and the large effective noise variance restricts the speed at which the covariance of

the belief decreases. After multiple searches, as we get more confident about the embedding,

we start exploiting the structure of the space more assertively.

We run 9000 searches in total, starting from a randomly initialized X̂ and updating the em-

bedding on the k-th search for k ∈ [20,21, . . . ,213] For each search, the target object is cho-

sen uniformly at random among all objects. The outcomes of the comparisons queried by

GAUSSSEARCH are sampled from the Probit model (2.11) based on the ground-truth feature

vectors X . A search episode ends when the target appears as one of the two objects in the

query. As before, the noise level σ2
ε is set to corrupt approximately 10% of the answers on

average. As we jointly perform searches and learn the embedding, we measure the number of

queries needed for GAUSSSEARCH to find the target using the current version of X̂ for each

search, and then we average these numbers over a moving window of size 1000. Thus the

resulting first value is the average number of queries in the first 1000 searches, the second

value is the average number of queries in the searches 2, . . . ,1001 and so on.

We present the results, averaged over 100 experiments, in Fig. 5.5. The combination of our

methods, GAUSSSEARCH and GAUSSEMBED, manages to learn object representations that give

rise to search episodes that are as query-efficient as they would have been using the ground-

truth vectors X , and significantly outperforms variants using t-STE and CKL for generating

embeddings. It appears that taking into account the uncertainty over the points’ locations,

as is done by GAUSSEMBED, helps to make fewer mistakes in early searches and thus leads to

a lower query complexity in comparison to using point-estimates of vector embeddings. As

the number of searches grows, GAUSSEMBED learns better and better representations X̂ and

enables GAUSSSEARCH to ask fewer and fewer queries in order to find the target. In the final

stages, our latent search method is as efficient as if it had access to the true embedding on

both wine and music datasets.

One of the challenges that arises when learning an embedding in the latent setting is the

choice of d . We denote the estimated dimensionality by D. In the case when the true d is

not known, we estimated it by first conservatively setting D = 100, and then, after collecting

around 10000 triplets, picking the smallest value of D with 98% of the energy in the eigenvalue

decomposition of the covariance matrix of the mean vectors X̂µ. This number for both datasets
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was 20, and D = 20 was used as the approximation of the actual d . The results of running our

LEARN2SEARCH with the estimated d is shown in Fig. 5.5 as the dashed lines. For the wine

dataset, we achieved almost the same query complexity as for true d . For the music dataset,

after 4000 searches our scheme with estimated d actually outperformed the true features X :

on average, when the search is run on X̂ , GAUSSSEARCH needs fewer queries than when it

is performed on X . This suggests that LEARN2SEARCH is not only robust to the choice of D,

but is also capable of learning useful object representations for the comparison-based search

independent of the true features of the objects.

Figure 5.5: Combined search and embedding framework LEARN2SEARCH on two datasets with
different embedding techniques and choices of D . Results are reported over a sliding window
of size 1000.
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5.2 γ-CKL model: Exponential Convergence and γ-CKLSearch

In this section we assume the γ-CKL oracle model (2.12). Due to its scale-free property, we

are interested in search algorithms with an exponential convergence rate. We begin with

proposing a scheme with a backtracking mechanism that provably navigates towards the

target exponentially fast, assuming the dense space X = [0,1]d ⊂Rd .

5.2.1 Exponential Convergence: a Scheme with Backtracking

In this subsection, we prove a search algorithm with backtracking mechanism that has an

exponential convergence rate. Then we propose a heuristic implementation of that algorithm

and demonstrate its exponential convergence rate in a number of experiments.

As before, assume a continuous target xt ∈ Ω, where Ω = [0,1]d ⊂ Rd . In this continuous

setting, a search algorithm should be able to “zoom in” indefinitely, thus finding ever smaller

regions containing the target.

Due to the scale-free nature of γ-CKL model, at each zoom level we expect the same maximum

constant level of noise, as long as the target lays in the considered region. This would enable

us to make progress towards the target (via shrinking current considered belief region) by

asking a constant number of queries at each zoom level, hence suggesting an exponential rate

of convergence, assuming we do not lose the target during this process.

We consider the following algorithm. At each stage s ≥ 1, the algorithm operates in its current

belief region Xs ⊂Ω and asks queries to the oracle, until it decides to either

(P) Proceed (zoom in) to a child region of Xs of a smaller size or

(B) Backtrack (zoom out) to the parent region inΩ containing Xs .

When the algorithm arrives to a new region, a new stage begins and the algorithm discards all

information about previous region, previous queries and their outcomes. Thus the decisions

taken by the algorithm are local and do not depend on the past, given a target location. This is

an important property and it will be very useful further in our analysis.

We frame our search process as a random walk on a graph, where each node corresponds

to a region X ∈Ω. We will show that, under certain assumptions on transition probabilities

between regions, an erroneous decision, i.e., zooming into a region that does not contain the

target, must eventually be undone with probability 1. A high-level overview of this idea is given

in Algorithm 6. The algorithm begins in X0 =Ω and is given a budge of queries to be asked

to the oracle M . At each stage s, it keeps track of the queries asked to the oracle during that
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stage and the received answers via maintaining a history D. This history is getting emptied

at the beginning of each stage. The algorithm begins asking queries to the oracle chosen via

the subroutine NEXTQUERY(Xs ,D) and receiving the comparison outcomes ŷ according to the

γ-CKL probabilistic model, until the decision (action) As to either proceed (P) or backtrack(B)

is taken via the soubroutine DECIDE(Xs ,D). If the decision As is to backtrack, the algorithm

begins a new phase in a larger region Xs+1 = u(Xs), otherwise the algorithm zooms in into a

smaller region Xs+1 = d(Xs), provided by DECIDE(Xs ,D). The algorithm stops once the total

number of queries made to the oracle exceeds the budge M .

Algorithm 6 General exponential search

Input: query budget M

1: s ← 0 {Stage}

2: X0 ←Ω {Current region}

3: m ← 0 {Number of queries asked}

4: repeat

5: D = {} {Erase history}

6: repeat

7: (x̂i , x̂ j ) ← NEXTQUERY(Xs ,D)

8: ŷ ∼ Bernoulli(p(x̂i , x̂ j ; xt )) {Obtain oracle’s answer}

9: D←D∪ {(x̂i , x̂ j , ŷ)}

10: m ← m +1

11: until As = DECIDE(Xs ,D)

12: if As = (B) then

13: Xs+1 ← u(Xs) {Backtrack}

14: end if

15: if As = (P) then

16: Xs+1 ← d(Xs) {Proceed}

17: end if

18: until m > M

We assume that the regions have forms of hypercubes and X0 =Ω (nevertheless, the idea of

the algorithm applies to arbitrary regions). For convenience, we also assume that after arriving

to the region X , it is centered at the origin. Let us now define child and parent regions.

Let X ⊂ Ω be the current region of belief. Without loss of generality, due to the scale-free
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nature of the γ-CKL model, we assume X has an edge length 1 and is centered at the origin.

Let S be a hypercube centered at the origin with edge length 3
2 , S contains X . Let T (S, 1

4 ) be a

set of hypercubes with edge length 1
4 that tile S. Then

• A set of hypercubes D(X ) within S with edge length 1
2 that can be constructed by joining

tiles in T (S, 1
4 ) are called the children regions of R, in total |D(X )| = 5d . A children

region from D(X ) is denoted by d(X ).

• The hypercube of edge length 4, centered at the origin, is called the parent region of

X , because it contains all regions X ′ from which we could have proceeded to X , i.e.

X ∈ D(X ′), hence a union of all direct ancestors of X . We denote the parent region by

u(X ).

S

X

4

Parent region

1
2

Figure 5.6: Parents and Children. The blue square represents the current region X . The red
squares are the children of X , contained in D(X ). The union of grey and blue areas is the
region S. The big square around S is the parent region u(X ).

For illustration, see Fig. 5.6. If we go to a child region, we decrease the edge length of the

current region by a factor 1/2, thus allowing exponentially fast convergence. If we backtrack to
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a parent region, we increase the edge length by a factor of 4. The backtracking mechanism

allows to undo potential mistakes and return to a bigger region in order to ask more global

queries, instead of further zooming into a region that does not contain the target.

For our analysis we also need define the color of a region. If a region X contains xt , we call it

green (correct), otherwise we call it red (incorrect). Note, that since the parent region u(X )

contains X , backtracking from a green region X will always result to backtracking into also a

green region. And if X is green, it must have at least on green child in D(X ).

At each stage, our algorithm collects query replies from the oracle, until it decides on an action

As , either (P) or (B), via routine DECIDE(Xs ,D) that has the following transition probabilities:

• X is green:

– Proceed to one of its green children with pd (X , xt ).

– Stray, i.e. proceed to one of its red children, with qs(X , xt ).

– Backtrack to its (green) parent region with at most qu(X , xt ).

• X is red:

– Proceed to one of its red children with qd (X , xt ).

– Recover, i.e. proceed to one of its green children, with pr (X , xt ).

– Backtrack to its parent region with at least pu(X , xt ).

Naturally, we use p when denoting the probability of a transition, if the action is correct, and q

when the action is incorrect. Indeed, proceeding to a green node is a correct decision, whereas

backtracking from a green node is incorrect. Proceeding to a red node is incorrect, whereas

backtracking from a red node is correct. For a green region, there are two incorrect decisions:

backtracking and proceeding to a red child. For a red region, there are two correct decisions:

backtracking and recovering by proceeding to a green child. We summarize the probabilities

of correct and incorrect actions based on the color of a region in Table 5.1.

X is green X is red

Correct transition: pd (X , xt ) pu(X , xt )+pr (X , xt )

Incorrect transition: qu(X , xt )+qs(X , xt ) qd (X , xt )

Table 5.1: Transition probabilities based on the color of the region.

We illustrate an example of a transition graph in Fig. 5.7.
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X1

X2

X3
X4

X5 xt

X1: z(X1, xt ) = 0

X2: z(X2, xt ) = 1

X5: z(X5, xt ) = 0

X3: z(X3, xt = 1

X4: z(X4, xt ) = 1

qs(X1, xt )

qd (X2, xt )

pr (X3, xt )
pu(X3, xt )

pd (X1, xt )

Figure 5.7: (credits to L. Klein) Regions and target (blue dot) at the top, selected transitions at
the bottom.

Lemma 1. The sequence of regions Xs visited in each stage s of the search process forms a

random walk.

Proof. Let D be the decision made by the algorithm. This is a random variable which can

take values in (B ,P1,P2, ...,P5d ), for backtracking or proceeding to one of the children of

X . When arriving at a region X , the algorithm discards information about previous query

outcomes. Then it asks a series of queries, prescribed by our Inner Loop algorithm. Once the

query outcomes have been observed, the decision is deterministic. Therefore, to describe the

distribution of D it is sufficient to describe the distribution of queries and query outcomes.

The queries that we ask depend only on the current region. The outcomes are conditionally
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independent, given a target location. Therefore, the distribution of D only depends on the

current region and the latent xt . This means that the decision to proceed or backtrack is

Markovian. The sequence of regions {Xs}∞s=0 is then a random walk.

Intuitively the necessary conditions for a scheme to be able to successfully navigate to towards

the target, would be to perform correct transitions with higher probability than incorrect.

We denote the total correct decision probability by

p(X , xt ) = pd (X , xt )1{X is green}+ (pu(X , xt )+pr (X , xt ))1{X is red}

and the total incorrect decision probability by

q(X , xt ) = (qu(X , xt )+qs(X , xt ))1{X is green}+qd (X , xt )1{X is red}.

To quantify the progress of our search, we keep track of the depth P (X ) of a region, i.e. the

(minimum) number of consecutive proceed actions needed to reach this region, starting

fromΩ. A hupercube region X at depth P (X ) has the edge length of 1
2

P (X )
. The k-th ancestor

u(X ,k) is reached by backtracking k times from X . Assuming the subroutine DECIDE satisfies

two mild assumptions, the following theorem shows the exponential rate of convergence of

the Algorithm 6: (1) at any stage s of the algorithm, u(Xs ,k) contains the target with high

probability with a probability that does not depend on s, and the depth of u(Xs ,k) increased

linearly with s.

Theorem 4. Assume for any b ∈ (0,1] there exists an algorithm DECIDE such that for any xt ∈Ω
and for any X ⊂Ω its transition probabilities satisfy

(A1) p(X , xt )−q(X , xt ) > b,

(A2) xt ∈ X =⇒ pd (X , xt )−2qu(X , xt )−qs(X , xt ) b+1
2b > 0.

under γ-CKL oracle model. Then for any desired probability of error δ> 0, there exist constants

k,C > 0 such that

P(xt ∈ u(Xs ,k)) > 1−δ
E[P (u(Xs),k)] <C s.

Proof sketch. We define a stopping time of arriving at a green region after leaving a green

region by proceeding to a red region. Under assumption (A1), we prove an upper bound for

the expectation of this stopping time which does not depend on s. Then using assumption
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(A2), we show that the expected depth of each consecutive green region increases linearly.

Finally, by using the random walk Zs as a stochastic upper bound, we use its time-homogenous

transition probabilities to prove the statement.

We will prove the existence of a DECIDE algorithm that satisfies (A1) and (A2) later in the

section, but first we describe the main pieces needed to prove Theorem 4. To that end, we

need several auxiliary lemmas.

First, at each step let z(xt , Xs) be the number of backtracking decisions needed to reach a green

region from the current region Xs . In the beginning, z(xt , X0) = 0. If Xs is green, z(xt , X0) = 0.

If the search proceeds to a red child, z(xt , Xs) is either increased by 1 or stays unchanged (the

latter is possible if no additional backtracking is required, i.e. z(xt , Xs) = z(xt , Xs−1). If Xs is

red, but we recover, i.e. proceed to a green child, z(xt , Xs) is set to 0.

From assumption (A1) we get

• xt ∈ Xs ⇒ qu(X , xt )+qs(X , xt ) < 1−b
2 ,

• xt ̸∈ Xs ⇒ qd (X , xt ) < 1−b
2 .

We now construct a time-homogenous random walk Zs that will serve as a stochastic upper

bound for z(xt , Xs). Let Zs be a random walk on natural numbers, starting at Z0 = z(xt , X0) = 0.

At each step, Zs is incremented with probability 1−b
2 and decremented with probability 1+b

2 .

Once Zs = 0, Zs+1 = 0 with probability 1+b
2 or Zs+1 = 1 with probability 1−b

2 . Then

Lemma 2. Given a soubroutine DECIDE that satisfies Assumption (A1), Zs is a stochastic upper

bound for z(xt , Xs), denoted by z(xt , Xs) ⪯st . Zs .

Proof sketch. We construct a coupling between the random walk X̃s and a random variable Z̃ .

We then use induction to show that with probability 1 it holds that Z̃ > z(xt , X̃s).

Now let τX = inf{s > 0 | xt ∈ Xs , X0 = X } be the stopping time of reaching a green region,

starting from X . As long as we are on a green path, i.e. keep proceeding to green children, τXs

is 0. Once we make an incorrect decision by proceeding to a red child, the expected return

time is bounded by a constant and does not depend on s:

Lemma 3. Let Xs be red and u(Xs) be green (this occurs after just having strayed from a green

region). Given a soubroutine DECIDE that satisfies Assumption (A1),

E[τXs ] ≤ 1

b
.
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Proof sketch. Given the stochastic upper bound Zs for z(xt , Xs), we show E[τXs ] ≤ E[τZ=1] = 1
b ,

where τZ=N = inf{s > 0 | Zs , Z0 = N }.

Existence of a subroutine decision criterion DECIDE(Xs ,D). Finally, we show the existence of

a decision scheme that asks at most a constant number of queries, until it arrives at a decision

As , such that the transaction probabilities (based on the lines 12-17 of Algorithm 6) satisfy the

assumptions (A1)− (A2) from Theorem 4.

We present a subroutine that is based on a test for the hypothesis (H) “xt is in the region X ”

for an arbitrary region X ⊂Ω (not to be confused with the current belief region Xs). As xt

approaches the boundary of X , it becomes increasingly hard to distinguish whether the target

point is inside or outside of X . We then define a region of uncertainty U around X in which

our hypothesis test is not reliable.

Without loss of generality, let the region of interest X be a hypercube of edge length 2, cen-

tered at the origin and let U be a hypersphere with radius ru > 1, also centered at the origin.

Everything outside of U is called F =Ω\U .

With the following lemma we show that it is possible to construct a query Q = (xi , x j ) and chose

a value of ru such that by repeatedly querying Q to the oracle and observing the outcomes, it

will enables us, with probability > 1−δ, to accept (H) if xt ∈ X , or to reject (H) if xt ∈ F .

Lemma 4. Let the query Q = (⃗0, (1+d)e), where e = (1,0,0, . . . ) is a unit vector along an arbi-

trarily chosen axis in Rd . Let ru = 1+ d+
p

d 3+d 2−d
d−1 . Let X ,U ,F be defined as above. Then for any

δ> 0 asking the query Q to the oracle a constant number of times is enough to apply a one-tailed

binomial hypothesis test which with probability 1−δ will:

• accept (H), if xt ∈ X ,

• reject (H), if x ∈ F .

The necessary number of observations does not depend on X and xt .

Proof sketch. The query compares a point inside of the region X with a point outside. We can

lower bound the probability of the point inside being preferred, assuming that xt ∈ X . We

then calculate a radius ru such that for any xt ∈ F , the probability of the point inside being

preferred is strictly smaller. From there we can apply a binomial hypothesis test.

Now consider our current belief region Xs at stage s of the Algorithm 6. We cannot directly

apply Lemma 4 to Xs because some of child regions d(Xs) could be included inside the region
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of uncertainty U . Instead, we construct a finer discretization grid of S, which will enable us to

apply lemma for the cells of that grid.

As we mention before, in Lemma 4 we assume a region of edge length 2. As our oracle model is

scale-free, we can apply the hypothesis test to regions of arbitrary size. Let T (S,rc ) be a tiling

of S with hypercubes of edge length rc , we refer to the cells in this tiling by ck ,k = 1,2, . . . ,K , the

respective centers are xck . We can now apply Lemma 4 to ck . Since the edge lengths of ck are

rc instead of 2, the uncertainty region needs to be scaled as well. Particularly, for a region with

edge length rc , the radius of the uncertain region is scaled by factor rc /2. If we pick rc < 1
8ru

,

where ru is as in the lemma, that will lead to an uncertain region with radius ru
rc
2 < 1

16 . If the

edge length of S is not divisible by rc , it is always possible to pick a smaller value for rc .

After applying the hypothesis test from Lemma 4, i.e. (H) is “xt is in the region ck ”, each cell ck

in the tiling T (S,rc ) will belong to one of three classes:

• (A) xt ∈ ck . When using the hypothesis test, with high probability, our test will not reject

(H). We assume that cells include their border. If the target happens to lie exactly on the

boundary between cells, then all of them belong to class (A).

• (B) xt ∉ ck ∧ ||xt − xck || < 1
16 . When using the hypothesis test, the target lies in the

uncertain region. We do not make any assumption about whether (H) is rejected or not.

• (C) xt ∉ ck ∧||xt −xck || ≥ 1
16 . When using the hypothesis test, with high probability, our

test will reject hypothesis (H).

When using the hypothesis test, we know that, with high probability, all cells in class (C) are

rejected. We can show that the remaining cells in classes (A) and (B) fit in a small bounding

box:

Lemma 5. Assume xt ∈ S. Then there is a hypercube B ⊂ S with an edge length of less than 1
4 ,

such that all cells in the classes (A) and (B) are fully contained in B.

Proof. Let B′ be a hypercube, centered at xt and with edge length 2 1
16 = 1

8 . If a cell ck is in

class (A) or (B) then its center xck must lie in the hypercube B . We now extend the edge

length of this hypercube to fully contain any cell whose center lies in the hypercube. Let B
be a hypercube, centered at xt and with edge length 2 1

16 + rc . It follows immediately that⋃
ck has class (B) or (A) ck ⊆ B. We have chosen rc < 1

8ru
< 1

8 . Therefore it follows that the edge

length of B is 2 1
16 + rc < 1

8 + 1
8 = 1

4 .

We illustrate this observation in Figure 5.8.
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A
B

C

1
4

Figure 5.8: (credits to L. Klein) Layout of the nested grid with three classes of cells. Small
squares (cells) with think edges are part of the tiling of S of size rc . The grey square in middle
is B containing all cells from classes (A) and (B). The big square of size 3

4 is a part of S.
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We now propose the following subroutines NEXTQUERY and DECIDE for Algorithm 6.

NEXTQUERY: given the current region of belief Xs , we ask queries as in Lemma 4 for each cell

in T (S,rc ) and apply the hypothesis tests for a desired error probability δ.

DECIDE: let B be the bounding box containing all cells ck for which (H) “xt is in the region

ck ” was not rejected. If there is a child region of Xs that fully contains B, we proceed to it.

Otherwise we backtrack.

This mechanism is formalized in Algorithm 7.

Algorithm 7 Hypothesis test criterion for NEXTQUERY and DECIDE

Input: Current belief region Xs , region S

1: Set up a discretization T (S,rc )

2: H ←;
3: for ck ∈ T (S,rc ) do

4: Perform the hypothesis test from Lemma 4 for ck

5: if (H) is not rejected then

6: H ← H ∪ ck

7: end if

8: if ∃d(Xs) ∈ D(Xs) : H ⊆ d(Xs) then

9: As = (P), proceed to d(Xs)

10: else

11: As = (B), backtrack to parent u(Xs)

12: end if

13: end for

The following Theorem 5 shows that this algorithm enables us to make decisions that satisfy

assumptions (A1) and (A2) from Theorem 4.

Theorem 5. For any desired δ̂> 0, Algorithm 7 needs only a finite number of queries in order to

make a decision (P) or (B) which is incorrect with probability δ̂. In particular, choosing δ̂ small

enough ensures that the Algorithm 7 is compatible with assumptions (A1)− (A2).

Proof sketch. We analyze the possible constellations, in which classes (A), (B), and (C) can

overlap with the region Xs and its children D(Xs). If there is no error in the hypothesis tests,

the decision of the algorithm is correct, for any possible constellation. The accuracy of the
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hypothesis tests δ can be adjusted to ensure an overall probability of error (i.e. taking an

incorrect decision based on the color of the current region Xs) is δ̂.

Combining Algorithm 6 and Algorithm 7 we conclude the description of a search scheme that

has a provable exponential convergence rate.

5.2.2 Implementation of the Scheme with Backtracking

In practice, it is not efficient to conduct a series of independent hypothesis tests. Instead

we propose a heuristic that relies on numerical integration. In our implementation we use

hyperspheres to represent regions instead of hypercubes. Within each stage s, the algorithm

operates in a region Xs ⊂ Rd with radius rs , collects oracle replies and updates an approxi-

mation of the posterior distribution of the target location, until a decision can be made. We

define two auxiliary regions, Es = {e ∈ Rd | ∃x ∈ Xs : ∥x − e∥ < we rs}, which plays a role of a

region of uncertainty, and Fs = {e ∈Rd | ∃x ∈ Xs : ∥x −e∥ < w f rs} \ (Xs ∪Es), which is used to

make a backtracking decision.

Our decisions to either proceed or to backtrack is based on the posterior distribution in the

region Es ∪Fs given query outcomes. We model this distribution using a grid of randomly

sampled points C = {ci }K
i=1 that discretizes Es ∪Fs and by keeping track of discretization points

individual posterior mass p(ck ) =∑
Q j ,y j

log p(Y = y j |Qi ,ck ) with respect to the queries and

outcomes {Q j , y j } during the stage s. The queries are asked inside the region Xs ∪Es .

The algorithm proceeds if there is child subregion d(X ) ⊂ Xs with p(d(X ),C ) =
∑

ck∈d(X ) p(ck )∑
ck

p(ck ) >
p f for some threshold p f ∈ [0,1], where the set of child subregions is defined as a set of all

possible hyperspheres of a smaller radius rs wd inside Xs . If we observe p(X ,C ) < 1− b f ,

b f ∈ [0,1], the algorithm backtracks to the parent region u(Xs) defined as a hypersphere of a

bigger radius rc wb centered at the center of Xs . If we still discard prior information of visited

regions, history of queries and their outcomes at the beginning of each stage, this algorithm

will exhibit an exponential rate of convergence.

We outline this heuristic implementation in Algorithm 8.
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Algorithm 8 Exponential search: a heuristic

Input: p f , b f , we , w f , wd , wb , K

1: X0 ←Ω

2: for s = 0. . .∞ do

3: Es ← {e | ∃x ∈ Xs : ∥x −e∥ < we rs}

4: Fs ← {e | ∃x ∈ Xs : ∥x −e∥ < w f rs} \ (Xs ∪Es), an envelope around Xs ∪Es

5: Sample i.i.d. points C = c1, ...,cK ∼U (Es ∪Fs)

6: L(ck ) ← 0, k = 1, . . . ,K

7: for j = 0. . .∞ do

8: Sample Q j = {a j ,b j } ∼U (Xs ∪Es)

9: Observe the outcome of y j ∼ p(Y j |Q j = {a j ,b j })

10: p(ck ) ← p(ck ) log p(Y = y j |Q = {ai ,b j },ck ), k = 1, . . . ,K

11: if p(Es ∪Fs \ Xs) > b f then

12: Xs+1 ← u(Xs)

13: break

14: end if

15: if p(Xs) > p f then

16: Xs+1 ← d⋆(Xs), d⋆(Xs) is the child region centered at the mean of p(Xs)

17: break

18: end if

19: end for

20: end for

We have evaluated the performance of Algorithm 8 in a series of synthetic experiments by

varying γ and d . The results are presented in Fig. 5.9. We plot the average distance to the

target as well as the standard deviation as a function of number of queries. We observe the

exponential convergence to the target, as the number of queries grow. Our implementation

provides a variety of tunable hyperparameters. We find that the algorithm performs reliably for

a wide range of parametrizations. Our synthetic search experiments presented are all based on

the same parametrization and show an exponential rate of convergence towards the target. In

particular, we used the following values for the input: p f = 0.85, b f = 0.92, we = 1.25, w f = 1.5,

wd = 0.7, wb = 3.35.
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(a) d = 3, γ= 5 (b) d = 4, γ= 7

(c) d = 5, γ= 9

Figure 5.9: Synthetic experiment, average distance as a function of the number of queries for
different values of d and γ. Y-axis is in natural log scale. The results are averaged over 50 runs.

5.2.3 γ-CKLSEARCH for Moderate n

In the case when there is only a finite number n of points, we can keep the full posterior

distribution P = [p1, p2, . . . , pn] over all n objects and propose a more efficient algorithm that

the ones introduced in the previous subsection for continuous Ω. Since xt is not known

by the system during the search, we take a Bayesian approach to model the probability of

the objects in [n] to be the target, and at each step m of the search maintain a full belief

Pm = [pm
1 , pm

2 , . . . , pm
n ] over all n objects. We start with a uniform prior P0 = [ 1

n , 1
n , . . . , 1

n ].

Choosing the next query to ask the user. Similarly to GAUSSSEARCH, at each step we would

like to ask a query {i , j } that would maximize the expected information gain given the current
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posterior belief Pm at step m of the search:

{i , j } := max
i ̸= j

(
H(Pm)−EY |xi ,x j [H(Pm | Y )]

)
, (5.2)

where Y ∼ p(Y |xi , x j ) is the marginalized belief over the answers to the query {i , j }, i.e.

p(Y = i | xi , x j ) =
n∑

k=1
p(xi , x j ; xk ) pm

k .

Performing an exhaustive search over all O(n2) possible pairs (i , j ) in order to find the optimal

query in terms of (5.2) would be prohibitively slow, so we propose an alternative heuristic that

has good performance in practice.

We first detect the direction along which the variance of the belief is maximized, for that a

sample mean and a covariance matrix (µ̄m ,Σ̄m) are computed from the current belief Pm .

Next we build a proto-query as a pair of two points (z̃1, z̃2) in Rd that lie in the direction of the

maximum variance of Σ̄m on opposite sides of the sample mean µ̄m . In order to have a desired

explore-exploit trade-off of a query, we control the distance from z̃ j to µ̄m by a multiplication

parameter r ∈ R . Finally, we find two distinct objects (i , j ) from [n] which have the closest

representations to (z̃1, z̃2) in a Pm-weighted Euclidean distance, which favors the near and

more probable points. This pair (i , j ) becomes the next query to the oracle.

Posterior UPDATE. After we obtain the response from the user, ȳ ∈ {i , j }, the posterior proba-

bilities are updated using Bayes rule,

pm+1
k = pm

k p(Y = ȳ | xi , x j )/C , k = 1,2, . . . ,n (5.3)

where C =∑n
k=1 pm

k p(Y = ȳ | xi , x j , xk ) is the normalizing costant.

The search finishes when the user indicates one of the query objects as his target, otherwise

both query objects are considered to be non-target and further do not appear in the search.

We keep track of the objects that we have displayed to the user already using the set of seen

objects U . The overall search algorithm is outlined in Algorithm 9.

The complexity of each step of the Algorithm 9 is O(nd +d 2), since computing the sample

covariance is O(nd) and finding the principle eigenvector can be approximated with the power

method in O(d 2). Since in practice the number of features d remains constant, the complexity

is linear in the number of objects n.
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Algorithm 9 γ-CKLSEARCH

1: m ← 0

2: U ←;
3: Initialize the prior P0 with p0

k ← 1
n , ∀k = 1,2, . . . ,n

4: repeat

5: Compute the sample mean µ̄m and the sample covariance Σ̄m from the current belief

Pm

6: Find the largest eigenvalue of Σ̄m and its eigenvector, λmax and vmax respectively

7: z̃1 ← µ̄m + r ·
√
λmaxvmax

8: z̃2 ← µ̄m − r ·
√
λmaxvmax

9: Find two objects i ̸= j , s.t.

i = argmin
i∈[n],i ̸∈U

pm
i ||xi − z̃1||2,

j = argmin
j∈[n], j ̸∈U

pm
j ||x j − z̃2||2

10: U ←U ∪ {i , j }

11: Obtain the response ȳ from the user

12: Update belief Pm+1 ← UPDATE(Pm , ȳ) using (5.3)

13: m ← m +1

14: until t ∈ {i , j }

5.3 Proofs

5.3.1 Theorem 2

Proof of Theorem 2. Without loss of generality, assume that σε = 1. Let y be a binary random

variable such that p(y = 1|w ,b, x) =Φ(x⊤w +b). Then,

argmax
(w ,b)∈H

I [x ; y | (w ,b)]

= argmax
(w ,b)∈H

{
1−Ex̂ [H(y | w ,b, x)]

}
(5.4)

= argmin
(w ,b)∈H

∫
Rd

H
[
Φ(x⊤w +b)

]
N (x ;µ,Σ)d x

= argmin
(w ,b)∈H

∫
R

H [Φ(t )]N (t ;0, w⊤Σw )d t (5.5)

= argmax
(w ,b)∈H

w⊤Σw . (5.6)75
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In (5.4), we use (5.1) and the fact that, as the hyperplane is passing through µ,

H

[∫
Rd

p(y = 1|w ,b, x)N (x ;µ,Σ)d x
]
= H(1/2) = 1.

In (5.5), we use the fact that x⊤w+b ∼N (0, w⊤Σw ), by properties of the Gaussian distribution.

Finally, in (5.6), we start by noting that, for all c1,c2 such that c1/c2 > 1, H [Φ(c1t )] ≤ H [Φ(c2t )]

for all t with equality iff t = 0. Hence, if σ̃2 >σ2, then∫
R

H [Φ(t )]N (t ;0, σ̃2)d t =
∫
R

H [Φ(σ̃t )]N (t ;0,1)d t

<
∫
R

H [Φ(σt )]N (t ;0,1)d t =
∫
R

H [Φ(t )]N (t ;0,σ2)d t .

Therefore, maximizing w⊤Σw minimizes the expected entropy of y .

5.3.2 Theorem 3

Proof of Theorem 3. To prove this theorem, first, let us assume that d = 1 for simplicity. We will

explain how to generalize the result to any d > 1 later. Denote by xt the location of the target

object, and let N (x̂;µm ,σm) be the belief about the target’s location after m observations.

Without loss of generality, let σ2
ε = 1. In this case, the updates have the following form.

σ2
m+1 =σ2

m +βmσ
4
m , (5.7)

µm+1 =µm +αmσ
2
m · zm ,

where zm ∈ {±1} with P (zm = 1) =Φ(xt −µm), whereΦ(x) is the standard normal CDF, and

αm = c/
√
σ2

m +1,

βm =−c2/(σ2
m +1),

c =
p

2/π.

We start with a lemma that essentially states that σ2
m decreases as 1/m.

Lemma 6. For any initial σ2
0 > 0 and for all m ≥ 0, the posterior variance σ2

m can be bounded as

min{0.1,σ2
0}

m +1
≤σ2

m ≤ max{10,σ2
0}

m +1
.
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Proof. From (5.7), we know that

σ2
m+1 =

(
1− c2 σ2

m

σ2
m +1

)
σ2

m

First, we need to show that

f (x) =
(
1− c2 x

x +1

)
x

is increasing on R>0. This is easily verified by checking that

f ′(x) = −(c2 −1)x2 −2(c2 −1)x +1

(x +1)2 ≥ 0,

for all x ∈ R>0 since c2 < 1. Next, we consider the upper bound. Let b = max{10,σ2
0}. We will

show that σ2
m ≤ b/(m+1) by induction. The basis step is immediate: by definition, σ2

0 ≤ b. The

induction step is as follows, for m ≥ 1. Because f (x) is increasing on R>0,

σ2
m =

(
1− c2 σ2

m−1

σ2
m−1 +1

)
σ2

m−1

≤
(
1− c2 b

b +m

)
b

m
≤ b

m +1

⇐⇒ 1− c2 b

b +m
− m

m +1
≤ 0

⇐⇒ b +m − c2(bm +b) ≤ 0

⇐⇒ m(1− c2b)+b(1− c2) ≤ 1−b(2c2 −1︸ ︷︷ ︸
≈0.27

) ≤ 0,

where the first inequality holds because f (x) is increasing. The lower bound can be proved in

a similar way.

For completeness, we restate Theorem 3 for d = 1.

Theorem 3 (Case d = 1). Assuming Probit oracle model (equation 2.11) and updates (5.7), for

any initial µ0 and σ2
0 > 0 and as m →∞,

σ2
m → 0,

µm → xt

almost surely.

Proof. The first part of the theorem (σ2
m → 0) is a trivial consequence of Lemma 6. The
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second part follows from the fact that our update procedure can be cast as the Robbins-Monro

algorithm [41]. In the RM algorithm a function M(µ) is assumed to have a unique root µ⋆.

Then by observing the realizations of a random variable N (µ) that satisfies E[N (µ)] = M(µ),

the iterative updates

µm+1 =µm −am N (µm)

assure convergence of µm+1 to µ⋆, provided that M(µ) is non-decreasing, M ′(µ) > 0, N (µ) is

bounded, and

∞∑
m=1

am =∞,

∞∑
m=1

a2
m <∞.

We apply the RM result to function M(µ) := 2Φ(xt −µ)−1, which has a unique root in µ= xt .

We can see that N (µm) = zm from (5.7) is then a stochastic estimate of M at µm , since E(zm) =
2Φ(µm −xt )−1 = M(µm). The remaining conditions to check are as follows.

• the learning rate am =αmσ
2
m satisfies

∞∑
m=0

am ≥ c ·min{σ2
0,0.1}√

σ2
0 +1

∞∑
m

1

m
=∞,

∞∑
m=0

a2
m ≤ (c ·max{σ2

0,10.0})2
∞∑
m

1

m2 <∞

• |zm | ≤ 1 for all m

Almost sure convergence then follows directly from the results derived in [41] and [6].

Case d > 1. Assume we start withΣ0 =σ2
0I . Consider the first d steps of GAUSSSEARCH and the

corresponding hyperplanes h1,h2, . . . ,hd . Every query Qm at iteration m gives us information

on the position of the target only along the line spanned by the largest eigenvector vm of Σm ,

which is orthogonal to the bisecting optimal hyperplane hm . This can be seen, e.g., from the

update rule of the covariance matrix

Σm+1 =
(
Σ−1

m +τw ⊗w⊤)−1
,

which reveals that the precision matrix (i.e., the inverse of the covariance matrix) is affected

only in the subspace spanned by wim , jm . Since at each iteration m ≤ d , the optimal hyperplane

hm is orthogonal to the first eigenvector of Σm and the variance of the initial Σ0 shrinks

along the dimension defined by vm only, leaving the other dimensions defined by V \ {vm}
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untouched, these eigenvectors define a basis V = {v1, v2, . . . , vd } inRd . Hence, after d iterations,

the updated posterior covariance matrix is again diagonal Σd =σ2
d I . The same holds for the

next d iterations and so on. For illustration, see Fig. 5.10.

(a) Hyperplanes are not aligned with the stan-
dard basis.

(b) Hyperplanes are aligned with the standard
basis.

Figure 5.10: Illustration of the updates for d = 2. Originally, Σ0 = I . After one iteration (top),
µ0 is updated and Σ0 is shrunk only across the dimension spanned by the first eigenvector,
(−1,1)⊤ in (a), (0,1)⊤ in (b), orthogonal to the optimal hyperplane h1. After second iteration
(bottom), µ1 is updated and Σ1 is shrunk only across the second dimension spanned by the
second eigenvector, (−1,−1)⊤ in (a), (1,0)⊤ in (a), and orthogonal to the optimal hyperplane
h2. After d = 2 iterations, in both cases (a) and (b) the final covariance matrices Σ2 are both
scalar and are identical, and the vectors µ2 are equal up to a rotation given by the change of
basis.

Therefore, without loss of generality, we can assume that the search procedure sequentially

iterates over the dimensions in Rd in standard basis. After M iterations, let k be the current
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dimension of update and (ΣM )(k,k) be the k-th diagonal element of the covariance matrix

ΣM at step M . Then (ΣM+1)(k,k) = (ΣM )(k,k) +βM (ΣM )2
(k,k), where βM =−c2/((ΣM )(k,k) +1) as

in (5.7), and the other entries of the matrix remained unchanged. Hence (ΣM )(k,k) → 0 and

Tr(Σm) → 0 as m →∞. Now since the update of µM is also affecting only a single dimension k

of µM , similarly as in the one dimensional case, we have (µM+1)k = (µM )k +αM (ΣM+1)(k,k)zM ,

where αM = c/
√

((ΣM )(k,k) +1) as in (5.7). Now since every d iterations we make an update in

each dimension exactly one time, µm → xt .

For the general choice of the initial Σ0, similar argument applies. We can assume that the

matrix Σ0 is diagonal, otherwise we can just re-parameterize the space Rd by using a rotation

matrix. After that, since at each iteration the updates of Σm and µm modify only a single

dimension (in standard/eigen basis), we can view updating each dimension of (µm ,Σm) as

a single step of a one-dimensional search procedures. The ambiguity in the choice of the

optimal hyperplane is possible only if the entries of Σm are not unique, which is handled in

the case Σ0 =σ2
0I above.

5.3.3 Lemma 2, Lemma 3, and Theorem 4

Proof of Lemma 2. We show an equivalent statement: There exists a coupling X̃s and Z̃s , such

that ∀s ≥ 0 P[z(xt , X̃s) ≤ Z̃s] = 1 and the distributions are identical, FXs = FX̃s
,FZs = FZ̃s

This is

done via induction.

Induction base:

For s = 0 we are looking at a constant, which is the same in both cases: Z0 = z(xt , X0). Immedi-

ately P[z(xt , X0) = Z̃0] = 1

Induction step:

We are given a random variable X̃s which has the same distribution as Xs and we know that

P[z(xt , X̃s) ≤ Z̃s] = 1. We will now construct two random variables X̃s+1 and Z̃s+1 for which it

holds that P[z(xt , X̃s+1) ≤ Z̃s+1] = 1.

Let u ∼ U [0,1] be a sample from the uniform distribution on (0,1). We use this to couple

the two random walks. Depending on u and the current state of the random walk is X̃s , the

following transition is taken:

• X̃s is green. This means z(xt , X̃s) = 0

– if u ≤ pd (X̃s , xt ), then proceed to a green child. This means z(xt , X̃s+1) = 0

– if pd (X̃s , xt ) < u ≤ pd (X̃s , xt )+qu(X̃s , xt ), then backtrack to the parent region. This
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means z(xt , X̃s+1) = 0

– else pd (X̃s , xt ) + qu(X̃s , xt ) < u ≤ 1, stray to a red child region. Now we have

z(xt , X̃s+1) = 1

• X̃s is red. This means z(xt , X̃s) > 0

– if u ≤ pu(X̃s , xt ), then backtrack to the parent region. This means z(xt , X̃s+1)−
z(xt , X̃s) =−1

– if pu(X̃s , xt ) ≤ u < pr X̃s , xt )+ pu(X̃s , xt ),then recover by proceeding to a green

child region. This means that z(xt , X̃s+1) = 0. Recovering is only possible if one

of the child regions contains the target. We know that the parent of a region

is a superset of all the child regions u(X ) ⊃ ⋃
Xc∈D(X ) Xc . Therefore, whenever a

recovery transition is possible, backtracking must likewise lead to a green region.

This shows that recovery is only possible when z(xt , X̃s) = 1. Therefore we have

shown that z(xt , X̃s+1)− z(xt , X̃s) =−1

– else pr X̃s , xt )+pu(X̃s , xt ) ≤ u ≤ 1, then proceed to a red child. This means z(xt , X̃s+1)−
z(xt , X̃s) ∈ {0,1}

We now construct a coupled variable D̃ such that Z̃s+1 = Z̃s + D̃ . Since Z̃ is a random walk on

natural numbers, with a self-loop at 0, we need to distinguish between two scenarios:

• Z̃s > 0

– if u ≤ 1+b
2 , then D̃ =−1

– else, D̃ = 1

• Z̃s = 0

– if u ≤ 1+b
2 , then D̃ = 0

– else, D̃ = 1

We will now show that the construction of D̃ ensures that P[z(xt , X̃s+1) ≤ D̃ + Z̃s] = 1

Case 1, Z̃s = 0:

The induction assumptions imply z(xt , X̃s) = 0, which in turn implies that X̃s is a green region.

In this case we know that D̃ ∈ {0,1} and z(xt , X̃s+1) ∈ {0,1}.

It holds that z(xt , X̃s+1) = 1 iff pd (X̃s , xt )+ qu(X̃s , xt ) = 1− qs(X̃s , xt ) < u. It holds that D̃ = 1

iff 1+b
2 < u. From assumption (A1) we know that for all possible regions X and targets xt ,
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1−qs(X , xt ) > 1+b
2 . Therefore D̃ = 0 =⇒ z(xt , X̃s+1) = 0. Therefore P[z(xt , X̃s+1) ≤ D̃ + Z̃s | Z̃s =

0] = 1

Case 2, Z̃s > 0, z(xt , X̃s) = 0:

Again, X̃s is a green region. So we know that z(xt , X̃s+1) ∈ {0,1}, and z(xt , X̃s+1) = 1 iff pd (X̃s , xt )+
qu(X̃s , xt ) = 1−qs(X̃s , xt ) < u.

Since Z̃s > 0 and z(xt , X̃s) = 0 we know D̃ ≥ 0 =⇒ z(xt , X̃s+1) ≤ Z̃s + D̃. We only need to

analyse the case of D̃ = −1. We know that D̃ = −1 =⇒ u < 1+b
2 . Using assumption (A1),

z(xt , X̃s+1) = 1 =⇒ u > 1−ps(X̃s , xt ) > 1− 1−b
2 = 1+b

2 . This is a contradiction. We now know

that D̃ =−1 =⇒ z(xt , X̃s+1) = 0. Therefore P[z(xt , X̃s+1) ≤ D̃ + Z̃s | Z̃s > 0, z(xt , X̃s) = 0] = 1

Case 3, Z̃s > 0, z(xt , X̃s) > 0:

D̃ = −1 implies u < 1+b
2 . From Assumption (A1) we know that ∀X , xt : 1+b

2 ≤ pu(Xs , xt )+
pr Xs , xt ). Therefore the event D̃ =−1 implies z(xt , X̃s+1)−z(xt , X̃s) =−1. Therefore P[z(xt , X̃s+1) ≤
D̃ + Z̃s | Z̃s > 0, z(xt , X̃s) > 0] = 1

Hence P[z(xt , X̃s+1) ≤ D̃ + Z̃s] = 1.

Proof of Lemma 3. Let τZ=N = inf{s > 0 | Zs , Z0 = N } be the stopping time of Zs reaching 0,

starting from N . We have shown that the random walk Z can be used as a stochastic upper

bound. Therefore we know E[τX ] ≤ E[τZ=1].

We will now calculate the stopping time of Z . Indeed,

E[τZ=1] = 1+b

2
+ 1−b

2
(2E[τZ=1]+1),

because at N = 1 we either decrement with probability 1+b
2 or increment with probability 1−b

2

and then have to wait twice the time of E[τZ=1] in order to return to N = 0, since Zs is a random

walk. Solving this equation we get E[τZ=1] = 1
b , hence E[τX ] ≤ 1

b .

Proof of Theorem 4. Let us first prove the first statement, P(xt ∈ u(Xs ,k)) > 1−δ. We show that

for any k > 0

P[z(xt , Xs) > k] ≤
(

1−b

1+b

)k

Under the assumption (A1) we have shown z(xt , Xs) ⪯st . Zs . The definition of stochastic

ordering P[z(xt , Xs) ≥ k] ≤ P[Zs ≥ k] is equivalent to P[z(xt , Xs) ≤ k] ≥ P[Zs ≤ k].

We will now show the claim of the lemma for Zs , the same statement for z(xt , Xs) follows
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immediately. Our proof is an induction for P[Zs > k] ≤ ( 1−b
1+b )k . The property holds trivially for

s = 0,k ≥ 0 and k = 0, s ≥ 0. Assume that the property holds for a given s and for all k. For any

k ≥ 1, we have

P[Zs+1 > k] = 1+b

2
P[Zs > k +1]+ 1−b

2
P[Zs > k −1]

≤ 1+b

2
(

1−b

1+b
)k+1 + 1−b

2
(

1−b

1+b
)k−1 = (

1−b

1+b
)k

Hence, at any time s, the probability of needing more than k backtracks until we reach a

green region from Xs is less than ( 1−b
1+b )k . We solve δ= ( 1−b

1+b )k for k. Then we know that with

probability of at least 1−δ, the target must be in the k-th ancestor of Xs . This is the region

that we propose as the result of our search process.

We now need to show that the expected depth of this region increases at a constant rate. Since

k is a constant that only depends on the desired rate of error δ and does not change over time,

it suffices to show that the expected depth of Xs increases at a constant rate.

We make use of the Markovian property of Xs . Without loss of generality, we assume that we

are currently at time s = 0. Additionally we assume that the current region X0 is green. When

the execution of the algorithm begins, this is true since xt ∈Ω.

We now define a stopping time s′ = inf{s > 0 | xt ∈ Xs , X0}, as the next time at which our

algorithm visits a green region. We will show that this stopping time is finite and that this

next green node is, in expectation, at a higher depth. The analysis then becomes recursive.

Specifically, we will show:

• There is a constant Cd > 0, such that E[D(Xs′)−D(X0)] >Cd

• There is a constant Cs <∞, such that E[s′] <Cs

Starting from the green region X0, the following transitions are possible:

• With probability pd (X0, xt ), the search proceeds to a green child. In this case we stop

immediately, s′ = 1 and D(X1)−D(X0) = 1.

• With probability qu(X0, xt ), the search backtracks. Since the parent of a green region

must be green as well, we also stop immediately, s′ = 1. Since backtracking looses two

levels of depth, we have D(X1)−D(X0) =−2.

• With probability qs(X0, xt ), the search strays.
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The last case requires further analysis. Following Lemma 3, we know that the expected stopping

time after straying is upper bounded by E[τZ=1] = 1
b . Every backtracking decision must always

undo at least one proceed decision. This means that, in the worst case scenario, exactly

half the steps until s′ are proceed and half are backtrack decisions. A pair of proceed and

backtrack decisions first gains one level of depth and then looses two. Therefore, conditioned

on the assumption that we have left X0 by straying, the expected new depth is bounded by

E[D(Xs′)−D(X0)|we strayed from X0] <−1 1
2 (1+E[τZ=1]) =−1

2 (1+ 1
b ) =−b+1

2b .

In expectation, the number of timesteps that passes between consecutive green regions is

E[s′] ≤ qu+pd +qs(1+E[τZ=1]) = qu+pd +qs
b+1

b . This means at time s we have, in expectation,

visited s
qu+pd+qs

b+1
b

green nodes.

The expected depth of each consecutive green node is pd −2qu −qs
b+1
2b levels higher than its

predecessor. Due to Assumption (A1) we know that this is strictly positive.

In expectation, the last green node that we have visited is at a depth of
s

qu+pd+qs
b+1

b

(
pd −2qu −qs

b+1
2b

)
. We also know an upper bound on the expected number of

steps between green nodes: For any given state Xs of the search algorithm, we know that in

expectation, we have taken at most E[s′] ≤ qu +pd +qs
b+1

b steps since the last green region.

We are interested in a bound of the depth of the current region. In the worst case scenario,

all of these steps were backtracks. This leads to E[D(Xs)] ≥ s
qu+pd+qs

b+1
b

(
pd −2qu −qs

b+1
2b

)
−

2(qu +pd +qs
b+1

b ) (which is a linear function of s).

5.3.4 Lemma 4 and Theorem 5

Proof of Lemma 4. In the query Q we ask the oracle which 0⃗ or xq = (1+d)e is closer to target

xt . We denote the probability of 0⃗ inside of X being chosen by the oracle as P[⃗0 ≻ xq |xt ] =
P[X ≻ F |xt ]

We will now show that there are two probabilities pX > pF > 0 such that:

• xt ∈ X =⇒ P[X ≻ F |xt ] ≥ pX

• xt ∈ F =⇒ P[X ≻ F |xt ] ≤ pF

This immediately allows the use of a binomial test for the hypothesis (H). Repeating the query

Q enough times, we can achieve level of accuracy 1−δ of the test.

The possible target location xc inside X for which P[X ≻ F |xt = xc ] is smallest if
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xc = argminxt∈X P[X ≻ F |xt ] and it lies in a corner of the hypercube. For any parameteri-

zation of γ-CKL we can now explicitly calculate the lower bound: pX = P[X ≻ F |xt = xc ].

We define the following distances:

dc = ||⃗0−xc || =
p

d

dqc = ||xq −xc || =
√

d 2 +d −1

dq = ||⃗0−xq || = d +1

The ratio of distances between xc and the two query points is ||⃗0−xc ||
||xq−xc || =

dc
dqc

. We know that any

point x′ that induces the same outcome probability must have the same ratio of distances:

P[⃗0 ≻ xq |xt = x′] = P[⃗0 ≻ xq |xt = xc ] ⇐⇒ ||⃗0−x′||
||xq−x′|| = dc

dqc
. The points with equal ratio of distances

define the surface of a hypersphere, as previously discussed.

Out of these points, the one with the smallest distance to 0⃗, i.e. to the center of X , lies on the

line segment between 0⃗ and xq . The point with the largest distance to 0⃗ lies on the ray from

xq to 0⃗, at 0⃗−e d+
p

d 3+d 2−d
d−1 . This can be easily verified by solving the condition of equal ratio

for the x coordinate. We know that all points x′ with a ratio that is strictly larger than dc
dqc

must

induce a smaller probability P[⃗0 ≻ xq |xt = x′] < pX . The point farthest away from 0⃗ which still

has this ratio lies at 0⃗−er̂ , with r̂ = d+
p

d 3+d 2−d
d−1 . This allows us to specify an uncertainty region.

Let ru = r̂ +1. The probability pF can now be explicitly computed (for any parametrization of

γ-CKL) as pF = P[⃗0 ≻ xq |xt = 0⃗−e(r̂ +1)] < pX .

Proof of Theorem 5. The tiling T (S,rc ) contains K cells, this is also the number of hypothesis

tests that we conduct. Conditional on xt , the oracle replies are independent, and therefore

the test outcomes are independent. We assume that the probability of error for any one of

the tests is δ. The probability of no error occurring across all tests is therefore (1−δ)K . We

make a decision based on the test results assuming each test outcome is correct. This way, the

error probability of our decision is δ̂= 1− (1−δ)K . Lemma 4 ensures that we can adjust the

hypothesis test for any desired probability of error δ. It is therefore always possible to choose a

number of query observations (depending on the dimensionality and the parameters of the

choice model) that leads to any desired δ̂.

In the following we assume that all hypothesis tests have provided correct information. This

means, that (H) has not been rejected for the cells in class (A) and it has been rejected for the

cells in class (C). We create a bounding box B around all cells for which hypothesis (H) has not

been rejected. From Lemma 5 we know that this bounding box has an edge length of at most
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1
4 . We now look at all possible locations for xt and verify that the decision criterion must lead

to a correct decision.

Case 1, xt ∉ (S ∪X ):

The bounding box can’t overlap with X . Therefore we backtrack. This is the correct decision.

Case 2, xt ∈ X :

There is a cell in class (A), which overlaps with X . For this cell, the hypothesis (H) has not

been rejected. This means that the bounding box must overlap with X . Also, we know that

the bounding box has an edge length of less than 1
4 . This means that it can overlap with at

most 2 of the tiles in T (S,1/4). This means that there is a child region in D(X ) which fully

contains the bounding box. Our decision criterion proceeds to this child. And we know that

the bounding box must contain the target (since we’re assuming that all hypothesis tests have

returned correctly). This ensures that we are proceeding to a green region.

Case 3, xt ∈ S:

The target is not in the current region, i.e. X is a red region. If the bounding box happens to

not overlap with X , we backtrack, which is considered a correct decision. If the bounding box

happens to overlap with X , then we know that there must be a child which fully contains the

bounding box. Our decision criterion proceeds to this child region. We also know that the

bounding box contains the target. So we are proceeding to a green region. This is a recovery

transition, and it is also considered a correct decision.

We have shown that, under the assumption that all hypothesis tests have provided correct

information, the decision criterion leads to a correct transition. Our assumption on the

hypothesis tests holds with probability 1− δ̂.

If some hypothesis tests are erroneous, then we can see inconsistent behaviour. For example,

it is possible that the bounding box is too large, and overlaps with multiple child regions, or

overlaps with both X and Ω \ S. We assume that in this case, we backtrack. This can be the

wrong decision, but it will happen with at most probability δ̂.
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6 Experiments with Human Oracles

In this Chapter, we present the results of the search experiments involving human oracles.

First, we describe the results of applying LEARN2SEARCH in an experiment on searching for

movie actors involving real users. Then, we present the results of comparing the performances

of γ-CKLSEARCH versus GAUSSSEARCH.

For all the experiments in this Chapter we built a website http://who-is-th.at/, with a conve-

nient UI for searching using comparisons, see Fig. 6.1-6.3. In the scope of experiments, Fig. 6.2,

a user is presented with a target actor, which is pre-selected by the system but is kept unknown

to the search engine. A user can also search for any actor he wants using another webpage,

Fig. 6.3.

In this system, a user searches for an actor by comparing faces: at each search iteration, the

user is shown 4 pictures of faces to chose from, and can then click on the face that looks the

most like the target. Once the user makes his choice, 3 unordered triplet comparisons are

recorded in the system logs. This process repeats until the target is among the 4 samples. Once

the user’s target appears on the screen, the user clicks on a button to see details about the

target, which ends the search.

All algorithms presented in this thesis were implemented on the website. Our search algo-

rithms, GAUSSSEARCH and γ-CKLSEARCH are designed to output queries in a form of pairs

of objects and were slightly modified in order to output two pairs of objects: GAUSSSEARCH

considered first two main hyperplanes instead of just one, and, similarly, in γ-CKLSEARCH we

choose two points on the first main axis and two points on the second main axis.
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Figure 6.1: Main website.

Figure 6.2: An example of the UI in the experiments; target actor is randomly sampled and is
the participant has to find him.
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Figure 6.3: An example of the UI for searching for any actor; target actor is only mentally
known by the user. A showcase of our system that can be used in practice.
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6.1 LEARN2SEARCH with Probit Model

Figure 6.4: Empirical search cost, averaged over 5 human subjects, for a database with n = 513
faces of movie actors as a function of the number of triplets T available in the database from
the previous searches. The averages in the top and bottom groups in the number of triplets
per target, m(actor) of targets are shown individually as well: clearly, the denser group (green)
has lower search cost. The blue shaded area shows one std around the average search cost.
Note that the y-axis is the number of queries (each query features four pictures). Each choice
is broken down into 3 pairwise comparison outcomes.

We present the results of an experiment involving human oracles, in order to validate the

practical relevance of Probit and GAUSSSEARCH. We collected n = 513 photographs of the

faces of well-known actors and actresses, and used our web-based search interface, Fig. 6.1,

implementing the LEARN2SEARCH method over this dataset.

We have collected slightly more than 40’000 comparison triplets from users of the site (which

include both project participants as well as outside users, who explored the service out of

curiosity). The system is blind, in that we do not extract any explicit features of the faces

(shape, eye color, etc.)

We try to answer the following two questions: (i) how efficient are searches? and (ii) how

does the search cost depend on the size of the training set? For this, we recruited 5 subjects

on the university campus on a voluntary basis, whose task it was to find the face of an actor,
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which has been sampled uniformly from the n possible targets. For each search, we first

sampled T ∈ {1000,3000,5000,10k,20k,40k} triplets, uniformly from the source 40k+ triplets,

and then generated the embedding as described in Chapter 4. For each value of T , each

subject performed 10 searches using our search system with the objects embedding fixed and

shared across individuals. The results are shown in Fig. 6.4. Observe that for the smallest

T , the average search cost is essentially equal to the random strategy (which has expected

cost 1
2 · n

4 ). As T increases, the embedding becomes more meaningful, and the search cost

drops significantly. In our experiments, the median time-to-answer is around 5 seconds. Thus,

once we have ∼10k triplets, the time until the target is found is ∼2 minutes. We observe

small differences in the time-to-answer as a function of the quality of the embedding: with

random embeddings, users tend to answer slightly faster (probably because the images are

very different to the target).

An additional comment on the variance in search cost is in order. In Chapter 4, we defined

m(i ) to be the number of triplets in T that object i is part of (in any position). In our full

experimental dataset, m(i ) is heavily skewed, see Fig. 4.1 for Movie Actors in Chapter 4, because

1. objects were added to the system gradually over time, and

2. the distribution over targets follows popularity, which is heavily skewed itself.

Concretely, this ranges from m(Halle Berry) = 1567 to m(Kumail Nanjiani) = 16. It is natural

to suspect that a target t with larger m(t) is easier to find, because its embedding is more

precise relative to other objects. Indeed, our results bear this out: in Fig. 6.4, we break out the

search cost for the top and bottom half of targets separately. This suggests that if we could

collect further data, including for the sparse targets (low m(t)), the asymptotic search cost

would be reduced further. In summary, our experiment shows that LEARN2SEARCH is able

to extract an embedding in the latent setting that appears to align with visual features that

human oracles rely on to find a face, and is able to navigate through this embedding to locate

a target efficiently.
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6.2 γ-CKLSEARCH vs GAUSSSEARCH

Figure 6.5: Face search experiment with real users: Comparison of the average number of
queries a user needs to answer until he finds his target using GAUSSSEARCH and γ-CKLSEARCH.

Next we conducted a search experiment with real users in order to compare the actual per-

formance of γ-CKLSEARCH against GAUSSSEARCH in a real world application setting. As

previously, we used our web application in which a user can search for movie actors by com-

paring faces, Fig. 6.1. Our database again consisted of n = 513 face pictures of famous movie

actors. At each step of a search, the user is presented with 4 pictures of faces of yet unseen

actors and is asked to choose among them the one that resembles his target the most. The

search completes once the user finds his target, i.e. when the picture of the target’s face

appears in one of the 4 displayed pictures. An embedding of actors faces has been learned

individually for each algorithm from the triplets collected prior to the experiment.

To ensure fair payment, we have estimated the duration of our study in trial runs. Participants

were paid the equivalent of 20USD per hour. Our study is designed with controlled random-

ization. Each user sees a target at most once. Each target is searched for twice, once with

algorithm γ-CKLSEARCH and once with GAUSSSEARCH. This corresponds to an across subject

design and reduces object-related bias. To reduce user-related bias, we also use a within

subject design, each user performs the same amount of searches with the two algorithms. The

order in which searches are seen is random. Users are not aware of the algorithm they are

testing.

In total, we recruited 24 human participants through ad flyers on university campus. We
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6.2 γ-CKLSEARCH vs GAUSSSEARCH

presented 10 different target actors to each participant and asked to search for them. We

performed an A/B testing by privily using γ-CKLSEARCH in the backend of the search interface

for one half of the searches and GAUSSSEARCH for the other half. The target actors were chosen

uniformly at random from a filtered set of 387 actors that had at least 100 associated triplets

in T . The A/B testing assignments were designed such that almost all of the chosen targets

were paired exactly once with γ-CKLSEARCH and exactly once with GAUSSSEARCH. Overall the

participants did 207 searches with 129 unique targets, 104 searches using GaussSearch and

103 searches using γ-CKLSEARCH. 19 participants completed all 10 searches, 1 participant

completed 7 searches, 1 participant completed 5 searches, 1 participant completed 3 searches,

and 2 participants completed only 1 search. We did not observe any particularly strong

outliers in the number of search rounds in the searches done by participants who did not

finish all 10 searches. Based on the initial trial runs we ended up with the following choice of

hyperparameters: D = 5, γ= 3, and σe = 0.1.

A bar plot on the performance of the search algorithms is presented in Fig. 6.5. Our search

method based on the γ-CKL model outperform GAUSSSEARCH in terms of query complexity:

with γ-CKLSEARCH a user needs on average 18.83 queries to find the target, while with

GAUSSSEARCH he needs on average 22.08 queries. Moreover, γ-CKLSEARCH algorithm tend

to ask queries that are cognitively easier for humans to answer: on average participants were

spending 11.62 seconds to decide on a query during a search with γ-CKLSEARCH versus 13.19

seconds for a query from GAUSSSEARCH.
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7 Conclusion

In this thesis we address a task of searching in a database of objects using comparisons.

It is a powerful way of searching for information when the target object is problematic to

describe explicitly. We are interested in search schemes that interact with the user via asking

comparison queries, and which refine their set of proposed search target candidates at each

round, depending on the user answers.

• The central component of any comparison-based search algorithm is the oracle model.

In Chapter 2 we introduce two new oracle models. The first one, Probit, is based on

the hyperplane between the query points. The second one, γ-CKL, is a generalization

of a well-known comparison model CKL. We show how the parameter γ helps to deal

with the curse of dimensionality without breaking the scale-free property of the original

model.

• An oracle model is useful only when it adequately reflects the reality. In Chapter 4 we

empirically demonstrate that our new models predict human choices very well, they

are either on par or outperform the existing state-of-the-art models across different real

world datasets. The introduction of the γ parameter becomes the key improvement

over original CKL model. The movie actors embeddings learned using these models

give an interesting insight on the potential order of the importance of the face features

people mentally go in, when comparing faces. Finally, we introduce a method to learn

a variational embedding of objects using comparisons that helps to account for the

uneven distribution of the amount of the comparison data among the objects that is

useful for the search algorithm in a setting when objects features are not accessible.

• In Chapter 5, we develop search algorithms for our new oracle models. For the Pro-

bit model, its hyperplane nature gives a rise to a very efficient search scheme with a

Gaussian prior that asks the most informative queries. We showed that the scheme
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Chapter 7. Conclusion

is guaranteed to converge to the target under the Probit noise model. This scheme is

suitable for large databases, because it has logarithmic computational complexity and

is not inferior to the state-of-the-art methods in query complexity. We also explore an

important scenario when the objects features, that are mentally used by the user when

answering system’s queries, are not accessible by the system. In that case we propose a

self-learning framework that combines both search and embedding methods. We em-

pirically show that the system is able to learn objects representations that are as useful

as if the system could have had access to the hidden representations. For the γ-CKL

model, due to its scale-invariance, we study schemes with an exponential convergence

rate to the target. We introduce a search scheme with backtracking, allowing asking

global queries when necessary via backtracking mechanism, that provably converges

to the target at an exponential rate. Then we propose a practical implementation of

this scheme and validate its exponential convergence empirically through a number

of experiments. Finally, we propose a scheme with γ-CKL model that can be used for

moderate number of objects in a database.

• Finally, we show that our models and algorithms fit well in a live application with real

users. First, we demonstrate practical significance of the proposed LEARN2SEARCH

framework, involving methods developed for the probit model, in a scenario where

no objects features are known to the search system: we observe that the search cost

successfully decreases as the number of search episodes. This is achieved by iteratively

refining the low-dimensional representation of the objects. The framework is scalable

in the number of objects n, tolerates noisy answers, and performs well on real-world

experiments of searching for movie actors. Next, for moderate n, our user study shows

that under human oracles, a search based on γ-CKL can outperform GAUSSSEARCH.

This suggests that a scale-free oracle could adequately models human behaviour thus

enabling search algorithms with extremely favourable scaling. Our results show the

potential of the scale-free oracle models, which should lead to future work in this

direction.

Finding the next query to ask to the user during the search is one of the most important parts

of a search algorithm. Exploiting the form of the proposed Probit model, GAUSSSEARCH finds

the optimal query and updates posterior with much lower computational complexity that

the state-of-the-art algorithms. Future work should consider more sophisticated optimality

criterias other than the immediate expected information gain. Particularly, we wonder if

defining the comparison-based search problem as a reinforcement learning problem could

lead to alternative solutions that potentially might improve over the active learning paradigm.

The main challenge would be in the choice of the reward function, which is not immediately

obvious.
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We demonstrated that the scale-free models enable a new class of efficient search schemes.

First, we believe a further improvement over the exponential scheme is possible, particularly

in terms of the query complexity of the algorithm. Second, future work should explore other

variants of scale-free models that would bring us closer to the understanding of how humans

make choices.

Our proposed LEARN2SEARCH framework is the first principle attempt to address the problem

of searching with noisy comparisons when the objects features are unavailable. By learning

its internal objects embedding, we approximate the “mental” objects embedding humans

implicitly use when making comparisons. Future research should focus on combining recent

advances in Computer Vision field, typically involving using black-box methods such as

Convolutional Neural Networks, with the model-based embedding methods proposed in this

work. This could result into higher quality embeddings, which will help to run more effective

searches.

This framework together with the search and embedding methods developed in this thesis

can be already directly used in a real world practical application. We have demonstrated that

by building a web service that helps to find movie actors by comparing pictures of their faces.

Another application could be a search of criminals by comparing faces of people from police

databases that could be used on a national level.

Finally, we believe that the algorithms presented in here will be also particularly suitable for

searching for procedurally generated content. In such a setting, the space of the objects is

continuous, which is perfectly handled by all our search methods. One possible application

could be a creation of a perfect avatar in online games.
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