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MOTIVATION Wearable biosensors measure physiological variables with high temporal resolution over
multiple days and are increasingly employed in clinical settings, such as continuous glucose monitoring
in diabetes care. Such datasets bring new opportunities and challenges, and patients, clinicians, and re-
searchers are today faced with a common challenge: how to best summarize and capture relevant informa-
tion from multimodal wearable time series? Here, we aim to provide insights into individual glucose dy-
namics and their relationships with food and drink ingestion, time of day, and coupling with other
physiological states such as physical and heart activity. To this end, we generate and analyzemultiple wear-
able-device data through the lens of a parsimonious mathematical model with interpretable components
and parameters. A key innovation of our method is that the models are learned on a personalized level
for each participant within a Bayesian framework, which enables the characterization of interindividual het-
erogeneity in features such as the glucose response time following meals or underlying circadian baseline
rhythm. This framework may prove useful in populations at risk for cardiometabolic diseases.
SUMMARY
Wearable biosensors and smartphone applications canmeasure physiological variables overmultiple days in
free-living conditions. We measure food and drink ingestion, glucose dynamics, physical activity, heart rate
(HR), and heart rate variability (HRV) in 25 healthy participants over 14 days. We develop a Bayesian inference
framework to learn personal parameters that quantify circadian rhythms and physiological responses to
external stressors. Modeling the effects of ingestion events on glucose levels reveals that slower glucose
decay kinetics elicit larger postprandial glucose spikes, and we uncover a circadian baseline rhythm for
glucose with high amplitudes in some individuals. Physical activity and circadian rhythms explain as much
as 40%–65% of the HR variance, whereas the variance explained for HRV is more heterogeneous across
individuals. A more complex model incorporating activity, HR, and HRV explains up to 15% of additional
glucose variability, highlighting the relevance of integrating multiple biosensors to better predict glucose
dynamics.
INTRODUCTION

Wearable biosensors and smartphone applications are increas-

ingly used to measure multiple physiological variables, including

glucose levels, food consumption, and physical and heart activ-

ity. In contrast to traditional lab measurements taken at a single

time point, the high-resolution wearable time series data record
Cell Re
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dynamic changes of physiological variables in response to

external perturbations and as a function of the time of day. While

these wearable data have the potential to provide a dynamic

view of health states,1 a major challenge in both clinical and

research settings is how to extract physiologically relevant infor-

mation from wearable time series data, and, in particular, when

multiple data modalities are combined.
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Glucose regulation is a prime example of a dynamic and com-

plex physiological system, as the body is confronted with irreg-

ular inputs (i.e., food intake, especially of carbohydrates) and

controlled glucose uptake by organs (e.g., muscles, liver). As

such, glycemic regulation employs a range of homeostatic

mechanisms, including the glucose-insulin negative feedback

loop, whereby insulin secretion by the pancreas is tightly regu-

lated to avoid both low (hypoglycemic) and high (hyperglycemic)

levels of glucose.2,3 Understanding glucose regulation is impor-

tant for human health, as long-term chronic hyperglycemia in

diabetes can lead to micro- and macrovascular complications,4

and glucose levels show a non-linear association with vascular

diseases even in populations without diabetes.5–7

As glucose homeostasis is inherently dynamic and glucose

levels fluctuate throughout the day, continuous glucosemonitors

(CGMs) have gained popularity due to their high temporal reso-

lution. CGMs measure glucose in interstitial fluid continuously

for up to 10–14 days with satisfactory clinical accuracy

compared with reference capillary blood glucose values.8,9

Standardized CGM-derived metrics such as the coefficient of

variation (CV) and the time in range (the fraction of time spent

within the desired range of 3.9–10.0 mmol/L, or 70–180 mg/dL)

have been adopted in clinical practice to assess glycemic con-

trol in diabetes with insulin treatment.10–13 At amore fine-grained

level, CGMs have been combined with smartphone records of

ingestion events to predict postprandial (postmeal) glycemic re-

sponses (PPGRs), where the PPGR is often defined as the area

under the glucose curve for the 2 h following a recorded inges-

tion event.14–16

Nonetheless, neither the standardized CGM metrics nor the

PPGR approach provides a complete picture of the entire

glucose time series and its fluctuations over the 24-h clock.

Physiological processes in humans, including glucose meta-

bolism, follow circadian rhythms,17–20 and responses to oral

glucose tests are more pronounced in the evening than in the

morning.21 A pre-breakfast rise in glucose levels, termed the

‘‘dawn phenomenon,’’ has been observed since the early

1980s and is often linked with a concomitant early morning rise

of cortisol,22,23 but the amplitude and phase of circadian rhythms

in baseline glucose levels have thus far not been well described

at an individual level. Identifying the relative contribution of the

circadian rhythms to the glucose time series would be particu-

larly helpful for the interpretation of 24-h CGM reports, which

are often discussed with patients to identify patterns of low

and high glucose values and to guide treatment.24

In addition to glucose, other physiological responses are

accessible with biosensors, such as heart rate (HR; beats per

minute) and heart rate variability (HRV), where HRV is typically

quantified withmetrics such as the root-mean-square of succes-

sive differences (RMSSD) between heart beats.25 Epidemiolog-

ical data have linked low HRV with high glucose levels,26,27

and a reduction in HRV has been shown to predict the develop-

ment of autonomic neuropathy before symptom onset among

diabetic patients.28 The simultaneous measurement of HR and

HRV can provide insights into the autonomic nervous system ac-

tivity,29 as HR receives inputs fromboth the sympathetic nervous

system (SNS; the ‘‘flight or fight’’ response) and parasympa-

thetic nervous system (PNS; the ‘‘rest and digest’’ response),
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while the HRV-derived RMSSD metric is dominated by the

PNS via vagal nerve activity.30 Both HR and HRV are modulated

by physical activity, which can now also be conveniently

measured with a triaxial accelerometer. Furthermore, it is known

that glucose levels are affected during exercise, whichmotivates

attempts to connect physical activity from wearable device sig-

nals to continuous glucose data.31–33

Regarding the analysis of wearable data streams, a diverse

range of glucose models have been proposed over the last de-

cades,34–36 ranging fromminimal models37 tomore detailed sim-

ulators with dozens of parameters38 and neural networks.39,40

Recent efforts have also attempted to utilize additional multi-

modal wearable signals to either improve glucose forecasting

or provide more accessible proxies for glucose without using

CGMs.33,41–43 Many of these methods are specialized toward

short-range forecasting, which is certainly useful in applications

like the artificial pancreas.44 In a different context, researchers

and clinicians need new wearable data analysis tools to perform

statistical comparisons between individuals and quantify

changes in glucose regulation across multiple time points and

different disease states, but such approaches to extract person-

alized summary metrics from the global recordings remain

comparatively unexplored.

In this study, we acquired multiple wearable biosensor data to

monitor food and drink ingestion, glucose excursions, physical

activity, HR, and HRV in individuals in free-living conditions.

Our aim was to quantify how external perturbations (such as

ingestion events and physical activity) and baseline circadian

rhythms determine temporal glucose levels on a personalized

level. To this end, we develop data-driven computational models

to analyze data streams from multiple wearables with distinct

model components that capture the interactions between phys-

iological variables, 24-h rhythms, and random fluctuations. Indi-

vidual-specific parameters are learned in a Bayesian framework

providing parameter uncertainties and enabling statistical com-

parisons between participants. We subdivide the problem of

analyzing themultiple signals by creating three successivemath-

ematical models that include different subsets of variables. Our

three-tiered modeling reveals the high degree of personalization

across a wide range of metrics, even within a healthy population,

from glucose decay kinetics, circadian rhythms in baseline

glucose levels, and the dependence between HR and HRV.

Future studies will be able to re-use the framework to describe

personalized longitudinal changes over time in response to inter-

ventions and to cardiometabolic diseases.

RESULTS

Measuring multivariable physiological time series in
free-living conditions
To quantify the personalized dynamics of individuals in free-living

conditions, we measured ingestion events, glucose levels, phys-

ical activity, HR, and HRV for 25 participants over a 2-week

period. Participants (16 males, 9 females) were young (mean

age 33.0 ± SD 11.0), had a normal weight (mean BMI 22.7 ±

2.8 kg/m2; one person with overweight and one person with

obesity), and had a normal blood pressure (systolic 117.6 ±

11.4 mm Hg, diastolic 75.3 ± 7.9 mm Hg) (participant
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characteristics shown in Figure S1). Participant ID 14 was previ-

ously diagnosed with diabetes, but currently treated only with

lifestyle measures (and not pharmacological treatment), and

hypertension, treated with perindopril. Participants were asked

to record all food and drink consumption and add a manual free

text annotation of the content with the smartphone application

myCircadianClock.45 Each ingestion event was automatically

time stamped by the app. The adherence (defined as at least

two meals separated by at least 5 h in a given day46) was above

83% for all participants (Table S1).

We measured glucose levels continuously using the Abbott

FreeStyle LibreProCGM,which records interstitial glucose levels

every 15 min over a 2-week period. As the device is blinded, par-

ticipants were unable to access their glucose data during the

study period, thus avoiding feedback on their eating behavior.

Five participants wore two sensors (on different arms), with the

aim of validating that parameters estimated from the model

were consistent between the two sensors (noted ID A and B in

the figures). Physical activity, HR, and HRV were measured for

each participant over the 2-week study period using the

CamNtech Actiheart version 5 device, and the physical and heart

activity data were also blinded to participants during the study.

Multiple wearable time series data reveal complex
dynamical responses as a function of external inputs
and time of day
Before developing a detailed mathematical model, we per-

formed initial data exploration to identify the key features that

we wanted to capture in the model (overview of all data streams

shown in Figures S2–S6). First, we superposed the recorded

days of glucose data based on time of day and found marked in-

dividual-specific mean 24-h patterns, with the highest mean

glucose levels occurring at different times of the day depending

on the individual (Figure 1A; all participants shown in Figure S7).

These unique 24-h trends could be caused by either food or drink

ingestion (i.e., external perturbations) and/or an underlying circa-

dian baseline trend in glucose. This motivated the inclusion of

both ingestion events and circadian rhythms in the model of

glucose dynamics as separate components.

Further exploratory analysis of the multiple wearable signals

showed rich interactions between subsets of the five measured

variables (i.e., ingestion events, glucose, activity, HR, and HRV).

As expected, glucose levels often rose following ingestion

events, and for some of the individuals, recorded meals seemed

to lead to large, predictable peaks in glucose (Figure 1B, IDs 14

and 23), while others showed a more complex relationship, with

small postprandial glucose spikes that were barely larger than

the glucose fluctuations between meals (Figure 1B, ID 06).

Based on these observations, and compared with CGM analysis

methods that focus exclusively on PPGRs for 2–3 h,14–16 our goal

is now to dynamically model the entire glucose time series over

2 weeks, including the fluctuating glucose levels occurring over-

night or during longer intervals between ingestion events.

Visual inspection of the physical and heart activity data

showed that spikes in physical activity typically coincided with

an increased HR and HRV (as measured with RMSSD�1)

(Figures 1C and 1D). By creating a joint dynamical model of the

three signals (physical activity, HR, and HRV), we aimed to un-
cover the interindividual heterogeneity in the coupling between

the multiple signals as well as the underlying circadian rhythms.

Finally, we observed spikes in glucose levels following phys-

ical activity for some individuals (Figures 1B–1D, ID 23), which

could be caused by the release of glucose under the influence

of adrenaline/epinephrine or glucagon. However, to establish

more firmly whether physical and heart activity signals can

explain glucose variation, we develop below a dynamical model

to mathematically assess the extent to which the total glucose

signal across the 2-week study period is predictable by the com-

bined meal, physical, HR, and HRV data.

Slow glucose dynamics is associated with large
postprandial glucose spikes
The overall data modeling strategy is shown in Figures 2A–2C,

where we first focus on ingestion events, glucose, and circadian

rhythms (model 1, Figure 2A), then the relationships between the

physical and the heart activity signals (model 2, Figure 2B),

before finally adding interactions from the physical activity and

heart signals to the glucose levels (model 3, Figure 2C). Based

on the visual exploration (Figure 1) and physiological knowledge,

we first built a minimal dynamical model of glucose levels

(model 1) that included the following four features: (1) the ability

to produce a continuous postprandial glucose response

following an ingestion event, (2) negative feedback (representing

the regulating action of insulin, depicted as a feedback loop in

Figure 2A), (3) a random component that captures the glucose

fluctuations between ingestion events and overnight, and (4) a

circadian baseline rhythm (discussed in the next section).

These features were modeled with a system of stochastic dif-

ferential equations (SDEs) (see STAR Methods), where ingestion

events act to perturb glucose to higher levels. We refer to the in-

crease in glucose levels relative to the baseline level caused by

meals as the ‘‘meal height’’ (Figure 2D). As meals can cause

different glucose responses according to their content, we allow

eachmeal with a unique text entry to have a separatemeal height

parameter and report the mean across all meals for each partic-

ipant. After ingestion causes a glucose increase, glucose levels

return to their steady-state values (reflecting homeostasis).

The decay kinetics and precise shape of the response will

depend on the parameters of the model (Figure 2D), which are

learned for each participant. Specifically, this individual-specific

response to a meal perturbation can be summarized with three

parameters: a half-life reflecting the time taken for glucose to re-

turn to baseline levels, the mean increase in glucose levels

caused by meal consumption (referred to as the mean meal

height), and a damping coefficient specifying whether the

response profile is akin to an overdamped (a rapid glucose

increase followed by a monotonous slower decay, i.e., non-dip-

ping) or an underdamped (leading to a slower initial increase

followed by decay and overshoot, i.e., dipping) response. To ac-

count for noisy fluctuations in the data, the glucose dynamics is

also subjected to random perturbations in the corresponding

SDE, meaning that the glucose time series data can show noisy

deviations from the idealized meal response.

For each participant, the entire glucose time series is probabi-

listically matched (using exact likelihood calculations) to the

model using a Gaussian state space model (a.k.a. a Kalman
Cell Reports Methods 3, 100545, August 28, 2023 3
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Figure 1. Exploratory analysis of wearable signals: examples of 24-h trends and responses to external stressors

(A) Continuous glucose monitoring (CGM) data: superposition of all recorded days of data shown on the same 24-h scale for three different participants (see

related Figure S7 for all participants). Black, average over all days; colored lines, data for individual days; time axis, wall clock time.

(B) Selected day examples of CGM glucose levels alongside recorded ingestion events for three participants (same individuals shown in B–D). Blue, glucose

levels; green shade, recorded activity events; time axis, wall clock time; vertical dashed lines, ingestion events.

(C) Selected day examples of physical activity measured with the CamNtech Actiheart device. Green, physical activity; green shade, recorded activity events;

time axis, clock time.

(D) Selected day examples of HR and HRV measured with the CamNtech Actiheart device. Green shade, recorded activity events; purple, heart rate variability

(HRV) (quantified with RMSSD�1 in ms�1); red, heart rate (HR) in beats per minute (bpm); time axis, wall clock time.

See also Figures S2–S7 for visualization of all data for all participants.

4 Cell Reports Methods 3, 100545, August 28, 2023
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Figure 2. Schematic showing the three different models and parameter interpretation

(A–C) The glucose and ingestion events interaction model (A, model 1), the physical and heart activity interaction model (B, model 2), and the full model (C, model

3). Solid arrows represent direct unidirectional influences, while dashed lines represent correlated fluctuations that are not specifically directional.

(D) Ameal or drink event causes a glucose increase to a specific meal height relative to the baseline glucose value. The response half-life determines how quickly

glucose returns to baseline. Underdamping (defined as a negative damping coefficient) leads to an overshoot below the baseline values.
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filter), and we infer each of the model parameters using Markov

chain Monte Carlo (MCMC) sampling within a Bayesian frame-

work that yields uncertainty estimates for each parameter

(STAR Methods and supplemental information).

We first verified model performance by assessing the correla-

tion coefficient between the fitted meal response function and

the data (Figure S8). The correlation coefficient generally ranged

from 0.5 to 0.8 but was particularly low for participant ID 04. Vi-

sual inspection of this participant’s raw data showed large

glucose spikes following physical activity (Figure S9) and hence

were not explained in this initial model, which we address below

with more complex modeling. While all model parameters are

shown in Figure S8, we here focus on three summary metrics

of the glucose dynamics.

Response half-lives ranged from 1 to 2.2 h (Figure 3A), thus

showing a dynamic range of 220%. The mean meal response

heights ranged from 0.5 to 1.5 mmol/L above baseline (Fig-

ure 3B), and a more detailed examination revealed that glucose

responses for a given individual vary according to the specific

item consumed (Figure S9). The posterior parameter distribu-

tions for each participant (Figures 3A and 3B) quantify the uncer-

tainty associated with the parameter estimates for each partici-

pant; in some cases the distributions were overlapping
between two individuals, while in other cases the distributions

were clearly separated (e.g., half-life comparing IDs 20 and 23,

Figure 3A).47 Comparing parameter values across participants,

we found a positive relationship between response half-lives

and mean meal heights, with slower glucose response half-lives

associated with larger postprandial glucose spikes (R = 0.44, p =

0.02, Figure 3C). This suggested that postprandial glucose con-

trol (i.e., the height of glucose spikes following meals) depends

on glucose clearance time, which might be determined physio-

logically by insulin sensitivity or b cell function (discussion).

The damping coefficients describing the shapes of glucose re-

sponses were clustered around 0 across all participants (Fig-

ure S8), where values of 0 represent ‘‘critical’’ damping at the

border between overdamped (non-dipping profiles, damping co-

efficient >0) and underdamped (profiles with a dip, damping

coefficient <0). Interestingly, glucose responses were proposed

to be critically damped in an early glucose model,48 which would

be consistent with our finding that the inferred values are scat-

tered around 0. However, we clearly find individual-specific

response profiles, with participant ID 14 showing a distinct

underdamped glucose response compared with the critically

damped response in ID 23 (Figures 3D–3F). The inferred meal

response and circadian time functions (orange) are smoother
Cell Reports Methods 3, 100545, August 28, 2023 5
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Figure 3. Characterizing participant-spe-

cific postmeal glycemic responses

(A) The inferred glucose response half-life for

each participant, defined as the model-predicted

time it would take for glucose levels to fall to

0.5 mmol/L following a peak of 1 mmol/L. The

boxplots represent the 25th, 50th (median), and

75th percentiles of the posterior distribution and

the whiskers represent the 5th and 95th percen-

tiles.

(B) The average meal glucose spike height

calculated as the mean height over all meals

consumed during the experiment.

(C) The average meal height as a function of the

glucose meal response half-life. Points represent

the mean posterior value for each participant.

(D) Average meal response profiles using the

posterior mean parameter values.

(E and F) Examples comparing the CGM data

(blue) with the model prediction incorporating

circadian dynamics (black) plus meal consump-

tion (orange) for two participants with over-

damped and underdamped dynamics, respec-

tively. The time stamps of meals are shown as

dashed lines. Participant order is the same in

Figures 3A, 3B, 4A, and 4B.

See also Figures S8 and S9.
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than the glucose data (blue, Figures 3E and 3F), but the full model

that also adds random fluctuations produces glucose traces that

closely resemble the glucose data (Figure S9).

The measured glucose CV, a metric of glycemic control used

in clinical settings,10,11 showed significant associations with

both the response half-lives (linear regression p = 0.03) and the

average meal heights (p = 0.01, linear regression model R2 using

both variables = 0.63). While the damping coefficient was not

significantly associated with glucose CV, the individual shapes

of glucose responses might play a role in other aspects of

glucose dynamics such as overshooting and hunger.49 Our re-

sults highlight that glucose response half-lives play a role in gly-

cemic control andmay be a relevant metric for both fundamental

research and clinical purposes.

Circadian rhythms in baseline glucose levels are
individual-specific
In addition to the input from ingestion events, the model also

allows for an underlying circadian rhythm in glucose levels

described with three parameters: a baseline level that specifies

the glucose at the trough of the oscillation, an amplitude param-

eter denoting the difference between the trough and the peak of
6 Cell Reports Methods 3, 100545, August 28, 2023
the oscillation, and the peak time of the

oscillation. These circadian parameters

are inferred for each individual jointly

with the meal response parameters

when fitting model 1 to the glucose

data using MCMC (STAR Methods).

The amplitudes of underlying circa-

dian glucose rhythms were participant

specific (Figure 4A), being virtually null
for some individuals, while exceeding 1 mmol/L for others (Fig-

ure 4C, IDs 03 and 07). Notably, the parameter uncertainty was

small enough that there was no overlap in the estimates for IDs

03 and 07 (Figure 4A). To identify subjects whose profiles do

not support a circadian baseline trend, we fitted an alternative

model that lacked a circadian baseline and compared the two

models using the Bayesian information criterion (BIC). For IDs

10, 13, 08, 25, 03, and 04 (which have the weakest amplitude

according to Figure 4A), the BIC indicated evidence for the

model lacking the circadian baseline, while the BIC favored

the model with an additional circadian component for all re-

maining participants (Figure S10). The combination of the

amplitude posterior estimates and heterogeneous model pref-

erence according to BIC thus suggests that circadian baseline

glucose oscillations are individual-specific physiological

characteristics.

The peak times of the glucose circadian oscillations similarly

varied between participants (Figure 4B, with the same partici-

pant order as in Figure 4A), with peak times of the circadian

baselines typically falling around the mid-afternoon, but with sig-

nificant shifts in some individuals. For example, participant ID 20

had a peak time at 10:00, while it occurred much later for
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Figure 4. Amplitudes and peak times of

circadian baseline levels of glucose are

highly heterogeneous between participants

(A) The amplitude of the 24-h sinusoidal circadian

rhythm in baseline glucose levels after model

fitting to the CGM data for all participants. The

boxes represent the 25th, 50th (median), and 75th

percentiles of the posterior distribution and the

whiskers represent the 5th and 95th percentiles.

(B) The circadian peak time of the glucose circa-

dian rhythm across all participants.

(C) Examples of participants with a high (ID 07) and

a low (ID 03) amplitude glucose circadian rhythm.

Blue, CGM data; black, fitted model of circadian

baseline (using mean posterior parameter values).

(D) Examples showing two participants with large

phase difference in underlying glucose rhythm (ID

20 peak phase 10:00, ID 17 peak phase 20:00).

(E) The explained variance in glucose levels using

just the meal component of the model (light or-

ange) compared with the inclusion of the circadian

rhythm (dark orange). Error bars represent the 5th

and 95th percentiles of the posterior distribution.

Participant order is the same in Figures 3A, 3B, 4A,

and 4B.

See also Figure S10.
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participant ID 17, falling at 20:00 (Figure 4D). The peak time dis-

tributions showed tight confidence intervals for participants with

large amplitudes and wide intervals for participants with weaker

amplitudes (Figure 4B). This relationship is probably caused by a

lower signal-to-noise ratio for participants with a low circadian

amplitude.

Overall, the underlying circadian glucose rhythm can explain

>15% of glycemic variability in addition to the meal model for

participants with large amplitudes (Figure 4E). While we have

not tested whether it would be possible to modify either the

peak time or the amplitude of this rhythm, these personalized pa-

rameters should prove to be useful in applications such as

personalized meal timing (discussion).

HR is well predicted by physical activity and time of day,
but the predictability of HRV varies between individuals
We next focused on the physical activity, HR, and HRV data,

where we aimed to model the dependencies between the vari-

ables and quantify the ability of subsets of the three signals to

explain the variance of others, in addition to the contribution of

circadian oscillations. For this, we created a new model (model

2, Figure 2B) that incorporated the influence of physical activity

on HR and HRV, and we used MCMC to sample from model pa-
Cell Repo
rameters and quantify differences be-

tween individuals (all parameters shown

in Figure S11).

For HR, the combination of a circadian

trendline and physical activity as two in-

puts was consistently predictive, ex-

plaining 40%–65% of HR variance

across all participants (Figure 5A).

Figures 5C and 5D show an example of
the predicted HR (orange) for two different participants using

the underlying circadian trend (black) and integrating the phys-

ical activity (green). While the circadian contribution to the ex-

plained HR variance differs for these two participants (Fig-

ure 5A), the correlation between the predicted and the

observed HR was �0.8 for both participants, demonstrating

that time of day and activity state are necessary for optimal

personalized modeling of HR, which is consistent with previous

studies.50

The predictability of HRV was, in contrast, much more hetero-

geneous between participants, with total variance explained

between 20% and 80% (Figure 5B). This notable difference is

illustrated with two participants, showing a favorable prediction

for participant ID 25 (R = 0.89, Figure 5F) compared with ID 14

(R = 0.44, Figure 5E). In addition to inputs from physical activity

and the circadian trend, we evaluated whether the correlations

between HR and HRV could be exploited by using HR to predict

HRV (which is technically more difficult to measure than HR). The

dependence between HR and HRV showed marked interindi-

vidual differences, where for ID 25 the HR signal explained

40% of the variance compared with using only activity and circa-

dian trend, but for ID 14 the addition of HRmade no difference in

HRV prediction (Figures 5E, 5F, and S11). Given that HR and
rts Methods 3, 100545, August 28, 2023 7
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Figure 5. HRV predictions using multisig-

nal inputs and circadian rhythms are more

heterogeneous than for HR

(A) The amount of variance of the HR signal ex-

plained by circadian rhythms (light orange) and a

combined model with circadian rhythms and

physical activity (dark orange). Error bars repre-

sent the 5th and 95th percentiles of the posterior

distribution.

(B) The amount of variance of the HRV (RMSSD�1)

signal explained by circadian rhythms (light or-

ange), a combined model with circadian rhythms

and physical activity (medium orange), and a

combinedmodel with circadian rhythms, physical

activity, and HR (dark orange).

(C and D) Examples comparing HR data with

model predictions for two participants. Red, HR

data; black, baseline circadian rhythm; green,

physical activity (shown on normalized scale

where 1 represents the maximum value); orange,

model prediction with circadian rhythm and inte-

grating activity.

(E and F) Examples comparing HRV data with

model predictions for two participants. Purple,

HRV data; black, baseline circadian rhythm;

green, physical activity (shown on normalized

scale where 1 represents the maximum value);

orange, model prediction using circadian

rhythms, physical activity, and HR. Participant

order is the same in (A) and (B).

See also Figure S11.
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HRV receive different inputs from the SNS and PNS,25 the

strength of this dependence may be a function of the autonomic

nervous system. Of note, ID 14 was previously diagnosed with

diabetes (currently treated only with lifestyle measures and not

pharmacological treatment), and autonomic dysfunction is a

known complication of diabetes.51

Integrating physical and heart activity signals helps
explain glycemic dynamics
As a final modeling step, we integrated the physical and heart ac-

tivity signals with the glucose-ingestion model to quantify how

much of the glucose dynamics can be accounted for with phys-

ical activity, HR, and HRV (model 3, Figure 2C). To simplify the

model inference, the parameters describing the physical and

heart activity model in isolation (model 2, Figure 2B) were locked

to their posterior mean values, and we added three new param-

eters describing the input of physical activity, HR, and HRV on

glucose levels, respectively (model 3, Figure 2C). These influ-
8 Cell Reports Methods 3, 100545, August 28, 2023
ences were left unconstrained and could

have positive, negative, or zero effect on

glucose levels.

Model fitting revealed that the effect of

physical activity accelerometer counts

on glucose (parameter C5,1) was gener-

ally negative, the effect of HR (parameter

C5,2) was generally positive, and the ef-

fect of HRV (parameter C5,3) was typi-

cally neutral across all participants
(Figures 6A–6C). Given that we observed increased glucose

levels during some periods of exercise during data visualization

(Figure 1B), the negative influence of physical activity acceler-

ometer counts on glucose as revealed by the model parameter

C5,1 (Figure 6A) was not expected. To test the robustness of

this prediction, we therefore re-fitted the data using three simpler

models, where there was only one input at a time from the phys-

ical and heart activity signals (Figure S12). The influence of phys-

ical activity on glucose remained negative, even when it was the

sole input from model 2 into glucose levels, further suggesting

that the overall dominating effect of physical activity is to deplete

glucose levels among the participants of our study. Meanwhile,

as HR acts to increase glucose levels (C5,2), increased HR during

intense exercise can still lead to a net increase in predicted

glucose levels.

We next quantified the importance of heart and physical

activity for glucose predictions by comparing the variance ex-

plained with meals and circadian rhythms compared with all
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Figure 6. Adding physical activity, HR, and HRV into the glucose dynamics model can help explain glucose dynamics

(A–C) Posterior distributions (shown as boxplots) of the model coefficients C5,1, C5,2, and C5,3 across all participants, which correspond to the influence on

glucose of physical activity, HR, and HRV, respectively. The boxplots represent the 25th, 50th (median), and 75th percentiles of the posterior distribution and the

whiskers represent the 5th and 95th percentiles.

(D) A comparison of the variance explained in the glucose signal using just the meal and circadian rhythm model (light orange) compared with the prediction that

also incorporates physical activity, HR, and HRV (dark orange). Error bars represent the 5th and 95th percentiles of the posterior distribution.

(E) Example from ID 04 shows that the physical and heart activity data partially explain an exercise-induced glucose spike. Blue, glucose data; light orange,

prediction using meal and circadian model components; dark orange, prediction including meal and circadian model components, physical activity, HR, and

HRV; green shade, recorded activity events; brown, the weighted sum of the physical activity, HR, and HRV variables according to the inferred coefficients C5,1,

C5,2, and C5,3; vertical dashed lines, ingestion events.

(F) Example from ID 08 showing how glucose dynamics (blue) track with theweighted sumof the physical activity, HR, and HRV variables according to the inferred

coefficients C5,1, C5,2, and C5,3 (dark brown, data only; light brown, using filtered estimations frommodel 2 to fill missing physical and heart activity data; vertical

dashed lines, ingestion events).

(G) The cross-correlation of the glucose (blue in F) with the weighted sum of the physical activity, HR, and HRV variables (brown in F) using all recorded data.

Participant order is the same between (A), (B), and (C).

See also Figure S12.
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components, including physical activity, HR, and HRV (Fig-

ure 6D). Overall, the amount of additional explained variance

by the physical and heart activity signals was modest for most

participants but contributed up to 15% in some individuals

(Figure 6D).

Among the participants whose glucose dynamics benefit most

from the physical and heart activity signals, the mode of action

also differed. For participant ID 04, where the prediction of

glucose was the lowest with model 1 (Figure 4E), the inclusion

of physical and heart activity signals allowed for partial predic-

tion of exercise-induced glucose spikes that were otherwise

absent from the glucose model that contained meals only (Fig-

ure 6E). For participant ID 08, there were no notable isolated

glucose spikes that could be predicted by the physical and heart

activity data (Figure 6F). Instead, the linear combination of the

physical and heart activity variables (weighted according to the

inferred coefficients C5,1–C5,3) appeared to track the glucose

levels (Figure 6F), and the cross-correlation profile showed a

maximum correlation between the two signals without time delay

(Figure 6G). This suggests that for this mode of action, the phys-

ical and heart activity signals contribute diffusely to capture

glucose baseline trends spread over the time series.

DISCUSSION

This study makes two contributions to the quantitative analysis

of glucose dynamics in terms of study design and computational

analysis. First, we used several wearable biosensors to measure

multiple, interconnected data streams simultaneously. Inferring

dynamical models would not be possible without such high-res-

olution time series. On a practical level, the main advantages of

health measurements with wearable biosensors are their effi-

ciency, non-invasiveness, and relative simplicity: in our study it

took a team of two researchers 2 days to complete question-

naires and set up devices to record data for all 25 participants

simultaneously. Second, we developed a data analysis method

that combines stochastic dynamical modeling with Bayesian

inference to learn personal parameters along with their associ-

ated uncertainty, and this parameter uncertainty was necessary

to compare participants. The main insight of such personalized

modeling is the possibility to robustly quantify individualized

response patterns across a range of parameters and metrics,

from the glucose half-lives and circadian oscillations, the

coupling between HR and HRV, to the benefit of adding addi-

tional signals to predicting glucose.

The output of this modeling has wide implications for under-

standing both the biological underpinnings of cardiometabolic

dysfunction as well as consequences for the use of wearables

in a clinical setting. We first started by combining the food and

drink events with the glucose time series, where we found that

slow glucose dynamics are associated with large postprandial

glucose spikes. Mechanistically, slow glucose disposal could

relate to the quantity of ingested carbohydrates, the rate of gut

absorption,52 its metabolism,53 the suppression of endogenous

glucose production,54 insulin resistance, or b cell function.2

We also detected highly personalized circadian rhythms in the

baseline glucose levels by quantifying amplitude and peak-time

parameters in each individual along with uncertainty estimates
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(Figures 4A and 4B). While diurnal rhythms in b cell function

and insulin sensitivity have previously been shown within healthy

populations,55–57 it was unexpected to find significant differ-

ences in the amplitudes and phases of circadian oscillations in

baseline glucose levels between healthy individuals. The extent

to which these 24-h rhythms are determined by central or periph-

eral clocks or whether they are largely entrained bymeal timing58

cannot be deduced without further information. Future studies

will determine whether this circadian glucose baseline trend is

predictive of responses to specific meal times, e.g., in time-

restricted eating, an intervention that restricts eating to a specific

window within the 24-h clock.59

Our results also have practical implications for clinicians as the

physical and heart activity data explained up to 15% of glucose

variability in our study, although this was highly variable between

participants. From a clinical perspective, the incorporation of

these additional physical and heart activity signals for some indi-

viduals might help both patients and clinicians understand

glucose dynamics that seem otherwise disconnected from

meal consumption (e.g., Figure 6E). As outlined in the motivation

paragraph, clinicians and diabetic patients can link glucose

excursion with ingestion events and intensive physical activity

but find it challenging to do so for the remaining glucose

dynamics observed throughout the day.

There are multiple possible approaches to modeling multi-

modal data such as we collected, and the particular structure

of the glucose model has often been dictated by the data avail-

able and by the stated goal.34–36 Models based on differential

equations range from simple, minimal models37 to mechanisti-

cally detailed descriptions that include more variables, more

spatial compartments, and dozens of additional parameters.38

Inspired by these more complex models, there are many

possible extensions that could be added to our glucose model,

such as glucose absorption rates of mixed meals due to food

content in carbohydrates, but also fat, fiber, and protein con-

tents, which are known to slow down nutrient absorption,14

although the addition of meal-specific response shapes would

effectively double the number of meal-related parameters. In

addition to differential equation models, time series methods

such as wavelets can also be applied to multimodal continuous

wearable signals to detect, for example, changes in period and

amplitude over time, to identify transient events, to assess asso-

ciations between signals, and to perform signal denoising.60–62

Explicit models and time series analysis methods are ultimately

complementary tools that come with their own sets of advan-

tages and limitations.

An area that has seen a broad spectrum of time series models

concerns short-term glucose forecasting, typically for applica-

tions in closed-loop insulin delivery systems.33,44 Gaussian

state-space models that are conceptually similar to ours but

withmore variables have been deployed in artificial pancreas de-

vices.63,64 Machine learning methods, including support vector

machines (SVMs) and neural networks, have also been used

for short-range forecasting,39,40 where the advantage of such

methods is that more complex non-linear dependencies and

long-range memory can be captured. As our focus was on ex-

plaining the total time series rather than short-term forecasting,

we here traded some of this flexibility for explainability by
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assuming a relatively simple dynamical model with interpretable

components and parameters. In the future, we envisage several

applications, such as larger-scale epidemiological studies (e.g.,

do inferred parameters track with health state?) and clinical trials

to see whether parameters change in response to an interven-

tion. Particularly for clinical trials, point estimation of parameters

is not adequate, and uncertainty estimates are required to

perform statistical tests for a given individual, which we achieve

here throughMCMC. In health care, there is increasing interest in

digital twins65,66 to integrate multiple clinical data streams,

devise personalized treatments, and perform risk modeling. As

our approach contains interpretable parameters, it lends itself

readily to simulating hypothetical situations (e.g., by altering

circadian amplitude or glucose response time). Overall, our

method transforms amultivariable wearable data input into a se-

ries of metrics that describe the dependencies between physio-

logical variables, including the relaxation timescales after

external perturbations and circadian properties, and this

approach provides a platform for probing physiological changes

across circadian perturbations, aging, and cardiometabolic

disorders.

Limitations of the study
Our study population was young and in good health overall, and

we lack additional, more detailed health information or standard

clinical metrics such as glycated hemoglobin (HbA1c). Since we

opted here for a small-scale study with a focus on the methodol-

ogy and models to combine multiple wearable sensors, we have

sought to identify differences between individuals without at-

tempting to associate them with either good or bad health out-

comes. Future studies that use larger and more diverse cohorts

could use the proposed method to relate the inferred personal

glycemic parameters to lifestyle, environmental, or genetic fac-

tors, and it would also be useful to explore whether candidates

that would benefit from inclusion of physical and heart activity

to glucose modeling can be predicted in advance.

With respect to the modeling, a potential limitation of our

approach is the use of a linear differential equation model, which

may not be able to capture more complex phenomena such as

eventual decreases in hepatic glucose production during pro-

longed exercise.67 A recent study based on deep learning found

that the addition of wristband activity data improved the root-

mean-square error of 60-min glucose forecasting by 2.25 mg/

dL (0.1 mmol/L) from a baseline of 35.3 mg/dL (2.0 mmol/L),

and hence, more substantial improvements in glucose predic-

tionsmay prove to be a difficult challenge even withmore flexible

models.68
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Software and algorithms

Python version 3.7.4 Python Software Foundation https://www.python.org

The MultiSensor Study code This paper https://github.com/naef-lab/MultiSensor

https://doi.org/10.5281/zenodo.8028677
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to andwill be fulfilled when possible by the lead contact, Felix Naef

(felix.naef@epfl.ch).

Materials availability
This study did not generate new physical materials.

Data and code availability
De-identified participant data has been deposited at https://github.com/naef-lab/MultiSensor and at https://doi.org/10.5281/

zenodo.8028677.

All original code has been deposited at https://github.com/naef-lab/MultiSensor and at https://doi.org/10.5281/zenodo.8028677.

Any additional information required to implement the method of this study is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The Multi-Sensor Study (MSS) was approved by the local ethics committee (CER-VD, BASEC no. 2019-02245) and each participant

signed a written informed consent. Recruitment was performed via posters at the École Polytechnique Fédérale de Lausanne (EPFL),

Lausanne University Hospital (CHUV) and the University of Lausanne (UNIL) and via presentations given in the EPFL School of Life

Sciences.

We included adults aged R 18 years, with a smartphone compatible with the myCircadianClock app (iOS or Android systems45)

and able to take pictures of food/drinks, andwho self-identified as disciplined enough andmotivated to record all data for twoweeks.

The exclusion criteria were major illness/fever, surgery over the previous month, eating disorder, major mental illness, unable to give

informed consent, taking medicines including paracetamol, aspirin or vitamin C supplements, enrolled in another interventional clin-

ical trial (medication, medical device), shift work or travel to a different time zone before and during the study. 25 participants (16

males, 9 females) were recruited, and participant characteristics are shown in Figure S1.

METHOD DETAILS

Devices and experimental design
At baseline, we collected data on demographics, medical history, physical activity (short form of International Physical Activity Ques-

tionnaire, IPAQ-SF),69 chronotype (The Munich ChronoType Questionnaire),70 sleeping habits (Pittsburgh Sleep Quality Index)71 and

eating timing (with a custom questionnaire on eating habits during work and free days).

For each participant, we collected data for two weeks using the following devices: 1) Timestamps of food/drinks and text

annotations collected with the smartphone application (app) myCircadianClock45; 2) Continuous glucose monitoring (CGM) using

the Abbott FreeStyle Libre Pro device; 3) Physical activity, heart rate (HR) and heart rate variability (HRV using RMSSD–1) using

the CamNtech ActiHeart device version 5. Participants were instructed to take pictures of all consumed food and drink with the

research-dedicated myCircadianClock smartphone. Recorded entries included a timestamped picture and a free-text annotation,
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and entries with the same annotation were considered as the samemeal type. Participants could annotate photographs either imme-

diately or in the following hours. Optionally, participants could type text-only entries without any picture, e.g., if the smartphone ran

out of battery, or if it was not socially acceptable to take pictures in the current context. Participants were also asked to optionally log

physical exercise using the app. While the CamNtech Actiheart device is waterproof, participants were permitted to briefly remove

the device during showers and baths. Specific information on individual device technical failure, handling of missing data and data

quality is included in the Supplementary Information (Methods S1).

Pre-processing CGM data
We used nonparametric regression with Gaussian processes (GPs) to remove the long-term trends observed in the data. After mean-

centring the data, we fitted a GP with a squared exponential kernel KSEðt; t0Þ = ð� jt � t0j2 =2l2Þ and a length scale l=48 hours using

GPflow.72

Data analysis
See the Supplementary Information (Methods S1) for detailed computational methods which are summarised here. We use a linear

Gaussian state space model (otherwise known as a Kalman filter73) to analyse the time series generated by the wearable devices,

which was implemented using the ‘LinearGaussianStateSpaceModel’ distribution within TensorFlow Probability.74 We will first

describe the general data analysis framework before providing details on each of the threemodels used (Models 1-3). For eachmodel

we define a dynamicmodel that describes the time evolution of the underlying physiological variables and ameasurement model that

incorporates measurement noise. For the dynamic model, we use a system of stochastic differential equations (SDEs).

dxðtÞ = WxðtÞdt +db; (Equation 1)

whereW is a matrix describing the interactions between the variables xðtÞ, and b is a brownian noise term with covariance matrix Q.

The specific forms ofW andQ are unique for eachmodel and will be described below. To keep themodel exact while benefiting from

the generic framework of Gaussian state space models (a.k.a. as Kalman filters), we then convert this system of continuous-time

SDEs into a model where time is discrete (see Methods S1 for details).

xðtkÞ = Fk� 1xðtk� 1Þ+Nð0;Sk� 1Þ; (Equation 2)

where Fk is the state-transition model and Sk is the covariance of the process noise. The measurement model describes the obser-

vation process and assumes that variables are observed with normally distributed measurement noise

yðtkÞ = HkxðtkÞ+Nðmk ;RkÞ; (Equation 3)

where Hk is the observation matrix and mk and Rk represents the mean and covariance of the observation noise, respectively. The

goal is to use the wearable time series data y1:T to estimate parameters (denoted by q) for each participant. Within a Bayesian infer-

ence framework, the parameters of the model can be estimated from the data as follows

pðqjy1:T ÞfpðqÞpðy1:T jqÞ; (Equation 4)

where pðqÞ is the prior distribution of parameters and pðy1:T jqÞ is the likelihood of observing the temporal data y1:T given the

set of parameters q. Considering the time series sequence of data, the likelihood term for a given set of parameters q can be

expressed as

pðy1:T jqÞ = pðy1jqÞ
YT
k = 2

pðyk jy1:k� 1; qÞ; (Equation 5)

and the sequence of distributions pðyk jy1:k� 1; qÞ are calculated within a Kalman filtering framework. Once the likelihood and priors

are specified for eachmodel, we used the HamiltonianMonte Carlo sampler provided within TensorFlow Probability to samplemodel

parameters from the posterior distribution (described below in quantification and statistical analysis). The priors for all models are

specified in Methods S1.

Model 1: Glucose model

We model glucose dynamics (Figure 2A) with a two-dimensional system of SDEs, where the second variable xGLUC2 represents the

glucose levels and the first variable xGLUC1 represents an unobserved latent variable that allows negative feedback within the system.

In matrix form, the model is expressed as follows
e2 Cell Reports Methods 3, 100545, August 28, 2023



Article
ll

OPEN ACCESS
dxðtÞ = WxðtÞdt +db;

xðtÞ =
"
xGLUC1

xGLUC2

#
;

W =

"�A11 �A12

A21 �A22

#
;

Q =

"
0 0

0 B22

#
;

(Equation 6)

andwhere the coefficients Aij are constrained to be positive. The covariance of the brownian noise term b is given byQ. The ‘damping

coefficient’ is determined by whether the eigenvalues of the matrix W are real or complex. For the 2x2 matrix W, this damping co-

efficient can be determined by � det ðW � I trðWÞ =2Þ=ðtrðWÞ=2Þ2.
The smartphone application provides a list of the recorded ingestion event times ftmgMm = 1 for a total of M meals. We incorporate

meal events (recorded at time tm) as producing a response function rmðt; tm; qÞ by perturbing the first variable xGLUC1 to higher values

(see Methods S1 for precise functional form), and then the total meal function is the sum over all M individual meal responses

rðtÞ =
XM
m = 1

rmðt; tm; qÞ: (Equation 7)

We define the glucose half-life parameter as the model-predicted time to return to 0.5 mol/L after a standardised increase of

1mmol/L. We also add an underlying circadian trend in glucose levels using a sinusoidal function

gGLUCðtÞ = A0;GLUC +A1;GLUCð1 + cos ðut � 4GLUCÞÞ
�
2 (Equation 8)

where A0;GLUC is the baseline level, A1;GLUC is the amplitude, u is the frequency (fixed at 2p=24), and 4GLUC is the peak time of the

maximum. The observation model for the glucose model is then as follows

yðtkÞ = HkxðtkÞ+Nðmk ;RkÞ;
Hk = ½0 1�

mk = rðtÞ+gGLUCðtÞ;
Rk = s2

GLUC;

(Equation 9)

We compared Model 1 with an alternative version without circadian oscillations using the Bayesian Information Criterion (BIC)

BIC = k lnðnÞ � 2 lnðpðy1:T jqÞÞ, where k is the number of parameters and n is the number of data points.We calculated the difference

in BIC score using Model 1 both with and without a circadian components and used a cut-off of 2 ln ð10Þ to indicate that the strength

of evidence favoured a particular model.75

Model 2: Physical and heart activity model

We model physical and heart activity dynamics (Figure 2B) with a three-dimensional system of SDEs, where the first variable xACT
represents physical activity, the second variable xHR represents heart rate and the third variable xHRV represents heart rate variability,

where we use the inverse of the root mean square of successive differences between normal heartbeats (RMSSD-1). We normalise all

three variables by their respective standard deviations before inferring parameters. In matrix form, the model is expressed as follows

dxðtÞ = WxðtÞdt +db;

xðtÞ =

2
664
xACT

xHR

xHRV

3
775;

W =

2
664
�C11 0 0

C21 �C22 0

C31 0 �C33

3
775;

Q =

2
664
D11 0 0

0 D22 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D22D33

p

0 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D22D33

p
D33

3
775;

(Equation 10)
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and where the coefficients Cij are constrained to be positive and the covariance of the brownian noise term b is given by Q. In the

model, the correlation in the fluctuations between HR and HRV is quantified with the correlation parameter r. The observation model

is then given by

yðtkÞ = HkxðtkÞ+Nðmk ;RkÞ;

Hk =

2
64
1 0 0

0 1 0

0 0 1

3
75;

mk =

2
64
gACTðtÞ
gHRðtÞ
gHRVðtÞ

3
75;

Rk =

2
6664
s2
ACT 0 0

0 s2
HR 0

0 0 s2
HRV

3
7775;

(Equation 11)

where gACTðtÞ, gHRðtÞ and gHRVðtÞ are circadian oscillatory functions (Methods S1).

Model 3: Combined model

The final model (Figure 2C) connects the physical and heart activity signals with CGM dynamics by stitching the previous glucose

(Model 1) and physical and heart activity models (Model 2) together. Both models are otherwise left unchanged, but there is an

introduction of three new parameters C51;C52 and C53 that describe the effect of physical activity, HR and HRV on glucose levels,

respectively. These three parameters are left unconstrained and can take either positive or negative values. To simplify the model

inference problem, the parameters from Model 2 describing the physical and heart activity model in isolation were locked to their

posterior mean values.

dxðtÞ = WxðtÞdt +db;

xðtÞ =

2
666666664

xACT

xHR

xHRV

xGLUC1

xGLUC2

3
777777775
;

W =

2
666666664

�C11 0 0 0 0

C21 �C22 0 0 0

C31 0 �C33 0 0

0 0 0 �A11 �A12

0 0 0 A21 �A22

3
777777775
;

Q =

2
666666664

D11 0 0 0 0

0 D22 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D22D33

p
0 0

0 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D22D33

p
D33 0 0

0 0 0 0 0

0 0 0 0 B22

3
777777775
;

(Equation 12)

The observation model is then given by
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yðtkÞ = HkxðtkÞ+Nðmk ;RkÞ;

Hk =

2
6664
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

3
7775;

mk =

2
6664

gACTðtÞ
gHRðtÞ
gHRVðtÞ

rðtÞ+gGLUCðtÞ

3
7775;

Rk =

2
66666664

s2
ACT 0 0 0

0 s2
HR 0 0

0 0 s2
HRV 0

0 0 0 s2
GLUC

3
77777775
;

(Equation 13)
QUANTIFICATION AND STATISTICAL ANALYSIS

The wearable data for each participant is analysed separately and the inferred parameters are presented along with the uncertainty

for each individual as obtained through Markov Chain Monte Carlo (MCMC) sampling. The parameter posterior distribution was

sampled using Hamiltonian Markov Chain Monte Carlo (HMC), which uses the gradients of the posterior to improve the efficiency

of the sampling. To initialise the sampler, we found the maximum a posteriori probability (MAP) parameter estimate using the

BFGS optimiser ’bfgs_minimize’ within TensorFlow Probability. We then used the ’HamiltonianMonteCarlo’ function with

TensorFlow Probability with 5 leapfrog steps, and we scaled the step size of each variable to approximately match the standard de-

viation of the posterior distribution. To achieve this, we sampled posterior parameters using two steps. Firstly, we sampled 10,000

parameters (with a burn-in of 10,000 samples) using the ’SimpleStepSizeAdaptation’ kernel to select the global step size, which

adapts the global step size to achieve a target acceptance probability of 0.75.76 We then scaled the step size of each variable

according to the standard deviation of this initial posterior distribution. Next, we resampled model parameters from the posterior

distribution using 4 different chains with 10,000 samples each (with a burn-in of 10,000 samples), again using ’SimpleStepSizeAdap-

tation’ kernel to globally rescale the step size. The ’SimpleStepSizeAdaptation’ kernel was only applied to first 80% of the burn-in

samples. From the MCMC samples, the percentiles of the posterior parameter distributions are shown graphically for each partic-

ipant with boxplots. We then estimate the explained variance using 1 � Varðy � ~yÞ=VarðyÞ, using the model predictions ~y from

the MCMC parameter samples.
Cell Reports Methods 3, 100545, August 28, 2023 e5


	Uncovering personalized glucose responses and circadian rhythms from multiple wearable biosensors with Bayesian dynamical m ...
	Introduction
	Results
	Measuring multivariable physiological time series in free-living conditions
	Multiple wearable time series data reveal complex dynamical responses as a function of external inputs and time of day
	Slow glucose dynamics is associated with large postprandial glucose spikes
	Circadian rhythms in baseline glucose levels are individual-specific
	HR is well predicted by physical activity and time of day, but the predictability of HRV varies between individuals
	Integrating physical and heart activity signals helps explain glycemic dynamics

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Method details
	Devices and experimental design
	Pre-processing CGM data
	Data analysis
	Model 1: Glucose model
	Model 2: Physical and heart activity model
	Model 3: Combined model


	Quantification and statistical analysis



