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A B S T R A C T   

Extensive research has been conducted on fault diagnosis of planetary gearboxes using vibration 
signals and deep learning (DL) approaches. However, DL-based methods are susceptible to the 
domain shift problem caused by varying operating conditions of the gearbox. Although domain 
adaptation and data synthesis methods have been proposed to overcome such domain shifts, they 
are often not directly applicable in real-world situations where only healthy data is available in 
the target domain. To tackle the challenge of extreme domain shift scenarios where only healthy 
data is available in the target domain, this paper proposes two novel domain knowledge-informed 
data synthesis methods utilizing the health data map (HDMap). The two proposed approaches are 
referred to as scaled CutPaste and FaultPaste. The HDMap is used to physically represent the 
vibration signal of the planetary gearbox as an image-like matrix, allowing for visualization of 
fault-related features. CutPaste and FaultPaste are then applied to generate faulty samples based 
on the healthy data in the target domain, using domain knowledge and fault signatures extracted 
from the source domain, respectively. In addition to generating realistic faults, the proposed 
methods introduce scaling of fault signatures for controlled synthesis of faults with various 
severity levels. A case study is conducted on a planetary gearbox testbed to evaluate the proposed 
approaches. The results show that the proposed methods are capable of accurately diagnosing 
faults, even in cases of extreme domain shifts, and can estimate the severity of faults that have not 
been previously observed in the target domain.   

1. Introduction 

Planetary gearbox is a critical component in various engineering systems such as wind turbines, helicopters and heavy industrial 
machines. Because a single fault of the gearbox may lead to a catastrophic failure of the system, it is important to detect and diagnose 
faults of the planetary gearbox before their severity reaches a critical level [1]. To this end, vibration-based fault diagnosis of planetary 
gearboxes has been widely deployed in industrial applications [2,3]. Recent research has focused on deep learning (DL)-based ap
proaches that enable the classification of the health state of the system through automated feature engineering [4]. While end-to-end 
DL models enabling automatically learning the relevant features have been very successful in computer vision applications, end-to-end 
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DL models have also been recently applied to raw high-frequency signals, such as encountered in acoustic condition monitoring data 
[5]. However, traditional signal processing techniques are still widely used to enable physics-based analysis and enhance general
ization and interpretability of the results [6]. To combine the advantages of signal processing and DL, several approaches have been 
proposed to integrate the two methods for improved fault detection and diagnosis performance [7,8]. 

Although DL models are capable of end-to-end learning of features, they are often susceptible to the influence of varying operating 
conditions. In contrast, signal processing guided by domain knowledge can help them focus on pertinent information, particularly in 
high-frequency signals. For instance, frequency-domain features can reduce the impact of environmental and operational noise while 
preserving the fault-related information [9]. As faults of the planetary gearbox are characterized by locally distributed frequency 
components that are dependent on the fault type, using frequency-domain features as input to DL models can help them focus on fault- 
related information instead of system-dependent disturbance components. Furthermore, domain expertise can direct the development 
of signal representation that is intuitive for domain experts to interpret and can be readily used as input to DL models. One such 
physics-guided signal representation approach for gearbox health monitoring is health data map (HDMap) that has recently been 
introduced [10]. It has been shown that HDMap can enhance the performance of DL-based fault diagnosis methods compared to raw 
input signals [11]. 

While DL models usually perform well on new samples that are from the same distribution as the training dataset, they typically 
experience a significant performance degradation when applied to a testing dataset that deviates from the training data distribution 
[12]. This is also referred to as domain shift or domain gap, where the source (i.e., training) and target (i.e., testing) domain are subject 
to a distribution shift. In gearbox operations, such domain shifts are very common due to varying operating conditions affecting the 
vibration characteristics of the system. Domain adaptation (DA) has been one of the most widely applied approaches to enable DL- 
based fault diagnosis under domain shift [13]. However, most of the proposed DA approaches are particularly applicable in the 
closed set scenario that assumes that source and target domains contain the same health and fault classes. However, in real applications 
where faults occur only rarely, we are confronted with an extreme setup of partial domain adaptation, in which only healthy data is 
available in the target domain [14]. To address this challenge, there have been limited attempts to synthesize the faulty data directly in 
the target domain with a deep generative model [14] or a phenomenological fault generation model [15]. Both of these approaches 
have been applied to bearing fault diagnosis. However, there has been no attempt yet to develop an intuitive method to synthesize the 
faulty data of the planetary gearbox to solve the domain shift problem in the extreme setup of partial DA where only healthy data is 
available in the target domain. 

The objective of this study is to tackle the challenge of cross-domain fault diagnosis of a planetary gearbox in the extreme partial DA 
setup where only healthy data samples are available in the target domain. To achieve this, we propose a novel domain knowledge- 
informed approach to synthesize faulty data samples in the target domain in a controlled manner. The proposed approach involves 
adapting an image-based fault synthesis method, called CutPaste [16], in combination with HDMap, which provides a physical rep
resentation of the vibration signal from the planetary gearbox in the form of an image-like matrix. By leveraging domain knowledge, 
CutPaste can generate faulty samples based on healthy data in the target domain. Additionally, to further improve the performance of 
the framework and reduce the reliance on domain knowledge for using CutPaste, a new method called FaultPaste is introduced. 
FaultPaste utilizes an autoencoder trained only on healthy data from the source domain to isolate fault signatures of the planetary 
gearbox. Then, the extracted fault signature in the source domain is pasted onto the target healthy sample to imitate a faulty sample. 
However, simple information fusion-based augmentation methods (e.g., Mixup [17] and Cutmix [18]) between the fault signature and 
the target healthy sample cannot imitate the varying levels of fault which is typically uncertain in real applications. To address this 
issue, scaling factors are applied to both CutPaste and FaultPaste to increase how realistic the synthesized samples are and facilitate the 
estimation of fault severity. The remainder of the paper is organized as follows: Section 2 introduces related work, Section 3 provides 
background information on the HDMap and CutPaste approaches, Section 4 details the proposed method, Section 5 presents a case 
study from a planetary gearbox testbed to demonstrate the effectiveness of the proposed approach, and Sections 6 and 7 conclude with 
findings and discussions. 

2. Related work 

While DL-based end-to-end fault diagnosis models that use raw vibration signals in the time domain have shown promising results 
[19], it is possible to further improve the robustness and performance of these models by transforming the raw signals into repre
sentations that are more sensitive to faults. This approach can guide the DL-based fault diagnosis models to focus on fault-related parts 
of the features [20]. For example, Oh et al. [21] proposed omnidirectional regeneration (ODR) technique to visualize time-domain 
vibration signals of a power plant rotor system by accounting for the relationship between two-axis sensors. Rodriguez Garcia et al. 
[22] compared the performance of a DL-based fault diagnosis based on raw signals with various time-domain signal representation 
methods including Gramian angular field (GAF), Markov transition field (MTF), recurrence plot (RP), gray-scale (GS) encoding as well 
as time–frequency representation methods (i.e., spectrogram and scalogram), and reported that all of the two-dimensional data 
representation methods outperform the raw one-dimensional time-series data. 

It is worth noting that the time-domain signal is highly dependent on the characteristics of the system, which may require more 
advanced data processing techniques to improve the robustness of fault diagnosis models. On the other hand, using the frequency- 
domain signals can improve the fault-sensitivity of the fault diagnosis models while also enhancing their robustness to the system 
characteristics [9]. Frequency-domain signals can also be arranged in two-dimensional matrix format by stacking the signals to enable 
seamless utilization of two-dimensional convolutional neural networks (CNN) [23]. Yao et al. [24] reported that the combination of 
time-domain and frequency-domain signals can improve the performance of fault diagnosis models. To integrate both time-domain 
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and frequency-domain information into the DL model, time–frequency analysis techniques such as short-time Fourier transform, 
Hilbert-Huang transform, and wavelet transform can be employed. These techniques preserve both time and frequency-domain in
formation simultaneously, allowing the DL models to learn from both types of data [25–27]. 

Although the use of time, frequency, or time–frequency domain signals has shown promising results, they are still susceptible to the 
effects of operating conditions such as rotating speed, indicating the need for a more fundamental solution to address the domain shift 
problem [28]. To address this challenge, Health Data Map (HDMap) was proposed to provide a more accurate physical representation 
of the vibration characteristics of the planetary gearbox [10]. HDMap can visualize vibration signals in a more intuitive manner by 
considering modulation characteristics caused by the revolving planet gears, which allows for the independent interpretation of fault 
signatures from the gears. Subsequent validation studies have demonstrated that HDMap can outperform time, frequency, and 
time–frequency domain signals when used as input to the deep learning-based fault diagnosis model of the planetary gearbox [11]. 
However, a previous study has shown that HDMap still requires further domain adaptation to solve the remaining domain shift 
problem when the domain gap is significant. 

Data augmentation is an effective approach to improve the performance of models across the source and target domain by 
increasing the size of the dataset and introducing greater variability [29]. To address the issue, where the source domain dataset is 
limited and imbalanced, several approaches have been proposed to expand it into an enriched and balanced dataset through the 
generation of additional data samples. To achieve this objective, various data representation methods have been utilized in 
conjunction with generative adversarial networks (GANs) (e.g., in frequency domain [30] or in time–frequency domain using wavelet 
transform [31,32]). Furthermore, Meng et al. [33] proposed class-selective data augmentation using GANs with an auxiliary classi
fication task to balance the training dataset. Zhou et al. [34] utilized GANs with an auxiliary classification task using a dataset 
comprising two-dimensional matrices formed by stacking time-domain signals. However, it should be noted that the generated samples 
by the GANs cannot fundamentally deviate from the distribution of the source-only training dataset. This implies that to achieve 
acceptable generation results, at least a small set of healthy and faulty samples in the target domain should be available. In cases where 
no faulty samples are available in the target domain, some research studies have applied a simulation model that can generate faulty 
data in the target domain without the requirement of any labeled data [35]. However, it is difficult to develop a simulation model that 
accurately emulates the normal and faulty system conditions under diverse operating conditions. Therefore, some researchers have 
proposed to employ additional domain adaptation methods to narrow the gap between the simulated and real data [36,37]. While Gao 
et al. [38] attempted to use a high-fidelity finite element model (FEM) to generate the samples for training their fault diagnosis model, 
they still needed to employ GAN-based expansion of the target-domain dataset to generate realistic samples. In summary, the 
aforementioned GAN- or simulation-based methods still require at least some unlabeled faulty samples in the target domain to generate 
realistic synthesized data samples that accurately represent the various operating conditions and fault types. However, obtaining such 
data in real-world settings is often infeasible. 

An alternative approach in the field of fault diagnosis in the realistic scenarios where target domain contains only healthy samples 
is to learn the relationship between the healthy and faulty samples from the source domain, and employ this relationship to generate 
faulty samples in the target domain where only healthy samples are available. This direction of research has gained increasing 
attention due to the realistic assumption that healthy samples are typically abundant, and faulty samples are rare. Li et al. [39] 
proposed a method where generative models are trained to estimate high-level representations of faulty samples based on the healthy 
samples in the source domain. These generative models are then used to synthesize faulty features in the target domain while mini
mizing the distribution discrepancy between the generated and real features. Rombach et al. [14] proposed a different approach based 
on the assumption that fault signatures can be separated from the operating conditions in the Fourier spectrum. The authors introduced 
the FaultSignatureGAN, which is trained in the source domain to generate distinct fault signatures. Once trained, the FaultSigna
tureGAN can generate previously unseen fault signatures in the target domain, which can be combined with domain-specific signals to 
generate realistic faulty samples. However, the process of adversarial-based training of GANs for data expansion or synthesis methods 
can be challenging due to issues such as non-convergence, mode collapse, and uncontrollability of the model [34,40]. As a result, 
addressing these challenges requires a significant effort. 

Another approach to synthesizing faulty samples was proposed by Wang et al. [15] which involves considering the simplified 
phenomenological characteristics of the faulty signals to synthesize faulty samples based on the normal samples in the target domain, 
without relying on GAN-based techniques. To address the significant domain gap between synthetically generated faulty samples and 
real target samples, this study proposed a novel domain adaptation method that can handle various degrees of imbalance between the 
different fault classes of the generated synthetic samples and the real target samples. 

Moreover, image-based data augmentation methods have also been widely employed to enhance the classification model per
formance by enriching the training datasets. For example, Mixup [17] and Cutmix [18] fuse information from two independent images 
while controlling the importance of information from each image. However, conventional fusion-based augmentation methods can 
lead to undesired and uncontrolled synthesis of samples due to the domain-specific interference signals and uncertain nature of the 
fault signatures. As a result, these augmentation methods are more suitable for object classification tasks rather than fault diagnosis 
tasks. In a different line of research, targeting particularly anomalies in image data, Li et al. [16] proposed a straightforward and 
intuitive image-based approach for synthesizing anomalies, known as CutPaste. In this approach, a small-area patch is randomly 
selected and cut from an image. This patch is then pasted onto another randomly selected location in the same image, thus simulating 
spatial irregularity. The CutPaste approach can be considered as an unsupervised anomaly detection method because it does not 
require any faulty samples and only uses healthy samples. It can be flexibly applied to any domain where anomalies are characterized 
by irregularities in the patterns. Several attempts have been made to improve the CutPaste approach for synthesizing faulty data, some 
of which are the Foreign Patch Interpolation (FPI) [41], Poisson image interpolation (PII) [42], and natural synthetic anomalies (NSA) 
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[43]. Despite the straightforward implementation concept, CutPaste and its variations are mainly suitable for image-type datasets that 
have simplified anomaly patterns. 

In this paper, we propose a novel framework for fault diagnosis of planetary gearboxes for the extreme case of partial domain 
adaptation where only healthy data is available in the target domain. Our method is based on the assumption that the vibration 
characteristics representing the operating conditions and the vibration characteristics representing fault-related signatures can be 
disentangled in the HDMap representation. This enables us to synthesize faulty HDMaps in the target domain by simply adding fault 
signatures to the healthy HDMaps. We propose two approaches: (1) generating a domain knowledge-informed fault signature from the 
image-like HDMaps without requiring any faulty data, and (2) using an autoencoder-based residual analysis to extract preliminary 
fault signatures from the source domain for synthesizing faulty data in the target domain. While the first approach does not require any 
labeled data neither in the source nor in the target domain and is only relying on domain knowledge, the second approach requires 
labeled data in the source domain. However, FaultPaste approach is able to produce more realistic faults. Our proposed methods are 
applicable in scenarios where fault diagnosis needs to be performed without any faulty data during training, or where more enhanced 
fault diagnosis is required. 

3. Background 

3.1. Health data map (HDMap) 

A planetary gearbox is comprised of a set of gears including a sun gear, a ring gear, and multiple planet gears that interlock with 
each other while rotating and produce intricate vibration patterns. The revolving planet gears of a planetary gearbox can cause vi
bration modulation characteristics that pose challenges for vibration-based fault diagnosis of the gearbox. The vibration modulation 
characteristics can primarily be attributed to the uneven distribution of load among the planet gears, which results in a higher load on a 
specific gear during certain meshing conditions. To solve this challenge, health data map (HDMap) was proposed as an efficient vi
bration representation method that enables fault identification of the planet gear regardless of the uncertain vibration modulation 
characteristics [10]. HDMap aligns the vibration signals of the planetary gearbox in the domains of the meshing teeth pair between the 
ring and the planet gear of interest, which can be formulated as: 

HD map(TR,TP) = {vDIF |MR = TR ∧ MP = TP} (1)  

where 
TR = { TR | TR∈ℤ, 1 ≤ TR ≤ NR} and TP = { TP | TP∈ℤ, 1 ≤ TP ≤ NP} are the axes of the HDMap representing meshing tooth of the ring 

and planet gear; 
NR and NP are the number of teeth of the ring gear and the planet gear; 
vDIF is the maximum value of the difference signal for each gear meshing combination; 
MR and MP are the tooth meshing sequence for the ring gear and planet gear, respectively. 
Equation (1) presents the difference signal (i.e., vDIF), which can be obtained through a typical pre-processing method used for 

Fig. 1. Example of Health Data Map: (a) Raw vibration signal, (b) Difference signal, (c) HDMap for normal condition, and (d) Raw vibration signal, 
(e) Difference signal, (f) HDMap for faulty condition. 
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rotating machinery. This method involves four steps: 1) encoder-based resampling to align the signal with gear rotation, 2) time 
synchronous averaging (TSA) to reduce random noise, 3) subtraction of regular gear meshing components in the frequency domain, 
and 4) re-transforming signals to time domain [2]. Because HDMap encapsulates only vibration amplitudes for each gear meshing 
combination, it is more robust to the domain shift problem caused by speed changes. Fig. 1 shows an example of the HDMap of a 
planetary gearbox with normal and faulty planet gears. Fault-related features are not discernible from the raw signal as illustrated in 
Fig. 1 (a) and (d). Even though the difference signal can analyze the vibration signal in the planet gear rotation domain with reduced 
noise as seen in Fig. 1 (b) and (e), it is still incapable of detecting any faults. However, it is apparent from Fig. 1 (f) that the fault can be 
visually identified in the HDMap as a horizontally intensive feature. From the results, it can be observed that fault signatures under the 
uncertain dynamics characteristics, such as vibration modulation, exhibit a localized horizontal line pattern. This suggests that the 
faulty tooth (i.e., TP = 26) of the planet gear generates a high-level vibration signal primarily when meshing with tooth number 10 or 
30 of the ring gear (i.e., TR = 10 or 30). In this particular case, it can be inferred that the faulty planet gear experiences a higher load 
when meshing with tooth number 10 or 30 of the ring gear. Despite the challenging task of identifying the uncertain nature of vibration 
characteristics in the time or frequency domain, HDMap offers an effective means of characterizing these patterns through visual 
representations in a two-dimensional space. 

However, it is important to note that fault-related features may not always be easily recognizable, especially if the fault is not 
severe. Additionally, training a deep learning model solely on the HDMap visualization of the vibration patterns may cause it to focus 
on only specific system characteristics, leading to a significant domain shift problem under different conditions compared to those it 
was trained on. Such setups are frequently encountered in real-world applications. 

3.2. CutPaste 

CutPaste is a technique for detecting anomalies in images that is based on self-supervision and utilizes image synthesis [16]. The 
method assumes that an anomalous image of a product can be generated by synthesizing it from a normal product image. To achieve 
this, CutPaste randomly selects a rectangular patch from a normal image, represented by a white dotted box in Fig. 2 (a), and pastes it 
onto a different location of the same image, depicted by a red dotted box in Fig. 2 (a). This process generates a spatial irregularity, 
allowing the method to synthesize a faulty image along with real defect images. Despite the fact that some synthesized images may not 
appear similar to real faulty images (such as those shown in Fig. 2 (b) and (c)), the research study in [16] demonstrated that the deep 
learning model was able to learn effective representations from the synthesized faulty images that generalize well to detect real defects. 
To imitate a wide range of real defects, CutPaste employs various sizes, aspect ratios, and rotation angles of the rectangular patch. In 
addition, the method proposes two types of rectangular patches: regular rectangular patches and scar-like (long-thin) rectangular 
patches. This allows for a diverse set of synthetic images that more closely imitate real-world defects. Following this, a self-supervised 
classification model was developed that can classify both the original normal image and the synthesized one for anomaly detection, 
using a cross-entropy-based loss function. While CutPaste has demonstrated intuitive implementation and superior performance, it is 
limited to image-based datasets that display obvious anomaly patterns resulting from the spatial irregularity. 

4. Proposed method 

Deep learning-based fault diagnosis of planetary gearbox is suceptible to the domain shift problem caused by varying operating 
conditions of the gearbox, which leads to intricate vibration characteristics. One solution to overcome this difficulty is to synthesize 
faulty data directly in the target domain, which can be used for self-supervised learning of the fault diagnosis model. In order to be 
practical in real-world applications, it is necessary to create a user-friendly data synthesis method that is based on a simple and easy-to- 
understand data representation. HDMap is capable of visualizing system characteristics and fault-related signatures while disen
tangling them, as demonstrated in Fig. 1. In particular, the faulty tooth of the planet gear produces a horizontally long-thin fault- 
related signature. Leveraging this knowledge, we propose two distinct approaches: the scaled CutPaste and FaultPaste method based 

Fig. 2. Example of synthesized and real fault from MVTec dataset [46]: (a) synthesized fault by CutPaste, (b) real fault (broken), and (c) real 
fault (bent). 
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on HDMap, as depicted in Fig. 3. In the following, we introduce both of the approaches in detail. Firstly, we propose the HDMap-based 
scaled CutPaste technique, which utilizes horizontally long-thin patches to synthesize faulty data using only normal data in target 
domain, as shown in Fig. 3 (a). Secondly, we propose FaultPaste by incorporating fault signatures extracted from the source domain. 
For both of the proposed approaches, we implement convolutional neural network (CNN)-based classification and regression models to 
evaluate the performance to classify the faults correctly on the one hand and to estimate the fault severity on the other hand. 

4.1. Scaled CutPaste for HDMap 

In this section, the scaled CutPaste approach for HDMap is introduced by incorporating the domain knowledge of the system- 
dependent and fault-related characteristics of a planetary gearbox. It relies on the assumption that a fault of a gear tooth imposes 
higher amplitudes in the vibration signal and can be highlighted in the HDMap representation. Typically, the faulty feature is rep
resented as a localized horizontal line at a specific position in y-axis of the HDMap that indicate the faulty tooth information. Because 
the fault can occur at every tooth of the planet gear, fault-induced features can be observed at arbitrary position in y-axis of the 
HDMap. Position of center of the horizontal line in x-axis of HDMap is determined by the load sharing characteristics of the gears. 
Because the load sharing characteristics are significantly affected by various factors such as the manufacturing and assembly condi
tions of the gearbox, the center position of the localized horizontal line in the x-axis of HDMap is unpredictable in real-world ap
plications. To simulate a faulty HDMap solely based on a normal HDMap in the target domain, we propose to apply CutPaste for 
HDMaps as follows: 

CP(xTN) = xTN + xTN− patch (2)  

where 
xTN ∈ RTR×TP is normal HDMap in target domain; 
xTN− patch ∈ Rw×h is random patch from xTN 

w ~ Uniform(wa,wb), h ~ Uniform(ha,hb) are the width and height of the patch, and wb≫hb to simulate the horizontally long-thin 
faulty feature; 

w0 ~ Uniform(0,NR-w/2), h0 ~ Uniform(0,NP-h/2) are the center location of the patch. 
The conventional CutPaste approach, which involves cutting a signature with a defined length and pasting it at a different location 

in the HDMap, may not accurately replicate the real fault signature. This is because fault signatures can differ in their intensity 
depending on the fault severity observed in real-world scenarios. To account for this uncertainty, this paper proposes the use of 
randomly distributed scale factors. The formula for this approach is as follows: 

CP(xTN) = xTN + aCPx̃TN− patch (3)  

x̃TN− patch = xTN− patch

/

max(|xTN− patch|) (4)  

Fig. 3. Outline of the proposed method: (a) Scaled CutPaste, and (b) FaultPaste.  
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where aCP ~ Uniform(0,ACP) represents the scaling factor and x̃TN− patch denotes the normalized patch that has been scaled so that its 
maximum value is equal to 1. Examples of synthesized faulty HDMaps with scaling factors of 1, 5, and 10 are presented in Fig. 4 (a)-(c), 
where the white dotted boxes and red circles indicate the location of the original and pasted patches, respectively. The pasted patches 
produce spatial irregularities, and the varying scaling factors can simulate different levels of fault signatures to some extent. 

4.2. FaultPaste for HDMap 

Here, we propose an alternative approach to the scaled CutPaste approach. Similar to some previous research studies [10,11], we 
assume that operating conditions and fault characteristics can be disentangled in the HDMap representation. Based on this assumption, 
we can isolate the fault characteristics by removing the portion of the HDMap that corresponds to the operating conditions. Such fault 
signatures extracted in the source domain can then be combined with healthy samples from the target domain under different 
operating conditions. To accomplish this, autoencoder-based residual analysis can be employed [44]. An autoencoder trained with 
data collected under healthy conditions is capable of predicting only the underlying healthy behavior. As a result, an anomaly will 
deviate from the normal behavior and, consequently, will be poorly reconstructed by the autoencoder. This enables it to be distin
guished through residual analysis [44]. Following this idea, the training of the autoencoder with HDMap data collected solely under 
healthy conditions from the source domain can be expressed as follows: 

L ae = ExSN∈XSN

{
(xSN − dae(eae(xSN) ) )

2 } (5)  

where eae and dae represent the encoder and decoder respectively and xSN is the normal data in the source domain. 
Since the HDMap represents the system vibration characteristics as a two-dimensional matrix like an image, a convolutional 

autoencoder can easily learn the typical patterns produced by the gearbox under healthy operating conditions. Once trained, it is 
assumed that the model will still only reconstruct healthy conditions, even when presented with faulty data. The residual between the 
observed faulty sample and the reconstructed sample can then potentially be considered as a fault signature in the source domain. This 
fault signature can be combined with the healthy signal in the target domain, which operates under different operating conditions, 
relying on the previously discussed disentanglement assumption. 

However, it is important to note that the autoencoder model may learn to generalize the pixel-wise vibration characteristics on 
HDMap too well, inadvertently reconstructing the fault signatures and causing a considerable attenuation in the residual signal [44]. 
To address this issue, we have introduced a scaling factor, as depicted in the following equations: 

rSF = (xSF − dae(eae(xSF) ) )
2 (6)  

r̃SF = rSF

/

max(rSF) (7)  

FP(xTN) = xTN + aFPr̃SF (8)  

where 
xSF is faulty data in source domain; 
rSF is extracted fault signature in source domain; 

Fig. 4. Scaled CutPaste Synthesized with (a) aCP = 1, (b) aCP = 5, and (c) aCP = 10.  

Fig. 5. Autoencoder-based Residual Analysis: (a) a faulty HDMap, (b) Estimated normal pattern and (c) Residual.  
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r̃SF denotes normalized fault signature; 
aFP ~ Uniform(0,AFP) represents scaling factor for FaultPaste (FP); 
xTN ∈ RTR×TP is a healthy HDMap in target domain. 
The scaling procedure facilitates the controlled generation of fault signatures, enabling robust training of the classification model. 

While certain fault signatures can be significantly attenuated to almost negligible magnitudes, they still serve as a small number of 
noisy labels for the self-supervised classification in the target domain. Additionally, the weakened fault signatures, including those 
with a small scaling factor, have the potential to empower the classification model to robustly identify even subtle faulty signals. 

An instance of autoencoder-based extraction of a fault signature is depicted in Fig. 5. To provide a comprehensive explanation, we 
selected data exhibiting a severe fault signature, as illustrated in Fig. 5 (a). The autoencoder successfully predicts the normal char
acteristics, which are visible as a diagonal pattern in Fig. 5 (b). Through residual analysis, the fault signature can be isolated, as 
depicted in Fig. 5 (c). Fig. 6 displays synthesized faulty data in another domain, where vertically intensive patterns indicate normal 
behavior. Various scaling factors were used to create faulty data with different levels of severity, utilizing the extracted fault signature 
illustrated in Fig. 5 (c). The results demonstrate that realistic faulty data can be synthesized with different degrees of severity. 

4.3. Training and evaluating the model 

By utilizing the Scaled CutPaste and FaultPaste methods, it is possible to replicate faulty samples in the target domain while 
preserving their overall characteristics in a generalized manner. By employing these two approaches, synthetic fault samples are 
produced and merged with actual healthy samples. Because the generation of fault samples is controlled, it becomes feasible to train a 
supervised fault classification algorithm [16]. The classification model can be trained by minimizing the cross-entropy loss function 
defined as follows: 

L CPbc = ExTN∈XTN {CE(gCPbc(xTN), 0 ) + CE(gCPbc(CP(xTN) ), 1 ) } (9)  

L FPbc = ExTN∈XTN{CE(gFPbc(xTN), 0 ) + CE(gFPbc(FP(xTN) ), 1 ) } (10) 

where CE is cross entropy, gCPbc and gFPbc denote the CNN-based binary classifier for scaled CutPaste and FaultPaste approach. 
Through the integration of artificially generated faulty data that possesses differing scaling factors into Equations (9) and (10), it is 
feasible to detect faults that span from nearly imperceptible to considerable magnitudes. In such instances, the model’s performance 
can be assessed through the utilization of a conventional fault detection accuracy metric. 

While the binary classification model has the ability to detect faulty samples in the target domain, additional attention is necessary 
to anticipate fault severity levels, which tend to be indeterminate in practical scenarios. Having even an approximate assessment of the 
severity of faults can enable to monitor the evolution of the health conditions over time, thereby facilitating optimal system main
tenance. To address this issue, we also introduce a regression model with the mean squared error (MSE) loss function as follows: 

L CPreg = ExTN∈XTN

{(
aCP − gCPreg(CP(xTN) )

)2
}

(11)  

L FPreg = ExTN∈XTN

{(
aFP − gFPreg(FP(xTN) )

)2
}

(12)  

where gCPreg and gFPreg denote the regression models for scaled CutPaste and FaultPaste approaches. 
Equations (11) and (12) describe a process wherein target normal samples are initially fed into the scaled CutPaste or FaultPaste 

technique to synthesize faulty samples with varying levels of fault severity through the implementation of randomly distributed scaling 
factors. Subsequently, a regression model is trained to predict the value of the scaling factor, which can be utilized to describe the fault 
severity of the synthesized data. When the scaling factors for CutPaste or FaultPaste are assigned as zero (i.e., aCP = 0 or aFP = 0), the 
resulting synthesized samples will be entirely normal and devoid of any fault indications. In this situation, the regression models are 
trained to output 0 (i.e., gCPreg = 0 or gFPreg = 0 in Equations (11) and (12)). When a large scaling factor is utilized to generate severely 
faulty samples (i.e., aCP = a≫0 or aFP = a≫0), the regression model is expected to produce a result with a large magnitude (i.e., gCPreg =

a or gFPreg = a). By training the regression model with randomly distributed scaling factors, the trained model can be employed to 
estimate the uncertain fault severity for real samples in the target domain. The quantification of fault severity in real-world appli
cations is challenging, as even a distinct fault in the system can lead to a wide range of faulty features in data due to varying operating 
conditions. Therefore, evaluating model performance by directly comparing the scaling factor to quantified fault severity is not 

Fig. 6. Synthesized fault using FaultPaste in another domain synthesized with: (a) aFP = 1, (b) aFP = 5, and (c) aFP = 10.  

J.M. Ha and O. Fink                                                                                                                                                                                                  



Mechanical Systems and Signal Processing 202 (2023) 110680

9

feasible. Instead, fault severity is typically used in real-world scenarios to identify anomalous behavior, providing a more practical 
metric for evaluating model performance using the Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC) (i.e., ROC- 
AUC score). It is important to note that our training process did not focus on binary classification tasks. 

5. Case study 

The methodology proposed in this study is assessed by analyzing vibration signals obtained from a planetary gearbox testbed. To 
gauge the fault diagnosis performance under a range of domain shift challenges, we diversified the vibration sensor types and oper
ating conditions to create four domains, from which 12 domain shift tasks were derived. This section initially provides an overview of 
the testbed and experimental setup, followed by an exposition of the overall fault diagnosis outcomes from the 12 domain shift tasks. 

5.1. Testbed 

To validate the proposed method, the study utilizes a planetary gearbox testbed, as shown in Fig. 7. This testbed allows for in
dependent speed and torque control, utilizing two servo motors, as demonstrated in Fig. 7 (a). The testbed is equipped with two types 

Fig. 7. Planetary gearbox testbed: (a) Testbed, (b) Accelerometers (IEPE-type and MEMS-type), (c) Inside of the gearbox, (d) Fault level 1, (e) Fault 
level 2. 

Fig. 8. Examples of vibration signals measured by the MEMS sensor: (a-b) normal and faulty signals under stationary condition, (c-d) normal and 
faulty signals under non-stationary condition, and (e-h) the corresponding HDMaps of (a-d). 
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of accelerometers to measure the vibration signals, namely a high-cost Integrated Electronics Piezo-Electric (IEPE) and a low-cost 
Micro-Electro-Mechanical Systems (MEMS). The vibration signals from both sensors, specifically the 352C34 from PCB for the IEPE 
sensor and ADXL1002 for the MEMS sensor, were measured using NI 9234 with a sampling frequency of 25.6 kHz. A circuit evaluation 
board CN-0532 from Analog Devices was employed for sensor packaging and signal acquisition for the MEMS sensor. The IEPE and 
MEMS accelerometers have sensitivities of 100 mV/g and 40 mV/g, respectively. 

The planetary gearbox employed in this study has 95, 31, and 31 teeth for the ring, planet and sun gear respectively. The testbed has 
been designed for straightforward disassembly of the gearbox housing, as illustrated in Fig. 7 (c). This design allows for the assembly of 
gears with varying levels of fault, as demonstrated in Fig. 7 (d) and Fig. 7 (e). Fig. 8 illustrates examples of the vibration signals 
acquired by a MEMS sensor under two different domains (i.e., stationary and non-stationary operating condition), depicting both 
healthy and faulty conditions (fault level 1). The health state is not easily discernible from the raw vibration signal in either domain, as 
evidenced by the comparison of Fig. 8 (a) and (b), or Fig. 8 (c) and (d). Furthermore, it is apparent that the impact of domain shift is 
more significant than the impact of the health state. Although the red dotted circles in Fig. 8 (f) and (h), generally indicate the presence 
of faulty patterns in the HDMap, these patterns are not distinctly discernible, while maintaining the normal patterns specific to the 
domain. 

5.2. Experimental setup 

Table 1 provides a summary of the four domains defined in this study based on the sensor types and operating conditions. Example 
signals for all domains can be found in the Appendix A. Additionally, 12 domain shift tasks were defined, as outlined in Table 2. In 
order to create training and testing datasets, the vibration signal for each domain, which had been resampled, was divided into three 
parts as shown in Fig. 9. The testbed was operated without any warming-up so that the measured vibration signals exhibit varying 
characteristics during the operation due to the increasing temperature of the lubricant oil of the gearbox. The training dataset was 
extracted from the train region as indicated in Fig. 9, while the testing dataset was extracted from the test region 1 and 2 (Fig. 9). For 
each region, a random vibration signal for 10 hunting tooth cycles of the planetary gearbox was selected and subsequently transformed 
into an HDMap to generate one data sample. The study resulted in 100,000 samples from the training region and 1,000 samples from 
the testing regions for each domain (Table 1). 

The experiments involving scaled CutPaste were solely conducted in the target domain, as this approach did not require any data 
from the source domain. In contrast, the FaultPaste method involved extracting the fault signature from each source domain and 
synthesizing it with the normal training dataset in the target domain. In order to increase the variability of the synthesized faults, a 
combination of the target normal data and source fault signature was varied during each iteration. The performance of fault diagnosis 
was evaluated on the test dataset in the target domain for both approaches: CutPaste and FaultPaste. 

Table 1 
Definition of Domains.  

Domains Sensor type Operating condition 

A MEMS Stationary 
B MEMS Non-stationary 
C IEPE Stationary 
D IEPE Non-stationary  

Table 2 
Definition of Tasks.  

Task # 1 2 3 4 5 6 7 8 9 10 11 12 

Source Domain B C D A C D A B D A B C 
Target Domain A A A B B B C C C D D D 
Notation B → A C → A D → A A → B C → B D → B A → C B → C D → C A → D B → D C → D  

Fig. 9. Strategy to define training and testing dataset for each domain.  
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Two fault diagnosis approaches are presented in this study: health state classification and fault severity prediction. The perfor
mance of early fault diagnosis is evaluated by employing only fault level 1 from Fig. 7 (d) for the binary classification task. In addition, 
fault level 2 from Fig. 7 (e) is further utilized for fault severity prediction using a regression model in order to verify that the proposed 
method is capable of handling unseen faults in the target domain. It should be noted that data from fault level 2 is not used for training 
in either the source or target domain, but solely for testing the regression model. 

To implement the proposed methods (i.e., Scaled CutPaste and FaultPaste), the maximum values of the scaling factors (i.e., ACP in 
Eq. (3) and AFP in Eq. (8)) need to be predetermined. Typically, such hyperparameters are defined based on the results from a vali
dation dataset. However, in this study, it was assumed that a small set of faulty data in the target domain is not available. This is a 
realistic assumption. To compensate this fact, parametric study for the maximum value of the scaling factors on the synthesized data in 
the target domain was performed instead. The fault diagnosis accuracy was tested on randomly selected normal data in the target 
domain, along with corresponding faulty data synthesized with scaled CutPaste and FaultPaste, as shown in Fig. 10. Mean and standard 
deviation from five runs are represented as a line plot with error bars. Furthermore, to confirm the credibility of the analysis conducted 
with the synthesized data, the accuracy was compared with real normal and faulty data in the target domain. From Fig. 10, it can be 
observed that the accuracy from the synthesized and real data have a similar trend, and the accuracy reaches almost 100% when the 
scaling factor is larger than 15. Thus, it can be concluded that the scaling parameter can be reasonably determined based on the 
accuracy obtained using the synthesized data. In this study, the scaling parameters were set to be 30 for CutPaste and FaultPaste for the 
entire experiment. 

To enable a comparative analysis, we established two baseline models: one based on the HDMap representation and another based 
on the frequency domain features. For a fair comparison, we obtained the training and testing datasets in the frequency domain by 
employing the resampled vibration signal [2], which helps to reduce the effect of the speed change. We have set the input length in 
frequency domain to encompass three revolutions of the target planet gear, ensuring that the fault-related signals are captured at least 
three times. We employed a conventional convolutional neural network (CNN)-based classification model that was trained solely on 
the source domain data. The LeNet-based baseline model from [11] featuring two convolutional layers with ReLU activation and 
pooling layers, as well as two fully connected layers, was adopted in our study. In addition, a shallow version of the autoencoder from 
[45] with the ELU activation function for each layer has been employed. In more detail, an autoencoder with a latent space of 128 was 
utilized, consisting of three convolutional layers with Batch normalization, ELU, and pooling layers in the encoder part, and three 
transposed convolutional layers with Batch normalization and ELU layers in the decoder part. Based on the autoencoder, we utilized a 
conventional reconstruction-based anomaly detection (AD) approach with a detection threshold determined by the three-sigma 
criteria. Furthermore, we present a comparison study between FaultSignatureGAN [14] applied to both the frequency domain and 
HDMap, which provides comprehensive insights into the disentanglement assumption of fault signatures in HDMap. FaultSignatur
eGAN demonstrated state-of-the-art bearing fault diagnosis performance using frequency domain signals under extreme setups of 
partial and open-partial domain adaptation problems, where only healthy data is available in the target domain. For the frequency 
domain experiment, we employed the same model architecture and training strategy as in [14] without any modification. For HDMap, 
we utilized the decoder part of the aforementioned autoencoder model as a generative model. Additionally, the triplet loss between 
different fault labels was ignored, as we found that the triplet loss negatively impacts the performance in our case study where only a 
single fault type from the source domain is used for training. As suggested in [14], we have also incorporated an early stopping strategy 
for training the generative model. This strategy utilizes the fault diagnosis accuracy derived from real fault samples in the source 
domain. 

As an additional comparison method, we also implemented the original CutPaste (CP) method in the target domain. After syn
thesizing faulty samples in the target domain using the Original CutPaste, Scaled CutPaste and FaultPaste method, the same archi
tecture as in the baseline model was utilized for the fault classification task. For the regression task, only the last layer of the baseline 
model was replaced by a single output neuron with a linear activation function. The classification task is evaluated with an ordinary 
classification accuracy of normal and faulty state. For evaluation of the regression task, we calculated ROC-AUC scores between the 
normal and fault level 1 states, as well as fault level 1 and fault level 2 states. ROC-AUC score between two fault levels can indicate the 

Fig. 10. Effect of scaling parameters: (a) scaled CutPaste, and (b) FaultPaste.  
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capability of predicting the wide-range of unseen fault severities. Details of the applied architectures used in the baseline and 
autoencoder models are presented in Appendix B. It is important to mention that our primary focus was not on optimizing the 
hyperparameters. Instead, we utilized the model architecture from previous studies with minor adjustments to ensure computationally 
efficient training and inference. Due to the lack of faulty validation data under extreme domain shift conditions in the target domain, 
optimizing hyperparameters was not feasible. All of the models are implemented in PyTorch 1.11, and trained using Adam optimizer 
with initial learning rate of 1e-3 downscaled to 1e-4 at 2000th iteration, and momenta β1 = 0.9, β2 = 0.999. All of the models are 
optimized for 3000 iterations with a batch size of 128. We utilized Intel i9-12899 K processor and NVIDIA RTX A6000 GPU for the 
experiments. 

5.3. Results from the classification model 

The fault diagnosis results for each task are presented in Table 3, where the mean and standard deviation of the accuracy from five 
runs with random seeds are reported for each task. The accuracy from the baseline model shows inconsistent fault diagnosis accuracy 
for each transfer task. The baseline model with HDMap performs worst when the model is trained on domain C, as indicated by the 
underline in Table 3. Domain C represents the most distinct, stable and non-noisy condition because the signal is measured by a high- 
cost IEPE-type accelerometer under stationary speed. The low variability of the signal may hinder the training of a robust cross-domain 
classification model. The results from the baseline model in the frequency domain generally demonstrate inferior performance 
compared to those achieved using HDMap. This disparity can be attributed to the increased dependency on domain-specific charac
teristics in the frequency domain. However, compared to the baseline, FaultSignatureGAN [14], achieves a noticeable improvement in 
overall fault diagnosis performance. Particularly in HDMap, this enhancement provides support for the assumption of disentangling 
fault signatures. It is worth noting that in certain cases, FaultSignatureGAN outperforms with the frequency domain features compared 
to the HDMap representation. This observation is especially prominent in task 2 (i.e., IEPE to MEMS sensor under stationary condition) 
and task 6 (i.e., IEPE to MEMS sensor under non-stationary condition). In these tasks, FaultSignatureGAN learns to generate the fault 
signature from high-cost IEPE sensor signal, which is subsequently combined with the healthy signals from the low-cost MEMS sensors. 
This case study indicates that the reliable fault signature learnt from frequency-domain features can be effectively utilized under 
similar operating conditions, where the frequency components in both the source and target domains exhibit similar characteristics. 
However, it is essential to acknowledge that using FaultSignatureGAN for the generation of fault signatures in the frequency domain 
appears to still retain some level of domain dependency in the other remaining tasks, consequently impacting the cross-domain fault 
diagnosis performance negatively. Both the conventional CutPaste methods and the autoencoder-based anomaly detection fail to 
effectively detect faults in all target domains. The magnitude of fault-related signatures may not be consistently represented by the 
autoencoder-based reconstruction error in anomaly detection. It can also be inferred from the results that the conventional CutPaste 
method fails to sufficiently replicate the spatial irregularity present in real faulty data caused by the pasted patch. The proposed 
approach resolves the challenge of the conventional CutPaste method by employing an appropriate scaling-based synthesis strategy. As 
a result, it should be noted that the proposed scaled CutPaste and FaultPaste approaches outperform the state-of-the-art methods for 
generating fault sample, including FaultSignatureGAN and CutPaste, as well as the baseline and autoencoder-based anomaly detection, 
for every task. In particular, the FaultPaste approach has a slightly higher accuracy compared to the proposed scaled CutPaste 
approach. 

5.4. Results from the regression model 

Although the classification model shows promising results, it is more desirable to predict fault severity in real-world conditions to 

Table 3 
Fault diagnosis accuracy (classification accuracy).  

# Task Baselinea ADb Baselinec FaultSignatureGAN [14] CutPaste 
[16] 

Scaled CP 
(Proposed) 

FaultPaste 
(Proposed) 

(HDMap) (HDMap) (freq.) (freq.) (HDMap) (HDMap) (HDMap) (HDMap) 

1 B → A 92.9 ± 2.6 75.0 ± 0.0 55.4 ± 6.3 80.6 ± 11.7 94.1 ± 3.6 65.6 ± 19.2 98.4 ± 0.4 97.8 ± 2.4 
2 C → A 79.6 ± 5.7 84.4 ± 9.4 83.2 ± 11.6 66.8 ± 12.7 96.1 ± 3.0 
3 D → A 94.9 ± 3.1 53.7 ± 5.7 71.1 ± 8.1 93.8 ± 4.3 98.0 ± 1.8 
4 A → B 71.7 ± 9.3 75.0 ± 0.0 67.3 ± 2.1 74.9 ± 5.3 95.1 ± 3.1 72.1 ± 15.3 93.3 ± 1.0 97.7 ± 0.3 
5 C → B 53.5 ± 6.9 53.0 ± 4.4 78.6 ± 9.0 74.6 ± 3.4 98.9 ± 0.2 
6 D → B 79.1 ± 9.1 72.4 ± 5.0 96.1 ± 1.1 88.4 ± 5.7 98.6 ± 0.1 
7 A → C 84.6 ± 8.7 74.9 ± 0.0 73.0 ± 8.7 52.2 ± 1.3 97.6 ± 1.0 58.2 ± 16.5 97.7 ± 0.3 98.7 ± 0.2 
8 BC 86.0 ± 9.0 66.6 ± 5.7 67.2 ± 9.9 96.0 ± 5.0 98.7 ± 0.2 
9 D → C 96.5 ± 2.2 78.2 ± 3.6 82.6 ± 5.3 89.3 ± 2.1 98.7 ± 0.0 
10 A → D 82.9 ± 11.7 57.3 ± 3.1 55.3 ± 1.4 57.3 ± 4.2 97.7 ± 2.4 67.5 ± 21.1 99.1 ± 0.4 99.4 ± 0.1 
11 B → D 94.2 ± 4.4 75.5 ± 3.3 78.7 ± 16.7 98.3 ± 1.6 99.0 ± 0.2 
12 C → D 71.7 ± 8.9 60.3 ± 1.7 71.1 ± 5.7 87.0 ± 3.7 99.3 ± 0.1 

Baselinea: 2d CNN model trained in source domain. 
ADb: Anomaly detection in target domain. 
Baselinec: 1d CNN model trained in source domain (freq. domain). 
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design more effective maintenance strategies. This paper employs two types of faults, as illustrated in Fig. 7 (d) and (e), to assess fault 
severity using the regression model. It should be noted that while fault 2 is intentionally designed to exhibit more severe tooth wear 
than fault 1, the vibration characteristics induced by the fault may vary depending on the operating and assembly conditions of the 
gearbox. The test samples used in this experiment are obtained from two separate regions, as depicted in Fig. 9. It is worth noting that 
each region’s vibration characteristics may differ due to varying lubricant oil temperatures. As an example, Fig. 11 (a) and (b) depict 
the scaling parameter and its corresponding histogram for the scaled CutPaste and FaultPaste methods under domain C, respectively. 
The evaluation of each health state (normal, fault 1, and fault 2) involves 1000 test samples, each of which is divided into two parts 
based on the test region. As shown in Fig. 11 (a), faults 1 and 2 exhibit a distinct transient between the two test regions (i.e., x = 1500 
and 2500), while also displaying significant variation within each region. While it is common for faults 1 and 2 to have higher values 
than the normal state in each test region, the health state cannot be effectively distinguished when combining samples from all test 
regions. In the test data, fault level 1 from test region 1 overlaps with the normal state from test region 2. However, as shown in Fig. 11 
(b), the scaling parameter predicted by FaultPaste can almost completely differentiate between the normal state and fault level 1 for all 
test samples. Moreover, although the model is trained solely with fault signatures obtained from fault level 1 in the source domain, it 
can still differentiate between fault levels 1 and 2 to some extent. The predicted values for each health state and region also have a 
narrower variation, indicating that FaultPaste leads to more robust prediction performance. However, there is a small overlap between 
fault level 1 from test region 2 and fault level 2 from test region 1, suggesting that the vibration characteristics are significantly affected 
by the operating conditions of the gearbox. Table 4 gives an overview of the Area Under the Curve (AUC) values of the regression 
model for all tasks, revealing that fault level 1 can be effectively distinguished from the normal state for all tasks. These results are 
consistent with the classification accuracy results. Furthermore, FaultPaste demonstrates a more robust distinction accuracy between 
fault severity 1 and 2 representing the ability to evaluate the unseen severe fault, as highlighted in Table 4 where the mean and 
standard deviation of the accuracy from five runs with random seeds are reported for each task. 

6. Discussion 

One of the key contributions of this study is the development of two new fault diagnosis methods for planetary gearboxes using 
health data map. The first method, Scaled CutPaste, is completely self-supervised and relies only on normal samples from the target 
domain. It incorporates the guidance of domain expertise with domain knowledge of planetary gearbox vibration characteristics to 

Fig. 11. Example of trend and histogram of the evaluated scaling factor for the scaled CutPaste and FaultPaste methods from normal, fault 1 and 2 
condition under Domain C. 

Table 4 
Fault severity prediction accuracy (regression ROC-AUC).  

Task # Task Normal vs Fault 1 Fault1 vs Fault2 

Scaled CP FaultPaste Scaled CP FaultPaste 

1 B → A 0.98 ± 0.005 0.999 ± 0.0 0.707 ± 0.005 0.797 ± 0.035 
2 C → A 0.999 ± 0.0 0.843 ± 0.022 
3 D → A 0.999 ± 0.0 0.813 ± 0.033 
4 A → B 0.949 ± 0.004 0.985 ± 0.002 0.513 ± 0.001 0.526 ± 0.003 
5 C → B 0.991 ± 0.001 0.589 ± 0.021 
6 D → B 0.992 ± 0.002 0.52 ± 0.004 
7 A → C 0.927 ± 0.033 0.999 ± 0.0 0.807 ± 0.013 0.977 ± 0.004 
8 B → C 0.996 ± 0.003 0.984 ± 0.003 
9 D → C 0.997 ± 0.001 0.974 ± 0.007 
10 A → D 0.99 ± 0.004 0.999 ± 0.0 0.765 ± 0.004 0.841 ± 0.011 
11 B → D 0.999 ± 0.0 0.845 ± 0.003 
12 C → D 0.999 ± 0.0 0.812 ± 0.008  
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simulate fault-related features on normal samples in the target domain. The second method, FaultPaste, improves upon Scaled Cut
Paste by extracting fault-related features from the source domain and pasting them onto normal samples in the target domain. This 
results in more realistic synthesized faulty samples and enhances the fault diagnosis performance. Both methods use randomly- 
distributed scaling factors to simulate faults ranging from negligible to significant levels. The results of the parametric study depic
ted in Fig. 10 indicate that both methods can achieve almost perfect classification accuracy when the maximum scaling factor is larger 
than 30. This implies that a wide variation of the scaling factor can improve the generalization of the classification model, resulting in 
greater flexibility. The study provides evidence that the results of the parametric study are consistent with both synthesized and real 
samples in the target domain, which suggests that the method can be validated solely using synthesized samples and can be reliably 

Fig. A1. Measured vibration signal: (a-d) Normal signal from domain A to D, (e-h) Fault signal from domain A to D from fault level 1, (i-l) Fault 
signal from domain A to D from fault level 2. 

Fig. A2. Health data map: (a-d) Normal data from domain A to D, (e-h) Fault data from domain A to D from fault level 1, (i-l) Fault data from 
domain A to D from fault level 2. 
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implemented in real-world scenarios. 
The proposed methods were evaluated by comparing their classification accuracy to conventional methods on a set of compre

hensive domain shift tasks. The comparative study included a conventional CNN network, a conventional anomaly detection approach 
with autoencoder, and a conventional CutPaste method. Table 3 summarizes the results of the comparative study, which showed that 
the conventional methods were not able to robustly detect faults. For example, the baseline model had a minimum accuracy of 53.5% 
for task C → B when trained on the data from the most stable condition (i.e., using high-cost sensor under stationary speed) and tested 
under the most imperfect condition (i.e., using low-cost sensor under non-stationary speed). It is possible that the baseline model 
learned domain-specific vibration characteristics that were consistently measured from the high-cost sensor in domain C, but were not 
easily observed in domain B with a low-cost sensor under highly varying vibration characteristics. On the other hand, the scaled 
CutPaste approach trained the model solely using target normal samples, resulting in higher accuracy and bridging the domain shift. 
The results also showed that the FaultPaste method consistently outperformed the other methods in almost all transfer tasks, sug
gesting that it effectively utilized the fault-related features extracted from the source domain to synthesize more realistic faulty 
samples in the target domain. As the fault-related features extracted from the source domain may contain remaining disturbance 
components, incorporating these uncertain features with varying scaling factors could increase the robustness of the fault diagnosis 
model during training. 

The paper proposes a method for predicting the severity of faults by developing a regression model that assesses the scaling factor 
used to generate the synthesized samples. Although it is difficult to establish a robust threshold for classifying the health state of 
samples using this model, it can provide continuous predictions of fault severity, allowing for trend analysis. The study also revealed 
that a single deterministic gear fault can generate varying vibration and fault-related characteristics due to the system’s changing 
operating conditions. Unlike a classification model that unifies the health state despite these variations and the uncertain fault state in 
the target domain, the regression model can analyze changes in the fault-induced features. Hence, in such scenarios, it is advantageous 
to utilize a regression model instead of a classification model for assessing the trend of fault severity, which may extend to levels of 
faults that were previously unobserved. 

7. Conclusions 

The paper introduces a novel method for cross-domain fault diagnosis of planetary gearboxes when only healthy data is available in 
the target domain. The proposed method involves using a health data map (HDMap) to physically represent the gearbox vibration 

Table B1 
Baseline model structure.  

Layer Parameters 

Convolution Size = 5, Ch = 32, Stride = 1, Padding = 2 
ReLU – 
Pooling Size = 3, Stride = 2, Padding = 1 
Convolution Size = 5, Ch = 48, Stride = 1, Padding = 2 
ReLU – 
Pooling Size = 3, Stride = 2, Padding = 1 
Fully connected Node = 100 
ReLU – 
Fully connected Node = 100 
ReLU – 
Softmax Output = 2  

Table B2 
Autoencoder model structure.  

Structure Layer Parameters 

Encoder Convolution Size = 3, Ch = 16, Stride = 1, Padding = 2 
BatchNorm, ELU – 
Pooling Stride = 2 
Convolution Size = 3, Ch = 32, Stride = 1, Padding = 2 
BatchNorm, ELU – 
Pooling Stride = 2 
Convolution Size = 3, Ch = 64, Stride = 1, Padding = 2 
BatchNorm, ELU – 

Latent 
Space 

Fully connected 128 
BatchNorm, ELU – 

Decoder Transposed Convolution Size = 4, Ch = 64, Stride = 2, Padding = 1 
BatchNorm, ELU – 
Transposed Convolution Size = 5, Ch = 32, Stride = 2, Padding = 0 
BatchNorm, ELU – 
Transposed Convolution Size = 4, Ch = 16, Stride = 1, Padding = 2  
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signal, allowing for a rough visualization of fault-related features. Our method is based on the assumption that the vibration char
acteristics and fault-related signatures can be to some extent disentangled in the HDMap representation. The paper presents two novel 
methods, scaled CutPaste and FaultPaste to synthesize faulty samples in the target domain in a controlled manner with scaling factors. 
Scaled CutPaste can synthesize faulty samples using only healthy data in the target domain by utilizing prior domain knowledge of 
fault-related features. The spatial irregularity generated from scaled CutPaste with various severities can help to train a deep learning- 
based fault diagnosis model that can generalize well. FaultPaste, on the other hand, can generate more realistic faulty samples by using 
fault signatures extracted from the source domain. Although FaultPaste requires both normal and faulty data from the source domain, 
it outperforms the conventional method even in predicting unseen fault severity in the target domain. It should be noted that the 
evaluation of the performance of the proposed method only covers the detection of a local fault in a single planet gear tooth. Addi
tionally, the proposed idea assumes that the fault signature pattern is minimally influenced by the changes in operating conditions, 
while accounting for uncertainty through the utilization of the scaling factor. Furthermore, the conventional processing steps involved 
in HDMap technique, such as time synchronous averaging, frequency domain subtraction of regular gear meshing components, and 
extracting of maximum vibration amplitude for each gear meshing combination, may result in the loss of crucial information. In future 
research, it would be valuable to expand the proposed method to encompass a broader range of fault types and severity levels. 
Additionally, exploring more significant domain shift problems, such as changes in gearbox type that can completely alter the fault 
signature pattern even within HDMap, will be the focus of future research endeavors. Moreover, exploring end-to-end data synthesis 
and fault diagnosis methods that incorporate domain knowledge from raw vibration signals could be an intriguing avenue to pursue. 
Additionally, the study discovered that operating conditions, such as lubricant oil temperature, can affect the variability of fault- 
related features. Therefore, future research could develop a more robust fault severity prediction method by integrating domain in
formation that includes the operating condition. 
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