
Master thesis report
Divergent X-ray tomography reconstruction

and optimisation

École Polytechnique Fédérale de Lausanne
Rte Cantonale, 1015 Lausanne, Switzerland

Supervisors :
Sepand KASHANI | sepand.kashani@epfl.ch

Dr. Matthieu SIMEONI | matthieu.simeoni@epfl.ch
Dr. Edward ANDÒ | edward.ando@epfl.ch

May - November 2023

Author :
Youssef HAOUCHAT | youssef.haouchat@ensta-paris.fr

Master student of ENSTA Paris, France
École Nationale Supérieure des Techniques Avancées

Parcours : ModSim

ENSTA Paris supervisor :
Laure GIOVANGIGLI | laure.giovangigli@ensta-paris.fr
Associate Professor of Mathematics at ENSTA Paris

Contents

0 Abstract 8

1 The X-ray transform : an introduction 9
1.1 Physics of X-ray absorption . 9
1.2 Mathematical definition and common properties of the X-ray transform 10
1.3 Adjoint definition and inversion formula . 13

2 Inverse problems in tomography 16
2.1 Linear inverse problem formulation in the continuum 16
2.2 Discrete formulation and ill-posedness . 17
2.3 From Bayesian formulation to regularised optimisation problem 19
2.4 ASTRA toolbox: A leading state-of-the-art framework - features and limitations 21

3 Computational aspects 24
3.1 Introduction : Computational imaging goals 24
3.2 Adjoint operator implementation . 28

3.2.1 Auto-differentiation method . 28
3.2.2 Custom matched algorithm . 29

3.3 3D generalised X-ray transform via rendering techniques 30
3.4 Performance evaluation & results . 31

4 Image reconstruction 35
4.1 Synthetic 3D data generation . 35
4.2 Iterative algorithms for real data reconstruction 36
4.3 Uncertainty quantification with confidence regions 39

A Projection and backprojection with Box-splines : an overview 42

2

List of Figures

1.1 Practical physical setups for X-ray imaging (left) and PET imaging (right). . 10
1.2 2D visual representation of the X-ray transform of a basic shape. The absorption

profiles are the functions t 7→ Xθ[f](t) for three different angles θ. The variable
θ represents the rotation parameter in experimental settings, while t represents
the translation or offset parameter. 11

1.3 Illustration of the Fourier Slice Theorem 1.3 15
1.4 2D visual representation of X-ray backprojection (left) and filtered backprojection

(right). The acquired profiles 1...4, which represent the function t 7→ gθ(t) for
four different angles, are backprojected in the domain and summed up, without
any filter (left) or after the |ξ| high pass filter (right). 15

3.1 Left : Visualisation of the matrix A ∈ RM×N (N is the number of pixels of
the image and M is the number of acquisitions). Right : Corresponding image
x ∈ RN , with pixel colors corresponding to different ray pixel structures. To
compute the RAY 1 integral for example, instead of computing (Ax)1, we prefer
a matrix-free approach with an algorithm visiting each red pixel one by one in
the direction of the ray, and calculating the weighted line-pixel intersections. . 25

3.2 Left : Priciple of Siddon’s algorithm implementation. Ray on top represents how
each data yi data is computed with matrix-vector product (Ax)i corresponding
to the sum of pixel-ray intersections weighted by the pixel values. The lower ray
represents the main values used in the Siddon’s algorithm Lx (resp. Ly), which
is the length of the ray between two consecutive columns (resp. rows). Right :
Illustration of the 3D discrete X-ray transform with cone-beam geometry. . . . 26

3.3 Visual results of our JAX-based Siddon line tracer. Left : Ray tracing from
source (red) to detector (blue). Middle : Zoom on the line path. The gray-
scale intensity (0 − 1) of a pixel corresponds to the intersection length between
the ray and the pixel. Right : Cone-beam discrete projection from a unique
source (red) to equi-spaced detectors located on the right edge of the image. . 27

3.4 Comparison between analytical projection and path tracing numerical projection
via Siddon’s method. The orange curve corresponds to the analytical X-ray
projection of a disk, and the blue curve corresponds to our Siddon algorithm
applied to its pixelised equivalent. 27

3

3.5 Visualisation of the implementation, from left to right : A disk phantom (image
reference), the X-ray projection (called sinogram) of the disk, the adjoint X-ray
backprojection of the sinogram, the naive reconstruction using Filtered Back-
Projection (FBP), and finally the difference between the phantom and the FBP
reconstruction. 29

3.6 Benchmark comparing our JAX code and ASTRA’s CPU cone-beam code. Auto-
differentiation is clearly too slow, and the parallelised version is close to ASTRA’s
performance. 2d column is the custom adjoint version (while loops) and the
last column is the scan-based auto-differentiation version. 29

3.7 Pyxu framework illustration, managing many Python packages to perform com-
putational imaging inverse problems, such as (left to right) image denoising,
deblurring, inpainting, super-resolution, fusion, filtering and tomographic recon-
struction. 30

3.8 Conjugate Gradient reconstruction convergence curves. Left: ASTRA CPU
vs JAX/Mitsuba relative error convergence curve. Right: ASTRA GPU vs JAX
relative error convergence curve. ASTRA starts to diverge after several iterations
due to the adjoint mismatch. Effects are also visible in the reconstruction images. 32

3.9 Reconstructed images with Conjugate Gradient across iterations (regularly
spaced from 0 to 3000). The top row corresponds to our JAX code (same
as Mitsuba code in 2D). The bottom row corresponds to the ASTRA 2D GPU
reconstruction across iterations, showing that a systematic error is being accu-
mulated over time. Not only the relative error, but also the cost function values,
across iterations is divergent (see [13]). 33

3.10 Left: Scalability checking of our code, linear with the number of rays. Right :
Showing influence of CPU↔GPU transfer times for ASTRA and Mitsuba. Mis-
tuba, unlike ASTRA, is transferring once the data at the beginning and at the
end of the iterations. 34

4.1 Visualisation of analytical sphere projections via cone-beam geometry, for one
sphere (Left) and multiple randomly placed spheres (Right). 35

4.2 3D spheres reconstructed using the PGD with Total Variation regularisation. . 37
4.3 PIXE experimental setup, where the X-ray source, the flat screen detector and

the rotating support are visible. 37
4.4 Reconstruction of the 2D data middle slice of the object. Left : 2D projec-

tion data at one given angle, and its 1D middle slice (red). Middle Stacked
1D slices for every angles (sinogram) corresponding to 2D data. Right : The
reconstruction of the middle slice of the object, we can identify correctly the
cylinder slice and the spheres inside. 38

4.5 Reconstruction of the full 3D volumetric object. Left : Stack of projection
images (2D) for every angle (3D data). Reconstruction have been successfully
performed and vertical and horizontal slices of the reconstruction are shown
(Right). 38

4.6 Left : MAP reconstruction estimation performed with Conjugate Gradient, with
a least square data-fidelity term. Right : Pixel-wise uncertainty quantification
using the method presented above. 40

4

A.1 Basis vectors (orange) generating Box-spline basis functions for image decom-
positions. The X-ray projections calculated analytically and sampled are rep-
resented (two different angles). On the right, a disk phantom, expressed as a
decomposition into the 1st degree Box-spline is being projected and then this
projection is backprojected. 42

5

Acknowledgements

Firstly, I would like to express my deepest gratitude to Mr. Sepand KASHANI, a dedicated
PhD student at EPFL’s LCAV laboratory with whom I have worked a lot with. He found a
very pleasant balance between autonomy and regular supervision, and was able to guide me
through the theoretical and computational aspects of my project. Always with great sympathy,
he was able to lead my curiosity through new scientific points of view. Finally, huge thanks for
the excellent proofreading of this report.

I would also like to convey my sincerest appreciation to Mr. Matthieu SIMEONI and Mr. Edward
ANDÒ for having judged me capable of maintaining this project of the Center For Imaging and
for having brought an expert scientific point of view, both theoretical and experimental, and
the necessary hindsight to the smooth running of my master thesis.

In extending my heartfelt gratitude, I cannot overlook the warm and enthusiastic welcome
I received from every member of the laboratory. Each one of you played an integral role in
making me feel not just welcome, but a part of this esteemed group. I must express my
gratitude to my supervisors for having reviewed this report and having given constructive
feedback.

I would also like to acknowledge Mr. Michael UNSER, head of the Biomedical Imaging Group
for introducing me to some of his work and projects, and for trusting me by opening the doors
of his laboratory for the next stage of my professional project.

6

Notations

Sets and Functional Spaces

Z Integers
R Real numbers
C Complex numbers
Zn Vectors of integers of dimension n
Rn Vectors of real numbers of dimension n
Sn−1 Unit sphere embedded in Rn Sn−1 = {x ∈ Rn | ∥x∥2 = 1}
L1(Rn) Absolutely-integrable measurable functions in Rn

L2(Rn) Finite-energy functions in Rn

H/H∗ Hilbert space/ its dual

X-ray tomography Model

f, f(x) Volumetric object Rn → R
φ Basis function Rn → R
θ Unitary projection direction θ ∈ Sn−1

θ⊥ Hyperplane orthogonal to θ span(θ)
⊕

θ⊥ = Rn

p Offset, in the hyperplane θ⊥ p ∈ Rn

Xθ[·] X-ray transform (3D geometry given by θ) L2(R3) → L2(R2)
X∗

θ [·] Adjoint operator of Xθ (backprojection) L2(R2) → L2(R3)
N Number of voxels of the volumetric object N∗

c, ck Discrete coefficients of f RN

(hi)i∈J1...MK Sampling linear forms of the operator hi ∈ H∗

M Number of X-ray acquisitions (rays) N∗

y Measurement dataset RM

A/AT Matrix/Transpose of the discrete operator RM×N

λ(A) Eigenvalue of operator A C
n Additive random noise RM

Reconstruction

ĉ Estimate of c RN

F Data fidelity term of the objective functional RN → R
R Convex regularisation functional RN → R
η Regularisation parameter R+
proxR Proximal operator of R RN → RN

∇ Discrete gradient operator RN → Rd×N

∥ · ∥p p−norm of a vector Rd → R
FnD[·] n−dimensional Fourier Transform in Chapter 1 L2(Rn) → L2(Rn)

7

0
Abstract

In diverse fields such as medical imaging, astrophysics, geophysics, or material study, a common
challenge exists: reconstructing the internal volume of an object using only physical measure-
ments taken from its exterior or surface. This scientific approach is called tomography, and
is the foundational concept that motivates this work.

Specifically, the focus of my project is divergent (or cone beam) X-ray tomography,
a technique used in medical imaging and material mechanics. Solving a tomography problems
amounts to solving an inverse problem, where the ill-conditioning of the measurement
operator, specifically the X-ray transform operator, and the inherent ill-posedness of inverse
problems, in the sense of Hadamard, necessitate the integration of advanced optimisation
techniques. Tackling these optimisation problems is highly challenging in practice due to
the implementation of the X-ray transform operator and its mathematical adjoint, the
backprojection operator : combination of High Performance Computing (HPC) and exact
adjoint match between forward and backward operators has not been achieved in the currently
available state-of-the-art packages.

During this project, the impact of an adjoint mismatch on the convergence of optimisation
algorithms is addressed. Additionally, the implementation of forward and matched adjoint
operators in both 2D and 3D is explored. Given that adjoint mismatches are common in many
state-of-the-art tomographic libraries, we explore whether it is worthwhile to approximate
the adjoint instead of ensuring an exact match with the forward process for the sake of
computational speed.

Upon implementation, reconstruction techniques are investigated, from Bayesian for-
mulations and prior hypotheses, to their corresponding representation problems in optimisation.
Both synthetic and real data, in 2D and 3D, will be reconstructed using advanced techniques.
Furthermore, we briefly explore novel applications unlocked with having consistent forward/ad-
joint codes, namely uncertainty quantification in scenarios with log-concave posterior dis-
tributions p(x|y) of the reconstructed image x, given the measurements y. This exploration
becomes particularly relevant when using a Maximum-A-Posteriori (MAP) estimate.

8

1
The X-ray transform : an introduction

1.1 Physics of X-ray absorption
An X-ray point source emits high-energy photons that penetrate a volumetric object. As
these photons traverse the object, they interact with its internal structures, experiencing energy
attenuation due to the object’s absorption properties. The degree to which the photon energy
decreases while traveling through the volume is dictated by the Beer-Lambert law, which
describes the relationship between the absorption of light and the properties of the material
through which the light is traveling. More formally, the Beer-Lambert law can be expressed as
follows.

Beer-Lambert Law (monochromatic)
In a medium of homogeneous concentration c with a unique absorptivity coefficient ε,

log
(

I0

I

)
= εlc

where I (resp. I0) is the light intensity entering (respectively exiting) the medium with
an optical path length of l.
More generally, for a heterogeneous medium with attenuation coefficient µ(·),

log
(

I0

I

)
=
∫ l

0
µ(z)dz (1.1)

where µ(·) = ∑
i ϵici(·).

In medical imaging, for example, a typical setup consists of a source that emits X-ray photons
in a cone-beam pattern, coupled with detectors that capture the intensity of these photons (see
[7] for more details). Practically, to obtain data y from a volumetric object represented by
µ, we first measure the intensity of the photons without the object in place, denoted as I0.
Subsequently, we measure the intensity, I, when the object with an absorption coefficient µ is
positioned in the path of the photon. If i denotes the detector index, the relation between y
and µ can be written as :

∀i ∈ J1...NK, y(i) = log
I

(i)
0

I(i)

 =
∫

l(i)
µ(z)dz

where N represents the number of detectors and l(i) denotes the path of the ray from the
source to the detector. The X-ray absorption model is useful for scanner imaging, PET scans,
ultrasound imaging, and even cryo-EM.

9

Figure 1.1: Practical physical setups for X-ray imaging (left) and PET imaging (right).

1.2 Mathematical definition and common properties of the X-ray
transform

The operator associated with the general Beer-Lambert absorption law is the X-ray transform.
Let Ω be a bounded domain in Rn. Let f be a function from Rn to R such that f is compactly
supported in Ω. The X-ray transform is the integral of f across a straight line.
Let us take f ∈ L1(Ω) to ensure the existence of that integral. Let Sn−1 be the unit sphere
embedded in Rn of dimension n − 1.

X-ray transform - generalised (Definition)
The X-ray transform X of f in the direction θ ∈ Sn−1 is defined as follows :

∀(x, θ) ∈ (Rn × Sn−1), Xθ[f](x) =
∫

t∈R
f(x + tθ)dt

Xθ[f] is invariant to a translation of x in the direction θ. Therefore, a better parametri-
sation of this operator allows us to define a ray with a unique pair (p, θ) in (Rn−1×Sn−1).

Xθ[f] : θ⊥ → R

p 7−→
∫

t∈R
f(p + tθ)dt

where a ray is described by a directional vector for the line θ, and an offset p in the
hyperplane span(θ)⊥.

Remark : The X-ray transform of a function is not the the Radon transform. The Radon
transform corresponds to a volumetric integration across affine hyperplanes. The affine hyper-
plane is defined by a vector θ setting up the hyperplane as span(θ)⊥, then a scalar p determines
the affine translation of the hyperplane along the direction of θ. The X-ray transform is, in any
dimension, an integration over lines. In that sense, the vector θ defines the orientation of the

10

line, and then a vector in the (n − 1)-dimensional hyperplane span(θ)⊥ determines the affine
translation.

In 2D, the two definitions coincide up to reparameterisation because the affine hyperplane is
also a line.

2D case : X-ray / Radon transform (Definition)
In 2D, the X-ray transform X of f in the direction θ ∈ S1 is defined as follows :

∀(p, θ) ∈ R × S1 Xθ[f](p) =
∫

t∈R
f(pθ̂ + tθ)dt

where θ̂ is the vector orthogonal to θ. Or equivalently,

∀(p, θ) ∈ R × S1 Xθ[f](p) =
∫

x∈R2
f(x)δ(p − ⟨x, θ̂⟩)dx

where δ is the Dirac distribution.

Remark : Lp,θ = {x ∈ R2 | x = p + tθ, t ∈ R} is the line along which the X-ray photons
are traveling. We will refer to the function p 7→ Xθ[f](p), for a given θ, as a profile. It
represents the integration of the volumetric object across {Lp,θ}p∈R, see Figure 1.2.

θ

θ⊥
p1

{p1 + tθ}t∈R

Object f

2D image profile
p 7→ Xθ[f](p)

Figure 1.2: 2D visual representation of the X-ray transform of a basic shape. The absorption
profiles are the functions t 7→ Xθ[f](t) for three different angles θ. The variable θ represents
the rotation parameter in experimental settings, while t represents the translation or offset
parameter.

11

Basic properties can be derived from the definition of the X-ray transform. Iterative 1st
order methods use the forward and adjoint operators to update estimates, hence it is necessary
to explicitly formulate the mathematical forward and adjoint definitions of the operator, as well
as its inverse formula. One major property is the convolution property, which states that the
X-ray transform of a convolution is the convolution of the X-ray transforms.

X-ray transform of a Convolution (Property)
For f, g ∈ L2(Rn) and piecewise continuous,

Xθ[f ⋆ g] = Xθ[f] ⋆ Xθ[g]

Proof : Let θ ∈ Sn−1 and p ∈ θ⊥. Let f, g ∈ L1(Rn). By definition,

Xθ[f ⋆ g](p) =
∫

t∈R
(f ⋆ g)(p + tθ) dt =

∫
t∈R

[∫
x∈Rn

f(x)g(p + tθ − x) dx

]
dt

=
∫

t∈R

[∫
(p̃,t̃)∈θ⊥×R

f(p̃ + t̃θ)g ((p − p̃) + (t − t̃)θ) dp̃ dt̃

]
dt (with X-ray parametrisation of x)

=
∫

(p̃,t̃)∈θ⊥×R

[
f(p̃ + t̃θ)

∫
t∈R

g ((p − p̃) + (t − t̃)θ)dt

]
dp̃ dt̃ (Fubini’s theorem)

=
∫

p̃∈θ⊥

∫
t̃∈R

f(p̃ + t̃θ) Xθ[g](p − p̃) dt̃ dp̃ =
∫

p̃∈θ⊥

[
Xθ[g](p − p̃)

∫
t̃∈R

f(p̃ + t̃θ)dt̃

]
dp̃

=
∫

p̃∈θ⊥
Xθ[g](p − p̃) Xθ[f](p̃)dp̃

= (Xθ[g] ⋆ Xθ[f])(p). □

Linearity and Shifting (Property)
• The X-ray operator X is a linear operator. Let f, g ∈ L1(Rn)

∀(α, β) ∈ R2, X[αf + βg] = αX[f] + βX[g]

This property simply comes from the linearity of the integral.

• The X-ray transform of a translated function f(·−α) is a translated X-ray transform
of that function f . Let (θ, p) ∈ Sn−1 × θ⊥ .

∀α ∈ Rn, Xθ[f(· − α)](p) = Xθ[f](p − Πθ⊥α) (1.2)

where Πθ⊥(·) corresponds to the orthogonal projection on span(θ⊥).

This comes from the definition of the X-ray operator : the contribution of the vector
α along θ is canceled out by the integration in that direction. A simple change of
integration variable concludes the proof.

Remark : The combination of these properties can be used to compute the X-ray transform
of a function expressed in some basis of the functional space (pixels, splines, etc.).

12

1.3 Adjoint definition and inversion formula
In X-ray imaging tomography, data is acquired using the X-ray transform operator X. To
recover the volumetric image from data, the first approach is to apply the inverse continuous
operator X−1.

Given the ill-posedness of the problem and the ill-conditioning of the operator, iterative
optimisation algorithms will be crucial for a regularised reconstruction (see next chapter).

Fourier slice (Theorem)
Let f ∈ L2(Rn) and θ ∈ Sn−1.

∀η ∈ θ⊥, F(n−1)[Xθ[f]](η) =
√

2πFn[f](η) (1.3)

where Fn(·) denotes n−dimensional Fourier Transform.

Interpretation : The image data {Xθ[f](p)}p∈θ⊥ acquired by the X-ray transform along
direction θ corresponds, when applying an (n − 1) dimensional Fourier transform, to the
volumetric object f on the hyperplane or "slice" θ⊥ in the n−dimensional Fourier space.
This is illustrated in Figure 1.3.

Proof : Let f ∈ L2(Rn), θ ∈ Sn−1, and η ∈ θ⊥. Let us simplify the Fourier notations with ·̂ :

X̂θ[f](η) = 1
√

2π
(n−1)

∫
p∈θ⊥

Xθ[f](p)e−i⟨η,p⟩dp = 1
√

2π
(n−1)

∫
p∈θ⊥

∫
t∈R

f(p + tθ)e−i⟨η,p⟩ dp dt

= 1
√

2π
(n−1)

∫
x∈Rn

f(x)e−i⟨η,Π
θ⊥ x⟩dx and ⟨η, Πθ⊥x⟩ = ⟨η, x⟩ since η ∈ θ⊥.

= 1
√

2π
(n−1)

√
2π

n
f̂(η) =

√
2πf̂(η). □

Note : The factor
√

2π arises from the difference in dimensions between the first Fourier transform,
which is performed on an n − 1 dimensional hyperplane, and the second Fourier transform, which is
performed on Rn.

Fourier methods for X-ray tomographic reconstruction rely on the Fourier slice theorem
(Eq. 1.3). We refer the reader to [7] for more details on this subject. Nevertheless, since
we have a sample of acquisition (discrete angles and detectors), the data is associated with a
non-uniform sampling grid in the Fourier domain. Fast Fourier Transforms (FFT) to invert
the problem become problematic since interpolation is required in this case. The focus of this
work will be on ray methods, with numerical ray tracing of projection and backprojection (Eq.
1.4) operators. For this last section, the Fourier operator, in any dimension, will be alleged with
the notaion ·̂ .

13

Adjoint of X-ray operator (Backprojection)
Let f ∈ L2(Rn) . The X-ray operator:

X : L2(Rn) −→ L2(Sn−1 × Rn−1)
f 7−→ X[f]

has as adjoint operator X∗ :

X∗ : L2(Sn−1 × Rn−1) −→ L2(Rn)
g 7−→ X∗[g]

such that :
∀x ∈ Rn, X∗[g](x) =

∫
θ∈Sn−1

gθ(Πθ⊥x)dθ. (1.4)

Interpretation : Performing a backprojection of the data set {gθ(p)} involves spreading
its values back along the path it was originally projected from. This process effectively
redistributes the information throughout the volume domain and then sums up contribu-
tions from all directions θ. See Figure 1.4 for an illustration.

Proof : Let f ∈ L2(Rn), and g ∈ L2(Sn−1 × Rn−1).

⟨X[f], g⟩L2(Sn−1×Rn−1) =
∫

θ∈Sn−1

∫
p∈θ⊥

Xθ[f](p) gθ(p) dθ dp

=
∫

θ∈Sn−1

∫
p∈θ⊥

[∫
t∈R

f(p + tθ) dt

]
gθ(p) dθ dp

=
∫

θ∈Sn−1

∫
x∈Rn

f(x) gθ(Πθ⊥x) dx dθ (∀θ, {p + tθ}p∈θ⊥,t∈R = Rn)

=
∫

x∈Rn
f(x) X∗[g] dx = ⟨f, X∗[g]⟩Rn

where ∀x ∈ Rn, X∗[g](x) =
∫

θ∈Sn−1
gθ(Πθ⊥x)dθ. □

Inversion formula (Filtered backprojection Theorem)
Let g ∈ L2(Sn−1 × Rn−1) such that g = X[f]. Then,

f = 1
2π|Sn−1|

X∗[gfiltered] (1.5)

where
ĝfiltered(ξ) = |ξ|ĝ(ξ)

Interpretation : Reconstructing the volume f from the data set {gθ(p)} involves per-
forming a |ξ| high pass filtering of the data in the Fourier domain, denoted by |ξ|, and
then backprojecting this filtered data, hence the name Filtered BackProjection (FBP).

14

⊥

Xθ[f](p) F1D

X̂θ[f](η)

η ∈ θ⊥ 7→ f̂(η)

f

Spatial space Fourier space

Figure 1.3: Illustration of the Fourier Slice Theorem 1.3

Remark : We can easily rearrange equation 1.5 and see that X∗X[f] = h⋆f , with ĥ(ξ) = 1
|ξ|

which is equivalent to saying that the operator X∗X returns a blurred version (with filter 1
|ξ|)

of the input image. This can be visualised, in figures 3.5 or 1.4.

Figure 1.4: 2D visual representation of X-ray backprojection (left) and filtered backprojection
(right). The acquired profiles 1...4, which represent the function t 7→ gθ(t) for four different
angles, are backprojected in the domain and summed up, without any filter (left) or after the
|ξ| high pass filter (right).

The circular arrow in Figure 1.4 represents the rotation of the X-ray source across different
angles. For one given angle, the rays often travel either in a parallel-beam geometry (which
is the case in Figure 1.4), or in a cone-beam geometry (ray traveling from a single point
source to the detectors).

15

2
Inverse problems in tomography

2.1 Linear inverse problem formulation in the continuum
Now that the acquisition operator X[·] has been introduced in the previous chapter, we
can now focus on correctly formulating the tomographic reconstruction problem. Keeping the
previous notations, the objective is to reconstruct a volumetric object f – for instance, the 3D
density function of a brain.

Inverse problem - Linear (Definition)
Let H be a Hilbert space, and let f ∈ H.
Recovering the signal f from noisy data measurements y ∈ RM acquired with the
linear operator H is called a linear inverse problem :

Find f, s.t. y = Hf + n (2.1)

(y1, . . . , yM) = (⟨h1, f⟩H, . . . , ⟨hM , f⟩H) + n

where H : H −→ RM is the acquisition operator, n is random noise, typically Poisson or
i.i.d Gaussian, and M is the number of acquisitions. The (hi)i∈J1...MK ∈ H∗ (dual space
of H) are the sampling linear forms.

Using an X-ray scanner, a PET (Positron Emission Tomography) scan, or other setups, we
only have access to acquisition data.

Remark (X-ray case) : To understand the definition in the context of X-ray tomography, let us
explicitly define each mathematical object for this operator in 3D.

• In an X-ray setup, we measure M attenuations associated with each source/detector pair.
This pair can be parameterised using the tuple (p, θ) – where θ represents the direction
of the ray and p represents the offset in θ⊥.

• The signal f to be reconstructed is generally a 3D density volume. It is practically
compactly supported, so setting H = L2(R3) is natural.

• Each of the M detectors measures a scalar, which is the integral of f along the ray path :

∀i ∈ 1...N, yi = Xθi
[f](pi) + ni

with n being a random vector modelling the acquisition systematic noise typically.

16

• We can rewrite the sampling linear form Xθi
[f](pi) as a scalar product :

Xθi
[f](pi) =

∫
t∈R

f(pi + tθi)dt =
∫

x∈R3
f(x) δ

(
x − pi

∥x − pi∥
− θi

)
dx =

∫
x∈R3

f(x) hi(x)dx

= ⟨f, hi⟩L2(R3)

where hi(x) = δ

(
x − pi

∥x − pi∥
− θi

)
is the Dirac distribution that equals 1 along the

geometric ray directed by the source-detector pair, and 0 otherwise.

2.2 Discrete formulation and ill-posedness
As explained in Section 2.1, in tomography, we have access to a finite number of acquisitions.
Since we only capture M measurements, we can only reconstruct f with M degrees of freedom,
motivating parametric model of f .

Discrete formulation of the inverse problem
Let (φk)k∈1...N ∈ L2(Rn) such that :

∃c1...cN ∈ RN , f =
N∑

k=1
ckφk

Problem (2.1) now becomes :

Find c = (ck)k∈1...N , s.t. y = Ac + n (2.2)

where A ∈ RM×N is the discrete operator matrix.
Indeed, keeping notations of (2.1)

∀i ∈ 1...M ⟨hi, f⟩ =
N∑

k=1
ck⟨hi, φk⟩ (2.3)

so we can write the matrix A as follows :

A =


⟨h1, φ1⟩ · · · ⟨h1, φN⟩

...
⟨hM , φ1⟩ · · · ⟨hM , φN⟩

 (2.4)

In practice, this basis (φk)k∈1...N is always chosen either (1) for its nice visual properties i.e.
piecewise constant polynomial, piecewise continuous, or (2) for ites computational properties.
In what follows we will mostly consider the X-ray transform for functions f where the (φk)
are box functions (pixels in 2D, voxels in 3D) for computational reasons. See Appendix A for
extensions of X-ray transform to Box-Splines parametric functions.

17

Remark (X-ray case) : In the 2D/3D case of the X-ray transform with pixel-discretisation,
each coefficient of the matrix A represents the X-ray transform for a specific ray of the voxel.
Since the voxel amplitude is constant and equals 1 in the corresponding hypercube, this matrix
coefficient simply equals the length of intersection between the ray and the voxel.
Computational aspects will be discussed in detail in section 3, but we can already see here that
to compute the X-ray transform of a pixelised volume f for a given ray (i fixed in Equation
2.3), we need the sum of all the voxel-ray intersections, weighted by the coefficients of f at
the corresponding voxel. A major challenge is computing time. An efficient computation would
only take into account the non-zero contribution voxels.

In theory, having N = M (the same number of acquisitions as the number of coefficients
to recover) would be ideal for solving the linear inverse problem, as it would allow the matrix A
to be invertible. In practice, this is not the case, as there are many degenerate cases (M ≪ N
for example).

Well-posed problem (Hadamard definition)
A mathematical problem is said to be well-posed, in the sense of Hadamard iff :

• The problem admits at least one solution (Existence);

• The problem admits at most one solution (Unicity);

• The solution depends continuously on the data (Stability).

The last point has been particularly emphasised by Hadamard, and then by Hilbert (cf [3]) :
"the third requirement, particularly incisive, is necessary if the mathematical formulation is to
describe observable natural phenomena. Data in nature cannot possibly be conceived as rigidly
fixed; the mere process of measuring them involves small errors. Therefore a mathematical
problem cannot be considered as realistically corresponding to physical phenomena unless a
variation of the given data in a sufficiently small range leads to an arbitrary small change in
the solution. This requirement of "stability" is not only essential for meaningful problems in
mathematical physics, but also for approximation method".

The X-ray inverse problem is ill-posed in the sense of Hadamard.
Indeed, considering equation 2.2 without the random noise :

y = Hf (H is the continuous X-ray operator)

then if the number of measurements is different from the number of unknowns, existence or
uniqueness is not ensured. Nevertheless, we can hope for a pseudo-inverse solution, f̂ =
(H∗H)−1H∗y, which is the solution to the least-squares optimisation problem minf∈L2 ∥Hf −
y∥2

2.
In this case, the stability condition is not verified :

∥f̂∥2 = ∥(H∗H)−1H∗y∥2 ≤ |λmax(H)|
|λmin(H)|2 y.

18

The term |λmax(H)|
|λmin(H)|2 is unbounded when H is the X-ray transform operator since ∃(λn)n ∈ CN,

a sequence of complex singular values such that (see[15]) :

lim
n→∞

|λn| = 0.

In this context, the X-ray operator is said to be ill-conditioned : the problem is ill-posed, even
if the inverse of the X-ray transform can be derived analytically (see equation 1.5). To overcome
this issue, the problem can be regularised to ensure stability.

2.3 From Bayesian formulation to regularised optimisation problem
Regularisation consists in injecting our prior knowledge of f in the objective function to penalise
solutions which are not of the desired form. Solving x̂ = arg minx∈RN F(Ax, y) is slightly
modified with a regularisation term :

x̂η = arg min
x∈RN

F(Ax, y) + ηR(x), η > 0. (2.5)

For example, R(x) = ∥x∥2
2, is one of the most common, corresponding to Tikhonov

regularisation. When F(Ax, y) = ∥Ax − y∥2
2, this regularisation can be seen as a small

perturbation of the initial problem, and specifically affecting the singular values of (A∗A)−1,
making them bounded.

Note: The advantage of this regularisation term is the Morozov Principle result, stating that
there exists a unique η > 0 such that

∥Ax̂η − y∥2 = δ where δ is the noise level of the data.

The choice of F and R may seem arbitrary, but their form cam be formly chosen via Bayesian
formulation of optimisation problems.

Bayes’ Theorem
Let x and y be two probabilistic events with marginal probabilities p(x) and p(y) ̸= 0.
Then :

p(x|y) = p(y|x)p(x)
p(y) (2.6)

• The term p(x|y) is called the posterior distribution.

• The term p(y|x) is called the likelihood.

• The term p(x) is called the prior distribution.

• The term p(y) is called the marginal likelihood (or evidence).

In the context of tomographic inverse problems, y represents the observed data and x
represents the corresponding reconstructed image :

y = Ax + n . (from Eq. 2.2) (2.7)

19

When the posterior distribution p(x|y) can be explicitly defined, we can solve the problem using
an estimator for the unknown quantity x. One of the most common estimators is the MAP
(Maximum a Posteriori), looking for the point x at which p(x|y) is the highest. It amounts to
solving the following optimisation problem :

x̂ = arg min
x∈RN

−p(x|y)

or equivalently, since log(·) is strictly increasing :

x̂ = arg min
x∈RN

− log(p(x|xy)) (2.8)

= arg min
x∈RN

− log(p(y|x)) − log(p(x)) (2.9)

since the evidence p(y) is constant with respect to x.

• The likelihood distribution is the conditional probability of obtaining y given x. From
equation 2.7, this corresponds to the noise probability since x is considered fixed in the
likelihood. More precisely, since n = y − Ax,

p(y|x) = pnoise(y − Ax)

Modelling the noise by the common L-dimensional multivariate Gaussian process N (0, Σ) :

p(y|x) = 1
σ

exp
(

−1
2(y − Ax)T Σ−1(y − Ax)

)
(2.10)

with σ the normalisation constant, and reinjecting p(y|x) into equation 2.9, we get the
log-likelihood term :

− log(p(x|y)) ∝ 1
2∥Σ−1/2(y − Ax)∥2

2 = F(Ax, y)

where we can clearly identify F , the data-fidelity term of the cost function of equation
2.5. As we can see, a least square term comes from an i.i.d Gaussiane noise model.

• The prior distribution p(x) is the information we infer based on our understanding of the
volumetric object x. It often comes from either physics information or from a particular
regular behavior towards which we want to guide the reconstruction. For example, if p(x)
is also Gaussian with a covariance matrix ηIN , :

− log(p(x)) ∝ η

2∥x∥2
2 = R(x)

where we can clearly see the source of the Tikhonov regulariser as being due to Gaus-
sian priors.

20

2.4 ASTRA toolbox: A leading state-of-the-art framework - features
and limitations

Having defined the X-ray transform and formalised the reconstruction problem, our attention
is naturally drawn to the identification of reconstruction softwares that performs forward
and backward X-ray operators and, if possible, which include optimisation algorithms for
efficient reconstruction. For the reconstruction of real experimental data, support for both 2D
and 3D geometries is required, including commonplace cone-beam and parallel-beam setups.
Finally, since Time-To-Solution (TTS) is crucial in computational imaging, high performance
implementations targeting in CPUs and GPUs are important. Each community often has a
domain-specific software, limiting spreading optimisation tools across imaging modalities. A
non-exhaustive benchmark of the main Python-based packages for tomography is described in
Table 2.1.

Table 2.1: Comparison of X-ray Transform software packages

Software Ops (1) HPC (2) Beam geo. (3) Method (4) Regularisation (5)

ASTRA Fwd , CPU Par/Fan (2D) FBP, SART, -
Adj + GPU Par/Cone (3D) SIRT, CGLS
(2D) (Slice)

TomoPy Fwd GPU Par (3D) FBP, gridrec, SIRT TV,
- (SIRT, MLEM) (Slice) ART, BART, MLEM Tikhonov

Scikit-image Fwd - Par (2D) FBP, SART -
SVMBIR Fwd - Par/Fan (3D) MBIR σMBIR

Adj Plug&Play
TOFU Fwd CPU Par/Cone(3D) FBP (par.) -

Adj + GPU (Slice) FDK(cone)
CT-Recon ? GPU Cone (3D) FDK -
RTK Fwd CPU Cone (3D) CGD, SART TV

Adj + GPU FDK Wavelets
PyHST2 Fwd CPU Cone FBP (slice) TV,

+ GPU Helical FISTA Wavelets, ...
Torch Radon Fwd GPU Par/Fan (2D) Landweber None

Adj CGD
MATLAB Fwd , Yes Par/Fan (2D) FBP , L2, TV

Adj
TIGRE Fwd GPU Flexible (2D, 3D) Wide range TV

Adj Par/Cone
(1) Operators : Fwd (forward X-ray transform), Adj (adjoint X-ray transform).
(2) HPC : High-performance computing resources, such as CPUs and GPUs.
(3) Beam Geometry : Parallel beam, cone beam, or both.
(5) Method : Type of algorithm used to reconstruct the image.
(6) Reg. : Regularisation techniques used to stabilise the reconstruction process.

: External link to the reference page.

The ASTRA Toolbox package is undoubtedly the leading, widely used package for tomographic
X-ray reconstruction. It incorporates X-ray forward and backward operators for cone-beam ge-
ometries and demonstrates impressive computational speed, particularly for 3D GPU-accelerated

21

https://www.astra-toolbox.com/docs/index.html
https://www.astra-toolbox.com/docs/algs/FP_CUDA.html##fp-cuda
https://www.astra-toolbox.com/docs/geom2d.html
https://www.astra-toolbox.com/docs/algs/BP_CUDA.html##bp-cuda
https://www.astra-toolbox.com/docs/algs/index.html##d-gpu-algorithms
https://www.astra-toolbox.com/docs/geom3d.html
https://www.astra-toolbox.com/docs/algs/index.html
https://www.astra-toolbox.com/files/misc/ICTMS2019/20190722_ICTMS_ASTRA_workshop_3d.pdf
https://tomopy.readthedocs.io/en/stable/
https://tomopy.readthedocs.io/en/latest/api/tomopy.sim.project.html##module-tomopy.sim.project
https://tomopy.readthedocs.io/en/latest/gpu.html##gpu-support
https://tomopy.readthedocs.io/_/downloads/en/1.6.0/pdf/
https://tomopy.readthedocs.io/en/latest/api/tomopy.recon.algorithm.html
https://tomopy.readthedocs.io/en/latest/api/tomopy.recon.algorithm.html
https://scikit-image.org/docs/stable/auto_examples/transform/plot_radon_transform.html
https://svmbir.readthedocs.io/en/latest/index.html
https://svmbir.readthedocs.io/en/latest/svmbir.html##svmbir.project
https://svmbir.readthedocs.io/en/latest/svmbir.html
https://svmbir.readthedocs.io/en/latest/svmbir.html##svmbir.recon
https://svmbir.readthedocs.io/en/latest/svmbir.html##svmbir.recon
https://svmbir.readthedocs.io/en/latest/svmbir.html##svmbir.backproject
https://tofu.readthedocs.io/en/latest/index.html
https://tofu.readthedocs.io/en/latest/usage/genreco.html##general-3d-reconstruction
https://tofu.readthedocs.io/en/latest/usage/preprocessing.html##projection-filtering-for-back-projection
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070706/##sec2title
https://tofu.readthedocs.io/en/latest/usage/genreco.html##general-3d-reconstruction
https://github.com/JueHo/CT-Recon
https://www.mdpi.com/2313-433X/8/1/12
https://www.mdpi.com/2313-433X/8/1/12
https://www.mdpi.com/2313-433X/8/1/12
https://www.openrtk.org/rtkindex.html
http://www.openrtk.org/Doxygen/group__ReconstructionAlgorithm.html
http://www.openrtk.org/Doxygen/group__Projector.html
https://www.openrtk.org/rtkindex.html
http://www.openrtk.org/Doxygen/group__ReconstructionAlgorithm.html
http://www.openrtk.org/Doxygen/group__ReconstructionAlgorithm.html
http://ftp.esrf.fr/scisoft/PYHST2/
http://ftp.esrf.fr/scisoft/PYHST2/volume_projection.html?highlight=projection##volume-projection
http://ftp.esrf.fr/scisoft/PYHST2/conical_geometry.html
http://ftp.esrf.fr/scisoft/PYHST2/nn_fbp.html
http://ftp.esrf.fr/scisoft/PYHST2/total_variation.html
http://ftp.esrf.fr/scisoft/PYHST2/performancetuning_options.html
http://ftp.esrf.fr/scisoft/PYHST2/helical_geometry.html
http://ftp.esrf.fr/scisoft/PYHST2/total_variation.html
http://ftp.esrf.fr/scisoft/PYHST2/nn_fbp.html
https://torch-radon.readthedocs.io/en/latest/index.html
http://ftp.esrf.fr/scisoft/PYHST2/volume_projection.html?highlight=projection##volume-projection
https://torch-radon.readthedocs.io/en/latest/modules/radon.html
https://torch-radon.readthedocs.io/en/latest/modules/solvers.html##landweber-iteration
https://torch-radon.readthedocs.io/en/latest/modules/radon.html
https://torch-radon.readthedocs.io/en/latest/modules/solvers.html##conjugate-gradient
https://fr.mathworks.com/help/pdf_doc/images/images_ug.pdf
https://fr.mathworks.com/help/images/ref/radon.html
https://fr.mathworks.com/help/images/ref/radon.html
https://fr.mathworks.com/help/images/ref/iradon.html
https://fr.mathworks.com/help/images/ref/ifanbeam.html
https://fr.mathworks.com/help/images/ref/iradon.html

configurations. Nevertheless, ASTRA has several drawbacks :

• There are built-in optimisation algorithms, but they are not very flexible. No custom
regulariser or cost functionals can be used, but only pre-defined optimisation algorithms
can be executed.

• ASTRA ships with optimised parallel and cone-beam codes, but random beam geome-
tries have very poor performance.(see section 3).

• The X-ray backprojection implementation, i.e. the adjoint, has been chosen to be mis-
matched with the forward operator on GPU :

⟨Ax, y⟩ ≠ ⟨x, A∗y⟩

where A is the implemented X-ray transform and A∗ is its adjoint. This adjoint mismatch
is a trade-off between mathematical accuracy and speed (see [1]).

The adjoint match is the most concerning aspect of implementing state-of-the-art operators,
which is the motivation behind this work. Indeed, convergence of usual convex optimisation
algorithms property is not guaranteed in this case (cf [4]). For example, the convergence of
the steepest descent method is not guaranteed (Shi, Wei, Zhang (2011); Elfving, H (2018)).

Steepest descent convergence condition (Theorem)
Solving the usual least squares problem :

x̂ = arg min
x∈RN

∥Ax − y∥2
2

with the steepest descent method :

xk+1 = xk + ωÃ∗(y − Axk)

converges to a pseudo-inverse solution (Ã∗Ax = Ã∗y) if and only if :

0 < ω <
2Re λj

|λj|2
and Re λj > 0 (2.11)

where the {λj}j are the singular values of Ã∗A.

In practice, when Ã∗ is unmatched with A, the second condition of 2.11 is not satisfied,
which is unfortunately the case for most X-ray packages. When the projector/backprojector
pairs are matched, the property 2.11 is verified, since A∗A is symmetric positive-definite :

⟨x, A∗Ax⟩ = ∥Ax∥2 > 0 .

Furthermore, for advanced iterative methods, adjoint mismatch is still a convergence
issue. [12] established the issue for Proximal Gradient Descent as well ; and Conjugate Gradient
Descent, one of the default ASTRA algorithms for reconstruction, is obviously concerned by the
mismatch : since Ã∗A is not symmetric positive-definite, the underlying conjugation relation of

22

the operator ⟨x, y⟩Ã∗A := ⟨Ã∗Ax, y⟩ does not define a proper inner product.

To summarise, there are lots of domain-specific tools in the state-of-the-art of X-ray tomogra-
phy packages. Some have high performance computing support on CPU and GPU, but there are
still lots of custom domain-specific algorithms. For those reasons, it is hard to re-use those
packages across modalities. Mathematical theory is also warning us of convergence issues
if we use their mismatched operators in custom algorithms. Therefore, there is a need for
general-purpose X-ray forward/backward code implementations which are exactly matched,
to disseminate advanced methods faster and make them supplant current techniques.

23

3
Computational aspects

3.1 Introduction : Computational imaging goals
This section is centered around algorithms and software modules to implement the X-ray oper-
ator and its adjoint :

• for arbitrary 2D/3D geometries,

• on both CPU/GPU architectures,

• with constraint that it is the true adjoint to avoid convergence issues in iterative algo-
rithms.

Enabling operability across GPU and CPU platforms enhances the versatility of our
pipeline, ensuring the ability to tackle problems of all size.

In our journey to refine the computational process of tomographic reconstruction, the
implementation strategy becomes paramount. Linear operator implementations can be
broadly classified into 2 categories : matrix-based and matrix-free methods. Matrix-based
methods compute and store the forward operator A, either dense or sparse format, then
read it repeatedly to compute the operator. The adjoint in this case is simply given by the
transpose, hence is readily available in matrix-based implementations. Their drawback however
is huge storage, hence they do not scale well. Matrix-free methods on the other hand store
an "algortihm" to evaluate the forward and the backward by leveraging the linear operator’s
structure. Prototypical Matrix-free operators are the Discrete Fourier Transform (DFT) and
the "Sum" operator for which fast evaluation strategies exist : Fast Fourier Transform (FFT)
and the reductions in 1D respectively. Matrix-free methods thus have the potential to be
more efficient than their Matrix-free equivalents, and scale better with the size of the problem.
Their drawback however is the difficulty, depending on the linear operator of interest, in
implementing the backward (adjoint) for it to be consistent with the forward. Tomographic
operators are clear ones where the Matrix-free forward implementation outperforms the
Matrix-based counterparts by large margin on non-trivial problem sizes. We hence focus exclu-
sively in what follows on Matrix-free approaches to evaluate the forward and backward operators.

Let us explain how the forward operator is computationally apprehended to understand both
Matrix-based and Matrix-free approaches. We refer the reader to [10] for more advanced details.
As explained in Equation 2.4, the operator A is expressed as :

A =


⟨h1, φ1⟩ · · · ⟨h1, φN⟩

...
⟨hM , φ1⟩ · · · ⟨hM , φN⟩

 ∈ RM×N

24

where N is the number of pixels of the image, M the number of rays, hi is the X-ray linear
form of the ith ray and φj is the continuous representation of the jth pixel. In that sense, each
coefficient ⟨hi, φj⟩ is the length of intersection between the ray i and the pixel j, as the pixel
is constant equal to 1 on its support. By nature, the matrix A is very sparse, as each row (of
size N , number of pixels) has only k non-zero coefficients, with k the number of pixels located
along the ray path, so k ≤ 2

√
N (see Figure 3.1).

If x ∈ RN is the image, the X-ray computation Ax with an explicit definition of A is extremely
sub-optimal. Indeed, we prefer implementing a matrix-free operator to benefit the fact that
the operator corresponds to an integration over a straight line (see Figure 3.1 for details). The
image is naturally discretised in pixels here, but we can also innovate using splines to reconstruct
piecewise polynomial - and not just piecewise constant - objects (see Appendix A).

RAY 1

RAY M-1
RAY M-1

RAY 3RAY 2
RAY 1

RAY M

RAY MMatrix A

2D image x

Figure 3.1: Left : Visualisation of the matrix A ∈ RM×N (N is the number of pixels of the
image and M is the number of acquisitions). Right : Corresponding image x ∈ RN , with
pixel colors corresponding to different ray pixel structures. To compute the RAY 1 integral
for example, instead of computing (Ax)1, we prefer a matrix-free approach with an algorithm
visiting each red pixel one by one in the direction of the ray, and calculating the weighted line-
pixel intersections.

The most basic approach is to consider that the line-pixel intersection is approximately equal
to 1 in any case. It amounts to considering that every non-zero coefficient of A is equal to 1. It
is also a simpler approach because line-pixel intersection values are not required. However, since
the goal is to compute an efficient and accurate X-ray transform, we need an algorithm to
calculate each line-pixel intersection. State-of-the-art literature (cf. [6]) suggests the Siddon’s
method to be one of the most efficient. The key is finding a simple form to determine which
pixels to cross given a line’s orientation. Line-pixel intersection lengths are also estimated
easily by tracking the residuals during the volumetric straight walk (line length remaining before
crossing the next row), which is based on the distances Lx and Ly, equal to the distance the
ray needs to cross two consecutive columns (or rows). Siddon’s algorithm is a 2-step-process :
(1) run Algorithm (1) to extract the output, (i,j,length) triplets which are the indices of
crossed pixels and the corresponding line-intersection lengths ; and (2) read the required cells
based on those triplets, and compute the weighted sum based on line lengths (cf Figure 3.2) :

projection = jnp.sum(lengths*image.at[indices]).

25

Algorithm 1 Siddon’s Algorithm for line integrals in 2D

Require: Image, Source position, Detector position (input).
Ensure: List of K (i,j,length) triplets, K being the number of crossed pixels (Output).

1: Initialise i, j = istart, jstart and residual (:=length left before crossing next row)
2: while i ̸= iend or j ̸= jend do
3: length = Lx

4: Store(i, j, length)
5: residual = residual − Lx

6: i = i + 1
7: if residual < Lx then
8: length = residual
9: Store(i, j, length)

10: j = j + 1
11: length = Lx − residual
12: Store(i, j, length)
13: i = i + 1
14: residual = Ly − Lx + (residual)
15: end if
16: end while

Remark (complexity) : The Siddon algorithm is expected to scale with the number of crossed
pixels (

√
N in 2D). This has been verified in the implemented algorithm.

LyLy

LxLx

yi

Figure 3.2: Left : Priciple of Siddon’s algorithm implementation. Ray on top represents how
each data yi data is computed with matrix-vector product (Ax)i corresponding to the sum of
pixel-ray intersections weighted by the pixel values. The lower ray represents the main values
used in the Siddon’s algorithm Lx (resp. Ly), which is the length of the ray between two
consecutive columns (resp. rows). Right : Illustration of the 3D discrete X-ray transform with
cone-beam geometry.

Algorithm 1 describes Siddon’s method for rays having a slope between 0 and 1. We note
however that other cases can be handled with the same algorithm by transposing and flipping

26

the image and ray coordinates. Initialising the parameters (i_start, j_start, residual)
of algorithm 1 will not be discussed here. Our implementation of Algorithm 1 is Just-In-Time
(JIT) compiled using JAX’s [2] built-in routines, enabling efficient execution on CPU and GPU
architectures. Algorithm 1 performs the X-ray transform for 1 source-detector pair, and we
used it as a building block to perform it for cone-beam geometries (M rays, see Figure 3.3 for
setup geometry visualisation at a given angle).

Finally, for CPU parallelism of the code, the code can be executed in parallel using MPI. The
parallelism is applied to the outermost angles loop.

The code has been validated on test objects for which the cone-beam transform in known, i.e.
spherical objects (Figure 3.4, with a disk in 2D), see Section 4.1 for details on the analytical
projection of the sphere. We indeed observe a near-zero error, with residuals at the sphere
boundaries due to pixelising the sphere to cope with box-basis assumptions.

Figure 3.3: Visual results of our JAX-based Siddon line tracer. Left : Ray tracing from source
(red) to detector (blue). Middle : Zoom on the line path. The gray-scale intensity (0 − 1) of a
pixel corresponds to the intersection length between the ray and the pixel. Right : Cone-beam
discrete projection from a unique source (red) to equi-spaced detectors located on the right
edge of the image.

0 200 400 600 800 1000

0

50

100

150

200

250 numerical
analytical
difference

Detectors

X
-r

ay
va

lu
es

Figure 3.4: Comparison between analytical projection and path tracing numerical projection via
Siddon’s method. The orange curve corresponds to the analytical X-ray projection of a disk,
and the blue curve corresponds to our Siddon algorithm applied to its pixelised equivalent.

27

3.2 Adjoint operator implementation

3.2.1 Auto-differentiation method
Now that the forward operator has been implemented, our focus is on the implementation
of a matched adjoint, to be able to perform optimisation algorithms with convergence
guarantees. At first sight, using JAX not only provides a support for code acceleration,
but as a deep learning package it also provides auto-differentiation tools, such as automatic
vector-jacobian product, which seems ideal in our case (see 3.1).

The adjoint computation is not a matrix-transpose calculation, so the code was initially im-
plemented with the JAX package ([2]), a decision inspired by its inherent compatibility with
autodifferentiation. The vjp (vector-Jacobian product) functionality embedded in JAX paves
the way for an exact calculation of the adjoint. Indeed, when considering a Python
function f : RN → RM , the vjp tool of JAX enables us to automatically compute, for
(x, v) ∈ RN × RM :

(x, v) 7→ ∂f(x)T v

If f is the X-ray operator, linearity allows us to identify the operator ∂f(x) with f itself. In
that sense, the vjp of JAX can compute :

v 7→ fT v (3.1)

Furthermore, JAX unveils an additional layer of efficiency through its Just-In-Time compiling
feature (JIT). With the correct syntax in place, this feature enables code acceleration. JAX’s
support also extends to automatic support for GPU, marking a significant advancement in
High Performance Computing.
To enable auto-differentiation tools, JAX requires a specific syntax to manage code loops.
While and For loops are abandoned in favor of scan (function jax.lax.scan) loops. The
main difficulty is that we need to know in advance the length of the loops when doing
auto-differentiation, which is not the case in Siddon’s method. For this reason, the loop sizes
are overestimated by an upper bound, even if many iterations are obsolete.

The method has been successfully implemented despite significant struggles to express
Siddon’s method in JAX while retaining JIT and auto-differentiation functionality. Auto-
differentiation rules ensure that the adjoint is matched with the forward. We verify this
numerically by taking a random pair (x, y) ∈ RN × RM and compute the relative difference
between ⟨Ax, y⟩ and ⟨x, A∗y⟩, obtaining relative errors of 10−5 to 10−7 depending on the image
size. In comparison, ASTRA implementations have a relative difference mismatch of 101 to 103.

Nevertheless, this method appeared to be computing the adjoint operator orders of magnitude
slower than ASTRA. To our understanding, this may be due to the fact that auto-differentiation
needs to remember lots of state in the Scan loop to work, slowing down the adjoint computing
time significantly. Even if this method appeared to be very interesting for specific problems
and for educational purposes, we cannot rely on auto-differentiation to compute the adjoint
efficiently for the X-ray transform, so we tried another method.

28

3.2.2 Custom matched algorithm
For the following, we ditch scan and go back to while loops since while is still JIT-compatible
and easier to express X-ray transform with. To perform the exact adjoint of the X-ray trans-
form, here is a reminder of what the adjoint is supposed to compute : The X-ray backprojection
is about re-injecting the projection values into the image, along the ray direction. More pre-
cisely, for projection values y ∈ RM acquired along specific rays, the backprojection is about
computing, for each pixel φi :

∀i ∈ 1...N, (AT y)i =
M∑

k=1
yk⟨hk, φi⟩

where we recall that ⟨hk, φi⟩ is the ray(k)-pixel(i) intersection length. This expression means
that ray k gives to pixel i the contribution of its intersection length with it, weighted by the
data yk. As for the forward operator, we prefer a matrix-free approach based on Siddon’s
algorithm. This time, using again Siddon’s algorithm to get all indices of crossed pixels and
their intersections (noted (i,j,length) in algorithm 1), the adjoint is computed using :

backprojection = jnp.zeros((n,n)).at[indices].add(lengths)

The results of X-ray projection and backprojection for cone-beam geometry are presented in
Figure 3.5. As a reminder of Equation 1.5, FBP (Filtered BackProjection) is the theoretical
inverse of the X-ray operator, corresponding to backprojecting a filtered version of the data.

0 200 400 600 800

0

200

400

600

800

phantom

0 200 400 600 800

0

200

400

600

800

sinogram

0 200 400 600 800

0

200

400

600

800

backprojection

0 200 400 600 800

0

200

400

600

800

FBP

0 200 400 600 800

0

200

400

600

800

difference phantom - FBP

Figure 3.5: Visualisation of the implementation, from left to right : A disk phantom (image
reference), the X-ray projection (called sinogram) of the disk, the adjoint X-ray backprojection
of the sinogram, the naive reconstruction using Filtered BackProjection (FBP), and finally the
difference between the phantom and the FBP reconstruction.

The table below (Figure 3.6) presents a benchmark of ASTRA 2D CPU code and our JAX
2D CPU code. Our code brings us to the conclusion that it is possible to compete with the state-
of-the-art code, written in C++, when using JAX Just-In-Time compiling and MPI parallelism
via custom adjoint rules.

Figure 3.6: Benchmark comparing our JAX code and ASTRA’s CPU cone-beam code. Auto-
differentiation is clearly too slow, and the parallelised version is close to ASTRA’s performance.
2d column is the custom adjoint version (while loops) and the last column is the scan-based
auto-differentiation version.

29

3.3 3D generalised X-ray transform via rendering techniques
Siddon’s method is unfortunately more difficult to generalise in 3D, and the method does not
include the possibility of adding scattering effects efficiently if needed, which are common in
real-world tomography. The idea behind the new 3D implementation comes from computer
graphics :

• X-ray tomography needs fine-grained parallelism instead of coarse-grain (via MPI for
instance), ao array APIs like Numpy or JAX are suboptimal.

• Computer Graphics rendering is an area where "ray"-based computations are om-
nipresent, hence their computing pipelines are optimized to exploit fine-grained parallelism
efficiently. Fine-grained rays correspond to the fact that each ray can do very different
computations from other rays (each voxel-ray intersection computation is independent).

To do so, we used the Mitsuba package. Mitsuba 3 (see Article [8] and Package [9]) is a
research-oriented retargetable rendering system, written in portable C++17 on top of the
Dr.Jit Just-In-Time compiler. It is developed by the Realistic Graphics Lab at EPFL .
With this method, 3D forward and adjoint X-ray operators, for any geometry can be
efficiently computed with high performance computing both in CPU and GPU. The adjoint
is also perfectly matched with the forward. To perform projection or backprojection, the
algorithm takes a list of the positions of the sources and the direction vectors of the rays. In
the way the algorithm works, scattering effects can more easily be taken into account.

Pyxu (pronounced [piksu], formerly known as Pycsou) [14] is an open-source Python framework
allowing scientists at any level to quickly prototype/deploy hardware accelerated and out-of-core
computational imaging pipelines at scale.

Figure 3.7: Pyxu framework illustration, managing many Python packages to perform computa-
tional imaging inverse problems, such as (left to right) image denoising, deblurring, inpainting,
super-resolution, fusion, filtering and tomographic reconstruction.

30

https://www.mitsuba-renderer.org/

Created by the Center for Imaging at EPFL, Pyxu enables the integration of customizable
regularisation methods and specific state-of-the-art algorithms for solving computational
imaging inverse problems. This grants researchers and users the freedom to effectively exper-
iment with and optimise their reconstruction processes. This flexibility aims to overcome the
limitations encountered with ASTRA. It allows tomographic reconstruction users to input their
own regularisation algorithms, thus tailoring the reconstruction process to specific needs and
datasets, enhancing both the quality and efficiency.

3.4 Performance evaluation & results
The validation of our JAx implementation of Siddon’s method was limited to 2D due to com-
plexity of implementing its 3D counterpart. The Mitsuba-based implementation is inherently
3D however, hence both 2D and 3D validations were performed. We note that the 2D X-ray
transform is computed by embedding it in 3D setting without any performance degradation.
We benchmarked against ASTRA cone-beam codes fo 2D and 3D setups on CPU and GPU in
Table 3.1.

Operation Setup Dimension
2D, 250 CPU 2D, 2k CPU 2D, 250 GPU 2D, 2k GPU

ASTRA FWD 0.14 s 71.6 s 1.91 ms 0.10 s
BWD 0.11 s 94.1 s 2.47 ms 0.26 s

MITSUBA FWD 0.22 s 12.5 s 6.26 ms 0.54 s
BWD 0.11 s 10.8 s 5.73 ms 0.83 s

3D, 300 CPU 3D, 150 CPU 3D, 150 GPU 3D, 300 GPU
ASTRA FWD × × 20.4 ms 0.22 s

BWD × × 18.8 ms 0.23 s
MITSUBA FWD 29.4 s 1.33 s 82.7 ms 1.71 s

BWD 33.3 s 2.23 s 120.0 ms 2.73 s

Table 3.1: Performance table of our Mistuba code benchmarked against ASTRA. FWD stands
for forward operator and BWD stands for backward operator. Each column has a setup with the
form "nD, N, architecture" : nD is the dimension of the image (2D or 3D), N is the number
of pixels on each dimension (hence the total number of pixel is Nn) and the architecture is
CPU or GPU. For each setup, we performed the X-ray transform with Nn rays.

Note : GPU benchmarks are performed with 5 GPU warmup runs and computing
times represent a mean of 10 code executions. We used the benchmark module from the
cupyx.profiler package.The Graphic Card is the NVIDIA RTX A5000 and the machine
have 20 CPUs. ASTRA does not have any CPU version of the 3D X-ray transform.

The results show that the Computer-Graphics-based implementation is competitive with
ASTRA cone-beam codes, with roughly a 4 − 8 times speed difference in 3D GPU case. We
however note that ASTRA code is heavily optimised for cone beam geometries, whereas our
Computer Graphics implementation is not optimised for a specific layout. Optimising projection

31

order to improve memory access patterns will certainly lead to sizeable performance gains and
close the gap with ASTRA codes, while being adjoint matched. In CPU configuration, ASTRA
does not take profit of multicore processing, so our code can be almost 9 times faster than
ASTRA for a configuration of 20 CPUs available .

We now wonder what price ASTRA is paying in terms of mathematical accuracy for the
convergence of its reconstruction methods. The JAX and Mitsuba codes have been embedded
in a class inherited from the Pyxu Linear Operator class LinOp, allowing reconstruction
algorithm. To highlight the adjoint mismatch in ASTRA, a Conjugate Gradient Descent
reconstruction was carried out, using exactly the same algorithm twice, but once using the
forward and backward operators of our JAX/Mitsuba code, and a second time using those of
ASTRA. When using the CPU with ASTRA, the adjoint is matched, and the convergence and
reconstruction results with our operator are very similar. On the other hand, when using the
GPU with ASTRA, the adjoint is no longer matched (for computing time optimisation
reasons), so there is no longer any reason for the algorithm to converge. The figure below
illustrates this, highlighting the problem through the relative error curve, which is expected
to decrease with the iterations, and through the degradation of the image with the iterations.

It is also important to note that 3D ASTRA operators are only available with GPU support,
so with a mismatched adjoint.

Figure 3.8: Conjugate Gradient reconstruction convergence curves. Left: ASTRA CPU vs
JAX/Mitsuba relative error convergence curve. Right: ASTRA GPU vs JAX relative error
convergence curve. ASTRA starts to diverge after several iterations due to the adjoint mismatch.
Effects are also visible in the reconstruction images.

Hereafter, the phenomenon is again visualised with the succession of reconstructed images with
different iteration steps. The Signal to Noise Ration (SNR) is exploding along iterations for
ASTRA GPU reconstruction. The data has been generated with the analytical sphere projection
detailed in section 4.1, and altered with i.i.d. random Gaussian noise.

32

Figure 3.9: Reconstructed images with Conjugate Gradient across iterations (regularly spaced
from 0 to 3000). The top row corresponds to our JAX code (same as Mitsuba code in 2D).
The bottom row corresponds to the ASTRA 2D GPU reconstruction across iterations, showing
that a systematic error is being accumulated over time. Not only the relative error, but also the
cost function values, across iterations is divergent (see [13]).

In addition to its mathematical accuracy ensuring proper convergence, our code also allows
users to achieve competitive runtimes (at worst few times slower than ASTRA GPU), but with
custom ray geometries. Indeed, ASTRA optimises its code for pre-defined geometries,
however when it comes to computing the X-ray operators for custom rays, ASTRA is really
under-optimised : 68.5s for a small 3D setup 100 × 100 × 100 and 1003 rays, against ≈ 0.5s
for our code. This necessity of not selecting a pre-defined geometry setup is the case in
applications such as microscopy (where rays are not necessarily parallel or in a cone-beam
geometry) or for volumetric additive manufacturing for example, when refraction of the
material surface leads to very specific geometries.

It is useful for iterates to take place entirely on the GPU to avoid expensive CPU-GPU
tranfers at each iteration. ASTRA does not do this, hence their performance advantage
against Mitsuba is lost when the number of iterations is large. In that way, the optimisation
algorithm’s inputs and outputs would always stay stored in the GPU, so the transfer time
between CPU and GPU would only take place once before the optimisation process, and once
when the optimisation process is done. This is automatically the case for out implementation,
whereas ASTRA is always returning CPU arrays, so in an iterative algorithm, there is at least
K CPU-GPU transfers for K iterations. For large data, this transfer time accumulates over
iteration steps. This memory management difference is illustrated if the right figure of Figure
3.10.

33

250 500 750 1000 1250 1500 1750 2000
N for N2 pixels image

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m
e,

no
rm

al
is
ed

(s
)

N2 rays
N rays (linear fit)

0 200 400 600 800
Number of iterations

0

1

2

3

4

5

Ti
m
e
(s
)

[2
50

2
im

ag
e,

25
02

ra
ys

]

Mitsuba GPU
Astra GPU

Figure 3.10: Left: Scalability checking of our code, linear with the number of rays. Right :
Showing influence of CPU↔GPU transfer times for ASTRA and Mitsuba. Mistuba, unlike
ASTRA, is transferring once the data at the beginning and at the end of the iterations.

34

4
Image reconstruction

4.1 Synthetic 3D data generation
X-ray operators in 2D and 3D have been implemented and their performance evaluated and
compared to the ASTRA package. To use iterative algorithms and the EPFL-made package
Pyxu (section 3), we need a reliable method to generate ground-truth data. Data can be
generated using the forward implemented model itself, but it would be committing an inverse
crime : reconstruction of data using the exact same model as the one used to generate the
data. In order to generate synthetic X-ray projection data, generally in 3D, we can consider a
homogeneous sphere, of center c⃗sphere = (a, b, c) and radius r :

(x − a)2 + (y − b)2 + (z − c)2 = r2.

Now, let us consider a ray of origin coordinates (0, 0, 0) and direction d⃗ray = (u, v, w) :

E =


x = ut

y = vt

z = wt

Parametric equation of the ray.

Finding the two intersection points gives us the intersection length between the ray and the
sphere. So the goal is to find t such that :

(ut − a)2 + (vt − b)2 + (wt − c)2 = r2

⇔ t2(u2 + v2 + w2) − 2(au + bv + cw)t + (a2 + b2 + c2 − r2) = 0.

This is equivalent to solving a 2d order equation of parameters c1, c2, c3 ; where c1 = ||d⃗ray||2,
c2 = −2⟨d⃗ray, c⃗sphere⟩ and c3 = ||⃗csphere||2 − r2.

Figure 4.1 shows the image results of the code implementation of the above.

0 1000 2000 3000 4000
x, pixels

0

500

1000

1500

2000

2500

3000

3500

4000

y,
 p

ixe
ls

Figure 4.1: Visualisation of analytical sphere projections via cone-beam geometry, for one sphere
(Left) and multiple randomly placed spheres (Right).

35

We used the Numba JIT compiler to improve data generation times. A CUDA version was
also produced, although we noticed that the generation process is already very fast on the CPU.
This code has contributed to a part of the radioSphere project1.

4.2 Iterative algorithms for real data reconstruction
Now that synthetic data can be generated, we proceed to perform full 3D reconstruction with
regularisation. After the data generation, we added some Gaussian noise to start apprehending
real data problems. Optimisation theory can be quite complex in this case, but in this context,
we can simplify to the essentials. The optimisation problem we are trying to solve is the
following :

x̂ = arg min
x∈RN

F(Ax, y) + ηR(x), η > 0 (4.1)

Here, since the noise is supposed to be Gaussian (cf Section 2.3),

F(Ax, y) = ∥y − Ax∥2
2

Moreover, given our a priori knowledge that our image consist of spheres, sharp featured images
(this statement is considered as a prior), the regularisation term we chose to incorporate is the
Total Variation :

R(x) = TV(x) = ∥∇x∥1

which is supposed to promote sparsity of the gradient in the sense that it is penalising
significant variations in the intensities of adjacent pixels and preserving edges while ensuring
that only the uniform regions of an image are smoothed.

The cost functional has the form F + R where F is differentiable and R is proximable. To
solve this, we can use the Proximal Gradient Descent (PGD) using the package Pyxu. The TV
class has been implemented, with an apply and a prox function, according to the Pyxu syntax
for this algorithm.

Remark (differential Lipschitz constant) : A necessary parameter for the PGD algorithm is
the differential Lipschitz constant of the cost function part F . To do this, let us take JF
be the Jacobian of F , and use the power iteration technique to compute its largest singular
value, which is the Lipschitz constant when the operator is linear. Indeed, starting from a
non-zero random vector b0, we compute bk+1 = JFbk

∥JFbk∥
, until the stopping criterion. Then,

a good approximation of the Lipschitz constant is given by the convergence of the Rayleigh
coefficient : bT

k JFbk

bT
k bk

.

Reconstruction images in 3D with Proximal Gradient Descent algorithm are shown in the
Figure 4.2.

1https://ttk.gricad-gitlab.univ-grenoble-alpes.fr/ttk/radioSphere

36

3D data
(Stack of 2D projections)

3D volume

PGD with TV

reconstruction

Vertical slice Horizontal slice

Figure 4.2: 3D spheres reconstructed using the PGD with Total Variation regularisation.

An experimental X-ray microtomography setup, named PIXE2, is available at EPFL. At
the core of the setup is a single stabilised axis of rotation, surrounded by an approximately
160° X-ray cone beam. The experiment table, on an air cushion, ensures extreme mechanical
stabilisation, while a built-in correction mechanism adjusts for any potential misalignment of
the rotation axis during acquisitions. It employs an electron gun, likely heated tungsten, that
directs electrons with a 300 nm accuracy. Two primary photoemission processes are used in
this system. X-rays are converted to photons by a sensitive scintillator equipped with crystals
to detect and direct the rays. Data is captured by a CCD (Charge-Coupled Device) located
directly behind the scintillator. A picture of the setup is shown is Figure 4.3.

Figure 4.3: PIXE experimental setup, where the X-ray source, the flat screen detector and the
rotating support are visible.

The data in this case if composed of multiple solid sphere rocks placed in a cylindrical
tube. An experimental data acquisition provides us a stack of Mθ 2D images, where Mθ is the
number of angles, and an .xml file describing the geometry setup (source-detector and source-

2https://www.epfl.ch/schools/enac/pixe/

37

object distances, pixel size, etc). In that way, the code is adapted to the setup to allow
reconstruction. The 2D code and the 3D code have been tested with this data as follows :

• 2D reconstruction of 3D data. For cone-beam setup, we can consider only the 1D middle
slice of each 2D projection data (see Figure 4.4). It that way, it is possible to reconstruct
the 2D middle slice of the 3D volume. The reason is that the point source of X-rays is
placed at the middle slice level of the object, so the rays passing through the object that
are hitting the middle slice image detector are only crossing the 2D middle slice of the
object.

0 100 200 300 400

100

200

300

400

500
0 50 100 150 200 250 300 350 400

Detector

0

50

100

150

200

250

300

350

An
gl

e

0 100 200 300 400

0

50

100

150

200

250

300

350

400

Figure 4.4: Reconstruction of the 2D data middle slice of the object. Left : 2D projection data
at one given angle, and its 1D middle slice (red). Middle Stacked 1D slices for every angles
(sinogram) corresponding to 2D data. Right : The reconstruction of the middle slice of the
object, we can identify correctly the cylinder slice and the spheres inside.

• 3D full reconstruction of data. Once the previous preliminary step is done, full 3D re-
construction of real data have been done, with PGD algorithm and a TV regularisation
(but small η regularisation parameter), visualised in Figure 4.5.

3D data
(Stack of 2D projections)

3D volume
reconstruction

Vertical slice Horizontal slice

Figure 4.5: Reconstruction of the full 3D volumetric object. Left : Stack of projection images
(2D) for every angle (3D data). Reconstruction have been successfully performed and vertical
and horizontal slices of the reconstruction are shown (Right).

38

4.3 Uncertainty quantification with confidence regions
Having the matched adjoint also allows us to perform algorithms requiring rigorous mathematical
models. This is for example the case of uncertainty quantification which we chose to explore
here. A simple approach of uncertainty quantification is our problem of recovering a signal
x ∈ RN from measurements y ∈ RM with random noise vector n ∈ RM , with operator
A ∈ RM×N :

y = Ax + n.

The way we tried to solve the problem was to determine the Maximum A Posteriori
(MAP) estimator of x:

x̂MAP = arg max
x∈RN

p(x|y) = arg min
x∈RN

F(y, Ax) + ηR(x)

with the same notations as in Equation 2.5, where the objective function is equivalent to the
negative log-likelihood function of the noise distribution. The problem highlighted here is that
the MAP estimator gives a point estimate x̂, but it does not provide any information
about the uncertainty of the estimate. The goal of uncertainty quantification is to provide
a confidence region for the estimate x̂. It could also help finding modelling parameters other
than x̂, for example the regularisation parameter.

Uncertainty quantification in this context involves sampling the posterior distribution of x
given y. Monte Carlo Markov Chain methods, which are capable of constructing a Markov
chain with a stationary distribution equal to the target distribution, are often employed.
Despite their efficiency in handling low-dimensional distributions, their performance diminishes
for high-dimensional ones.

An alternative approach, based on Marcelo Pereyra’s probability concentration inequality
theory (cf [11]), is applicable for log-concave distributions, including Gaussian, which is the
case in our objective functional. It involves constructing a confidence region around the MAP
estimator x̂MAP . This region, defined as

Cα := {x : f(x) + g(x) ≤ γα}

relies on the negative log-likelihood function f = F , the penalising (or regularising) function
g = ηR, and a threshold γα dependent on the confidence level α. With these notations, we
have p(x|y) = exp (−f(x) − g(x)).

Pereyra’s Result on Probability Concentration Inequality [11]
The approximation of the confidence region Cα is provided by

C ′
α :=

{
x ∈ RN : f(x) + g(x) ≤ γ′

α

}
with γ′

α an approximation of the Highest Probability Density threshold γα computed by

γ′
α = f (xMAP) + g (xMAP) + τα

√
N + N,

and τα =
√

16 log(3/α) as the universal constant.

39

One thing than can be done with this result is to construct an image where each pixel
represents a confidence range, which is achieved by determining the largest value of each
pixel of the MAP estimator such that the new image remains within the confidence region
C ′

α. Here is an example of this Uncertainty Quantification (UQ) experiment, reconstructing the
MAP of a 50 × 50 image of a centered disk.

Figure 4.6: Left : MAP reconstruction estimation performed with Conjugate Gradient, with a
least square data-fidelity term. Right : Pixel-wise uncertainty quantification using the method
presented above.

Interpretation : For each pixel xi of the MAP estimate x, the maximum value x+
i is computed,

corresponding to the highest value such that x, where the ith pixel is replaced by x+
i falls out

of the confidence range C ′
α. The same process is done with x−

i , and the value of the UQ pixel-
wise image is set to x+

i − x−
i . Notably, the dark region on the right of the Figure 4.6 shows

low uncertainty, correlated to the geometrical disk where every cone beam ray intersects,
which is attributed to the specific acquisition geometry. Even so, the results are very difficult
to interpret.

40

Conclusion

The mathematical analysis of the X-ray operator and its adjoint, but also of the iterative
algorithms at stake in inverse problems in tomography, lead us considering to implement
just-in-time compiled and GPU-supported codes to overcome the common adjoint mis-
match issue appearing in the state-of-the-art packages. The results clearly show the
possibility of the non-convergence of classical algorithms when using mismatched op-
erators, whereas the convergence is guaranteed when using our codes. Moreover, the
flexibility of the presented code, allows efficient computing on both CPU and GPU for
any application domains, since computing time is weakly dependant to the ray geometry
setup. Getting the adjoint matched also paves the way to more precise and accurate
diagnostic tools in medical imaging, materials science, and other fields reliant on tomog-
raphy. It is the case for uncertainty quantification, which could not be trusted if the MAP
estimate is not even ensured to converge. The ongoing research could aim to explore the
potential for integrating machine learning and deep neural networks algorithms to further
enhance the accuracy, and reliability of tomographic reconstructions in specific domains
of application.

41

A
Projection and backprojection with

Box-splines : an overview

In order to represent and reconstruct piecewise polynomial functions, and not just piecewise
constant ones, we need to discretise the volumetric object into different basis functions. A very
practical basis function, namely Box-Splines, described in [5], allows to reconstruct those type
of functions, getting us closer to the continuous representation of the object. The advantage of
this method is that, for the Box-Splines functions β (represented in figure A.1), the analytical
X-ray transform Xθ[β](p) is known. This is true for any degree of Box-Splines (order 0
classically reconstructs pixelised functions, 1st order reconstructs picewise linear functions, etc.)
The mathematical details are described in [5], and the implementation has been performed with
a Numba-accelerated python code, storing an oversampled projection of the basis function in a
lookup table (see Figure A.1 for the X-ray projections of a basis function). Then knowing the
shifting property of the X-ray transform (see 1.2), we can use this lookup table to compute the
projection and backprojection of a complete function expressed in the corresponding Box-Spline
basis.

ξ1

ξ3
ξ2ξ4

Basis vectors Box splines X-ray projections Phantom example

X-ray projection Backprojection

Figure A.1: Basis vectors (orange) generating Box-spline basis functions for image decomposi-
tions. The X-ray projections calculated analytically and sampled are represented (two different
angles). On the right, a disk phantom, expressed as a decomposition into the 1st degree Box-
spline is being projected and then this projection is backprojected.

42

Bibliography

[1] ASTRA Toolbox News. 2022. url: https://www.astra-toolbox.com/news.html#
news (visited on 01/31/2022).

[2] James Bradbury et al. JAX: composable transformations of Python+NumPy programs.
Version 0.3.13. 2018. url: http://github.com/google/jax.

[3] Richard Courant and David Hilbert. Methods of Mathematical Physics. Vol. 1. New York:
Wiley, 1989. isbn: 0585294283 9780585294285 9783527617210 3527617213.

[4] Tommy Elfving and Per Christian Hansen. “Unmatched Projector/Backprojector Pairs:
Perturbation and Convergence Analysis”. In: SIAM Journal on Scientific Computing 40.1
(2018), A573–A591. doi: 10.1137/17M1133828. eprint: https://doi.org/10.1137/
17M1133828. url: https://doi.org/10.1137/17M1133828.

[5] Alireza Entezari, Masih Nilchian, and Michael Unser. “A Box Spline Calculus for the Dis-
cretization of Computed Tomography Reconstruction Problems”. In: IEEE Transactions
on Medical Imaging 31.8 (2012), pp. 1532–1541. doi: 10.1109/TMI.2012.2191417.

[6] G. Han, Z. Liang, and J. You. “A fast ray-tracing technique for TCT and ECT studies”.
In: 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science
Symposium and Medical Imaging Conference (Cat. No.99CH37019). Vol. 3. 1999, 1515–
1518 vol.3. doi: 10.1109/NSSMIC.1999.842846.

[7] Per Christian Hansen, Jakob Sauer Jørgensen, and William R.B. Lionheart, eds. Computed
Tomography: Algorithms, Insight, and Just Enough Theory. English. Society for Industrial
and Applied Mathematics, 2021. isbn: 978-1-611976-66-3.

[8] Wenzel Jakob et al. “Dr.Jit: A Just-In-Time Compiler for Differentiable Rendering”. In:
Transactions on Graphics (Proceedings of SIGGRAPH) 41.4 (July 2022). doi: 10.1145/
3528223.3530099.

[9] Wenzel Jakob et al. Mitsuba 3 renderer. Version 3.1.1. https://mitsuba-renderer.org.
2022.

[10] Frank Natterer. The Mathematics of Computerized Tomography. USA: Society for Indus-
trial and Applied Mathematics, 2001. isbn: 0898714931.

[11] Marcelo Pereyra. “Maximum-a-Posteriori Estimation with Bayesian Confidence Regions”.
In: SIAM Journal on Imaging Sciences 10.1 (2017), pp. 285–302. doi: 10 . 1137 /
16M1071249. eprint: https : / / doi . org / 10 . 1137 / 16M1071249. url: https : / /
doi.org/10.1137/16M1071249.

[12] Marion Savanier et al. “Proximal Gradient Algorithm in the Presence of Adjoint Mis-
match”. In: 2020 28th European Signal Processing Conference (EUSIPCO). 2021,
pp. 2140–2144. doi: 10.23919/Eusipco47968.2020.9287430.

[13] Emil Y. Sidky et al. Iterative image reconstruction for CT with unmatched projection
matrices using the generalized minimal residual algorithm. 2022. arXiv: 2201 . 07408
[physics.med-ph].

43

https://www.astra-toolbox.com/news.html#news
https://www.astra-toolbox.com/news.html#news
http://github.com/google/jax
https://doi.org/10.1137/17M1133828
https://doi.org/10.1137/17M1133828
https://doi.org/10.1137/17M1133828
https://doi.org/10.1137/17M1133828
https://doi.org/10.1109/TMI.2012.2191417
https://doi.org/10.1109/NSSMIC.1999.842846
https://doi.org/10.1145/3528223.3530099
https://doi.org/10.1145/3528223.3530099
https://doi.org/10.1137/16M1071249
https://doi.org/10.1137/16M1071249
https://doi.org/10.1137/16M1071249
https://doi.org/10.1137/16M1071249
https://doi.org/10.1137/16M1071249
https://doi.org/10.23919/Eusipco47968.2020.9287430
https://arxiv.org/abs/2201.07408
https://arxiv.org/abs/2201.07408

[14] Matthieu Simeoni et al. matthieumeo/pyxu: pyxu. doi: 10.5281/zenodo.4486431.
url: https://doi.org/10.5281/zenodo.4486431.

[15] Wikipedia contributors. Radon transform — Wikipedia, The Free Encyclopedia. [Online;
accessed 11-October-2023]. 2023. url: https://en.wikipedia.org/w/index.php?
title=Radon_transform&oldid=1174924269.

44

https://doi.org/10.5281/zenodo.4486431
https://doi.org/10.5281/zenodo.4486431
https://en.wikipedia.org/w/index.php?title=Radon_transform&oldid=1174924269
https://en.wikipedia.org/w/index.php?title=Radon_transform&oldid=1174924269

	Abstract
	The X-ray transform : an introduction
	Physics of X-ray absorption
	Mathematical definition and common properties of the X-ray transform
	Adjoint definition and inversion formula

	Inverse problems in tomography
	Linear inverse problem formulation in the continuum
	Discrete formulation and ill-posedness
	From Bayesian formulation to regularised optimisation problem
	ASTRA toolbox: A leading state-of-the-art framework - features and limitations

	Computational aspects
	Introduction: Computational imaging goals
	Adjoint operator implementation
	Auto-differentiation method
	Custom matched algorithm

	3D generalised X-ray transform via rendering techniques
	Performance evaluation & results

	Image reconstruction
	Synthetic 3D data generation
	Iterative algorithms for real data reconstruction
	Uncertainty quantification with confidence regions

	Projection and backprojection with Box-splines : an overview

