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ABSTRACT 

With the overall goal of reducing the numerical burden of uncertainty quantification involved in seismic risk assessments, this 

paper examines opportunities for assessment of seismic collapse capacity and risk using data-driven surrogates as a complement 

to physics-based response history analyses. Specifically, a methodology is proposed for computing collapse fragilities for 

generic sets of earthquake ground motions (i.e., not hazard-consistent sets) wherein collapse capacities for only a portion of the 

set are computed with incremental dynamic analysis (IDA) and used as the training data for surrogate modeling. The capacities 

for the remaining motions, referred to as the test set, are then estimated using the recently introduced data-driven collapse 

classifier (D2C2) and the automated collapse data constructor (ACDC) technique. These predictions of the collapse capacities 

of the test set are combined with the training data obtained using IDA to yield the generic collapse fragility of the entire input 

set of motions. Anti-clustering is used to split the ground motions into the training and test sets to make them as similar as 

possible to each other while maximizing the difference between ground motions within each set. Scalar intensity measures are 

used as inputs for the data-driven surrogate. The methodology is tested in a case study using steel moment resisting frames 

ranging from 4 to 20 stories and the FEMA P695 Far Field ground motion set. The results demonstrate the feasibility of the 

proposed methodology as well as the utility of “small data” machine learning approaches for seismic collapse risk assessments. 

Keywords: seismic collapse risk assessment, steel moment resisting frames, small data, data-driven surrogates, ground motion 

intensity measures 

INTRODUCTION 

A well-known impediment to the widespread implementation of the performance-based engineering (PBEE) framework [1, 2] 

is the underlying numerical cost associated with the required uncertainty quantification. This aspect is particularly challenging 

when nonlinear response history analyses are used for collapse risk assessment of both high-fidelity as well as reduced order 

structural models. In that sense, data-driven machine learning (ML) approaches have been gaining research interest in the 

earthquake engineering domain [3, 4] including efforts to sidestep the nonlinear response history analyses while maintaining 

their predictive power. For instance, previous research on application of ML tools for seismic fragility assessment revolved 

around development of probabilistic seismic demand models and parameterized fragility functions with application to highway 

bridges e.g. [5–16], single-degree-of-freedom structures on liquefiable sand deposits [17], reinforced concrete (RC) shear walls 

[18],  risk modeling of regional portfolios of structures [12, 13, 16, 18–21] and estimation of the collapse vulnerability of 

buildings [22–26]. Furthermore, studies [27–29] focused on the use of stochastic surrogate models to better utilize results of 

linear and nonlinear response history analyses for risk assessments.  

Pertinent to this study, Zhong et al. [30] recently studied a surrogate modeling technique called probabilistic learning on 

manifolds (PLoM) to efficiently estimate the structural responses for systems with variations in design/modeling parameters or 

ground motion characteristics. At the same time, Bijelic et al. [31] investigated a ‘data-centric’ approach to ML predictions of 

collapse risk. Specifically, the authors introduced a surrogate-agnostic data-augmentation approach for seismic collapse 

capacities termed the automated collapse data constructor (ACDC) technique and the data-driven collapse classifier (D2C2) 

methodology for collapse prediction. The proposed methodologies were tested for seismic collapse risk estimation of steel 
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MRF structures using XGBoost [32] and neural network surrogates, yielding dramatic improvements in the predictive 

capability compared to baseline cases when not using augmentation even with very small training data. 

Building on previous work, this paper focuses on reducing the numerical burden of uncertainty quantification involved in 

seismic collapse risk assessments through the use data-driven surrogates as a complement to physics-based response history 

analyses. Specifically, a methodology is proposed for computing collapse fragilities for generic sets of earthquake ground 

motions (i.e., not hazard-consistent sets) wherein collapse capacities for only a portion of the set are computed with incremental 

dynamic analysis (IDA [33]) and used as the training data for surrogate modeling. The capacities for the remaining motions, 

referred to as the test set, are then estimated using the D2C2 and the ACDC methodologies. These predictions of the collapse 

capacities of the test set are combined with the training data obtained using IDA to yield the generic collapse fragility of the 

entire input set of motions. The following sections first briefly recap the ACDC and the D2C2 methodologies and discuss the 

splitting of the generic ground motion set into the train/test portions using anti-clustering. The proposed approach is then tested 

in a case study using steel moment resisting frames ranging from 4 to 20 stories and the FEMA P695 [34] Far Field ground 

motion set. Further refinements of the proposed methodologies, limitations, and the associated research directions are also 

discussed. 

METHODOLOGY 

Outline of the approach 

The objective of the methodology proposed herein is to reduce the numerical cost associated with estimating the collapse risk 

of a given structure for a given generic set of earthquake ground motions. As the first step, the ground motion set is split into 

statistically similar training and testing portions as described in the next section. The IDA analysis is then only performed for 

the training set to obtain the data used to develop a data-driven surrogate for collapse capacity prediction. In turn, this developed 

surrogate used to estimate collapse capacities of the ground motions in the test portion. As such, the numerically expensive 

IDA analysis is not performed for the test set thus affording the reduced cost of the collapse assessment procedure. Specifically, 

this paper uses equally sized train/test sets as discussed subsequently, hence the numerical cost compared to performing IDAs 

for the entire generic set is reduced by 50%. Finally, the estimate of the empirical cumulative distribution function (ECDF) of 

collapse capacities and the associated collapse fragility for the entire set can then be obtained in one of two ways: (a) by merging 

the predicted collapse capacities obtained using the surrogate on both the training and the test set, or (b) by combining the 

actual collapse capacities obtained using IDA on the training set with the collapse capacities predicted on the test set using the 

trained surrogate. We refer to these cases as the “predictions-only” approach and the “mixed” approach, respectively. Both 

cases are contrasted in the case study presented later in the paper. 

In terms of data-driven surrogates, this paper uses the D2C2 methodology [31] to establish the link between the input ground 

motion and the corresponding collapse response. The D2C2 approach is inspired by the way collapse capacities are computed 

using numerical response history analyses in the IDA [33] method. In particular, response of a structure to a single ground 

motion is analyzed by amplitude scaling of that ground motion to a set of intensities which are typically represented by the 

spectral acceleration at the fundamental period of the structure, 𝑆𝑎(𝑇1). Subsequently, the numerical value of the collapse 

capacity in IDA procedure is effectively determined by bisection between collapse and non-collapse responses, while the 

precision to which the collapse capacity is determined is controlled by the choice of intensities at which to perform the response 

history analysis. In that sense, the collapse response is a binary variable which allows posing of the collapse capacity prediction 

as a classification problem, as demonstrated in Figure 1a. Specifically, the gray line indicates the 𝑆𝑎(𝑇) spectra for an example 

ground motion in the as-recorded (unscaled) format, while the corresponding collapse capacity is indicated with a red dot. The 

boundary that delineates collapse and non-collapse cases in terms of 𝑆𝑎(𝑇) is obtained by amplitude scaling of the example 

ground motion to have the value of collapse capacity at 𝑆𝑎(𝑇1), as indicated by the thick black line. To obtain the data in the 

classification format, the example ground motion is scaled to a number of intensities above and below the corresponding 

collapse capacity. Referring to Figure 1a, the collapse and non-collapse cases are indicated with the dashed and dotted lines, 

respectively. We refer to this conversion from the regression to the classification format as the data-driven collapse classifier 

(D2C2) transformation. Given this context, a practical advantage of D2C2 is that it can be directly used in the PBEE framework 

in the same way that IDA is used, the only difference is that a data-driven surrogate is used instead of a physics-based numerical 

simulation. For further theoretical and implementation details, the reader is referred to [31]. 
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Figure 1. Data preparation flowchart: (a) example of the D2C2 transform from a regression to a classification format for a 

single ground motion; (b) ACDC augmentation and splitting into cross-validation folds. 

Since keeping the data requirements low is practically appealing, the ACDC data augmentation approach is considered in this 

paper to supplement the small training set with additional synthetic data. The reader is referred to [31] for full details on the 

ACDC technique, but the main concepts are briefly recapped here. In a nutshell, the ACDC technique leverages the training 

set data (herein obtained using IDA) to generate statistically similar realizations of the ground motion intensity measures (IMs) 

and the associated collapse capacities. The ACDC uses the conditional spectrum methodology [35] or its extension, the 

generalized conditional intensity measure [36] approach, to model the distributions of the ground motions conditioned on the 

increasing values of the collapse capacities. The weights for the contribution of individual motions from the training set to the 

conditional intensity measure distributions are obtained using kernel smoothing. Note that no further IDA analyses are required 

for the ACDC approach. Hence, the numerical cost of the analyses is not increased due to using data augmentation. 

Additionally, the ACDC approach is model agnostic, i.e., it does not depend on the specific ML or statistical tool that will be 

trained on the augmented data.  

It is also noted that the D2C2 is a surrogate-agnostic methodology, meaning that it can be used with any classification tool. 

Tuning of the hyperparameters of the selected surrogate is performed using n-fold cross-validation. An important consideration 

related to data preparation for cross-validation is depicted in Figure 1b. Specifically, the total training data is split into folds 

while still in the regression format. This ensures that no information from the training fold leaks into the validation fold when 

the D2C2 transformation to the classification format is performed. In addition, the observed training data and the ACDC 

augmented data (if used) are treated equally in this paper, meaning that the validation fold is allowed to contain both the real 

and synthetic data. Finally, given that D2C2 uses a classification approach to obtain the regression estimate of the collapse 

capacities, both the classification as well as regression metrics can be used for selecting the optimal values of hyperparameters.  

Data preparation – ground motion selection using anti-clustering and predictive features 

As mentioned previously, the first step of the proposed approach is to split the ground motion set into statistically similar 

training and testing portions. The rationale for this approach is to ensure that the training data set is similar to the test set thus 

allowing training of data-driven surrogates that perform well on the test set. To achieve this, the anti-clustering approach as 

proposed in [37] is used in this paper. According to [37], the anti-clustering assembles groups in such a way that within-group 

heterogeneity is high and between-group similarity is high. Thus, anti-clustering reverses the logic of cluster analysis that 

strives to maximize homogeneity within groups and dissimilarity between groups.  

It is important to note that splitting of the ground motion set into two statistically similar portions is performed a priori, i.e., 

before performing any IDA analyses and solely based on the ground motion intensity measures. The anti-clustering was 

performed in this paper using the python implementation of the anti-clustering algorithm [37]. In particular, the method 

maximizing the intra-cluster Euclidean distance between the ground motion IMs was used and partitioning was performed 

separately for each considered steel MRF. Before partitioning, the ground motions were scaled to have unit value of the spectral 

acceleration at the fundamental period Sa(T1). The data was then standardized to have zero-mean and unit variance at each 

considered IMs. Finally, the ground motions are split into two equally sized sets. As an example, the split of the FEMA P695 

[34] ground motion set using anti-clustering for the 4-story MRF is shown in Figure 2. The figure compares the ground motion 

spectra and a close match between the two sets can be seen both the individual motions (Figure 2a) as well as the conditional 

spectra (Figure 2b) in the considered period range as discussed next. 
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Figure 2. Train and test ground motions sets for the 4-story MRF: (a) individual ground motions, (b) median and 2.5/97.5 

percentile spectra. 

The vector of IMs used for anti-clustering and, subsequently as predictive features for the data-driven surrogates, consists of 

scalar IMs extracted from the recorded earthquake waveforms. Specifically, the following IMs are used as input features: (a) 

spectral accelerations, 𝑆𝑎(𝑇), computed at one hundred periods uniformly spaced between 0.2T1 and 3.0T1, where T1 is the 

fundamental period of the steel MRF for which the ground motions are used (Note: if 3.0T1 is larger than 10s, then the period 

of 10s is used as the upper bound); (b) the average spectral acceleration, 𝑆𝑎,𝑎𝑣𝑔(0.2 T1 − 3.0 T1) [38]; (c) 𝑆𝑎,𝑟𝑎𝑡𝑖𝑜 which is defined 

as 𝑆𝑎(T1)∕𝑆𝑎,𝑎𝑣𝑔 [38]; (d) the 5-75% and the 5-95% significant durations, 𝐷𝑎,5−75% and 𝐷𝑎,5−95% [39] respectively; (e) the filtered 

incremental velocity, 𝐹𝐼𝑉3 [40]; and (f) the ratio of 𝐹𝐼𝑉3 and 𝑆𝑎,𝑎𝑣𝑔 which we termed the FIV3𝑎,𝑟𝑎𝑡𝑖𝑜 [31]. Hence, the feature 

vector has 106 elements each corresponding to one of the scalar IMs that are used as predictive features. The rationale for 

choosing these IMs is that, to the extent of current earthquake engineering knowledge, they collectively represent a simplified, 

yet comprehensive description of the ground motion parameters that correlate well with structural response and particularly for 

collapse response of MRFs as investigated herein. 

CASE-STUDY APPLICATION TO STEEL MOMENT RESISTING FRAMES 

Case study buildings and ground motions 

A 4-, 8-, 12-, and a 20-story steel MRF buildings designed by Skiadopoulos and Lignos [41] are used in this paper. The response 

spectrum analysis procedure was employed as the basis for the design of these frames. Welded unreinforced flange-welded 

web (WUF-W) beam-to-column connections are employed. The steel buildings are located in urban California (seismic design 

category: 𝑆𝐷𝐶 = 𝐷𝑚𝑎𝑥; soil class D). Two-dimensional (2D) nonlinear models of the steel MRFs are developed in the open-

source simulation platform OpenSees [42], see Figure 3. The 2D models are idealized based on the concentrated plasticity 

approach. Rotational springs, located at the plastic hinge regions, are used to model the nonlinear behavior of the columns and 

beams. These springs utilize the modified IMK model deterioration model [43–45] that can capture the cyclic deterioration in 

flexural strength and stiffness of steel components subjected to cyclic loading. The panel zone is modeled using the 

parallelogram model proposed by Gupta and Krawinkler [46] where the hysteretic behavior of the panel zone is bounded by a 

tri-linear backbone curve proposed by Skiadopoulos et al. [47]. P-Delta effects are considered by using a fictitious column 

(noted as the ‘leaning column’) connected to the steel MRF by axially rigid truss elements. The leaning column is loaded at 

each floor with a vertical load equal to half of the seismic gravity load of the building minus the tributary load that is directly 

assigned to the MRF columns. The contribution of the gravity framing to the lateral strength and stiffness of the steel MRFs is 

not considered in the present study. Rayleigh damping is incorporated in the 2D models as discussed by Zareian and Medina 

[48]. Two percent damping ratio (𝜁 = 2%) is assumed at the first mode (𝑇1) and one fifth of 𝑇1 of the steel MRFs. The 

fundamental periods equal 1.3𝑠, 2.1𝑠, 2.5𝑠 and 4.0𝑠 for the 4-story to 20-story steel MRFs, respectively (see [41]). 
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Figure 3. Scheme of the 2D structural models for the 4-, 8-, 12-, and 20-story steel moment resisting frames: (a) elevation; 

(b) plan (adapted from [41]). The first story height (H1) is 4300 mm for the 4-story frame and 4200 mm for other frames. 

The FEMA P695[34] Far-Field set of 44 short duration ground motion seismograms is used to conduct the collapse risk 

assessment. This generic set of ground motions (i.e., not hazard-consistent with any specific site) is the de facto standard for 

quantifying the uncertainty of ground shaking in collapse assessments. The anti-clustering approach described previously is 

used to split the entire set into the training and testing portions each containing 22 motions (e.g., see Figure 1). The training 

and test sets are specific to each of the considered MRFs. To keep data requirements as low as possible, there is no separate 

validation set used herein. Rather, n-fold cross-validation is used for hyperparameter tuning as described in the next section. 

Case study D2C2 surrogates 

This paper uses boosted regression tree classifier, specifically the XGBoost [32], as the underlying surrogate of the D2C2 

methodology. The following hyperparameters are tuned using the 4-fold cross-validation: max_depth, eta, subsample, 

colsample_bytree, and alpha. All parameters are tuned concurrently. A detailed description of XGBoost including 

definitions of hyperparameters is available in the online documentation [49] but a brief explanation is provided here. The 

max_depth parameter controls the maximum number of nodes each boosted tree can have, where a larger value indicates a 

more complex surrogate that is more likely to overfit. The subsample and the colsample_bytree parameters are used to 

control overfitting and indicate the proportion of the training samples and features to be used while growing the trees, 

respectively. Setting their values to unity means that all the samples and all features are used, implying no regularization from 

feature or sample selection during the training process. At the same time, alpha is the cost used to impose L1 regularization. 

Finally, eta is the learning rate of the algorithm. The optimal values of the hyperparameters in this paper are selected based 

on the mean absolute percentage error (MAPE [50]) metric obtained in 150 boosting rounds. Note that MAPE is a regression 

metric, and it is possible to use it herein because in D2C2 the classification approach is used to obtain the regression estimate 

of the collapse capacities. All other hyperparameters are set to default values as used in the python implementation of XGBoost 

(version 1.3.3). Binary logistic loss is used as the objective function. When training the final data-driven models with the tuned 

hyperparameters, randomly chosen 20% of the real training data is used as a validation set to initiate early stopping based on 

the validation loss. The final models are then trained using entire considered training data for the optimal number of boosting 

rounds (i.e., the number of rounds when early stopping was initiated).  

The optimal values of the hyperparameters obtained using cross-validation are given in Table 1. The surrogates are tuned for 

all MRFs considering the cases both with and without ACDC augmentation. A general observation is that the optimal values 

of the colsample_bytree and subsample parameters are in all cases less than one. This means that the surrogates are 

regularized both by not considering all the predictive features (IMs) as well as by not considering all of the available training 

samples when building the regression trees. Dropping some of the IMs from the final surrogates is sensible from the structural 

dynamics viewpoint as the considered MRFs are not equally sensitive to all considered features. On the other hand, not 

including all of the samples when building the trees (i.e., subsample < 1.0) could potentially indicate that some of the samples 

in certain cases introduce biases in the predictions which may be stemming from the use of IMs as predictive features. For 

instance, meaningfully different structural responses to ground motions that have similar IMs are possible (e.g., due to the 

“resurrection” effect) since the IMs are simplified proxies for complex ground motion waveforms. This is a challenge 

particularly when using small training sets and is left for subsequent studies.  

 

 

 



Canadian-Pacific Conference on Earthquake Engineering (CCEE-PCEE), Vancouver, June 25-30, 2023 

6 

 

Table 1. Tuned values of the xgboost surrogate hyperparameters used in D2C2. 

MRF ACDC 
Hyperparameters 

max_depth eta subsample colsample_bytree alpha 

4-story 
no  1 0.005440 0.634582 0.610919 0.005260 

yes 1 0.083407 0.642931 0.579314 0.002000 

8-story 
no  1 0.671676 0.844104 0.723093 0.002000 

yes 1 0.345484 0.818220 0.510067 0.002000 

12-story 
no  1 0.202817 0.451382 0.300547 0.002000 

yes 1 0.192804 0.494132 0.453166 0.002000 

20-story 
no  1 0.817902 0.621440 0.537083 0.002000 

yes 3 0.581816 0.559729 0.654705 0.002000 

In terms of surrogate model complexity, the optimal value of the max_depth parameter equals unity in almost all considered 

cases (see Table 1). Specifically, only the 20-story MRF trained with ACDC benefitted from a more complex model 

(max_depth = 3). Finally, when tuning the 4-story MRF it was noticed that alpha parameter did not have a strong effect on 

the predictive performance of the surrogate. Hence, the value of alpha was kept fixed at 0.002 during tuning for the remaining 

cases. The D2C2 surrogates trained with these tuned hyperparameter values were used to obtain the results presented in the 

following section. These hyperparameter values could also be used as starting points in subsequent research studies. 

Collapse risk assessment results 

The developed D2C2 surrogates are used to make collapse predictions for the considered MRFs. Shown in Figure 4 are the 

results for the 8-story MRF. Referring to Figure 4a, plotted with a black line is the ECDF of the collapse capacities obtained 

using IDA for the 44 ground motions of the FEMA P695 ground motion set. We refer to this data as the “true data” to 

differentiate it from the estimates obtained using surrogates, i.e., the results of the nonlinear response history analyses are 

considered the ground truth for the purpose of this study. Indicated with the gray dotted line in the same figure is the ECDF of 

the collapse capacities of the 22 ground motions which were used as the training set for the development of the data-driven 

surrogates. Note that the ECDFs of the training data and the true data are not matching closely. In other words, a collapse 

fragility simply fitted to the training data will not closely represent the fragility fitted to the true data, as shown in Figure 4b. 

In particular, the fragility fitted to the training data in this case underestimates the median collapse capacity, col, for about 7% 

(0.63g compared to 0.68g, respectively) and the dispersion, col, for about 8% (0.35 compared to 0.38) relative to the fragility 

fitted to the true data.  

In contrast, using the D2C2 surrogate can yield improved predictions. Still referring to Figures 4a and 4b, the median collapse 

capacity estimates obtained using the D2C2 surrogate (indicated with the gray line with cross-shaped markers) is in closer 

agreement with the true data. Specifically, the difference of col is on the order of 4% (0.66g compared to 0.68g). However, the 

difference in the estimates of col significantly increased to about 23%, which can also be see in a relatively poor match between 

ECDFs. If, however, the ACDC augmented data is used in addition to the real training data then the D2C2 surrogate yields 

predictions that are in close agreement with the true data, as seen from the red dashed lines in the Figure 4. In this case, the 

difference in col and col is 1.7% and 0.9% compared to the true data. For comparison purposes, the collapse estimates obtained 

using the hazard-consistent IDA (HC-IDA [51]) approach are also shown in the same figure. HC-IDA is a reliability-based 

method which leverages a linear regression surrogate fitted to the collapse data to obtain a non-parametric estimate of the 

collapse fragility through integration with the hazard data (for details, see [51]). In that sense, shown with a blue line with 

circular markers in Figure 4a are the mean estimates obtained for each ground motion using the linear surrogate from HC-IDA 

while the Figure 4b shows the collapse fragility obtained after integration with the hazard data. This is an important difference 

to the D2C2 approach, as the HC-IDA fragility in Figure 4b is not simply obtained by fitting a log-normal distribution to the 

ECDF data in Figure 4a. As seen from the graph, in this case the HC-IDA fragility is in close agreement to the true data with 

the differences of 1.7% and 5.7% for col and col, respectively. 
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Figure 4. Collapse capacity and fragility estimates for the 8-story MRF: (a) ECDFs and (b) collapse fragilities obtained 

using the “predictions-only” approach. 

These estimates of the collapse fragilities of the 8-story MRF are summarized in Table 2. Also shown in the table are the mean 

annual frequencies of collapse, * and , obtained by integration of the Sa(T1) hazard curve at the design location with both the 

ECDFs and the collapse fragilities, respectively. The results are provided for the “prediction-only” approach (as shown in 

Figure 4) and the “mixed” approach (shown in Figure 5). The difference between the two approaches is that the “prediction-

only” approach uses predicted collapse capacities for the entire ground motion set while the “mixed” approach uses predictions 

only on the test set and the true values from the training set. This can be seen from the scatterplots in Figures 5a and 5b, where 

the true values of the collapse capacities are compared to the values obtained using the surrogates. Referring to Figure 5a, the 

values of collapse capacities of the training data (i.e., the observed set indicated with black dots) when using the “predictions-

only” approach are distributed around the dashed black line with a unit slope going through the origin. In contrast, when using 

the “mixed” approach, these points lie along the dashed black line. The corresponding difference in the resulting ECDFs and 

collapse fragilities is shown in Figures 5c and 5d. As a general observation, both approaches seem viable in terms of estimating 

. For instance, the difference from the true data in terms of the mean annual frequency of collapse obtained with the D2C2 

trained using the ACDC is on the order of 4.5% and 2.4% for the predictions-only and the mixed approaches, respectively. This 

stems from a close match in the lower tails of the collapse fragilities, as seen by comparing the full black line and the dashed 

red lines in Figures 4b and 5d. However, the entire collapse fragility from the “predictions-only” approach is in closer 

agreement with the true fragility compared to the “mixed” approach case. 

Table 2. Collapse risk estimates, 8-story MRF. 

8-story MRF 
 * [10

-4
] difference [%] 

col
(g) diff. [%] 

col
 diff. [%]  [10

-4
] diff. [%] 

true data 5.3242 / 0.684 / 0.380 / 5.9803 / 

prediction 

only 

approach 

HC-IDA 5.1275 -3.70 0.672 -1.66 0.401 5.74 6.4244 7.43 

D2C2 5.3392 0.28 0.655 -4.16 0.291 -23.29 5.7933 -3.13 

D2C2 w ACDC 5.6708 6.51 0.672 -1.72 0.383 0.86 6.2447 4.42 

mixed 

approach 

D2C2 5.5338 3.94 0.651 -4.72 0.304 -19.91 5.9687 -0.20 

D2C2 w ACDC 5.5940 5.07 0.664 -2.86 0.353 -6.96 6.1229 2.38 

Note: * and  are obtained by integration of the ECDF and the collapse fragility with the hazard curve, respectively. 
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Figure 5. True vs predicted collapse capacities, 8-story MRF: (a) “predictions-only” approach; (b) “mixed” approach; (c) 

and (d) ECDFs and collapse fragilities obtained using the “mixed” approach. 

A general observation from all the steel MRFs analyzed in this study is that the “mixed” approach using D2C2 with ACDC 

yields collapse fragilities that are either in a less good or an as good of an agreement with the true data compared to the 

corresponding “predictions-only” approach. In other words, the results of this study slightly favor the “predictions-only” 

approach compared to the “mixed” approach, but research results from additional frames are needed for definitive statements. 

Furthermore, the observations related to the D2C2 surrogates presented for the 8-story MRF qualitatively hold for all considered 

steel frames. To streamline the presentation, Figure 6 and Table 3 show the results for the 20-story MRF while the results for 

the 4-story and the 12-story MRFs are provided in Tables 4 and 5, respectively. Referring to the Figure 6a, the ECDF estimated 

using the D2C2 surrogate trained with ACDC data (red dashed line) is in very close agreement with the true data ECDF (black 

full line) save for the region around the 80-th to 90-th percentile. In turn, this translates into closely matching fragility curves 

(Figure 6b) which do have a difference in the upper tail. This difference is driven by the ~7% overestimation of the col (0.37 

compared to 0.34) and about 2.6% overestimation of the col (0.35g compared to 0.34g) as given in Table 3. At the same time, 

the error of  estimated using the D2C2 surrogate trained with ACDC is on the order of 2%. This is in stark contrast to the HC-

IDA predictions, indicated with a blue line with circular markers in Figure 6b, yielding about 12% error in  which stems from 

about 24% overestimation of col (0.43 compared to true value of 0.34). All off the surrogates used on the 20-story frame yield 

errors in the median collapse capacities, col, that are less than 5%.  

While not shown in the figures, the HC-IDA fragilities for the 4- and 12-story MRFs are similar to the 20-story case in terms 

of the errors in prediction (i.e., close agreement with the true data was only observed in the case of the 8-story MRF as shown 

in Figure 8b). It should be noted here that the HC-IDA method uses only two predictors (Sa,ratioand Da,5-75% significant duration) 

compared to the 106 predictors used in the D2C2. In addition, the HC-IDA as used herein is based on a global (i.e., fitted to all 

data) linear regression surrogate which makes it less flexible compared to the XGBoost surrogate used for D2C2. For these 

reasons, ACDC is not considered when using HC-IDA in this paper. However, combining local regression in HC-IDA (as 

proposed in [52]) with the ACDC augmentation could be considered in follow-up studies given practical ease of implementing 

HC-IDA as any required hyperparameter tuning would be expedient. 
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Figure 6. Collapse response estimates for the 20-story MRF obtained using the “predictions-only” approach: (a) ECDFs; 

(b) collapse fragilities. 

 

Table 3. Collapse risk estimates, 20-story MRF. 

20-story 

MRF  

  * [10
-4

] difference [%] 
col

(g) diff. [%] 
col

 diff. [%]  [10
-4

] diff. [%] 

true data 4.3268 / 0.342 / 0.343 / 4.5192 / 

prediction 

only 

approach 

HC-IDA 3.5949 -16.92 0.346 1.08 0.426 23.95 5.0729 12.25 

D2C2 3.9084 -9.67 0.355 3.80 0.281 -18.18 3.7674 -16.63 

D2C2 w ACDC 4.1087 -5.04 0.351 2.56 0.367 6.76 4.4271 -2.04 

mixed 

approach 

D2C2 3.9942 -7.69 0.352 2.91 0.334 -2.82 4.1623 -7.90 

D2C2 w ACDC 4.2261 -2.33 0.348 1.83 0.372 8.27 4.5404 0.47 

Note: * and  are obtained by integration of the ECDF and the collapse fragility with the hazard curve, respectively. 

 

Table 4. Collapse risk estimates, 4-story MRF. 

4-story MRF  
  * [10

-4
] difference [%] col(g) diff. [%] col diff. [%]  [10

-4
] diff. [%] 

true data 5.2313 / 1.214 / 0.455 / 5.8371 / 

prediction 

only 

approach 

HC-IDA 3.9337 -24.81 1.269 4.58 0.382 -16.21 4.5379 -22.26 

D2C2 4.6129 -11.82 1.229 1.22 0.411 -9.83 5.1890 -11.10 

D2C2 w ACDC 4.7975 -8.29 1.213 -0.10 0.430 -5.56 5.5592 -4.76 

mixed 

approach 

D2C2 4.5939 -12.19 1.242 2.34 0.411 -9.65 5.0643 -13.24 

D2C2 w ACDC 4.6917 -10.31 1.234 1.71 0.430 -5.56 5.3313 -8.66 

Note: * and  are obtained by integration of the ECDF and the collapse fragility with the hazard curve, respectively. 
  

 

Table 5. Collapse risk estimates, 12-story MRF. 

12-story 

MRF  

  * [10
-4

] difference [%] 
col

(g) diff. [%] 
col

 diff. [%]  [10
-4

] diff. [%] 

true data 3.5435 / 0.707 / 0.396 / 3.6774 / 

prediction 

only 

approach 

HC-IDA 3.1365 -11.49 0.662 -6.31 0.367 -7.26 4.0657 10.56 

D2C2 3.2446 -8.44 0.697 -1.44 0.320 -19.07 3.3332 -9.36 

D2C2 w ACDC 3.3598 -5.18 0.700 -1.02 0.379 -4.21 3.6519 -0.69 

mixed 

approach 

D2C2 3.4144 -3.64 0.693 -1.94 0.348 -12.21 3.5303 -4.00 

D2C2 w ACDC 3.4708 -2.05 0.697 -1.37 0.389 -1.88 3.7457 1.86 

Note: * and  are obtained by integration of the ECDF and the collapse fragility with the hazard curve, respectively. 
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CONCLUSIONS 

This paper proposed a methodology which combines physics-based analyses and data-driven surrogates for collapse risk 

assessment using generic ground motion sets. The method reduces the computational expense required for the underlying 

uncertainty quantification by leveraging anti-clustering to split the ground motions into statistically similar and equally sized 

training and test sets. The data-driven collapse classifier (D2C2) methodology and the automated collapse data constructor 

(ACDC) techniques are then utilized on training set to develop a data-driven surrogate which is applied to estimate the collapse 

capacities on the test portion of the and yield the combined result for the entire generic ground motion set. Since the numerically 

expensive collapse capacity estimation using IDA is only performed on the training set, the methodology reduces the numerical 

cost by 50%. The methodology was tested using the FEMA P695 Far Field ground motion set and a set of steel MRFs ranging 

in height from 4- to 20-stories.  

The main contribution and observation of this paper is that the proposed methodology allows development of data-driven 

surrogates with predictive power that rivals the full physics-based IDA, but at a significantly reduced computational expense. 

For example, the errors in the mean annual frequencies of collapse () obtained using the proposed methodology were smaller 

than 5% compared to the ground truth (full IDA) for all considered MRFs in the performed case-study. Specifically, the errors 

in  range from 0.7% to 4.7%. Moreover, the methodology allows estimation of the entire collapse fragilities, and not just the 

lower tails, that are in close agreement with the ground truth. For the considered MRFs, the errors in the median collapse 

capacities (col) range from 0.1% to 2.5%, while the errors in dispersions (col) are on the order of 0.9% to 6.8%. Note that in 

all cases, the data-driven surrogates were trained using only 22 data points. As such, these are very promising results that 

demonstrate the feasibility of the proposed methodology as well as the utility of “small data” machine learning approaches for 

seismic collapse risk assessments. 
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