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Abstract 
Given people's significant time spent indoors, ensuring good indoor air quality (IAQ) is essential because it signifi-
cantly influences occupants' health and productivity. Office buildings consume about 50% of commercial building 
energy and 18% of total building stock, with HVAC systems contributing around 40% of the energy consumption. 
Despite the advent of low-cost smart building sensors, there is a lack of guidelines for optimal IAQ monitoring 
strategies particularly in offices with dynamically changing occupancy. This thesis investigates three research top-
ics: 1) proxy methods for inhalation exposure assessment, 2) optimal air pollution sensor placement which cap-
tures inhalation exposures, and 3) sets of indicators for air inhalation exposure and occupancy detection in office 
environments. 

Chapter 3 proposes proxy methods for detecting personal inhalation exposures to carbon dioxide (CO2) and par-
ticulate matter (PM) in simulated office settings with dynamically changing occupancy. Three proxy sensing tech-
niques were compared with the concurrent breathing zone measurements: stationary IAQ monitoring, wearable 
wristbands for physiological monitoring, and passive infrared (PIR) sensors for human presence detection. Com-
bining three proxy techniques improved the CO2 exposure detection by twofold compared to solely using a sta-
tionary IAQ monitor. Stationary PM monitors near the ventilation exhaust accurately estimated PM exposure, 
while CO2 measurements at the front edge of the desk showed moderate accuracy for CO2 exposure detection. 

Chapter 4 investigates optimal sensor placement for detecting inhalation exposure in static and dynamic simulated 
office environments. It identifies suitable locations for accurate exposure estimation, considering occupancy dy-
namics. The findings show that differentiating between static/dynamic occupancy and sitting/standing activities 
enhanced the accuracy of exposure detection. Variables such as proximity of sensors to occupants and ventilation 
rate/strategy played significant roles in improving personal exposure detection. Desk- and wall-mounted CO2 sen-
sors, along with a ceiling-mounted PM sensor, provided the most accurate exposure detection. 

Chapter 5 explores indicators for exposure and occupancy detection in two real office buildings in the western 
part of Switzerland. The method used a combination of stationary and wearable sensors, along with Decision Tree 
and correlation analyses. Occupancy strongly influenced air pollution gradients in different office spaces, with 
higher PM10 levels during lunch/coffee activities. Desk-mounted CO2 sensors effectively detected CO2, PM2.5, and 
PM10 exposures in open-plan offices. CO2 levels at the sidewall represented prolonged occupancy, while desk-
mounted PM10 sensors captured transient occupancy. A single CO2 sensor proved to be a cost-effective solution 
for both CO2, PM2.5 and PM10 exposure and occupancy detection. Air pollution data demonstrated up to 4× higher 
predictive power in detecting exposures and occupancy compared to indoor climate data.  

The thesis proposes optimizing solutions for exposure and occupancy detection with smart building sensors under 
various office setups and occupancy scenarios. The findings could find application in enhancing IAQ management 
and occupant-centric HVAC control through integrated smart monitoring techniques that can be used in real-life 
occupancy conditions. 

Keywords 

Indoor air quality, Optimal sensor placement, Inhalation exposure detection, Occupancy dynamics, Office environ-
ments 
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Résumé 
Du fait que la population passe une grande partie de leur temps à l'intérieur, il est essentiel de veiller à une bonne 
qualité de l'air intérieur (QAI) car cette dernière influence considérablement la santé et la productivité des occu-
pants. Les immeubles de bureaux consomment environ 50 % de l'énergie des immeubles commerciaux et repré-
sentent 18 % du stock total de bâtiments. Les systèmes de chauffage, de ventilation et de climatisation (HVAC) 
contribuent à environ 40 % de cette consommation énergétique. Malgré l'avènement de capteurs à faible coût 
dans les bâtiments intelligents (Smart buildings), il manque des directives définissant les stratégies de surveillance 
optimale de la QAI, en particulier dans les bureaux où l'occupation varie fortement. Cette thèse explore trois sujets 
principaux de recherche : 1) les méthodes substitutives (proxy) permettant l'évaluation de l'exposition par inhala-
tion, 2) le placement optimal de capteurs de pollution de l'air pour mesurer les expositions par inhalation, et 3) 
l’ensemble des indicateurs permettant la détection de l'exposition par inhalation et de l'occupation dans les envi-
ronnements de bureau. 

Le Chapitre 3 propose des méthodes de substitution pour détecter les expositions personnelles par inhalation au 
dioxyde de carbone (CO2) et aux particules fines (PM) dans des environnements de bureau simulés avec une oc-
cupation en constante évolution. Trois techniques de détection par substitution ont été comparées aux mesures 
simultanées en zone respiratoire. Ces trois techniques sont 1) la surveillance stationnaire de la qualité de l'air 
intérieur, 2) les bracelets portables monitorant des données physiologiques et 3) les capteurs infrarouges passifs 
(PIR) détectant la présence humaine. La combinaison des trois techniques de substitution a permis d'améliorer de 
deux fois l'exposition au CO2 par rapport à l'utilisation exclusive de capteurs stationnaires. Les moniteurs station-
naires de particules fines (PM) à proximité de la bouche de ventilation ont estimé avec précision l'exposition aux 
PM, tandis que les mesures de CO2 à l'avant du bureau ont montré une précision modérée pour la détection de 
l'exposition au CO2. 

Le Chapitre 4 étudie le placement optimal des capteurs afin de détecter l'exposition par inhalation dans des envi-
ronnements de bureau simulés dans des conditions statiques et dynamiques. L’Dans ce chapitre, les emplace-
ments appropriés pour une estimation précise de l'exposition sont identifiés, tout en tenant compte de la dyna-
mique d'occupation. Les résultats démontrent qu’inclure la distinction entre une occupation statique/dynamique 
puis des activités assises/debout permet d’améliorer la précision de l’estimation de l'exposition. Des variables 
telles que la proximité des capteurs par rapport aux occupants ainsi que le débit et la stratégie de ventilation 
jouent un rôle significatif dans l'amélioration de la détection de l'exposition personnelle. Des capteurs de CO2 
déposés sur les bureaux et accrochés aux murs, ainsi qu'un capteur de particules fines suspendu au plafond, ont 
permis une estimation de l'exposition la plus précise. 

Le Chapitre 5 explore les indicateurs permettant la détection de l'exposition et de l'occupation dans deux bâti-
ments de bureau de Suisse Romande. La méthode combine des mesures effectuées par des capteurs stationnaires, 
portables, à une analyse statistique par arbres de décision et de corrélations. L'occupation influence fortement les 
gradients de pollution de l'air dans les différents espaces de bureau, avec des niveaux de PM10 plus élevés pendant 
les activités de déjeuner/café. Les capteurs de CO2 déposés sur les bureaux ont efficacement détecté les exposi-
tions au CO2, aux PM2.5 et PM10 dans les bureaux en espace ouvert. Les niveaux de CO2 au niveau des murs latéraux 
ont bien représenté l’occupation prolongée, tandis que les capteurs de PM10 déposés sur les bureaux ont capté 
l'occupation transitoire. Un seul capteur de CO2 s'est avéré être une solution rentable pour estimer les expositions 
au CO2, aux PM2.5 et aux PM10, ainsi que pour l'occupation. Les données sur la pollution de l'air intérieur ont dé-
montré une puissance prédictive jusqu'à 4 fois plus importante pour l’estimer l’exposition et l'occupation par rap-
port aux données sur l’environnement intérieur. 



Résumé 

ix 

 

Cette thèse propose des solutions d'optimisation pour l’estimation de l'exposition et de l'occupation avec des 
capteurs intelligents dans différentes configurations de bureaux et de scénarios d'occupation. Les résultats pour-
ront être appliqués dans des conditions réelles de manière à améliorer la gestion de la qualité de l'air intérieur 
ainsi que le contrôle du système de chauffage, ventilation et d’air conditionné (HVAC) axé sur les occupants grâce 
à des techniques de surveillance intelligentes intégrées.  

 

Mots-clés 

Qualité de l'air intérieur, Placement optimal de capteurs, Estimation de l'exposition par inhalation, Dynamiques 
d'occupation, Environnements de bureaux    
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 Introduction 

1.1 Background and motivation 

Carbon neutrality is a global trend which is accelerating [1]. Exclusive focus in it may end up compromising IAQ and 

cause elevated inhalation exposures and associated health risks [2]. Assuring ongoing and incoming carbon transfor-

mations applied to the buildings do not adversely impact IAQ and human health is necessary [3]. Office buildings repre-

sent a significant opportunity for improving energy efficiency, as they account for a substantial portion of energy con-

sumption in commercial buildings [4]. Heating, ventilation, and air conditioning (HVAC) systems, in particular, contribute 

to a significant portion of energy usage in office buildings. Nonetheless, it is imperative to recognize that energy effi-

ciency initiatives must not come at the expense of occupants' well-being and productivity.  

The relationship between energy efficiency and indoor environmental quality (IEQ) is interconnected, requiring a holistic 

approach in building initiatives across all types [3,5]. Most of the conventional HVAC control loops typically rely on 

limited sensing of room air temperature (Ta), relative humidity (RH), and, in rare cases, carbon dioxide (CO2) levels [6,7]. 

The traditional system-centric approach does not encompass various conditions that are relevant to occupants’ health 

and well-being, such as human exposure to spatially- and temporally varying air pollutants particularly induced by oc-

cupant activities [8]. 

In environments particularly with imperfect mixing and significant air pollutant concentration gradients, the estimation 

of personal air pollution exposure can lead to considerable underestimation or overestimation [9–11]. This can result in 

inaccurate health risk assessments and highlights the utmost importance of addressing indoor inhalation exposures for 

ensuring optimal health, comfort, and productivity of occupants [12,13]. Therefore, it is essential to consider the degree 

of air mixing indoors as a more generic indicator for accurate air pollution exposure assessment. By doing this, a more 

nuanced understanding of how occupants are exposed to pollutants in real-world scenarios can be achieved. This ap-

proach accounts for the variability in pollutant distribution, considering factors such as the location of emission sources, 

indoor airflows, and occupant activities [14–16]. As a result, it enables a more accurate estimation of personal air pol-

lution exposure, reducing the likelihood of underestimation or overestimation. 

In contrast to conventional HVAC systems commonly found in offices, which inadequately address spatiotemporal air 

pollution, human-centered HVAC systems aim to prioritize occupant health, productivity, comfort, and well-being while 

maintaining energy efficiency [17,18]. The concept of "occupant-centric control" has emerged to describe building con-

trol strategies that actively utilize information about occupancy presence and occupant activities. Studies emphasized 

the significance of collecting occupant-related information, such as occupant numbers and activities, for designing and 

implementing occupant-centric control strategies [18–20]. With the advent of low-cost smart building sensors, real-

time monitoring of indoor air quality (IAQ) and building occupancy has been enabled, providing opportunities to en-

hance energy efficiency while ensuring healthier and more productive indoor environments. However, there are chal-

lenges associated with the cost, accuracy and privacy implications of gathering such data [21,22]. Additionally, the uti-

lization of multiple sensors rather than a single sensor has been favored in optimizing indoor environment control, 

allowing for better characterization of IEQ, occupancy presence, and satisfaction levels. While this approach shows 

promise, multiple questions remain unanswered about optimal sensing strategies for efficient detection of inhalation 

exposures and occupancy under realistic occupancy conditions [22].  
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To achieve an optimal inhalation exposure and occupancy monitoring that contribute to achieving occupant-centric 

building HVAC control, there is a clear need and value for a new paradigm that integrates holistic and intelligent IEQ 

sensing [17]. This paradigm should go beyond energy performance and consider human comfort, exposure to IAQ vari-

ations induced by occupancy and their activities. Hence, the motivation behind this thesis stems from the need to bridge 

these knowledge gaps and develop practical recommendations for achieving optimal inhalation exposure and occu-

pancy monitoring strategies that can accurately characterize personal air pollution exposures under dynamic occupan-

cies in office environments. Specifically, the thesis aims to enhance our understanding of inhalation exposure, occu-

pancy dynamics, IAQ sensor placement, and optimal set of indicators for personal exposure and occupancy detection. 

By integrating advanced monitoring technologies that identify what to measure and how to strategically place sensors 

with a cost-effective yet accurate set of indicators, this thesis can provide a more comprehensive understanding of the 

dynamics of indoor environment and personal air pollution exposure characterizations. The outcomes of this research 

can have significant implications for improving IAQ, occupant health, and the development of effective guidelines for 

IAQ monitoring and HVAC control in office buildings, which can be helpful for building practitioners.  
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1.2 Scope of work 

This thesis aims to propose optimal monitoring strategies for personal air pollution exposures and occupancy dynamics 

in office environments. The scope of the study includes two environmental chamber studies (Chapters 3 and 4) that 

simulated dynamic and static office environments in a controlled climate chamber, and one field study (Chapter 5) that 

is conducted in two office buildings in Swiss-Romandie region. The two chamber studies were conducted during two 

time periods (2020.07.13 – 2020.08.11; and 2021.09.20 – 2021.09.29) and one field study was conducted during the 

spring 2022. The target population in this thesis are the adults aged between 25 and 62 years who are in good health 

and do not have any respiratory issues. The scope of this thesis encompasses three key areas related to investigating 

human air pollution exposure and occupancy monitoring strategies in office environments.  

The first controlled chamber study focuses on developing and evaluating proxy methods for characterizing inhalation 

exposure to CO2, PM2.5, and PM10 in simulated office environments with dynamically changing occupancy. This study 

identifies the best combination of physical parameters (environmental, contextual, and physiological) that represent 

inhalation exposures and propose proxy methods for personal air pollution exposure monitoring.  

The second controlled chamber study focuses on determining the optimal stationary IAQ sensor placements for char-

acterizing inhalation exposures in office environments, considering static and dynamic occupancy profiles. It investigates 

the influence of various categorical variables, such as occupancies, office layouts, ventilation types, and ventilation 

rates, on personal exposure detection. This study encompasses proposing practical recommendations for sensor place-

ment to enhance exposure assessment accuracy and, consequently, improve occupant-centric HVAC control. 

Lastly, the third field study includes various office space types and aims to identify key indicators for detecting personal 

exposures to air pollutants and occupancy dynamics in real buildings. It involves measuring personal-scale IAQ and ac-

tivity data, room-scale IAQ and occupancy data, and building-scale occupancy data. This study involves exploring spatial 

gradients of personal exposures and conducting correlation and Decision Tree (DT) classification and regression analyses 

to identify the most significant sets of indicators for exposure and occupancy detection. The findings contribute to de-

termining the minimum but sufficient indicators influencing personal exposure and occupancy detection, thereby ad-

dressing the cost-effectiveness of occupant-centric IAQ monitoring in real office settings.  

Overall, the scope of this thesis is to bridge the knowledge gaps in monitoring strategies for personal air pollution ex-

posures and occupancy dynamics in office environments. The thesis provides practical recommendations for proxy 

methods, sensor placement, and effective sets of physical indicators that can enhance occupant-centric IAQ monitoring 

approaches and ensure healthy and productive indoor environments for building occupants in office buildings. 
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 Literature review 

2.1 Occupant-centric indoor environment and HVAC controls 

The high energy consumption of HVAC systems in buildings emphasizes the need for effective HVAC management 

algorithms that not only reduce power consumption but also ensure an optimal indoor environment, taking into 

consideration occupants' health and well-being. Spaces with adequate ventilation strategies, including user con-

trol of the environment, have consistently been associated with higher occupant productivity and satisfaction 

indoors [23,24]. However, conventional measurement methods for environmental contexts in buildings have lim-

itations in terms of size, cost, monitoring capabilities, and noise [25,26]. Advances in building automation, intelli-

gent HVAC technologies, and low-cost IoT sensor-based control strategies offer solutions to overcome these limi-

tations, enabling comprehensive and fine-grained IEQ monitoring [27–29]. This subsection aims to organize the 

existing research related to occupant-centric building HVAC, highlighting the need for a new paradigm of intelli-

gent IEQ (including IAQ) sensing and control. 

Figure 2.1 summarizes the state-of-art of occupant-centric building HVAC system, mainly ventilation control, sens-

ing techniques and their implementations. From investigating previous studies [18,19,30–42], three main direc-

tions towards smart building ventilation system were identified: performance monitoring, rule-based control, and 

model predictive control (MPC). Rule-based control, often referred to as occupancy-based HVAC control, has re-

ceived significant attention from previous studies [30–35]. Occupancy-based demand control ventilation (DCV), 

which utilizes various environmental and contextual parameters such as CO2 [33,36], RH [37], Ta (indoor/outdoor) 

[38], total volatile organic compounds (TVOC) [39], and occupancy levels [35,40,41], is an emerging topic in ad-

vanced building HVAC technologies. The integration of occupancy-based control strategies with intelligent sensing 

technologies has paved the way for occupant-centric HVAC systems in buildings [18,19,42]. 

Recent advancements in sensing technologies have played a significant role in actualizing occupant-centric HVAC 

systems. Low-cost sensors and wireless sensing techniques, coupled with IoT sensors, enable real-time monitoring 

of different parameters in buildings on a large scale [43]. These advancements have facilitated the comprehensive 

measurement of diverse IEQ parameters, providing spatially and temporally resolved values. This level of moni-

toring can ultimately protect occupants from high concentrations of indoor air pollutants and transient thermal 

discomfort [27,44]. Despite the benefits of advanced sensing and monitoring strategies, the control loops govern-

ing HVAC system operations remain limited and primarily focused on energy performance in buildings. These con-

trol loops typically rely on limited sensing of room Ta, RH, and, in rare cases, CO2 levels or other indoor air pollu-

tants [45]. The traditional system-centric approach does not encompass certain contexts and conditions that are 

relevant to occupants, such as human exposure to spatial-temporal indoor air pollution variations mainly induced 

by occupant activities. 
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Figure 2.1 Overview of occupant-centric HVAC control system with various sensing techniques and indicators 

 

To address the limitations of the current control loops and achieve occupant-centric HVAC control, there is a clear 

necessity for a new paradigm that integrates holistic and intelligent sensing on both energy-related and occupant 

health-related measures. This paradigm should go beyond energy performance and consider human exposure to 

indoor air pollution variations and contextual conditions. By incorporating advanced sensing technologies and ex-

panding the range of monitored parameters, occupant-centric HVAC control can provide a more comprehensive 

understanding of IAQ and human air pollution exposures, enabling efficient and adaptive control strategies [18].  
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2.1.1 The value of occupant-centric building HVAC control 

The value of occupant-centric building HVAC control lies in its ability to improve occupants' satisfaction, comfort, 

health and well-being while optimizing energy efficiency [46]. Historically, building automation and centralized 

control systems have excluded human-in-the-loop, leading to discomfort and dissatisfaction [17]. By incorporating 

occupant-centric controls, building systems can adapt to individual preferences and activities, providing personal-

ized and responsive indoor environments [47]. One of the key benefits of occupant-centric control is the increased 

level of personal control over the indoor environment. Giving occupants the ability to adjust temperature, lighting, 

and other environmental factors or simply report their preferences about IEQ improves their satisfaction and 

comfort [48,49]. Another advantage is the ability to address irregular and partial occupancy and use this occupant-

related factors in the control stage. Traditional building automation systems often provide the same conditions 

regardless of occupancy, leading to energy waste [50]. Occupant-centric controls can adapt to occupancy patterns, 

adjusting HVAC and lighting systems based on the presence or absence of occupants. Pang et al. [51] examined 

the energy-saving potential of occupant-centric HVAC controls in office buildings. Simulations were conducted 

across different building types, occupancy scenarios, building code versions, and climate zones. The results 

showed that both occupant presence and number counting sensors were effective in reducing energy consump-

tion. Overall, the study shows that implementing occupant-centric HVAC controls can lead to significant energy 

savings in office buildings and contribute to sustainability goals. For instance, Huang et al. [52] employed a Hybrid 

Model Predictive Control (HMPC) scheme in an airport building ventilation, resulting in energy savings of approx-

imately 41% and cost savings of about 13% compared to the baseline traditional control strategy. Similarly, Liu et 

al. [53] achieved monetary savings by implementing a multivariate MPC in a simulated office building, outper-

forming the baseline proportional-integral (PI) controller with 5.22% energy savings and 13.39% less CO2 concen-

tration over the set point. Lu et al. [54] summarized cost savings resulting from the implementation of CO2-based 

DCV in various building types across different studies, revealing significant reductions of up to 80% compared to 

traditional ventilation systems. Furthermore, occupant-centric control allows for individualized control (direct/in-

direct) rather than relying on standardized settings or mean preferences of a large group of occupants [19,55]. By 

considering individual preferences and occupancy dynamics, building systems can provide tailored environmental 

conditions that enhance occupants' comfort and productivity.  

Implementing occupant-centric control requires the integration of occupant knowledge into building automation 

systems [20]. This involves collecting data on the indoor environment, occupant interactions with the building 

(e.g., occupancy, light switches, thermostat usage), and occupant feedback on comfort and preferences [18]. This 

information is used to inform control actions and optimize the operation of HVAC and lighting systems. Despite 

the growing interest in occupant-centric control, there are challenges that need to be addressed, such as stand-

ardizing monitoring on key indicators and evaluation strategies for occupant comfort and energy savings, ensuring 

privacy and data protection, and developing consistent approaches for implementation across different building 

types and regions [18,20]. However, occupant-centric building HVAC control still provides a range of benefits, 

including improved occupant satisfaction, personalized control, energy efficiency, and sustainability. By consider-

ing occupants' preferences and activities, building systems can create comfortable and efficient indoor environ-

ments that enhance occupants' health and well-being. In conclusion, finding the right balance between energy 

efficiency and enhanced IAQ is important in ventilation control, while future IoT-based IAQ platforms should in-

corporate occupant-in-the-loop to create a more occupant-centric approach [56].  
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2.1.2 The impacts of occupant-centric HVAC control on human 

Occupant-centric building HVAC control has a significant impact on human well-being, comfort, health, and 

productivity [17,49]. By prioritizing the needs and preferences of building occupants, HVAC systems can provide a 

more comfortable and conducive indoor environment. General impacts of occupant-centric HVAC control on hu-

mans are listed in the Table 2.1.  

 

Table 2.1 Impacts of occupant-centric HVAC control on various human aspects 

Impacts Description  

Comfort 

Occupant-centric HVAC control aims to provide personalized comfort zones tailored 
to individual preferences. By adjusting temperature, humidity, and airflow to meet 
occupants' comfort requirements, it enhances thermal comfort and overall satisfac-
tion [19,46,57]. 

Health 

Occupant-centric control optimizes the schedule of HVAC system, air filtration and 
ventilation rates, improving indoor air quality and creating a healthy indoor environ-
ment [32,58,59]. Proper ventilation helps remove contaminants, allergens, and pol-
lutants, reducing the risk of human respiratory issues and enhancing overall IAQ. 
Detailed health impacts of typical indoor air pollutants are discussed in the section 
2.2.3 

Productivity 

A comfortable and healthy indoor environment provided by occupant-centric HVAC 
system directly impacts occupant productivity [60]. When individuals are in an envi-
ronment that aligns with their comfort preferences and supports good health, they 
are more likely to concentrate, focus, and perform at their best [42,57]. 

Well-being 

A comfortable and healthy indoor environment supported by occupant-centric 
HVAC system contributes to overall well-being [61]. When individuals feel comforta-
ble and experience good IAQ, it positively impacts their mental and emotional state, 
promoting a sense of well-being and contentment [55]. 

User Control & Flexibil-
ity 

Occupant-centric control gives individuals a sense of control directly or indirectly 
over their environment [62]. It allows occupants to adjust settings within predefined 
limits, providing a sense of empowerment and satisfaction [63].  

Energy Efficiency 

Occupant-centric control strategies, such as occupancy detection and predictive op-
erations, lead to energy savings [50,64,65]. By adjusting HVAC operations and light-
ing based on occupancy patterns and predictive algorithms, unnecessary energy 
consumption is reduced. This, in turn, helps decrease environment carbon footprint 
and mitigates indirect impacts on human health. 

 

Occupant-centric HVAC control can have a positive impact on reducing human air pollution exposures and improv-

ing IAQ, which of this thesis’ key interests. By implementing strategies that prioritize occupant health, well-being 

and IAQ, occupant-centric control measures can help mitigate the negative effects of air pollution. From literature 

review, the features of occupant-centric HVAC control for mitigating indoor air pollution and exposures are listed 

in the Table 2.2. 
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Table 2.2 Features of occupant-centric HVAC control to mitigate indoor air pollution and exposures 

Features Description 

Ventilation Manage-
ment 

Optimizes ventilation rates based on occupancy patterns [66–68] to ensure efficient 
intake of fresh outdoor air and reduce indoor air pollution. It reduces occupants' ex-
posure to harmful substances by diluting and removing indoor air pollutants. 

Air Filtration 

Enhances air filtration systems using advanced technologies based on occupancy 
and pollutant levels [58,69]. It can effectively capture and remove particulate mat-
ter, allergens, and other airborne contaminants, improving IAQ by reducing their 
presence indoors [70,71]. 

Source Control 

Addresses specific occupant-related pollution sources within the indoor environ-
ment through sensors and monitoring systems [27,72]. Detects and mitigates emis-
sions from occupant-provoked sources like volatile organic compounds (VOCs), par-
ticulate matter, minimizing occupant inhalation exposure to pollutants. 

Real-time Monitoring 

Provides real-time monitoring of air quality and occupancy parameters, allowing 
building practitioners to be aware of the current air quality status and mitigate air 
pollution issues [42,73]. Enables necessary actions such as adjusting ventilation set-
tings to mitigate exposures to pollutants and actively enhance indoor air quality. 

Personalized Control 

Allows individuals to personalize their indoor environment based on sensitivities, 
preferences or health conditions [74,75]. Enables adjustments to ventilation to re-
duce exposure to specific pollutants, promoting a healthier indoor environment for 
individuals. 

 

By implementing occupant-centric indoor environment control strategies, the focus is placed on creating a health-

ier and cleaner indoor environment, reducing human exposure to indoor air pollution. This approach can signifi-

cantly contribute to improving occupant health, reducing the risk of respiratory issues and other adverse health 

effects associated with poor IAQ. Overall, occupant-centric building HVAC control has the potential to enhance 

human experiences within buildings by prioritizing comfort, health, productivity, and overall well-being while not 

compromising energy-efficiency. 

 

2.2 Indoor air quality studies in offices 

Office indoor environments play a critical role in employee productivity, as it has been unequivocally demon-

strated that poor indoor air quality can significantly impair work performance [76]. Specifically, better indoor tem-

perature control and increased ventilation rates have been linked to improved productivity and health of employ-

ees [60,77]. Studies focusing on IAQ assessment in office environments have provided valuable insights into the 

relationship between IAQ, occupant health, symptoms, perceptions, and satisfactions. Sick Building Syndrome 

(SBS) has been recognized as a prevalent issue, particularly in offices and schools, since the 1970s [78]. SBS refers 

to a pattern of symptoms that have been seen repeatedly in indoor climate problem buildings defined by World 

Health Organization (WHO) [79,80]. Several studies [81–83] tried to assess IAQ in office buildings in order to iden-

tify potential factors contributing to SBS symptoms and implement appropriate measures to ensure a healthier 

and more productive work environment. A study by Apte [81] examined the relationship between indoor CO2 

levels and SBS symptoms in office buildings. The findings revealed a dose-response relationship, with higher CO2 

concentrations associated with increased prevalence of SBS symptoms, suggesting the importance of improving 

ventilation rates and controlling indoor air pollutants to mitigate these symptoms. A comprehensive study by 
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Burge [82] investigated SBS symptoms among office workers in various buildings and found that occupants in 

naturally or mechanically ventilated buildings without cooling or humidification reported fewer complaints about 

the indoor environment. Similarly, the study of Skov et al. [83] indicated a higher prevalence of SBS symptoms 

among occupants in mechanically ventilated office buildings compared to naturally ventilated ones. Within the 

European Health Optimisation Protocol for Energy-efficient Building (HOPE) research project, Bluyssen et al. [84] 

analyzed data from 5732 respondents in 59 office buildings to better understand the complex relationships be-

tween building, social, and personal factors and perceived comfort. The findings revealed that perceived comfort 

is strongly influenced by multiple personal, social, and building factors, suggesting that it encompasses more than 

just the average of perceived IAQ, noise, lighting, and thermal comfort responses. Under the HOPE project frame-

work, Roulet et al. [85] also reported that there are strong correlations between perceived IAQ, thermal, acoustic, 

and lighting comfort, as well as significant correlations between perceived comfort and building-related symp-

toms, indicating that it is possible to design buildings that are both healthy, comfortable, and energy-efficient. 

Previous studies [86–90] have extensively examined various pollutants and their sources to evaluate IAQ and mit-

igate indoor air pollution in office buildings. These investigations included field studies, controlled experiments 

and computational simulations.  

Field studies are commonly conducted to directly monitor indoor air pollutants, providing real-time data on pol-

lutant levels in order to identify the presence of specific pollutants and evaluate their concentrations. Factors such 

as ventilation rates, air exchange rates, distribution of airflow, and filtrations are also assessed to determine their 

impact on IAQ. For instance, Tham et al. [91] conducted field campaigns in call-center offices and found a 9% of 

improvement in operator performance when the outdoor air supply rate was increased. Another study of Wu et 

al. [92] investigated 37 small and medium commercial buildings and identified a combination of indoor and out-

door sources, along with occupant activities, as potential sources of VOCs, while carpets were identified as a pos-

sible source of bioaerosols. In this study, continuous monitoring of particle concentrations revealed an indoor-

outdoor particulate matter (PM) ratio of less than one for most buildings, indicating the entry of outdoor particles 

due to the use of low-efficiency filters in the observed buildings. Saraga et al. [93] also highlighted the significant 

contribution of ventilation, faulty building envelopes, and windows to indoor PM concentrations. Under the Euro-

pean project OFFICAIR, Mandin et al. [94] investigated IAQ in modern office buildings, encompassing 37 buildings 

during the summer campaign and 35 buildings during the winter campaign. The study analyzed various pollutants, 

including VOCs, aldehydes, ozone (O3), nitrogen dioxide (NO2), and PM2.5, revealing differences in pollutant con-

centrations between seasons and providing a preliminary evaluation of potential irritative and respiratory health 

effects, with some pollutants exceeding WHO air quality guidelines. Within the frame of OFFICAIR project, Szigeti 

et al. [95] highlighted the importance of long-term temporal PM monitoring and reported that monitoring PM2.5 

mass concentration alone might not adequately capture spatial variation in health-relevant PM characteristics like 

particulate oxidative potential (OP) and trace element concentrations within an office building. Challoner and Gill 

[96] examined PM2.5 and NO2 concentrations indoors and outdoors in ten commercial buildings in city center. They 

found that indoor PM2.5 levels closely matched outdoor levels, and indoor NO2 levels were influenced by street-

level concentrations, suggesting the importance of increased air exchange at night time to reduce pollutant con-

centrations. Irga and Torpy [97] assessed various indoor air pollutants and airborne fungi in 11 office buildings in 

Sydney throughout a year, where they found that the ventilation type of the buildings influenced IAQ. 

Controlled experiments while simulating office environments are usually conducted in order to systematically ma-

nipulate and measure various factors such as pollutant sources, ventilation strategies, and occupant activities to 

understand their effects on IAQ parameters and investigate effective strategies for improving IAQ. Melikov and 
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Kaczmarczyk [98] investigated air movement in relation to perceived air quality (PAQ) and SBS symptoms in a 

controlled climate chamber while exposing 124 human participants to various combinations of temperature, hu-

midity, and air pollution levels. The results showed that air movement improved PAQ and freshness but did not 

reduce SBS symptoms caused by polluted air. Zhao et al. [99] conducted controlled experiments with 10 males 

and 10 females to analyze human response to thermal environment and PAQ in an office. The study compared 

individually controlled convective and radiant cooling systems, finding that the personalized ventilation system 

combined with radiant panel provided better thermal sensation and PAQ than the low velocity unit combined with 

radiant panel system. Both systems created micro-environments with slightly lower CO2 concentrations, empha-

sizing the need for personalized control to ensure occupant satisfaction. 

Simulation tools were used in several studies [100–102] to assess IAQ in offices. Martins and da Graça [100] inves-

tigated impact of airborne particle pollution on the potential for natural ventilation (NV) cooling in California office 

buildings while using building energy model “EnergyPlus” [103], where they showed that restricting NV usage to 

moments with outdoor particle levels below 12 μg/m3 reduces the energy-saving potential to 20-60%, whereas 

use of NV resulted in a significant increase in indoor exposure to outdoor-origin PM2.5, ranging from 400% to 500%. 

Rackes et al. [101] used CONTAM [104], a multi-zone airflow and contaminant transport analysis software, to 

evaluate the accuracy and spatial variability of different sensor placements for measuring CO2 and VOCs in office 

environments. Computational fluid dynamic (CFD) simulations were often used to enable a detailed analysis of 

airflow patterns, heat transfer, and pollutant dispersion of indoor. This involves using computer simulations to 

numerically solve the equations governing airflow and pollutant distribution in buildings, providing a practical op-

tion due to limitations in experimental approaches. However, it is important to validate CFD results with carefully 

conducted experiments to ensure accuracy and reliability in predicting IAQ [105]. For instance, Staveckis and Bo-

rodinecs [106] explored using impinging jet ventilation (IJV) for indoor climate control in offices while using CFD 

simulations. They assessed the system's performance under different conditions, showing significant improve-

ments in thermal comfort and IAQ with the circular air opening being more effective for contaminant removal and 

air exchange. The limitations of using simulation tools to assess IAQ in office environments include reliance on 

assumptions and simplifications, uncertainties in input data, and the accuracy of underlying mathematical models 

and algorithms. On the other hand, conducting field studies, including assessments of IAQ, and personal air pollu-

tion exposure, can be very challenging and time-consuming, requiring significant resources and personnel pres-

ence. However, advancements in sensor technologies have facilitated real-time indoor environment monitoring 

and getting occupant feedback, offering advantages for IAQ assessment over the conventional methods [9].  

 

2.2.1 Typical indoor air pollutants 

Office environments can be prone to a range of air pollutants that can affect the overall IAQ and potentially impact 

the health and well-being of the occupants. CO2, PM, formaldehyde, VOCs, and O3 are the most frequently inves-

tigated as common indoor air pollutants in office buildings [107], while specific pollutants can vary depending on 

various factors such as building materials, ventilation systems, and occupant activities. 

CO2 is a common indoor air pollutant in offices and often measured to estimate indoor air pollution because it 

serves as a reliable indicator of IAQ and building ventilation performance [108,109]. The common cause of ele-

vated indoor CO2 in office buildings is inadequate ventilation or poor air circulation, leading to a buildup of CO2 

emitted by occupants and other sources within the building [81]. Factors that can contribute to inadequate venti-

lation include poorly designed ventilation systems, improperly maintained HVAC systems, blocked air vents, or 
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limited outdoor air intake. One of the primary concerns associated with high levels of CO2 in office buildings is its 

impact on occupant comfort and productivity [110]. Increased CO2 levels can lead to symptoms such as drowsi-

ness, fatigue, difficulty concentrating, and reduced cognitive performance [111]. Hence, real-time monitoring of 

CO2 levels is important in order to properly evaluate indoor air pollution and maintain proper ventilation rates for 

a healthy and comfortable working environment [112].  

Particulate matter is a significant indoor air pollutant that can be found in office environments [113]. PM refers to 

tiny particles suspended in the air, and it can include a variety of substances such as dust, allergens, pollen, and 

other contaminants, originating from both outdoor and indoor sources [114]. Outdoor sources of PM in office 

environments may include vehicle emissions, construction activities, and industrial pollutants that infiltrate the 

indoor air. Indoor sources of PM can be occupant activities such as printing, photocopying, and the use of certain 

materials or equipment can release particles into the air. For instance, Horemans and Grieken [115] collected 

indoor and outdoor samples of PM10, PM2.5, and PM1 in ten naturally ventilated office environments, finding higher 

indoor PM1 concentrations during office hours, likely influenced by office printers, and particles with diameters 

between 1 and 2.5 μm and 2.5 and 10 μm were associated with distinct settling/resuspension periods. Inadequate 

air filtration systems or ventilation can also lead to higher levels of PM indoors [116]. Xing et al. [117] reported 

that fine particles with a diameter of less than 2.5 micrometers, known as PM2.5, have the ability to penetrate 

deep into the lungs, causing irritation, corrosion of the alveolar wall, and ultimately leading to impaired lung func-

tion. Once inhaled, they can reach the lungs and potentially cause respiratory problems, trigger allergies, or 

worsen existing respiratory conditions such as asthma or bronchitis. Coarse particles, known as PM10, have a di-

ameter between 2.5 and 10 micrometers, are highly relevant to human activities indoors [118–120] and can still 

have adverse effects such as airway irritation and discomfort [121]. Particularly, occupant-related activities such 

as walking, cleaning, and vacuuming can contribute to the resuspension of particles from surfaces, leading to lo-

calized increases in PM concentration indoors [122]. Lappalainen et al. [123] investigated airborne particle con-

centrations (≥ 0.5 μm and ≥ 5.0 μm) in 122 Finnish office buildings with suspected indoor air problems, revealing 

higher particle counts in offices where occupants reported work-related symptoms compared to those with no 

symptoms. Quang et al. [124] mentioned that proper ventilation and air filtration systems are essential to mitigate 

the presence of PM in office environments. Regular maintenance of these systems, including filter replacement, 

can help remove or reduce the concentration of PM in the indoor air. Additionally, minimizing indoor sources of 

PM, such as controlling dust and using efficient printing and copying equipment, can contribute to better IAQ. 

Hence, real-time monitoring and assessment on PM levels in office is essential in order to maintain a healthy and 

comfortable workspace for employees [125].  

VOCs are among the most prevalent indoor air pollutants in office environments. VOCs are emitted from a variety 

of sources, including building materials, furniture, carpets, adhesives, cleaning products, and office equipment. 

Common VOCs found in offices include formaldehyde, benzene, toluene, xylene, and various other organic com-

pounds. Destaillats et al. [126] reviewed previous studies that report emission rates of VOCs from various office 

equipment such as computers, printers, copier machines, and other electronic devices. They find that the link 

between emissions from office equipment and indoor air concentrations is relatively well established for some 

pollutants, such as organophosphate flame retardants, whereas the source apportionment of indoor VOCs is more 

complex, as they can originate from multiple sources. Zuraimi et al. [127] analyzed VOC sources in five tropical air-

conditioned office buildings in Singapore, attributing the highest contribution of TVOCs to ventilation systems 

(39.0%), followed by occupants and their activities (37.3%), and building materials (23.7%). They found that the 

ducted supply and return ventilation design had the lowest VOC emission rates, and some VOCs demonstrated 

sink effects, resulting in secondary emissions over time. Salonen et al. [128] investigated VOCs, formaldehyde, and 
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ammonia concentrations in 176 Finnish office buildings and suggested guideline values for chemical measure-

ments in offices with suspected indoor air problems. The most common VOCs found included toluene, xylene, 1-

butanol, nonanal, and benzene, with guideline values of 70 μg m−3 for TVOC, 7 μg m−3 for most individual VOCs, 

10 μg m−3 for formaldehyde, and 12 μg m−3 for ammonia, which can indicate the need for additional environmental 

investigations if exceeded, but should not be directly used for evaluating health risks. Kozielska et al. [129] com-

pared VOC levels in offices, flats, and a residential building, finding higher concentrations of certain VOCs, includ-

ing carcinogenic benzene, in the residential building. They reported that indoor sources such as paints, glues and 

varnishes were the main contributors to VOC contaminants, leading to high indoor-to-outdoor ratios. 

Additionally, Spinazze et al. [130] reported that cleaning products, air fresheners, and even personal care products 

used by occupants contribute to the VOC levels in the office. TVOCs are a collective term used to describe the 

concentration of various VOCs in the air [131]. According to Sa et al. [132], researchers often used low-cost TVOC 

sensors to assess IAQ in offices since TVOC measurements provide an overall indication of the presence and level 

of VOCs in office environments, however, they have limitations for identifying specific individual chemicals, which 

can potentially lead to inaccurate representation of the true VOC concentration in the environment. Short-term 

exposure to VOCs can cause symptoms like irritation, headaches, and dizziness, while prolonged exposure can 

lead to chronic respiratory effects [133]. To manage TVOC concentrations in offices, measures like adequate ven-

tilation, maintenance of ventilation systems, use of high-efficiency air filters, choosing low-VOC materials, and 

proper chemical storage can be implemented [130]. For instance, Painter et al. [134] proposed an approach of 

DCV that combines CO2 and VOC monitoring to provide a beneficial ventilation solution for managing both occu-

pant-related and building-related pollutants in office buildings.  

Formaldehyde, a VOC mentioned earlier, deserves specific attention due to its prevalence in office environments. 

Salonen et al. [135] stated that formaldehyde is emitted from composite wood products, furniture, carpets, and 

other building materials, and prolonged exposure to this chemical can result in eye and respiratory irritation, al-

lergic reactions, and potentially carcinogenic effects. Other potential indoor air contaminants in office settings 

were investigated such as O3 generated by office equipment such as photocopiers and printers [136], as well as 

various allergens [137], such as mold spores and pollen, that can enter the indoor space through ventilation sys-

tems or open windows. 

From the literature, it is acknowledged that implementation of effective ventilation systems, regular maintenance 

and cleaning practices, and the use of low-emission building materials and furnishings are important to mitigate 

various indoor air pollutants present in offices. Regular monitoring of IAQ and addressing potential pollutant 

sources can help mitigate the impact of indoor air pollutants on the health, well-being, and productivity of office 

occupants.  
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2.2.2 Typical air pollutant concentrations 

The concentration of indoor air pollutants in office environments can vary depending on various factors such as 

building characteristics, ventilation systems, occupant activities, and external sources. Table 2.3 shows typical 

concentration ranges for common indoor air pollutants found in office buildings and the recommended threshold 

of existing standards and guidelines.  

 

Table 2.3 Typical indoor air pollutant concentrations and recommended thresholds. 

Pollutant 
Typical concentrations  
[references] 

Recommended threshold Standards/Guidelines 

Carbon Dioxide 
(CO2) 

380-500 ppm (Outdoor) [138] 
450-3500 ppm (Indoor) [139–
142] 

< 1,000 ppm ASHRAE 62.1 [143] 

< 800 ppm [during normal 
occupied hours] 

RESET v2 [144], WELL v2 
[145] 

Particulate Matter 
(PM) 

PM2.5: 8.07 μg/m3 [146]c 
< 5 µg/m3 [Annual] 

WHO [147] 
 

< 15 µg/m3 [24-houra] 

PM10: 16.74 μg/m3 [146]c 
< 15 µg/m3 [Annual] 

< 45 µg/m3 [24-houra] 

Total Volatile Or-
ganic Compounds 
(TVOCs) 

< 70 μg/m3 [128] 

< 500 µg/m3 [30-minute 
average] 

LEED v4 [148] 

< 300 µg/m3 [8-hour aver-
age] 

BREEAM [149] 

Formaldehyde < 10 μg/m3 [128] 
< 0.1 mg/m3 (0.08 ppm) 
[30-min average] 

WHO [147] 

Ozone (O3) 9.04 μg/m3 [136]d 
60 µg/m3 [Peak seasonb] 

WHO [147] 
100 µg/m3 [8-houra] 

a 99th percentile (i.e. 3-4 exceedance days per year). 
b Average of daily maximum 8-hour mean O3 concentration in the six consecutive months with the highest six-month running-average 
O3 concentration. 
c Average during only occupancy periods across 33 and 43 office field studies for PM2.5 and PM10, respectively. 
d Calculated mean of reported average values across 13 office field studies.  
 

 

Abdul-Wahab et al. [150] conducted a thorough review of IAQ guidelines and standard values set by international 

agencies, with a specific focus on major indoor air pollutants such as CO2, NO2, formaldehyde, CO, sulfur dioxide 

(SO2), and PM. The study highlighted the significance of considering local regulations, building codes, and industry 

standards to establish precise recommendations for acceptable levels of indoor air pollutants, as these concen-

trations can vary based on specific circumstances. Hence, it is recommended to recognize that this list of pollutants 

and measurements serves as a guide and should be adapted based on specific objectives and research projects. 

Further, the selection of pollutants for measurement should be done with consideration of the specific indoor 

environment and occupancy dynamics [151].  

  



Chapter 2     Literature review 

 

14 

 

2.2.3 CO2, PM2.5 and PM10 as proxy for ventilation performance and human health 

In the context of IAQ studies in office environments, certain air pollutants can serve as proxies or indicators for 

assessing ventilation performance and evaluating their impact on human health. This section focuses on three key 

pollutants: CO2 as a proxy for ventilation performance, and PM2.5 and PM10 as key indicators related to burden of 

human chronic health impacts.  

Elevated levels of CO2 in indoor spaces can indicate inadequate ventilation [109]. While CO2 itself is not a direct 

health threat at typical indoor concentrations, its measurement serves as a valuable indicator of ventilation effec-

tiveness. For instance, Federspiel et al [152] examined the impact of ventilation rates on individual work perfor-

mance in a call center by using CO2 differential (indoor minus outdoor) and found that higher ventilation rates 

were associated with faster completion of talking tasks by office workers. Tsai et al. [153] reported that monitoring 

CO2 as a proxy for ventilation performance can be a cost-effective method to improve IAQ, where they found high 

indoor CO2 levels (>800 ppm) were associated with increased SBS symptoms, particularly eye irritation and upper 

respiratory symptoms, among office workers. These effects include impaired cognitive function, increased preva-

lence of headaches and fatigue, and negative perceptions of air quality, which indirectly impacts human health by 

affecting well-being, and productivity. 

PM2.5 and PM10 are airborne particles suspended in the indoor environment, and their presence can have signifi-

cant health implications. These particles can originate from both outdoor and indoor sources, including combus-

tion processes, dust, pollutants released from building materials, and occupant activities. Monitoring PM2.5 and 

PM10 levels is essential for assessing their impact on human health. Inhalation of PM2.5 and PM10 particles can lead 

to respiratory problems such as asthma exacerbation, bronchitis, and increased susceptibility to respiratory infec-

tions [117]. Moreover, fine particles can enter the bloodstream, contributing to cardiovascular issues like heart 

attacks, strokes, and other cardiovascular diseases [154]. Long-term exposure to elevated levels of PM2.5 and PM10 

has been associated with an increased risk of premature death due to respiratory and cardiovascular causes 

[155,156].  

Assessing the health impacts of these pollutants in office environments is often done using Disability-Adjusted Life 

Years (DALYs), which quantifies the burden of disease by combining morbidity and mortality effects and provides 

a comprehensive measure of the health burden associated with various pollutants [157]. The specific magnitude 

of DALY losses depends on factors such as pollutant concentrations, exposure duration, and individual suscepti-

bility. Morantes et al. [158] quantified and ranked the burden of household air pollution using DALYs. As shown in 

Figure 2.2, the effect factors (EFs) indicates that for every kilogram of examined pollutants inhaled by the exposed 

population, showing burden of chronic health impacts, measured in DALYs. Here, PM2.5 is the standout contami-

nant with the highest EFs, signifying the most significant chronic health impact per unit intake of this pollutant. 

The study considered ten contaminants and estimates population-averaged annual DALY loss per 100,000 persons, 

with PM10 and PM2.5 having the highest median DALY loss estimates, followed by PMcoarse (PM2.5-10), formaldehyde, 

NO2, radon, O3, SO2, acrolein, and mould-related bioaerosols. The estimation of population-averaged annual DALY 

loss due to chronic air contaminant inhalation in dwellings revealed that PM10 and PM2.5 have the highest median 

DALY loss estimates, reaching magnitudes of 10³. It is worth noting that PM10 includes the burden associated with 

the PM2.5 fraction. Logue et al [159] also pointed out PM2.5 as the highest detrimental non-biological air pollutants 

in residential settings, considering their majority of DALY losses on the population as a whole. By considering the 

DALYs lost, it becomes evident that PM2.5 and PM10 are significant contributors to the overall health effects of 

indoor air pollutants. Sun et al [160] analyzed indoor air pollutants in office and school buildings in the Yangtze 

River Delta, China, and ranked the health risks based on DALYs lost. According to DALYs values, the impact of 
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pollutants on health in offices was ranked as PM2.5 > formaldehyde > ammonia > benzene > toluene > xylene, and 

inhalation of PM2.5 resulted in a much higher DALYs lost compared to other pollutants such as formaldehyde, am-

monia, benzene, toluene, and xylene. Over half of the office building samples exceeded current IAQ standards for 

pollutants like PM2.5, formaldehyde, benzene, TVOC, and ammonia, emphasizing their importance in impacting 

human health. Monitoring indoor particles is thus important to properly implement measures to mitigate associ-

ated health risks of occupants. 

 

 

Figure 2.2 Pooled effect factors (EFs) in units of Disability-Adjusted Life Years per kilogram of intake (DALY/kg-intake-1) 
for selected indoor air contaminants, adapted from Morantes et al [158]. The figure presents the estimated EFs for 45 
contaminants, representing the chronic health impacts per kg inhaled by the exposed population in dwellings. EFs were 
calculated using the methodology described in the study, combining toxicological and epidemiological data. The EFs are 
shown as medians with 95% confidence intervals (CI). PM2.5 stands out with the highest EF [1.1 × 102 (95% CI 3.6 × 101–
3.3 × 102)], indicating the highest chronic health impact per unit intake of this pollutant. Other particulate matter such 
as PM10 and PMcoarse (PM2.5-10), and certain chemicals like chromium, NO2, and formaldehyde also have notable EFs, with 
values exceeding 101. The results represent an update to previous works on human toxicological and epidemiological 
effect and damage factors for carcinogenic and non-carcinogenic chemicals. 

 

By monitoring and managing CO2, PM2.5, and PM10 levels, building operators and facility managers can gain insights 

into ventilation performance and the associated health risks of building occupants in office environments. The 

selection of these proxy pollutants is based on the thesis's scope, considering their relevance to health risk and 

ventilation strategies. Firstly, CO2 and PM levels can be easily and accurately measured using low-cost sensors that 

are readily available in the market. These sensors provide real-time and reasonably accurate data, making it con-

venient for building operators and facility managers to assess IAQ regularly compared to other air pollutants. This 

approach also allows for widespread deployment of sensors, covering a larger number of locations within the 
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building. Furthermore, CO2 and PM are commonly regulated pollutants in indoor environments. Various organiza-

tions and standards have set guidelines for acceptable CO2 and PM levels in office buildings, making them relevant 

parameters to monitor for compliance. 

While VOCs, formaldehyde, NO2, SO2, O3 and many other relevant indoor air pollutants are also important indica-

tors of IAQ and occupant health, they often require more sophisticated and expensive monitoring methods to 

accurately assess the absolute concentration, which may not be feasible for large-scale deployment in office build-

ings. Hence, the focus on CO2 and PM of this thesis as proxy pollutants allows for practical and efficient monitoring 

strategies, enabling building operators to make informed decisions to enhance occupant health and well-being. 

 

2.3 Indoor air pollution and occupancy dynamics 

The indoor environment and occupant dynamics have a significant impact on IAQ and personal inhalation expo-

sures [8]. However, it is important to note that this dissertation also considers various other factors that influence 

IAQ, such as space layout, ventilation systems, air change rate, and outdoor and indoor climatic conditions. While 

this section primarily focuses on the impact of human activities on the spatial-temporal variation of indoor air 

pollutants, it should be understood within the context of a comprehensive assessment that encompasses multiple 

aspects of indoor environmental quality.  

 

2.3.1 Spatial-temporal variation of indoor air pollutants 

The spatial-temporal monitoring of indoor air pollution plays an important role in providing essential information 

about emission sources, air pollutant dynamics, ventilation effectiveness, and the resulting personal exposure 

levels [161]. For instance, indoor air pollutants can spatially and temporally vary by factors such as occupancy 

patterns, activity profiles (e.g. body posture, activity type and intensity), and ventilation schedules. During peak 

occupancy hours, when more individuals are present and engaging in activities, pollutant levels can increase. 

Changes in ventilation rates throughout the day, such as reduced ventilation during unoccupied periods or in-

creased ventilation during periods of high occupancy, can also impact pollutant concentrations. Several studies 

[162–166] reported that the spatial-temporal variation of indoor air pollutants, such as CO2, PM and TVOCs can 

be influenced by a combination of factors including human presence, activities, ventilation strategies, and the 

physical characteristics of the indoor environment. Sahu et al. [162] focused on assessing spatial-temporal air 

quality in the library in India, where higher concentrations of PM were found primarily attributed to movement 

activities within the library, specifically during cleaning, lunch hours and entry/exit times. Jung et al. [163] investi-

gated the temporal and spatial variations of indoor air pollutants such as formaldehyde, CO2, bacteria, and fungi 

in tropical and subtropical regions and concluded building condition and human activities were the major factor 

of air quality variations indoors. Another study of Ramos et al. [164] investigated the spatial and temporal varia-

tions of indoor air pollutants in a hospital building, with a specific focus on occupancy-related factors. The study 

found weak correlations between rooms for indoor air temperature, illuminance, and human occupancy/activity, 

whereas the strong temporal patterns and spatial correlations between rooms for RH, humidity ratio, and outdoor 

air fractions were found. Coleman and Meggers [165] demonstrated the effectiveness of in identifying spatial and 

temporal variations using low-cost distributed IAQ sensor networks, where they revealed higher levels of VOCs in 

the occupied spaces of office building. Shen et al. [166] investigated spatial-temporal variations of indoor air pol-

lutants in an urban apartment, where the human metabolism and cooking were identified as the main indoor CO2 
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sources, while the cooking activities specifically accounted for approximately 24% of indoor formaldehyde, 19% 

of indoor methane, and 25% of indoor VOCs.  

The spatial distribution of indoor air pollutants can be influenced by ventilation strategies and airflow patterns 

within a building. Mahyuddin and Awbi [167] conducted a study using a controlled climate chamber to examine 

the distribution of CO2 concentrations under various ventilation methods. They emphasized the significance of 

considering factors like room size, source location, ventilation rate, and the placement of air supply and extract 

devices when determining the optimal positioning of CO2 sensors in a room. The effectiveness of ventilation sys-

tems in diluting and removing pollutants can vary across different areas, leading to spatial gradients. Ren et al. 

[168] analyzed the infection risk and ventilation strategies in offices using simulation model, where different ven-

tilation modes, including mixing ventilation, zone ventilation, stratum ventilation, and displacement ventilation 

were compared to identify the optimal strategy for mitigating indoor airborne pollutants. The results showed that 

stratum ventilation showed excellent performance of air distribution and mitigation of airborne infection disease 

transmission, on the premise of providing sufficient supply air volume.  

 From the literature review, it is acknowledged that capturing the spatial-temporal variation of indoor air pollu-

tants is of utmost importance for assessing inhalation exposures and implementing effective mitigation strategies. 

While various indoor environments have been studied, it is noteworthy that limited attention has been given to 

investigating the spatio-temporal variation of indoor air pollutants in various office settings specifically. Therefore, 

there is a critical need for further research in office environments to understand how occupancy patterns, activity 

profiles, and ventilation strategies impact indoor air pollution dynamics. Long-term real-time monitoring of pollu-

tant levels across different locations within a building can provide valuable insights into the dynamics of indoor air 

pollution, enabling targeted interventions to improve IAQ and enhance the health and well-being of occupants. 

 

2.3.2 Human air pollutant emissions 

Important source of spatio-temporal variations of indoor air pollutants are humans. Human emissions are a sig-

nificant contributor to indoor air pollution in various indoor environments including offices, particularly in terms 

of CO2, PM and VOCs levels. Various human activities and physiological processes generate these pollutants, af-

fecting IAQ and potentially impacting occupant health. 

Indoor CO2 levels are primarily influenced by human respiration [13]. The concentration of CO2 from exhaled 

breath can increase rapidly in enclosed spaces with limited ventilation, such as offices, classrooms, or residential 

areas. Gall et al. [169] conducted real-time monitoring on CO2 exposures of 16 individuals in Singapore, where 

they found that elevated CO2 levels are commonly attributed to human metabolic emissions and recommended 

monitoring them to establish potential correlations with cognitive impacts in humans. Satish et al. [140] examined 

that the effects of increased CO2 levels on decision-making performance in a controlled office-like chamber, where 

there were significant decrements in decision-making performance at higher CO2 concentrations (1,000 ppm and 

2,500 ppm), indicating potential adverse effects.  

Humans and their activities also contribute significantly to the emission of indoor PM. In addition to respiratory 

emissions, humans are continuously emitting particles from their skin and clothing and their activities such as 

walking, sitting on furniture and using certain appliances can result in the generation and resuspension of particles 

from the surface [10,170]. Licina et al. [10] quantified the contribution of human particle emissions to personal 

exposure and the personal cloud effect in a simulated office environment. The study found that walking emitted 
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an average of 20 million particles per hour, while seated occupants with moderate movement emitted an average 

of 8 million particles per hour. Sitting in a low-background climate chamber resulted in a personal PM exposure 

increment of 2-13 μg/m3 due to the heterogeneously distributed PM. They also found that emissions from occu-

pants' skin and clothing were significant sources of aerosol particles indoors, where the average emission rate 

associated with fabric manipulation was approximately 0.8 million particles per minute. These quantitative find-

ings highlight the significant contribution of human activities, such as walking, seated movements, paper handling, 

and fabric manipulation, to PM concentrations in the indoor environment and personal exposure levels. The study 

by Wang et al. [171] focused on human PM emissions and activities in relation to indoor PM2.5 pollution from 

ground fugitive dust. The concentration of human walking-induced indoor PM2.5 resuspension reached a peak at 

approximately 1 minute for different dust loads. The study demonstrated that the resuspension fraction of PM2.5 

was 2.2 × 10−8, and the diffusion rates of human walking-induced indoor PM2.5 resuspension increased with higher 

indoor PM2.5 dust loads. Furthermore, the movement and deposition of PM2.5 were influenced by airflow and 

particle collisions, and increasing the number of people walking indoors led to an increase in indoor PM, empha-

sizing the importance of regular indoor dust cleaning to reduce secondary pollution from indoor activities. Ferro 

et al. [122] investigated personal, indoor, and outdoor PM concentrations using optical particle counters and filter 

samplers during different prescribed human activities in a residential setting. The study found that occupant ac-

tivities involving the disturbance of dust reservoirs on furniture and textiles, such as dry dusting and folding 

clothes, resulted in the highest exposures to PM2.5, PM5, and PM10. The vigor of activity and type of flooring also 

played a role in dust resuspension. As already mentioned, the fine particles have been associated with respiratory 

problems, allergies, and cardiovascular issues. Hence, monitoring and managing the sources of indoor PM, includ-

ing human emissions, are required for reducing exposure and promoting human health and better IAQ. 

In addition to CO2 and PM, humans also emit other compounds and water vapors that can affect IAQ. The study 

by Tang et al. [172] focused on quantifying human VOC emissions in a university classroom by using a mass spec-

trometer. From the VOC concentrations measured during occupied and unoccupied periods, the study found that 

human-related VOC emissions, including those from personal care products and metabolic processes as the dom-

inant source (57%) during occupied periods, followed by ventilation supply air (35%) and indoor non-occupant 

emissions (8%). The total occupant-associated VOC emission factor was determined to be 6.3 mg/h per person. 

Wang et al. [173] focused on measuring human-emitted VOCs in a controlled climate chamber. They investigated 

the emissions from breath, skin, and the whole body of seated human occupants under different conditions. The 

study found that without O3, the total emission rate from the whole body was dominated by exhaled chemicals 

and was 2180 ± 620 μg/h per person. The presence of O3 doubled the emission rate, mainly due to VOCs resulting 

from reactions between skin surface lipids and O3, which increased with RH. Bekö et al. [174] examined the emis-

sions from whole-body, exhaled breath, and dermal bioeffluents of human occupants under various conditions. 

The findings showed that acetone is one of the major VOCs present in the exhaled breath of healthy individuals. 

The emissions of acetone in breath were influenced by factors such as sex and age, although the differences among 

the groups were small. VOCs can have both short-term and long-term health effects, ranging from eye and respir-

atory irritation to potential carcinogenicity.  

While the importance of VOCs was acknowledged through the review of related studies, the limitations in meas-

uring them in real-time with high spatial resolution led to their exclusion as a parameter in the thesis studies.  

Measuring VOCs with high spatial resolution requires specialized and expensive analytical instruments, such as 

mass spectrometers or gas chromatographs. Furthermore, indoor environments are intricate, with various VOC 

sources, making it challenging to accurately distinguish and quantify individual compounds. Although low-cost 

metal oxide (MOx) sensors can offer a cost-effective solution for large-scale deployment in buildings to monitor 
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VOC levels, they have limitations in precisely reporting absolute concentrations. These sensors may not provide 

the level of accuracy required for discerning low-level VOCs in real-time. In conclusion, while VOCs are important 

contributors to indoor air pollution, their inclusion as a parameter in the thesis studies was not feasible due to the 

complexity and expense of high spatial resolution measurements, as well as the limitations of low-cost MOx sen-

sors in reporting absolute concentrations effectively.  

Office workers typically spend prolonged periods each day inside office buildings, often exceeding nine hours dur-

ing their workdays [175]. Thus, managing human emissions and their impact on indoor air pollution requires a 

multifaceted approach, particularly in office settings. Adequate ventilation systems that supply fresh outdoor air 

and remove pollutants are essential for diluting and controlling air contaminants in office spaces. Proper source 

control measures, such as using low-emission personal care products and minimizing activities that generate air 

pollutants, can help reduce indoor air pollution levels. Overall, it is acknowledged that understanding the signifi-

cance of human emissions is helpful for designing effective monitoring strategies to improve IAQ and protect oc-

cupant health in offices. By addressing these emissions and implementing appropriate mitigation measures, it is 

possible to create healthier and more comfortable indoor environments for office workers. 

 

2.3.3 Impact of occupancy profiles on indoor air quality 

In addition to human bodily emissions, occupants perform various activities which can result in elevated exposures 

indoors. In office environments, building occupancy play an important role in shaping air pollutant levels. Thus, 

understanding and characterizing occupancy profile including number and activities of building occupants is es-

sential for accurately assessing and managing indoor air pollution in these settings. Occupant activities in office 

environments can vary widely throughout the day. Some common activities include sitting at desks, having a call, 

walking, having group meetings, using electronic devices, cleaning, operating coffee machines or kettles, eating 

and using different electrical appliances. Biernat et al. [175] assessed physical activity levels among office workers, 

while defining three physical activity categories: high, moderate, and low, based on human metabolic criteria. The 

study revealed that a significant proportion of office workers, including civil and local administration employees, 

and bank officials, fell into the low physical activity category. They also found that the average daily sitting time 

among participants was 9.7±1.7 hours, highlighting the sedentary nature of office work. Similarly, Clemes et al. 

[176] found that full-time office workers spend approximately 65% of their work time sitting. Tabak et al. [177] 

developed a model to predict intermediate activities in office spaces, which are often ignored in building simula-

tions. These activities, such as getting a drink or taking short breaks, interrupt planned activities but contribute to 

the well-being of office employees. The study proposed probabilistic and S-curve prediction methods for capturing 

the occurrence and frequency of these intermediate activities.  

Occupant office activities have the potential to influence IAQ through the generation and dispersion of pollutants 

[114,178,179]. One significant aspect of occupant activities is the resuspension of particles from indoor surfaces. 

Cheng et al. [114] examined indoor PM levels and size distributions in an office building at different times and 

found that indoor PM concentrations were influenced by outdoor air quality, ventilation system operation, and 

indoor human activities. Fine PM was the primary component of indoor PM in the air supply device. On working 

days, the size distributions displayed three modes, with prominent modes at approximately 0.33 μm, 2-4 μm, and 

12-14 μm, indicating the presence of coarse particles related to indoor human activities. On holidays, the size 

distributions showed a stable double-mode pattern, indicating reduced coarse particles due to fewer indoor ac-

tivities and sedimentation. Luoma and Batterman et al. [178] studied the relationship between occupant activities 
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and indoor PM levels in a non-smoking office building. They recorded occupant activities and measured PM con-

centrations using OPCs and gravimetric methods. The study found that occupant activities explained a significant 

portion (24-55%) of particle number variations in the range of 1-25 μm. They developed statistical models to link 

PM concentrations with human activities, estimating that occupant activities contribute up to 10 μg/m3 of PM 

concentrations per person. However, smaller particles showed little correlation with indoor activities, except for 

cigarette smoking, and were more influenced by outdoor levels. Operating coffee machines, kettles, or micro-

waves in cafeterias may contribute to elevated PM, VOCs, and humidity levels in the immediate vicinity. Hussein 

et al. [179] found that brewing coffee had the smallest impact on indoor aerosol concentrations, while using a 

toaster doubled the PM2.5 concentration in dwellings. In this study, indoor cooking and combustion processes also 

increased levels of CO, NO2, and VOCs.  

Furthermore, understanding occupant activities is necessary to optimize energy consumption and ensure user 

comfort in building management system (BMS). Nguyen et al. [180] emphasized the need to examine occupant 

activity profiles in buildings for efficient energy and comfort management while proposing an ontological ap-

proach using low-cost, binary, and wireless sensors to rapidly recognize office activities in multiple-user, multiple-

area settings. Their prototype achieved an average accuracy of over 92% in identifying seven typical office activi-

ties across three monitored areas. Ahmadi-Karvigh et al. [181] developed a framework to detect occupant activi-

ties and potential energy waste in buildings while highlighting the importance of examining occupant activity pro-

files for designing energy-efficient buildings and automation systems. For activity detection, they used a combina-

tion of plug meters to measure the power and energy consumption of appliances, light sensors to capture ambient 

light intensity, and binary motion sensors that were triggered by human motion, where the sensors were con-

trolled through microcontrollers equipped with XBee modules in each prototype. The framework consisted of 

three sub-algorithms for action detection, activity recognition, and waste estimation, where they achieved high 

accuracy in action detection (97.6%) and activity recognition (96.7%). The study identified that an average of 35.5% 

of appliance or lighting system consumption could potentially be saved through optimized energy usage.  

Understanding the type and intensity of different activities within an office setting is important for accurately 

assessing and managing IAQ. Occupant activity profiles can vary based on factors such as office layout, working 

hours, and the nature of the work being performed. For example, in open-plan offices and cafeteria, where indi-

viduals conduct various activities in a relatively bigger space, characterizing indoor air pollution and personal ex-

posures may be difficult compared to individual offices or cubicles. By investigating occupant activity profiles and 

their impact on IAQ, strategies can be developed to mitigate the associated pollution risks in target office space. 

This may include implementing efficient ventilation systems, promoting awareness among occupants regarding 

pollutant-generating activities, and adopting suitable control measures to minimize pollutant emissions. Addition-

ally, the use of real-time monitoring systems can provide valuable insights into the temporal patterns of occupant 

activities and corresponding changes in pollutant levels, enabling proactive measures to improve IAQ.  

 

2.3.4 Personal cloud effect 

Personal cloud effects refer to excess of air pollutant concentration in the breathing zone relative to stationary 

indoor or outdoor concentrations. The personal cloud effect results from localized and intermittent nature of air 

pollutants that occur in human vicinity, resulting in strong spatial-temporal gradients and elevated concentrations 

in the breathing zone [10,12,182]. The personal cloud of air pollution consists of pollutants from both endogenous 

and exogenous sources [13]. Endogenous sources include emissions from human breathing, skin, clothing, and 
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personal care products, while exogenous sources encompass various human activities performed indoors such as 

cooking, cleaning and smoking. Specifically, activities like walking, vacuuming, and sitting on furniture can also 

emit coarse particles that contribute to the personal cloud [10,178,183]. Accounting for personal cloud effects is 

thus necessary for accurately assessing personal exposure levels and for implementing targeted control measures. 

Several studies highlighted the significance of personal exposure assessment while considering personal cloud 

effects and the limitations of relying solely on stationary monitors to capture accurate personal air pollution ex-

posures [10,12,13,122,182,184]. The study of Licina et al. [10] aimed to investigate personal exposures to airborne 

particles in a controlled chamber setting. They monitored particle levels with high temporal and particle-size res-

olution during various occupant activities and sampled directly from the breathing zone to characterize exposures. 

During sitting, the personal PM10 exposure increased by 1.6-13 μg/m3 compared to room-average levels, highlight-

ing the spatial variation of PM concentrations. The personal cloud effect was more noticeable for larger particles, 

indicating the shedding of particles from the skin and clothing. The study emphasized the importance of under-

standing the personal cloud effect for predicting and controlling personal exposures to enhance IAQ models and 

ventilation design. Ferro et al. [122] also reported that personal exposures to PM2.5 and PM5 were significantly 

higher compared to the indoor concentration measured by a stationary monitor, indicating the presence of a per-

sonal cloud effect. Pantelic et al. [12] examined the personal CO2 cloud of 41 individuals during simulated office 

work. They found elevated levels (200-500 ppm) of median CO2 concentration in the inhalation zone compared to 

room background levels in the seated occupants. The magnitude of the personal CO2 cloud varied among subjects 

due to factors like posture and breathing patterns. The study highlights the need for localized measurements to 

understand the impact of the personal CO2 cloud on human inhalation exposures. 

Rodes et al. [184] examined the influence of personal activity sources (clouds) on exposure to indoor contami-

nants. They analyzed data from occupational and residential studies to assess the ratios of measurements be-

tween personal exposure monitors (PEM) and micro-environmental exposure monitors (MEM). They found that 

in occupational settings, the PEM to MEM ratios were typically 3 to 10, while in residential settings, the ratios 

ranged from 1.2 to 3.3. These ratios were shown to be log-normally distributed and primarily dependent on the 

proximity of the emission source to the receptors. In occupational settings, where individuals are often in close 

proximity to strong sources for extended periods, the PEM to MEM ratios can be significantly large. The findings 

showed that assumptions of well-mixed microenvironments may not hold true, emphasizing the need for further 

research and model development to better understand indoor concentration gradients and validate the existing 

exposure estimation models.  

González et al. [185] investigated residential exposure to airborne pollutants in homes of 37 participants during 

the heating season. The findings showed that the personal cloud effect associated with CO2 and particles was 

observed in most participants, indicating individual variations in exposure. They also revealed that sharing a resi-

dence, living with a smoker, and reduced window opening led to elevated air pollution exposures. Bedroom IAQ 

monitoring was found to best characterize exposure to CO2 and particulate matter in the size range of 0.3–10 μm. 

Their findings enhance understanding of gaseous and particle pollutants in residences and could aid in refining 

procedures for residential air quality monitoring and inhalation exposure assessment.  

Yang et al. [13] conducted a field experiment in a naturally ventilated office to assess occupants' exposure to 

common indoor air pollutants and investigate factors contributing to the personal cloud effect. Measurements 

were taken for endotoxin (a component of bacteria), VOCs, CO2, and PM10 at both personal breathing zone sites 

and stationary room sites during a two-week period. The findings showed that the average magnitude of the per-

sonal cloud, irrespective of room concentrations, varied between 0–0.05 EU/m3, 35–192 μg/m3, 32–120 ppm, and 
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4–9 μg/m3 for endotoxin, TVOC, CO2, and PM10, respectively. Each participant had distinct personal air pollution 

clouds, even though they shared the same office space. These findings highlight the significance of personal expo-

sure assessments and the variability of air pollution levels within an office setting, emphasizing the importance of 

considering individual behaviors and activities when evaluating IAQ.  

González and Licina [182] tracked participants during workdays using stationary air pollutant monitors at their 

homes and offices, as well as wearable personal monitors. Real-time measurements on CO2, size-resolved particles 

and integrated samples on VOCs and aldehydes were collected. The study detected personal cloud effects as the 

magnitude of the PM10 cloud ranged from 5 to 37 μg/m3, which was most noticeable in the larger, coarse particle 

size fraction. The study also found personal CO2 clouds in living rooms and private or low-occupancy offices, with 

better prediction using stationary monitors placed in bedrooms. The findings highlighted the importance of con-

sidering personal exposures and the influence of different microenvironments on pollutant concentrations. 

Overall, these studies emphasize the existence and significance of the personal cloud effect, particularly in relation 

to elevated PM and CO2 concentrations around the human body. They underscore the limitations of relying solely 

on stationary monitors for exposure assessment and highlight the need to consider individual activities, postures, 

and micro-environmental factors to accurately evaluate personal exposures and mitigate potential health risks 

associated with indoor air pollution. In conclusion, the indoor environment and occupancy dynamics have a sig-

nificant influence on IAQ and personal exposures to air pollutants. The spatial-temporal variation of indoor air 

pollutants, human emissions, occupant activity profiles, and personal cloud effects all play important roles in in-

fluencing IAQ and air pollution exposures. 

 

2.4 Exposure assessment methods 

Accurate estimation of the human air pollution exposures is required to better interpret health risks associated 

with inhaling air pollution. Several exposure assessment methods have been investigated and developed in the 

literature. This section explores proximity effect to the air pollution source and various techniques used for expo-

sure assessment, including direct and indirect measures, and the utility of low-cost sensing technologies. The aim 

is to provide general understanding of the challenges and advancements in accurately measuring and character-

izing human inhalation exposures to indoor air pollutants. 

 

2.4.1 Proximity to the air pollution source 

The proximity effect refers to the phenomenon where pollutant sources located in close proximity to individuals 

can result in elevated and highly variable personal exposure levels. Several studies have investigated this effect to 

better understand its implications for exposure assessment. McBride et al. [11] conducted series of experiments 

to quantify the proximity effect in a home environment using real-time measurements. They used different tracer 

pollutants, including sulfur hexafluoride (SF6), CO, and particle-bound polycyclic aromatic hydrocarbons (PAHs), 

emitted from point sources. The results showed that when the source was emitting, concentrations of pollutants 

closest to the source were significantly higher and more variable compared to locations farther away. This effect 

was observed even at a distance of 2.0 m from the source under specific settings of air exchange rate and source 

strength. The study also identified transient elevations of concentrations, referred to as "microplumes," particu-

larly near the source. Cheng et al. [186] focused on the proximity effect of indoor air pollution sources and the 
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role of fan power in influencing human exposure. They performed 11 experiments in a residential garage and an 

office, where they varied the operating speeds of household fans in different locations to create varying air mixing 

conditions. They measured PM2.5 levels at multiple points at different distances and angles from an emitting tracer 

particle source near the center of the room. They found that exposures close to these sources are significantly 

higher than those further away. By analyzing the relationship between fan power and the turbulent diffusion co-

efficient, they were able to predict the magnitude of the proximity effect. The study showed that introducing 

household fans can reduce proximity exposures, especially in environments with low natural air exchange rates. 

This information is valuable for assessing and mitigating the impact of air pollution on human health. Acevedo-

Bolton et al. [187] investigated the proximity effect of air pollution exposure in residential homes. By releasing CO 

as a tracer gas from a central point source, they measured CO concentrations at different distances from the 

source under various ventilation conditions. The study found that concentrations in close proximity to the source 

(< 1 meter) exhibited high variability, with significant fluctuations attributed to short-duration peaks called mi-

croplumes. These microplumes contributed to concentrations near the source being 6 to 20 times higher than 

predicted well-mixed levels. These findings emphasize the importance of understanding and managing the prox-

imity effect to mitigate air pollution exposure and promote IAQ. 

Another study by Piedrahita et al. [188] focused on personal exposures to CO resulting from biomass burning for 

home energy use in Northern Ghana. They employed a Bluetooth low-energy beacon system to estimate partici-

pants' distances to their most-used cooking areas during sampling periods. They used proximity data (time-activity 

data) to improve exposure assessment modeling and predict personal exposures based on microenvironment air 

quality measurements. The results showed that incorporating proximity measurements improved the model fits 

and provided a better understanding of exposure and activities within and away from homes. The proximity sens-

ing and exposure monitoring system developed in the study demonstrated its potential to customize exposure 

reduction strategies and assess the relative importance of pollutant sources. The technique showed broad ap-

plicability in various exposure monitoring domains, ranging from global health and development to occupational 

and industrial safety. It enabled the exploration of exposure variability within individuals and the identification of 

activities contributing to higher exposure levels. Hence, large-scale studies collecting such data hold great poten-

tial for evaluating intervention effectiveness and developing activity-focused exposure mitigation strategies. 

Along with proximity effect to the source, the impact of source-receptor relationship [189–191] and room airflow 

interaction [192,193] on personal air pollution exposures can be significant. Complex interactions within indoor 

environments on contaminant dispersion are influenced by variables such as room geometry, the direction of 

principal air flows, and the presence and movements of occupants as indicated by previous studies [194–197]. 

These factors shape how pollutants are emitted, transported, and inhaled by individuals. Additionally, the study 

of Park and Kwan [198] emphasized the importance of considering spatio-temporal variability and individual mo-

bility in exposure assessment. Human movement patterns can dictate the duration and intensity of exposure to 

different pollution sources. Fluid dynamics, in the context of indoor environments, can affect the dispersion and 

concentration of pollutants, impacting the exposure experienced by individuals [74,194]. Hence, investigations on 

source-reception relationship and room airflow interaction are helpful in understanding the mechanisms that de-

termine personal exposure to air pollution. 

Overall, the proximity effect plays a significant role in exposure assessment and understanding personal exposures 

to air pollutants. It highlights the need to consider the spatial relationships between pollutant sources and indi-

viduals when designing monitoring strategies and developing exposure models. Traditional approaches, such as 

placing sensors in specific locations far from the building occupants and use their direct readings to control the 
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ventilation rate, may not effectively capture the variations in exposure due to incomplete air mixing and spatial-

temporal variations of pollutants under dynamic occupancies. Hence, understanding the proximity effect is essen-

tial for developing more accurate exposure monitoring and assessment methods. 

 

2.4.2 Existing methods for exposure assessment 

Current practices for exposure assessment commonly involve the positioning of stationary IAQ monitors based on 

established practices [102,164,165,199–201], and standards [143,144,148,149,202]. While recommendations 

take into account factors such as ergonomics of the thermal environment, they may not accurately reflect the 

actual inhalation exposures of occupants. Furthermore, the focus has been on static occupancy, and only a few 

have delved into detecting exposure variations under dynamically changing occupancies. Commonly chosen loca-

tions for monitoring indoor air pollution include the middle of occupied zones, supply/exhaust ventilation grills, 

walls, and office desks [203,204]. According to previous studies [102], researchers prefer to place CO2 monitors 

within occupied zones, usually at heights ranging from 1.0 to 1.2 m, corresponding to the height of the breathing 

zone (0.9 – 1.8 m) by California Title 24 Standard [202]. However, studies [10,12,13,122,182,184,185] have iden-

tified significant differences in concentrations recorded by stationary monitors compared to those recorded in the 

breathing zone of occupants. Moreover, the optimal sensor placement for specific air quality indicators remains 

unclear under dynamic occupancy conditions. Therefore, achieving optimal air quality monitoring should involve 

selecting the appropriate sensor location for monitoring necessary indicators, balancing cost and detection accu-

racy of sensors [205]. Previous studies have combined other methods, such as mobile wearable IAQ monitors 

[8,169,182,185,206–208] or occupancy detection techniques [209–211], with stationary IAQ monitoring to en-

hance the accuracy of exposure assessment. 

The state-of-art personal air pollution exposure assessment methods can be broadly categorized into two main 

approaches: (1) direct measurement and (2) indirect measurement. These approaches are used to assess exposure 

to various air pollutants, including CO2, PM, and VOCs. Direct personal air pollution assessment methods involve 

directly measuring the concentration of pollutants in the immediate vicinity of an individual. This approach pro-

vides real-time data on personal exposure levels. However, these direct measurement methods may have limita-

tions such as the limited pollutant coverage, and the potential to disrupt normal daily activities due to the equip-

ment's bulkiness, noises due to active sampling,  and intrusiveness [212,213]. Some commonly used direct meas-

urement methods are as follows: 

 

 Personal Monitoring Devices (Wearable IAQ sensors and passive samplers): Personal monitoring devices 

are portable instruments that are worn or carried by individuals to measure pollutant concentrations in 

or nearby their breathing zone. Small and portable air quality sensors can be worn by individuals to mon-

itor pollutant concentrations in real-time. These sensors can capture personal exposure levels by consid-

ering both indoor and outdoor environments. Data from wearable sensors can be combined with other 

parameters such as occupancy and activity information to estimate exposure. They provide continuous 

or time-resolved measurements of pollutants such as CO2 [169,182], PM [182,206–208,214]. For instance, 

Gall et al. [169] conducted a study using portable CO2 monitors to assess personal exposure in indoor 

environments. They found that the mode of bedroom ventilation significantly influenced CO2 levels, with 

bedrooms employing ductless split air-conditioners showing higher median exposure levels (650 ppm) 
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compared to naturally ventilated bedrooms (550 ppm, p < 0.001). McCreddin [206] examined the personal 

exposure to PM10 in office workers in Dublin, Ireland, where real-time measurements of 24-hour personal 

exposure were collected from 59 participants over a 28-month period. The sampling of personal exposure, 

activity, and location was performed using a real-time PM10 sampling device (Met One Aerocet-531 par-

ticle profiler), GPS tracking equipment (Garmin GPSMAP® 60CSx), and a personal activity diary. González 

and Licina [182] also assessed personal air pollution exposure using wearable CO2 and PM monitors. They 

found that participants had detectable levels of PM10 and CO2 clouds in their homes and offices, with 

particles associated with urban mix, traffic, and human activities as major contributors to PM10 exposure. 

Passive samplers are small, lightweight devices that absorb or adsorb pollutants from the surrounding air 

over a specific period. Particularly, this methods were commonly used for estimating personal VOC expo-

sures [185,215]. They are typically clipped onto clothing or placed in close proximity to the individual. 

After the sampling period, the samplers are analyzed in a laboratory to determine the pollutant concen-

trations. For instance, González et al. [185] investigated residential air pollutant exposure while using 

passive samplers to collect integrated measures of 36 VOCs and semi-volatile organic compounds (SVOCs) 

while having concurrent continuous stationary measurement. The findings showed that 13 out of the 36 

detected VOCs and SVOCs had significantly higher concentrations in personal samples compared to sta-

tionary samples, highlighting the importance of considering personal exposure in residential air quality 

monitoring. O’Connell et al. [215] used silicone wristbands as personal passive samplers to measure bio-

available exposure to a diverse range of VOCs. In this study, the personal samplers effectively sequestered 

49 compounds, including PAHs and other industrial compounds, demonstrating temporal and spatial sen-

sitivity in occupational settings.  

 Thermal Breathing Manikins: Several studies [216–219] used a thermal breathing manikin to simulate 

the thermal characteristics of a human body and human respiration, and to assess the inhalation exposure 

to pollutants in a controlled environment. By simulating human breathing patterns, thermal breathing 

manikins enable the direct measurement of pollutant concentrations in the breathing zone. This provides 

valuable information about the inhalation exposure of individuals in different environments or scenarios. 

Brohus and Nielsen [216] examined personal air pollution exposure in displacement ventilated rooms us-

ing thermal breathing manikins, where they proposed a personal exposure model considers gradients and 

the human thermal boundary layer, introducing new quantities to describe the person-ventilation inter-

action. Melikov and Kaczmarczyk [217] highlighted the sensitivity of a breathing thermal manikin in accu-

rately measuring air characteristics inhaled by occupants, including temperature, humidity, and pollution 

concentration. They reported the simulation of breathing, especially exhalation, is important for studying 

the transport of exhaled air between occupants. The study provided recommendations for optimal simu-

lation of human breathing with a thermal manikin, and standardizing the nose and mouth geometry for 

result comparisons. While using the thermal breathing manikin may have practical implications for as-

sessing personal air pollution exposures and the spread of infectious agents in indoor environments, they 

may not fully capture the complexity of human respiration, human movement and individual variability 

in breathing rates or patterns [218,219]. 

 

Indirect personal air pollution assessment methods estimate personal exposures based on measurements taken 

in the ambient environment or other proxy measurements. These methods rely on simulation or proxy indicators 

from stationary IAQ measurement to infer personal exposure levels. Further, the methods provide a more holistic 
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view of personal exposures by considering factors beyond immediate pollutant concentrations. They are often 

used when direct measurement methods are impractical, costly, or logistically challenging. However, these meth-

ods rely on assumptions and models, which can introduce uncertainties in exposure estimates. Some common 

indirect measurement methods are as follows:  

 

 Exposure Models by Simulations: The utilization of human exposure simulators focused on air pollution 

is often used in epidemiological studies [220,221]. For instance, Chang et al. [220] developed a modeling 

framework using a spatial hierarchical model and a human exposure simulator to estimate the acute ef-

fects of personal exposure to air pollution. Applying the approach to PM2.5 and daily mortality in New York 

City, a 2.32% increase in mortality per 10 μg/m3 increase in personal PM2.5 exposure from outdoor sources 

was observed, with higher risks during summer months. Berrocal et al. [221] utilized a stochastic simulator 

to estimate personal exposure to PM and its impact on birthweight, where the hierarchical model consid-

ers individual-level exposure, risk factors, and spatial effects. They analyzed data from 14 counties in 

North Carolina and found no significant effect of PM2.5 on birthweight, but their modeling framework 

offers a template for studying personal exposure and long-term health outcomes. 

 Exposure Models by Proxy Indicators: Personal exposure models integrate information on pollutant 

sources, indoor and outdoor concentrations measured by stationary air quality monitors, occupancy and 

individual time-activity patterns. Several studies [182,191,222,223] conducted stationary IAQ measure-

ment while combining this data with occupancy and activity information and pollutant decay models to 

estimate personal exposures indoors. Licina et al. [191] investigated the impact of indoor emission loca-

tions on inhalation intake fraction (iF) of airborne particles using three stationary PM monitors. They 

found that near-occupant releases resulted in significantly higher iF compared to other indoor locations, 

highlighting the importance of emissions-receptor proximity and the influence of the thermal plume. Gon-

zález and Licina [182] assessed indoor air pollution exposure using stationary IAQ monitors while consid-

ering the time-activity information of the occupants, where they found that the stationary CO2 and PM 

monitors placed in bedrooms were more accurate predictors of personal exposure to CO2 and PM10. Xiang 

et al. [224] examined a hybrid sensor network architecture based on the combination of stationary and 

mobile IAQ sensors, where the hybrid sensor network showed a 40.4% reduction in error compared to 

traditional stationary sensor network, leading to a 35.8% improvement in personal exposure measure-

ment accuracy. Ashmore and Dimitroulopoulou [222] reviewed the use of personal exposure modeling to 

assess individual exposures to air pollutants, where they reported that probabilistic models are developed 

to capture the variation in individual activity patterns and air pollution concentrations in different micro-

environments, allowing the identification of factors associated with high exposure levels in children. Klin-

malee et al. [223] used personal exposure modeling based on indoor pollutant concentrations and time-

activity data of occupants in a university campus and a shopping center, where they revealed high expo-

sure to PM2.5 (max 70 µg/m3), particularly for people working in the shopping center during weekend. 

 

Previous studies often use a combination of direct and indirect measurement methods to obtain a comprehensive 

understanding of personal air pollution exposure. From the literature review, this thesis acknowledged the im-

portance of choosing exposure assessment method depending on various factors, including the specific pollutant 

of interest, research objectives, available resources, and the study population. Further, it is important to explore 
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personal exposures in realistic office scenarios, with diverse stationary sensor placements and occupancy profiles, 

which extends beyond studies conducted under steady-state conditions with limited sensor placements. 

 

2.4.3 Utility of low-cost sensing for exposure assessment 

Low-cost sensing has gained significant attention in the field of air pollution exposure assessment due to its po-

tential to provide widespread and affordable monitoring capabilities. It involves the use of inexpensive sensors 

that are capable of measuring various air pollutants, allowing for more localized and fine-scale monitoring com-

pared to traditional monitoring methods. Low-cost air quality sensors typically utilize compact and portable de-

signs, making them suitable for real-time monitoring of indoor air pollution in various settings. Several studies 

explored the effectiveness of low-cost air quality monitors for assessing IAQ and exposure. Morawska et al. [22] 

reported that low-cost IAQ sensing technologies have the potential to revolutionize air pollution monitoring alt-

hough there are still uncertainties regarding their performance and recommended usage. The study also high-

lighted further advancements of low-cost sensing are required for source apportionment and wide-scale monitor-

ing of personal exposures.  

These sensors are capable of measuring indoor climate (Ta, RH) and a range of air pollutants such as CO2, PM, 

TVOCs, CO, NO2, and O3. Some sensors are designed for specific pollutants, while others offer multi-pollutant 

detection capabilities. For instance, Piedrahita et al. [225] developed and validated low-cost air quality monitors 

called M-Pods, that includes MOx sensors for measuring CO, O3, NO2, and TVOCs, along with non-dispersive infra-

red sensors for measuring CO2. Zhuang et al. [226] introduced AirSense, a portable and cost-effective device that 

monitors Ta, RH, PM2.5 levels, geographical information using GPS sensor, and user activity using an accelerometer 

sensor, where they verified the capability of AirSense in effectively monitoring ambient air quality in daily life and 

potential applications of the context-sensing platform. Moreno-Rangel et al. [227] evaluated the precision, accu-

racy, and usability of a low-cost IAQ monitor ('Foobot') that measures Ta, RH, TVOCs, CO2 equivalents, and PM2.5 

in residential environments. The findings demonstrated that Foobot provided reliable data for Ta, RH, TVOCs, and 

PM2.5, but caution was advised when interpreting the CO2 equivalent measurements. The study concluded that 

low-cost monitors like Foobot are suitable for identifying high pollutant exposures, providing data at a high gran-

ularity level, and have potential for both user and scientific applications. Demanega et al. [228] evaluated eight 

low-cost environmental monitors and eight single-parameter sensors for IAQ monitoring. The results showed that 

most of the tested units could be used for measurement-based IAQ and comfort management. The Awair 2nd 

edition (retail price: $199, USA) performed the best in accurately measuring multiple environmental parameters 

among the low-cost units. While there were disparities in quantitative accuracy for certain pollutants, most of the 

tested low-cost devices demonstrated potential for detecting pollution events and were strongly correlated with 

reference data, making them suitable for IAQ management. 

There are several advantages of using low-cost sensing in exposure assessment. Firstly, low-cost sensors are sig-

nificantly cheaper compared to traditional monitoring equipment, enabling the deployment of sensor networks 

over larger spatial scales and increasing the density of monitoring stations. This affordability makes it feasible to 

conduct exposure assessments in areas that lack extensive monitoring infrastructure. For instance, Gaskins and 

Hart [229] discussed the opportunities of using low-cost air pollution monitors (‘AirBeam2©’) in two reproductive 

epidemiology studies. The advantages of the personal monitor include its low cost, ability to collect multiple size 

fractions of PM data, portability, GPS tracking, and real-time exposure information for participants, which high-
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lights the potential of novel methods for short-term air pollution exposure assessment in reproductive epidemi-

ology studies. Secondly, the low-cost and portable nature of these sensors allow for their deployment in dense 

networks, enabling more localized monitoring of air pollution. This high spatial resolution helps capture spatial 

variability and identify pollution hotspots within a given area, providing a more detailed understanding of expo-

sure patterns. Shen et al. [230] used low-cost sensors to monitor spatial-temporal variation of indoor PM2.5, where 

they found that indoor PM mainly originated from outdoor infiltration and cooking emissions, with variations in 

different rooms depending on their distance from the sources. Thirdly, low-cost sensors often provide real-time 

or near real-time data, allowing for immediate feedback on air pollution levels. This real-time information can be 

valuable for personal exposure monitoring, enabling individuals or BMS to make informed decisions to reduce 

their exposure and minimize health risks. Palmisani et al. [231] conducted extensive monitoring of TVOCs, PM2.5, 

and CO2 in oncology units using low-cost sensors, where they demonstrates the potential of low-cost sensors for 

real-time monitoring and detection of pollution events, providing valuable information for personal exposure 

monitoring to minimize health risks in oncology units.  

However, there are still some challenges and concerns of utilizing low-cost sensing in exposure assessments raised 

by previous studies [21,229,232]. For instance, low-cost sensors may have lower accuracy and precision compared 

to reference-grade instruments. Calibration and validation of these sensors are essential to ensure the reliability 

and accuracy of the collected data. Proper calibration techniques and periodic maintenance are needed to main-

taining sensor performance. Jiang et al. [232] evaluated the performance of a low-cost OPC (‘PMS 7003’) for PM 

measurements where they found significant deviations of low-cost sensors compared to reference high-accuracy 

sensor and concluded careful calibration of the low-cost sensors before deployment. Further, low-cost sensors 

may have limitations in terms of battery life, sensitivity, selectivity, and response time. Gaskins and Hart [229] 

discussed the disadvantages of low-cost air pollution monitors, AirBeam2©, including limited battery life, incom-

patibility with iOS-based smartphones, and frequent connection issues. Additionally, environmental factors such 

as Ta, RH, and cross-sensitivity to other pollutants can impact sensor performance. Castell et al. [21] examined the 

performance of commercial low-cost sensors (‘AQMesh v3.5’) in measuring gaseous pollutants (NO, NO2, O3, CO) 

and PM (PM2.5 and PM10). The findings showed that the sensors performed well in the laboratory, showing high 

correlations between sensors, whereas their performance was significantly lower in real-world conditions. These 

limitations need to be considered when interpreting the data and estimating exposure levels accurately. Hence, 

ensuring the quality of data from low-cost sensors is important, especially when using the data for exposure as-

sessments. Validation techniques, such as collocation studies with reference instruments, cross calibration, data 

quality checks, and statistical analyses, can help assess and improve the reliability of the collected data. Addition-

ally, proper data management, quality control, and advanced data analysis techniques, such as data fusion, spatial 

interpolation, and machine learning algorithms, are required to extract meaningful exposure information from the 

collected sensor data [233,234]. Low-cost sensing has the potential to revolutionize exposure assessment by 

providing more localized, real-time, and cost-effective monitoring solutions. While there are challenges associated 

with accuracy, calibration, and data quality, ongoing advancements in sensor technology and data analysis tech-

niques are continually improving the reliability and usability of low-cost sensing for exposure assessment. 

To conclude, by considering the proximity effect, exploring current practices for exposure assessment, and har-

nessing the potential of low-cost sensing technologies, it is possible to improve the accuracy and reliability of 

human exposure estimation to indoor air pollutants for ultimately enhancing IAQ and promoting occupant health 

and well-being in buildings.  
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2.5 Occupancy assessment methods 

Understanding and assessing occupancy is important for analyzing indoor environments, especially in buildings 

with varying occupancy conditions such as office buildings. Having information about the number of occupants 

and their activities at the room or building level is essential for managing IAQ, energy efficiency, and occupant 

comfort. This section of the thesis examines current practices in occupancy assessment and explore two specific 

methods: stationary occupancy sensors and wearable occupancy sensors. 

 

2.5.1 Current practices for occupancy assessment 

Current practices for occupancy assessment in buildings rely on various methods and sensors. Rueda et al. [235] 

categorized and analyzed techniques for estimating building occupancy information, considering factors such as 

performance, occupancy resolution, sensor types, building types, and energy-saving potential. Occupancy resolu-

tion in this study captured detailed information about individuals' presence, identification, and activity, enabling 

improved resource management, energy efficiency, and occupant comfort, where they mentioned that accurate 

assessment of this data empowers building managers to optimize space utilization and create tailored environ-

ments for occupants' needs. Occupancy data in buildings could be collected through variety of methods, including 

visual observation by staff (i.e. manual surveys) [236], occupancy sensors (i.e. PIR sensors) [237], cameras [238], 

and indoor air pollution [210,239,240]. The latter one was studied in the context of CO2 [210,240], PM [239], and 

VOCs [241]. Specifically, Pantazaras et al. [240] examined the use of CO2 sensors for occupancy estimation, where 

the findings showed that CO2 levels and occupancy can be accurately estimated with minimal impact from sensor 

placement, offering a decision tool for balancing air quality and energy consumption in a university lecture theatre. 

Cali et al. [210] developed and validated an algorithm for detecting the presence of occupants indoors using CO2 

concentration as a proxy. The algorithm was tested in both residential and office buildings, achieving a correct 

detection of general occupancy up to 96% of the time and accurately identifying the exact number of occupants 

up to 81% of the time. Weekly et al. [239] approximated human activity from the values of low-cost PM sensor 

and found a statistical correlation between the human activity and measured PM concentrations. Ekwevugbe et 

al. [241] developed a data fusion technique to estimate occupancy patterns while using data from RH, illuminance, 

Ta, CO2, and VOC sensors. Their proposed sensor fusion model offers a novel methodology for accurate occupancy 

detection by monitoring indoor climatic variables, indoor events, and energy data in non-domestic buildings. To 

conclude, occupancy-related indoor air pollutants could serve as reliable indicators of personal air pollution expo-

sure, occupancy, and occupant activities. However, challenges remain regarding the cost and scalability of deploy-

ing multiple sensor types on a large scale, as well as concerns about intrusiveness and privacy. Current practices 

highlight the necessity for enhanced methods that can capture occupancy characteristics and deliver more precise 

and comprehensive occupancy information in a cost-effective and less intrusive manner. 

 

2.5.2 Stationary occupancy sensors 

Occupancy sensors offer a promising approach to assess occupancy presence and activity at different scales in 

buildings. These sensors detect the presence or absence of occupants in a given space and can provide real-time 

information about occupancy patterns. Various types of stationary occupancy sensors are available, including PIR 

sensors, ultrasonic sensors, CO2 sensors, cameras, audio, and radio frequency identification (RFID) systems, as 

summarized in Table 2.4. 
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Table 2.4 Overview of occupancy sensing technologies and their capabilities 

Occupancy Sensing 
Technology [refer-
ence] 

Description 
Information  
Captured 

Limitations 

Passive Infrared (PIR) 
Sensors [242,243] 

Detect changes in infrared radia-
tion caused by moving warm hu-
man bodies 

Binary output (oc-
cupied/unoccu-
pied) 

Lack fine-grained occupant ac-
tivity information 

Ultrasonic Sensors 
[244] 

Emit ultrasonic waves and meas-
ure the time it takes for them to 
bounce back 

Occupancy based 
on movement 

Limited information about oc-
cupant activities 

CO2 Sensors 
[36,102,245] 

Measure CO2 concentration in 
the air, which indirectly indicates 
occupancy 

Indirect occupancy 
indication 

Slow response times, influ-
enced by environmental condi-
tions 

Cameras [238,246] 
Provide visual information about 
occupancy and detailed occupant 
activities 

Fine-grained occu-
pancy details 

Privacy concerns, image pro-
cessing challenges 

Audio [238] 

Capture occupancy information 
by analyzing sound patterns and 
detecting human presence based 
on audio cues 

Occupancy activi-
ties 

Background noise, privacy con-
cerns, audio signal processing 

Radio Frequency 
Identification (RFID) 

Systems [247] 

Use radio frequency signals to 
track RFID tags carried by occu-
pants 

Accurate occu-
pancy information 

Requires occupants to carry 
RFID tags 

Plug Loads and Elec-
tronic Equipment 
Tracking [248–250] 

Monitor electrical usage and 
power consumption patterns of 
plug loads and electronic devices 

Data on device acti-
vation and usage 

Limited in capturing human 
presence when devices are in-
active, may not differentiate 
between occupants and devices 

 

In order to achieve energy efficiency in office buildings, it is important to have accurate information about space 

utilization and building occupancy. Wahl et al. [242] focused on using strategically placed PIR sensors and algo-

rithms to estimate people count per office space. The performance of the proposed sensor model was evaluated 

in an office setting, and simulations of realistic occupant behaviors confirmed the accuracy of the estimation al-

gorithms in predicting people count, where they highlighted the potential of PIR sensors to enable dynamic control 

of lighting, climate, and appliances in office spaces. Milenkovic and Amft [251] also reviewed PIR sensors for de-

tecting office worker activities and estimating people count in office buildings. By employing finite state machines 

and probabilistic models, they achieved high accuracy in recognizing desk-related activities and estimating people 

count in real office environments. The results indicate potential energy savings of 21.9% and 19.5% by integrating 

activity sensing into building energy management systems. Andrews et al. [243] developed MI-PIR, a novel ap-

proach that overcomes the limitations of PIR sensors for detecting stationary occupants in indoor spaces. In this 

study, they achieved accurate room occupancy classification, estimation of occupant count, and prediction of lo-

cation and differentiation of human targets by mounting a PIR sensor on a moving platform and utilizing an artifi-

cial neural network (ANN). The results demonstrated potential applications for tracking and monitoring at-risk 

patients in indoor settings. 

Ultrasonic sensors, widely available and cost-effective, are commonly employed to regulate lighting systems 

within buildings [252]. Unlike PIR sensors, they possess the advantage of not requiring a direct line of sight for 

detecting presence. Jin et al. [244] explored occupancy detection in commercial buildings using ultrasonic sensors, 
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acceleration sensors, WiFi access points, and individual power monitoring and developed a semi-supervised learn-

ing algorithm based on power measurement for space security, occupancy behavior modeling, and energy savings 

in plug loads. 

CO2 sensors are commonly employed as explicit detection mechanism for occupancy detection in buildings [36]. 

Since the amount of CO2 generated by occupants varies, CO2 can act as a proxy for estimating the number of 

people present [253]. Lam et al. [254] examined various parameters (CO2, CO, TVOC, lighting, Ta, RH, motion, and 

acoustics) to detect occupancy numbers in open-plan offices, where they found the highest correlation between 

the number of occupants in the space and CO2 and acoustic parameters, which can be attributed to the charac-

teristics of the open office plan. For this reason, CO2 sensors are primarily utilized for DCV purposes in buildings 

[102,245]. One drawback of CO2 sensors is their slower response time compared to PIR and ultrasonic sensors 

[209].  

Jalal et al. [246] developed a depth-based life logging human activity recognition system for monitoring the acti-

vities of elderly individuals. They utilized depth video sensors to capture depth silhouettes and generate human 

skeletons with joint information for activity recognition. The developed system demonstrated satisfactory recog-

nition rates compared to conventional approaches, where they showed potential applications in elderly monitor-

ing systems and examining indoor activities in various settings, such as homes, offices, and hospitals. The study of 

Kreiss et al. [255] proposed a new bottom-up method called PifPaf, utilizing Part Intensity Fields (PIF) and Part 

Association Fields (PAF) for multi-person 2D human pose estimation from the recorded video, particularly well-

suited for occupancy detection in urban mobility scenarios like self-driving cars and delivery robots, outperforming 

previous methods in challenging conditions. Wojek et al [238] presented a method for multi-person activity recog-

nition in an office environment using audio and video features obtained from a simple setup of cameras and mi-

crophones. The approach involved employing a multilevel hidden Markov model (HMM) framework to simultane-

ously track users at the room-level, demonstrating promising results in unconstrained real-world data recorded in 

multiple offices. However, using camera or audio for detecting occupancy faces challenges such as high computa-

tional complexity, susceptibility to illumination conditions, and privacy concerns as reported by Chen et al. [256]. 

Li et al. [247] proposed an RFID-based occupancy detection system to facilitate demand-driven HVAC operations 

by tracking multiple stationary and mobile occupants in various spaces. The system accurately estimated the ther-

mal zones where occupants are located and provided real-time reports on the number of occupants in each zone. 

Their field tests demonstrated an average zone-level detection accuracy of 88% for stationary occupants and 62% 

for mobile occupants, supporting the integration of the occupancy detection system with energy-saving strategies 

to reduce HVAC energy consumption. 

Occupancy detection through plug loads and electronic equipment tracking in offices involves monitoring electri-

cal usage and power consumption patterns of devices such as computers, printers, and other office equipment 

[248]. When occupants are present and actively using these devices, they draw power and generate electrical 

signatures [250]. By analyzing these signatures, it is possible to infer occupancy, as the devices are typically used 

when people are at their workstations. However, it is important to note that this method may not reliably differ-

entiate between occupants and devices when equipment is in standby mode or inactive, requiring additional sen-

sors or data sources for more accurate detection [249]. 

From the literature review, combining multiple sensors and integrating their outputs can improve the accuracy 

and reliability of occupancy assessment methods. However, the balance between cost and accuracy of deployed 

multiple sensors and privacy concerns of the deployed sensors remains a consideration. 
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2.5.3 Wearable occupancy sensors 

Wearable sensors (e.g. smartwatches, accelerometers, gyroscopes, etc.) offer a novel approach to assess occu-

pancy profiles in office buildings. These sensors are typically worn by occupants and can provide continuous mon-

itoring of various physiological parameters of humans. By measuring parameters such as body movement, heart 

rate, respiration rate, and skin temperature, wearable sensors can infer occupancy presence, identify specific ac-

tivities, and provide personalized exposure assessments. For instance, smartwatches equipped with sensors such 

as skin temperature, heart rate monitors, accelerometers, and gyroscopes can provide valuable insights into oc-

cupancy patterns and occupant activities. Weiss et al. [257] compared smartwatch and smartphone-based activity 

recognition and highlighted the advantages of smartwatches in identifying specialized hand-based activities, such 

as eating. The skin temperature and heart rate monitoring can provide information about the intensity of physical 

activities, such as walking, running, or sitting, and can help identify different occupant activities and infer occupant 

comfort [258]. Accelerometers and gyroscopes can detect motion and movement patterns, allowing for the recog-

nition of specific activities, such as walking, standing, or cleaning. For instance, Liu et al. [259] developed an un-

obtrusive and automatic monitoring system for housekeeping tasks for healthcare applications by using wearable 

accelerometers and gyroscopes, where they achieved high accuracy (90.67%) in recognizing housekeeping tasks 

and accurately classifies activity levels (94.35%), demonstrating its reliability for long-term monitoring.  

The advantage of utilizing wearable sensors for occupancy assessment is their ability to capture individual-level 

information in real time [260], providing detailed and personalized data on occupant activities, postures, and in-

teractions with the indoor environment. This fine-grained information enables a more comprehensive under-

standing of occupancy dynamics and activity patterns within buildings, which can be utilized as one lever for oc-

cupant-centric HVAC system. However, the use of wearable sensors for occupancy assessment also presents chal-

lenges such as data privacy, intrusiveness, user acceptance, and sensor accuracy, which needs to be addressed 

[261]. 

In conclusion, occupancy assessment methods are essential for understanding indoor environments and optimiz-

ing building performance. Current practices based on stationary sensors have limitations in capturing comprehen-

sive occupancy characteristics. Occupancy sensors, such as PIR sensors, ultrasonic sensors, CO2 sensors, cameras, 

audio and RFID systems, offer opportunities to improve occupancy assessment accuracy. Furthermore, wearable 

sensors provide a promising avenue for capturing fine-grained occupancy information and personalized exposure 

assessments. Further research and development are needed to refine and integrate these methods into practical 

and cost-effective solutions for assessing occupancy presence, number, and activities in office buildings. 
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2.6 Knowledge gap, research questions, and hypotheses  

The literature review in this thesis highlights the need for more effective methods and indicators to detect per-

sonal inhalation exposure and assess occupancy in office environments. Specifically, there is a lack of research on 

capturing the spatial-temporal variation of indoor air pollutants and occupancy dynamics in offices, which is es-

sential for understanding and mitigating the impact of indoor air pollution on occupant health and well-being. 

Additionally, exploring the potential of low-cost smart sensing technologies and wearable sensors could lead to 

practical and cost-effective solutions for both exposure and occupancy assessment in office buildings. In short, the 

overall knowledge gap lies in the exploration of effective methods and indicators for detecting personal inhalation 

exposure and occupancy in static and dynamic office environments.  

Specifically, a significant knowledge gap emerges in determining the most effective proxy method for detecting 

personal inhalation exposure in office settings. Past research has explored various indicators and sensor technol-

ogies, but a comprehensive understanding of which method provides the most accurate and reliable exposure 

assessment remains elusive. In addition, previous studies lack a clear consensus on the optimal sensor locations 

within office spaces for characterizing inhalation exposure to indoor air pollution. Research in this area often fol-

lows existing guidelines (e.g., breathing zone height) and lacks specificity, leaving uncertainty regarding where to 

position sensors for the most precise and comprehensive monitoring of inhalation exposure. Lastly, another criti-

cal knowledge gap pertains to the identification of the minimum but sufficient sets of indicators necessary for 

effective inhalation exposure and occupancy detection. While previous studies have explored various sensor com-

binations for IAQ monitoring, there is a lack of standardized guidelines and conclusive findings on which indicators 

are essential and which may be redundant. Bridging these research gaps are essential for enhancing exposure 

assessment strategies and developing cost-effective and practical solutions of IAQ monitoring in office buildings. 

The thesis proposes three key research questions to be answered through various experiments and data analysis 

to gain insights into the factors that significantly impact inhalation exposure and occupancy estimation in office 

buildings.  

 

[Research Question 1]  

There is a lack of exploration regarding proxy methods for detecting personal exposures to CO2 and PM under 

dynamic office environments. Hence, the study hypothesized that certain physical parameters act as better prox-

ies for inhalation exposures to CO2, PM2.5, and PM10 than others, and that a combination of physical parameters 

may better represent inhalation exposures than a single parameter in a simulated office environment with dy-

namically changing occupancy profiles. A specific research question is as follows: 

 “What combination of physical parameters (environmental, contextual, and physiological) best repre-

sents inhalation exposures to CO2, PM2.5, and PM10 in a simulated office environment with dynamic 

occupancy profiles?” 
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[Research Question 2]  

The existing research lacks studies on optimal stationary IAQ sensor placement considering dynamic occupancy 

profiles in office settings. Hence, the study hypothesized that stationary sensor positioning affects the accuracy of 

personal exposure detection, and that the optimal sensor placement for exposure detection may vary based on 

building ventilation and occupancy profiles. Specific research questions are as follows: 

 “What are the suitable stationary IAQ sensor placements that can best approximate personal CO2, PM2.5 

and PM10 exposures under dynamic and static occupancy conditions?” 

 “How do categorical variables (occupant number, activity, office layout, ventilation type, ventilation 

rate) influence personal exposure detection?” 

 

[Research Question 3]  

The identification of indicators for detecting personal exposures to indoor air pollutants and building occupancy 

in real-life office settings is an underexplored area of research. Hence, the study hypothesized certain sets of indi-

cators may serve as better proxies in approximating personal exposures and office occupancy relative to others 

while considering their cost-effectiveness. Specific research questions are as follows: 

 “How do spatial gradients of personal CO2, PM2.5, and PM10 exposure in offices relate to various occu-

pant activity profiles?” 

 “Which indicators serve as the most effective proxies for personal air pollution exposure and occupancy 

in different office types?” 

 “What are the minimum but sufficient indicators for characterizing personal exposures and occupancy 

in real office settings?” 

 

By addressing these research questions, this thesis aims to enhance the understanding of spatio-temporal varia-

tions of common office pollutants, improve exposure assessment accuracy, and propose cost-effective recom-

mendations for occupant-centric IAQ monitoring and occupancy detection. Ultimately, this thesis presents an im-

portant step towards contributing to improved occupant health and well-being in office buildings. 

Building upon these questions, the thesis formulates hypotheses that propose potential answers and hypotheses 

that aim to advance our understanding of the complex dynamics of IAQ, inhalation exposures, and occupancy in 

office buildings. 

 

 Hypothesis 1: A combination of multiple physical parameters, including environmental, contextual, and 

physiological factors, will yield more accurate representations of inhalation exposures to CO2, PM2.5, 

and PM10 in office environments compared to relying on individual parameters alone. 
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 Hypothesis 2: The accuracy of personal exposure detection in office environments will be influenced by 

stationary sensor positioning, and optimal sensor placement will vary based on building ventilation, 

office layout, and occupancy profiles. 

 Hypothesis 3: Certain sets of indicators, chosen for their cost-effectiveness, will serve as better proxies 

for approximating personal exposures to indoor air pollutants and office occupancy relative to others, 

depending on office layout and occupancy conditions. 

 

2.7 Research objectives 

The objectives of this thesis are to propose: (1) proxy methods for characterizing inhalation exposure to CO2, PM2.5 

and PM10 in simulated office environments, (2) optimal sensor placement for estimating personal CO2, PM2.5 and 

PM10 exposures in simulated static and dynamic office environments, (3) minimum but sufficient indicators for 

detecting personal CO2, PM2.5 and PM10 exposures and occupancy dynamics using smart sensors in real office 

environments, and (4) practical recommendations for building practitioners to achieve cost-effective monitoring 

strategies for personal air pollution exposures and occupancy dynamics in office environments. Each of the pro-

posed research objectives corresponds to one thesis chapter, as follows:  

 

Chapter 3: Proxy methods for detection of inhalation exposure in simulated office environments 

 Identify the best proxy methods that represent inhalation exposures to CO2, PM2.5, and PM10 in a simu-

lated office environment with dynamic occupancy profiles. 

 

Chapter 4: Optimal sensor placement for personal inhalation exposure detection in static and dynamic office 

environments 

 Determine the suitable stationary IAQ sensor placement that best characterizes personal air pollution 

exposures under different occupancy conditions (dynamic and static). 

 Evaluate the influence of categorical variables (occupant number, activity, office layout, ventilation type, 

ventilation rate) on personal exposure detection. 

 

Chapter 5: Investigation of indicators for personal exposure and occupancy in offices by using smart sensors 

 Examine spatial gradients of personal CO2, PM2.5, and PM10 exposure in offices associated with various 

activity profiles (body posture, activity type, and activity intensity). 

 Identify minimum but sufficient sets of indicators for characterizing personal air pollution exposures and 

occupancy in various office settings using correlation and Decision Tree (DT) classification and regression 

analysis. 
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Chapter 6: Discussions  

 Propose integrative discussions of thesis findings. 

 Articulate limitations of thesis findings.  

 Provide perspectives for research and practice. 

 

Chapter 7: Conclusions 

 Address and answer research questions.  

 Provide future research outlook.  
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2.8 Thesis structure 

The structure of this thesis that corresponds to the next chapters is presented below as Figure 2.3.  

 

Figure 2.3 Structure and summary of the thesis chapters 
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Abstract 

Modern health concerns related to air pollutant exposure in buildings have been exacerbated owing to several 

factors. Methods for assessing inhalation exposures indoors have been restricted to stationary air pollution meas-

urements, typically assuming steady-state conditions. The study aimed to examine the feasibility of several proxy 

methods for estimating inhalation exposure to CO2, PM2.5, and PM10 in simulated office environments. In a con-

trolled climate chamber mimicking four different office setups, human participants performed a set of scripted 

sitting and standing office activities. Three proxy sensing techniques were examined: stationary indoor air quality 

(IAQ) monitoring, individual monitoring of physiological status by wearable wristband, human presence detection 

by Passive Infrared (PIR) sensors. A ground-truth of occupancy was obtained from video recordings of network 

cameras. The results were compared with the concurrent IAQ measurements in the breathing zone of a reference 

participant by means of multiple linear regression (MLR) analysis with a combination of different input parame-

ters. Segregating data onto sitting and standing activities could lead to improved accuracy of exposure estimation 

model for CO2 and PM by 9 - 60% during sitting activities, relative to combined activities. Stationary PM2.5 and 

PM10 monitors positioned at the ceiling-mounted ventilation exhaust in vicinity of the seated reference participant 

accurately estimated inhalation exposure (adjusted R²=0.91 and R²=0.87). Measurement at the front edge of the 

desk near abdomen showed a moderate accuracy (adjusted R²=0.58) in estimating exposure to CO2. Combining 

different sensing techniques improved the CO2 exposure detection by twofold, whereas the improvement for PM 
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exposure detection was small (~10%). This study contributes to broadening the knowledge of proxy methods for 

personal exposure estimation under dynamic occupancy profiles. The study recommendations on optimal monitor 

combination and placement could help stakeholders better understand spatial air pollutant gradients indoors 

which can ultimately improve control of IAQ. 

 

3.1 Specific objectives 

As previously noted, methods for characterizing personal exposures to CO2 and PM under dynamic indoor envi-

ronments are largely unexplored. The specific objective of this study was to examine the feasibility of proxy meth-

ods for estimating inhalation exposure to CO2, PM2.5, and PM10 in simulated office environments. The study aimed 

to compare different sensing techniques, including stationary IAQ monitoring, individual physiological monitoring 

using wearable wristbands, and human presence detection using PIR sensors. The study also sought to determine 

the accuracy of these proxy methods by comparing the results from stationary IAQ measurements with concurrent 

IAQ measurements taken in the breathing zone of a reference participant. The study examined the effects of dif-

ferent office activities (sitting and standing) of occupant on exposure estimation accuracy and explore the optimal 

combination and placement of monitors for improved estimation of inhalation exposures to CO2, PM2.5, and PM10. 

Additionally, the study aimed to investigate the benefits of combining multiple inputs (environmental, physiolog-

ical, and contextual parameters) for improving exposure estimation. Finally, the study provided recommendations 

on the optimal combination and placement of monitors in order to assist stakeholders in gaining a better under-

standing of spatial air pollutant gradients indoors, ultimately improving the control of IAQ. 

 

3.2 Research methodology 

3.2.1 Chamber description and office layouts 

The experiments were conducted in a controlled climate chamber (floor area: 24.8 m2, volume: 60 m3), where air 

temperature and relative humidity were controlled within narrow ranges, 24.9±0.4℃ and 54.3±4%, respectively. 

To simulate typical mechanically-conditioned office spaces, the study selected the mixing ventilation strategy, 

which is the most common air distribution method applied in commercial office buildings [262]. Here, the condi-

tioned air was supplied and exhausted through the two swirl type diffusers at the ceiling of the chamber (Figure 

3.1). The air change rate was constant (2.4 – 2.6 h-1), which was confirmed by the CO2 tracer gas decay method 

[263]. The corresponding air change rate matched the recommendation value (ventilation rate of 144 – 156 m3/h 

for four persons and a floor area of 24.8 m2) from the European standard of EN16798-1 (Non-residential building; 

Category 1) [264]. The supply air was 100% outdoor air filtered by two-stage media filter (F6 and F9) and additional 

HEPA filter, so that background particle level was close to zero. The study examined four typical workplace layouts: 

Shared office 1 and 2 (without and with a common space), Meeting room, and Cafeteria. For instance, the Shared 

office 1 consisted of two or four office desks/chairs depending on the number of participants (two and four), and 

kettle and coffee machine on two cabinets (Figure 3.1). The details of each floor plan with furniture organization 

are presented in Figure S3.1.  
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Figure 3.1 Example of monitor placement in the Shared office 1 (4 participants) and exposure measurement (CO2, PM) 
in the breathing zone of the reference participant. Each monitor location is marked with an ID number which is described 
in Table 3.1. Notes: E1 = Exhaust 1, E2 = Exhaust 2. 

 

3.2.2 Human occupants 

A total of six human participants were recruited (three males and females). The number of the participants was 

two and four for the two shared offices, and six for the Meeting room and Cafeteria. The selected occupancy 

number was based on occupancy density in office building specified by the Standard EN16798-1 [264]. The age of 

participants was between 26 – 31 and the average BMI ranged within 20.3 – 23.8 kg/m2 for females and 25.1 – 

31.8 kg/m2 for males. The study distributed the number of males and females equally in each experiment to min-

imize the impact of gender on human CO2 emission [12,265] and maintained the same participants throughout 

the experiments. The participants wore typical office summer clothing (average 0.4 clo). One female participant 

(28 years old, BMI = 22.4 kg/m2) was designated as a reference participant for inhalation exposure measurements. 

 

3.2.3 Experimental design 

The study conducted a total of 11 chamber experiments during the summer period (13.07.2020 – 11.08.2020, 

Table S3.1). Each experiment was replicated two times except the cafeteria scenario. The measurements included 

the following three categories: air quality parameters (CO2, PM2.5, and PM10), contextual parameters (participants’ 

presence, number, body posture and type of office activity) detected by PIRs and network cameras, and physio-

logical parameters (skin temperature, heart rate and 3-axis acceleration) recorded by wearable wristbands. The 
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study determined seven sensor placements (IDs 1–7, Table 3.1) based on the literature and current best practices 

[101,102,266]. One example of monitor placement for the Shared office 1 is shown in Figure 3.1, whereas the 

others are shown in Figure S3.1. For breathing zone measurements, the reference participant wore one CO2 and 

one OPC at the sampling point located 20 cm below the nose (Figure 3.1). The sampling tube connected to the 

CO2 monitor was fixed near the reference participant’s chest, whereas the OPC was placed in the pocket of an 

experimental vest. Two network cameras were installed at the ceiling and wall to provide the ground-truth occu-

pancy information. 

 

Table 3.1 Monitor ID, measurement parameters and placements. 

ID 
Parameters  
measured 

Measurement placement (No. of monitors) 
Measurement 
method 

1 

CO2, 
Size-resolved particle 
number concentration 

Front edge of participant desk (1) 
Front edge of desk near an abdomen of the refer-
ence participant 

CO2 monitor, OPC 

2 
Desk (1) 
On each participant’s desk 

CO2 monitor, OPC 

3 

Exhaust (2) 
Ceiling-mounted exhaust diffusers, 2.4 m: 

 Exhaust 1 (E1, Figure 3.1): near the refer-
ence participant 

 Exhaust 2 (E2, Figure 3.1): additional 
placement 

CO2 monitor, OPC 

4 
Breathing zone (1) 
20 cm below from the reference participant’s nose 

CO2 monitor, OPC 

5 Participant presence, 
number, body posture, 
and type of office activity 

Ceiling (2) 
Ceiling in the center of the chamber, 2.4 m 

PIR, Network cam-
era 

6 
Wall (2) 
Side wall, 1.4 m and 2.0 m 

PIR, Network cam-
era 

7 Participant presence 
Below the desk (1) 
Below the participant desk 

PIR 

 

The reference participant received wearable wristband before entering the chamber. Upon entering the chamber, 

the participants filled out the questionnaire about the seat number and their personal information (age, height, 

weight and clothing). During the experiment, the participants followed a set of scripted activities that were exe-

cuted simultaneously by all. Seven activities were executed in two shared office spaces and six in the Meeting 

room and Cafeteria to simulate realistic occupancy interactions. All activities excluding entering and leaving the 

chamber were divided into two activity conditions: sitting activities and standing activities. Standing activities in-

cluded standing or walking. A detailed description of scripted activities is provided in Figure S3.2. Duration of each 

activity spanned from 5 to 25 min. All the participants exited the chamber after 60 minutes of the experiment and 

the chamber was sealed for 30 minutes to permit monitoring air pollutant concentration decay. The ethical and 

safety considerations of the experiments were approved by the Human Research Ethics Committee of EPFL. 
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3.2.4 Research instrumentation 

Two types of monitors were deployed to measure stationary indoor and breathing zone CO2 concentrations. Three 

HOBO MX CO2 Loggers (MX1102, Onset Computer Corporation, USA, measurement range: 0 to 5,000 ppm, accu-

racy: ±50 ppm) were used for stationary indoor CO2 measurements. Additional two high-accuracy gas analyzers 

(LI-850, LI-COR Biosciences GmbH, Germany, measurement range: 0 to 20,000 ppm, accuracy: ±1.5%) with an air 

pump were deployed at the Exhaust 1 and at the Breathing zone of the reference participant. To capture size-

resolved particle number concentration, the study used four stationary and one wearable OPCs. Stationary mon-

itors included: Met One 804 (Met One instruments, USA, 4 channels, size range: 0.3-10 µm, accuracy: ±10% to 

traceable standard) at the Exhaust 1 and the Front edge of participant desk; Met One HHPC 6+ (Beckman Coulter, 

USA, 6 channels, size range: 0.3-10 µm, counting efficiency: 50% at 0.3 µm (100% for particles > 0.45 µm)) at the 

Exhaust 2; Mini-WRAS 1371 (GRIMM Aerosol Technik Ainring GmbH & Co., Germany, size range: 10 nm to 35 µm, 

>95% accuracy for single particle counting) on the Desk near the reference participant. One OPC (Met One 804) 

was worn by the reference participant.  

Three PIR sensors (HOBO Occupancy/Light Data Logger, UX90-006x, Onset Computer Corporation, USA, Detection 

range: 12 m) were installed in the chamber. The study also introduced one wearable wristband (E4, Empatica Inc., 

USA, frequency range: 32 Hz) that measured physiological state of the reference participant. Lastly, the study 

installed two network cameras (M1065-LW and M3057-PLVE, Axis communications, Sweden, frequency range: 64 

Hz) inside the chamber. All IAQ data was obtained at 1-min time interval except for the CO2 measurements at 

breathing zone, which was measured at 0.5-second interval. The PIRs recorded occupancy information as binary 

code at 1-minute time interval. Skin temperature was measured at 4 Hz frequency (0.25 seconds), heart rate at 1 

Hz frequency (1 seconds) and acceleration at 32 Hz frequency (0.03125 seconds). 

 

3.2.5 Data analysis 

Kierat et al. [267] proposed that accurate CO2 exposure assessment requires breathing zone measurements to be 

performed during the inhalation period only. To eliminate the effect of human exhalation, the study selected only 

a single minimum value (Figure S3.3) out of one respiratory cycle, where each cycle typically had 6 measurement 

points. Then the average breathing zone concentration was calculated as the average of the minimum concentra-

tions recorded in each respiratory cycle. The possible lag between respiratory phase air sampling moment and the 

actual instrumental measurement time was removed. For breathing zone PM measurement, the full duration of 

the respiratory cycle was considered. The PM mass concentration (µg/m3) was estimated from measured number 

concentration by assuming that particles are spherical with density of 2.5 g/cm³, and by supposing that the mass-

weighted size distribution, dM/d(log dp), is constant within each particle size group [268]. As density of indoor 

particles is typically in the range 1-2.5 g/cm³, the reported particle mass concentrations are likely to be upper-

bound estimates [122]. 

The study removed the contribution of the former activity to the CO2 and PM concentrations due to multiple 

participant activities conducted in a relatively short time period. The study firstly estimated CO2 concentration by 

removing preceding 5-min average CO2 concentration from each time stamp (Figure S3.4). For PM, the study fol-

lowed data processing approach described in [183] where the evolution of PM level from the former activity was 

calculated and removed (Figure S3.5). 
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Pearson correlation r value indicates existence of association between the measured variables, where stronger 

linear relationship appears as the r value approaches ±1 [269]. Our study examined r value between the measured 

IAQ parameters in order to identify the strength of the correlation between them. Through MLR analyses, the 

study composed regression models by investigating the appropriateness of various physical parameters (pre-

sented as input variables) to estimate human exposure (presented as output variable) to CO2, PM2.5 and PM10 

(Figure 3.2). Firstly, the study composed a regression model by using input variable from each data category: 1) 

air quality; 2) contextual; 3) physiological. The study also included participant number as input variable to build a 

model that is not restricted to one specific office scenario. Data from all office layouts were integrated in analysis 

to create sufficient datasets to derive validate models. The ground-truth data (type of activity and body posture 

of the participants) acquired from network cameras allowed us to separate office activities into sitting and stand-

ing. Occupancy data obtained from PIR at Wall (2.0 m) and IAQ data of Exhaust 2 were excluded because of their 

limited datasets. Then, the study composed regression models with input variables from all three different data 

categories and evaluated their accuracies compared to a model built with the air quality data only. The adjusted 

R2 values of each model were identified and compared to assess model accuracy, where the value of 0.75, 0.50, 

or 0.25 was deemed as strong, moderate or weak fit of the model as rule of thumb [270,271]. Further, the study 

examined β (standardized regression coefficients) to identify the positive or negative relationship between the 

input and output variables, and the magnitude of contribution of the input for estimation accuracy. 

 

 

Figure 3.2 Input and output variables in composing MLR models. Selection criteria were applied while separating the 
collected data into sitting and standing activities. Notes: Exhaust 2 was not included as input in MLR analysis. Tskin stands 

for skin temperature, HR for heart rate, and ACC for resultant acceleration √𝐴𝐶𝐶_𝑥2 + 𝐴𝐶𝐶_𝑦2 + 𝐴𝐶𝐶_𝑧2). Description 

of sitting and standing activities is shown in Figure S3.2. 
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3.2.6 Quality assurance 

All the CO2 monitors and OPCs were calibrated ahead of the experiments with side-by-side test to eliminate the 

gap of measurement discrepancies among the monitors. The HOBO MX CO2 Loggers were inter-calibrated based 

on the linear correlation with the high-accuracy gas analyzer (LI-850) in a controlled chamber. The OPCs (two Met 

One 804 and one Met One HHPC 6+) were compared against the high-accuracy OPC (Mini-WRAS 1371). Adjust-

ment factors of the side-by-side instrument performance tests are shown in Table S3.2. 

 

3.3 Results and discussion 

3.3.1 Summary of descriptive statistics and correlations of IAQ measurements 

In order to understand spatial IAQ variations in the chamber, the study examined variations of studied air pollutant 

concentrations in relation to monitor placement. Figure 3.3 shows minimum, first quartile, median, third quartile, 

maximum and average CO2, PM2.5, and PM10 concentrations for each monitor placement (ID 1-4) averaged across 

all activities and experiments. Regardless of the air pollutant type, the breathing zone concentrations were sub-

stantially higher relative to stationary concentrations. The average of breathing zone CO2 concentrations of the 

reference participant were approximately two times higher than the ones from stationary monitors. This finding 

showed a notable increase of breathing zone CO2 concentration compared to a study of Melikov et al. [272], where 

CO2 concentration inhaled by a breathing thermal manikin was only 16% higher than in the room exhaust. The 

average PM2.5 and PM10 showed 6.7× and 6.8× higher concentrations at the breathing zone than the ones at sta-

tionary monitors, respectively. 

 

 

Figure 3.3 The CO2, PM2.5 and PM10 concentration at different stationary monitors across all activities and experiments. 
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The highest average CO2 and PM10 concentration among stationary IAQ monitors were recorded at the Front edge 

of participant desk which was the closest stationary monitor to the reference participant. This can be a result of 

exhaled CO2 jet that propagates downwards during sitting activities, as well as human thermal plume that trans-

ports locally generated airborne particles to the breathing zone [273]. This was not the case of PM2.5, where the 

highest average concentration among stationary monitors was detected at the Exhaust 1, likely because of vigor-

ous activities (e.g. stuffing the cabinet with paper boxes) that occurred nearby. Further, the study compared the 

absolute mean CO2 and PM10 concentration between the Exhaust 1 and Exhaust 2 (Figure S3.6), where difference 

and variation of mean concentration was trivial in case of CO2, while it was significant in case of PM10. 

Figure 3.4 shows the Pearson correlation r values between stationary indoor and breathing zone CO2 and PM 

concentrations during sitting, standing and combined (sitting and standing) activities. Relative to combined activ-

ities, r values for CO2 were often higher when the study segregated participant activity into sitting and standing 

activities. The correlation r between the CO2 in the breathing zone and at the Front edge of participant desk was 

45% higher during sitting activities relative to combined activities. For standing activities, the relative increase was 

36% and 32% at the Exhaust 1 and Desk locations compared to combined activities. CO2 measurements at the 

Exhaust 1 had a moderate correlation (r=0.526) with the breathing zone measurements during standing activities. 

This finding agrees in part with a study of Pei et al. [102] who reported CO2 measured at the room exhaust well 

correlates with the inhalation exposure to CO2 under mixing ventilation. The two highest correlations between 

breathing and stationary CO2 measurement were at Exhaust 1 and Desk during standing activities. This is due to 

the contribution of spatial air pollution gradients and the proximity between the reference participant and the 

sensor locations during the standing activities. During the sitting activities, a relatively weak correlation (-0.3) 

between CO2 at the Exhaust 1 and in the Breathing zone may be attributed to spatial non-uniformity of air pollu-

tion concentration and greater distance between Exhaust 1 and seated reference participant. Lu et al. [33] also 

recognized that inconsistent patterns of CO2 concentrations in breathing zone of occupants may contribute to 

discrepancies of correlations between room exhaust and breathing zone CO2 level. 

The correlation r between stationary and breathing zone PM2.5 and PM10 measurement improved marginally dur-

ing sitting activities (4-7%) and did not improve during standing activities compared to combined activities (Figure 

3.4). Sitting activities had better correlation for PM2.5 and PM10 than standing activities by threefold. Specifically, 

the correlation r between Exhaust 1 and Breathing zone during sitting condition showed over 0.9 for both PM2.5 

and PM10. Low correlation between stationary and breathing zone PM level during standing activities is attributed 

to irregular and high intensity activities that resulted in highly episodic particle emissions. This result confirms that 

human inhalation exposure can be highly dependent on the human activity and its intensity [10,191]. Further, the 

study compared correlation r between the two exhausts with the Breathing zone measurement (Table S3.3). In 

case of PM10, r value at Exhaust 2 decreased by 41-83% compared to the one at Exhaust 1 due to the distance 

between the reference participant and the deployed OPCs. 
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Figure 3.4 Pearson correlations of CO2, PM2.5, and PM10 measurements during sitting, standing, and combined partici-
pant activities. 

 

3.3.2 Multiple linear regression models for estimating human exposure 

3.3.2.1 MLR models based on stationary IAQ measurements 

The study investigated the accuracy of human exposure estimation to CO2, PM2.5 and PM10 by using the input 

variables from the stationary IAQ monitors. Regression model for each studied air pollutant was proposed while 

considering a different number (1, 2 or 3) and combination of IAQ input variables. Table 3.2 shows adjusted R² 

values of each model under combined and separated sitting and standing activities. Segregated human activities 

can improve inhalation exposure estimation for all studied air pollutants. During standing activities, accuracy for 

estimating CO2 inhalation exposure was 77% higher compared to one under combined activities. This result agrees 

with the previous report (Figure 3.4) of significant improvement of correlation between stationary and breathing 
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zone CO2 measurements when participants’ activities were separated. Accuracy of PM2.5 and PM10 exposure esti-

mation was 8% higher during sitting activities (adjusted R2 0.93 and 0.91 respectively) compared to the ones during 

combined activities. In case of PM, sitting activities had better estimation accuracy relative to combined activities 

owing to a closer distance between seated participants and the OPCs with a fewer episodic particle emission rel-

ative to standing activities. Licina et al. [10] also identified personal cloud effect with elevated PM concentration 

in breathing zone of seated occupant while reporting that well-mixed representation of indoor space might un-

derestimate human exposure to coarse particles. During sitting activities, the best single input variable for PM2.5 

and PM10 exposure detection was PM measurement at the Exhaust 1 (R2 of 0.91 and 0.87), which was located near 

the head of the reference participant.  

 

Table 3.2 Adjusted R² value of MLR models for IAQ exposure estimation by using different number and combinations of 
stationary CO2 and PM measurements during combined and separated activities (sitting and standing). Bolded values 
have moderate or strong correlation (R2 > 0.5). 

* All models included participant number as one input variable 

 

Number 

of  

varia-

bles 

IAQ stationary 

monitor  

placement 

Combined activities* Sitting* Standing* 

CO2 PM2.5 PM10 CO2 PM2.5 PM10 CO2 PM2.5 PM10 

1 

Front edge of 

participant 

desk 

0.326 0.516 0.495 0.26 0.61 0.58 0.579 0.068 0.073 

Desk 0.292 0.671 0.731 0.24 0.77 0.82 0.517 0.215 0.224 

Exhaust 1 0.291 0.841 0.803 0.24 0.91 0.87 0.514 0.442 0.363 

2 

Front edge of 

participant 

desk + Desk 

0.328 0.68 0.738 0.26 0.78 0.83 0.581 0.202 0.214 

Front edge of 

participant 

desk + Exhaust 

1 

0.328 0.855 0.831 0.26 0.92 0.90 0.584 0.501 0.376 

Desk + Exhaust 

1 
0.29 0.843 0.819 0.23 0.91 0.89 0.512 0.433 0.371 

3 

Front edge of 

participant 

desk + Desk + 

Exhaust 1 

0.326 0.861 0.842 0.26 0.93 0.91 0.578 0.498 0.396 
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The CO2 exposure estimation by using a single stationary IAQ monitor during sitting activities was not accurate 

(average adjusted R²=0.25 across all single monitors, Table 3.2). Furthermore, the PM2.5 and PM10 exposure esti-

mations by using a single OPC during standing activities was also not accurate (average adjusted R² of 0.24 and 

0.22 across all single OPCs, Table 3.2). The results indicate that the single stationary IAQ monitoring location rec-

ommended by standards and guidelines [274–276] does not capture exposure well and the measurements may 

not be reliable particularly when complex airflow interactions exist in the space.  

Using all three IAQ inputs (Front edge of participant desk + Desk + Exhaust 1) for estimating PM2.5 and PM10 expo-

sure showed 2% and 5% higher adjusted R2 for sitting activities, and 13% and 9% higher adjusted R2 for standing 

activities relative to using single IAQ input. This was not the case for CO2 exposure estimation, where there was 

no difference between using single and multiple variables. Further, the study reported regression coefficients of 

the models (Table S3.4) consisted of a single stationary IAQ measurement and participant number as input varia-

bles with the best estimation accuracy. The regression equations (Equation 3.1-3.3) are listed based on the models 

(Table S3.4) composed with one stationary IAQ measurement and participant number (𝑝𝑎𝑟𝑡𝑛𝑢𝑚) as inputs. A neg-

ative correlation between participant number and CO2 inhalation exposure was observed, while a positive corre-

lation between CO2 level at the Front edge of participant desk and CO2 inhalation exposure was detected during 

standing activities (Equation 3.1). As indicated in Equation 3.2 and Equation 3.3, two inputs (𝑝𝑎𝑟𝑡𝑛𝑢𝑚, 𝑃𝑀𝑒𝑥ℎ𝑎𝑢𝑠𝑡) 

had a positive correlation with output (inhalation exposure to PM2.5 and PM10) during sitting activities. Interest-

ingly, inhalation exposure to PM10 was more dependent on the participant number than the stationary PM10 meas-

urement at the ventilation exhaust, while the opposite aspect was shown for inhalation exposure to PM2.5. 

 

𝐶𝑂2,𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = −281.51𝑝𝑎𝑟𝑡𝑛𝑢𝑚 +  0.829𝐶𝑂2,𝑓𝑟𝑜𝑛𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑑𝑒𝑠𝑘 + 1983.328     

Equation 3.1 

𝑃𝑀2.5,𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = 0.172𝑝𝑎𝑟𝑡𝑛𝑢𝑚 + 1.795𝑃𝑀2.5,𝑒𝑥ℎ𝑎𝑢𝑠𝑡– 0.007         

Equation 3.2 

𝑃𝑀10,𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = 2.497𝑝𝑎𝑟𝑡𝑛𝑢𝑚 +  1.652𝑃𝑀10,𝑒𝑥ℎ𝑎𝑢𝑠𝑡 + 1.098        

Equation 3.3  

 

3.3.2.2 MLR models based on contextual measurements 

The study derived the MLR models by using input variables obtained from PIRs installed at three different place-

ments; ceiling, wall, and below the participant desk. Table 3.3 summarizes adjusted R² values of each model with 

different combination of inputs under combined and separated sitting and standing activities. The estimation ac-

curacy did not show any significant R² values throughout all proposed models, meaning that the human pres-

ence/absence data is generally not effective in detecting personal exposures. However, data obtained by all three 

PIRs was moderately effective (R² > 0.5) in estimating inhalation exposure to CO2 during standing activities. Our 

results point towards conclusion that the PIR alone is able to detect human presence in the space (see β=0.26, 

Table S3.5), but none of the three PIRs showed a sufficient ability to estimate inhalation exposure solely.   
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Table 3.3 Adjusted R² value of MLR models for IAQ exposure estimation by using different combinations of PIRs meas-
urements during combined, sitting and standing activities. Bolded values have moderate correlation (R2 > 0.5). 

Number 

of varia-

bles 

PIR meas-

urement 

placements 

Combined activities Sitting Standing 

CO2 PM2.5 PM10 CO2 PM2.5 PM10 CO2 PM2.5 PM10 

1 

Ceiling 0.294 0.004 0.003 0.241 0.008 0.007 0.505 -0.006 -0.004 

Wall 0.288 -0.006 -0.006 0.247 0.002 0.002 0.568 0.002 -0.01 

Below desk 0.296 0.011 0.017 0.247 0.019 0.026 0.526 -0.012 -0.016 

2 

Ceiling + 

Wall 
0.292 0.000 0.000 0.25 0.005 0.005 0.561 -0.005 -0.01 

Ceiling + Be-

low desk 
0.299 0.017 0.022 0.25 0.023 0.03 0.518 -0.022 -0.02 

Wall + Below 

desk 
0.297 0.01 0.015 0.277 0.015 0.023 0.57 -0.009 -0.021 

3 

Ceiling + 

Wall + Below 

desk 

0.301 0.016 0.021 0.279 0.02 0.026 0.563 -0.018 -0.024 

 

3.3.2.3 MLR models based on physiological measurements 

The study also examined MLR models composed of physiological measurements from wearable wristband (E4), 

which included the skin temperature (𝑇𝑠𝑘𝑖𝑛), heart rate (𝐻𝑅), and resultant three-axis acceleration (𝐴𝐶𝐶) of the 

reference participant. Adjusted R² values of each model under combined, sitting and standing activities are pre-

sented in Table 3.4. In general, physiological measurements gave poor estimate of inhalation exposures for the 

investigated scenarios except the CO2 exposure in standing activities that had a moderate accuracy (R² > 0.5). A 

discrepancy of estimation accuracy between sitting and standing activities is aligned with the findings of two ex-

perimental studies [277,278] that indicated a complex relationship of human physiological status and indoor CO2 

concentration. Having more than one physiological parameter could improve the estimation accuracy relative to 

single measurement in some cases. For example, the model accuracy for detecting PM2.5 and PM10 exposure by 

multiple inputs showed 5 and 10% increase in sitting activities and showed 10% increase in standing activities in 

case of CO2 compared to the model with a single input. However, overall model accuracy by physiological inputs 

was still insufficient to estimate inhalation exposures. Further, the study reported regression coefficients of a 

model that best estimated CO2 exposure (adjusted R²=0.594) by physiological inputs, where large β coefficient 

was shown in order of participant number, 𝑇𝑠𝑘𝑖𝑛, and 𝐻𝑅 (Table S3.6).  
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Table 3.4 Adjusted R² value of MLR models for IAQ exposure estimation by using different combinations of wearable 
wristband measurements during combined, sitting and standing activities. Bolded values have moderate correlation (R2 
> 0.5). 

Number 

of 

varia-

bles 

Wearable 

wristband 

parame-

ters* 

Combined activities Sitting Standing 

CO2 PM2.5 PM10 CO2 PM2.5 PM10 CO2 PM2.5 PM10 

1 

Tskin 0.407 0.039 0.016 0.477 0.121 0.067 0.528 -0.015 -0.017 

HR 0.3 -0.006 -0.006 0.237 0.001 0.000 0.54 -0.007 -0.003 

ACC 0.288 -0.003 -0.002 0.235 0.005 0.005 0.506 -0.014 -0.017 

2 

Tskin + HR 0.459 0.04 0.014 0.475 0.118 0.062 0.594 -0.022 -0.019 

Tskin + ACC 0.405 0.043 0.021 0.476 0.13 0.074 0.521 -0.031 -0.031 

HR + ACC 0.3 -0.006 -0.004 0.234 0.001 0.002 0.537 -0.022 -0.016 

3 
Tskin + HR + 

ACC 
0.457 0.043 0.018 0.474 0.127 0.07 0.589 -0.038 -0.032 

* Tskin: skin temperature, HR: Heart rate, ACC: resultant acceleration (√𝐴𝐶𝐶_𝑥2 + 𝐴𝐶𝐶_𝑦2 + 𝐴𝐶𝐶_𝑧2) 

 

3.3.2.4 MLR models based on multiple parameter measurements 

The study finally derived MLR models by combining stationary IAQ, physiological (E4) and contextual (PIR) param-

eters and compared the results with the models composed of a single parameter. The study examined the models 

under segregated activities (sitting and standing), which was more advantageous in terms of model accuracy rel-

ative to combined activities as previously noted in section 3.3.2.1. Adjusted R² values of each model were reported 

with relevant input variables listed in parentheses (Table 3.5). In case of sitting activities, the estimation accuracy 

showed twofold (101%) increase by using multiple parameters (IAQ+E4+PIR) compared to the model with a single 

stationary CO2 measurement. When participants were moving around, CO2 exposure estimation was better by 

integrating stationary CO2 measurements with wearable (𝑇𝑠𝑘𝑖𝑛, 𝐻𝑅) and PIR (𝑃𝐼𝑅_𝑊𝑎𝑙𝑙) measurement, however, 

the improvement was small (4–6% increase).  

The relevant inputs for PM2.5 and PM10 estimation during standing activities were stationary PM measurements 

but did not include any contextual or physiological indicators. During sitting activities, however, physiological state 

(𝑇𝑠𝑘𝑖𝑛, 𝐻𝑅) of the participant was included as relevant input for PM exposure detection. Particularly, the skin 

temperature (𝑇𝑠𝑘𝑖𝑛) was advantageous in estimating PM10 exposure while heart rate (𝐻𝑅) was useful in estimating 

both PM2.5 and PM10 exposures. By combining IAQ with wearable and PIR measurements, adjusted R² for PM2.5 

and PM10 exposure estimation models slightly improved (3–6% increase in sitting activities). During standing ac-

tivities, having two stationary monitors increased the estimation accuracy by 14% compared to having a single 

OPC monitor. This increase, however, has little relevance as the single IAQ input was sufficient to accurately esti-

mate the exposure. 
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Table 3.5 Adjusted R² value (relevant input variables) of MLR models with combined input parameters for IAQ exposure 
estimation during sitting and standing activities. The best parameter or a combination of parameters to estimate inha-
lation exposure is colored in grey. The last row (colored as blue) indicates how much percent increase (%) was obtained 
in terms of estimation accuracy when using combined parameters compare to using a single IAQ parameter. 

Combina-
tions of  

parameters* 
(used as in-
put varia-

bles) 

Adjusted R² of composed MLR model (relevant input variables**) 

Sitting Standing 

CO2  
estimation 

PM2.5  
estimation 

PM10  
estimation 

CO2  
estimation 

PM2.5  
estimation 

PM10  
estimation 

Single IAQ 

0.26 
(Part_num, 

CO2_Front edge 
of participant 

desk) 

0.91 
(Part_num, 

PM2.5_Exhaust 
1) 

0.87 
(Part_num, 

PM10_Exhaust 
1) 

0.579 
(Part_num, 

CO2_Front edge 
of participant 

desk) 

0.442 
(Part_num, 

PM2.5_Exhaust 
1) 

0.363 
(Part_num, 

PM10_ Exhaust 
1) 

IAQ + E4 

0.492  
(Part_num, 

CO2_Desk, Ex-
haust 1, Tskin) 

0.931 
(Part_num, 

PM2.5_ Front 
edge of partici-

pant desk, Desk, 
Exhaust 1, HR) 

0.925 
(Part_num, 
PM10_ Front 

edge of partici-
pant desk, Desk, 
Exhaust 1, Tskin, 

HR) 

0.594 
(Part_num, Tskin, 

HR) 

0.503 
(PM2.5_ Front 

edge of partici-
pant desk, Ex-

haust 1) 

0.363 
(Part_num, 

PM10_ Exhaust 
1) 

IAQ + PIRs 

0.292 
(Part_num, CO2_ 

Front edge of 
participant desk, 
PIR_Wall, Desk) 

0.933 
(Part_num, 

PM2.5_ Front 
edge of partici-

pant desk, Desk, 
Exhaust 1, 

PIR_Wall, Desk) 

0.912 
(Part_num, 
PM10_ Front 

edge of partici-
pant desk, Desk, 

Exhaust 1,  
PIR_ceiling) 

0.615 
(Part_num, 

CO2_ Front edge 
of participant 

desk, PIR_Wall) 

0.503 
(PM2.5_ Front 

edge of partici-
pant desk, Ex-

haust 1) 

0.363 
(Part_num, 

PM10_ Exhaust 
1) 

IAQ + E4 + 
PIRs 

0.524 
(Part_num, 

CO2_Desk, Ex-
haust 1, Tskin, 

PIR_Wall, Desk) 

0.939 
(Part_num, 

PM2.5_ Front 
edge of partici-

pant desk, Desk, 
Exhaust 1, HR, 

PIR_Wall, Desk) 

0.925 
(Part_num, 
PM10_ Front 

edge of partici-
pant desk, Desk, 
Exhaust 1, Tskin, 

HR) 

0.594 
(Part_num, Tskin, 

HR) 

0.503 
(PM2.5_ Front 

edge of partici-
pant desk, Ex-

haust 1) 

0.363 
(Part_num, 

PM10_ Exhaust 
1) 

Improve-
ment of esti-
mation accu-

racy 
(Single IAQ vs 
combination 
of parame-

ters, percent 
increase %) 

101 3.2 6.3 6.2 13.8 0 

* IAQ: IAQ measurement from stationary IAQ monitors, E4: Physiological measurement from wearable sensor, and PIRs: Contextual 

measurement from PIR sensor 

** Part_num: number of participants, Tskin: skin temperature, HR: heart rate 
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Except a notable improvement (twofold increase) of using combined parameters in CO2 exposure estimation, the 

increase of model accuracy by combining the parameters was trivial. The regression equations of the best models 

with combined input parameters are reported as Equation S3.1-S3.5. The study also included normality test of the 

final regression models (Figure S3.7) in order to make valid future inferences of the models. Lastly, the study pre-

sented additional regression models that used single and combined parameters during combined (sitting + stand-

ing) activities (Table S3.7). As expected, the best model accuracy for estimating personal exposure to CO2, PM2.5 

and PM10 was not apparent when participants’ activities were mixed. This finding confirms the importance of 

having contextual information, particularly occupant activities, for evaluating personal exposures.  

 

3.4 Study limitations 

Our study has several limitations. Firstly, our findings are limited to a handful of selections of office setups, activ-

ities, single air change rate, and single room air distribution strategy, which means our propositions may not be 

applicable to completely different circumstances. Our models might have been different if the exhaust vent was 

not positioned near the seated reference participant, as evidenced by analyzing indoor air pollution and correla-

tion with breathing zone concentration between two different placements of exhaust (Exhaust 1 and 2). Further-

more, being limited to measuring personal exposure of one participant, the study cannot generalize expiratory 

characteristics (e.g. the geometry of a person’s nose, lung capacity, the position of a head) to all population. Phys-

ical intrusiveness of measurements to the participants remains a weakness because it could have influenced their 

movements. Lastly, experimental instruments were worn by the reference participant with a real-time camera 

recordings, which would not be possible in a real life scenario due to intrusiveness and privacy issues [209,279]. 

To tackle these limitations, one promising technology is a novel camera-based human activity detector algorithm 

named PifPaf [255] that gives information about total number of participants and estimates posture of participants 

containing 17 joints, without violating privacy issues.  

 

3.5 Conclusions 

Considering challenges of direct measurements of human inhalation exposures, it is useful to explore the effec-

tiveness of alternative methods for approximating exposure to typical indoor air pollutants. In a ventilated cham-

ber with dynamic occupancy, the study deployed three different sensing techniques (stationary IAQ, contextual 

and physiological measurements) to detect breathing zone CO2, PM2.5 and PM10 concentrations. 

The accuracy of estimating inhalation exposures was contingent upon occupant number, activities and positioning 

of sensors. Firstly, occupant number was a relevant in estimating exposures to investigated air pollutants except 

the case of PM2.5 in standing activities. A clear improvement of estimation accuracy was observed by segregating 

data into sitting and standing activities; the relative improvement was 9 – 60% during sitting compared to com-

bined activities. Vigorous standing activities had higher correlation between stationary and breathing zone CO2 

measurement, attributed to reduced spatial air pollution gradients in the chamber. On the contrary, dynamic ac-

tivities resulted in reduced correlation between stationary and breathing zone PM measurements due to the 

highly episodic and localized emissions. The CO2 and PM measurement at ceiling-mounted ventilation exhaust 

above the reference participant showed the highest correlation with the breathing zone measurement regardless 

of activities.   
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Through regression analyses, the best IAQ sensor placement for personal exposure estimation was the Front edge 

of participant desk for CO2 and the ventilation exhaust for PM. Specifically, the Front edge of the desk showed a 

moderate accuracy (adjusted R2=0.58) for CO2 inhalation exposure estimation of a standing participant. The PM 

measurements at the exhaust showed the substantial potential (adjusted R² > 0.8) as a proxy to detect personal 

exposure to PM2.5 and PM10 of a seated participant. By combining multiple inputs (environmental, physiological, 

and contextual parameters), the model estimation on inhalation exposure to CO2 improved by twofold during 

sitting activities, while the improvement was limited in case of PM (~10%). Our findings indicate that the personal 

exposure estimation could be enhanced by possessing contextual information (e.g. body posture and type of ac-

tivity), although the improvement can be trivial in specific cases. 

This study contributes to broadening the knowledge of proxy methods for detecting personal air pollution expo-

sures under dynamic occupancies, which goes beyond the existing investigations typically performed under the 

static conditions [10,12,267]. Our findings are novel since it involves contextual and physiological parameters in 

the actual exposure estimation compared to the previous studies that only investigated the correlation between 

room occupancy information and exposures [236,280,281].  

The practical recommendations on optimal monitor placement indoors could help stakeholders better understand 

a real human exposure to air pollutants and secure good IAQ in buildings. Placing a single IAQ monitor at a proper 

location can be a practical solution while minimizing the initial cost of monitor purchase and its maintenance fee. 

However, combined monitoring strategies (environmental, physiological, and contextual) could reduce potential 

errors resulting from having one monitor installed at suboptimal location. Further investigations should generalize 

the regression models under different space contexts. Future developments of automatic occupancy detections 

are needed to develop a more robust and cost-effective approach for human exposure detection and manage-

ment.  
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Abstract 

Modern health and productivity concerns related to air pollutant exposure in buildings have sparked the need for 

occupant-centric monitoring and ventilation control. The existing personal exposure monitoring is often restricted 

to stationary air quality sensors and static occupancy. This study aims to identify optimal stationary sensor place-

ment that best represents exposure to CO2, PM2.5, and PM10 under static and dynamic office occupancies. A total 

of 48 controlled chamber experiments were executed in four office layouts with variation of occupant numbers 

(2, 4, 6 or 8), activities (sitting/standing and static/dynamic), ventilation strategies (mixing/displacement) and air 

change rates (0.5 – 0.7 h-1, 2.4 – 2.6 h-1, and 3.8 – 4.2 h-1). The breathing zone concentration of a reference occu-

pant was monitored with concurrent measurements at seven stationary locations: front edge of the desk, sides of 

two desks, two sidewalls, and two exhaust vents. The proximity of sensors to the reference occupant and ventila-

tion rate/strategy were important determinants of personal exposure detection. Regression analyses showed that 

the wall- and desk-mounted CO2 sensors near the occupant (< 1 m) best captured CO2 exposure under dynamic–

standing activities (R2~0.4). The wall immediately behind the seated occupant and the ceiling-mounted exhaust 

near the standing occupant (< 1-1.5 m) were the best sensor placements for capturing exposure to particles 

(R2=0.8-0.9). Separating static from dynamic occupancy activities resulted in improved exposure prediction by 1.4-

6.1×. This study is a step towards provision of practical guidelines on stationary air quality sensor placement in-

doors with the consideration of dynamic occupancy profiles.  

 



Chapter 4     Optimal sensor placement for personal inhalation exposure detection in static and dynamic office environments 

 

56 

 

4.1 Specific objectives 

The study aimed to address the lack of research on optimal stationary sensor placement in office settings consid-

ering dynamic occupancy profiles. In order to shed light on effective stationary sensing strategies that can accu-

rately capture inhalation exposures in dynamic and static occupancy settings, the study have formulated two re-

search questions: 1) What are the suitable locations for stationary IAQ sensor placement to best approximate 

personal exposures under dynamic and static occupancy conditions? 2) How do categorical variables such as oc-

cupancies, office layouts, ventilation types, and ventilation rates impact personal exposure detection? The hy-

pothesis was that the optimal sensor placement for personal exposure detection may vary depending on the build-

ing's ventilation and occupancy characteristics. To answer these research questions, the study developed a regres-

sion model that detects personal air pollution exposures while evaluating the contributions of studied input vari-

ables: occupancies (occupant number and activities), office layouts, and ventilation strategies/rates. The study 

goal was to compare the levels of CO2, PM2.5, and PM10 in the breathing zone (BZ) with stationary air pollution 

levels using seven stationary sensors placed throughout the space. Additionally, the study developed linear re-

gression models to identify key indicators for personal exposure detection and proposed optimal placements for 

stationary IAQ sensors. The findings from this chapter could be useful for improving the accuracy of exposure 

assessment, for contributing to the advancement of guidelines for continuous IAQ monitoring, and more broadly, 

for enhancing occupant-centric building HVAC controls. 

 

4.2 Research methodology 

4.2.1 Chamber description and office layouts 

The study conducted experiments in a controlled climate chamber with a floor area of 24.8 m2 and a volume of 60 

m3. The HVAC system controlled the room air temperature and relative humidity within narrow ranges, 24.9±0.4℃ 

and 54.3±4% respectively, measured across seven stationary sensors in a climate chamber. This temperature con-

dition was higher than usual comfortable values; however, it is relatively common in offices with high internal heat 

loads and relatively low ventilation rates. The study examined two ventilation strategies, Mixing and Displacement 

ventilation, each operating with a single-pass ventilation (100% outdoor air). Under mixing ventilation, which is 

the most common air distribution method applied in commercial office buildings [282], the air was supplied and 

exhausted through the two swirl type diffusers at the ceiling of the chamber. Under displacement ventilation, the 

air was supplied from the two diffusers at the floor and exhausted through two diffusers at the ceiling of the 

chamber. The study examined three air change rates (ACH): 0.5 – 0.7 h-1, 2.4 – 2.6 h-1, and 3.8 – 4.2 h-1, and the 

values were confirmed by the CO2 tracer gas decay method [263]. The ACH of 2.4 – 2.6 h-1 matched the recom-

mendation value for office buildings (ventilation rate of 144 – 156 m3/h for four persons and a floor area of 24.8 

m2) from the European standard (EN16798-1, Office buildings; Category 1) [264]. The background particle level in 

the chamber was kept close to zero (<limit of detection) by filtering the supply air first by a two-stage media filter 

(F6 and F9) and then by an additional HEPA filter.  

The chamber was configured into four distinct office layouts: Shared office 1 (without a common space), Shared 

office 2 (with a common space), Meeting room, and Cafeteria. The floor plans and furniture organization of simu-

lated office layouts are shown in Figure S4.1 in the Supplementary Information (SI). The Shared office 1 was 

equipped with two or four office desks/chairs according to the number of occupants (two and four) with two 

cabinets. Shared office 2 had a similar workstation setup as Shared office 1 but also had a resting area with fabric 
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sofa and coffee table. The Meeting room was equipped with two desks with six office chairs with a TV screen 

placed on one sidewall. The Cafeteria was composed of two lounge tables with six lounge chairs with two cabinets 

where a coffee machine, kettle, and microwave were placed.  

 

4.2.2 Human occupants 

In each experiment, the study had the equivalent number of healthy male (50%) and female (50%) occupants to 

avoid a possible influence of sex variation on human CO2 emission [283]. The study kept the same occupant com-

position for the scenarios with the same number of occupants. The average age of the occupants was between 26 

– 34, with BMI ranging between 20.3 – 23.8 kg/m2 for female occupants, and 24.8 – 31.8 kg/m2 for male occupants. 

During the experiments, the occupants wore typical office summer clothing (average 0.4 Clo) and this factor was 

not controlled. The study selected one female occupant (28 years old, BMI = 22.4 kg/m2) as a reference occupant 

who participated in all experimental scenarios consistently for monitoring air pollutant concentrations in the BZ.  

 

4.2.3 Experimental design 

A total of 48 experiments excluding the replicates were conducted during two time periods (2020.07.13 – 

2020.08.11; and 2021.09.20 – 2021.09.29), as shown in Table 4.1. These experiments consisted of 32 runs with 

dynamic occupancy and 16 runs under static occupancy. In the experiments, the study varied occupancy number 

by 2, 4, 6 and 8 occupants depending on the office layouts. The number of human occupants was selected as 2 

and 4 for two shared office spaces and 6 and 8 for meeting room and cafeteria based on occupancy density in the 

office building of Standard EN15251 [284].  Dynamic occupancy included frequent alteration between sitting and 

standing activities, whereas static occupancy consisted of one sitting or one standing activity extended over a 

longer time period. 

Figure 4.1 illustrates the design of the two occupancy conditions, including occupancy activities and durations. As 

an example of dynamic occupancy in the Meeting room, occupants performed the following sequence of activities: 

entering the chamber, sitting and working on laptops, presentation by one person, sitting and discussing as a 

group, standing and talking, and leaving the chamber. All activities, excluding entering and leaving the chamber, 

were categorized into two activity conditions: sitting activities and standing activities. Standing activities included 

standing or walking. Furthermore, two activity intensities were examined: half and full, where half intensity means 

half of the occupants including the reference occupant executed standing activities, whereas others remained 

seated. The full activity intensity means that all occupants carried out all the sitting and standing activities to-

gether. Duration of each activity spanned from 5 to 25 min under dynamic occupancies, 30 min for static-standing 

and 60 min for static-sitting occupancies. The ethical and safety considerations of the experiments were approved 

by the Human Research Ethics Committee of EPFL. 
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Table 4.1 Experimental design associated different office layouts, occupancies and environmental conditions (total 48 
experiments). 

Occupancy 
condition 

Office 
layout 

No. of oc-
cupants 

ACH 
Activity 

intensity 
Activity type 

Ventilation 
type 

Dynamic* 

Shared 
office 1 

2 vs. 4 2.4 – 2.6 h-1 

Half vs. 
Full 

6-7 combined ac-
tivities designed 
for each office 
layout (Figure 

4.1) 
Mixing venti-
lation vs. Dis-

placement 
ventilation 

Shared 
office 2 

2 vs. 4 2.4 – 2.6 h-1 

4 3.8 – 4.2 h-1 

Meeting 
room 6 vs. 8 2.4 – 2.6 h-1 

Cafeteria Full 

Static 

Shared 
office 1 

2 
0.5 – 0.7 h-1, 
2.4 – 2.6 h-1, 
3.8 – 4.2 h-1 Full 

Sitting vs. Stand-
ing 

Meeting 
room 

6 2.4 – 2.6 h-1 

*Experiments in two shared offices and meeting room were replicated (additional 24 experiments). 

 

 

Figure 4.1 Occupants’ office activities (duration in minutes) in each simulated office layout and occupancy condition. 
Sitting activities are marked as blue shading while standing activities are marked as red shading. “Entering”, “Leaving” 
and “One-person standing/presenting” activities were excluded in data analysis. 

 

One day before each experiment, occupants received a general instruction about the experiments. Upon their 

arrival, the occupants entered the chamber and were asked to fill out the questionnaire form about their seat 

number and personal information (age, height, weight and clothing). During the experiments, the occupants sim-

ultaneously executed a sequence of scripted activities. The total duration of experiment for dynamic occupancy 
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scenarios lasted 60 minutes, whereas it lasted 30 or 60 minutes for static occupancy. After each case of the exper-

iment, all occupants exited the chamber. The chamber was sealed for 30 minutes after the experiments to monitor 

a decay of air pollutant concentrations for the purpose of 1) ensuring that the background air pollution concen-

tration prior to the subsequent experiments remained sufficiently low; and 2) evaluating the air change rate of 

each experiment based on CO2 decay method.  

 

4.2.4 Measurement protocol 

Concurrent measurements of CO2 and size-resolved particle number concentrations were conducted at seven sta-

tionary locations in the climate chamber. The locations of the sensors were largely determined based on current 

best practices [102,164,165,199–201]. Seven stationary (IDs 1-4) and one breathing zone monitoring location (ID 

5) for IAQ sensors are described in Table 4.2. The sampling interval for monitoring CO2, PM2.5 and PM10 was 1-min 

except the case of breathing zone CO2 monitoring which was kept at 0.5 seconds. 

 

Table 4.2 Sensor placements (Sensor IDs, measurement placements and parameters) 

ID 
Parameters 

monitored 
Measurement placements (No. of sensors; height) 

Measurement 

methods 

1 

CO2, 

Size-resolved 

particle number 

concentration 

Front edge of occupant desk (1; 0.7 m) 

 0.1 m from an abdomen of the reference occupant 

Non-dispersive in-

frared technique 

(CO2), 

Size-resolved par-

ticle number con-

centration detec-

tion by light scat-

tering of individ-

ual particles 

2 

Desks (2; 0.75 m) 

 Desk 1: at the reference occupant’s desk, 0.3 m from 

the reference occupant 

 Desk 2: at the desk across the reference occupant, 1 m 

from the reference occupant 

3 

Wall (2; 1.4 m) 

 Wall 1: Side wall, 3 m from the reference occupant 

 Wall 2: Side wall, 1 m immediately behind the refer-

ence occupant 

4 

Exhaust (2; 2.4 m) 

Ceiling-mounted exhaust diffusers: 

 Exhaust 1: Near the reference occupant’s head, 1.5 m 

from the reference occupant 

 Exhaust 2: Exhaust across the reference occupant, 3.3 

m from the reference occupant 

5 

 

Breathing zone, BZ (1; height range 0.95-1.3 m) 

20 cm below from the reference occupant’s nose 
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An example of sensor placement in the Shared office 1 and Meeting room and the exposure measurement in the 

BZ of the reference occupant are shown in Figure 4.2. To characterize BZ concentrations, the reference occupant 

wore an experimental jacket to which one CO2 sampling tube and one OPC were attached. Compliance with the 

experimental design was monitored and confirmed by the reference occupant. 

 

 

Figure 4.2 Example of sensor placement (A) in the Shared office 1 with two occupants and (B) in the Meeting room with 
six occupants. The lower right part of the figure illustrates exposure measurement (CO2, PM) in the BZ of the reference 
occupant. Each sensor placement is marked with an ID that is described in Table 4.2. Notes: E1 = Exhaust 1, E2 = Exhaust 
2. W1 = Wall 1, W2 = Wall 2. D1 = Desk 1, D2 = Desk 2. OPC stands for optical particle counter. 
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4.2.5 Research instrumentation 

Two types of instruments monitored stationary indoor and BZ CO2 concentrations. Six HOBO® MX CO2 Loggers 

(MX1102, Onset Computer Corporation, USA, measurement range: 0 to 5’000 ppm, accuracy: ±50 ppm) were used 

for stationary indoor CO2 measurements. Additional two high-accuracy gas analyzers (LI-850, LI-COR Biosciences 

GmbH, Germany, measurement range: 0 to 20’000 ppm, accuracy: ±1.5%) with an air pump monitored CO2 levels 

at the Exhaust 1 and at the BZ of the reference occupant. Seven stationary and one wearable OPCs were deployed 

to capture size-resolved particle number concentration. Stationary sensors included: Met One 804 (Met One in-

struments, USA, 4 channels, size range: 0.3-10 µm, accuracy: ±10% to traceable standard) at the Front edge of 

occupant desk, Desk 2, Wall 1/2, and Exhaust 1; Met One HHPC 6+ (Beckman Coulter, USA, 6 channels, size range: 

0.3-10 µm, counting efficiency: 50% at 0.3 µm (100% for particles > 0.45 µm)) at the Exhaust 2; Mini-WRAS 1371 

(GRIMM Aerosol Technik Ainring GmbH & Co., Germany, size range: 10 nm to 35 µm (10 – 193 nm: electrical 

mobility analyzer, 0.253 – 35 µm: optical light scattering sensor), >95% accuracy for single particle counting) on 

the Desk 1. The reference occupant wore the Met One 804.  

 

4.2.6 Data analysis 

Accurate assessments of CO2 exposure requires sampling in the BZ during the inhalation period only [285,286]. 

Our study followed the same method of the study of Yun et al. [287],  by selecting only a single minimum value 

within each respiratory cycle which allowed us to eliminate the effect of exhalation. Based on actual BZ CO2 meas-

urements, each respiratory cycle lasted for 2-4.0 seconds depending on the activities. By selecting only the mini-

mum sampling point within one respiratory cycle, the study could minimize the effect of human exhalation. The 

study also eliminated the lags between the instrument's actual measurement time and the air sampling moment 

of the occupant's breathing phase. Finally, the average BZ CO2 concentration was calculated as the average of the 

minimum CO2 concentrations measured from each human respiration cycle. For the measurement of particle num-

ber concentration in the BZ, the full respiration periods were considered. The PM mass concentration (µg/m3) was 

estimated from the measured number concentration by assuming that particles are in spherical shape with density 

of 1.0 g/cm³, and the mass-weighted size distribution, dM/d(log dp), is constant within each particle size group 

[268].  

In case of dynamic occupancies, the air pollution contribution of a single preceding activity to the CO2 was removed 

from the target activity by eliminating the preceding 5-min average CO2 concentration. For CO2 and PM under 

dynamic condition, where various human activities were mixed during 1h experiment, the study introduced the 

data processing approach described in [183,287]. The study firstly predicted PM values of residual decay concen-

trations after the activity has finished. The predicted concentrations were then subtracted from the actual con-

centrations to remove the impact of the former activity. For CO2, the study calculated the CO2 concentration by 

subtracting the 5-min average CO2 concentration from each time stamp. 

After data processing, the study used two sample t-test [288] to examine the difference between room average 

and breathing zone concentration of CO2, PM2.5 and PM10 in each experimented occupancy condition. Here, the 

null hypothesis was that the population mean of dataset 1 is equal to the one of dataset 2. Further, the study 

investigated Pearson correlation (r) among measured locations, where r value close to ±1 indicates strong linear 

relationship among the measured variables [269]. The study investigated the impact of categorical variables (oc-

cupancies, office layouts, ventilation types/rates) on personal exposures to CO2 and PM. To define an optimal 

sensor placement that best represents personal exposures to investigated air pollutants, the study executed a 
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multiple linear regression analysis [289] by using Python 3.10.7 with scikit-learn library [290] as a programming 

language. In the regression model presented in Figure 4.3, the independent variables included CO2, PM2.5 and PM10 

measured at six different stationary locations and categorical variables (occupancies, office layouts, ventilation 

types/rates). The dependent variable included CO2, PM2.5 and PM10 measured at the breathing zone of the refer-

ence occupant. Prior to composing a regression model, the study categorized occupant posture into two catego-

ries (sitting and standing). The study then examined the hierarchy of appropriateness of various physical and cat-

egorical variables (given as input variables) to estimate personal exposures to CO2, PM2.5 and PM10 (presented as 

output variable). The study created dummy variables for categorical variables (occupancies, office layouts, venti-

lation types/rates) and used them as inputs along with the physical variables in every regression model. Each 

regression model was trained using 80% of the acquired datasets and tested using the remaining 20%. To avoid 

any biases on the created models, all datasets are chosen at random. Then, to assess the goodness of fit (accuracy 

of the model), the study presented the R2 value of the produced regression models. The study listed mean absolute 

error (MAE) and root mean square error (RMSE) to evaluate the model performance, where a lower value of MAE 

and RMSE of a model indicates better performance of the model in terms of its ability to predict the target variable. 

Moreover, the study applied a Decision Tree Classifier, a data mining method for developing classification based 

on multiple covariates [291,292], which allowed us to evaluate the contribution of each input variable that en-

hances the exposure detection. Input parameters of Decision Tree classification were stationary CO2, PM2.5 and 

PM10 measurement at different locations and categorical variables as shown as Figure 4.3, whereas output param-

eter was inhalation exposure to investigated indoor air pollutants (CO2, PM2.5, and PM10). Decision Tree classifica-

tion model was developed under occupants’ sitting and standing scenario, respectively.  

 

 

Figure 4.3 Input and output variables used to compose the linear regression models for detecting personal exposures 
to CO2, PM2.5, and PM10. Categorical variables were introduced using dummy variables. Note: Exhaust 2 was excluded 
from the regression analysis because of its limited dataset. 
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4.2.7 Quality assurance 

All the sensors (CO2 and OPCs) were calibrated ahead of the experiments. In a controlled climate chamber, six 

HOBO® MX CO2 Loggers were inter-calibrated based on the linear correlation with the high-accuracy gas analyzer 

(LI-COR Biosciences, Model LI-850). Similarly, seven stationary OPCs (six Met One 804 and one Met One HHPC 6+) 

were compared against the high-accuracy OPC (Grimm, Mini-WRAS 1371) based on the PM mass concentrations 

(µg/m3). Correction factors obtained from the side-by-side instrument performance tests are shown in Table S4.1. 

To account for any possible changes in occupant behavior from day to day, and to improve the robustness of data 

analyses, the scenarios related to the Shared office 1, Shared office 2 and Meeting room with dynamic occupancies 

were replicated (24 out of 48 runs). The repeatability between the duplicated runs was high; the variance on 

measured IAQ parameters stayed within the range of ± 5%.  

 

4.3 Results and discussion 

4.3.1 Descriptive IAQ statistics under different categorical variables 

The study first examined spatial concentration variations of the studied air pollutant in the chamber. Figure 4.4 

shows the mean, minimum, first quartile, median, third quartile, maximum concentrations of CO2, PM2.5, and PM10 

as the room average (across all seven stationary sensors) and in the BZ, categorized by dynamic and static (sit-

ting/standing) occupancy. Across all occupancy activities, the average BZ CO2 concentrations were 500–1500 ppm 

higher relative to the room average levels (averaged across all stationary locations). Interestingly, the average BZ 

CO2 level during dynamic occupancy was 800-1000 ppm higher than the one during the static occupancies. This is 

because the combined (sitting+standing) activities during dynamic occupancy were likely associated with more 

intensive movements and increased metabolic CO2 generation, which resulted in higher BZ CO2 levels. 

Across different occupancy and activity conditions, there were substantial differences in PM concentrations. The 

average BZ PM2.5 and PM10 concentrations were 0.7–2.9 µg/m3 and 13–16 µg/m3, respectively, higher than the 

room average values (across all stationary locations) across all occupancy conditions. Through two sample t-test 

for each case of occupancy condition, the study found a significant difference between the room average and 

breathing zone concentration of CO2, PM2.5 and PM10 (p-value < 0.001) except in two cases for PM2.5 and PM10 

under static-sitting condition as shown as Figure 4.4. Particularly, static-standing activity resulted in greater room 

average and BZ PM levels compared to dynamic-combined or static-sitting activities. This is because the vigorous 

activity during static-standing condition such as stuffing the cabinets with paper boxes resulted in room average 

and BZ PM2.5 and PM10 concentrations 2 to 75 times higher compared to other sitting activities. Unlike for dynamic 

and static-standing activities, there was no significant difference between room average and BZ PM2.5 and PM10 

concentrations during the static-sitting activity due to very slight movements of occupants as proven from the t-

test (p > 0.05). 
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Figure 4.4 Boxplot of room average and BZ CO2, PM2.5 and PM10 concentrations as a function of dynamic and static 
occupancy. The results are presented for the selected scenario of Shared office 1 (two people) under the mixing venti-
lation with a fixed ACH of 2.4 – 2.6 h-1. The p-value from the t-test is star-marked.   
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Figure 4.5 shows the room average CO2 and PM10 concentrations as a function of occupant number and ACHs 

under dynamic and static occupancies. The results of PM2.5 were proportional to those of PM10. In both static and 

dynamic occupancy, the room average CO2 concentrations increased as the occupant number increased. Six-oc-

cupant scenario had ~250 ppm higher room average CO2 level compared to the two-occupant scenario. Because 

of the vastly diverse occupant activities of varying intensities, there was no discernible variation in the room aver-

age PM levels under dynamic occupancy. The study speculate that the effect of increased PM generation from 

more occupants was offset by increased air mixing and depositional losses of particles. During the static occupancy 

with reduced air mixing, however, a 1.25× increase of PM level was shown in the six-occupant scenario compared 

to the two-occupant scenario. Correlation between ACH and room average concentration in case of two occupant 

scenario was expectedly negative and mostly linear. 

 

 

Figure 4.5 Room average CO2, PM2.5, and PM10 concentration as a function of air change rate and occupant number in 
dynamic and static occupancies. Markers represent the average values while the vertical bars indicate standard devia-
tion. 

 

Additionally, the study examined the impact of ventilation rates and strategies on room average and BZ concen-

trations of the investigated air pollutants under specific occupancy scenarios. Figure S4.2 presents the room aver-

age and BZ CO2 level as a function of three ACHs during occupant sitting or standing activities. Figure S4.3 presents 

the impact of two different ventilation types (MV, DV) on room average and BZ CO2, PM2.5 and PM10 level at fixed 

ACH of 2.4 – 2.6 h-1 under the static occupancy. 
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4.3.2 Correlations between stationary and BZ sensors 

Figure 4.6 presents the correlations between stationary and BZ levels of the studied IAQ parameters during dy-

namic and static occupancies. As the study of Pei et al [102] acknowledged the importance of developing quanti-

tative relationships between BZ and the stationary CO2 sensor according to different occupancy level to ensure a 

good ventilation performance, separating occupancy (dynamic vs. static) improved the average correlations by 4-

31% compared to the combined occupancy (dynamic+static) in this study. The static occupancy had greater cor-

relations, notably for PM, whereas there was little to no difference for CO2. Under dynamic occupancy conditions, 

CO2 showed lower correlation between stationary and BZ levels compared to the PM2.5 and PM10. A Similar result 

was reported in a study of González Serrano et al [182], where 20% lower correlations were found between per-

sonal and stationary sensor in a shared office in case of CO2 compared to PM10. Under static occupancies, however, 

the correlation r between stationary and BZ PM levels were higher than that of dynamic occupancies, where the 

greater particle mass exchange associated with exogenous sources (vigorous activity of other occupants) could 

strongly influence personal exposures to PM [10]. 

The study also observed that specific sensor locations had stronger correlations with BZ levels than the others. For 

instance, the stationary CO2 levels at the occupant desk correlated well with BZ CO2 levels, and the stationary PM 

levels at Wall 2 showed a good correlation with BZ PM levels regardless of occupancy conditions. This is primarily 

due to the proximity effect – those two stationary sensors were located closer to the reference occupant than the 

other sensors.   

As shown in Figure S4.4-S4.5, the correlation r between stationary and BZ levels increased 1-4× when the study 

divided datasets into two occupant activities (sitting/standing) as opposed to the one of combined activities (sit-

ting+standing). 
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Figure 4.6 Pearson correlations between stationary and BZ measurements of CO2, PM2.5, and PM10 under dynamic and 
static occupancies. Correlation r is annotated in each heat map. 
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4.3.3 Linear regression models for personal exposure detection 

4.3.3.1 Regression models under dynamic and static occupancies 

The study constructed regression models for each sitting and standing activity under three different occupancy 

datasets: dynamic (32 runs), static (16 runs), and dynamic+static (48 runs) occupancies. The R-squared (R2), RMSE 

(Root Mean Square Error) and MAE (Mean Absolute Error) of each regression model are presented in Table 4.3. 

In general, the model for CO2 exposure detection showed lower average accuracy on testing datasets (R2 ~ 0.2) 

compared to the one of PM exposure detection (R2 ~ 0.7). This is possibly due to a specific position of the CO2 

sampling point and its proximity to the highly unsteady exhalation pathway of the reference occupant. The model 

performance of detecting CO2 exposures on testing datasets improved remarkably when the study separated oc-

cupancy conditions to dynamic and static such as static-sitting and dynamic-standing activities (R2 ~ 0.4) . Similar 

pattern was observed for PM exposure detection. During static-sitting activities, the PM2.5 and PM10 exposure 

detection models showed R2 above 0.9 on both the training and testing datasets. Figure S4.6 compared the actual 

values (measured in the experiment) with the predicted values from the developed models in the case of the 

highest model accuracy (bolded values in Table 4.3), where the lowest RMSE and MAE values were generally 

shown. For CO2 and PM the study considered the highest R2 value, rather than the lowest RMSE/MAE values, for 

selecting the best performed model in order to avoid the uncertainty of instrument error (reported in section 

4.2.5) on RMSE/MAE values. Table S4.2 lists the coefficients and intercepts of the independent variables in the 

developed models. Our results support an interpretation that it is desirable to use a distinct model that considers 

the nature of occupant activities (e.g., static versus dynamic, and sitting versus standing) in order to increase the 

accuracy of exposure detection for the investigated air pollutants.  
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Table 4.3 Evaluation of developed personal exposure detection models by using randomly selected training and testing 
datasets under sitting/standing activities in dynamic and static occupancies. Bolded values show the best accuracy (R2) 
of a model for each pollutant type during occupant sitting/standing activities. RMSE stands for Root Mean Square Error 
and MAE stands for Mean Absolute Error. 

Parameter     Occupancy 
Sitting Standing 

Dynamic Static Dynamic+Static Dynamic Static Dynamic+Static 

CO2 

R2 
Training 0.21 0.26 0.19 0.38 0.19 0.42 

Testing 0.16 0.37 0.05 0.41 0.26 0.10 

RMSE 
Training 198 251 218 174 250 215 

Testing 225 254 236 189 229 231 

MAE 
Training 162 218 180 141 197 169 

Testing 187 224 199 158 176 182 

PM2.5 

R2 
Training 0.6 0.9 0.6 0.5 0.7 0.8 

Testing 0.7 0.9 0.7 0.4 0.7 0.8 

RMSE 
Training 1.0 0.2 1.0 1.1 3.8 2.9 

Testing 1.2 0.2 0.8 1.0 3.6 2.6 

MAE 
Training 0.6 0.1 0.6 0.7 3.0 1.9 

Testing 0.7 0.1 0.5 0.7 2.6 1.8 

PM10 

R2 
Training 0.5 1.0 0.3 0.5 0.7 0.7 

Testing 0.6 1.0 0.4 0.5 0.8 0.8 

RMSE 
Training 25.2 0.6 15.0 18.4 22.1 18.9 

Testing 25.8 0.6 14.0 15.8 20.3 16.4 

MAE 
Training 13.4 0.4 8.1 11.6 16.9 14.2 

Testing 14.3 0.4 7.7 11.4 14.2 12.4 

 

4.3.3.2 Optimal stationary locations for personal exposure detection 

Using a machine learning technique called Decision Tree Classifier [293], our study assessed the contributions of 

examined input variables on the personal exposure detection. Table 4.4 reports top two optimal stationary loca-

tions for detecting personal exposures to CO2, PM2.5 and PM10 under occupant sitting/standing activities. During 

static-sitting activities, the wall- and front edge of desk- mounted CO2 sensor adjacent to the reference occupant 

best characterized CO2 exposures. During standing activities, the occupant desk and the front edge of the refer-

ence occupant desk were the best locations for detecting CO2 exposures, partly because those two locations were 

adjacent to the standing reference occupant. The wall-mounted PM sensor immediately behind the seated refer-

ence occupant and the ceiling-mounted ventilation exhaust above the reference occupant were adequate loca-

tions for approximating personal PM exposures during occupant static-sitting and dynamic-standing activities, re-

spectively. The results indicate that the distance between the target occupant and the IAQ sensor affects the 

accuracy of the inhalation exposure detection. 

Our results point toward interpretation that a precise stationary sensor placement is important in the spaces with 

highly dynamic occupancies. The current building practices and standards neither specify the optimal sensor place-

ment for each air pollutant type nor consider occupancy characteristics. For instance, both WELL v2 [145] and 

RESET v2 [144] propose to install the air quality sensor in the breathing zone height and locate them at wall or in 
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the center of the space away from operable windows and air diffusers. This placement aligns with one of our 

proposed sensor locations (wall), however, these guidelines could be improved based on contextual space char-

acteristics which take into account occupancy location and distance from the installed sensors. According to sev-

eral studies [187,188,294], the proximity of the sensors to active sources (in our case, occupants) and dominant 

occupant activities should be carefully considered as determinants when selecting an optimal IAQ sensor place-

ment. Piedrahita et al. reported that the accuracy of detecting exposures to CO improved when the occupant 

activity data with time duration was considered in the space where high spatial indoor air pollution variation ex-

isted [188]. Furthermore, Jiang et al. reported that in high-density occupancy spaces, a small distance between 

the sensor and target occupant is necessary in order to achieve an effective personalized IAQ monitoring [294]. 

The study of Pollard et al. [295] reported that the occupants’ air pollution exposures in the office area were 

strongly correlated with the occupants movements lasting more than 10 seconds, which underlines the im-

portance of considering the nature of occupant activities (static vs. dynamic).  

 

Table 4.4 Top optimal stationary sensor locations for personal CO2, PM2.5 and PM10 exposure detection under sit-
ting/standing activities in dynamic and static occupancies. L1 (Location 1) and L2 (Location 2) are ordered by the mag-
nitude of their contribution to exposure detection. Bolded sensor placements show the optimal locations in case of the 
best model accuracy. 

 
Sitting Standing 

Dynamic Static 
Dynamic+ 

Static 
Dynamic Static 

Dynamic+ 
Static 

CO2 

L1 
Front edge of 

desk 
Wall2 

Front edge of 
desk 

Desk2 Desk1 Wall1 

L2 Exhaust1 
Front edge of 

desk 
Wall2 

Front edge of 
desk 

Front edge of 
desk 

Desk1 

PM2.5 
L1 Desk1 Wall2 Exhaust1 Wall1 Exhaust1 Exhaust1 

L2 
Front edge of 

desk 
Exhaust1 Wall1 Desk2 Desk1 Desk2 

PM10 

L1 
Front edge of 

desk 
Wall2 Desk1 Desk2 Desk1 Exhaust1 

L2 Exhaust1 
Front edge of 

desk 
Front edge of 

desk 
Front edge of 

desk 
Exhaust1 Desk2 
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4.4 Study limitations 

Our findings are subject to several limitations. The study replicated multiple typical office scenarios, however, the 

results are constrained to selection of four office scenarios only. The simulated office activities were varied, but 

still unable to cover all possible human activities that may occur in office settings. Additionally, stationary sensor 

placements were abundant (7) but case-specific. This suggests that the proposed models might not be fully appli-

cable to different office contexts and stationary sensor locations. Furthermore, the reference participant wore 

measurement equipment but the obtained results could not be considered to fully represent true exposure levels 

which should be based on direct sampling in the inhaled air. Our results may also not correspond to the general 

population considering that BZ measurements were performed on a single female occupant with specific respira-

tion pace and nose/mouth geometry. Since the measurements were not taken in the breathing zone of each par-

ticipant, our results may not be representative of the overall exposures. According to several researches [216,296], 

the personal-level air pollution assessments may not accurately reflect the population exposures in the occupied 

spaces which are characterized by spatial air pollution gradients. Additional measurement in the breathing zones 

of multiple people of different sex, age can be a valuable step towards provision of more generic findings. Fur-

thermore, given the high level of measurement invasiveness to the reference occupant (i.e., wearing the bulky 

IAQ sensor), our experimental apparatus might not be relevant to real-life settings. Wearable sensors (smart 

watches) and portable IAQ sensors with user-friendly designs could be deployed in the future for more effective 

quantification of personal exposures in real office buildings [297,298].  

 

4.5 Conclusions 

Concerning limited practical solutions for detecting personal inhalation exposures directly in the breathing zone, 

it is valuable to explore the utility of optimal placement of stationary IAQ sensors. In a controlled chamber resem-

bling office settings with dynamic and static human occupancy, the study sought to identify stationary sensor 

locations that best approximate inhalation exposures to CO2, PM2.5 and PM10 of a reference occupant under a set 

of different occupancies, office layouts and environmental conditions. 

The study consistently found higher breathing zone concentrations, 500–1500 ppm for CO2, 0.7–2.9 µg/m3 for 

PM2.5, and 13–16 µg/m3 for PM10 compared to those measured by stationary sensors, highlighting the importance 

of identifying stationary sensor locations that highly correlate with the breathing zone measurements. The study 

also found a discernable impact of different ventilation types and air change rates on the BZ concentrations of the 

studied air pollutants.  

A linear regression model, characterizing personal air pollution exposures for studied office scenarios (varied com-

binations of sitting/standing activity and dynamic/static occupancy), showed that inhalation exposure prediction 

could be improved by separating static from dynamic occupant activities. By using Decision Tree Classifier, the 

study found that the sidewall immediately behind the reference occupant (< 1 m) and the desk of the reference 

occupant best approximated CO2 exposures under static-sitting and dynamic-standing condition (R2~0.4). For par-

ticles, average detection accuracy of exposure with stationary sensors across different occupancy conditions was 

higher (R2~0.7). The best stationary PM sensor locations in the best detection accuracy (R2=0.8-0.9) scenarios were 

the sidewall immediately behind the reference occupant and ceiling-mounted ventilation exhaust near the refer-

ence occupant (< 1-1.5 m).  
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The investigation of personal exposures in realistic office scenarios with a variety of stationary sensor placements 

and occupancy profiles goes beyond studies conducted under steady-state conditions with limited sensor place-

ments. The proposed regression models should be further developed by additional in-depth investigations of 

building occupancy, occupant activities and stationary sensor locations in actual office buildings.   

This thesis chapter suggests that positioning a stationary IAQ sensor in a proper location could be an effective 

strategy for estimating human inhalation exposures in office spaces. The proposed personal exposure detection 

method, which is based on the optimal deployment of stationary IAQ sensors, is intended to provide building 

practitioners with a realistic and affordable solution for attaining occupant-centric building HVAC control. Within 

the next ten years, it is expected that portable and affordable real-time air pollution sensors will be commercially 

available [299]. Until this technology is applied, the proposed method can be used for more efficient personal air 

pollution exposure detection. 
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Abstract 

Despite the advent of smart building sensors, real-time methods for capturing inhalation exposure and occupancy 

are limited. This study utilized stationary and wearable environmental sensors, along with Decision Tree and cor-

relation analyses, to determine the optimal set of indicators for approximating dynamic inhalation exposures and 

occupancy in office environments. In a 2-week field campaign in two Swiss office buildings, real-time measures of 

air temperature, relative humidity, CO2, and size-resolved particle concentrations were taken at two scales: per-

sonal – via personalized vests with sensors for personal exposure detection; and room – via stationary sensors at 

sidewalls and office desks. Occupancy and activity profiles were collected at three scales: personal – via smart-

watches; room – via visual inspections; and building – via a cloud-based location service system. A desk-mounted 

CO2 sensor in the center of an office was an effective indicator of personal exposures to CO2, PM2.5, and PM10. 

Sidewall CO2 measurements accurately captured room occupancy in open-plan offices, while desk-mounted PM10 

sensors were effective in areas with transient occupancy (e.g., cafeteria). Findings from this study aid improved 

understanding of the complex dynamics of air pollutants in offices, and could support the development of refined 

methods for smart building monitoring and ventilation control. 
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5.1 Specific objectives 

The study aimed to explore effective sets of indicators for detecting personal exposures to indoor air pollutants 

and building occupancy in real-life office settings, which have received limited attention thus far. The research 

question posed was: "What are the minimum but sufficient indicators for characterizing personal CO2, PM2.5 and 

PM10 exposure and occupancy in real office settings?" The hypothesis was that certain indicators among multi-

scale sensor data would serve as better proxies for approximating personal exposures and office occupancy com-

pared to others, consequently defining the number and type of required indicators for real-time personal air pol-

lution and occupancy monitoring in various office settings. Firstly, the study was structured to compare stationary 

and personal air quality sensor measurements. Secondly, the study investigated spatial gradients of personal ex-

posure to CO2, PM2.5, and PM10 associated with different occupant activity profiles (body posture, activity type 

and intensity). Further, through correlation and Decision Tree (DT) classification and regression analyses, the study 

sought to identify the most significant sets of indicators for personal air pollution exposure and occupancy in each 

of examined office settings. In details, the study objective was to emphasize the importance of tailoring sensor 

placement, selecting appropriate indicators, and utilizing suitable monitoring technology based on the specific 

characteristics of examined office spaces and occupancy profiles. By employing a different combination of envi-

ronmental indicators at optimal placement, the study aimed to obtain a comprehensive and accurate understand-

ing of both occupancy and personal exposure in real-life office scenarios. In this study, the challenges of accurately 

detecting exposure in relation to occupancy and occupant activities were also addressed. The importance and 

benefits of implementing real-time monitoring using customized cost-effective IAQ monitoring solutions in differ-

ent office environments are addressed to enhance IAQ management and occupant health and well-being. 

 

5.2 Research methodology 

5.2.1 Study sites 

The study conducted a 2-week long field campaign in each of the two modern Swiss office buildings located in the 

Romandie region of Switzerland in spring 2022. The HVAC system of the Building 1 was operational 24h (7 days a 

week) with occasional window opening by the building occupants, while the HVAC system of the Building 2 was 

only operated during 06-21h (5 workweek days) without the possibility of window opening. The ventilation strat-

egy of the Building 1 was mixing ventilation, which is the most common air distribution method applied in com-

mercial office buildings in Europe [282], where the air was supplied and exhausted through the diffusers at the 

ceiling. In Building 2, air was supplied through diffusers at the floor and exhausted through diffusers in the re-

strooms. The supply air temperature of both buildings was 22℃ during the measurement period. As a result of 

the work-from-home requirement during the Covid-19 pandemic, both buildings were required to regulate the 

capacity of each facility to up to 50% of its maximum occupancy, excluding the external visitors. Building 1 and 

Building 2 had similar numbers of occupants (20-30) throughout the measurement week, which corresponded to 

only a quarter of the occupancy density in typical open-plan offices as defined by Standard EN15251 [284]. Table 

5.1 presents the main characteristics of the two office buildings studied. 
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Table 5.1 Characteristics of building pairs selected as case studies. 

 Building 1 Building 2 

Construction year 2015 2008 

Area (m2) 1’257 1’194 

No of employees 47 52 

No of workstations 70 67 

Mean occupancy rate (%) 30-40 40-50 

Ventilation type* Hybrid (MV+NV) MV 

Ventilation operation 24h (7 days) 06–21h (5 workweek days) 

Ventilation standard 
compliance 

SIA 382/1 

Heating/Cooling 
Fan-coil floor heating 

Radiant ceiling (Meeting room) 
Active slab + additional fan coil in the 

raised floor 

Target areas 
Open-plan office, Meeting room, 

Cafeteria 
Open-plan office, Meeting room,  

Singular office 
*MV: Mechanical ventilation, NV: Natural ventilation 

 

As illustrated in Figure S5.1 of the supplementary information (SI) file, the three target areas in each of the two 

buildings were examined: Open-plan office (both buildings), Meeting room (both buildings), Cafeteria (Building 1), 

and Singular office (Building 2). The Open-plan offices were furnished with standard office furniture and middle-

height dividers to separate the workstations. The Singular office of the Building 2 was a cubic shaped single-occu-

pancy office with one desk and a chair. The Meeting room was used for occasional group meetings. The Cafeteria 

in the Building 2 was equipped with a coffee machine, a sink, a refrigerator, and tables for lunch.  

 

5.2.2 Human participants 

In each office building, the study recruited four office workers (“reference participants”) for personal exposure 

assessment and activity tracking. All participants were in a good health without any respiratory issues. Except for 

one case, where one participant worked in the Singular office, all participants spent most of their working hours 

in the Open-plan office. The participants' ages ranged from 25 to 62 years. The only female participant's BMI was 

22.4 kg/m2, whereas the BMI of all other male participants ranged from 24.8 to 31.8 kg/m2. The participants wore 

a regular office spring attire (average total 0.75 Clo, including wearable experimental apparatus) and this factor 

was not controlled.  

 

  



Chapter 5     Investigation of indicators for personal exposure and occupancy in offices by using smart sensors 

    

76 

 

5.2.3 Field campaign design 

To examine spatio-temporal variability of air pollution in the target areas of the two office buildings, the study 

performed a real-time stationary measurement of air temperature (Ta), relative humidity (RH), CO2, and size-re-

solved airborne particles represented by PM2.5 and PM10. Table 5.2 summarizes the air pollutants monitored, sen-

sor placements, measurement methods, instrument models and accuracy. The room-scale CO2, PM2.5 and PM10 

measurements were taken at three stationary locations (IDs 1-3) of each examined target area: a) at two different 

sidewalls and b) at a single desk. Their selection was based on the established best practice in the field 

[102,164,165,199–201]. In addition to the stationary measurements, personal-scale CO2, PM2.5 and PM10 meas-

urements were taken from four participants in each building by means of customized vests (ID 4). The personal 

vest was worn indoors during working hours. An example of the sensor placements in the Singular office of Build-

ing 2 as well as the personal vest with the mounted CO2 and PM sensors is shown in Figure 5.1. Photos of the 

instrumentation in each target area are presented in Figure S5.2.  

 

Table 5.2 Summary of IAQ sensor placement and description. 

ID 

Sensor 

place-

ment 

Description (Height) 
Parameters  

monitored 
Method Model and accuracy 

1 Wall 1 Sidewall (1.4 m) 

1) Carbon diox-

ide (CO2), also in-

cludes air tem-

perature (Ta) and 

relative humidity 

(RH) records 

2) Size-resolved 

particle number 

concentration 

1) Non-disper-

sive infrared 

CO2 sensor 

2) Optical par-

ticle counter 

that sizes par-

ticles based 

on light scat-

tering 

1) Arve, Switzerland, measure-

ment range: 0 to 5’000 ppm 

±50 ppm 

2) OPC-R2, Alphasense, 16 size 

bins, size range: 0.3 – 12.4 µm 

2 Wall 2 

Sidewall near corri-

dor/entrance (1.4 

m) 

3 Desk 

Desk at the center 

of every examined 

spaces (1.0 m) 

4 
Personal 

vest 

Fixed in the side 

pocket of the experi-

mental vest 

1) HOBO MX1102, Onset Com-

puter Corporation, USA, meas-

urement range: 0 to 5’000 

ppm, accuracy: ±50 ppm 

2) OPC-R2, Alphasense, 16 size 

bins, size range: 0.3 – 12.4 µm 
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Figure 5.1 Example of sensor placement in the Singular office of Building 2 (left), and personal CO2 and PM exposure 
measurement of the reference participants by using the personal vest (right). Each sensor placement is marked with an 
IDs which are described in Table 5.2 and in Figure S5.1. The reference participants also wore a smartwatch to report 
activity profiles through survey. 

 

The study collected three types of data regarding the building occupancy number and their activities at three 

different scales. At the building scale, a real-time building occupancy (a total number of occupants in the entire 

building) was monitored at 1-min intervals by cloud-based location services (a wireless tracking service based on 

the IP address of present electronic devices present through access points installed in the building). This system 

was unable to characterize individual-room occupancy. At the room scale, one reference participant per building 

conducted a visual inspection of the number of room occupants at the moment of counting 3× per day. At the 

individual scale, four reference participants were surveyed through smartwatches with occupant feedback appli-

cation called Cozie [300]. They were asked to complete a point-in-time survey concerning a body posture, activity 

type, and activity intensity. The detailed survey questions are presented in Figure S5.3. The survey notification was 

sent to the participants’ smartwatches hourly from 8:00 a.m. to 18:00 p.m. using a vibration feature.  

Four reference participants per building were given a general instruction on the field campaign prior to the meas-

urements. Upon arrival at the office building, the participants were instructed on how to wear the personal vest 

and how to use the smartwatch. Instruments utilized in this study had one or more features of smart sensors, 

including real-time data collection, wireless connectivity, occupancy detection, localization and tracking, energy 

efficiency, user-friendly interface, and wearable solutions. In the case of the Arve environmental sensor and oc-

cupancy sensors, data was acquired wireless via a data cloud platform (i.e. Grafana). For OPC-R2, the PM data was 

first stored in raspberry pi and transferred later to the main laptop wirelessly using Virtual Network Computing 

(VNC) for data analyses. CO2 data stored in HOBO sensors was extracted using HOBOware after the measurement, 

as the sensor itself did not have wireless capability. The ethical and safety considerations for the field campaigns 

were approved by the Human Research Ethics Committee of EPFL. 
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5.2.4 Data analysis 

The study included data collected during business hours only (07-19h) and during the time when workers wore 

their personal vests. The obtained personal CO2 and PM data was split into each target area based on the partici-

pants’ location response on their smartwatches, which corresponds to ~10% of the total amount of data collected. 

The building occupancy data acquired per minute interval was averaged into 5 minutes in order to remove noisy 

data, which corresponds to ~20% of the total amount of data collected. Python 3.10.7 with scikit-learn library 

[290] was used as a programming language.  

The study first compared stationary and personal CO2, PM2.5 and PM10 measurements. The study then investigated 

the personal air pollution exposures in relation to their activity profiles (body posture, activity type, and activity 

intensity). The study presented heat maps with Pearson correlation r values between stationary CO2 and PM10 

measurements and building and room occupancy to further examine the correlation between the investigated 

parameters. When the Pearson r coefficient is close to ±1, there is likely to be a strong linear relationship between 

the measured variables [269].  

The study introduced Decision Tree (DT) classification and regression analysis, which is a machine learning algo-

rithm that builds a tree-like structure of if-else conditions based on input indicators to make predictions about the 

class or category of a given instance [292,301]. This algorithm splits the data recursively based on the most in-

formative indicators, where the indicator that appears at the top of the tree, or at earlier splits, is considered more 

informative, as it has the most significant impact on the classification decision. DT analysis can be more useful 

than other machine learning models, such as Random Forests, in certain situations because it provides a transpar-

ent and interpretable decision-making process. This makes it easier to understand the logic behind predictions 

and identify the most influential features in the dataset. Furthermore, Decision Trees are non-parametric models, 

which means they make no assumptions about the distribution of data. This flexibility was specifically advanta-

geous for this thesis that include field tests where the data may be non-linear or have complex relationships.  

Before implementing DT analyses, datasets were prepared as clean sets while handling missing values, and encod-

ing categorical variables. In DT classification, all indicators (also called variables) defining each scenario are first 

described (as input data) prior to choosing an indicator that will serve as a decision for the given problem (output 

data) [301]. Max_depth is parameter in the Decision Tree Classifier determines the maximum depth or the maxi-

mum number of levels the decision tree can grow. While constructing DT model, the study experimented different 

max_depth values to avoid overfitting the model and to find the optimal max_depth for our models. The criterion 

parameter specifies the function used to measure the quality of a split when constructing the DT, where the study 

chose entropy as our criterion. Entropy is a measure of impurity or disorder in a set of data. When building the 

tree, the algorithm aims to reduce entropy at each split. In other words, it selects the features that minimize 

entropy, leading to a more informative and effective split. The accuracy_score in a DT classification model is a 

metric that quantifies the proportion of correctly classified instances out of the total number of instances, provid-

ing a measure of the overall prediction accuracy of the model [302,303]. For instance, an accuracy_score of 0.85 

means that the model predicted the correct class for 85% of the instances. Based on the practice in the field, the 

study defined “moderate”, “good”, and “excellent” accuracies of the DT classification model as accuracy_score of 

“0.5–0.7”, “0.7–0.9”, and “>0.9”, respectively [304–306]. Two DT classification analyses were carried out inde-

pendently to ascertain the most beneficial indicator for each output, as shown in Figure 5.2. To be utilized as inputs 

alongside the physical factors in a classification, dummy variables were generated for categorical parameters.  
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While using same input and output variable as explained above, the study conducted DT regression analysis. The 

study randomly divided the data into two parts – 80% for training and 20% for testing the model, as is frequently 

recommended [307,308]. The performance of developed regression model was presented as R2 score (coefficient 

of determination). R2 provides a measure of how well your regression model explains the variability in the target 

variable. It ranges from 0 to 1, where 0 indicates that the model does not explain any variability, and 1 indicates a 

perfect fit. The regression analyses were separately conducted for estimating the two outputs: 1) personal expo-

sure and 2) occupancy. The data collected from two Open-plan offices and two Meeting rooms from each building 

were pooled to construct separate DT models for personal exposure detection – one for the Open-plan office and 

the other for the Meeting room. 

 

 

Figure 5.2 Input and output variables for composing Decision Tree classification and regression models for detecting 
personal CO2, PM2.5, and PM10 exposures and occupancy. Categorical variables were only used as indicators in case of 
Decision Tree analysis 1.  

 

Finally, the study reported the type and number of the best indicators orderly ranked by their feature importance 

(predictive power, described by accuracy_score) for characterizing personal exposure and occupancy. This analysis 

is useful for determining the optimal number and type of indicators (sensors) in various office settings.   

 

5.2.5 Quality assurance 

All air quality sensors were calibrated ahead of the field campaign in a controlled climate chamber. Four HOBO® 

MX CO2 loggers and 18 ARVEs were inter-calibrated based on the linear correlation with the high-accuracy CO2 

analyzer (LI-850, LI-COR Biosciences GmbH, Germany, measurement range: 0 to 20’000 ppm, accuracy: ±1.5%). 

The particle counters (four OPC-R2s and 18 ARVEs) were compared against the reference high-accuracy optical 

particle counter (Mini-WRAS 1371, GRIMM Aerosol Technik Ainring GmbH & Co., Germany, size range: 10 nm to 
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35 µm (10 – 193 nm: electrical mobility analyzer, 0.253 – 35 µm: optical light scattering sensor), >95% accuracy 

for single particle counting). The PM mass concentration (µg/m3) of the reference high-accuracy particle counter 

was estimated from the measured number concentration by assuming that particles are in spherical shape with a 

density of 1.0 g/cm³, and the mass-weighted size distribution, dM/d(log dp), is constant within each particle size 

group [268]. The obtained mass concentrations were compared against those directly reported by the particle 

counters used in the study. The correction factors obtained from the side-by-side instrument performance tests 

are presented in Table S5.1. 

Previous studies [285,286] have shown that only measurements in the inhalation zone (nose or mouth) during the 

inhalation phase can accurately represent CO2 exposures. However, such measurements are practically challeng-

ing in field tests involving human participants. To understand the associated uncertainty, this study compared the 

CO2 levels measured by a sensor attached to the personal vest with the measurements taken directly in the breath-

ing zone by the high-accuracy CO2 gas analyzer (Li-COR) on one reference participant (Figure S5.2). From the high-

accuracy CO2 sensor, the study obtained the CO2 exposure results by selecting only the minimum CO2 sampling 

point within one respiratory cycle, as proposed by Yun et al. [287]. The differences between the high-accuracy CO2 

gas analyzer and the personal vest were relatively small – 30 ppm mean and 150 ppm median (Figure S5.4).  

 

5.3 Results  

Section 5.3.1 reports descriptive results comparing stationary and personal measurements in all target areas of 

the two buildings. The section 5.3.2 summarizes the variation of personal air pollution exposure results with vari-

ous occupant activity profiles. The section 5.3.3 investigates linear correlation between stationary CO2, PM10 and 

occupancy. Finally, section 5.3.4 presents DT classifications and regression models developed for characterizing 

personal air pollution exposures (section 5.3.4.1) and estimating building and room occupancy (section 5.3.4.2) 

while highlighting the optimal set of the indicators, namely their type and number. 

 

5.3.1 Comparison of stationary and personal sensors measurements 

The study firstly examined the spatial variation of air pollutant concentrations measured at the personal locations 

of four participants and at different stationary locations in each of the two office buildings (Table 5.3). The time-

averaged CO2, PM2.5 and PM10 concentrations in each space type were generally low, which the study attributed 

to the large office volume, reduced occupancy and ventilation system. The air pollutant concentrations were sub-

stantially lower than those measured in other offices [94–96,309]. Among the stationary placements, the average 

CO2 mixing ratios were in the range of 430-510 ppm range, which was within the recommended CO2 threshold 

(800 ppm) proposed by green building standards [144,145]. The average PM2.5 levels were in the range of 2-5 

µg/m3 and PM10 in the range of 3-8 µg/m3, which were kept lower than the annual limits for PM2.5 and PM10 (<5 

µg/m3 and <15 µg/m3, respectively) recommended by the World Health Organization (WHO) [147]. The study ob-

served ~1.5× higher average stationary PM10 levels in the Cafeteria in which occupant activities were more dy-

namic compared to the Meeting room.  

 As shown in Table 5.3, the average personal concentrations were 1.2–1.3× higher than stationary concentrations 

for CO2 and 1.8–2.5× higher for PM10, as would be expected due to localized respiratory emissions (CO2) and coarse 

particle emissions through shedding and resuspension (PM10). The variability (SD) of CO2 and PM10 levels at the 
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personal level was 2–3× higher and 6–11× higher, respectively, than that of stationary placements, as expected 

for highly unsteady microenvironments around a human body [13,191,310]. The study further presents box plot 

statistics of CO2, PM2.5 and PM10 levels at nine stationary sensor placements (Figure S5.5) and at the personal levels 

of four reference participants (Figure S5.6) in each building.  

 

Table 5.3 Average ± standard deviation concentrations of CO2, PM2.5 and PM10 recorded with three stationary sensors in 
each target area and with personal vests of four participants in each building. The reported values refer to business 
hours only. 

Sensor placement CO2 (ppm) PM2.5 (µg/m3) PM10 (µg/m3) 

Building 1 

Stationary  

Cafeteria 430 ± 40 4.7 ± 2.4 7.7 ± 4.0 

Open-plan office 490 ± 50 4.4 ± 2.1 7.2 ± 3.5 

Meeting room 480 ± 70 3.0 ± 1.6 4.9 ± 2.7 

Personal vest  630 ± 150 2.6 ± 2.5 12.4 ± 18.0 

Building 2 

Stationary  

Singular office 440 ± 50 2.1 ± 1.3 3.4 ± 2.1 

Open-plan office 490 ± 50 2.4 ± 1.5 3.9 ± 2.5 

Meeting room 510 ± 70 3.0 ± 2.9 5.0 ± 4.7 

Personal vest 590 ± 100 1.6 ± 1.6 10.4 ± 23.6 

 

5.3.2 Personal exposure in relation to occupant activities 

The study compared the air pollution exposure information collected from the reference participants' personal 

vests with their activity profile data (body posture, activity type and activity intensity) collected from their smart-

watches. Figure 5.3 shows that the personal PM10 concentrations of four participants were generally strongly in-

fluenced by the participants’ body posture, activity type and activity intensity. Compared to sitting, standing re-

sulted in 1.5-1.8× higher average personal PM10 levels. These concentrations were also significantly higher com-

pared to the whole-day time-averaged concentrations reported in Table 5.3. The higher intensity of occupancy 

activities is usually associated with standing activities, which are linked to increased dermal emissions of particles 

from humans and resuspension from the floor and furniture [120,311–313]. The average personal PM10 levels of 

the participants during the lunch/coffee and call activities were 1.5-1.9× higher than during the basic work activity.  

In Figures S5.7 and S5.8, the study presents the average and SD of the personal PM2.5 and CO2 concentrations of 

four participants in relation to their activity profiles. The results for PM2.5 were relatively similar to those reported 

for PM10. Interestingly, for CO2, the personal-level concentrations were higher during sedentary activities. The 

study hypothesizes that localized respiratory emissions of CO2, combined with reduced air mixing during sitting, 

resulted in stronger spatial gradients around the participants, as has been similarly documented in previous stud-

ies [10,13,286].  
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Figure 5.3 Average and standard deviation of personal-level PM10 concentration in relation to point-in-time activity pro-
files of four participants (Participant No. 1-4) in the two office buildings. 
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5.3.3 Correlation analysis between stationary CO2, PM10 and occupancy 

CO2 and PM10 were selected to be correlated with occupancy because CO2 is a good marker of human metabolic 

emissions and PM10 is primarily derived from the resuspension of coarse particles due to human activities. Figure 

5.4 provides heat maps illustrating the correlation values (annotated as "r") between the examined parameters, 

including building and room occupancy, CO2, and PM10, for the three target office areas in Building 1. The correla-

tion heat maps for Building 2 are shown in Figure S5.9.  

Overall, the correlation between building occupancy (Building_occ) and the stationary CO2 or PM10 levels in indi-

vidual rooms was limited (r ~ 0.3), indicating that the specific room environmental conditions do not linearly en-

compass the number of occupants in the entire building. However, the study observed an average correlation 1.6× 

higher between stationary CO2/PM10 levels and room occupancy (Room_occ) than those of building occupancy. 

Notably, in the Open-plan office and the Meeting room, room CO2 levels exhibited a significant correlation (r > 

0.7) with Room_occ. In the Cafeteria, where occupancy changes frequently, the PM10 levels measured at the desk 

(lunch table) showed a strong correlation (r > 0.7) with room occupancy, while the correlation between occupancy 

and CO2 levels was low (r < 0.3). The occurrence of negative correlation coefficients (r values) might arise from 

discrepancies between the timing of occupancy detection and environmental sensor readings, or from the heter-

ogeneity in the distribution of air pollutants within office spaces. 

Overall, the placement of stationary sensors within a space significantly influenced the correlation with room oc-

cupancy, with up to 40% variation for CO2 and up to 350% variation for PM10. This highlights the importance of 

sensor placement for accurate room occupancy detection. Room CO2 levels proved to be a useful proxy for room 

occupancy in spaces where there was sufficient time for CO2 to accumulate due to prolonged occupancy, such as 

in the Open-plan office and Meeting room. Conversely, in spaces like Singular offices occupied by a single individ-

ual, the desk-mounted PM10 sensor outperformed the CO2 sensor in inferring the room occupancy. 
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Figure 5.4 Heat maps annotated with correlation r values between building occupancy (Building_occ), room occupancy 
(Room_occ), CO2 and PM10 levels at three different stationary placements of each examined target area of Building 1. 
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5.3.4 Decision Tree classification and regression analyses 

5.3.4.1 Decision Tree classification and regression for personal exposures 

Classification models were developed to estimate personal air pollution exposures to CO2, PM2.5 and PM10 in each 

of the office area studied. Room-stationary Ta, RH, CO2, PM2.5 and PM10 levels measured at three stationary loca-

tions of each target area and activity profile data of four participants (body posture, activity type and activity 

intensity) were utilized as the inputs, while the personal-level CO2, PM2.5 and PM10 concentrations were used as 

the output variables. Data from two Open-plan offices and two Meeting rooms in Building 1 and Building 2 were 

combined and used to create separate DT models for the Open-plan office and the Meeting room. Figure 5.5 

shows the number and type of indicators used for characterizing personal CO2, PM2.5 and PM10 exposures in the 

Open-plan office along with their accuracy scores. On the x-axis, the input parameters are sequentially numbered 

from 1 to 18 based on their relative importance in contributing to the model's accuracy. On the y-axis, the accuracy 

score is plotted against the number of indicators utilized in the model. Figure S5.10 shows the corresponding 

results for the Meeting room, the Singular office, and the Cafeteria. Along with all indicators, the study presents 

the minimum but sufficient set of indicators that surpass the defined “good” accuracy (accuracy_score > 0.7). 

Overall, the performance of the generated DT models was strong (R2 > 0.9) on both the training and testing da-

tasets, except for the Cafeteria where the average model performance on the testing data was relatively low (R2 

~ 0.5). Figure 5.5 shows that the stationary CO2 sensor positioned at the occupant desk in the center of the room 

was the most effective indicator for detecting the inhalation exposures to CO2, PM2.5 and PM10 in the Open-plan 

office. In contrast to PM2.5 exposure prediction, where one stationary monitor was sufficient, an additional moni-

toring of CO2 levels in the target room (on the sidewall) was required to achieve a sufficient accuracy (accu-

racy_score > 0.7) in detecting inhalation CO2 and PM10 exposures. This is because CO2 and PM10 are major occu-

pancy-associated air pollutants, and thus contribute to higher spatial gradients as shown in Table 5.3 and in other 

studies [10,95,182,314,315]. Furthermore, the study results indicate that in the Open-plan office, the inclusion of 

stationary RH sensors could further enhance the accuracy of exposure detection. However, the study results show 

that the room air pollution data (CO2 and PM10) were on average 1.1-4x more useful than the indoor climate data 

(Ta, RH) for capturing personal air pollution exposures to CO2, PM2.5 and PM10 in terms of individual predictive 

power (Table S5.2). 

Figure S5.10 illustrates that achieving “good” accuracy in exposure estimation (accuracy_score > 0.7) was feasible 

with one or two environmental indicators among CO2, RH, and PM10 levels in the Meeting room and the Singular 

office. In the Cafeteria, at least four to five indicators, including occupant activity profiles were required to achieve 

"good" accuracy in estimating personal CO2 and PM10 exposures. A stationary PM10 sensor has proven to be par-

ticularly effective in detecting personal exposure to both CO2 and PM10. This effectiveness can be attributed to the 

strong correlation observed between PM10 levels and occupant activities [10,183,316,317]. This highlights the im-

portance of monitoring both air quality indicators and occupant activities for estimating personal air pollution 

exposures in the spaces with transient occupancy spaces (e.g., cafeteria).
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Figure 5.5 Number and name of the indicators and their accuracy scores for characterizing personal CO2, PM2.5 and PM10 exposures in Open-plan office. The data from two Open-
plan offices of Building 1 and Building 2 were used in constructing presented DT model. The indicators are named based on either type/placement of environmental sensors or 
occupant activity profiles, and they are ranked in order of their importance, from the highest (left) to the lowest (right). The vertical dashed lines indicate the minimum but sufficient 
set of indicators that can capture personal exposures to CO2, PM2.5 and PM10 with a “good” accuracy (accuracy_score > 0.7). The estimation performance (R2) of proposed Decision 
Tree regression model in the best case (accuracy_score > 0.7) using train (80%) and test (20%) dataset is shown as a table.  
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5.3.4.2 Decision Tree classification and regression for occupancy 

The study also developed the DT classification and regression models for estimating building and room occupancy 

(number of occupants) based on stationary environmental sensors. The datasets were split into each target area 

of the two examined buildings. The number and type of indicators used for characterizing occupancy at building 

and room scale are presented with their accuracy scores in Figure 5.6 (Open-plan office) and Figure S5.11 (Meeting 

room, Singular office, and Cafeteria). On the x-axis, the input parameters are sequentially numbered from 1 to 15 

based on their relative importance in contributing to the model's accuracy. On the y-axis, the accuracy score is 

plotted against the number of indicators utilized in the model. 

The DT model exhibited an average accuracy that was higher when estimating room occupancy (R2 = 1.0) than 

when estimating building occupancy (R2 = 0.85). This difference in accuracy can be attributed to the utilization of 

a cloud-based location software for capturing the number of occupants in an entire office floor, which resulted in 

poorer estimation accuracy compared to direct visual inspection of room occupancy. Furthermore, the building 

occupancy encompassed short-term external visitors, potentially undermining the correlation between occupancy 

and environmental conditions, whereas room occupancy predominantly pertained to the number of occupants 

engaged in prolonged stays in specific areas. 

The study findings indicate that accurate occupancy estimation can be achieved at both building and room levels 

using a single indicator, namely CO2 levels, with a consistently "good" accuracy (accuracy_score > 0.7). Specifically, 

Figure 5.6 shows that the installation of a single CO2 sensor on the sidewall of the Open-plan office can effectively 

estimate the number of occupants at both room and building levels. The detection of room occupancy had "ex-

cellent" accuracy (accuracy_score > 0.9) in all the offices examined. This finding supports previous studies that 

have also established the reliability of CO2 levels as a measure of occupancy in office buildings [210,318,319].  

In addition to the sidewall-mounted CO2 sensor being the most reliable single indicator, Figure S5.11 demonstrates 

that a PM10 sensor mounted on a desk was also effective in detecting the number of occupants in the Meeting 

room, Singular office, and Cafeteria. These findings align with previous studies that have explored the relationship 

between coarse particle levels and occupancy patterns [120,320–322]. 

Table S5.3 lists the key indicators in order from the highest to the lowest contribution to the estimation accuracy 

of the models. It shows that the stationary Ta and RH levels could also be useful for inferring the building occupancy 

in offices, but were the less optimal indicators by 70% and 40% respectively compared to the stationary CO2 or 

PM10 levels. 
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Figure 5.6 Number and name of the indicators and their accuracy scores for characterizing occupancy at building and 
room scale in Open-plan office of Building 1 and Building 2. The indicators are named based on the type and placement 
of the sensor, and they are ranked in order of their importance, from the highest (left) to the lowest (right). The vertical 
dashed lines indicate the minimum but sufficient set of indicators that can capture personal exposures to CO2, PM2.5 
and PM10 with a “good” accuracy (accuracy_score > 0.7). The estimation performance (R2) of proposed Decision Tree 
regression model in the best case (accuracy_score > 0.7) using train (80%) and test (20%) dataset is shown as a table.  
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5.4 Discussions 

5.4.1 Practical insights for exposure and occupancy detection 

The study findings provide valuable insights into exposure and occupancy detection in offices by using proxy indi-

cators. The results could be used to drive cost-effective decision making related to the importance of sensor place-

ment and the number of sensors. Desk-mounted CO2 sensors were particularly useful for detecting air pollution 

exposures in the Open-plan office, as they were located close to the breathing zone of seated occupants. A single 

sidewall-mounted CO2 sensor accurately indicated room occupancy in areas with prolonged human presence, such 

as open-plan offices and meeting rooms. Monitoring additional CO2 or RH levels at the sidewall or desk in open-

plan offices did not meaningfully enhance the accuracy of occupancy estimation. Desk-mounted PM10 sensors 

proved valuable for inferring room occupancy and personal PM10 exposures in areas with episodic occupancy, such 

as the Cafeteria, by capturing fluctuations in particulate matter concentrations caused by occupant presence and 

activity. The study findings revealed that while indoor climate data controlled by HVAC systems, such as room Ta 

and RH, were not as effective as air pollution data in exposure or occupancy detection, they offered supplementary 

information. Since office buildings commonly have Ta monitoring in place, leveraging this existing dataset can be 

valuable in combination with air pollution data to improve the accuracy of personal air pollution exposure and 

occupancy detection.  

In the future, wearable sensors such as smart watches and user-friendly portable IAQ sensors may be utilized to 

enhance the accurate measurement of personal exposures in office buildings [323,324]. Until wearable technology 

reaches a more advanced stage, the study can continue to rely on stationary sensors for quantifying personal 

exposures effectively in real office buildings. The study recommends the installation of a single stationary monitor 

with a CO2 sensor on the sidewall in spaces with prolonged occupancy (e.g., open-plan offices), as a comprehensive 

and cost-effective solution for personal air pollution detection. In office spaces with dynamic occupancy changes, 

monitoring occupant activities along with CO2 or PM10 concentrations at stationary locations can provide valuable 

insights. By utilizing a combination of sidewall-mounted CO2 sensors, desk-mounted PM10 sensors, and indoor 

climate data, a comprehensive and accurate understanding of personal exposure and occupancy can be achieved 

in all office spaces. 

The implications of this study extend beyond immediate monitoring benefits, offering valuable insights for various 

building stakeholders for workspace design and building HVAC management. Firstly, the findings underscore the 

significance of adopting an occupant-centric approach, facilitated by the utilization of smart sensors. These sen-

sors provide real-time personal exposure and occupancy data at different scales, enabling building designers and 

facility managers to optimize spatial layouts, ventilation strategies, and resource allocation, ultimately fostering 

healthier and more comfortable office environments that cater to the diverse occupant needs. Secondly, this study 

introduces a data-driven decision-making paradigm for office settings. By leveraging insights from sensor data, 

building owners and facility managers can implement targeted interventions based on evidence, such as adjusting 

ventilation, encouraging appropriate occupant action (e.g. window opening), or controlling sources. Ultimately, 

building occupants could gain improved indoor comfort, health, and well-being, enhancing productivity and satis-

faction. Building owners benefit from optimized energy use through improved HVAC control, potential cost sav-

ings, enhanced IAQ, higher tenant retention, and a positive real estate market reputation. However, this study 

also recognize potential challenges. Initial costs for smart sensor deployment, data management, and mainte-

nance may pose a concern. Integrating new technologies could necessitate organizational and employee adjust-

ments. Ensuring data privacy and security is essential due to ethical and regulatory considerations. Hence, careful 
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planning and stakeholder engagement are necessary to maximize positive impacts while mitigating potential neg-

atives, as with any technology implementation. 

 

5.4.2 Study limitations 

Several limitations could interfere with generalizing the study results. The study was restricted to the two case 

study buildings with a particular orientation, layout, interior design, and occupancy profile; therefore, the findings 

may not be generalizable to other types of office buildings. The present study has solely focused on indoor envi-

ronmental factors within the office buildings, without concurrent monitoring of the corresponding outdoor envi-

ronmental conditions. The results could not be extrapolated to the whole population due to the limited number 

of reference participants (four per building). Personal-level measurements could misrepresent the true exposure, 

as measurements were not made directly in the breathing zone, as reported in several studies [216,296,325]. The 

study accounted for this effect for CO2 by supplementary measurements directly in the breathing zone (Figure 

S5.4). In the context of an Open-plan office (Figure 5.5), the study found that the Decision Tree model for exposure 

detection had a higher R2 value on the testing dataset compared to the training dataset. This discrepancy could 

be due to the Decision Tree model being overly complex, leading it to capture noise within the training data and 

consequently struggle to make accurate generalizations when applied to the test data. Additionally, the experi-

mental solution may not be applicable in a real office setting given the high degree of measurement intrusiveness 

to the participants (e.g., a wearing a personal vest in offices). Wearable sensors (smart watches) and portable IAQ 

sensors with user-friendly designs could be employed in future studies to analyze personal exposures in real office 

settings [297,298]. 

 

5.5 Conclusions 

Occupancy and occupant activities are drivers of spatial and temporal indoor air quality (IAQ) variations which 

pose challenges for accurate exposure detection. In this study, both personal exposures and office building occu-

pancy were approximated by real-time measurements at three scales: personal (using customized IAQ vests and 

smartwatches), room (using stationary IAQ sensors and visual inspections), and building (using a cloud-based mon-

itoring system). By combining the multi-scale sensor data with Decision Tree classification and regression analyses, 

the study identified the most effective indicators of personal inhalation exposure and occupancy.  

The study found that occupancy triggers strong spatio-temporal gradients of CO2 and PM10, emphasizing the im-

portance of ubiquitous real-time monitoring in office buildings. Participants' body posture, activity type, and ac-

tivity intensity were strongly linked to personal exposure. Correlation analyses revealed that room CO2 levels can 

act as a reliable indicator of room occupancy in spaces with prolonged occupancy (e.g., open-plan offices), while 

desk-mounted PM10 sensors are more effective in determining occupancy in areas with transient occupancy (e.g., 

cafeteria). The DT analyses showed that the most cost-effective solution for both personal exposure and occu-

pancy detection was to install an environmental monitor, including CO2 sensor, on the sidewalls in the areas with 

prolonged occupancy. Indoor climate data (Ta, RH) were less effective indicators for detecting exposures and oc-

cupancy than air pollution data, with up to 4× less predictive power.  
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This research provides real-time estimation of personal exposure and occupancy using smart sensing technologies 

in offices, offering insights to improve IAQ management and promote healthier working environments. The find-

ings support the implementation of occupant-centric building ventilation strategies to enhance IAQ, occupancy 

management, and energy efficiency. By utilizing indirect indicators such as IAQ metrics for occupancy detection, 

privacy concerns associated with traditional methods (e.g., camera-based systems) can be minimized.  

Moving forward, there are several avenues for future research. One area of exploration could involve validating 

the findings in different office spaces with various ventilation rates/strategies to assess the generalizability of the 

identified indicators. Additionally, analyzing occupant activity profiles with consideration of gender and age could 

lead to more customized HVAC solutions tailored to specific demographic groups. Further investigations could also 

delve into the potential integration of real-time sensor data with building automation systems, enabling dynamic 

adjustments in response to dynamic occupancy patterns and needs. Furthermore, investigating the long-term fi-

nancial implications of enhanced indoor air quality on occupant health and productivity has the potential to quan-

tify the broader significance of occupant-centric ventilation strategies. This analysis could provide a monetary 

perspective that encourages stakeholders to invest in these strategies, recognizing the tangible benefits they offer. 

As smart sensing technologies continue to evolve, future studies could bring the potential of advanced data ana-

lytics and machine learning techniques for even more precise exposure and occupancy predictions.  

In conclusion, this study offers guidance for building management stakeholders on the optimal indicators for ac-

curate detection of personal air pollution exposures and occupancy, while considering cost-effectiveness. These 

insights are instrumental in establishing occupant-centric ventilation control strategies in energy-efficient office 

buildings, ultimately contributing to healthier and more productive indoor environments. 
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 Discussions  
This thesis significantly contributes to understanding inhalation exposures and occupancy dynamics in buildings, 

with a particular focus on detecting human air pollution exposures and occupancy in diverse office environments. 

While the findings offer practical implications for field application, it is important to acknowledge certain limita-

tions that should be considered for future implementation. Section 6.1 provides serves as a general discussion to 

integrate and mutually analyze the results and findings from Chapters 3, 4, and 5, addressing the key shortcomings 

identified in the thesis. Section 6.2 presents broader perspectives on research and practical implications. 

 

6.1 Integrative discussions and limitations 

Indoor spaces are subject to spatio-temporal variations in pollutant concentrations due to factors such as occu-

pancy patterns, ventilation, and emission sources. The significant difference between inhalation exposure of an 

occupant and room air pollution levels was also identified. Regarding occupancy dynamics, the thesis has demon-

strated the importance of differentiating static from dynamic indoor environments and considering occupancy 

profiles when characterizing exposures to CO2, PM2.5, and PM10. Previous studies [12,191] have also emphasized 

the significance of occupant activities on evaluating personal air pollution exposures. Therefore, a more accurate 

assessment of inhalation exposure requires accounting for these variations in occupancy dynamics. 

The investigation conducted in this thesis has highlighted the limitations of assuming indoor spaces to be well-

mixed. For instance, the detected spatio-temporal variation of indoor air pollution in office environments (both 

controlled chamber experiments and field tests) indicates that air pollutant concentrations can vary significantly 

according to different zones of a building and occupancy dynamics. Hence, the assumption of well-mixed air in 

indoor environments might oversimplify the actual distribution of pollutants. To address this, multi-zone modeling 

for DCV based on parameters [326,327] can be considered to optimize ventilation air volumes of individual room 

and primary air handling unit of office buildings. This approach divides spaces into different zones based on ven-

tilation characteristics, sources and occupancy density. CFD simulation can be also helpful to be combined with 

the actual measurement indoors to provide more accurate representations of pollutant dispersion and help in 

identifying areas of higher exposure risk [105,328,329]. By understanding spatio-temporal variations with appro-

priate measures, building managers can implement targeted IAQ strategies for specific zones to improve inhala-

tion exposure estimation and overall IAQ. 

The thesis underscores the feasibility and effectiveness of proxy methods for estimating inhalation exposures to 

CO2, PM2.5 and PM10 in typical office environments. These proxy methods, including stationary IAQ monitoring, 

wearable physiological measurements, and human presence detection, offer valuable alternatives to traditional 

stationary IAQ measurements. For instance, the significant advancement in CO2 exposure detection, especially 

when combining human physiological parameters, can be attributed to human metabolism, as both human CO2 

emission and physiological markers such as skin temperature and heart rate exhibit a positive linear relationship 

with human metabolic rate [330,331]. By combining multiple sensing techniques, stakeholders can gain a better 
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understanding of real human exposure to air pollutants and enhance IAQ management in buildings. Optimal place-

ment of a single stationary air quality monitor can be a practical solution, minimizing initial costs and maintenance 

fees. However, the adoption of combined monitoring strategies, integrating environmental, physiological, and 

contextual parameters, can further minimize potential errors resulting from suboptimal monitor placement. 

The thesis's findings align with previous researches [11,102,186–188] on sensor proximity to the reference occu-

pant and ventilation rate/strategy, which influence exposure detection accuracy, while highlighting the signifi-

cance of sensor positioning when it comes to accurately measuring indoor air pollution and exposure levels. The 

proximity effect observed between the sensor and the target occupant emphasizes the need for thoughtful and 

strategic sensor placement. Placing sensors nearby target occupants in areas with prolonged occupancy can yield 

more representative measurements of inhalation exposure levels in office buildings, thus enabling better-in-

formed decisions for IAQ management. For instance, identified best locations for stationary air quality sensors 

were desk-mounted CO2 sensors and ceiling-mounted exhaust for PM sensors near target occupant (< 1–1.5 m), 

can accurately approximate personal exposures in simulated office environments. This proposition complies with 

recommended sensor placement by previous studies [102] and common practices [203,204]. As previous research-

ers noted [332–334], incorrect sensor placement can lead to erroneous HVAC adjustments and result in occupant 

discomfort and increased energy demand. Therefore, implementing these optimal sensor locations can lead to 

more efficient and cost-effective methods for estimating human inhalation exposures while securing human 

health and well-being in offices.  

The thesis discusses the minimum yet sufficient sets of indicators that can be applied in real-life office settings, 

overcoming the limitations of controlled chamber studies mentioned in Chapters 3 and 4. These indicators serve 

as practical recommendations for inhalation exposure and occupancy detection in various office environments 

while considering the cost-effectiveness of sensors and implementation feasibility. The thesis proposes the most 

effective sets of indicators that can be used to approximate inhalation exposure and occupancy in each of the 

various office settings. Desk-mounted CO2 sensors were found to be particularly valuable in detecting exposures 

in open-plan offices, located close to the breathing zone of seated occupants, and strongly correlated with per-

sonal exposure to pollutants such as CO2, PM2.5, and PM10. Therefore, in spaces with often prolonged occupancy, 

the thesis recommends the installation of a single stationary environmental sensor at the sidewall, including CO2 

measurement, as it offers a comprehensive and cost-effective solution for personal air pollution detection. This 

proposition aligns with previous studies [335,336] proposing real-time CO2 measurement as a cost-effective solu-

tion for controlling HVAC in commercial buildings. However, in areas characterized by sporadic occupancy patterns 

like cafeterias, achieving accurate exposure detection necessitated four times the number of indicators, including 

PM10 levels and dominant occupancy profiles, compared to open-plan offices. As other researchers proved the 

strong correlation between occupant activity and coarse particles [10,92,114,123,178], PM10 monitoring in addi-

tion to CO2 measurements in areas with fluctuating occupancy may be beneficial for improving the exposure de-

tection accuracy.  

For occupancy detection, the thesis found that CO2 measurements at the sidewall accurately indicated occupancy 

(occupant number) at room and building scale in areas with prolonged human presence, such as open-plan offices. 

Therefore, placing a sidewall-mounted CO2 sensor can serve as a reliable indicator of occupancy in office buildings. 

This agrees with previous studies[210,254,337–340] that highlighted the effectiveness of using CO2 for building 

occupancy detection. Monitoring additional CO2 or relative humidity levels at the sidewall or desk did not signifi-

cantly enhance the accuracy of occupancy estimation. Therefore, to minimize costs and simplify implementation, 

a single sidewall-mounted CO2 sensor in open-plan offices could be sufficient for occupancy detection. In areas 
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with transient occupancy, such as cafeterias, desk-mounted PM10 sensors proved valuable in inferring both room 

occupancy and personal PM10 exposures mainly because they capture fluctuations in PM concentrations caused 

by occupant presence and activities [10,182]. Thus, in spaces with dynamic occupant changes, desk-mounted PM10 

sensors can provide valuable insights for both occupancy and personal exposures to coarse particles. 

While indoor climate data controlled by HVAC systems, such as room air temperature and relative humidity, were 

not as effective as air pollution data for exposure or occupancy detection, they still offer supplementary infor-

mation. Leveraging existing air temperature and humidity data commonly monitored in office buildings could help 

enhance the accuracy of personal exposure and occupancy detection when combined with IAQ data. 

The results of this thesis provide valuable insights into the detection of human air pollution exposures and occu-

pancy dynamics in office environments. While the primary focus has been on office spaces, the principles and 

methodologies presented here can be expanded and applied to different types of mechanically ventilated build-

ings. The protocols and insights gained from this thesis can serve as a foundation for investigating and optimizing 

IAQ management strategies, particularly for better understanding of inhalation exposures and occupancy dynam-

ics in various built environments, such as schools, hospitals, commercial spaces, and residential buildings. By 

adapting and validating the identified indicators and sensor locations, the applicability of these findings can be 

extended to a broader range of indoor settings, contributing to improved air quality and occupant well-being in 

diverse built environments. 

While this thesis significantly contributes to the understanding of inhalation exposures and occupancy dynamics 

in buildings, it is essential to acknowledge several limitations. Firstly, the proposed models and investigations are 

limited to simulated office environments and a few case buildings, and the applicability of identified indicators 

and sensor locations in real-world office settings still need a validation. Varying ventilation strategies and occupant 

activities in different buildings may influence the effectiveness of the proposed methods. In addition, although 

the thesis explores the potential of proxy methods for exposure estimation, such as stationary IAQ monitoring, 

wearable physiological measurements, and human presence detection, it is essential to recognize that these meth-

ods may have limitations in capturing localized and episodic air pollutant emissions from human. Further research 

is needed to explore the performance of these proxy methods under diverse real-world conditions to assess their 

reliability and accuracy in estimating human air pollution exposures in office environments. The development of 

improved exposure estimation models considering dynamically changing occupancy and spatial air pollutant gra-

dients is a promising avenue, but it requires additional research and refinement with more varying office condi-

tions. A judicious approach to implementing various models for the detection of inhalation exposure and occu-

pancy is essential to mitigate the risk of overfitting. Generalizing the regression models across various spatial con-

texts is necessary to ensure the wider applicability and robustness of the proposed approach. Additionally, privacy 

concerns are paramount in the development of automatic occupancy detection systems. The limitations of the 

thesis include limited sample size, specific participant characteristics, exploration of various breathing zone air 

pollution measurement methods, which should be addressed in future research. Future investigations must ad-

dress these concerns while striving to establish a more comprehensive and secure approach for accurately evalu-

ating human air pollution exposure and occupancy detection in buildings.  



Chapter 6     Discussions 

 

95 

 

6.2 Perspectives for research and practice 

Section 6.2.1 – 6.2.2 include research perspectives towards achieving occupant-centric building HVAC control and 

practical implications of the thesis findings for building practitioners for real-world applications. 

 

6.2.1 Research perspectives towards the future of occupant-centric building HVAC controls  

Moving closer towards achieving occupant-centric HVAC in the future, this thesis emphasizes the importance of 

balancing costs and accuracy while taking air pollution exposures of building occupants and ventilation rate of 

building into account. MacNaughton et al. [341] explored the economic, environmental, and health implications 

of enhanced ventilation in office buildings. They demonstrated that current building ventilation standards based 

on minimum requirements overlook the significant human health benefits associated with increased ventilation 

rates. The research highlighted the positive impact of enhanced ventilation on human decision-making perfor-

mance, leading to increased productivity among office workers. Specifically, by increasing the ventilation rate, the 

performance of workers improves by 8%, equivalent to a $6500 increase in employee productivity each year. Ad-

ditionally, enhanced ventilation is associated with reduced absenteeism and improved overall health. Thus, 

achieving a balance between costs and human health requires prioritizing the health benefits associated with 

enhanced ventilation rates and detection accuracy. 

Figure 6.1 depicts the qualitative relationship between inhalation exposure and various factors influencing it. 

Among these factors, the primary ones are ventilation rate and costs associated with ventilation operation and 

sensors. Higher ventilation rates result in increased operational costs, as indicated by previous researches 

[342,343] as depicted as double-dashed orange line in Figure 6.1. Ventilation cost includes installation, operation 

and maintenance fee. Whereas, the costs of sensors (dotted orange line) rise linearly with the number of sensors 

installed in the building unit, where relatively lower cost is expected than the one of building ventilation. Hence, 

the combined cost (solid orange line) incurred from ventilation operation and sensors follows an exponential re-

lationship. The accuracy of inhalation exposure estimation (green line) does not strictly follow a linear trend and 

may exhibit an exponential pattern when a sufficient number of indicators (sensors) are effectively utilized in the 

space.  

When deciding on ventilation and sensor costs, it is essential to strike a balance between reducing occupant inha-

lation exposure and improving exposure detection accuracy. These two parameters are critical for maintaining a 

healthier indoor environment. Figure 6.1 highlights the optimal region (yellow shaded area) for the total costs 

where both low inhalation exposure and good exposure detection accuracy can be achieved. Therefore, building 

stakeholders should carefully consider costs, inhalation exposure risks as a health indicator, and detection accu-

racy, aiming to position themselves within the yellow shaded area in Figure 6.1 based on their budget and desired 

outcomes. 

Relying solely on cost and exposure considerations may lead to limited accuracy in detecting inhalation exposures, 

which can negatively impact IAQ management and human health. On the other hand, prioritizing detection accu-

racy and exposure risks might result in exaggerated operational costs and increased energy consumption. Hence, 

finding the right balance is essential for effective and efficient IAQ management and occupant-centric building 

HVAC control solutions. 
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Figure 6.1 Qualitative representation of decision-making factors in indoor ventilated spaces. The y-axis represents ven-
tilation rate (m3/h), while the two x-axes display cost and inhalation exposure. The blue line depicts the accuracy of 
inhalation exposure estimation according to the number of sensors, and the green line indicates inhalation exposure of 
building occupant (a health indicator) depending on the ventilation rate. The double-dashed orange line represents the 
cost of ventilation operation sourced from previous studies [342,343]. The dotted orange line shows sensor costs de-
pending on the number of sensor purchased and installed in building unit. The solid orange line represents the combined 
cost incurred from both ventilation and sensors installed in building unit. Optimal region for total cost is the yellow 
shaded area, where the balance between inhalation exposure risks and exposure detection accuracy is found. The yel-
low shaded area highlights the optimal region that building stakeholders should target, taking into account ideal costs 
for sensor and ventilation that secure low inhalation exposure risks and good exposure estimation accuracy to ultimately 
secure healthier office environments and occupant health and well-being.  

 

In order to achieve a balance between costs and accuracy regarding indoor air pollution exposure monitoring and 

management in the future, several areas require attention. Firstly, it is imperative to prioritize generalization and 

standardization. This entails developing estimation models and sensor placement recommendations that can be 

effectively applied across diverse office contexts, accounting for variations in building layouts, occupancy charac-

teristics, and ventilation systems, which partly has been proposed in this thesis. The further establishment of 

standardized guidelines and protocols can aid building practitioners in implementing efficient strategies.  

In addition to prioritizing generalization and standardization, addressing the scalability and real-world testing of 

the techniques developed in this thesis is essential for advancing occupant-centric building HVAC controls. To 

conduct large-scale field-based data collection and experimental testing across population in multiple cities world-

wide, several key innovations and technologies would be needed.  

Firstly, the deployment of a comprehensive network of advanced sensors capable of continuously monitoring IAQ 

in real-time is necessary. These sensors should be integrated into a centralized system that can collect, process, 

and analyze data from various locations simultaneously. Additionally, leveraging the IoT technology and cloud 

computing infrastructure can facilitate remote monitoring and data management.  
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Secondly, to ensure widespread participation and data collection, collaboration with building owners, managers, 

and occupants would be essential. Developing user-friendly interfaces and mobile and wearable applications for 

occupants to report their experiences and preferences regarding IAQ can enhance engagement. Strategies such 

as incentivizing participation through rewards could also encourage active involvement in data collection.  

Lastly, to analyze the collected data on a global scale, machine learning and artificial intelligence (AI) algorithms 

could be employed to identify patterns, correlations, and optimize HVAC control strategies. This would require 

access to powerful computing resources and data analytics expertise. Collaborations with research institutions 

and technology companies specializing in AI and data analytics could be beneficial. 

Furthermore, conducting comprehensive cost-effectiveness analyses is equally important before developing oc-

cupant-centric HVAC solutions [344]. This analysis should consider both the costs of ventilation operations and 

expenses related to sensors. Additionally, assessing the impact of these measures on health-related costs is es-

sential [341,345–347]. By evaluating the long-term health benefits and potential energy savings resulting from 

enhanced air pollution exposure management, stakeholders can make well-informed decisions to strike a balance 

between costs and desired benefits (outcomes) [348].  

Lastly, promoting collaboration and interdisciplinary research is paramount. Bringing together researchers, build-

ing practitioners, HVAC professionals, and other stakeholders can integrate expertise from various fields. This col-

laborative approach fosters the development of innovative solutions that consider the intricate dynamics of IAQ, 

human exposures, occupant health, energy efficiency, and cost implications. By addressing these aspects, health-

ier indoor environments while finding the optimal balance between costs and benefits can be achieved. 

Achieving occupant-centric building HVAC controls on a global scale would necessitate a multi-faceted approach 

involving advanced sensor networks, IoT technology, cloud computing, user engagement strategies, and collabo-

ration with relevant stakeholders. By systematically tackling these technological and logistical challenges while 

incorporating cost-effectiveness analysis, it becomes possible to rigorously test and implement the innovative 

techniques proposed in this thesis across diverse office environments worldwide, ultimately leading to healthier 

indoor spaces. 
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6.2.2 Practical implications  

The thesis has provided valuable insights into the estimation of personal air pollution exposures and occupancy 

detection in office settings. While each study has its own limitations, when considering the findings collectively, 

several general implications and potential avenues for further research can be proposed as follows: 

 

1. Contextual and Physiological Parameters: The inclusion of contextual and physiological parameters, such 

as occupant numbers, activities, body posture, presence and absence, in the estimation of human inhala-

tion exposure has shown promising results. The studies highlight that considering these factors alongside 

traditional environmental monitoring can improve the accuracy of exposure estimation. This implies that 

future research should continue exploring the integration of cost-effective contextual and physiological 

parameters in exposure models, potentially leveraging technologies such as low-cost wearable sensors 

and camera-based human activity detection algorithms. 

2. Integration of Multiple Indicators and Sensing Techniques: Combining multiple indicators, including en-

vironmental, physiological, and contextual parameters, has demonstrated the potential to improve the 

accuracy of exposure estimation. Pantelic et al. [349] emphasized the significance of IoT sensing at urban, 

building, and personal scales, highlighting the need for data convergence across all three scales. The thesis 

also advocates for the integration of information across different scales, which holds great potential for 

advancing the understanding of the relationship between the environment and individuals. For instance, 

the thesis demonstrates the potential of integrating multiple sensing techniques, such as stationary IAQ 

monitoring, wearable devices, and occupancy sensors, to obtain a comprehensive understanding of in-

door air pollution and occupancy dynamics. This perspective encourages the development of advanced 

sensor technologies, data fusion techniques, and IoT-based systems for real-time IAQ monitoring and 

management, contributing to a more sustainable and healthier indoor environment.  

3. Sensor Placement and Monitoring Strategies: The optimal placement of stationary IAQ sensors has been 

identified as a key factor in approximating personal exposure and occupancy. The studies provide insights 

into the effective locations for stationary IAQ sensors, such as desk edges, sidewalls, and ventilation ex-

hausts depending on the target air pollutant type for exposure estimation in specific office setting. These 

findings can inform stakeholders, including building practitioners, on the practical strategies for sensor 

deployment to enhance exposure and occupancy detection accuracy. Further investigations should aim 

to generalize the estimation models and sensor placement recommendations in different office contexts, 

considering variations in space/furniture layouts, occupancy profiles, and ventilation strategies. 

4. Improved Exposure Estimation: The thesis highlights the potential of proxy methods and optimal sensor 

placement for enhancing the estimation of personal inhalation exposures to air pollutants. One of the key 

findings emphasized in the research is the importance of sensor proximity to the target occupants and 

the understanding of dominant occupant activities within the room, as these factors play a crucial role in 

accurately estimating exposure levels. By addressing these aspects, the thesis holds practical implications 

for comprehending and mitigating health risks associated with indoor air pollution in office settings. Fur-

ther, the research sheds light on the spatio-temporal variation of indoor air pollutants, an aspect that is 

often overlooked in conventional monitoring strategies. Indoor environments are dynamic [228,350], and 

pollutants can exhibit significant variation in concentration across different locations and time periods. 



Chapter 6     Discussions 

 

99 

 

Ignoring this variation can lead to a misrepresentation of the actual exposure levels experienced by indi-

viduals. The thesis proposes strategies to account for the spatio-temporal dynamics of pollutants while 

acknowledging the problematic nature of relying solely on well-mixed representation of indoor environ-

ments, where previous researches [10,184] also addressed the same concern. By considering both sensor 

proximity and spatio-temporal variation, the research opens up new avenues for achieving more accurate 

exposure estimations. This improved accuracy, in turn, enables a more comprehensive calculation of po-

tential health impacts arising from indoor air pollution. Armed with such precise estimations, policymak-

ers and building managers can develop targeted strategies to mitigate health risks effectively.  

5. Real-time Occupant-centric IAQ Monitoring: The thesis emphasizes the importance of occupant-centric 

ventilation strategies and real-time monitoring in promoting healthier work environments. The optimal 

sensor placement recommendations and insights from the thesis can inform building managers and stake-

holders about effective approaches to improve IAQ monitoring and apply adequate HVAC control. This 

includes the identification of key indicators with appropriate sensor placements for detecting personal 

exposure and occupancy, facilitating targeted interventions to mitigate possible air pollution risks. 

6. Real-Life Applications: While the studies of this thesis were conducted in controlled experimental settings 

and two case study buildings, the implications extend to real-life office environments. The proposed 

methods and strategies can provide useful insights for personal air pollution exposure monitoring to lev-

erage HVAC control strategies in real-life office buildings. As wearable sensors and low-cost stationary 

and portable IAQ devices become more advanced and affordable, their deployment in real office settings 

can enhance the measurement of personal exposures and facilitate more effective exposure detection. 

7. Cost Effective Applications for Stakeholder Guidance: The thesis findings have practical implications for 

stakeholders involved in managing indoor air pollution and occupant health. The optimal placement of 

stationary IAQ sensors, as recommended by the thesis, can guide building practitioners in cost-effective 

strategies for exposure and occupancy detection. These insights can be tailored to the development of 

occupant-centric ventilation control strategies, aiming to improve air quality, occupancy monitoring, and 

energy efficiency in office buildings. 

 

Overall, the thesis contributes to advancing the understanding of proxy methods, optimal sensor placement, and 

the integration of smart sensing technologies with effective indicators for accurate detection of personal inhala-

tion exposures and occupancy dynamics in office environments. The implications and perspectives presented in 

the thesis provide a foundation for further research and offer practical insights for stakeholders, policymakers, 

and building practitioners to improve IAQ, exposure management, occupant health and well-being in office build-

ings.  
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 Conclusions 
 

7.1 Research questions addressed  

This thesis encompasses holistic investigation of the effectiveness of proxy methods with optimal sensor place-

ment and indicators for estimating personal inhalation exposures to air pollutants and occupancy dynamics in 

office environments. It includes exploration of multiple sensing techniques, including stationary IAQ monitoring, 

wearable devices, and occupancy sensors, to improve the accuracy of exposure estimation under both static and 

dynamic occupancy profiles. The thesis proposes the method of identifying the most effective sets of indicators at 

the proper sensor locations for detecting personal exposure and occupancy, aiming to enhance IAQ management 

in office environments through reduced inhalation exposures and to promote health of office workers while bal-

ancing the cost and accuracy of sensors The research questions outlined in section 2.6 of this thesis are answered 

in the following manner. 

 

[Research Question 1]  

 “What combination of physical parameters (environmental, contextual, and physiological) best repre-

sents inhalation exposures to CO2, PM2.5, and PM10 in a simulated office environment with dynamic 

occupancy profiles?” 

 

In order to address the research question posed, this thesis explored different proxy sensing techniques for esti-

mating inhalation exposure to CO2, PM2.5 and PM10 in simulated office environments. The study aimed to address 

the limitations of traditional stationary air pollution measurements by examining the feasibility of alternative 

methods under dynamically changing occupancy profiles. The study conducted experiments in a controlled climate 

chamber that mimicked various office setups. Human participants performed scripted sitting and standing office 

activities while three proxy sensing techniques were tested: stationary IAQ monitoring, individual monitoring of 

physiological status using wearable wristbands, and human presence detection using PIR sensors. The results 

showed that segregating data based on occupant sitting and standing activities led to improved accuracy in expo-

sure estimation for CO2 and PM by 9-60%. Stationary CO2 and PM monitors positioned at specific locations, such 

as the front edge of the desk and ceiling-mounted ventilation exhaust respectively, estimated inhalation exposure 

accurately. Combining three sensing techniques (stationary IAQ monitoring, wearable wristbands for physiological 

monitoring, and PIR sensors for human presence detection) improved the detection of CO2 exposure by twofold, 

while the improvement for PM exposure detection was smaller (~10%).  
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[Research Question 2]  

 “What are the suitable stationary IAQ sensor placements that can best approximate personal CO2, PM2.5 

and PM10 exposures under dynamic and static occupancy conditions?” 

 “How do categorical variables (occupant number, activity, office layout, ventilation type, ventilation 

rate) influence personal exposure detection?” 

 

This thesis addressed two research questions posed above while focusing on detecting personal inhalation expo-

sures using stationary IAQ sensors in office environments. Firstly, it explored suitable sensor placements that best 

approximate personal CO2, PM2.5, and PM10 exposures under dynamic and static occupancy conditions. The study 

was conducted in a controlled climate chamber that mimicked various office settings, considering factors like oc-

cupant number, activities, and ventilation type. Breathing zone concentrations were found to be higher than those 

recorded by stationary sensors, emphasizing the importance of identifying sensor locations closely correlated with 

breathing zone exposure levels. Optimal sensor locations were identified, including the sidewall immediately be-

hind the occupant (<1 m) and the ceiling-mounted ventilation exhaust (<1-1.5 m from the occupant), showing the 

highest correlation with breathing zone CO2 and PM10 measurements, respectively. 

Secondly, the thesis investigated how categorical variables such as occupant number, activity, office layout, ven-

tilation type, and ventilation rate influence personal exposure detection. The study found that separating static 

from dynamic occupancy and differentiating between sitting and standing activities were important in improving 

the accuracy of inhalation exposure estimation. As the number of occupants increased, indoor air pollution levels 

also increased. The air change rates exhibited a linear negative correlation with the room average concentration 

of CO2, PM2.5, and PM10. Additionally, the proximity of sensors to target occupants and the ventilation rate/strat-

egy played a significant role in detecting personal exposure accurately. Overall, the research provides valuable 

insights into the effectiveness of stationary IAQ sensors for approximating personal inhalation exposures, guiding 

optimal sensor placements, and understanding the impact of various factors on exposure detection in office envi-

ronments. 
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[Research Question 3]  

 “How do spatial gradients of personal CO2, PM2.5, and PM10 exposure in offices relate to various occu-

pant activity profiles?” 

 “Which indicators serve as the most effective proxies for personal air pollution exposure and occupancy 

in different office types?” 

 “What are the minimum but sufficient indicators for characterizing personal exposures and occupancy 

in real office settings?” 

 

This thesis addresses three research questions posed above by focusing on the integration of smart sensing tech-

niques at personal, room, and building scales to identify effective indicators for inhalation exposure and occupancy 

detection in real office settings while considering cost-accuracy aspects of the deployed sensors. Firstly, to explore 

the spatial gradients of personal CO2, PM2.5, and PM10 exposure in offices related to various occupant activity 

profiles, real-time measurements were conducted at personal, room, and building scales. The study utilized cus-

tomized IAQ vests, smartwatches, stationary IAQ sensors, visual occupancy inspections, and a cloud-based occu-

pancy monitoring system. Through correlation and Decision Tree classification and regression analyses, the most 

effective sets of physical indicators for personal exposure detection and occupancy detection in different office 

settings were identified. The study revealed that occupancy triggers spatial-temporal air pollution gradients, high-

lighting the significance of real-time monitoring on both IAQ and occupancy profiles. 

Secondly, to determine the most effective proxies for personal air pollution exposure and occupancy in different 

office types, the thesis recommended specific sensor placements and monitoring strategies for different areas 

within office buildings. For instance, in open-plan offices with prolonged occupancy, the installation of a single 

environmental sensor including CO2 monitoring at the sidewall was found to be the most cost-effective way to 

capture both exposure and occupancy, which can be utilized for future occupant-centric HVAC control to maintain 

healthier office environments. 

Last but not the least, the minimum but sufficient sets of indicators for detecting personal air pollution exposure 

and occupancy in various office settings include monitoring CO2 levels at sidewalls in areas with prolonged occu-

pancy (e.g. open-plan offices), desk-mounted PM10 sensors for areas with episodic occupancy (e.g. cafeterias), and 

a combination of indoor climate data and air pollution data to improve detection accuracy. These findings provide 

valuable insights for optimizing sensor placements and monitoring strategies for better characterizing inhalation 

exposure to indoor air pollution and occupancy dynamics in real office environments. 
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In conclusion, this thesis has undertaken a comprehensive investigation of the effectiveness of proxy methods, 

optimal sensor placement, and indicators for estimating personal inhalation exposures to air pollutants and occu-

pancy dynamics in office environments. By exploring multiple sensing techniques, including stationary IAQ moni-

toring, wearable devices, and occupancy sensors, the thesis aimed to improve the accuracy of exposure estimation 

under both static and dynamic occupancy profiles. The thesis successfully identified the most effective sets of 

indicators and sensor locations for detecting personal exposure and occupancy, contributing to enhanced IAQ 

management in office settings while considering the balance between cost and accuracy of sensors. The findings 

of this thesis emphasize the importance of real-time monitoring of IAQ and occupancy profiles to accurately esti-

mate personal inhalation exposures in office environments. By implementing the recommended sensor place-

ments and monitoring strategies, building stakeholders can achieve better IAQ management and promote the 

health and well-being of office workers. Furthermore, these insights contribute to the ongoing development of 

occupant-centric HVAC control systems for maintaining healthier office environments while optimizing resource 

utilization. Overall, this thesis represents a significant step forward in advancing the understanding of monitoring 

personal inhalation exposures and occupancy dynamics in office spaces, and its recommendations provide valua-

ble guidance for researchers, policymakers, and building managers aiming to create healthier and more sustaina-

ble indoor environments. 

 

7.2 Future research outlook 

The thesis conclusions highlight the importance of considering different indoor environment representations, oc-

cupancy profiles, and sensor positioning, selection of effective indicators while developing occupant-centric HVAC 

solutions. The thesis sets a foundation for further research in the field of inhalation exposure and occupancy as-

sessment, offering practical insights for building managers and stakeholders to enhance occupant well-being in 

office buildings. Following, the research conducted in this thesis opens up several avenues for future investiga-

tions, addressing further need for development of proper assessment methods for indoor air pollution exposures 

and occupancy dynamics in various building types. The following research outlook outlines key areas for future 

exploration: 

 Real-world Office Settings Validation: The applicability and effectiveness of the identified indicators and 

sensor locations need validation in real-world office environments. Future studies should explore differ-

ent types of both mechanically and naturally ventilated buildings, considering varying ventilation rates, 

air distribution strategies, occupant activities, and spatial contexts to assess the reliability and accuracy 

of the proposed methods and amend the developed protocols according to condition of interests. 

 Proxy Methods Performance: Further research is needed to explore the performance of proxy methods, 

such as stationary IAQ monitoring, wearable physiological measurements, and human presence and ac-

tivity detection, in capturing localized and episodic emissions in real-world office settings. Investigating 

their reliability and accuracy under different indoor air pollution scenarios is essential in refining exposure 

estimation models. 

 Improved Exposure Estimation Models: The development of improved exposure estimation models while 

utilizing and combining various assessment methods (direct/indirect) should be a focus for future re-

search. For instance, further research can combine CFD simulation of inhalation exposures in office envi-

ronments in addition to the physical measurement with human subjects in offices. This enables opening 
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up the opportunities of testing various conditions of dynamic occupancy and spatial air pollutant gradi-

ents, which ultimately enhances the accuracy of exposure assessments in indoor environments. These 

models could consider various parameters apart from physical environment, such as human activity and 

metabolism, to better predict personal air pollution exposures. 

 Spatio-Temporal Variations and Multi-Zone Modeling: Understanding spatio-temporal variations in in-

door air pollution is essential. Future studies should consider adopting multi-zone modeling and CFD sim-

ulations to optimize ventilation strategies in individual rooms and air handling units for various building 

types. 

 Generalizing Regression Models and Assessment Protocols: To ensure wider applicability, future re-

search should focus on generalizing regression models and protocols for assessing inhalation exposure 

and occupancy dynamics across various spatial contexts and building types. Understanding how different 

factors influence indoor air pollution dynamics in diverse settings leads to more robust and adaptable 

exposure estimation approaches. 

 Sensor Positioning Strategies: Further investigations should focus on optimizing sensor positioning strat-

egies in real-world indoor environments. Identifying the best locations for stationary IAQ sensors, consid-

ering the proximity effect and various occupant activities, leads to more effective and cost-efficient meth-

ods for estimating human inhalation exposures. 

 Sample Size and Participant Characteristics: Addressing the limitations of sample size and specific partic-

ipant characteristics is essential for future research. Further studies should strive to include a more di-

verse range of buildings and occupants (different groups of sex, age, and ethnicity) to ensure the findings 

can be applied broadly. 

 Automatic Occupancy Detection:  Future research should consider the advancement of automatic occu-

pancy detection systems, building upon existing researches [210,235,351–354]. More importantly, ensur-

ing that privacy concerns are adequately addressed is essential for establishing a more comprehensive 

and secure approach for occupancy detection in buildings. 

 Practical Applications in Diverse Built Environments: The insights gained from this study can serve as a 

foundation for investigating and optimizing IAQ management strategies in various built environments, 

such as schools, hospitals, commercial spaces, and residential buildings. Future research should extend 

the applicability of the identified indicators and sensor locations to contribute to improved air quality, 

occupant health and well-being in diverse indoor settings. 

 

In conclusion, future research in this field should focus on validating the identified indicators and sensor locations 

in real-world office settings, improving exposure estimation models, addressing limitations, and considering the 

complexities of various indoor environments. By exploring these areas, the field of inhalation exposure and occu-

pancy dynamic assessments can advance significantly, leading to more effective strategies for enhancing indoor 

air quality and protecting occupant health. 
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Figure S3.1 Floor plan and monitor placement IDs (1 -7). The dimension of the space and supply/exhaust diffuser place-
ment are all the same in every space as shown in the Shared office 1 (2 Participants). The Shared office 1 consisted of 
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two or four office desks/chairs depending on the number of participants (two and four), and kettle and coffee machine 
on two cabinets. In Shared office 2, the office desk/chair setup was similar to Shared office 1 but it had a common space 
where the participants could sit on fabric sofa and have coffee/tea from a table. The Meeting room (six participants) 
was equipped with two desks with six office chairs and TV screen to simulate actual group meeting activity. The Cafeteria 
(six participants) was composed of two lounge tables in the middle of the space with six chairs with two cabinets to 
place coffee machine, kettle, and microwave. 

 

 

(i) Activity scenario for Shared office 1 (w/o common space) 

  

(ii) Activity scenario for Shared office 2 (w/ common space) 

 

(iii) Activity scenario for Meeting room 

 

(iv) Activity scenario for Cafeteria 

 

Figure S3.2 Participants’ office activities (duration in minutes) in each space type. Sitting activities are marked as blue 
shading while standing activities are marked as orange shading. “Entering”, “Leaving” and “One-person standing/pre-
senting” activity were excluded in regression analyses. 
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Figure S3.3 Calculation of inhaled CO2 concentration during 30-second breathing cycle of the reference participant. The 
red dots were taken into account for calculating inhaled CO2 concentration. 

 

 

 

Figure S3.4 Calculated CO2 concentration based on subtracting former 5-minute CO2 concentration from each time 
stamp. (e.g. calculated CO2 concentration at 40 minutes: measured CO2 concentration at 40 minutes – average meas-
ured CO2 concentration from 35 to 39 minutes) 
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Figure S3.5 Calculated PM mass concentration for each participant activity by using forecast curve based on the data of 
the former activity and removing the gap between measured and predicted PM value from the measured PM value. 
Forecasted PM has been processed using the FORECAST.ETS function (target_date, values, timeline) in Excel, where the 

contribution of forecasted PM has been removed from measured PM so that the study could minimize the contribution 

of former activity on the latter PM value from another activity. 

 

 

 

Figure S3.6 Comparison of mean CO2 and PM10 concentration at two exhausts for combined activities (sitting and stand-
ing) in the space. The higher PM10 concentration at the Exhaust 1 compared to the Exhaust 2 was likely attributed to 
vigorous activities (i.e., stuffing the cabinet with paper boxes) that occurred near the Exhaust 1. 
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(i) Normal P-P plot for CO2 exposure estimation model (left: sitting activities, right: standing activities) 

 

 

(ii) Normal P-P plot for PM2.5 exposure estimation model (left: sitting activities, right: standing activities) 
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(iii) Normal P-P plot for PM10 exposure estimation model (sitting activities) 

 

Figure S3.7 Normal P-P plot of composed regression models: test for normal distribution of residuals. Test for PM10 
exposure estimation model in standing activities was excluded. 
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Table S3.1 List of experimental runs, associated occupancy and environmental conditions. 

Experimental ID Space type No. of participants ACH T, RH 

1 

Shared office 1 

2 

2.4 - 2.6 h-1 24.9±0.4 ℃, 54.3±4 % 

2 2 

3 4 

4 4 

5 

Shared office 2 

2 

6 2 

7 4 

8 4 

9 
Meeting room 

6 

10 6 

11 Cafeteria 6 

  

 

Table S3.2 Adjustment factors to mutually correct IAQ instruments. Reference instrument is shown in the bracket. 

Monitor  

placement 
Adjustment factors 

ID Description CO2 
PM 

PM2.5 PM10 

1 

Front edge 

of partici-

pant desk 

1.177 0.8565 1.618 

2 Desk 1.124 1 (reference, Mini-WRAS 1371) 

3 Exhaust 1 1 (reference, LI-850) 1.1021 1.4971 

4 
Breathing 

zone 
0.986 1.2435 1.6801 

 

 

Table S3.3 Correlation r comparison between the two Exhausts and the Breathing zone. 

Stationary monitor 
location 

Sitting activities Standing activities 

Breathing zone CO2 Breathing zone PM10 Breathing zone CO2 Breathing zone PM10 

Exhaust 1 -0.344** 0.931** -0.526** 0.606** 

Exhaust 2 -0.517** 0.551** -0.491** -0.106 

Difference 
(Exhaust 2 compared to 
Exhaust 1, percent in-

crease %) 

50.3 % -40.8 % -6.7 % -82.5 % 

**. Correlation is significant at the p=0.01 level (2-tailed) 
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Table S3.4 Regression coefficients for estimating CO2, PM2.5, and PM10 exposure using one stationary IAQ monitor and 
participant number. Notes: B stands for unstandardized regression coefficient, Std. Error for unstandardized standard 
error of the B, β for standardized regression coefficient, t for t-value, and p for p-value. 

Model coefficientsa,b,c 

Variable* B Std. Error β t p 

(Constant) 1983.328 214.483  9.247 0.000 

Participant_number -281.51 29.675 -0.828 -9.486 0.000 

CO2_ Front edge of participant desk 0.829 0.25 0.289 3.316 0.002 

a. Dependent variable: CO2_Breathing_zone  
b. R²adj = 0.579 (N = 65, p = 0.000) 
c. CO2 exposure estimation model for standing activities   

* B: unstandardized regression coefficient, Std. Error: unstandardized standard error of the B, β: standardized 

regression coefficient, t: t-value, p: p-value 

 

 

Model coefficientsa,b,c 

Variable* B Std. Error β t p 

(Constant) -0.007 0.182  -0.037 0.971 

Participant_number 0.172 0.043 0.081 3.954 0.000 

PM2.5_Exhaust 1 1.795 0.039 0.949 46.319 0.000 

a. Dependent variable: PM2.5_Breathing_zone  
b. R²adj = 0.91 (N = 220, p = 0.000) 
c. PM2.5 exposure estimation model for sitting activities   

* B: unstandardized regression coefficient, Std. Error: unstandardized standard error of the B, β: standardized 

regression coefficient, t: t-value, p: p-value 

 

   

 

Model coefficientsa,b,c 

Variable* B Std. Error β t p 

(Constant) 1.098 3.482  0.315 0.753 

Participant_number 2.497 0.833 0.073 2.997 0.003 

PM10_Exhaust 1 1.652 0.043 0.929 38.294 0.000 

a. Dependent variable: PM10_Breathing_zone  
b. R²adj = 0.91 (N = 220, p = 0.000)   
c. PM10 exposure estimation model for sitting activities   

* B: unstandardized regression coefficient, Std. Error: unstandardized standard error of the B, β: standardized 

regression coefficient, t: t-value, p: p-value 
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Table S3.5 Regression coefficients for estimating CO2 exposure using one input [PIR_Wall (1.4 m)] from PIRs and partic-
ipant number under standing activities.    

Model coefficientsa,b 

Variable* B Std. Error β t p 

(Constant) 1842.901 270.202  6.82 0.000 

Participant_number -265.276 28.731 -0.78 -9.233 0.000 

PIR_Wall (1.4 m) 831.186 275.675 0.255 3.015 0.004 

a. Dependent variable: CO2_Breathing_zone  
b. R²adj = 0.568 (N = 65, p = 0.000)    

* B: unstandardized regression coefficient, Std. Error: unstandardized standard error of the B, β: standardized 

regression coefficient, t: t-value, p: p-value 

 

 

 

Table S3.6 Regression coefficients for estimating CO2 exposure using two inputs [Tskin + HR] from wearable wristband 
and participant number under standing activities.    

Model coefficientsa,b 

Variable* B Std. Error β t p 

(Constant) -9517.293 3809.79  -2.498 0.015 

Participant_number -170.997 35.304 -0.503 -4.844 0.000 

Tskin 305.227 100.885 0.323 3.025 0.004 

HR 9.832 2.968 0.287 3.313 0.002 

a. Dependent variable: CO2_Breathing_zone  
b. R²adj = 0.594 (N = 65, p = 0.000)   

* B: unstandardized regression coefficient, Std. Error: unstandardized standard error of the B, β: standardized 

regression coefficient, t: t-value, p: p-value 

 

 

 

  



Supporting Information 

114 

 

Table S3.7 Adjusted R² value (relevant input variables) of MLR models with combined input parameters for IAQ exposure 
estimation during combined activities. The last row (colored as blue) indicates how much percent increase (%) was ob-
tained in terms of estimation accuracy when using combined parameters compare to using a single IAQ parameter. 

Combinations of pa-

rameters* 

(used as input varia-

bles) 

Adjusted R² of composed MLR model (relevant input variables**) 

Combined activities 

CO2 estimation PM2.5 estimation PM10 estimation 

Single IAQ 

0.326 

(Part_num, CO2_Front edge of 

participant desk) 

0.861  

(PM2.5_Front edge of partici-

pant desk, Desk, Exhaust 1) 

0.842  

(PM10_Front edge of partici-

pant desk, Desk, Exhaust 1) 

IAQ + E4 

0.474 

(Part_num, CO2_Front edge of 

participant desk, Tskin, HR) 

0.862 

(PM2.5_Front edge of partici-

pant desk, Desk, Exhaust 1) 

0.845 

(PM10_Front edge of partici-

pant desk, Desk, Exhaust 1) 

IAQ + PIRs 

0.338 

(Part_num, CO2_Front edge of 

participant desk, PIR_Ceiling) 

0.863 

(Part_num, PM2.5_Front edge 

of participant desk, Desk, Ex-

haust 1) 

0.843 

(PM10_Front edge of partici-

pant desk, Desk, Exhaust 1, 

PIR_ceiling) 

IAQ + E4 + PIRs 

0.49 

(Part_num, CO2_Front edge of 

participant desk, Tskin, HR, 

PIR_Wall, Desk) 

0.865 

(Part_num, PM2.5_Front edge 

of participant desk, Desk, Ex-

haust 1) 

0.846 

(PM10_Front edge of partici-

pant desk, Desk, Exhaust 1) 

Improvement of esti-

mation accuracy 

(Single IAQ vs combi-

nation of parameters, 

percent increase %) 

50.3 0.5 0.5 

* IAQ: Stationary IAQ measurement, E4: Physiological measurement, and PIRs: Contextual measurement  

** Part_num: participant number, Tskin: skin temperature, HR: heart rate  
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Equation S3.1-S3.5 Multiple regression equations for human exposure estimation to indoor air pollutants under both sitting/standing 

activities by using combinations of different parameters: IAQ monitor, wearable wristband, and PIR.  

 

1. Sitting activities 

(i) Regression equation for CO2 exposure estimation  

𝐶𝑂2,𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 =  −137.768𝑝𝑎𝑟𝑡𝑛𝑢𝑚 − 1.653𝐶𝑂2,𝑑𝑒𝑠𝑘 + 2.09𝐶𝑂2,𝑒𝑥ℎ𝑎𝑢𝑠𝑡 +  872.547𝑇𝑠𝑘𝑖𝑛 − 293.286𝑃𝐼𝑅𝑤𝑎𝑙𝑙  

+227.358𝑃𝐼𝑅𝑑𝑒𝑠𝑘 − 29636.191  

Equation S3.1 

 

 (ii) Regression equation for PM2.5 exposure estimation    

𝑃𝑀2.5,𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 =  0.297𝑝𝑎𝑟𝑡𝑛𝑢𝑚 − 1.302𝑃𝑀2.5,𝑓𝑟𝑜𝑛𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑑𝑒𝑠𝑘 + 1.946𝑃𝑀2.5,𝑑𝑒𝑠𝑘  

+ 1.764𝑃𝑀2.5,𝑒𝑥ℎ𝑎𝑢𝑠𝑡 + 0.04𝐻𝑅 − 0.527𝑃𝐼𝑅𝑤𝑎𝑙𝑙 − 0.413𝑃𝐼𝑅𝑑𝑒𝑠𝑘 − 2.617  

Equation S3.2 

(iii) Regression equation for PM10 exposure estimation    

𝑃𝑀10,𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 =  1.475𝑝𝑎𝑟𝑡𝑛𝑢𝑚 − 1.465𝑃𝑀10,𝑓𝑟𝑜𝑛𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑑𝑒𝑠𝑘 + 0.941𝑃𝑀10,𝑑𝑒𝑠𝑘  

+ 1.876𝑃𝑀10,𝑒𝑥ℎ𝑎𝑢𝑠𝑡 − 10.272𝑇𝑠𝑘𝑖𝑛 + 0.87𝐻𝑅 + 313.329  

Equation S3.3 

 

2. Standing activities  

  *PM10 exposure estimation was excluded (low accuracy of a regression model) 

(i) Regression equation for CO2 exposure estimation  

𝐶𝑂2,𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 =  −293.061𝑝𝑎𝑟𝑡𝑛𝑢𝑚 + 0.713𝐶𝑂2,𝑓𝑟𝑜𝑛𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑑𝑒𝑠𝑘 + 689.008𝑃𝐼𝑅𝑤𝑎𝑙𝑙 + 1466.035 

Equation S3.4 

 
(ii) Regression equation for PM2.5 exposure estimation    

𝑃𝑀2.5,𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = −4.156𝑃𝑀2.5,𝑓𝑟𝑜𝑛𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑑𝑒𝑠𝑘 + 3.165𝑃𝑀2.5,𝑒𝑥ℎ𝑎𝑢𝑠𝑡 + 1.036  

Equation S3.5 
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Figure S4.1 Floor plan and monitor placement IDs (1-5). The dimension of the space and supply/exhaust diffuser place-
ment were the same in every space as shown in the Shared office 1 (2 Participants). The Shared office 1 consisted of 
two or four office desks/chairs depending on the number of participants (two and four), and a kettle and coffee machine 
on two cabinets. In Shared office 2, the office desk/chair setup was similar to Shared office 1 but it had a common space 
where the participants could sit on a fabric sofa and have coffee/tea from a table. The Meeting room (six and eight 
participants) was equipped with two desks with six/eight office chairs and TV screen to simulate actual group meeting 
activity. The Cafeteria (six and eight participants) was composed of two lounge tables in the middle of the space with 
six/eight chairs with two cabinets to place the coffee machine, kettle, and microwave. Note: E1 = Exhaust 1, E2 = Exhaust 
2. W1 = Wall 1, W2 = Wall 2. D1 = Desk 1, D2 = Desk 2. 

 

 

 

Figure S4.2 Room-average and breathing zone CO2 concentration depending on three different air change rates and 
occupancy number during sitting and standing activities in static occupancies. 
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Figure S4.3 Room-average and breathing zone CO2, PM2.5, and PM10 concentration during sitting and standing activities 
depending on ventilation strategies (MV, DV) in static office and meeting room occupancies (two and six participants) 
at fixed air change rate of 2.4 – 2.6 h-1. The DV scenarios had 200 – 350 ppm higher BZ CO2 level and 0.7 – 0.85× lower 
BZ PM level than those of MV scenarios during the vigorous occupant activity. 
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Figure S4.4 Pearson correlations of CO2, PM2.5, and PM10 measurements between stationary and breathing zone moni-
tors during sitting and standing activities in dynamic occupancies. 
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Figure S4.5 Pearson correlations of CO2, PM2.5, and PM10 measurements between stationary and breathing zone moni-
tors during sitting and standing activities in static occupancies. 
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Figure S4.6 Comparison between actual (measured) and predicted personal exposures to CO2, PM2.5, and PM10 from the 
developed regression model in case of best accuracy (R2) in the combination of occupancy profiles. 
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Table S4.1 Adjustment factors to mutually correct IAQ instruments. Reference instrument is shown in the parentheses. 

Monitor placement Adjustment factors 

No Description CO2 
PM 

PM2.5 PM10 

1 
Front edge of 

participant desk 
1.01 2.0665 1.0645 

2 Desk1 0.989 0.626 0.634 

3 Desk2 0.963 2.0221 1.0537 

4 Wall1 0.967 1 (reference, Mini-WRAS 1371) 

5 Wall2 0.964 1.9978 1.0981 

6 Exhaust1 1.12 1.9637 1.0182 

7 Exhaust2 0.987 2.0019 1.0141 

8 Breathing zone 1 (reference, LI-850) 1.6816 0.9045 
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Table S4.2 The coefficients and intercepts of independent variables of the developed regression models in the best cases. 

Occupancy Static Sitting Dynamic Standing 

Parameter CO2 PM2.5 PM10 CO2 PM2.5 PM10 

Intercept 925.43 -0.12 -0.20 492.37 0.86 14.92 

Coefficient* 

Wall2 -1.3 Wall2 0.73 Wall2 0.23 Desk2 0.06 Exhaust1 1.82 Exhaust1 1.09 

FEOD 0.1 Exhaust1 -0.18 FEOD 0.19 FEOD 0.17 Desk2 -0.02 Desk2 -0.19 

Desk2 1.1 Wall1 0.51 Desk2 0.10 Desk1 0.78 Wall1 -0.57 Wall2 -0.93 

Wall1 1.1 FEOD -0.02 Wall1 0.07 Wall2 0.91 FEOD -0.29 Desk1 0.58 

Desk1 -0.2 Desk2 -0.05 Exhaust1 0.04 Exhaust1 -0.74 Desk1 3.53 Act_4 15.14 

Exhaust1 -0.5 Desk1 -0.41 Desk1 0.23 Wall1 -0.41 OccNum_2 0.77 Wall1 0.28 

DV 21.4 ACH_2 -0.09 ACH_2 -0.23 Act_12 -50.36 Wall2 -0.99 FEOD 0.34 

MV -21.4 Act_3 0.00 ACH_3 -0.18 Act_In_2 -33.85 MV 0.77 MV 3.38 

OccNum_2 -16.8 Act_In_1 0.00 MV 0.02 OccNum_6 -70.73 Act_In_1 0.52 ACH_2 -4.58 

ACH_2 -93.8 ACH_1 0.19 Space_2 -0.05 DV 63.62 DV -0.77 Act_In_1 7.62 

ACH_1 273.1 ACH_3 -0.10 Act_3 0.00 OccNum_8 -46.15 ACH_3 -0.03 DV -3.38 

ACH_3 -179.3 MV -0.01 Act_In_1 0.00 Act_In_1 33.85 OccNum_6 -0.44 Space_4 1.93 

Act_3 0.0 DV 0.01 ACH_1 0.41 Space_3 -13.54 OccNum_8 0.38 OccNum_6 -6.01 

Act_In_1 0.0 Space_1 0.05 DV 0.02 Act_6 8.74 Act_12 -0.15 Act_In_2 -7.62 

Space_1 -16.8 Space_2 -0.05 Space_1 0.05 Act_8 139.02 Space_1 -0.14 ACH_1 5.98 

Space_2 16.8 OccNum_2 0.05 OccNum_2 0.05 ACH_3 -55.04 Act_4 1.37 Space_3 5.32 

OccNum_6 16.8 OccNum_6 -0.05 OccNum_6 -0.05 Space_1 130.42 OccNum_4 -0.71 OccNum_2 6.14 

  

Space_2 -50.36 Act_6 -0.58 OccNum_8 5.45 

OccNum_2 116.83 ACH_2 -0.56 Act_8 -11.91 

Act_4 -30.87 Act_13 1.07 Act_12 -2.49 

MV -63.62 Act_15 -0.98 Act_15 -14.79 

Act_13 1.57 Act_8 -0.73 Act_6 -2.66 

Act_15 -68.09 Act_In_2 -0.52 ACH_3 -1.40 

ACH_2 55.04 ACH_1 0.59 Space_2 -2.49 

Space_4 -66.52 Space_2 -0.15 OccNum_4 -5.58 

OccNum_4 0.06 Space_3 0.20 Act_13 16.72 

 Space_4 0.08 Space_1 -4.76 
*FEOD: Front edge of desk, OccNum_2, 4, 6, 8: Occupant Number (2, 4, 6, 8 people), Space_1, 2, 3, 4: Shared office1 (1), Shared office 2 (2), Meeting room (3), Cafeteria (4), ACH_1, 2, 3: Air Change 
Rate of 0.5 – 0.7 h-1 (1), 2.4 – 2.6 h-1 (2), 3.8 – 4.2 h-1 (3), MV: Mixing ventilation, DV: Displacement ventilation, Act_In_1, 2: Activity Intensity Full (1), Half (2), Act_3, 4, 6, 8, 12, 13, 15: sitting and working 
with laptop (3), stuffing cabinet with paper boxes (4), walking around and operating coffee machine/kettle (6), walking around and watering the plants (8), walking around, standing, talking (12), 
operating microwave and preparing lunch box (13), cleaning after lunch and operating coffee machine/kettle (16). Bolded values show the top two key features for each regression models. 
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1) Building 1 – Meeting room 

 

2) Building 1 – Open-plan office 

 

 

3) Building 1 – Cafeteria 
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4) Building 2 – Open-plan office (coloured in yellow) 

 

5) Building 2 – Meeting room 

 

Figure S5.1 Floor plan and sensor placement IDs (1-4) of the examined target office areas in Building 1 and Building 2 
except the singular office of Building 2 which is presented in Figure 5.1. ID 1: Wall 1, ID 2: Wall 2, ID 3: Desk, and ID 4: 
Personal vest, where Ta, RH, CO2, PM2.5 and PM10 levels are monitored. 
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Building 
No. 

Target 
space 

Picture 

1 

Open-plan 
office 

 

Meeting 
room 

 

Cafeteria 

 

2 

Singular 
office 

 

Open-plan 
office 
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Meeting 
room 

 

 

Figure S5.2 Detailed pictures of the target office areas in Building 1 and 2 with the installed sensors. When seated at 
workstation, one reference participant had an additional CO2 sampling tube attached in the personal vest 20 cm below 
the nose to obtain estimated inhalation exposure to CO2 only during seated posture as shown in the Singular office.   
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Figure S5.3 Questions of a point-in-time survey with application Cozie on participants’ smartwatches. 
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Figure S5.4 Comparison between personal and inhalation CO2 exposure concentrations of the reference participant 
measured by the personal vest with HOBO CO2 logger and by CO2 sampling tube (with Li-COR gas analyzer), respectively. 
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Figure S5.5 Stationary CO2, PM2.5, and PM10 measurements at various stationary locations of the examined target areas 
in the two office buildings. The figure shows the minimum, first quartile, median, third quartile, maximum and average 
concentrations. 
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Figure S5.6 Personal CO2, PM2.5, and PM10 exposures of four participants monitored by their personal vests in the two 
office buildings. The figure shows the minimum, first quartile, median, third quartile, maximum and average concentra-
tions. 
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Figure S5.7 Average and standard deviation of personal-level PM2.5 concentration in relation to point-in-time activity 
profiles of four participants (Participant No. 1-4) in the two office buildings. 
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Figure S5.8 Average and standard deviation of personal-level CO2 concentration in relation to point-in-time activity pro-
files of four participants (Participant No. 1-4) in the two office buildings. 
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Figure S5.9 Heat maps annotated with correlation r values between building and room occupancy (Building_occ and 
Room_occ), CO2 and PM10 levels at three different stationary locations of each examined target area of Building 2. 
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 Meeting room 
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 Singular office 

 

 
  



Supporting information 

137 

 

 Cafeteria 

 

 

Figure S5.10 Number and name of the indicators and their accuracy scores for characterizing personal CO2, PM2.5 and PM10 exposures in Meeting room, Singular office, and Cafeteria. 
In case of Meeting room, the data from two Meeting rooms of Building 1 and Building 2 were used in constructing presented DT model. The indicators are named based on either 
type/placement of environmental sensors or occupant activity profiles, and they are ranked in order of their importance, from the highest (left) to the lowest (right). The vertical 
dashed lines indicate the minimum but sufficient set of indicators that can capture personal exposures to CO2, PM2.5 and PM10 with a “good” accuracy (accuracy_score > 0.7). The 
estimation performance (R2) of proposed Decision Tree regression model in the best case (accuracy_score > 0.7) using train (80%) and test (20%) dataset is shown as a table.  
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 Singular office 

 

 

 Cafeteria 

 

 

Figure S5.11 Number and name of the indicators and their accuracy scores for characterizing occupancy at building and 
room scale in Meeting room, Singular office, and Cafeteria in Building 1 and Building 2. The indicators are named based 
on the type and placement of the sensor, and they are ranked in order of their importance, from the highest (left) to 
the lowest (right). The vertical dashed lines indicate the minimum but sufficient set of indicators that can capture per-
sonal exposures to CO2, PM2.5 and PM10 with a “good” accuracy (accuracy_score > 0.7). The estimation performance (R2) 
of proposed Decision Tree regression model in the best case (accuracy_score > 0.7) using train (80%) and test (20%) 
dataset is shown as a table.  
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Table S5.1 Adjustment factors to mutually correct IAQ instruments. Reference instrument is shown in the last row of 
the table with parentheses. 

Building Target space Placement Monitor 

Adjustment factors (R2) 

CO2 
PM 

PM2.5 PM10 

1 

Cafeteria 

Wall 1 ARVE 1 0.99 0.98 0.84 

Wall 2 ARVE 2 0.99 0.987 0.865 

Desk ARVE 3 0.99 0.98 0.829 

Open-plan office 

Wall 1 ARVE 4 0.99 0.982 0.88 

Wall 2 ARVE 5 0.99 0.983 0.863 

Desk ARVE 6 0.99 0.98 0.87 

Meeting room 

Wall 1 ARVE 7 0.99 0.984 0.84 

Wall 2 ARVE 8 0.99 0.988 0.845 

Desk ARVE 9 0.99 0.972 0.848 

2 

Singular office 

Wall 1 ARVE 16 0.99 0.978 0.868 

Wall 2 ARVE 17 0.99 0.979 0.881 

Desk ARVE 18 0.99 0.978 0.829 

Open-plan office 

Wall 1 ARVE 13 0.99 0.987 0.906 

Wall 2 ARVE 14 0.99 0.983 0.94 

Desk ARVE 15 0.99 0.982 0.79 

Meeting room 

Wall 1 ARVE 10 0.99 0.985 0.885 

Wall 2 ARVE 11 0.99 0.982 0.928 

Desk ARVE 12 0.99 0.986 0.886 

1 & 2 Personal IAQ bag 

Subject 1 HOBO 1 0.9216 

 
Subject 2 HOBO 2 1.0452 

Subject 3 HOBO 3 0.926 

Subject 4 HOBO 4 0.9336 

Subject 1 OPC-R2 1 

 

0.976 0.817 

Subject 2 OPC-R2 2 0.978 0.952 

Subject 3 OPC-R2 3 0.986 0.794 

Subject 4 OPC-R2 4 0.99 0.908 

Reference 1 (LI-850) 1 (Mini-WRAS 1371) 

 

 

Table S5.2 Averaged feature importance (F) in proposed Decision Tree model for detecting inhalation exposure to CO2, 
PM2.5 and PM10 by using stationary CO2, PM2.5, PM10, Ta, and RH respectively.  

 Average F value across deployed stationary monitors 

Parameter CO2 PM2.5 PM10 Ta RH 

CO2 exposure detection 0.258 0.025 0.120 0.132 0.148 

PM2.5 exposure detection 0.377 0.035 0.064 0.085 0.193 

PM10 exposure detection 0.185 0.032 0.195 0.136 0.199 
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Table S5.3 All indicators (In) ordered by the largest feature importance (F) in proposed Decision Tree model for detecting occupancy at building and room scale in each target area 
of each of the two office buildings. 

Building_ 
occupancy 
model 

Building 1 Building 2 

Open-plan office F Meeting  
room 

F Cafeteria F Open-plan  
office 

F Meeting  
room 

F Singular  
office 

F 

I1 Wall 2_CO2 0.162 Desk_CO2 0.205 Desk_CO2 0.165 Wall 1_CO2 0.16 Desk_CO2 0.161 Wall 1_CO2 0.146 

I2 Desk_CO2 0.122 Wall 1_CO2 0.161 Wall 1_CO2 0.158 Wall 2_RH 0.121 Wall 2_CO2 0.137 Desk_CO2 0.128 

I3 Wall 1_CO2 0.118 Wall 2_CO2 0.146 Wall 2 (coffee)_RH 0.11 Desk_PM10 0.104 Desk_RH 0.122 Wall 2_CO2 0.112 

I4 Wall 2_RH 0.1 Wall 2_RH 0.108 Wall 2 (coffee) _PM10 0.09 Wall 2_CO2 0.096 Wall 1_CO2 0.12 Desk_PM10 0.091 

I5 Wall 2_PM10 0.079 Wall 1_RH 0.069 Wall 2 (coffee) _CO2 0.088 Desk_RH 0.094 Wall 1_RH 0.089 Wall 2_RH 0.09 

I6 Wall 1_PM10 0.076 Desk_RH 0.068 Wall 1_PM10 0.085 Desk_CO2 0.086 Wall 2_RH 0.071 Wall 1_RH 0.083 

I7 Wall 1_RH 0.07 Desk_PM10 0.055 Desk_PM10 0.072 Wall 1_RH 0.081 Wall 1_Ta 0.054 Wall 1_PM10 0.074 

I8 Desk_PM10 0.064 Wall 2_Ta 0.042 Desk_RH 0.058 Wall 1_PM10 0.07 Wall 1_PM2.5 0.05 Desk_RH 0.072 

I9 Desk_Ta 0.046 Wall 2_PM10 0.042 Wall 1_RH 0.042 Wall 2_PM10 0.062 Desk_PM10 0.05 Wall 2_PM10 0.069 

I10 Wall 2_PM2.5 0.042 Wall 1_PM10 0.03 Wall 2 (coffee)_Ta 0.038 Wall 1_Ta 0.048 Wall 2_PM10 0.048 Wall 1_Ta 0.061 

I11 Wall 2_Ta 0.035 Wall 1_Ta 0.029 Desk_PM2.5 0.024 Wall 2_PM2.5 0.031 Wall 1_PM10 0.046 Wall 2_Ta 0.032 

I12 Desk_RH 0.033 Desk_PM2.5 0.022 Wall 2 (coffee) _PM2.5 0.023 Desk_Ta 0.026 Wall 2_Ta 0.027 Desk_Ta 0.027 

I13 Wall 1_Ta 0.023 Desk_Ta 0.019 Wall 1_Ta 0.021 Wall 2_Ta 0.01 Desk_PM2.5 0.015 Desk_PM2.5 0.012 

I14 Wall 1_PM2.5 0.022 Wall 1_PM2.5 0.003 Wall 1_PM2.5 0.02 Wall 1_PM2.5 0.009 Desk_Ta 0.006 Wall 2_PM2.5 0.003 

I15 Desk_PM2.5 0.009 Wall 2_PM2.5 0.001 Desk_Ta 0.008 Desk_PM2.5 0.002 Wall 2_PM2.5 0.005 Wall 1_PM2.5 0.001 

Room 
occupancy 
model 

Building 1 Building 2 

Open-plan office F Meeting  
room 

F Cafeteria F Open-plan office F Meeting  
room 

F Singular  
office 

F 

I1 Wall 1_CO2 0.307 Desk_CO2 0.6 Wall 2 (coffee) _CO2 0.321 Wall 2_CO2 0.203 Wall 1_CO2 0.383 Desk_PM10 0.156 

I2 Desk_RH 0.255 Wall 1_CO2 0.163 Desk_PM10 0.221 Wall 1_CO2 0.14 Desk_PM10 0.118 Desk_CO2 0.128 

I3 Wall 2_CO2 0.162 Wall 2_Ta 0.118 Wall 1_PM10 0.078 Wall 1_PM10 0.102 Desk_Ta 0.116 Wall 2_PM10 0.128 

I4 Desk_PM10 0.06 Wall 2_CO2 0.046 Wall 2 (coffee)_Ta 0.069 Desk_CO2 0.088 Wall 2_Ta 0.081 Wall 1_CO2 0.117 

I5 Wall 1_PM10 0.043 Wall 1_PM2.5 0.03 Desk_RH 0.069 Wall 2_PM10 0.082 Wall 2_PM10 0.077 Wall 1_PM10 0.109 
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I6 Wall 2_PM10 0.041 Wall 1_Ta 0.023 Wall 1_CO2 0.068 Desk_PM10 0.079 Wall 1_PM10 0.076 Wall 2_CO2 0.099 

I7 Wall 2_RH 0.038 Wall 2_PM10 0.014 Wall 1_Ta 0.031 Wall 1_Ta 0.065 Desk_CO2 0.052 Wall 2_RH 0.097 

I8 Wall 1_RH 0.028 Wall 2_RH 0.002 Wall 2 (coffee) _PM10 0.03 Wall 1_RH 0.064 Wall 2_CO2 0.028 Desk_Ta 0.061 

I9 Desk_CO2 0.028 Desk_PM2.5 0.002 Wall 1_PM2.5 0.028 Desk_RH 0.059 Wall 1_PM2.5 0.023 Wall 2_PM2.5 0.048 

I10 Desk_Ta 0.016 Desk_PM10 0.002 Wall 1_RH 0.023 Desk_PM2.5 0.043 Wall 1_RH 0.019 Wall 1_Ta 0.028 

I11 Wall 1_PM2.5 0.011 Desk_Ta 0 Desk_CO2 0.023 Wall 2_Ta 0.033 Desk_RH 0.013 Desk_RH 0.015 

I12 Desk_PM2.5 0.01 Wall 1_RH 0 Desk_PM2.5 0.022 Wall 2_RH 0.023 Wall 1_Ta 0.008 Wall 2_Ta 0.014 

I13 Wall 2_PM2.5 0.002 Desk_RH 0 Wall 2 (coffee)_RH 0.016 Desk_Ta 0.013 Wall 2_RH 0.006 Wall 1_RH 0 

I14 Wall 1_Ta 0 Wall 2_PM2.5 0 Desk_Ta 0 Wall 2_PM2.5 0.007 Wall 2_PM2.5 0 Wall 1_PM2.5 0 

I15 Wall 2_Ta 0 Wall 1_PM10 0 Wall 2 (coffee) _PM2.5 0 Wall 1_PM2.5 0 Desk_PM2.5 0 Desk_PM2.5 0 
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