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Abstract— Exoskeletons intended for partial assistance of
walking should be able to follow the gait pattern of their
users, via online adaptive control strategies rather than impos-
ing predefined kinetic or kinematic profiles. NeuroMuscular
Controllers (NMCs) are adaptive strategies inspired by the
neuromuscular modeling methods that seek to mimic and
replicate the behavior of the human nervous system and skeletal
muscles during gait. This study presents a novel design of
a NMC, applied for the first time to partial assistance hip
exoskeletons. Rather than the two-phase (stance/swing) division
used in previous designs for the modulation of reflexes, a 5-state
finite state machines is designed for gait phase synchronisation.
The common virtual muscle model is also modified by assuming
a stiff tendon, allowing for a more analytical computation
approach for the muscle state resolution. As a first validation,
the performance of the controller was tested with 9 healthy
subjects walking at different speeds and slopes on a treadmill.
The generated torque profiles show similarity to biological
torques and optimal assistance profiles in the literature. Power
output profiles of the exoskeleton indicate good synchronization
with the users’ intended movements, reflected in predominantly
positive work by the assistance. The results also highlight the
adaptability of the controller to different users and walking
conditions, without the need for extensive parameter tuning.

I. INTRODUCTION

Neuromuscular Controllers (NMCs) are powerful tools
to reproduce physiological motor behaviors in simulations
[1] and guide torque generation in assistive devices [2].
In an influential study, Geyer and Herr demonstrated that
the kinematics and muscle activation observed in human
locomotion could be reproduced without central commands
using a controller relying purely on sensory feedback [3].
A similar controller with partial modifications was then
proposed by Ong et al. [4], further highlighting the capability
of reflex-based controllers in generating functional gaits. In
these studies, the activation of sensory responses in the gait
cycle is regulated by a state-machine mechanism enabling
the activation of reflexes only in specific gait cycle phases.
Different motor behaviors, like the modulation of gait speed,
can also be achieved by modulating selected sensory reflex
gains [5]. The idea of task- and phase-dependent regulation
of the reflexes is supported by experimental observations in
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which different reflex responses in various motor tasks or
gait phases were registered [6], [7].

The ability of NMCs to generate human-like gaits under
different conditions in simulation, without requiring exten-
sive sensory information, indicates them as good candidates
for wearable robotic devices. This may also improve user
acceptance and thus facilitate the adoption of the assistive
devices for real-world use. Their ability to function with
less sensory input allows for a simpler hardware structure
and increased robustness to noise and failure.

In one of the first device implementations, a neuromus-
cular model was used to control a powered ankle-foot
prosthesis in the stance phase, which allowed a person
with transtibial amputation to walk on flat and inclined
terrains [8]. The controller showed an inherent adaptivity
to the terrain without explicit terrain detection or re-tuning.
Following the promising results in simulation and prosthesis
implementations, the first exoskeleton implementation of a
NMC was reported in [9] for the ankle. Similar to the
model proposed by Geyer and Herr [3], a finite-state machine
(FSM) with two states (stance/swing) was used to modulate
the reflexes. A percentage of the torque generated by the
NMC was commanded to the exoskeleton assisting healthy
people. The results showed reductions in the energetic cost
of walking and muscle activities, while largely preserving
the natural gait patterns.

Several similar implementations have been reported later
for assisting subjects with spinal cord injury on different
devices, including a hip-knee gait trainer [10], an ankle
exoskeleton [11], and a full-leg exoskeleton [12]. The results
indicated the ability of the NMC to assist users with a range
of impairments to walk at various speeds, without imposing a
pre-defined movement [2]. However, these implementations
used a two-state FSM, which cannot capture the potential
modulations of the reflex pathways in sub-phases within
stance and swing, such as those proposed by Ong et al.
[4]. Furthermore, all of the aforementioned variants of the
NMC used the Hill-type model for the virtual muscles,
which is a three- or four-element model of the biological
muscles. While the elaborateness of this model is necessary
for reproducing the dynamic behavior of the biological
muscles, its utility for assistive controllers is unclear. The
added complexity by this model, which can also lead to
numerical issues in real-time implementations, might not be
justified [13].

In this work, we present a novel design of the NMC
based on a 5-state FSM and a simplified version of the
virtual muscle model. In terms of functionality, the fine-
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grained FSM provides more freedom in adjusting the emer-
gent assistive torque profiles, while the simplifications of
the virtual muscle model allow for a more straightforward
implementation. The controller was implemented on a hip
exoskeleton and tested with healthy subjects in treadmill-
walking experiments at various speeds and slopes. The main
goal was to firstly validate the performance of the novel
NMC with different users, and then to study its adaptability
across different speeds and slopes.

II. METHODS

A. Novel Neuromuscular Controller

1) Virtual muscles: The Hill-type model is chosen as a
basis, to which we contribute by proposing simplifications
and a new computational approach. Descriptions of the base
model and the usual computational approach used in the
literature can be found in [3] and [14]. In this article,
the same notations are kept, therefore only contributions to
equations will be presented.

In our implementation, the serial element which models
the series elasticity of the tendon, is assumed to have a
constant length. This is justified by the high biological
stiffness of the tendon, estimated to be around 150 kN ·m−1

on average [15], indicating that the tendon length will not
deviate significantly from the slack length, lslack in normal
walking. With this simplification, the serial element length,
lse, and its rate of change, vse, become constants, reducing
the system’s degrees of freedom by half. This allows to
compute the Contractile Element (CE) length, lce, and its rate
of change, vce, from the kinematic equation of the muscle
length and its analytical derivative:

lce = lmtu − lse

= lopt + lslack +∆lmtu(θ)− lse
(1)

vce =
d∆lmtu(θ)

dθ
.
dθ(t)

dt
(2)

where lmtu, lopt and θ denote the total muscle-tendon
unit length, the optimum CE length, and the joint angle,
respectively. The value of ∆lmtu(θ) for the hip joint muscles
is derived as in [3] based on the muscle’s moment arm r0
and reference angle θref , and replaced in Eqs. (1) and (2):

lce = lopt + lslack + r0.(θ − θref )− lse (3)

vce = r0.θ̇ (4)

From the resolution of the CE state, it is possible to
calculate the force generated by the CE (Fce) using the force-
length and force-velocity relationships given in [14]. The
force generated by the hip muscle is ultimately:

Fmtu = Fpe + Fce − Fbe ≈ Fce (5)

The last approximation in Eq. (5) is based on the length
equality between the buffer element (lbe) and the parallel
element (lpe), resulting in the cancellation of the forces
generated by the two passive elements. The muscle’s torque
around the hip is thus given by:

τmtu = Fmtu.r0 (6)

This method, that we call the derivative approach, con-
trasts with the integral computational approach used in the
base model. It prevents several approximations, such as the
iterative computation of the lse, the estimation of the lce
from numerically integrating vce, and the computation of
vce from the inversion of the force-velocity relationship. The
latter is not recommended in real-time embedded hardware
implementations, given the limited precision. This ultimately
yields a more accurate muscle state estimation and a more
computationally efficient scheme.

The virtual muscles used in this work are also different
from the conventional NMC implementations that included
a hip joint with 3 hip muscle groups [10]. We only kept
the mono-articular muscles, since the controller is targeting
a hip-only exoskeleton without sensing at the knee level.
This restricted the choice to the iliopsoas (ILPS) as a hip
flexor and gluteus maximus (GLU) as a hip extensor muscle.
The baseline assistance torque is the resultant torque of the
contributions of both muscles, multiplied by a gain Gs,v:

τassist = Gs,v.(τGLU + τILPS) (7)

Gs,v is tuned depending on the ground slope (s) and walking
velocity (v), since the original NMC was designed to assist
walking on flat ground at a medium speed. The torque was
further scaled by the body mass of each subject.

2) Reflexes: Reflexes were modulated as a function of
the gait phase, using one 5-state FSM per leg, which allows
to encapsulate the dynamic nature of the human reflexes
over the gait cycle. The considered states are: Early stance
(ES), mid-stance (MS), pre-swing (PS), initial swing (IS)
and landing preparation (LP). The ES, MS, PS and IS states
for each leg were triggered by detecting the ipsilateral heel-
strike, the contralateral toe-off (indicating the start of single
support), the contralateral heel-strike (marking the start of
double support), and the ipsilateral toe-off, respectively. The
detection was based on based on a threshold of 10N on
the foot load signal from insole Force-Sensitive Resistors
(FSRs). The LP was triggered by the the flexion/extension
angular velocity falling below −1 deg/s, which indicates the
change of direction of the leg prior to landing.

A novelty of our implementation is to rely on length
feedback and constant inhibition instead of the commonly
implemented force feedback reflex [14]. The choice of the
length feedback is motivated, first, by the smoothness of the
length signal compared to the velocity of the CE. Second,
in Ong et al.’s work [4], a set of velocity and length
reflexes were shown to be sufficient for a broad range of gait
speeds in simulation. The selected reflexes for each phase are
presented in Table I. Depending on the phase, the applied
stimulation is given by a variant of the following equation
(the terms in brackets are phase-dependent):

Stim(t) = Stim0 [+Gl.lce(t− δt)] [−C] (8)

where Stim0 is the "basal" activation of the muscle, Gl is
the length reflex gain, δt = 5ms is a constant simulating the
neural signal delays, and C is a constant inhibition term.



TABLE I
SELECTED REFLEXES AS A FUNCTION OF STATE. L+ REFERS TO THE

POSITIVE LENGTH FEEDBACK, AND C− TO THE CONSTANT INHIBITION

ES MS PS S LP

Glu. L+ L+, C− L+, C− L+, C− L+

Ilps. basal L+ L+ L+ L+, C−

3) Parameter Tuning: The model includes 18 muscle
characteristic parameters and 13 reflex gains per muscle,
adding up to 62 parameters in total by assuming symmetry
between the legs. For the muscle characteristics, we based the
tuning on two former studies [3], [4]. Data-driven simulations
in MATLAB and Simulink (Mathworks Inc., USA) were
used to test the muscles using angular position and velocity
data recorded previously. Then, from the analysis of the
various state variables (lCE , vCE , torques, stimulations, and
activations), we recursively isolated a set of parameters to
be re-tuned.

For the reflex gains, it was not possible to rely on previous
studies firstly because we proposed a new combination of
reflexes that had not been tested in any previous simulation
or experiment. Furthermore, the gains influence greatly the
magnitude of the generated torque commands, and therefore
the torque limits of the target exoskeleton must be taken
into account. The method used to tune these parameters
was therefore in-vivo hardware and system in the loop
simulations with hand tuning. The tuning criteria of the
inhibition constants and gains were, first, the continuity
and smoothness of curves despite discrete state transitions
and second, the mimicry of the biological torque profiles
(from [16]) in terms of curve tendency, characteristic times,
magnitude ratio and muscle activations.

Lastly, the tuning of Gs,v was inspired by the biological
magnitude adaptation of the hip torque [16], [17]. It was set
to 0.8 , 1 and 1.15 respectively for the slow, normal and fast
speed conditions on level surface, and 1.15 for incline. The
tuning was performed prior to the experiments, and the same
parameters were used for all subjects.

B. Experimental Setup and Protocol

A bilateral hip exoskeleton prototype (e-Walk V1, Fig.
1) was used to test the controller with human subjects. The
device is actuated with BLDC motors providing nominal and
peak torques of 13 and 35N ·m respectively. An efficient 6:1
planetary reducer allows for easy back-driving of the motors
by the wearer (back-driving torques of less than 0.6N · m
RMS for movements up to 2Hz). The motors are connected
to thigh cuffs with thin carbon-fiber-reinforced beams that are
only stiff around the flex/extension axis. Due to the flexibility
of the beams outside of the sagittal plane, abd/adduction and
int/external rotations remain possible.

The exoskeleton is controlled by an embedded computer
(BeagleBone Black, BeagleBoard.org Foundation, USA) run-
ning real-time Linux. The setup includes a range of sensors,
namely absolute joint angle encoders, insole FSRs, and
actuator current sensors, all of which are read and logged
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Fig. 1. The experimental setup, showing a subject walking on the inclined
treadmill while wearing the exoskeleton. The hip exoskeleton consists of: (1)
back box including embedded electronics and batteries, (2) waist interface,
(3) hip joint actuator, (4) thigh segment, (5) thigh cuff, (6) insole FSR
amplifier, and (7) shoes with insole FSRs.

by the embedded computer. Thanks to the high efficiency of
the transmission, the actuator currents were used to estimate
the applied torques using conversion coefficients found in
benchtop tests with torque sensors. Thus, the commanded
torques were converted to currents commanded to the motors,
enforced with a current control loop at 32 kHz. The main
control loop was set to run at 500Hz, which is sufficient
given the dynamics of human gait.

The goal of the experiment was firstly to validate the
novel NMC in terms of the emerging assistive torque profiles
and their effect on the user’s kinematics, as well as the
adaptability of the torques to various walking conditions.
The protocol was approved by the EPFL Human Research
Ethics Committee. Nine able-bodied adults (5 females, 4
males, age: 27± 2.3 years, weight: 65.0± 8.4 kg) took part
in the experiments. All subjects provided written informed
consent prior to the experiment. The participants who had
no previous experience with the exoskeleton (n = 5) were
asked to walk for 2min on a treadmill (N-Mill, Forcelink
B.V., Netherlands) at different speeds while wearing the
exoskeleton prior to the main experiment.

The protocol included 8 conditions at varying speeds and
inclines, 4 with the exoskeleton in active mode (conditions
"C<i>") and 4 in transparent mode (conditions "C<i>t").
The transparent conditions, in which the motors of the
exoskeleton were driven in zero-torque mode, were used
as the baseline of each subject’s kinematics. The first three
pairs of conditions assessed the adaptability of the controller
to walking on a level surface at various speeds: slow at
0.8m · s−1 (C1, 2.5min and C1t, 1.5min), normal at
1.25m · s−1 (C2, 2.5min and C2t, 1.5min), and fast at
1.8m · s−1 (C3, 2min and C3t, 1.5min). The 4th pair of
conditions tested the adaptability to inclines and consisted in
walking at 1.25m · s−1 on a 10% upward slope (C4, 2min
and C4t, 1min). The subjects were given sufficient time to
rest between the conditions.



C. Data analysis

Data for each subject were segmented into single gait cy-
cles, based on heel-strikes detected from the insole pressure
sensor signals. The segmentation was performed separately
for each leg using the ipsilateral heel-strikes. The assistive
powers were calculated from the estimated motor torques
and the angular velocities estimated from the encoders. The
works per stride were then obtained by numerically inte-
grating the powers. After verifying the normal distribution
of the results using one-sided Kolmogorov-Smirnov test,
statistical significance of the differences in the produced
work between conditions was first tested using a repeated
measures one-way ANOVA at 5% significance. In case of a
significant outcome, Wilcoxon’s matched pairs signed rank
test was used for pair-wise post-hoc comparisons at 5%
significance. All data analysis was performed in MATLAB.
The convention of signs for torque and angles is positive in
the flexion direction and negative in extension.

III. RESULTS

The average profiles of hip angle for each assisted condi-
tion compared to the transparent are shown in Figs. 2A–D.
In all of the assisted conditions, a tendency toward higher
extension angles is observed in the angle profiles compared
to transparent, also resulting in an increase of about 5 deg
on average in the overall range of motion. The assisted
conditions display a markedly higher retraction in the angles
prior to heel-strike, particularly in C1–C3, highlighted in Fig.
2.A to 2.D.

The average torques generated by the NMC are presented
in Fig. 2.F. The profiles show a period of extension from LP
to MS, followed by a period of flexion from PS to LP. The
magnitude of torques in the extension direction are higher.

The angle and torque profiles showed notable variations,
particularly between the subjects. The median inter-subjects
kinematics standard deviations across all conditions were:
4.2 deg for the hip angle, 40.44 deg/s for the hip velocity
and 14mN ·m · kg−1 for the normalised torque.

The average exoskeleton output power profiles and work
per stride values are presented in Figs. 3.A and 3.B, respec-
tively. The power values are almost constantly positive, as
also reflected in the negligible magnitude of negative works.
The power delivery is mostly happening in ES, IS, and LP.
The work values show an increasing trend with speed and
slope, with the highest amount of work performed in C4.

The activation signals of the virtual muscles are shown in
Fig. 3.C, with the typical activation timings of the biological
equivalents marked for comparison. The extensor (GLU) is
mostly active during LP to MS, with an activation peak in
ES, whereas the flexor (ILPS) is mostly active from MS to
IS. Furthermore, the magnitude of the extensor activation is
around 30% higher than the flexor, in line with the trends
observed in the torques.

IV. DISCUSSION

The performance of the NMC was tested over an extensive
range of walking patterns, to which it adapted by computing

the assistive torques online without the need for specific
tuning (apart from the linear scaling gain, Gs,v) or pre-
defined torque profiles. The trends of the hip kinematics did
not show major deviations from non-assisted walking, except
for some jitter observed in the hip angle during ES and MS.
The tendencies toward extension in the assisted conditions
agree with the common pattern in partial assistance studies
such as [19], since the magnitude of extension torques are
generally higher than flexion.

The jittering in the angle profiles was due to the movement
of the exoskeleton attachments with respect to the body, as
evidenced by the concurrence of the jitter with the reduction
of the extension torque on the ipsilateral and the period of
peak flexion torque on the contralateral leg. Since an off-
the-shelf corset intended for passive orthoses was used as
the waist attachment, rapid changes of the torques caused
visible deformations in the interface leading to movement of
the motors relative to the body.

The exoskeleton power, and consequently the delivered
work, were predominantly positive across all conditions, with
negligible amounts of negative work. The positive work was
on average 30 times higher than the negative work. Since the
magnitudes of the applied torques were not high enough to
enforce a movement on the user, the positive powers and
works are good indicators that the assistive torques were
synchronized with the intended movements of the users.
Furthermore, the total work and the peaks of powers grew
with the speed and incline, demonstrating that the assistance
adapted to the level of effort in the various conditions. The
highest negative work occurred in the C3 condition with a
value of −2.4mJ · kg−1 against 72.8mJ · kg−1 of positive
work. The short period of negative power in C3 is due to the
jitter induced by the relative movement of the exoskeleton
interface during ES, and therefore has little effect on the user.
This condition also had the highest kinematic jitter due to the
high walking speed, which validates the former hypothesis.

We evaluated the generated torques by comparing them to
torque profiles from the literature. One basis for comparison
was the assistance torque profiles obtained from human-in-
the loop (HitL) optimization for metabolic cost reduction
on a range of slopes [19].Comparisons against the trends
observed in biological torques were also made. The consid-
ered features were the overall profile trends, characteristic
times (in percentage of the gait cycle), and magnitudes. The
general trend of the torque and phase transitions of the as-
sistance matched their biological counterparts [16]–[18]. The
beginning of the ES corresponded to 0%, the the MS started
on average at 10.64%, the TS at 49.57%, the IS at 60.78%
and the terminal stance (TS) or LP at 89.24%. These results
are consistent with the reported biological data as in [18]
which validates the controller’s FSM phase synchronization.
The inter-subject variance of the characteristic times did not
exceed 2%. The peak of extension for the flat conditions at
various speeds happened on average at 8% which falls within
the biological range of 6± 4% [16] and remains fairly close
to the range reported in [19], i.e., between 9.1 to 11.5%. For
the inclined condition, the peak timing coincided with the
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Fig. 2. (A)-(D) Averaged hip angles profiles across all subjects (n = 9) for the eight conditions, the dashed lines represent the unassisted conditions
C<i>t and the continuous lines the assisted conditions C<i>. (E) Average hip angle profiles across subjects in the four assisted conditions. (F) Average
assistance torque for the four assisted conditions, also showing the states of the FSM.
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average value of 10% obtained from HitL optimisation.

The extension to flexion zero crossing of the torques
happened on average at 47% which is in the limits of the bi-
ological torque profile [16]. The extension torques decreased
to a near-zero (< 0.01N·m·kg−1) value starting around 35%,
similar to the trends observed in the HitL-optimised torques.
This characteristic time tended to increase with both the
walking speed and ground slope, in line with the biological
behavior reported in [17]. Moreover, this suggests a longer
duration of extension assistance when the user increases
the hip extension range and duration. The peak of flexion
happened on average at 61%, which is in between the timing
of the average biological torques (52%) [16] and the HitL-
optimised profiles (66%) [19]. The flexion to extension zero
crossing happened on average at 87% which is close to the
HitL value of 88% [19]. This characteristic time also tended
to increase with both the speed and slope, in agreement with
biological trends [17]. This suggests that the controller adapts
to the variation in the ranges of motion by providing longer
flexion assistance when the subject increases the hip flexion

range and duration.
In terms of magnitudes, the average extension to flexion

ratio was 2.45 (minimum: 1.87, maximum: 3). In the bio-
logical torques, this ratio is above 1.5 [16], since extension
torques contribute to weight bearing, thus requiring more
effort. In the HitL torques, the average ratio was 2.3, with
a minimum value of 1.6 and a maximum of 3 [19]. The
extension peak increased with both the speed and slope.
The flexion peak increased with the speed and decreased
with the slope (compared to the flat ground at the same
speed). Both behaviors have been observed biologically [17],
which confirms the magnitude adaptability of the controller.
Note that before applying Gs,v , the NMC showed a good
adaptability in terms of characteristic times, but the mag-
nitude adaptation was not sufficient. This shortcoming was
improved by introducing this adaptation gain, which was
tuned manually in this study.

The activation peak timing of the GLU matched its bio-
logical counterpart [16], [18]. The burst of activity for this
virtual muscle begins during LP, reaches its peak during ES



and continues until the middle of MS, which corresponds
well to the period when the hip joint contributes to the
forward acceleration of the body. The peak of the ILPS
activation coincides with the biological range of hip flexors
activation. It was active during the biological activation range
(PS and IS) and had a larger activation band extending
to the MS and the end of the IS. This same result was
previously reported in some gait simulation studies as in
[4]. One important property is that, the 2 virtual muscles
exhibit an antagonist behavior having inverted activation
and deactivation tendency which aligns with their biological
antagonism. A period of mild co-conctraction happens during
the single-support period (10–50%), which would lead to a
higher stiffness of the joint and thus higher stability of the
body. In terms of activation magnitude, the virtual GLU had
a higher activation then the ILPS, given the fact that the
extension requires more effort because of the load bearing.

A main limitation of this study was the lack of direct
torque measurement in the exoskeleton, reducing the ac-
curacy of the applied torques and the analyses based on
them. Also, the imperfect fitting of the prototype exoskeleton
negatively affected the joint angle measurements and the
transfer of torques to the user. Another limitation was the
lack of biological measurements, such as metabolic rate or
muscle activities to asses the contribution of the assistance to
reducing user’s effort. Lastly, the adaptivity of the NMC can
be significantly improved by replacing the manually tuned
gain Gs,v with an adaptive gain.

V. CONCLUSION

This study presented a novel modular approach for the
implementation of the NMC and its validation on a partial
assistance hip exoskeleton. The main contributions were (i)
the proposition of a new 5-state FSM for gait synchro-
nisation, (ii) the simplification of the Hill muscle model,
resulting in a new analytical state resolution method with
improved computational efficiency, and (iii) introduction of a
new set of length reflexes for the control of the chosen virtual
muscles. The experimental results validated the adaptability
of the controller to various walking speeds and ground levels,
particularly in terms of assistance timing. Predominantly
positive power profiles demonstrated a good synchronization
with the users. The hip kinematics showed similar trends to
normal walking, with considerable inter-subject variability
indicating the controller’s adaptation to each user’s gait.
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