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a b s t r a c t

The research of this paper is framed in the context of multi-layered, optimization-based approaches
for microgrid control. Specifically, we focus on the design of real-time objectives that are typically
proxies of long-term ones. Examples include tracking a predetermined dispatch plan or a battery state-
of-charge trajectory while satisfying the grid’s operational constraints. If there is no formalized way
of choosing the cost functions that reflect these objectives, an arbitrary choice could lead to a biased
control in favor of certain objectives. The common approaches of configuring microgrid controllers
usually rely on ‘‘oracle-based’’ approaches assumed to know exactly the studied scenarios. In this
paper, we formalize the design goals of a real-time microgrid-control system by employing distributed
energy-storage systems, and we give guidelines on how to design cost functions that satisfy them. Our
method requires only certain parameters that can be chosen intuitively and gives a priori insight on
the controller’s behavior. The application of the theoretical work is verified in multiple scenarios by
simulations performed using a realistic model of a microgrid.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The transition from conventional bulk power generation to
istributed generation has created new opportunities for grid
perators to participate in the electricity market in an active
ay [1]. Active Distribution Networks (ADNs) and microgrids are
ecoming more widespread to manage the supply and demand
f energy in a dynamic way. Microgrids constitute local electrical
rids consisting of distributed energy resources (DERs), such as
attery energy storage systems (BESSs), photovoltaics (PVs), and
nelastic or controllable loads suitably operated to achieve certain
bjectives. The use of control strategies is key to ensuring the
ptimal operation of DERs to achieve a specific objective.
Various approaches to microgrid control have been proposed

n the literature [2]. Two alternative approaches are those of
i) local and grid-state myopic (e.g., droop-based [3]) and (ii)
ptimization-based strategies, e.g., [4,5]. We focus on the latter
ategory, as the lack of knowledge of the grid state and the
ncertainties of renewables for droop-based methods can lead to
ub-optimal decisions.
We consider microgrids that have the capability to either be

onnected to the main grid or operate as an island. The controlla-
ility of the microgrid is provided exclusively by BESSs, whereas
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the rest of the energy resources are uncontrollable stochastic
renewable generators and loads. Such a model is of high in-
terest in practical applications, as BESSs are reliable and highly
controllable energy sources for balancing the uncertainties of
renewables [6]. We assume that the BESSs reserve part of their
energy capacity to be used exclusively by the grid operator to
achieve a certain objective (e.g. dispatchability). Because the bat-
teries have a common objective, we also assume that, if the
microgrid operates in islanded mode, then the role of the slack
bus is not played by a BESS.

The control of the BESSs is performed in a multi-layered fash-
ion. The higher layers target long-term energy/economic objec-
tives and grid safety with respect to nodal voltage and branch
current limits by taking into account power forecasts from un-
controllable producers and consumers. The output of these layers
is typically a power profile (e.g., dispatch plan [6]) to be tracked
at the bus that interfaces the microgrid with the main grid, which
could be computed either a day ahead or recomputed intra-day
(e.g., every 15 min) [7]. The lowest layer executes in real-time
(e.g., every few seconds) the decisions made by the higher layers,
whereas also taking care of grid safety as power fluctuations from
their predicted values can lead the system to an undesirable state
that is not accounted for in the other layers.

Assuming a given higher layer of control, we focus on the
design of the optimization problem to be solved by the lowest
layer. We consider a real-time layer operating at the multi-second

time scale, supervised by a higher layer operating at the 15-min
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timescale. The objectives of the real-time layer act as proxies for
the objectives of the higher layer that are difficult to express in
real-time. Having no explicit guidelines for the design of the cost
functions optimized by this layer might lead to an unfair usage
of the BESSs in favor of a certain objective. For example, it might
compromise grid safety in favor of dispatch tracking, if the two
objectives are not configured carefully.

A common approach to configure the control parameters relies
n the use of an ‘‘oracle’’ that finds the optimal set of parameters
posteriori so that acceptable performance is achieved. In other
ords, multiple simulations are run with different sets of weights
ntil a satisfactory set is found. Even though this approach might
ork when a single grid is considered, it might not be viable

n a real-life scenario because the optimal sets of weights are
ost likely grid and scenario dependent. Grid operators might
ave to configure multiple microgrids, hence they would likely
ave to perform an extensive series of simulations to determine
he optimal set of parameters for each microgrid. Furthermore,
s we show in Section 3.2, in case there is a change in the
opology of a grid, or the specifications of any asset are modified,
r if the boundary operating conditions are changing, the set of
arameters might no longer achieve the desired performance, so
he whole process would most likely have to be repeated anew.

The use of this approach can be inferred in various works in
he literature. The works presented in [8–10] optimize battery
tate-of-charge (SoC) related penalties, in addition to the mon-
tary cost of power generation. The cost functions used employ
ertain coefficients, which were chosen manually for the problem
t hand, hence the problem definition does not generalize easily
o other cases.

A similar approach is followed in [11]. The authors define
cost function for energy storage units, which penalizes the

harging/discharging of the unit. They use a multi-agent approach
o satisfy, as much as possible, all single-devices goals; they also
ollow a central message to meet a proposed demand. However,
t is not clear how the cost functions used in the simulations are
esigned. The issue of objective weighing is also addressed, but
he choice of the weights does not seem straightforward.

The work presented in [12] is more closely related to the prob-
ems studied in our work, as it employs a two-layer approach. It
ncorporates a day-ahead scheduler that computes a power pro-
ile to be followed by the intra-day scheduler while minimizing
oltage deviation and power losses. The authors present a case
tudy that examines the effect of the weights of the respective
bjectives, but no intuition is given behind the choice of the
alues.
Finally, the objectives defined in [13,14] are similar to the

nes studied in our work. Each individual resource is assigned
penalty term on its active and reactive power; there is also
n objective to follow a target state in the grid. However, the
roblem formulation includes certain weights in the objective,
he choice of which is not specified.

To bridge the gap in the existing literature, we give guidelines
o the design of cost functions for various objectives related to
icrogrids’ real-time control. Our method reduces the time and
ffort needed to configure the parameters of the controller and
ives some intuition on how it will perform a priori, without
he need to run extended series of simulations. It also has the
dvantage of being grid and scenario independent. This means
hat it can be employed by grid-operators without any modifica-
ions. The problem we formulate defines two types of objectives,
amely batteries and grid objectives. The purpose of the batteries’
bjectives are to regulate their SoC, whereas the purpose of the
rid objective is to achieve a target grid state within a desired
olerance. The choice of the respective cost functions is made in
uch a way that the SoC trajectories of the batteries are as close
s possible to each other while following the grid objective.
 i

2

The structure of the paper is as follows. In Section 2, we
define the optimization problem that is targeted by our control
system. In Section 3, we demonstrate the problems of the oracle-
based approach, using concrete examples. In Sections 4 and 5,
we give the mathematical formulation of our problem that leads
to the design of cost functions for batteries and grid objectives,
respectively. In Section 6, we validate our theoretical analysis
with simulations. Finally, in Section 7, we conclude the paper.

2. General form of the optimization objective

We consider a microgrid connected to the main grid to be
controlled by N batteries that can implement any active/reactive
power setpoint xi = (Pi,Qi) ∈ Ai, i = 1..N , where Ai is the con-
straint set of battery i. The grid also consists of U uncontrollable
nergy resources of uncertain prosumption un = (Pn,Qn), n =

..U . The optimal power setpoints for each battery are computed
eriodically by a centralized controller that is assumed to have
nowledge of the SoC of each battery (SoCi) and the state of the
rid. The theoretical analysis presented in this work is indepen-
ent of the period of the control, which can take values in the
inute down to the sub-second scale. Therefore, our goal is to
esign an optimization problem that can be solved efficiently,
eaning that (i) it should be convex and (ii) the number of hard
onstraints should be limited.
Each battery has a cost function, called battery objective, re-

ated to it; it indicates its preference to implement a specific
oint within its constraint set. We indicate with Ci(xi|Si, SoCi) the
ost function of battery i, where Si is the rated apparent power
f its power-electronic converter. In addition to the individual
attery objectives, the controller should also aim to achieve a
arget grid state with respect to (i) the power at the point of
ommon coupling (PCC), i.e. the point that connects the microgrid
o the external grid, (ii) nodal voltages, and (iii) branch cur-
ents. We call this the grid objective, denoted as J(x|û), where

= (x1, x2, . . . , xN ) is the set of batteries setpoints and u =

u1, u2, . . . , uU ) is the set of the prosumptions of the uncontrol-
able resources. The objective of the controller at every time step
is to minimize the total expected cost, subject to the batteries’
onstraints.

min
x

Ct (x|û) , s.t. xi ∈ Ai, i = 1..N (1)

t (x|u) =

N∑
i=1

Ci(xi|Si, SoCi) + J(x|u) (2)

here ˆ{·} denotes the forecast of the prosumption. In this formu-
ation, hard grid-constraints concerning nodal-voltage deviations,
mpacity limits, or power factors can either be relaxed to soft
onstraints or be expressed via appropriate cost functions [15].
Concerning the convexity of problem (1), the cost functions

f the batteries and their respective constraint sets can easily
e designed to be convex. However, in the case of the grid ob-
ective, some approximations are needed due to the well-known
on-convex characteristics of the power-flow equations.
We consider that we want to optimize the value of M grid

ariables y = (y1, y2, . . . , yM ), where ym can represent a specific
odal injection, nodal voltage, or branch current. For this purpose,
e consider grid cost-functions of the following form:

(x|u) =

M∑
m=1

wmJm(ym(x|u)) (3)

here Jm is the penalty term for the grid variable ym and wm > 0

s the respective weight.
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Fig. 1. Microgrid topology. B0 is the slack bus.

The power-flow equations link the complex power injections
ith the nodal voltages in the following way [16]:

¯k = Ēk
K∑

k′=1

Y kk′Ek′ (4)

where K is the number of buses in the grid, Ēk, S̄k denote the
complex voltage and power injection of bus k, Ȳ is the nodal ad-
ittance matrix and {·} indicates the complex conjugate. Because

of the form of Eq. (4), the relation between voltages, currents, and
active/reactive power is non-convex. One way to achieve convex-
ity is to use a linear approximation of (4), using, for example, the
method presented in [16]. Using the notation presented earlier
in this section, we approximate the grid variable ym at time t , as
ollows:

m(x|u) = y0m+

N∑
i=1

(Km
P,i(Pi − P0

i ) + Km
Q ,i(Qi − Q 0

i ))+

+

U∑
n=1

(Km
P,n(Pn − P0

n ) + Km
Q,n(Qn − Q0

n))

(5)

here y0m, P0
i and Q 0

i are the values of ym, Pi and Qi respectively
t time t −1 and Km

P,i, K
m
Q ,i are the so-called sensitivity coefficients,

ith respect to the batteries setpoints. Accordingly, P0
n ,Q

0
n are

he values of the uncontrollable prosumptions at t − 1 and
m
P,n, K

m
Q,n are the respective sensitivity coefficients. The sensitiv-

ty coefficients represent precisely the partial derivatives of the
rid variable with respect to the nodal powers evaluated at the
alue of the setpoints at time t − 1.

. The oracle-based approach

The need for having guidelines for the design of cost functions
s demonstrated on the microgrid of Fig. 1. It is composed of two
ncontrollable prosumers, namely a PV plant of 30 kWp and a
oad of 60 kWp; both of which have a power factor of 0.9. It
lso contains two controllable batteries, namely battery 1 rated
t 15 kVA/15 kWh, and battery 2 rated at 60 kVA/60 kWh. The
arameters of the grid lines are in [17].
We assume a control system in three layers. The first layer,

alled the day-ahead layer, receives as an input (i) the SoC of the
wo batteries at the beginning of the day and (ii) scenario-based,
ay-ahead forecasts of the PV generation and load consumption
t a 5-minute resolution for a horizon of 24 h. Then, it computes a
ispatch plan, as well as the expected trajectory of the SoC of each
attery for each scenario, using the method of [18]. Because the
orecasts that are performed day-ahead are typically inaccurate,
very 15 min a re-dispatching is performed by an intra-day layer
hat updates the dispatch plan and/or SoC trajectories of the
atteries using updated forecasts for the prosumption. Finally, we
3

Fig. 2. Predictions and realizations of the uncontrollable energy resources in the
microgrid of Fig. 1.

consider a time slice of 15 min between two intra-day cycles for
the real-time layer. We solve problem (1) every 10 s, assuming
given point-forecasts of the prosumption at a 10 s horizon gen-
erated by a second forecasting model. It should be noted that the
intra-day and the real-time forecasters are assumed to be inde-
pendent. Therefore, we can consider only the real-time forecasts
to solve problem (1). Fig. 2 shows the real-time realization of the
PV generation and load consumption for the considered 15 min
interval and their respective real-time forecasts.

3.1. Cost functions

The target SoC trajectory, SoCDP,i, for battery i is taken as the
edian trajectory over all scenarios computed by the intra-day

ayer. The cost function proposed in [19], so that battery i (i =

1, 2}) achieves this target SoC, is the following1:

Ci(Pi,Qi|Si, SoCi) =

wi
|∆SoCi|

3
(
P2
i

S2i
− 2sgn(∆SoCi)

Pi
Si
)

(6)

where ∆SoCi = SoCi − SoCDP,i is the difference between the SoC
f the battery and the target value normalized in the interval
−1, 1]. wi > 0 is the weight placed on the objective of battery
, which is to be configured by the user. For simplicity, we use
he following linear approximation of the constraint set of the
atteries’ power-electronics converters: Pi,Qi ∈ [−

√
2
2 Si,

√
2
2 Si].

The grid objective consists of the following four objectives:
(i) track an active power profile at the microgrid slack bus,
(ii) minimize the reactive power at the slack bus, (iii) minimize
the nodal-voltage deviations from the nominal value, (iv) limit
the branch currents.

1 The rationale behind this function is the following: if SoCi < SoCDP,i then
the function is increasing with respect to Pi , thus favoring charging of the battery
(negative power) instead of discharging. If, on the other hand, SoCi > SoCDP,i ,
then the function is decreasing, so that it favors discharging of the battery.
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The cost functions we use in this work are adapted from [14].
bjectives (i) and (ii) can be expressed with the following two
quations, respectively:

Ps (x|u) = (Ps(x|u) − PDP )2 (7)

JQs (x|u) = Q 2
s (x|u) (8)

where (Ps,Qs) are the linearized active and reactive powers at the
slack bus, computed from (5), and PDP is the active power tracking
value computed by the dispatch plan.

To express objective (iii), we assume a single node k with
linearized voltage magnitude Vk and define the hard voltage
constraint, denoted as βhard. This objective should ensure that
Vk does not differ more than βhard units from the nominal value
Vn. Therefore, the cost function should take very large values for
|Vk − Vn| > βhard. The cost function for voltage Vk can be defined
in the range |Vk − Vnom| ≤ βhard − ϵ, where 0 < ϵ ≪ βhard as
[19]:

JVk (x|u) =
(Vk(x|u) − Vnom)2

β2
hard − (Vk(x|u) − Vnom)2

(9)

he constant ϵ prevents the function from taking infinite values.
utside this range, the cost is defined as a quadratic cost function
f Vk such that JV (Vk) and J ′V (Vk) are both continuous at Vk =

nom ± (βhard − ϵ).
The purpose of objective (iv) should be to keep the magnitude

f the linearized complex current Īl of line l below its ampac-
ty Imax

l . Unlike the voltages, however, the magnitude of branch
urrents cannot always be accurately approximated as a linear
unction of nodal powers. Instead, we can first approximate the
onstraint |Īl| ≤ Imax

l by the following linear constraints:
+

l ≥ −Imax
l

−

l ≤ Imax
l

(10)

here I+l = ℜ(Īl) + ℑ(Īl) and I−l = ℜ(Īl) − ℑ(Īl) and ℜ(·), ℑ(·)
ndicate the real and imaginary part. We can then represent

onstraints (10) in the range I+/−
l
Imax
l

≤ 1 − ϵ using two penalty
erms per line, as in [19]:

I+/−
l

(x|u) =
(I+/−

l (x|u))2

(Imax
l )2 − (Il(x|u)+/−)2

(11)

he cost is defined again outside this range as a quadratic func-
ion, such that JI (I

+/−

l ) and J ′I (I
+/−

l ) are both continuous at I+/−

l =

(1 − ϵ)Imax
l .

The total grid cost function is the following:

J(x|u) = ws(JPs (x|u) + JQs (x|u))+

+
wV

K

K∑
k=1

JVk (x|u) +
wI

L

L∑
l=1

JI+l (x|u) + JI−l (x|u)
(12)

here K is the number of buses, L is the number of lines and
s, wV , wI > 0 are user-defined weights.

3.2. Simulation results

We perform simulations over a period of 15 min with a time
nterval of 10 s between the computation of setpoints. To eval-
ate the effectiveness of the controller in balancing the various
bjectives, we study an extreme case where the slack voltage
rops below the nominal value (see Fig. 3). The simulations
re performed in MATLAB and the problem is solved using the
nterior-point method implemented by the fmincon function.

Considering the cost functions defined above, it is up to the
ser to properly choose the weights of the objectives. We first
4

consider using the same weight for all objectives: ws = wV =

I = w1 = w2 = 1. Looking at the simulation results shown
n Fig. 3, we notice that the slack can neither track the dispatch
lan (see active power plot) nor effectively control its reactive
ower (green line in the reactive power plot), even though there
s enough controllability in the batteries to do so. Indeed, the
owers and SoCs of the batteries, as well as the nodal voltages
nd branch currents, are all well within their respective bounds.
n particular, voltage magnitudes are within 4% of the nomi-
al value and all currents are below 50% of the respective line
mpacities. Looking at the active-powers graph, we notice that
he batteries discharge for the majority of the simulation, even
hough this is contrary to their own objective and that of the
racking. The reason is that the controller tries to increase the
oltages as much as possible, which means that the weight ws is
oo small compared to the weight wV , as we will verify next.

This simulation indicates that the chosen cost functions do
ot lead to a balanced satisfaction of the objectives. For the next
imulation, we consider adapting the weights of the objectives, to
chieve a more balanced control. The choice is made as follows:
e first fix the slack weight ws = 1. Then, we run simulations
ith varying weights for the rest of the objectives, such that
i) the slack tracks the dispatch plan with an acceptable accuracy
ii) the controller’s reaction to the voltage drop is less significant
nd (iii) the batteries SoC are close to the target trajectories.
fter a series of simulations, we settle with the weights ws = 1,
V = 10−5, wI = 10−4, w1 = 10−4 and w2 = 5 · 10−4.
The simulation results are shown in Fig. 4. First of all, all volt-

ges and currents are still kept within their respective bounds.
owever, there are certain major improvements to be observed,
ompared to Fig. 3. Concerning the active power, the controller
oes a much better job at tracking the dispatch plan, while the
eactive power injection to the external grid is kept close to
. Regarding the SoC graph, we observe a more fair regulation
etween the two batteries. Even though at the beginning of the
ay there is a mismatch between the two lines due to the voltage
rop, then they follow a similar trajectory. More specifically, the
aximum relative deviation between the two lines is only 0.2%,
s opposed to 3% in Fig. 3 (notice that the scales in the y-axis are
ifferent for the two plots).
We now consider the following scenario. The grid operator

urchases a new battery with the same specifications as Battery 2,
.e. at 60 kVA/60 kWh and replaces the old Battery 1 with this
ew battery. The line between B1–B2 is also reinforced with
new one with four times the ampacity to ensure that it can
ithstand the current drawn by the new battery. Because there

s a change in the grid, the first step is to re-compute a dispatch
lan, as explained at the beginning of Section 3. We assume that
he grid operator has already computed the weights ws = 1,
wV = 10−5, wI = 10−4, w1 = 10−4 and w2 = 5 · 10−4, so
hey consider using the same ones for this new grid. Therefore,
e re-run the simulation with this change in the grid and the
ame weights as before.
The results are shown in Fig. 5. The main difference can be

bserved in the SoC trajectories of the two batteries. Unlike Fig. 4,
he two SoCs follow different directions throughout this 15 min
imulation. More precisely, although the maximum percentage
ifference between the two SoCs was 0.2% in Fig. 4, it has now
ncreased to 1%. Also, this difference is expected to become more
rominent in a longer time-period, as the two batteries follow
pposite trajectories.
This example was used to showcase that the optimal set of

eights is typically grid-dependent. Therefore, each change in the
rid would require repeating the weight-tuning process anew,
hich can be a tedious and time-consuming process, especially
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a

Fig. 3. Simulation results with equal weights for all objectives. The bottom-right graph shows the target trajectory for the SoC of the batteries that was computed
by the intra-day layer of control.
in larger grids. In addition, a grid operator would have to execute
the same process for each grid they operate, in case they are
responsible for multiple grids.

To address the problem, we formalize a method to construct
he cost functions in (2) so that we do not need to configure any
arameters a posteriori. The values of the parameters of the cost
unctions should be chosen in an intuitive manner so that the
ehavior of the controller can be predicted a priori.

. Battery cost-function

.1. Fair control of batteries

The battery objectives should be chosen in such a way that
fair control among them is achieved in order to follow the grid
5

objective. Although various definitions of fairness can be used, we
choose one that applies to short-term objectives.

Battery Design Goal and Preference of Batteries: We assume
that a higher layer of control has computed a point

x∗

i (SoCi) =(P∗

i (SoCi),Q ∗

i (SoCi))

∈[−
Si

√
2
,

Si
√
2
] × [−

Si
√
2
,

Si
√
2
]

for battery i, called the preference of the battery. It is the point
that the battery should implement if the grid does not impose
any other constraints. Taking the example of Section 3.1, the
preference would be the power setpoint that brings the SoC of
the battery as close to the target value as possible.

However, because there might be conflicting objectives on the
grid, the batteries might not be able to simultaneously implement
their preference. The deviation of a battery’s implementation
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Fig. 4. Simulation results with manually picked weights: slack weight ws = 1, voltage weight wV = 10−5 , current weight wI = 10−4 , battery weights
1 = 10−4, w2 = 5 · 10−4 .
rom its preference can be measured using its preference ratios
hat, with respect to P and Q , are defined as:

P,i =
Popt
i − P∗

i

Si
, rQ ,i =

Q opt
i − Q ∗

i

Si
(13)

here (Popt
i ,Q opt

i ) is the solution of problem (1) for battery i.
One possible choice for a fairness condition would be an equal

reference ratio for all batteries. A similar definition is given
n [20]. However, in our case this might not be the best choice,
onsidering that the grid objective is also involved. Instead, we
ake as fairness the condition where the preference ratio of a bat-
ery is proportional to the effect this battery has on minimizing
he grid objective. Formally, our fairness condition is ∀i = 1..N:

P,i = λP
∂ J(xopt |û)

∂Pi
, rQ ,i = λQ

∂ J(xopt |û)
∂Qi

(14)

here the coefficients λP and λQ are the same for all batteries.
This means that batteries that can easily affect the grid ob-

ective should be exploited for this purpose, assuming that this
6

is achievable by the battery’s capabilities, even if this contradicts
their own preference. Whereas, if the choice of the power set-
point for a specific battery does not affect the grid objective, then
we can freely choose to satisfy the preference of the battery.

4.2. General form of a battery cost function

We assume that each battery has two separate objectives,
specifically (i) satisfy its preference and (ii) minimize the internal
losses of the power interface that interconnects the battery with
the grid. The first objective can be met by steering the stationary
point of the cost, whereas the second can be achieved with the
addition of a quadratic penalty function of the active and reactive
powers. Therefore, we consider the following cost function for
battery i:

Ci(Pi,Qi|Si, SoCi) = aP (
P2
i

4Si
−

P∗

i (SoCi)
2Si

Pi)+

+ aQ (
Q 2
i

−
Q ∗

i (SoCi)Qi) + c
(15)
4Si 2Si
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Fig. 5. Simulation results with manually picked weights and a bigger Battery 1 at 60 kVA/60 kWh.
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where aP , aQ are strictly positive so that the function is strictly
convex and c is any arbitrary constant.2 By defining the function
this way, one can verify that the point that minimizes it is
precisely the preference of the battery. Theorem 1 shows that
this cost function satisfies our definition of fairness under certain
conditions.

Theorem 1. We consider the unconstraint variant of problem (1),
.e. withAi = R2, i = 1..N where the cost function for all N batteries
s defined in (15). Then the optimal solution of the problem satisfies
onditions (14) with λP = −

2
aP

and λQ = −
2
aQ

.

The proof of this theorem, as well as all other theorems and
emmas are provided in the appendix. Theorem 1 states that
airness is guaranteed provided that the batteries have uncon-
trained setpoints. We now study how much we can deviate from
deal fairness, when the battery constraints are involved, in the
ollowing scenario: we consider two batteries i, j ∈ {1, . . . ,N}

2 It should be noted that the value of c does not affect the solution of the
ptimization problem (1).
7

that (i) have the same preference, normalized by the rated power:

x∗

i (SoCi)
Si

=
x∗

j (SoCj)

Sj
(16)

nd (ii) have the same constraints, normalized by the rated
ower, which are in the following form, for m ∈ {i, j}:
Pm
Sm

∈ [(
P
S
)min, (

P
S
)max]

Qm

Sm
∈ [(

Q
S
)min, (

Q
S
)max]

(17)

t should be noted that it is reasonable to assume that con-
itions (16) and (17) are satisfied simultaneously, because
i) batteries that have the same constraints should have the same
bjective and (ii) the preference can be designed in such a way
hat the conditions are satisfied. Theorem 2 is a generalization
f Theorem 1, when the binding constraints of the batteries are
onsidered.

heorem 2. We consider problem (1), where the cost function for
all N batteries is defined in (15). We also consider two batteries
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i, j ∈ {1, . . . ,N}, for which conditions (16) and (17) are true.
hen the solution of optimization problem (1) satisfies the following
onditions:

rP,i − rP,j| ≤
2
aP

|
∂ J(xopt |û)

∂Pi
−

∂ J(xopt |û)
∂Pj

| (18)

rQ ,i − rQ ,j| ≤
2
aQ

|
∂ J(xopt |û)

∂Qi
−

∂ J(xopt |û)
∂Qj

| (19)

here rP,m, rQ ,m,m ∈ {i, j} are defined in (13). The upper bound is
chieved under the assumptions of Theorem 1.

Theorem 2 states that the conditions of Theorem 1 are suf-
icient to achieve the upper bound of the differences |rP,i − rP,j|

and |rQ ,i − rQ ,j|. This means that adding constraints to the prob-
lem will definitely reduce the difference of the preference ratios
compared to the unconstrained case. Because the upper bounds of
conditions (18) and (19) correspond to our definition of fairness
(condition (14)), the worst case, in terms of fairness, is the one
where the preference ratios are equal. Therefore, cost function
(15) always achieves a state between our fair condition and the
one used in [20]. Moreover, the theorem gives some intuition
on the effect that the coefficients aP , aQ have on the fairness
etween the two batteries. It shows, in particular, how increasing
he weights of the cost terms causes an inversely proportional
ecrease in the difference between the respective preference
atios.

. Grid objective

The purpose of the grid objective is to achieve a target grid
tate. Assuming grid cost-functions in the form (3), we define
he preference y∗

m of grid variable ym, as y∗
m = argminym Jm(ym).

n many practical applications, a deviation ∆ym from the target
alue ym should be penalized the same as a deviation −∆ym. In
his case, we require that Jm is in the following form:

m(ym) = J∗m(ym − y∗

m) (20)

here J∗m(y) is a strictly convex, even function of y.

.1. Computing the weights wm

We propose a method for choosing the weight wm of objective
m that is independent of the state of the batteries connected to
he grid. We assume that we use a cost function of the form (15)
or every battery, and we choose the coefficients aP , aQ , such that
< aP , aQ < 1.

Grid Design-Goal: A typical purpose of any grid objective Jm
ould be to keep the difference of grid variable ym from its target
alue y∗

m within a specified bound d∗
max,m. Therefore, the weight

m should be chosen, such that

yoptm − y∗

m| ≤ d∗

max,m (21)

here yoptm = ym(xopt |û) is the value of ym when the optimal
olution of problem (1) is implemented. Lemma 1 computes an
pper bound for |yoptm − y∗

m| as a function of the weight wm, which
ill be proven useful in achieving condition (21).

emma 1. We assume a grid cost-function of the form: J(x|u) =

m(ym(x|u)) where Jm(ym) is a strictly convex function of the grid
ariable ym that is expressed in the form (5). We also assume that the
onstraints of the batteries are in the form xi ∈ [xi,min, xi,max], ∀i =

..N, where xi = {Pi,Qi}. We define the following functions:

t (wm, d) =
1

′ ∗
(22)
wmJm(ym + d)
8

h(K ) = |y∗

m − yinfm |+

+

∑
|Km

x,i|<K

|Km
x,i||xi,max − xi,min| (23)

(wm, d) = max{d, h(Kt (wm, d))} (24)

f (wm) = min
d>0

g(wm, d) (25)

where wm is the weight of objective Jm(ym), J ′m(ym) is the derivative
f Jm with respect to ym and yinfm is the point that minimizes Jm within
ts domain, i.e.
inf
m = argmin

ym∈[ymin
m ,ymax

m ]

Jm(ym) (26)

hen, the function f (wm) is an upper bound of |yoptm − y∗
m|.

It should be noted that functions Kt , h and g defined in (22),
23) and (24) respectively are just auxiliary functions that help
n the proofs of the theorems and the visualization of the upper
ound, as shown in Section 5.3. Kt can be interpreted as a thresh-
ld, under which the values of the sensitivities are negligible in
omputing the upper bound for |yoptm − y∗

m|.
Lemma 1 gives an upper bound for the quantity |yoptm − y∗

m| as
function of the weight wm. However, the actual realization yrealm
ill differ from the optimal value yoptm , because of the uncertainty

n the system, as follows:
real
m = yoptm + ∆ym (27)

ym =

U∑
n=1

(Km
P,n∆Pn + Km

Q,n∆Qn) (28)

here ∆Pn, ∆Qn are the uncertainties of prosumption n, i.e. the
ifference between the forecast value and the respective real-
zation, and Km

P,n, K
m
Q,n are the sensitivity coefficients of ym with

espect to the nodal prosumption (see Section 2 and [16]).
Theorem 3 generalizes the statement of Lemma 1, by comput-

ng an upper bound for the quantity |yrealm − y∗
m| as a function of

he objective’s weight wm. The theorem, therefore, accounts for
he uncertainty in the system.

heorem 3. Given the same assumptions as Lemma 1 and Eq. (27),
hen

yrealm − yoptm | ≤ f (wm) + |∆ym|max ≜ fu(wm) (29)

here |∆ym|max = maxPn,Qn |∆ym| is the maximum absolute
ncertainty of ym due to the forecast errors and f (wm) is given by
25).

Although, the reverse problem interests us, specifically, given
desired upper bound d∗

max,m, we need to compute:

minwm > 0 such that fu(wm) ≤ d∗

max,m (30)

ven though numerical methods can be used to approximate the
olution of problem (30), we demonstrate below that we can find
n analytical solution to the problem. To do this, we need to use
he following properties of fu(wm).

(1) It is a decreasing function of wm.
(2) It has an upper bound

fUB = |y∗

m − yinfm | +

∑
∀i

|Km
x,i||xi,max − xi,min| + |∆ym|max

(3) It has a lower bound fLB = |y∗
m − yinfm | + |∆ym|max

(4) If fLB ̸= 0, then fu(wm) = fLB, ∀wm ≥
1

|Km|min|J ′m(yinfm )|
where

|Km
| = min |Km

|
min x,i
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The statement of Theorem 4 is used to analytically find the
solution of problem (30).

Theorem 4. We consider the following two problems, Problem 1
given by (30) and Problem 2 given by (31):

minwm > 0 such that
g(wm, d∗

max,m − |∆ym|max) ≤ d∗

max,m − |∆ym|max
(31)

If w∗
m is the solution to Problem 2 (if it exists), then it is also the

solution to Problem 1.

Theorem 4 states that to find the solution of the original
Problem 1, we could instead solve the equivalent Problem 2. The
value of this statement lies in the fact that the constraint of Prob-
lem 2 can be easily evaluated, unlike the constraint of Problem 1.
Indeed, given the definitions of functions g and h one can see
that the function g(wm, d∗

max,m−|∆ym|max) is a step-value function
of wm, while on the other hand fu(wm) is a complicated, smooth
function. This means that only a finite number of evaluations is
needed to compute the optimal weight. Considering Theorem 4
and the properties of f (wm) given above, we have the following
formula for computing wm:

wm =

⎧⎪⎪⎨⎪⎪⎩
0 if d∗

max,m > fUB
1

|Km|min|J ′m(yinfm )|
if d∗

max,m < fLB
1

Km
t |J ′m(y∗m+d∗

max,m−|∆ym|max)|
else

(32)

here Km
t = max K such that h(K ) < d∗

max,m. The explanation is
he following: if the desired upper bound d∗

max,m is larger than
he upper bound of fu, then we can freely choose wm = 0, as
ny weight would satisfy the desired upper bound. Whereas, if
t is lower than the lower bound of fu, then Problems 1 and 2
annot be solved, so we choose the maximum possible value
f the weight. In any other case, Theorem 4 applies, so we can
ompute the weight by solving Problem 2. The solution is trivial
s g(wm, d) takes only a finite number of values for a given d.
Concerning the complexity of computing the weight, formula

32) requires at most evaluating the function J ′m at a given point
nd computing either the minimum or the maximum value of
he sensitivity coefficients of grid variable ym. The number of
ensitivities of one grid variable scales linearly with the number
f buses, so the complexity of the method for one grid objective
s O(K ), where K is the number of buses in the grid. If M grid
ariables are considered, then the complexity of the method is
(M · K ).
The properties of fu(wm) also give a rule for choosing d∗

max,m.
ccording to the definition of fu(wm), it is obvious that d∗

max,m
hould not be smaller than |∆ym|max, otherwise the problem (30)
ill be infeasible. Therefore, we should ensure that d∗

max,m >
∆ym|max. In low-voltage grids, we can assume that the values
of the sensitivities do not significantly change within slices of
15 min. Therefore, we can approximate the value of |∆ym|max by
sing the values of the sensitivities at the beginning of the 15-min
nterval.

.2. Application to specific grid objectives

We now examine how the weight computation method pre-
ented in Section 5.1 can be applied to the grid objectives defined
n Section 3.1. All grid cost-functions considered so far can be
xpressed in the form (20), hence their weights can be computed
sing Theorems 3 and 4.
The target values of the slack objectives (7) and (8) are P∗

s =

DP and Q ∗
s = 0. The respective desired upper bounds, used to

ompute the weights wPs and wQs , can be interpreted as d∗

max,Ps =

|P − P | and d∗
= |Q | , i.e. they are the maximum
s DP max max,Qs s max

9

desired dispatch tracking difference and maximum slack reactive
power respectively.

Concerning the voltage objective (9), we define, in addition to
the hard voltage constraint βhard, the soft voltage constraint βsoft .
The soft voltage constraint guarantees that Vk will not deviate
more than βsoft from the nominal voltage Vn assuming that the
assumptions of Theorem 3 are true. Therefore, it can be used
to compute the weight of the objective with V ∗

k = Vnom and
d∗

max,Vk
= βsoft .

Similarly, for the current objective, we define the soft current
constraint for line l as Isoftl = γsoft Imax

l , where γsoft ∈ (0, 1− ϵ) is a
given constant that defines a soft upper bound for each line. This
bound can be used to compute the weights wIl , with (I+/−

l )∗ = 0
and d∗

max,I+/−
l

= Isoftl .

5.3. Visual representation of the computed upper bound

To help us visualize the results from the past sections, we
consider an instance of the grid shown in Fig. 1. The preference of
each battery (according to Definition 1) is x∗

i = (Si (W ), 0 (Var)),
i = {1, 2} and the coefficients of the battery cost-function are
aP = aQ = 1. We assume that cost function (7) is the single grid-
cost so that the assumptions of Theorem 3 are valid, with a target
value y∗

m = PDP = −20 kW. The forecast power to be generated
by the PV is P̂pv = 30 kW, the forecast consumption of the load
is P̂load = −15 kW, and their reactive power is assumed to be 0.
The uncertainty in the slack power is assumed to be equal to the
maximum value ∆ym = |∆ym|max = 2 kW.

Fig. 6 shows the value of |yrealm − y∗
m| obtained by solving the

linearized optimization problem and the theoretical upper bound
computed from Theorem 3 as a function of the weight wm for
different values of d taken from a logarithmic space between 1
W and 100 kW. Each continuous line represents one function
g(wm, d), as defined in (24).

Now we assume that the desired upper bound for the tracking
difference |Ps − PDP | is d∗

max,Ps = 2.2 kW (larger than |∆ym|max).
According to Theorem 4, to compute the optimal weight, we need
to consider only the function g(wm, d∗

max − |∆ym|max), as shown
separately in Fig. 6 (bottom graph). The optimal weight is the
smallest one that gives g(wm, 200 W) = 200 W + |∆ym|max, as
computed by (32).

5.4. Multiple objectives

The method presented in Section 5.1 is only useful when the
grid objective reflects a single grid variable. Practical applications,
however, would typically involve multiple of such objectives. For
the work studied in this paper, the computation of the total grid
objective is based on certain heuristics. The individual objectives
are the following: (i) slack-active-power cost, (ii) slack-reactive-
power cost, (iii) average voltage cost of nodes, and (iv) average
current cost of lines.

The first heuristic concerns costs (iii) and (iv). The idea is that
adding a node or line to the grid should not affect, on average,
the value of costs (iii) and (iv), respectively. Therefore, cost (iii) is
computed as the weighted average of the costs JVk , k = 1..K and
cost (iv) is computed as the weighted average of the costs JIl , l =
1..L. The weights are computed individually for each objective by
using formula (32).

The second heuristic is the following: if objectives (ii), (iii)
and (iv) are equal to zero, then the upper bound computed from
Theorem 3 should be true for objective (i). Similarly, if objective
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Fig. 6. True value of |yrealm − y∗
m| and theoretical upper bound as a function of the weight wm , for different values of d. The curve corresponding to the desired upper

bound is the one for d = d∗
max,m − ∆|ym|max = 200 W and is shown in the bottom plot.
T

(i) is equal to zero, then the upper bound should hold for objective
(ii). These two heuristics lead us to the total grid cost function:
J(x|u) =wPs JPs (x|u) + wQs JQs (x|u)+

+
1
K

K∑
k=1

wVk JVk (x|u)+

+
1
L

L∑
l=1

wI+l
JI+l (x|u) + wI−l

JI−l (x|u)

(33)

here the weights wPs , wQs , wVk , wI+l
, wI−l

are computed by for-
ula (32) as if each objective was the single grid objective.

. Numerical validation

.1. Evaluation metrics

In order to compare our method with the ‘‘oracle’’ presented
n Section 3, we define certain metrics that can be computed a
osteriori for the interval [τ , τ + ∆T ]. For grid objectives, the
etric is chosen so that the value is < 1 when |yrealm (t) − y∗

m(t)| >
∗
max,m(τ ).

etric_gridm =
1

∆T

∫ τ+∆T

t=τ

|yrealm (t) − y∗
m(t)|

d∗
max,m(τ )

dt (34)

or batteries, the metric needs to evaluate two things, specifically
i) the satisfaction of each individual battery objective and (ii) the
airness between the two objectives. Assuming only two batteries,
e can construct the metric given the vectors r⃗P = (|rP,1|, |rP,2|)

and r⃗Q = (|rQ ,1|, |rQ ,2|) where rP,i, rQ ,i are the preference ratios of
battery i defined in (13).

metric_battP =
1

∆T

∫ τ+∆T

t=τ

|r⃗P (t)|
cos(4̸ r⃗P (t)) + 3

8
dt (35)

nd similarly for the reactive power. These metrics are designed
o that they take values in [0, 1] with increasing values indicating
orse performance. In particular, the value 0 is taken only when

r⃗P (t)| = 0 (similarly when |r⃗Q (t)| = 0), while the value 1 is taken
when either |rP,1| = 0, |rP,1| = 2 or |rP,1| = 2, |rP,1| = 0 (similarly
or Q ).
10
6.2. Evaluation of the proposed method in the scenario of Section 3

We consider the same microgrid as in Section 3; it is shown in
Fig. 1. Using the same scenario for the uncontrollable resources
and the slack voltage profile, we perform simulations over a
15-min period. This time, we use cost functions for the batteries
in the form (15), and the total grid objective is computed as
in Eq. (33).

We assume again that the batteries have received a target SoC
from the intra-day layer, and we adapt the cost function (6) to
satisfy the form (15). The preference of battery i is computed as
follows:

P∗

i (∆SoC, ϵi) =

⎧⎪⎪⎨⎪⎪⎩
−

Si√
2

∆SoCi ≤ −ϵi

∆SoCi
ϵi

Si√
2

−ϵi < ∆SoCi < ϵi

Si√
2

∆SoCi ≥ ϵi

(36)

he purpose of ϵi is to prevent the preference from oscillating
between ±Si when ∆SoC ≃ 0. An appropriate condition for
this purpose is ϵi >

SiT
Emax,i

, where Emax,i is the energy capacity
of the battery and T = 10 s is the time interval between two
computation cycles.

The parameters of the battery cost functions are the following:
ϵ1 = ϵ2 = 1/360, aP = aQ = 1. The parameters related
to the various grid objectives, as defined in Section 5.2 are the
following: |Ps − PDP |max = 1.1|∆Ps|max, |Qs|max = 1.1|∆Qs|max,
βhard = 0.05 pu, βsoft = 0.04 pu and γsoft = 0.9.

The simulation results are shown in Fig. 7. Concerning the
plots of nodal voltages, branch currents, and nodal active and
reactive power injections, there is no noticeable difference from
those of Fig. 4. This means that our method achieves comparable
results with the oracle-based approach, with the advantage of
being grid and scenario-independent. Concerning the SoC plot,
we observe a more fair regulation of the SoC of the two batteries,
compared to Figs. 3 and 4. At the beginning of the simulation, the
SoC is indeed the same for both batteries, due to the following
factors: (i) Our design goal that the power setpoints should be
proportional to the rated power of the battery, and (ii) the fact

that the energy capacity of the batteries is proportional to their
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Fig. 7. Simulation results using our new cost functions.
Table 1
Values of metrics for the first scenario.

Method Slack Q Tracking Voltage Current Battery P Battery Q Average

Same Weights 4.7579 6.4178 0.27263 0.17848 0.4023 0.042088 2.0119
Oracle-based 0.40798 0.51891 0.31589 0.19106 0.21783 0.10926 0.29349

Proposed method 0.43838 0.49225 0.31578 0.18932 0.11987 0.060715 0.26939
rated power. However, as time progresses, the small battery
slows down its charging. This occurs because the controller in-
structs the smaller battery to compensate for the voltage drop, as
bus 2 has an impact on the voltage objective higher than bus 4.
This creates a temporary imbalance between the SoCs of the two
batteries that is fixed after the voltage drop.

Here, we compute the metrics defined in Section 6.1 for the
hree cases, specifically (i) the cost functions of Section 3.1 with
qual weights for all objectives, (ii) the oracle-based approach
nd (iii) the proposed cost functions. Their values are shown
n Table 1. Our method achieves smaller values for all metrics,
xcept the slack-reactive-power metric. This result verifies that
11
our method can achieve comparable performance with the (less
practical) oracle-based approach.

6.3. Evaluation of the proposed method in a different scenario

To further justify the merit of the proposed method, we ap-
ply it to another case study, specifically the work of Borghetti
et al. [12]. This case is similar to the one studied in our work,
as (i) it considers a multi-layer control approach and (ii) it con-
siders both individual resources and both global grid objectives.
Moreover, Borghetti et al. do not give any insight into how they
chose the weights of the objectives.
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Fig. 8. Simulation results for the problem defined in [12] for three different
eight configurations.

The control consists of two layers, namely (i) day-ahead and
ii) intra-day. The first layer computes a target power trajectory
or each energy resource in the grid to be followed by the second
ayer. The second layer is also responsible for minimizing voltage
eviations from the nominal value. Here, we target a simplifica-
ion of the problem defined in [12]. We consider the grid of Fig. 1,
here the target trajectory of each battery was computed by [18].
he target objective is

min
Pj

N∑
j=1

α|Pj − P̄j| +

Nbus∑
i=1

γ |Vi − 1| (37)

here Pj and P̄j are the computed and target power of battery j,
espectively, and Vi is the voltage of bus i. We consider the same
cenario for the load, PV, and slack voltage, as in Section 6.
Borghetti et al. consider two sets of values for the weights
and γ , namely (i) α = 1, γ = 1 and (ii) α = 50, γ = 1.

ig. 8 shows the evolution of the battery power trajectories and
heir respective targets normalized by the rated power of each
attery for these two cases. When the two weights are equal, the
ontroller forces the small battery to produce at its maximum
ower (

√
2
2 S) to compensate for the voltage drop. Whereas, when

α = 50, the two trajectories match their target value, meaning
that the controller fails at regulating the voltage.

To test our method, we first need to convert the absolute
values of Eq. (37) to square functions, to satisfy our guidelines.
The results with our method are also shown in Fig. 8. Concerning
voltage regulation, our method achieves a control that, between
the two batteries, is more fair than the manual-weight-tuning
approach (the ratios P/S are very close).

. Conclusion

We have defined guidelines for the design of objectives for the
eal-time control of batteries in a microgrid and have proposed a
12
method for computing their weights. Our method requires only
certain parameters as input that can be chosen intuitively and
achieves a comparable performance to oracle-based approaches
that are usually applied by the existing literature and are not
feasible in practice. Because the method is grid-agnostic, we have
also shown it can easily be applied to different problems, hence
it can be employed by others in the future.

In future research, we plan to address the limitations of our
method, concerning the types of objectives considered. Currently,
the method is limited to batteries with the same objective, which
is to regulate their SoC for the purpose of dispatchability. It would
be interesting to study the case where batteries have different
objectives, for example, the case where one battery acts as the
slack bus. We also plan to extend the method to consider different
types of energy resources, as well as long-term objectives, to
guarantee the fair satisfaction of objectives in the long run.
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Appendix. Proofs of theorems

A.1. Proof of Theorem 1

Because the optimization problem is assumed to be uncon-
strained, the optimal solution would be a stationary point of
the cost function. This means that for every battery i we should
have:
∂Ct (xopt |û)

∂Pi
=

∂Ct (xopt |û)
∂Qi

= 0 (38)

rom the form of the total cost-function (2) and the battery cost-
unction (15), we have the following set of equations ∀i = 1..N:

∂Ct (xopt |û)
∂Pi

= aP
rP,i

2
+

∂ J(xopt |û)
∂Pi

∂Ct (xopt |û)
∂Qi

= aQ
rQ ,i

2
+

∂ J(xopt |û)
∂Qi

(39)

where rP,i is defined in (13). Given the sets of Eqs. (38) and (39),
we get Eqs. (14) with λP = −

2
aP

and λQ = −
2
aQ

, which is the
statement of the theorem.
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A.2. Proof of Theorem 2

We present the proof for inequality (18). Assuming cost func-
tion (15), we compute the derivative of the total cost function Ct
with respect to Pm,m ∈ {i, j}.
∂Ct

∂Pm
= aP

rP,m

2
+

∂ J(x|u)
∂Pm

(40)

where rP,m is defined in (13). We consider all the possible cases
that might hold at the optimum xopt :

(a)

∂Ct (xopt |û)
∂Pm

= 0,m ∈ {i, j}

By setting Eq. (40) equal to 0 for both batteries and con-
sidering condition (16), we verify that the upper bound
of inequality (18) is achieved. This case is met under the
assumption of Theorem 1.

(b)

∂Ct (xopt |û)
∂Pi

·
∂Ct (xopt |û)

∂Pj
> 0

If the derivative of the total cost function with respect to
Pi at the optimum is strictly positive, this means that the
value of Pi cannot be decreased further, which implies that
it should take its minimum value, i.e.

Popt
i

Si
= (

P
S
)min

On the other hand, if the derivative is negative, then

Popt
i

Si
= (

P
S
)max

Since the derivatives of Ct with respect to Pi and Pj have the
same sign, and considering assumptions (16) and (17), we
get that in both of these cases we have rP,i = rP,j. Hence,
inequality (18) is satisfied.

(c)

∂Ct (xopt |û)
∂Pi

> 0,
∂Ct (xopt |û)

∂Pj
= 0

Using the explanation of the previous point, we should
have only for battery i

Popt
i

Si
= (

P
S
)min

and given assumption (17) we should have:

rP,i − rP,j ≤ 0 (41)

Moreover we should have:
∂Ct (xopt |û)

∂Pi
−

∂Ct (xopt |û)
∂Pj

> 0 H⇒

aP
2
(rP,i − rP,j) > −(

∂ J(xopt |û)
∂Pi

−
∂ J(xopt )

∂Pj
)

(42)

Combining (41) and (42), we derive that both sides of
inequality (42) are negative, therefore, taking the absolute
value results in the desired condition (18).

(d)

∂Ct (xopt |û)
∂Pi

< 0,
∂Ct (xopt )

∂Pj
= 0

We can work in a similar way as case (d) and show that

r − r ≥ 0 (43)
P,i P,j
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and
aP
2
(rP,i − rP,j) < −(

∂ J(xopt |û)
∂Pi

−
∂ J(xopt |û)

∂Pj
) (44)

Now, both scales of inequality (44) are positive so taking
the absolute value results once again in condition (18).

(e)

∂Ct (xopt |û)
∂Pi

·
∂Ct (xopt |û)

∂Pj
< 0

The proof follows in the same way as in cases (c)–(d). In
particular, we can show that either (41) and (42) will hold
together or (43) together with (44).

e have, thus, concluded that inequality (18) should hold for
very possible values of ∂Ct (xopt |û)

∂Pm
,m ∈ {i, j}. The same method

can be used to prove the result for the reactive power.

A.3. Proof of Lemma 1

We assume that for some value d > 0 we have

|yoptm − y∗

m| > d (45)

which can be rewritten as:

yoptm > y∗

m + d
or yoptm < y∗

m − d
(46)

Because Jm is a convex function by design, then its derivative
′
m is an increasing function, which means that:

J ′m(y
opt
m ) > J ′m(y

∗

m + d)
nd J ′m(y

opt
m ) < J ′m(y

∗

m − d)
(47)

Moreover, because Jm(ym + y∗
m) is also an even function by

esign, then J ′m(ym + y∗
m) is an odd function. This means that

′

m(y
∗

m + d) = −J ′m(y
∗

m − d), ∀d (48)

ombining conditions (47) and (48), we get

J ′m(y
opt
m )| > |J ′m(y

∗

m ± d)|, ∀d (49)

e consider any variable xj ∈ {Pj,Qj}, i.e. it represents either the
ctive or the reactive power of battery j, such that the respective
ensitivity coefficient satisfies the inequality |Km

x,j| ≥ Kt (d, wm).
hen, we compute the following quantity

m|
∂ J(xopt |û)

∂xj
|
(22)
=

|J ′m(y
opt
m )|

|J ′m(y∗
m + d)|

|Km
x,j|

Kt (d, wm)
(49)
> 1 (50)

Considering the battery cost-function (15) with aP,j, aQ ,j ∈

0, 1], ∀j and the fact that for every battery we have Pj,Qj ∈

[−Sj, Sj] we derive the following inequality

wj|
∂Cj

∂xj
| ≤ 1, ∀j (51)

From inequalities (50) and (51) we infer that we should have one
the following two cases:

wm
∂ J(xopt |û)

∂xj
> 1 H⇒ xoptj = xj,min (52)

wm
∂ J(xopt |û)

∂xj
< −1 H⇒ xoptj = xj,max (53)

his result follows from the box form of the constraints of the
roblem in the same way as in case (b) of the proof of Theorem 2.
Now, we consider the following two cases:
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∆
t
a

H
d

f

w
P

(A) J ′m(y
opt
m ) > 0

In this case, for any variable xj, with |Km
x,j| ≥ Kt we have⎧⎨⎩Km

x,j > 0
(52)
HH⇒ xoptj = xj,min

Km
x,j < 0

(53)
HH⇒ xoptj = xj,max

Therefore, no matter what is the value of the sensitivity
Km
x,j, the product Km

x,jx
opt
j takes the minimum possible value,

which we denote as Km
x,jx

opt
j = (Km

x,jxj)min.
The next step is to examine the ordering of the following
three points, namely (i) the value of ym evaluated at the
optimal solution yoptm , (ii) its minimum value within the do-
main of the problem ymin

m and (iii) the value that minimizes
the grid cost within the same domain yinfm . Now we consider
two cases regarding the point yinfm :

i. The point that minimizes Jm is not stationary, i.e.
J ′m(y

inf
m ) ̸= 0. Then, variable ym must be constrained.

Because J ′m(y
opt
m ) > 0 by assumption, ym must be

constrained by its lower bound ymin
m , i.e. yinfm = ymin

m
and since yoptm is within the domain of ym, we derive
the ordering of the points as ymin

m = yinfm ≤ yoptm

ii. The point is stationary, i.e. J ′m(y
inf
m ) = 0. Then variable

ym is not constrained, which means that yinfm ≥ ymin
m

and yoptm ≥ ymin
m . Now, considering the assumption

that J ′m(y
opt
m ) > 0 = J ′m(y

inf
m ) and the fact that J ′m

is an increasing function (by convexity), we get the
following ordering of the points ymin

m ≤ yinfm < yoptm

The ordering derived above can be re-written in the follow-
ing way

J ′m(y
opt
m ) > 0 H⇒ |yoptm − yinfm | ≤ |yoptm − ymin

m | (54)

We can continue to show that
|yoptm − y∗

m| ≤ |y∗

m − yinfm | + |yoptm − yinfm | ≤

≤ |y∗

m − yinfm |+

+ |

∑
i

Km
x,ix

opt
i −

∑
i

(Km
x,ixi)min| ≤

≤ |y∗

m − yinfm |+

+

∑
|Km

x,i|<Kt (d,wm)

|Km
x,i||xi,max − xi,min|

(55)

(B) J ′m(y
opt
m ) < 0

We can show in a similar way, that in this case, we have
Km
x,jx

opt
j = (Km

x,jxj)max for any variable xj with |Km
x,j| ≥ Kt and

that:

J ′m(y
opt
m ) < 0 H⇒ |yoptm − yinfm | ≤ |yoptm − ymax

m | (56)

From this, we can show that we get again inequality (55).
Since the above inequalities are true for any d > 0, we can
take as upper bound the minimum of these bounds over all
values d. Hence, we get the upper bound f (wm).

A.4. Proof of Theorem 3

By taking definition (27) and applying the triangle inequality
we get

|yrealm − y∗

m| = |yoptm − ∆ym − y∗

m| ≤

≤ |yoptm − y∗

m| + |∆ym| ≤

≤ |yoptm − y∗

m| + |∆ym|max

(57)

and from Lemma 1, we have

|yopt − y∗
| ≤ f (w ) (58)
m m m
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Combining the above two conditions, we get the statement of the
theorem.

A.5. Proof of Theorem 4

Let w∗
m be a solution to Problem 2. Considering the nature

of the problem, this solution is the minimum value of wm that
satisfies a constraint, therefore it should be unique. By definition
(29) we have

fu(w∗

m) = min
d

g(w∗

m, d) + |∆ym|max (59)

Now, by evaluating g(w∗
m, d) at d = d∗

max − |∆ym|max we get

fu(w∗

m) ≤ g(w∗

m, d∗

max,m − |∆ym|max) + |∆ym|max (60)

Also, because w∗
m is a solution to Problem 2, it should satisfy

constraint (31). Combining it with the previous inequality we
have

fu(w∗

m) ≤ d∗

max,m − |∆ym|max + |∆ym|max = d∗

max,m (61)

which is equivalent to (30). Therefore, w∗
m also satisfies the con-

straint of Problem 1.
Now, we assume another weight w′

m ∈ (0, w∗
m) and denote

d∗
max,m = d∗

max,m − |∆ym|max, for ease of notation. We will show
hat w′

m cannot satisfy the constraint of Problem 1. Let d > 0 be
n arbitrary value. We consider the following two cases

(1) d > ∆d∗
max,m

By the definition of function g in (24) we have

g(w′

m, d) = max{d, h(Kt (w′

m, d))} ≥ d > ∆d∗

max,m (62)

(2) d < ∆d∗
max,m

By the definition of function Kt in (22) and the fact that J ′m
is an increasing function (by convexity of Jm) we see that
for a given argument wm the function Kt (wm, d) is strictly
decreasing for d > 0. And because we consider the case
where d < ∆d∗

max,m we should have

Kt (w′

m, d) > Kt (w′

m, ∆d∗

max,m) (63)

Now, from the definition of h in (23) we can derive that
h(K ) is increasing in K , so from (63) we get

h(Kt (w′

m, d)) ≥ h(Kt (w′

m, ∆d∗

max,m)) (64)

Because w′
m < w∗

m and w∗
m is the solution to Problem 2,

then w′
m should not satisfy constraint (31). Therefore, by

using the term ∆d∗
max,m we defined in this proof we get

g(w′

m, ∆d∗

max,m) > ∆d∗

max,m (65)

Also, from the definition of g , we have

g(w′

m, ∆d∗

max,m) =

max{∆d∗

max,m, h(Kt (w′

m, ∆d∗

max,m))}
(66)

and taking into account the last two conditions, we can
infer that

h(Kt (w′

m, ∆d∗

max,m)) > ∆d∗

max,m (67)

Combining all the above results, we get

g(w′

m, d) = max{d, h(Kt (w′

m, d))} ≥

≥ h(Kt (w′

m, d)) ≥ h(Kt (w′

m, ∆d∗

max,m)) ≥

≥ ∆d∗

max,m > d
(68)

ence, we get g(w′
m, d) > ∆d∗

max,m∀d ̸= ∆d∗
max,m and given the

efinition of fu(wm) in (29) we have

u(w′

m) > d∗

max,m, ∀w′

m < w∗

m (69)

hich means that any w′
m < w∗

m cannot be the solution to
roblem 1. Therefore, w∗ is also the solution to Problem 1.
m
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